Discrete Mathematics

Richard Johnsonbaugh Eighth Edition

Discrete
Mathematics

This page intentionally left blank

Discrete
Mathematics

Eighth Edition

Richard Johnsonbaugh
DePaul University, Chicago

@ Pearson

330 Hudson Street, NY, NY 10013

Director, Portfolio Management Deirdre Lynch Marketing Assistant Jennifer Myers

Executive Editor Jeff Weidenaar Senior Author Support/Technology Specialist Joe Vetere

Editorial Assistant Jennifer Snyder Rights and Permissions Project Manager Gina Cheselka

Content Producer Lauren Morse Manufacturing Buyer Carol Melville, LSC Communications
Managing Producer Scott Disanno Associate Director of Design Blair Brown

Media Producer Nicholas Sweeney Text Design, Production Coordination, and Composition SPi Global
Product Marketing Manager Yvonne Vannatta Cover Design Laurie Entringer

Field Marketing Manager Evan St. Cyr Cover and Chapter Opener Helenecanada/iStock/Getty Images

Copyright (©) 2018, 2009, 2005 by Pearson Education, Inc. All Rights Reserved. Printed in the United
States of America. This publication is protected by copyright, and permission should be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information
regarding permissions, request forms and the appropriate contacts within the Pearson Education Global
Rights & Permissions department, please visit www.pearsoned.com/permissions/.

PEARSON and ALWAYS LEARNING are exclusive trademarks owned by Pearson Education, Inc. or
its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the
property of their respective owners and any references to third-party trademarks, logos or other trade
dress are for demonstrative or descriptive purposes only. Such references are not intended to imply
any sponsorship, endorsement, authorization, or promotion of Pearson’s products by the owners of
such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates,
authors, licensees or distributors.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All such
documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its
respective suppliers hereby disclaim all warranties and conditions with regard to this information, including
all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a

particular purpose, title and non-infringement. In no event shall microsoft and/or its respective suppliers

be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of
use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or

in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical
errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers

may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time.
Partial screen shots may be viewed in full within the software version specified. Microsoft® Windows Explorer®,
and Microsoft Excel® are registered trademarks of the microsoft corporation in the U.S.A.

and other countries. This book is not sponsored or endorsed by or affiliated with the microsoft corporation.

Johnsonbaugh, Richard, 1941-
Discrete mathematics / Richard Johnsonbaugh, DePaul University, Chicago. — Eighth edition.
pages cm
Includes bibliographical references and index.
ISBN 978-0-321-96468-7 — ISBN 0-321-96468-3
1. Mathematics. 2. Computer science—Mathematics. 1. Title.
QA39.2.J65 2015
510-dc23
2014006017

1 17

@ Pearson o o o

http://www.pearsoned.com/permissions

Contents

Preface XIlI

Sets and Logic 1

1.1 Sets 2
1.2 Propositions 14
1.3 Conditional Propositions and Logical Equivalence 20
1.4 Arguments and Rules of Inference 31
1.5 Quantifiers 36
1.6 Nested Quantifiers 49
Problem-Solving Corner: Quantifiers 57
Chapter 1 Notes 58
Chapter 1 Review 58
Chapter 1 Self-Test 60
Chapter 1 Computer Exercises 60

Proofs 62

2.1 Mathematical Systems, Direct Proofs,
and Counterexamples 63
2.2 More Methods of Proof 72
Problem-Solving Corner: Proving Some Properties
of Real Numbers 83
2.3 Resolution Proofs! 85
2.4 Mathematical Induction 88
Problem-Solving Corner: Mathematical Induction 100
2.5 Strong Form of Induction and the Well-Ordering Property 102
Chapter 2 Notes 109
Chapter 2 Review 109

TThis section can be omitted without loss of continuity.

vi Contents

Chapter 2 Self-Test 109
Chapter 2 Computer Exercises 110

3 Functions, Sequences, and Relations 111

3.1 Functions 111
Problem-Solving Corner: Functions 128
3.2 Sequences and Strings 129
3.3 Relations 141
3.4 Equivalence Relations 151
Problem-Solving Corner: Equivalence Relations 158
3.5 Matrices of Relations 160
3.6 Relational Databases’ 165
Chapter 3 Notes 170
Chapter 3 Review 170
Chapter 3 Self-Test 171
Chapter 3 Computer Exercises 172

4 Algorithms 173

4.1 Introduction 173

4.2 Examples of Algorithms 177

4.3 Analysis of Algorithms 184
Problem-Solving Corner: Design and Analysis
of an Algorithm 202

4.4 Recursive Algorithms 204
Chapter 4 Notes 211
Chapter 4 Review 211
Chapter 4 Self-Test 212
Chapter 4 Computer Exercises 212

5 Introduction to Number Theory 214

5.1 Divisors 214
5.2 Representations of Integers and Integer Algorithms 224
5.3 The Euclidean Algorithm 238
Problem-Solving Corner: Making Postage 249
5.4 The RSA Public-Key Cryptosystem 250
Chapter 5 Notes 252
Chapter 5 Review 253
Chapter 5 Self-Test 253
Chapter 5 Computer Exercises 254

This section can be omitted without loss of continuity.

Contents

Counting Methods and the Pigeonhole
Principle 255

vii

6.1

6.2

6.3
6.4

6.5
6.6
6.7
6.8

Basic Principles 255

Problem-Solving Corner: Counting 267
Permutations and Combinations 269
Problem-Solving Corner: Combinations 281
Generalized Permutations and Combinations 283
Algorithms for Generating Permutations and
Combinations 289

Introduction to Discrete Probability! 297
Discrete Probability Theory” 301

Binomial Coefficients and Combinatorial Identities 313
The Pigeonhole Principle 319

Chapter 6 Notes 324

Chapter 6 Review 324

Chapter 6 Self-Test 325

Chapter 6 Computer Exercises 326

Recurrence Relations 327

7.1
7.2

7.3
7.4

Introduction 327

Solving Recurrence Relations 338

Problem-Solving Corner: Recurrence Relations 350
Applications to the Analysis of Algorithms 353

The Closest-Pair Problem’ 365

Chapter 7 Notes 370

Chapter 7 Review 371

Chapter 7 Self-Test 371

Chapter 7 Computer Exercises 372

Graph Theory 373

8.1
8.2

8.3

8.4
8.5
8.6
8.7
8.8

Introduction 373

Paths and Cycles 384

Problem-Solving Corner: Graphs 395
Hamiltonian Cycles and the Traveling Salesperson
Problem 396

A Shortest-Path Algorithm 405

Representations of Graphs 410

Isomorphisms of Graphs 415

Planar Graphs 422

Instant Insanity’ 429

TThis section can be omitted without loss of continuity.

vili Contents

Chapter 8 Notes 433

Chapter 8 Review 434

Chapter 8 Self-Test 435

Chapter 8 Computer Exercises 436

9 Trees 438

9.1 Introduction 438
9.2 Terminology and Characterizations of Trees 445
Problem-Solving Corner: Trees 450
9.3 Spanning Trees 452
9.4 Minimal Spanning Trees 459
9.5 Binary Trees 465
9.6 Tree Traversals 471
9.7 Decision Trees and the Minimum Time for Sorting 477
9.8 Isomorphisms of Trees 483
9.9 Game Trees' 493
Chapter 9 Notes 502
Chapter 9 Review 502
Chapter 9 Self-Test 503
Chapter 9 Computer Exercises 505

1 O Network Models 506

10.1 Introduction 506
10.2 A Maximal Flow Algorithm 511
10.3 The Max Flow, Min Cut Theorem 519
10.4 Matching 523
Problem-Solving Corner: Matching 528
Chapter 10 Notes 529
Chapter 10 Review 530
Chapter 10 Self-Test 530
Chapter 10 Computer Exercises 531

1 1 Boolean Algebras and Combinatorial
Circuits 532

11.1 Combinatorial Circuits 532
11.2 Properties of Combinatorial Circuits 539
11.3 Boolean Algebras 544

Problem-Solving Corner: Boolean Algebras 549
11.4 Boolean Functions and Synthesis of Circuits 551
11.5 Applications 556

This section can be omitted without loss of continuity.

12

Nn >

Automata, Grammars, and Languages

Chapter 11 Notes 564

Chapter 11 Review 565

Chapter 11 Self-Test 565

Chapter 11 Computer Exercises 567

Contents

568

ix

12.1
12.2
12.3
12.4
12.5

Sequential Circuits and Finite-State Machines 568
Finite-State Automata 574

Languages and Grammars 579

Nondeterministic Finite-State Automata 589
Relationships Between Languages and Automata 595
Chapter 12 Notes 601

Chapter 12 Review 602

Chapter 12 Self-Test 602

Chapter 12 Computer Exercises 603

Appendix 605

Matrices 605

Algebra Review 609

Pseudocode 620

References 627

Hints and Solutions to Selected Exercises

Index 735

633

This page intentionally left blank

Dedication

To Pat, my wife, for her continuous support through my many book projects, for
formally and informally copy-editing my books, for maintaining good cheer
throughout, and for preventing all egregious mistakes that would have otherwise found
their way into print. Her contributions are deeply appreciated.

This page intentionally left blank

Preface

This updated edition is intended for a one- or two-term introductory course in discrete
mathematics, based on my experience in teaching this course over many years and re-
quests from users of previous editions. Formal mathematics prerequisites are minimal;
calculus is not required. There are no computer science prerequisites. The book includes
examples, exercises, figures, tables, sections on problem-solving, sections containing
problem-solving tips, section reviews, notes, chapter reviews, self-tests, and computer
exercises to help the reader master introductory discrete mathematics. In addition, an
Instructor’s Guide and website are available.

In the early 1980s there were few textbooks appropriate for an introductory course
in discrete mathematics. However, there was a need for a course that extended students’
mathematical maturity and ability to deal with abstraction, which also included use-
ful topics such as combinatorics, algorithms, and graphs. The original edition of this
book (1984) addressed this need and significantly influenced the development of dis-
crete mathematics courses. Subsequently, discrete mathematics courses were endorsed
by many groups for several different audiences, including mathematics and computer
science majors. A panel of the Mathematical Association of America (MAA) endorsed
a year-long course in discrete mathematics. The Educational Activities Board of the
Institute of Electrical and Electronics Engineers (IEEE) recommended a freshman dis-
crete mathematics course. The Association for Computing Machinery (ACM) and IEEE
accreditation guidelines mandated a discrete mathematics course. This edition, like its
predecessors, includes topics such as algorithms, combinatorics, sets, functions, and
mathematical induction endorsed by these groups. It also addresses understanding and
constructing proofs and, generally, expanding mathematical maturity.

New to This Edition

The changes in this book, the eighth edition, result from comments and requests from
numerous users and reviewers of previous editions of the book. This edition includes the
following changes from the seventh edition:

B The web icons in the seventh edition have been replaced by short URLs, making
it possible to quickly access the appropriate web page, for example, by using a
hand-held device.

®m The exercises in the chapter self-tests no longer identify the relevant sections mak-
ing the self-test more like a real exam. (The hints to these exercises do identify the
relevant sections.)

xiii

Xiv

Preface

m Examples that are worked problems clearly identify where the solution begins and
ends.

B The number of exercises in the first three chapters (Sets and Logic; Proofs; and
Functions, Sequences, and Relations) has been increased from approximately 1640
worked examples and exercises in the seventh edition to over 1750 in the current
edition.

B Many comments have been added to clarify potentially tricky concepts (e.g., “sub-
set” and “element of,” collection of sets, logical equivalence of a sequence of
propositions, logarithmic scale on a graph).

B There are more examples illustrating diverse approaches to developing proofs and
alternative ways to prove a particular result [see, e.g., Examples 2.2.4 and 2.2.8;
Examples 6.1.3(c) and 6.1.12; Examples 6.7.7, 6.7.8, and 6.7.9; Examples 6.8.1
and 6.8.2].

B A number of definitions have been revised to allow them to be more directly ap-
plied in proofs [see, e.g., one-to-one function (Definition 3.1.22) and onto function
(Definition 3.1.29)].

B Additional real-world examples (see descriptions in the following section) are in-
cluded.

B The altered definition of sequence (Definition 3.2.1) provides more generality and
makes subsequent discussion smoother (e.g., the discussion of subsequences).

®m Exercises have been added (Exercises 40—49, Section 5.1) to give an example of
an algebraic system in which prime factorization does not hold.

B An application of the binomial theorem is used to prove Fermat’s little theorem
(Exercises 40 and 41, Section 6.7).

B There is now a randomized algorithm to search for a Hamiltonian cycle in a graph
(Algorithm 8.3.10).

B The Closest-Pair Problem (Section 13.1 in the seventh edition) has been integrated
into Chapter 7 (Recurrence Relations) in the current edition. The algorithm to solve
the closest-pair problem is based on merge sort, which is discussed and analyzed
in Chapter 7. Chapter 13 in the seventh edition, which has now been removed, had
only one additional section.

B A number of recent books and articles have been added to the list of references,
and several book references have been updated to current editions.

B The number of exercises has been increased to nearly 4500. (There were approx-
imately 4200 in the seventh edition.)

Contents and Structure

Content Overview

Chapter 1 Sets and Logic

Coverage includes quantifiers and features practical examples such as using the Google
search engine (Example 1.2.13). We cover translating between English and symbolic
expressions as well as logic in programming languages. We also include a logic game
(Example 1.6.15), which offers an alternative way to determine whether a quantified
propositional function is true or false.

Preface XV

Chapter 2 Proofs

Proof techniques discussed include direct proofs, counterexamples, proof by contradic-
tion, proof by contrapositive, proof by cases, proofs of equivalence, existence proofs
(constructive and nonconstructive), and mathematical induction. We present loop in-
variants as a practical application of mathematical induction. We also include a brief,
optional section on resolution proofs (a proof technique that can be automated).

Chapter 3 Functions, Sequences, and Relations

The chapter includes strings, sum and product notations, and motivating examples such
as the Luhn algorithm for computing credit card check digits, which opens the chapter.
Other examples include an introduction to hash functions (Example 3.1.15), pseudo-
random number generators (Example 3.1.16). a real-world example of function compo-
sition showing its use in making a price comparison (Example 3.1.45), an application of
partial orders to task scheduling (Section 3.3), and relational databases (Section 3.6).

Chapter 4 Algorithms

The chapter features a thorough discussion of algorithms, recursive algorithms, and the
analysis of algorithms. We present a number of examples of algorithms before getting
into big-oh and related notations (Sections 4.1 and 4.2), thus providing a gentle introduc-
tion and motivating the formalism that follows. We then continue with a full discussion
of the “big oh,” omega, and theta notations for the growth of functions (Section 4.3).
Having all of these notations available makes it possible to make precise statements
about the growth of functions and the time and space required by algorithms.

We use the algorithmic approach throughout the remainder of the book. We men-
tion that many modern algorithms do not have all the properties of classical algorithms
(e.g., many modern algorithms are not general, deterministic, or even finite). To illustrate
the point, we give an example of a randomized algorithm (Example 4.2.4). Algorithms
are written in a flexible form of pseudocode, which resembles currently popular lan-
guages such as C, C++, and Java. (The book does not assume any computer science
prerequisites; the description of the pseudocode used is given in Appendix C.) Among
the algorithms presented are:

Tiling (Section 4.4)

Euclidean algorithm for finding the greatest common divisor (Section 5.3)
RSA public-key encryption algorithm (Section 5.4)

Generating combinations and permutations (Section 6.4)

Merge sort (Section 7.3)

Finding a closest pair of points (Section 7.4)

Dijkstra’s shortest-path algorithm (Section 8.4)

Backtracking algorithms (Section 9.3)

Breadth-first and depth-first search (Section 9.3)

Tree traversals (Section 9.6)

Evaluating a game tree (Section 9.9)

Finding a maximal flow in a network (Section 10.2)

Chapter 5 Introduction to Number Theory

The chapter includes classical results (e.g., divisibility, the infinitude of primes, funda-
mental theorem of arithmetic), as well as algorithmic number theory (e.g., the Euclidean
algorithm to find the greatest common divisor, exponentiation using repeated squaring,
computing s and ¢ such that gcd(a, b) = sa + tb, computing an inverse modulo an inte-

Xvi

Preface

ger). The major application is the RSA public-key cryptosystem (Section 5.4). The calcu-
lations required by the RSA public-key cryptosystem are performed using the algorithms
previously developed in the chapter.

Chapter 6 Counting Methods and the Pigeonhole Principle

Coverage includes combinations, permutations, discrete probability (optional Sections
6.5 and 6.6), and the Pigeonhole Principle. Applications include internet addressing
(Section 6.1) and real-world pattern recognition problems in telemarketing (Example
6.6.21) and virus detection (Example 6.6.22) using Bayes’” Theorem.

Chapter 7 Recurrence Relations
The chapter includes recurrence relations and their use in the analysis of algorithms.

Chapter 8 Graph Theory

Coverage includes graph models of parallel computers, the knight’s tour, Hamiltonian
cycles, graph isomorphisms, and planar graphs. Theorem 8.4.3 gives a simple, short, el-
egant proof of the correctness of Dijkstra’s algorithm.

Chapter 9 Trees
Coverage includes binary trees, tree traversals, minimal spanning trees, decision trees,
the minimum time for sorting, and tree isomorphisms.

Chapter 10 Network Models
Coverage includes the maximal flow algorithm and matching.

Chapter 11 Boolean Algebras and Combinatorial Circuits
Coverage emphasizes the relation of Boolean algebras to combinatorial circuits.

Chapter 12 Automata, Grammars, and Languages

Our approach emphasizes modeling and applications. We discuss the SR flip-flop circuit
in Example 12.1.11, and we describe fractals, including the von Koch snowflake, which
can be described by special kinds of grammars (Example 12.3.19).

Book frontmatter and endmatter

Appendixes include coverage of matrices, basic algebra, and pseudocode. A reference
section provides more than 160 references to additional sources of information. Front
and back endpapers summarize the mathematical and algorithm notation used in the
book.

Features of Content Coverage

= A strong emphasis on the interplay among the various topics. Examples of this
include:

e We closely tie mathematical induction to recursive algorithms (Section 4.4).

e We use the Fibonacci sequence in the analysis of the Euclidean algorithm
(Section 5.3).

e Many exercises throughout the book require mathematical induction.

e We show how to characterize the components of a graph by defining an
equivalence relation on the set of vertices (see the discussion following
Example 8.2.13).

e We count the number of nonisomorphic n-vertex binary trees (Theorem
9.8.12).

E A strong emphasis on reading and doing proofs. We illustrate most proofs of
theorems with annotated figures and/or motivate them by special Discussion sec-

Preface xvii

tions. Separate sections (Problem-Solving Corners) show students how to attack
and solve problems and how to do proofs. Special end-of-section Problem-Solving
Tips highlight the main problem-solving techniques of the section.

A large number of applications, especially applications to computer science.

B Figures and tables illustrate concepts, show how algorithms work, elucidate
proofs, and motivate the material. Several figures illustrate proofs of theorems.
The captions of these figures provide additional explanation and insight into the
proofs.

Textbook Structure

Each chapter is organized as follows:

Chapter X Overview

Section X.1

Section X.1 Review Exercises
Section X.1 Exercises
Section X.2

Section X.2 Review Exercises
Section X.2 Exercises

Chapter X Notes

Chapter X Review

Chapter X Self-Test

Chapter X Computer Exercises

In addition, most chapters have Problem-Solving Corners (see “Hallmark Features”
for more information about this feature).

Section review exercises review the key concepts, definitions, theorems, tech-
niques, and so on of the section. All section review exercises have answers in the back
of the book. Although intended for reviews of the sections, section review exercises can
also be used for placement and pretesting.

Chapter notes contain suggestions for further reading. Chapter reviews provide
reference lists of the key concepts of the chapters. Chapter self-tests contain exer-
cises based on material from throughout the chapter, with answers in the back of the
book.

Computer exercises include projects, implementation of some of the algorithms,
and other programming related activities. Although there is no programming prerequisite
for this book and no programming is introduced in the book, these exercises are provided
for those readers who want to explore discrete mathematics concepts with a computer.

Hallmark Features

Exercises

The book contains nearly 4500 exercises, approximately 150 of which are computer
exercises. We use a star to label exercises felt to be more challenging than average.
Exercise numbers in color (approximately one-third of the exercises) indicate that the
exercise has a hint or solution in the back of the book. The solutions to most of the
remaining exercises may be found in the Instructor’s Guide. A handful of exercises are
clearly identified as requiring calculus. No calculus concepts are used in the main body
of the book and, except for these marked exercises, no calculus is needed to solve the
exercises.

><
s,

Preface

Examples

The book contains almost 650 worked examples. These examples show students how to
tackle problems in discrete mathematics, demonstrate applications of the theory, clarify
proofs, and help motivate the material.

Problem-Solving Corners

The Problem-Solving Corner sections help students attack and solve problems and show
them how to do proofs. Written in an informal style, each is a self-contained section
centered around a problem. The intent of these sections is to go beyond simply presenting
a proof or a solution to the problem: we show alternative ways of attacking a problem,
discuss what to look for in trying to obtain a solution to a problem, and present problem-
solving and proof techniques.

Each Problem-Solving Corner begins with a statement of a problem. We then dis-
cuss ways to attack the problem, followed by techniques for finding a solution. After we
present a solution, we show how to correctly write it up in a formal manner. Finally, we
summarize the problem-solving techniques used in the section. Some sections include
a Comments subsection, which discusses connections with other topics in mathematics
and computer science, provides motivation for the problem, and lists references for fur-
ther reading about the problem. Some Problem-Solving Corners conclude with a few
exercises.

Supplements and Technology

NOTE:

When you enter URLs that
appear in the text, take care
to distinguish the following
characters:

1 = lowercase |
I = uppercase |
1 =one

0 = uppercase O
0 = zero

Instructor’'s Solution Manual (downloadable)

ISBN-10: 0-321-98309-2 | ISBN-13: 978-0-321-98309-1

The Instructor’s Guide, written by the author, provides worked-out solutions for most
exercises in the text. It is available for download to qualified instructors from the Pearson
Instructor Resource Center www.pearsonhighered.com/irc.

Web Support

The short URLs in the margin of the text provide students with direct access to relevant
content at point-of-use, including:

® Expanded explanations of difficult material and links to other sites for additional
information about discrete mathematics topics.

® Computer programs (in C or C++).

The URL goo. g1/ f03Crh provides access to all of the above resources plus an errata
list for the text.

Acknowledgments

Special thanks go to reviewers of the text, who provided valuable input for this revision:

Venkata Dinavahi, University of Findlay
Matthew Elsey, New York University
Christophe Giraud-Carrier, Brigham Young University

http://www.pearsonhighered.com/irc

Preface XIX

Yevgeniy Kovchegov, Oregon State University

Filix Maisch, Oregon State University

Tyler McMillen, California State University, Fullerton
Christopher Storm, Adelphi University

Donald Vestal, South Dakota State University
Guanghua Zhao, Fayetteville State University

Thanks also to all of the users of the book for their helpful letters and e-mail.

I am grateful to my favorite consultant, Patricia Johnsonbaugh, for her careful
reading of the manuscript, improving the exposition, catching miscues I wrote but should
not have, and help with the index.

I'have received consistent support from the staff at Pearson. Special thanks for their
help go to Lauren Morse at Pearson, who managed production, Julie Kidd at SPi Global,
who managed the design and typesetting, and Nick Fiala at St. Cloud State University,
who accurately checked various stages of proof.

Finally, I thank editor Jeff Weidenaar who has been very helpful to me in prepar-
ing this edition. He paid close attention to details in the book, suggested several design
enhancements, made many specific recommendations which improved the presentation
and comprehension, and proposed changes which enhanced readability.

Richard Johnsonbaugh

This page intentionally left blank

1.1 Sets

1.2 Propositions

1.3 Conditional Propositions
and Logical Equivalence

1.4 Arguments and Rules of
Inference

1.5 Quantifiers
1.6 Nested Quantifiers

Go Online

For more on logic, see
goo.gl/F7b35e

Chapter 1

SETS AND LOGIC

Chapter 1 begins with sets. A set is a collection of objects; order is not taken into
account. Discrete mathematics is concerned with objects such as graphs (sets of ver-
tices and edges) and Boolean algebras (sets with certain operations defined on them).
In this chapter, we introduce set terminology and notation. In Chapter 2, we treat sets
more formally after discussing proof and proof techniques. However, in Section 1.1, we
provide a taste of the logic and proofs to come in the remainder of Chapter 1 and in
Chapter 2.

Logic is the study of reasoning; it is specifically concerned with whether reasoning
is correct. Logic focuses on the relationship among statements as opposed to the content
of any particular statement. Consider, for example, the following argument:

All mathematicians wear sandals.
Anyone who wears sandals is an algebraist.
Therefore, all mathematicians are algebraists.

Technically, logic is of no help in determining whether any of these statements is true;
however, if the first two statements are true, logic assures us that the statement,

All mathematicians are algebraists,

is also true.

Logic is essential in reading and developing proofs, which we explore in detail in
Chapter 2. An understanding of logic can also be useful in clarifying ordinary writing.
For example, at one time, the following ordinance was in effect in Naperville, Illinois:
“It shall be unlawful for any person to keep more than three dogs and three cats upon
his property within the city.” Was one of the citizens, who owned five dogs and no cats,
in violation of the ordinance? Think about this question now; then analyze it (see Exer-
cise 75, Section 1.2) after reading Section 1.2.

2

Chapter 1 ¢ Sets and Logic

1.1

Sets

Go Online
For more on sets, see
goo.gl/F7b35e

The concept of set is basic to all of mathematics and mathematical applications. A set
is simply a collection of objects. The objects are sometimes referred to as elements or
members. If a set is finite and not too large, we can describe it by listing the elements in
it. For example, the equation

A={1,2,3,4} (1.1.1)

describes a set A made up of the four elements 1, 2, 3, and 4. A set is determined by
its elements and not by any particular order in which the elements might be listed. Thus
the set A might just as well be specified as A = {1, 3, 4, 2}. The elements making up a
set are assumed to be distinct, and although for some reason we may have duplicates in
our list, only one occurrence of each element is in the set. For this reason we may also
describe the set A defined in (1.1.1) as A = {1, 2, 2, 3, 4}.

If a set is a large finite set or an infinite set, we can describe it by listing a property
necessary for membership. For example, the equation

B = {x | x is a positive, even integer} (1.1.2)

describes the set B made up of all positive, even integers; that is, B consists of the integers
2, 4, 6, and so on. The vertical bar “|” is read “such that.” Equation (1.1.2) would be
read “B equals the set of all x such that x is a positive, even integer.” Here the property
necessary for membership is “is a positive, even integer.” Note that the property appears
after the vertical bar. The notation in (1.1.2) is called set-builder notation.

A set may contain any kind of elements whatsoever, and they need not be of the
same “type.” For example,

{4.5, Lady Gaga, , 14}

is a perfectly fine set. It consists of four elements: the number 4.5, the person Lady Gaga,
the number 7 (= 3.1415...), and the number 14.
A set may contain elements that are themselves sets. For example, the set

{3, {5, 1}, 12, {m, 4.5, 40, 16}, Henry Cavill}

consists of five elements: the number 3, the set {5, 1}, the number 12, the set {x, 4.5,
40, 16}, and the person Henry Cavill.

Some sets of numbers that occur frequently in mathematics generally, and in dis-
crete mathematics in particular, are shown in Figure 1.1.1. The symbol Z comes from
the German word, Zahlen, for integer. Rational numbers are quotients of integers, thus
Q for quotient. The set of real numbers R can be depicted as consisting of all points on
a straight line extending indefinitely in either direction (see Figure 1.1.2)."

Symbol Set Example of Members
Z Integers —-3,0, 2, 145
Q Rational numbers | —1/3,0,24/15
R Real numbers —3,—-1.766,0,4/15, V2,2.666. .. LT

Figure 1.1.1 Sets of numbers.

The real numbers can be constructed by starting with a more primitive notion such as “set” or “integer,” or
they can be obtained by stating properties (axioms) they are assumed to obey. For our purposes, it suffices to
think of the real numbers as points on a straight line. The construction of the real numbers and the axioms
for the real numbers are beyond the scope of this book.

Example 1.1.1

Example 1.1.2

Example 1.1.3

—4 -3 -2 -1 0 1 2
2

—~1.766 4 2

Figure 1.1.2 The real number line.

To denote the negative numbers that belong to one of Z, Q, or R, we use the
superscript minus. For example, Z~ denotes the set of negative integers, namely —1, —2,
—3,.... Similarly, to denote the positive numbers that belong to one of the three sets,
we use the superscript plus. For example, Q1 denotes the set of positive rational num-
bers. To denote the nonnegative numbers that belong to one of the three sets, we use the
superscript nonneg. For example, Z"°""¢ denotes the set of nonnegative integers, namely
0,1,2,3,....

If X is a finite set, we let |[X| = number of elements in X. We call |X| the cardi-
nality of X. There is also a notion of cardinality of infinite sets, although we will not
discuss it in this book. For example, the cardinality of the integers, Z, is denoted R, read
“aleph null.” Aleph is the first letter of the Hebrew alphabet.

For the set A in (1.1.1), we have |A| = 4, and the cardinality of A is 4. The cardinality
of the set {R, Z} is 2 since it contains two elements, namely the two sets Rand Z. <

Given a description of a set X such as (1.1.1) or (1.1.2) and an element x, we can
determine whether or not x belongs to X. If the members of X are listed as in (1.1.1),
we simply look to see whether or not x appears in the listing. In a description such as
(1.1.2), we check to see whether the element x has the property listed. If x is in the set
X, we write x € X, and if x is not in X, we write x ¢ X. For example, 3 € {1, 2, 3, 4}, but
3 ¢ {x | xis a positive, even integer}.

The set with no elements is called the empty (or null or void) set and is denoted
. Thus @ = { }.

Two sets X and Y are equal and we write X = Y if X and Y have the same elements.
To put it another way, X = Y if the following two conditions hold:

m Forevery x,if x € X, thenx € Y,
and
® Forevery x,ifx € Y, then x € X.

The first condition ensures that every element of X is an element of Y, and the second
condition ensures that every element of Y is an element of X.

IfA = {1,3,2} and B = {2, 3, 2, 1}, by inspection, A and B have the same elements.
Therefore A = B. |
Show thatif A = {x | x> +x — 6 =0} and B = {2, —3}, then A = B.

SOLUTION According to the criteria in the paragraph immediately preceding Example
1.1.2, we must show that for every x,

if x € A, then x € B, (1.1.3)

and for every x,

if x € B, then x € A. (1.1.4)

4

Chapter 1 ¢ Sets and Logic

Example 1.1.4

Example 1.1.5

Example 1.1.6

Example 1.1.7

Example 1.1.8

Example 1.1.9

To verify condition (1.1.3), suppose that x € A. Then
¥ +x—6=0.

Solving for x, we find that x = 2 or x = —3. In either case, x € B. Therefore, condition
(1.1.3) holds.

To verify condition (1.1.4), suppose that x € B. Thenx =2 orx = —3.If x = 2,
then

X Hx—6=22+2-6=0.
Therefore, x € A. If x = —3, then
X Hx—6=(=3)"+(-3)—6=0.
Again, x € A. Therefore, condition (1.1.4) holds. We conclude that A = B. |

For a set X to not be equal to a set Y (written X # Y), X and Y must not have the
same elements: There must be at least one element in X that is not in Y or at least one
element in Y that is not in X (or both).

Let A = {1,2,3} and B = {2,4}. Then A # B since there is at least one element in A
(1 for example) that is not in B. [Another way to see that A # B is to note that there is
at least one element in B (namely 4) that is not in A.] <4

Suppose that X and Y are sets. If every element of X is an element of Y, we say
that X is a subset of ¥ and write X C Y. In other words, X is a subset of Y if for every
x,ifx € X,thenx e Y.

If C ={1,3}and A = {1, 2, 3, 4}, by inspection, every element of C is an element of A.
Therefore, C is a subset of A and we write C C A. <

Let X = {x | x* + x — 2 = 0}. Show that X C Z.

SOLUTION We must show that for every x, if x € X, then x € Z. If x € X, then

24+x—2=0. Solving for x, we obtain x = 1 or x = —2. In either case, x € Z.
Therefore, for every x, if x € X, then x € Z. We conclude that X is a subset of Z and we
write X C Z. <

The set of integers Z is a subset of the set of rational numbers Q. If n € Z, n can
be expressed as a quotient of integers, for example, n = n/1. Therefore n € Q and
7 C Q. <

The set of rational numbers Q is a subset of the set of real numbers R. If x € Q, x cor-
responds to a point on the number line (see Figure 1.1.2) sox € R. <4

For X to not be a subset of Y, there must be at least one member of X that is not
inY.

Let X = {x | 3x> — x — 2 = 0}. Show that X is not a subset of Z.

Example 1.1.10

Example 1.1.11

Example 1.1.12

Example 1.1.13

Example 1.1.14

11 & Sets 5

SOLUTION Ifx € X, then 3x> —x—2 = 0. Solving for x, we obtain x = 1 orx = —2/3.
Taking x = —2/3, we have x € X but x ¢ Z. Therefore, X is not a subset of Z. <

Any set X is a subset of itself, since any element in X is in X. Also, the empty set
is a subset of every set. If & is not a subset of some set Y, according to the discussion
preceding Example 1.1.9, there would have to be at least one member of & that is not in
Y. But this cannot happen because the empty set, by definition, has no members.

Notice the difference between the terms “subset” and “element of.” The set X is a
subset of the set Y(X C Y), if every element of X is an element of Y; x is an element of
X(x € X), if x is a member of the set X.

LetX ={1,3,5,7}and Y = {1,2,3,4,5,6,7}. Then X C Y since every element of X
is an element of Y. But X ¢ Y, since the ser X is not a member of Y. Also, 1 € X, but
1 is not a subset of X. Notice the difference between the number 1 and the ser {1}. The
set {1} is a subset of X. 4

If X is a subset of Y and X does not equal Y, we say that X is a proper subset of
Y and write X C Y.

Let C = {1,3}and A = {1, 2, 3, 4}. Then C is a proper subset of A since C is a subset
of A but C does not equal A. We write C C A. <

Example 1.1.7 showed that Z is a subset of Q. In fact, Z is a proper subset of Q because,
for example, 1/2 € Q, but 1/2 ¢ Z. <

Example 1.1.8 showed that Q is a subset of R. In fact, Q is a proper subset of R because,
for example, +/2 € R, but +/2 ¢ Q. (In Example 2.2.3, we will show that +/2 is not the
quotient of integers). |

The set of all subsets (proper or not) of a set X, denoted P(X), is called the power
set of X.
If A = {a, b, c}, the members of P(A) are

I, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.

All but {a, b, c} are proper subsets of A. |

In Example 1.1.14, |A| = 3 and |P(A)| = 23 = 8. In Section 2.4 (Theorem 2.4.6),
we will give a formal proof that this result holds in general; that is, the power set of a
set with n elements has 2" elements.

Given two sets X and Y, there are various set operations involving X and Y that
can produce a new set. The set

XUY={x|xeXorxeVY}

is called the union of X and Y. The union consists of all elements belonging to either X
or Y (or both).
The set

XNY={x|xeXandx €Y}

6

Chapter 1 ¢ Sets and Logic

Example 1.1.15

Example 1.1.16

Example 1.1.17

Example 1.1.18

Example 1.1.19

is called the intersection of X and Y. The intersection consists of all elements belonging
to both X and Y.
The set

X—Y={x|xeXandx ¢ Y}

is called the difference (or relative complement). The difference X — Y consists of all
elements in X that are notin Y.

IfA={1,3,5) and B = {4, 5, 6}, then

AUB =1{1,3,4,5,6)

ANB={5)}
A—B={1,3}
B—A = {4,6}.
Notice that, in general, A — B # B — A. <
Since Q C R,
RUQ=R
RNQ=0Q
Q—-R=2.

The set R — Q, called the set of irrational numbers, consists of all real numbers that
are not rational. <4

We call a set S, whose elements are sets, a collection of sets or a family of sets.
For example, if

S={{1,2},{1, 3}, {1,7, 10}},
then Sis a collection or family of sets. The set S consists of the sets
{1, 2}, {1, 3}, {1, 7, 10}.
Sets X and Y are disjoint if XNY = &. A collection of sets S is said to be pairwise

disjoint if, whenever X and Y are distinct sets in S, X and Y are disjoint.

The sets {1, 4, 5} and {2, 6} are disjoint. The collection of sets S = {{1, 4, 5}, {2, 6}, {3},
{7, 8}} is pairwise disjoint. <4

Sometimes we are dealing with sets, all of which are subsets of a set U. This set
U is called a universal set or a universe. The set U must be explicitly given or inferred
from the context. Given a universal set U and a subset X of U, the set U — X is called
the complement of X and is written X.

LetA = {1, 3, 5}. If U, auniversal set, is specified as U = {1, 2, 3, 4, 5},then§ ={2,4}.
If, on the other hand, a universal set is specified as U = {1, 3,5, 7, 9}, then A = {7, 9}.
The complement obviously depends on the universe in which we are working. <

Let the universal set be Z. Then Z—, the complement of the set of negative integers, is
7°""<8 | the set of nonnegative integers. <

Go Online
For more on Venn
diagrams, see
g00.gl/F7b35e

11 & Sets 7

Venn diagrams provide pictorial views of sets. In a Venn diagram, a rectangle de-
picts a universal set (see Figure 1.1.3). Subsets of the universal set are drawn as circles.
The inside of a circle represents the members of that set. In Figure 1.1.3 we see two sets
A and B within the universal set U. Region 1 represents (A U B), the elements in neither
A nor B. Region 2 represents A — B, the elements in A but not in B. Region 3 represents
A N B, the elements in both A and B. Region 4 represents B — A, the elements in B but

not in A.
A
G’

Figure 1.1.3 A Venn
diagram.

U

Example 1.1.20 Particular regions in Venn diagrams are depicted by shading. The set A U B is shown in

U

A

a0

Figure 1.1.4 A Venn
diagram of A U B.

Example 1.1.21

Figure 1.1.4, and Figure 1.1.5 represents the set A — B. |

U U

A B

&

Figure 1.1.5 A Venn
diagram of A — B.

CALC PSYCH

P
N,

9 COMPSCI

Figure 1.1.6 A Venn diagram
of three sets CALC, PSYCH,
and COMPSCI. The numbers
show how many students belong
to the particular region depicted.

To represent three sets, we use three overlapping circles (see Figure 1.1.6).

Among a group of 165 students, 8 are taking calculus, psychology, and computer science;
33 are taking calculus and computer science; 20 are taking calculus and psychology;
24 are taking psychology and computer science; 79 are taking calculus; 83 are taking
psychology; and 63 are taking computer science. How many are taking none of the three
subjects?

SOLUTION Let CALC, PSYCH, and COMPSCI denote the sets of students taking
calculus, psychology, and computer science, respectively. Let U denote the set of all
165 students (see Figure 1.1.6). Since 8 students are taking calculus, psychology, and
computer science, we write 8 in the region representing CALC N PSYCH N COMPSCI.
Of the 33 students taking calculus and computer science, 8 are also taking psychol-
ogy; thus 25 are taking calculus and computer science but not psychology. We write
25 in the region representing CALC N PSYCH N COMPSCI. Similarly, we write 12 in
the region representing CALC N PSYCH N COMPSCI and 16 in the region repre-
senting CALC N PSYCH N COMPSCI. Of the 79 students taking calculus, 45 have
now been accounted for. This leaves 34 students taking only calculus. We write 34 in
the region representing CALC N PSYCH N COMPSCI. Similarly, we write 47 in the
region representing CALC N PSYCH N COMPSCI and 14 in the region representing

8 Chapter 1 ¢ Setsand Logic

Theorem 1.1.22
U

A B

(0

Figure 1.1.7 The
shaded region depicts
both (A U B) and

A N B; thus these sets
are equal.

Go Online

For a biography of
De Morgan, see
goo.gl/F7b35e

CALC N PSYCH N COMPSCI. At this point, 156 students have been accounted for.
This leaves 9 students taking none of the three subjects. <

Venn diagrams can also be used to visualize certain properties of sets. For exam-
ple, by sketching both (A U B) and A N B (see Figure 1.1.7), we see that these sets are
equal. A formal proof would show that for every x, if x € (A U B), then x € AN B, and if
x € ANB, then x € (A U B). We state many useful properties of sets as Theorem 1.1.22.

Let U be a universal set and let A, B, and C be subsets of U. The following properties
hold.

(a) Associative laws:
AUBJUC=AUBUC), ANBNC=ANMBNC)
(b) Commutative laws:
AUB=BUA, ANB=BNA
(c) Distributive laws:
ANBUC)=ANBUMANC), AUBNC)=AUBNAUC)

(d) Identity laws:

AU =A, ANU=A
(e) Complement laws:

AUA=U, ANA=0o
(f) Idempotent laws:

AUA=A, ANA=A
(g) Bound laws:

AUU=U, ANQG =0
(h) Absorption laws:

AUMANB)=A, AN(AUB)=A

(i) Involution law:

=A'

||

(G) 0/1 laws:
o=U U=2
(k) De Morgan’s laws for sets:
(AUB)=ANB, (ANB)=AUB

Proof The proofs are left as exercises (Exercises 46-56, Section 2.1) to be done after
more discussion of logic and proof techniques. <

We define the union of a collection of sets S to be those elements x belonging to
at least one set X in S. Formally,

US = {x|x e X for some X € S}.

4 denotes the complement of the complement of A, that is, A= A).

Example 1.1.23

Example 1.1.24

Example 1.1.25

Example 1.1.26

11 & Sets 9

Similarly, we define the intersection of a collection of sets S to be those elements x
belonging to every set X in S. Formally,

NS={x|xeXforall X € S}.

LetS = {{I1, 2}, {1, 3}, {1, 7, 10}}. Then US = {1, 2, 3, 7, 10} since each of the elements
1,2, 3,7, 10 belongs to at least one set in S, and no other element belongs to any of the
sets in S. Also NS = {1} since only the element 1 belong to every set in S. |

If
S=1{A1,A4, ..., A},

we write
Us=Ua Ns=MA
i=1 i=1
and if
S={A1, Az, ...},
we write

USI GA,’, nSZ ﬁA,
i=1 i=1

For i > 1, define A;, = {i,i + 1,...} and § = {A;,A,,...}. As examples,
A =1{1,2,3,...}and A, = {2,3,4,...}. Then

U3=GA,-={1,2,...}, ﬂszﬁA,:@. <
i=1 i=1

A partition of a set X divides X into nonoverlapping subsets. More formally, a
collection S of nonempty subsets of X is said to be a partition of the set X if every
element in X belongs to exactly one member of S. Notice that if S'is a partition of X, S
is pairwise disjoint and US = X.

Since each element of X = {1,2,3,4,5,6,7,8} is in exactly one member of
S={{1,4,5}, (2,6}, {3}, {7, 8}}, Sis a partition of X. <

At the beginning of this section, we pointed out that a set is an unordered collection
of elements; that is, a set is determined by its elements and not by any particular order
in which the elements are listed. Sometimes, however, we do want to take order into
account. An ordered pair of elements, written (a, b), is considered distinct from the or-
dered pair (b, @), unless, of course, @ = b. To put it another way, (a, b) = (c, d) precisely
whena = cand b = d. If X and Y are sets, we let X x Y denote the set of all ordered
pairs (x, y) where x € X and y € Y. We call X x Y the Cartesian product of X and Y.

IfX ={1,2,3}and Y = {a, b}, then
XxY=A{(,a),(1,b),(2,a),(2,b),(3,a), (3,b)}
YxX={(a,1),(,1),(a,?2),0b?2),a,3), b, 3)}
XxX={1,1,(,2),,3),2,1),(2,2),(2,3),3,1),(3,2),(3,3)}
Y xY ={(a,a), (a,b), (b, a), (b, b)}. 2 |

10

Chapter 1 ¢ Sets and Logic

Example 1.1.27

Example 1.1.28

Example 1.1.29

Example 1.1.26 shows that, in general, X x Y # Y x X.

Notice that in Example 1.1.26, [Xx Y| = [X]| - |Y]| (both are equal to 6). The reason
is that there are 3 ways to choose an element of X for the first member of the ordered
pair, there are 2 ways to choose an element of Y for the second member of the ordered
pair, and 3 - 2 = 6 (see Figure 1.1.8). The preceding argument holds for arbitrary finite
sets X and Y; it is always true that |[X x Y| = |X] - |Y].

(La)(1,b) (2,a) (2,p) (3.a) (3,b)
Figure 1.1.8 |X x Y| = |X]| - |Y|, where X = {1, 2, 3} and Y = {a, b}. There
are 3 ways to choose an element of X for the first member of the ordered pair
(shown at the top of the diagram) and, for each of these choices, there are
2 ways to choose an element of Y for the second member of the ordered pair

(shown at the bottom of the diagram). Since there are 3 groups of 2, there are
3 .2 =6c¢elements in X x Y (labeled at the bottom of the figure).

A restaurant serves four appetizers,
r =ribs, n =nachos, s =shrimp, f = fried cheese,
and three entrees,
¢ = chicken, b = beef, = trout.

Ifwelet A = {r,n,s,f} and E = {c, b, t}, the Cartesian product A x E lists the 12
possible dinners consisting of one appetizer and one entree. <

Ordered lists need not be restricted to two elements. An n-tuple, written
(ai, as, ..., a,), takes order into account; that is,

(al,az,...,an) = (b],bz, ...,b,,)

precisely when

ay=by,ar=by,...,a,=>b,.
The Cartesian product of sets X, X, ..., X, is defined to be the set of all n-tuples
(x1,x2,...,x,) Where x; € X; fori =1, ...,n;itis denoted X; x Xp X - -+ X X,,.

IfX={1,2},Y ={a, b}, and Z = {«, B}, then
XxYxZ={1,a,a),,a,p), ,b,a),(,b,B),2,a), 2,a,B),
2,b,a), (2,b, B)}. |
Notice that in Example 1.1.28, |X x Y x Z| = |X]| - |Y] - |Z]. In general,
X1 x Xo X -+ X Xp| = |X1] « [Xa2] -+ [Xl
We leave the proof of this last statement as an exercise (see Exercise 27, Section 2.4).
If A is a set of appetizers, E is a set of entrees, and D is a set of desserts, the Cartesian

product A x E x D lists all possible dinners consisting of one appetizer, one entree, and
one dessert. <

1.1 & Sets 11

1.1 Problem-Solving Tips

m To verify that two sets A and B are equal, written A = B, show that for every x, if

x €A, thenx € B,and if x € B, then x € A.

To verify that two sets A and B are not equal, written A # B, find at least one
element that is in A but not in B, or find at least one element that is in B but not
in A. One or the other conditions suffices; you need not (and may not be able to)
show both conditions.

To verify that A is a subset of B, written A € B, show that for every x, if x € A,
then x € B. Notice that if A is a subset of B, it is possible that A = B.

m To verify that A is not a subset of B, find at least one element that is in A but not in B.

To verify that A is a proper subset of B, written A C B, verify that A is a subset of
B as described previously, and that A # B, that is, that there is at least one element
that is in B but not in A.

To visualize relationships among sets, use a Venn diagram. A Venn diagram can
suggest whether a statement about sets is true or false.

A set of elements is determined by its members; order is irrelevant. On the other
hand, ordered pairs and n-tuples take order into account.

1.1 Review Exercises

W N

e N A

10.
11.

12.

14.

. What is a set?

15. Explain a method of verifying that X is a proper subset

. What is set notation?

. Describe the sets Z, Q, R, ZT, Q*,R", Z~, Q~, R, Z"o"es,

Qromes and R and give two examples of members of
each set.

. If X is a finite set, what is |X|?

. How do we denote x is an element of the set X?

. How do we denote x is not an element of the set X?
. How do we denote the empty set?

. Define set X is equal to set Y. How do we denote X is equal

toY?

. Explain a method of verifying that sets X and Y are equal.

Explain a method of verifying that sets X and Y are not equal.

Define X is a subset of Y. How do we denote X is a subset
of Y?

Explain a method of verifying that X is a subset of Y.

. Explain a method of verifying that X is not a subset of Y.

Define X is a proper subset of Y. How do we denote X is a
proper subset of Y?

16.
17.
18.

19.

20.

21.
22,
23.

24.
25.
26.
27.

of Y.
What is the power set of X? How is it denoted?
Define X union Y. How is the union of X and Y denoted?

If S is a family of sets, how do we define the union of S? How
is the union denoted?

Define X intersect Y. How is the intersection of X and Y
denoted?

If S is a family of sets, how do we define the intersection of
S? How is the intersection denoted?

Define X and Y are disjoint sets.
What is a pairwise disjoint family of sets?

Define the difference of sets X and Y. How is the difference
denoted?

What is a universal set?
What is the complement of the set X? How is it denoted?
What is a Venn diagram?

Draw a Venn diagram of three sets and identify the set repre-
sented by each region.

TExercise numbers in color indicate that a hint or solution appears at the back of the book in the section

following the References.

12 Chapter 1 ¢ Setsand Logic

28. State the associative laws for sets.
29. State the commutative laws for sets.
30. State the distributive laws for sets.
31. State the identity laws for sets.

32. State the complement laws for sets.
33. State the idempotent laws for sets.
34. State the bound laws for sets.

35. State the absorption laws for sets.

36. State the involution law for sets.
37. State the 0/1 laws for sets.

38. State De Morgan’s laws for sets.
39. What is a partition of a set X?

40. Define the Cartesian product of sets X and Y. How is this
Cartesian product denoted?

41. Define the Cartesian product of the sets X1, Xz, ..
is this Cartesian product denoted?

., X,,. How

In Exercises 1-16, let the universe be the set U = {1, 2,3, ..., 10}.
LetA=1{1,4,7,10}, B={1,2,3,4,5}, and C = {2,4, 6, 8}. List
the elements of each set.

1. AUB 2. BNC
3.A-B 4. B—A

5. A 6. U—-C

7. U 8. AUD

9. BNY 10. AUU

11. BNU 12. AN(BUC)
13. BN (C —A)

14. ANB)—C

15. AnNBUC

16. (AUB) — (C — B)

In Exercises 17-27, let the universe be the set ZT. Let X =
{1,2,3,4,5} and let Y be the set of positive, even integers. In set-
builder notation, Y = {2n | n € Z*). In Exercises 18-27, give a
mathematical notation for the set by listing the elements if the set is
finite, by using set-builder notation if the set is infinite, or by using
a predefined set such as &.

17. Describe Y in words.

18. X 19. Y

20. XNY 21. XUY
22. XNY 23. XUY
24. XNY 25. XUY
26. XNY 27. XUY

28. What is the cardinality of &?

29. What is the cardinality of {<}?

30. What is the cardinality of {a, b, a, c}?

31. What is the cardinality of {{a}, {a, b}, {a, ¢}, a, b}?

In Exercises 32-35, show, as in Examples 1.1.2 and 1.1.3, that
A=B.

32. A=1{3,2,1}, B={1,2,3}

33. C=1{1,2,3}, D={2,3,4}, A={2,3}, B=CND

34. A=1{1,2,3}, B={n|neZ" and n* < 10}

35 A={x | —4x+4=1}, B={1,3}

In Exercises 36-39, show, as in Example 1.1.4, that A # B.
36. A={1,2,3}, B=O

37. A={1,2}, B={x | xX* = 2x* —x+2 =0}

38. A=(1,3,5}, B={n|neZ andn®> — 1 < n}

39. B=1{1,2,3,4}, C=1{2,4,6,8}, A=BNC

In Exercises 4043, determine whether each pair of sets is equal.
40. {1,2,2,3},{1,2,3}

41. {1,1,3},{3,3, 1} 2. (x| X+x=2}{1,-1}
43. {x|xeRand 0 < x <2}, {1,2}

In Exercises 44-47, show, as in Examples 1.1.5 and 1.1.6, that
A CB.

44. A={1,2}, B={3,2,1}

{
45. A={1,2}, B={x|x* —6x2 4+ 11x = 6}
46. A= {1} x {1,2}, B={1} x {1,2,3}
47. A={(2n|neZ"), B={n|neZ"}

In Exercises 48-51, show, as in Example 1.1.9, that A is not a sub-
set of B.

48. A=1{1,2,3}, B=1{1,2}

49. A={x| x> —2x*—x+2=0}, B={1,2}

50. A={1,2,3,4}, C={5,6,7,8}), B={n|lncAandn+m=38
for some m € C}

51. A={1,2,3}, B=0O

In Exercises 5259, draw a Venn diagram and shade the given set.

52. ANB 53. A-B
54. BU(B—A) 55. (AUB) — B
56. BN (CUA) 57. AUB)N(C—A)

58. ((CNA)—(B—-A)NC
59. (B—C)U((B—A)N(CUB))

60. A television commercial for a popular beverage showed the
following Venn diagram

Great Taste Less Filling

What does the shaded area represent?

Exercises 61-65 refer to a group of 191 students, of which 10 are
taking French, business, and music; 36 are taking French and busi-
ness; 20 are taking French and music; 18 are taking business and
music;, 65 are taking French; 76 are taking business, and 63 are
taking music.

61. How many are taking French and music but not business?
62. How many are taking business and neither French nor music?
63. How many are taking French or business (or both)?

64. How many are taking music or French (or both) but not busi-
ness?

65. How many are taking none of the three subjects?

66. A television poll of 151 persons found that 68 watched
“Law and Disorder”; 61 watched “25”; 52 watched “The
Tenors”; 16 watched both “Law and Disorder” and “257;
25 watched both “Law and Disorder” and “The Tenors™;
19 watched both “25” and “The Tenors”; and 26 watched
none of these shows. How many persons watched all three
shows?

67. In a group of students, each student is taking a mathemat-
ics course or a computer science course or both. One-fifth of
those taking a mathematics course are also taking a computer
science course, and one-eighth of those taking a computer
science course are also taking a mathematics course. Are
more than one-third of the students taking a mathematics
course?

In Exercises 68-71, let X = {1,2} and Y = {a, b, c}. List the ele-
ments in each set.

68. XxY
70. X x X

69. Y xX
71. Y xY

In Exercises 72-75, let X = {1,2}, Y = {a}, and Z = {«, B}. List
the elements of each set.

T2. X XY XZ
74. X x X x X

73. X xYxY
T5. Y XX XY XZ

In Exercises 76-82, give a geometric description of each set in
words. Consider the elements of the sets to be coordinates. For
example, R x Z is the set {(x,n) | x € Rand n € Z}. Interpreting
the ordered pairs (x, n) as coordinates in the plane, the graph of all

1.1 & Sets 13

such ordered pairs is the set of all parallel horizontal lines spaced
one unit apart, one of which passes through (0,0).

76. R xR

77. Z xR

78. R x Z"""e8

79. Zx Z

80. Rx R xR

81. RxR xZ

82. RXxZxZ

In Exercises 83-86, list all partitions of the set.

83. {1} 84. {1,2}

85. {a, b, c} 86. {a,b,c,d}

In Exercises 87-92, answer true or false.

87. {x} < {x}

89. {x} € {x, {x}} 90. {x} < {x, {x}}

91. {2} € P{1,2}) 92. {2} € P({1,2})

93. List the members of P ({a, b}). Which are proper subsets of
{a, b}?

94. List the members of P ({a, b, ¢, d}). Which are proper subsets
of {a, b, ¢, d}?

95. If X has 10 members, how many members does P(X) have?
How many proper subsets does X have?

88. {x} € {x}

96. If X has n members, how many proper subsets does X have?

In Exercises 97—-100, what relation must hold between sets A and
B in order for the given condition to be true?

97. ANB=A
9. ANU=0

98. AUB=A
100. ANB=B

The symmetric difference of two sets A and B is the set

AAB=(AUB)— (ANB).

101. IfA ={1,2,3}and B={2,3,4,5},find A A B.

102. Describe the symmetric difference of sets A and B in
words.

103. Given auniverse U, describe AAA,AAA, UAA, and @ AA.

104. Let Cbe acircle and let D be the set of all diameters of C. What
is N'D? (Here, by “diameter” we mean a line segment through
the center of the circle with its endpoints on the circumference
of the circle.)

T%105. Let P denote the set of integers greater than 1. For i > 2, define

X; = {ik | k € P}.

Describe P — Uzz X;.

TA starred exercise indicates a problem of above-average difficulty.

14

Chapter 1 ¢ Sets and Logic

1.2

Propositions

Example 1.2.2

Which of sentences (a)—(f) are either true or false (but not both)?

(a) The only positive integers that divide’ 7 are 1 and 7 itself.

(b) Alfred Hitchcock won an Academy Award in 1940 for directing Rebecca.
(c) For every positive integer n, there is a prime number* larger than n.

(d) Earth is the only planet in the universe that contains life.

(e) Buy two tickets to the “Unhinged Universe” rock concert for Friday.

(f) x+4=6.

Sentence (a), which is another way to say that 7 is prime, is true.

Sentence (b) is false. Although Rebecca won the Academy Award for best picture
in 1940, John Ford won the directing award for The Grapes of Wrath. It is a surprising
fact that Alfred Hitchcock never won an Academy Award for directing.

Sentence (c), which is another way to say that the number of primes is infinite, is
true.

Sentence (d) is either true or false (but not both), but no one knows which at this
time.

Sentence (e) is neither true nor false [sentence (e) is a command].

The truth of equation (f) depends on the value of the variable x.

A sentence that is either true or false, but not both, is called a proposition. Sen-
tences (a)—(d) are propositions, whereas sentences (e) and (f) are not propositions. A
proposition is typically expressed as a declarative sentence (as opposed to a question,
command, etc.). Propositions are the basic building blocks of any theory of logic.

We will use variables, such as p, g, and r, to represent propositions, much as we
use letters in algebra to represent numbers. We will also use the notation

p:1+1=3

to define p to be the proposition 1 4+ 1 = 3.

In ordinary speech and writing, we combine propositions using connectives such
as and and or. For example, the propositions “It is raining” and “It is cold” can be com-
bined to form the single proposition “It is raining and it is cold.” The formal definitions
of and and or follow.

Definition 1.2.1 » Let p and g be propositions.
The conjunction of p and ¢, denoted p A ¢, is the proposition

p and gq.
The disjunction of p and ¢, denoted p V ¢, is the proposition

p or gq.

If p: It is raining, and ¢: It is cold, then the conjunction of p and g is

p A q: Itisraining and it is cold. (1.2.1)

The disjunction of p and g is

T“Divides” means “divides evenly.” More formally, we say that a nonzero integer d divides an integer m if there
is an integer ¢ such that m = dg. We call g the quotient. We will explore the integers in detail in Chapter 5.
tAn integer n > 1 is prime if the only positive integers that divide n are 1 and n itself. For example, 2, 3, and
11 are prime numbers.

Example 1.2.4

1.2 ® Propositions 15
p V q: Itisraining or it is cold. |

The truth value of the conjunction p A ¢ is determined by the truth values of p
and ¢, and the definition is based upon the usual interpretation of “and.” Consider the
proposition (1.2.1) of Example 1.2.2. If it is raining (i.e., p is true) and it is also cold
(i.e., g is also true), then we would consider the proposition (1.2.1) to be true. However,
if it is not raining (i.e., p is false) or it is not cold (i.e., ¢ is false) or both, then we would
consider the proposition (1.2.1) to be false.

The truth values of propositions such as conjunctions and disjunctions can be de-
scribed by truth tables. The truth table of a proposition P made up of the individual
propositions py, ..., p, lists all possible combinations of truth values for py, ..., p,,
T denoting true and F denoting false, and for each such combination lists the truth value
of P. We use a truth table to formally define the truth value of p A g.

A truth table for a proposition P made up of n propositions has » = 2" rows. Tra-
ditionally, for the first proposition, the first /2 rows list T and the last r/2 rows list F.
The next proposition has r/4 T’s alternate with r/4 F’s. The next proposition has /8 T’s
alternate with r/8 F’s, and so on. For example, a proposition P made up of three propo-
sitions p1, p», and p3 has 8 = 23 rows. Proposition p;, will list 4 = 8/2 T’s followed by
4 F’s. Proposition p, will list 2 = 8/4 T’s followed by 2 F’s, followed by 2 T’s, followed
by 2 F’s. Proposition p3 will have one T, followed by one F, followed by one T, and so
on. The truth table without the truth values of P would be

pi P2 p3 P

T T T

T T F

T F T Here is where the

T F F truth values of P go.
F T T

F T F

F F T

F F F

Notice that all possible combinations of truth values for py, p», ps are listed.

Definition 1.2.3 » The truth value of the proposition p A g is defined by the

truth table
P q9 | PNg
T T T
T F F
F T F
F F F

Definition 1.2.3 states that the conjunction p A ¢ is true provided that p and g are
both true; p A ¢ is false otherwise.

If p: A decade is 10 years, and g: A millennium is 100 years, then p is true, g is false (a
millennium is 1000 years), and the conjunction,

p A q: A decade is 10 years and a millennium is 100 years,

is false. 4

16

Chapter 1 ¢ Sets and Logic

Example 1.2.5

Example 1.2.7

Example 1.2.8

Most programming languages define “and” exactly as in Definition 1.2.3. For example,
in the Java programming language, (logical) “and” is denoted &&, and the expression

x <10 && y > 4

is true precisely when the value of the variable x is less than 10 (i.e., x < 10is true) and
the value of the variable y is greater than 4 (i.e., y > 4 is also true). <

The truth value of the disjunction p V ¢ is also determined by the truth values of
p and ¢, and the definition is based upon the “inclusive” interpretation of “or.”” Consider
the proposition,

pV q: Itisraining or it is cold, (1.2.2)

of Example 1.2.2. If itis raining (i.e., p is true) or it is cold (i.e., ¢ is also true) or both, then
we would consider the proposition (1.2.2) to be true (i.e., p V g is true). If it is not raining
(i.e., p is false) and it is not cold (i.e., g is also false), then we would consider the propo-
sition (1.2.2) to be false (i.e., p V ¢ is false). The inclusive-or of propositions p and g is
true if p or ¢, or both, is true, and false otherwise. There is also an exclusive-or (see Exer-
cise 67) that defines p exor g to be true if p or g, but not both, is true, and false otherwise.

Definition 1.2.6 » The truth value of the proposition pV g, called the inclusive-
or of p and g, is defined by the truth table

rvq

bS]
N

Moo
o=
Mo

If p: A millennium is 100 years, and ¢: A millennium is 1000 years, then p is false, g is
true, and the disjunction,

p Vv q: A millennium is 100 years or a millennium is 1000 years,
is true. <4
Most programming languages define (inclusive) “or” exactly as in Definition 1.2.6. For

example, in the Java programming language, (logical) “or” is denoted | |, and the ex-
pression

x <10 [l y> 4

is true precisely when the value of the variable x is less than 10 (i.e., x < 10 is true) or
the value of the variable y is greater than 4 (i.e., y > 4 is true) or both. <

In ordinary language, propositions being combined (e.g., p and g combined to
give the proposition p V g) are normally related; but in logic, these propositions are not
required to refer to the same subject matter. For example, in logic, we permit propositions
such as

3 < 5 or Paris is the capital of England.

Example 1.2.10

Example 1.2.11

Example 1.2.12

1.2 & Propositions 17

Logic is concerned with the form of propositions and the relation of propositions to each
other and not with the subject matter itself. (The given proposition is true because 3 < 5
is true.)

The final operator on a proposition p that we discuss in this section is the negation
of p.

Definition 1.2.9 » The negation of p, denoted —p, is the proposition
not p.

The truth value of the proposition —p is defined by the truth table

P
F
T

Bl

In English, we sometimes write —p as “It is not the case that p.” For example, if

p: Paris is the capital of England,
the negation of p could be written
—p: Itis not the case that Paris is the capital of England,
or more simply as

—p: Paris is not the capital of England.

If
p: 7 was calculated to 1,000,000 decimal digits in 1954,
the negation of p is the proposition
—p: m was not calculated to 1,000,000 decimal digits in 1954.

It was not until 1973 that 1,000,000 decimal digits of = were computed; so, p is false.
(Since then over 12 trillion decimal digits of w have been computed.) Since p is false,
—p is true. |

Most programming languages define “not” exactly as in Definition 1.2.9. For example,
in the Java programming language, “not” is denoted !, and the expression

1(x < 10)

is true precisely when the value of the variable x is not less than 10 (i.e., x is greater than
or equal to 10). |

In expressions involving some or all of the operators —, A, and V, in the absence of
parentheses, we first evaluate —, then A, and then V. We call such a convention operator
precedence. In algebra, operator precedence tells us to evaluate - and / before + and —.

Given that proposition p is false, proposition g is true, and proposition r is false, deter-
mine whether the proposition —p V g A r is true or false.

18

Chapter 1 ¢ Sets and Logic

Example 1.2.13

SOLUTION We first evaluate —p, which is true. We next evaluate g A r, which is false.
Finally, we evaluate —p Vv g A r, which is true. <

Searching the Web A variety of Web search engines are available (e.g., Google, Yahoo!,
Baidu) that allow the user to enter keywords that the search engine then tries to match
with Web pages. For example, entering mathematics produces a (huge!) list of pages
that contain the word “mathematics.” Some search engines allow the user to use and, or,
and not operators to combine keywords (see Figure 1.2.1), thus allowing more complex
searches. In the Google search engine, and is the default operator so that, for exam-
ple, entering discrete mathematics produces a list of pages containing both of the words
“discrete” and “mathematics.” The or operator is OR, and the not operator is the mi-
nus sign —. Furthermore, enclosing a phrase, typically with embedded spaces, in double
quotation marks causes the phrase to be treated as a single word. For example, to search
for pages containing the keywords

“Shonda Rhimes” and (Grey’s or Scandal) and (not Murder),

the user could enter

“Shonda Rhimes” Grey's OR Scandal -Murder

Go gle shonda Rnimes” Grey's OR Scandal -Murder n = m

Shonda Rhimes Says 2016 Election Is
Mirroring Her Show 'Scandal'
Huffington Post - 2

More news for "Shonda Rhimes” Grey's OR Scandal -Murder

Images for "Shonda Rhimes™ Grey's OR Scandal v

More images for “Shonda Rhimes” Grey's OR Scandal -Murder

Shonda Rhimes Reveals Why Scandal’s Olivia and Fitz Had
'shonda-hie » Glamout +
o8 st dre

<
Google and the Google logo are registered trademarks

of Google Inc., used with permission.

Figure 1.2.1 The Google search engine, which allows the user to use and (space), or (OR),
and not (—) operators to combine keywords. As shown, Google found about 573,000 Web
pages containing “Shonda Rhimes” and (Grey’s or Scandal) and

(not Murder).

1.2 Problem-Solving Tips

Although there may be a shorter way to determine the truth values of a proposition P
formed by combining propositions pj, ..., p, using operators such as — and V, a truth
table will always supply all possible truth values of P for various truth values of the
constituent propositions py, ..., py.

1.2 @ Propositions 19

1.2 Review Exercises

1. What is a proposition?
2. What is a truth table?
3. What is the conjunction of p and ¢? How is it denoted?

4. Give the truth table for the conjunction of p and g.

5. What is the disjunction of p and ¢? How is it denoted?
6. Give the truth table for the disjunction of p and q.
7. What is the negation of p? How is it denoted?

8. Give the truth table for the negation of p.

Determine whether each sentence in Exercises 1-12 is a proposi-
tion. If the sentence is a proposition, write its negation. (You are not
being asked for the truth values of the sentences that are proposi-
tions.)

1. 2+5=19. 2. 6+9=15.
3. x+9=15. 4. 7 =314

5. Waiter, will you serve the nuts—I mean, would you serve the
guests the nuts?

6. For some positive integer n, 19340 =n - 17.

7. Audrey Meadows was the original “Alice” in “The Honey-
mooners.”

8. Peel me a grape.

9. The line “Play it again, Sam” occurs in the movie Casablanca.
10. Every even integer greater than 4 is the sum of two primes.
11. The difference of two primes.

*12. This statement is false.
Exercises 13—16 refer to a coin that is flipped 10 times. Write the
negation of the proposition.
13. Ten heads were obtained.
14. Some heads were obtained.
15. Some heads and some tails were obtained.
16. At least one head was obtained.
Given that proposition p is false, proposition q is true, and proposi-

tion r is false, determine whether each proposition in Exercises 17—
22 is true or false.
17. pvq 18. —p Vv —¢q
19. =pvygqg

21. =(pVv g A(=pVr)
22. (pVv—=r)A=(gVvr)V=(rVvp)

20. =pVv —=(gAT)

Write the truth table of each proposition in Exercises 23-30.
23. pA—q 24. (—pV—-q)Vp

25. pvg A—p 26. pANg) AN—p

27. (pA@ NV (=pV g 28. =(pAg) Vv (rA—p)
2. (pVO NPV APV =g A(=p YV —g)

30. ~“(pAq)V(—gVr)

In Exercises 31-33, represent the given proposition symbolically
by letting

p: 5<9, ¢q: 9<7, r: 5<7.
Determine whether each proposition is true or false.
31. 5<9and9 < 7.

32. Itis not the case that (5 < 9and 9 < 7).

33. 5 < 9oritis not the case that (9 < 7and 5 < 7).

In Exercises 34-39, formulate the symbolic expression in words
using

p: Lee takes computer science.
q : Lee takes mathematics.

34. —p
37. pVv g

35. prg 36. pvgq

38. pA—gq 39. =-pA—gq

In Exercises 4044, formulate the symbolic expression in words
using
p . You play football.

q . You miss the midterm exam.
r: You pass the course.

40. pAg
43. ~(pvg Vvr

41. —g AT
4. (pAq)V(—gAT)

In Exercises 45—49, formulate the symbolic expression in words
using

42. pvgVvr

p : Today is Monday.
q : It is raining.
r: Itis hot.

45. pvq
47. =(pVv g AT
49. (pA(@VI)ATVI(gVp)

46. —p A (g V1)
48. (p A g) A—=(rV p)

In Exercises 50-55, represent the proposition symbolically by
letting

p : There is a hurricane.
q : It is raining.

50. There is no hurricane.

20 Chapter 1 ¢ Setsand Logic

51. There is a hurricane and it is raining.

52. There is a hurricane, but it is not raining.

53. There is no hurricane and it is not raining.

54. Either there is a hurricane or it is raining (or both).

55. Either there is a hurricane or it is raining, but there is no hur-
ricane.

In Exercises 56-60, represent the proposition symbolically by let-

ting

p: You run 10 laps daily.
q : You are healthy.
r: You take multi-vitamins.

56. You run 10 laps daily, but you are not healthy.

57. You run 10 laps daily, you take multi-vitamins, and you are
healthy.

58. You run 10 laps daily or you take multi-vitamins, and you are
healthy.

59. You do not run 10 laps daily, you do not take multi-vitamins,
and you are not healthy.

60. Either you are healthy or you do not run 10 laps daily, and you
do not take multi-vitamins.

In Exercises 61-66, represent the proposition symbolically by
letting

p : You heard the “Flying Pigs” rock concert.
q : You heard the “Y2K” rock concert.
r: You have sore eardrums.

61. You heard the “Flying Pigs” rock concert, and you have sore
eardrums.

62. You heard the “Flying Pigs” rock concert, but you do not have
sore eardrums.

63. You heard the “Flying Pigs” rock concert, you heard the
“Y2K” rock concert, and you have sore eardrums.

1.3

64. You heard either the “Flying Pigs” rock concert or the “Y2K”
rock concert, but you do not have sore eardrums.

65. You did not hear the “Flying Pigs” rock concert and you did
not hear the “Y2K” rock concert, but you have sore eardrums.

66. Itisnot the case that: You heard the “Flying Pigs” rock concert
or you heard the “Y2K” rock concert or you do not have sore
eardrums.

67. Give the truth table for the exclusive-or of p and ¢ in which
p exor q is true if either p or g, but not both, is true.

In Exercises 6874, state the meaning of each sentence if “or” is
interpreted as the inclusive-or; then, state the meaning of each sen-
tence if “or” is interpreted as the exclusive-or (see Exercise 67).
In each case, which meaning do you think is intended?

68. To enter Utopia, you must show a driver’s license or a passport.

69. To enter Utopia, you must possess a driver’s license or a
passport.

70. The prerequisite to data structures is a course in Java or C++.
71. The car comes with a cupholder that heats or cools your drink.
72. We offer $1000 cash or 0 percent interest for two years.

73. Do you want fries or a salad with your burger?

74. The meeting will be canceled if fewer than 10 persons sign up
or at least 3 inches of snow falls.

75. At one time, the following ordinance was in effect in
Naperville, Illinois: “It shall be unlawful for any person to
keep more than three [3] dogs and three [3] cats upon his prop-
erty within the city.” Was Charles Marko, who owned five dogs
and no cats, in violation of the ordinance? Explain.

76. Write acommand to search the Web for national parks in North
or South Dakota.

77. Write a command to search the Web for information on lung
disease other than cancer.

78. Write a command to search the Web for minor league baseball
teams in Illinois that are not in the Midwest League.

Conditional Propositions

and Logical Equivalence

The dean has announced that

If the Mathematics Department gets an additional $60,000,

then it will hire one new faculty member.

(1.3.1)

Statement (1.3.1) states that on the condition that the Mathematics Department gets an
additional $60,000, then the Mathematics Department will hire one new faculty member.
A proposition such as (1.3.1) is called a conditional proposition.

Definition 1.3.1 »

If p and g are propositions, the proposition

if p then ¢ (1.3.2)

Example 1.3.2

1.3 @ Conditional Propositions and Logical Equivalence 21

is called a conditional proposition and is denoted
pP—q.

The proposition p is called the hypothesis (or antecedent), and the proposition ¢ is called
the conclusion (or consequent).

If we define

p: The Mathematics Department gets an additional $60,000,

q: The Mathematics Department will hire one new faculty member,

then proposition (1.3.1) assumes the form (1.3.2). The hypothesis is the statement “The
Mathematics Department gets an additional $60,000,” and the conclusion is the state-
ment “The Mathematics Department will hire one new faculty member.” |

What is the truth value of the dean’s statement (1.3.1)? First, suppose that the
Mathematics Department gets an additional $60,000. If the Mathematics Department
does hire an additional faculty member, surely the dean’s statement is true. (Using the
notation of Example 1.3.2, if p and ¢ are both true, then p — ¢ is true.) On the other
hand, if the Mathematics Department gets an additional $60,000 and does not hire an
additional faculty member, the dean is wrong—statement (1.3.1) is false. (If p is true and
q is false, then p — ¢ is false.) Now, suppose that the Mathematics Department does
not get an additional $60,000. In this case, the Mathematics Department might or might
not hire an additional faculty member. (Perhaps a member of the department retires and
someone is hired to replace the retiree. On the other hand, the department might not
hire anyone.) Surely we would not consider the dean’s statement to be false. Thus, if the
Mathematics Department does not get an additional $60,000, the dean’s statement must
be true, regardless of whether the department hires an additional faculty member or not.
(If p is false, then p — ¢ is true whether ¢ is true or false.) This discussion motivates
the following definition.

Definition 1.3.3 » The truth value of the conditional proposition p — ¢ is de-
fined by the following truth table:

p q|pP—>4q
T T T
T F F
F T T
F F T

For those who need additional evidence that we should define p— g to be
true when p is false, we offer further justification. Most people would agree that the
proposition,

For all real numbers x, if x > 0, then x> > 0, (1.3.3)

is true. (In Section 1.5, we will discuss such “for all” statements formally and in detail.)
In the following discussion, we let P(x) denote x > 0 and Q(x) denote x% > 0. That
proposition (1.3.3) is true means that no matter which real number we replace x with,
the proposition

if P(x) then Q(x) (1.3.4)

22

Chapter 1 ¢ Sets and Logic

Example 1.3.4

Example 1.3.5

that results is true. For example, if x =3, then P(3) and Q(3) are both true (3 > 0 and
3% > 0 are both true), and, by Definition 1.3.3, (1.3.4) is true. Now let us consider the
situation when P(x) is false. If x = — 2, then P(—2) is false (—2 > 0 is false) and Q(—2)
is true [(—2) > 0 is true]. In order for proposition (1.3.4) to be true in this case, we
must define p — ¢ to be true when p is false and ¢ is true. This is exactly what oc-
curs in the third line of the truth table of Definition 1.3.3. If x =0, then P(0) and Q(0)
are both false (0> 0 and 0% > 0 are both false). In order for proposition (1.3.4) to be
true in this case, we must define p — ¢ to be true when both p and ¢ are false. This
is exactly what occurs in the fourth line of the truth table of Definition 1.3.3. Even
more motivation for defining p — ¢ to be true when p is false is given in Exercises
77 and 78.

Letp:1 > 2andgq:4 < 8. Then p is false and ¢ is true. Therefore, p — ¢ is true and
q — pis false. <4

In expressions that involve the logical operators A, Vv, —, and —, the conditional
operator — is evaluated last. For example,

pvVqg— —r
is interpreted as
PV q) — ().
Assuming that p is true, g is false, and r is true, find the truth value of each proposition.

@ png—r

(b) pvg— —r
© pA(g—T1)
dp—>(@G—>n

SOLUTION

(a) We first evaluate p A g because — is evaluated last. Since p is true and ¢ is false,
p A q is false. Therefore, p A ¢ — r is true (regardless of whether r is true or
false).

(b) We first evaluate —r. Since r is true, —r is false. We next evaluate p Vv ¢. Since p
is true and q is false, p V g is true. Therefore, p vV ¢ — —r is false.

(c) Since ¢ is false, ¢ — r is true (regardless of whether r is true or false). Since p
is true, p A (g — r) is true.

(d) Since ¢ is false, ¢ — r is true (regardless of whether r is true or false). Thus,
p — (g — r) is true (regardless of whether p is true or false). 4

A conditional proposition that is true because the hypothesis is false is said to be
true by default or vacuously true. For example, if the proposition,

If the Mathematics Department gets an additional $60,000, then it will hire one
new faculty member,

is true because the Mathematics Department did not get an additional $60,000, we would
say that the proposition is true by default or that it is vacuously true.

Some statements not of the form (1.3.2) may be rephrased as conditional proposi-
tions, as the next example illustrates.

1.3 @ Conditional Propositions and Logical Equivalence ~ 23

Example 1.3.6 Restate each proposition in the form (1.3.2) of a conditional proposition.

(a)
(b)
(c)
(d)

(e

Mary will be a good student if she studies hard.
John takes calculus only if he has sophomore, junior, or senior standing.
When you sing, my ears hurt.

A necessary condition for the Cubs to win the World Series is that they sign a
right-handed relief pitcher.

A sufficient condition for Maria to visit France is that she goes to the Eiffel Tower.

SOLUTION

(a)

(b)

(©

(d)

The hypothesis is the clause following if; thus an equivalent formulation is
If Mary studies hard, then she will be a good student.

The statement means that in order for John to take calculus, he must have sopho-
more, junior, or senior standing. In particular, if he is a freshman, he may not take
calculus. Thus, we can conclude that if he takes calculus, then he has sophomore,
junior, or senior standing. Therefore an equivalent formulation is

If John takes calculus, then he has sophomore, junior, or senior standing.
Notice that
If John has sophomore, junior, or senior standing, then he takes calculus,

is not an equivalent formulation. If John has sophomore, junior, or senior stand-
ing, he may or may not take calculus. (Although eligible to take calculus, he may
have decided not to.)

The “if p then ¢” formulation emphasizes the hypothesis, whereas the “p
only if ¢” formulation emphasizes the conclusion; the difference is only stylistic.

When means the same as if; thus an equivalent formulation is

If you sing, then my ears hurt.

A necessary condition is just that: a condition that is necessary for a particular
outcome to be achieved. The condition does not guarantee the outcome; but, if
the condition does not hold, the outcome will not be achieved. Here, the given
statement means that if the Cubs win the World Series, we can be sure that they
signed a right-handed relief pitcher since, without such a signing, they would
not have won the World Series. Thus, an equivalent formulation of the given
statement is

If the Cubs win the World Series, then they signed a right-handed relief
pitcher.

The conclusion expresses a necessary condition.
Notice that

If the Cubs sign a right-handed relief pitcher, then they win the World
Series,

is not an equivalent formulation. Signing a right-handed relief pitcher does not
guarantee a World Series win. However, not signing a right-handed relief pitcher
guarantees that they will not win the World Series.

24

Chapter 1 ¢ Sets and Logic

Example 1.3.7

(e) Similarly, a sufficient condition is a condition that suffices to guarantee a partic-
ular outcome. If the condition does not hold, the outcome might be achieved in
other ways or it might not be achieved at all; but if the condition does hold, the
outcome is guaranteed. Here, to be sure that Maria visits France, it suffices for her
to go to the Eiffel Tower. (There are surely other ways to ensure that Maria visits
France; for example, she could go to Lyon.) Thus, an equivalent formulation of
the given statement is

If Maria goes to the Eiffel Tower, then she visits France.

The hypothesis expresses a sufficient condition.
Notice that

If Maria visits France, then she goes to the Eiffel Tower,

is not an equivalent formulation. As we have already noted, there are ways other
than going to the Eiffel Tower to ensure that Maria visits France. <

Example 1.3.4 shows that the proposition p — ¢ can be true while the proposition
q — p is false. We call the proposition ¢ — p the converse of the proposition p — g.
Thus a conditional proposition can be true while its converse is false.
Write the conditional proposition,

If Jerry receives a scholarship, then he will go to college,

and its converse symbolically and in words. Also, assuming that Jerry does not receive
a scholarship, but wins the lottery and goes to college anyway, find the truth value of the
original proposition and its converse.

SOLUTION Let p: Jerry receives a scholarship, and g: Jerry goes to college. The given
proposition can be written symbolically as p — ¢g. Since the hypothesis p is false, the
conditional proposition is true.

The converse of the proposition is

If Jerry goes to college, then he receives a scholarship.

The converse can be written symbolically as ¢ — p. Since the hypothesis ¢ is true and
the conclusion p is false, the converse is false. <4

Another useful proposition is
p if and only if g,

which is considered to be true precisely when p and g have the same truth values (i.e.,
p and ¢ are both true or p and g are both false).

Definition 1.3.8 » If p and ¢ are propositions, the proposition
p if and only if ¢
is called a biconditional proposition and is denoted

D <=q.

Example 1.3.9

Example 1.3.11

1.3 @ Conditional Propositions and Logical Equivalence ~ 25

The truth value of the proposition p <> ¢ is defined by the following truth table:

P q9 | P9
T T T
T F F
F T F
F F T

It is traditional in mathematical definitions to use “if”” to mean “if and only if.” Con-
sider, for example, the definition of set equality: If sets X and Y have the same elements,
then X and Y are equal. The meaning of this definition is that sets X and Y have the same
elements if and only if X and Y are equal.

An alternative way to state “p if and only if ¢” is “p is a necessary and sufficient
condition for ¢.” The proposition “p if and only if ¢ is sometimes written “p iff g.”

The proposition
1 <5ifandonlyif 2 < 8 (1.3.5)
can be written symbolically as p <> gif we definep : 1 < 5and g : 2 < 8. Since both p

and ¢ are true, the proposition p <> g is true. |

An alternative way to state (1.3.5) is: A necessary and sufficient condition for
1 <5isthat2 < 8.

In some cases, two different propositions have the same truth values no matter
what truth values their constituent propositions have. Such propositions are said to be
logically equivalent.

Definition 1.3.10 » Suppose that the propositions P and Q are made up of the

propositions py, ..., p,. We say that P and Q are logically equivalent and write
P=0,

provided that, given any truth values of py, ..., p,, either P and Q are both true, or P

and Q are both false.

De Morgan's Laws for Logic We will verify the first of De Morgan’s laws

—“pVvg=—-pA—q, —(pPArg)=-pV—q,

and leave the second as an exercise (see Exercise 79).
By writing the truth tables for P = —(p Vv ¢) and Q = —p A —¢g, we can verify that,
given any truth values of p and g, either P and Q are both true or P and Q are both false:

—(pVvg —pA—q

mm e S
M T s

= lieviesliss|
=T mT™

Thus P and Q are logically equivalent. |

26

Chapter 1 ¢ Sets and Logic

Example 1.3.12

Example 1.3.13

Example 1.3.14

Show that, in Java, the expressions

x <10 || x> 20

and

1(x >= 10 && x <= 20)
are equivalent. (In Java, >= means >, and <= means <.)
SOLUTION If we let p denote the expression x >= 10 and ¢ denote the expression
x <= 20, the expression ! (x >= 10 && x <= 20) becomes —(p A ¢g). By De Mor-
gan’s second law, —(p A ¢q) is equivalent to —p VvV —q. Since —p translates as x < 10

and —gq translates as x > 20, —pV —¢gtranslatesasx < 10 || x > 20. Therefore, the
expressions x < 10 || x > 20and ! (x >= 10 && x <= 20) are equivalent. <

Our next example gives a logically equivalent form of the negation of p — g.

Show that the negation of p — ¢ is logically equivalent to p A —g.

SOLUTION By writing the truth tables for P = —(p — ¢) and Q = p A —q, we can
verify that, given any truth values of p and g, either P and Q are both true or P and Q are
both false:

p g | ~pP—=>q9 pA—q
T T F F
T F T T
F T F F
F F F F
Thus P and Q are logically equivalent. <

Use the logical equivalence of —=(p — ¢) and p A —¢ (see Example 1.3.13) to write the
negation of

If Jerry receives a scholarship, then he goes to college,

symbolically and in words.

SOLUTION We let p: Jerry receives a scholarship, and ¢: Jerry goes to college. The
given proposition can be written symbolically as p — ¢. Its negation is logically equiv-
alent to p A —q. In words, this last expression is

Jerry receives a scholarship and he does not go to college. <

We now show that, according to our definitions, p <> ¢ is logically equivalent to
p — qand g — p. In words,

p if and only if ¢
is logically equivalent to

if p then ¢ and if g then p.

Example 1.3.15

Example 1.3.17

1.3 @ Conditional Propositions and Logical Equivalence ~ 27

The truth table shows that

pogq=@P—>q@N(@G—Dp).

P q|peoqg p~>q q—>p @P>9A(@—>p)
T T T T T T
T F F F T F
F T F T F F
F F T T T T

<

Consider again the definition of set equality: If sets X and Y have the same ele-
ments, then X and Y are equal. We noted that the meaning of this definition is that sets
X and Y have the same elements if and only if X and Y are equal. Example 1.3.15 shows
that an equivalent formulation is: If sets X and Y have the same elements, then X and Y
are equal, and if X and Y are equal, then X and Y have the same elements.

We conclude this section by defining the contrapositive of a conditional propo-
sition. We will see (in Theorem 1.3.18) that the contrapositive is an alternative, logi-
cally equivalent form of the conditional proposition. Exercise 80 gives another logically
equivalent form of the conditional proposition.

Definition 1.23.16 » The contrapositive (or transposition) of the conditional
proposition p — ¢ is the proposition =g — —p.

Notice the difference between the contrapositive and the converse. The converse of
a conditional proposition merely reverses the roles of p and ¢, whereas the contrapositive
reverses the roles of p and g and negates each of them.

Write the conditional proposition,
If the network is down, then Dale cannot access the internet,

symbolically. Write the contrapositive and the converse symbolically and in words. Also,
assuming that the network is not down and Dale can access the internet, find the truth
value of the original proposition, its contrapositive, and its converse.

SOLUTION Let p: The network is down, and ¢: Dale cannot access the internet. The
given proposition can be written symbolically as p — ¢g. Since the hypothesis p is false,
the conditional proposition is true.

The contrapositive can be written symbolically as =g — —p and, in words,

If Dale can access the internet, then the network is not down.

Since the hypothesis —¢ and conclusion —p are both true, the contrapositive is true.
(Theorem 1.3.18 will show that the conditional proposition and its contrapositive are
logically equivalent, that is, that they always have the same truth value.)

The converse of the given proposition can be written symbolically as ¢ — p and,
in words,

If Dale cannot access the internet, then the network is down.
Since the hypothesis ¢ is false, the converse is true. |

An important fact is that a conditional proposition and its contrapositive are
logically equivalent.

28

Chapter 1 ¢ Sets and Logic

Theorem 1.3.18

The conditional proposition p — ¢ and its contrapositive =g — —p are logically
equivalent.

Proof The truth table

P q|p—>q —q—>-p
T T T T
T F F F
F T T T
F F T T
shows that p — ¢ and —¢ — —p are logically equivalent. <

In ordinary language, “if” is often used to mean “if and only if.” Consider the
statement

If you fix my computer, then I'1l pay you $50.
The intended meaning is

If you fix my computer, then I'll pay you $50, and
if you do not fix my computer, then I will not pay you $50,

which is logically equivalent to (see Theorem 1.3.18)

If you fix my computer, then I'll pay you $50, and
if I pay you $50, then you fix my computer,

which, in turn, is logically equivalent to (see Example 1.3.15)
You fix my computer if and only if I pay you $50.

In ordinary discourse, the intended meaning of statements involving logical operators
can often (but, not always!) be inferred. However, in mathematics and science, precision
is required. Only by carefully defining what we mean by terms such as “if”” and “if
and only if” can we obtain unambiguous and precise statements. In particular, logic
carefully distinguishes among conditional, biconditional, converse, and contrapositive
propositions.

1.3 Problem-Solving Tips

® In formal logic, “if” and “if and only if”” are quite different. The conditional propo-
sition p — ¢ (if p then g) is true except when p is true and g is false. On the other
hand, the biconditional proposition p <> ¢ (p if and only if g) is true precisely
when p and ¢ are both true or both false.

E To determine whether propositions P and Q, made up of the propositions py, ...,
Pn, are logically equivalent, write the truth tables for P and Q. If all of the entries
for P and Q are always both true or both false, then P and Q are equivalent. If
some entry is true for one of P or Q and false for the other, then P and Q are not
equivalent.

B De Morgan’s laws for logic

=(pVq =—-pA—gq, —“(pAg =-pV—q

1.3 @ Conditional Propositions and Logical Equivalence

29

give formulas for negating “or” (V) and negating “and” (A). Roughly speaking,
negating “or” results in “and,” and negating “and” results in “or.”

m Example 1.3.13 states a very important equivalence

=(p—q =pA—g,

which we will meet throughout this book. This equivalence shows that the negation
of the conditional proposition can be written using the “and” (A) operator. Notice
that there is no conditional operator on the right-hand side of the equation.

1.3 Review Exercises

=

What is a conditional proposition? How is it denoted?
Give the truth table for the conditional proposition.

In a conditional proposition, what is the hypothesis?
In a conditional proposition, what is the conclusion?

What is a necessary condition?

AN

What is a sufficient condition?

7. What is the converse of p — ¢?

8. What is a biconditional proposition? How is it denoted?

9. Give the truth table for the biconditional proposition.
10. What does it mean for P to be logically equivalent to Q?
11. State De Morgan’s laws for logic.

12. What is the contrapositive of p — ¢?

In Exercises 1-11, restate each proposition in the form (1.3.2) of a
conditional proposition.

1. Joey will pass the discrete mathematics exam if he studies
hard.

2. Rosa may graduate if she has 160 quarter-hours of credits.

3. A necessary condition for Fernando to buy a computer is that
he obtain $2000.

4. A sufficient condition for Katrina to take the algorithms course
is that she pass discrete mathematics.

5. Getting that job requires knowing someone who knows the
boss.

6. You can go to the Super Bowl unless you can’t afford the ticket.

7. You may inspect the aircraft only if you have the proper secu-
rity clearance.

8. When better cars are built, Buick will build them.

9. The audience will go to sleep if the chairperson gives the
lecture.

10. The program is readable only if it is well structured.

11. A necessary condition for the switch to not be turned properly
is that the light is not on.

12. Write the converse of each proposition in Exercises 1-11.

13. Write the contrapositive of each proposition in Exercises 1-11.

Assuming that p and r are false and that q and s are true, find the
truth value of each proposition in Exercises 14-22.

15. —=p - —¢q
17. p > @ A(g— 1)

18. p—>¢q) —r 19. p—>(g—r

20. s> (A=) A(p— (rVvVg)As)

21 (pA—g) > (gAT) — (sV —q)

22. (pva A (gVs) — ((-rvp)A(gVs)

Exercises 23-32 refer to the propositions p, g, and r; p is true,
q is false, and r’s status is unknown at this time. Tell whether

each proposition is true, is false, or has unknown status at this
time.

23. pVvr 24. pAT 25. p—>r
26. g —>r 27. r—p 28. r—>gq
29. pATr) <1 30. (pvr)<r 31. (gATr) T

32. (qvr)y<r

Determine the truth value of each proposition in Exercises
33-42.

33. If3+5<2,thenl +3 =4.

34, If34+5<2,then 1+ 3 #£4.

35. If3+5>2,thenl +3 =4.

36. If 34+5> 2,then 1 43 # 4.

37. 3+5>2ifandonlyif 1 +3 = 4.
38. 3+5 <2ifandonlyif 1 +3 =4.
39. 3+5 <2ifandonlyif 1 4+ 3 # 4.
40. If the earth has six moons, then 1 < 3.
41. If 1 < 3, then the earth has six moons.
42. If 7 < 3.14, then 72 < 9.85.

30 Chapter 1 ¢ Setsand Logic

In Exercises 43—46, represent the given proposition symbolically
by letting

p: 4<2, q: 7<10, r: 6<6.

43. If 4 < 2,then 7 < 10.
44. If (4 < 2 and 6 < 6), then 7 < 10.

45. If it is not the case that (6 < 6 and 7 is not less than 10), then
6 < 6.

46. 7 < 101if and only if (4 < 2 and 6 is not less than 6).
In Exercises 47-52, represent the given proposition symbolically
by letting

p . You run 10 laps daily.
q : You are healthy.
r: You take multi-vitamins.

47. If you run 10 laps daily, then you will be healthy.

48. If you do not run 10 laps daily or do not take multi-vitamins,
then you will not be healthy.

49. Taking multi-vitamins is sufficient for being healthy.

50. You will be healthy if and only if you run 10 laps daily and
take multi-vitamins.

51. If you are healthy, then you run 10 laps daily or you take multi-
vitamins.

52. If you are healthy and run 10 laps daily, then you do not take
multi-vitamins.
In Exercises 5358, formulate the symbolic expression in words
using
p: Today is Monday,
q: Itis raining,
r: Itis hot.

53. p—>gq 54. =g — (rAp)
56. =(pvq) <r
57. oA (gVv i) — (rv(gVp)

58. PV (pA—=(gVvi)—> pV—(Ve)

55. -p—>(qVvr)

In Exercises 59-62, write each conditional proposition sym-
bolically. Write the converse and contrapositive of each
proposition symbolically and in words. Also, find the truth
value of each conditional proposition, its converse, and its
contrapositive.

59. If 4 < 6,then 9 > 12.
61. 1| <3if-3<1<3.

60. If4 > 6, then 9 > 12.
62. 4] <3if—3 <4 < 3.

For each pair of propositions P and Q in Exercises 63-72, state
whether or not P = Q.

63. P=p,0=pVyq 64. P=pnqgOQ=—pV—q

65. P=p—>q,.0=—-pVg

66. P=pA(—qVr),Q=pVv(gA-r)
67. P=pA(gVr,Q=pPVvgoApVr)
68. P=p—q,0=—qg— —p

69. P=p—>q.0=p<q

70. P=(p—>qgAN(@—>1),0=p—>r

1. P=p—>q) —>r,0=p—>(q@—>71)

72. P=(s—> (pA—1)A((p—> (Vg)As),Q=pVt
Using De Morgan’s laws for logic, write the negation of each
proposition in Exercises 73-76.

73. Pat will use the treadmill or lift weights.

74. Dale is smart and funny.

75. Shirley will either take the bus or catch a ride to school.

76. Red pepper and onions are required to make chili.

Exercises 77 and 78 provide further motivation for defining p — q
to be true when p is false. We consider changing the truth table for
p — q when p is false. For the first change, we call the resulting
operator impl (Exercise 77), and, for the second change, we call

the resulting operator imp2 (Exercise 78). In both cases, we see
that pathologies result.

77. Define the truth table for impI by

p q | pimplq
T T T
T F F
F T F
F F T

Show that p impl g = q impl p.
78. Define the truth table for imp2 by

pimp2q

<
ES)

T4

T
F
T
F

g

(a) Show that

(p imp2 q) A (qimp2 p) #p < q. (1.3.6)

(b) Show that (1.3.6) remains true if we change the third row
of imp2’s truth table to F T F.

79. Verify the second of De Morgan’s laws, =(p A q) = —p V —gq.
80. Show that (p — ¢) = (—p V q).

1.4

1.4 & Arguments and Rules of Inference 31

Arguments and Rules of Inference

Go Online
For more on
fallacies, see
goo.gl/F7b35e

Consider the following sequence of propositions.

The bug is either in module 17 or in module 81.
The bug is a numerical error.

Module 81 has no numerical error. (1.4.1)
Assuming that these statements are true, it is reasonable to conclude

The bug is in module 17. (1.4.2)
This process of drawing a conclusion from a sequence of propositions is called deductive
reasoning. The given propositions, such as (1.4.1), are called hypotheses or premises,
and the proposition that follows from the hypotheses, such as (1.4.2), is called the con-
clusion. A (deductive) argument consists of hypotheses together with a conclusion.

Many proofs in mathematics and computer science are deductive arguments.

Any argument has the form

If py and p; and - - - and p,, then q. (1.4.3)
Argument (1.4.3) is said to be valid if the conclusion follows from the hypotheses; that

is, if p; and p; and - - - and p,, are true, then g must also be true. This discussion motivates
the following definition.

Definition 1.4.1 » Anargument is a sequence of propositions written

P1
P2

DPn

or

DP1,D2s -+, D/ Q.

The symbol .. is read “therefore.” The propositions pi, pa, ..., p, are called the
hypotheses (or premises), and the proposition ¢ is called the conclusion. The argument
is valid provided that if p; and p, and - - - and p,, are all true, then ¢ must also be true;
otherwise, the argument is invalid (or a fallacy).

In a valid argument, we sometimes say that the conclusion follows from the hy-
potheses. Notice that we are not saying that the conclusion is true; we are only saying
that if you grant the hypotheses, you must also grant the conclusion. An argument is
valid because of its form, not because of its content.

Each step of an extended argument involves drawing intermediate conclusions.
For the argument as a whole to be valid, each step of the argument must result in a valid,
intermediate conclusion. Rules of inference, brief, valid arguments, are used within a
larger argument.

32 Chapter 1 ¢ Setsand Logic

Example 1.4.2 Determine whether the argument

pP—9q

is valid.

FIRST SOLUTION We construct a truth table for all the propositions involved:

p q|\pPp—>9q P ¢
T T T T T
T F F T F
F T T F T
F F T F F

We observe that whenever the hypotheses p — ¢ and p are true, the conclusion ¢ is also
true; therefore, the argument is valid.

SECOND SOLUTION We can avoid writing the truth table by directly verifying that
whenever the hypotheses are true, the conclusion is also true.

Suppose that p — ¢ and p are true. Then ¢ must be true, for otherwise p — ¢
would be false. Therefore, the argument is valid. |

The argument in Example 1.4.2 is used extensively and is known as the modus
ponens rule of inference or law of detachment. Several useful rules of inference for
propositions, which may be verified using truth tables (see Exercises 33-38), are listed
in Table 1.4.1.

TABLE 1.4.1 m Rules of Inference for Propositions

Rule of Inference Name Rule of Inference Name

pP—4q p

p q

.q Modus ponens C.PAQG Conjunction
pP—4q pP—4q
—q q—r Hypothetical
CLTp Modus tollens Sp—=r syllogism

rPVq

p -p Disjunctive
.pVgq Addition .q syllogism
pAq
P Simplification

Example 1.4.3 Which rule of inference is used in the following argument?

If the computer has one gigabyte of memory, then it can run “Blast ’em.” If the
computer can run “Blast em,” then the sonics will be impressive. Therefore, if the com-
puter has one gigabyte of memory, then the sonics will be impressive.

Example 1.4.4

Example 1.4.5

1.4 & Arguments and Rules of Inference 33

SOLUTION Let p denote the proposition “the computer has one gigabyte of memory,”
let ¢ denote the proposition “the computer can run ‘Blast ’em,”” and let r denote the
proposition “the sonics will be impressive.” The argument can be written symbolically as

pP—49q
q—r

S.p—=>r

Therefore, the argument uses the hypothetical syllogism rule of inference. <

Represent the argument

If 2 = 3, then I ate my hat.
I ate my hat.

S2=3
symbolically and determine whether the argument is valid.

SOLUTION If we let p: 2 = 3 and ¢: I ate my hat, the argument may be written

pP—4q
q

P

If the argument is valid, then whenever p — ¢ and ¢ are both true, p must also be
true. Suppose that p — ¢ and ¢ are true. This is possible if p is false and ¢ is true. In this
case, p is not true; thus the argument is invalid. This fallacy is known as the fallacy of
affirming the conclusion. <

We can also determine whether the argument in Example 1.4.4 is valid or not by
examining the truth table of Example 1.4.2. In the third row of the table, the hypotheses
are true and the conclusion is false; thus the argument is invalid.

Represent the argument

The bug is either in module 17 or in module 81.
The bug is a numerical error.

Module 81 has no numerical error.

.". The bug is in module 17.
given at the beginning of this section symbolically and show that it is valid.

SOLUTION If we let

p : The bug is in module 17.
q : The bug is in module 81.

r : The bug is a numerical error.

34

Chapter 1 ¢ Sets and Logic

Example 1.4.6

the argument may be written
pVq

r— —q
P

From r — —¢g and r, we may use modus ponens to conclude —¢q. From p Vv ¢ and —g,
we may use the disjunctive syllogism to conclude p. Thus the conclusion p follows from
the hypotheses and the argument is valid. <

We are given the following hypotheses: If the Chargers get a good linebacker, then the
Chargers can beat the Broncos. If the Chargers can beat the Broncos, then the Chargers
can beat the Jets. If the Chargers can beat the Broncos, then the Chargers can beat the
Dolphins. The Chargers get a good linebacker. Show by using the rules of inference (see
Table 1.4.1) that the conclusion, the Chargers can beat the Jets and the Chargers can beat
the Dolphins, follows from the hypotheses.

SOLUTION Let p denote the proposition “the Chargers get a good linebacker,” let ¢
denote the proposition “the Chargers can beat the Broncos,” let r denote the proposition
“the Chargers can beat the Jets,” and let s denote the proposition “the Chargers can beat
the Dolphins.” Then the hypotheses are:

P—>q

q — I

q—s

p.

From p — ¢ and ¢ — r, we may use the hypothetical syllogism to conclude p — r.
From p — r and p, we may use modus ponens to conclude r. From p — ¢ and g — s,
we may use the hypothetical syllogism to conclude p — s. From p — s and p, we may
use modus ponens to conclude s. From » and s, we may use conjunction to conclude r As.
Since r As represents the proposition “the Chargers can beat the Jets and the Chargers can
beat the Dolphins,” we conclude that the conclusion does follow from the hypotheses. €

1.4 Problem-Solving Tips

The validity of a very short argument or proof might be verified using a truth table. In
practice, arguments and proofs use rules of inference.

1.4 Review Exercises

1.

A L S i

What is deductive reasoning?

What is a hypothesis in an argument?
What is a premise in an argument?
What is a conclusion in an argument?
What is a valid argument?

What is an invalid argument?

State the modus ponens rule of inference.

8. State the modus tollens rule of inference.
9. State the addition rule of inference.
10. State the simplification rule of inference.
11. State the conjunction rule of inference.
12. State the hypothetical syllogism rule of inference.

13. State the disjunctive syllogism rule of inference.

1.4 & Arguments and Rules of Inference 35

Formulate the arguments of Exercises 1-5 symbolically and deter-
mine whether each is valid. Let

p: Istudy hard. q: 1getA’s. r: I getrich.

1. If I study hard, then I get A’s.
I study hard.

L Tget Als.
2. If I study hard, then I get A’s.
If I don’t get rich, then I don’t get A’s.

.. T getrich.
3. Istudy hard if and only if I get rich.
I get rich.

.". I'study hard.

4. If I study hard or I get rich, then I get A’s.
I get A’s.

.. If I don’t study hard, then I get rich.

5. If I study hard, then I get A’s or I get rich.
I'don’t get A’s and I don’t get rich.

.". I don’t study hard.

Formulate the arguments of Exercises 6—9 symbolically and deter-
mine whether each is valid.

p: The Democrats win.
q: The Republicans win.
r: Unemployment is up.
s: The economy is up.
6. If the Democrats win, then the economy is up; and, if the
Republicans win, then unemployment is up.

The Democrats win or the Republicans win.

.". Unemployment is up or the economy is up.

7. 1If the Democrats win or the Republicans win, then unemploy-
ment is up or the economy is up.

The Democrats win and unemployment is not up.

.". The economy is up.

8. If the Democrats win, then unemployment is up.
If the Republicans win, then the economy is up
The Republicans and Democrats do not both win.

The Democrats do not win.

.". The economy is up.

9. If the Democrats win, then unemployment is up or the econ-
omy is up.

If the Republicans win, then unemployment is up.

The economy is not up.

The Democrats win

.". Unemployment is up or the Republicans win.

In Exercises 10—14, write the given argument in words and deter-
mine whether each argument is valid. Let

p: 4 gigabytes is better than no memory at all.
q: We will buy more memory.

r: We will buy a new computer.

10. p—>r 11. p—> (rvg) 12. p—>r
p—>q r— —q r—q
Sp=>(rAg) Sp>r S.q

13. =r— —p 14. p—>r
r r—4q
P P__

‘g

In Exercises 15—19, write the given argument in words and deter-
mine whether each argument is valid. Let

p: The for loop is faulty.

q: The while loop is faulty.

r: The hardware is unreliable.
s: The output is correct.

15. (pvgqg) — (rvs) 16. (rvs)—p

p s —>4q

-r pVs

S Sor
17. (p—>r)—q 18. p—gq

(g—s)—p qg—>r

rAS —r

pVyq s—>r

S.PAg X}
19. p—>(gVvr)

qg—> (pVs)

p NV —q

-5

.pVr

Determine whether each argument in Exercises 20— 24 is valid.

20. p—g¢q 21. p—>g¢q
-p -q
g SoTp

22. pA—p

g

36 Chapter 1 ¢ Setsand Logic

23. p—>(g—71) 24, (p—> g A —9) 29. Fishing is a popular sport or lacrosse is wildly popular in

qg—> (p—>71)
Spvg —r
25. Show that if

p1,p2/..p and

are valid arguments, the argument

P1,DP2s -

is also valid.

26. Comment on the following argument:

pVvr California. Lacrosse is not wildly popular in California. There-

fore, fishing is a popular sport.

S.qVs

In Exercises 30-32, give an argument using rules of inference to
show that the conclusion follows from the hypotheses.

DsP3s - Pn/. . C

30. Hypotheses: If there is gas in the car, then I will go to the store.
If I go to the store, then I will get a soda. There is gas in the

Pl C car. Conclusion: I will get a soda.

31. Hypotheses: If there is gas in the car, then I will go to the store.
If I go to the store, then I will get a soda. I do not get a soda.
Conclusion: There is not gas in the car, or the car transmission

Hard disk drive storage is better than nothing. is defective.

Nothing is better than a solid state drive. 32. Hypotheses: If Jill can sing or Dweezle can play, then I’ll buy
the compact disc. Jill can sing. I'll buy the compact disc player.

.". Hard disk drive is better than a solid state drive. Conclusion: I'll buy the compact disc and the compact disc
player.

For each argument in Exercises 27-29, tell which rule of inference

is used.

27. Fishing is a popular sport. Therefore, fishing is a popular sport
or lacrosse is wildly popular in California.

28. If fishing is a popular sport, then lacrosse is wildly popular in

33. Show that modus tollens (see Table 1.4.1) is valid.
34. Show that addition (see Table 1.4.1) is valid.

35. Show that simplification (see Table 1.4.1) is valid.
36. Show that conjunction (see Table 1.4.1) is valid.

California. Fishing is a popular sport. Therefore, lacrosse is 37. Show that hypothetical syllogism (see Table 1.4.1) is valid.

wildly popular in California.

1.5

38. Show that disjunctive syllogism (see Table 1.4.1) is valid.

Quantifiers

Go Online

For more on
quantifiers, see
goo.gl/F7b35e

Example 1.5.2

The logic in Sections 1.2 and 1.3 that deals with propositions is incapable of describing
most of the statements in mathematics and computer science. Consider, for example, the
statement

p: nisan odd integer.

A proposition is a statement that is either true or false. The statement p is not a propo-
sition, because whether p is true or false depends on the value of n. For example, p
is true if n =103 and false if n=28. Since most of the statements in mathematics and
computer science use variables, we must extend the system of logic to include such
statements.

Definition 1.5.1 » Let P(x) be a statement involving the variable x and let D
be a set. We call P a propositional function or predicate (with respect to D) if for each
x € D, P(x) is a proposition. We call D the domain of discourse of P.

In Definition 1.5.1, the domain of discourse specifies the allowable values
for x.

Let P(n) be the statement

n is an odd integer.

Example 1.5.3

1.5 & Quantifiers 37

Then P is a propositional function with domain of discourse Z* since for eachn € Z7,
P(n) is a proposition [i.e., for each n € Z*, P(n) is true or false but not both]. For
example, if n = 1, we obtain the proposition

P(1): 1is an odd integer
(which is true). If n = 2, we obtain the proposition
P(2): 21is an odd integer

(which is false). |

A propositional function P, by itself, is neither true nor false. However, for each
x in the domain of discourse, P(x) is a proposition and is, therefore, either true or false.
We can think of a propositional function as defining a class of propositions, one for each
element in the domain of discourse. For example, if P is a propositional function with
domain of discourse Z*, we obtain the class of propositions

P(1), PQ2),

Each of P(1), P(2), ... is either true or false.

Explain why the following are propositional functions.

(a) n*> + 2nis an odd integer (domain of discourse = Z™1).

(b) x> —x — 6 = 0 (domain of discourse = R).

(c) The baseball player hit over .300 in 2015 (domain of discourse = set of baseball
players).

(d) The film is rated over 20% by Rotten Tomatoes [the scale is 0% (awful) to

100% (terrific)]. The domain of discourse is the set of films rated by Rotten
Tomatoes.

SOLUTION In statement (a), for each positive integer n, we obtain a proposition; there-
fore, statement (a) is a propositional function.

Similarly, in statement (b), for each real number x, we obtain a proposition; there-
fore, statement (b) is a propositional function.

We can regard the variable in statement (c) as “baseball player.”” Whenever we
substitute a particular baseball player for the variable “baseball player,” the statement is
a proposition. For example, if we substitute “Joey Votto” for “baseball player,” statement
(c)is

Joey Votto hit over .300 in 2015,

which is true. If we substitute “Andrew McCutchen” for “baseball player,” statement
(c)is

Andrew McCutchen hit over .300 in 2015,

which is false. Thus statement (c) is a propositional function.

38

Chapter 1 ¢ Sets and Logic

Example 1.5.5

Example 1.5.6

Statement (d) is similar in form to statement (c). Here the variable is “film.” When-
ever we substitute a film rated by Rotten Tomatoes for the variable “film,” the statement
is a proposition. For example if we substitute Spectre for “film,” statement (d) is

Spectre is rated over 20% by Rotten Tomatoes,

which is true since Spectre is rated 64% by Rotten Tomatoes. If we substitute Blended
for “film,” statement (d) is

Blended is rated over 20% by Rotten Tomatoes,

which is false since Blended is rated 14% by Rotten Tomatoes. Thus statement (d) is a
propositional function. <

Most of the statements in mathematics and computer science use terms such as “for
every” and “for some.” For example, in mathematics we have the following theorem:

For every triangle 7', the sum of the angles of T is equal to 180°.
In computer science, we have this theorem:
For some program P, the output of P is P itself.

We now extend the logical system of Sections 1.2 and 1.3 so that we can handle state-
ments that include “for every” and “for some.”

Definition 1.5.4 » Let P be a propositional function with domain of discourse
D. The statement
for every x, P(x)

is said to be a universally quantified statement. The symbol V means “for every.” Thus
the statement

for every x, P(x)
may be written
Vx P(x). (1.5.1)

The symbol V is called a universal quantifier.
The statement (1.5.1) is true if P(x) is true for every x in D. The statement (1.5.1)
is false if P(x) is false for at least one x in D.

Consider the universally quantified statement
Vx(x? > 0).
The domain of discourse is R. The statement is true because, for every real number x, it

is true that the square of x is positive or zero. <

According to Definition 1.5.4, the universally quantified statement (1.5.1) is false
if for at least one x in the domain of discourse, the proposition P(x) is false. A value
x in the domain of discourse that makes P(x) false is called a counterexample to the
statement (1.5.1).

Determine whether the universally quantified statement Vx(x> — 1 > 0) is true or false.
The domain of discourse is R.

Example 1.5.7

1.5 & Quantifiers 39

SOLUTION The statement is false since, if x = 1, the proposition 12 — 1 > 0 is
false. The value 1 is a counterexample to the statement Yx(x> — 1 > 0). Although there
are values of x that make the propositional function true, the counterexample provided
shows that the universally quantified statement is false. |

Suppose that P is a propositional function whose domain of discourse is the set
{dy, ...,d,)}. The following pseudocode’ determines whether Vx P(x) is true or false:

fori=1ton
if (—P(d;))
return false
return true

The for loop examines the members d; of the domain of discourse one by one. If it finds
a value d; for which P(d,) is false, the condition —P(d;) in the if statement is true; so the
code returns false [to indicate that Vx P(x) is false] and terminates. In this case, d; is a
counterexample. If P(d;) is true for every d;, the condition —P(d;) in the if statement is
always false. In this case, the for loop runs to completion, after which the code returns
true [to indicate that Vx P(x) is true] and terminates.

Notice that if Vx P(x) is true, the for loop necessarily runs to completion so that
every member of the domain of discourse is checked to ensure that P(x) is true for every
x. If Vx P(x) is false, the for loop terminates as soon as one element x of the domain of
discourse is found for which P(x) is false. |

We call the variable x in the propositional function P(x) a free variable. (The idea
is that x is “free” to roam over the domain of discourse.) We call the variable x in the
universally quantified statement Vx P(x) a bound variable. (The idea is that x is “bound”
by the quantifier V.)

We previously pointed out that a propositional function does not have a truth value.
On the other hand, Definition 1.5.4 assigns a truth value to the quantified statement
Vx P(x). In sum, a statement with free (unquantified) variables is not a proposition, and
a statement with no free variables (no unquantified variables) is a proposition.

Alternative ways to write Vx P(x) are

for all x, P(x)
and
for any x, P(x).

The symbol V may be read “for every,” “for all,” or “for any.”

To prove that Vx P(x) is true, we must, in effect, examine every value of x in the
domain of discourse and show that for every x, P(x) is true. One technique for proving
that Vx P(x) is true is to let x denote an arbitrary element of the domain of discourse D.
The argument then proceeds using the symbol x. Whatever is claimed about x must be
true no matter what value x might have in D. The argument must conclude by proving
that P(x) is true.

Sometimes to specify the domain of discourse D, we write a universally quantified
statement as

for every x in D, P(x).

TThe pseudocode used in this book is explained in Appendix C.

40

Chapter 1 ¢ Sets and Logic

Example 1.5.8 Verify that the universally quantified statement

for every real number x, if x > 1, thenx+ 1 > 1

is true.

SOLUTION This time we must verify that the statement
ifx>1,thenx+1>1 (1.5.2)

is true for every real number x.

Let x be any real number whatsoever. It is true that for any real number x, either
x < lorx > 1. If x < I, the conditional proposition (1.5.2) is vacuously true. (The
proposition is true because the hypothesis x > 1 is false. Recall that when the hypothesis
is false, the conditional proposition is true regardless of whether the conclusion is true
or false.) In most arguments, the vacuous case is omitted.

Now suppose that x > 1. Regardless of the specific value of x, x + 1 > x. Since
x+ 1 > xand x > 1, we conclude that x + 1 > 1, so the conclusion is true. If x > 1,
the hypothesis and conclusion are both true; hence the conditional proposition (1.5.2) is
true.

We have shown that for every real number x, the proposition (1.5.2) is true. There-
fore, the universally quantified statement

for every real number x, if x > 1, thenx+ 1 > 1

is true. <

The method of disproving the statement Vx P(x) is quite different from the method
used to prove that the statement is true. To show that the universally quantified statement
Vx P(x) is false, it is sufficient to find one value x in the domain of discourse for which
the proposition P(x) is false. Such a value, we recall, is called a counterexample to the
universally quantified statement.

We turn next to existentially quantified statements.

Definition 1.5.9 » Let Pbeapropositional function with domain of discourse D.
The statement

there exists x, P(x)

is said to be an existentially quantified statement. The symbol 3 means “there exists.”
Thus the statement

there exists x, P(x)
may be written
dx P(x). (1.5.3)

The symbol 3 is called an existential quantifier.
The statement (1.5.3) is true if P(x) is true for at least one x in D. The statement
(1.5.3) is false if P(x) is false for every x in D.

Example 1.5.10 Consider the existentially quantified statement

X 2
x =—-.
x2+1 5

Example 1.5.11

1.5 @ Quantifiers 41

The domain of discourse is R. The statement is true because it is possible to find at least
one real number x for which the proposition

X 2
2+1°5
is true. For example, if x = 2, we obtain the true proposition
2 2
2415
It is not the case that every value of x results in a true proposition. For example, if x = 1,
the proposition

| N

1241
is false. |

According to Definition 1.5.9, the existentially quantified statement (1.5.3) is false
if for every x in the domain of discourse, the proposition P(x) is false.

Verify that the existentially quantified statement
dxeR b 1
X >
xX2+1

SOLUTION We must show that

is false.

is false for every real number x. Now

is false precisely when

<1 (1.5.4)

is true. Thus, we must show that (1.5.4) is true for every real number x. To this end,
let x be any real number whatsoever. Since 0 < X2, we may add 1 to both sides of this
inequality to obtain 1 < x* + 1. If we divide both sides of this last inequality by x> + 1,
we obtain (1.5.4) Therefore, the statement (1.5.4) is true for every real number x. Thus
the statement
! 1
x2+1 -

is false for every real number x. We have shown that the existentially quantified

statement
1
dx > 1
X241

is false. |

42

Chapter 1 ¢ Sets and Logic

Example 1.5.12

Example 1.5.13

Suppose that P is a propositional function whose domain of discourse is the set
{d,....d,}. The following pseudocode determines whether 3x P(x) is true or false:

fori=1ton
if (P(dy))
return true
return false

The for loop examines the members d; in the domain of discourse one by one. If it finds
a value d; for which P(d;) is true, the condition P(d;) in the if statement is true; so the
code returns true [to indicate that 3x P(x) is true] and terminates. In this case, the code
found a value in the domain of discourse, namely d;, for which P(d;) is true. If P(d;) is
false for every d;, the condition P(d;) in the if statement is always false. In this case, the
for loop runs to completion, after which the code returns false [to indicate that 3x P(x)
is true] and terminates.

Notice that if 3x P(x) is true, the for loop terminates as soon as one element x
in the domain of discourse is found for which P(x) is true. If 3x P(x) is false, the for
loop necessarily runs to completion so that every member in the domain of discourse is
checked to ensure that P(x) is false for every x. <4

Alternative ways to write 3x P(x) are
there exists x such that, P(x)
and
for some x, P(x)
and
for at least one x, P(x).

The symbol 3 may be read “there exists,” “for some,” or “for at least one.”

Consider the existentially quantified statement
for some n, if n is prime, then n + 1, n + 2, n 4 3, and n + 4 are not prime.

The domain of discourse is Z ™. This statement is true because we can find at least one
positive integer n that makes the conditional proposition

if nis prime, thenn + 1, n + 2, n + 3, and n + 4 are not prime
true. For example, if n = 23, we obtain the true proposition
if 23 is prime, then 24, 25, 26, and 27 are not prime.

(This conditional proposition is true because both the hypothesis “23 is prime” and the
conclusion “24, 25, 26, and 27 are not prime” are true.) Some values of n make the
conditional proposition true (e.g., n = 23, n = 4, n = 47), while others make it false
(e.g.,n =2,n = 101). The point is that we found one value that makes the conditional
proposition

if nis prime, thenn + 1, n + 2, n + 3, and n + 4 are not prime

Theorem 1.5.14

Example 1.5.15

Example 1.5.16

1.5 @ Quantifiers 43

true. For this reason, the existentially quantified statement
for some n, if n is prime, then n 4+ 1, n + 2, n + 3, and n + 4 are not prime

is true. |

In Example 1.5.11, we showed that an existentially quantified statement was false
by proving that a related universally quantified statement was true. The following theo-
rem makes this relationship precise. The theorem generalizes De Morgan’s laws of logic
(Example 1.3.11).

Generalized De Morgan's Laws for Logic

If P is a propositional function, each pair of propositions in (a) and (b) has the same
truth values (i.e., either both are true or both are false).

(@) =(VxP(x)); Ix —P(x)
(b) =(3xP(x)); Vx —P(x)

Proof We prove only part (a) and leave the proof of part (b) to the reader
(Exercise 73).

Suppose that the proposition —(Vx P(x)) is true. Then the proposition Vx P(x) is
false. By Definition 1.5.4, the proposition Vx P(x) is false precisely when P(x) is false
for at least one x in the domain of discourse. But if P(x) is false for at least one x in
the domain of discourse, =P (x) is true for at least one x in the domain of discourse. By
Definition 1.5.9, when —P(x) is true for at least one x in the domain of discourse, the
proposition Ix =P (x) is true. Thus, if the proposition —(Vx P(x)) is true, the proposi-
tion 3x —P(x) is true. Similarly, if the proposition —(Vx P(x)) is false, the proposition
dx —P(x) is false.

Therefore, the pair of propositions in part (a) always has the same truth values. 4

Let P(x) be the statement

1

— > 1.
x2+1 -

In Example 1.5.11 we showed that 3x P(x) is false by verifying that
Vx —P(x) (1.5.5)

is true.

The technique can be justified by appealing to Theorem 1.5.14. After we prove
that proposition (1.5.5) is true, we may use Theorem 1.5.14, part (b), to conclude that
—(3xP(x)) is also true. Thus —=—(3IxP(x)) or, equivalently, Ix P(x) is false. |

Write the statement
Every rock fan loves U2,

symbolically. Write its negation symbolically and in words.

SOLUTION Let P(x) be the propositional function “x loves U2.” The given state-
ment can be written symbolically as Vx P(x). The domain of discourse is the set of
rock fans.

44

Chapter 1 ¢ Sets and Logic

Example 1.5.17

Example 1.5.18

Example 1.5.19

By Theorem 1.5.14, part (a), the negation of the preceding proposition —(Vx P(x))
is equivalent to 3x —P(x). In words, this last proposition can be stated as: There exists a
rock fan who does not love U2. <
Write the statement

Some birds cannot fly,

symbolically. Write its negation symbolically and in words.

SOLUTION Let P(x) be the propositional function “x flies.” The given statement can be
written symbolically as 3x —P(x). [The statement could also be written 3x Q(x), where
Q(x) is the propositional function “x cannot fly.” As in algebra, there are many ways to
represent text symbolically.] The domain of discourse is the set of birds.

By Theorem 1.5.14, part (b), the negation —(3x —P(x)) of the preceding proposi-
tion is equivalent to Vx ——P(x) or, equivalently, Vx P(x). In words, this last proposition
can be stated as: Every bird can fly. <

A universally quantified proposition generalizes the proposition
PiAPyA--- AP, (1.5.6)

in the sense that the individual propositions Py, P», ..., P, are replaced by an arbitrary
family P(x), where x is in the domain of discourse, and (1.5.6) is replaced by

Vx P(x). (1.5.7)

The proposition (1.5.6) is true if and only if P; is true for every i = 1, ..., n. The truth
value of proposition (1.5.7) is defined similarly: (1.5.7) is true if and only if P(x) is true
for every x in the domain of discourse.

Suppose that the domain of discourse of the propositional function P is {—1, 0, 1}. The
propositional function Vx P(x) is equivalent to

P(—1) A P(0) A P(1). <

Similarly, an existentially quantified proposition generalizes the proposition
Pl\/PQV"'VPn (1.5.8)

in the sense that the individual propositions Py, P», ..., P, are replaced by an arbitrary
family P(x), where x is in the domain of discourse, and (1.5.8) is replaced by Jx P(x).

Suppose that the domain of discourse of the propositional function P is {1, 2, 3, 4}. The
propositional function Ix P(x) is equivalent to

P(1) v P2)VvP3)VvPH4. <

The preceding observations explain how Theorem 1.5.14 generalizes De Morgan’s
laws for logic (Example 1.3.11). Recall that the first of De Morgan’s law for logic states
that the propositions

=(PyVPyV---VP,) and —PiA=PyA--- AP,
have the same truth values. In Theorem 1.5.14, part (b),

—|P1/\—|P2/\.../\—1Pn

Example 1.5.20

1.5 @ Quantifiers 45

is replaced by Vx —P(x) and
=(PyvPyVv---VvP)
is replaced by —(3x P(x)).
Statements in words often have more than one possible interpretation. Consider the well-
known quotation from Shakespeare’s “The Merchant of Venice”:
All that glitters is not gold.

One possible interpretation of this quotation is: Every object that glitters is not gold.
However, this is surely not what Shakespeare intended. The correct interpretation is:
Some object that glitters is not gold.

If we let P(x) be the propositional function “x glitters” and Q(x) be the proposi-
tional function “x is gold,” the first interpretation becomes

Vx(P(x) = —Q(x)), (1.5.9)

and the second interpretation becomes
Ix(P(x) A —=Q(x)).
Using the result of Example 1.3.13, we see that the truth values of
(P(x) A =0 (x))
and
I —(P(x) — Q)
are the same. By Theorem 1.5.14, the truth values of
Ix—=(P(x) - O())
and
—(VxP(x) = Q(x))
are the same. Thus an equivalent way to represent the second interpretation is
=(VxP(x) — Qx)). (1.5.10)

Comparing (1.5.9) and (1.5.10), we see that the ambiguity results from whether the nega-
tion applies to Q(x) (the first interpretation) or to the entire statement

Vx(P(x) — Q(x))
(the second interpretation). The correct interpretation of the statement
All that glitters is not gold

results from negating the entire statement.

29 <

In positive statements, “any,” “all,” “each,” and “every” have the same meaning.
In negative statements, the situation changes:
Not all x satisfy P(x).
Not each x satisfies P(x).

Not every x satisfies P(x).

46

Chapter 1 ¢ Sets and Logic

Example 1.5.21

are considered to have the same meaning as

For some x, =P(x);

whereas
Not any x satisfies P(x).
No x satisfies P(x).
mean
For all x, =P (x).
See Exercises 61-71 for other examples. <

Rules of Inference for Quantified Statements

We conclude this section by introducing some rules of inference for quantified state-
ments and showing how they can be used with rules of inference for propositions (see
Section 1.4).

Suppose that VxP(x) is true. By Definition 1.5.4, P(x) is true for every x in D, the
domain of discourse. In particular, if d is in D, then P(d) is true. We have shown that the
argument

Vx P(x)

SP)ifdeD

is valid. This rule of inference is called universal instantiation. Similar arguments (see
Exercises 79-81) justify the other rules of inference listed in Table 1.5.1.

TABLE 1.5.1 m Rules of Inference for Quantified Statements®

Rule of Inference Name
Vx P(x)
S.Pd)ifdeD Universal instantiation

P(d) foreveryde D

VX P(x) Universal generalization
dx P(x)
.. P(d) for some d € D Existential instantiation

P(d) for some d € D

L 3AxP(x) Existential generalization

f The domain of discourse is D.

Given that

2

for every positive integer n, n~ > n

is true, we may use universal instantiation to conclude that 542 > 54 since 54is a positive
integer (i.e., a member of the domain of discourse). <4

Example 1.5.22

Example 1.5.23

Example 1.5.24

1.5 @ Quantifiers 47

Let P(x) denote the propositional function “x owns a laptop computer,” where the domain
of discourse is the set of students taking MATH 201 (discrete mathematics). Suppose that
Taylor, who is taking MATH 201, owns a laptop computer; in symbols, P(Taylor) is true.
We may then use existential generalization to conclude that 3x P(x) is true. |

Write the following argument symbolically and then, using rules of inference, show that
the argument is valid.

SOLUTION For every real number x, if x is an integer, then x is a rational number. The
number \/5 is not rational. Therefore, \/E is not an integer.

If we let P(x) denote the propositional function “x is an integer”” and Q(x) denote
the propositional function “x is rational,” the argument becomes

Vx € R(P(x) — Q(x))
-0(+2)
S mP(V2)
Since v/2 € R, we may use universal instantiation to conclude P(V2) — 0(2).

Combining P(ﬁ) — Q(«/E) and —|Q(\/§), we may use modus tollens (see Table 1.4.1)
to conclude —P(+/2). Thus the argument is valid. |

The argument in Example 1.5.23 is called universal modus tollens.

We are given these hypotheses: Everyone loves either Microsoft or Apple. Lynn does
not love Microsoft. Show that the conclusion, Lynn loves Apple, follows from the hy-
potheses.

SOLUTION Let P(x) denote the propositional function “x loves Microsoft,” and let
Q(x) denote the propositional function “x loves Apple.” The first hypothesis is Vx(P(x) V
Q(x)). By universal instantiation, we have P(Lynn) Vv Q(Lynn). The second hypothesis
is =P (Lynn). The disjunctive syllogism rule of inference (see Table 1.4.1) now gives
Q(Lynn), which represents the proposition “Lynn loves Apple.” We conclude that the
conclusion does follow from the hypotheses. |

1.5 Problem-Solving Tips

® To prove that the universally quantified statement Vx P(x) is true, show that for
every x in the domain of discourse, the proposition P(x) is true. Showing that P(x)
is true for a particular value x does not prove that Vx P(x) is true.

m To prove that the existentially quantified statement 3x P(x) is true, find one value
of x in the domain of discourse for which the proposition P(x) is true. One value
suffices.

® To prove that the universally quantified statement Vx P(x) is false, find one value
of x (a counterexample) in the domain of discourse for which the proposition P(x)
is false.

m To prove that the existentially quantified statement 3x P(x) is false, show that for
every x in the domain of discourse, the proposition P(x) is false. Showing that P(x)
is false for a particular value x does not prove that 3x P(x) is false.

48 Chapter 1 @ Sets and Logic

1.5 Review Exercises

)

. What is a propositional function?

. What is a domain of discourse?

. What is a universally quantified statement?

. What is a counterexample?

. What is an existentially quantified statement?

. State the generalized De Morgan’s laws for logic.

N S U AW

. Explain how to prove that a universally quantified statement is
true.

o

. Explain how to prove that an existentially quantified statement
is true.

9. Explain how to prove that a universally quantified statement is
false.

10. Explain how to prove that an existentially quantified statement
is false.

11. State the universal instantiation rule of inference.
12. State the universal generalization rule of inference.
13. State the existential instantiation rule of inference.

14. State the existential generalization rule of inference.

In Exercises 1-6, tell whether the statement is a propositional
Sfunction. For each statement that is a propositional function, give
a domain of discourse.

(2n + 1) is an odd integer.

Choose an integer between 1 and 10.

Let x be a real number.

e

The movie won the Academy Award as the best picture of
1955.

5. 1+3=4.
6. There exists x such that x < y (x, y real numbers).
Let P(n) be the propositional function “n divides 77.” Write each

proposition in Exercises 7—15 in words and tell whether it is true
or false. The domain of discourse is Z.

7. P(11) 8. P(1) 9. P(3)
10. VnP(n) 11. InP(n) 12. Vn—P(n)
13. In—P(n) 14. = (VnP(n)) 15. —=(3nP(n))

Let P(x) be the propositional function “x > x2.” Tell whether each
proposition in Exercises 1624 is true or false. The domain of dis-
course is R.

16. P(1) 17. P(2) 18. P(1/2)
19. VxP(x) 20. IxP(x) 21. —=(VxP(x))
22. =(Ax P(x)) 23. Vx—P(x) 24. dx—P(x)

Suppose that the domain of discourse of the propositional
function P is {1,2,3,4}. Rewrite each propositional func-
tion in Exercises 25-31 using only negation, disjunction, and
conjunction.

25. VxP(x) 26. Vx—P(x)
28. dx P(x) 29. dx—P(x)
31. Vx((x # 1) - P(x))

27. —~(VxP(x))
30. = (3xP(x))

Let P(x) denote the statement “x is taking a math course.” The do-
main of discourse is the set of all students. Write each proposition
in Exercises 32—37 in words.
32. VxP(x)

34. Vx—P(x) 35. Ax—P(x)
36. —~(VxP(x)) 37. =(3x P(x))

38. Write the negation of each proposition in Exercises 32-37
symbolically and in words.

33. AxP(x)

Let P(x) denote the statement “x is a professional athlete,” and
let Q(x) denote the statement “x plays soccer.” The domain of dis-
course is the set of all people. Write each proposition in Exercises
39-46 in words. Determine the truth value of each statement.

39. Vx (P(x) — O(x)) 40. 3x (P(x) —> O(x))
41. Vx (Q(x) — P(x)) 42. 3x (Q(x) — P(x))
43. Vx(P(x) VvV Q(x)) 44. 3x (P(x) Vv O(x))
45. Vx (P(x) A Q(x)) 46. 3x (P(x) A Q(x))

47. Write the negation of each proposition in Exercises 39-46
symbolically and in words.

Let P(x) denote the statement “x is an accountant,” and let Q(x)
denote the statement “x owns a Porsche.” Write each statement in
Exercises 48-51 symbolically.

48. All accountants own Porsches.

49. Some accountant owns a Porsche.

50. All owners of Porsches are accountants.

51. Someone who owns a Porsche is an accountant.

52. Write the negation of each proposition in Exercises 48-51
symbolically and in words.

Determine the truth value of each statement in Exercises 53-58.
The domain of discourse is R. Justify your answers.

53. Vx(x* > x) 54, Ax(x2 > x)

55. Vx(x > 1 > x2 > x)
56. (x> 1 — x* > x)
57. Vx(x > 1 — x/(x2 + 1) < 1/3)
58. k(x> 1 = x/(%+1) < 1/3)

59. Write the negation of each proposition in Exercises 53-58
symbolically and in words.

60. Could the pseudocode of Example 1.5.7 be written as follows?

fori=1ton
if (=P(dy))
return false
else
return true
What is the literal meaning of each statement in Exercises 61-717?
What is the intended meaning? Clarify each statement by rephras-
ing it and writing it symbolically.
61. From Dear Abby: All men do not cheat on their wives.

62. From the San Antonio Express-News: All old things don’t
covet twenty-somethings.

63. All 74 hospitals did not report every month.

64. Economist Robert J. Samuelson: Every environmental prob-
lem is not a tragedy.

65. Comment from a Door County alderman: This is still Door
County and we all don’t have a degree.

66. Headline over a Martha Stewart column: All lampshades can’t
be cleaned.

67. Headline in the New York Times: A World Where All Is Not
Sweetness and Light.

68. Headline over a story about subsidized housing: Everyone
can’t afford home.

69. George W. Bush: I understand everybody in this country
doesn’t agree with the decisions I've made.

70. From Newsweek: Formal investigations are a sound prac-
tice in the right circumstances, but every circumstance is not
right.

71. Joe Girardi (manager of the New York Yankees): Every move
is not going to work out.

1.6

1.6 ® Nested Quantifiers 49

72. (a) Use a truth table to prove that if p and ¢ are propositions,
at least one of p — g or ¢ — p is true.

(b) Let I(x) be the propositional function “x is an integer”
and let P(x) be the propositional function “x is a positive
number.” The domain of discourse is R. Determine
whether or not the following proof that all integers are
positive or all positive real numbers are integers is correct.

By part (a),

Vx ((I(x) = P(x) v (P(x) = [(x)))

is true. In words: For all x, if x is an integer, then x is pos-
itive; or if x is positive, then x is an integer. Therefore,
all integers are positive or all positive real numbers are
integers.

73. Prove Theorem 1.5.14, part (b).

74. Analyze the following comments by film critic Roger Ebert:
No good movie is too long. No bad movie is short enough.
Love Actually is good, but it is too long.

75. Which rule of inference is used in the following argument?
Every rational number is of the form p/q, where p and ¢ are
integers. Therefore, 9.345 is of the form p/q.

In Exercises 7678, give an argument using rules of inference to
show that the conclusion follows from the hypotheses.

76. Hypotheses: Everyone in the class has a graphing calcula-
tor. Everyone who has a graphing calculator understands the
trigonometric functions. Conclusion: Ralphie, who is in the
class, understands the trigonometric functions.

77. Hypotheses: Ken, a member of the Titans, can hit the ball a
long way. Everyone who can hit the ball a long way can make
a lot of money. Conclusion: Some member of the Titans can
make a lot of money.

78. Hypotheses: Everyone in the discrete mathematics class loves
proofs. Someone in the discrete mathematics class has never
taken calculus. Conclusion: Someone who loves proofs has
never taken calculus.

79. Show that universal generalization (see Table 1.5.1) is valid.

80. Show that existential instantiation (see Table 1.5.1) is valid.

81. Show that existential generalization (see Table 1.5.1) is
valid.

Nested Quantifiers

Consider writing the statement

The sum of any two positive real numbers is positive,

symbolically. We first note that since two numbers are involved, we will need two vari-
ables, say x and y. The assertion can be restated as: If x > 0 and y > 0, then x +y > 0.
The given statement says that the sum of any two positive real numbers is positive, so
we need two universal quantifiers. If we let P(x, y) denote the expression (x > 0) A (y >
0) - (x+y > 0), the given statement can be written symbolically as

VxVy P(x, y).

50

Chapter 1 ¢ Sets and Logic

Example 1.6.1

Example 1.6.2

Example 1.6.3

Example 1.6.4

In words, for every x and for every y, if x > 0 and y > 0, then x + y > 0. The domain
of discourse of the two-variable propositional function P is R x R, which means that
each variable x and y must belong to the set of real numbers. Multiple quantifiers such
as VxVy are said to be nested quantifiers. In this section we explore nested quantifiers
in detail.

Restate Vm3n(m < n) in words. The domain of discourse is the set Z x Z.

SOLUTION We may first rephrase this statement as: For every m, there exists n such
that m < n. Less formally, this means that if you take any integer m whatsoever, there is
an integer n greater than m. Another restatement is then: There is no greatest integer. <«

Write the assertion
Everybody loves somebody,

symbolically, letting L(x, y) be the statement “x loves y.”

SOLUTION “Everybody” requires universal quantification and “somebody” requires
existential quantification. Thus, the given statement may be written symbolically as

Vx3y L(x, y).

In words, for every person x, there exists a person y such that x loves y.
Notice that

IxVy L(x, y)

is not a correct interpretation of the original statement. This latter statement is: There
exists a person x such that for all y, x loves y. Less formally, someone loves everyone.
The order of quantifiers is important; changing the order can change the meaning. <«

By definition, the statement VxVy P(x, y), with domain of discourse X x Y, is true
if, for every x € X and for every y € Y, P(x, y) is true. The statement VxVy P(x, y) is
false if there is at least one x € X and at least one y € Y such that P(x, y) is false.

Consider the statement
VaVy((x > 0) A (y > 0) — (x+y > 0)).

The domain of discourse is R x R. This statement is true because, for every real number
x and for every real number y, the conditional proposition

x>0OA0G=>0—>x+y=>0
is true. In words, for every real number x and for every real number vy, if x and y are
positive, their sum is positive. <
Consider the statement
VaVy((x > 0) A (y < 0) = (x+y #0)).

The domain of discourse is R x R. This statement is false because if x = 1 and y = —1,
the conditional proposition

xX>0OA0<0)—> (x+y#0)

is false. We say that the pair x = 1 and y = —1 is a counterexample. <

Example 1.6.5

Example 1.6.6

Example 1.6.7

Example 1.6.8

1.6 ® Nested Quantifiers 51

Suppose that P is a propositional function with domain of discourse {d, ..., d,} X
{d, ..., d,}. The following pseudocode determines whether VxVy P(x, y) is true or false:

fori=1ton
forj=1ton
if (~P(d;, d;))
return false
return true

The for loops examine members of the domain of discourse. If they find a pair d;, d;
for which P(d;, d;) is false, the condition =P(d;, d;) in the if statement is true; so the
code returns false [to indicate that VxVy P(x, y) is false] and terminates. In this case,
the pair d;, d; is a counterexample. If P(d;, d;) is true for every pair d;, d;, the condition
—P(d;, d;) in the if statement is always false. In this case, the for loops run to completion,
after which the code returns true [to indicate that VxVy P(x, y) is true] and terminates. <

By definition, the statement Vx3y P(x, y), with domain of discourse X x Y, is true
if, for every x € X, there is at least one y € Y for which P(x, y) is true. The statement
Vx3y P(x, y) is false if there is at least one x € X such that P(x, y) is false for everyy € Y.

Consider the statement
VxIy(x +y = 0).

The domain of discourse is R x R. This statement is true because, for every real number
x, there is at least one y (namely y = —x) for which x4y = 0 is true. In words, for every
real number x, there is a number that when added to x makes the sum zero. |

Consider the statement
Vx3dy(x > y).

The domain of discourse is Z+ x Z*. This statement is false because there is at least one
x, namely x = 1, such that x > y is false for every positive integer y. |

Suppose that P is a propositional function with domain of discourse {d, ..., d,} %
{d,, ..., d,}. The following pseudocode determines whether Vx3y P(x, y) is true or false:

fori=1ton
if (— exists_dj(i))
return false
return true
exists_dj(i) {
forj=1ton
if (P(d;, d;))
return true
return false

}

If for each d;, there exists d; such that P(d;, d;) is true, then for each 7, P(d;, d;) is true for
some j. Thus, exists_dj(i) returns true for every i. Since — exists_dj(i) is always false,
the first for loop eventually terminates and true is returned to indicate that Vx3y P(x, y)
is true.

52

Chapter 1 ¢ Sets and Logic

Example 1.6.9

Example 1.6.10

Example 1.6.11

Example 1.6.12

Example 1.6.13

Example 1.6.14

If for some d;, P(d;, d;) is false for every j, then, for this i, P(d;, d;) is false for
every j. In this case, the for loop in exists_dj(i) runs to termination and false is returned.
Since — exists_dj(i) is true, false is returned to indicate that Vx3y P(x, y) is false. 4

By definition, the statement 3xVy P(x, y), with domain of discourse X x Y, is true
if there is at least one x € X such that P(x,y) is true for every y € Y. The statement
IxVy P(x, y) is false if, for every x € X, there is at least one y € Y such that P(x, y) is
false.

Consider the statement 3xVy(x < y). The domain of discourse is Z* x Z™. This state-
ment is true because there is at least one positive integer x (namely x = 1) for which
x < yis true for every positive integer y. In words, there is a smallest positive integer
(namely 1). 4

Consider the statement 3xVy(x > y). The domain of discourse is Z* x Z*. This statement
is false because, for every positive integer x, there is at least one positive integer y, namely
y = x + 1, such that x > y is false. In words, there is no greatest positive integer. |

By definition, the statement 3x3y P(x, y), with domain of discourse X x Y, is true if
there is at least one x € X and at least one y € Y such that P(x, y) is true. The statement
IxFy P(x, y) is false if, for every x € X and for every y € Y, P(x, y) is false.

Consider the statement
Ay((x > DAY > 1) A(xy=06)).

The domain of discourse is Z" x Z*. This statement is true because there is at least one
integer x > 1 (namely x = 2) and at least one integer y > 1 (namely y = 3) such that
xy = 6. In words, 6 is composite (i.e., not prime). <

Consider the statement
ITy((x > DA >DA@y=T7).

The domain of discourse is Z1 x Z*. This statement is false because for every positive
integer x and for every positive integer y,

x>DAO>DAxy=17)

is false. In words, 7 is prime. <

The generalized De Morgan’s laws for logic (Theorem 1.5.14) can be used to
negate a proposition containing nested quantifiers.

Using the generalized De Morgan’s laws for logic, we find that the negation of
Vx3y P(x, y) is

=(VxAy P(x,y)) = Ix—Fy P(x, y)) = IxVy —P(x, y).

Notice how in the negation, V and 3 are interchanged. <

Write the negation of IxVy(xy < 1), where the domain of discourse is R x R. Determine
the truth value of the given statement and its negation.

Example 1.6.15

1.6 ® Nested Quantifiers 53

SOLUTION Using the generalized De Morgan’s laws for logic, we find that the nega-
tion is

—(IxVy(xy < 1)) = Va—=(Vy(xy < 1)) = VxIy—(xy < 1) = VxIy(xy > 1).

The given statement 3xVy(xy < 1) is true because there is at least one x (namely x = 0)
such that xy < 1 for every y. Since the given statement is true, its negation is false. <«

We conclude with a logic game, which presents an alternative way to determine
whether a quantified propositional function is true or false. André Berthiaume con-
tributed this example.

The Logic Game Given a quantified propositional function such as Vx3y P(x, y), you
and your opponent, whom we call Farley, play a logic game. Your goal is to try to make
P(x, y) true, and Farley’s goal is to try to make P(x, y) false. The game begins with the
first (left) quantifier. If the quantifier is V, Farley chooses a value for that variable; if the
quantifier is 3, you choose a value for that variable. The game continues with the second
quantifier. After values are chosen for all the variables, if P(x,y) is true, you win; if
P(x, y) is false, Farley wins. We will show that if you can always win regardless of how
Farley chooses values for the variables, the quantified statement is true, but if Farley can
choose values for the variables so that you cannot win, the quantified statement is false.
Consider the statement

Vxdy(x +y =0). (1.6.1)

The domain of discourse is R x R. Since the first quantifier is V, Farley goes first and
chooses a value for x. Since the second quantifier is 3, you go second. Regardless of
what value Farley chose, you can choose y = — x, which makes the statement x4y = 0
true. You can always win the game, so the statement (1.6.1) is true.

Next, consider the statement

IxVy(x +y = 0). (1.6.2)

Again, the domain of discourse is R x R. Since the first quantifier is 3, you go first and
choose a value for x. Since the second quantifier is V, Farley goes second. Regardless of
what value you chose, Farley can always choose a value for y, which makes the statement
x +y = 0 false. (If you choose x = 0, Farley can choose y = 1. If you choose x # 0,
Farley can choose y = 0.) Farley can always win the game, so the statement (1.6.2) is
false.

We discuss why the game correctly determines the truth value of a quantified
propositional function. Consider YxVy P(x, y). If Farley can always win the game, this
means that Farley can find values for x and y that make P(x, y) false. In this case, the
propositional function is false; the values Farley found provide a counterexample. If
Farley cannot win the game, no counterexample exists; in this case, the propositional
function is true.

Consider Vx3y P(x, y). Farley goes first and chooses a value for x. You choose
second. If, no matter what value Farley chose, you can choose a value for y that makes
P(x, y) true, you can always win the game and the propositional function is true. How-
ever, if Farley can choose a value for x so that every value you choose for y makes P(x, y)
false, then you will always lose the game and the propositional function is false.

An analysis of the other cases also shows that if you can always win the game, the
propositional function is true; but if Farley can always win the game, the propositional
function is false.

The logic game extends to propositional functions of more than two variables. The
rules are the same and, again, if you can always win the game, the propositional function
is true; but if Farley can always win the game, the propositional function is false. |

54

Chapter 1 ¢ Sets and Logic

1.6 Problem-Solving Tips

® To prove that VxVy P(x, y) is true, where the domain of discourse is X x Y, you
must show that P(x, y) is true for all values of x € X and y € Y. One technique is to
argue that P(x, y) is true using the symbols x and y to stand for arbitrary elements
inX and Y.

® To prove that VxVy P(x, y) is false, where the domain of discourse is X x Y, find
one value of x € X and one value of y € Y (two values suffice—one for x and one
for y) that make P(x, y) false.

= To prove that Vx3y P(x, y) is true, where the domain of discourse is X x Y, you
must show that for all x € X, there is at least one y € Y such that P(x, y) is true.
One technique is to let x stand for an arbitrary element in X and then find a value
for y € Y (one value suffices!) that makes P(x, y) true.

B To prove that Vx3y P(x, y) is false, where the domain of discourse is X x Y, you
must show that for at least one x € X, P(x,y) is false for every y € Y. One
technique is to find a value of x € X (again one value suffices!) that has the property
that P(x, y) is false for every y € Y. Having chosen a value for x, let y stand for an
arbitrary element of Y and show that P(x, y) is always false.

® To prove that 3xVy P(x, y) is true, where the domain of discourse is X x ¥, you must
show that for at least one x € X, P(x, y) is true for every y € Y. One technique is to
find a value of x € X (again one value suffices!) that has the property that P(x, y)
is true for every y € Y. Having chosen a value for x, let y stand for an arbitrary
element of Y and show that P(x, y) is always true.

B To prove that 3xVy P(x, y) is false, where the domain of discourse is X x Y, you
must show that for all x € X, there is at least one y € Y such that P(x, y) is false.
One technique is to let x stand for an arbitrary element in X and then find a value
for y € Y (one value suffices!) that makes P(x, y) false.

E To prove that Ix3y P(x, y) is true, where the domain of discourse is X x Y, find
one value of x € X and one value of y € Y (two values suffice—one for x and one
for y) that make P(x, y) true.

® To prove that 3x3y P(x, y) is false, where the domain of discourse is X x Y, you
must show that P(x, y) is false for all values of x € X and y € Y. One technique
is to argue that P(x, y) is false using the symbols x and y to stand for arbitrary
elements in X and Y.

= To negate an expression with nested quantifiers, use the generalized De Morgan’s
laws for logic. Loosely speaking, ¥V and 3 are interchanged. Don’t forget that the
negation of p — ¢ is equivalent to p A —gq.

1.6 Review Exercises

1.

What is the interpretation of VxVyP(x, y)? When is this quan- 4. What is the interpretation of Ix3yP(x, y)? When is this quan-
tified expression true? When is it false? tified expression true? When is it false?

What is the interpretation of Vx3yP(x, y)? When is this quan- 5. Give an example to show that, in general, Vx3yP(x, y) and
tified expression true? When is it false? IxVyP(x, y) have different meanings.

What is the interpretation of 3xVyP(x, y)? When is this quan- 6. Write the negation of VxVyP(x,y) using the generalized

tified expression true? When is it false? De Morgan’s laws for logic.

7. Write the negation of Vx3yP(x,y) using the generalized
De Morgan’s laws for logic.

8. Write the negation of IxVyP(x,y) using the generalized
De Morgan’s laws for logic.

1.6 ® Nested Quantifiers 55

9. Write the negation of Ix3yP(x,y) using the generalized
De Morgan’s laws for logic.

10. Explain the rules for playing the logic game. How can the
logic game be used to determine the truth value of a quanti-
fied expression?

In Exercises 1-33, the set D1 consists of three students: Garth, who
is 5 feet 11 inches tall; Erin, who is 5 feet 6 inches tall; and Marty,
who is 6 feet tall. The set Dy consists of four students: Dale, who
is 6 feet tall; Garth, who is 5 feet 11 inches tall; Erin, who is 5 feet
6 inches tall; and Marty, who is 6 feet tall. The set D3 consists of
one student: Dale, who is 6 feet tall. The set D4 consists of three stu-
dents: Pat, Sandy, and Gale, each of whom is 5 feet 11 inches tall.

In Exercises 1-21, Ty (x, y) is the propositional function “x
is taller than y.” Write each proposition in Exercises 1-4 in words.

1. VxVy Ti(x,y) 2. Vxdy Ty (x,y)
3. IxVy Ti(x,) 4. IxFy T (x, y)
5. Write the negation of each proposition in Exercises 1-4 in

words and symbolically.

In Exercises 6-21, tell whether each proposition in Exercises 1-4
is true or false if the domain of discourse is D; x Dj for the given
values of i and j.

6. i=1,j=1 7.i=1,j=2
8.i=1j=3 9. i=1,j=4
10. i=2j=1 1. i=2j=2
12. i=2j=3 13, i=2,j=4
4. i=3,j=1 15 i=3,j=2
16. i=3,j=3 17. i=3,j=4
18. i=4,j=1 19. i=4,j=2
20. i=4,j=3 21, i=4, j=4

In Exercises 22-27, T>(x,y) is the propositional function “x is
taller than or the same height as y.” Write each proposition in Ex-
ercises 22-25 in words.

22. VxVy Tr(x,y) 23. Vx3y Tr(x,y)
24. IxVy Tar(x, y) 25. AxTy Tr(x, y)

26. Write the negation of each proposition in Exercises 22-25 in
words and symbolically.

27. Tell whether each proposition in Exercises 22-25 is true or
false if the domain of discourse is D; x D; for each pair of
values i, j given in Exercises 6-21. The sets Dy, ..., D4 are
defined before Exercise 1.

In Exercises 28-33, T3(x, y) is the propositional function “if x and
y are distinct persons, then x is taller than y.” Write each proposi-
tion in Exercises 28-31 in words.
28. VaVy T3(x,y)
30. IxVy T3(x,y)

29. Vx3y T5(x,y)
31. 3x3y Tz(x, y)

32. Write the negation of each proposition in Exercises 28-31 in
words and symbolically.

33. Tell whether each proposition in Exercises 28-31 is true or
false if the domain of discourse is D; x D; for each pair of
values i, j given in Exercises 6-21. The sets Dy, ..., D4 are
defined before Exercise 1.

Let L(x, y) be the propositional function “x loves y.” The domain

of discourse is the Cartesian product of the set of all living people

with itself (i.e., both x and y take on values in the set of all living

people). Write each proposition in Exercises 34-37 symbolically.

Which do you think are true?

34. Someone loves everybody.

35. Everybody loves everybody.

36. Somebody loves somebody.

37. Everybody loves somebody.

38. Write the negation of each proposition in Exercises 34-37 in
words and symbolically.

Let A(x,y) be the propositional function “x attended y’s office
hours” and let E(x) be the propositional function “x is enrolled
in a discrete math class.” Let S be the set of students and let T de-
note the set of teachers—all at Hudson University. The domain of
discourse of A is S x T and the domain of discourse of E is S. Write
each proposition in Exercises 39—42 symbolically.

39. Brit attended someone’s office hours.

40. No one attended Professor Sandwich’s office hours.

41. Every discrete math student attended someone’s office hours.

42. All teachers had at least one student attend their office hours.

Let P(x,y) be the propositional function x > y. The domain of
discourse is " x 7. Tell whether each proposition in Exercises
43-46 is true or false.

43. VxVy P(x,y) 44. VxIy P(x,y)

45. AxVy P(x,y) 46. IxIy P(x,y)

47. Write the negation of each proposition in Exercises 43—46.

Determine the truth value of each statement in Exercises 48—65.
The domain of discourse is R x R. Justify your answers.

48. Vavy(x®> < y+ 1) 49. VxIy(2 <y+1)
50. Ixvy(xX <y+1) 51, IxIy(x? <y +1)
52, Va2 <y+1) 53. VyIx(x? < y+ 1)
54. VaVy(x® 4+y* =9) 55. VxIy(x> +y*> =9)

56 Chapter 1 ¢ Setsand Logic

56. Vy(x2 +y2 =9)
58. Va¥y(x2 4+ y2 > 0)
60. IVy(2 +y2 > 0)
62. VaVy((x < y) = (x* <y?)
63. VxIy((x <y) = (2 <y?)
64. IVy((x <y) — (JC2 < yz))
65. Axdy((x < y) = (2 < y?)

66. Write the negation of each proposition in Exercises 48—65.

57. Iy +y2 =9)
59. Vady(x> +y* > 0)
61. IxFy(x> +y> = 0)

67. Suppose that P is a propositional function with domain of dis-
course {dy, ...,d,} x{di, ..., d,}. Write pseudocode that de-
termines whether

IxVy P(x, y)
is true or false.

68. Suppose that P is a propositional function with domain of dis-
course {dy, ...,d,} x{di, ..., d,}. Write pseudocode that de-
termines whether

IxIy P(x, y)
is true or false.

69. Explain how the logic game (Example 1.6.15) determines
whether each proposition in Exercises 48—65 is true or false.

70. Use the logic game (Example 1.6.15) to determine whether the
proposition
VaxVydz((z > x) A (2 <))
is true or false. The domain of discourse is Z x Z x Z.
71. Use the logic game (Example 1.6.15) to determine whether the
proposition
VaxVydz((z < x) A (2 <))
is true or false. The domain of discourse is Z x Z X Z.
72. Use the logic game (Example 1.6.15) to determine whether the
proposition
Vavydz((x < y) = (@ >x) A (2 <)
is true or false. The domain of discourse is Z x Z x Z.
73. Use the logic game (Example 1.6.15) to determine whether the
proposition
Vavydz((x <y) = (@ >x) A (2 <)

is true or false. The domain of discourse is R x R x R.

Assume that VxVy P(x, y) is true and that the domain of discourse
is nonempty. Which of Exercises 74—76 must also be true? Prove
your answer.

74. VxIy P(x,y) 75. 3xVy P(x,y) 76. IxIy P(x,y)

Assume that IxVy P(x, y) is true and that the domain of discourse
is nonempty. Which of Exercises 77—79 must also be true? Prove
your answer.

77. VxVy P(x,y) 78. Vx3y P(x,y) 79. IxIy P(x,y)

*101.

Assume that 3x3y P(x, y) is true and that the domain of discourse
is nonempty. Which of Exercises 80-82 must also be true? Prove
your answer.

80. VxVyP(x,y)

81. Vx3dyP(x,y)

82. daVy P(x,y)

Assume that VxVy P(x, y) is false and that the domain of discourse

is nonempty. Which of Exercises 83—85 must also be false? Prove
your answer.

83. VxIy P(x,y) 84. IxVy P(x,y) 85. ATy P(x,y)

Assume that Yx3y P(x, y) is false and that the domain of discourse
is nonempty. Which of Exercises 86—88 must also be false? Prove
your answer.

86. VaxVyP(x,y)

87. dxVy P(x,y)

88. IxIy P(x,y)

Assume that AxVy P(x, y) is false and that the domain of discourse

is nonempty. Which of Exercises 8991 must also be false? Prove
your answer.

89. VaVyP(x,y) 90. Vx3y P(x,y) 91. IxIy P(x,y)

Assume that AxJy P(x, y) is false and that the domain of discourse
is nonempty. Which of Exercises 92-94 must also be false? Prove
your answer.

92. VxVyP(x,y)

93. Vx3y P(x,y)

94. 3xVy P(x,y)

Which of Exercises
—=(Vx3y P(x, y))? Explain.

95-98 is logically equivalent to

95. Ix—(VYy P(x,y)) 96. Vx—(3y P(x,y))

97. IxVy—P(x,y) 98. IxTy—P(x,y)
99. [Requires calculus] The definition of

limf(x) = L

is: For every ¢ > 0, there exists § > 0 such that for all x if
0 < |x —al < 4, then |[f(x) — L| < . Write this definition
symbolically using V and 3.

100. [Requires calculus] Write the negation of the definition of limit
(see Exercise 99) in words and symbolically using V¥ and 3 but
not —.

[Requires calculus] Write the definition of “lim,_,, f(x) does
not exist” (see Exercise 99) in words and symbolically using
Y and 3 but not —.

102. Consider the headline: Every school may not be right for
every child. What is the literal meaning? What is the intended
meaning? Clarify the headline by rephrasing it and writing it
symbolically.

Problem-Solving Corner

Problem

Assume that Vx3y P(x, y) is true and that the domain
of discourse is nonempty. Which of the following must
also be true? If the statement is true, explain; otherwise,
give a counterexample.

(a) VxVyP(x,y)
(b) IxVy P(x,y)
(¢) Iy P(x,y)

Attacking the Problem

Let’s begin with part (a). We are given that Vx3y P(x, y)
is true, which says, in words, for every x, there exists
at least one y for which P(x, y) is true. If (a) is also
true, then, in words, for every x, for every y, P(x,y)
is true. Let the words sink in. If for every x, P(x, y) is
true for at least one y, doesn’t it seem unlikely that it
would follow that P(x, y) is true for every y? We sus-
pect that (a) could be false. We’ll need to come up with
a counterexample.

Contrasting statement (b) with the given state-
ment, we see that the quantifiers V and 3 have been
swapped. There is a difference. In the given true state-
ment Vx3Iy P(x,y), given any x, it’s possible to find
a y, which may depend on x, that makes P(x,y)
true. For statement (b), IxVy P(x, y), to be true, for
some x, P(x,y) would need to be true for every
y. Again, let the words sink in. These two state-
ments seem quite different. We suspect that (b) also
could be false. Again, we’ll need to come up with a
counterexample.

Now let’s turn to part (c). We are given that
Vx3dy P(x, y) is true, which says, in words, for every
x, there exists at least one y for which P(x, y) is true.
For statement (c), Ix3y P(x, y), to be true, for some x
and for some y, P(x,y) must be true. But the given
statement says that for every x, there exists at least
one y for which P(x,y) is true. So if we pick one x
(and we know we can since the domain of discourse is
nonempty), the given statement assures us that there
exists at least one y for which P(x,y) is true. Thus
part (c) must be true. In fact, we have just given an
explanation!

Problem-Solving Corner: Quantifiers

Quantifiers

Finding a Solution

As noted, we have already solved part (c). We need
counterexamples for parts (a) and (b).

For part (a), we need the given statement,
Vx3dy P(x, y), to be true and VxVy P(x, y) to be false. In
order for the given statement to be true, we must find a
propositional function P(x, y) satisfying

for every x, there exists y such that P(x, y) is true.
(1)

In order for (a) to be false, we must have

at least one value of x and at least one value of y
such that P(x, y) is false. (2)

We can arrange for (1) and (2) to hold simultaneously
if we choose P(x, y) so that for every x, P(x, y) is true
for some y, but for at least one x, P(x, y) is also false
for some other value of y. Upon reflection, many math-
ematical statements have this property. For example,
x > y,x,y € R, suffices. For every x, there exists y
such that x > y is true. Furthermore, for every x (and,
in particular, for at least one value of x), there exists y
such that x > y is false.

For part (b), we again need the given statement,
Vx3dy P(x, y), to be true and IxVy P(x, y) to be false. In
order for the given statement to be true, we must find
a propositional function P(x, y) satisfying (1). In order
for (b) to be false, we must have

for every x, there exists at least one value of y such
that P(x, y) is false. (3)

We can arrange for (1) and (3) to hold simultaneously if
we choose P(x, y) so that for every x, P(x, y) is true for
some y and false for some other value of y. We noted
in the preceding paragraph that x > y, x,y € R, has
this property.

Formal Solution

(a) We give an example to show that statement
(a) can be false while the given statement is
true. Let P(x, y) be the propositional function
x > y with domain of discourse R x R. Then
Vx3y P(x, y) is true since for any x, we may
choose y = x — 1 to make P(x,y) true. At
the same time, YxVy P(x, y) is false. A counter-
exampleisx =0,y = 1.

57

58

Chapter 1 ¢ Sets and Logic

(b) We give an example to show that statement (b)
can be false while the given statement is true.
Let P(x, y) be the propositional function x > y
with domain of discourse R x R. As we showed
in part (a), Vady P(x, y) is true. Now we show
that 3xVy P(x, y) is false. Let x be an arbitrary
element in R. We may choose y = x + 1 to
make x > y false. Thus for every x, there exists
y such that P(x, y) is false. Therefore statement
(b) is false.

We show that if the given statement is true,
statement (c) is necessarily true.

We are given that for every x, there ex-
ists y such that P(x, y) is true. We must show
that there exist x and y such that P(x, y) is true.
Since the domain of discourse is nonempty, we
may choose a value for x. For this chosen x,
there exists y such that P(x, y) is true. We have
found at least one value for x and at least one
value for y that make P(x,y) true. Therefore
dxJy P(x, y) is true.

©)

Summary of Problem-Solving Techniques

B When dealing with quantified statements, it is
sometimes useful to write out the statements in
words. For example, in this problem, it helped to
write out exactly what Vx3y P(x, y) means. Take
time to let the words sink in.

= If you have trouble finding examples, look at
existing examples (e.g., examples in this book).
To solve problems (a) and (b), we could have
used the statement in Example 1.6.6. Sometimes,
an existing example can be modified to solve a
given problem.

Exercises

1. Show that the statement in Example 1.6.6 solves

problems (a) and (b) in this Problem-Solving
Corner.

2. Could examples in Section 1.6 other than Example

1.6.6 have been used to solve problems (a) and (b)
in this Problem-Solving Corner?

Chapter 1 Notes

General references on discrete mathematics are [Graham, 1994; Liu, 1985; Tucker]. [Knuth,
1997, 1998a, 1998b] is the classic reference for much of this material.
[Halmos; Lipschutz; and Stoll] are recommended to the reader wanting to study set

theory in more detail.

[Barker; Copi; Edgar] are introductory logic textbooks. A more advanced treatment is
found in [Davis]. The first chapter of the geometry book by [Jacobs] is devoted to basic logic.
For a history of logic, see [Kline]. The role of logic in reasoning about computer programs

is discussed by [Gries].

Chapter 1 Review

Section 1.1

N U R WN R

. Set: any collection of objects
. Notation for sets: {x | x has property P}
. |X], the cardinality of X: the number of elements in the set X

x € X: xis an element of the set X
x ¢ X: xis not an element of the set X

. Empty set: @ or { }

X = Y, where X and Y are sets: X and Y have the same
elements
X C Y, X is asubset of Y: every element in X is alsoin ¥

. X CY,Xisapropersubsetof Y: X C Yand X # Y
. P(X), the power set of X: set of all subsets of X
. |PX)| =21

. XUY, X union Y: set of elements in X or Y or both
. Union of a family S of sets: US = {x | x € X for some

X e S}

. XNY, X intersect Y: set of elements in X and Y
. Intersection of a family S of sets: NS = {x|x € X for

allX € §}

. Disjointsets X and V: XNY =9
. Pairwise disjoint family of sets
. X — Y, difference of X and Y, relative complement: set of

elements in X but not in Y

. Universal set, universe
. X, complement of X: U — X, where U is a universal set
. Venn diagram

22.
23.

24.

25.

26.

27.

Properties of sets (see Theorem 1.1.22)
De Morgan’s laws for sets: (AUB) = AN B, (ANB) =
AUB

Partition of X: a collection S of nonempty subsets of X
such that every element in X belongs to exactly one mem-
ber of S

Ordered pair: (x, y)

Cartesian product of X and Y: X x ¥ = {(x,y) | x € X,
yEY}

Cartesian product of X, X5, ...

X1 x Xy x - x X, ={(a1, a2, ..., a,) | a; € X}

7Xn:

Section 1.2

28.
29.
30.
31.
32.
33.
34.

Logic

Proposition

Conjunction: p and ¢, p A ¢q

Disjunction: p or ¢, p V g

Negation: not p, —p

Truth table

Exclusive-or of propositions p, ¢: p or g, but not both

Section 1.3

35.
36.
37.
38.
39.
40.
41.
42.
43.

44.

Conditional proposition: if p, then ¢; p — ¢
Hypothesis

Conclusion

Necessary condition

Sufficient condition

Converse of p — q: ¢ —> p

Biconditional proposition: p if and only if ¢, p <> ¢
Logical equivalence: P = Q

De Morgan’s laws for logic: —(p Vv q) =
—~pAg =PV g

Contrapositive of p — g1 =q¢ — —p

—|p /\ —|q,

Section 1.4

45.
46.
47.
48.
49.
50.
S1.
52.

Deductive reasoning

Hypothesis

Premises

Conclusion

Argument

Valid argument

Invalid argument

Rules of inference for propositions: modus ponens, modus
tollens, addition, simplification, conjunction, hypothetical
syllogism, disjunctive syllogism

Section 1.5

53.
54.

Propositional function
Domain of discourse

55.
56.
57.
58.
59.
60.

61.

62.

63.

64.

65.

Chapter 1 Review 59

Universal quantifier

Universally quantified statement
Counterexample

Existential quantifier

Existentially quantified statement
Generalized De Morgan’s laws for logic:

—(VxP(x)) and Ix—P(x) have the same truth values.
—(3xP(x)) and Vx—P(x) have the same truth values.

To prove that the universally quantified statement Vx P(x) is
true, show that for every x in the domain of discourse, the
proposition P(x) is true.

To prove that the existentially quantified statement 3x P(x)
is true, find one value of x in the domain of discourse for
which P(x) is true.

To prove that the universally quantified statement Vx P(x) is
false, find one value of x (a counterexample) in the domain
of discourse for which P(x) is false.

To prove that the existentially quantified statement 3x P(x)
is false, show that for every x in the domain of discourse,
the proposition P(x) is false.

Rules of inference for quantified statements: universal in-
stantiation, universal generalization, existential instantia-
tion, existential generalization

Section 1.6

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

To prove that VxVy P(x, y) is true, show that P(x, y) is true
for all values of x € X and y € Y, where the domain of
discourse is X x Y.

To prove that Vx3dy P(x, y) is true, show that for all x € X,
there is at least one y € Y such that P(x, y) is true, where
the domain of discourse is X x Y.

To prove that 3xVy P(x, y) is true, show that for at least one
x € X, P(x,y) is true for every y € Y, where the domain of
discourse is X x Y.

To prove that IxJy P(x, y) is true, find one value of x € X
and one value of y € Y that make P(x,y) true, where the
domain of discourse is X x Y.

To prove that VxVy P(x, y) is false, find one value of x € X
and one value of y € Y that make P(x, y) false, where the
domain of discourse is X x Y.

To prove that Vx3y P(x, y) is false, show that for at least one
x € X, P(x, y) is false for every y € Y, where the domain of
discourse is X x Y.

To prove that IxVy P(x, y) is false, show that for all x € X,
there is at least one y € Y such that P(x, y) is false, where
the domain of discourse is X x Y.

To prove that x3y P(x, y) is false, show that P(x, y) is false
for all values of x € X and y € Y, where the domain of
discourse is X x Y.

To negate an expression with nested quantifiers, use the gen-
eralized De Morgan’s laws for logic.

The logic game

60

Chapter 1 ¢ Sets and Logic

Chapter 1 Self-Test

1.

10.

11.

12.

13.

IfA = {1,3,4,5,6,7}, B = {x | xisaneven integer},
C=1{2,3,4,5,6},find ANB) — C.

. If p, g, and r are true, find the truth value of the proposition

PV g A=((—=pAT)VQ).

. Restate the proposition “A necessary condition for Leah to

get an A in discrete mathematics is to study hard” in the
form of a conditional proposition.

. Write the converse and contrapositive of the proposition of

Exercise 3.

. If AU B = B, what relation must hold between A and B?
. Are the sets

{3,2,2}, {x | xis an integer and 1 < x < 3}

equal? Explain.

. Determine whether the following argument is valid.

p—>qVr
Py —q
rvgq

g

. If p is true and ¢ and r are false, find the truth value of the

proposition (p V g) — —r.

. Write the following argument symbolically and determine

whether it is valid. If the Skyscrapers win, I’ll eat my hat.
If T eat my hat, I’ll be quite full. Therefore, if I'm quite full,
the Skyscrapers won.

Is the statement

The team won the 2006 National Basketball
Association championship

a proposition? Explain.

Is the statement of Exercise 10 a propositional function?
Explain.

Let K(x, y) be the propositional function “x knows y.” The
domain of discourse is the Cartesian product of the set of
students taking discrete math with itself (i.e., both x and y
take on values in the set of students taking discrete math).
Represent the assertion “someone does not know anyone”
symbolically.

Write the negation of the assertion of Exercise 12 symboli-
cally and in words.

14.
15.
16.

17.

18.

19.
20.

21.

22,

23.

24,

If A = {a, b, c}, how many elements are in P(A) x A?
Write the truth table of the proposition —(p A ¢) vV (pV —r).
Formulate the proposition p A (—¢ V r) in words using

p: Itake hotel management.
q: 1take recreation supervision.
r: I take popular culture.

Assume that a, b, and ¢ are real numbers. Represent the
statement

a<bor(b<canda > c)
symbolically, letting

p:a<b, q: b<c, r:a<ec.
Let P(n) be the statement n and n + 2 are prime.
In Exercises 18 and 19, write the statement in words and

tell whether it is true or false.

Vn P(n)
dn P(n)
Which rule of inference is used in the following argument?
If the Skyscrapers win, I'll eat my hat. If I eat my hat, I'll

be quite full. Therefore, if the Skyscrapers win, I'll be quite
full.

Give an argument using rules of inference to show that the
conclusion follows from the hypotheses.

Hypotheses: If the Council approves the funds, then New
Atlantic will get the Olympic Games. If New Atlantic gets
the Olympic Games, then New Atlantic will build a new
stadium. New Atlantic does not build a new stadium. Con-
clusion: The Council does not approve the funds, or the
Olympic Games are canceled.

Determine whether the statement Vx3y(x = y?) is true or
false. The domain of discourse is R x R. Explain your an-
swer. Explain, in words, the meaning of the statement.

Use the generalized De Morgan’s laws for logic to write the
negation of Vx3yVz P(x, y, 7).

Represent the statement
If(a>corb <c), thenb > ¢

symbolically using the definitions of Exercise 17.

Chapter 1 Computer Exercises

In Exercises 1-6, assume that a set X of n elements is represented
as an array A of size at least n + 1. The elements of X are listed
consecutively in A starting in the first position and terminating
with 0. Assume further that no set contains 0.

1.

Write a program to represent the sets XU Y, XNY, X -7,
and X A 'Y, given the arrays representing X and Y. (The sym-
metric difference is denoted A.)

. Write a program to determine whether X C Y, given arrays
representing X and Y.

. Write a program to determine whether X = Y, given arrays
representing X and Y.

. Assuming a universe represented as an array, write a
program to represent the set X, given the array represent-
ing X.

. Given an element E and the array A that represents X, write
a program that determines whether E € X.

. Given the array representing X, write a program that lists all
subsets of X.

10.

61

Chapter 1 Computer Exercises

. Write a program that reads a logical expression in p and ¢

and prints the truth table of the expression.

. Write a program that reads a logical expression in p, ¢, and

r and prints the truth table of the expression.

. Write a program that tests whether two logical expressions

in p and q are logically equivalent.

Write a program that tests whether two logical expressions
in p, ¢, and r are logically equivalent.

2.1 Mathematical Systems,
Direct Proofs, and
Counterexamples

2.2 More Methods of Proof

2.3 Resolution Proofs

2.4 Mathematical Induction

2.5 Strong Form of
Induction and the
Well-Ordering Property

Go Online

For more on proofs, see
goo.gl/gHgyey

62

This chapter uses the logic in Chapter 1 to discuss proofs. Logical methods are used
in mathematics to prove theorems and in computer science to prove that programs do
what they are alleged to do. Suppose, for example, that a student is assigned a program to
compute shortest paths between cities. The program must be able to accept as input an ar-
bitrary number of cities and the distances between cities directly connected by roads and
produce as output the shortest paths (routes) between each distinct pair of cities. After
the student writes the program, it is easy to test it for a small number of cities. Using pa-
per and pencil, the student could simply list all possible paths between pairs of cities and
find the shortest paths. This brute-force solution could then be compared with the output
of the program. However, for a large number of cities, the brute-force technique would
take too long. How can the student be sure that the program works properly for large
input—almost surely the kind of input on which the instructor will test the program?
The student will have to use logic to prove that the program is correct. The proof might
be informal or formal using the techniques presented in this chapter, but a proof will be
required.

After introducing some context and terminology in Section 2.1, we devote the
remainder of this chapter to various proof techniques. Sections 2.1 and 2.2 introduce
several proof techniques that build directly on the material in Chapter 1. Resolution, the
topic of Section 2.3, is a special proof technique that can be automated. Sections 2.4
and 2.5 are concerned with mathematical induction, a proof technique especially useful
in discrete mathematics and computer science.

This section can be omitted without loss of continuity.

2.1

2.1 & Mathematical Systems, Direct Proofs, and Counterexamples 63

Mathematical Systems, Direct Proofs,
and Counterexamples

Example 2.1.1

Example 2.1.2

A mathematical system consists of axioms, definitions, and undefined terms. Axioms
are assumed to be true. Definitions are used to create new concepts in terms of existing
ones. Some terms are not explicitly defined but rather are implicitly defined by the
axioms. Within a mathematical system we can derive theorems. A theorem is a proposi-
tion that has been proved to be true. Special kinds of theorems are referred to as lemmas
and corollaries. A lemma is a theorem that is usually not too interesting in its own right
but is useful in proving another theorem. A corollary is a theorem that follows easily
from another theorem.

An argument that establishes the truth of a theorem is called a proof. Logic is a tool
for the analysis of proofs. In this section and the next, we introduce some general meth-
ods of proof. In Sections 2.3-2.5, we discuss resolution and mathematical induction,
which are special proof techniques. We begin by giving some examples of mathematical
systems.

Euclidean geometry furnishes an example of a mathematical system. Among the
axioms are

® Given two distinct points, there is exactly one line that contains them.

B Given a line and a point not on the line, there is exactly one line parallel to the line
through the point.

The terms point and line are undefined terms that are implicitly defined by the
axioms that describe their properties.
Among the definitions are

B Two triangles are congruent if their vertices can be paired so that the corresponding
sides and corresponding angles are equal.

B Two angles are supplementary if the sum of their measures is 180°. |

The real numbers furnish another example of a mathematical system. Among the axioms
are

® For all real numbers x and y, xy = yx.
B There is a subset P of real numbers satisfying

(a) If x and y are in P, then x + y and xy are in P.
(b) If x is a real number, then exactly one of the following statements is true:

xisin P, x=0, —xisinP.

Multiplication is implicitly defined by the first axiom and others that describe the prop-
erties multiplication is assumed to have.
Among the definitions are

B The elements in P (of the preceding axiom) are called positive real numbers.

B The absolute value |x| of a real number x is defined to be x if x is positive or 0 and
—x otherwise. <

We give several examples of theorems, corollaries, and lemmas in Euclidean
geometry and in the system of real numbers.

64

Chapter 2 ¢ Proofs

Example 2.1.3

Example 2.1.4

Example 2.1.5

Example 2.1.6

Example 2.1.8

Example 2.1.9

Example 2.1.10

Examples of theorems in Euclidean geometry are

B [f two sides of a triangle are equal, then the angles opposite them are equal.

B [f the diagonals of a quadrilateral bisect each other, then the quadrilateral is a
parallelogram. <

An example of a corollary in Euclidean geometry is
m If a triangle is equilateral, then it is equiangular.

This corollary follows immediately from the first theorem of Example 2.1.3. <

Examples of theorems about real numbers are

E x - 0 = 0 for every real number x.

= For all real numbers x, y, and z, if x < yandy < z, thenx < z. |

An example of a lemma about real numbers is
® If n is a positive integer, then either n — 1 is a positive integer orn — 1 = 0.

Surely this result is not that interesting in its own right, but it can be used to prove
other results. <

Direct Proofs

Theorems are often of the form
For all x1, x2, ..., x,, if p(x1, X2, ..., X,), then g(x1, x2, ..., Xp).
This universally quantified statement is true provided that the conditional proposition
if p(xy, x2, ..., x,), then g(xy, x2, ..., X,) (2.1.1)

is true for all xy, x, ..., x, in the domain of discourse. To prove (2.1.1), we assume
that x1, xp, . . ., x, are arbitrary members of the domain of discourse. If p(x, x2, ..., x;,)
is false, by Definition 1.3.3, (2.1.1) is vacuously true; thus, we need only consider the
case that p(xy, x2, ..., x,) is true. A direct proof assumes that p(xy, x, ..., x,) is true
and then, using p(x1, x2, . . ., x,) as well as other axioms, definitions, previously derived
theorems, and rules of inference, shows directly that g(xy, x2, . .., x;) is true.

Everyone “knows” what an even or odd integer is, but the following definition
makes these terms precise and provides a formal way to use the terms “even integer”
and “odd integer” in proofs.

Definition 2.1.7 » An integer n is even if there exists an integer k such that
n = 2k. An integer n is odd if there exists an integer k such that n = 2k + 1. <

The integer n = 12 is even because there exists an integer k (namely £k = 6) such that

n = 2k; thatis, 12 =2 . 6. <
The integer n = —21 is odd because there exists an integer k (namely k = —11) such
that n = 2k + 1; thatis, —21 = 2(—11) + 1. |

Give a direct proof of the following statement. For all integers m and n, if m is odd and
n is even, then m -+ n is odd.

Example 2.1.11

2.1 & Mathematical Systems, Direct Proofs, and Counterexamples 65

SOLUTION Discussion In a direct proof, we assume the hypotheses and derive the
conclusion. A good start is achieved by writing out the hypotheses and conclusion so
that we are clear where we start and where we are headed. In the case at hand, we have

m is odd and n is even. (Hypotheses)

m + n is odd. (Conclusion)

The gap (- - -) represents the part of the proof to be completed that leads from the hy-
potheses to the conclusion.

We can begin to fill in the gap by using the definitions of “odd” and “even” to
obtain

m is odd and n is even. (Hypotheses)
There exists an integer, say ki, such that m = 2k; + 1. (Because m is odd)
There exists an integer, say k», such that n = 2k,. (Because n is even)

m + n is odd. (Conclusion)

(Notice that we cannot assume that k; = k,. For example if m = 15 and n = 4, then
ki = 7 and k; = 2. That k; is not necessarily equal to k, is the reason that we must
denote the two integers with different symbols.)

The missing part of our proof is the argument to show that m + n is odd. How can
we reach this conclusion? We can use the definition of “odd” again if we can show that
m + n is equal to

2 x some integer + 1. (2.1.2)

We already know that m = 2k; + 1 and n = 2k,. How can we use these facts to reach
our goal (2.1.2)? Since the goal involves m + n, we can add the equations m = 2k; + 1
and n = 2k, to obtain a fact about m + n, namely,

m+n= 2k + 1)+ 2k.

Now this expression is supposed to be of the form (2.1.2). We can use a little algebra to
show that it is of the desired form:

m+n= Qky + 1)+ 2k, =2(k; + k) + 1.
We have our proof.
Proof Letm and n be arbitrary integers, and suppose that m is odd and n is even. We
prove that m + n is odd. By definition, since m is odd, there exists an integer k; such

that m = 2k; 4 1. Also, by definition, since n is even, there exists an integer k, such that
n = 2k,. Now the sum is

m+n= 2k + 1)+ 2ky) =2(k; + ko) + 1.

Thus, there exists an integer k (namely k = k| + k») such that m + n = 2k+ 1. Therefore,
m—+ n is odd. 4 4

Give a direct proof of the following statement. For all sets X, Y,and Z, X N (Y — Z) =
XNYy)—(Xn2).

66

Chapter 2 ¢ Proofs

SOLUTION Discussion The outline of the proof is
X, Y, and Z are sets. (Hypothesis)

XNY—-2)=XnNY)—(XNZ) (Conclusion)

The conclusion asserts that the two sets X N (Y — Z) and (X N Y) — (X N Z) are equal.
Recall (see Section 1.1) that to prove from the definition of set equality that these sets
are equal, we must show that for all x,

ifxeXNY —-2), thenxe (XNY)—-(XNZ) (2.1.3)

and

fxeXNY)—(XN2Z), thenxe XN —2). (2.1.4)

Thus our proof outline becomes

X, Y, and Z are sets. (Hypothesis)

IfxeXN —-2), thenxe (XNY)—XN2Z).
fxeXNY)—(XNZ), thenxe XN —2).
XNY—-2)=XNY)— (XNZ) (Conclusion)

We should be able to use the definitions of intersection (N) and set difference (—) to
complete the proof.

To prove (2.1.3), we begin by assuming that (the arbitrary element) x is in X N
(Y —Z). Because this latter set is an intersection, we immediately deduce that x € X and
x € Y — Z. The proof proceeds in this way. As one constructs the proof, it is essential
to keep the goal in mind: x € (X NY) — (X N Z). To help guide the construction of
the proof, it may be helpful to translate the goal using the definition of set difference:
xeXNY)—XNZ)ymeansxe XNYandx ¢ XN Z.

Proof LetX,Y,andZbe arbitrary sets. We prove
XNY—-2)y=XnNY)—(XN2Z)

by proving (2.1.3) and (2.1.4).

To prove equation (2.1.3), let x € X N (Y — Z). By the definition of intersection,
x € X and x € Y — Z. By the definition of set difference, since x € ¥ — Z, x € Y and
x ¢ Z. By the definition of intersection, since x € X and x € Y, x € X N Y. Again by
the definition of intersection, since x ¢ Z, x ¢ X N Z. By the definition of set difference,
sincex € XNY,butx ¢ XNZ,x € (XNY)—(XNZ). We have proved equation (2.1.3).

To prove equation (2.1.4), let x € (X N'Y) — (X N Z). By the definition of set
difference, x € X N Y and x ¢ X N Z. By the definition of intersection, since x € XN Y,
x € X and x € Y. Again, by the definition of intersection, since x ¢ X N Z and x € X,
x ¢ Z. By the definition of set difference, since x € Y and x ¢ Z, x € Y — Z. Finally,
by the definition of intersection, since x € Xandx € Y — Z, x € X N (Y — Z). We have
proved equation (2.1.4).

Since we have proved both equations (2.1.3) and (2.1.4), it follows that

XN -2Z)=XNY)—(XNZ). <4 <

Our next example shows that in constructing a proof, we may find that we need
some auxiliary results, at which point we pause, go off and prove these auxiliary results,
and then return to the main proof. We call the proofs of auxiliary results subproofs. (For
those familiar with programming, a subproof is similar to a subroutine.)

Example 2.1.12

Example 2.1.13

2.1 #® Mathematical Systems, Direct Proofs, and Counterexamples 67

If a and b are real numbers, we define min{a, b} to be the minimum of a and b or the
common value if they are equal. More precisely,

a ifa<b
min{a,b} =< a ifa=>b
b ifb<a.

Give a direct proof of the following statement. For all real numbers d, d,, ds, x,

if d = min{d,, d»} and x < d, then x < d, and x < d,.

SOLUTION Discussion The outline of the proof is
d = min{d;, d»} and x < d (Hypotheses)

x < d, and x < d, (Conclusion)

To help understand what is being asserted, let us look at a specific example. As we
have remarked previously, when we are asked to prove a universally quantified statement,
a specific example does not prove the statement. It may, however, help us to understand
the statement.

Letus set d; = 2 and d, = 4. Then d = min{d,, d,} = 2. The statement to be
proved says thatif x < d (= 2),thenx < d; (= 2) and x < d, (= 4). Why is this true in
general? The minimum d of two numbers, d; and d», is equal to one of the two numbers
(namely, the smallest) and less than or equal to the other one (namely, the largest)—in
symbols, d < d; and d < d,. If x < d, then from x < d and d < d,, we may deduce
x < dy. Similarly, from x < d and d < d,, we may deduce x < d,. Thus the outline of
our proof becomes

d = min{d;, d»} and x < d (Hypotheses)

Subproof: Show thatd < d; and d < d,.

From x < dand d < d;, deduce x < d,.

Fromx < dand d < d,, deduce x < d,.

x < d,; and x < d, (Conclusion—uses the conjunction inference rule)

At this point, the only part of the proof that is missing is the subproof to show
that d < d; and d < d,. Let us look at the definition of “minimum.” If d; < d,, then
d = min{d,,d»} = dyandd = d, < d». If d» < d;, then d = min{d,, d»} = d, and
d =d, < d;.Ineither case,d < d; and d < d,.

Proof 1letd, d,,d>, and x be arbitrary real numbers, and suppose that
d = min{d,, d,} and x < d.
We prove that x < d; and x < d>.

We first show that d < d; and d < d,. From the definition of “minimum,” if d; <
dy,thend = min{d,, d»} = dy andd =d, < d,.If d, < dy, thend = min{d,, d»} = d,
andd = d> < d;. Ineither case,d < dy andd < d>. From x < d and d < d,, it follows
that x < d; from a previous theorem (the second theorem of Example 2.1.5). Fromx < d

and d < d», we may derive x < d, from the same previous theorem. Therefore, x < d;
and x < d,. 4 4

There are frequently many different ways to prove a statement. We illustrate by giving
two proofs of the statement

XU —-X)=XUY forallsetsX andY.

68

Chapter 2 ¢ Proofs

Example 2.1.14

Example 2.1.15

SOLUTION Discussion We first give a direct proof like the proof in Example 2.1.11.
We show that for all x, if x € XU (Y — X),thenx € XU Y, andif x € X U Y, then
xeXU(y —-X).

Our second proof uses Theorem 1.1.22, which gives laws of sets. The idea is to
begin with X U (Y — X) and use the laws of sets, which here we think of as rules to
manipulate set equations, to obtain X U Y.

Proof [First proof] We show that for all x, if x € XU (Y — X), thenx € X U Y, and
ifxeXUY,thenx e XU (Y — X).

Letx e XU —X). Thenx €e Xorxe Y —X.If x € X,thenx € XUY.If
xeY—X,thenx € Y, soagainx € X U Y. In either case,x € XU Y.

Letx e XUY.Thenx € Xorx e Y. Ifx € X, thenx € XU (Y —X). If x ¢ X, then
x € Y.Inthis case, x € Y —X. Therefore, x € XU (Y —X). In either case, x € XU (Y —X).
The proof is complete. |

Proof [Second p_rooﬂ We use Theorem 1.1.22, which gives laws of sets, and the fact
that Y — X = Y N X, which follows immediately from the definition of set difference.
Letting U denote the universal set, we obtain

XU -X)=XUxnXx) [Y—X=YNX]
= (XU Y) N (X UX) [Distributive law; Theorem 1.1.22, part (c)]
=Xuynu [Complement law; Theorem 1.1.22, part (e)]
=XUY [Identity law; Theorem 1.1.22, part (d)]. 4 <«

Disproving a Universally Quantified Statement

Recall (see Section 1.5) that to disprove VxP(x) we simply need to find one mem-
ber x in the domain of discourse that makes P(x) false. Such a value for x is called a
counterexample.

The statement Vn € Z (2" + 1 is prime) is false. A counterexample is n = 3 since
23 4+ 1 =9, which is not prime. |
If the statement

ANB)UC=ANMBUC), forallsetsA,B,and C

is true, prove it; otherwise, give a counterexample.

SOLUTION Let us begin by trying to prove the statement. We will first try to show that
ifxe ANB)UC,thenx e AN(BUCQC).Ifx e (ANB) U C, then

xeANB or xeC. (2.1.5)

‘We have to show that x € A N (B U C), that is,

x€A and xeBUC. (2.1.6)

Statement (2.1.5) is true if x is in C, and statement (2.1.6) is false if x ¢ A. Thus the given
statement is false; there is no direct proof (or any other proof!). If we choose sets A and
C so that there is an element that is in C, but not in A, we will have a counterexample.
LetA = {1,2,3}, B = {2,3,4}, and C = {3, 4, 5} so that there is an element
that is in C, but not in A. Then A NB) UC = {2,3,4,5},AN (B UC) = {2, 3}, and
(ANB)UC #AN(BUC). Thus A, B, and C provide a counterexample that shows that
the given statement is false. <

2.1 #® Mathematical Systems, Direct Proofs, and Counterexamples 69

2.1 Problem-Solving Tips

To construct a direct proof of a universally quantified statement, first write down
the hypotheses (so you know what you are assuming), and then write down the
conclusion (so you know what you must prove). The conclusion is what you will
work toward—something like the answer in the back of the book to an exercise,
except here it is essential to know the goal before proceeding. You must now give
an argument that begins with the hypotheses and ends with the conclusion. To
construct the argument, remind yourself what you know about the terms (e.g.,
“even,” “odd”), symbols (e.g., X N Y, min{d|, d»}), and so on. Look at relevant
definitions and related results. For example, if a particular hypothesis refers to
an even integer n, you know that n is of the form 2k for some integer k. If you
are to prove that two sets X and Y are equal from the definition of set equality,
you know you must show that for every x, if x € X thenx € Y,andifx € ¥
then x € X.

To understand what is to be proved, look at some specific values in the domain of
discourse. When we are asked to prove a universally quantified statement, showing
that the statement is true for specific values does not prove the statement; it may,
however, help to understand the statement.

To disprove a universally quantified statement, find one element in the domain of
discourse, called a counterexample, that makes the propositional function false.
Here, your proof consists of presenting the counterexample together with justifi-
cation that the propositional function is indeed false for your counterexample.

When you write up your proof, begin by writing out the statement to be proved.
Indicate clearly where your proof begins (e.g., by beginning a new paragraph or by
writing ‘“Proof.”). Use complete sentences, which may include symbols. For ex-
ample, it is perfectly acceptable to write: Thus x € X. In words, this is the complete
sentence: Thus x is in X. End a direct proof by clearly stating the conclusion, and,
perhaps, giving a reason to justify the conclusion. For example, Example 2.1.10
ends with:

Thus, there exists an integer k (namely k = k; + k») such that
m+n = 2k + 1. Therefore, m + n is odd.

Here the conclusion (m + n is odd) is clearly stated and justified by the statement
m+n=2k+ 1.

Alert the reader where you are headed. For example, if you are going to prove that
X =Y, write “We will prove that X = Y before launching into this part of the
proof.

Justify your steps. For example, if you conclude that x € X or x € Y because it
is known that x € X U Y, write “Sincex € XU Y, x € X or x € Y,” or perhaps
even “Since x € X U Y, by the definition of union x € X or x € Y if, like Richard
Nixon, you want to be perfectly clear.

If you are asked to prove or disprove a universally quantified statement, you can
begin by trying to prove it. If you succeed, you are finished—the statement is true
and you proved it! If your proof breaks down, look carefully at the point where it
fails. The given statement may be false and your failed proof may give insight into
how to construct a counterexample (see Example 2.1.15). On the other hand, if you
have trouble constructing a counterexample, check where your proposed examples
fail. This insight may show why the statement is true and guide construction of a
proof.

70

Chapter 2 ¢ Proofs

Some Common Errors

In Example 2.1.10, we pointed out that it is an error to use the same notation for two
possibly distinct quantities. As an example, here is a faulty “proof” that for all m and
n, if m and n are even integers then mn is a square (i.e., mn = a* for some integer a):
Since m and n are even, m = 2k and n = 2k. Now mn = (2k)(2k) = (2k)%. If we let
a = 2k, then m = a*. The problem is that we cannot use k for two potentially different
quantities. If m and n are even, all we can conclude is that m = 2k; and n = 2k, for
some integers k; and k. The integers k; and k, need not be equal. (In fact, it is false that
for all m and n, if m and n are even integers then mn is a square. A counterexample is
m=2andn=4)

Given a universally quantified propositional function, showing that the proposi-
tional function is true for specific values in the domain of discourse is not a proof that
the propositional function is true for all values in the domain of discourse. (Such specific
values may, however, suggest that the propositional function might be true for all values
in the domain of discourse.) Example 2.1.10 is to prove that for a/l integers m and n,

if m is odd and 7 is even, then m + n is odd. (2.1.7)

Letting m = 11 and n = 4 and noting that m 4 n = 15 is odd does not constitute a proof
that (2.1.7) is true for all integers m and n, it merely proves that (2.1.7) is true for the
specific values m = 11 and n = 4.

In constructing a proof, you cannot assume what you are supposed to prove. As
an example, consider the erroneous “proof” that for all integers m and n, if m and m +n
are even, then n is even: Let m = 2k, and n = 2k,. Then m + n = 2k; + 2k,. Therefore,

n=m+n)—m= 2k + 2ky) — 2k, = 2(ky + ko — k»).

Thus #n is even. The problem with the preceding “proof™ is that we cannot write n = 2k,
since this is true if and only if # is even—which is what we are supposed to prove! This
error is called begging the question or circular reasoning. [It is true that if m and m+n
are even integers, then 7 is even (see Exercise 12).]

2.1 Review Exercises

[

A v A W N

. What is a mathematical system?
. What is an axiom?

. What is a definition?

. What is an undefined term?

. What is a theorem?

. What is a proot?

2.1 Exercises

7. What is a lemma?

8. What is a direct proof?

9. What is the formal definition of “even integer”?
10. What is the formal definition of “odd integer”?
11. What is a subproof?

12. How do you disprove a universally quantified statement?

. Give an example (different from those of Example 2.1.1) of an

axiom in Euclidean geometry.

Give an example (different from those of Example 2.1.2) of an
axiom in the system of real numbers.

Give an example (different from those of Example 2.1.1) of a
definition in Euclidean geometry.

. Give an example (different from those of Example 2.1.2) of a

definition in the system of real numbers.

. Give an example (different from those of Example 2.1.3) of a

theorem in Euclidean geometry.

. Give an example (different from those of Example 2.1.5) of a

theorem in the system of real numbers.

. Prove that for all integers m and n, if m and n are even, then

m + n is even.

. Prove that for all integers m and n, if m and n are odd, then

m + n is even.

10.

11.

12.

13.
14.
15.

16.

17.

18.

19.

20.

21.
22.
23.

24.

25.

26.
27.

28.
29.
30.
31.
32.

2.1 ¢ Mathematical Systems, Direct Proofs, and Counterexamples

. Prove that for all integers m and n, if m and n are even, then

mn is even.

Prove that for all integers m and n, if m and n are odd, then mn
is odd.

Prove that for all integers m and n, if m is odd and n is even,
then mn is even.

Prove that for all integers m and n, if m and m + n are even,
then 7 is even.

Prove that for all rational numbers x and y, x + y is rational.
Prove that for all rational numbers x and y, xy is rational.

Prove that for every rational number x, if x # 0, then 1/x is
rational.

Prove that the product of two integers, one of the form 3k; + 1
and the other of the form 3k, 42, where k; and & are integers,
is of the form 3k3 + 2 for some integer k3.

Prove that the product of two integers, one of the form 3k; +2
and the other of the form 3k, 42, where k; and & are integers,
is of the form 3k3 + 1 for some integer k3.

If a and b are real numbers, we define max{a, b} to be the max-

imum of a and b or the common value if they are equal. Prove
that for all real numbers d, d,, d>, x,

if d = max{d;, d»} and x > d, then x > dj and x > d5.

Justify each step of the following direct proof, which shows
that if x is a real number, then x -0 = 0. Assume that the fol-
lowing are previous theorems: If a, b, and ¢ are real numbers,
thenb+0=banda(b+c) = ab+ac.lfa+b = a+ c, then
b=c.

Proof x.0+0=x.0=x-(0+0)=x-0+x-0; there-
fore, x-0 = 0. |
If X and Y are nonempty sets and X x ¥ = Y x X, what can
we conclude about X and Y? Prove your answer.

Prove that X N'Y C X for all sets X and Y.
Prove that X € X U Y for all sets X and Y.
Prove that if X C Y, then X UZ C Y U Z for all sets X, Y,

and Z.
Prove that if X C Y, then X NZ C Y N Z for all sets X, Y,
and Z.
Prove thatif X C Y, thenZ — Y C Z — X for all sets X, Y,
and Z.

Prove thatif X C Y, then Y — (Y —X) = X for all sets X and Y.

Provethatif XNY =XNZand XUY =XUZ,thenY =Z
forall sets X, Y, and Z.

Prove that P(X) U P(Y) € P(XUY) for all sets X and Y.
Prove that P(X N Y) = P(X) N'P(Y) for all sets X and Y.
Prove that if P(X) € P(Y), then X C Y for all sets X and Y.
Disprove that P(X U Y) € P(X) U P(Y) for all sets X and Y.
Give a direct proof along the lines of the second proof in Ex-
ample 2.1.13 of the statement
XNY-2)=XnNnY)—(XnNZ) forallsetsX,Y,andZ.

(In Example 2.1.11, we gave a direct proof of this statement
using the definition of set equality.)

71

In each of Exercises 33—45, if the statement is true, prove it; other-
wise, give a counterexample. The sets X, Y, and Z are subsets of a
universal set U. Assume that the universe for Cartesian products
is U x U.

33.

34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
4.
45.
46.
47.

48.
49.
50.
51.
52.
53.
54.
55.
56.

For all sets X and Y, either X is a subset of Y or Y is a subset
of X.

XU —-2)=XUY)—-(XUZ) forall sets X, Y, and Z.

Y —X=XUY forall sets X and .
Y-Z=XUY)—(XUZ) forall sets X, Y, and Z.
X—YUZ)y=X-Y)UZforall sets X, Y, and Z.

X —Y =Y —Xforall sets X and Y.

XNY C X forall sets X and Y.

XNY)U(Y —X)=7Yforall sets X and Y.
XxYUZ)=XxY)UX x Z) forall sets X, Y, and Z.
X xY =X x Y forall sets X and Y.
XxY—-2Z)=XxY)— (X xZ)forall sets X, Y, and Z.
X—YxZ)y=X—-Y)x (X —2)forall sets X, Y, and Z.
XN xZ)y=XNY)x (XNZ)forall sets X, Y, and Z.
Prove the associative laws for sets [Theorem 1.1.22, part (a)].
Prove the commutative laws for sets [Theorem 1.1.22,
part (b)].

Prove the distributive laws for sets [Theorem 1.1.22, part (c)].
Prove the identity laws for sets [Theorem 1.1.22, part (d)].
Prove the complement laws for sets [Theorem 1.1.22, part (e)].
Prove the idempotent laws for sets [Theorem 1.1.22, part (f)].
Prove the bound laws for sets [Theorem 1.1.22, part (g)].
Prove the absorption laws for sets [Theorem 1.1.22, part (h)].
Prove the involution law for sets [Theorem 1.1.22, part (i)].
Prove the 0/1 laws for sets [Theorem 1.1.22, part (j)].

Prove De Morgan’s laws for sets [Theorem 1.1.22, part (k)].

In Exercises 5765, A denotes the symmetric difference operator
defined as A A B= (AUB) — (AN B), where A and B are sets.

57.
58.
*59.

60.

61.

62.

63.

64.

*065.

Prove that A A B = (A — B) U (B — A) for all sets A and B.
Prove that (A A B) A A = B for all sets A and B.

Prove or disprove: If A, B, and C are sets satisfying A A C =
BAC,thenA = B.

Prove or disprove: A A (BUC) = (A AB)U (A A C) for all
sets A, B, and C.

Prove or disprove: AA (BN C) = (AAB)N (A A C) for all
sets A, B, and C.

Prove or disprove: AU (BA C) = (AUB) A (AU C) for all
sets A, B, and C.

Prove or disprove: AN (BA C) = (ANB) A (AN C) for all
sets A, B, and C.

Is A commutative? If so, prove it; otherwise, give a counter-
example.

Is A associative? If so, prove it; otherwise, give a counter-
example.

72

Chapter 2 ¢ Proofs

2.2

More Methods of Proof

Example 2.2.1

In this section, we discuss several more methods of proof: proof by contradiction, proof
by contrapositive, proof by cases, proofs of equivalence, and existence proofs. We will
find these proof techniques of use throughout this book.

Proof by Contradiction

A proof by contradiction establishes p — ¢ by assuming that the hypothesis p is true
and that the conclusion ¢ is false and then, using p and —¢g as well as other axioms,
definitions, previously derived theorems, and rules of inference, derives a contradiction.
A contradiction is a proposition of the form r A —r (r may be any proposition whatever).
A proof by contradiction is sometimes called an indirect proof since to establishp — ¢
using proof by contradiction, we follow an indirect route: We derive » A —r and then
conclude that ¢ is true.

The only difference between the assumptions in a direct proof and a proof by con-
tradiction is the negated conclusion. In a direct proof the negated conclusion is not as-
sumed, whereas in a proof by contradiction the negated conclusion is assumed.

Proof by contradiction may be justified by noting that the propositions p — ¢ and
(» A —q) — (r A —r) are equivalent. The equivalence is immediate from a truth table:

p q r|p—>gq PA—q rA-T (pA=q) — (rA—r)
T T T T F F T
T T F T F F T
T F T F T F F
T F F F T F F
F T T T F F T
F T F T F F T
F F T T F F T
F F F T F F T

Give a proof by contradiction of the following statement:

For every n € Z, if n? is even, then 7 is even.

SOLUTION Discussion First, let us consider giving a direct proof of this statement.
We would assume the hypothesis, that is, that n” is even. Then there exists an integer k;
such that n? = 2k;. To prove that n is even, we must find an integer k, such that n = 2k;.
It is not clear how to get from n?> = 2k; to n = 2k,. (Taking the square root certainly
does not work!) When a proof technique seems unpromising, try a different one.

In a proof by contradiction, we assume the hypothesis (1 is even) and the negation
of the conclusion (n is not even, i.e., n is odd). Since 7 is odd, there exists an integer k
such that n = 2k + 1. If we square both sides of this last equation, we obtain

= Qk+ 1)? = 4k> + 4k + 1 = 22k*> + 2k) + 1.

But this last equation tells us that n> is odd. We have our contradiction: n> is even

(hypothesis) and n? is odd. Formally, if r is the statement “n” is even,” we have de-
duced r A —r.

Proof We give a proof by contradiction. Thus we assume the hypothesis n? is even
and that the conclusion is false 7 is odd. Since 7 is odd, there exists an integer k such
that n = 2k + 1. Now

Example 2.2.2

Example 2.2.3

Example 2.2.4

2.2 & More Methods of Proof 73

= Qk+1)? =4k + 4k + 1 =2Q2k*> + 2k) + 1.
Thus n? is odd, which contradicts the hypothesis n” is even. The proof by contradiction
is complete. We have proved that for every n € Z, if n” is even, then nis even. € <

Give a proof by contradiction of the following statement:

For all real numbers x and y, if x +y > 2, then eitherx > 1 ory > 1.

SOLUTION Discussion As in the previous example, a direct proof seems unpromis-
ing—assuming only that x + y > 2 appears to be too little to get us started. We turn to a
proof by contradiction.

Proof We begin by letting x and y be arbitrary real numbers. We then suppose that
the conclusion is false, that is, that =(x > 1 v y > 1) is true. By De Morgan’s laws of
logic (see Example 1.3.11),

—x=1lvy>=DH)=-x=>=DHDA-O=DH=x<) Al <]).

In words, we are assuming that x < 1 and y < 1. Using a previous theorem, we may
add these inequalities to obtain x +y < 1 + 1 = 2. At this point, we have derived a
contradiction: x +y > 2 and x + y < 2. Thus we conclude that for all real numbers x
and y, if x +y > 2, then eitherx > l ory > 1. 4 <

Prove that /2 is irrational using proof by contradiction.

SOLUTION Discussion Here a direct proof seems particularly bleak. It seems we
have a blank slate with which to begin. However, if we use proof by contradiction, we
may assume that /2 is rational. In this case, we know that there exist integers p and
g such that ~/2 = p/q. Now we have an entry on our slate. We can manipulate this
equation and hope to obtain a contradiction.

Proof We use proof by contradiction and assume that /2 is rational. Then there
exist integers p and ¢ such that v/2 = p/q. We assume that the fraction p/q is in lowest
terms so that p and ¢ are not both even. Squaring V2 = p/q gives 2 = p?/q*, and
multiplying by ¢* gives 2¢*> = p?. It follows that p? is even. Example 2.2.1 tells us that
p is even. Therefore, there exists an integer k such that p = 2k. Substituting p = 2k into
2% = p? gives 2¢> = (2k)?> = 4k*. Canceling 2 gives ¢° = 2k*. Therefore ¢ is even,
and Example 2.2.1 tells us the g is even. Thus p and ¢ are both even, which contradicts
our assumption that p and ¢ are not both even. Therefore, /2 is irrational. 4 <

Proof by Contrapositive

Suppose that we give a proof by contradiction of p — ¢ in which, as in Examples 2.2.1
and 2.2.2, we deduce —p. In effect, we have proved —¢g — —p. [Recall (see Theorem
1.3.18) that p — g and —g — —p are equivalent.] This special case of proof by contra-
diction is called proof by contrapositive.

Give a proof by contradiction that for any subset S of 26 cards from an ordinary 52-card
deck (composed of four suits of 13 cards each), there is a suit such that S has at least
7 cards of that suit. (In the card game bridge, this result says that two partners, who each
hold 13-card hands, will between them have a suit of at least 7 cards.)

74

Chapter 2 ¢ Proofs

Example 2.2.5

SOLUTION Discussion The conclusion is: There is a suit such that S has at least 7
cards of that suit. If the conclusion is false, it must be that S has at most 6 cards of every
suit. But, since there are four suits, we can account for at most 6 - 4 = 24 cards in S. But
the hypothesis is that S contains 26 cards. Contradiction! We have a proof.

We conclude the discussion by formally showing how De Morgan’s laws of logic
(see Example 1.3.1) are used to yield the negated conclusion. We take as our domain of
discourse, the set of all subsets of cards from an ordinary 52-card deck. One piece of
notation will be useful. If Su is a suit, we let S(Su) denote the number of cards of suit Su
in §. For example, the value of S(Club) is the number of clubs in S.

We are to prove that

vV S, if |S| = 26, then 3 a suit Su such that S(Su) > 7.

By De Morgan’s laws of logic,

—(3 a suit Su such that S(Su) > 7) =V suits Su, S(Su) < 7,

that is, the negation of the conclusion can be written: S has less than 7 (i.e., at most 6)
cards of every suit.

In Example 2.2.8, we will discuss an alternative approach to finding a proof of this
result.

Proof We are given a subset S of 26 cards from an ordinary 52-card deck. Suppose
by way of contradiction that the conclusion is false; that is, suppose that S has at most
6 cards of every suit. Since there are four suits, S has at most 6 - 4 = 24 cards. This
contradicts the fact that S has 26 cards. Therefore, there is a suit such that S has at least
7 cards of that suit. 4 <

Give a proof by contrapositive to prove that

for all x € R, if x? is irrational, then x is irrational.

SOLUTION Discussion For much the same reasons that a direct proof seemed un-
promising in Examples 2.2.1 and 2.2.2, a direct proof in which we assume only that x* is
irrational seems to be too little to get us started. A proof by contradiction can be devised
(see Exercise 1), but here a proof by contrapositive is requested.

Proof We begin by letting x be an arbitrary real number. We prove the contrapositive
of the given statement, which is

if x is not irrational, then x? is not irrational

or, equivalently,

if x 1s rational, then X2 is rational.

So suppose that x is rational. Then x = p/q for some integers p and g. Now x> = p*/4°.
Since x? is the quotient of integers, x” is rational. The proof is complete. 4 <

Proof by Cases

Proof by cases is used when the original hypothesis naturally divides itself into various
cases. For example, the hypothesis “x is a real number” can be divided into cases: (a) x

Example 2.2.6

Example 2.2.7

2.2 ® More Methods of Proof 75

is a nonnegative real number and (b) x is a negative real number. Suppose that the task
is to prove p — ¢ and that p is equivalenttop; Vp, V---Vp, (p1, ..., p, are the cases).
Instead of proving

(Pp1Vp2V---Vpy) —q, (2.2.1)

we prove

PL—=>DANP2—=> QN ANpPa—> Q). (2.2.2)

As we will show, proof by cases is justified because the two statements are equivalent.

First suppose that ¢ is true. Then all the implications in (2.2.1) and (2.2.2) are true
(regardless of the truth value of the hypotheses). Thus (2.2.1) and (2.2.2) are true.

Now suppose that ¢ is false. If all the p; are false, then all the implications in
(2.2.1) and (2.2.2) are true, so (2.2.1) and (2.2.2) are true. If for some j, p; is true, then
p1V---Vp,istrue, so (2.2.1) is false. Since p; — ¢ is false, (2.2.2) is false. Thus (2.2.1)
and (2.2.2) are false. Therefore, (2.2.1) and (2.2.2) are equivalent.

Sometimes the number of cases to prove is finite and not too large, so we can check
them all one by one. We call this type of proof exhaustive proof.

Prove that 2m? + 3n* = 40 has no solution in positive integers, that is, that 2m?* +
3n? = 40 is false for all positive integers m and n.

SOLUTION Discussion We certainly cannot check 2m?+3n? for all positive integers
m and n, but we can rule out most positive integers because, if 2m> 4 3n> = 40, the sizes
of m and n are restricted. In particular, we must have 2m? < 40 and 3n? < 40. (If, for
example, 2m*> > 40, when we add 3n” to 2m?, the sum 2m? + 3n® will exceed 40.) If
2m? < 40, then m?> < 20 and m can be at most 4. Similarly, if 3n*> < 40, then n?> < 40/3
and n can be at most 3. Thus it suffices to check the casesm = 1,2,3,4andn = 1, 2, 3.

Proof If 2m? + 3n* = 40, we must have 2m? < 40. Thus m®> < 20 and m < 4.
Similarly, we must have 3n?> < 40. Thus n> < 40/3 and n < 3. Therefore it suffices to
check thecasesm =1,2,3,4andn =1, 2, 3.

The entries in the table give the value of 2m? + 3n? for the indicated values of m
and n.

1 2 3 4

5 11 21 35
14 20 30 44
29 35 45 59

n

W N =

Since 2m? +3n®> #40form =1,2,3,4andn = 1,2, 3, and 2m?> 4 3n*> > 40 form > 4
or n > 3, we conclude that 2m? + 3n? = 40 has no solution in positive integers. 4 <

Example 2.2.7 illustrates an important point: An or statement often leads itself to
a proof by cases.

We prove that for every real number x, x < |x|.

SOLUTION Discussion Since x is a real number, either x > 0 or x < 0. We use
this or statement to divide the proof into cases. We divide the proof into cases because

76

Chapter 2 ¢ Proofs

Example 2.2.8

Example 2.2.9

the definition of absolute value is itself divided into cases x > 0 and x < 0 (see Exam-
ple 2.1.2). Case 1 is x > 0 and case 2 is x < 0.

Proof If x > 0, by definition |x| = x. Thus |x| > x. If x < 0, by definition |x| = —x.
Since [x| = —x > 0 and O > x, |x| > x. In either case, |x| > x; so the proof is
complete. 4 <

Example 2.2.8 offers an alternative approach to developing a proof of the result in
Example 2.2.4. There are often many approaches and proofs of a single result.

We revisit the problem (see Example 2.2.4) of proving that for any subset S of 26 cards
from an ordinary 52-card deck, there is a suit such that S has at least 7 cards of that suit.

Discussion Consider trying a direct proof. How about the club suit? If there are 7 or
more clubs, we have the desired conclusion. What if there are 6 or fewer clubs? Try
another suit! Let us try diamonds next. If there are 7 or more diamonds, we have the
desired conclusion. What if there are 6 or fewer diamonds? Try another suit, and so on.
If each of the four suits consists of 6 or fewer cards, we cannot deduce the conclusion;
however, if each suit has 6 or fewer cards, we can account for only 24 cards. But there
are 26 cards; this case cannot occur.

The preceding discussion shows that we can divide the proof into two cases. Case 1
is that some suit consists of 7 or more cards. (Proof complete!) Case 2 is that every suit
consists of 6 or fewer cards. (We have shown that this case cannot occur.) Since only
case 1 can occur, the proof is complete.

We started by thinking along the lines of a direct proof, which led us to a proof
by cases. The proof by cases is essentially identical to the proof by contradiction in
Example 2.2.4.

Proof Let S be asubset of 26 cards from an ordinary 52-card deck. We consider two
cases. Case 1 is that there is a suit such that S has at least 7 or more cards of that suit.
Case 2 is that S has 6 or fewer cards of every suit.

If case 1 holds, the proof is complete. Suppose that case 2 holds. Since S has 6
or fewer cards of each of the four suits, S has at most 24 cards. But we are given that
S has 26 cards. Therefore, case 2 cannot hold. Since only case 1 holds, the proof is
complete. 4 <

Proofs of Equivalence

Some theorems are of the form p if and only if g. Such theorems are proved by using the
equivalence (see Example 1.3.15)

p=q=@—> 9 N(G—>p)
that is, to prove “p if and only if g,” prove “if p then ¢” and “if g then p.”
Prove that for every integer n, n is odd if and only if n — 1 is even.
SOLUTION Discussion We let n be an arbitrary integer. We must prove that
if nis odd then n — 1 is even (2.2.3)
and

if n — 1 is even then n is odd. (2.2.9)

Example 2.2.10

2.2 & More Methods of Proof 77

Proof We first prove (2.2.3). If n is odd, then n = 2k + 1 for some integer k. Now
n—1=2k+ 1) — 1 = 2k. Therefore, n — 1 is even.

Next we prove (2.2.4). If n — 1 is even, then n — 1 = 2k for some integer k. Now
n = 2k + 1. Therefore, n is odd. The proof is complete. 4 <

Some proofs of p <> ¢ combine the proofs of p — ¢ and ¢ — p. For example,
the proof in Example 2.2.9 could be written as follows:

n is odd if and only if n = 2k + 1 for some integer k if and only if n — 1 = 2k for
some integer k if and only if n — 1 is even.

For such a proof to be correct, it must be the case that each if-and-only-if statement is
true. If such a proof of p <> ¢ is read in one direction, we obtain the proof of p — ¢ and,
if it is read in the other direction, we obtain a proof of ¢ — p. Reading the preceding
proof in the if-then direction,

if n is odd, then n = 2k 4 1 for some integer k; if n = 2k 4 1 for some integer k,
then n — 1 = 2k for some integer k; if n — 1 = 2k for some integer k, then n — 1
is even,

proves that if n is odd, then n — 1 is even. Reversing the order,

if n — 1 is even, then n — 1 = 2k for some integer k; if n — 1 = 2k for some
integer k, then n = 2k + 1 for some integer k; if n = 2k + 1 for some integer %,
then n is odd,

proves that if n — 1 is even, then 7 is odd.
Prove that for all real numbers x and all positive real numbers d,
|x| < difandonlyif —d < x < d.

SOLUTION Discussion We let x be an arbitrary real number and d be an arbitrary
positive real number. We must show

if |x| <dthen —d < x <d (2.2.5)
and

if —d < x < dthen |x| <d. (2.2.6)

Since |x| is defined by cases, we expect to use proof by cases.

Proof To show (2.2.5), we use proof by cases. We assume that x| < d. If x > 0,
then —d < 0 < x = |x] < d. If x < 0,then —d < 0 < —x = |x| < d; that is,
—d < —x < d. Multiplying by —1, we obtain d > x > —d. In either case, we have
proved that —d < x < d.

To show (2.2.6), we also use proof by cases. We assume that —d < x < d. If

x > 0, then |x| = x < d.If x < O, then |x|] = —x. Since —d < x, we may multiply by
—1 to obtain d > —x. Combining |x] = —x and d > —x gives |x| = —x < d. In either
case, we have proved that |x| < d. The proof is complete. 4 <

In proving p <> g, we are proving that p and ¢ are logically equivalent, that is, p
and g are either both true or both false. Some theorems state that three or more statements
are logically equivalent and, thus, have the form

78

Chapter 2 ¢ Proofs

Example 2.2.11

The following are equivalent:
(a) —
(b) —
(c)—

Such a theorem asserts that (a), (b), (c), and so on are either all true or all false.
To prove that py, ps, . .., p, are equivalent, the usual method is to prove

(P1 = p)A@P2—=>p3) Ao APuet = Pu) A (Pn — P1). (2.2.7)

We show that proving (2.2.7) shows that py, pa, . .., p, are equivalent.

Suppose that we prove (2.2.7). We consider two cases: p; is true, p; is false. First,
suppose that p; is true. Because p; and p; — p, are true, p, is true; because p, and
p2 — p3 are true, ps is true; and so on. In this case, py, p2, ..., p, have the same truth
value: each is true.

Now suppose that p; is false. Because p; is false and p, — p; is true, p, is
false; because p, is false and p,—; — p, is true, p,_ is false; and so on. In this case,
P1, P2, - - -, Py have the same truth value; each is false. Therefore, proving (2.2.7) shows
that py, pa, ..., p, are equivalent.

Not just any arrangement of implications along the lines of (2.3.7) will make
D1, - .-, Py equivalent. For example, consider p;: 2 = 3, p»: 4 = 6, and p3: 8 = 8.
For the arrangement

pPr— p2, p2—>p3, Pi1—>P3,

p1 — P2, p2 —> p3, and p; — ps are all true, but py, p,, p3 are not equivalent.

Let A, B, and C be sets. Prove that the following are equivalent:

(ACB ()ANB=A (c)AUB=B.

SOLUTION Discussion According to the discussion preceding this example, we must
prove

[(@) — (b)] A [(b) = (O] A [(c) = (a)].

Proof We prove (a) — (b), (b) — (c), and (c) — (a).

[(a) — (b).] We assume that A C B, and prove that A N B = A. Suppose that
x € AN B. We must show that x € A. Butif x € AN B, x € A by the definition of
intersection.

Now suppose that x € A. We must show that x € A N B. Since A € B, x € B.
Therefore x € A N B. We have proved that AN B = A.

[(b) — (c).] We assume that A N B = A, and prove that A U B = B. Suppose that
x € AU B. We must show that x € B. By assumption, eitherx € Aorx € B.If x € B, we
have the desired conclusion. If x € A, since AN B = A, again x € B.

Now suppose that x € B. We must show thatx e AUB. Butifx €e B,x € AUB
by the definition of union. We have proved that AU B = B.

[(c) — (a).] We assume that AUB = B, and prove that A C B. Suppose that x € A.
We must show that x € B. Since x € A, x € A U B by the definition of union. Since
AUB = B, x € B. We have proved that A C B. The proof is complete. 4 <

Example 2.2.12

Example 2.2.13

Go Online

The Great Internet
Mersenne Prime
Search is at

goo.gl/gHgyey

Example 2.2.14

2.2 & More Methods of Proof 79

Existence Proofs
A proof of

Ix P(x) (2.2.8)

is called an existence proof. In Section 1.5, we showed that one way to prove (2.2.8) is
to exhibit one member a in the domain of discourse that makes P(a) true.

Let a and b be real numbers with a < b. Prove that there exists a real number x satisfying

a<x<b.

SOLUTION Discussion We will prove the statement by exhibiting a real number x
between a and b. The point midway between a and b suffices.

Proof It suffices to find one real number x satisfying a < x < b. The real number

a+b
x= ,
2
halfway between a and b, surely satisfies a < x < b. 4 <

Prove that there exists a prime p such that 2” — 1 is composite (i.e., not prime).

SOLUTION Discussion By trial and error, we find that 2” — 1 is prime for p =
2,3,5,7butnot p = 11 since 2! — 1 = 2048 — 1 = 2047 = 23 - 89. Thus p = 11
makes the given statement true.

Proof For the prime p = 11, 27 — 1 is composite:

20 1 =2048 — 1 = 2047 = 23 - 89. 4 <

A prime number of the form 27 — 1, where p is prime, is called a Mersenne
prime [named for Marin Mersenne (1588-1648)]. It is not known whether the number of
Mersenne primes is finite or infinite. The largest primes known are Mersenne primes. In
January 2016, the 49th known Mersenne prime was found, 274297281 — 1, a number hav-
ing 22,338,618 decimal digits. This number was found by the Great Internet Mersenne
Prime Search (GIMPS). GIMPS is a computer program distributed over many personal
computers maintained by volunteers. You can participate. Just check the web link. You
may find the next Mersenne prime!

An existence proof of (2.2.8) that exhibits an element @ of the domain of discourse
that makes P(a) true is called a constructive proof. The proofs in Examples 2.2.12 and
2.2.13 are constructive proofs. A proof of (2.2.8) that does not exhibit an element a of
the domain of discourse that makes P(a) true, but rather proves (2.2.8) some other way
(e.g., using proof by contradiction), is called a nonconstructive proof.

Let
A= Si+s2 4+ s,
n
be the average of the real numbers sy, . .., s,. Prove that there exists i such that s; > A.

SOLUTION Discussion It seems hopeless to choose an i and prove that s; > A;
instead, we use proof by contradiction.

80

Chapter 2 ¢ Proofs

Proof We use proof by contradiction and assume the negation of the conclusion
—3i(s; > A). By the generalized De Morgan’s laws for logic (Theorem 1.5.14), the
negation of the conclusion is equivalent to Yi—(s; > A) or Vi(s; < A). Thus we assume
51 <A,s0 <A, ..., s, <A. Adding these inequalities yields

S|+ 8 +---+s, <nA.
Dividing by n gives

SIS+ s,
n

<A,

which contradicts the hypothesis
S1+s2+ -+ sy
. .

A=

Therefore, there exists i such that s; > A. 4 <«

The proof in Example 2.2.14 is nonconstructive; it does not exhibit an i for which
s; > A. It does however prove indirectly using proof by contradiction that there is such
an i. We could find such an i: We could check whether s; > A and if true, stop. Otherwise,
we could check whether s, > A and if true, stop. We could continue in this manner until
we find an i for which s; > A. Example 2.2.14 guarantees that there is such an i.

2.2 Problem-Solving Tips

Itis worth reviewing the Problem-Solving Tips of Section 2.1. Tips specific to the present
section follow.

® If you are trying to construct a direct proof of a statement of the form p — ¢ and
you seem to be getting stuck, try a proof by contradiction. You then have more to
work with: Besides assuming p, you get to assume —g.

® When writing up a proof by contradiction, alert the reader by stating, “We give

a proof by contradiction, thus we assume - - -,” where - - - is the negation of the
conclusion. Another common introduction is: Assume by way of contradiction
that - - -.

B Proof by cases is useful if the hypotheses naturally break down into parts. For
example, if the statement to prove involves the absolute value of x, you may want
to consider the cases x > 0 and x < 0 because |x| is itself defined by the cases
x > 0 and x < 0. If the number of cases to prove is finite and not too large, the
cases can be directly checked one by one.

In writing up a proof by cases, it is sometimes helpful to the reader to indicate
the cases, for example,

[Case I: x > 0.] Proof of this case goes here.
[Case II: x < 0.] Proof of this case goes here.

® To prove p if and only if g, you must prove two statements: (1) if p then ¢ and
(2) if g then p. It helps the reader if you state clearly what you are proving. You
can write up the proof of (1) by beginning a new paragraph with a sentence that
indicates that you are about to prove “if p then ¢.” You would then follow with a
proof of (2) by beginning a new paragraph with a sentence that indicates that you
are about to prove “if ¢ then p.” Another common technique is to write

[p — g.] Proof of p — ¢ goes here.
[¢ — p.] Proof of ¢ — p goes here.

B To prove that several statements, say py, . . .

2.2 & More Methods of Proof 81
, Pn» are equivalent, prove p; — p,
P2 = D3y.-., Pn—1 = DPu»Pn —> P1- The statements can be ordered in any way and
the proofs may be easier to construct for one ordering than another. For example,
you could swap p, and p3 and prove p; — p3, p3 — P2, P2 —> DPa> P4 —> D5y - - - 5
Pn—1 = DPn> Pn — P1- You should indicate clearly what you are about to prove.
One common form is

[p1 — p2.] Proof of p; — p, goes here.
[p2 — p3.] Proof of p, — p3 goes here.
And so forth.

If the statement is existentially quantified (i.e., there exists x . . .), the proof, called
an existence proof, consists of showing that there exists at least one x in the domain
of discourse that makes the statement true. One type of existence proof exhibits a
value of x that makes the statement true (and proves that the statement is indeed
true for the specific x). Another type of existence proof indirectly proves (e.g.,
using proof by contradiction) that a value of x exists that makes the statement true
without specifying any particular value of x for which the statement is true.

2.2 Review Exercises

® A kWD

What is proof by contradiction?

Give an example of a proof by contradiction.
What is an indirect proof?

What is proof by contrapositive?

Give an example of a proof by contrapositive.
What is proof by cases?

Give an example of a proof by cases.

What is a proof of equivalence?

2.2 Exercises

. Give an example of a proof of equivalence.

. How can we show that three statements, say (a), (b), and (c),

are equivalent?

. What is an existence proof?

. What is a constructive existence proof?

. Give an example of a constructive existence proof.
. What is a nonconstructive existence proof?

. Give an example of a nonconstructive existence proof.

n B W N p—

(=)}

. Use proof by contradiction to prove that for all x € R, if x? is

irrational, then x is irrational.

. Is the converse of Exercise 1 true or false? Prove your answer.
. Prove that for all x € R, if x? is irrational, then x is irrational.
. Prove that for every n € Z, if n? is odd, then n is odd.

. Prove that for all real numbers x, y, and z, if x +y + z > 3,

then eitherx > lory > lorz > 1.

. Prove that for all real numbers x and y, if xy < 2, then either

x < Zoryfﬁ.

. Prove that «75 is irrational.

. Prove that for all x,y € R, if x is rational and y is irrational,

then x + y is irrational.

. Prove or disprove: For all x,y € R, if x is rational and y is

irrational, then xy is irrational.

. Prove that if a and b are real numbers with a < b, there exists

a rational number x satisfying a < x < b.

11.

Prove that if a and b are real numbers with a < b, there exists
an irrational number x satisfying a < x < b.

. Fill in the details of the following proof that there exist irra-

tional numbers a and b such that &” is rational.

Proof 1Letx = y = 2. If ¥ is rational, the proof is

complete. (Explain.) Otherwise, suppose that x” is irrational.

(Why?) Let a = x¥ and b = +/2. Consider a”. (How does this

complete the proof?) <
Is this proof constructive or nonconstructive?

. Prove or disprove: There exist rational numbers a and b such

that a” is rational. What kind of proof did you give?

. Prove or disprove: There exist rational numbers a and b such

that a® is irrational. What kind of proof did you give?

. Let x and y be real numbers. Prove that if x <y + ¢ for every

positive real number ¢, then x < y.

. In American football, a safety counts two points, a field goal

three points, a touchdown six points, a successful kick imme-

82

17.

18.

19.
20.
21.

22.

23.

24.

*25.

26.

Chapter 2 ¢ Proofs

diately after a touchdown one point, and a successful run or
pass immediately after a touchdown two points. What are the
possible points a team can score? Prove your answer.

Suppose that a real number a has the property that a” is irra-
tional for every positive integer n. Prove that a” is irrational
for every positive rational number r. (There are real numbers
such as a. The real number ¢ = 2.718 . . ., the base of the nat-
ural logarithm, has the property that e" is irrational for every
rational number r. An elementary proof, using only calculus,
may be found in [Aigner].)

Abby, Bosco, Cary, Dale, and Edie are considering going to
hear the Flying Squirrels. If Abby goes, Cary will also go. If
Bosco goes, Cary and Dale will also go. If Cary goes, Edie will
also go. If Dale goes, Abby will also go. If Edie goes, Abby
will also go. Exactly four of the five went to the concert. Who
went? Prove your result.

Prove or disprove: (X —Y)N(Y —X) = I forall sets X and Y.
Prove or disprove: X x & = & for every set X.

Show, by giving a proof by contradiction, that if 100 balls are
placed in nine boxes, some box contains 12 or more balls.

Show, by giving a proof by contradiction, that if 40 coins are
distributed among nine bags so that each bag contains at least
1 coin, at least two bags contain the same number of coins.

Let S be a subset of 26 cards from an ordinary 52-card deck.
Suppose that there is a suit in which S has exactly 7 cards.
Prove that there is another suit in which § has at least 7 cards.

Let S; be a subset of 26 cards from an ordinary 52-card
deck, and let S be the remaining 26 cards. Suppose that
there is a suit in which S; has at least 9 cards. Prove that
there is a suit in which S, has at least 8 cards. (In the
card game bridge, two pairs compete against each other
and initially hold 13 cards each. This result says a pair,
who between them have a suit of at least 9 cards, will
have opponents who between them have a suit of at least 8
cards.)
Letsy, ..., s, be asequence! satisfying

(a) s is a positive integer and s, is a negative integer,

(b) foralli,1 <i<mn,siy1=s;i+lorsiy =5 — 1.
Prove that there exists i, 1 < i < n, such that s; = 0.

Calculus students will recognize this exercise as a dis-

crete version of the calculus theorem: If f is a continuous func-
tion on [a, b] and f(a) > 0 and f(b) < 0, then f(c) = O for
some c in (a, b). There are similar proofs of the two state-
ments.

Disprove the statement: For every positive integer n, n> < 2.

In Exercises 27-31,

is the average of the real numbers sy, . . .

S1+s2+-- 48,
n

A=

> Sn-

27.
28.

29.

31.

32.
33.
34.

35.
36.
37.

38.

40.

41.

42,

43.

4.

45.

46.

47.

48.

Prove that there exists i such that s; < A.

Prove or disprove: There exists i such that s; > A. What proof
technique did you use?

Suppose that there exists i such that s; < A. Prove or disprove:
There exists j such that s; > A. What proof technique did you
use?

. Suppose that there exist i and j such that s; # s;. Prove that

there exists k such that s, < A.

Suppose that there exist i and j such that s; # s;. Prove that
there exists k such that s, > A.

Prove that 2m 4 5n% = 20 has no solution in positive integers.
Prove that m? + 2n% = 36 has no solution in positive integers.

Prove that 2m? +4n? — 1 = 2(m + n) has no solution in pos-
itive integers.

Prove that the product of two consecutive integers is even.
Prove that for every n € Z, n® + nis even.

Use proof by cases to prove that |xy| = |x||y| for all real num-
bers x and y.

Use proof by cases to prove that |x +y| < |x| 4 |y| for all real
numbers x and y.

. Define the sign of the real number x, sgn(x), as

if x>0
ifx=0
if x < 0.

1
sgn(x) = { 0
-1

Use proof by cases to prove that |x| = sgn(x)x for every real
number x.

Use proof by cases to prove that sgn(xy) = sgn(x)sgn(y) for
all real numbers x and y (sgn is defined in Exercise 39).

Use Exercises 39 and 40 to give another proof that |xy| = |x||y|
for all real numbers x and y.

Use proof by cases to prove that max{x, y} + min{x,y} =
x + y for all real numbers x and y.
Use proof by cases to prove that
x+y+lx—yl
max(x, y} =
for all real numbers x and y.
Use proof by cases to prove that
. x+y—lx—yl
minx, y) = ===
for all real numbers x and y.

Use Exercises 43 and 44 to prove that max{x, y} +min{x, y} =
x + y for all real numbers x and y.

Prove that for all n € Z, n is even if and only if n + 2 is
even.

Prove that for all n € Z, n is odd if and only if n + 2 is
odd.

Prove that for all sets A and B, A C B if and only if B C A.

TInformally, a sequence is a list of elements in which order is taken into account, so that s is the first element,
57 is the second element, and so on. We present the formal definition in Section 3.2.

Problem-Solving Corner: Proving Some Properties of Real Numbers

49. Prove that for all sets A, B, and C,A € C and B C C if and

onlyif AUB C C.

50. Prove that for all sets A, B, and C, C € A and C C B if and

onlyif CCANB.
*51. The ordered pair (a, b) can be defined in terms of sets as

(a,b) = {{a}, {a, b}}.

Taking the preceding equation as the definition of ordered pair,

prove that (a, b) = (¢, d) ifand only if a = cand b = d.
52. Prove that the following are equivalent for the integer n:

(a)nisodd. (b) There exists k € Z such that n = 2k — 1.
(c) n% + 1is even.

53. Prove that the following are equivalent for sets A, B, and C:

(ANB=2 (M)BCA ()AAB=AUB,

where A is the symmetric difference operator (see Exercise

101, Section 1.1).

54. Prove that the following are equivalent for sets A, B, and C:

(Q)AUB=U bLANB=o (c)A C B,

where U is a universal set.

Problem-Solving Corner [Proving Some Properties of Real Numbers

Problem
First some definitions:

(a) Let X be a nonempty set of real numbers. An
upper bound for X is a real number a having
the property that x < a for every x € X.

(b) Let a be an upper bound for a set X of real
numbers. If every upper bound b for X satisfies
b > a, we call a a least upper bound for X.

A fundamental property of the real numbers is that ev-
ery nonempty subset of real numbers bounded above
has a least upper bound.

Answer the following where R serves as a univer-
sal set:

1. Give an example of a set X and three distinct upper
bounds for X, one of which is a least upper bound
for X.

2. Prove that if a and b are least upper bounds for a set
X, then a = b. We say that the least upper bound
for a set X is unique. If a is the least upper bound of
a set X, we sometimes write a = lub X.

3. Let X be a set with least upper bound a. Prove
that if ¢ > 0, then there exists x € X satisfying
a—e<x<a.

4. Let X be a set with least upper bound a, and suppose
that # > 0. Prove that 7a is the least upper bound of
the set {rx | x € X}.

Attacking the Problem

To better understand the definitions, let’s construct ex-
amples, write out the definitions in words, look at nega-
tions of the definitions, and draw pictures.

We’ll start with definition (a) and construct a sim-
ple example—taking X to be a small finite set, say

X = {1, 2,3,4}. Now an upper bound a for X satis-
fies x < a for every x in X—here, we must have

1<a, 2<a, 3<a, 4<a.

Examples of upper bounds for X are 4, 6.9, 37, 9072.

In words, definition (a) says that a is an upper
bound for a set X if every element in X is less than or
equal to a. We see that upper bounds e, f, and g for a
set X (shown in color) look like

X e f g

What would it mean that a is not an upper bound
for a set X? We would have to negate definition (a):
—Vx(x < a) or, equivalently, Ix—(x < a) or Ix(x > a).
In words, a is not an upper bound for a set X if there
exists x in X such that x > a. Looking at the preceding
picture, we see that any number less than e is not an
upper bound for X.

Let’s turn to definition (b), which says, in words,
that a is a least upper bound for a set X if, among all
upper bounds for X, a is smallest. Looking ahead, prob-
lem 2 is to show that there is only one (distinct) upper
bound for a set X; thus, we usually say the least up-
per bound rather than a least upper bound. The least
upper bound of our previous set X = {I,2,3,4}
is 4. We have already noted that 4 is an upper bound
for X. If a is any upper bound for X, since 4 € X,
4 < a. Therefore, 4 is the least upper bound for X.
In the preceding figure, e is a least upper bound for the
set X.

Finding a Solution

Now we consider the problems.
[Problem 1.] Our previous example, X =
{1, 2, 3,4}, will suffice. We have noted that 4 is the

84

Chapter 2 ¢ Proofs

least upper bound for X. Any values greater than 4
serve as additional upper bounds.

[Problem 2.] One way to prove that two numbers
a and b are equal is to show thata < band b < a.
We’ll try this first. Another possibility is proof by con-
tradiction and assume that a # b.

[Problem 3.] Here we can use the fact that a — € is
not an upper bound (since it’s less than the least upper
bound) and, as discussed previously, what it means for
a value to not be an upper bound.

[Problem 4.] Here we are given a value, ta, and
asked to prove that it is the least upper bound of the
given set, which here we denote as X. Going directly
to the definitions, we must show that

(a) z < ta for every z € tX (i.e., ta is an upper
bound for X)),

(b) if b is an upper bound for X, then b > ta (i.e.,
ta is the least upper bound for £X).

For part (a), since z = tx (x € X), we must show
that
tx < ta forallx e X.

We are given that a is a least upper bound for X. In
particular, a is an upper bound for X so

x<a forallxeX.

How do we deduce the first inequality from the sec-
ond? Multiply by #! We hope that the proof of part (b)
proceeds in a similar way.

Formal Solution

[Problem 1.] Let X = {1, 2, 3, 4}. Upper bounds for X
are 4, 5, and 6 since x < 4, x < 5, and x < 6 for every
xeX.

The least upper bound for X is 4. We have already
noted that 4 is an upper bound for X. If a is any upper
bound for X, since 4 € X, 4 < a. Therefore, 4 is the
least upper bound for X.

[Problem 2.] Since a is a least upper bound for X
and b is an upper bound for X, a < b. Since b is a
least upper bound for X and a is an upper bound for X,
b < a. Therefore, a = b.

[Problem 3.] Let ¢ > 0. Since a is the least upper
bound for X and a — ¢ < a, a— ¢ is not an upper bound
for X. Therefore, by definition (a) there exists x € X
such that @ — ¢ < x. Since a is an upper bound for X,
x < a. We have shown that there exists x € X such that
a—e<x<a.

[Problem 4.] Let tX denote the set {tx | x € X}.
‘We must prove that

(a) z < ta for every z € tX (i.e., ta is an upper
bound for zX),

(b) if b is an upper bound for £X, then b > ta (i.e.,
ta is the least upper bound for £X).

We first prove part (a). Let z € £X. Then z = #x for
some x € X (by the definition of the set £X). Since a is
an upper bound for X, x < a. Multiplying by 7 and not-
ing that # > 0, we have z = tx < fa. Therefore, z < 7a
for every z € tX and the proof of part (a) is complete.

Next we prove part (b). Let b be an upper bound
for £X. Then tx < b for every x € X (since an arbitrary
element in £X is of the form #x for some x € X). Di-
viding by ¢ and noting that > 0, we have x < b/t for
every x € X. Therefore b/t is an upper bound for X.
Since a is the least upper bound for X, b/t > a. Multi-
plying by 7 and noting again that¢ > 0, we have b > fa.
Therefore ta is the least upper bound for £X. The proof
is complete.

Summary of Problem-Solving Techniques

m Before beginning a proof, familiarize yourself
with relevant definitions, theorems, examples,
and so on.

® Construct additional examples—especially
small examples (e.g., for sets look at some small
finite sets).

B Write out some of the technical statements in
words.

B Look at negations of statements.
B Draw pictures.

B If one proof technique seems not to be working,
try another. For example, if a direct proof seems
unpromising, try a proof by contradiction.

B Review the Problem-Solving Tips sections in
this chapter and the previous chapter.

Comments

The fact that every nonempty set of real numbers that
is bounded above has a least upper bound is called
the completeness property of the real numbers. The
real numbers are complete in the sense that there are
no “holes” in the number line. Informally, if there was
a hole in the line, the set of numbers to the left of the
hole, although bounded above, would not have a least
upper bound:

The set of rational numbers is not complete. The

subset of rational numbers less than +/2 is bounded
above, but does not have a rational least upper bound.
(The least upper bound of the subset of rational num-
bers less than +/2 is the irrational number +/2.)

Exercises

1.

*5.

What is the least upper bound of a nonempty finite
set of real numbers?

. What is the least upper bound of the set

{1l — 1/n | nis a positive integer}?

Prove your answer.

. Let X and Y be nonempty sets of real numbers such

that X C Y and Y is bounded above. Prove that X is
bounded above and lubX < lubY.

. Let X be a nonempty set. What is the least upper

bound of the set {tx | x € X} if t = 0?

Let X be a set with least upper bound a, and let Y
be a set with least upper bound b. Prove that the set

{x+ylxeXandye Y}

is bounded above and its least upper bound is a + b.

2.3

2.3 @ Resolution Proofs

Let X be a nonempty set of real numbers. A lower
bound for X is a real number a having the property
that x > a for every x € X. Let a be a lower bound
for a set X of real numbers. If every lower bound
b for X satisfies b < a, we call a a greatest lower
bound for X.

. Prove that if @ and b are greatest lower bounds for

aset X, thena = b.

. Prove that every nonempty subset of real num-

bers bounded below has a greatest lower bound.
Hint: If X is a nonempty set of real numbers
bounded below, let Y denote the set of lower
bounds. Prove that Y has a least upper bound,
say a. Prove that a is the greatest lower bound
for X.

. Let X be a set with greatest lower bound a. Prove

that if ¢ > 0, then there exists x € X satisfying
at+ée>x>a.

. Let X be a set with least upper bound a, and let

t < 0. Prove that ta is the greatest lower bound of
the set {rx | x € X}.

Resolution Proofs®

85

In this section, we will write a A b as ab.
Resolution is a proof technique proposed by J. A. Robinson in 1965 (see
[Robinson]) that depends on a single rule:

If p vV g and —p V r are both true, then ¢ V r is true.

(2.

3.1)

Statement (2.3.1) can be verified by writing the truth table (see Exercise 1). Because
resolution depends on this single, simple rule, it is the basis of many computer programs
that reason and prove theorems.

In a proof by resolution, the hypotheses and the conclusion are written as clauses.
A clause consists of terms separated by or’s, where each term is a variable or the negation

of a variable.

Example 2.3.1

Example 2.3.2

Example 2.3.3

however, a variable.

This section can be omitted without loss of continuity.

The expression a vV b vV —c V d is a clause since the terms a, b, —c, and d are separated
by or’s and each term is a variable or the negation of a variable.

4

The expression xy V w V —z is not a clause even though the terms are separated by or’s,
since the term xy consists of two variables—not a single variable.

<

The expression p — g is not a clause since the terms are separated by —. Each term is,

|

86

Chapter 2 ¢ Proofs

Example 2.3.4

Example 2.3.5

A direct proof by resolution proceeds by repeatedly applying (2.3.1) to pairs of
statements to derive new statements until the conclusion is derived. When we apply
(2.3.1), p must be a single variable, but ¢ and r can be expressions. Notice that when
(2.3.1) is applied to clauses, the result ¢ V r is a clause. (Since g and r each consist of
terms separated by or’s, where each term is a variable or the negation of a variable, g vV r
also consists of terms separated by or’s, where each term is a variable or the negation of
a variable.)

Prove the following using resolution:

aVvb
2. —aVce
3. —cvd

s.bvd

SOLUTION Applying (2.3.1) to expressions 1 and 2, we derive
4. bve.

Applying (2.3.1) to expressions 3 and 4, we derive
5. bvd,

the desired conclusion. Given the hypotheses 1, 2, and 3, we have proved the conclusion
bvd. 4

Special cases of (2.3.1) are as follows:
If p v g and —p are true, then q is true.

(2.3.2)
If p and —p V r are true, then r is true.

Prove the following using resolution:

1. a

2. —aVce

3. —cvd
c.d

SOLUTION Applying (2.3.2) to expressions 1 and 2, we derive
4. c.

Applying (2.3.2) to expressions 3 and 4, we derive
5. d,

the desired conclusion. Given the hypotheses 1, 2, and 3, we have proved the conclu-
sion d. <

If a hypothesis is not a clause, it must be replaced by an equivalent expression that
is either a clause or the and of clauses. For example, suppose that one of the hypotheses
is —(a Vv D). Since the negation applies to more than one term, we use the first of De
Morgan’s laws (see Example 1.3.11)

=(aV b) = —a—b, =(ab) = —a Vv —b (2.3.3)

Example 2.3.6

Example 2.3.7

2.3 @ Resolution Proofs 87

to obtain an equivalent expression with the negation applying to single variables:
—(a Vv b) = —a—b. We then replace the original hypothesis —(a Vv b) by the two hy-
potheses —a and —b. This replacement is justified by recalling that individual hypotheses
h) and h, are equivalent to h;h, (see Definition 1.4.1 and the discussion that precedes
it). Repeated use of De Morgan’s laws will result in each negation applying to only one
variable.

An expression that consists of terms separated by or’s, where each term consists
of the and of several variables, may be replaced by an equivalent expression that consists
of the and of clauses by using the equivalence

aVbc=(aVvb)aVc). (2.3.4)

In this case, we may replace the single hypothesis a V bc by the two hypotheses a v b and
aV c. By using first De Morgan’s laws (2.3.3) and then (2.3.4), we can obtain equivalent
hypotheses, each of which is a clause.

Prove the following using resolution:

1. avVv —bc
2. =(aVvd)
c.o—b

SOLUTION We use (2.3.4) to replace hypothesis 1 with the two hypotheses a vV —b
and a Vv c. We use the first of De Morgan’s laws (2.3.3) to replace hypothesis 2 with the
two hypotheses —a and —d. The argument becomes

1. av—b

2. avc

3. —a

4. —d
c.o—b

Applying (2.3.1) to expressions 1 and 3, we immediately derive the conclusion —b. <«

In automated reasoning systems, proof by resolution is combined with proof by
contradiction. We write the negated conclusion as clauses and add the clauses to the
hypothesis. We then repeatedly apply (2.3.1) until we derive a contradiction.

Give another proof of Example 2.3.4 by combining resolution with proof by
contradiction.

SOLUTION We first negate the conclusion and use the first of De Morgan’s laws (2.3.3)
to obtain —(b VvV d) = —b —d. We then add the clauses —b and —d to the hypotheses to
obtain

1. avb

2. —avVvece

3. —=cvd

4. —b

5. —d
Applying (2.3.1) to expressions 1 and 2, we derive

6. bve.

Applying (2.3.1) to expressions 3 and 6, we derive
7. bvd.

88 Chapter2 ¢ Proofs

Applying (2.3.1) to expressions 4 and 7, we derive
8. d.

Now 5 and 8 combine to give a contradiction, and the proof is complete. <

It can be shown that resolution is correct and refutation complete. “Resolution
is correct” means that if resolution derives a contradiction from a set of clauses, the
clauses are inconsistent (i.e., the clauses are not all true). “Resolution is refutation com-
plete” means that resolution will be able to derive a contradiction from a set of inconsis-
tent clauses. Thus, if a conclusion follows from a set of hypotheses, resolution will be
able to derive a contradiction from the hypotheses and the negation of the conclusion.
Unfortunately, resolution does not tell us which clauses to combine in order to deduce
the contradiction. A key challenge in automating a reasoning system is to help guide
the search for clauses to combine. References on resolution and automated reasoning
are [Gallier; Genesereth; and Wos].

2.3 Problem-Solving Tips

To construct a resolution proof, first replace any of the hypotheses or conclusion that is
not a clause with one or more clauses. Then replace pairs of hypotheses of the form p Vv g
and —p Vv r with ¢ Vv r until deriving the conclusion. Remember that resolution can be
combined with proof by contradiction.

2.3 Review Exercises

1. What rule of logic does proof by resolution use?

2. What is a clause?

3. Explain how a proof by resolution proceeds.

1. Write a truth table that proves (2.3.1). 4. —-pVvt 5. p—>gq 6. pr
. . N . . —q Vs pVgq r
Use resolution to derive each conclusion in Exercises 2—6. Hint: Vst
In Exercises 5 and 6, replace — and <> with logically equivalent rve .q 2
. pNVgVrvu
expressions that use or and and. -
2. =pvgqVvr 3. =pvVvr SSVIVu
-q —rvgqg 7. Use resolution and proof by contradiction to re-prove Exer-
-r P cises 2—-6.
Lp g 8. Use resolution and proof by contradiction to re-prove Exam-
ple 2.3.6.
2.4 Mathematical Induction
Suppose that a sequence of blocks numbered 1, 2, ... sits on an (infinitely) long table
Go Online (see Figure 2.4.1) and that some blocks are marked with an “X.” (All of the blocks visible

For more on
mathematical induction, see
goo.gl/gHgyey

in Figure 2.4.1 are marked.) Suppose that

The first block is marked. (2.4.1)
For all n, if block n is marked, then block n + 1 is also marked. (2.4.2)

We claim that (2.4.1) and (2.4.2) imply that every block is marked.

St

Sn+1 -

iZ)

2

2(3)

2
(n—=1)n
2

n(n+1)
2

(n+1)(n+2)

2

-~

Figure 2.4.2 A sequence of
statements. True statements are

marked with x.

2.4 & Mathematical Induction 89

|

Figure 2.4.1 Numbered blocks on a table.

We examine the blocks one by one. Statement (2.4.1) explicitly states that block 1
is marked. Consider block 2. Since block 1 is marked, by (2.4.2) (taking n = 1), block 2
is also marked. Consider block 3. Since block 2 is marked, by (2.4.2) (taking n = 2),
block 3 is also marked. Continuing in this way, we can show that every block is marked.
For example, suppose that we have verified that blocks 1-5 are marked, as shown in
Figure 2.4.1. To show that block 6, which is not shown in Figure 2.4.1, is marked, we
note that since block 5 is marked, by (2.4.2) (taking n = 5), block 6 is also marked.

The preceding example illustrates the Principle of Mathematical Induction. To
show how mathematical induction can be used in a more profound way, let S, denote
the sum of the first n positive integers:

Sp=14+24---+n. (2.4.3)

Suppose that someone claims that

1
S, = @ foralln > 1. (2.4.4)
A sequence of statements is really being made, namely,
12 23 34
s =@ 220 5 g 3
2 2 2

Suppose that each true equation has an “x” placed beside it (see Figure 2.4.2).
Since the first equation is true, it is marked. Now suppose we can show that for all n,
if equation n is marked, then equation n + 1 is also marked. Then, as in the example
involving the blocks, all of the equations are marked; that is, all the equations are true
and the formula (2.4.4) is verified.

‘We must show that for all n, if equation r is true, then equation n + 1 is also true.
Equation n is

nn+1)
Sp=——.
2

Assuming that this equation is true, we must show that equation n + 1

(2.4.5)

n+1Dn+2)
2

n+l =
is true. According to definition (2.4.3),
St =142+ +n+@m+1).

We note that S, is contained within S,,41, in the sense that

Spi =142+ +n+@m+1)=S,+xn+1. (2.4.6)

90 Chapter2 @ Proofs

Principle of
Mathematical Induction

Example 2.4.2

Example 2.4.3

Because of (2.4.5) and (2.4.6), we have

+1
Supt =Syt (n+1) = %Hnﬂ).
Since
nn+1) nn+1) 2n+1)
vy 1) =
3 +m+1) > +)
_nln+1)+2n+1)
N 2
_(n+DH(n+2)
i —
we have

n+1DHn+2)
=

Therefore, assuming that equation n is true, we have proved that equation n 4+ 1 is true.
We conclude that all of the equations are true.

Our proof using mathematical induction consisted of two steps. First, we veri-
fied that the statement corresponding to n = 1 was true. Second, we assumed that
statement n was true and then proved that statement n 4+ 1 was also true. In prov-
ing statement n + 1, we were permitted to make use of statement n; indeed, the trick
in constructing a proof using mathematical induction is to relate statement n to state-
ment n + 1.

We next formally state the Principle of Mathematical Induction.

Suppose that we have a propositional function S(n) whose domain of discourse is the
set of positive integers. Suppose that

S(1) is true; (2.4.7)
for all n > 1, if S(n) is true, then S(n + 1) is true. (2.4.8)
Then S(n) is true for every positive integer n.
Condition (2.4.7) is sometimes called the Basis Step and condition (2.4.8) is some-
times called the Inductive Step. Hereafter, “induction” will mean “mathematical induc-
tion.”

After defining n factorial, we illustrate the Principle of Mathematical Induction
with another example.

Definition 2.4.1 » nfactorial is defined as

L[ifn=0
=Y =D —=2)---2+1 ifn>1.

That is, if n > 1, n! is equal to the product of all the integers between 1 and n inclusive.
As a special case, 0! is defined to be 1.

oOl=1!'=1, 3!=3.2-1=6, 6!=6:5-4.3.-2:1=720 <

Use induction to show that

n! > 2! foralln > 1. (2.4.9)

Example 2.4.4

2.4 & Mathematical Induction 91

SOLUTION

Basis Step (n = 1)

[Condition (2.4.7)] We must show that (2.4.9) is true if » = 1. This is easily accom-
plished, since 1! =1 > 1 =21,

Inductive Step

[Condition (2.4.8)] We assume that the inequality is true for n > 1; that is, we assume
that

n! > 2! (2.4.10)

is true. We must then prove that the inequality is true for n + 1; that is, we must prove
that

n+ D! >2" (2.4.11)

is true. We can relate (2.4.10) and (2.4.11) by observing that (n + 1)! = (n + 1)(n!).
Now
n+D!=m+1)nH
> (n+ 12" by (2.4.10)
> 2. sincen+1>2
=2"
Therefore, (2.4.11) is true. We have completed the Inductive Step.

Since the Basis Step and the Inductive Step have been verified, the Principle of
Mathematical Induction tells us that (2.4.9) is true for every positive integer n. |

If we want to verify that the statements S(ng), S(ng + 1), ..., where ng # 1, are
true, we must change the Basis Step to S(ng) is true. In words, the Basis Step is to prove
that the propositional function S(n) is true for the smallest value n in the domain of
discourse.

The Inductive Step then becomes

forall n > ny, if S(n) is true, then S(n + 1) is true.

Geometric Sum Use induction to show that if r # 1,

_a(mtt =)

a+ar +arr 4+ +ar"]
r—

(2.4.12)

forall n > 0.
The sum on the left is called the geometric sum. In the geometric sum in which
a # 0 and r # 0, the ratio of adjacent terms [(ar'*')/(ar’) = r] is constant.

SOLUTION

Basis Step (n = 0)

Since the smallest value in the domain of discourse {n | n > 0} is n = 0, the Basis Step
is to prove that (2.4.12) is true for n = 0. For n = 0, (2.4.12) becomes

a(r' = 1)
a=—>
r—1

’

which is true.

92

Chapter 2 ¢ Proofs

Example 2.4.5

Inductive Step
Assume that statement (2.4.12) is true for n. Now

n+1 -1
a+ar' +ar+ -+ ar +art! = Ll) + ar"t!
_
a' =1 art'(r—1)
+
r—1 r—1
a(r? —1)

r—1

Since the Basis Step and the Inductive Step have been verified, the Principle of Mathe-
matical Induction tells us that (2.4.12) is true for all n > 0. <4

As an example of the use of the geometric sum, if we take @ = 1 and r = 2 in

(2.4.12), we obtain the formula
2l
142422422+ . 42" = S =2 1.

The reader has surely noticed that in order to prove the previous formulas, one has
to be given the correct formulas in advance. A reasonable question is: How does one
come up with the formulas? There are many answers to this question. One technique
to derive a formula is to experiment with small values and try to discover a pattern.
(Another technique is discussed in Exercises 70—73). For example, consider the sum
14+34---4(2n—1). The following table gives the values of this sum forn = 1, 2, 3, 4.

n 1+34+---+2n—-1)
1 1
2 4
3 9
4 16

Since the second column consists of squares, we conjecture that
1434+ +@n—1)=n for every positive integer n.

The conjecture is correct and the formula can be proved by mathematical induction (see
Exercise 1).

At this point, the reader may want to read the Problem-Solving Corner that follows
this section. This Problem-Solving Corner gives an extended, detailed exposition of how
to do proofs by mathematical induction.

Our final examples show that induction is not limited to proving formulas for sums
and verifying inequalities.

Use induction to show that 5" — 1 is divisible by 4 for all n > 1.

SOLUTION

Basis Step (n = 1)
Ifn=1,5"—1=5"—1=4, which is divisible by 4.

Inductive Step

We assume that 5" — 1 is divisible by 4. We must then show that 5"+' — 1 is divisible
by 4. We use the fact that if p and g are each divisible by &, then p + ¢ is also divisible
by k. In our case, k = 4. We leave the proof of this fact to the exercises (see Exercise 74).

Theorem 2.4.6

Subsets of X Subsets of X
that that do not
contain a contain a
{a} 0
{a, b} {b}
{a, ¢} {c}
{a, b, ¢} {b, c}

Figure 2.4.3 Subsets of

X = {a, b, ¢} divided into two
classes: those that contain a and
those that do not contain a. Each
subset in the right column is
obtained from the corresponding
subset in the left column by
deleting the element a from it.

2.4 & Mathematical Induction 93

We relate the (n + 1)st case to the nth case by writing
5" — 1 =5" — 1 4 to be determined.

Now, by the inductive assumption, 5" — 1 is divisible by 4. If “to be determined” is
also divisible by 4, then the preceding sum, which is equal to 5"+ — 1, will also be
divisible by 4, and the Inductive Step will be complete. We must find the value of “to be
determined.”
Now
S 1=5.5"-1=4.5"+1.5"—1.

Thus, “to be determined” is 4 - 5", which is divisible by 4. Formally, we could write the
Inductive Step as follows.

By the inductive assumption, 5" — 1 is divisible by 4 and, since 4 - 5" is divisible
by 4, the sum

"= 1) +4.5"=5"" 1

is divisible by 4.
Since the Basis Step and the Inductive Step have been verified, the Principle of
Mathematical Induction tells us that 5" — 1 is divisible by 4 foralln > 1. 4

We next give the proof promised in Section 1.1 that if a set X has n elements, the
power set of X, P(X), has 2" elements.

If |X| = n, then
[PX)| = 2" (2.4.13)
for all n > 0.

Proof The proof is by induction on 7.

Basis Step (n = 0)

If n = 0, X is the empty set. The only subset of the empty set is the empty set itself;
thus,

PX)=1=2"=2"
Thus, (2.4.13) is true for n = 0.

Inductive Step

Assume that (2.4.13) holds for n. Let X be a set with n+ 1 elements. Choose x € X. We
claim that exactly half of the subsets of X contain x, and exactly half of the subsets of X
do not contain x. To see this, notice that each subset S of X that contains x can be paired
uniquely with the subset obtained by removing x from S (see Figure 2.4.3). Thus exactly
half of the subsets of X contain x, and exactly half of the subsets of X do not contain x.

If we let Y be the set obtained from X by removing x, Y has n elements. By the
inductive assumption, |P(Y)| = 2". But the subsets of Y are precisely the subsets of X
that do not contain x. From the argument in the preceding paragraph, we conclude that

ey = L
Therefore,

|PX)| = 2|P(Y)| =2 - 2" = 2",

Thus (2.4.13) holds for n 4+ 1 and the inductive step is complete. By the Principle of
Mathematical Induction, (2.4.13) holds for all n > 0. <

94 Chapter 2 # Proofs

Example 2.4.7

Go Online

For more on trominoes, see
goo.gl/gHgyey

Figure 2.4.4 A tromino.

A Tiling Problem A right tromino, hereafter called simply a tromino, is an object made
up of three squares, as shown in Figure 2.4.4. A tromino is a type of polyomino. Since
polyominoes were introduced by Solomon W. Golomb in 1954 (see [Golomb, 1954]),
they have been a favorite topic in recreational mathematics. A polyomino of order s
consists of s squares joined at the edges. A tromino is a polyomino of order 3. Three
squares in a row form the only other type of polyomino of order 3. (No one has yet
found a simple formula for the number of polyominoes of order s.) Numerous problems
using polyominoes have been devised (see [Martin]).

We give Golomb’s inductive proof (see [Golomb, 1954]) that if we remove one
square from an n x n board, where 7 is a power of 2, we can tile the remaining squares
with right trominoes (see Figure 2.4.5). By a tiling of a figure by trominoes, we mean
an exact covering of the figure by trominoes without having any of the trominoes over-
lap each other or extend outside the figure. We call a board with one square missing a
deficient board.

We now use induction on k to prove that we can tile a 2¢ x 2* deficient board with
trominoes for all k > 1.

Basis Step (k = 1)

If k = 1, the 2 x 2 deficient board is itself a tromino and can therefore be tiled with one
tromino.

Inductive Step

Assume that we can tile a 2% x 2* deficient board. We show that we can tile a 2¢+1 x 2++1
deficient board.

Consider a 2kt x 2k+1 deficient board. Divide the board into four 2% x 2% boards,
as shown in Figure 2.4.6. Rotate the board so that the missing square is in the upper-left
quadrant. By the inductive assumption, the upper-left 2¢ x 2 board can be tiled. Place
one tromino 7 in the center, as shown in Figure 2.4.6, so that each square of 7 is in
each of the other quadrants. If we consider the squares covered by T as missing, each of
these quadrants is a 2% x 2* deficient board. Again, by the inductive assumption, these
boards can be tiled. We now have a tiling of the 2¥*! x 25! board. By the Principle
of Mathematical Induction, it follows that any 2¢ x 2 deficient board can be tiled with
trominoes, k=1,2,....

If we can tile an n x n deficient board, where 7 is not necessarily a power of 2, then
the number of squares, n? — 1, must be divisible by 3. [Chu] showed that the converse is
true, except when n is 5. More precisely, if n # 5, any n x n deficient board can be tiled

2k+1

2kxok 1 gkxok

Y |£J fffffffffff

Figure 2.4.6 Using mathematical

Figure 2.4.5 Tilinga 4 x 4 induction to tile a 24! x 24+
deficient board with trominoes. deficient board with trominoes.

Example 2.4.8

2.4 & Mathematical Induction 95

with trominoes if and only if 3 divides n® — 1 (see Exercises 28 and 29, Section 2.5).
[Some 5 x 5 deficient boards can be tiled and some cannot (see Exercises 33-35).]
Some real-world problems can be modeled as tiling problems. One example is
the VLSI layout problem—the problem of packing many components on a computer
chip (see [Wong]). (VLSI is short for very large scale integration.) The problem is to
tile a rectangle of minimum area with the desired components. The components are
sometimes modeled as rectangles and L-shaped figures similar to (right) trominoes. In
practice, other constraints are imposed such as the proximity of various components that
must be interconnected and restrictions on the ratios of width to height of the resulting
rectangle. |

A loop invariant is a statement about program variables that is true just before a
loop begins executing and is also true after each iteration of the loop. In particular, a loop
invariant is true after the loop finishes, at which point the invariant tells us something
about the state of the variables. Ideally, this statement tells us that the loop produces the
expected result, that is, that the loop is correct. For example, a loop invariant for a while
loop

while (condition)
//'loop body

is true just before condition is evaluated the first time, and it is also true each time the
loop body is executed.

We can use mathematical induction to prove that an invariant has the desired be-
havior. The Basis Step proves that the invariant is true before the condition that controls
looping is tested for the first time. The Inductive Step assumes that the invariant is true
and then proves that if the condition that controls looping is true (so that the loop body
is executed again), the invariant is true after the loop body executes. Since a loop iter-
ates a finite number of times, the form of mathematical induction used here proves that
a finite sequence of statements is true, rather than an infinite sequence of statements as
in our previous examples. Whether the sequence of statements is finite or infinite, the
steps needed for the proof by mathematical induction are the same. We illustrate a loop
invariant with an example.

Use a loop invariant to prove that when the pseudocode

i=1

fact=1

while (i < n) {
i=i+1
fact = fact x i

}

terminates, fact is equal to n!.

SOLUTION We prove that fact = i! is an invariant for the while loop. Just before the
while loop begins executing, i =1 and fact = 1, so fact = 1!. We have proved the Basis
Step.

Assume that fact = i!. If i <n is true (so that the loop body executes again),
i becomes i + 1 and fact becomes

factx i+ 1) =i« @+ 1) =G+ 1.

We have proved the Inductive Step. Therefore, fact = i! is an invariant for the while
loop.

926

2.4 Review Exercises

Chapter 2 ¢ Proofs

The while loop terminates when i = n. Because fact = i! is an invariant, at this
point, fact = n!. <

2.4 Problem-Solving Tips

To prove
a+a+---+a, =F(n) foralln > 1,

where F(n) is the formula for the sum, first verify the equation for n = 1: a; = F(1)
(Basis Step). This is usually straightforward.
Now assume that the statement is true for n; that is, assume

a+a+---+a, =Fn).
Add a, to both sides to get
a+a+--Fay+ap =Fn) + anq.
Finally, show that
F(n)+ap =Fn+1).

To verify the preceding equation, use algebra to manipulate the left-hand side of the equa-
tion [F(n) + a,+1] until you get F(n—+ 1). Look at F(n+ 1) so you know where you're
headed. (It's somewhat like looking up the answer in the back of the book!) You’ve
shown that

at+a+-t+ap =Fn+1),

which is the Inductive Step. Now the proof is complete.

Proving an inequality is handled in a similar fashion. The difference is that instead
of obtaining equality [F'(n) 4+ a,+; = F(n + 1) in the preceding discussion], you obtain
an inequality.

In general, the key to devising a proof by induction is to find case n “within” case
n+ 1. Review the tiling problem (Example 2.4.7), which provides a striking example of
case n “within” case n + 1.

1. State the Principle of Mathematical Induction.

3. Give a formula for the sum 1 +2 +--- + n.

2. Explain how a proof by mathematical induction proceeds. 4. What is the geometric sum? Give a formula for it.

In Exercises 1-12, using induction, verify that each equation is true

—_1ntl 1
5. 12224324 (=) = EDT e+ D

for every positive integer n. 2
+ 1)
1 2 6. P4 aP 4. |
2. 1.2+2.3+3.4+...+n(n+1)=w DS I I .
1 1 1 1
31D +2@) 44 n) = (n+ D — 1 Tiatistsat T e hay
HQR2 1 "
4. 12+22+32+"‘+nzzw B

6 T+ 1

81 +13 +135 N +13&~m—n
T 2.4 0 2.4.6 2-4.6-8 2:4.6---2n+2)
1 1:3.5-.Q2n+ 1)
T2 2:4.6---(2n+2)
9 : +1 +o :
T22-1 321 n+D2-1
1 1

3
T4 2+ D) 2m+2)

1 2)(3 5

12
2 1)]si 2
*11. cosx + cos2x+ ---+cosnx = cosl(x/)(1,1 + Dlsin(nx/2)
sin(x/2)
provided that sin(x/2) # 0.
*12. 1sinx +2sin2x + - - - 4+ nsinnx

__sin[(n+ Dx] - (n+ 1) cos[(2n + 1)x/2]
T 4sin? (x/2) 2sin (x/2)

provided that sin(x/2) # 0.

In Exercises 13—18, using induction, verify the inequality.
1 1.3:.5---2n—-1)

13. — <)
2n 2:4.6---(2n)

1-3-5--@n—1) _ 1
2:4.6---2n) ~ Jntl
15. 2n+1<2", n=34,...

n=1,2,...

«14. n=1,2,...

*16. 2" > n?, n=4,5, ...
*17. (a1az---ay)/? < W, n=1,2,.... and
the a; are positive numbers
18. (14+x)">1+nx, forx>—1landn > 1
19. Use the geometric sum to prove that
0 1 n 1
r+r +---+r <
1—r
foralln >0and 0 < r < 1.
*20. Prove that
1 2 n r
1.r —|—2-r + -+ nr <m

forallm > 1 and 0 < r < 1. Hint: Using the result of the
previous exercise, compare the sum of the terms in

r = A S r
}’2 }’3 r4 e

1’3 r4 7

I'4

el

in the diagonal direction () with the sum of the terms by
columns.

21.

2.4 & Mathematical Induction 97

Prove that

12 3
Tty t

n

23 on

foralln > 1.

In Exercises 22-25, use induction to prove the statement.

22,
23.
24.
*25.
26.

27.

28.

29.

30.

31.

32.

34.

35.
36.

*37.

7" — 1 is divisible by 6, for all n > 1.

11" — 6 is divisible by 5, for all n > 1.
6-7" —2.3" is divisible by 4, for all n > 1.
3" 4+ 7" — 2 is divisible by 8, for all n > 1.
Use induction to prove that if X7, ..
(a) XNX1UXpU---UX,) = (XNX)HUXNX)U- - -UXNX,).
b XINX;N---NX, =X UX; U---UX,.

Use induction to prove that if X7, ..

., X, and X are sets, then

., X, are sets, then
X1 X Xo X+ X Xp| = [X1]|+|X2| - -+ | Xl

Prove that the number of subsets S of {1, 2, ..., n}, with ||
even,is 2" 1, n > 1.
By experimenting with small values of n, guess a formula for
the given sum,
! + : + o+ : ;
1.2 2.3 nn+1)°
then use induction to verify your formula.

Use induction to show that n straight lines in the plane divide
the plane into (1% +n+2)/2 regions. Assume that no two lines
are parallel and that no three lines have a common point.

Show that the regions of the preceding exercise can be colored
red and green so that no two regions that share an edge are the
same color.

Given n 0’s and n 1’s distributed in any manner whatsoever
around a circle (see the following figure), show, using induc-
tion on n, that it is possible to start at some number and proceed
clockwise around the circle to the original starting position so
that, at any point during the cycle, we have seen at least as
many 0’s as 1’s. In the following figure, a possible starting
point is marked with an arrow.

100

001

— 0 1
1

. Give a tiling of a 5 x 5 board with trominoes in which the

upper-left square is missing.

Show a 5 x 5 deficient board that is impossible to tile with
trominoes. Explain why your board cannot be tiled with tro-
minoes.

Which 5 x 5 deficient boards can be tiled?
Show that any (2i) x (3j) board, where i and j are positive
integers, with no square missing, can be tiled with trominoes.

Show that any 7 x 7 deficient board can be tiled with tromi-
noes.

98

38.

39.

40.

41.

42,

43.

*44.

45.

46.

Chapter 2 ¢ Proofs

Show that any 11 x 11 deficient board can be tiled with
trominoes. Hint: Subdivide the board into overlapping 7 x 7

and 5 x 5 boards and two 6 x 4 boards. Then, use Exercises
33, 36, and 37.

This exercise and the one that follows are due to Anthony
Quas. A 2" x 2" L-shape, n > 0, is a figure of the form

A

2mx2m | 2t x 2"

with no missing squares. Show that any 2" x 2" L-shape can
be tiled with trominoes.

Use the preceding exercise to give a different proof that any
2" x 2" deficient board can be tiled with trominoes.

A straight tromino is an object made up of three squares in a
row:

Which 4 x 4 deficient boards can be tiled with straight
trominoes? Hint: Number the squares of the 4 x 4 board,
left to right, top to bottom: 1, 2, 3, 1, 2, 3, and so on. Note that
if there is a tiling, each straight tromino covers exactly one 2
and exactly one 3.

Which 5 x 5 deficient boards can be tiled with straight
trominoes?

Which 8 x 8 deficient boards can be tiled with straight
trominoes?

A T-tetromino is an object made up of four squares

Prove that an m x n rectangle can be tiled with T-tetrominoes
if and only if 4 divides m and 4 divides n.

Use a loop invariant to prove that when the pseudocode

i=1
pow =1
while (i < n) {
pOwW = pow xa
i=i+1
}
terminates, pow is equal to a”.

Prove that, after the following pseudocode terminates, a[h] =
val; forall p,i < p < h,alp] <val;and forall p, h < p <},
alp] > val. In particular, val is in the position in the array
ali], ..., alj] where it would be if the array were sorted.

val = ali]
h=i
fork=i+1toj
if (alk] < val) {
h=h+1
swap(alh], alk])
}
swap(alil, alh])

Hint: Use the loop invariant: & < k; forallp,i < p < h,a[p] <
val;and, forall p, h < p < k, a[p] > val. (A picture is helpful.)

This technique is called partitioning. This particular
version is due to Nico Lomuto. Partitioning can be used to
find the kth smallest element in an array and to construct a
sorting algorithm called quicksort.

A 3D-septomino is a three-dimensional 2 x 2 x 2 cube with one
1 x 1 x 1 corner cube removed. A deficient cube is a k x k x k
cube with one 1 x 1 x 1 cube removed.

47.

48.

49.

*50.

51.

Prove that a 2" x 2" x 2" deficient cube can be tiled by 3D-
septominoes.

Prove that if a k x k& x k deficient cube can be tiled by
3D-septominoes, then 7 divides one of k — 1,k — 2, k — 4.

Suppose that S, = (n+ 2)(n — 1) is (incorrectly) proposed as
a formula for

24444 2n.

(a) Show that the Inductive Step is satisfied but that the Basis
Step fails.

*(b) If S, is an arbitrary expression that satisfies the Inductive

Step, what form must S/, assume?

What is wrong with the following argument, which allegedly
shows that any two positive integers are equal?

We use induction on n to “prove” that if @ and b are
positive integers and n = max{a, b}, then a = b.

Basis Step (n=1)

If @ and b are positive integers and 1 = max{a, b}, we must
havea = b = 1.

Inductive Step

Assume that if « and b’ are positive integers and
n= max{d’,b'}, then ¢ = b'. Suppose that a and b are
positive integers and that n + 1 = max{a, b}. Now n =
max{a — 1, b— 1}. By the inductive hypothesis,a—1 = b —1.
Therefore, a = b.

Since we have verified the Basis Step and the Inductive
Step, by the Principle of Mathematical Induction, any two
positive integers are equal!

What is wrong with the following “proof™ that

l+ n £ n?
n+1 n+1

SIS

for all n > 27

Suppose by way of contradiction that

1 2 n n?
§+§+'“+n+l:n+l (2.4.14)
Then also
l+%+.,.+ n n+1:(n+1)2.
2 3 n+1 n+2 n+2

We could prove statement (2.4.14) by induction. In particular,
the Inductive Step would give

1+2+ Lo +n+l n? n+1
2 3 n+1

n+2 n+l n+2
Therefore,
n? n+1 (41?2
n+l n+t2 n+2
Multiplying each side of this last equation by (n + 1)(n + 2)
gives

nAn+2)+ n+ 1D =+ 1)°.
This last equation can be rewritten as
B2+ +2n+1=n+30 +3n+1
or
w34+ 2n+1 =0 +30% 4+ 3n+1,
which is a contradiction. Therefore,

1 2 n n?

PR T R
as claimed.

52. Use mathematical induction to prove that

1 2 n n?
+++—<
n—+1 n+1

2 3

for all n > 2. This inequality gives a correct proof of the
statement of the preceding exercise.

In Exercises 53-57, suppose that n > 1 people are positioned in a
field (Euclidean plane) so that each has a unique nearest neighbor.
Suppose further that each person has a pie that is hurled at the
nearest neighbor. A survivor is a person that is not hit by a pie.

53. Give an example to show that if n is even, there might be no
survivor.

54. Give an example to show that there might be more than one
survivor.

*55. [Carmony] Use induction on n to show that if n is odd, there

is always at least one survivor.

56. Prove or disprove: If n is odd, one of two persons farthest
apart is a survivor.

57. Prove or disprove: If n is odd, a person who throws a pie the
greatest distance is a survivor.

Exercises 58—61 deal with plane convex sets. A plane convex set,
subsequently abbreviated to “convex set,” is a nonempty set X in
the plane having the property that if x and y are any two points in
X, the straight-line segment from x to y is also in X. The following
figures illustrate.

2.4 & Mathematical Induction 99

convex set nonconvex set
58. Prove that if X and Y are convex sets and X N Y is nonempty,
X NYisaconvex set.

*59. Suppose that X, X», X3, X4 are convex sets, each three of
which have a common point. Prove that all four sets have a

common point.

*60. Prove Helly’s Theorem: Suppose that X1, X, ..., Xp, n > 4,
are convex sets, each three of which have a common point.

Prove that all n sets have a common point.

61. Suppose that n > 3 points in the plane have the property that
each three of them are contained in a circle of radius 1. Prove
that there is a circle of radius 1 that contains all of the points.

62. If a and b are real numbers with a < b, an open interval (a, b)
is the set of all real numbers x such that a < x < b. Prove that
if I, ..., I,isasetof n > 2 open intervals such that each pair
has a nonempty intersection, then

LNhLN---NI,

is nonempty.

Flavius Josephus was a Jewish soldier and historian who lived in
the first century (see [Graham, 1994; Schumer]). He was one of
the leaders of a Jewish revolt against Rome in the year 66. The
following year, he was among a group of trapped soldiers who
decided to commit suicide rather than be captured. One version of
the story is that, rather than being captured, they formed a circle
and proceeded around the circle killing every third person. Jose-
phus, being proficient in discrete math, figured out where he and a
buddy should stand so they could avoid being killed.

Exercises 63—69 concern a variant of the Josephus Problem in
which every second person is eliminated. We assume that n people
are arranged in a circle and numbered 1, 2, . . ., n clockwise. Then,
proceeding clockwise, 2 is eliminated, 4 is eliminated, and so on,
until there is one survivor, denoted J(n).

63. Compute J(4).

64. Compute J(6).

65. Compute J(10).

66. Use induction to show that J(2/) = 1 forall i > 1.

67. Given a value of n > 2, let 2/ be the greatest power of 2 with
2! < n. (Examples: If n = 10,i = 3. If n = 16, i = 4.) Let
j = n— 21, (After subtracting 2/, the greatest power of 2 less
than or equal to n, from n, j is what is left over.) By using the
result of Exercise 66 or otherwise, prove that

J(n) = 2j+ 1.

68. Use the result of Exercise 67 to compute J(1000).
69. Use the result of Exercise 67 to compute J(100,000).

100 Chapter2 @ Proofs

If a1, ay, ... is a sequence, we define the difference operator A
to be

Aap = apy1 — ay.

The formula of Exercise 70 can sometimes be used to find a for-
mula for a sum as opposed to using induction to prove a formula
for a sum (see Exercises 71-73).

70. Suppose that Aa, = b,. Show that
by +by+---4+b,=ay+1 —ay.

This formula is analogous to the calculus formula
fcdf(x) dx = g(d) — g(c), where Dg = f (D is the deriva-
tive operator). In the calculus formula, sum is replaced by
integral, and A is replaced by derivative.

Problem-Solving Corner

71.

72.

74.

Let a, = n?, and compute Aa,. Use Exercise 70 to find a
formula for

142434 +n
Use Exercise 70 to find a formula for
1Y +2@2Y + -+ n(n!).

(Compare with Exercise 3.)

. Use Exercise 70 to find a formula for

1 1 1

2t et
(Compare with Exercise 29.)

Prove that if p and ¢q are divisible by &, then p 4 ¢ is divisible
by k.

Mathematical Induction

Problem

Define

1 1 1
H=1+-+-+--+- 1
k +2+3+ —i—k (1
for all kK > 1. The numbers H,, H,, ... are called the

harmonic numbers. Prove that
n
for all n > 0.

Attacking the Problem

It’s often a good idea to begin attacking a problem by
looking at some concrete examples of the expressions
under consideration. Let’s look at H; for some small
values of k. The smallest value of k for which H is
defined is k = 1. In this case, the last term 1/k in the
definition of Hy equals 1/1 = 1. Since the first and last
terms coincide, H; = 1. For k = 2, the last term 1/k
in the definition of H equals 1/2, so

1
H, =1+ 3"
Similarly, we find that
Hy; =1+ ! a4 !
3= > T3

A 1 1 1
4 =1+ > + 3 A i
We observe that H; appears as the first term of
H,, H3, and Hy, that H, appears as the first two terms of
H; and H,, and that H3 appears as the first three terms
of Hy. In general, H,, appears as the first m terms of

H, if m < k. This observation will help us later because
the Inductive Step in a proof by induction must relate
smaller instances of a problem to larger instances of
the problem.

In general, it’s a good strategy to delay combining

terms and simplifying until as late as possible, which is
why, for example, we left Hy as the sum of four terms
rather than writing H, = 25/12. Since we left H, as the
sum of four terms, we were able to see that each of
H,, H,, and H3 appears in the expression for Hy.

Finding a Solution

The Basis Step is to prove the given statement for the
smallest value of n, which here is n=0. For n =0, in-
equality (2) that we must prove becomes

0
H2021+§=1

We have already observed that H; = 1. Thus inequal-
ity (2) is true when n = 0; in fact, the inequality is an
equality. (Recall that by definition, if x = y is true, then
x > yis also true.)

Let’s move to the Inductive Step. It’s a good idea

to write down what is assumed (here the case n),

Hy > 1+ g (3)
and what needs to be proved (here the case n + 1),
1
Hyor > 1+ % ()

It’s also a good idea to write the formulas for any ex-
pressions that occur. Using equation (1), we may write

1 1
Hp=14-+4-+— 5
w=lt o+t (5)

and
1 1
Hysi =142+ + o0
It’s not so evident from the last equation that Hp» ap-
pears as the first 2" terms of Hy+1. Let’s rewrite the last
equation as

1 1
Hyw =1+ =+ +—+

]
(6)

to make it clear that H,» appears as the first 2" terms of
Hyn.

For clarity, we have written the term that follows
1/2". Notice that the denominators increase by one, so
the term that follows 1/2"is 1/(2"+1). Also notice that
there is a big difference between 1/(2" + 1), the term
that follows 1/2", and 1/2"*!, the last term in equa-
tion (6).

Using equations (5) and (6), we may relate Hp to
Hyn1 explicitly by writing

20+ 1

Hoynit = Hon ——— L ooodb —— 7
ot 2+2n+1+ -I-ZHJrl (7)
Combining (3) and (7), we obtain
n 1
Hoyit > 14 = . 8
ontl > +2+2n+1+ +2n+1 (8)

This inequality shows that Hp.+1 is greater than or
equal to
L
2 on 4 on+l’
but our goal (4) is to show that H,.+: is greater than or
equal to 1 + (n+ 1)/2. We will achieve our goal if we
show that

1_‘_n+1
5

1+24
2 241

In general, to prove an inequality, we replace terms
in the larger expression with smaller terms so that the
resulting expression equals the smaller expression; or
we replace terms in the smaller expression with larger
terms so that the resulting expression equals the larger
expression. Here let’s replace each of the terms in the
sum

Tt o 2

+ot

2n 4 ' on+l
by the smallest term 1/2"*! in the sum. We obtain
T R T I T R T

Since there are 2" terms in the latter sum, each equal
to 1/2"*!, we may rewrite the preceding inequality as

2.4 & Mathematical Induction 101

1 1
i Ut F e Tt
a1 1
= 2n+l:§' ®
Combining (8) and (9),
n 1 n+1
Hz.mzl—i—i—l—izl—}— 7

We have the desired result, and the Inductive Step is
complete.

Formal Solution

The formal solution could be written as follows.

Basis Step (n = 0)

0
Hoy=1>1=1+—
2
Inductive Step
We assume (2). Now
1 1
Hys1 =14+ - ... 4+ —
ot +2+ +2n+2n+]+ +2n+]
= Hon e
2+2n+1+ +2n+1
-1 n 1
= 14240
- +§+ 2n+1
_1+n+1_1+n+1
22 2

Summary of Problem-Solving Techniques

® Look at concrete examples of the expressions un-
der consideration, typically for small values of
the variables.

B Look for expressions for small values of n to ap-
pear within expressions for larger values of n. In
particular, the Inductive Step depends on relating
case ntocasen + 1.

B Delay combining terms and simplifying until as
late as possible to help discover relationships
among the expressions.

B Write out in full the specific cases to prove,
specifically, the smallest value of n for the Basis
Step, the case n that is assumed in the Inductive
Step, and the case n + 1 to prove in the Induc-
tive Step. Write out the formulas for the various
expressions that appear.

102 Chapter2 @ Proofs

® To prove an inequality, replace terms in the larger 2. Prove that
expression Wlﬂ'l smaller terms so that the re- Hy+Hy+ - +H, = (n+ D)H, —n
sulting expression equals the smaller expres-
sion, or replace terms in the smaller expression foralln = 1.
with larger terms so that the resulting expression 3. Prove that
i 1
equals the larger expression. Hy = Hyyy —
n+1
Comments foralln > 1.
The series 4. Prove that
il 1-H +2-H+-- +nH,
£ nn+1) nn+1)
which surfaces in calculus, is called the harmonic se- = THHI T4
.ries. Inequ?llity (2) shows that the harmor.lic numbers foralln > 1.
anreasg w1thoutdt?ound. In calculus terminology, the 5. Prove that
armonic series diverges. H@ H H, H O1[1 |]
Exercises Tttt s s ettt

1. Prove that H»» < 1 +nforalln > 0.

2.5

foralln > 1.

Strong Form of Induction and
the Well-Ordering Property

Strong Form of
Mathematical Induction

In the Inductive Step of mathematical induction presented in Section 2.4, we assume
that statement n is true, and then prove that statement n + 1 is true. In other words, to
prove that a statement is true (statement n + 1), we assume the truth of its immediate
predecessor (statement n). In some cases in the Inductive Step, to prove a statement is
true, it is helpful to assume the truth of all of the preceding statements (not just the
immediate predecessor). The Strong Form of Mathematical Induction allows us to
assume the truth of all of the preceding statements. Following the usual convention, the
statement to prove is denoted n rather than n4- 1. We next formally state the Strong Form
of Mathematical Induction.

Suppose that we have a propositional function S(n) whose domain of discourse is the
set of integers greater than or equal to ny. Suppose that
S(ngp) is true;

for all n > nyg, if S(k) is true for all k, ny < k < n, then S(n) is true.

Then S(n) is true for every integer n > ny.

In the Inductive Step of the Strong Form of Mathematical Induction, we let n

denote an arbitrary integer, n > ny. Then, assuming that S(k) is true for all & satisfying
ng <k <n, (2.5.1)

we prove that S(n) is true. In inequality (2.5.1), k indexes a statement S(k) that is an
arbitrary predecessor of the statement S(n) (thus k < n), which we are to prove true. In
inequality (2.5.1), ny < k ensures that & is in the domain of discourse

{no,mo + 1,0 +2,...}.

Example 2.5.1

Example 2.5.2

2.5 @ Strong Form of Induction and the Well-Ordering Property 103

The two forms of mathematical induction are logically equivalent (see Exercise 38).
We present several examples that illustrate the use of the Strong Form of Mathe-
matical Induction.

Use mathematical induction to show that postage of 4 cents or more can be achieved by
using only 2-cent and 5-cent stamps.

SOLUTION Discussion Consider the Inductive Step, where we want to prove that
n-cents postage can be achieved using only 2-cent and 5-cent stamps. It would be par-
ticularly easy to prove this statement if we could assume that we can make postage of
n — 2 cents. We could then simply add a 2-cent stamp to make n-cents postage. How
simple! If we use the Strong Form of Mathematical Induction, we can assume the truth
of the statement for all k < n. In particular, we can assume the truth of the statement for
k = n —2. Thus the Strong Form of Mathematical Induction allows us to give a correct
proof based on our informal reasoning.

In this example, ng in inequality (2.5.1) is equal to 4. When we take k = n — 2, to
ensure that ny < k, thatis 4 < n — 2, we must have 6 < n. Now n = 4 is the Basis Step.
What about n = 5?7 We explicitly prove this case. By convention, we add the case n = 5
to the Basis Step; thus the cases n = 4 and n = 5 become the Basis Steps. In general,
if the Inductive Step assumes that the case n — p is true (in this example, p = 2), there
will be p Basis Steps: n =ng,n=no+1,....,n=no+p— 1.

Basis Steps (n =4, n=5)

We can make 4-cents postage by using two 2-cent stamps. We can make 5-cents postage
by using one 5-cent stamp. The Basis Steps are verified.

Inductive Step

We assume that n > 6 and that postage of k cents or more can be achieved by using
only 2-cent and 5-cent stamps for 4 < k < n.

By the inductive assumption, we can make postage of n —2 cents. We add a 2-cent
stamp to make n-cents postage. The Inductive Step is complete. <

When an element of a sequence is defined in terms of some of its predecessors, the
Strong Form of Mathematical Induction is sometimes useful to prove a property of the
sequence. For example, suppose that the sequence ¢y, ¢, . . . is defined by the equations'

c1 =0, Cp = Clnp2) +n foralln > 1.

As examples,
o=cpp +2=c+2=c+2=0+2=2,
c3=cpp +3=cus5+3=c1+3=0+3=3,
cho=cup Fd=cp +4d=c+4=2+4=06,
cs=Ci5p +F3S=cps)+5=c+5=2+5="7.

Use strong induction to prove that ¢, < 2n, foralln > 1.

SOLUTION Discussion In this example, ng in inequality (2.5.1) is equal to 1 and
(2.5.1) becomes 1 < k < n. In particular, since ¢, is defined in terms of ¢, 2, in the
Inductive Step we assume the truth of the statement for k = [n/2]. Inequality (2.5.1)

TThe floor of x, | x], is the greatest integer less than or equal to x (see Section 3.1). Informally, we are “rounding
down.” Examples: |2.3] =2, [5] =5, [-2.7] = -3.

104

Chapter 2 ¢ Proofs

Example 2.5.3

Example 2.5.4

then becomes 1 < |n/2] < n. Because n/2 < n, it follows that |n/2] < n.If n > 2,
then 1 <n/2andso 1 < |n/2]. Therefore if n > 2 and k = [n/2], inequality (2.5.1) is
satisfied. Thus the Basis Stepisn = 1.

Basis Step (n = 1)
Since ¢y =0 <2 =2 - 1, the Basis Step is verified.

Inductive Step

We assume that ¢, < 2k, for all k, | < k < n, and prove that ¢, < 2n, n > 1. Since
1 <n,2 <n Thus 1 <n/2 < n. Therefore | < [n/2| < n and taking k = [n/2], we
see that & satisfies inequality (2.5.1). By the inductive assumption

Clnp) = Ck < 2k =2[n/2].
Now
Cpn = Clpp) +n<2n/2] +n=<2n/2) +n=2n

The Inductive Step is complete. <

Define the sequence ¢y, c3, . . . by the equations
c =1, cn:ctn/zj—i-nz foralln > 1.

Suppose that we want to prove a statement for all # > 2 involving c,. The Inductive Step
will assume the truth of the statement involving c|,,/>;. What are the Basis Steps?

SOLUTION In this example, ng in inequality (2.5.1) is equal to 2 and (2.5.1) becomes
2 < k < n. In the Inductive Step, we assume the truth of the statement for k = |[n/2].
Inequality (2.5.1) then becomes 2 < |n/2| < n. Because n/2 < n, it follows that
ln/2] < n.

If n = 3, then 2 > |n/2]. Thus we must add n = 3 to the Basis Step (n = 2). If
n > 4,then 2 < n/2 and so 2 < [n/2]. Therefore if n > 4 and k = |[n/2], inequality
(2.5.1) is satisfied. Thus the Basis Steps are n = 2 and n = 3. 4

Suppose that we insert parentheses and then multiply the n numbers aa; - - - a,. For
example, if n = 4, we might insert the parentheses as shown:

(a1a2)(azay). (2.5.2)

Here we would first multiply a; by a, to obtain a;a, and a3 by a4 to obtain azas. We
would then multiply a;a, by asay to obtain (ajay)(azas). Notice that the number of
multiplications is three. Use strong induction to prove that if we insert parentheses in
any manner whatsoever and then multiply the n numbers a,a; - - - a,, we perform n — 1
multiplications.

SOLUTION

Basis Step (n = 1)
We need 0 multiplications to compute a;. The Basis Step is verified.

Inductive Step

We assume that for all k, 1 < k < n, it takes k— 1 multiplications to compute the product
of k numbers if parentheses are inserted in any manner whatsoever. We must prove that
it takes n multiplications to compute the product a;a; - - - a, if parentheses are inserted
in any manner whatsoever.

Example 2.5.5

Theorem 2.5.6

2.5 @ Strong Form of Induction and the Well-Ordering Property 105

Suppose that parentheses are inserted in the product a;a; - - - a,. Consider the final
multiplication, which looks like (a; - - - a,)(a,y; - - - a,), for some ¢, | < t < n. [For
example, in equation (2.5.2), t = 2.] There are ¢ terms in the first set of parentheses,
1 <t < n,and n — t terms in the second set of parentheses, 1 < n — ¢ < n. By the
inductive assumption, it takes # — 1 multiplications to compute a; ---a, andn — t — 1
multiplications to compute a4 - - - a,, regardless of how the parentheses are inserted.
It takes one additional multiplication to multiply a; - - - @, by a,4; - - - a,. Thus the total
number of multiplications is

t—1H+m—t—1D+1=n—-1.

The Inductive Step is complete. |

Well-Ordering Property

The Well-Ordering Property for nonnegative integers states that every nonempty set
of nonnegative integers has a least element. This property is equivalent to the two forms
of induction (see Exercises 36-38). We use the Well-Ordering Property to prove some-
thing familiar from long division: When we divide an integer n by a positive integer d,
we obtain a quotient ¢ and a remainder r satisfying 0 < r < d so thatn = dq + r.

When we divide n = 74 by d = 13

5
13)74
65

9

we obtain the quotient ¢ = 5 and the remainder r = 9. Notice that r satisfies 0 < r < d;
that is, 0 < 9 < 13. We have

n=74=13-5+9=dg+r. <

Quotient-Remainder Theorem

If d and n are integers, d > 0, there exist integers g (quotient) and r (remainder)
satisfying

n=dq+r 0<r<d.
Furthermore, ¢ and r are unique; that is, if
n=dq + n 0<r <d
and
n=dq,+nr 0<nr <d,

then g1 = ¢ and r; = rs.

Discussion We can devise a proof of Theorem 2.5.6 by looking carefully at the tech-
nique used in long division. Why is 5 the quotient in Example 2.5.5? Because ¢ =35
makes the remainder n — dg nonnegative and as small as possible. If, for example, g =3,
the remainder would be n — dg =74 — 13 - 3 =35, which is too large. As another exam-
ple, if ¢ = 6, the remainder would be n —dg =74 — 13 - 6 = — 4, which is negative. The
existence of a smallest, nonnegative remainder n—dgq is guaranteed by the Well-Ordering
Property.

106

Chapter 2 ¢ Proofs

Proof Let
X=n—-dk|n—dk>0, keZ}.

We show that X is nonempty using proof by cases. If n > 0, thenn —d-0 =n > 0 so
n is in X. Suppose that n < 0. Since d is a positive integer, | —d < 0. Thus n — dn =
n(l —d) > 0. In this case, n — dn is in X. Therefore X is nonempty.

Since X is a nonempty set of nonnegative integers, by the Well-Ordering Property,
X has a smallest element, which we denote r. We let ¢ denote the specific value of k for
which r =n —dq. Thenn = dq + r.

Since r is in X, r > 0. We use proof by contradiction to show that r < d. Suppose
that r > d. Then

n—dg+1)=n—dg—d=r—d=>0.

Thusn —d(g+ 1) isin X. Also,n —d(q+ 1) = r —d < r. But r is the smallest integer
in X. This contradiction shows that r < d.

We have shown that if d and » are integers, d > 0, there exist integers g and r
satisfying

n=dq+r 0<r<d.
We turn now to the uniqueness of ¢ and r. Suppose that

n=dq; +r 0<r <d
and

n=dg,+nr 0<nr<d.
We must show that g; = g, and r; = r,. Subtracting the previous equations, we obtain

O=n—n=(dgq +r)—(dgp+nrn)=dq —q) — (rn—r),
which can be rewritten
dlgy —q) = —r1.

The preceding equation shows that d divides r, — ;. However, because 0 < r; < d and
0<m<d,

—d<r—r<d.

But the only integer strictly between —d and d divisible by d is 0. Therefore, r| = r;.
Thus, d(q1 — q2) = 0; hence, q; = ¢». The proof is complete. <

Notice that in Theorem 2.5.6 the remainder r is zero if and only if d divides n.

2.5 Problem-Solving Tips

In the Inductive Step of the Strong Form of Mathematical Induction, your goal is to prove
case n. To do so, you can assume all preceding cases (not just the immediately preceding
case as in Section 2.4). You could always use the Strong Form of Mathematical Induc-
tion. If it happens that you needed only the immediately preceding case in the Inductive
Step, you merely used the form of mathematical induction of Section 2.4. However,
assuming all previous cases potentially gives you more to work with in proving case n.

2.5 @ Strong Form of Induction and the Well-Ordering Property

107

In the Inductive Step of the Strong Form of Mathematical Induction, when you
assume that the statement S(k) is true, you must be sure that & is in the domain of dis-
course of the propositional function S(n). In the terminology of this section, you must
be sure that ny < k (see Examples 2.5.1 and 2.5.2).

In the Inductive Step of the Strong Form of Mathematical Induction, if you assume
that case n—p is true, there will be p Basis Steps: n = ng, n = no+1, ..., n =no+p—1.

In general, the key to devising a proof using the Strong Form of Mathematical
Induction is to find smaller cases “within” case n. For example, the smaller cases in
Example 2.5.4 are the parenthesized products (a; - - -a;) and (a;41 - - - a,) for 1 <t < n.

2.5 Review Exercises

1. State the Strong Form of Mathematical Induction.

2. State the Well-Ordering Property.

2.5 Exercises

3. State the Quotient-Remainder Theorem.

Exercises 7 and 8 refer to the sequence c1, c3, ..

Show that postage of 6 cents or more can be achieved by using
only 2-cent and 7-cent stamps.

Show that postage of 24 cents or more can be achieved by us-
ing only 5-cent and 7-cent stamps.
Show that postage of 12 cents or more can be achieved by us-
ing only 3-cent and 7-cent stamps.

. Use the

If S(n) is true, then S(n + 1) is true

form of the Inductive Step to prove the statement in Exam-
ple 2.5.1.

. Use the

If S(n) is true, then S(n + 1) is true

form of the Inductive Step to prove the statement in Exercise 1.

. Use the

If S(n) is true, then S(n + 1) is true

form of the Inductive Step to prove the statement in Exercise 2.

. defined by the

equations

7.

c1 =0, Cp = Cln/2) +n? foralln > 1.
Suppose that we want to prove a statement for all n > 3 in-
volving ¢,. The Inductive Step will assume the truth of the
statement involving c|,,/2). What are the Basis Steps?

Suppose that we want to prove a statement for all n > 4 in-
volving c,. The Inductive Step will assume the truth of the
statement involving c|,/2|. What are the Basis Steps?

Define the sequence ¢, c2, . . . by the equations

c1=c; =0, Cp = Cpy3) +n foralln > 2.

Suppose that we want to prove a statement for all n > 2 in-
volving c,. The Inductive Step will assume the truth of the
statement involving c|,/3). What are the Basis Steps?

Exercises 10 and 11 refer to the sequence cy, ca, . . . defined by the
equations

10.

c; =0, Cn = Cln/2] +n? foralln > 1.

Compute ¢y, ¢3, ¢4, and c5.

11. Prove that ¢, < 4n? foralln > 1.
Exercises 12—14 refer to the sequence cy, ¢y, ... defined by the
equations
c; =0, cp =4c|p2) +n foralln > 1.
12. Compute ¢, c3, ¢4, and cs.

. Prove that ¢, < 4(n —)2 foralln > 1.
. Prove that (n + 1)2/8 < ¢, for all n > 2. Hint: |n/2] >

(n—1)/2 for all n.

. Define the sequence cp, c1, ... by the equations

co=0, Cn = Cln/2) + 3 forall n > 0.

What is wrong with the following “proof” that ¢, < 2n for all
n > 3? (You should verify that it is false that ¢, < 2n for all
n=>3)

We use the Strong Form of Mathematical Induction.

Basis Step (n = 3)

‘We have
c3=c1+3=(o+3)+3=6<2.3.

The Basis Step is verified.

Inductive Step
Assume that ¢, < 2k for all k < n. Then
Cp = Clnj2)+3 < 2|n/2]+3 < 2(n/2)+3 = n+3 < n+n = 2n.

(Since 3 < n,n+3 < n+n.) The Inductive Step is complete.

108 Chapter2 @ Proofs

16. Suppose that we have two piles of cards each containing
n cards. Two players play a game as follows. Each player, in
turn, chooses one pile and then removes any number of cards,
but at least one, from the chosen pile. The player who removes
the last card wins the game. Show that the second player can
always win the game.

In Exercises 17-22, find the quotient q and remainder r as in
Theorem 2.5.6 when n is divided by d.

18. n=-47,d=9

20 n=-7,d=9

22. n=47,d =47

17. n=47,d=9
19. n=7,d=9
2. n=0,d=9

The Egyptians of antiquity expressed a fraction as a sum of frac-
tions whose numerators were 1. For example, 5/6 might be ex-
pressed as

5 1 1

= — 4+ —.
6 2 3
We say that a fraction p/q, where p and q are positive integers, is
in Egyptian form if

(2.5.3)

where ny,na, ...
- < N

, Ny are positive integers satisfying ny < ny <

23. Show that the representation (2.5.3) need not be unique by rep-
resenting 5/6 in two different ways.

*24.

25. By completing the following steps, give a proof by induction
on p to show that every fraction p/g with 0 < p/q < 1 may be
expressed in Egyptian form.

(a) Verify the Basis Step (p = 1).

(b) Suppose that 0 < p/g < 1 and that all fractions i/q’, with
1<i<p and ¢ arbitrary, can be expressed in Egyptian
form. Choose the smallest positive integer n with 1/n <
p/q- Show that

Show that the representation (2.5.3) is never unique.

1
and [—J< .
qg n—1

n>1

(c) Show that if p/g = 1/n, the proof is complete.
(d) Assume that 1/n < p/q. Let

pL=np—gq and q1 = nq.
Show that
1
&zl—)——, 0<lﬂ<1, and p; <p.
q1 qg n q1
Conclude that
1 1 1
p_L, ot r
q1 ni n nj
with ny, ny, . .., n; distinct.

26.

*27.

*28.

*29.

*30.

31.

32.

*33.

34.

35.

*36.

*37.

*38.

(e) Show thatp;/q1 < 1/n.
(f) Show that

1 1 1
A
qg n n ng

and n, ny, ..., n; are distinct.

Use the method of the preceding exercise to find Egyptian
forms of 3/8,5/7, and 13/19.

Show that any fraction p/q, where p and g are positive inte-
gers, can be written in Egyptian form. (We are not assuming
thatp/q < 1.)

Show that any n x n deficient board can be tiled with tromi-
noes if n is odd, n > 5, and 3 divides n?> — 1. Hint: Use the
ideas suggested in the hint for Exercise 38, Section 2.4.

Show that any n x n deficient board can be tiled with tromi-
noes if n is even, n > 8, and 3 divides n? — 1. Hint: Use the
fact that a 4 x 4 deficient board can be tiled with trominoes,
Exercise 28, and Exercise 36, Section 2.4.

Show that any m x n deficient rectangle, 2 < m < n, can be
tiled with trominoes if 3 divides mn — 1, neither side has length
2 unless both of them do, and m # 5.

Give an example of an m X n rectangle with two squares miss-
ing, where 3 divides mn — 2, that can be tiled with trominoes.

Give an example of an m x n rectangle with two squares miss-
ing, where 3 divides mn — 2, that cannot be tiled with tromi-
noes.

Which m x n rectangles with two squares missing, where 3
divides mn — 2, can be tiled with trominoes?

Give an alternative proof of the existence of ¢ and r in
Theorem 2.5.6 for the case n > 0 by first showing that
the set X consisting of all integers k where dk > n is a
nonempty set of nonnegative integers, then showing that X
has a least element, and finally analyzing the least element
of X.

Give an alternative proof of the existence of ¢ and r in The-
orem 2.5.6 using the form of mathematical induction where
the Inductive Step is “if S(n) is true, then S(n + 1) is true.”
Hint: First assume that n > 0. Treat the case n = 0 separately.
Reduce the case n < 0 to the case n > 0.

Assume the form of mathematical induction where the Induc-
tive Step is “if S(n) is true, then S(n + 1) is true.” Prove the
Well-Ordering Property.

Assume the Well-Ordering Property. Prove the Strong Form
of Mathematical Induction.

Show that the Strong Form of Mathematical Induction and the
form of mathematical induction where the Inductive Step is
“if S(n) is true, then S(n + 1) is true” are equivalent. That
is, assume the Strong Form of Mathematical Induction and
prove the alternative form; then assume the alternative form
and prove the Strong Form of Mathematical Induction.

Chapter 2 Review 109

Chapter 2 Notes

[D’ Angelo; Solow] address the problem of how to construct proofs. Tiling with polyominoes
is the subject of the book by [Martin].

The “Fallacies, Flaws, and Flimflam” section of The College Mathematics Journal,
published by the Mathematical Association of America, contains examples of mathematical
mistakes, fallacious proofs, and faulty reasoning.

Chapter 2 Review

Section 2.1

26.

Clause: consists of terms separated by or’s, where each term
is a variable or a negation of a variable.

1. Mathematical system
2. Axiom
3. Definition Section 2.4
4. Undefined term 27. Principle of Mathematical Induction
5. Theorem 28. Basis Step: prove true for the first instance.
6. Proof 29. Inductive Step: assume true for instance n; then prove true
7. Lemma for instance n + 1.
8. Direct proof 30. nfactorial: n! =n(n—1)---1,0! =1
9. Even integer 31. Formula for the sum of the first n positive integers:
10. Odd integer n(n+ 1)
11. Subproof T2+ 4n= 2
12. Disproving a universally quantified statement 32. Formula for the geometric sum:
13. Begging the question . a(rt —1)
14. Circular reasoning ar’ tar 4. tar’ = r—1 7 r7l

Section 2.2

. Proof by contradiction

. Indirect proof

. Proof by contrapositive

. Proof by cases

. Exhaustive proof

. Proving an if-and-only-if statement

. Proving several statements are equivalent
. Existence proof

. Constructive existence proof

. Nonconstructive existence proof

Section 2.3

Section 2.5

33.
34.

35.

Strong Form of Mathematical Induction

Basis Step for the Strong Form of Mathematical Induction:
prove true for the first instance.

Inductive Step for the Strong Form of Mathematical Induc-
tion: assume true for all instances less than n; then prove
true for instance n.

. Well-Ordering Property: every nonempty set of nonnegative

integers has a least element.

. Quotient-Remainder Theorem: If d and n are integers,

d > 0, there exist integers ¢ (quotient) and r (remainder)
satisfying n = dq + r,0 < r <d. Furthermore, g and r
are unique.

25. Resolution proof; uses: if p vV g and —p V r are both true,
then g V ris true.

Chapter 2 Self-Test

1. Distinguish between the terms axiom and definition. 4. Prove that for all rational numbers x and y, y # 0, x/y is

2. What is the difference between a direct proof and a proof rational.

by contradiction? 5. Use proof by cases to prove that

3. Show, by giving a proof by contradiction, that if four teams
play seven games, some pair of teams plays at least two
times.

min{min{a, b}, c} = min{a, min{b, c}}

for all real numbers a, b, and c.

110

Chapter 2 ¢ Proofs

Use mathematical induction to prove that the statements in
Exercises 69 are true for every positive integer n.

6

L2444+ 2n=nn+1)
_ 2n(n+1)(2n+1)

7.22 442+ 420 = 2

g 1+2+ Lo 1
T2 3 (n+ 1! (n+1)!
9. 2"l < 1 4+ (n+ 1)2"

10.

11.

12.

13.

Prove that for all integers m and n, if m and m — n are odd,
then n is even.

Prove that the following are equivalent for sets A and B:

(QACB (MANB=2 (c)AUB=B

Prove that forall sets X, Y,and Z,if X € Yand Y C Z, then
X CZ.

Find the quotient ¢ and remainder r as in Theorem 2.5.6
when n = 101 is divided by d = 11.

Exercises 14 and 15 refer to the sequence cy, ¢y, . . . defined by
the equations

14.
15.
16.

17.

18.

19.

20.

c1 =0, ¢p =2¢u2) +n foralln > 1.

Compute ¢;, ¢3, ¢4, and cs.
Prove that ¢, < nlgnforalln > 1.

Use the Well-Ordering Property to show that any nonempty
set X of nonnegative integers that has an upper bound con-
tains a largest element. Hint: Consider the set of integer up-
per bounds for X.

Find an expression, which is the and of clauses, equivalent
to(pvgqg) —r.

Find an expression, which is the and of clauses, equivalent
to (p vV —q) — —rs.

Use resolution to prove
pV4q
=gV —r
pNV-r
o

Reprove Exercise 19 using resolution and proof by
contradiction.

Chapter 2 Computer Exercises

1.

Implement proof by resolution as a program.

2. Write a program that gives an Egyptian form of a fraction.

3.1
3.2
3.3
3.4
3.5
3.6

Functions

Sequences and Strings
Relations

Equivalence Relations
Matrices of Relations

Relational Databases

3.1

Chapter 3

FUNCTIONS,
SEQUENCES,
AND RELATIONS

All of mathematics, as well as subjects that rely on mathematics, such as computer sci-
ence and engineering, make use of functions, sequences, and relations.

A function assigns to each member of a set X exactly one member of a set Y.
Functions are used extensively in discrete mathematics; for example, functions are used
to analyze the time needed to execute algorithms.

A sequence is a special kind of function. A list of the letters as they appear in a
word is an example of a sequence. Unlike a set, a sequence takes order into account.
(Order is obviously important since, for example, form and from are different words.)

Relations generalize the notion of functions. A relation is a set of ordered pairs.
The presence of the ordered pair (a, b) in a relation is interpreted as indicating a relation-
ship from a to b. The relational database model that helps users access information in a
database (a collection of records manipulated by a computer) is based on the concept of
relation.

Functions

Credit card numbers typically consist of 13, 15, or 16 digits. For example,
46903582 13754657 (3.1.1)

is a hypothetical credit card number. The first digit designates the system. In (3.1.1),
the first digit, 4, shows that the card would be a Visa card. The following digits spec-
ify other information such as the account number and the bank number. (The precise
meaning depends on the type of card.) The last digit is special; it is computed from the
preceding digits and is called a check digit. In (3.1.1), the check digit is 7 and is com-
puted from the preceding digits 4690 3582 1375 465. Credit card check digits are used
to identify certain erroneous card numbers. It is not a security measure, but rather it is
used to help detect errors such as giving a credit card number over the phone and having
it transcribed improperly or detecting an error in entering a credit card number while
ordering a product online.

TThis section can be omitted without loss of continuity.

111

112

Chapter 3 @ Functions, Sequences, and Relations

Go Online

For more on
functions, see
g00.g1/V3y4pS

The check digit is computed as follows. Starting from the right and skipping the
check digit, double every other number. If the result of doubling is a two-digit num-
ber, add the digits; otherwise, use the original digit. The other digits are not modified.

46 9 035821375465

JL b Pl 3Ll b 41 | | Doubleevery other digit.

8 6 180 6 516 2 2 3 14 5 8 6 10

JL L 3Ly el b4l) 1 Adddigits of two-digit numbers.
8 6 9065 7 2235 518°¢6 1

Sum the resulting digits
8+6+94+0+6+54+74+2+24+34+5+5+84+64+1=73.

If the last digit of the sum is 0, the check digit is 0. Otherwise, subtract the last digit of
the sum from 10 to get the check digit, 10—3 = 7. Verify the check digit on your favorite
Visa, MasterCard, American Express, or Diners Club card. This method of calculating
a check digit is called the Luhn algorithm. It is named after Hans Peter Luhn (1896—
1964), who invented it while at IBM. Although originally patented, it is now in the
public domain and is widely used.

One common error in copying a number is to change one digit. Each undoubled
digit contributes a unique value to the sum (0 — 0, 1 — 1, etc.). Each doubled digit
also contributes a unique value to the sum (0 — 0, 1 — 2,..., 4 — 8, 5 — 1,
6 — 3,..., 9 — 9). Thus if a single digit is changed in a credit card number, the
sum used in the Luhn algorithm will change by an absolute amount less than 10, and
the check digit will change. In the preceding example if 1 is changed to 7, the Luhn
algorithm calculation becomes

4 6 9 035 8 2 7 3 7 546 5

Py L Lyl Ll v b 1 L 1 | Doubleevery other digit

8 6 18 0 6 516 2 14 3 14 5 8 6 10

Vel bl bbbV L) Adddigits of two-digit numbers.
8 6 9065 7 2 5 3 5 52861

and the sum becomes
8+64+9+04+6+54+7+24+5+3+5+5+8+6+1=76.

Therefore the check digit changes to 4. Thus, if 1 is inadvertently transcribed as 7, the
error will be detected.

Another common error is transposition of adjacent digits. For example, if 82 is
inadvertently written as 28, the error will be detected by the Luhn algorithm because
the check digit will change (check this). In fact, the Luhn algorithm will detect every
transposition of adjacent digits except for 90 and 09 (see Computer Exercise 4).

The Luhn algorithm gives an example of a function. A function assigns to each
member of a set X exactly one member of a set Y. (The sets X and ¥ may or may not
be the same.) The Luhn algorithm assigns to each integer 10 or greater (so there is a
number available to compute a check digit) a single-digit integer, the check digit. In
the preceding example, the integer 469035821375465 is assigned the value 7, and the
integer 469035827375465 is assigned the value 4. We can represent these assignments
as ordered pairs:

(469035821375465,7) and (469035827375465, 4).

Formally, we define a function to be a particular kind of set of ordered pairs.

Example 3.1.2

Example 3.1.3

|1

L~

f
X Y

Figure 3.1.1 The arrow diagram
of the function of Example 3.1.3.
There is exactly one arrow from
each element in X.

Example 3.1.4

Example 3.1.5

3.1 @ Functions 113

Definition 3.1.1 » LetX and Y be sets. A function f from X to Y is a subset of
the Cartesian product X x Y having the property that for each x € X, there is exactly one
y € Y with (x,y) € f. We sometimes denote a function f from X to Y asf: X — Y.

The set X is called the domain of f and the set Y is called the codomain of f.
The set

Iy ef}

(which is a subset of the codomain Y) is called the range of f.

For the check digit function, the domain is the set of positive integers 10 or greater
and the range is the set of single-digit integers. We can take the codomain to be any set
containing the set of single-digit integers, for example, the set of nonnegative integers. <

The set f = {(1, a), (2, b), (3,a)} is a function from X = {1,2,3} to Y = {a, b, c}.
Each element of X is assigned a unique value in Y: 1 is assigned the unique value a; 2 is
assigned the unique value b; and 3 is assigned the unique value a. We can depict the
situation as shown in Figure 3.1.1, where an arrow from j to x means that we assign the
letter x to the integer j. We call a picture such as Figure 3.1.1 an arrow diagram. For an
arrow diagram to be a function, Definition 3.1.1 requires that there is exactly one arrow
from each element in the domain. Notice that Figure 3.1.1 has this property.

Definition 3.1.1 allows us to reuse elements in Y. For the function f, the element a
in Y is used twice. Further, Definition 3.1.1 does not require us to use all the elements in
Y. No element in X is assigned to the element ¢ in Y. The domain of f is X, the codomain
of f is Y, and the range of f is {a, b}. |

The set

{(1,a), (2,a), (3,b)} (3.1.2)

is not a function from X = {1, 2, 3,4} to Y = {a, b, ¢} because the element 4 in X is not
assigned to an element in Y. It is also apparent from the arrow diagram (see Figure 3.1.2)
that this set is not a function because there is no arrow from 4. The set (3.1.2) is a function
from X' ={1,2,3}to Y = {a, b, c}.

—

X Y

Figure 3.1.2 The arrow diagram

of the set in Example 3.1.4, which

is not a function because there is

no arrow from 4. <

The set {(1, a), (2, b), (3, ¢), (1, b)} is not a function from X = {1,2,3}to Y = {a, b, ¢}
because 1 is not assigned a unique element in Y (1 is assigned the values a and b). It is
also apparent from the arrow diagram (see Figure 3.1.3) that this set is not a function
because there are two arrows from 1.

114

Chapter 3 @ Functions, Sequences, and Relations

Example 3.1.6

Example 3.1.7

Example 3.1.8

Example 3.1.9

7

X Y

Figure 3.1.3 The arrow diagram
of the set in Example 3.1.5, which
is not a function because there are
two arrows from 1. <

Given a function f from X to Y, according to Definition 3.1.1, for each element x
in the domain X, there is exactly one y in the codomain Y with (x, y) € f. This unique
value y is denoted f(x). In other words, f(x) = y is another way to write (x, y) € f.

For the function f of Example 3.1.3, we may write f(1) = a, f(2) = b, andf(3) = a. 4

If we call the check digit function L, we may write

L(469035821375465) =7 and L(469035827375465) = 4. <

The next example shows how we sometimes use the f(x) notation to define a
function.

Let f be the function defined by the rule f(x) = x?. For example, f(2) = 4, f(—3.5) =
12.25, and f(0) = 0. Although we frequently find functions defined in this way, the
definition is incomplete since the domain and codomain are not specified. If we are told
that the domain is the set of all real numbers and the codomain is the set of all nonnegative
real numbers, in ordered-pair notation, we would have

f = {(x, x*) | x is a real number}.

The range of f is the set of all nonnegative real numbers. <

Most calculators have a 1 /x key. If you enter a number and hit the 1/x key, the reciprocal
of the number entered (or an approximation to it) is displayed. This function can be
defined by the rule

1

The domain is the set of all numbers that can be entered into the calculator and whose
reciprocals can be computed and displayed by the calculator. The range is the set of all
the reciprocals that can be computed and displayed. We could define the codomain also
to be the set of all the reciprocals that can be computed and displayed. Notice that by
the nature of the calculator, the domain and range are finite sets. <

Another way to visualize a function is to draw its graph. The graph of a function
f whose domain and codomain are subsets of the real numbers is obtained by plotting
points in the plane that correspond to the elements in f. The domain is contained in the
horizontal axis and the codomain is contained in the vertical axis.

Example 3.1.10

Example 3.1.12

Example 3.1.13

Example 3.1.14

3.1 ® Functions 115

The graph of the function f(x) = x? is shown in Figure 3.1.4. |
y

fx)
(1,3)

4l 1L N

(2.2
(1, 1)
4 3,0
1 ol (,) .
— — X
-2 -1 1 2

Figure 3.1.4 The graph of Figure 3.1.5 A setthatisnota
fx) = x% function. The vertical line x = 1
intersects two points in the set.

We note that a set S of points in the plane defines a function precisely when each
vertical line intersects at most one point of S. If some vertical line contains two or more
points of some set, the domain point does not assign a unique codomain point and the
set does not define a function (see Figure 3.1.5).

Functions involving the modulus operator play an important role in mathematics
and computer science.

Definition 3.1.11 » Ifxisanintegerand yis a positive integer, we define x mod
y to be the remainder when x is divided by y.

We have

6mod2=0, 5modl=0, 8modl12=38, 199673 mod2 = 1. |

The check digit calculated by the Luhn algorithm can be written
[10 — (S mod 10)] mod 10,

where § is the sum used in the intermediate step of the calculation. The last digit in S
is given by S mod 10. It this digit is 1 through 9, inclusive, 10 — (S mod 10) gives the
check digit and the last “mod 10” is unnecessary, but harmless. However, if the last digit
in §is 0, 10 — (S mod 10) = 10. In this case, adding the last “mod 10” gives the check
digit as 0. |

What day of the week will it be 365 days from Wednesday?

SOLUTION Seven days after Wednesday, it is Wednesday again; 14 days after Wednes-
day, it is Wednesday again; and in general, if n is a positive integer, 7n days after Wednes-
day, it is Wednesday again. Thus we need to subtract as many 7’s as possible from 365
and see how many days are left, which is the same as computing 365 mod 7. Since
365 mod 7 = 1, 365 days from Wednesday, it will be one day later, namely Thurs-
day. This explains why, except for leap year, when an extra day is added to Febru-
ary, the identical month and date in consecutive years move forward one day of the
week. |

116

Chapter 3 @ Functions, Sequences, and Relations

Example 3.1.15

Go Online
For more on hash
functions, see
g00.g1/V3y4pS

Example 3.1.16

Hash Functions Suppose that we have cells in a computer memory indexed from O to
10 (see Figure 3.1.6). We wish to store and retrieve arbitrary nonnegative integers in
these cells. One approach is to use a hash function. A hash function takes a data item
to be stored or retrieved and computes the first choice for a location for the item. For
example, for our problem, to store or retrieve the number n, we might take as the first
choice for a location, n mod 11. Our hash function becomes /(n) = n mod 11. Figure
3.1.6 shows the result of storing 15, 558, 32, 132, 102, and 5, in this order, in initially
empty cells.

132 102 15 5 257 558 32

0 1 2 3 4 5 6 7 8 9 10

Figure 3.1.6 Cells in a computer memory.

Now suppose that we want to store 257. Since h(257) = 4, then 257 should be
stored at location 4; however, this position is already occupied. In this case we say that
a collision has occurred. More precisely, a collision occurs for a hash function H if
H(x) = H(y), but x # y. To handle collisions, a collision resolution policy is required.
One simple collision resolution policy is to find the next highest (with 0 assumed to
follow 10) unoccupied cell. If we use this collision resolution policy, we would store
257 at location 6 (see Figure 3.1.6).

If we want to locate a stored value n, we compute m = h(n) and begin looking at
location m. If n is not at this position, we look in the next-highest position (again, O is
assumed to follow 10); if n is not in this position, we proceed to the next-highest position,
and so on. If we reach an empty cell or return to our original position, we conclude that
n is not present; otherwise, we obtain the position of n.

If collisions occur infrequently, and if when one does occur it is resolved quickly,
then hashing provides a very fast method of storing and retrieving data. As an example,
personnel data are frequently stored and retrieved by hashing on employee identification
numbers. <4

Pseudorandom Numbers Computers are often used to simulate random behavior. A
game program might simulate rolling dice, and a client service program might simu-
late the arrival of customers at a bank. Such programs generate numbers that appear
random and are called pseudorandom numbers. For example, the dice-rolling pro-
gram would need pairs of pseudorandom numbers, each between 1 and 6, to simu-
late the outcome of rolling dice. Pseudorandom numbers are not truly random; if one
knows the program that generates the numbers, one could predict what numbers would
occur.

The method usually used to generate pseudorandom numbers is called the linear
congruential method. This method requires four integers: the modulus m, the multiplier
a, the increment ¢, and a seed s satisfying2 <a <m, 0 <c <m, and0 < s < m. We
then set xo = s. The sequence of pseudorandom numbers generated, xi, xo, . .., is given
by the formula

X, = (ax,_1 4+ ¢) mod m.

The formula computes the next pseudorandom number using its immediate predecessor.
For example, if m = 11, a =7, ¢ =5, and s = 3, then

xy = (axo+c)ymodm= (7 -3+5)mod 11 =4

Example 3.1.18

Example 3.1.19

Example 3.1.20

3.1 & Functions 117

and
X, = (ax; +c¢) modm = (7 -4+ 5)mod 11 = 0.

Similar computations show that the sequence continues:
x3=5,x=7,x5=10, x¢ =9, x7 =2, x3 =8, x9 = 6, x190 = 3.

Since x;9 = 3, which is the value of the seed, the sequence now repeats: 3, 4, 0, 5,
7,....

Much effort has been invested in finding good values for a linear congruential
method. Critical simulations such as those involving aircraft and nuclear research require
“good” random numbers. In practice, large values are used for m and a. Commonly used
values are m = 23! — 1 = 2,147,483,647;a = 7° = 16,807; and ¢ = 0, which generate
a sequence of 23! — 1 integers before repeating a value. <

In the 1990s, Daniel Corriveau of Quebec won three straight games of a com-
puter keno game in Montreal, each time choosing 19 of 20 numbers correctly. The odds
against this feat are 6 billion to 1. Suspicious officials at first refused to pay him. Although
Corriveau attributed his success to chaos theory, what in fact happened was that when-
ever power was cut, the random number generator started with the same seed, thus gen-
erating the same sequence of numbers. The embarrassed casino finally paid Corriveau
the $600,000 due him.

‘We next define the floor and ceiling of a real number.

Definition 3.1.17 » The floor of x, denoted | x|, is the greatest integer less than
or equal to x. The ceiling of x, denoted [x], is the least integer greater than or equal
to x.

18.3] =8, [9.11 = 10, |-8.7) = =9, [—11.3] = —11, [6] =6,[-8] = -8 <

The floor of x “rounds x down” while the ceiling of x “rounds x up.” We will use
the floor and ceiling functions throughout the book.

Figure 3.1.7 shows the graphs of the floor and ceiling functions. A bracket, [or], indi-
cates that the point is to be included in the graph; a parenthesis, (or), indicates that the
point is to be excluded from the graph.

21) 21]
I 11
I I I I I (I I I
T T y) T T T K T T T
-2 -1 1 2 3 -2 -1 1 2 3
-1 1
) t-2

Figure 3.1.7 The graphs of the floor (left graph) and ceiling (right graph)
functions.

The first-class postage rate for mail up to 13 ounces is 92 cents for the first ounce or
fraction thereof and 20 cents for each additional ounce or fraction thereof. The postage
P(w) as a function of weight w is given by the equation

118

P(w)

332+ 1

132 +]

12+]

92]
——t —w
12 3 13

Figure 3.1.8 The graph of the
postage function P(w) = 92+
20w — 17.

Example 3.1.21

Example 3.1.23

Example 3.1.24

Example 3.1.25

Chapter 3 ¢ Functions, Sequences, and Relations

Pw) =92420[w — 1] 13>w>0.

The expression [w— 17 counts the number of additional ounces beyond 1, with a fraction
counting as one additional ounce. As examples,

P(3.7) = 92 +20[3.7 — 17 = 92 4+ 20[2.7] = 92 +20 - 3 = 152,
P2)=92+20[2—11=92420[11=92+20-1=112.

The graph of the function P is shown in Figure 3.1.8. <

The Quotient-Remainder Theorem (Theorem 2.5.6) states that if d and n are inte-
gers, d > 0, there exist integers g (quotient) and » (remainder) satisfying

n=dq+r 0<r<d.
Dividing by d, we obtain
n n r
a1 a

Since 0 <r/d < 1,

) =lordl=
al T Tl T
Thus, we may compute the quotient g as | n/d]. Having computed the quotient g, we may

compute the remainder as r = n — dg. We previously introduced the notation n mod d
for the remainder.

We have 36844/2427 = 15.18088...; thus the quotient is ¢ = [36844/2427] = 15.
Therefore, the remainder 36844 mod 2427 is r = 36844 — 2427 - 15 = 439. We have
n = dq+ ror 36844 = 2427 - 15 + 439. <

Definition 3.1.22 » A function f from X to Y is said to be one-to-one (or in-
Jjective) if for all x;, x, € X, if f(x;) = f(x;) then x; = x5.

An equivalent way to state Definition 3.1.22 is: If y is an element of the range of
f, then there is exactly one x in the domain of f such that f(x) = y. If there were two
distinct elements x; and x; of the domain of f with f(x;) = y = f(x2), then we would
have f(x;) = f(x2) but x; # x,—a counterexample to the claim that f is one-to-one.

Because the amount of potential data is usually so much larger than the available
memory, hash functions are usually not one-to-one (see Example 3.1.15). In other words,
most hash functions produce collisions.

The function f = {(1, b), (3, a), (2, ¢)} from X = {1, 2,3} to Y = {a, b, ¢, d} is one-to-
one. 4

The function f = {(1, a), (2, b), (3, a)} is not one-to-one since f(1) = a = f(3). <4

If X is the set of persons who have social security numbers and we assign each person
x € X his or her social security number SS(x), we obtain a one-to-one function since
distinct persons are always assigned distinct social security numbers. It is because this
correspondence is one-to-one that the government uses social security numbers as iden-
tifiers. <

Example 3.1.26

Example 3.1.27

Example 3.1.28

3.1 ® Functions 119

If a function from X to Y is one-to-one, each element in Y in its arrow diagram will have
at most one arrow pointing to it (see Figure 3.1.9). If a function is not one-to-one, some
element in Y in its arrow diagram will have two or more arrows pointing to it (see Figure
3.1.10).

i |1
L~
f f
X Y X Y
Figure 3.1.9 The function of Figure 3.1.10 A function that is
Example 3.1.23. This function is not one-to-one. This function is not
one-to-one because each element in Y one-to-one because a has two arrows
has at most one arrow pointing to it. pointing to it. This function is not
This function is not onto Y because onto Y because there is no arrow
there is no arrow pointing to d. pointing to c. <

Prove that the function f(n) = 2n + 1 from the set of positive integers to the set of
positive integers is one-to-one.

SOLUTION We must show that for all positive integers n; and ny, if f(n;) = f(n,),
then n; = ny. So, suppose that f(n;) = f(n2). Using the definition of f, this latter
equation translates as 2n; + 1 = 2n, + 1. Subtracting 1 from both sides of the equa-
tion and then dividing both sides of the equation by 2 yields n; = n,. Therefore, f is
one-to-one. |

Prove that the function f(n) = 2" — n” from the set of positive integers to the set of
integers is not one-to-one.

SOLUTION We must find positive integers n; and ny, n; # ny, such that f(n;) =
f(n2). By checking the graph (see Figure 3.1.11) or otherwise, we find that f(2) = f(4).
Therefore, f is not one-to-one.

f(n)

74 .
6+
54
44
34
21
14+ o
0

14

—_
[N 5
LRSI o
S
N+

Figure 3.1.11 The graph of
f(n) =2" —n. <

120

Chapter 3 ¢ Functions, Sequences, and Relations

Example 3.1.30

Example 3.1.31

Example 3.1.32

Example 3.1.33

If the range of a function f is equal to its codomain Y, the function is said to be
onto Y.

Definition 3.1.29 » A function f from X to Y is said to be onto Y (or surjective)
if for every y € Y, there exists x € X such that f(x) = y. <

The functionf = {(1, a), (2, ¢), (3, b)} from X = {1,2,3}to Y = {a, b, c} is one-to-one
and onto Y. >

The function f = {(1, b), (3, a), (2,¢)} from X = {1,2,3} to Y = {a, b, ¢, d} is not
onto Y. <

If a function from X to Y is onto, each element in Y in its arrow diagram will have at least
one arrow pointing to it (see Figure 3.1.12). If a function from X to Y is not onto, some
element in Y in its arrow diagram will fail to have an arrow pointing to it (see Figures
3.1.9 and 3.1.10).

-

f
X Y

Figure 3.1.12 The function of

Example 3.1.30. This function is

one-to-one because each element

in Y has at most one arrow. This

function is onto because each

element in Y has at least one

arrow pointing to it. <

Prove that the function
£ = -
2
from the set X of nonzero real numbers to the set Y of positive real numbers is onto Y.

SOLUTION We must show that for every y € Y, there exists x € X such that f(x) = y.
Substituting the formula for f(x), this last equation becomes

1
oY
Solving for x, we find
x = :i:i.
N

Notice that 1/,/y is defined because y is a positive real number. If we take x to be the
positive square root

then x € X. (We could just as well have taken x = —1/,/y.) Thus, for every y € Y, there
exists x, namely, x = 1/,/y such that

Example 3.1.34

Example 3.1.36

Example 3.1.37

Example 3.1.38

Example 3.1.39

Example 3.1.40

3.1 @ Functions 121

J =11/ = =y

1
(1/y)?
Therefore, f is onto Y. <

A function f from X to Y is not onto Y if forsome y € Y, forevery x € X, f(x) # y.
In other words, y is a counterexample to the claim that for every y € Y, there exists x € X
such that f(x) = y.

Prove that the function f(n) = 2n — 1 from the set X of positive integers to the set ¥ of
positive integers is not onto Y.

SOLUTION We must find an element m € Y such that for all n € X, f(n) # m.
Since f(n) is an odd integer for all n, we may choose for y any positive, even integer, for
example, y = 2. Theny € Y and f(n) # y for all n € X. Thus f is not onto Y. |

Definition 3.1.35 » A function that is both one-to-one and onto is called a
bijection. |

The function f of Example 3.1.30 is a bijection. <

If f is a bijection from a finite set X to a finite set Y, then |X| = |Y], that is, the sets
have the same cardinality and are the same size. For example, f = {(1, a), (2, D), (3, ¢),
(4,d)} is a bijection from X = {1,2,3,4} to Y = {a, b, c,d)}. Both sets have four
elements. In effect, f counts the elementsin Y: f(1) = ais the firstelementin Y;f(2) = b
is the second element in Y; and so on. |

Suppose that f is a one-to-one, onto function from X to Y. It can be shown (see
Exercise 116) that {(y, x) | (x,y) € f} is a one-to-one, onto function from Y to X. This
new function, denoted f —1 is called f inverse.

For the function f = {(1, a), (2, ¢), (3, b)}, we have f~! = {(a, 1), (¢, 2), (b, 3)}. |

Given the arrow diagram for a one-to-one, onto function f from X to ¥, we can obtain the
arrow diagram for f~! simply by reversing the direction of each arrow (see Figure 3.1.13,
which is the arrow diagram for f~!, where f is the function of Figure 3.1.12).

f*l
Y X
Figure 3.1.13 The inverse of the
function in Figure 3.1.12. The
inverse is obtained by reversing all
of the arrows in Figure 3.1.12.

4

The function f(x) = 2¥ is a one-to-one function from the set R of all real numbers onto
the set R™ of all positive real numbers. Derive a formula for £~ (y).

122

Chapter 3 ¢ Functions, Sequences, and Relations

Example 3.1.42

Example 3.1.43

Example 3.1.44

Example 3.1.45

SOLUTION Suppose that (y, x) is in f~!; that is,
oy =x (3.1.3)

Then (x,y) € f. Thus, y = 2*. By the definition of logarithm,
log, y = x. (3.1.4)

Combining (3.1.3) and (3.1.4), we have f~!(y) = x = log, y. That is, for each y € R¥,
f~(y) is the logarithm to the base 2 of y. We can summarize the situation by saying that
the inverse of the exponential function is the logarithm function.

Let g be a function from X to Y and let f be a function from Y to Z. Given x € X,
we may apply g to determine a unique element y = g(x) € Y. We may then apply f to
determine a unique element z = f(y) = f(g(x)) € Z. This compound action is called
composition.

Definition 3.1.41 » Let g be a function from X to Y and let f be a function
from Y to Z. The composition of f with g, denoted f o g, is the function

(fog)x) =f(gx))
from X to Z.
Given g = {(1,a), (2,a), (3, ¢)}, a function from X = {1,2,3} to Y = {a, b, ¢}, and

f=1{(a,y), (b,x), (c,2)}, a function from Y to Z = {x, y, z}, the composition function
from X to Z is the function f o g = {(1, y), (2,y), (3, 2)}. <4

Given the arrow diagram for a function g from X to Y and the arrow diagram for a
function f from Y to Z, we can obtain the arrow diagram for the composition f o g
simply by “following the arrows” (see Figure 3.1.14).

Figure 3.1.14 The composition of the functions of

Example 3.1.42. The composition is obtained by

drawing an arrow from x in X to z in Z provided that

there are arrows from x to some y in ¥ and from y to z. <

If f(x) = logy x and g(x) = x*, then f(g(x)) = log;(x*), and g(f(x)) = (log; x)*. <

A store offers 15% off the price of certain items. A coupon is also available that offers
$20 off the price of the same items. The store will honor both discounts. The function
D(p) = 0.85p gives the cost with 15% off the price p. The function C(p) = p — 20 gives
the cost using the $20 coupon. The composition

(DoC)(p)=0.85(p —20) =0.85p — 17

gives the cost using first the coupon and then the 15% discount. The composition
(CoD)(p) = 0.85p—20 gives the cost using first the 15% discount and then the coupon.

Example 3.1.46

Example 3.1.48

Example 3.1.49

Example 3.1.51

Example 3.1.52

3.1 @ Functions 123

We see that regardless of the price of an item, it is always cheapest to use the discount
first. |

Composition sometimes allows us to decompose complicated functions into simpler
functions. For example, the function f(x) = +/sin 2x can be decomposed into the func-
tions

g(x) = /x, h(x) =sinx, w(x) = 2x.

We can then write f(x) = g(h(w(x))). This decomposition technique is important in
differential calculus since there are rules for differentiating simple functions such as g, A,
and w and also rules about how to differentiate the composition of functions. Combining
these rules, we can differentiate more complicated functions. <

A binary operator on a set X associates with each ordered pair of elements in X
one element in X.

Definition 3.1.47 » A function from X x X to X is called a binary operator
on X.

Let X = {1,2,...}. If we define f(x,y) = x + y, where x,y € X, then f is a binary
operator on X. |

If X is a set of propositions, A, V, —, and < are binary operators on X. |

A unary operator on a set X associates with each single element of X one element
in X.

Definition 3.1.50 » A function from X to X is called a unary operator on X.

Let U be a universal set. If we define f(X) = X, where X € P(U), then f is a unary
operator on P(U). |

If X is a set of propositions, — is a unary operator on X. <

3.1 Problem-Solving Tips

The key to solving problems involving functions is clearly understanding the definition
of function. A function f from X to Y can be thought of in many ways. Formally, f is a
subset of X x Y having the property that for every x € X, there is a unique y € Y such
that (x, y) € X x Y. Informally, f can be thought of as a mapping of elements from X to
Y. The arrow diagram emphasizes this view of a function. For an arrow diagram to be a
function, there must be exactly one arrow from each element in X to some element in Y.

A function is a very general concept. Any subset of X x Y having the property that
for every x € X, there is aunique y € Y such that (x, y) € X x Y is a function. A function
may be defined by listing its members; for example, {(a, 1), (b, 3), (¢, 2), (d, 1)} is a
function from {a, b, c, d} to {1, 2, 3}. Here, there is apparently no formula for member-
ship; the definition just tells us which pairs make up the function.

On the other hand, a function may be defined by a formula. For example,

{(n,n+ 2) | nis a positive integer}

defines a function from the set of positive integers to the set of positive integers. The
“formula” for the mapping is “add 2.”

124

Chapter 3 ¢ Functions, Sequences, and Relations

The f(x) notation may be used to indicate which element in the codomain is as-
sociated with an element x in the domain or to define a function. For example, for the
function f = {(a, 1), (b, 3), (c, 2), (d, 1)}, we could write f (a) = 1,f(b) = 3, and so on.
Assuming that the domain of definition is the positive integers, the equation g(n) = n+2

defines the function {(n, n + 2)
to the set of positive integers.

| n is a positive integer} from the set of positive integers

To prove that a function f from X to Y is one-to-one, show that for all x|, x, € X,

if f(x1) = f(x2), then x; = x5.

To prove that a function f from X to Y is not one-to-one, find x1, x, € X, x| # x»,

such that f(x;) = f(x2).

To prove that a function f from X to Y is onto, show that for all y € Y, there exists

x € X such that f(x) = y.

To prove that a function f from X to Y is not onto, find y € Y such that f(x) # y

forall x € X.

3.1 Review Exercises

1. What is a function from X to ¥? 14.
2. Explain how to use an arrow diagram to depict a function.

3. What is the graph of a function? 15.
4. Given a set of points in the plane, how can we tell whether it

is a function?

$ ® X a0

What is the value of x mod y? 16.
What is a hash function?

What is a collision for a hash function?

17.

What is a collision resolution policy?

What are pseudorandom numbers?

10. Explain how a linear congruential random number generator

works, and give an example of a linear congruential random

18.

number generator.

11. What is the floor of x? How is the floor denoted?

19.

12. What is the ceiling of x? How is the ceiling denoted?

13. Define one-to-one function. Give an example of a one-to-one
function. Explain how to use an arrow diagram to determine
whether a function is one-to-one.

In Exercises 1-0, determine which credit card numbers have cor-
rect check digits.

1. 5366-2806-9965-4138

. 5194-1132-8860-3905

2
3. 4004-6067-3429-0019
4. 3419-6888-7169-444

Define onto function. Give an example of an onto function.
Explain how to use an arrow diagram to determine whether a
function is onto.

What is a bijection? Give an example of a bijection. Explain
how to use an arrow diagram to determine whether a function
is a bijection.

Define inverse function. Give an example of a function and its
inverse. Given the arrow diagram of a function, how can we
find the arrow diagram of the inverse function?

Define composition of functions. How is the composition of f
and g denoted? Give an example of functions f and g and their
composition. Given the arrow diagrams of two functions, how
can we find the arrow diagram of the composition of the func-
tions?

What is a binary operator? Give an example of a binary
operator.

What is a unary operator? Give an example of a unary
operator.

5. 3016-4773-7532-21
6. 4629-9521-3698-0203
7. Show that when 82 in the valid credit card number 4690-

3582-1375-4657 is transposed to 28, the check digit changes.

Determine whether each set in Exercises 8-12 is a function from
X={1,2,3,4}to Y = {a, b, c,d}. If it is a function, find its do-

main and range, draw its arrow diagram, and determine if it is
one-to-one, onto, or both. If it is both one-to-one and onto, give
the description of the inverse function as a set of ordered pairs,
draw its arrow diagram, and give the domain and range of the in-
verse function.

8. {(1,a), (2,a), (3,¢), (4,b)}

9. {(1,0),(2,a),(3,b), (4, 0),2,d)}
10. {(1,¢), (2, d), 3. a), (4,b)}
11. {(1,d), (2,4d), (4, a)}
12. {(1, D), (2,b), (3,b), (4, b)}

Draw the graphs of the functions in Exercises 13—16. The domain
of each function is the set of real numbers. The codomain of each
function is also the set of real numbers.

13. f() = [x] = L]
15. f(x) = [**]

14. f(x) =x — |x]
16. f(x) = [x* —x]

Determine whether each function in Exercises 17-22 is one-to-one,
onto, or both. Prove your answers. The domain of each function is
the set of all integers. The codomain of each function is also the set
of all integers.

17. f(n) =n+1 18. f(n) =n*—1
19. f(n) = [n/2] 20. f(n) = |n|
21. f(n) =2n 22. f(n) =n’

Determine whether each function in Exercises 23-28 is one-to-one,
onto, or both. Prove your answers. The domain of each function is
Z x Z. The codomain of each function is Z.

23. f(m,n) =m—n
25. f(m,n) = mn
27. f(m,n) =n*>+1

24. f(m,n) =m
26. f(m,n) =m? + n?
28. f(m,n)=m+n+2

29. Prove that the function f from Z* x ZT to Z* defined by
f(m, n) = 2™3" is one-to-one but not onto.

Determine whether each function in Exercises 30-35 is one-to-one,
onto, or both. Prove your answers. The domain of each function is
the set of all real numbers. The codomain of each function is also
the set of all real numbers.

30. f(x) =6x—9
32. f(x) =sinx
34, f(x) =3"—2

31 f(x) =3x% —3x+ 1
33 f) =24 —4

35. f(x) =]Jf_xz

36. Give an example of a function different from those presented
in the text that is one-to-one but not onto, and prove that your
function has the required properties.

37. Give an example of a function different from those presented
in the text that is onto but not one-to-one, and prove that your
function has the required properties.

3.1 @ Functions 125

38. Give an example of a function different from those presented
in the text that is neither one-to-one nor onto, and prove that
your function has the required properties.

39. Write the definition of “one-to-one” using logical notation
(i.e.,useV, 3, etc.).

40. Use De Morgan’s laws of logic to negate the definition of
“one-to-one.”

41. Write the definition of “onto” using logical notation (i.e., use
Vv, 3, etc.).

42. Use De Morgan’s laws of logic to negate the definition of
“onto.”

Each function in Exercises 43—48 is one-to-one on the specified do-
main X. By letting Y = range of f, we obtain a bijection from X to
Y. Find each inverse function.

43. f(x) = 4x + 2, X = set of real numbers

44. f(x) = 3%, X = set of real numbers

45. f(x) = 3log, x, X = set of positive real numbers
1

46. f(x) = 3 4+ —, X = set of nonzero real numbers
X

47. f(x) = 4x3 — 5, X = set of real numbers
48. f(x) = 64271 X = set of real numbers
49. Given

¢ =1{1,h),(2,0), 3. a)},

a function from X = {1,2,3}to Y = {a, b, ¢, d}, and

f=1{a.x), b, x),(c,2),d W}

a function from Y to Z = {w, x, y, z}, write f o g as a set of
ordered pairs and draw the arrow diagram of f o g.

50. Letf and g be functions from the positive integers to the pos-
itive integers defined by the equations

fm) =2n+1, gn)=3n—1.

Find the compositions f o f, go g,f o g, and g o f.

51. Letf and g be functions from the positive integers to the pos-
itive integers defined by the equations

fmy=n* gn) =2"
Find the compositions f o f, go g,f o g, and g o f.

52. Let f and g be functions from the nonnegative real numbers
to the nonnegative real numbers defined by the equations

J@) = [2x], g(x) = 2%,

Find the compositions f o f, go g,f o g, and g o f.

53. A store offers a (fixed, nonzero) percentage off the price
of certain items. A coupon is also available that offers a
(fixed, nonzero) amount off the price of the same items.
The store will honor both discounts. Show that regardless
of the price of an item, the percentage off the price, and
amount off the price, it is always cheapest to use the coupon
first.

126

In Exercises 54-59, decompose the function into simpler functions
as in Example 3.1.46.

54

58.
60.

61.

62.

63.

64.

65.

. f(x) =logy (x> +2)
56.

1
5. f00) =55

f(x) = sin2x 57. f(x) = 2sinx
_ H 4 _
f(x) = (3 —+ sin x) 59. f(X) = m
Given
f=10x2) | xeX),
afunction from X = {—5, —4, ..., 4, 5} to the set of integers,

write f as a set of ordered pairs and draw the arrow diagram
of f. Is f one-to-one or onto?

How many functions are there from {1, 2} to {a, b}? Which
are one-to-one? Which are onto?

Given
f=1{@aDb), (b, a), (c,b)}

a function from X = {a, b, c} to X:
(a) Writef of andf of of as sets of ordered pairs.
(b) Define

fl=fofo-of

to be the n-fold composition of f with itself. Write f° and
7923 as sets of ordered pairs.

Let f be the function from X = {0, 1, 2, 3, 4} to X defined by
f(x) = 4x mod 5.

Write f* as a set of ordered pairs and draw the arrow diagram
of f. Is f one-to-one? Is f onto?

Let f be the function from X = {0, 1, 2, 3, 4, 5} to X defined
by

f(x) = 4x mod 6.

Write f as a set of ordered pairs and draw the arrow diagram
of f. Is f one-to-one? Is f onto?

An International Standard Book Number (ISBN) is a
code of 13 characters separated by dashes, such as
978-1-59448-950-1. An ISBN consists of five parts: a prod-
uct code, a group code, a publisher code, a code that uniquely
identifies the book among those published by the particu-
lar publisher, and a check digit. For 978-1-59448-950-1, the
product code 978 identifies the product as a book (the same
scheme is used for other products). The group code is 1,
which identifies the book as one from an English-speaking
country. The publisher code 59448 identifies the book as one
published by Riverhead Books, Penguin Group. The code
950 uniquely identifies the book among those published by
Riverhead Books, Penguin Group (Hosseini: A Thousand
Splendid Suns, in this case). The check digit is 1.

Let S equal the sum of the first digit, plus three times
the second digit, plus the third digit, plus three times the

Chapter 3 @ Functions, Sequences, and Relations

fourth digit, . . .
digit is equal to

[10 — (S mod 10)] mod 10.

, plus three times the twelfth digit. The check

Universal Product Codes (UPC), the bar codes that are
scanned at the grocery store for example, use a similar
method to compute the check digit.

Verity the check digit for this book.

In Exercises 6671, determine which ISBNs (see Exercise 65) have
correct check digits.

66.
67.
68.
69.
70.
71.
72.

978-1-61374-376-9
978-0-8108-8139-2
978-0-939460-91-5
978-0-8174-3593-6
978-1-4354-6028-7
978-0-684-87018-0

Show that if a single digit of an ISBN is changed, the
check digit will change. Thus, any single-digit error will be
detected.

For each hash function in Exercises 73—76, show how the data
would be inserted in the order given in initially empty cells. Use
the collision resolution policy of Example 3.1.15.

73.

74.

75.
76.
77.

78.

79.

h(x) = x mod 11; cells indexed O to 10; data: 53, 13, 281,
743, 3717, 20, 10, 796

h(x) = x mod 17; cells indexed O to 16; data: 714, 631, 26,
373,775, 906, 509, 2032, 42, 4, 136, 1028

h(x) = x* mod 11; cells and data as in Exercise 73
h(x) = (x* + x) mod 17; cells and data as in Exercise 74

Suppose that we store and retrieve data as described in Exam-
ple 3.1.15. Will any problem arise if we delete data? Explain.

Suppose that we store data as described in Example 3.1.15
and that we never store more than 10 items. Will any prob-
lem arise when retrieving data if we stop searching when we
encounter an empty cell? Explain.

Suppose that we store data as described in Example 3.1.15
and retrieve data as described in Exercise 78. Will any prob-
lem arise if we delete data? Explain.

Let g be a function from X to Y and let f be a function from Y to
Z. For each statement in Exercises 80-87, if the statement is true,
prove it; otherwise, give a counterexample.

80.
81.
82.
83.
84.

85.
86.
87.

If g is one-to-one, then f o g is one-to-one.
If f is onto, then f o g is onto.

If g is onto, then f o g is onto.

If f and g are onto, then f o g is onto.

If f and g are one-to-one and onto, then f o g is one-to-one
and onto.

If f o g is one-to-one, then f is one-to-one.
If f o g is one-to-one, then g is one-to-one.

If f o g is onto, then f is onto.

If f is a function from X to Y and A C X and B C Y, we define
fA) ={(x)|xeA}
We call f ~1(B) the inverse image of B under f.

7' B) ={xeX|f(x) e B).

88. Let
g=1{1,a), 2,0, 3,0}
be a function from X = {1,2,3}to Y = {a, b, c,d}. Let
S={1}, T ={1,3}, U = {a}, and V = {a, c}. Find g(9),
g(M), g1 (U), and g~ (V).

*89. Let f be a function from X to Y. Prove that f is one-to-one if
and only if

SAANB) =fA)Nf(B)
for all subsets A and B of X. [When S is a set, we define
) ={f(x) xeS}]
*90. Let f be a function from X to Y. Prove that f is one-to-one if

and only if whenever g is a one-to-one function from any set
Ato X, f o gis one-to-one.

*91. Let f be a function from X to Y. Prove that f is onto Y if and
only if whenever g is a function from Y onto any set Z, g o f
is onto Z.

92. Letf be a function from X onto Y. Let

S={""lyer
Show that S is a partition of X.

Let RR denote the set of functions from R to R. We define the eval-
uation function E,, where a € R, from RR 0 R as

Eu(f) =f(a)

93. Is E; one-to-one? Prove your answer.
94. Is E; onto? Prove your answer.

95. Let f be a function from R to R such that for some r € R,
f(rx) = rf(x) for all x € R. Prove that f(r"x) = r*f(x) for
alxeR,neZt.

Exercises 96—100 use the following definitions. Let X = {a, b, c}.
Define a function S from P(X) to the set of bit strings of length 3
as follows. Let Y C X. Ifa € Y, sets; = 1;ifa ¢ Y, set s; = 0.
IfbeY setso=1;ifb &Y setsy =0.1fceY, sets3 =1;if
c &Y, sets3 =0. Define S(Y) = s15253.

96. What is the value of S({a, c})?

97. What is the value of S(&)?

98. What is the value of S(X)?

99. Prove that S is one-to-one.
100. Prove that S is onto.

Exercises 101-107 use the following definitions. Let U be a uni-
versal set and let X C U. Define

c _ 1 ifxeX
YO =10 rgx

3.1 @ Functions 127

We call Cx the characteristic function of X (in U). (A look ahead
at the next Problem-Solving Corner may help in understanding the
following exercises.)

101. Prove that Cxny(x) = Cx(x)Cy(x) forall x € U.

102. Prove that Cxuy(x) = Cx(x) + Cy(x) — Cx(x)Cy(x) for all
xeU.

103. Prove that Cy(x) = 1 — Cx(x) forall x € U.
104. Prove that Cx_y(x) = Cx(x)[1 — Cy(x)] forall x € U.
105. Prove thatif X C Y, then Cx(x) < Cy(x) forall x € U.

106. Find a formula for Cxay. (X A 'Y is the symmetric difference
of X and Y. The definition is given before Exercise 101, Sec-
tion 1.1.)

107. Prove that the function f from P(U) to the set of characteris-
tic functions in U defined by

fX) =Cx

is one-to-one and onto.

108. Let X and Y be sets. Prove that there is a one-to-one func-
tion from X to Y if and only if there is a function from Y
onto X.

A binary operator f on a set X is commutative if f(x, y) = f(y, x)
for all x, y € X. In Exercises 109-113, state whether the given
function f is a binary operator on the set X. If f is not a binary
operator, state why. State whether or not each binary operator is
commutative.

109. f(x,y)=x+y, X={1,2,...}
110. f(x,y) =x—y, X={1,2,...}
111. f(x,y) =xUy, X="P{l,2,3,4})
112. f(x,y) =x/y, X=1{0,1,2,...}

113. fx,y) =X +y>—xy, X={1,2,..}

In Exercises 114 and 115, give an example of a unary operator
[different from f(x) = x, for all x] on the given set.

114. {...,—-2,—-1,0,1,2,...}
115. The set of all finite subsets of {1, 2, 3, ...}

116. Prove that if f is a one-to-one, onto function from X to Y,
then

{0, | &, y) €f}

is a one-to-one, onto function from Y to X.

In Exercises 117-119, if the statement is true for all real numbers,
prove it; otherwise, give a counterexample.

117. [x+3]=[x]1+3

118. [x+yl = [x] + [y

119. [x+y| = [x] + [¥]

120. Prove that if n is an odd integer,

-0 ()

128 Chapter 3 @ Functions, Sequences, and Relations

121. Prove that if # is an odd integer,

y Non-Leap Year Leap Year
2 n? 43 0 January, January,
e October April, July
1 April, September,
. . July December
122. Find a value for x for which [2x] = 2[x] — 1.
2 September, June
123. Prove that 2[x] — 1 < [2x] < 2[x] for all real numbers x. December
124. Prove that for all real numbers x and integers n, [x] = 3 TJune March,
n if and only if there exists &, 0 < & < 1, such that November
x+e=n. 4 February, February,
125. State and prove a result analogous to Exercise 124 March, August
for [x]. November
The months with Friday the 13th in year x are found in row 5 August May
6 May October
x—1 x—1 x—1
Y=\ 7 700 | 300 |) med 126. Find the months with Friday the 13th in 1945.

127. Find the months with Friday the 13th in the current year.

in the appropriate column: 128. Find the months with Friday the 13th in 2040.

Problem-Solving Corner

Functions

Problem
Let U be a universal set and let X € U. Define

1 ifxeX
Qm_{OiU¢X

[We call Cx the characteristic function of X (in U)].
Assume that X and Y are arbitrary subsets of the uni-
versal set U. Prove that Cx_y(x) = Cx(x) + Cy(x) for
allxe Uifandonlyif XNY = @.

Attacking the Problem

First, let’s be clear what we must do. Since the state-
ment is of the form p if and only if g, we have two tasks:
(1) Prove if p then g. (2) Prove if g then p. It’s a good
idea to write out exactly what must be proved:

If Cxuy(x) = Cx(x) + Cy(x) forallx € U,

thenXNY =@. 1)
IfXNY =g, then Cxuy(x) = Cx(x) + Cy(x)
forall x € U. (2)

Consider the first statement in which we assume
that Cxuy (x) = Cx(x) + Cy(x) for all x € U and prove
that X N Y = @. How do we prove that a set, X N Y
in this case, is the empty set? We have to show that
X N Y has no elements. How do we do that? There are

several possibilities, but one thing that comes to mind
is another question: What if X N Y had an element?
This suggests that we might prove the first statement
by contradiction or by proving its contrapositive. If we
let

p: Cxuy(x) = Cx(x) + Cy(x) forall x € U
g XNY =g,

the contrapositive is =g — —p. Now the negation of ¢
is

—q:XNY # 9,
and, using De Morgan’s law (roughly, negating V
results in 3), the negation of p is
—p : Cxuy (x) # Cx(x) 4+ Cy(x) for at least one x € U.
Thus, the contrapositive is
IfXNY # @, then Cxuy(x) # Cx(x) + Cy(x)
for at least one x € U. (3)
For the second statement, we assume that XN Y =
@ and prove that Cxuy(x) = Cx(x) + Cy(x) for all
x € U.Presumably, we can just use the definition of Cx
to compute both sides of the equation for all x € U and
verify that the two sides are equal. The definition of Cx

suggests that we use proof by cases: x € X U Y (when
Cxuy(x) = 1) and x ¢ X UY (when Cxyuy(x) = 0).

Finding a Solution

We first consider proving the contrapositive (3) of
statement (1). Since we assume that X N Y # &, there
exists an element x € X N Y. Now let’s compare the
values of the expressions Cxyy(x) and Cx(x) + Cy(x).
Sincex e XUY, Cxuyy(x) = 1.Sincex e XNY, x € X
and x € Y. Therefore

Cx(x)+Cy(x) =1+1=2.
We have proved that
Cxuy (x) # Cx(x) 4+ Cy(x) for at least one x € U.

Now consider proving the statement (2). This time
we assume that X N Y = . Let’s compute each side
of the equation

Cxuy (x) = Cx(x) + Cy(x) (4)

for each x € U. As suggested earlier, we consider the
cases:x € XUYandx ¢ XUY.Ifx € XUY, then
Cxuy(x) = 1.Since XNY = &, eitherx e Xorx e Y
but not both. Therefore,

Cx(x) +Cy(x) =1+0=1= Cxur(x)
or

Cx(x) + Cy(x) =0+1=1= Cxur®.
Equation (4) is trueif x e XU Y.

Ifx ¢ XUY,then Cxuy(x) =0.Butifx ¢ XUY,

then x ¢ X and x ¢ Y. Therefore,

Cx(x) + Cy(x) =0+ 0= 0= Cxur).
Equation (4) is true if x ¢ X U Y. Thus it is true for all
xeU.

Formal Solution

The formal proof could be written as follows.
CASE —: If Cxuy(x) = Cx(x) + Cy(x) for all x € U,
thenXNY = @.

3.2

3.2 @ Sequences and Strings

We prove the equivalent contrapositive

IfXNY # @, then Cyuy (x) # Cx(x) + Cy(x)

for at least one x € U.

Since X N Y # &, there exists x € X N Y. Since
xeXUY,Cxuy(x) = 1.Sincex e XNY,x € X and
x € Y. Therefore

Cx(x)) +Cy(x)=1+1=2.
Thus,

Cxur (x) # Cx(x) + Cy(x).

CASE <—: If XNY = @, then Cxuy(x) = Cx(x)+Cy(x)
for all x € U.

Suppose that x € XU Y. Then Cxyy(x) = 1. Since
XNY = @, either x € X or x € Y but not both. There-
fore, Cx(x) + Cy(x) = 1 and (4) holds.

Ifx ¢ XUY, then Cxuy(x) = 0. If x ¢ XU Y,
then x ¢ X and x ¢ Y. Therefore, Cx(x) + Cy(x) = 0.
Again, (4) holds. Therefore (4) holds for all x € U.

Summary of Problem-Solving Techniques

B Write out exactly what must be proved.

B Instead of proving p — ¢ directly, consider
proving its contrapositive =g — —p or a proof
by contradiction.

® For statements involving negation, De Morgan’s
laws can be very helpful.

B Look for definitions and theorems relevant to the
expressions mentioned in the statements to be
proved.

B A definition that involves cases suggests a proof
by cases.

Sequences and Strings

Blue Taxi Inc. charges $1 for the first mile and 50 cents for each additional mile. The
following table shows the cost of traveling from 1 to 10 miles. In general, the cost C,, of
traveling n miles is 1.00 (the cost of traveling the first mile) plus 0.50 times the number

(n — 1) of additional miles. Thatis, C,, = 1 + 0.5(n — 1). As examples,

C =
Cs =

1+051-1)=14+05-0=1,
14055 —-1)=14+05-4=1+2=3.

129

130

Chapter 3 @ Functions, Sequences, and Relations

Go Online

For more on
sequences, see
g00.gl/V3y4pS

Example 3.2.2

Example 3.2.3

Example 3.2.4

Mileage Cost
1 $1.00
2 1.50
3 2.00
4 2.50
5 3.00
6 3.50
7 4.00
8 4.50
9 5.00

10 5.50

The list of fares

C =100, C, =150, C3=200, C4=250, Cs5=3.00,
Ce =350, C;=4.00, Cs3=450, Cy=500, Cyp= 550

furnishes an example of a sequence, which is a special type of function in which the
domain consists of integers.

Definition 3.2.1 » A sequence s is a function whose domain D is a subset of
integers. The notation s, is typically used instead of the more general function notation
s(n). The term n is called the index of the sequence. If D is a finite set, we call s a finite
sequence; otherwise, s is an infinite sequence.

For the sequence of fares for Blue Taxi, Inc., the domain of the sequence C is the
subset of integers {1, 2, 3,4, 5,6, 7, 8,9, 10}. The sequence C is a finite sequence.

A sequence s is denoted s or {s,} if n is the index of the sequence. If, for exam-
ple, the domain is the set of positive integers Z*, s or {s,} denotes the entire sequence
s1, 82, 83, We use the notation s, to denote the single element of the sequence s at
index n. In this book, we will frequently use Z* or Z""*¢ as the domain of a sequence.

Consider the sequence s: 2,4, 6, ..., 2n, The first element of the sequence is 2, the
second element of the sequence is 4, and so on. The nth element of the sequence is 2n. If
the domain of s is Z*, we have sy = 2, s =4, 53 =6, ...,s, = 2n, The sequence
s is an infinite sequence. <

Consider the sequence t: a, a, b, a, b. The first element of the sequence is a, the second
element of the sequence is a, and so on. If the domain of ¢ is {1, 2, 3, 4, 5}, we have
ty=a, h =a, t3 =b, t4 = a, and t5 = b. The sequence ¢ is a finite sequence. 4

If the domain of a sequence s is the (infinite) set of consecutive integers {k,
k+1,k+2,...} and the index of s is n, we can denote the sequence s as {s,}.- . For
example, a sequence s whose domain is Z"*""“¢ can be denoted {s,}5 . If the domain of
a sequence s is the set of (finite) consecutive integers {i, i+ 1, ..., j}, we can denote the
sequence s as {s,},_.. For example, a sequence s whose domain is {—1, 0, 1, 2, 3} can

be denoted {s,}’ .

n=—1-

The sequence {u,} defined by the rule u, = n? — 1, foralln > 0, can be denoted
{un}o2 o The name of the index can be chosen in any convenient way. For example, the
sequence u can also be denoted {u,};_,. The formula for the term having index m is
U, =m?*—1, forallm > 0. <

3.2 @ Sequences and Strings 131

Example 3.2.5 Define a sequence b by the rule b, is the nth letter in the word digital. If the domain of

bis{1,2,...,7},thenb, =d, b, = by = i,and b; = . |

Example 3.2.6 If x is the sequence defined by

1

Xy = — —1<n<4,
2n
the elements of x are 2, 1, 1/2,1/4,1/8, 1/16. |
Example 3.2.7 Define a sequence s as

s, =2"+4.3" n>0. (3.2.1)
(a) Find sp.
(b) Find s;.
(¢) Find a formula for s;.
(d) Find a formula for s,_;.
(e) Find a formula for s,_5.
(f) Prove that {s,} satisfies

Sp = 58,1 — 65,2 foralln > 2. (3.2.2)

SOLUTION
(a) Replacing n by 0 in Definition 3.2.1, we obtain
so=2"+4.3"=5,
(b) Replacing n by 1 in Definition 3.2.1, we obtain
si=2'+4.3"=14.
(c) Replacing n by i in Definition 3.2.1, we obtain
si=2"+4.3".
(d) Replacing n by n — 1 in Definition 3.2.1, we obtain
S =2""" 443"
(e) Replacing n by n — 2 in Definition 3.2.1, we obtain
Sn2 =2""2 443772

(f) To prove equation (3.2.2), we will replace s, and s, in the right side of equa-
tion (3.2.2) by the formulas of parts (d) and (e). We will then use algebra to show
that the result is equal to s,. We obtain

58p_1 — 68y_n = 52" 1 44 .3 —6(2"2 44 . 3772
=(5-2-6)2"24+(5-4-3—-6-4)3"2
=4.2"2436.3"2
=222 4 (4. 3%)3"2
=2"+4.3" =g,

132

Chapter 3 ¢ Functions, Sequences, and Relations

Example 3.2.8

Example 3.2.9

Example 3.2.10

Example 3.2.11

Example 3.2.13

The techniques shown in the example will be useful in checking solutions of re-
currence relations in Chapter 7. <

Two important types of sequences are increasing sequences and decreasing
sequences and their relatives, nonincreasing sequences and nondecreasing sequences.
A sequence s is increasing if for all i and j in the domain of s, if i < j, then s; < s5;. A
sequence s is decreasing if for all i and j in the domain of s, if i < j, then s; > s;.
A sequence s is nondecreasing if for all i and j in the domain of s, if i < j, then
s; < s;. (A nondecreasing sequence is like an increasing sequence except that, in the
condition on s, “<” is replaced by “<.”) A sequence s is nonincreasing if for all i and j
in the domain of s, if i < j, then s; > ;. (A nonincreasing sequence is like a decreasing
sequence except that, in the condition on s, “>” is replaced by “>.") Notice that if the
domain of a sequence s is a set of consecutive integers, if s; < s;1| for all i for which i
and i+ 1 are in the domain of s, then s is increasing. Similar remarks apply to decreasing,
nondecreasing, and nonincreasing sequences. (We leave formal justification for this last
comment to Exercise 4.)

The sequence 2, 5, 13, 104, 300 is increasing and nondecreasing. |

The sequence

is decreasing and nonincreasing. <
The sequence 100, 90, 90, 74, 74, 74, 30 is nonincreasing, but it is not decreasing. <«

The sequence 100 (consisting of a single element) is increasing, decreasing, nonincreas-
ing, and nondecreasing since there are no distinct values of i and j for which both i and
Jj are indexes. <

One way to form a new sequence from a given sequence is to retain only certain
terms of the original sequence, maintaining the order of terms in the given sequence.
The resulting sequence is called a subsequence of the original sequence.

Definition 3.2.12 > Let s be a sequence. A subsequence of s is a sequence
obtained from s by choosing certain terms of s in the same order in which they appear
in s.

The sequence

b, c (3.2.3)
is a subsequence of the sequence
a,a,b,c,q. (3.2.4)

Subsequence (3.2.3) is obtained by choosing the third and fourth terms from
sequence (3.2.4).

Notice that the sequence c, b is not a subsequence of sequence (3.2.4) since the
order of terms in the sequence (3.2.4) is not maintained. <4

Example 3.2.14

Example 3.2.15

Example 3.2.16

Go Online

For more on the sigma
notation, see
g00.gl/V3y4pS

3.2 @ Sequences and Strings 133

The sequence

2,4,8,16,...,25 ... (3.2.5)

is a subsequence of the sequence

2,4,6,8,10,12,14,16,...,2n,.... (3.2.6)

Subsequence (3.2.5) is obtained by choosing the first, second, fourth, eighth, and so on,
terms from sequence (3.2.6). |

We turn to the notation for a subsequence. A subsequence of a sequence s is
obtained by choosing certain terms from s. We let ny, n,, ns, . .. denote the indexes (in
order) of s of the terms that are selected to obtain the subsequence. Thus the subsequence
can be denoted {s,,}.

Let us return to the sequence (3.2.4) in Example 3.2.13, which we now call :
h=a, hHh=a, HB=Db, t=c, 15 =q.

The subsequence b, c is obtained from ¢ by selecting the third and fourth terms of ¢. Thus
n; = 3, n, = 4, and the subsequence b, ¢ is t3, t4, Or t,,,, tp,. |

Let us return to the sequence (3.2.6) in Example 3.2.14. We let 5, = 2n, so the sequence
(3.2.6) can be denoted {s,,};2 ;. The subsequence (3.2.5) is obtained from s by selecting
the first, second, fourth, eighth, and so on, terms from s; thus

n]=1, 1’12227 I’l3=4, I’l4=8,....
We see that n, = 281, k=1,2,.... The subsequence (3.2.5) {sy,}72, is defined by
Sy = Syt = 22871 =2k,

In the notation for the original sequence {s,};- |, n is the index of the sequence s.
In the notation for the subsequence {s,, };2,, 7 is used in a totally different way; n is
itself a sequence, namely, the sequence of indexes selected to form the subsequence.
Furthermore, & is the index of the sequence n. It would have been nice to avoid hav-
ing n used in two different ways, but tradition demands that we continue this abuse of
notation. |

Two important operations on numerical sequences are adding and multiplying
terms.

Definition 3.2.17 » If {a;}/_,, is a sequence, we define

n n
E a, =day + apy1 + -+ ay, Hai=am'am+l"'an-
i=m

i=m

The formalism

zn:ai (3.2.7)

134

Chapter 3 ¢ Functions, Sequences, and Relations

Example 3.2.18

Example 3.2.19

Example 3.2.20

Example 3.2.21

is called the sum (or sigma) notation and

f[a; (3.2.8)

is called the product notation.
In (3.2.7) or (3.2.8), i is called the index, m is called the lower limit, and n is called
the upper limit.

Let a be the sequence defined by a, = 2n, n > 1. Then

3
Zai:a1+a2+a3:2+4+6= 12,

i=1

3
[[ei=ai-ar-a3=2-4-6=43
i=1 4

The geometric sum a + ar + ar® + - - - + ar" can be rewritten compactly using the sum
notation as y -, ar’. <

It is sometimes useful to change not only the name of the index, but to change
its limits as well. (The process is analogous to changing the variable in an integral in
calculus.)

Changing the Index and Limits in a Sum Rewrite the sum Y ir" ™, replacing the
index i by j, where i =j — 1.

SOLUTION Since i = j — 1, the term i7"~ becomes
G— DY = (G- Dt
Sincej = i+ 1, wheni = 0,j = 1. Thus the lower limit for j is 1. Similarly, when i = n,
Jj =n+ 1, and the upper limit for j is n + 1. Therefore,
n+1

zn:ir”_i => (-t
i=0 j=1

4

Let a be the sequence defined by the rule ¢; = 2(—1),, i > 0. Find a formula for the
sequence s defined by s, = > " a;.

SOLUTION We find that
S0 =2(=D+2(=D)' +2(=1)2 + - +2(=1)"

2 ifniseven

=2-242—...£2= .
0 ifnisodd. <

Sometimes the sum and product notations are modified to denote sums and prod-
ucts indexed over arbitrary sets of integers. Formally, if S is a finite set of integers and
a is a sequence, » ;¢ a; denotes the sum of the elements {a; | i € S}. Similarly, [[,.; @
denotes the product of the elements {a; | i € S}.

Example 3.2.22

Example 3.2.24

Example 3.2.25

Example 3.2.26

Example 3.2.27

Example 3.2.28

3.2 @ Sequences and Strings 135

If S denotes the set of prime numbers less than 20,

Zl_l+l+l+l+i+i+i+i_]455
iesi_z 35 7 11 13 17 19 77 <

A string is a finite sequence of characters. In programming languages, strings can
be used to denote text. For example, in Java

"Let's read Rolling Stone."
denotes the string consisting of the sequence of characters
Let’s read Rolling Stone.

(The double quotes " mark the start and end of the string.)

Within a computer, bit strings (strings of 0’s and 1’s) represent data and instruc-
tions to execute. As we will see in Section 5.2, the bit string 101111 represents the
number 47.

Definition 3.2.23 » A string over X, where X is a finite set, is a finite sequence
of elements from X.

Let X = {a, b, c}. If we let

we obtain a string over X. This string is written baac. |

Since a string is a sequence, order is taken into account. For example, the string
baac is different from the string acab.

Repetitions in a string can be specified by superscripts. For example, the string
bbaaac may be written b*a’c.

The string with no elements is called the null string and is denoted 1. We let X*
denote the set of all strings over X, including the null string, and we let X denote the
set of all nonnull strings over X.

Let X = {a, b}. Some elements in X* are A, a, b, abab, and b*°a’ba. |

The length of a string « is the number of elements in «. The length of « is de-
noted |«|.

If @ = aabab and B = a*b*a’?, then |a| = 5 and |B| = 39. <

If & and B are two strings, the string consisting of « followed by B, written «f, is
called the concatenation of « and S.

If y = aab and 6 = cabd, then
y0 = aabcabd, 0y = cabdaab, y) =y =aab, M\y =Yy = aab. <

Let X = {a, b, c}. If we define f(«, B) = aff, where « and f are strings over X, then f
is a binary operator on X*. |

A substring of a string « is obtained by selecting some or all consecutive ele-
ments of «. The formal definition follows.

136

Chapter 3 @ Functions, Sequences, and Relations

Example 3.2.30

Example 3.2.31

Example 3.2.32

Definition 3.2.29 > A string S is a substring of the string « if there are strings
y and § with @ = y 4.

The string 8 = add is a substring of the string @ = aaaddad since, if we take y = aa
and 6 = ad, we have o = yB4. Note that if 8 is a substring of «, y is the part of « that
precedes B (in «), and § is the part of « that follows S (in «). <4

Let X = {a, b}. If o« € X*, let «f denote o written in reverse. For example, if o = abb,
af = bba. Define a function from X* to X* as f(a) = aX. Prove that f is a bijection.

SOLUTION We must show that f is one-to-one and onto X*. We first show that f is one-
to-one. We must show that if f(«) = f(8), then « = B. So suppose that f(«) = f(B).
Using the definition of f, we have o = BR. Reversing each side, we find that o = .
Therefore, f is one-to-one.

Next we show that f is onto X*. We must show that if 8 € X*, there exists « € X*
such that f(a) = B. So suppose that 8 € X*. If we let o = B¥, we have

fla)y=af =B =g

since if we twice reverse a string, we obtain the original string. Therefore, f is onto X*.
We have proved that f is a bijection. <

Let X = {a, b}. Define a function from X* x X* to X* as f(«, B) = af. Is f one-to-one?
Is f onto X*?

SOLUTION We try to prove that f is one-to-one. If we succeed, this part of the example
is complete. If we fail, we may learn how to construct a counterexample. So suppose that
[y, B1) = f(az, B>). We have to prove that) = B and ap = f,. Using the definition
of f, we have o181 = af,. Can we conclude that «; = B; and o, = S,? No! It
is possible to concatenate different strings and produce the same string. For example,
baa = o B; if we set oy = b and B; = aa. Also, baa = a, B, if we set y = ba and
B> = a. Therefore f is not one-to-one. We could write up this part of the solution as
follows.

If we set oy = b, By = aa, an = ba, and B, = a, then f(«, B1) = baa =
f(aa, Bo). Since oy # «ay, f is not one-to-one.

The function f is onto X* if given any string y € X*, there exist («, f) € X* x X*
such that f(«, B) = y. In words, f is onto X* if every string in X* is the concatenation
of two strings, each in X*. Since concatenating a string o with the null string A does not
change «, every string in X* is the concatenation of two strings, each in X*. This part of
the solution could be written up as follows.

Let o € X*. Then f(«, A) = oA = «. Therefore f is onto X*. 4

3.2 Problem-Solving Tips

A sequence is a special type of function; the domain is a set of integers. If a;, ay, ... is
a sequence, the numbers 1, 2, ... are called indexes. Index 1 identifies the first element
of the sequence a;; index 2 identifies the second element of the sequence a,; and so on.

In this book, “increasing sequence” means strictly increasing; that is, the sequence
a is increasing if for all i and j in the domain of a, if i < j, then ¢; < a;. We require that
a; is strictly less than (not less than or equal to) a;. Allowing equality yields what we call
in this book a “nondecreasing sequence.” That is, the sequence a is nondecreasing if for
all i and j in the domain of a, if i < j, then a; < a;. Similar remarks apply to decreasing
sequences and nonincreasing sequences.

3.2 @ Sequences and Strings 137

3.2 Review Exercises

=

Define sequence.

What is an index in a sequence?
Define increasing sequence.
Define decreasing sequence.
Define nonincreasing sequence.
Define nondecreasing sequence.
Define subsequence.

Whatis Y 1 a;?

$ % X 0 R WD

Whatis 7 a;?

. Define string.

. Define null string.

If X is a finite set, what is X*?

. If X is a finite set, what is X+ ?

. Define length of a string. How is the length of the string o de-

noted?

. Define concatenation of strings. How is the concatenation of

strings « and S denoted?

. Define substring.

Answer 1-3 for the sequence {s,,}gz1 defined by
c,d,d,c,d,c.

1. Find sy. 2. Find s4.
3. Write s as a string.

4. Let s be a sequence whose domain D is a set of consecutive
integers. Prove that if s; < s;+ for all / for which i and i + 1
are in D, then s is increasing. Hint: Let i € D. Use induction
on j to show thats; < s; forallj,i <jandje D.

In Exercises 5-9, tell whether the sequence s defined by s, =
2" —n?is

(a) increasing

(b) decreasing

(c) nonincreasing

(d) nondecreasing

for the given domain D.

5. D={0,1}

6. D=1{0,1,2,3}

7. D={1,2,3}

8. D=1{1,2,3,4}

9. D={n|neZ, n>3}

Answer 10-22 for the sequence t defined by
th =2n—1, n>1.

10. Find 13. 11. Find #;.
12. Find t1q. 13. Find t2977.

3 7
14. Find Zz,-. 15. Find Zt,-.
i=1 =3

3 6
16. Find Hri. 17. Find Ht,:
i=1 =3

18. Find a formula that represents this sequence as a sequence

whose lower index is 0.

19. Is ¢ increasing? 20. Is ¢ decreasing?

21. Is ¢ nonincreasing? 22. Is ¢t nondecreasing?

Answer 23-30 for the sequence v defined by

v, =n!l+2, n>1.
23. Find vs. 24. Find vy.
4 3
25. Find) v 26. Find) v
i=1 i=3
27. Is v increasing? 28. Is v decreasing?
29. Is v nonincreasing? 30. Is v nondecreasing?

Answer 31-36 for the sequence

=8 q=12, g3 =12, g4 =28, g5=33.

4 4
31. Find Y gi. 32. Find) g
i=2 k=2
33. Is g increasing? 34. Is g decreasing?
35. Is g nonincreasing? 36. Is g nondecreasing?

Answer 37—40 for the sequence

T0=5, 'L’2=5.

37. Is t increasing? 38. Is t decreasing?

39. Is t nonincreasing? 40. Is t nondecreasing?

Answer 41-44 for the sequence

Y, =5.

41. Is Y increasing? 42. Is Y decreasing?

138

43. Is Y nonincreasing? 44. Is Y nondecreasing?

Answer 45-56 for the sequence a defined by

a,,=n2—3n+3, n>1.
4 5
45. Find Y _a;. 46. Find Y _a;.
i=1 j=3
4 6
47. Find Za,-. 48. Find Zak.
i=4 k=1
2 3

49. Find Hai. 50. Find Hai.
51. Find Han. 52. Find Hax.

w
I

n=2 x=3
53. Is a increasing? 54. Is a decreasing?
55. Is a nonincreasing? 56. Is a nondecreasing?

Answer 57-64 for the sequence b defined by b, = n(—1)",n > 1.

4 10
57. Find Zbi. 58. Find Zbi.
i=1 i=1

59. Find a formula for the sequence ¢ defined by

n
Cp = E bl‘.
i=1

60. Find a formula for the sequence d defined by

dp = ﬁbi.
i=1

61. Is b increasing? 62. Is b decreasing?

63. Is b nonincreasing? 64. Is b nondecreasing?

Answer 65-72 for the sequence Q2 defined by 2, = 3 for all n.

3 10
65. Find Zsz,-. 66. Find Zsz,-.
i=1 i=1

67. Find a formula for the sequence ¢ defined by

n
cp = E Q;.
i=1

68. Find a formula for the sequence d defined by

dy, = H Q.
i=1

69. Is Q2 increasing? 70. Is 2 decreasing?

71. Is Q2 nonincreasing? 72. Is Q2 nondecreasing?
Answer 73-79 for the sequence x defined by

X =2,

3
73. Find in.
i=1

Xn =3+ Xp—1, n>2.

10
74. Find in.
i=1

Chapter 3 @ Functions, Sequences, and Relations

75. Find a formula for the sequence ¢ defined by

n
Cp = E Xi.
i=1

76. Is x increasing? 77. Is x decreasing?

78. Is x nonincreasing? 79. Is x nondecreasing?

Answer 80-87 for the sequence w defined by
1 1

=TT

3 10
80. Find Zwi. 81. Find Zw,-.
i=1 i=1

82. Find a formula for the sequence ¢ defined by

n
Cp = E wi.
i=1

83. Find a formula for the sequence d defined by

n
dn = H Wi.
i=1

84. Is wincreasing?

> 1.

85. Is w decreasing?

86. Is w nonincreasing? 87. Is w nondecreasing?

Answer 88—100 for the sequence a defined by
n—1
n= S >3
= 2m—22 "
and the sequence z defined by z,, = Z:’:S a;.

88. Find a3.
89. Find ay.
90. Find z3.
91. Find z4.
%92. Find z;00. Hint: Show that

1 1 1
=y [(;;-2)2 - ﬁ]
and use this form in the sum. Write out az + a4 + as + ag to
see what is going on.
93. Is a increasing?
*94. Is a decreasing?
*95. Is a nonincreasing?
96. Is a nondecreasing?
97. Is z increasing?
98. Is z decreasing?
99. Is z nonincreasing?
100. Is z nondecreasing?
Let X be the set of positive integers that are not perfect squares.
(A perfect square m is an integer of the form m = i> where i is

an integer.) Exercises 101-107 concern the sequence s from X to
Z defined as follows. If n € X, let s, be the least integer ay. for

which there exist integers ay, . ..,ay withn < a; <ap < ---
such that n-ay - - - ai is a perfect square. As an example, consider
s2. None of 2:3,2-4,2:3 -4 is a perfect square, so s # 3 and
s2 # 4 Ifso =5, 2-ay---ai-5 would be a perfect square for
someai,...,ag 2 <ay <ay <---<ay <>5. But then one of the
a; would be a multiple of 5, which is impossible. Therefore, sy # 5.
However, 2 -3 -6 is a perfect square, so so = 6.

< ag

101. Show that s, is defined for every n € X, that is, that for any

n € X, there exist integers ay, ..., a; withn < a; < a; <
- < ag such thatn-ay - - - ay is a perfect square.

102.
103.
104.
105.
*106.
107.
108.

Show that s, < 4n foralln € X.

Find s3.

Find s5.

Find s¢.

Prove that if p is a prime, s, = 2p forall p > 5.
Prove that s is not increasing.

Let u be the sequence defined by

u =3, up=3+u_1, n>2.

Find a formula for the sequence d defined by

n

dn = Hu,-.

i=1
Exercises 109-112 refer to the sequence {s,} defined by the rule

Sp=2n—1, n>1.

109. List the first seven terms of s.

Answer 110-112 for the subsequence of s obtained by taking the
first, third, fifth, . .. terms.
110. List the first seven terms of the subsequence.

111. Find a formula for the expression nx as described before
Example 3.2.15.

112. Find a formula for the kth term of the subsequence.

Exercises 113—116 refer to the sequence {t,} defined by the rule

t, = 2", n>1.

113. List the first seven terms of 7.

Answer 114116 for the subsequence of t obtained by taking the
first, second, fourth, seventh, eleventh, . .. terms.

114.
115.

List the first seven terms of the subsequence.

Find a formula for the expression ny as described before Ex-
ample 3.2.15.

116. Find a formula for the kth term of the subsequence.
Answer 117-120 using the sequences y and z defined by

)’n=2"— 1, zp =n(n —1).

117.

119.

3.2 @ Sequences and Strings 139

A(EYE P (E)(E)

3 4 4
Find) ~ yizi. 120. Find (> y,-) (11 z,-) ,
i=1 =3 =2

Answer 121-128 for the sequence r defined by

121.
123.
125.
127.
128.

rp=3.2"—4.5" n>0.
Find ry. 122. Find ry.
Find ry. 124. Find r3.

Find a formula for 7,,. 126. Find a formula for r,,_;.
Find a formula for r,,_».
Prove that {r,} satisfies

rpn="Trn_1 — 10r,_o, n>2.

Answer 129-136 for the sequence z defined by

129.
131.
133.
135.
136.

139.

140.

141.

7 = (2 +mn)3", n>0.
Find zp. 130. Find z;.
Find z5. 132. Find z3.

Find a formula for z;. 134. Find a formula for z,,_1.
Find a formula for z,,_».

Prove that {z,,} satisfies

Zn = 6201 — 92p2, n>?2.

. Find b,, n=1,...,6, where

bp=n+mn—-1)n—-2)(n-3)(n—4)(n-75).

. Rewrite the sum

n
Z i2 rn—i ,
i=1
replacing the index i by k, where i = k + 1.

Rewrite the sum

n
Z Ci—1Cp—t,
k=1

replacing the index k by i, where k = i + 1.
Let a and b be sequences, and let
k
Sk = Z a;.
i=1

Prove that

n n
Z arby = Zsk(bk — biy1) + Subpya.
k=1 k=1

This equation, known as the summation-by-parts formula, is
the discrete analog of the integration-by-parts formula in cal-
culus.

Sometimes we generalize the notion of sequence as defined
in this section by allowing more general indexing. Suppose

140

that {a;;} is a sequence indexed over pairs of positive integers.
Prove that

n n n J
> () -3 (3w
i=1 \ j=i j=1 \i=1

142. Compute the given quantity using the strings

o = baab, B = caaba, y = bbab.
(a) ap (b) Ba (c) oo
(d) gp © lapl ® 1Bl
(8) |aal (h) BBl i) air
(G A) aBy @ BBy«

143. List all strings over X = {0, 1} of length 2.

144. List all strings over X = {0, 1} of length 2 or less.
145. List all strings over X = {0, 1} of length 3.

146. List all strings over X = {0, 1} of length 3 or less.
147. Find all substrings of the string babc.

148. Find all substrings of the string aabaabb.

149. Use induction to prove that

Z 1
—_— =1,
ny s ny -

for all n > 1, where the sum is taken over all nonempty sub-
sets {ny, na,...,n g} of {1,2,...,n}.

150. Suppose that the sequence {a,} satisfies a; = 0, ax = 1, and
a, = (n—1)(ay—1 +ap—2) foralln > 3.

Use induction to prove that
n
w=y
nl k!
k=0

In Exercises 151-153, x|, x3, ..., Xp, n > 2, are real numbers sat-
isfying x| < xp < --+ < Xp, and x is an arbitrary real number.

foralln > 1.

151. Prove that if x; < x < x,, then

n n—1
E |x — xi| = E [x — xi| + (o — x1),
i=1 i=2

foralln > 3.

152. Prove that if x < xj or x > x,,, then

n n—1
E |x — xi| > g |x = xi| + (xn — x1),
i=1 =2

for all n > 3.

153. A median of xi, ..., x, is the middle value of xi, ..., x;,
when n is odd, and any value between the two middle val-
ues of xq, ..., x, when n is even. For example, if x; < x2 <

- < xs, the median is x3. If x; < x < x3 < x4, a median
is any value between x, and x3, including x, and x3.

Chapter 3 @ Functions, Sequences, and Relations

Use Exercises 151 and 152 and mathematical induc-
tion to prove that the sum

n
E lx — xil,
=1

n > 1, is minimized when x is equal to a median of
X1y eneyXne

If we repeat an experiment n times and observe the val-
ues xi, ..., X,, the sum (3.2.9) can be interpreted as a mea-
sure of the error in assuming that the correct value is x. This
exercise shows that this error is minimized by choosing x to
be a median of the values x1, .. ., x,,. The requested inductive
argument is attributed to J. Lancaster.

154. Prove that

(3.2.9)

n n

2,2
3](i—j>2=4”(”6 2

i=1 j=

155. Let X = {a,b}. Define a function from X* to X* as
f(e) = aab. Is f one-to-one? Is f onto X*? Prove your
answers.

156. Let X = {a, b}. Define a function from X* to X* as f(«) =
aw. Is f one-to-one? Is f onto X*? Prove your answers.

157. Let X = {a, b}. A palindrome over X is a string o for which
a = of (ie., a string that reads the same forward and back-
ward). An example of a palindrome over X is bbaabb. De-
fine a function from X* to the set of palindromes over X
as f(a) = aak. Is f one-to-one? Is f onto? Prove your
answers.

Let L be the set of all strings, including the null string, that can be
constructed by repeated application of the following rules:

B [fa €L, then aab € L and baa € L.
B /[fa € Land B € L, then aff € L.

For example, ab is in L, for if we take o = A, then o € L and the
first rule states that ab = aab € L. Similarly, ba € L. As another
example, aabb is in L, for if we take o = ab, then o € L; by the
first rule, aabb = aab € L. As a final example, aabbba is in L, for
if we take o« = aabb and = ba, then « € L and B € L; by the
second rule, aabbba = of3 € L.

158. Show that aaabbb is in L.

159. Show that baabab is in L.

160. Show that aab is not in L.

161. Prove thatif @ € L, @ has equal numbers of a’s and b’s.
*162. Prove that if « has equal numbers of a’s and b’s, then o € L.

163. Let {a,};2, be a nondecreasing sequence, which is bounded
above, and let L be the least upper bound of the set
{a, | n=1,2,...}. Prove that for every real number ¢ > 0,
there exists a positive integer N such that L — ¢ < a, < L
for every n > N. In calculus terminology, a nondecreasing
sequence, which is bounded above, converges to the limit L,
where L is the least upper bound of the set of elements of the
sequence.

3.3

3.3 @ Relations 141

Relations

Go Online

For more on relations, see
g00.gl/V3y4pS

Example 3.3.2

Example 3.3.3

A relation from one set to another can be thought of as a table that lists which elements
of the first set relate to which elements of the second set (see Table 3.3.1). Table 3.3.1
shows which students are taking which courses. For example, Bill is taking Computer
Science and Art, and Mary is taking Mathematics. In the terminology of relations, we
would say that Bill is related to Computer Science and Art, and that Mary is related to
Mathematics.

Of course, Table 3.3.1 is really just a set of ordered pairs. Abstractly, we define a
relation to be a set of ordered pairs. In this setting, we consider the first element of the
ordered pair to be related to the second element of the ordered pair.

TABLE 3.3.1 m Relation of
Students to Courses

Student Course
Bill CompSci
Mary Math
Bill Art

Beth History
Beth CompSci
Dave Math

Definition 3.3.1 » A (binary) relation R from a set X to a set Y is a subset of
the Cartesian product X x Y. If (x,y) € R, we write x Ry and say that x is related to y.
If X =Y, we call R a (binary) relation on X.

A function (see Section 3.1) is a special type of relation. A function f from X to Y
is a relation from X to Y having the properties:

(a) The domain of f is equal to X.
(b) For each x € X, there is exactly one y € Y such that (x,y) € f.

If we let X = {Bill, Mary, Beth, Dave} and ¥ = {CompSci, Math, Art, History}, our
relation R of Table 3.3.1 can be written

R = {(Bill, CompSci), (Mary, Math), (Bill, Art), (Beth, History),
(Beth, CompSci), (Dave, Math)}.

Since (Beth, History) € R, we may write Beth R History. <

Example 3.3.2 shows that a relation can be given by simply specifying which or-
dered pairs belong to the relation. Our next example shows that sometimes it is possible
to define a relation by giving a rule for membership in the relation.

LetX = {2,3,4}and Y = {3, 4, 5, 6, 7}. If we define a relation R from X to Y by
(x,y) €R if x divides y,
we obtain
R=1{(2,4),(2,6),3,3),(3,6), 4, D}

If we rewrite R as a table, we obtain

142 Chapter 3 @ Functions, Sequences, and Relations

Example 3.3.4

j)3 4 Q
Figure 3.3.1 The digraph of the
relation of Example 3.3.4.

Example 3.3.5

Example 3.3.7

W W | X
PO WO A |~

R |
Let R be the relation on X = {1, 2, 3, 4} defined by (x,y) € Rif x <y, x,y € X. Then

R={(1,1),(,2),(1,3),(1,4), (2,2),(2,3),(2,4), (3,3), (3, 4), (4, 4)}. <

An informative way to picture a relation on a set is to draw its digraph. (Di-
graphs are discussed in more detail in Chapter 8. For now, we mention digraphs only in
connection with relations.) To draw the digraph of a relation on a set X, we first draw
dots or vertices to represent the elements of X. In Figure 3.3.1, we have drawn four
vertices to represent the elements of the set X of Example 3.3.4. Next, if the element
(x, y) is in the relation, we draw an arrow (called a directed edge) from x to y. In Fig-
ure 3.3.1, we have drawn directed edges to represent the members of the relation R of
Example 3.3.4. Notice that an element of the form (x, x) in a relation corresponds to a
directed edge from x to x. Such an edge is called a loop. There is a loop at every vertex in
Figure 3.3.1.

The relation R on X = {a, b, ¢, d} given by the digraph of Figure 3.3.2 is R = {(a, a),
(b, 0), (c,b), d,d)}.

Figure 3.3.2 The digraph of
the relation of Example 3.3.5. |

We next define several properties that relations may have.

Definition 3.3.6 » A relation R on a set X is reflexive if (x,x) € R for every
x e X.

The relation R on X = {1, 2, 3,4} defined by (x,y) € Rif x <y, x,y € X, is reflexive
because for each element x € X, (x, x) € R; specifically, (1, 1), (2, 2), (3, 3), and (4, 4)
are each in R. The digraph of a reflexive relation has a loop at every vertex. Notice that
the digraph of this relation (see Figure 3.3.1) has a loop at every vertex. <

By the generalized De Morgan’s laws for logic (Theorem 1.5.14), a relation R on
X is not reflexive if there exists x € X such that (x, x) € R.

Example 3.3.8

Example 3.3.10

Example 3.3.11

Example 3.3.13

Example 3.3.14

3.3 & Relations 143

The relation R = {(a, a), (b, c), (¢, b), (d,d)} on X = {a, b, c, d} is not reflexive. For
example, b € X, but (b, b) ¢ R. That this relation is not reflexive can also be seen by
looking at its digraph (see Figure 3.3.2); vertex b does not have a loop. |

Definition 3.3.9 » A relation R on a set X is symmetric if for all x, y € X, if
(x,y) € R, then (v, x) € R.

The relation R = {(a, a), (b, ¢), (¢, b), (d,d)} on X = {a, b, c, d} is symmetric because
for all x, y, if (x, y) € R, then (y, x) € R. For example, (b, ¢) isin R and (c, b) is also in
R. The digraph of a symmetric relation has the property that whenever there is a directed
edge from v to w, there is also a directed edge from w to v. Notice that the digraph of
this relation (see Figure 3.3.2) has the property that for every directed edge from v to w,
there is also a directed edge from w to v. |

In symbols, a relation R is symmetric if
VxVy[(x,y) € R] — [(y,x) € R].
Thus R is not symmetric if
—[VxVy[(x,y) € R] = [(y,x) € R]]. (3.3.1)

Using the generalized De Morgan’s laws for logic (Theorem 1.5.14) and the fact that
—(p = q) = p A —q (see Example 1.3.13), we find that (3.3.1) is equivalent to

Ay[[(x, y) € RIA —[(y, %) € R]]
or, equivalently,
Iyl (x, y) € RIA[(y,x) € R].

In words, a relation R is not symmetric if there exist x and y such that (x, y) is in R and
(v, x) isnotin R.

The relation R on X = {I,2,3,4} defined by (x,y) € Rifx < y, x,y € X, is
not symmetric. For example, (2,3) € R, but (3,2) ¢ R. The digraph of this relation
(see Figure 3.3.1) has a directed edge from 2 to 3, but there is no directed edge from
3to2. |

Definition 3.2.12 » A relation R on a set X is antisymmetric if for all x, y € X,
if (x,y) € Rand (y, x) € R, thenx = y.

The relation R on X = {1, 2, 3,4} defined by (x,y) € Rif x < y, x,y € X, is antisym-
metric because for all x, y, if (x,y) € R (i.e., x < y)and (y,x) € R (i.e.,, y < x), then
X=y. |

It is sometimes more convenient to replace
if (x,y) e Rand (y,x) € R,thenx =y

in the definition of “antisymmetric” (Definition 3.3.12) with its logically equivalent con-
trapositive (see Theorem 1.3.18)

144 Chapter 3 @ Functions, Sequences, and Relations

Example 3.3.15

a D D D

Figure 3.3.3 The digraph of the
relation of Example 3.3.15.

Example 3.3.16

Example 3.3.18

if x # y, then (x,y) € Ror (y,x) € R

to obtain a logically equivalent characterization of “antisymmetric”: A relation R on a
set X is antisymmetric if for all x, y € X, if x # y, then (x,y) € Ror (y, x) € R.

Using this equivalent definition of “antisymmetric,” we again see that the relation
Ron X = {1, 2, 3,4} defined by (x,y) € Rif x <y, x,y € X, is antisymmetric because
forall x,y,ifx £y, (x,y) € R(i.e.,x > y)or (y,x) € R (i.e.,y > x).

The equivalent characterization of “antisymmetric” translates for digraphs as fol-
lows. The digraph of an antisymmetric relation has the property that between any two
distinct vertices there is at most one directed edge. Notice that the digraph of the relation
R in the previous paragraph (see Figure 3.3.1) has at most one directed edge between
each pair of vertices. <

If a relation has no members of the form (x, y), x # y, we see that the equivalent char-
acterization of “antisymmetric”

forallx,y € X,if x # y, then (x,y) € Ror (y,x) € R

(see Example 3.3.14) is trivially true (since the hypothesis x # y is always false). Thus if
a relation R has no members of the form (x, y), x # y, R is antisymmetric. For example,
R = {(a,a), (b,b), (c,c)} on X = {a, b, ¢} is antisymmetric. The digraph of R shown
in Figure 3.3.3 has at most one directed edge between each pair of distinct vertices.
Notice that R is also reflexive and symmetric. This example shows that “antisymmetric”
is not the same as “not symmetric” because this relation is in fact both symmetric and
antisymmetric. <

In symbols, a relation R is antisymmetric if
VxVy[(x,y) € RA (y,x) € R] = [x =y].
Thus R is not antisymmetric if
=[VaVy[(x,y) € RA (y,x) € R] — [x =y]]. (3.3.2)

Using the generalized De Morgan’s laws for logic (Theorem 1.5.14) and the fact that
—(p — q) = p A —q (see Example 1.3.13), we find that (3.3.2) is equivalent to

IxTy[(x,y) € RA (y.x) € RIA =[x =y]]
which, in turn, is equivalent to
BAY[(x,y) € RA (y,x) € RA (x # V)]

In words, a relation R is not antisymmetric if there exist x and y, x # y, such that (x, y)
and (y, x) are both in R.

The relation R = {(a, a), (b, ¢), (c, b), (d,d)} on X = {a, b, ¢, d} is not antisymmetric
because both (b, ¢) and (c, b) are in R. Notice that in the digraph of this relation (see
Figure 3.3.2) there are two directed edges between b and c. <

Definition 3.3.17 » A relation R on a set X is transitive if for all x, y, z € X, if
(x,y) and (y, z) € R, then (x,7) € R.

The relation R on X = {1, 2, 3, 4} defined by (x,y) € Rif x <y, x,y € X, is transitive
because for all x, y, z, if (x, y) and (y, z) € R, then (x, z) € R. To formally verify that this

3.3 @ Relations 145

relation satisfies Definition 3.3.17, we can list all pairs of the form (x, y) and (y, z) in R
and then verify that in every case, (x, z) € R:

Fairs of Form Fairs of Form

>y 2 2 | oy 0,2 (x,2)
a,n @a,n (1, 1) 2,2) (2,2 2,2)
a,n 1,2 (1,2) 2,2) (2,3) 2,3)
1,1 (1,3 (1,3) 2,2) (2,4 2,4)
a,n 1,4 (1,4) 2,3) (3,3 2,3)
1,2) (2,2 (1,2) 2,3) (3,4 2,4)
1,2) (2,3 (1,3) 2,4 4,4 2,4)
1,2) 2,4 (1,4) 3,3 (3.3 (3,3)
1,3) 3,3 (1,3) 3,3 (3,4 3,4)
(1,3) (3,4 (1,4) 3,4 4,49 (3,4)
1,4 4,4 (1,4) 4,4 4,49 4,4)

Actually, some of the entries in the preceding table were unnecessary. If x = y or
y = z, we need not explicitly verify that the condition

if (x,y) and (v, 2) € R, then (x,7) € R

is satisfied since it will automatically be true. Suppose, for example, that x = y and
(x,y) and (y, z) are in R. Since x = y, (x, z) = (¥, 2) is in R and the condition is satisfied.
Eliminating the cases x = y and y = z leaves only the following to be explicitly checked
to verify that the relation is transitive:

Fairs of Form

(xy) (2 (x, 2)
(1,2) (2,3) (1, 3)
(,2) 2,9 (1,4)
(1,3) (3,4 (1,4)
2,3) 3,4 2, 4)

The digraph of a transitive relation has the property that whenever there are di-
rected edges from x to y and from y to z, there is also a directed edge from x to z. Notice
that the digraph of this relation (see Figure 3.3.1) has this property. |

In symbols, a relation R is transitive if
VxVyVz[(x,y) € RA (y,2) € R] — [(x,2) € R].
Thus R is not transitive if
=[VaVyVz[(x,y) € RA (v, 2) € R] = [(x,2) € R]]. (3.3.3)

Using the generalized De Morgan’s laws for logic (Theorem 1.5.14) and the fact that
—(p — q) = p A —q (see Example 1.3.13), we find that (3.3.3) is equivalent to

Axy3z[(x,y) € RA (v, 2) € RI A —[(x, 2) € R]
or, equivalently,

IxAy3z[(x,y) e RA (y,2) € RA (x,2) € R].

146

Chapter 3 @ Functions, Sequences, and Relations

Example 3.3.19

Example 3.3.21

Example 3.3.22

In words, a relation R is not transitive if there exist x, y, and z such that (x, y) and (y, z)
are in R, but (x, z) is not in R.

The relation R = {(a, a), (b, ¢), (¢, b), (d,d)} on X = {a, b, ¢, d} is not transitive. For
example, (b, ¢) and (c, b) are in R, but (b, b) is not in R. Notice that in the digraph of
this relation (see Figure 3.3.2) there are directed edges from b to ¢ and from c to b, but
there is no directed edge from b to b. <

Relations can be used to order elements of a set. For example, the relation R defined
on the set of integers by

(x,y) €eR ifx <y

orders the integers. Notice that the relation R is reflexive, antisymmetric, and transitive.
Such relations are called partial orders.

Definition 3.3.20 > A relation R on a set X is a partial order if R is reflexive,
antisymmetric, and transitive.

Since the relation R defined on the positive integers by
(x,y) €R if x divides y

is reflexive, antisymmetric, and transitive, R is a partial order. |

If R is a partial order on a set X, the notation x < y is sometimes used to indicate
that (x, y) € R. This notation suggests that we are interpreting the relation as an ordering
of the elements in X.

Suppose that R is a partial order on a set X. If x, y € X and either x < yory < x,
we say that x and y are comparable. If x, y € X and x # yand y £ x, we say that x
and y are incomparable. If every pair of elements in X is comparable, we call R a total
order. The less than or equal to relation on the positive integers is a total order since,
if x and y are integers, either x < y or y < x. The reason for the term “partial order” is
that in general some elements in X may be incomparable. The “divides” relation on the
positive integers (see Example 3.3.21) has both comparable and incomparable elements.
For example, 2 and 3 are incomparable (since 2 does not divide 3 and 3 does not divide 2),
but 3 and 6 are comparable (since 3 divides 6).

One application of partial orders is to task scheduling.

Task Scheduling Consider the set T of tasks that must be completed in order to take an
indoor flash picture with a particular camera.

. Remove lens cap.
. Focus camera.
. Turn off safety lock.

. Turn on flash unit.

| O S

. Push photo button.

Some of these tasks must be done before others. For example, task 1 must be done before
task 2. On the other hand, other tasks can be done in either order. For example, tasks 2
and 3 can be done in either order.

Example 3.3.24

Example 3.3.26

3.3 @ Relations 147

The relation R defined on T by
iRj if i = j or task i must be done before task j
orders the tasks. We obtain
R={(1,1),2,2),3,3),4,4),(5,5,,2),(,5), (2,5, (3,5, 4,5}

Since R is reflexive, antisymmetric, and transitive, it is a partial order. A solution to the
problem of scheduling the tasks so that we can take a picture is a total ordering of the
tasks consistent with the partial order. More precisely, we require a total ordering of
the tasks 11, 1, 13, 4, t5 such that if #; Rt;, then i = j or #; precedes # in the list. Among
the solutions are 1,2, 3,4,5and 3,4, 1, 2, 5. |

Given a relation R from X to Y, we may define a relation from Y to X by reversing
the order of each ordered pair in R. The inverse relation generalizes the inverse function.
The formal definition follows.

Definition 3.3.23 » Let R be arelation from X to Y. The inverse of R, denoted
R~!, is the relation from Y to X defined by
R ={(.%0| () €R}.

If we define a relation R from X = {2,3,4}to Y = {3,4,5,6,7} by
(x,y) €R if x divides y,
we obtain
R=1{2,4),2,6),3,3),(3,6), (4,4)}.
The inverse of this relation is
R™'={4,2),(6,2),(3,3),(6,3), (4,4)}.

In words, we might describe this relation as “is divisible by.” <

If we have arelation R from X to Y and a relation R, from Y to Z, we can form the

composition of the relations by applying first relation R; and then relation R,. Compo-
sition of relations generalizes composition of functions. The formal definition follows.

Definition 3.3.25 P> Let R, be arelation from X to Y and R, be a relation from
Y to Z. The composition of Ry and R,, denoted R, o Ry, is the relation from X to Z defined
by

RyoR; ={(x,2) | (x,y) € Ry and (y, z) € R, for some y € Y}.

The composition of the relations
Ry ={(1,2),(1,6),(2,4),(3,4), (3,6), 3, 8)}
and
Ry ={(2,u), (4,5), (4,0, (6,1), (8, u)}
is
RyoR; ={(1,u), (1,1),(2,5),(2,1),(3,s), 3,0, 3, w)}.
For example, (1, u) € R, o R because (1,2) € R; and (2, u) € R;. <4

148

Chapter 3 @ Functions, Sequences, and Relations

Example 3.3.27 Suppose that R and § are transitive relations on a set X. Determine whether each of RUS,

RN S, or R o S must be transitive.

SOLUTION We try to prove each of the three statements. If we fail, we will try to
determine where our proof fails and use this information to construct a counterexample.

To prove that R U § is transitive, we must show that if (x, y), (v, z) € RU S, then
(x,z) € RUS. Suppose that (x, y), (v,z) € RUS. If (x, y) and (y, z) happen to both be
in R, we could use the fact that R is transitive to conclude that (x, z) € R and, therefore,
(x,z) € RUS. A similar argument shows that if (x, y) and (y, z) happen to both be in S,
then (x, z) € RUS. But what if (x, y) € R and (y, z) € S? Now the fact that R and S are
transitive seems to be of no help. We try to construct a counterexample in which R and
S are transitive, but there exist (x, y) € R and (y, z) € S such that (x,z) € RUS.

We put (1, 2) in R and (2, 3) in S and ensure that (1, 3) is not in R U S. In fact,
if R = {(1,2)}, R is transitive. Similarly, if S = {(2, 3)}, S is transitive. We have our
counterexample. We could write up our solution as follows.

We show that RU S need not be transitive. Let R = {(1, 2)} and S = {(2, 3)}. Then
R and § are transitive, but RU S is not transitive; (1, 2), (2,3) € RUS, but (1,3) ¢ RUS.

Next we turn our attention to RN S. To prove that RN S is transitive, we must show
that if (x,y), (v,z) € RN S, then (x,z) € RN S. Suppose that (x,y), (y,z) € RN S.
Then (x,y), (v, z) € R. Since R is transitive, (x, z) € R. Similarly, (x, y), (y,z) € S, and
since S is transitive, (x, z) € S. Therefore (x,z) € RN S. We have proved that R N S is
transitive.

Finally, consider R o S. To prove that R o § is transitive, we must show that if
(x,y), (y,2) € Ro S, then (x,z) € Ro S. Suppose that (x, y), (v,z) € Ro S. Then there
exists a such that (x, @) € S and (a,y) € R, and there exists b such that (y, b) € S and
(b, z) € R. We now know that (a, y), (b,z) € R, but the fact that R is transitive does
not allow us to infer anything from (a, y), (b, z) € R. A similar statement applies to S.
We try to construct a counterexample in which R and S are transitive but R o S is not
transitive.

We will arrange for (1, 2), (2,3) € Ro S, but (1, 3) ¢ Ro S. In order for (1, 2) €
R o S, we must have (1,a) € S and (a,2) € R, for some a. We put (1,5) in S and
(5,2) in R. (We chose a to be a number different from 1, 2, or 3 to avoid a clash with
those numbers. Any number different from 1, 2, 3 would do.) So far, so good! In order
for (2,3) € Ro S, we must have (2,b) € S and (b, 3) € R, for some b. We put (2, 6)
in S and (6, 3) in R. (Again, we chose b = 6 to avoid a clash with the other numbers
already chosen.) Now R = {(5, 2), (6,3)} and S = {(1, 5), (2, 6)}. Notice that R and S
are transitive. We have our counterexample. We could write up our solution as follows.

We show that R o S need not be transitive. Let R = {(5,2),(6,3)} and S =
{(1,5), (2,6)}. Then R and § are transitive. Now R o S = {(1,2), (2, 3)} is not tran-
sitive; (1,2), (2,3) e Ro S,but (1,3) € Ro S. |

3.3 Problem-Solving Tips

B To prove that a relation is reflexive, show that (x,x) € R for every x € X. In
words, a relation is reflexive if every element in X is related to itself. Given an
arrow diagram, the relation is reflexive if there is a loop at every vertex.

B To prove that a relation R on a set X is not reflexive, find x € X such that (x, x) & R.
Given an arrow diagram, the relation is not reflexive if some vertex has no loop.

B To prove that a relation R on a set X is symmetric, show that for all x,y € X, if
(x,y) €R, then (y, x) € R. In words, a relation is symmetric if whenever x is re-
lated to y, then y is related to x. Given an arrow diagram, the relation is symmetric

3.3 & Relations 149

if whenever there is a directed edge from x to y, there is also a directed edge from
ytox.

B To prove that a relation R on a set X is not symmetric, find x, y € X such that
(x,¥) €R and (v, x) € R. Given an arrow diagram, the relation is not symmetric
if there are two distinct vertices x and y with a directed edge from x to y but no
directed edge from y to x.

® To prove that a relation R on a set X is antisymmetric, show that for all x, y € X,
if (x,y) €R and (y, x) €R, then x = y. In words, a relation is antisymmetric if
whenever x is related to y and y is related to x, then x = y. An equivalent charac-
terization of “antisymmetric” can also be used: Show that for all x, y e X, if x # y,
then (x, y) € R or (y, x) € R. Given an arrow diagram, the relation is antisymmetric
if between any two distinct vertices there is at most one directed edge. Note that
“not symmetric” is not necessarily the same as “antisymmetric.”

® To prove that a relation R on a set X is not antisymmetric, find x, ye X, x # y,
such that (x, y) € R and (y, x) € R. Given an arrow diagram, the relation is not anti-
symmetric if there are two distinct vertices x and y and two directed edges, one
from x to y and the other from y to x.

® To prove that a relation R on a set X is transitive, show that for all x, y, z€ X, if
(x,y) and (y, z) are in R, then (x, z) is in R. [It suffices to check ordered pairs (x, y)
and (y, z) with x # y and y # z.] In words, a relation is transitive if whenever x is
related to y and y is related to z, then x is related to z. Given an arrow diagram, the
relation is transitive if whenever there are directed edges from x to y and from y to
z, there is also a directed edge from x to z.

® To prove that a relation R on a set X is not transitive, find x, y, z € X such that (x, y)
and (y, z) are in R, but (x, z) is not in R. Given an arrow diagram, the relation is
not transitive if there are three distinct vertices x, y, z and directed edges from x to
y and from y to z, but no directed edge from x to z.

B A partial order is a relation that is reflexive, antisymmetric, and transitive.

B The inverse R~ of the relation R consists of the elements (v, x), where (x,y) €R.
In words, x is related to y in R if and only if y is related to x in R~!.

® If Ry is arelation from X to Y and R, is a relation from Y to Z, the composition of
R and R;, denoted R, o Ry, is the relation from X to Z defined by

RyoR;y ={(x,2) | (x,y) € Ry and (y, z) € R, for some y € Y}.

To compute the composition, find all pairs of the form (x, y) € Ry and (y, 2) € R»;
then put (x,) in Ry o R;.

3.3 Review Exercises

1. What is a binary relation from X to Y? 6. Define transitive relation. Give an example of a transitive

5. What is the di b of a bi lation? relation. Give an example of a relation that is not transitive.
. at is the digraph of a binary relation?

. . 7. Define partial order and give an example of a partial order.
3. Define reflexive relation. Give an example of a reflexive p £ P P

relation. Give an example of a relation that is not reflexive. 8. Define inverse relation and give an example of an inverse

. . . . relation.
4. Define symmetric relation. Give an example of a symmetric

relation. Give an example of a relation that is not symmetric. 9. Define composition of relations and give an example of the

. composition of relations.
5. Define antisymmetric relation. Give an example of an antisym- P

metric relation. Give an example of a relation that is not anti-
symmetric.

150

3.3 Exercises

Chapter 3 ¢ Functions, Sequences, and Relations

In Exercises 1-4, write the relation as a set of ordered pairs.

1.
8840 Hammer
9921 Pliers
452 Paint
2207 Carpet
2.
Sally Math
Ruth Physics
Sam Econ
3.
a 3
b 1
b 4
c 1
4.
a a

b b
In Exercises 5-8, write the relation as a table.

5. R=1{(a,6), (b,2),(a1),(c, D}
6. The relation R on {1, 2, 3, 4} defined by (x,y) € R ifx> >y

7. R = {(Roger, Music), (Pat, History), (Ben, Math),
(Pat, PolySci)}

8. The relation R from the set X of planets to the set Y of integers
defined by (x, y) € R if x is in position y from the sun (nearest
the sun being in position 1, second nearest the sun being in
position 2, and so on)

In Exercises 9—12, draw the digraph of the relation.

9. The relation of Exercise 4 on {a, b, c}
10. The relation R = {(1, 2), (2,3), (3,4), (4, D} on {1, 2, 3,4}

11. The relation R={(1,2),(2,1),(3,3),(1,1),(2,2)} on
X =1{1,2,3}

12. The relation of Exercise 6
In Exercises 13—16, write the relation as a set of ordered pairs.

13.

14.
1 2
3
4 5 :
15.
1. 2.
16.

17. Find the inverse (as a set of ordered pairs) of each relation in
Exercises 1-16.

Exercises 18 and 19 refer to the relation R on the set {1, 2, 3,4, 5}
defined by the rule (x,y) € R if 3 divides x — y.

18. List the elements of R. 19. List the elements of R~.

20. Repeat Exercises 18 and 19 for the relation R on the set
{1, 2, 3,4, 5} defined by the rule (x,y) e Rifx+y < 6.

21. Repeat Exercises 18 and 19 for the relation R on the set
{1,2, 3,4, 5} defined by the rule (x,y) e Rifx =y — 1.

22. Is the relation of Exercise 20 reflexive, symmetric, antisym-
metric, transitive, and/or a partial order?

23. Is the relation of Exercise 21 reflexive, symmetric, antisym-
metric, transitive, and/or a partial order?

In Exercises 24-34, determine whether each relation defined on
the set of positive integers is reflexive, symmetric, antisymmetric,
transitive, and/or a partial order.
24. (x,y) e Rifxy=1.

25. (x,y) e Rifxy = 2.

26. (x,y) e Rifxy > 1.

27. (x,y) eRifx = y2.

29. (x,y) e Rifx > y.

31. (x,y) € Rif 3 divides x — y.
32. (x,y) € Rif 3 divides x + 2y.

33. (x,y) eRifx—y=2. 34. (x,y) eRif [x—y| =2.

35. Let X be anonempty set. Define a relation on P(X), the power
set of X, as (A, B) e Rif A C B. Is this relation reflexive, sym-
metric, antisymmetric, transitive, and/or a partial order?

28. (x,y) e Rifx > y.
30. (x,y) eRifx=y.

36. Prove that a relation R on a set X is antisymmetric if and only
if for all x, y € X, if (x, y) € R and x # y, then (y, x) &€ R.

37. Let X be the set of all four-bit strings (e.g., 0011, 0101, 1000).
Define a relation R on X as s1 R s» if some substring of s1 of
length 2 is equal to some substring of s, of length 2. Exam-
ples: 0111 R 1010 (because both 0111 and 1010 contain 01).
1110 R 0001 (because 1110 and 0001 do not share a common
substring of length 2). Is this relation reflexive, symmetric, an-
tisymmetric, transitive, and/or a partial order?

38. Suppose that R; is a partial order on X;, i = 1, 2. Show that R
is a partial order on X; x X» if we define

(x1, x2) R (x, X5) if x; Ry X} and xy Ry).

39. Let Ry and R; be the relations on {1, 2, 3, 4} given by
R ={(1.1),(1,2),(3,4), 4,2)}
R, ={(1.1D, (2. 1,3, 1), 44,22}
List the elements of R o Ry and R o Rj.

Give examples of relations on {1, 2, 3,4} having the properties
specified in Exercises 40—44.

40. Reflexive, symmetric, and not transitive

41. Reflexive, not symmetric, and not transitive

42. Reflexive, antisymmetric, and not transitive

43. Not reflexive, symmetric, not antisymmetric, and transitive
44. Not reflexive, not symmetric, and transitive

Let R and S be relations on X. Determine whether each statement

in Exercises 45-57 is true or false. If the statement is true, prove
it; otherwise, give a counterexample.

45. If R is transitive, then R~! is transitive.

3.4

3.4 # Equivalence Relations 151

46. If R and S are reflexive, then R U S is reflexive.

47. If R and S are reflexive, then R N S is reflexive.

48. If R and S are reflexive, then R o S is reflexive.

49. If R is reflexive, then R~! is reflexive.

50. If R and S are symmetric, then R U S is symmetric.

51. If R and S are symmetric, then R N S is symmetric.

52. If R and S are symmetric, then R o § is symmetric.

53. If R is symmetric, then R~! is symmetric.

54. If R and S are antisymmetric, then R U S is antisymmetric.
55. If R and § are antisymmetric, then R N § is antisymmetric.
56. If R and S are antisymmetric, then R o S is antisymmetric.
57. If R is antisymmetric, then R~ is antisymmetric.

58. How many relations are there on an n-element set?

In Exercises 59-61, determine whether each relation R defined on

the collection of all nonempty subsets of real numbers is reflexive,
symmetric, antisymmetric, transitive, and/or a partial order.

59. (A, B) € R if for every ¢ > 0, there existsa € Aand b € B
with |[a — b| < e.

60. (A,B) € Rif forevery a € A and ¢ > O, there exists b € B
with |a — b| < ¢.

61. (A,B) € Rif foreverya € A, b € B, and ¢ > 0, there exists
d €Aandb’ € Bwith |a—b'| <eand |d —b| < e.

62. What is wrong with the following argument, which
supposedly shows that any relation R on X that is symmet-
ric and transitive is reflexive?

Let x € X. Using symmetry, we have (x, y) and (y, x)
both in R. Since (x,y), (y,x) € R, by transitivity we have
(x, x) € R. Therefore, R is reflexive.

Equivalence Relations

Suppose that we have a set X of 10 balls, each of which is either red, blue, or green (see
Figure 3.4.1). If we divide the balls into sets R, B, and G according to color, the family

Go Online

For more on equivalence
relations, see
g00.gl/V3y4pS

{R, B, G} is a partition of X. (Recall that in Section 1.1, we defined a partition of a set X
to be a collection S of nonempty subsets of X such that every element in X belongs to
exactly one member of S.)

A partition can be used to define a relation. If S is a partition of X, we may define
xRy to mean that for some set § € S, both x and y belong to S. For the example of

Figure 3.4.1, the relation obtained could be described as “is the same color as.” The next
theorem shows that such a relation is always reflexive, symmetric, and transitive.

Figure 3.4.1 A set of colored
balls.

152

Chapter 3 @ Functions, Sequences, and Relations

Theorem 3.4.1

Example 3.4.2

Example 3.4.4

Let S be a partition of a set X. Define x Ry to mean that for some set S in S, both x
and y belong to S. Then R is reflexive, symmetric, and transitive.

Proof Letx e X. By the definition of partition, x belongs to some member S of S.
Thus x R x and R is reflexive.

Suppose that x R y. Then both x and y belong to some set S € S. Since both y and
x belong to S, y R x and R is symmetric.

Finally, suppose that xRy and y R z. Then both x and y belong to some set S € S
and both y and z belong to some set 7 € S. Since y belongs to exactly one member of S,
we must have S = T. Therefore, both x and z belong to S and x R z. We have shown that
R is transitive. <

Consider the partition S = {{1, 3, 5}, {2, 6}, {4}} of X = {1, 2, 3, 4, 5, 6}. The relation R
on X given by Theorem 3.4.1 contains the ordered pairs (1, 1), (1, 3), and (1, 5) because
{1, 3,5} isin S. The complete relation is

R={(1,1),(,3),(1,5,3,1),3,3),(3,5). (5,1, (5,3),5,5), 2,2), (2,6),
(6,2), (6,6), (4,4)}. <

Let S and R be as in Theorem 3.4.1. If S € S, we can regard the members of S as
equivalent in the sense of the relation R, which motivates calling relations that are reflex-
ive, symmetric, and transitive equivalence relations. In the example of Figure 3.4.1, the
relation is “is the same color as”’; hence equivalent means “is the same color as.” Each
set in the partition consists of all the balls of a particular color.

Definition 3.4.3 » A relation that is reflexive, symmetric, and transitive on a
set X is called an equivalence relation on X.

The relation R of Example 3.4.2 is an equivalence relation on {1, 2, 3, 4, 5, 6} because of
Theorem 3.4.1. We can also verify directly that R is reflexive, symmetric, and

transitive.
2
| | (/
4
5 6

Figure 3.4.2 The digraph of the relation of Example 3.4.2.

The digraph of the relation R of Example 3.4.2 is shown in Figure 3.4.2. Again,
we see that R is reflexive (there is a loop at every vertex), symmetric (for every directed
edge from v to w, there is also a directed edge from w to v), and transitive (if there is a
directed edge from x to y and a directed edge from y to z, there is a directed edge from
X to 2). <4

Example 3.4.5

Example 3.4.6

Example 3.4.7

Theorem 3.4.8

3.4 & Equivalence Relations 153

Consider the relation
R={(1,1),(,3),(1,5),(2,2),(2,4,3,1),3,3),3,5), 4,2), 4,4,
(5,1),(5,3),(5,5)}

on{l, 2, 3, 4, 5}. The relation is reflexive because (1, 1), (2, 2), (3, 3), (4,4), (5,5) € R.
The relation is symmetric because whenever (x, y) is in R, (y, x) is also in R. Finally, the
relation is transitive because whenever (x, y) and (y, z) are in R, (x, z) is also in R. Since
R is reflexive, symmetric, and transitive, R is an equivalence relation on {1, 2, 3, 4, 5}.

4

The relation R on X = {1, 2, 3, 4} defined by (x,y) € Rifx <y, x,y € X, is not an
equivalence relation because R is not symmetric. [For example, (2, 3) € R, but (3, 2) ¢
R.] The relation R is reflexive and transitive. <

The relation R = {(a, a), (b, ¢), (¢, D), (d,d)} on X = {a, b, c, d} is not an equivalence
relation because R is neither reflexive nor transitive. [It is not reflexive because, for ex-
ample, (b, b) ¢ R. Itis not transitive because, for example, (b, ¢) and (c, b) are in R, but
(b, b) is not in R.] 4

Given an equivalence relation on a set X, we can partition X by grouping related
members of X. Elements related to one another may be thought of as equivalent. The
next theorem gives the details.

Let R be an equivalence relation on a set X. Foreach a € X, let[a] = {x € X | xR a}.
(In words, [a] is the set of all elements in X that are related to a.) Then

S={lal | a € X}
is a partition of X.

Proof We must show that every element in X belongs to exactly one member of S.

Leta € X. Since aRa, a € [a]. Thus every element in X belongs to at least one
member of S. It remains to show that every element in X belongs to exactly one member
of S; that is,

if x € X and x € [a] N [b], then [a] = [b]. (3.4.1)

We first show that for all ¢,d € X, if cRd, then [c] = [d]. Suppose that cRd.
Let x € [c]. Then xR c. Since cRd and R is transitive, x Rd. Therefore, x € [d] and
[c] € [d]. The argument that [d] C [c] is the same as that just given, but with the roles
of ¢ and d interchanged. Thus [c] = [d].

We now prove (3.4.1). Assume that x € X and x € [a] N [b]. Then x Ra and xR b.
Our preceding result shows that [x] = [a] and [x] = [b]. Thus [a] = [b]. |

Definition 3.4.9 » Let R be an equivalence relation on a set X. The sets [a]
defined in Theorem 3.4.8 are called the equivalence classes of X given by the
relation R.

Example 3.4.10 InExample 3.4.4, we showed that the relation

R={(1,1),(1,3),(1,5),3,1),(3,3),3,5), (5, 1), (5,3). 5.5), (2,2), (2, 6),
(6,2),(6,6), (4,4)}

154

Chapter 3 @ Functions, Sequences, and Relations

Example 3.4.11

Example 3.4.12

Example 3.4.13

Example 3.4.14

Example 3.4.15

on X = {1, 2,3,4,5, 6} is an equivalence relation. The equivalence class [1] contain-
ing 1 consists of all x such that (x, 1) € R. Therefore, [1] = {1, 3, 5}. The remaining
equivalence classes are found similarly:

3] =[51={1,3,5}, (2] =[6] = {2, 6}, [4] = {4}. <

The equivalence classes appear quite clearly in the digraph of an equivalence relation.
The three equivalence classes of the relation R of Example 3.4.10 appear in the digraph
of R (shown in Figure 3.4.2) as the three subgraphs whose vertices are {1, 3, 5}, {2, 6},
and {4}. A subgraph G that represents an equivalence class is a largest subgraph of the
original digraph having the property that for any vertices v and w in G, there is a directed
edge from v to w. For example, if v, w € {1, 3, 5}, there is a directed edge from v to w.
Moreover, no additional vertices can be added to 1, 3, 5, and so the resulting vertex set
has a directed edge between each pair of vertices. <

There are two equivalence classes for the equivalence relation
R={(1,1),(,3),(1,5),(2,2),2,4,3,1),3,3),3,5,42), 44),
(5,1),(5,3),(5,5)}

on {1, 2, 3,4, 5} of Example 3.4.5, namely, [1] = [3] = [5] = {1,3,5}and [2] = [4] =
{2,4}. <

We can readily verify that the relation R = {(a, a), (b, b), (c¢,c)} on X = {a, b, c} is
reflexive, symmetric, and transitive. Thus R is an equivalence relation. The equivalence
classes are [a] = {a}, [b] = {b}, and [c] = {c}. <4

Let X = {1, 2, ..., 10}. Define x Ry to mean that 3 divides x — y. We can readily ver-
ify that the relation R is reflexive, symmetric, and transitive. Thus R is an equivalence
relation on X. Determine the members of the equivalence classes.

SOLUTION The equivalence class [1] consists of all x with xR 1. Thus
[1]={x € X |3 divides x — 1} = {1, 4,7, 10}.
Similarly, [2] = {2, 5, 8} and [3] = {3, 6, 9}. These three sets partition X. Note that
(11 =[4] = [7] = [10], [2] = [5] = [8], (3] = [6] = [9].

For this relation, equivalence is “has the same remainder when divided by 3.” <

Show that if a relation R on a set X is symmetric and transitive but not reflexive, the
collection of sets [a], a € X, defined in Theorem 3.4.8 does not partition X (see also
Exercises 47-51).

SOLUTION Let R be a relation on a set X that is symmetric and transitive but not
reflexive. We define “pseudo equivalence classes” as in Theorem 3.4.8:

[al ={x e X | xRa}.

Since R is not reflexive, there exists b € X such that (b, b) ¢ R. We show that b is
not in any pseudo equivalence class. Suppose, by way of contradiction, that b € [a] for
some a € X. Then (b, a) € R. Since R is symmetric, (a, b) € R. Since R is transitive,
(b, b) € R. But we assumed that (b, b) € R. This contradiction shows that » is not in
any pseudo equivalence class. Thus the collection of pseudo equivalence classes does
not partition X. <

Theorem 3.4.16

3.4 # Equivalence Relations 155

We close this section by proving a special result that we will need later (see Sec-
tions 6.2 and 6.3). The proof is illustrated in Figure 3.4.3.

X

Xi X5 X
(r elements) | (r elements) (r elements)

|X| = rk
Figure 3.4.3 The proof of Theorem 3.4.16.

Let R be an equivalence relation on a finite set X. If each equivalence class has r
elements, there are |X|/r equivalence classes.

Proof Let X;, X,,..., X, denote the distinct equivalence classes. Since these sets
partition X,

|X|:|X1|+|X2|++|Xk|=r+r+—I—r:kr

and the conclusion follows. 4

3.4 Problem-Solving Tips

An equivalence relation is a relation that is reflexive, symmetric and transitive. To prove
that a relation is an equivalence relation, you need to verify that these three properties
hold (see Problem-Solving Tips for Section 3.3).

An equivalence relation on a set X partitions X into subsets. (“Partitions” means
that every x in X belongs to exactly one of the subsets of the partition.) The subsets
making up the partition can be determined in the following way. Choose x; € X. Find
the set, denoted [x;], of all elements related to x;. Choose another element x, € X that is
not related to x;. Find the set [x;] of all elements related to x,. Continue in this way until
all the elements of X have been assigned to a set. The sets [x;] are called the equivalence
classes. The partition is [x;], [x2], The elements of [x;] are equivalent in the sense
that they are all related. For example, the relation R, defined by xRy if x and y are the
same color, partitions the set into subsets where each subset contains elements that are
all the same color. Within a subset, the elements are equivalent in the sense that they are
all the same color.

In the digraph of an equivalence relation, an equivalence class is a largest subgraph
of the original digraph having the property that for any vertices v and w in G, there is a
directed edge from v to w.

A partition of a set gives rise to an equivalence relation. If Xy, ..., X, is a parti-
tion of a set X and we define xRy if for some i, x and y both belong to X;, then R is
an equivalence relation on X. The equivalence classes turn out to be X, ..., X,. Thus,

“equivalence relation” and “partition of a set” are different views of the same situation.
An equivalence relation on X gives rise to a partition of X (namely, the equivalence
classes), and a partition of X gives rise to an equivalence relation (namely, x is related to
yif x and y are in the same set in the partition). This latter fact can be used to solve certain
problems. If you are asked to find an equivalence relation, you can either find the equiv-
alence relation directly or construct a partition and then use the associated equivalence
relation. Similarly, if you are asked to find a partition, you can either find the partition
directly or construct an equivalence relation and then take the equivalence classes as
your partition.

156

Chapter 3 ¢ Functions, Sequences, and Relations

3.4 Review Exercises

. Define equivalence relation. Give an example of an equivalence
relation. Give an example of a relation that is not an equivalence
relation.

)

class? Give an example of an equivalence class for your equiv-
alence relation of Exercise 1.

3. Explain the relationship between a partition of a set and an
equivalence relation.

[\°]

. Define equivalence class. How do we denote an equivalence

In Exercises 1-10, determine whether the given relation is an
equivalence relation on {1, 2, 3, 4, 5}. If the relation is an equiv-
alence relation, list the equivalence classes. (In Exercises 5—-10,
x,y€{l1,2,3,4,5})

25.
26.

How many distinct equivalence classes are there?
Let

X = {San Francisco, Pittsburgh, Chicago, San Diego,

L {(1,1),(2,2),3,3),44),(5,5),(1,3), 3, D} Philadelphia, Los Angeles}.
2. {(1,1),(2,2),3,3), 4,4),(5.5), (1,3), 3, 1), 3,4). (4,3)})) i
3. (1. 1), 2.2). (3.3). (4, 4)} Define arelation R on X as x Ry if x and y are in the same state.
4L D, (2.2, (3.3, (4.4),5.5), (1,5), 5, 1), (3.5), (5,3), () ShowhatRis an equivalence relation.
1,3), 3, 1)} (b) List the equivalence classes of X.

5. {(,y)|1<x<5and1<y<S5) 27. If an equivalence relation has only one equivalence class, what
6. ((x,y) | 4 divides x —) must the relation look like?

) ’ 28. If R is an equivalence relation on a finite set X and |X| = |R|,
7 {{(x’ ») | 3 divides x +) ?' (G y) | x divides 2 =y} what must the relation look like?
9. {(x,y) | x and y are both even

10. {(x,y) | x and y are both even or x and y are both odd}

In Exercises 11-16, determine whether the given relation is an
equivalence relation on the set of all people.

. By listing ordered pairs, give an example of an equivalence

relation on {1, 2, 3,4, 5, 6} having exactly four equivalence
classes.

. How many equivalence relations are there on the set {1, 2, 3}?

11. {(x,y) | x and y are the same height} 31. Let R be areflexive relation on X satisfying: for all x, y, z € X,
' . o if xRy and y R z, then z R x. Prove that R is an equivalence re-
12. {(x,y)|x and y have, at some time, lived in the same country} lation
13. {(x,y) | x and y have the same first name} 32. Define a relation R on RR, the set of functions from R to R,
14. {(x,y) | xis taller than y} by fRgif f(0) = g(0). Prove that R is an equivalence relation
15. {(x,y) | x and y have the same parents} on RR. Let f(x) = x for all x € R. Describe [f].
16. {(x,) |x and y have the same color hair} 33. Define a relation R on RR, the set of functions from R to R by
)))) f R g if there exist a,b € R such that f(x) = g(x+a) + b
In Exercises 17-22, list ti.ze members of the equlva{ence relc.lt‘lon for all x € R. Prove that R is an equivalence relation on
on {1, 2,3, 4} defined (as in Theorem 3.4.1) by the given partition. RR. What property do all functions in an equivalence class
Also, find the equivalence classes [1], [2], [3], and [4]. share?
17. {{1, 2}, {3, 4}} 18. {{1}, {2}, {3.4}} 34. Let X = {1,2,...,10}. Define a relation R on X x X by
19. {{1}, {2}, {3}, (4]} 20. {{1,2,3}, (4}} @bR(c,difat+d=b+c
21. {{1,2,3,4}) 22. {1}, {2, 4}, (31} (a) Show that R is an equivalence relation on X x X.
In Exercises 23-25, let X=1{1.2.3.4.5).Y = (3.4}, and C = (b) List one member of each equivalence class of X x X.
{1, 3}. Define the relation R on P(X), the set of all subsets of X, 35. Let X = {l,2,...,10}. Define a relation R on X x X by
as (a,b)R (c,d) if ad = bc.
) (a) Show that R is an equivalence relation on X x X.
ARB fAVY=BUY. (b) List one member of each equivalence class of X x X.
23. Show that R is an equivalence relation (c) Describe the relation R in familiar terms.
36. Let R be a reflexive and transitive relation on X. Show that

24. List the elements of [C], the equivalence class containing C.

RN R~ is an equivalence relation on X.

37.

38.

39.

40.

41.

42.

43.

Let Ry and R, be equivalence relations on X.
(a) Show that R; N R, is an equivalence relation on X.

(b) Describe the equivalence classes of Ry N R, in terms of
the equivalence classes of R and the equivalence classes
of R;.

Suppose that S is a collection of subsets of a set X and X =
US. (It is not assumed that the family S is pairwise dis-
joint.) Define xRy to mean that for some set § € S, both
x and y are in S. Is R necessarily reflexive, symmetric, or
transitive?

Let S be a unit square including the interior, as shown in the
following figure.

0,1) (1, 1)

(0,0) (1,0)

Define a relation R on S by (x,y)R(x,y) if (x = x’ and
y=y)or(y =y andx = 0andx’ = 1), or (y =)" and
x=1landx =0).

(a) Show that R is an equivalence relation on S.

(b) If points in the same equivalence class are glued together,
how would you describe the figure formed?

Let S be a unit square including the interior (as in Exer-
cise 39). Define a relation R" on S by (x,y)Rp(¥,y) if
(x =x'andy = y),or (y = yandx = Oandx’ = 1), or
(y =y andx = landx = 0),or (x = X andy = 0 and
Yy =1),or(x=x"andy = 1andy = 0). Let

R =R U{((0,0), (1, 1)), (0, 1), (1,0)),
((1,0), (0, 1)), (1, D), (0, 0))}.

(a) Show that R is an equivalence relation on S.

(b) If points in the same equivalence class are glued together,
how would you describe the figure formed?

Let f be a function from X to Y. Define a relation R on X by

xRy iff(x) =f0).

Show that R is an equivalence relation on X.

Let f be a characteristic function in X. (“Characteristic func-
tion” is defined before Exercise 101, Section 3.1.) Define a
relation R on X by xRy if f(x) = f(y). According to the pre-
ceding exercise, R is an equivalence relation. What are the
equivalence classes?

Let f be a function from X onto Y. Let

S={"hIyer)

4.

45.

46.

47.

48.

49.

50.

51.

52.

157

3.4 ¢ Equivalence Relations

[The definition of f~!(B), where B is a set, precedes Exer-
cise 88, Section 3.1.] Show that S is a partition of X. Describe
an equivalence relation that gives rise to this partition.

Let R be an equivalence relation on a set A. Define a func-
tion f from A to the set of equivalence classes of A by the rule
f(x) = [x]. When do we have f(x) = f(y)?

Let R be an equivalence relation on a set A. Suppose that g is
a function from A into a set X having the property that if xRy,
then g(x) = g(y). Show that A([x]) = g(x) defines a function
from the set of equivalence classes of A into X. [What needs
to be shown is that & uniquely assigns a value to [x]; that is, if
[x] = [y], then g(x) = g(v).]

Suppose that a relation R on a set X is symmetric and transitive
but not reflexive. Suppose, in particular, that (b, b) ¢ R. Prove
that the pseudo equivalence class [b] (see Example 3.4.15) is
empty.

Prove that if a relation R on a set X is not symmetric but transi-
tive, the collection of pseudo equivalence classes (see Exam-
ple 3.4.15) does not partition X.

Prove that if a relation R on a set X is reflexive but not symmet-
ric, the collection of pseudo equivalence classes (see Example
3.4.15) does not partition X.

Prove that if a relation R on a set X is reflexive but not transi-
tive, the collection of pseudo equivalence classes (see Exam-
ple 3.4.15) does not partition X.

Give an example of a set X and a relation R on X that is not
reflexive, not symmetric, and not transitive, but for which the
collection of pseudo equivalence classes (see Example 3.4.15)
partitions X.

Give an example of a set X and a relation R on X that is not
reflexive, symmetric, and not transitive, but for which the col-
lection of pseudo equivalence classes (see Example 3.4.15)
partitions X.

Let X denote the set of all sequences of real numbers. Define a
relation R on X as s R if there exists an increasing function f
from the domain of s onto the domain of 7 such that s, = ()
for all n in the domain of s.

(a) Show that R is an equivalence relation.

(b) Explain in words what it means for two sequences in X to
be equivalent under the relation R.

(c) Since a sequence is a function, a sequence is a set of or-
dered pairs. Two sequences are equal if the two sets of
ordered pairs are equal. Contrast the difference between
two equivalent sequences in X and two equal sequences
in X.

Let R be a relation on a set X. Define

p(R) =RU{(x,x) | x € X}

o(R) = RUR™!
R'"=RoRoRo---oR (nR’s)

T(R) =U{R" |n=1,2,...}.

The relation t(R) is called the transitive closure of R.

158
53.

54.
55.
56.
*57.
*58.

*59.

For the relations R; and R, of Exercise 39, Section 3.3, find
p(Ri), o (R), T(R;), and T(0 (p(Ry))) fori=1,2.

Show that p(R) is reflexive.

Show that ¢ (R) is symmetric.

Show that t(R) is transitive.

Show that 7 (o (p(R))) is an equivalence relation containing R.

Show that (o (p(R))) is the smallest equivalence relation on
X containing R; that is, show that if R is an equivalence rela-
tionon X and R" D R, then R’ 2 t(a(p(R))).

Show that R is transitive if and only if T(R) = R.

In Exercises 60—66, if the statement is true for all relations R,
and Ry on an arbitrary set X, prove it; otherwise, give a
counterexample.

Problem-Solving Corner

Chapter 3 @ Functions, Sequences, and Relations

60. p(R; URy) = p(R1) U p(Ry)
61. o(R1 NRy) = (R)) N (Ry)
62. T(R1 URy) = t(R)) Ut(Ry)
63. T(R1 NRy) = t(Ry) NT(Ry)
64. o(t(R1)) = t(c(R)))
65. o(p(R1)) = p(o(Ry))
66. p(t(R1) = t(p(R1))

If X and Y are sets, we define X to be equivalent fo Y if there is a

one-to-one, onto function from X to Y.

67. Show that set equivalence is an equivalence relation.
68. Show that the sets {1, 2, ...} and {2, 4, ...} are equivalent.

set of X.

Equivalence Relations

Problem

Answer the following questions for the relation R de-
fined on the set of eight-bit strings by s R 55, provided
that the first four bits of s; and s, coincide.

(a) Show that R is an equivalence relation.
(b) List one member of each equivalence class.
(c) How many equivalence classes are there?

Attacking the Problem

Let’s begin by looking at some specific eight-bit strings
that are related according to the relation R. Let’s take
an arbitrary string 01111010 and find strings related to
it. A string s is related to 01111010 if the first four bits
of 01111010 and s coincide. This means that s must
begin 0111 and the last four bits can be anything. An
example is s = 01111000.

Let’s list all of the strings related to 01111010. In
doing so, we must be careful to follow 0111 with every
possible four-bit string:

01110000, 01110001, 01110010, 01110011,
01110100, 01110101, 01110110, OI1110111,
01111000, 01111001, 01111010, 01111011,
01111100, oO1111101, O1111110, OL111111.

Assuming for the moment that R is an equivalence
relation, the equivalence class containing 01111010,
denoted [01111010], consists of all strings related to
01111010. Therefore, what we have just computed are
the members of [01111010].

Notice that if we take any string in [01111010],
say 01111100, and compute its equivalence class
[01111100], we will obtain exactly the same set of
strings—namely, the set of eight-bit strings that begin
0111.

To obtain a different example, we would have to
start with a string whose first four bits are different
from 0111, say 1011. As an example, the strings re-
lated to 10110100 are

10110000, 10110001, 10110010, 10110011,
10110100, 10110101, 10110110, 10110111,
10111000, 10111001, 10111010, 10111011,
10111100, 10111101, 10111110, 10111111.

What we have just computed are the members of
[10110100]. We see that [01111010] and [10110100]
have no members in common. It is always the case that
two equivalence classes are identical or have no mem-
bers in common (see Theorem 3.4.8).

Before reading on, compute the members of some
other equivalence class.

Finding a Solution

To show that R is an equivalence relation, we must
show that R is reflexive, symmetric, and transitive (see
Definition 3.4.3). For each property, we will go directly
to the definition and check that the conditions specified
in the definition hold.

For R to be reflexive, we must have s R s for every
eight-bit string s. For s R s to be true, the first four bits
of s and s must coincide. This is certainly the case!

. Show that for any set X, X is not equivalent to P(X), the power

For R to be symmetric, for all eight-bit strings s,
and s,, if 51 R 57, then s, R 51. Using the definition of R,
we may translate this condition to: If the first four bits
of s; and s, coincide, then the first four bits of s, and
s coincide. This is also certainly the case!

For R to be transitive, for all eight-bit strings sy,
s», and s3, if s; R s, and s, R s3, then s; R s3. Again us-
ing the definition of R, we may translate this condi-
tion to: If the first four bits of s; and s, coincide and
the first four bits of s, and s3 coincide, then the first
four bits of s; and s3 coincide. This too is certainly the
case! We have proved that R is an equivalence rela-
tion.

In our earlier discussion, we found that each dis-
tinct four-bit string determines an equivalence class.
For example, the string 0111 determines the equiva-
lence class consisting of all eight-bit strings that begin
0111. Therefore, the number of equivalence classes is
equal to the number of four-bit strings. We can simply
list them all

0000, 0001, 0010, 0011,
0100, 0101, 0110, O111,
1000, 1001, 1010, 1011,
1100, 1101, 1110, 1111

and then count them. There are 16 equivalence
classes.

Consider the problem of listing one member of
each equivalence class. The 16 four-bit strings listed
previously determine the 16 equivalence classes. The
first string 0000 determines the equivalence class con-
sisting of all eight-bit strings that begin 0000; the
second string 0001 determines the equivalence class
consisting of all eight-bit strings that begin 0001; and
so on. Thus to list one member of each equivalence
class, we simply need to append some four-bit string
to each of the strings in the previous list:

00000000, 00010000, 00100000, 00110000,
01000000, 01010000, 01100000, 01110000,
10000000, 10010000, 10100000, 10110000,
11000000, 11010000, 11100000, 11110000.

Formal Solution

(a) We have already presented a formal proof that
R is an equivalence relation.

Problem-Solving Corner: Equivalence Relations

(b)

00000000, 00010000, 00100000, 00110000,
01000000, 01010000, 01100000, 01110000,
10000000, 10010000, 10100000, 10110000,
11000000, 11010000, 11100000, 11110000

lists one member of each equivalence class.
(c) There are 16 equivalence classes.

Summary of Problem-Solving Techniques

m List elements that are related.

® Compute some equivalence classes; that is, list
all elements related to a particular element.

= [t may help to solve the parts of a problem in
a different order than that given in the prob-
lem statement. In our example, it was helpful
in looking at some concrete cases to assume
that the relation was an equivalence relation be-
fore actually proving that it was an equivalence
relation.

® To show that a particular relation R is an
equivalence relation, go directly to the defi-
nitions. Show that R is reflexive, symmetric,
and transitive by directly verifying that R satis-
fies the definitions of reflexive, symmetric, and
transitive.

m [f the problem is to count the number of items
satisfying some property (e.g., in our problem we
were asked to count the number of equivalence
classes) and the number is sufficiently small, just
list all the items and count them directly.

Comments

In programming languages, usually only some speci-
fied number of characters of the names of variables and
special terms (technically these are called identifiers)
are significant. For example, in the C programming
language, only the first 31 characters of identifiers are
significant. This means that if two identifiers begin with
the same 31 characters, the system is allowed to con-
sider them identical.

If we define a relation R on the set of C identifiers
by s1 R s», provided that the first 31 characters of s
and s, coincide, then R is an equivalence relation. An
equivalence class consists of identifiers that the system
is allowed to consider identical.

159

160

Chapter 3 ¢ Functions, Sequences, and Relations

3.5

Matrices of Relations

Go Online

For more matrices of
relations, see
g00.g1/V3y4pS

Example 3.5.1

Example 3.5.2

Example 3.5.3

Example 3.5.4

A matrix is a convenient way to represent a relation R from X to Y. Such a representation
can be used by a computer to analyze a relation. We label the rows with the elements of
X (in some arbitrary order), and we label the columns with the elements of Y (again, in
some arbitrary order). We then, set the entry in row x and column y to 1 if xRy and to
0 otherwise. This matrix is called the matrix of the relation R (relative to the orderings
of X and Y).

The matrix of the relation
R={(1,b),(1,d),(2,c),(3,¢),(3,b), (4, a)}
fromX = {1,2,3,4}toY = {a, b, c, d} relative to the orderings 1,2, 3,4 and a, b, ¢, d is

b d

- o O O R
O = —_— 0

1 1
0 0
1 0
0 0

B W N~

4

The matrix of the relation R of Example 3.5.1 relative to the orderings 2, 3, 4, 1 and
d,b,a,cis

—_ s W

—_ O O O X
—_0 = O <
S = O O Q
OO = =0

Obviously, the matrix of a relation from X to Y is dependent on the orderings of X
and Y. <

The matrix of the relation R from {2, 3, 4} to {5, 6, 7, 8}, relative to the orderings 2, 3, 4
and 5, 6, 7, 8, defined by
XRy if x divides y

is

5 6 7 8
2 /0 1 0 1
310 1 0 O
4\0 0 0 1 <4

When we write the matrix of a relation R on a set X (i.e., from X to X), we use the
same ordering for the rows as we do for the columns.

The matrix of the relation
R ={(a,a), (b,D), (c,c), (d,d), (b, ¢), (c,b)}

on {a, b, c, d}, relative to the ordering a, b, c, d, is

Example 3.5.5

3.5 @ Matrices of Relations 161

QUL O &

eNeoNel
(= =R
O = =00
-0 O O X

Notice that the matrix of a relation on a set X is always a square matrix.

We can quickly determine whether a relation R on a set X is reflexive by examining
the matrix A of R (relative to some ordering). The relation R is reflexive if and only if
A has 1’s on the main diagonal. (The main diagonal of a square matrix consists of the
entries on a line from the upper left to the lower right.) The relation R is reflexive if and
only if (x,x) € R for all x € X. But this last condition holds precisely when the main
diagonal consists of 1’s. Notice that the relation R of Example 3.5.4 is reflexive and that
the main diagonal of the matrix of R consists of 1’s.

We can also quickly determine whether a relation R on a set X is symmetric by
examining the matrix A of R (relative to some ordering). The relation R is symmetric if
and only if for all i and j, the ijth entry of A is equal to the jith entry of A. (Less formally,
R is symmetric if and only if A is symmetric about the main diagonal.) The reason is
that R is symmetric if and only if whenever (x, y) is in R, (y, x) is also in R. But this last
condition holds precisely when A is symmetric about the main diagonal. Notice that the
relation R of Example 3.5.4 is symmetric and that the matrix of R is symmetric about
the main diagonal.

We can also quickly determine whether a relation R is antisymmetric by examining
the matrix of R (relative to some ordering) (see Exercise 11).

We conclude by showing how matrix multiplication relates to composition of re-
lations and how we can use the matrix of a relation to test for transitivity.

Let R be the relation from X = {1, 2, 3} to Y = {a, b} defined by
R ={(1,a),(2,b),(3,a),3,b)},

and let R, be the relation from Y to Z = {x, y, z} defined by
Ry ={(a,x), (a,y), (b,y), (b, 2)}.

The matrix of R; relative to the orderings 1, 2, 3 and a, b is

b

—_— O

Xy z
a{l 1 0
Az_b(o 1 1)'

The product of these matrices is

AlAy =

—_— O =
N =
—_—

Let us interpret this product.

162

Chapter 3 @ Functions, Sequences, and Relations

Theorem 3.5.6

The ikth entry in A} A, is computed as

a b k
i(s t) (u) = su + tv.
v

If this value is nonzero, then either su or tv is nonzero. Suppose that su # 0. (The
argument is similar if #v # 0.) Then s # 0 and u # 0. This means that (i,a) €
Ry and (a, k) € R,. This implies that (i, k) € R, o R;. We have shown that if the
ikth entry in AjA; is nonzero, then (i, k) € R, o R;. The converse is also true, as we
now show.

Assume that (i, k) € R, o R;. Then, either

1. (i,a) € R, and (a,k) € R,
or
2. (i,b) € Ry and (b, k) € R.

If 1 holds, then s = 1 and u = 1, so su = 1 and su + v is nonzero. Similarly, if 2 holds,
tv = 1 and again we have su + tv nonzero. We have shown that if (i, k) € R, o Ry, then
the ikth entry in A A, is nonzero.

We have shown that (i, k) € R, o R; if and only if the ikth entry in A|A; is
nonzero; thus A;A, is “almost” the matrix of the relation R, o R;. To obtain the ma-
trix of the relation R, o R|, we need only change all nonzero entries in AjA; to 1. Thus
the matrix of the relation R, o Ry, relative to the previously chosen orderings 1, 2, 3 and
X, ¥, 2,18

Xy z
1/1 1 0
210 1 1
3\N1 1 1 <4

The argument given in Example 3.5.5 holds for any relations. We summarize this
result as Theorem 3.5.6.

Let R, be a relation from X to Y and let R, be a relation from Y to Z. Choose order-
ings of X, Y, and Z. Let A; be the matrix of R; and let A, be the matrix of R, with
respect to the orderings selected. The matrix of the relation R, o R; with respect to the
orderings selected is obtained by replacing each nonzero term in the matrix product
A1A; by 1.

Proof The proof is sketched before the statement of the theorem. <

Theorem 3.5.6 provides a quick test for determining whether a relation is transi-
tive. If A is the matrix of R (relative to some ordering), we compute A>. We then compare
A and AZ. The relation R is transitive if and only if whenever entry i, j in A2 is nonzero,
entry i, j in A is also nonzero. The reason is that entry i, j in A is nonzero if and only
if there are elements (i, k) and (k, j) in R (see the proof of Theorem 3.5.6). Now R is
transitive if and only if whenever (i, k) and (k, j) are in R, then (i, j) is in R. But (i, j)
is in R if and only if entry 7, j in A is nonzero. Therefore, R is transitive if and only if
whenever entry i, j in A? is nonzero, entry i, j in A is also nonzero.

Example 3.5.7 The matrix of the relation

Example 3.5.8

R ={(a,a),(b,b),(c,0),d,d), (b, 0),(c,b)}

on {a, b, c, d}, relative to the ordering a, b, c, d, is

A=

Its square is

A? =

1

o O O

eSS

0

0

1
1
0

oo O

0

3.5 & Matrices of Relations

0

O ==

oo O

0

- o O O

- o O O

163

We see that whenever entry i, j in A% is nonzero, entry i, j in A is also nonzero. There-

fore, R is transitive.

The matrix of the relation

R ={(a,a), (b,D), (c,¢), (d,d), (a,c), (c,b)}

on {a, b, c, d}, relative to the ordering a, b, c, d, is

Its square is

A% =

S o O~

oo o=

0

1
1
0

SN = =

S = O =

S = O N

—_ o O O

- o O O

<

The entry in row 1, column 2 of A is nonzero, but the corresponding entry in A is zero.

Therefore, R is not transitive.

3.5 Problem-Solving Tips

<

B The matrix of a relation R is another way to represent or specify a relation from

X to Y. The entry in row x and column yis 1 if xRy, or O if x R y.

B A relation is reflexive if and only if the main diagonal of its matrix representation

consists of all 1°’s.

® A relation is symmetric if and only if its matrix is symmetric (i.e., entry i, j always

equals entry j, 7).

B Let R, be arelation from X to Y and let R, be a relation from Y to Z. Let A| be the
matrix of Ry and let A, be the matrix of R,. The matrix of the relation R, o R; is

obtained by replacing each nonzero term in the matrix product A;A; by 1.

® To test whether a relation is transitive, let A be its matrix. Compute AZ. The rela-
tion is transitive if and only if whenever entry i, j in A? is nonzero, entry i, j in A

is also nonzero.

164 Chapter 3 ¢ Functions, Sequences, and Relations

3.5 Review Exercises

N

. Given the matrix of a relation, how can we determine whether

. What is the matrix of a relation? 4. Given the matrix of a relation, how can we determine whether
the relation is transitive?

the relation is reflexive? 5. Given the matrix A; of the relation R; and the matrix A, of

w

. Given the matrix of a relation, how can we determine whether
the relation is symmetric?

the relation R,, explain how to obtain the matrix of the relation
Ry oR;.

In Exercises 1-3, find the matrix of the relation R from X to Y rel- 13.

ative to the orderings given.

1. R={(1,8), 2, @), (2,), 3, B). (3, D)}; ordering of X:1, 14

2, 3; ordering of YV: ¢, B, 2,8

2. R as in Exercise 1; ordering of X: 3,2, 1; ordering of Y: X,
B,a,é

3. R={(x,a), (x,0), (y,a), (., b), (z,d)}; ordering of X:x,
v, z; ordering of Y:a, b, c,d

In Exercises 4— 6, find the matrix of the relation R on X relative to
the ordering given.
4. R={(1,2),(2,3),(3,4),(4,5)}; ordering of X: 1,2,3,4,5
5. R as in Exercise 4; ordering of X:5,3,1,2,4
6. R = {(x,y) | x < y}; ordering of X: 1,2, 3, 4
7. Find matrices that represent the relations of Exercises 13 -16,
Section 3.3.

In Exercises 8—10, write the relation R, given by the matrix, as a
set of ordered pairs.

8. w X y z 16.
a/1 010
b[0 0 0 0 17
cloo 1 o0
d\1 1 1 1

9. 1 2 3 4 18

N =
A~ N
O =
=}
— —
— O
N———

19
10.
w X y 2z
w/l 0 1 0
x|{0 0 0 O *20.
yl1l 0 1 0
z\0O 0 0 1

11. How can we quickly determine whether a relation R is anti-
symmetric by examining the matrix of R (relative to some or-
dering)?

12. Tell whether the relation of Exercise 10 is reflexive, symmet-
ric, transitive, antisymmetric, a partial order, and/or an equiv- 21
alence relation.

Given the matrix of a relation R from X to Y, how can we find
the matrix of the inverse relation R~1?

Find the matrix of the inverse of each of the relations of Exer-
cises 8 and 9.

. Use the matrix of the relation to test for transitivity (see

Examples 3.5.7 and 3.5.8) for the relations of Exercises 4, 6,
and 10.

In Exercises 1618, find

(a) The matrix Ay of the relation Ry (relative to the given or-
derings).

(b) The matrix Ay of the relation Ry (relative to the given or-
derings).

(c) The matrix product A1A;.

(d) Use the result of part (c) to find the matrix of the relation
R> oRy.

(e) Use the result of part (d) to find the relation Ry o R; (as a
set of ordered pairs).

R ={(1,x0), (1,y), 2,%), G, 0} R ={(x, D), (v, b), (v, @),
(y, ¢)}; orderings: 1,2, 3; x, y; a, b, ¢

. Ry = {(x,y) | xdivides y}; Ry is from X to Y; Ry = {(y,2) |

y > z}; Ry is from Y to Z; ordering of X and Y:2, 3,4, 5; or-
deringof Z: 1,2, 3,4

. Ri={(x,y) | x+y < 6};Ryisfrom X to Y; Ry={(y,2) |

y=z + 1}; Ry is from Y to Z; ordering of X, Y, and
Z:1,2,3,4,5

. Given the matrix of an equivalence relation R on X, how can

we easily find the equivalence class containing the element
xeX?

Let R; be a relation from X to Y and let R, be a relation from
Y to Z. Choose orderings of X, Y, and Z. All matrices of rela-
tions are with respect to these orderings. Let A| be the matrix
of R and let Ay be the matrix of R,. Show that the ikth entry
in the matrix product A A, is equal to the number of elements
in the set

{m| (i,m) € Ry and (m, k) € R>}.

. Suppose that R| and R; are relations on a set X, A is the matrix

of R; relative to some ordering of X, and A; is the matrix of

22.

23.

R relative to the same ordering of X. Let A be a matrix whose
ijth entry is 1 if the ijth entry of either A| or A; is 1. Prove that
A is the matrix of R} U R;.

Suppose that R; and R, are relations on a set X, A; is the ma-
trix of R; relative to some ordering of X, and A, is the matrix
of R, relative to the same ordering of X. Let A be a matrix
whose ijth entry is 1 if the ijth entries of both A; and A, are 1.
Prove that A is the matrix of R; N R».

Suppose that the matrix of the relation Ry on {1, 2, 3} is

1 00
01 1
1 0 1

relative to the ordering 1, 2, 3, and that the matrix of the rela-
tion R> on {1, 2, 3} is

— O O
O = =
— O O

3.6

24.
25.
26.

27.

Relational Databases

3.6 ® Relational Databases 165

relative to the ordering 1,2,3. Use Exercise 21 to find
the matrix of the relation R; U R, relative to the ordering
1,2,3.

Use Exercise 22 to find the matrix of the relation R; N
R, relative to the ordering 1,2,3 for the relations of
Exercise 23.

How can we quickly determine whether a relation R is a
function by examining the matrix of R (relative to some
ordering)?

Let A be the matrix of a function f from X to Y (relative to

some orderings of X and Y). What conditions must A satisfy
for f to be onto Y?

Let A be the matrix of a function f from X to Y (relative to
some orderings of X and Y). What conditions must A satisfy
for f to be one-to-one?

.I.

The “bi” in a binary relation R refers to the fact that R has two columns when we write
R as a table. It is often useful to allow a table to have an arbitrary number of columns. If
a table has n columns, the corresponding relation is called an n-ary relation.

Example 3.6.1

Table 3.6.1 represents a 4-ary relation. This table expresses the relationship among iden-
tification numbers, names, positions, and ages.

TABLE 3.6.1 m PLAYER

ID Number Name Position Age
22012 Johnsonbaugh c 22
93831 Glover of 24
58199 Battey p 18
84341 Cage c 30
01180 Homer 1b 37
26710 Score p 22
61049 Johnsonbaugh of 30
39826 Singleton 2b 31

We can also express an n-ary relation as a collection of n-tuples.

Example 3.6.2 Table 3.6.1 can be expressed as the set

{(22012, Johnsonbaugh, c, 22),
(58199, Battey, p, 18),

(93831, Glover, of, 24),
(84341, Cage, c, 30),

TThis section can be omitted without loss of continuity.

166

Chapter 3 @ Functions, Sequences, and Relations

Example 3.6.3

Example 3.6.4

Example 3.6.5

(01180, Homer, 1b, 37), (26710, Score, p, 22),
(61049, Johnsonbaugh, of, 30), (39826, Singleton, 2b, 31)}

of 4-tuples. <

A database is a collection of records that are manipulated by a computer. For
example, an airline database might contain records of passengers’ reservations, flight
schedules, equipment, and so on. Computer systems are capable of storing large amounts
of information in databases. The data are available to various applications. Database
management systems are programs that help users access the information in databases.
The relational database model, invented by E. F. Codd, is based on the concept of an
n-ary relation. We will briefly introduce some of the fundamental ideas in the theory of
relational databases. For more details on relational databases, the reader is referred to
[Codd; Date; and Kroenke]. We begin with some of the terminology.

The columns of an n-ary relation are called attributes. The domain of an attribute
is a set to which all the elements in that attribute belong. For example, in Table 3.6.1,
the attribute Age might be taken to be the set of all positive integers less than 100. The
attribute Name might be taken to be all strings over the alphabet having length 30 or less.

A single attribute or a combination of attributes for a relation is a key if the values
of the attributes uniquely define an n-tuple. For example, in Table 3.6.1, we can take the
attribute ID Number as a key. (It is assumed that each person has a unique identification
number.) The attribute Name is not a key because different persons can have the same
name. For the same reason, we cannot take the attribute Position or Age as a key. Name
and Position, in combination, could be used as a key for Table 3.6.1, since in our example
a player is uniquely defined by a name and a position.

A database management system responds to queries. A query is a request for
information from the database. For example, “Find all persons who play outfield” is a
meaningful query for the relation given by Table 3.6.1. We will discuss several operations
on relations that are used to answer queries in the relational database model.

Select The selection operator chooses certain n-tuples from a relation. The choices
are made by giving conditions on the attributes. For example, for the relation PLAYER
given in Table 3.6.1, PLAYER [Position = c] will select the tuples

(22012, Johnsonbaugh, c, 22), (84341, Cage, c, 30). <

Project Whereas the selection operator chooses rows of a relation, the projection
operator chooses columns. In addition, duplicates are eliminated. For example, for the
relation PLAYER given by Table 3.6.1, PLAYER [Name, Position] will select the tuples

(Johnsonbaugh, c), (Glover, of), (Battey, p), (Cage, c),
(Homer, 1b), (Score, p), (Johnsonbaugh, of), (Singleton, 2b). <

Join The selection and projection operators manipulate a single relation; join manipu-
lates two relations. The join operation on relations R; and R, begins by examining all
pairs of tuples, one from R; and one from R,. If the join condition is satisfied, the tuples
are combined to form a new tuple. The join condition specifies a relationship between
an attribute in R; and an attribute in R,. For example, let us perform a join operation on
Tables 3.6.1 and 3.6.2. As the condition we take ID Number = PID. We take a row from
Table 3.6.1 and a row from Table 3.6.2 and if ID Number = PID, we combine the rows.

TABLE 3.6.2 m ASSIGNMENT

PID Team
39826 Blue Sox
26710 Mutts
58199 Jackalopes
01180 Mutts

Example 3.6.6

Example 3.6.7

3.6 #® Relational Databases 167
For example, the ID Number 01180 in the fifth row (01180, Homer, 1b, 37) of Table
3.6.1 matches the PID in the fourth row (01180, Mutts) of Table 3.6.2. These tuples are
combined by first writing the tuple from Table 3.6.1, following it by the tuple from Table
3.6.2, and eliminating the equal entries in the specified attributes to give
(01180, Homer, 1b, 37, Mutts).
This operation is expressed as

PLAYER [ID Number = PID] ASSIGNMENT.

The relation obtained by executing this join is shown in Table 3.6.3.

TABLE 3.6.3 m PLAYER [ID Number = PID] ASSIGNMENT

ID Number Name Position Age Team
58199 Battey p 18 Jackalopes
01180 Homer 1b 37 Mutts
26710 Score P 22 Mutts
39826 Singleton 2b 31 Blue Sox

<

Most queries to a relational database require several operations to provide the
answer.

Describe operations that provide the answer to the query “Find the names of all persons
who play for some team.”

SOLUTION If we first join the relations given by Tables 3.6.1 and 3.6.2 subject to the
condition ID Number = PID, we will obtain Table 3.6.3, which lists all persons who play
for some team as well as other information. To obtain the names, we need only project
on the attribute Name. We obtain the relation

Name

Battey
Homer
Score
Singleton

Formally, these operations would be specified as

TEMP := PLAYER [ID Number = PID] ASSIGNMENT

TEMP [Name] <

Describe operations that provide the answer to the query “Find the names of all persons
who play for the Mutts.”

SOLUTION If we first use the selection operator to pick the rows of Table 3.6.2 that
reference Mutts’ players, we obtain the relation

168 Chapter 3 ¢ Functions, Sequences, and Relations

TEMP1
PID Team
26710 Mutts
01180 Mutts

If we now join Table 3.6.1 and the relation TEMP1 subject to ID Number = PID, we
obtain the relation

TEMP2

ID Number Name Position Age Team

01180 Homer 1b 37 Mutts
26710 Score p 22 Mutts

If we project the relation TEMP2 on the attribute Name, we obtain the relation

Name

Homer
Score

We would formally specify these operations as follows:

TEMP1 := ASSIGNMENT [Team = Mutts]
TEMP2 :=PLAYER [ID Number = PID] TEMP1
TEMP2 [Name] <4

Notice that the operations

TEMP1 := PLAYER [ID Number = PID] ASSIGNMENT
TEMP2 := TEMPI [Team = Mutts]
TEMP2 [Name]

would also answer the query of Example 3.6.7.

3.6 Problem-Solving Tips

A relational database represents data as tables (n-ary relations). Information from the
database is obtained by manipulating the tables. In this section, we discussed the
operations select (choose rows specified by a given condition), project (choose columns
specified by a given condition), and join (combine rows from two tables as specified by
a given condition).

3.6 Review Exercises

1. What is an n-ary relation?

5. What is a query?

2. What is a database management system? 6. Explain how the selection operator works and give an example.

3. What is a relational database?

4. What is a key?

7. Explain how the project operator works and give an example.

8. Explain how the join operator works and give an example.

3.6 @ Relational Databases 169

1. Express the relation given by Table 3.6.4 as a set of n-tuples. In Exercises 5-20, write a sequence of operations to answer the

query. Also, provide an answer to the query. Use Tables 3.6.4—

TABLE 3.6.4 m EMPLOYEE 3.6.7.
ID Name Manager 5. Find the names of all employees. (Do not include any man-
. agers.)
1089 Suzuki Zamora ;
5620 Kaminski Jones 6. Find the names of all managers.
9354 Jones Yu 7. Find all part numbers.
9551 Ryan Washington 8. Find the names of all buyers.
3600 Beaullleu Yu 9. Find the names of all employees who are managed by Jones.
0285 Schmidt Jones . .
6684 Manacotti Jones 10. Find all part numbers supplied by department 96.
11. Find all buyers of part 20A8.
2. Express the relation given by Table 3.6.5 as a set of n-tuples. 12. Find all employees in department 04.
13. Find the part numbers of parts of which there are at least 100
TABLE 3.6.5 m DEPARTMENT items on hand.
Dept Manager 14. Find all department numbers of departments that supply parts
to Danny’s.
23 Jones . .
04 Yu 15. Find t_he part numbers and amounts of parts bought by United
96 Zamora Supplies.
66 Washington 16. Find all managers of departments that produce parts for ABC
Unlimited.
3. Express the relation given by Table 3.6.6 as a set of n-tuples. 17. Find the names of all employees who work in departments that
supply parts for JCN Electronics.
TABLE 3.6.6 m SUPPLIER 18. Find all buyers who buy parts in the department managed by
Dept Part No Amount Jones.
19. Find all buyers who buy parts that are produced by the depart-
(Z)g ; isz 2?2 ment for which Suzuki works.
04 8C200 302 20. Find all part numbers and amounts for Zamora’s department.
66 42C 3 21. Make up at least three n-ary relations with artificial data that
04 900 7720 might be used in a medical database. Illustrate how your
96 20A8 200 database would be used by posing and answering two queries.
96 1199C 206 Also, write a sequence of operations that could be used to an-
23 772 39 swer the queries.
22. Describe a union operation on a relational database. Illustrate
4. Express the relation given by Table 3.6.7 as a set of n-tuples. how your operator works by answering the following query,
using the relations of Tables 3.6.4-3.6.7: Find the names of
TABLE 3.6.7 m BUYER all employees who work in either department 23 or depart-
ment 96. Also, write a sequence of operations that could be
Name Part No
used to answer the query.
United Supplies 2A 23. Describe an intersection operation on a relational database.
ABC Unlimited 8C200 Illustrate how your operator works by answering the follow-
United Supplies 1199C ing query, using the relations of Tables 3.6.4-3.6.7: Find the
JCN Electronics 2A names of all buyers who buy both parts 2A and 1199C. Also,
United Supplies 335B2 write a sequence of operations that could be used to answer
ABC Unlimited 772 the query.
Dapny’s . 900 24. Describe a difference operation on a relational database. I1-
United Supplies 772 lustrate how your operator works by answering the follow-
Underk}anded Sales 20A8 ing query, using the relations of Tables 3.6.4-3.6.7: Find the
Danny’s L 20A8 names of all employees who do not work in department 04.
DePaul University 42C Also, write a sequence of operations that could be used to an-
ABC Unlimited 20A8

swer the query.

170

Chapter 3 ¢ Functions, Sequences, and Relations

Chapter 3 Notes

Most general references on discrete mathematics address the topics of this chapter. [Halmos;
Lipschutz; and Stoll] are recommended to the reader wanting to study functions in more
detail. [Codd; Date; Kroenke; and Ullman] are recommended references on databases in
general and the relational model in particular.

Chapter 3 Review

Section 3.1

1.

o0 AU A W

Function from X to ¥V, f: X — Y:asubsetf of X x Y
such that for each x € X, there is exactly one y € Y with

(x.y)ef

. x mod y: remainder when x is divided by y

. Hash function

. Collision for a hash function H: H(x) = H(y)

. Collision resolution policy

. Floor of x, | x]: greatest integer less than or equal to x

. Ceiling of x, [x]: least integer greater than or equal to x

. One-to-one function f: if f(x) = f(x), then x = X’

. Onto function f from X to Y: range of f =Y

. Bijection: one-to-one and onto function

. Inverse f~! of a one-to-one, onto function f : {(y,x) |

(x.y) € f}

. Composition of functions: f o g = {(x,2) | (x,y) € g and

>, 2) € f}

. Binary operator on X: function from X x X to X
. Unary operator on X: function from X to X

Section 3.2

. Sequence: function whose domain is a subset of integers
. Index: in the sequence {s,}, n is the index
. Increasing sequence: if i < j, then s; < s;
. Decreasing sequence: if i < j, then s; > s;
. Nonincreasing sequence: if i < j, then s; > s;
. Nondecreasing sequence: if i < j, then s; < s;
. Subsequence s, of the sequence {s,}
n

. Sum or sigma notation: E a; = ay + Ay + -+ ay

i=m
n

. Product notation: H a;i = Ay * Ay - - Ay

i=m

n
. Geometric sum: E ar'

i=0

. String: finite sequence

. Null string, A: string with no elements

. X*: set of all strings over X, including the null string

. X set of all nonnull strings over X

. Length of string «, |«|: number of elements in o

. Concatenation of strings « and S, «f: « followed by B

. Substring of «: a string 8 for which there are strings y and

S witho = 6

Section 3.3

32.

Binary relation from X to Y: set of ordered pairs (x,y),
xeX,yeVt

. Digraph of a binary relation
. Reflexive relation Ron X: (x,x) € Rforallx € X
. Symmetric relation R on X: for all x, y € X, if (x,y) € R,

then (y,x) € R

. Antisymmetric relation R on X: forall x, y € X, if (x,y) € R

and (y,x) € R,thenx =y

. Transitive relation R on X: for all x, y, z € X, if (x,y) and

(v, 2) are in R, then (x,z) € R

. Partial order: relation that is reflexive, antisymmetric, and

transitive

. Inverse relation R~': {(y, x) | (x,y) € R}
. Composition of relations R, o R;: {(x,z) | (x,y) € Ry and

(y,2) € R}

Section 3.4

. Equivalence relation: relation that is reflexive, symmetric,

and transitive

. Equivalence class containing a given by equivalence rela-

tionR: [a] = {x | xRa}

. Equivalence classes partition the set (Theorem 3.4.8)

Section 3.5

4.
45.

46.

47.

Matrix of a relation

R is a reflexive relation if and only if the main diagonal of
the matrix of R consists of 1’s.

R is a symmetric relation if and only if the matrix of R is
symmetric about the main diagonal.

If A; is the matrix of the relation R and A, is the matrix of
the relation R, the matrix of the relation R, o R is obtained
by replacing each nonzero term in the matrix product A A,
by 1.

. If A is the matrix of a relation R, R is transitive if and only

if whenever entry i, j in A” is nonzero, entry i, j in A is also
nonzero.

Section 3.6

. Key

. Project

. n-ary relation: Set of n-tuples
. Database management system
. Relational database

53. Query 54. Select

56. Join

Chapter 3 Self-Test 171

Chapter 3 Self-Test

1.

Let X be the set of strings over {a, b} of length 4 and let Y be
the set of strings over {a, b} of length 3. Define a function f
from X to Y by the rule

f(a) = string consisting of the first three characters of «.

Is f one-to-one? Is f onto?

. Leth, =30 i+ 1)2 =2

(a) Find bs and by.
(b) Find a formula for b,,.
(c) Is b increasing?
(d) Is b decreasing?

In Exercises 3 and 4, determine whether the relation defined on
the set of positive integers is reflexive, symmetric, antisymmet-
ric, transitive, and/or a partial order.

3.
4.
S.

10.

11.

(x,y) € Rif 2 divides x +y
(x,y) € Rif 3 divides x +y
Is the relation

{1, 1),(1,2),2,2), (44,2, 1), (3, 3)}

an equivalence relation on {1, 2, 3, 4}? Explain.

. Given that the relation

{1,1),2,2),3,3), 44, (1,2), (2, 1), 3,4, (4. 3)}

is an equivalence relation on {1, 2, 3, 4}, find [3], the equiv-
alence class containing 3. How many (distinct) equivalence
classes are there?

. Find real numbers x and y satisfying |x||y] = [xy| — 1.
. For the sequence a defined by a,, = 2n + 2, find

(@) ae

3
b) > ai

l:l
(c) Hai

i=1

(d) a formula for the subsequence of @ obtained by select-
ing every other term of a starting with the first.

. Give examples of functions f and g such that f o g is onto,

but g is not onto.
Let a = cedde and B = c3d*. Find

(@) af (b) o © laf (d) loafal
For the hash function 4(x) = x mod 13, show how the data
784, 281, 1141, 18, 1, 329, 620, 43, 31, 684
would be inserted in the order given in initially empty cells

indexed O to 12.

12.

13.

14.

15.

16.

Find the equivalence relation (as a set of ordered pairs) on
{a, b, c, d, e} whose equivalence classes are

la}, {b.d, e},

{c}.

Suppose that R is a relation on X that is symmetric and tran-
sitive but not reflexive. Suppose also that |X| > 2. Define
the relation R on X by R = X x X — R. Which of the fol-
lowing must be true? For each false statement, provide a
counterexample.

(a) R is reflexive.

(b) R is symmetric.

(c) R is not antisymmetric.
(d) R is transitive.

Rewrite the sum >_7_, (n — i)’ replacing the index i by ,
where i = k + 2.

Give an example of arelation on {1, 2, 3, 4} that is reflexive,
not antisymmetric, and not transitive.

Let R be the relation defined on the set of eight-bit strings
by s1 R s, provided that s; and s, have the same number of
Zeros.

(a) Show that R is an equivalence relation.
(b) How many equivalence classes are there?

(c) List one member of each equivalence class.

Exercises 17-20 refer to the relations

17.

18.

19.
20.

Ry ={(1,%),(2,%,2,», G, »n}
Ry = {(x,), (x, b), (y, @), (y, O)}.
Find the matrix A; of the relation R, relative to the orderings
1,2,3; x,y.
Find the matrix A, of the relation R, relative to the orderings
x,y; a,b,c.

Find the matrix product A;A,.

Use the result of Exercise 19 to find the matrix of the rela-
tion R, o R;.

In Exercises 21-24, write a sequence of operations to answer
the query. Also, provide an answer to the query. Use Tables 3.6.1
and 3.6.2.

21.
22.
23.
24.

Find all teams.
Find all players’ names and ages.
Find the names of all teams that have a pitcher.

Find the names of all teams that have players aged 30 years
or older.

172 Chapter 3 @ Functions, Sequences, and Relations

Chapter 3 Computer Exercises

1. Implement a hashing system for storing integers in an array.

2. Write a program that determines whether a credit card num-
ber has a valid check digit.

3. Write a program that determines whether an ISBN has a
valid check digit.

4. Write a program that lists all transpositions of two distinct
adjacent digits (e.g., 25 <> 52) that are not detected by
the Luhn algorithm (i.e., transpositions that produce equal
check digits).

5. Write a program that lists all transpositions of two distinct
adjacent digits (e.g., 25 <> 52) that are not detected by
the ISBN check digit (i.e., transpositions that produce equal
check digits in their ISBNs).

6. Write a program that generates pseudorandom integers.

In Exercises 7-12, assume that a sequence from {1, ..., n}
to the real numbers is represented as an array A, indexed
from I to n.

7. Write a program that tests whether A is one-to-one.

8. Write a program that tests whether A is onto a given set.

9. Write a program that tests whether A is increasing.
10. Write a program that tests whether A is decreasing.

14.

15.
16.

17.

18.
19.

20.

21.

22,

. Write a program that tests whether A is nonincreasing.
12.
13.

Write a program that tests whether A is nondecreasing.

Write a program to determine whether one sequence is a
subsequence of another sequence.

Write a program to determine whether one string is a sub-
string of another string.

Write a program to determine whether a relation is reflexive.

Write a program to determine whether a relation is
antisymmetric.

Write a program to determine whether a relation is
transitive.

Write a program that finds the inverse of a relation.

Write a program that finds the composition Ro S of relations
RandS.

Write a program that checks whether a relation R is an
equivalence relation. If R is an equivalence relation, the pro-
gram outputs the equivalence classes of R.

Write a program to determine whether a relation is a func-
tion from a set X to a set Y.

[Project] Prepare a report on a commercial relational
database such as Oracle or Access.

4.1
4.2
4.3
4.4

Introduction

Examples of Algorithms
Analysis of Algorithms
Recursive Algorithms

4.1

Chapter 4

ALGORITHMS

An algorithm is a step-by-step method of solving some problem. Such an approach
to problem-solving is not new; indeed, the word “algorithm” derives from the name of
the ninth-century Persian mathematician al-Khowarizmi. Today, “algorithm” typically
refers to a solution that can be executed by a computer. In this book, we will be concerned
primarily with algorithms that can be executed by a “traditional” computer, that is, a
computer, such as a personal computer, with a single processor that executes instructions
step-by-step.

After introducing algorithms and providing several examples, we turn to the anal-
ysis of algorithms, which refers to the time and space required to execute algorithms.
We conclude by discussing recursive algorithms—algorithms that refer to themselves.

Introduction

Algorithms typically have the following characteristics:

B Input The algorithm receives input.
B Qutput The algorithm produces output.
B Precision The steps are precisely stated.

B Determinism The intermediate results of each step of execution are unique and
are determined only by the inputs and the results of the preceding steps.

B Finiteness The algorithm ferminates; that is, it stops after finitely many instruc-
tions have been executed.

u Correctness The output produced by the algorithm is correct; that is, the algo-
rithm correctly solves the problem.

B Generality The algorithm applies to a set of inputs.

As an example, consider the following algorithm that finds the maximum of three num-
bers a, b, and c:

1. large = a.

2. If b > large, then large = b.

3. If ¢ > large, then large = c.

(As explained in Appendix C, = is the assignment operator.)

173

174

Chapter 4 ¢ Algorithms

Algorithm 4.1.1

The idea of the algorithm is to inspect the numbers one by one and copy the largest
value seen into a variable large. At the conclusion of the algorithm, large will then be
equal to the largest of the three numbers.

We show how the preceding algorithm executes for some specific values of a, b,
and c. Such a simulation is called a trace. First suppose thata = 1, b = 5, and ¢ = 3.
At line 1, we set large to a (1). Atline 2, b > large (5 > 1) is true, so we set large to
b (5). Atline 3, ¢ > large (3 > 5) is false, so we do nothing. At this point large is 5, the
largest of a, b, and c.

Suppose thata = 6, b = 1, and ¢ = 9. At line 1, we set large to a (6). At line 2,
b > large (1 > 6) is false, so we do nothing. At line 3, ¢ > large (9 > 6) is true, so we
set large to 9. At this point large is 9, the largest of a, b, and c.

We verify that our example algorithm has the properties set forth at the beginning
of this section.

The algorithm receives the three values a, b, and ¢ as input and produces the value
large as output.

The steps of the algorithm are stated sufficiently precisely so that the algorithm
could be written in a programming language and executed by a computer.

Given values for the input, each intermediate step of an algorithm produces a
unique result. For example, given the values a = 1, b = 5, and ¢ = 3, at line 2, large
will be set to 5 regardless of who executes the algorithm.

The algorithm terminates after finitely many steps (three steps) correctly answer-
ing the given question (find the largest of the three values input).

The algorithm is general; it can find the largest value of any three numbers.

Our description of what an algorithm is will suffice for our needs in this book.
However, it should be noted that it is possible to give a precise, mathematical definition
of “algorithm” (see the Notes for Chapter 12).

Although ordinary language is sometimes adequate to specify an algorithm, most
mathematicians and computer scientists prefer pseudocode because of its precision,
structure, and universality. Pseudocode is so named because it resembles the actual code
of computer languages such as C++ and Java. There are many versions of pseudocode.
Unlike actual computer languages, which must be concerned about semicolons, upper-
case and lowercase letters, special words, and so on, any version of pseudocode is ac-
ceptable as long as its instructions are unambiguous. Our pseudocode is described in
detail in Appendix C.

As our first example of an algorithm written in pseudocode, we rewrite the first
algorithm in this section, which finds the maximum of three numbers.

Finding the Maximum of Three Numbers

This algorithm finds the largest of the numbers a, b, and c.
Input: a, b, c

Output: [arge (the largest of a, b, and c)

max3(a, b, ¢) {
large = a
if (b > large) // if b is larger than large, update large
large = b
if (¢ > large) // if c is larger than large, update large
large = ¢
return large

}

g2 O B g B9 I =

Algorithm 4.1.2

4.1 @& Introduction 175

Our algorithms consist of a title, a brief description of the algorithm, the input
to and output from the algorithm, and the functions containing the instructions of the
algorithm. Algorithm 4.1.1 consists of a single function. To make it convenient to refer to
individual lines within a function, we sometimes number some of the lines. The function
in Algorithm 4.1.1 has eight numbered lines.

When the function in Algorithm 4.1.1 executes, at line 2 we set large to a. At
line 3, b and large are compared. If b is greater than large, we execute line 4

large = b

but if b is not greater than large, we skip to line 5. At line 5, ¢ and large are compared.
If ¢ is greater than large, we execute line 6

large = ¢

but if ¢ is not greater than large, we skip to line 7. Thus when we arrive at line 7, large
will correctly hold the largest of a, b, and c.

At line 7 we return the value of large, which is equal to the largest of the numbers
a, b, and c, to the invoker of the function and terminate the function. Algorithm 4.1.1
has correctly found the largest of three numbers.

The method of Algorithm 4.1.1 can be used to find the largest value in a
sequence.

Finding the Maximum Value in a Sequence
This algorithm finds the largest of the numbers sy, . .., s,.

Input: s,n

Output: large (the largest value in the sequence s)

max(s, n) {
large = s,
fori=2ton
if (s; > large)
large = s;
return large

}

We verify that Algorithm 4.1.2 is correct by proving that
large is the largest value in the subsequence sy, .. ., S; (4.1.1)

is a loop invariant using induction on i.

For the Basis Step (i = 1), we note that just before the for loop begins executing,
large is set to s1; so large is surely the largest value in the subsequence s;.

Assume that large is the largest value in the subsequence sy, ..., s;. If i < nis
true (so that the for loop body executes again), i becomes i+ 1. Suppose first that s;4; >
large. It then follows that s;; is the largest value in the subsequence sy, ..., s;, si+1. In
this case, the algorithm assigns large the value s;1. Now large is equal to the largest
value in the subsequence sy, ..., S;, Si+1. Suppose next that s;;; < large. It then fol-
lows that /arge is the largest value in the subsequence sy, ..., s;, s;+1. In this case, the
algorithm does not change the value of large; thus, large is the largest value in the

176

Chapter 4 ¢ Algorithms

subsequence sy, ..., s;, s;+1.- We have proved the Inductive Step. Therefore, (4.1.1) is
a loop invariant.

The for loop terminates when i = n. Because (4.1.1) is a loop invariant, at this
point large is the largest value in the sequence sy, ..., s,. Therefore, Algorithm 4.1.2 is
correct.

4.1 Problem-Solving Tips

To construct an algorithm, it is often helpful to assume that you are in the middle of
the algorithm and part of the problem has been solved. For example, in finding the
largest element in a sequence sy, ..., s, (Algorithm 4.1.2), it was helpful to assume
that we had already found the largest element /arge in the subsequence si, ..., s;.
Then, all we had to do was look at the next element s, and, if s;y; was larger than
large, we simply updated large. If s;1; was not larger than large, we did not mod-
ify large. Iterating this procedure yields the algorithm. These observations also led to
the loop invariant (4.1.1) which allowed us to prove that Algorithm 4.1.2 is
correct.

4.1 Review Exercises

N =

w

. What is an algorithm?

. Describe the following properties an algorithm typically has:

input, output, precision, determinism, finiteness, correctness,
and generality.

. What is a trace of an algorithm?

4. What are the advantages of pseudocode over ordinary text in

writing an algorithm?

5. How do algorithms relate to pseudocode functions?

4.1 Exercises

1. Consult the instructions for connecting a DVD or Blu-

ray player to a TV. Which properties of an algorithm—
input, output, precision, determinism, finiteness, correctness,
generality—are present? Which properties are lacking?

2. Consult the instructions for adding a contact to a cell phone.

Which properties of an algorithm—input, output, precision,
determinism, finiteness, correctness, generality—are present?
Which properties are lacking?

3. Goldbach’s conjecture states that every even number greater

than 2 is the sum of two prime numbers. Here is a pro-
posed algorithm that checks whether Goldbach’s conjecture is
true:

1. Letn =4.

2. If n is not the sum of two primes, output “no” and stop.

3. Else increase n by 2 and continue with step 2.

4. Output “yes” and stop.
Which properties of an algorithm—input, output, precision,
determinism, finiteness, correctness, generality—does this
proposed algorithm have? Do any of them depend on the truth

of Goldbach’s conjecture (which mathematicians have not yet
settled)?

. Write an algorithm that finds the smallest element among a, b,

and c.

. Write an algorithm that finds the second-smallest element

among a, b, and c. Assume that the values of a, b, and c are
distinct.

. Write an algorithm that returns the smallest value in the se-

quence Sq, - . ., Sy-

. Write an algorithm that returns the largest and second-largest

values in the sequence si, . .., s,. Assume that n > 1 and the
values in the sequence are distinct.

. Write an algorithm that returns the smallest and second-

smallest values in the sequence sy, .. ., S,. Assume thatn > 1
and the values in the sequence are distinct.

. Write an algorithm that outputs the smallest and largest values

in the sequence sy, ..., S,.

. Write an algorithm that returns the index of the first occur-

rence of the largest element in the sequence s1, . . ., s,. Exam-
ple: If the sequence is 6.2, 8.9, 4.2, 8.9, the algorithm returns
the value 2.

. Write an algorithm that returns the index of the last oc-

currence of the largest element in the sequence si, ..., s,.

12.

13.

14.

15.

16.

4.2 & Examples of Algorithms 177

Example: If the sequence is 6.2, 8.9, 4.2, 8.9, the algorithm 17. Write an algorithm that receives as input the n x n matrix A

returns the value 4.

and outputs the transpose A’

Write an algorithm that returns the sum of the sequence of ~ 18. Write an algorithm that receives as input the matrix of a rela-

numbers s, ..., S,.

Write an algorithm that returns the

tion R and tests whether R is reflexive.

index of the first item that 19. Write an algorithm that receives as input the matrix of a rela-

is less than its predecessor in the sequence s1, . . ., s,. [f s is in tion R and tests whether R is symmetric.

nondecreasing order, the algorithm
ple: If the sequence is

returns the value 0. Exam-
20. Write an algorithm that receives as input the matrix of a rela-

tion R and tests whether R is transitive.

AMY BRUNO ELIE DAN ZEKE, 21. Write an algorithm that receives as input the matrix of a rela-

the algorithm returns the value 4.

Write an algorithm that returns the

tion R and tests whether R is antisymmetric.

22. Write an algorithm that receives as input the matrix of a rela-

index of the first item that tion R and tests whether R is a function.

is greater than its predecessor in the sequence s1, ..., s,. If s

is in nonincreasing order, the algorithm returns the value 0.

Example: If the sequence is

23. Write an algorithm that receives as input the matrix of a rela-
tion R and produces as output the matrix of the inverse relation
R

AMY BRUNO ELIE DAN ZEKE, 24. Write an algorithm that receives as input the matrices of re-

the algorithm returns the value 2.

Write an algorithm that reverses
Example: If the sequence is

AMY BRUNO ELIE,

the reversed sequence is

lations Ry and Ry and produces as output the matrix of the
composition Ry o R.

the sequence s, ..., sn. 25. Write an algorithm whose input is a sequence sy, ..., s, and

a value x. (Assume that all the values are real numbers.) The
algorithm returns true if s; + s; = x, for some 7 # j, and false
otherwise. Example: If the input sequence is 2, 12, 6, 14 and
x = 26, the algorithm returns true because 12 4+ 14 = 26.
If the input sequence is 2,12, 6, 14 and x = 4, the algo-

ELIE BRUNO AMY. rithm returns false because no distinct pair in the sequence

sums to 4.

Write the standard method of adding two positive decimal
integers, taught in elementary schools, as an algorithm.

4.2

Examples of Algorithms

Algorithms have been devised to solve many problems. In this section, we give examples
of several useful algorithms. Throughout the remainder of the book, we will investigate
many additional algorithms.

Searching

A large amount of computer time is devoted to searching. When a teller looks for a record
in a bank, a computer program searches for the record. Looking for a solution to a puzzle
or for an optimal move in a game can be stated as a searching problem. Using a search
engine on the web is another example of a searching problem. Looking for specified text
in a document when running a word processor is yet another example of a searching
problem. We discuss an algorithm to solve the text-searching problem.

Suppose that we are given text ¢ (e.g., a word processor document) and we want
to find the first occurrence of pattern p in 7 (e.g., we want to find the first occurrence of
the string p = “Nova Scotia” in f) or determine that p does not occur in . We index the
characters in ¢ starting at 1. One approach to searching for p is to check whether p occurs
atindex 1 in z. If so, we stop, having found the first occurrence of p in ¢. If not, we check

178 Chapter 4 ¢ Algorithms

whether p occurs at index 2 in ¢. If so, we stop, having found the first occurrence of p in
t. If not, we next check whether p occurs at index 3 in #, and so on.
We state the text-searching algorithm as Algorithm 4.2.1.

Algorithm 4.2.1 Text Search

This algorithm searches for an occurrence of the pattern p in text z. It returns the
smallest index i such that p occurs in ¢ starting at index i. If p does not occur in ¢, it
returns 0.

Input: p (indexed from 1 to m), m, ¢ (indexed from 1 to n), n
Output:

text_search(p, m, t, n) {
fori=1ton—m+1{
j=1

/i is the index in ¢ of the first character of the substring
/ to compare with p, and j is the index in p

/I the while loop compares t; - - - tj1,—1 and py - - - pj,
while (7;1;-1 == p;) {
j=j+1
if (j > m)
return i
1
1

return 0

The variable i marks the index in ¢ of the first character of the substring to compare
with p. The algorithm first tries i = 1, then i = 2, and so on. Index n — m + 1 is the last
possible value for i since, at this point, the string #,—,+1f,—m+2 - - - £, has length exactly m.

After the value of i is set, the while loop compares ¢; - - - t;1,,—1 and p; - - - p,. If the
characters match,

liyj—1 ==pj
Jj is incremented
j=j+1
and the next characters are compared. If j is m + 1, all m characters have matched and
we have found p at index i in ¢. In this case, the algorithm returns i:
if (j > m)
return i

If the for loop runs to completion, a match was never found; so the algorithm returns 0.

Example 4.2.2 Figure 4.2.1 shows a trace of Algorithm 4.2.1 where we are searching for the pattern
“001” in the text “010001”.

4.2 & Examples of Algorithms 179

j=1 j=2 j=1
\: 1 (x) L (x)
001 001 001
010001 010001 010001
t T t
i=1 i=1 i=2
(H (2) (3)
\ \: 1 (x)
001 001 001
010001 010001 010001
T T T
4) (%) 6)
s A \:
001 001 001
010001 010001 010001
t T T
7 3 ©)
Figure 4.2.1 Searching for “001” in “010001” using Algorithm 4.2.1.
The cross (x) in steps (2), (3), and (6) marks a mismatch. <
Sorting

To sort a sequence is to put it in some specified order. If we have a sequence of names,
we might want the sequence sorted in nondecreasing order according to dictionary order.
For example, if the sequence is

Jones, Johnson, Appel, Zamora, Chu,
after sorting the sequence in nondecreasing order, we would obtain
Appel, Chu, Johnson, Jones, Zamora.

A major advantage of using a sorted sequence rather than an unsorted sequence is that
it is much easier to find a particular item. Imagine trying to find the phone number
of a particular individual in the New York City telephone book if the names were not
sorted!

Many sorting algorithms have been devised (see, e.g., [Knuth, 1998b]).
Which algorithm is preferred in a particular situation depends on factors such as the
size of the data and how the data are represented. We discuss insertion sort, which
is one of the fastest algorithms for sorting small sequences (less than 50 or so
items).

We assume that the input to insertion sort is sy, .. ., s, and that the goal is to sort
the data in nondecreasing order. At the ith iteration of insertion sort, the first part of
the sequence sy, ..., s; will have been rearranged so that it is sorted. (We will explain

180

Chapter 4 ¢ Algorithms

shortly how s1, ..., s; gets sorted.) Insertion sort then inserts s, in sy, ..., s; so that
S1y ...y Si, Siyq 1S sorted.
For example, suppose thati = 4 and sy, ..., 54 18
8 |13 20|27
If 55 is 16, after it is inserted, sy, ..., S5 becomes

8 | 13|16 |20 |27

Notice that 20 and 27, being greater than 16, move one index to the right to make room
for 16. Thus the “insert” part of the algorithm is: Beginning at the right of the sorted
subsequence, move an element one index to the right if it is greater than the element to
insert. Repeat until reaching the first index or encountering an element that is less than
or equal to the element to insert.

For example, to insert 16 in

we first compare 16 and 27. Since 27 is greater than 16, 27 moves one index to the
right:

We next compare 16 with 20. Since 20 is greater than 16, 20 moves one index to the
right:

We next compare 16 with 13. Since 13 is less than or equal to 16, we insert (i.e., copy)
16 to the third index:

This subsequence is now sorted.

Having explained the key idea of insertion sort, we now complete the explanation
of the algorithm. Insertion sort begins by inserting s, into the subsequence s;. Note that s,
by itself is sorted! Now sy, 55 is sorted. Next, insertion sort inserts s3 into the now-sorted
subsequence s1, 5. Now s1, 2, 53 is sorted. This procedure continues until insertion sort
inserts s, into the sorted subsequence s, ..., s,—. Now the entire sequence sy, ..., S,
is sorted. We obtain the following algorithm.

Algorithm 4.2.3

4.2 ¢ Examples of Algorithms 181

Insertion Sort
This algorithm sorts the sequence sy, . .., s, in nondecreasing order.

Input: s,n
Output: s (sorted)

insertion_sort(s, n) {
fori=2ton{
val = s; I/ save s; so it can be inserted into the correct place
j=i—1
/i val < s;, move s; right to make room for s;
while (j > 1 A val < s;) {

Sji+1 = Sj
Jj=j—1
}
Si+1 = val /] insert val

We leave proving that Algorithm 4.2.3 is correct as an exercise (see Exercise 14).

Time and Space for Algorithms

It is important to know or be able to estimate the time (e.g., the number of steps) and
space (e.g., the number of variables, length of the sequences involved) required by algo-
rithms. Knowing the time and space required by algorithms allows us to compare algo-
rithms that solve the same problem. For example, if one algorithm takes »n steps to solve
a problem and another algorithm takes n? steps to solve the same problem, we would
surely prefer the first algorithm, assuming that the space requirements are acceptable. In
Section 4.3, we will give the technical definitions that allow us to make rigorous state-
ments about the time and space required by algorithms.

The for loop in Algorithm 4.2.3 always executes n — 1 times, but the number of
times that the while loop executes for a particular value of i depends on the input. Thus,
even for a fixed size n, the time required by Algorithm 4.2.3 depends on the input. For
example, if the input sequence is already sorted in nondecreasing order,

val < s; (4.2.1)

will always be false and the body of the while loop will never be executed. We call this
time the best-case time.

On the other hand, if the sequence is sorted in decreasing order, (4.2.1) will always
be true and the while loop will execute the maximum number of times. (The while loop
will execute i — 1 times during the ith iteration of the for loop.) We call this time the
worst-case time.

Randomized Algorithms

It is occasionally necessary to relax the requirements of an algorithm stated in Sec-
tion 4.1. Many algorithms currently in use are not general, deterministic, or even finite.
An operating system (e.g., Windows), for example, is better thought of as a program that
never terminates rather than as a finite program with input and output. Algorithms written
for more than one processor, whether for a multiprocessor machine or for a distributed

182

Chapter 4 ¢ Algorithms

Algorithm 4.2.4

Example 4.2.5

environment (such as the internet), are rarely deterministic, for example, because of dif-
ferent execution speeds of the processors. Also, many practical problems are too difficult
to be solved efficiently, and compromises either in generality or correctness are neces-
sary. As an illustration, we present an example that shows the usefulness of allowing an
algorithm to make random decisions, thereby violating the requirement of determinism.

A randomized algorithm does not require that the intermediate results of each
step of execution be uniquely defined and depend only on the inputs and results of the
preceding steps. By definition, when a randomized algorithm executes, at some points
it makes random choices. In practice, a pseudorandom number generator is used (see
Example 3.1.16).

We shall assume the existence of a function rand(i, j), which returns a random
integer between the integers i and j, inclusive. As an example, we describe a random-
ized algorithm that shuffles a sequence of numbers. More precisely, it inputs a sequence
ai, ..., a, and moves the numbers to random positions. Major bridge tournaments use
computer programs to shuffle the cards.

The algorithm first swaps (i.e., interchanges the values of) a; and a,4uq(1,,). At this
point, the value of @; might be equal to any one of the original values in the sequence.
Next, the algorithm swaps a, and a,4,4(2,,). Now the value of a, might be equal to any
of the remaining values in the sequence. The algorithm continues in this manner until it
swaps a,—1 and a,gndn—1,2)- NOow the entire sequence is shuffled.

Shuffle
This algorithm shuffles the values in the sequence
ai, ..., an.
Input: a,n

Output: a (shuffled)
shuffle(a, n) {

fori=1ton—1
swap(a;, Arand(i,ny)

Suppose that the sequence a

1719 |5 |23|21

is input to shuffle. We first swap a; and a;, where i = 1 and j = rand(1, 5). If j = 3, after
the swap we have

519 |17]23]21]
t
J

Next, i = 2. If j = rand(2, 5) = 5, after the swap we have

5|21 1712319

4.2 & Examples of Algorithms 183

Next, i = 3. If j = rand(3, 5) = 3, the sequence does not change.
Finally, i = 4. If j = rand(4, 5) = 5, after the swap we have

5 21(17]9 |23
T 1
J

1

Notice that the output (i.e., the rearranged sequence) depends on the random choices
made by the random number generator. <

Randomized algorithms can be used to search for nonrandom goals. For example,
a person searching for the exit in a maze could randomly make a choice at each inter-
section. Of course, such an algorithm might not terminate (because of bad choices at the
intersections). In Chapter 8, Graph Theory, we will present a randomized algorithm that
searches for a particular structure in a graph (see Algorithm 8.3.10).

4.2 Problem-Solving Tips

Again, we emphasize that to construct an algorithm, it is often helpful to assume that
you are in the middle of the algorithm and that part of the problem has been solved. In
insertion sort (Algorithm 4.2.3), it was helpful to assume that the subsequence sy, ..., s;
was sorted. Then, all we had to do was insert the next element s;; in the proper place.
Iterating this procedure yields the algorithm. These observations lead to a loop invariant

that can be used to prove that Algorithm 4.2.3 is correct (see Exercise 14).

4.2 Review Exercises

. Give examples of searching problems.
. What is text searching?

. Describe, in words, an algorithm that solves the text-searching
problem.

. What does it mean to sort a sequence?

. Give an example that illustrates why we might want to sort a
sequence.

. Describe insertion sort in words.

. What do we mean by the time and space required by an
algorithm?

. Why is it useful to know or be able to estimate the time and

space required by an algorithm?

. Why is it sometimes necessary to relax the requirements of an

algorithm as stated in Section 4.1?

. What is a randomized algorithm?

. Which requirements of an algorithm as stated in Section 4.1

does a randomized algorithm violate?

. Describe the shuffle algorithm in words.

. Give an application of the shuffle algorithm.

4.2 Exercises

. Trace Algorithm 4.2.1 for the input ¢+ = “balalaika” and

p = “bala”.

. Trace Algorithm 4.2.1 for the input ¢+ = “balalaika” and

p= “lai”.

. Trace Algorithm 4.2.1 for the input + = “000000000” and
p = “001".

. Trace Algorithm 4.2.3 for the input 34, 20, 144, 55.
. Trace Algorithm 4.2.3 for the input 34, 20, 19, 5.

. Trace Algorithm 4.2.3 for the input 34, 55, 144, 259.
. Trace Algorithm 4.2.3 for the input 34, 34, 34, 34.

8. Trace Algorithm 4.2.4 for the input 34, 57, 72, 101, 135.

Assume that the values of rand are

rand(1,5) =5,
rand(3,5) = 3,

rand(2,5) = 4,
rand(4,5) = 5.

. Trace Algorithm 4.2.4 for the input 34, 57, 72, 101, 135.

184

10.

11.

12.

13.
14.
15.

16.

Chapter 4 ¢ Algorithms

Assume that the values of rand are

rand(1,5) = 2,
rand(3,5) = 3,

rand(2,5) =5,
rand(4,5) = 4.

Trace Algorithm 4.2.4 for the input 34, 57,72, 101, 135.
Assume that the values of rand are

rand(1,5) =5,
rand(3,5) = 4,

rand(2,5) = 5,
rand(4,5) = 4.

Is it possible that Algorithm 4.2.4 sorts the input
67,32, 6, 89, 52 in increasing order? If so, show possible val-
ues for rand that perform the sort. It not, prove that Algorithm
4.2.4 cannot sort this input in increasing order.

Is it possible that Algorithm 4.2.4 sorts the input
67,32, 6,89,52 in decreasing order? If so, show possible
values for rand that perform the sort. It not, prove that Algo-
rithm 4.2.4 cannot sort this input in decreasing order.

Prove that Algorithm 4.2.1 is correct.
Prove that Algorithm 4.2.3 is correct.

Write an algorithm that returns the index of the first occur-
rence of the value key in the sequence sy, ..., s,. If key is not
in the sequence, the algorithm returns the value 0. Example:
If the sequence is 12, 11, 12, 23 and key is 12, the algorithm

17.

18.

19.
20.
21.

22.

23.

the sequence, the algorithm returns the value 0. Example: If
the sequence is 12, 11, 12, 23 and key is 12, the algorithm re-
turns the value 3.

Write an algorithm whose inputis a sequence s1, . . ., s, sorted
in nondecreasing order and a value x. (Assume that all the
values are real numbers.) The algorithm inserts x into the se-
quence so that the resulting sequence is sorted in nondecreas-
ing order. Example: If the input sequence is 2, 6, 12, 14 and
x = 5, the resulting sequence is 2, 5, 6, 12, 14.

Modify Algorithm 4.2.1 so that it finds all occurrences of
pint.

Describe best-case input for Algorithm 4.2.1.

Describe worst-case input for Algorithm 4.2.1.

Modify Algorithm 4.2.3 so that it sorts the sequence sy, . .., S,
in nonincreasing order.

The selection sort algorithm sorts the sequence sy, ..., s, in
nondecreasing order by first finding the smallest item, say s;,
and placing it first by swapping s; and s;. It then finds the
smallest item in s», .. ., s,, again say s;, and places it second
by swapping s, and s;. It continues until the sequence is sorted.
Write selection sort in pseudocode.

Trace selection sort (see Exercise 22) for the input of

returns the value 1.

Write an algorithm that returns the index of the last occurrence 24.
of the value key in the sequence sy, ..

4.3

Exercises 4-7.

Show that the time for selection sort (see Exercise 22) is the

., Sp. If key is not in same for all inputs of size n.

Analysis of Algorithms

A computer program, even though derived from a correct algorithm, might be useless for
certain types of input because the time needed to run the program or the space needed
to hold the data, program variables, and so on, is too great. Analysis of an algorithm
refers to the process of deriving estimates for the time and space needed to execute the
algorithm. In this section we deal with the problem of estimating the time required to
execute algorithms.

Suppose that we are given a set X of n elements, some labeled “red” and some
labeled “black,” and we want to find the number of subsets of X that contain at least one
red item. Suppose we construct an algorithm that examines all subsets of X and counts
those that contain at least one red item and then implement this algorithm as a computer
program. Since a set that has n elements has 2" subsets (see Theorem 2.4.6), the program
would require at least 2" units of time to execute. It does not matter what the units of
time are—2" grows so fast as n increases (see Table 4.3.1) that, except for small values
of n, it would be impractical to run the program.

Determining the performance parameters of a computer program is a difficult task
and depends on a number of factors such as the computer that is being used, the way
the data are represented, and how the program is translated into machine instructions.
Although precise estimates of the execution time of a program must take such factors
into account, useful information can be obtained by analyzing the time of the underlying
algorithm.

The time needed to execute an algorithm is a function of the input. Usually, it is
difficult to obtain an explicit formula for this function, and we settle for less. Instead of
dealing directly with the input, we use parameters that characterize the size of the input.

4.3 ¢ Analysis of Algorithms 185

TABLE 4.3.1 m Time to Execute an Algorithm if One Step Takes 1 Microsecond to Execute. Ign Denotes log, n
(the logarithm of n to base 2)

Number of Steps Time to Execute if n =
to Termination
for Input of Size n 3 6 9 12
1 107 sec 107° sec 107° sec 1070 sec
Iglgn 107 sec 1076 sec 2 x 1070 sec 2 x 1076 sec
Ign 2 x 1070 sec 3 x 1070 sec 3 x 1076 sec 4 % 1076 sec
n 3 x 1070 sec 6 x 1070 sec 9 x 1070 sec 1073 sec
nlgn 5 x 1070 sec 2 x 107 sec 3 x 1077 sec 4 x 107 sec
n? 9 x 107° sec 4 x 1073 sec 8 x 107 sec 1074 sec
n 3 x 1077 sec 2 x 107 sec 7 x 10™* sec 2 x 1073 sec
2" 8 x 1070 sec 6 x 1077 sec 5% 107% sec 4 % 1073 sec
50 100 1000 103 10°
1 107 sec 107° sec 1076 sec 1076 sec 107° sec
Iglgn 2 x 1070 sec 3 x 1070 sec 3 x 1070 sec 4 % 107 sec 4 % 1076 sec
lgn 6 x 1070 sec 7 x 1070 sec 107 sec 2 x 1073 sec 2 x 1073 sec
n 5 x 1077 sec 10~ sec 1073 sec 0.1 sec 1 sec
nlgn 3 x 107 sec 7 x 107% sec 1072 sec 2 sec 20 sec
n? 3 x 1073 sec 0.01 sec 1 sec 3 hr 12 days
n’ 0.13 sec 1 sec 16.7 min 32 yr 31,710 yr
2" 36 yr 4 x 10 yr 3 x 10?87 yr 3 x 1039089 yr 3 x 10301016 yp

Example 4.3.1

For example, if the input is a set containing n elements, we would say that the size of the
input is n. We can ask for the minimum time needed to execute the algorithm among all
inputs of size n. This time is called the best-case time for inputs of size n. We can also
ask for the maximum time needed to execute the algorithm among all inputs of size n.
This time is called the worst-case time for inputs of size n. Another important case is
average-case time—the average time needed to execute the algorithm over some finite
set of inputs all of size n.

Since we are primarily concerned with estimating the time of an algorithm rather
than computing its exact time, as long as we count some fundamental, dominating steps
of the algorithm, we will obtain a useful measure of the time. For example, if the principal
activity of an algorithm is making comparisons, as might happen in a sorting routine, we
might count the number of comparisons. As another example, if an algorithm consists
of a single loop whose body executes in at most C steps, for some constant C, we might
count the number of iterations of the loop.

A reasonable definition of the size of input for Algorithm 4.1.2 that finds the largest
value in a finite sequence is the number of elements in the input sequence. A reasonable
definition of the execution time is the number of iterations of the while loop. With these
definitions, the worst-case, best-case, and average-case times for Algorithm 4.1.2 for
input of size n are each n — 1 since the loop is always executed n — 1 times. <

Usually we are less interested in the exact best-case or worst-case time required
for an algorithm to execute than we are in how the best-case or worst-case time grows
as the size of the input increases. For example, suppose that the worst-case time of an
algorithm is

t(n) = 60n* + 51+ 1

for input of size n. For large n, the term 60n” is approximately equal to #(n) (see Ta-
ble 4.3.2). In this sense, #(n) grows like 60n>.

186 Chapter 4 ¢ Algorithms

Go Online

For more on these order
notations, see
g00.g1l/ZwpPlu

TABLE 4.3.2 m Comparing Growth of ¢(n) with 60n?

n t(n) = 60n% + 5n + 1 60n>
10 6,051 6,000
100 600,501 600,000
1,000 60,005,001 60,000,000
10,000 6,000,050,001 6,000,000,000

If t(n) measures the worst-case time for input of size n in seconds, then

T(n) =n’+ in+ i

B 60 60
measures the worst-case time for input of size n in minutes. Now this change of units
does not affect how the worst-case time grows as the size of the input increases but only
the units in which we measure the worst-case time for input of size n. Thus when we
describe how the best-case or worst-case time grows as the size of the input increases,
we not only seek the dominant term [e.g., 60n? in the formula for #(n)], but we also may
ignore constant coefficients. Under these assumptions, #(n) grows like n? as n increases.
We say that #(n) is of order n> and write t(n) = ®(n?), which is read “t(n) is theta of
n%” The basic idea is to replace an expression, such as #(n) = 60n% + 5n + 1, with a
simpler expression, such as n?, that grows at the same rate as #(n). The formal definitions
follow.

Definition 4.3.2 » Letf and g be functions with domain {1, 2, 3, ...}.
We write

f(n) = 0(g(n))

and say that f (n) is of order at most g(n) or f(n) is big oh of g(n) if there exists a positive
constant C; such that

Fm| = Cilgm)|

for all but finitely many positive integers n.
We write

f(n) = Q(gn)

and say that f(n) is of order at least g(n) or f (n) is omega of g(n) if there exists a positive
constant C, such that

F(ml = G lg(n)]

for all but finitely many positive integers n.
We write

f(n) = ©(gm)

and say that f(n) is of order g(n) or f(n) is theta of g(n) if f(n) = O(g(n)) and f(n) =
Q(g(n).

Definition 4.3.2 can be loosely paraphrased as follows: f(n) = O(g(n)) if, except
for a constant factor and a finite number of exceptions, f is bounded above by g. We also
say that g is an asymptotic upper bound for f. Similarly, f(n) = Q(g(n)) if, except for

Example 4.3.3

Theorem 4.3.4

4.3 ¢ Analysis of Algorithms 187

a constant factor and a finite number of exceptions, f is bounded below by g. We also say
that g is an asymptotic lower bound for f. Also, f(n) = ®(g(n)) if, except for constant
factors and a finite number of exceptions, f is bounded above and below by g. We also
say that g is an asymptotic tight bound for f.

According to Definition 4.3.2, if f(n) = O(g(n)), all that we can conclude is that,
except for a constant factor and a finite number of exceptions, f is bounded above by g,
so g grows at least as fast as f. For example, if f(n) = n and g(n) = 2", then f(n) =
O(g(n)), but g grows considerably faster than f. The statement f(n) = O(g(n)) says
nothing about a lower bound for f. On the other hand, if f(n) = ®(g(n)), we can draw
the conclusion that, except for constant factors and a finite number of exceptions, f is
bounded above and below by g, so f and g grow at the same rate. Notice that n = O(2"),
butn # ®(2").

Since
60n” + 51+ 1 < 60> + 5n* + n®> = 661> foralln > 1,
we may take C; = 66 in Definition 4.3.2 to obtain
60n> 4+ 5n+ 1 = 0O(n?).
Since
60n* +5n+ 1> 60n* foralln > 1,
we may take C, = 60 in Definition 4.3.2 to obtain
60n* + 5n + 1 = Q(n?).
Since 60n% + 5n + 1 = O(n?) and 60n% + 5n + 1 = Q(n?),

60n> 4+ 5n+ 1 = O(n?). <

The method of Example 4.3.3 can be used to show that a polynomial in n of degree
k with nonnegative coefficients is ® (r¥). [In fact, any polynomial in n of degree k is
©(n*), even if some of its coefficients are negative. To prove this more general result,
the method of Example 4.3.3 has to be modified.]

Let
pn) = Clknk + ak—lnk_l +---4+an+a
be a polynomial in n of degree k, where each a; is nonnegative. Then

p(n) = O).

Proof We first show that p(n) = O(¥). Let
Ci=ay+ a1+ ---+a +ap.

Then, for all n,

188 Chapter 4 ¢ Algorithms

p(n) = an* + a_n* "+ + an+ ag

k k k k
an” + ag\n" +---+an + apn

(ap+ag_1+---+a + ao)nk = C]I’lk.

IA

Therefore, p(n) = O(n").
Next, we show that p(n) = Q(n). For all n,

k k—1 k k
p(n) =aqn” +arn” + - +an+ag = qn = Con',

where C, = ay. Therefore, p(n) = Q(n%).
Since p(n) = O(x*) and p(n) = Q") p(n) = O("). 4

Example 4.3.5 In this book, we let 1gn denote log, n (the logarithm of 7 to the base 2). Since Ign < n
for all n > 1 (see Figure 4.3.17),

2n+3lgn <2n+3n=>5n foralln > 1.
Thus,
2n+3lgn = O(n).
Also, 2n + 31gn > 2n, for alln > 1. Thus,
2n+3lgn = Qn).
Therefore,

2n+3lgn = O(n). |

256 —

128 —

Figure 4.3.1 Growth of some common functions.

In Figure 4.3.1, the spacing on the y-axis is proportional to the logarithm of the number rather than to the
number itself so that we can plot large y-values against smaller x-values. This y-axis scale is called a logarithmic
scale. On the standard xy-graph, y = n would be a straight line; here it is curved.

Example 4.3.6

Example 4.3.7

4.3 ¢ Analysis of Algorithms 189

Ifa > 1and b > 1 (to ensure that log,a > 0), by the change-of-base formula for
logarithms [Theorem B.37(e)],

log, n = log, alog, n foralln > 1.
Therefore,
log,n < Clog,n foralln > 1,

where C = log,, a. Thus, log, n = O(log, n).
Also,

log,n > Clog,n foralln > 1;

so log, n = Q(log, n). Since log, n = O(log, n) and log, n = Q(log, n), we conclude
that log, n = ©(log, n).

Because log, n = ®(log, n), when using asymptotic notation we need not worry
about which number is used as the base for the logarithm function (as long as the base is
greater than 1). For this reason, we sometimes simply write log without specifying the
base. |

If we replace each integer 1, 2, ..., n by nin the sum 1 + 2 4 - - - 4+ n, the sum does not
decrease and we have

1424+ +n<n+n+---+n=n-n=n* foralln > 1. (4.3.1)
It follows that
1424 +n= 0.

To obtain a lower bound, we might imitate the preceding argument and replace
each integer 1,2,...,nby l inthe sum 1 4+ 2 4 - - - + n to obtain

1424+---+n>1+1+---+1=n foralln > 1.
In this case we conclude that
142+---4+n=Q(n),

and while the preceding expression is true, we cannot deduce a ®-estimate for
142+ .-+ n, since the upper bound n?> and lower bound 7 are not equal. We must be
craftier in deriving a lower bound.

One way to get a sharper lower bound is to argue as in the previous paragraph, but
first throw away approximately the first half of the terms, to obtain

1424 4n= [+ 1)/21++@—1)+n
> [0+ 1)/2] + -+ [+ 1)/2] + [(n + 1)/2]
2

= /211 + D/2] = (1/2)(n/2) = = (4.3.2)
for all n > 1. We can now conclude that

1424 +n=Q®m).

190 Chapter 4 ¢ Algorithms

Example 4.3.8

Example 4.3.9

Therefore,

1+2+~-~+n=®(n2). <
If k is a positive integer and, as in Example 4.3.7, we replace each integer 1, 2, ..., n by
n, we have

T T e T .
for all n > 1; hence
K425+ +nf = o™).
We can also obtain a lower bound as in Example 4.3.7:

K2 b > T+ D21+ (n = D 0"
> [+ 1D/21 + -+ [(n+ D/21* + [(n + 1) /21
= [n/21T(n+ 1)/21% = (n/2)(n/2)* = n*H! /24!

for all n > 1. We conclude that

542k 4ok = QA,
and hence

K2k ik = 0. <

Notice the difference between the polynomial
aknk + ak_lnk71 +---t+an—+ag
in Theorem 4.3.4 and the expression
ok gt

in Example 4.3.8. A polynomial has a fixed number of terms, whereas the number of

terms in the expression in Example 4.3.8 is dependent on the value of n. Furthermore, the

polynomial in Theorem 4.3.4 is © ("), but the expression in Example 4.3.8 is @ (n**1).
Our next example gives a theta notation for lg n!.

Use an argument similar to that in Example 4.3.7, to show that Ilgn! = ®(nlgn).
SOLUTION By properties of logarithms, we have
Ign!=lgn+lgln—1)+---+1g2+1gl
for all n > 1. Since Ig is an increasing function,
Ign+lgln—1)+---4+1g2+1gl <lgn+lgn+---+lgn+lgn=nlgn

for all n > 1. We conclude that Ign! = O(nlgn).
For all n > 4, we have

lgn+lgln—1)+---+1g24+1gl > lgn+Igln—1)+--- +1g[(n+ 1)/2]

zlg[(n+1)/2] +--- +1g[(n + 1)/2]
= [n/211g[(n+ 1)/2]

Example 4.3.10

4.3 & Analysis of Algorithms 191

> (n/2)1g(n/2)

= (n/2)[lgn —1g2]

= (n/D)[gn)/2 + ((Agn)/2 = 1)]
> (n/2)(1gn)/2

=nlgn/4

[since (Ign)/2 > 1 for all n > 4]. Therefore, Ign! = Q(nlgn). It follows that Ign! =
O(nlgn). |
Show that if f(n) = ®(g(n)) and g(n) = O (h(n)), then f(n) = O (h(n)).

SOLUTION Because f(n) = ®(g(n)), there are constants C; and C, such that

Cilgm)| = [f(n)] = Colg(m)]

for all but finitely many positive integers n. Because g(n) = © (h(n)), there are constants
C5 and Cy4 such that

Glh(m)| < [g(m)] = Culh(n)]
for all but finitely many positive integers n. Therefore,
CiGlh(n)| = Cilgm)| = [f ()| = Calg(n)| = CoCylh(n)]

for all but finitely many positive integers n. It follows that f(n) = © (h(n)). <

We next define what it means for the best-case, worst-case, or average-case time
of an algorithm to be of order at most g(n).

Definition 4.3.11 » If an algorithm requires #(n) units of time to terminate in
the best case for an input of size n and

1(n) = O(g(n)),

we say that the best-case time required by the algorithm is of order at most g(n) or that
the best-case time required by the algorithm is O(g(n)).

If an algorithm requires #(n) units of time to terminate in the worst case for an
input of size n and

1(n) = 0(gm),

we say that the worst-case time required by the algorithm is of order at most g(n) or that
the worst-case time required by the algorithm is O(g(n)).

If an algorithm requires #(n) units of time to terminate in the average case for an
input of size n and

1(n) = 0(gm),

we say that the average-case time required by the algorithm is of order at most g(n) or
that the average-case time required by the algorithm is O(g(n)).

By replacing O by 2 and “at most” by “at least” in Definition 4.3.11, we obtain
the definition of what it means for the best-case, worst-case, or average-case time of
an algorithm to be of order at least g(n). If the best-case time required by an algorithm
is O(g(n)) and Q2(g(n)), we say that the best-case time required by the algorithm is

192

Chapter 4 ¢ Algorithms

Example 4.3.12

Example 4.3.13

Example 4.3.14

®(g(n)). An analogous definition applies to the worst-case and average-case times of an
algorithm.

Suppose that an algorithm is known to take 60n” +5n+ 1 units of time to terminate in the
worst case for inputs of size n. We showed in Example 4.3.3 that 60n*> +5n+1 = @ (n?).
Thus the worst-case time required by this algorithm is @ (n?). <

Find a theta notation in terms of n for the number of times the statement x = x + 1 is
executed.

1. fori=1ton
2. forj=1toi
3. x=x+1

SOLUTION First, iis setto 1 and, as jruns from 1 to 1, line 3 is executed one time. Next,
iissetto 2 and, as j runs from 1 to 2, line 3 is executed two times, and so on. Thus the total
number of times line 3 is executed is (see Example 4.3.7) 1 +2+-- - +n = @(n?). Thus
a theta notation for the number of times the statement x = x + 1 is executed is ® (n?). <

Find a theta notation in terms of n for the number of times the statement x = x + 1 is
executed:

1. i=n

2. while(i>1){
3. x=x+1
4. i=1i/2]
5.}

SOLUTION First, we examine some specific cases. Because of the floor function, the
computations are simplified if # is a power of 2. Consider, for example, the case n = 8.
At line 1, i is set to 8. At line 2, the condition i > 1 is true. At line 3, we execute the
statement x = x + 1 the first time. At line 4, i is reset to 4 and we return to line 2.

At line 2, the condition i > 1 is again true. At line 3, we execute the statement
x = x + 1 the second time. At line 4, i is reset to 2 and we return to line 2.

At line 2, the condition i > 1 is again true. At line 3, we execute the statement
x = x + 1 the third time. At line 4, i is reset to 1 and we return to line 2.

At line 2, the condition i > 1 is again true. At line 3, we execute the statement
x = x + 1 the fourth time. At line 4, i is reset to 0 and we return to line 2.

This time at line 2, the condition i > 1 is false. The statement x = x + 1 was
executed four times.

Now suppose that n is 16. At line 1, i is set to 16. At line 2, the condition i > 1 is
true. At line 3, we execute the statement x = x + 1 the first time. At line 4, i is reset to
8 and we return to line 2. Now execution proceeds as before; the statement x = x + 1 is
executed four more times, for a total of five times.

Similarly, if n is 32, the statement x = x + 1 is executed a total of six times.

A pattern is emerging. Each time the initial value of n is doubled, the statement
x = x + | is executed one more time. More precisely, if n = 2*, the statement x = x + 1
is executed k + 1 times. Since k is the exponent for 2, k = lgn. Thus if n = 2k the
statement x = x 4 1 is executed 1 4 Ig n times.

Example 4.3.15

4.3 ¢ Analysis of Algorithms 193

If n is an arbitrary positive integer (not necessarily a power of 2), it lies between
two powers of 2; that is, for some k > 1,

2K <y < 2K,

We use induction on k to show that in this case the statement x = x + 1 is executed k
times.
If k = 1, we have

1=2"T<n<2'=2.
Therefore, n is 1. In this case, the statement x = x + 1 is executed once. Thus the Basis
Step is proved.
Now suppose that if n satisfies
261 < < 2K, (4.3.3)
the statement x = x + 1 is executed k times. We must show that if # satisfies

b <n <M (4.3.4)

the statement x = x + 1 is executed k + 1 times.

Suppose that n satisfies (4.3.4). Atline 1, i is set to n. At line 2, the conditioni > 1
is true. At line 3, we execute the statement x = x + 1 the first time. At line 4, i is reset to
|n/2] and we return to line 2. Notice that

2k < py2 < 2%,
Because 2¢7! is an integer, we must also have
21 < |n/2) <2k
By the inductive assumption (4.3.3), the statement x = x + 1 is executed k more times,
for a total of k+ 1 times. The Inductive Step is complete. Therefore, if n satisfies (4.3.3),
the statement x = x + 1 is executed k times.
Suppose that n satisfies (4.3.3). Taking logarithms to the base 2, we have
k—1<lgn <k
Therefore, k, the number of times the statement x = x + 1 is executed, satisfies
Ign <k <1+1gn.
Because k is an integer, we must have k < 1+ |lgn]. Furthermore, |Ign| < k. It follows

from the last two inequalities that k = 1 + [Ign]. Since 1 + |lgn| = ®(gn), a theta
notation for the number of times the statement x = x + 1 is executed is ® (Ign). <

Many algorithms are based on the idea of repeated halving. Example 4.3.14 shows
that for size n, repeated halving takes time ® (1g n). Of course, the algorithm may do work
in addition to the halving that will increase the overall time.

Find a theta notation in terms of n for the number of times the statement x = x + 1 is
executed.

194 Chapter 4 ¢ Algorithms

Example 4.3.16

1. j=n

2. while j > 1) {
3. fori=1toj
4, x=x-+1
5. J=1/2]

6. }

SOLUTION Let #(n) denote the number of times we execute the statement x = x + 1.
The first time we arrive at the body of the while loop, the statement x = x+ 1 is executed
n times. Therefore t(n) > n for all n > 1 and #(n) = Q2 (n).

Next we derive a big oh notation for #(n). After j is set to n, we arrive at the while
loop for the first time. The statement x = x+ 1 is executed n times. At line 5, j is replaced
by [n/2]; hence j < n/2. If j > 1, we will execute x = x + | at most n/2 additional
times in the next iteration of the while loop, and so on. If we let k denote the number of
times we execute the body of the while loop, the number of times we execute x = x + 1
is at most

n o n n
n+2+4+'~~+2k71.
This geometric sum (see Example 2.4.4) is equal to

n(i-4)

1
I—=3

Now

n(1-x) 1
f(n)flil=2n 1—? <2n foralln > 1,

so t(n) = O(n). Thus a theta notation for the number of times we execute x = x + 1
is ®(n). <4

Determine, in theta notation, the best-case, worst-case, and average-case times required
to execute Algorithm 4.3.17, which follows. Assume that the input size is n and that the
run time of the algorithm is the number of comparisons made at line 3. Also, assume
that the n 4 1 possibilities of key being at any particular position in the sequence or not
being in the sequence are equally likely.

SOLUTION The best-case time can be analyzed as follows. If s; = key, line 3 is exe-
cuted once. Thus the best-case time of Algorithm 4.3.17 is ®(1).

The worst-case time of Algorithm 4.3.17 is analyzed as follows. If key is not in the
sequence, line 3 will be executed n times, so the worst-case time of Algorithm 4.3.17
is O(n).

Finally, consider the average-case time of Algorithm 4.3.17. If key is found at the
ith position, line 3 is executed i times; if key is not in the sequence, line 3 is executed n
times. Thus the average number of times line 3 is executed is

(1+2+---+n)+n

n+1
Now
1424 ... 2
a1+2+ +n)+n§n +n by (43.1)
n+1 n—+1
nn+1)
_ —n

n+1

Algorithm 4.3.17

4.3 ¢ Analysis of Algorithms 195
Therefore, the average-case time of Algorithm 4.3.17 is O(n). Also,

A+24-+m+n n*/4 +n

by (4.3.2

nt 1 = Tt y(4.32)
>r12/4—i-n/4_rz
- a4+l 4

Therefore the average-case time of Algorithm 4.3.17 is Q(n). Thus the average-case
time of Algorithm 4.3.17 is ®(n). For this algorithm, the worst-case and average-case
times are both ® (n). |

Searching an Unordered Sequence

Given the sequence sy, . . ., s, and a value key, this algorithm returns the index of key.
If key is not found, the algorithm returns 0.

Input: s, 82, ..., Sy, n, and key (the value to search for)

Output: The index of key, or if key is not found, 0

linear_search(s, n, key) {
fori=1ton
if (key == s;)
return i // successful search
return O // unsuccessful search

=

Example 4.3.18 Matrix Multiplication and Transitive Relations If A is a matrix, we let A;; denote the

entry in row i, column j. The product of n x n matrices A and B (i.e., A and B have n
rows and n columns) is defined as the n x n matrix C, where

n
Cij=Y AuBy 1<i<n 1<j<n
k=1

Algorithm 4.3.19, which computes the matrix product, is a direct translation of the pre-
ceding definition. Because of the nested loops, it runs in time © (n°).

Recall (see the discussion following Theorem 3.5.6) that we can test whether a
relation R on an n-element set is transitive by squaring its adjacency matrix, say A, and
then comparing A? with A. The relation R is transitive if and only if, whenever the entry
in row i, column j in A? is nonzero, the corresponding entry in A is also nonzero. Since
there are n” entries in A and A”, the worst-case time to compare the entries is ® (n?).
Using Algorithm 4.3.19 to compute A requires time @ (n*). Therefore, the overall time
to test whether a relation on an n-element set is transitive, using Algorithm 4.3.19 to
compute A2, is © (n?).

For many years it was believed that the minimum time to multiply two n x n matri-
ces was O (n*); thus it was quite a surprise when a more efficient algorithm was discov-
ered. Strassen’s algorithm (see [Johnsonbaugh: Section 5.4]) to multiply two n X n ma-
trices runs in time © (n'¢7). Since 1g 7 is approximately 2.807, Strassen’s algorithm runs
in time approximately ® (n>807), which is asymptotically faster than Algorithm 4.3.19.
An algorithm by Coppersmith and Winograd (see [Coppersmith]) runs in time © (n>37¢)
and, so, is even asymptotically faster than Strassen’s algorithm. Since the product of
two 1 X n matrices contains n” terms, any algorithm that multiplies two n x n matrices
requires time at least 2 (n?). At the present time, no sharper lower bound is known. <

196 Chapter 4 ¢ Algorithms

Algorithm 4.3.19

TABLE 4.3.3 m Common
Growth Functions

Theta Form Name
() Constant
O(glgn) Log log
O1gn) Log

®(n) Linear
O(nlgn) nlogn
O?) Quadratic
@) Cubic
@(nk), k>1 Polynomial
O, c>1 Exponential
On!) Factorial

Matrix Multiplication

This algorithm computes the product C of the n x n matrices A and B directly from
the definition of matrix multiplication.

Input: A,B,n
Output: C, the product of A and B

matrix_product(A, B, n) {
fori=1ton
forj=1ton{
Ci=0
fork=1ton
Cij = Cij + Ay % Bkj
}

return C

The constants that are suppressed in the theta notation may be important. Even
if for any input of size n, algorithm A requires exactly C;n time units and algorithm B
requires exactly C,n? time units, for certain sizes of inputs algorithm B may be superior.
For example, suppose that for any input of size n, algorithm A requires 300n units of
time and algorithm B requires 5n units of time. For an input size of n = 5, algorithm
A requires 1500 units of time and algorithm B requires 125 units of time, and thus al-
gorithm B is faster. Of course, for sufficiently large inputs, algorithm A is considerably
faster than algorithm B.

A real-world example of the importance of constants in the theta notation is pro-
vided by matrix multiplication. Algorithm 4.3.19, which runs in time © (n%), is typically
used to multiply matrices even though the Strassen and Coppersmith-Winograd algo-
rithms (see Example 4.3.18), which run in times ® (n*%%7) and ® (n>?7), are asymptoti-
cally faster. The constants in the Strassen and Coppersmith-Winograd algorithms are so
large that they are faster than Algorithm 4.3.19 only for very large matrices.

Certain growth functions occur so often that they are given special names, as
shown in Table 4.3.3. The functions in Table 4.3.3, with the exception of On~), are
arranged so that if ® (f(n)) is above ®(g(n)), then f(n) < g(n) for all but finitely many
positive integers n. Thus, if algorithms A and B have run times that are ®(f(n)) and
®(g(n)), respectively, and ®(f(n)) is above ®(g(n)) in Table 4.3.3, then algorithm A is
more time-efficient than algorithm B for sufficiently large inputs.

It is important to develop some feeling for the relative sizes of the functions in
Table 4.3.3. In Figure 4.3.1 we have graphed some of these functions. Another way to
develop some appreciation for the relative sizes of the functions f(n) in Table 4.3.3 is to
determine how long it would take an algorithm to terminate whose run time is exactly
f(n). For this purpose, let us assume that we have a computer that can execute one step in
1 microsecond (107 sec). Table 4.3.1 shows the execution times, under this assumption,
for various input sizes. Notice that it is practical to implement an algorithm that requires
2" steps for an input of size n only for very small input sizes. Algorithms requiring n”> or
n? steps also become impractical to implement, but for relatively larger input sizes. Also,
notice the dramatic improvement that results when we move from n? steps to n1g n steps.

A problem that has a worst-case polynomial-time algorithm is considered to have a
“good” algorithm; the interpretation is that such a problem has an efficient solution. Such
problems are called feasible or tractable. Of course, if the worst-case time to solve the
problem is proportional to a high-degree polynomial, the problem can still take a long
time to solve. Fortunately, in many important cases, the polynomial bound has small
degree.

4.3 & Analysis of Algorithms 197

A problem that does not have a worst-case polynomial-time algorithm is said to be
intractable. Any algorithm, if there is one, that solves an intractable problem is guar-
anteed to take a long time to execute in the worst case, even for modest sizes of the
input.

Certain problems are so hard that they have no algorithms at all. A problem for
which there is no algorithm is said to be unsolvable. A large number of problems are
known to be unsolvable, some of considerable practical importance. One of the earliest
problems to be proved unsolvable is the halting problem: Given an arbitrary program
and a set of inputs, will the program eventually halt?

A large number of solvable problems have an as yet undetermined status; they are
thought to be intractable, but none of them has been proved to be intractable. (Most of
these problems belong to the class of NP-complete problems; see [Johnsonbaugh] for
details.) An example of an NP-complete problem is:

Given a collection C of finite sets and a positive integer k < |C|, does C contain at
least k mutually disjoint sets?

Other NP-complete problems include the traveling-salesperson problem and the
Hamiltonian-cycle problem (see Section 8.3).

NP-complete problems have efficient (i.e., polynomial-time) algorithms to check
whether a proposed solution is, in fact, a solution. For example, given a collection C of
finite sets and k sets in C, it is easy and fast to check whether the k sets are mutually
disjoint. (Just check each pair of sets!) On the other hand, no NP-complete problem is
known to have an efficient algorithm. For example, given a collection C of finite sets,
finding k mutually disjoint sets in C is, in general, difficult and time consuming. NP-
complete problems also have the property that if any one of them has a polynomial-time
algorithm, then all NP-complete problems have polynomial-time algorithms.

4.3 Problem-Solving Tips

® To derive a big oh notation for an expression f (n) directly, you must find a constant
Cj and a simple expression g(n) (e.g., n, nlgn, n?) such that [f(m)| < Cilg(n)| for
all but finitely many n. Remember you’re trying to derive an inequality, not an
equality, so you can replace terms in f(n) with other terms if the result is larger
(see, e.g., Example 4.3.3).

B To derive an omega notation for an expression f(n) directly, you must find a con-
stant C, and a simple expression g(n) such that |f(n)| > C,|g(n)| for all but finitely
many n. Again, you're trying to derive an inequality so you can replace terms in
f(n) with other terms if the result is smaller (again, see Example 4.3.3).

® To derive a theta notation, you must derive both big oh and omega notations.

B Another way to derive big oh, omega, and theta estimates is to use known

results:
Expression Name Estimate Reference
an® + a4 Polynomial CIUS) Theorem 4.3.4
+ain+ap
14+24+---4+n Arithmetic Sum (Case k = 1 On?) Example 4.3.7
for Next Entry)
kg ok 4k Sum of Powers Oth Example 4.3.8

Ign! log n Factorial O(nlgn) Example 4.3.9

198 Chapter 4 ¢ Algorithms

m To derive an asymptotic estimate for the time of an algorithm, count the number
of steps #(n) required by the algorithm, and then derive an estimate for #(n) as
described previously. Algorithms typically contain loops, in which case, deriving
t(n) requires counting the number of iterations of the loops.

4.3 Review Exercises

A v A W DN

. To what does “analysis of algorithms” refer? 7. Define f(n) = Q2(g(n)). What is this notation called?

. What is the worst-case time of an algorithm? 8. Give an intuitive interpretation of how f and g are related if

Sfn) = Q2(gn)).
9. Define f(n) = ©(g(n)). What is this notation called?

. What is the best-case time of an algorithm?

. What is the average-case time of an algorithm?
10. Give an intuitive interpretation of how f and g are related if

. Define f(n) = O(g(n)). What is this notation called? Fn) = ©(gn)).

. Give an intuitive interpretation of how f and g are related if

f(n) = 0(gn)).

Select a theta notation from Table 4.3.3 for each expression in 20. fori=1to2n 21. fori=1ton
Exercises 1-13. forj=1ton forj=1to [i/2]
= 1 = 1
1 o6n+1 2. 2% 4 1 r=at r=at
363+ 1202 + 1 4. 3n% + 2nlgn 22. fori=1ton 23. fori=1ton
5. 2] An + 30l 6 forj=1ton forj=1ton
- 2lgntan+nlgn 6. 6n°+n+4 fork=1ton fork=1toi
7.244464---+2n 8. (6n+ 1) x=x+1 x=x+1
1 3 P — -
9. (6n+4)(1 +1an) 10. (n+1)(n+3) 24. forz—‘lton . 25 j=n .
n+2 forj=1toi while (j > 1) {
" n? +1gn)(n+1) fork =1toj fori=1toj
. 1+ n? x=x+1 x=x+1
=13
12. 24+4+8+164+--- 42" }J b73l
13. 1g[(2n)!]
26. i=n
In Exercises 14—16, select a theta notation for f(n) + g(n). while (i > 1) {
14. f(n) = O(1), gn) = On?) forj=1ton
15. f(n) = 6n® + 20 +4, g(n) = O(nlgn) l. _x;/;fr !
16. f(n) = O@?), gn) = O/ }
In Exercises 1726, select a theta notation from among 27. Find a theta notation for the number of times the statement
@(1)’ @(lgn), @(n)7 @(nlgn), X=x-+ 1 is executed.
O, ©@), ©@2M), or O@) P
for the number of times the statement x = x + 1 is executed. while (i2< n) {
i=1i
17. fori=1to2n r=x41
x=x+1 }
18. i=1 19. fori=1ton
while (i < 2n) { forj=1ton . o)
x=x+1 x=x+1 28. Let #(n) be the total number of times that i is incremented and j
imit2 is decremented in the following pseudocode, where ay, az, . . .

} is a sequence of real numbers.

29.

30.

31.

i=1
j=n
while (i < j) {
while (i <jAa; <0)
i=i+1
while (i < j A a; > 0)
j=j—1
if (i <)
swap(a;, a;)

}

Find a theta notation for #(n).

Find a theta notation for the worst-case time required by the
following algorithm:

iskey(s, n, key) {
fori=1ton—1
forj=i+1ton
if (s; + 57 == key)
return 1
else
return 0

}

In addition to finding a theta notation in Exercises 1-29, prove
that it is correct.

Find the exact number of comparisons (lines 10, 15, 17,
24, and 26) required by the following algorithm when n
is even and when n is odd. Find a theta notation for this
algorithm.

Input: s1,82,...,8,, 1
Output: large (the largest item in 51, 52, . . ., Sp),
small (the smallest item in sy, 52, ..., S,)
1. large_small(s, n, large, small) {
2 if(n==1){
3 large = 51
4. small = sy
5. return
6 }
7 m=2|n/2]
8. i=1
9. while i <m —1) {
10. if (S,‘ > Si+l)
11. swap(si, Si+1)
12. i=i+2
13. }
14. if (n>m){
15. if (s;—1 > sp)
16. swap(Sm—1, Sn)
17. if (s, > s,)
18. swap (S, Sn)
19. }

20. small = s

21. large = s

22. i=3

23. while (i <m —1) {

4.3 & Analysis of Algorithms 199

24. if (s; < small)
25. small = s;
26. if (siy1 > large)
217. large = siy1
28. i=i+2

29. }

30. }

32. This exercise shows another way to guess a formula for 1 4
24 ---+n.
Example 4.3.7 suggests that

142+ 4+n=A+Bn+C for all n,

for some constants A, B, and C. Assuming that this is true,
plug in n = 1, 2, 3 to obtain three equations in the three un-
knowns A, B, and C. Now solve for A, B, and C. The resulting
formula can now be proved using mathematical induction (see
Section 2.4).

33. Suppose that @ > 1 and that f(n) = ©(log, n). Show that
fn) = ©(gn).
34. Show that n! = O(n").
35. Show that 2" = O(n!).
36. By using an argument like the one shown in Examples 4.3.7—
4.3.9 or otherwise, prove that Z?:l ilgi = On?lIgn).
*37. Show that 2"t = 0(2").

38. Show that lg(nk + ¢) = O(gn) for every fixed k > 0 and
c>0.

39. Show that if n is a power of 2, say n = 2¥, then

k
Z lg(n/2') = ©(1g2 n).

i=0

40. Suppose that f(n) = O(g(n)), and f(n) > 0 and g(n) > O for
all n > 1. Show that for some constant C, f(n) < Cg(n) for
alln > 1.

41. State and prove a result for 2 similar to that for Exercise 40.
42. State and prove a result for ® similar to that for Exercises 40
and 41.

Determine whether each statement in Exercises 43—68 is true or
false. If the statement is true, prove it. If the statement is false, give
a counterexample. Assume that the functions f, g, and h take on
only positive values.

43. n" = 02"

44. 2 + sinn = O(2 + cos n)

45. (2n)? = 0(n?)

46. 2n)? = Qn?)

47. 2n)? = Om?)

48. 22" = 02"

49. 22" = Q2"

200

50.
51.
52.
53.
54.
5S.
56.
57.
58.
59.
60.

61.
62.
63.

64.
65.
66.
67.
68.
69.
70.

*71.

*72.

*73.
74.

75.

Chapter 4 ¢ Algorithms

22 =02"
nl=0((n+ 1)
n!l=Q((n+ 1)

n!=0((n+1)

1g(2n)% = O(Ign?)

1g(2n)% = Q(Ign?)

1g(2n)% = O(gn?)

1g2%" = 0(1g2")

1g2%" = Q(Ig2")

1g22" = ©(1g2")

If f(n) = ©(h(n)) and g(n) = O(h(n)), then f(n) + g(n) =
O (h(n)).

If f(n) = ©(g(n)), then ¢f (n) = O(g(n)) for any ¢ # 0.
If f(n) = O(g(n)), then 2" = @(28™),

If f(n) = ©(g(n)), then Igf(n) = O(gg(n)). Assume that
f(m)>1land g(n) > 1foralln=1,2,....

If f(n) = O(g(n)), then g(n) = O(f(n)).

If f(n) = O(g(m)), then g(n) = Q(f(n)).

If f(n) = ©(g(n)), then g(n) = O (n)).

f() + g(n) = O(h(n)), where h(n) = max{f(n), g(n)}
f(m) +gn) = ©(h(n)), where h(n) = min{f (n), g(n)}
Write out exactly what f(n) # O(g(n)) means.

What is wrong with the following argument that purports to
show that we cannot simultaneously have f(n) # O(g(n)) and
g(n) # O(f(n))?

If f(n) # O(g(n)), then for every C > O, |[f(n)| >

Clg(n)|. In particular, |[f(n)| > 2|g(n)|. If g(n) # O(f(n)),
then for every C > 0, |g(n)| > C|f(n)|. In particular, |g(n)| >
2|f(n)|. But now

[f (] > 2|g(m)| > 4[f (n)].

Cancelling |f(n)| gives 1 > 4, which is a contradiction.
Therefore, we cannot simultaneously have f(n) # O(g(n))
and g(n) # O(f(m).

Find functions f and g satisfying

f(n) # O(g(m) and g(n) # O(f(n)).

Give an example of increasing positive functions f and g de-
fined on the positive integers for which

fn) #0@m) and g(n) # O(f(n)).

Prove that n* = O(¢") forallk =1,2,...and ¢ > 1.

Find functions f, g, h, and ¢ satisfying

f(n) = O(gn)), h(n) = ©(t(n)),
f(n) = h(n) # O(g(n) — 1(n)).
Suppose that the worst-case time of an algorithm is © (n).

What is the error in the following reasoning? Since 2n =
®(n), the worst-case time to run the algorithm with input of

76.

77.

78.

79.

80.

81.

82.

size 2n will be approximately the same as the worst-case time
to run the algorithm with input of size n.

Does f(n) = O(g(n)) define an equivalence relation on the set
of real-valued functions on {1, 2, ...}?

Does f(n) = ®(g(n)) define an equivalence relation on the set
of real-valued functions on {1, 2, ...}?

[Requires the integral]
(a) Show, by consulting the figure, that

1 1 1
5+§++;<10gen.

(b) Show, by consulting the figure, that

1

1
logen<1+§+--~+

n—1"
(c) Use parts (a) and (b) to show that
1 1
1+-+---4+ - =0(gn).
2 n
y
_1
YTX
1 2 3« n-1 n X

[Requires the integral] Use an argument like the one shown in
Exercise 78 to show that
m+1

<1m+2m+...+nm<w
+1 m—+1

)

where m is a positive integer.
By using the formula
bn+1 _ an+1

b E apt 0<a<b
—a
i=0

or otherwise, prove that
bn+1 _ an+1
b—a

Takea = 14+ 1/(n+ 1) and b = 1 + 1/n in the inequal-
ity of Exercise 80 to prove that the sequence {(1 + 1/n)"} is
increasing.

<+ DHd" 0<a<b.

Take a = 1 and b = 1 + 1/(2n) in the inequality of Exercise

80 to prove that
] n
1+ — 2

83.

84.

8s.
86.

87.

88.

89.

90.

for all n > 1. Use the preceding exercise to conclude that

1 n
(l—l——) <4
n
foralln > 1.

The method used to prove the results of this exercise
and its predecessor is apparently due to Fort in 1862 (see
[Chrystal, vol. II, page 77]).

By using the preceding two exercises or otherwise, prove that
1 2
- <lgln+1)—Ign < -
n n
foralln > 1.

Use the preceding exercise to prove that

n

Z % = O(gn).

i=1
(Compare with Exercise 78.)
Prove that the sequence {n!/ "} 4 is decreasing.
Prove that if 0 < a < b, then
prl gt
—
Find appropriate values for a and b in the inequality in the pre-

ceding exercise to prove that the sequence {(1 — 1/n)"}32, is
increasing and bounded above by 4/9.

> (n+ d".

By using the result of the preceding exercise, or otherwise,

prove that the sequence {(1 + 1 /)"t Joe, is decreasing.

By using the result of the preceding exercise, or otherwise,
prove that

2
1 1)—lgn< ——
gn+1) gns=-4

foralln > 1.

What is wrong with the following “proof” that any algorithm
has a run time that is O(n)?

We must show that the time required for an input of size
n is at most a constant times n.

Basis Step

Suppose that n = 1. If the algorithm takes C units of time
for an input of size 1, the algorithm takes at most C - 1 units of
time. Thus the assertion is true forn = 1.

Inductive Step

Assume that the time required for an input of size n is at most
C’'n and that the time for processing an additional item is C”.
Let C be the maximum of C" and C”. Then the total time re-
quired for an input of size n + 1 is at most

Cn+C' <Cn+C=Chn+1.

The Inductive Step has been verified.

4.3 ¢ Analysis of Algorithms 201

By induction, for input of size n, the time required is at
most a constant time n. Therefore, the run time is O(n).

In Exercises 91-96, determine whether the statement is true or
false. If the statement is true, prove it. If the statement is false, give
a counterexample. Assume that f and g are real-valued functions
defined on the set of positive integers and that g(n) # 0 forn > 1.
These exercises require calculus.

91.

92.

93.

94.

95.

96.

*97.

98.

99.

100.

If
lim fm =0,
n—oo g(n)
then f(n) = O(g(n)).
If
lim @ =0,
n—oo g(n)
then f(n) = O(g(n)).
If
lim fm =c#0,
n—o00 g(n)
then f(n) = O(g(n)).
If
lim fm =c#0,
n—o0 g(n)
then f(n) = ©(g(n)).
If f(n) = O(g(n)), then
lim M
n—oo g(n)

exists and is equal to some real number.
If f(n) = ©(g(n)), then

. Q)

im ——
n—00 g(n)

exists and is equal to some real number.

Use induction to prove that
n.n
Ign!> —lg—.
gm =585

[Requires calculus] Let Inx denote the natural logarithm
(log, x) of x. Use the integral to obtain the estimate

n
nlnn—n < Zlnk = Inn!,
k=1

n>1.

Use the result of Exercise 98 and the change-of-base formula
for logarithms to obtain the formula

nlgn —nlge <lgn!, n>1.
Deduce

lgn!> 21g 2
2

[\

from the inequality of Exercise 99.

202 Chapter 4 ¢ Algorithms

Problem-Solving Corner

Design and Analysis of an Algorithm

Problem

Develop and analyze an algorithm that returns the
maximum sum of consecutive values in the numeri-
cal sequence sy, ..., s,. In mathematical notation, the
problem is to find the maximum sum of the form
8j + Sjt1 + - - - + s;. Example: If the sequence is

27 6 =50 21 -3 14 16 —8 42 33

the algorithm returns 115—the sum of

21 -3 14 16 -8 42 33.

If all the numbers in a sequence are negative, the maxi-
mum sum of consecutive values is defined to be 0. (The
idea is that the maximum of 0 is achieved by taking an
“empty” sum.)

—21 9,

Finding a Solution

We begin by writing pseudocode for the straightfor-
ward algorithm that computes all consecutive sums and
finds the largest:

Input:
Output:

S1y .-+,

max

max_suml (s, n) {
/I sumy; is the sum s; + - - - + ;.
fori=1ton{
forj=1toi—1
sumy; = sum; ;1 + S;
sum;; = S;

}

/1 step through sumj; and find the maximum

Attacking the Problem max =0
fori=1ton
In developing an algorithm, a good way to start is to forj=1toi
ask the question, “How would I solve this problem if (sumj;; > max)
by hand?” At least initially, take a straightforward ap- max = sum;
proach. Here we might just list the sums of all con- return max
secutive values and pick the largest. For the example }
sequence, the sums are as follows:
i 1 2 3 4 5 6 7 8 9 10 11 12
1 27
2 33 6
3 | =17 —44 —50
4 4 —-23 —29 21
5 1 —26 —32 18 -3
6 15 —12 —18 32 11 14
7 31 4 -2 48 27 30 16
8 23 —4 —10 40 19 22 8 —8
9 65 38 32 82 61 64 50 34 42
10 98 71 65 115 94 97 83 67 75 33
11 77 50 44 94 73 76 62 46 54 12 21
12 86 59 53 103 82 85 71 55 63 21 —12 9

The entry in column j, row i, is the sum s; +
-- -+ s;. For example, the entry in column 4, row 7, is
48—the sum

sS4+ 55+ 5¢+s57=21+-3+14+ 16 =48.

By inspection, we find that 115 is the largest sum.

The first nested for loops compute the sums
sumj,- =sj+~-~+s,-.
The computation relies on the fact that
sumj = Sj+---+S8i=8+---+Si- 1+

= sum; ;1 + ;.

Problem-Solving Corner: Design and Analysis of an Algorithm

The second nested for loops step through sum;; and find
the largest value.

Since each of the nested for loops takes time
O (n?), max_suml’s time is O (n?).

We can improve the actual time, but not the
asymptotic time, of the algorithm by computing the
maximum within the same nested for loops in which
we compute sum;:

Input: s9,...,8,

Output: max

max_sum2(s, n) {
[sumj; is the sum s; + - - - + ;.
max = 0
fori=1ton{
forj=1toi—1{
Sumj; = sum; ;1 + S;
if (sumj; > max)
max = Sum;
}
sSum; = §;
if (sum;; > max)
max = sum;;
}

return max

Since the nested for loops take time ©(n?),
max_sum2’s time is ® (n?). To reduce the asymptotic
time, we need to take a hard look at the pseudocode to
see where it can be improved.

Two key observations lead to improved time. First,
since we are looking only for the maximum sum, there
is no need to record all of the sums; we will store only
the maximum sum that ends at index i. Second, the line

sumj; = sumj ;1 + S;

shows how a consecutive sum that ends at index i — 1
is related to a consecutive sum that ends at index i.
The maximum can be computed by using a similar
formula. If sum is the maximum consecutive sum that
ends at index i — 1, the maximum consecutive sum that
ends at index i is obtained by adding s; to sum pro-
vided that sum + s; is positive. (If some sum of con-
secutive terms that ends at index i exceeds sum +s;,
we could remove s; and obtain a sum of consecutive
terms ending at index i — 1 that exceeds sum, which is
impossible.) If sum+s; < 0, the maximum consecutive
sum that ends at index i is obtained by taking no terms
and has value 0. Thus we may compute the maximum
consecutive sum that ends at index i by executing

if (sum + s; > 0)
sum = sum + S;
else
sum = 0

Formal Solution
Input: s1,..., 5,

Output: max

max_sum3(s, n) {
/I max is the maximum sum seen so far.
/I After the ith iteration of the for
/l'loop, sum is the largest consecutive
// sum that ends at index i.
max = 0
sum = 0
fori=1ton{
if (sum + s5; > 0)
sum = sum + S;

else
sum = 0
if (sum > max)
max = sum
return max

Since this algorithm has a single for loop that runs
from 1 to n, max_sum3’s time is ® (n). The asymptotic
time of this algorithm cannot be further improved. To
find the maximum sum of consecutive values, we must
at least look at each element in the sequence, which
takes time © (n).

Summary of Problem-Solving Techniques

® In developing an algorithm, a good way to start
is to ask the question, “How would I solve this
problem by hand?”

B In developing an algorithm, initially take a
straightforward approach.

m After developing an algorithm, take a close look
at the pseudocode to see where it can be im-
proved. Look at the parts that perform key com-
putations to gain insight into how to enhance the
algorithm’s efficiency.

B As in mathematical induction, extend a solution
of a smaller problem to a larger problem. (In this
problem, we extended a sum that ends at index
i — 1 to a sum that ends at index i.)

203

204 Chapter 4 ¢ Algorithms

B Don’t repeat computations. (In this problem, we matching in digital images. The original problem was
extended a sum that ends at index i — 1 to a sum to find the maximum sum in a rectangular submatrix
that ends at index i by adding an additional term of an n x n matrix of real numbers.

rather than by computing the sum that ends at
index i from scratch. This latter method would Exercises

have meant recomputing the sum that ends at

1. Modify max_sum3 so that it computes not only the

index i — 1.) maximum sum of consecutive values but also the in-

dexes of the first and last terms of a maximum-sum

Comments subsequence. If there is no maximum-sum subse-

According to [Bentley], the problem discussed in this quence (which would happen, for example, if all of

section is the one-dimensional version of the origi- the values of the sequence were negative), the algo-
nal two-dimensional problem that dealt with pattern rithm should set the first and last indexes to zero.

4.4

Recursive Algorithms

Go Online

For more on recursion, see
g00.g1l/ZwpPlu

Example 4.4.1

TABLE 4.4.1 m Decomposing
the Factorial Problem

Problem Simplified Problem
5! 5.4!
4! 4.3!
3! 3.2!
2! 2.1!
1! 1-0!
0! None

TABLE 4.4.2 m Combining
Subproblems of the Factorial
Problem

Problem Solution
0! 1
1! 1-0!'=1
2! 2.11=2
3! 3.21=3.2=6
41 4.31=4.6=24
5! 541 =5.24=120

A recursive function (pseudocode) is a function that invokes itself. A recursive algo-
rithm is an algorithm that contains a recursive function. Recursion is a powerful, elegant,
and natural way to solve a large class of problems. A problem in this class can be solved
using a divide-and-conquer technique in which the problem is decomposed into prob-
lems of the same type as the original problem. Each subproblem, in turn, is decomposed
further until the process yields subproblems that can be solved in a straightforward way.
Finally, solutions to the subproblems are combined to obtain a solution to the original
problem.

Recall thatifn > 1,n! =n(n —1)---2-1,and 0! = 1. Notice that if n > 2, n factorial
can be written “in terms of itself” since, if we “peel off”” n, the remaining product is
simply (n — 1)!; that is,

n=nn—1)n-2)---2-1=n-(n— 1)\
For example,
5!'=5-4.3.2.1=5-41
The equation
n'=n-(n—1), 4.4.1)

which happens to be true even when n = 1, shows how to decompose the original prob-
lem (compute n!) into increasingly simpler subproblems [compute (n — 1)!, compute
(n — 2)!,...] until the process reaches the straightforward problem of computing 0!.
The solutions to these subproblems can then be combined, by multiplying, to solve the
original problem.

For example, the problem of computing 5! is reduced to computing 4!; the problem
of computing 4! is reduced to computing 3!; and so on. Table 4.4.1 summarizes this
process.

Once the problem of computing 5! has been reduced to solving subproblems, the
solution to the simplest subproblem can be used to solve the next simplest subproblem,
and so on, until the original problem has been solved. Table 4.4.2 shows how the sub-
problems are combined to compute 5!. <

Next, we write a recursive algorithm that computes factorials. The algorithm is a
direct translation of equation (4.4.1).

Algorithm 4.4.2

Theorem 4.4.3

4.4 & Recursive Algorithms 205

Computing n Factorial
This recursive algorithm computes 7n!.

Input: n, an integer greater than or equal to 0

Output: n!
1. factorial(n) {
2 if (n == 0)
3. return 1
4 return n * factorial(n — 1)
S

We show how Algorithm 4.4.2 computes n! for several values of n. If n = 0, at
line 3 the function correctly returns the value 1.

If n = 1, we proceed to line 4 since n # 0. We use this function to compute 0!. We
have just observed that the function computes 1 as the value of 0!. At line 4, the function
correctly computes the value of 1!:

n.m—NnH!'=1.0l=1-1=1.

If n = 2, we proceed to line 4 since n # 0. We use this function to compute 1!. We
have just observed that the function computes 1 as the value of 1!. At line 4, the function
correctly computes the value of 2!:

ne(n—1l=2.11=2.1=2.

If n = 3 we proceed to line 4 since n # 0. We use this function to compute 2!. We
have just observed that the function computes 2 as the value of 2!. At line 4, the function
correctly computes the value of 3!:

ne(n—1)!=3.21=3.2=6.

The preceding arguments may be generalized using mathematical induction to
prove that Algorithm 4.4.2 correctly returns the value of n! for any nonnegative
integer n.

Algorithm 4.4.2 returns the value of n!, n > 0.

Proof

Basis Step (n = 0)

We have already observed that if n = 0, Algorithm 4.4.2 correctly returns the value of
0! (1).

Inductive Step

Assume that Algorithm 4.4.2 correctly returns the value of (n — 1)!, n > 0. Now sup-
pose that n is input to Algorithm 4.4.2. Since n # 0, when we execute the function in
Algorithm 4.4.2 we proceed to line 4. By the inductive assumption, the function cor-
rectly computes the value of (n — 1)!. At line 4, the function correctly computes the
value (n — 1)! -n = n!.

Therefore, Algorithm 4.4.2 correctly returns the value of n! for every integer
n>0. |

206 Chapter 4 ¢ Algorithms

Algorithm 4.4.4
Go Online

If executed by a computer, Algorithm 4.4.2 would typically not be as efficient as
a nonrecursive version because of the overhead of the recursive calls.

There must be some situations in which a recursive function does not invoke itself;
otherwise, it would invoke itself forever. In Algorithm 4.4.2, if n = 0, the function does
not invoke itself. We call the values for which a recursive function does not invoke itself
the base cases. To summarize, every recursive function must have base cases.

We have shown how mathematical induction may be used to prove that a recur-
sive algorithm computes the value it claims to compute. The link between mathematical
induction and recursive algorithms runs deep. Often a proof by mathematical induction
can be considered to be an algorithm to compute a value or to carry out a particular
construction. The Basis Step of a proof by mathematical induction corresponds to the
base cases of a recursive function, and the Inductive Step of a proof by mathematical
induction corresponds to the part of a recursive function where the function calls itself.

In Example 2.4.7, we gave a proof using mathematical induction that, given an
n x n deficient board (a board with one square removed), where n is a power of 2, we
can tile the board with right trominoes (three squares that form an “L”; see Figure 2.4.4).
We now translate the inductive proof into a recursive algorithm to construct a tiling by
right trominoes of an n x n deficient board where n is a power of 2.

Tiling a Deficient Board with Trominoes

This algorithm constructs a tiling by right trominoes of an n x n deficient board where

For a C program implementing 5 is a power of 2.

this algorithm, see
g00.g1l/rZYmnK

Example 4.4.5

Input: n, a power of 2 (the board size); and the location L of the missing
square

Output: A tiling of an n x n deficient board

1. tile(n,L) {
2. if (n==2) {
/I the board is a right tromino 7
3. tile with 77
4. return
5. }
6. divide the board into four (n/2) x (n/2) boards
7. rotate the board so that the missing square is in the upper-left quadrant
8. place one right tromino in the center // as in Figure 2.4.5

/Il consider each of the squares covered by the center tromino as
/I missing, and denote the missing squares as m, my, ms, My
9. tile(n/2, my)
10. tile(n/2, my)
11. tile(n/2, ms)
12. tile(n/2, my)
13. }

Using the method of the proof of Theorem 4.4.3, we can prove that Algorithm 4.4.4
is correct (see Exercise 4).
We present one final example of a recursive algorithm.

A robot can take steps of 1 meter or 2 meters. We write an algorithm to calculate the
number of ways the robot can walk n meters. As examples:

Algorithm 4.4.6

Go Online

For a C program implementing

this algorithm, see
g00.gl/m754WF

Go Online

For more on the Fibonacci
sequence, see
g00.g1l/ZwpPlu

4.4 ¢ Recursive Algorithms 207

Distance Sequence of Steps Number of Ways to Walk
1 1 1
2 I,1 or 2 2
3 1,1,1 or 1,2 or 2,1 3
4 1,1,1, or 1,1,2 5
1

1
,2,1 or 21,1 or 2,2

Let walk(n) denote the number of ways the robot can walk n meters. We have
observed that walk(1) = 1 and walk(2) = 2. Now suppose that n > 2. The robot can
begin by taking a step of 1 meter or a step of 2 meters. If the robot begins by taking a
1-meter step, a distance of n — 1 meters remains; but, by definition, the remainder of the
walk can be completed in walk(n — 1) ways. Similarly, if the robot begins by taking a
2-meter step, a distance of n — 2 meters remains and, in this case, the remainder of the
walk can be completed in walk(n — 2) ways. Since the walk must begin with either a
I-meter or a 2-meter step, all of the ways to walk n meters are accounted for. We obtain
the formula

walk(n) = walk(n — 1) + walk(n — 2). (4.4.2)

For example,
walk(4) = walk(3) +walk(2) =3 +2 = 5.

We can write a recursive algorithm to compute walk(n) by translating equation
(4.4.2) directly into an algorithm. The base cases are n = 1 and n = 2. |

Robot Walking

This algorithm computes the function defined by

1, n=1
walk(n) = < 2, n=2
walk(n — 1) + walk(n —2) n > 2.
Input: =
Output: walk(n)

walk(n) {
if(n==1vn==2)
return n
return walk(n — 1) + walk(n — 2)
}

Using the method of the proof of Theorem 4.4.3, we can prove that Algorithm 4.4.6
is correct (see Exercise 7).

The sequence walk(1), walk(2), walk(3), ..., whose values begin 1,2,3,5,8,
13, ..., is related to the Fibonacci sequence. The Fibonacci sequence {f,} is defined
by the equations

fi=1, hL=1, Jo =fom1 2 n>3.

208

Chapter 4 ¢ Algorithms

Example 4.4.7

Figure 4.4.1 A pine cone. There are
13 clockwise spirals (marked with
white thread) and 8 counterclockwise
spirals (marked with dark thread).
[Photo by the author; pine cone
courtesy of André Berthiaume and
Sigrid (Anne) Settle.]

The Fibonacci sequence begins

1,1,2,3,5,8,13,....

Since walk(1) = f,, walk(2) = f3, and
walk(n) = walk(n — 1) + walk(n — 2), fo=foo1 for all n > 3,

it follows that

walk(n) = f, 11 foralln > 1.

(The argument can be formalized using mathematical induction; see Exercise 8.)

The Fibonacci sequence is named in honor of Leonardo Fibonacci (ca. 1170—
1250), an Italian merchant and mathematician. The sequence originally arose in a puz-
zle about rabbits (see Exercises 18 and 19). After returning from the Orient in 1202,
Fibonacci wrote his most famous work, Liber Abaci (available in an English translation
by [Sigler]), which, in addition to containing what we now call the Fibonacci sequence,
advocated the use of Hindu-Arabic numerals. This book was one of the main influences
in bringing the decimal number system to Western Europe. Fibonacci signed much of his
work “Leonardo Bigollo.” Bigollo translates as “traveler” or “blockhead.” There is some
evidence that Fibonacci enjoyed having his contemporaries consider him a blockhead for
advocating the new number system.

The Fibonacci sequence pops up in unexpected places. Figure 4.4.1 shows a pine
cone with 13 clockwise spirals and 8 counterclockwise spirals. Many plants distribute
their seeds as evenly as possible, thus maximizing the space available for each seed. The
pattern in which the number of spirals is a Fibonacci number provides the most even
distribution (see [Naylor, Mitchison]). In Section 5.3, the Fibonacci sequence appears
in the analysis of the Euclidean algorithm.

Use mathematical induction to show that

S fi=fi—1 forallnz> 1.
k=1

4.4 ¢ Recursive Algorithms 209

SOLUTION For the basis step (n = 1), we must show that

1
d h=fH-1
k=1

Since Z/1<=1fk =fi=landf; — 1 =2 —1 =1, the equation is verified.
For the inductive step, we assume case n

ka = for2 — 1
k=1

and prove case n + 1

n+1
ka = furs — L.
k=1
Now
n+1 n
D ohe=Y fithn
k=1 k=1
= (fro — D) +fun by the inductive assumption
= for1 a2 — 1
= fors — 1.

The last equality is true because of the definition of the Fibonacci numbers:

fo=Fo1 + forall n > 3.

Since the basis step and the inductive step have been verified, the given equation is true
foralln > 1. 4

4.4 Problem-Solving Tips

A recursive function is a function that invokes itself. The key to writing a recursive func-
tion is to find a smaller instance of the problem within the larger problem. For example,
we can compute n! recursively because n! = n«(n — 1)! for all n > 1. The situation is
analogous to the inductive step in mathematical induction when we must find a smaller
case (e.g., case n) within the larger case (e.g., case n + 1).

As another example, tiling an n x n deficient board with trominoes when n is a
power of 2 can be done recursively because we can find four (n/2) x (n/2) subboards
within the original n x n board. Note the similarity of the tiling algorithm to the inductive
step of the proof that every n x n deficient board can be tiled with trominoes when 7 is
a power of 2.

To prove a statement about the Fibonacci numbers, use the equation

S =1+ fi forall n > 3.

The proof will often use mathematical induction and the previous equation (see Exam-
ple 4.4.7).

210

Chapter 4 ¢ Algorithms

4.4 Review Exercises

1. What is a recursive algorithm?

2. What is a recursive function?

3. Give an example of a recursive function.

4. Explain how the divide-and-conquer technique works.

1.
2.

w

®w 3 N B

. (a)

Trace Algorithm 4.4.2 for n = 4.

Trace Algorithm 4.4.4 when n = 4 and the missing square is
the upper-left corner square.

. Trace Algorithm 4.4.4 when n = 8 and the missing square is

four from the left and six from the top.

. Prove that Algorithm 4.4.4 is correct.
. Trace Algorithm 4.4.6 for n = 4.

. Trace Algorithm 4.4.6 forn = 5.

. Prove that Algorithm 4.4.6 is correct.
. Prove that

walk(n) = fy+1 foralln > 1.

. (a) Use the formulas

s1 =1, Sp = Sp—1+n foralln > 2,

to write a recursive algorithm that computes

Sp=142+4+3+---4n.
(b)

Give a proof using mathematical induction that your
algorithm for part (a) is correct.

Use the formulas

s1 =2, Sp = Sp—1 +2n foralln > 2,

to write a recursive algorithm that computes

sp=2+4+64+---+2n.
(b)

Give a proof using mathematical induction that your
algorithm for part (a) is correct.

A robot can take steps of 1 meter, 2 meters, or 3 meters.
Write a recursive algorithm to calculate the number of
ways the robot can walk n meters.

(b) Give a proof using mathematical induction that your
algorithm for part (a) is correct.

. Write a recursive algorithm to find the minimum of a finite

sequence of numbers. Give a proof using mathematical induc-
tion that your algorithm is correct.

. Write a recursive algorithm to find the maximum of a finite

sequence of numbers. Give a proof using mathematical induc-
tion that your algorithm is correct.

. Write a recursive algorithm that reverses a finite sequence.

Give a proof using mathematical induction that your algorithm
is correct.

. What is a base case in a recursive function?

. How is the Fibonacci sequence defined?

5
6. Why must every recursive function have a base case?
7
8

. Give the first four values of the Fibonacci sequence.

15.
*16.

*17.

Write a nonrecursive algorithm to compute n!.

A robot can take steps of 1 meter or 2 meters. Write an algo-
rithm to list all of the ways the robot can walk n meters.

A robot can take steps of 1 meter, 2 meters, or 3 meters. Write
an algorithm to list all of the ways the robot can walk n meters.

Exercises 18-36 concern the Fibonacci sequence {f,}.

18.

Suppose that at the beginning of the year, there is one pair of
rabbits and that every month each pair produces a new pair that
becomes productive after one month. Suppose further that no
deaths occur. Let a,, denote the number of pairs of rabbits at
the end of the nth month. Show that a; = 1,a; = 2, and
an — ap—1 = ay—3. Prove that a, = f, 4| foralln > 1.

. Fibonacci’s original question was: Under the conditions of

Exercise 18, how many pairs of rabbits are there after one
year? Answer Fibonacci’s question.

. Show that the number of ways to tile a 2 x n board with 1 x 2

rectangular pieces is f;,+1, the (n + 1)st Fibonacci number.

. Use mathematical induction to show that

17 = faotfurr + (=D forall n > 2.
. Show that
f2=foafyr2 + (=" foralln > 3.
. Show that
fiva = foet = fufass foralln > 1.
. Use mathematical induction to show that

n
kaz =fafar1 foralln > 1.

k=1

. Use mathematical induction to show that for all n > 1, f, is

even if and only if 7 is divisible by 3.

. Use mathematical induction to show that

P =Fi —fooy and g1 =f7 +frpy foralln > 2.

. Use mathematical induction to show that for all n > 6,

n—1
()

. Use mathematical induction to show that for all n > 1,

fo<2mh

*30.

*31.

. Use mathematical induction to show that for alln > 1,

n n
Zka—l = fons Zka = font1 — L.
=1 =1

Use mathematical induction to show that every integer n > 1
can be expressed as the sum of distinct Fibonacci numbers, no
two of which are consecutive.

Show that the representation in Exercise 30 is unique if we do
not allow f; as a summand.

. Show that for all n > 2,

Jac1 1/ 5f0) + 4=

fi = :

Notice that this formula gives f;, in terms of one predecessor
rather than two predecessors as in the original definition.

. Prove that

~ (=DM fn

=1 fkfk+l _fn+1

1+ foralln > 1.

. Define a sequence {g,} as g1 = ¢; and g» = ¢; for constants

¢ and ¢;, and

8n = 8&n—1+ 8n—2

Chapter 4 Review

for n > 3. Prove that

gn = &ifn—2+ g2fu-1

for all n > 3.

. Prove that

n

3 i = (<Dfuey — 1 foralln = 2.

k=1

. Prove that

D DM = (=11 +fu3) — 2 foralln> 4.

k=1

. [Requires calculus] Assume the formula for differentiating

products:

dfe) _ dg df
o o T
Use mathematical induction to prove that

forn=1,2,....

. [Requires calculus] Explain how the formula gives a recursive

algorithm for integrating log" |x|:

/ log" |x| dx = xlog" |x| — n / log" ! |x| dx.

Give other examples of recursive integration formulas.

Chapter 4 Notes

The first half of [Knuth, 1977] introduces the concept of an algorithm and various mathemat-
ical topics, including mathematical induction. The second half is devoted to data structures.

Most general references on computer science contain some discussion of algorithms.
Books specifically on algorithms are [Aho; Baase; Brassard; Cormen; Johnsonbaugh; Knuth,
1997, 1998a, 1998b; Manber; Miller; Nievergelt; and Reingold]. [McNaughton] contains a
very thorough discussion on an introductory level of what an algorithm is. Knuth’s expository
article about algorithms ([Knuth, 1977]) and his article about the role of algorithms in the
mathematical sciences ([Knuth, 1985]) are also recommended. [Gardner, 1992] contains a
chapter about the Fibonacci sequence.

Chapter 4 Review

Section 4.1

1.
2.

3.
4.

Algorithm

Properties of an algorithm: Input, output, precision, deter-

minism, finiteness, correctness, generality
Trace
Pseudocode

Section 4.2

5.
6.
7.
8.

Searching

Text search
Text-search algorithm
Sorting

. Insertion sort

. Time and space for algorithms
. Best-case time

. Worst-case time

. Randomized algorithm

. Shuffle algorithm

Section 4.3

15.
16.
17.
18.

Analysis of algorithms
Worst-case time of an algorithm
Best-case time of an algorithm
Average-case time of an algorithm

212 Chapter 4 ¢ Algorithms

19. Big oh notation: f(n) = O(g(n))
20. Omega notation: f(n) = Q(g(n))
21. Theta notation: f(n) = ®(g(n))

Section 4.4

22. Recursive algorithm

23. Recursive function

24. Divide-and-conquer technique

25. Base cases: Situations where a recursive function does not
invoke itself

26. Fibonacci sequence {f,} : fi = .o = L.fy = fui-1 +
f w2, >3

Chapter 4 Self-Test

1. Trace Algorithm 4.1.1 for the valuesa = 12, b = 3,¢ = 0.

2. Which of the algorithm properties—input, output, preci-
sion, determinism, finiteness, correctness, generality—if
any, are lacking in the following? Explain.

Input: S (a set of integers), m (an integer)

Output: All finite subsets of S that sum to m

1. List all finite subsets of S and their sums.
2. Step through the subsets listed in 1 and output each
whose sum is m.

3. Trace Algorithm 4.2.1 for the input t+ = “111011” and
p=“110".

4. Trace Algorithm 4.2.3 for the input 44, 64, 77, 15, 3.

5. Trace Algorithm 4.2.4 for the input 5, 51, 2, 44, 96.
Assume that the values of rand are

rand(1,5) =1, rand(2,5) =3,

rand(4,5) = 5.

rand(3,5) =5,

6. Write an algorithm that receives as input the distinct num-
bers a, b, and ¢ and assigns the values a, b, and c¢ to the
variables x, y, and z so thatx <y < z.

7. Write an algorithm that receives as input the sequence
1, ..., Sy sorted in nondecreasing order and prints all val-
ues that appear more than once. Example: If the sequence
isl,1,1,5,8,8,9, 12, the outputis 1 8.

8. Write an algorithm that returns true if the values of a, b, and
¢ are distinct, and false otherwise.

9. Write an algorithm that tests whether two n X n matri-
ces are equal and find a theta notation for its worst-case
time.

Select a theta notation from among (1), ®(n), ®(1?), O 1),
O n*), O2"), or ©(n!) for each of the expressions in Exercises
10 and 11.

10. 4n> +2n -5
1. B +234 ...+

12. Select a theta notation from among O(1), ®(n), O (n?),
O®), ®(2"), or ©(n!) for the number of times the line
x = x+ 1 is executed.

fori=1ton
forj=1ton
x=x+1

13. Trace Algorithm 4.4.4 (the tromino tiling algorithm) when
n = 8 and the missing square is four from the left and two
from the top.

Exercises 14-16 refer to the tribonacci sequence {t,} defined by
the equations

h=t=t=1, ty,=t—1+t,o+1t,—3 foralln=>4.

14. Find #4 and 5.
15. Write a recursive algorithm to compute #,, n > 1.

16. Give a proof using mathematical induction that your algo-
rithm for Exercise 15 is correct.

Chapter 4 Computer Exercises

1. Implement Algorithm 4.1.2, finding the largest element in
a sequence, as a program.

. Implement Algorithm 4.2.1, text search, as a program.
. Implement Algorithm 4.2.3, insertion sort, as a program.

. Implement Algorithm 4.2.4, shuffle, as a program.

wm A W N

. Run shuffle (Algorithm 4.2.4) many times for the same in-
put sequence. How might the output be analyzed to deter-
mine if it is truly “random”?

6. Implement selection sort (see Exercise 22, Section 4.2) as a
program.

7. Compare the running times of insertion sort (Algorithm
4.2.3) and selection sort (see Exercise 22, Section 4.2) for
several inputs of different sizes. Include data sorted in non-
decreasing order, data sorted in nonincreasing order, data
containing many duplicates, and data in random order.

8. Write recursive and nonrecursive programs to compute n!.
Compare the times required by the programs.

Chapter 4 Computer Exercises 213

9. Write a program whose input is a 2" x 2" board with one 12. Write recursive and nonrecursive programs to compute the
missing square and whose output is a tiling of the board by Fibonacci sequence. Compare the times required by the pro-
trominoes. grams.

10. Write a program that uses a graphics display to show atiling 13. A robot can take steps of 1 meter or 2 meters. Write a pro-
with trominoes of a 2" x 2" board with one square missing. gram to list all of the ways the robot can walk n meters.

11. Write a program that tiles with trominoes an n x n board 14. A robot can take steps of 1, 2, or 3 meters. Write a program
with one square missing, provided that n # 5 and 3 does to list all of the ways the robot can walk n meters.
not divide n.

5.1
5.2

5.3

5.4

214

Divisors
Representations of
Integers and Integer
Algorithms

The Euclidean
Algorithm

The RSA Public-Key
Cryptosystem

5.1

Chapter 5

INTRODUCTION TO
NUMBER THEORY

Number theory is the branch of mathematics concerned with the integers. Traditionally,
number theory was a pure branch of mathematics—known for its abstract nature rather
than its applications. The great English mathematician, G. H. Hardy (1877-1947), used
number theory as an example of a beautiful, but impractical, branch of mathematics.
However, in the late 1900s, number theory became extremely useful in cryptosystems—
systems used for secure communications.

In the preceding chapters, we used some basic number theory definitions such as
“divides” and “prime number.” In Section 5.1, we review these basic definitions and ex-
tend the discussion to unique factorization, greatest common divisors, and least common
multiples.

In Section 5.2, we discuss representations of integers and some algorithms for
integer arithmetic.

The Euclidean algorithm for computing the greatest common divisor is the subject
of Section 5.3. This is surely one of the oldest algorithms. Euclid lived about 295 B.C.,
and the algorithm probably predates him.

As an application of the number theory presented in Sections 5.1-5.3, we discuss
the RSA system for secure communications in Section 5.4.

Divisors

Example 5.1.2

In this section, we give the basic definitions and terminology. We begin by recalling the
definition of “divides,” and we introduce some related terminology.

Definition 5.1.1 » Letn and d be integers, d # 0. We say that d divides n if
there exists an integer ¢ satisfying n = dg. We call g the quotient and d a divisor or
factor of n. If d divides n, we write d | n. If d does not divide n, we write d [n. <

Since 21 = 3.7, 3 divides 21 and we write 3 | 21. The quotient is 7. We call 3 a divisor
or factor of 21. <

We note that if n and d are positive integers and d | n, then d < n. (If d | n,
there exists an integer ¢ such that n = dg. Since n and d are positive integers, 1 < gq.
Therefore, d < dg = n.)

Theorem 5.1.3

Example 5.1.5

Example 5.1.6

5.1 @ Divisors 215

Whether an integer d > 0 divides an integer n or not, we obtain a unique quotient
q and remainder r as given by the Quotient-Remainder Theorem (Theorem 2.5.6): There
exist unique integers ¢ (quotient) and r (remainder) satisfyingn = dgq +r,0 <r < d.
The remainder r equals zero if and only if d divides n.

Some additional properties of divisors are given in the following theorem and will
be useful in our subsequent work in this chapter.

Let m, n, and d be integers.

(a) Ifd | mand d | n, thend | (m + n).
(b) Ifd | mand d | n,thend | (im — n).
(c) If d | m, thend | mn.

Proof (a) Suppose that d | m and d | n. By Definition 5.1.1,
m = dq, (5.1.1)

for some integer g; and

n= dq2 (5.1.2)
for some integer ¢,. If we add equations (5.1.1) and (5.1.2), we obtain
m+n=dg +dg =d(q + q2).

Therefore, d divides m + n (with quotient g; + ¢2). We have proved part (a).
The proofs of parts (b) and (c) are left as exercises (see Exercises 27 and 28). <

Definition 5.1.4 » An integer greater than 1 whose only positive divisors are
itself and 1 is called prime. An integer greater than 1 that is not prime is called
composite.

The integer 23 is prime because its only divisors are itself and 1. The integer 34 is com-
posite because it is divisible by 17, which is neither 1 nor 34. |

If an integer n > 1 is composite, then it has a positive divisor d other than 1 and
itself. Since d is positive and d # 1,d > 1. Since d is a divisor of n, d < n. Since d # n,
d < n. Therefore, to determine if a positive integer n is composite, it suffices to test
whether any of the integers 2, 3, ..., n — 1 divides n. If some integer in this list divides
n, then n is composite. If no integer in this list divides n, then n is prime. (Actually, we
can shorten this list considerably; see Theorem 5.1.7.)

By inspection, we find that none of 2, 3,4, 5, ..., 41, 42 divides 43; thus, 43 is prime.
Checking the list 2, 3,4, 5, ..., 449, 450 for potential divisors of 451, we find that
11 divides 451 (451 = 11 .41); thus, 451 is composite. 4

In Example 5.1.6, to determine whether a positive integer n > 1 was prime, we
checked the potential divisors 2, 3, ..., n — 1. Actually, it suffices to check only

2,3, ..., vl

216 Chapter 5 ¢ Introduction to Number Theory

Theorem 5.1.7

Algorithm 5.1.8

Go Online

For a C++ program
implementing this
algorithm, see
goo.gl/y7T2se

Example 5.1.9

A positive integer n greater than 1 is composite if and only if n has a divisor d satis-
fying2 < d < /n.

Proof We must prove

If n is composite, then n has a divisor d satisfying 2 < d < Jn, (5.1.3)
and

If n has a divisor d satisfying 2 < d < /n, then n is composite. (5.1.4)

We first prove (5.1.3). Suppose that n is composite. The discussion following Ex-
ample 5.1.5 shows that n has a divisor d’ satisfying 2 < d’ < n. We now argue by cases.
If d < \/n, then n has a divisor d (namely d = d') satisfying 2 < d < /n.

The other case is d’ > /n. Since d’ divides n, by Definition 5.1.1 there exists an
integer ¢ satisfying n = d’q. Thus g is also a divisor of n. We claim that g < /n. To show
that ¢ < +/n, we use proof by contradiction. Thus, suppose that ¢ > /n. Multiplying
d > /nand g > /n gives

n=dgqg> /nJn=n,

which is a contradiction. Thus, g < \/n. Therefore, n has a divisor d (namely d = ¢q)
satisfying 2 < d < /n.

It remains to prove (5.1.4). If n has a divisor d satisfying 2 < d < /n, by Defini-
tion 5.1.4 n is composite. The proof is complete. <

We may use Theorem 5.1.7 to construct the following algorithm that tests whether
a positive integer n > 1 is prime.

Testing Whether an Integer Is Prime

This algorithm determines whether the integer n > 1 is prime. If n is prime, the al-
gorithm returns 0. If n is composite, the algorithm returns a divisor d satisfying
2 <d < \/n. To test whether d divides n, the algorithm checks whether the remainder
when 7 is divided by d, n mod d, is zero.

Input: n
Output: d

is_prime(n) {
ford = 2 to [\/n]
if (n mod d == 0)
return d
return O

To determine whether 43 is prime, Algorithm 5.1.8 checks whether any of 2, 3,4, 5,6 =
|+/43] divides 43. Since none of these numbers divides 43, the condition

nmod d == (5.1.5)

is always false. Therefore, the algorithm returns O to indicate that 43 is prime.

To determine whether 451 is prime, Algorithm 5.1.8 checks whether any of
2,3,...,21 = L«/mj divides 451.Ford = 2,3, ..., 10, d does not divide 451 and the
condition (5.1.5) is false. However, when d = 11, d does divide 451 and the condition

Example 5.1.10

Theorem 5.1.11

5.1 @ Divisors 217

(5.1.5) is true. Therefore, the algorithm returns 11 to indicate that 451 is composite and
11 divides 451. |

In the worst case (when n is prime and the for loop runs to completion), Algo-
rithm 5.1.8 takes time © (/). Although Algorithm 5.1.8 runs in time polynomial in n
(since /n < n), it does not run in time polynomial in the size of the input (namely,
n). [We can represent n in considerably less space than ®(n); see Example 5.2.1.] We
say that Algorithm 5.1.8 is not a polynomial-time algorithm. It is not known whether
there is a polynomial-time algorithm that can find a factor of a given integer; but most
computer scientists think that there is no such algorithm. On the other hand, in 2002
Manindra Agarwal and two of his students, Nitin Saxena and Neeraj Kayal, discovered
a polynomial-time algorithm that can determine whether or not a given integer is prime
(see [Agarwal]). The question of whether there is a polynomial-time algorithm that can
factor an integer is of more than academic interest since the security of certain encryption
systems relies on the nonexistence of such an algorithm (see Section 5.4).

Notice that if a composite integer n is input to Algorithm 5.1.8, the divisor returned
is prime; that is, Algorithm 5.1.8 returns a prime factor of a composite integer. To prove
this, we use proof by contradiction. If Algorithm 5.1.8 returns a composite divisor of
n, say a, then a has a divisor @ less than a. Since @ also divides n and @’ < a, when
Algorithm 5.1.8 sets d = &', it will return «’, not a. This contradiction shows that if a
composite integer n is input to Algorithm 5.1.8, the divisor returned is prime.

If the input to Algorithm 5.1.8 is n = 1274, the algorithm returns the prime 2 because
2 divides 1274, specifically 1274 = 2 -637.

If we now input n = 637 to Algorithm 5.1.8, the algorithm returns the prime 7
because 7 divides 637, specifically 637 = 7-91.

If we now input n = 91 to Algorithm 5.1.8, the algorithm returns the prime 7
because 7 divides 91, specifically 91 = 7. 13.

If we now input n = 13 to Algorithm 5.1.8, the algorithm returns 0 because 13 is
prime.

Combining the previous equations gives 1274 as a product of primes

1274 =2.637=2-7-91=2.7-7-13.

We have illustrated how to write any integer greater than 1 as a product of primes.
Itis also a fact (although we will not prove it in this book) that, except for the order of the
prime factors, the prime factors are unique. This result is known as the Fundamental
Theorem of Arithmetic or the unique factorization theorem. (Unique factorization
does not hold in some systems; see Exercise 44.) 4

Fundamental Theorem of Arithmetic

Any integer greater than 1 can be written as a product of primes. Moreover, if the
primes are written in nondecreasing order, the factorization is unique. In symbols, if

n=pip2---pi

where the p; are primes and p; < p, < --- < p;, and
n=pips--pj

where the p; are primes and p < p, <--- < p/, then i = j and

pe=p, forallk=1,...,i.

218

Chapter 5 ¢ Introduction to Number Theory

Theorem 5.1.12

Example 5.1.13

Example 5.1.15

We next prove that the number of primes is infinite.

The number of primes is infinite.

Proof It suffices to show that if p is a prime, there is a prime larger than p. To this end,
we let py, pa, ..., p, denote all of the distinct primes less than or equal to p. Consider
the integer

m=ppy---pp+ 1.

Notice that when m is divided by p;, the remainder is 1:

m=piq+1, q=pip2---Pi1Pi+1" " Pn-

Therefore, for all i = 1 to n, p; does not divide m. Let p’ be a prime factor of m (m may
or may not itself be prime; see Exercise 33). Then p’ is not equal to any of p;, i = 1 to n.
Since py1, pa2, ..., Py 1s a list of all of the primes less than or equal to p, we must have
p' > p. The proof is complete. <

Show how the proof of Theorem 5.1.12 produces a prime larger than 11.

SOLUTION We list the primes less than or equal to 11: 2,3,5,7,11. We let m =
2.3.5.7-11 + 1 = 2311. Using Algorithm 5.1.8, we find that 2311 is prime. We
have found a prime, namely 2311, larger than each of 2, 3,5, 7, 11. (If 2311 had turned
out not to be prime, Algorithm 5.1.8 would have found a factor of 2311, which would
necessarily be larger than each of 2,3, 5,7, 11.) <

The greatest common divisor of two integers m and n (not both zero) is the largest
positive integer that divides both m and n. For example, the greatest common divisor of 4
and 6 is 2, and the greatest common divisor of 3 and 8 is 1. We use the notion of greatest
common divisor when we check to see if a fraction m/n, where m and n are integers,
is in lowest terms. If the greatest common divisor of m and n is 1, m/n is in lowest
terms; otherwise, we can reduce m/n. For example, 4/6 is not in lowest terms because
the greatest common divisor of 4 and 6 is 2, not 1. (We can divide both 4 and 6 by 2.)
The fraction 3/8 is in lowest terms because the greatest common divisor of 3 and 8 is 1.

Definition 5.1.14 » Let m and n be integers with not both m and n zero. A
common divisor of m and n is an integer that divides both m and n. The greatest common
divisor, written

ged(m, n),

is the largest common divisor of m and n.

The positive divisors of 30 are
1,2,3,5,6, 10, 15, 30,
and the positive divisors of 105 are
1,3,5,7,15,21, 35, 105;
thus the positive common divisors of 30 and 105 are
1,3,5,15.

It follows that the greatest common divisor of 30 and 105, gcd(30, 105), is 15. 4

Example 5.1.16

Theorem 5.1.17

Example 5.1.18

5.1 & Divisors 219

We can also find the greatest common divisor of two integers m and n by looking
carefully at their prime factorizations. We illustrate with an example and then explain
the technique in detail.

We find the greatest common divisor of 30 and 105 by looking at their prime
factorizations

30=2-3.5 105=3-5.7.
Notice that 3 is a common divisor of 30 and 105 since it occurs in the prime factorization
of both numbers. For the same reason, 5 is also a common divisor of 30 and 105. Also,
3.5 = 15 is also a common divisor of 30 and 105. Since no larger product of primes is

common to both 30 and 105, we conclude that 15 is the greatest common divisor of 30
and 105. <

We state the method of Example 5.1.16 as Theorem 5.1.17.

Let m and n be integers, m > 1, n > 1, with prime factorizations

ap dz

ar
m=p;py - P
and

_ b1 b Dy
n=pypy - Dg-

(If the prime p; is not a factor of m, we let a; = 0. Similarly, if the prime p; is not a
factor of n, we let b; = 0.) Then

min(a;,by) min(ay,b;) min(a,by)
1 12 Dy 0

ged(m, n) =p

Proof Letg = gcd(m, n). We note that if a prime p appears in the prime factorization

of g, p must be equal to one of py, . . ., py; otherwise, g would not divide m or n (or both).
Therefore g = p}' - - - p;* for some cy, . .., ¢x. Now
prlnin(al,b])p;qin(ag,bz) . 'p;cnin(ak,bk) (5.1.6)

divides both m and n and if any exponent, min(a;, b;), is increased, the resulting integer
will fail to divide m or n (or both). Therefore (5.1.6) is the greatest common divisor of
m and n. |

Using the notation of Theorem 5.1.17, we have
82320 =2*.3'.5'.73.11°
and
950796 = 22.32.5%.74 . 111,
By Theorem 5.1.17,

ng(82320, 950796) — 2min(4,2) . 3min(1,2) _Smin(l,O) _7min(3,4) . 11min(0,1)
=22.3".50.7°.11°
= 4116. <

220

Chapter 5 ¢ Introduction to Number Theory

Example 5.1.20

Example 5.1.21

Theorem 5.1.22

Neither the “list all divisors” method of Example 5.1.15 nor use of prime factoriza-
tion as in Example 5.1.18 is an efficient method of finding the greatest common divisor.
The problem is that both methods require finding the prime factors of the numbers in-
volved and no efficient algorithm is known to compute these prime factors. However,
in Section 5.3, we will present the Euclidean algorithm, which does provide an efficient
way to compute the greatest common divisor.

A companion to the greatest common divisor is the least common multiple.

Definition 5.1.19 » Let m and n be positive integers. A common multiple of m
and n is an integer that is divisible by both m and n. The least common multiple, written

Iem(m, n),

is the smallest positive common multiple of m and n.

The least common multiple of 30 and 105, lcm(30, 105), is 210 because 210 is divisible
by both 30 and 105 and, by inspection, no positive integer smaller than 210 is divisible
by both 30 and 105. <

We can find the least common multiple of 30 and 105 by looking at their prime
factorizations

30=2-3.5 105 =3.5.7.
The prime factorization of lcm(30, 105) must contain 2, 3, and 5 as factors [so that 30

divides lcm(30, 105)]. It must also contain 3, 5, and 7 [so that 105 divides Icm(30, 105)].
The smallest number with this property is

2.3.5.7=210.

Therefore, Icm(30, 105) = 210. 4

We state the method of Example 5.1.21 as Theorem 5.1.22.

Let m and n be integers, m > 1, n > 1, with prime factorizations

ay ax

m=p; p "‘sz

and
_ b1 b Dy
n=pypy - P-

(If the prime p; is not a factor of m, we let @; = 0. Similarly, if the prime p; is not a
factor of n, we let b; = 0.) Then

max(a;,by) max(az,b)
12) o

lem(m, n) = p| max(@.be)

Pk

Proof Let/ = lcm(m, n). We note that if a prime p appears in the prime factorization
of [, p must be equal to one of py, ..., pi; otherwise, we could eliminate p and obtain
a smaller integer that is divisible by both m and n. Therefore [= pi' - - - pi* for some
Cly.en, Ck. Now

pTax(al.bl)prznax(az,hz) . .pznax(ak,bk) (5-1-7)

Example 5.1.23

Example 5.1.24

Theorem 5.1.25

5.1 & Divisors 221

is divisible by both m and n and if any exponent, max(a;, b;), is decreased, the resulting
integer will fail to be divisible by m or n (or both). Therefore (5.1.7) is the least common
multiple of m and n. <

Using the notation of Theorem 5.1.22, we have
82320 = 24.3'.5'.73.11°

and
950796 = 22.3%2.5%.74. 11",

By Theorem 5.1.22,

lcm(82320, 950796) — 2max(4,2) . 3max(1,2) _Smax(l,O) .7max(3,4) . 11max(0,1)
=2*.32.50.74 .11
= 19015920. <

In Example 5.1.15, we found that gcd(30, 105) = 15, and in Example 5.1.21, we found
that Ilcm(30, 105) = 210. Notice that the product of the gcd and Icm is equal to the
product of the pair of numbers; that is,

gcd(30, 105) -1em(30, 105) = 15210 = 3150 = 30-105.

This formula holds for any pair of numbers as we will show in Theorem 5.1.25. |

For any positive integers m and n,

gcd(m, n) - lem(m, n) = mn.

Proof Ifm =1, then gcd(m, n) = 1 and lem(m, n) = n, so
ged(m, n) <lem(m, n) = 1.n = mn.

Similarly, if n = 1, then gcd(m, n) = 1 and lem(m, n) = m, so
gcd(m, n) -lem(m, n) = 1-m = mn.

Thus, we may assume thatm > 1 and n > 1.
The proof combines the formulas for the gcd (Theorem 5.1.17) and lcm
(Theorem 5.1.22) (which require that m > 1 and n > 1) with the fact that

min(x, y) + max(x,y) = x+y for all x and y.

This latter formula is true because one of {min(x,y), max(x,y)} equals x and
the other equals y. We now put this all together to produce a proof.
Write the prime factorizations of m and n as

ap . d

ax
m=pypy Dy
and

_ b1 b Dy
n=pypy - Dg-

222

Chapter 5 ¢ Introduction to Number Theory

(If the prime p; is not a factor of m, we let a; = 0. Similarly, if the prime p; is not a factor
of n, we let b; = 0.) By Theorem 5.1.17,

ged(m, n) = piiert . ety
and by Theorem 5.1.22,
lem(m, n) = pmx@-b0 . pmaxtach)

Therefore,

gcd(m, n) -lem(m, n) = [p‘lni“(‘“’b‘) .. -pfi“(“k‘bk)] .

max(aj,by) max (ay,by)
[pl c Dy]
min(a;,by)+max(ay,by) min(ax,by)+max (ax,by)
1 e pk
_ a)+b ar+by
=pi"" D

1

= [p{ Iy -

-2 = mn. <
If we have an algorithm to compute the greatest common divisor, we can compute

the least common multiple by using Theorem 5.1.25:

lem(m, n) mn

cm(m, n) = ———.
gcd(m, n)
In particular, if we have an efficient algorithm to compute the greatest common divisor,
we can efficiently compute the least common multiple as well.

5.1 Problem-Solving Tips

The straightforward way to determine whether an integer n > 1 is prime is to test whether
any of 2, 3, ..., |+/n] divides n. While this technique becomes too time-consuming as
n grows larger, it suffices for relatively small values of n. This technique can be iterated
to find the prime factorization of n, again for relatively small values of 7.

Two ways of finding the greatest common divisor of a and b were presented. The
first way was to list all of the positive divisors of a and all of the positive divisors of
b and then, among all of the common divisors, choose the largest. This technique is
time consuming and was shown mainly to illustrate exactly what is meant by common
divisors and the greatest common divisor.

The second technique was to compare the prime factorizations of a and b. If p'
appears in a and p/ appears in b, include p™") in the prime factorization of the greatest
common divisor. This technique works well if the numbers a and b are relatively small
so that the prime factorizations of each can be found, or if the prime factorizations of
each are given. In Section 5.3, we present the Euclidean algorithm that efficiently finds
the greatest common divisor even for large values of a and b.

If you compute the ged(a, b), you can immediately compute the least common
multiple using the formula

ab

Iem(a, b)) = ——.
gcd(a, b)

The least common multiple can also be computed by comparing the prime factor-
izations of a and b. If p’ appears in a and p/ appears in b, include p™>@/) in the prime
factorization of the least common multiple.

5.1 @ Divisors 223

5.1 Review Exercises

[

. Define d divides n.

. Define d is a divisor of n.
. Define quotient.

. Define n is prime.

. Define n is composite.

A i A W N

. Explain why, when testing whether an integer n > 1 is prime
by looking for divisors, we need only check whether any of 2
to |/n] divides n.

3

. Explain why Algorithm 5.1.8 is not considered to be a
polynomial-time algorithm.

@®

. What is the Fundamental Theorem of Arithmetic?

9. Prove that the number of primes is infinite.
10. What is a common divisor?
11. What is the greatest common divisor?

12. Explain how to compute the greatest common divisor of m and
n, not both zero, given their prime factorizations.

13. What is a common multiple?
14. What is the least common multiple?

15. Explain how to compute the least common multiple of positive
integers m and n, given their prime factorizations.

16. How are the greatest common divisor and least common multi-
ple related?

In Exercises 1-8, trace Algorithm 5.1.8 for the given input.

1. n=9 2. n=209

3. n=47 4. n =637

5. n=4141 6. n = 1007

7. n=3738 8. n= 1050703

9. Which of the integers in Exercises 1-8 are prime?

10. Find the prime factorization of each integer in Exercises 1-8.

11. Find the prime factorization of 11!.

Find the greatest common divisor of each pair of integers in Exer-
cises 12-24.

12. 0,17 13. 60,90 14. 5,25
15. 110,273 16. 315,825 17. 220, 1400
18. 20,40 19. 2091, 4807 20. 331,993
21. 13,132 22. 15,15°

23. 32.73.11,23.5.7
24. 32.73.11,32.73 .11

25. Find the least common multiple of each pair of integers in
Exercises 13-24.

26. For each pair of integers in Exercises 13-24, verify that
ged(m, n) «lem(m, n) = mn.

27. Let m, n, and d be integers. Show that if d | m and d | n, then
d| (m—n).

28. Let m, n, and d be integers. Show that if d | m, then d | mn.

29. Letm,n, d;, and d; be integers. Show thatif d | mand d> | n,
then dd, | mn.

30. Letn, ¢, and d be integers. Show that if dc | nc, then d | n.

31. Let a, b, and c be integers. Show thatif a | b and b | c, then
alc.
32. Suggest ways to make Algorithm 5.1.8 more efficient.
33. Give an example of consecutive primes p; = 2,p2,...,Pn
where
pip2--pn+1
is not prime.
Exercises 34 and 35 use the following definition: A subset
{ai, ..., ay} OfZ+ is a *-set of size n if (a; — aj) | a; for all i

and j, wherei # j, 1 <i <n, and 1 <j < n. These exercises are
due to Martin Gilchrist.

34. Prove that for all n > 2, there exists a *-set of size n. Hint:
Use induction on n. For the Basis Step, consider the set {1, 2}.
For the Inductive Step, let by = szl ay and b; = by + a; for
1<i<n.

35. Using the hint in Exercise 34, construct *-sets of sizes 3
and 4.

The Fermat numbers Fy, F1, ..
36. Prove that

. are defined as F, = 2% + 1.

n—1
[[Fi=F—2 foraiin, n>1
i=0

37. Using Exercise 36 or otherwise, prove that

gcd(Fyy, Fp) =1 forallm,n, 0 <m < n.

38. Use Exercise 37 to prove that the number of primes is infinite.

39. Recall that a Mersenne prime (see the discussion before
Example 2.2.14) is a prime of the form 27 — 1, where
p is prime. Prove that if m is composite, 2" — 1 is also
composite.

224 Chapter 5 ¢ Introduction to Number Theory

Exercises 40-49 use the following notation and terminology. We
let E denote the set of positive, even integers. If n € E can be writ-
ten as a product of two or more elements in E, we say that n is
E-composite; otherwise, we say that n is E-prime. As examples,
4 is E-composite and 6 is E-prime.

40. Is 2 E-prime or E-composite?
41. Is 8 E-prime or E-composite?
42. Is 10 E-prime or E-composite?
43. Is 12 E-prime or E-composite?

44. Show that the number 36 can be written as a product of
E-primes in two different ways, which shows that factoring
into E-primes is not necessarily unique.

45.

46.
47.

48.

49.

Find a necessary and sufficient condition for an integer to be
an E-prime. Prove your statement.

Show that the set of E-primes is infinite.

Show that there are no twin E-primes, that is, two E-primes
that differ by 2.

Show that there are infinitely many pairs of E-primes that dif-
fer by 4.

Give an example to show that the following is false: If an
E-prime p divides mn € E, then p divides m or p divides n.
“Divides” means “divides in E.” That is, if p, ¢ € E, we say
that p divides ¢ in E if ¢ = pr, where r € E. (Compare this
result with Exercise 27, Section 5.3.)

5.2 Representations of Integers
and Integer Algorithms

A bit is a binary digit, that is, a 0 or a 1. In a digital computer, data and instructions are
encoded as bits. (The term digital refers to the use of the digits 0 and 1.) Technology
determines how the bits are physically represented within a computer system. Today’s

Go Online hardware relies on the state of an electronic circuit to represent a bit. The circuit must be
For more on capable of being in two states—one representing 1, the other 0. In this section we discuss
representations of the binary number system, which represents integers using bits, and the hexadecimal
integers, see number system, which represents integers using 16 symbols. The octal number sys-
goo.gl/WyqJp9 tem, which represents integers using eight symbols, is discussed before Exercise 42.

In the decimal number system, to represent integers we use the 10 symbols 0, 1,
2,3,4,5,6,7,8,and 9. In representing an integer, the symbol’s position is significant;
reading from the right, the first symbol represents the number of 1’s, the next symbol
the number of 10’s, the next symbol the number of 100’s, and so on. For example,

3854 =3.10° +8-10> +5-10" +4-.10°

(see Figure 5.2.1). In general, the symbol in position n (with the rightmost symbol being
in position 0) represents the number of 10”’s. Since 10° = 1, the symbol in position 0
represents the number of 10°’s or 1’s; since 10" = 10, the symbol in position 1 represents
the number of 10"’s or 10’s; since 10> = 100, the symbol in position 2 represents the
number of 10%’s or 100’s; and so on. We call the value on which the system is based (10
in the case of the decimal system) the base of the number system.

100°s place (10%)

1000’s place (103)

Symbol 3

Symbol 2

10’s place (101

17 1’s place (10°)

8§ 5 4

L Symbol 0

Symbol 1

L.

Figure 5.2.1 The decimal number system.

Example 5.2.1

5.2 Representations of Integers and Integer Algorithms 225

In the binary (base 2) number system, to represent integers we need only two
symbols, 0 and 1. In representing an integer, reading from the right, the first symbol
represents the number of 1’s, the next symbol the number of 2’s, the next symbol the
number of 4’s, the next symbol the number of 8’s, and so on. For example, in base 2f

101101, = 1-2240.2* +1-2°+1.2240-2" +1.2°

(see Figure 5.2.2). In general, the symbol in position n (with the rightmost symbol be-
ing in position 0) represents the number of 2"’s. Since 2° = 1, the symbol in position 0
represents the number of 2%’s, or 1’s; since 2! = 2, the symbol in position 1 represents
the number of 2!’s or 2’s; since 2> = 4, the symbol in position 2 represents the number
of 22’s or 4’s; and so on.

8s place (2°) 4s place (22)
16’s place %) ~ 2splace 21
32’s place (2°) 1’s place (2°)

R |
1 0 1 1 0 1
Symbol 5 J L Symbol 0
Symbol4 ——— L———— Symbol1l
Symbol 3 Symbol 2

Figure 5.2.2 The binary number system.

Computer Representation of Integers Computer systems represent integers in bi-
nary. Compute the number of bits necessary to represent a positive integer n. Deduce that
Algorithm 5.1.8, which determines whether an integer is prime, is not a polynomial-time
algorithm.

SOLUTION Suppose that the binary representation of the positive k-bit integer n is
n=1-28"4 p 522 4 o 4 py2°.

Now

Zk_l <n

and
n= 1214 b 2252 o 4 by2°
< 1281224 o 120 =2k 1 < 2K,

(The last equality follows from the formula for the geometric sum; see Example 2.4.4.)
Therefore

2k < g < 2K,

TWithout knowing which number system is being used, a representation is ambiguous; for example, 101101
represents one number in decimal and quite a different number in binary. Often the context will make clear
which number system is in effect; but when we want to be absolutely clear, we subscript the number to specify
the base—the subscript 10 denotes the decimal system and the subscript 2 denotes the binary system.

226

Chapter 5 ¢ Introduction to Number Theory

Example 5.2.2

Algorithm 5.2.3

Taking logs, we obtain
k—1<lgn <k
Adding one gives
k<l+lgn<k+1.
Therefore, k = |1+ 1gn]. Since k is the number of bits required to represent n, we have
proved that the number of bits necessary to represent n is |1 + 1gn].

The size s of an integer n input to Algorithm 5.1.8 is the number of bits necessary
to represent n. Thus s satisfies

s=[1+lgn] <14+lgn=1g2+1gn =1g(2n).
Raising to the power 2 gives 2° < 2n. Dividing by 2 and taking square roots yields
1
V2

The worst-case time of Algorithm 5.1.8 is ® (y/n). Thus its worst-case time T satisfies

(V2)* < v/n. (5.2.1)

T>CJn (5.2.2)

for some constant C. Combining inequalities (5.2.1) and (5.2.2), we obtain
T > (C/~/2)(+/2)*. Therefore, in the worst case, Algorithm 5.1.8 runs in exponential
time in the input size s. We say that Algorithm 5.1.8 is not a polynomial-time algorithm. <

Binary to Decimal The binary number 101101, represents the number consisting of
one 1, no 2’s, one 4, one 8§, no 16’s, and one 32 (see Figure 5.2.2). This representation
may be expressed

101101, =1:2540-2* + 1.2 +1.224+0-2" +1.2°
Computing the right-hand side in decimal, we find that

101101, =1:324+0-16 +1-8+1-4+0-2+1-1
=32+8+4+1=45. <

We turn the method of Example 5.2.2 into an algorithm. We generalize by allowing
an arbitrary base b.

Converting an Integer from Base b to Decimal
This algorithm returns the decimal value of the base b integer ¢,c,—; - - - c1¢p.

Input: ¢, n,b
Output: dec_val

base_b_to_dec (c, n, b) {
dec_val =0
b_to_the_i =1
fori=0ton {
dec_val = dec_val +c; *x b_to_the_i
b_to_the_i = b_to_the_i* b

}

return dec_val

Example 5.2.4

5.2 @ Representations of Integers and Integer Algorithms 227

Algorithm 5.2.3 runs in time ® (n).

Show how Algorithm 5.2.3 converts the binary number 1101 to decimal.
SOLUTION Heren =3,b =2, and
C3=1, C2=1, C1=O, C()=1.

First, dec_val is set to 0, and b_to_the_i is set to 1. We then enter the for loop.
Since i = 0 and b_to_the_i = 1,

cixbtothei=1x%x1=1.

Thus dec_val becomes 1. Executing
b_to_the_i = b_to_the_i x b

sets b_to_the_i to 2. We return to the top of the for loop.
Since i = 1 and b_to_the_i = 2,

cixb_to_the.i=0x%2=0.

Thus dec_val remains 1. Executing
b_to_the_i = b_to_the_i * b

sets b_to_the_i to 4. We return to the top of the for loop.
Since i = 2 and b_to_the_i = 4,

cixb_to_the.i=1x%x4=4.

Thus dec_val becomes 5. Executing
b_to_the_i = b_to_the_i x b

sets b_to_the_i to 8. We return to the top of the for loop.
Since i = 3 and b_to_the_i = 8,

cixb_to_the.i=1x%8 =38.

Thus dec_val becomes 13. Executing
b_to_the_i = b_to_the_i x b

sets b_to_the_i to 16. The for loop terminates and the algorithm returns 13, the decimal
value of the binary number 1101. |

Other important bases for number systems in computer science are base 8 or octal
and base 16 or hexadecimal (sometimes shortened to hex). We will discuss the hexa-
decimal system and leave the octal system to the exercises (see Exercises 45-50).

In the hexadecimal number system, to represent integers we use the symbols 0,
1,2,3,4,5,6,7,8,9, A, B, C, D, E, and F. The symbols A-F are interpreted as
decimal 10-15. (In general, in the base N number system, N distinct symbols, repre-
senting 0, 1,2, ..., N — 1 are required.) In representing an integer, reading from the
right, the first symbol represents the number of 1’s, the next symbol the number of
16’s, the next symbol the number of 16%’s, and so on. For example, in
base 16,

B4F =11-16>+4-16' +15-16°

228

Chapter 5 ¢ Introduction to Number Theory

Example 5.2.5

16’s place (161)

b

B F 4

Symbol 2 J L Symbol 0

Symbol 1

256’s place (162) 1’s place (16°)

Figure 5.2.3 The hexadecimal number system.

(see Figure 5.2.3). In general, the symbol in position n (with the rightmost symbol being
in position 0) represents the number of 16™’s.

Hexadecimal to Decimal Convert the hexadecimal number B4F to decimal.
SOLUTION We obtain

B4F;s = 11-16*> +4-16' +15-16°
= 11256 +4-16 4 15 = 2816 + 64 + 15 = 2895 . <

Algorithm 5.2.3 shows how to convert an integer in base b to decimal. Consider
the reverse problem—converting a decimal number to base b. Suppose, for example, that
we want to convert the decimal number 91 to binary. If we divide 91 by 2, we obtain

45

2)91
8
11
10

—_—

This computation shows that
91=2.45+1. (5.2.3)
We are beginning to express 91 in powers of 2. If we next divide 45 by 2, we find
45 =2.22 + 1. (5.2.4)
Substituting this expression for 45 into (5.2.3), we obtain
91 =2.45+1
=2-2:22+1)+1
=22.224+2+1. (5.2.5)
If we next divide 22 by 2, we find
22=2-11.
Substituting this expression for 22 into (5.2.5), we obtain
91=2".22+2+1
=22.2-1)+2+1
=2°11+2+1. (5.2.6)

Example 5.2.6

Algorithm 5.2.7

5.2 @ Representations of Integers and Integer Algorithms 229

If we next divide 11 by 2, we find
11=2-5+1.
Substituting this expression for 11 into (5.2.6), we obtain
91=2%.5+2+2+1. (5.2.7)
If we next divide 5 by 2, we find
5=2-241.
Substituting this expression for 5 into (5.2.7), we obtain

91=2".2+2"+2"+2+1
=242 +2°+2+1
= 1011011,.
The preceding computation shows that the remainders, as N is successively di-
vided by 2, give the bits in the binary representation of N. The first division by 2 in

(5.2.3) gives the 1’s bit; the second division by 2 in (5.2.4) gives the 2’s bit; and so on.
We illustrate with another example.

Decimal to Binary Write the decimal number 130 in binary.

SOLUTION The computation shows the successive divisions by 2 with the remainders
recorded at the right.

2)130 remainder = 0 1’s bit
2)65 remainder = 1 2’s bit
2)32 remainder = 0 4’s bit
2)16 remainder = 0 8’s bit

2)8 remainder = 0 16’s bit

2)4 remainder = 0 32’s bit

2)2 remainder = 0 64’s bit

2)1 remainder = 1 128’s bit
0

We may stop when the quotient is 0. Remembering that the first remainder gives the
number of 1’s, the second remainder gives the number of 2’s, and so on, we obtain

13059 = 10000010,. <
‘We turn the method of Example 5.2.6 into an algorithm. We generalize by allowing
an arbitrary base b.

Converting a Decimal Integer into Base b

This algorithm converts the positive integer m into the base b integer ¢,c,—; - - - ¢1Co.
The variable 7 is used as an index in the sequence c. The value of m mod b is the
remainder when m is divided by b. The value of |m/b] is the quotient when m is
divided by b.

230

Chapter 5 ¢ Introduction to Number Theory

Example 5.2.8

Example 5.2.9

Input: m, b
Output: ¢, n

dec_to_base_b(m, b, c, n) {
n=—1
while (m > 0) {
n=n+1
¢, = m mod b
m= |m/b]
1
}

Just as a binary integer m has | 1 + 1gm] bits, a base b integer m has |1 + log, m|
digits (see Exercise 55). Thus Algorithm 5.2.7 runs in time ® (log, m).

Show how Algorithm 5.2.7 converts the decimal number m = 11 to binary.

SOLUTION The algorithm first sets n to —1. The first time we arrive at the while loop,
m = 11 and the condition m > 0 is true; so we execute the body of the while loop. The
variable 7 is incremented and becomes 0. Since m mod b = 11 mod 2 = 1, ¢ is set to
1. Since [m/b] = |11/2] =5, mis set to 5. We return to the top of the while loop.
Since m = 5, the condition m > 0 is true; so we execute the body of the while
loop. The variable 7 is incremented and becomes 1. Since m mod b =5 mod 2 = 1, ¢;
issetto 1. Since |m/b] = |5/2] = 2, mis set to 2. We return to the top of the while loop.
Since m = 2, the condition m > 0 is true; so we execute the body of the while
loop. The variable 7 is incremented and becomes 2. Since m mod b =2 mod 2 =0, ¢;
issetto 0. Since |m/b] = |2/2] = 1,mis setto 1. We return to the top of the while loop.
Since m = 1, the condition m > 0 is true; so we execute the body of the while
loop. The variable n is incremented and becomes 3. Since m mod b = 1 mod 2 = 1, ¢3
issetto 1. Since |m/b] = [1/2] = 0, m1is set to 0. We return to the top of the while loop.
Since m = 0, the algorithm terminates. The value 11 has been converted to the
binary number c3cycic9 = 1011. 4

Decimal to Hexadecimal Convert the decimal number 20385 to hexadecimal.

SOLUTION The computation shows the successive divisions by 16 with the remainders
recorded at the right.

16)20385 remainder = 1 1’s place
16)1274 remainder = 10 16’s place
16)79 remainder = 15 16’s place
16)4 remainder = 4 16%’s place

0

We stop when the quotient is 0. The first remainder gives the number of 1’s, the second
remainder gives the number of 16’s, and so on; thus we obtain 20385, = 4FAls. <

Next we turn our attention to addition of numbers in arbitrary bases. The same
method that we use to add decimal numbers can be used to add binary numbers; however,
we must replace the decimal addition table with the binary addition table

Example 5.2.10

Example 5.2.11

5.2 @ Representations of Integers and Integer Algorithms 231

+ 10 1
0|0 1
1|1 10

(In decimal, 1 + 1 = 2, and 2;9 = 10,; thus, in binary, 1 4+ 1 = 10.)

Binary Addition Add the binary numbers 10011011 and 1011011.
SOLUTION We write the problem as

10011011
+ 1011011

As in decimal addition, we begin from the right, adding 1 and 1. This sum is 10,; thus
we write 0 and carry 1. At this point the computation is

1
10011011
+ 1011011
0

Next, we add 1 and 1 and 1, which is 11,. We write 1 and carry 1. At this point, the
computation is

1
10011011
+ 1011011
10

Continuing in this way, we obtain

10011011
+ 1011011
11110110

The addition problem of Example 5.2.10, in decimal, is

155
+ 91
246

<

We turn the method of Example 5.2.10 into an algorithm. If the numbers to add
are byby,_; - --biby and b),b),_, - - - b} b, at the iteration i > 0 the algorithm adds b;, b},
and the carry bit from the previous iteration. When adding three bits, say B;, B>, and B3,
we obtain a two-bit binary number, say cb. For example, if we compute 1 + 0 + 1, the
result is 10,; in our notation, ¢ = 1 and b = 0. By checking the various cases, we can
verify that we can compute the binary sum B; + B, + Bj by first computing the sum in

decimal and then recovering ¢ and b from the formulas

b = (By + B, + B3) mod 2, c=|(B1+ B+ B3)/2].

232 Chapter 5 ¢ Introduction to Number Theory

Algorithm 5.2.12 Adding Binary Numbers

! 1./

This algorithm adds the binary numbers b,b,,_; - - - bibg and b,b),_, - - - b’ by, and stores
the sum in s, 15,5,_1 - - - 5150. (Leading zeros can be appended to b or b’ so that this

algorithm can be used to add integers with different numbers of bits.)

Input: b,b',n
Output: s

binary_addition(b, b', n, s) {
carry =0
fori=0ton {
s; = (bj + b + carry) mod 2
carry = [(b; + b} + carry) /2]
}
Spe1 = carry

}

Algorithm 5.2.12 runs in time © (n).
Our next example shows that we can add hexadecimal numbers in the same way
that we add decimal or binary numbers.

Example 5.2.13 Hexadecimal Addition Add the hexadecimal numbers 84F and 42EA.

SOLUTION The problem may be written

84F
+ 42EA

We begin in the rightmost column by adding F and A. Since F is 15,9 and A is 10y,
F+ A =159+ 1059 = 25,90 = 19;4. We write 9 and carry 1:

1
84F
+ 42EA
9

Next, we add 1, 4, and E, obtaining 13;4. We write 3 and carry 1:

1
84F

+ A42EA
39

Continuing in this way, we obtain

84F
+ 42EA
4B39 <

Example 5.2.14 The addition problem of Example 5.2.13, in decimal, is

2127
+ 17130
19257 <

Example 5.2.15

5.2 @ Representations of Integers and Integer Algorithms 233

We can multiply binary numbers by modifying the standard algorithm for multi-
plying decimal numbers (see Exercise 67).

We conclude by discussing a special algorithm, which we will need in Section 5.4,
to compute powers mod z. We first discuss an algorithm to compute a power a" (without
dealing with mod z). The straightforward way to compute this power is to repeatedly
multiply by a

a-ad--- a’
na’s
which uses n — 1 multiplications. We can do better using repeated squaring.

As a concrete example, consider computing a**. We first compute > = a-a,
which uses 1 multiplication. We next compute a* = a? -a?, which uses 1 additional
multiplication. We next compute a® = a*-a*, which uses 1 additional multiplication.
We next compute a'® = a® - 4%, which uses 1 additional multiplication. So far, we have
used only 4 multiplications. Noting that the expansion of 29 in powers of 2, that is the
binary expansion, is

29=1+4+8+16,

we see that we can compute a® as

& =a-d-d-d®,
which uses 3 additional multiplications for a total of 7 multiplications. The straightfor-
ward technique uses 28 multiplications.

In Example 5.2.6, we saw that the remainders when n is successively divided by
2 give the binary expansion of n. If the remainder is 1, the corresponding power of 2 is
included; otherwise, it is not included. We can formalize the repeated squaring technique
if, in addition to repeated squaring, we simultaneously determine the binary expansion
of the exponent.

Figure 5.2.4 shows how a* is calculated using repeated squaring. Initially x is set to a,
and n is set to the value of the exponent, 29 in this case. We then compute #n mod 2. Since
this value is 1, we know that 1 = 2° is included in the binary expansion of 29. Therefore
a' is included in the product. We track the partial product in Result; so Result is set to
a. We then compute the quotient when 29 is divided by 2. The quotient 14 becomes the
new value of n. We then repeat this process.

Current Value Quotient When n
X ofn n mod 2 Result Divided by 2
a 29 1 a 14
a* 14 0 Unchanged 7
a* 7 1 a-a* =a 3
a® 3 1 @ -a® = a3 1
al6 1 1 al3 . g6 — 429 0

Figure 5.2.4 Computing a®® using repeated squaring.

We square x to obtain a*>. We then compute n mod 2. Since this value is 0, we know
that 2 = 2! is not included in the binary expansion of 29. Therefore a is not included in
the product, and Result is unchanged. We then compute the quotient when 14 is divided
by 2. The quotient 7 becomes the new value of n. We then repeat this process.

234

Chapter 5 ¢ Introduction to Number Theory

Algorithm 5.2.16

Theorem 5.2.17

We square x to obtain a*. We then compute n mod 2. Since this value is 1, we
know that 4 = 27 is included in the binary expansion of 29. Therefore a* is included
in the product. Result becomes a>. We then compute the quotient when 7 is divided
by 2. The quotient 3 becomes the new value of n. The process continues until n
becomes 0. <

We state the method of repeated squaring as Algorithm 5.2.16.

Exponentiation by Repeated Squaring

This algorithm computes a" using repeated squaring. The algorithm is explained in
Example 5.2.15.

Input: a,n

Output: a"

exp_via_repeated_squaring(a, n) {
result = 1
xX=a
while (n > 0) {
if (n mod 2 == 1)
result = result * x

X=X%X
n=|n/2]

}

return result

The number of times that the while loop executes is determined by n. The variable
n is repeatedly halved

n=\|n/2]

and when n becomes 0, the loop terminates. Example 4.3.14 shows that it takes time
®(gn) to reduce n to 0 by repeated halving. In the body of the while loop, at most two
multiplications are performed. Thus, the number of multiplications is at most ® (Ign),
an improvement over the straightforward algorithm that uses ® (n) multiplications. The
bottleneck in Algorithm 5.2.16 is the size of the numbers involved. The value returned
a" requires 1g a" = nlga bits in its representation. Thus, simply to copy the final value
into Result takes time, at least €2(nlga), which is exponential in the size of n (see
Example 5.2.1).

In Section 5.4, we will need to compute @ mod z for large values of a and n. In this
case, a" will be huge; so it is impractical to compute a" and then compute the remainder
when a” is divided by z. We can do much better. The key idea is to compute the remainder
after each multiplication thereby keeping the numbers relatively small. The justification
for this technique is given in our next theorem.

If a, b, and z are positive integers,

ab mod z = [(a mod z)(b mod z)] mod z.

Example 5.2.18

5.2 # Representations of Integers and Integer Algorithms 235

Proof Let w=ab modz, x=a mod z, and y=> mod z. Since w is the remainder
when ab is divided by z, by the quotient-remainder theorem, there exists g; such that

ab = qiz+w.
Thus
w=ab—qz.
Similarly, there exists g, and g3 such that
a=qz+x, b=qz+y.
Now
w=ab— qz
= (z+0)(g32+y) —qi1z

= (2932 + 2y + q3x — q1)z + Xy
= gz +xy,

where ¢ = q2q3z + @2y + ¢3x — q;. Therefore,
Xy = —qz+w;

that is, w is the remainder when xy is divided by z. Thus, w =xy mod z, which trans-
lates to

ab mod z = [(a mod z)(b mod z)] mod z. <

Show how to compute 572%° mod 713 using Algorithm 5.2.16 and Theorem 5.2.17.
SOLUTION To compute a*°, we successively computed
a, a =a-a, a’=a-a, a” =a’-a
(see Example 5.2.15). To compute a** mod z, we successively compute
1 2

a mod z, @ mod Z, a"® mod z, a* mod z.

Each multiplication is performed using Theorem 5.2.17. We compute a* using the
formula

@* mod z = [(a mod z)(a mod z)] mod z.
We compute a* using the formula
a* mod z = @’a* mod z = [(a®> mod z)(¢* mod z)] mod z,

and so on.
We compute a’ using the formula

@ mod z = aa* mod z = [(a mod z)(a* mod z)] mod z.
We compute a'? using the formula
1

a" mod z = @’a® mod z = [(a® mod z)(a® mod z)] mod z,

and so on.

236 Chapter 5 ¢ Introduction to Number Theory

The following shows the computation of 5722 mod 713:

5722 mod 713 = (572 mod 713)(572 mod 713) mod 713 = 5722

mod 713 = 630
572* mod 713 = (5722 mod 713)(572% mod 713) mod 713 = 630>
mod 713 =472
5728 mod 713 = (572* mod 713)(572* mod 713) mod 713 = 472>
mod 713 = 328
572'% mod 713 = (572 mod 713)(572® mod 713) mod 713 = 328>
mod 713 = 634
572° mod 713 = (572 mod 713)(572* mod 713) mod 713 = 572 -472
mod 713 = 470
572" mod 713 = (572° mod 713)(572® mod 713) mod 713 = 470 -328
mod 713 = 152
572% mod 713 = (572" mod 713)(572'® mod 713) mod 713 = 152 -634
mod 713 = 113.

The number 572% has 80 digits, so Theorem 5.2.17 indeed simplifies the
computation. <

The technique demonstrated in Example 5.2.18 is formalized as Algorithm 5.2.19.

Algorithm 5.2.19 Exponentiation Mod z by Repeated Squaring

This algorithm computes @" mod z using repeated squaring. The algorithm is
explained in Example 5.2.18.

Input: a,n,z
Output: @" mod n

exp_mod_z_via_repeated_squaring(a, n, z) {

Go Online result ;old
For a C++ program r=a 2
implementing this Wh};e (n >d0)2 {__ |
algorithm, see if (n m(l)t (—— lt)*) mod
.g1/mYpgPU. result = (result *x x z

£00-BLMTRY X = (x*x) mod z

n=|n/2]

}

return result

The key difference between Algorithms 5.2.16 and 5.2.19 is the size of the num-
bers that are multiplied. In Algorithm 5.2.19, the numbers multiplied are remainders
after division by z and so have magnitude less than z. If we modify the usual method of
multiplying base 10 integers for base 2, it can be shown (see Exercise 68) that the time
required to multiply a and b is O(Igalgb). Since the while loop in Algorithm 5.2.19
executes O (Ign) times, the total time for Algorithm 5.2.19 is O(Ignlg? 7).

5.2 & Representations of Integers and Integer Algorithms

237

5.2 Problem-Solving Tips

® To convert the base b number ¢,b" + c,_ 10" "' + -+ + ¢b" + cob to decimal,
carry out the indicated multiplications and additions in decimal.

B To convert the decimal number n to base b, divide by b, divide the resulting quo-
tient by b, divide the resulting quotient by b, and so on, until obtaining a zero
quotient. The remainders give the base b representation of n. The first remainder
gives the 1’s coeflicient, the next remainder gives the b’s coefficient, and so on.

® When multiplying modulo z, compute the remainders as soon as possible to min-
imize the sizes of the numbers involved.

5.2 Review Exercises

. What is the value of the decimal number d,d,,_i ...ddy?

(Each d; is one of 0-9.)

. What is the value of the binary number b,,b,,_1 ... b1by? (Each

bjisOorl.)

. What is the value of the hexadecimal number h,h,_; ... h1hy?

(Each h; is one of 0-9 or A-F.)

. How many bits are required to represent the positive integer n?

. Explain how to convert from binary to decimal.

Explain how to convert from decimal to binary.

Explain how to convert from hexadecimal to decimal.

. Explain how to convert from decimal to hexadecimal.
. Explain how to add binary numbers.

. Explain how to add hexadecimal numbers.

. Explain how to compute a” using repeated squaring.

. Explain how to compute ¢” mod z using repeated squaring.

5.2 Exercises

How many bits are needed to represent each integer in Exercises

1-10?

1. 60 2. 63 3. 64
4. 127 5. 128 6. 21000
7. 31000 S. 81000 9, 3481
10. 6.87 x 10*8

In Exercises 11-16, express each binary number in decimal.

11.
13.
15.

1001 12. 11011
11011011 14. 100000
11111111 16. 110111011011

In Exercises 17-22, express each decimal number in binary.

17.
20.

34 18. 61
400 21. 1024

19. 223
22. 12,340

In Exercises 23-28, add the binary numbers.

. 1001 + 1111
. 110110 4 101101
. 110110101 + 1101101

24. 11011 41101
26. 101101 + 11011

1101 + 101100 + 11011011

37.

In Exercises 29-34, express each hexadecimal number in decimal.

. 3A 30. 1E9 31. 3E7C

. A03 33. 209D 34. 4B07A

. Express each binary number in Exercises 11-16 in
hexadecimal.

. Express each decimal number in Exercises 17-22 in
hexadecimal.

Express each hexadecimal number in Exercises 29, 30, and 32
in binary.

In Exercises 38—42, add the hexadecimal numbers.

38

40

4A + B4 39. 195 + 76E
49F7 4 C66 41. 349CC + 922D

. 82054 + AEFA3

. Does 2010 represent a number in binary? in decimal? in
hexadecimal?

. Does 1101010 represent a number in binary? in decimal? in
hexadecimal?

238

In the octal (base 8) number system, to represent integers we use
the symbols 0, 1, 2, 3, 4, 5, 6, and 7. In representing an integer,
reading from the right, the first symbol represents the number of
1’s, the next symbol the number of 8’s, the next symbol the num-
ber of 82’s, and so on. In general, the symbol in position n (with
the rightmost symbol being in position 0) represents the number of
8"’s. In Exercises 45-50, express each octal number in decimal.
45. 63 46. 7643 47. 7711

48. 10732 49. 1007 50. 537261

51. Express each binary number in Exercises 11-16 in octal.

52. Express each decimal number in Exercises 17-22 in octal.
53. Express each hexadecimal number in Exercises 29—34 in octal.
54. Express each octal number in Exercises 45-50 in hexadecimal.
55. Does 1101010 represent a number in octal?

56. Does 30470 represent a number in binary? in octal? in deci-
mal? in hexadecimal?

57. Does 9450 represent a number in binary? in octal? in decimal?
in hexadecimal?

58. Prove that a base b integer m has |1 4 log;, m] digits.

5.3

Chapter 5 ¢ Introduction to Number Theory

In Exercises 59-61, trace Algorithm 5.2.16 for the given value
of n.

59. n=16 60. n=15 61. n =280

In Exercises 62—64, trace Algorithm 5.2.19 for the given values of
a, n, and z.

62. a=5n=10,z=21
63. a=143,n =10,z =230
64. a = 143,n =100, z = 230

65. Let T, denote the highest power of 2 that divides n. Show that
Ty =Ty + T, forallm,n > 1.

66. Let S, denote the number of 1’s in the binary representation
of n. Use induction to prove that 7,y = n — S, forall n > 1.
(T, is defined in the previous exercise.)

67. Modify the usual method of multiplying base 10 integers for
base 2 to produce an algorithm to multiply binary numbers
bubp—1 -+ -bibg and b,b),_, - - - b} by,.

68. Show that the time required by the algorithm of Exercise 67
to multiply @ and b is O(lgalgb).

The Euclidean Algorithm

Go Online
For more on the
Euclidean algorithm, see

goo.gl/WyqJp9 integers.

In Section 5.1, we discussed some methods of computing the greatest common divi-
sor of two integers that turned out to be inefficient. The Euclidean algorithm is an
old, famous, and efficient algorithm for finding the greatest common divisor of two

The Euclidean algorithm is based on the fact that if » = @ mod b, then

gcd(a, b) = ged(b, r). (5.3.1)

Before proving (5.3.1), we illustrate how the Euclidean algorithm uses it to find the

greatest common divisor.

Example 5.3.1

Since 105 mod 30 = 15, by (5.3.1)

2cd(105, 30) = ged(30, 15).

Since 30 mod 15 = 0, by (5.3.1)

gcd(30, 15) = ged(15, 0).

By inspection, gcd(15, 0) = 15. Therefore,

gcd (105, 30) = ged(30, 15) = ged(15, 0) = 15. <

We next prove equation (5.3.1).

Theorem 5.3.2

If a is a nonnegative integer, b is a positive integer, and r = @ mod b, then

gcd(a, b) = ged(b, r).

Algorithm 5.3.3

5.3 @ The Euclidean Algorithm 239

Proof By the quotient-remainder theorem, there exist ¢ and r satisfying
a=bg+r 0<r<b.

We show that the set of common divisors of @ and b is equal to the set of common divisors
of b and r, thus proving the theorem.

Let ¢ be a common divisor of @ and b. By Theorem 5.1.3(c), c¢ | bg. Since ¢ | a and
c | bg, by Theorem 5.1.3(b), c|a — bg (= r). Thus c is a common divisor of b and r.
Conversely, if ¢ is a common divisor of b and r, then ¢ | bg and ¢ | bg + r (= a) and c is
a common divisor of @ and b. Thus the set of common divisors of a and b is equal to the
set of common divisors of b and r. Therefore, gcd(a, b) = gcd(b, r). <

We next formally state the Euclidean algorithm as Algorithm 5.3.3.

Euclidean Algorithm

This algorithm finds the greatest common divisor of the nonnegative integers a and
b, where not both a and b are zero.

Input: @ and b (nonnegative integers, not both zero)

Output: Greatest common divisor of a and b

1. gcd(a,b) {
2. / make a largest
3. if (a < b)
4. swap(a, b)
5. while (b —=0) {
6. r=amod b
7. a=>b
8. b=r
9. }

10. return a

11. }

We note that the while loop in the Euclidean algorithm (lines 5-9) always termi-
nates since at the bottom of the loop (lines 7 and 8), the values of @ and b are updated
to smaller values. Since nonnegative integers cannot decrease indefinitely, eventually b
becomes zero and the loop terminates.

Let G = gcd(a, b), where a and b are the values input to Algorithm 5.3.3. We can
prove that Algorithm 5.3.3 is correct by verifying that G = gcd(a, b) is a loop invariant,
where now a and b denote the variables in the pseudocode.

By definition, the loop invariant is true the first time we arrive at line 5. Sup-
pose that G = gcd(a, b) is true prior to another iteration of the loop and that b # 0.
Theorem 5.3.2 then tells us that after line 6 executes, gcd(a, b) = ged(b, r). At lines 7
and 8, a becomes b and b becomes r. Therefore, G = gcd(a, b) is true for the new values
of a and b. It follows that G = gcd(a, b) is a loop invariant. The while loop terminates
when b becomes 0. At this point, the loop invariant becomes G = gcd(a, 0). The algo-
rithm then returns a [= gcd(a, 0)]. Thus the value that the algorithm returns is G, which
by definition is the greatest common divisor of the input values. Therefore, Algorithm
5.3.3 is correct.

Algorithm 5.3.3 correctly finds the greatest common divisor if lines 3 and 4 are
omitted (see Exercise 15). We include these lines because it simplifies the analysis of
Algorithm 5.3.3 in the next subsection.

240

Chapter 5 ¢ Introduction to Number Theory

Example 5.3.4

Show how Algorithm 5.3.3 finds gcd (504, 396).

SOLUTION Leta = 504 and b = 396. Since a > b, we move to line 5. Since b # 0,
we proceed to line 6, where we set r to

a mod b = 504 mod 396 = 108.

We then move to lines 7 and 8, where we set a to 396 and b to 108. We then return to
line 5.
Since b # 0, we proceed to line 6, where we set r to

a mod b =396 mod 108 = 72.

We then move to lines 7 and 8, where we set a to 108 and b to 72. We then return to
line 5.
Since b # 0, we proceed to line 6, where we set r to

a mod b = 108 mod 72 = 36.

We then move to lines 7 and 8, where we set a to 72 and b to 36. We then return to line 5.
Since b # 0, we proceed to line 6, where we set r to

amod b =72 mod 36 = 0.

We then move to lines 7 and 8, where we set a to 36 and b to 0. We then return to line 5.
This time b = 0, so we skip to line 10, where we return a (36), the greatest common
divisor of 396 and 504. |

Analysis of the Euclidean Algorithm

We analyze the worst-case performance of Algorithm 5.3.3. We define the time required
to be the number of modulus operations executed at line 6. Table 5.3.1 lists the number
of modulus operations required for some small input values.

TABLE 5.3.1 m Number of Modulus Operations Required by the Euclidean
Algorithm for Various Values of the Input

b | 0 1 2 3 4 5 6 7 8 9 10 11 12 13
a
0 -0 o0 o0 o o o0 o0 o0 o 0 0 0 0
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 2 1 2 1 2 1 2 1 2 1 2
3 0 1 2 1 2 3 1 2 3 1 2 3 1 2
4 0 1 1 2 1 2 2 3 1 2 2 3 1 2
5 0 1 2 3 2 1 2 3 4 3 1 2 3 4
6 0 1 1 1 2 2 1 2 2 2 3 3 1 2
7 0 1 2 2 3 3 2 1 2 3 3 4 4 3
8 0 1 1 3 1 4 2 2 1 2 2 4 2 5
9 0 1 2 1 2 3 2 3 2 1 2 3 2 3
10 0 1 1 2 2 1 3 3 2 2 1 2 2 3
11 0 1 2 3 3 2 3 4 4 3 2 1 2 3
12 0 1 1 1 1 3 1 4 2 2 2 2 1 2
13 0 1 2 2 2 4 2 3 5 3 3 3 2 1

TABLE 5.3.2 m Smallest
Input Pair That Requires n
Modulus Operations in the
Euclidean Algorithm

n
a b (= number of
modulus operations)

0

LW 0 L W N —
0 W W= O
O O S R

Theorem 5.3.5

5.3 @ The Euclidean Algorithm 241

The worst case for the Euclidean algorithm occurs when the number of modulus
operations is as large as possible. By referring to Table 5.3.1, we can determine the
input pair a, b, a > b, with a as small as possible, that requires n modulus operations
forn=0,...,5. The results are given in Table 5.3.2.

Recall that the Fibonacci sequence {f;} (see Section 4.4) is defined by the equations

fi=1, hL=1, fo=fic1i n>3.

The Fibonacci sequence begins 1,1,2,3,5,8,.... A surprising pattern develops in
Table 5.3.2: The a column is the Fibonacci sequence starting with f, and, except for
the first value, the b column is also the Fibonacci sequence starting with f,! We are led
to conjecture that if the pair a, b, a > b, when input to the Euclidean algorithm requires
n > 1 modulus operations, then a > f,1» and b > f,.;. As further evidence of our
conjecture, if we compute the smallest input pair that requires six modulus operations,
we obtain @ = 21 and b = 13. Our next theorem confirms that our conjecture is correct.
The proof of this theorem is illustrated in Figure 5.3.1.

Suppose that the pair a, b, a > b, requires n > 1 modulus operations when input
to the Euclidean algorithm. Then a > f,4» and b > f,,;, where {f,} denotes the
Fibonacci sequence.

Proof The proof is by induction on 7.

Basis Step (n = 1)

We have already observed that the theorem is true if n = 1.

Inductive Step
Assume that the theorem is true for n > 1. We must show that the theorem is true for
n+ 1.
Suppose that the pair a, b, a > b, requires n + 1 modulus operations when input
to the Euclidean algorithm. At line 6, we compute r = @ mod b. Thus
a=bg+r 0<r<b. (5.3.2)

The algorithm then repeats using the values b and r, b > r. These values require n
additional modulus operations. By the inductive assumption,

b > fui2 and 1> fu1. (5.3.3)
Combining (5.3.2) and (5.3.3), we obtain
a=bqg+r>=b+r=fuo+fur1 =furs (5.3.4)

[The first inequality in (5.3.4) holds because g > 0; g cannot equal 0, because a > b.]
Inequalities (5.3.3) and (5.3.4) give

a> fus and b > fuo.
The inductive step is finished and the proof is complete. |

We may use Theorem 5.3.5 to analyze the worst-case performance of the Euclidean
algorithm.

242

Chapter 5 ¢ Introduction to Number Theory

Theorem 5.3.6

34 = 91 mod 57 (1 modulus operation)
57, 34 requires 4 modulus operations (to make a total of 5)
57 = fgand 34 = f; (by inductive assumption)

91 =57-1+34=57T+34=f+fs=f4

Figure 5.3.1 The proof of Theorem 5.3.5. The pair 91, 57, which requires
n + 1 = 5 modulus operations, is input to the Euclidean algorithm.

If integers in the range O to m, m > 8, not both zero, are input to the Euclidean
algorithm, then at most

2m

log;,» 3

modulus operations are required.

Proof Let n be the maximum number of modulus operations required by the Eu-
clidean algorithm for integers in the range 0 to m, m > 8. Let a, b be an input pair in the
range 0 to m that requires n modulus operations. Table 5.3.1 shows that n > 4 and that
a # b. We may assume that a > b. (Interchanging the values of a and b does not alter
the number of modulus operations required.) By Theorem 5.3.5, a > f,,4». Thus

Jop2 S m.

By Exercise 27, Section 4.4, since n + 2 > 6,

3 n+1
(5) < Jnt2-

Combining these last inequalities, we obtain

3 n+1
(2> < m.

Taking the logarithm to the base 3/2, we obtain
n+1 <logs,m.

Therefore,

3 2m
n<(10g3/2m)—1:10g3/2m—10g3/2§:10g3/2?. <

Because the logarithm function grows so slowly, Theorem 5.3.6 tells us that the
Euclidean algorithm is quite efficient, even for large values of the input. For example,
since

2(1,000,000)
log;, ———— =33.07...,
3
the Euclidean algorithm requires at most 33 modulus operations to compute the greatest
common divisor of any pair of integers, not both zero, in the range 0 to 1,000,000.

Theorem 5.3.7

Example 5.3.8

5.3 @ The Euclidean Algorithm 243

A Special Result

The following special result will be used to compute inverses modulo an integer (see the
following subsection). Such inverses are used in the RSA cryptosystem (see Section 5.4).
However, this special result is also useful in other ways (see Exercises 27 and 29 and the
following Problem-Solving Corner).

If @ and b are nonnegative integers, not both zero, there exist integers s and ¢ such that
gcd(a, b) = sa + tb.
The method of the Euclidean algorithm can be used to prove Theorem 5.3.7 and to

compute s and ¢. Before proving the theorem, we first illustrate the proof with a specific
example.

Consider how the Euclidean algorithm computes gcd(273, 110). We begin with a = 273
and b = 110. The Euclidean algorithm first computes

r =273 mod 110 = 53. (5.3.5)

It then sets @ = 110 and b = 53.
The Euclidean algorithm next computes

r =110 mod 53 = 4. (5.3.6)

It then sets a = 53 and b = 4.
The Euclidean algorithm next computes

r=53mod4 =1. (5.3.7)

Itthensetsa =4 and b = 1.
The Euclidean algorithm next computes

r=4mod1=0.
Since r = 0, the algorithm terminates, having found the greatest common divisor of 273
and 110 to be 1.

To find s and ¢, we work back, beginning with the last equation [equation (5.3.7)]
in which r # 0. Equation (5.3.7) may be rewritten as

1=53—-4.13 (5.3.8)

since the quotient when 53 is divided by 4 is 13.
Equation (5.3.6) may be rewritten as

4=110-53.2.
We then substitute this formula for 4 into equation (5.3.8) to obtain
1=53-4.13=53—-(110—-53-2)13 =27-53 —13-110. (5.3.9)
Equation (5.3.5) may be rewritten as

53 =273 -110-2.

244

Chapter 5 ¢ Introduction to Number Theory

We then substitute this formula for 53 into equation (5.3.9) to obtain
1=27-53—-13.110 =27(273 — 110:2) — 13110 =27-.273 — 67 - 110.
Thus, if we take s = 27 and t = —67, we obtain

gcd(273,110) =1 =273 +1¢-110. <

Proof of Theorem 5.3.7 Givena > b > 0,letrp = a, r; = b, and r; equal the

value of r after the (i — 1)st time the while loop is executed in Algorithm 5.3.3 (e.g.,

r, = a mod b). Suppose that r, is the first r-value that is zero so that gcd(a, b) = r,—;.
In general,

i = riy1qit2 + Tig2. (5.3.10)
Taking i = n — 3 in (5.3.10), we obtain
rn—3 = I'n—2q4n—1 + ru—1,

which may be rewritten as

Fnel = —Gp_1tp—2 + 11,3
We may take t,_3 = —¢g,— and s,_3 = 1 to obtain
Tn—1 = ly—3rp—2 + Sp_3rn—3. (5.3.11)

Taking i = n — 4 in (5.3.10), we obtain
T'n—4 = I'n—3qn-2 + I'n—2
or
Tn—2 = —qn-2In—3 + I'n—4. (5.3.12)
Substituting (5.3.12) into (5.3.11), we obtain

In—1 = -3 [_qn72rn73 + ruea] + Sp3rn-3
== [_tn—SCIn—Z + Sn—3]rn—3 + th—3¥n—4.

Setting t,,_4 = —t,-3qn—2 + s,—3 and s5,,_4 = 1,_3, we obtain
Tn—1 = ty—4Ty—3 + Sy—4Tn—4.
Continuing in this way, we ultimately obtain
gcd(rg, r1) = ry—1 = tory + soro = tob + soa.
Taking s = sp and ¢ = 7y, we have

ged(rg, r1) = sa + th. 4

We next give an algorithm to compute s and ¢ satisfying ged(a, b) = sa + tb,
where a and b are nonnegative integers not both zero. To compute s and ¢, the proof
of Theorem 5.3.7, which is illustrated in Example 5.3.8, first finds gcd(a, b) and then
works backward from the last remainder obtained during the computation of gcd(a, b)
to the first remainder obtained. Since recursion elegantly handles such a backward com-
putation, we will write a recursive algorithm to compute s and . We begin by writing

5.3 @ The Euclidean Algorithm 245

a recursive version of the Euclidean algorithm (Algorithm 5.3.9). We can then modify
this recursive algorithm to obtain a recursive algorithm to compute s and ¢.

Algorithm 5.3.9 Recursive Euclidean Algorithm

This algorithm recursively finds the greatest common divisor of the nonnegative in-
tegers a and b, where not both a and b are zero.

Input: @ and b (nonnegative integers, not both zero)
Output: Greatest common divisor of a and b

gedr(a, b) {

/I make a largest

if (a < b)
swap(a, b)

if (b == 0)
return a

r =amod b

return gedr(b, r)

Algorithm 5.3.9 first makes a largest. If b is zero, it correctly returns a. Otherwise,
Algorithm 5.3.9 computes » = a@ mod b and returns the greatest common divisor of b
and r, which is correct since Theorem 5.3.2 tells us that ged(b, r) = ged(a, b).

To compute s and ¢, we modify Algorithm 5.3.9. We call the modification STgcdr.
The idea is that whenever we compute the greatest common divisor, we also compute
the values of s and ¢. These values are stored in added parameters named s and .

Consider first the case when b is zero. Then gcd(a, b)) = a. Here we must set
s = 1. Since b is zero, t could be assigned any value; we choose r = 0. The first part of
the modification of Algorithm 5.3.9 looks like:

STgcdr(a, b, s, t) {

/l make a largest

if (a < b)
swap(a, b)

if (b==0){
s=1
t=0
/I now a = sa + tb
return a

Next, Algorithm 5.3.9 computes r = a mod b and gedr (b, r). Our modified algo-
rithm will compute r = amodb and STgcedr(b,r,s',¢). Thus s and ¢ satisfy
g=sb+tr, where g = gcd(b, r). We must compute s and ¢ in terms of the avail-
able values. If we let g be the quotient of a divided by b, we have a = bq + r. Therefore,
using the fact that » = a — bg, we have

g=sb+1r
=s'b+1(a—bq)
=ra+ (5 —7q)b.

Thus if we sets = # and t = s’ —1'q, we have g = sa+ b. The formal algorithm follows.

246 Chapter 5 ¢ Introduction to Number Theory

Algorithm 5.3.10 Computing s and t of Theorem 5.3.7

This algorithm computes s and ¢ satisfying gcd(a, b) = sa + tb, where a and b are
nonnegative integers not both zero, and returns gcd(a, b).

Input: a and b (nonnegative integers, not both zero)

Output: s and ¢ of Theorem 5.3.7 (stored in parameters s and 7) and the
greatest common divisor of a and b (which is returned)

STgcdr(a, b, s, 1) {

/I make a largest

if (a < b)
swap(a, b)

if (b==0) {
s=1
t=0
/I now a = sa + tb
return a

1

q=la/b]

r =amod b
/la=bg+r

g = STgcdr(b,r,s', t)
Ilg=sb+1tr
I:.g=ta+ (s —Fq)b

§=7
t=s —tx*q
return g

Computing an Inverse Modulo an Integer

Suppose that we have two integers n > 0 and ¢ > 1 such that gcd(n, ¢) = 1. We
show how to efficiently compute an integer s, 0 < s < ¢ such that ns mod ¢ = 1. We
call s the inverse of n mod ¢. Efficiently computing this inverse is required by the RSA
cryptosystem in Section 5.4.

Since ged(n, ¢) = 1, we use the Euclidean algorithm, as explained previously, to
find numbers s” and ¢ such that s'n + ¢ = 1. Then ns’ = —'¢ + 1, and, since ¢ > 1,
1 is the remainder. Thus

ns' mod ¢ = 1. (5.3.13)

Note that s’ is almost the desired value; the problem is that s’ may not satisfy 0 < 5" < ¢.
However, we can convert s’ to the proper value by setting s = s’ mod ¢. Now 0 <
s < ¢.In fact s # O since, if s = 0, then ¢ | s, which contradicts (5.3.13). Since
s = s’ mod ¢, there exists ¢ such that s’ = g¢ + s. Combining the previous equations,
we have

ns=ns —¢ng=—1r¢p+1—¢ng=¢(—t —nqg) + 1.
Therefore

ns mod ¢ = 1. (5.3.14)

5.3 @ The Euclidean Algorithm 247

Example 5.3.11 Letn = 110 and ¢ = 273. In Example 5.3.8, we showed that gcd(n, ¢) = 1 and that
s'n+1t¢ =1, where s’ = —67 and ¥ = 27. Thus,

110(—67) mod 273 = ns’ mod ¢ = 1.

Here s = s’ mod ¢ = —67 mod 273 = 206. Therefore, the inverse of 110 modulo 273
is 206. 4

We conclude by showing that the number s in equation (5.3.14) is unique.
Suppose that

ns mod ¢ = 1 = ns’ mod ¢, 0<s <o, 0<s <o.

We must show that s’ = 5. Now
5" = (s’ mod ¢)(ns mod ¢) = s'ns mod ¢ = (s'n mod ¢)(s mod ¢) = s.

Therefore, the number s in equation (5.3.14) is unique.

5.3 Problem-Solving Tips

The Euclidean algorithm for computing the greatest common divisor of nonnegative
integers a and b, not both zero, is based on the equation

gcd(a, b) = ged(b, 1),

where r =a mod b. We replace the original problem, compute gcd(a, b), with the prob-
lem, compute gcd(b, r). We then replace a by b and b by r, and repeat. Eventually r = 0,
so the solution is gcd(b, 0) = b.

The Euclidean algorithm is quite efficient. If integers in the range 0 to m, m > 8§,
not both zero, are input to the Euclidean algorithm, then at most

2m

10‘0’3/2 3

modulus operations are required.
If a and b are nonnegative integers, not both zero, there exist integers s and ¢
such that

gcd(a, b) = sa + tb.

To compute s and ¢, use the Euclidean algorithm. In a problem that involves the greatest
common divisor, the preceding equation may be helpful. (Try Exercises 27 and 29.)

Suppose that we have two integers n > 0 and ¢ > 1 such that gcd(n, ¢) = 1. To
efficiently compute an integer s, 0 < s < ¢ such that ns mod ¢ = 1, first compute s’
and ¢ satisfying

gcd(n, @) =sn+1¢

(see the subsection Computing an Inverse Modulo an Integer). Then set s = s" mod ¢.

5.3 Review Exercises

1. State the Euclidean algorithm. 3. Ifthe paira, b, a > b, requires n > 1 modulus operations when

2. What key theorem is the basis for the Euclidean algorithm? 1r%put 0 ﬂ,le Euclidean algorithm, how are a and b related to the
Fibonacci sequence?

248

. Integers in the range 0 to m, m > 8, not both zero, are input to

the Euclidean algorithm. Give an upper bound for the number
of modulus operations required.

. Theorem 5.3.7 states that there exist integers s and ¢ such that

gcd(a, b) = sa + tb. Explain how the Euclidean algorithm can
be used to compute s and ¢.

Chapter 5 ¢ Introduction to Number Theory

6.

7.

Explain what it means for s to be the inverse of n modulo ¢.

Suppose that ged(n, ¢) =1. Explain how to compute the
inverse of n modulo ¢.

Use the Euclidean algorithm to find the greatest common divisor
of each pair of integers in Exercises 1—12.

1.
4.
7.
10.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.
22,

23.

24.

25.
26.

60, 90 2. 110,273 3. 220, 1400
315, 825 5. 20,40 6. 331,993
2091, 4807 8. 2475, 32670 9. 67942, 4209
490256, 337 11. 27,27

57853125, 555111200

For each number pair a, b in Exercises 1-12, find integers s
and ¢ such that sa + tb = gcd(a, b).

Find two integers a and b, each less than 100, that maximize
the number of iterations of the while loop of Algorithm 5.3.3.

Show that Algorithm 5.3.3 correctly finds gecd(a, b) even if
lines 3 and 4 are deleted.

Write a recursive version of the Euclidean algorithm that ex-
ecutes the check for @ < b and the call to the swap function
one time. Hint: Use two functions.

If @ and b are positive integers, show that gcd(a,b) =
gcd(a, a + b).

Show that if @ > b > 0, then
gcd(a, b) = ged(a — b, b).

Using Exercise 18, write an algorithm to compute the greatest
common divisor of two nonnegative integers a and b, not both
zero, that uses subtraction but not the modulus operation.

How many subtractions are required by the algorithm of
Exercise 19 in the worst case for numbers in the range 0
tom?

Extend Tables 5.3.1 and 5.3.2 to the range 0 to 21.

Exactly how many modulus operations are required by the
Euclidean algorithm in the worst case for numbers in the
range 0 to 1,000,000?

Prove that when the pair f,42, f,+1 is input to the Euclidean
algorithm, n > 1, exactly n modulus operations are required.

Show that for any integer k > 1, the number of modulus
operations required by the Euclidean algorithm to compute
gcd(a, b) is the same as the number of modulus operations
required to compute gcd(ka, kb).

Show that ged (f,, fur1) =1, n> 1.

Suppose that d > 0 is a common divisor of nonnegative inte-
gers a and b, not both zero. Prove that d | ged(a, b).

*27.

28.

29.

Show that if p is a prime number, a and b are positive integers,
and p |ab, thenp|aorp|b.

Give an example of positive integers p, a, and b where p | ab,
pla,andp [b.
Let m and n be positive integers. Let f be the function from

X={0,1,...,m—1}
to X defined by
f(x) = nx mod m.

Prove that f is one-to-one and onto if and only if
ged(m, n) = 1.

Exercises 30—34 show another way to prove that if a and b are non-
negative integers, not both zero, there exist integers s and t such that

ged(a, b) = sa + tb.

However, unlike the Euclidean algorithm, this proof does not lead
to a technique to compute s and t.

30.

31.
32.
33.

34.

Let
X ={sa+1tb|sa-+tb > 0and s and ¢ are integers}.

Show that X is nonempty.
Show that X has a least element. Let g denote the least element.
Show that if ¢ is a common divisor of a and b, then ¢ divides g.

Show that g is a common divisor of @ and b. Hint: Assume
that g does not divide a. Thena = gg +r, 0 < r < g. Obtain
a contradiction by showing that r € X.

Show that g is the greatest common divisor of a and b.

In Exercises 35—41, show that gcd(n, ¢) = 1, and find the inverse
s of n modulo ¢ satisfying 0 < s < ¢.

35.
37.
39.
41.
42.

43.

n=2¢=3 36. n=1,¢ =47
n=74¢=20 8. n=11,¢ =47

n=50,¢ =231 40. n =100, ¢ = 231

n =100, ¢ =243

Show that 6 has no inverse modulo 15. Does this contradict

the result preceding Example 5.3.11? Explain.

Show that n > 0 has an inverse modulo ¢ > 1 if and only if
ged(n, @) = 1.

Problem-Solving Corner

Problem-Solving Corner: Making Postage 249

Making Postage

Problem

Let p and ¢ be positive integers satisfying
gcd(p, g) = 1. Show that there exists n such that for
all k > n, postage of k cents can be achieved by using
only p-cent and g-cent stamps.

Attacking the Problem

Does this type of problem sound familiar? Example
2.5.1 used mathematical induction to show that postage
of four cents or more can be achieved by using only
2-cent and 5-cent stamps. This result illustrates the
problem for p = 2 and g = 5. In this case, if we take
n = 4, for all k > 4, postage of k cents can be achieved
by using only 2-cent and 5-cent stamps. At this point,
you should review the induction proof of this result.

The induction proof of the p = 2, ¢ = 5 problem
can be summarized as follows. We first proved the base
cases (k = 4, 5). In the inductive step, we assumed that
we could make postage of k — 2 cents. We then added
a 2-cent stamp to achieve k cents postage. We will imi-
tate this inductive proof to prove that, if gcd(p, g) = 1
for arbitrary p and g, there exists n such that for all
k > n, postage of k cents can be achieved by using
only p-cent and g-cent stamps.

Finding a Solution

Let’s first take care of a trivial case. If either p or g is 1,
we can make k cents postage for all k > 1 by using k
1-cent stamps. Thus, we assume thatp > 1 and g > 1.

Let’s first develop some notation. For a particular
amount of postage, we’ll let n, denote the number of
p-cent stamps used and n, denote the number of g-cent
stamps used. Then the amount of postage is

npp + nyq.
Does this expression remind you of anything? Theo-
rem 5.3.7 states that there exist integers s and # such that

1 = ged(p, q) = sp + 1q.)]

This last equation suggests that we can make postage
of 1 cent by using s p-cent stamps and ¢ g-cent stamps.
The problem is that one of s or must be negative in
order for the sum sp + fq to be 1 (since p and g are
greater than 1). In fact, since p and g are both greater
than 1, one of s or 7 is positive and the other is negative.
We assume that s > 0 and ¢ < 0.

Let’s see how the inductive step should work
and then see what basis steps we need. Imitating the

specific case discussed previously, we would like to as-
sume that we can make k — p cents postage and then
add a p-cent stamp to make k cents postage. Nothing
to it! In order for this inductive step to work, our basis
steps mustben,n+ 1,...,n+ p — 1 for some n that
we get to choose.
Suppose that we can make n-cents postage:
n = npp + nyq.

Because of equation (1), we can then make (n+ 1)-
cents postage
n+1=p+neq)+(sp+1q) =, +s)p+ g+ g

using 7, + s p-cent stamps and 7, + t g-cent stamps.
Of course, this last statement is meaningful only if
n, +s > 0and n, +t > 0. However, n, +s > 0
holds because n, > 0 and s > 0. We can arrange for
ng +1t > 0 to hold by choosing n, > —t.
Similarly, we can make (n 4 2)-cents postage
n+2 = (npp +ngq) +2(sp +1q)
= (np +28)p + (n, +20)q

using 7, + 2s p-cent stamps and n, + 2t g-cent stamps.
As before, n, + 25 > 0 holds because n, > 0 and
s > 0. We can arrange for n, + 2t > 0 to hold by
choosing n, > —2t. Notice that for this choice of n,,
ng > —t also holds [so that we can still make (n + 1)
cents postage, too].

In general, we can make (n + i)-cents postage

n+i= (npp~+ngq) +i(sp +1q)

= (np + lS)P + (nq + lt)q
using n, + is p-cent stamps and n, + it g-cent stamps.
As before, n, +is > 0 holds because n, > O and s > 0.
We can arrange for n, + it > 0 to hold by choosing
ny > —it. Notice that for this choice of n,, n, > —jt
alsoholds forj = 0, ..., i—1 [so that we can still make
(n + j) cents postage, too].

It follows that we can make postage for n,
n+1,...,n+p—1 provided that we choose n,=
— (p— Dt. Any value for n, > 0 will do, so we take
n, = 0. This makes n = n,g = —(p — 1)tg.

Formal Solution

If either p or g equals 1, we may take n = 1; so as-
sume that p > 1 and g > 1. By Theorem 5.3.7, there ex-
ist integers s and ¢ such that sp + tg = 1. Since p > 1
and g>1, s # 0 and ¢ # 0. Furthermore, either s or
t is negative. We may suppose that # < 0. Then s > 0.

250

Letn = —t(p — 1)g. We next show that we can make
postage forn,n+ 1, ...,n+ p — 1 using only p-cent
and g-cent stamps.

Now

n+j= —tlp—1g+jlsp+1q)
= (s)p+ (=t(p—1) +jD)g.

If0<j<p-—1,then
—tp—D+jt=—-tp—-1)+tp—-1) =0.

Therefore we can make postage for n+j, 0 < j <
p — 1, by using js p-cent stamps and —#(p — 1) + jt ¢-
cent stamps.

Finally, we use induction to show that we can
make postage of n cents or more using only p-cent and
g-cent stamps. The basis steps are n, n+1, ..., n+p—
1. Suppose that k > n+p and that we can make postage
for m satisfying n < m < k. In particular, we can make
postage for k — p. Add a p-cent stamp to make postage
for k. The inductive step is complete.

Summary of Problem-Solving Techniques

B Look for a similar problem. We already encoun-

Chapter 5 ¢ Introduction to Number Theory

B Try to use some of the ideas in a similar problem.
To solve our problem, we were able to modify the
induction proof in Example 2.5.1.

B Sometimes notation, setting, or context will
suggest something useful. In our problem, the
postage-amount equation 7,p + n,q was similar
in form to the greatest common divisor formula
gcd(p, g) = sp + tq. Combining these equations
was crucial to proving the base cases.

B Don’t be afraid to make assumptions. If an as-
sumption turns out to be unwarranted, it can
sometimes be modified so that the modified as-
sumption is correct. In our problem, we assumed
that if we could make n-cents postage using nj,
p-cent stamps and n, g-cent stamps, we could
then make (7 + 1)-cents postage by using n, + s
p-cent stamps and 7, +t g-cent stamps. We were
able to force this latter statement to be true by
choosing n, > —t.

Exercise

1. Show that if gcd(p, ¢) > 1, it is false that there ex-
ists n such that for all k£ > n, postage of k cents can

tered a postage problem in Example 2.5.1.

5.4

be achieved by using only p-cent and g-cent stamps.

The RSA Public-Key Cryptosystem

Example 5.4.1

Cryptology is the study of systems, called cryptosystems, for secure communications.
In a cryptosystem, the sender transforms the message before transmitting it, hoping that
only authorized recipients can reconstruct the original message (i.e., the message before
it was transformed). The sender is said to encrypt the message, and the recipient is said to
decrypt the message. If the cryptosystem is secure, unauthorized persons will be unable
to discover the decryption technique, so even if they read the encrypted message, they
will be unable to decrypt it. Cryptosystems are important for large organizations (e.g.,
government and military), all internet-based businesses, and individuals. For example,
if a credit card number is sent over the internet, it is important for the number to be read
only by the intended recipient. In this section, we look at some algorithms that support
secure communication.

In one of the oldest and simplest systems, the sender and receiver each have a key
that defines a substitute character for each potential character to be sent. Moreover, the
sender and receiver do not disclose the key. Such keys are said to be private.

If a key is defined as

character: _ABCDEFGHIJKLMNOPQRSTUVWXYZ

replaced by: EIJFUAXVHWP_GSRKOBTQYDMLZNC

the message SEND._MONEY would be encrypted as QARUESKRAN. The encrypted message
SKRANEKRELIN would be decrypted as MONEY_ON_WAY. <

Go Online

For more on the
RSA public-key
cryptosystem, see
goo.gl/WyqJp9

Example 5.4.2

5.4 & The RSA Public-Key Cryptosystem 251

Simple systems such as that in Example 5.4.1 are easily broken since certain letters
(e.g., E in English) and letter combinations (e.g., ER in English) appear more frequently
than others. Also, a problem with private keys in general is that the keys have to be
securely sent to the sender and recipient before messages can be sent. We devote the re-
mainder of this section to the RSA public-key cryptosystem, named after its inventors,
Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman, that is believed to be secure. In
the RSA system, each participant makes public an encryption key and hides a decryption
key. To send a message, all one needs to do is look up the recipient’s encryption key in
a publicly distributed table. The recipient then decrypts the message using the hidden
decryption key. The RSA system is used in all major secure internet transactions, for
example, for secure financial transactions and secure e-mail exchanges.

In the RSA system, messages are represented as numbers. For example, each char-
acter might be represented as a number. If a blank space is represented as 1, A as 2, B as
3, and so on, the message SEND_MONEY would be represented as 20, 6, 15, 5, 1, 14, 16,
15, 6, 26. If desired, the integers could be combined into the single integer

20061505011416150626

(note that leading zeros have been added to all single-digit numbers).

We next describe how the RSA system works, present a concrete example, and
then discuss why it works. Each prospective recipient chooses two primes p and ¢ and
computes z = pq. Next, the prospective recipient computes ¢ = (p — 1)(g — 1)
and chooses an integer n such that gcd(n, ¢) = 1. The pair z, n is then made public.
Finally, the prospective recipient computes the unique number s, 0 < s < ¢, satisfying
ns mod ¢ = 1. (An efficient way to compute s is given in Section 5.3.) The number s is
kept secret and used to decrypt messages.

To send the integer a, 0 < a < z — 1, to the holder of public key z, n, the sender
computes ¢ = 4" mod z and sends c. (Algorithm 5.2.19 provides an efficient way to
compute " mod z.) To decrypt the message, the recipient computes ¢ mod z, which
can be shown to be equal to a.

Suppose that we choose p=23,¢=31, and n=29. Then z=pg=713 and ¢ =
(» — (g — 1)=660. Now s =569 since ns mod ¢ =29 -569 mod 660 = 16501 mod
660 = 1. The pair z, n =713, 29 is made publicly available.

To transmit a = 572 to the holder of public key 713, 29, the sender computes
¢ =a"mod z = 572%° mod 713 = 113 and sends 113. The receiver computes ¢* mod
z =113 mod 713 = 572 in order to decrypt the message. <

The main result that makes encryption and decryption work is that
a"modz=a forall0 <a <zandumod ¢ =1

(for a proof, see [Rivest]). Using this result and Theorem 5.2.17, we may show that
decryption produces the correct result. Since ns mod ¢ = 1,

¢’ mod z = (¢" mod z)’ mod z = (¢")’ mod z = d" mod z = a.

The security of the RSA encryption system relies mainly on the fact that currently
there is no efficient algorithm known for factoring integers; that is, currently no algorithm
is known for factoring d-bit integers in polynomial time, O(d*). Thus if the primes p and
q are chosen large enough, it is impractical to compute the factorization z = pq. If the
factorization could be found by a person who intercepts a message, the message could
be decrypted just as the authorized recipient does. At this time, no efficient algorithm
is known for factoring an arbitrary integer with 1024 or more bits. Thus, if p and p
are chosen so that z = pq is at least 1024 bits long and other technical requirements are

252 cChapter 5 ¢ Introduction to Number Theory

implemented (e.g., p and g should not be chosen “too close” together), RSA would seem
to be secure. (An integer having 1024 bits has over 300 decimal digits.)

The first description of the RSA encryption system was in Martin Gardner’s
February 1977 Scientific American column (see [Gardner, 1977]). Included in this col-
umn were an encoded message using the key z, n, where z was the product of 64- and
65-digit primes, and n = 9007, and an offer of $100 to the first person to crack the code.
At the time the article was written, it was estimated that it would take 40 quadrillion
years to factor z. In fact, in April 1994, Arjen Lenstra, Paul Leyland, Michael Graff, and
Derek Atkins, with the assistance of 600 volunteers from 25 countries using over 1600
computers, factored z (see [Taubes]). The work was coordinated on the internet.

Another possible way a message could be intercepted and decrypted would be to
compute the nth root of ¢ mod z, that is, compute an integer a satisfying ¢ = " mod z.
This computation would give a, the decrypted value. Again, currently there is no efficient
algorithm known for computing nth roots mod z. It is also conceivable that a message
could be decrypted by some means other than factoring integers or taking nth roots mod
z. For example, Paul Kocher proposed a way to break RSA based on the time it takes
to decrypt messages (see [English]). The idea is that distinct secret keys require distinct
amounts of time to decrypt messages and, by using this timing information, an unau-
thorized person might be able to unveil the secret key and thus decrypt the message. To
thwart such attacks, implementors of RSA have taken steps to alter the observed time to
decrypt messages.

5.4 Review Exercises

1. To what does “cryptology” refer? 5. In the RSA public-key cryptosystem, how does one encrypt a

2. What is a cryptosystem? and send it to the holder of public key z, n?

. 6. In the RSA public-k tosystem, how d di tc?
3. What does it mean to “encrypt a message”? e publie-key cryptosystefh, flow coes ofie Cectypt €

4. What does it mean to “decrypt a message™ 7. On what does the security of the RSA encryption system rest?
. i y ?

5.4 Exercises

1. Encrypt the message COOL_BEAVIS using the key of Exam- In Exercises 9—13, assume that we choose primesp = 17, ¢ = 23,
ple 5.4.1. and n = 31.

2. Decrypt the message UTWR_ENKDTEKMIGYWRA using the key
of Example 5.4.1.

3. Encrypt the message I_AM_NOT_A._CROOK using the key of
Example 5.4.1.

4. Decrypt the message JDQHLHIF_AU using the key of Exam- In Exercises 14-18, assume that we choose primes p = 59,

9. Compute z. 10. Compute ¢. 11. Compute s.
12. Encrypt 101 using the public key z, n.
13. Decrypt 250.

ple 5.4.1. qg =101, and n = 41.
5. Encrypt 333 using the public key 713, 29 of Example 5.4.2. 14. Compute z. 15. Compute ¢. 16. Compute s.
6. Decrypt 411 using s = 569 as in Example 5.4.2. 17. Encrypt 584 using the public key z, n.
7. Encrypt 241 using the public key 713, 29 of Example 5.4.2. 18. Decrypt 250.
8. Decrypt 387 using s = 569 as in Example 5.4.2.

Chapter 5 Notes

An accessible introduction to elementary number theory is [Niven, 1980]. An extended dis-
cussion of the greatest common divisor, including historical background, and other elemen-
tary number theory topics are in [Knuth, 1998a].

Full details of the RSA cryptosystem may be found in [Rivest]. [Pfleeger] is devoted
to computer security.

Chapter 5 Self-Test 253

Chapter 5 Review

Section 5.1

©®A

10.

NP W

ddividesn:d | n

d does not divide n: d [n

d is a divisor or factor of n

Prime

Composite

Fundamental theorem of arithmetic: any integer greater
than 1 can be written as the product of primes
Common divisor

Greatest common divisor

Common multiple

Least common multiple

Section 5.2

11.
12.
13.
14.

15.
16.
17.
18.
19.
20.
21.
22,
23.
24.
25.

Bit

Decimal number system

Binary number system

Computer representation of integers: when represented in
binary, the positive integer n requires | 1 + lgn] bits
Hexadecimal number system

Base of a number system

Convert binary to decimal

Convert decimal to binary

Convert hexadecimal to decimal

Convert decimal to hexadecimal

Add binary numbers

Add hexadecimal numbers

Compute a" using repeated squaring

ab mod z = [(a mod z)(b mod z)] mod z

Compute a" mod z using repeated squaring

Section 5.3

26.
27.

28.

29.

30.

31.

Euclidean algorithm

If the pair a, b, a > b, requires n > 1 modulus oper-
ations when input to the Euclidean algorithm, then a >
furo and b > f,+1, where {f,} denotes the Fibonacci
sequence.

If integers in the range O to m, m > 8, not both zero, are
input to the Euclidean algorithm, then at most

) 2m
o -
g3/2 3

modulus operations are required.

If a and b are nonnegative integers, not both zero, there exist
integers s and ¢ such that ged(a, b) = sa + tb.

Compute s and ¢ such that gcd(a, b) = sa + tb using the
Euclidean algorithm

Compute an inverse modulo an integer

Section 5.4

32.
33.
34.
35.
36.

37.

Cryptology

Cryptosystem

Encrypt a message

Decrypt a message

RSA public key cryptosystem: To encrypt a and send it to
the holder of public key z, n, compute ¢ = " mod z and
send c. To decrypt the message, compute ¢’ mod z, which
can be shown to be equal to a.

The security of the RSA encryption system relies mainly on
the fact that currently there is no efficient algorithm known
for factoring integers.

Chapter 5 Self-Test

2w b=

® A0

Trace Algorithm 5.1.8 for the input n = 539.
Write the binary number 10010110 in decimal.
Find the prime factorization of 539.

Use the Euclidean algorithm to find the greatest common
divisor of the integers 396 and 480.

Find ged(2-5% .77 - 134, 74 - 13% . 17).
Find lem(2-5%.7% - 13%,7% . 132 .17).
Write the decimal number 430 in binary and hexadecimal.

Given that logs» 100 = 11.357747, provide an upper bound
for the number of modulus operations required by the Eu-
clidean algorithm for integers in the range 0 to 100,000,000.

Trace Algorithm 5.2.16 for the value n = 30.

10.

11.

12.

Trace Algorithm 5.2.19 for the values a = 50,n = 30,
z=11.

Use the Euclidean algorithm to find integers s and ¢ satisfy-
ing 5+396 + ¢ -480 = gcd(396, 480).

Show that gcd(196, 425) =1 and find the inverse s of 196

modulo 425 satisfying 0 < s < 425.

In Exercises 13—16, assume that we choose primes p = 13, g =
17, and n = 19.

13.
14.
15.
16.

Compute z and ¢.

Compute s.

Encrypt 144 using public key z, n.
Decrypt 28.

254

Chapter 5 ¢ Introduction to Number Theory

Chapter 5 Computer Exercises

A U A W

. Implement Algorithm 5.1.8, testing whether a positive

integer is prime, as a program.

. Write a program that converts among decimal, hexadeci-

mal, and octal.

. Write a program that adds binary numbers.

. Write a program that adds hexadecimal numbers.

. Write a program that adds octal numbers.

. Implement Algorithm 5.2.16, exponentiation by repeated

squaring, as a program.

. Implement Algorithm 5.2.19, exponentiation mod z, as a

program.

8.

10.

11.

Write recursive and nonrecursive programs to compute the
greatest common divisor. Compare the times required by
the programs.

. Implement Algorithm 5.3.10, computing s and ¢ satisfying

gcd(a, b) = sa + tb, as a program.

Write a program that, given integers n > 0 and ¢ > 1,
ged(n, ¢) = 1, computes the inverse of n mod ¢.

Implement the RSA public-key cryptosystem.

Chapter 6

COUNTING METHODS
AND THE PIGEONHOLE
PRINCIPLE

In many discrete problems, we are confronted with the problem of counting. For exam-
ple, in Section 4.3 we saw that in order to estimate the run time of an algorithm, we
needed to count the number of times certain steps or loops were executed. Counting also
plays a crucial role in probability theory. Because of the importance of counting, a va-
riety of useful aids, some quite sophisticated, have been developed. In this chapter we
develop several tools for counting. These techniques can be used to derive the binomial
theorem. The chapter concludes with a discussion of the Pigeonhole Principle, which
often allows us to prove the existence of an object with certain properties.

Basic Principles

6.1 Basic Principles

6.2 Permutations and
Combinations

6.3 Generalized
Permutations and
Combinations

6.4 Algorithms for
Generating
Permutations
and Combinations

6.5 Introduction to
Discrete Probability

'6.6 Discrete Probability
Theory

6.7 Binomial Coefficients
and Combinatorial
Identities

6.8 The Pigeonhole
Principle 6 1

Go Online

For more on basic
principles, see
g00.g1/WRoK11

The menu for Kay’s Quick Lunch is shown in Figure 6.1.1. As you can see, it features
two appetizers, three main courses, and four beverages. How many different dinners
consist of one main course and one beverage?

If we list all possible dinners consisting of one main course and one beverage,

HT, HM, HC, HR, CT, CM, CC, CR, FT, FM, FC, FR,

we see that there are 12 different dinners. (The dinner consisting of a main course whose
first letter is X and a beverage whose first letter is Y is denoted XY. For example, CR
refers to the dinner consisting of a cheeseburger and root beer.) Notice that there are
three main courses and four beverages and 12 = 3 - 4.

There are 24 possible dinners consisting of one appetizer, one main course, and
one beverage:

T These sections can be omitted without loss of continuity.

255

256

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Multiplication
Principle

Example 6.1.1

APPETIZERS
Nachos. 2.15
Salad. 1.90
MAIN COURSES
Hamburger. 3.25
Cheeseburger 3.65
Fish Filet 3.15
BEVERAGES
Tea70
Milk 85
Cola 75
Root Beer. 75

Figure 6.1.1 Kay’s Quick Lunch
menu.

NHT, NHM, NHC, NHR, NCT, NCM, NCC, NCR,
NFT, NFM, NFC, NFR, SHT, SHM, SHC, SHR,
SCT, SCM, SCC, SCR, SFT, SFM, SFC, SFR.

(The dinner consisting of an appetizer whose first letter is X, a main course whose first
letter is Y, and a beverage whose first letter is Z is denoted XYZ.) Notice that there are
two appetizers, three main courses, and four beverages and 24 = 2.3 -4.

In each of these examples, we found that the total number of dinners was equal to
the product of numbers of each of the courses. These examples illustrate the Multipli-
cation Principle.

If an activity can be constructed in ¢ successive steps and step 1 can be done in 7
ways, step 2 can then be done in n, ways, . . ., and step 7 can then be done in n, ways,
then the number of different possible activities is n; 71, - - - ;.

In the problem of counting the number of dinners consisting of one main course
and one beverage, the first step is “select the main course” and the second step is “select
the beverage.” Thus n; = 3 and n, = 4 and, by the Multiplication Principle, the total
number of dinners is 3.4 = 12. Figure 6.1.2 shows why we multiply 3 times 4—we
have three groups of four objects.

We may summarize the Multiplication Principle by saying that we multiply to-
gether the numbers of ways of doing each step when an activity is constructed in
successive steps.

How many dinners are available from Kay’s Quick Lunch consisting of one main course
and an optional beverage?

Example 6.1.2

Example 6.1.3

6.1 @ Basic Principles 257

Hamburger Cheeseburger Fish Filet

Tea | |Milk| |Cola| RO | Tea | |Milk| |cCola| R | Tea | |Milk| |Cola| RO
Beer Beer Beer

HT HM HC HR CT CM CC CR FIT ' FM FC FR

Figure 6.1.2 An illustration of the Multiplication Principle.

SOLUTION We may construct a dinner consisting of one main course and an optional
beverage by a two-step process. The first step is “select the main course” and the second
step is “select an optional beverage.” There are n; =3 ways to select the main course
(hamburger, cheeseburger, fish filet) and n, = 5 ways to select the optional beverage
(tea, milk, cola, root beer, none). By the Multiplication Principle, there are 3-5 = 15
dinners. As confirmation, we list the 15 dinners (N = no beverage):

HT, HM, HC, HR, HN, CT, CM, CC, CR, CN, FT, FM, FC, FR, FN. <

Melissa Virus In the late 1990s, a computer virus named Melissa wreaked havoc by
overwhelming system resources. The virus was spread by an e-mail message containing
an attached word processor document with a malicious macro. When the word processor
document was opened, the macro forwarded the e-mail message and the attached word
processor document to the first 50 addresses obtained from the user’s address book.
When these forwarded copies were received and opened, the macro again forwarded the
e-mail message and the attached word processor document, and so on. The virus caused
problems by creating messages faster than they could be sent. The to-be-sent messages
were temporarily stored on a disk. If the disk got full, the system could deadlock or
even crash.

After the virus sent the e-mail to the first 50 addresses, each of those recipients then
sent e-mail to 50 addresses. By the Multiplication Principle, there were then 50 .50 =
2500 additional recipients. Each of these recipients, in turn, sent e-mail to 50 addresses.
Again, by the Multiplication Principle, there were then 50 - 50 - 50 = 125,000 additional
recipients. After one more iteration, there were then 50 - 50 - 50 - 50 = 6,250,000 addi-
tional recipients. Thus after just four iterations,

6,250,000 + 125,000 4 2500 4+ 50 4+ 1 = 6,377,551

copies of the message had been sent.
Notice that we could have used the geometric sum (Example 2.4.4)

1-(50° —1
1-50" +1-50° +1-50° + 150 + 1 = % = 6,377,551
to calculate how many copies of the message were sent. <

(a) How many strings of length 4 can be formed using the letters ABCDE if repeti-
tions are not allowed?

(b) How many strings of part (a) begin with the letter B?
(c) How many strings of part (a) do not begin with the letter B?

258

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Example 6.1.4

Example 6.1.5

Example 6.1.6

SOLUTION

(a) We use the Multiplication Principle. A string of length 4 can be constructed in
four successive steps: Choose the first letter; choose the second letter; choose
the third letter; and choose the fourth letter. The first letter can be selected in
five ways. Once the first letter has been selected, the second letter can be se-
lected in four ways. Once the second letter has been selected, the third letter
can be selected in three ways. Once the third letter has been selected, the fourth
letter can be selected in two ways. By the Multiplication Principle, there are
5+4.3.2 = 120 strings.

(b) The strings that begin with the letter B can be constructed in four successive
steps: Choose the first letter; choose the second letter; choose the third letter;
and choose the fourth letter. The first letter (B) can be chosen in one way, the
second letter in four ways, the third letter in three ways, and the fourth letter in
two ways. Thus, by the Multiplication Principle, there are 1 -4 -3 -2 = 24 strings
that start with the letter B.

(c) Part (a) shows that there are 120 strings of length 4 that can be formed using
the letters ABCDE, and part (b) shows that 24 of these start with the letter B.
It follows that there are 120 — 24 = 96 strings that do not begin with the
letter B. 4

In a digital picture, we wish to encode the amount of light at each point as an eight-bit
string. How many values are possible at one point?

SOLUTION An eight-bit encoding can be constructed in eight successive steps: Se-
lect the first bit; select the second bit; . . . ; select the eighth bit. Since there are two
ways to select each bit, by the Multiplication Principle the total number of eight-bit
encodings is

2.2.2.2.2.2.2.2 =2% =256, 2 |

We next give a proof using the Multiplication Principle that a set with n elements
has 2" subsets. We previously gave a proof of this result using mathematical induction
(Theorem 2.4.6).

Use the Multiplication Principle to prove that a set {xi, ..., x,} containing n elements
has 2" subsets; that is, the cardinality of the power set of an n-element set is 2".

SOLUTION A subset can be constructed in n successive steps: Pick or do not pick x;;
pick or do not pick x,; ... ; pick or do not pick x,. Each step can be done in two ways.
Thus the number of possible subsets is

2:2...2=2"
—
n factors

Let X be an n-element set. How many ordered pairs (A, B) satisfy A € B C X?

SOLUTION Given an ordered pair (A, B) satisfying A € B C X, we see that each
element in X is in exactly one of A, B — A, or X — B. Conversely, if we assign each
element of X to one of the three sets A (and, by assumption, also to B and X), B— A (and,
by assumption, also to X), or X — B, we obtain a unique ordered pair (A, B) satisfying
A C B C X. Thus the number of ordered pairs (A, B) satisfying A C B C X is equal to

Example 6.1.7

Example 6.1.8

Example 6.1.9

6.1 @ Basic Principles 259

the number of ways to assign the elements of X to the three sets A, B—A, and X — B. We
can make such assignments by the following n-step process: Assign the first element of
X toone of A, B—A, X — B; assign the second element of X to one of A, B—A,X—B; ...;
assign the nth element of X to one of A, B — A, X — B. Since each step can be done in
three ways, the number of ordered pairs (A, B) satisfying A € B C X is

3.3...3=3"
—

n factors <

How many reflexive relations are there on an n-element set?

SOLUTION We count the number of n x n matrices that represent reflexive relations
on an n-element set X. Since (x, x) is in the relation for all x € X, the main diagonal of
the matrix must consist of 1’s. There is no restriction on the remaining entries; each can
be 0 or 1. An n x n matrix has n” entries and the diagonal contains » entries. Thus there
are n> — n off-diagonal entries. Since each can be assigned values in two ways, by the

Multiplication Principle there are

2.2...0 —on-n
—

n* — n factors

. . . 2_
matrices that represent reflexive relations on an n-element set. Therefore there are 2" ="
reflexive relations on an n-element set. |

Internet Addresses The internet is a network of interconnected computers. Each com-
puter interface on the internet is identified by an internet address. In the IPv4 (Internet
Protocol, Version 4) addressing scheme, the addresses are divided into five
classes—Class A through Class E. Only Classes A, B, and C are used to identify com-
puters on the internet. Class A addresses are used for large networks; Class B addresses
are used for medium-size networks; and Class C addresses are used for small networks.
In this example, we count the number of Class A addresses. Exercises 80-82 deal with
Class B and C addresses.

A Class A address is a bit string of length 32. The first bit is O (to identify it as a
Class A address). The next 7 bits, called the netid, identify the network. The remaining
24 bits, called the hostid, identify the computer interface. The netid must not consist of
all 1’s. The hostid must not consist of all 0’s or all 1’s. Arguing as in Example 6.1.4,
we find that there are 27 7-bit strings. Since 1111111 is not allowed as a netid, there
are 27 — 1 netids. Again, arguing as in Example 6.1.4, we find that there are 224 24-bit
strings. Since the two strings consisting of all 0’s or all 1’s are not allowed as a hostid,
there are 2°* — 2 hostids. By the Multiplication Principle, there are

Q7= 1R* =2) =127-16,777,214 = 2,130,706,178
Class A internet addresses. Because of the tremendous increase in the size of the in-

ternet, IPv6 (Internet Protocol, Version 6) uses 128-bit addresses rather than 32-bit ad-
dresses. 4

Next, we illustrate the Addition Principle by an example and then present the
principle.

How many eight-bit strings begin either 101 or 111?

260

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Addition Principle

Example 6.1.10

Example 6.1.11

SOLUTION An eight-bit string that begins 101 can be constructed in five successive
steps: Select the fourth bit; select the fifth bit; ... ; select the eighth bit. Since each of
the five bits can be selected in two ways, by the Multiplication Principle, there are

2.2.2.2.2=22=32

eight-bit strings that begin 101. The same argument can be used to show that there are
32 eight-bit strings that begin 111. Since there are 32 eight-bit strings that begin 101 and
32 eight-bit strings that begin 111, there are 32 4 32 = 64 eight-bit strings that begin
either 101 or 111. <

In Example 6.1.9 we added the numbers of eight-bit strings (32 and 32) of each
type to determine the final result. The Addition Principle tells us when to add to com-
pute the total number of possibilities.

Suppose that X, . . ., X; are sets and that the ith set X; has n; elements. If {X|, ..., X;}
is a pairwise disjoint family (i.e., if i # j, X; N X; = @), the number of possible
elements that can be selected from X; or X or ... or X, is

LA SR SR RO S

(Equivalently, the union X; U X, U - - - U X; contains n; + ny + - - - + n, elements.)

In Example 6.1.9 we could let X; denote the set of eight-bit strings that begin 101
and X, denote the set of eight-bit strings that begin 111. Since X is disjoint from X5,
according to the Addition Principle, the number of eight-bit strings of either type, which
is the number of elements in X; U X5, is 32 4+ 32 = 64.

We may summarize the Addition Principle by saying that we add the numbers
of elements in each subset when the elements being counted can be decomposed into
pairwise disjoint subsets.

If we are counting objects that are constructed in successive steps, we use the
Multiplication Principle. If we have disjoint sets of objects and we want to know the
total number of objects, we use the Addition Principle. It is important to recognize when
to apply each principle. This skill comes from practice and careful thinking about each
problem.

We close this section with examples that illustrate both counting principles.

In how many ways can we select two books from different subjects among five dis-
tinct computer science books, three distinct mathematics books, and two distinct art
books?

SOLUTION Using the Multiplication Principle, we find that we can select two books,
one from computer science and one from mathematics, in 5 -3 = 15 ways. Similarly, we
can select two books, one from computer science and one from art, in 5 -2 = 10 ways,
and we can select two books, one from mathematics and one from art, in 3 -2 = 6 ways.
Since these sets of selections are pairwise disjoint, we may use the Addition Principle
to conclude that there are 15 4 10 + 6 = 31 ways of selecting two books from different
subjects among the computer science, mathematics, and art books. <

A six-person committee composed of Alice, Ben, Connie, Dolph, Egbert, and Francisco
is to select a chairperson, secretary, and treasurer.

6.1 @ Basic Principles 261

(a) In how many ways can this be done?

(b) In how many ways can this be done if either Alice or Ben must be chairperson?
(c) In how many ways can this be done if Egbert must hold one of the offices?

(d) In how many ways can this be done if both Dolph and Francisco must hold office?

SOLUTION

(a) We use the Multiplication Principle. The officers can be selected in three succes-
sive steps: Select the chairperson; select the secretary; select the treasurer. The
chairperson can be selected in six ways. Once the chairperson has been selected,
the secretary can be selected in five ways. After selection of the chairperson and
secretary, the treasurer can be selected in four ways. Therefore, the total number
of possibilities is 6 -5 -4 = 120.

(b) Arguing as in part (a), if Alice is chairperson, we have 5-4 = 20 ways to se-
lect the remaining officers. Similarly, if Ben is chairperson, there are 20 ways to
select the remaining officers. Since these cases are disjoint, by the Addition
Principle, there are 20 + 20 = 40 possibilities.

(c) [First solution] Arguing as in part (a), if Egbert is chairperson, we have 20 ways
to select the remaining officers. Similarly, if Egbert is secretary, there are 20 pos-
sibilities, and if Egbert is treasurer, there are 20 possibilities. Since these three
cases are pairwise disjoint, by the Addition Principle, there are 20420420 = 60
possibilities.

[Second solution] Let us consider the activity of assigning Egbert and two
others to offices to be made up of three successive steps: Assign Egbert an office;
fill the highest remaining office; fill the last office. There are three ways to assign
Egbert an office. Once Egbert has been assigned, there are five ways to fill the
highest remaining office. Once Egbert has been assigned and the highest remain-
ing office filled, there are four ways to fill the last office. By the Multiplication
Principle, there are 3 -5 -4 = 60 possibilities.

(d) Let us consider the activity of assigning Dolph, Francisco, and one other per-
son to offices to be made up of three successive steps: Assign Dolph; assign
Francisco; fill the remaining office. There are three ways to assign Dolph. Once
Dolph has been assigned, there are two ways to assign Francisco. Once Dolph
and Francisco have been assigned, there are four ways to fill the remaining office.
By the Multiplication Principle, there are 3 -2 -4 = 24 possibilities. <

Example 6.1.12 We revisit Example 6.1.3(c), which asked how many strings of length 4 that do not begin

with the letter B can be formed using the letters ABCDE (repetitions not allowed)?

SOLUTION We could have solved this problem using a direct approach by counting
the number of strings that begin with A, with C, with D, and with E, and then, using the
Addition Principle, summed these values. Since 24 strings begin with A [see the solution
to Example 6.1.3(b) with B replaced by A], and 24 strings begin with C, and so on, we
obtain

24 4 24 + 24 4 24 = 96.

However, the solution given in Example 6.1.3(c), which subtracted the number of strings
that do start with B from the total number of strings, was easier. It would have been much
easier if more letters had been involved or if the numbers in the sum were not identical
so that each involved a distinct calculation.

A variation of the direct approach might also have been used: Choose the first letter
(4 ways—choose A, C, D, or E); choose the second letter (4 ways—any of the remaining

262 Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

XxXny

Figure 6.1.3 |X| counts the
number of elements in X — Y and
X NY,and |Y| counts the number
of elementsinY — Xand X NY.
Since |X| + |Y| double-counts the
elementsin X NY, | X|+ |Y]| =
XUYl+IXNY]|.

Theorem 6.1.13

letters); choose the third letter (3 ways—any of the remaining letters); and choose the
fourth letter (2 ways—either of the remaining letters). By the Multiplication Principle,
there are

4.4.3.2=96

strings that do not begin with the letter B. <

Inclusion-Exclusion Principle

Suppose that we want to count the number of eight-bit strings that start 10 or end 011 or
both. Let X denote the set of eight-bit strings that start 10 and Y denote the set of eight-bit
strings that end 011. The goal then is to compute |X U Y|. We cannot use the Addition
Principle and add |X| and | Y| to compute |X U Y| because the Addition Principle requires
X and Y to be disjoint. Here X and Y are not disjoint; for example, 10111011 € XNY. The
Inclusion-Exclusion Principle generalizes the Addition Principle by giving a formula
to compute the number of elements in a union without requiring the sets to be pairwise
disjoint.

Continuing the discussion in the previous paragraph, suppose that we compute
|X| + |Y|. We have counted the elements in X — Y (eight-bit strings that start 10 but do
not end 011) once and the elements in ¥ — X (eight-bit strings that end 011 but do not
start 10) once, but we have counted the elements in X N Y (eight-bit strings that start
10 and end 011) twice (see Figure 6.1.3). Thus if we subtract [X N Y| from |X| + |Y],
to compensate for the double-counting, we will obtain the number of strings in X U Y;
that is,

IXUY|=|X|+|Y]—|XNY].

Arguing as in Example 6.1.7, we find that |X| = 26, |Y| = 2°,and X N Y| = 2%
Therefore, the number of eight-bit strings that start 10 or end 011 or both is equal to

XUY|=|X|+ Y| —|XNnY| =20+25 23

We state the Inclusion-Exclusion Principle for two sets as Theorem 6.1.13.

Inclusion-Exclusion Principle for Two Sets
If X and Y are finite sets, then

IXUY|=|X|+|Y|—|XNY].

Proof Since X = (X—Y)U(XNY)andX—Y and XNY are disjoint, by the Addition
Principle

X|=|X-Y|+|XNY|. (6.1.1)
Similarly,
Y| =Y = X|+ |XNY]. (6.1.2)

SinceXUY=X-YUXNYHUF —-X)andX —Y,XNY,and Y — X are pairwise
disjoint, by the Addition Principle

IXUY|=|X—Y|+|XNY|+|Y—X| (6.1.3)

Example 6.1.14

6.1 @ Basic Principles 263
Combining equations (6.1.1)—(6.1.3), we obtain
X|+ Y= X—Y|+|XNY|+|Y—X|+|XNY|=|XUY|+ |XNY|.

Subtracting |X N Y| from both sides of the preceding equation gives the desired result. 4

A committee composed of Alice, Ben, Connie, Dolph, Egbert, and Francisco is to select
a chairperson, secretary, and treasurer. How many selections are there in which either
Alice or Dolph or both are officers?

SOLUTION Let X denote the set of selections in which Alice is an officer and let Y
denote the set of selections in which Dolph is an officer. We must compute [X U Y.
Since X and Y are not disjoint (both Alice and Dolph could be officers), we cannot use
the Addition Principle. Instead we use the Inclusion-Exclusion Principle.

We first count the number of selections in which Alice is an officer. Alice can be
assigned an office in three ways, the highest remaining office can be filled in five ways,
and the last office can be filled in four ways. Thus the number of selections in which
Alice is an officer is 3 -5 -4 = 60, that is, |X| = 60. Similarly, the number of selections
in which Dolph is an officer is 60, that is, |Y| = 60.

Now X NY is the set of selections in which both Alice and Dolph are officers. Alice
can be assigned an office in three ways, Dolph can be assigned an office in two ways,
and the last office can be filled in four ways. Thus the number of selections in which
both Alice and Dolph are officers is 3.2 -4 = 24, thatis, [X N Y| = 24.

The Inclusion-Exclusion Principle tells us that

IXUY| =|X| + Y] — XN Y| = 60 + 60 — 24 = 96.

Thus there are 96 selections in which either Alice or Dolph or both are officers. |

The name “inclusion-exclusion” in Theorem 6.1.13 results from including | X NY|
twice when computing |X U Y| as |X| + |Y| and then excluding it by subtracting | X N Y|
from | X| + |Y].

We leave the Inclusion-Exclusion Principle for three or more sets to the exercises
(see Exercises 98—-105).

6.1 Problem-Solving Tips

The key to solving problems in this section is determining when to use the Multiplication
Principle and when to use the Addition Principle. Use the Multiplication Principle when
using a step-by-step process to construct an activity. For example, to construct a dinner
from Kay’s Quick Lunch menu (Figure 6.1.1) consisting of one appetizer, one main
course, and one beverage, we use a three-step process:

1. Choose one appetizer.
2. Choose one main course.

3. Choose one beverage.

The number of different possible activities is the product of the number of ways each
step can be done. Here we can select one appetizer in 2 ways, one main course in 3 ways,
and one beverage in 4 ways. Thus, the number of dinners is 2 -3 -4 = 24.

Use the Addition Principle when you want to count the number of elements in a
set and you can divide the set into nonoverlapping subsets. Suppose, for example, that
we want to count the total number of items available at Kay’s Quick Lunch. Since there

264

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

are 2 appetizers, 3 main course items, and 4 beverages, and no item belongs to two
categories, the total number of items available is

2+3+4=09.

Notice the difference between the two examples. To construct a dinner consisting
of one appetizer, one main course, and one beverage at Kay’s Quick Lunch, we use a
step-by-step process. The size of the set of dinners is not counted by dividing the set
of dinners into nonoverlapping subsets. To count the number of dinners, we use the
Multiplication Principle. To count the number of items available at Kay’s Quick Lunch,
we just sum the number of items in each category since dividing the items by category
naturally splits them into nonoverlapping subsets. We are not counting the individual
items available by constructing them using a step-by-step process. To count the total

number of items available, we use the Addition Principle.

To count the number of items not having a given property, it is sometimes easier
to count the number of items that do have the property and subtract that value from the
total number of items [see Example 6.1.3(c)].

The Inclusion-Exclusion Principle (Theorem 6.1.13) is a variant of the Addition
Principle that can be used when the sets involved are not pairwise disjoint.

6.1 Review Exercises

1. State the Multiplication Principle and give an example of its use.

2. State the Addition Principle and give an example of its use.

3. State the Inclusion-Exclusion Principle for two sets and give an
example of its use.

Use the Multiplication Principle to solve Exercises 1—12. 8. A restaurant chain advertised a special in which a customer
. R . . could choose one of five appetizers, one of 14 main dishes,

L }.Iotw ;nany dmnsrs at Kgy s le ick Lun?c h (Figure 6.1.1) con- and one of three desserts. The ad said that there were 210
sistotone al? petizerand one etverage. } possible dinners. Was the ad correct? Explain.

2 HOW mnany d.l nners at K? y's Quick I.dunch (Figure 6.1.1).c0n- 9. How many different car license plates can be constructed if
sist of an optional appetizer, one main course, and an optional . . L
beverage? the licenses contain three letters followed by two digits if rep-

’ etitions are allowed? if repetitions are not allowed?

3. How many dinners at Kay’s Quick Lunch (Figure 6.1.1) ' ' i
consist of one appetizer, one main course, and an optional Exercises 10—12 ask about strings of length 5 formed using the let-
beverage? ters ABCDEFG without repetitions.

4. A man has eight shirts, four pairs of pants, and five pairs of 10. How many strings begin with the letter F' and end with the
shoes. How many different outfits are possible? letter A?

5. The Braille system of representing characters was developed 11. How many strings begin with the letter F' and do not end with
early in the nineteenth century by Louis Braille. The charac- EB in that order?
ters, used by the blind, consist of raised dots. The positions 12. How many strings contain CEG together in that order?
for the dots are selected from two vertical columns of three
dots each. At least one raised dot must be present. How many Use the Addition Principle to solve Exercises 13-24.

. . Qo .
distinct Braille characters are possible? 13. Three departmental committees have 6, 12, and 9 members

6. The options available on a particular model of a car are five with no overlapping membership. In how many ways can
interior colors, six exterior colors, two types of seats, three these committees send one member to meet with the
types of engines, and three types of radios. How many differ- president?
ent possibilities are available to the consumer’ 14. In how many ways can a diner choose one item from among

7. Two dice are rolled, one blue and one red. How many out- the appetizers and main courses at Kay’s Quick Lunch

comes are possible?

(Figure 6.1.1)?

15.

16.

17.

18.

19.

20.

21.

In how many ways can a diner choose one item from among
the appetizers and beverages at Kay’s Quick Lunch (Figure
6.1.1)?

How many times are the print statements executed?

fori=1tom
println(i)

forj=1ton
println(j)

How many times is the print statement executed?

fori=1tom
forj=1ton
println(i, j)

Given that there are 32 eight-bit strings that begin 101 and 16
eight-bit strings that begin 1101, how many eight-bit strings
begin either 101 or 1101?

Two dice are rolled, one blue and one red. How many out-
comes give the sum of 2 or the sum of 12?

A committee composed of Morgan, Tyler, Max, and Leslie is
to select a president and secretary. How many selections are
there in which Tyler is president or not an officer?

A committee composed of Morgan, Tyler, Max, and Leslie is
to select a president and secretary. How many selections are
there in which Max is president or secretary?

Exercises 22-24 ask about strings of length 5 formed using the let-
ters ABCDEFG without repetitions.

22.

23.
24.

25.

How many strings begin with AC or DB in that order?

How many strings do not begin with AB (in that order) or D?

How many strings contain B and D together in either order
(i.e., BD or DB)?

Comment on the following item from the New York Times:

Big pickups also appeal because of the

seemingly infinite ways they can be personalized;
you need the math skills of Will Hunting to

total the configurations. For starters, there are 32
combinations of cabs (standard, Club Cab, Quad
Cab), cargo beds (6.5 or 8 feet), and engines (3.9-liter
Vo6, 5.2-liter V8, 5.9-liter V8, 5.9-liter turbo-diesel
inline 6, 8-liter V10).

In Exercises 2633, two dice are rolled, one blue and one red.

26.
27.

28.
29.
30.
31.

How many outcomes give the sum of 4?

How many outcomes are doubles? (A double occurs when
both dice show the same number.)

How many outcomes give the sum of 7 or the sum of 11?
How many outcomes have the blue die showing 2?
How many outcomes have exactly one die showing 2?

How many outcomes have at least one die showing 2?

32.
33.

6.1 @ Basic Principles 265

How many outcomes have neither die showing 2?

How many outcomes give an even sum?

In Exercises 34-36, suppose there are 10 roads from Oz to Mid
Earth and five roads from Mid Earth to Fantasy Island.

34.

35.

36.

40.
41.
42.
43.

How many routes are there from Oz to Fantasy Island passing
through Mid Earth?

How many round-trips are there of the form Oz-Mid Earth—
Fantasy Island—Mid Earth-Oz?

How many round-trips are there of the form Oz—Mid Earth—
Fantasy Island—-Mid Earth—Oz in which on the return trip
we do not reverse the original route from Oz to Fantasy
Island?

. How many eight-bit strings begin 1100?
38.
39.

How many eight-bit strings begin and end with 1?

How many eight-bit strings have either the second or the
fourth bit 1 (or both)?

How many eight-bit strings have exactly one 1?

How many eight-bit strings have exactly two 1’s?

How many eight-bit strings have at least one 1?

How many eight-bit strings read the same from either end?
(An example of such an eight-bit string is 01111110. Such
strings are called palindromes.)

In Exercises 4449, a six-person committee composed of Alice,
Ben, Connie, Dolph, Egbert, and Francisco is to select a chair-
person, secretary, and treasurer.

44.
45.

46.

47.

48.

49.

How many selections exclude Connie?

How many selections are there in which neither Ben nor
Francisco is an officer?

How many selections are there in which both Ben and
Francisco are officers?

How many selections are there in which Dolph is an officer
and Francisco is not an officer?

How many selections are there in which either Dolph is chair-
person or he is not an officer?

How many selections are there in which Ben is either chair-
person or treasurer?

In Exercises 50-57, the letters ABCDE are to be used to form
strings of length 3.

50

51.

How many strings can be formed if we allow repetitions?

How many strings can be formed if we do not allow
repetitions?

How many strings begin with A, allowing repetitions?

. How many strings begin with A if repetitions are not allowed?

How many strings do not contain the letter A, allowing
repetitions?

. How many strings do not contain the letter A if repetitions

are not allowed?

266

56. How many strings contain the letter A, allowing repetitions?
57. How many strings contain the letter A if repetitions are not
allowed?

Exercises 58—68 refer to the integers from 5 to 200, inclusive.

58. How many numbers are there?

59. How many are even?

60. How many are odd?

61. How many are divisible by 5?

62. How many are greater than 727

63. How many consist of distinct digits?

64. How many contain the digit 77

65. How many do not contain the digit 0?

66. How many are greater than 101 and do not contain the
digit 6?

67. How many have the digits in strictly increasing order?
(Examples are 13, 147, 8.)

68. How many are of the form xyz, where 0 # x < yandy > z?

69. (a) In how many ways can the months of the birthdays of
five people be distinct?

(b) How many possibilities are there for the months of the
birthdays of five people?

(c) In how many ways can at least two people among five
have their birthdays in the same month?

Exercises 70-74 refer to a set of five distinct computer science
books, three distinct mathematics books, and two distinct art
books.

70. In how many ways can these books be arranged on a shelf ?

71. In how many ways can these books be arranged on a shelf if
all five computer science books are on the left and both art
books are on the right?

72. In how many ways can these books be arranged on a shelf if
all five computer science books are on the left?

73. In how many ways can these books be arranged on a shelf if

all books of the same discipline are grouped together?
*74. In how many ways can these books be arranged on a shelf if

the two art books are not together?

75. In some versions of FORTRAN, an identifier consists of a
string of one to six alphanumeric characters beginning with
a letter. (An alphanumeric character is one of A to Z or 0 to
9.) How many valid FORTRAN identifiers are there?

76. If X is an n-element set and Y is an m-element set, how many
functions are there from X to Y?

*77. There are 10 copies of one book and one copy each of 10
other books. In how many ways can we select 10 books?

78. How many terms are there in the expansion of
x+y@+b+o)e+f+gHh+i0)?

*79. How many subsets of a (2n + 1)-element set have n elements
or less?

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

80. A Class B internet address, used for medium-sized networks,
is a bit string of length 32. The first bits are 10 (to identify
it as a Class B address). The netid is given by the next 14
bits, which identifies the network. The hostid is given by the
remaining 16 bits, which identifies the computer interface.
The hostid must not consist of all 0’s or all 1’s. How many
Class B addresses are available?

81. A Class C internet address, used for small networks, is a bit
string of length 32. The first bits are 110 (to identify it as
a Class C address). The netid is given by the next 21 bits,
which identifies the network. The hostid is given by the re-
maining 8 bits, which identifies the computer interface. The
hostid must not consist of all 0’s or all 1’s. How many Class C
addresses are available?

82. Given that the IPv4 internet address of a computer interface is
either Class A, Class B, or Class C, how many IPv4 Internet
addresses are available?

83. How many symmetric relations are there on an n-element
set?

84. How many antisymmetric relations are there on an n-element
set?

85. How many reflexive and symmetric relations are there on an
n-element set?

86. How many reflexive and antisymmetric relations are there on
an n-element set?

87. How many symmetric and antisymmetric relations are there
on an n-element set?

88. How many reflexive, symmetric, and antisymmetric relations
are there on an n-element set?

89. How many truth tables are there for an n-variable function?

90. How many binary operators are there on {1, 2, ..., n}?

91. How many commutative binary operators are there on
{1,2,...,n}?

Use the Inclusion-Exclusion Principle (Theorem 6.1.13) to solve
Exercises 92-97.

92. How many eight-bit strings either begin with 100 or have the
fourth bit 1 or both?

93. How many eight-bit strings either start with a 1 or end with
a 1 or both?

In Exercises 94 and 95, a six-person committee composed of Alice,
Ben, Connie, Dolph, Egbert, and Francisco is to select a chairper-
son, secretary, and treasurer.

94. How many selections are there in which either Ben is chair-
person or Alice is secretary or both?

95. How many selections are there in which either Connie is
chairperson or Alice is an officer or both?

96. Two dice are rolled, one blue and one red. How many
outcomes have either the blue die 3 or an even sum or
both?

97. How many integers from 1 to 10,000, inclusive, are multiples
of 5 or 7 or both?

98.

Prove the Inclusion-Exclusion Principle for three finite sets:

IXUYUZ| = |X|+|Y|+|Z|— IXNY|—|XNZ|—|YNZ|+|XNYNZ|.

99.

100.

101.

Hint: Write the Inclusion-Exclusion Principle for two finite
sets as

JAUB| = |A| + |B| — |ANB|

andletA =Xand B=Y UZ.

In a group of 191 students, 10 are taking French, business,
and music; 36 are taking French and business; 20 are taking
French and music; 18 are taking business and music; 65 are
taking French; 76 are taking business; and 63 are taking mu-
sic. Use the Inclusion-Exclusion Principle for three finite sets
(see Exercise 98) to determine how many students are not
taking any of the three courses.

Use the Inclusion-Exclusion Principle for three finite sets
(see Exercise 98) to solve the problem in Example 1.1.21.

Use the Inclusion-Exclusion Principle for three finite sets
(see Exercise 98) to solve Exercise 66, Section 1.1.

Problem-Solving Corner

Problem
Find the number of ordered triples of sets X, X5, X3
satisfying
X UX, UX; ={1,2,3,4,5,6,7, 8}
and X NXoNX; =a.

By ordered triple, we mean that the order of the sets X,
X>, X is taken into account. For example, the triples

{1,2,3}, ({1,4,8}, {2,5,6,7}
and

{1,4,8}, {1,2,3},
are considered distinct.

Attacking the Problem

It would be nice to begin by enumerating triples, but
there are so many it would be hard to gain much in-
sight from staring at a few triples. Let’s simplify the
problem by making it smaller. Let’s replace

{1,2,3,4,5,6,7, 8}

by {1}. What could be simpler than {1}? (Well, maybe
&, but that’s too simple!) We can now enumerate all
ordered triples of sets X;, X», X3 satisfying X; U X, U
X; = {1} and X; N X, N X3 = &. We must put 1 in
at least one of the sets X;, X», X3 (so that the union

{21 57 67 7}

102.

*103.

104.

105.

267

Problem-Solving Corner: Counting

Use the Inclusion-Exclusion Principle for three finite sets
(see Exercise 98) to compute the number of integers between
1 and 10,000, inclusive, that are multiples of 3 or 5 or 11 or
any combination thereof.

Use Mathematical Induction to prove the general Inclusion-
Exclusion Principle for finite sets X1, X2, ..., X;:

KIUX U UKl = Y Xl D IXinX

1<i<n

p>

I<i<j<k=n

1<i<j<n

X VXN Xe| = -

+(=D"X NX N N X

Hint: In the Inductive Step, refer to the hint in Exercise 98.

Using the previous exercise, write the Inclusion-Exclusion
Principle for four finite sets.

How many integers between 1 and 10,000, inclusive, are
multiples of 3 or 5 or 11 or 13 or any combination

thereof?

Counting

will be {1}), but we must not put 1 in all three of the
sets X1, X, X3 (otherwise, the intersection would not
be empty). Thus 1 will be in exactly one or two of the
sets X1, X», X3. The complete list of ordered triples is
as follows:

Xi={1}, Xx=90, X=0
X =9, X, ={1}, X3=09;
X =9, X =9, X3={1};
Xi={1l}, Xx={l}, ;=0
Xi={l}, Xx=0, X;3=({1}
X =9, X={1}, X3=/{l1}.

Thus there are six ordered triples of sets X, X, X3 sat-
isfying
X1UX5UXs={1} and X NXoNX;=9.

Let’s step up one level and enumerate all ordered
triples of sets X, X», X3 satisfying X; UX,UX3 = {1, 2}
and X; N X, N X3 = J. As before, we must put 1 in
at least one of the sets X;, X5, X5 (so that 1 will be in
the union), but we must not put 1 in all three of the sets
X1, X5, X5 (otherwise, the intersection would not be
empty). This time we must also put 2 in at least one of
the sets X1, X», X3 (so that 2 will also be in the union),
but we must not put 2 in all three of the sets X, X», X3
(otherwise, the intersection would not be empty). Thus
each of 1 and 2 will be in exactly one or two of the sets

268

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

1lisin 2isin 1lisin 2isin 1isin 2isin
X1 X1 X1 X3 X1 X3
X> X1 X> Xa X> X3
X3 X X3 X2 X3 X3
X1, Xo X1 X1, Xo X3 X1, Xo X3
X1, X3 X1 X1, X3 Xo X1, X3 X3
X3, X3 X X2, X3 Xa X2, X3 X3
X1 X1, Xo X1 X1, X3 X1 X2, X3
X3 X1, Xo X3 X1, X3 X X2, X3
X3 X1, X» X3 X1, X3 X3 X2, X3
X1, Xo X1, X2 X1, Xo X1, X3 X1, Xo X2, X3
X1, X3 X1, Xo X1, X3 X1, X3 X1, X3 X2, X3
X3, X3 X1, Xo X2, X3 X1, X3 X2, X3 X2, X3

X1, Xo, X3. We enumerate the sets in a systematic way
so that we can recognize any patterns that appear. The
complete list of ordered triples is shown in the table
at the top of this page. For example, the top left entry,
X, X1, specifies that 1 is in X; and 2 is in X ; therefore,
this entry gives the ordered triple

Xl:{192}’ XZZQ’

As shown, there are 36 ordered triples of sets X, Xp,
X5 satisfying

X; = 2.

XiUX, UX; ={1,2}
and X]ﬂXzﬂX3=@.
We see that there are six ways to assign 1 to the sets
X1, X5, X3, which accounts for six lines per block. Sim-
ilarly, there are six ways to assign 2 to the sets X, Xp,
X3, which accounts for six blocks.
Before reading on, can you guess how many
ordered triples of sets X, X, X3 satisfy

X, UX,UXs = {1,2,3}
and XiNXsNX; =a?

The pattern has emerged. If X = {1,2,...,n},
there are six ways to assign each of 1, 2, ..., n to the
sets X1, X2, X3. By the Multiplication Principle, the
number of ordered triples is 6”.

Finding Another Solution

‘We have just found a solution to the problem by start-
ing with a simpler problem and then discovering and
justifying the pattern that emerged.

Another approach is to look for a similar problem
and imitate its solution. The problem of Example 6.1.6
is similar to the one at hand in that it also is a counting
problem that deals with sets:

Let X be an n-element set. How many ordered
pairs (A, B) satisfy A € B C X?

(At this point, it would be a good idea to go
back and reread Example 6.1.6.) The solution given in
Example 6.1.6 counts the number of ways to assign el-
ements of X to exactly one of the sets A, B — A, or
X —B.

We can solve our problem by taking a similar
approach. Each element of X is in exactly one of

XINXNX;, XiNXNXs, X, NX,NXs,
XINXNXs, XiNXnNX;, X NX;NXs.
Since each member of X can be assigned to one of these
sets in six ways, by the Multiplication Principle, the

number of ordered triples is 6%.

Notice that while this approach to solving the
problem is different than that of the preceding section,
the final argument is essentially the same.

Formal Solution

Each element in X is in exactly one of
i=XiNXNXs, YL=XNXxNXs,
3i=XNXxNX;, Yi=XNX;NX;,
Ys=XiNX,NX;, Ye=X NX;NX;.

We can construct an ordered triple by the following

eight-step process: Choose j, | < j < 6, and put 1 in

Yj; choose j, 1 <j < 6,and put2inYj;...; choose j,

1 < j < 6, and put 8 in Y;. For example, to construct

the triple

{1,2,3}, {1,4,8}, {2,5,6,7}

we first choose j = 3 and put 1 in ¥3 = X; N X, N X;.
Next, we choose j = 2 and put2in ¥, = X; NX; N X5.
The remaining choices for j are j = 6, 5,4, 4,4, 5.

Each choice for j can be made in six ways. By
the Multiplication Principle, the number of ordered
triples is

6:6:6:6-6-6-6-6 =6 =1,679,616.

6.2 & Permutations and Combinations 269

Summary of Problem-Solving Techniques B Enumerate items systematically so that patterns

- . . emerge.
B Replace the original problem with a simpler

problem. One way to do this is to reduce the size
of the original problem. B Look for a similar problem and imitate its
solution.

® Look for patterns.

B Directly enumerate the items to be counted.

6.2 Permutations and Combinations
Four candidates, Zeke, Yung, Xeno, and Wilma, are running for the same office. So that
Go Online the positions of the names on the ballot will not influence the voters, it is necessary to
For more on print ballots with the names listed in every possible order. How many distinct ballots
permutations and will there be?
combinations, see We can use the Multiplication Principle. A ballot can be constructed in four
g00.gl/WRoK11 successive steps: Select the first name to be listed; select the second name to be listed;

select the third name to be listed; select the fourth name to be listed. The first name
can be selected in four ways. Once the first name has been selected, the second name can
be selected in three ways. Once the second name has been selected, the third name
can be selected in two ways. Once the third name has been selected, the fourth name
can be selected in one way. By the Multiplication Principle, the number of ballots is
4.3.2.1 =24

An ordering of objects, such as the names on the ballot, is called a permutation.

Definition 6.2.1 » A permutation of n distinct elements x1, . .. , x,, is an order-
ing of the n elements xi, ..., X,.

Example 6.2.2 There are six permutations of three elements. If the elements are denoted A, B, C, the
six permutations are

ABC, ACB, BAC, BCA, CAB, CBA. <

We found that there are 24 ways to order four candidates on a ballot; thus there
are 24 permutations of four objects. The method that we used to count the number of
distinct ballots containing four names may be used to derive a formula for the number
of permutations of n elements.

The proof of the following theorem for n = 4 is illustrated in Figure 6.2.1.

B - A - D - C
Select 1st Select 2nd Select 3rd Select 4th
element element element element

Figure 6.2.1 The proof of Theorem 6.2.3 for n = 4. A permutation of ABCD is
constructed by successively selecting the first element, then the second element,
then the third element, and, finally, the fourth element.

270

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Theorem 6.2.3

Example 6.2.4

Example 6.2.5

DEF

A

B C

Figure 6.2.2 Four tokens to
permute.

Example 6.2.6

Example 6.2.7

There are n! permutations of n elements.

Proof We use the Multiplication Principle. A permutation of n elements can be con-
structed in n successive steps: Select the first element; select the second element; ... ;
select the last element. The first element can be selected in n ways. Once the first element
has been selected, the second element can be selected in n — 1 ways. Once the second
element has been selected, the third element can be selected in n — 2 ways, and so on.
By the Multiplication Principle, there are

nn—1)m—2)--2.1=n!

permutations of n elements. <

There are

10! =10-9-8-7:6:5-4-3.2.1 = 3,628,800

permutations of 10 elements. <

How many permutations of the letters ABCDEF contain the substring DEF?

SOLUTION To guarantee the presence of the pattern DEF in the substring, these three
letters must be kept together in this order. The remaining letters, A, B, and C, can be
placed arbitrarily. We can think of constructing permutations of the letters ABCDEF
that contain the pattern DEF by permuting four tokens—one labeled DEF and the others
labeled A, B, and C (see Figure 6.2.2). By Theorem 6.2.3, there are 4! permutations of
four objects. Thus the number of permutations of the letters ABCDEF that contain the
substring DEF is 4! = 24, <4

How many permutations of the letters ABCDEF contain the letters DEF together in any
order?

SOLUTION We can solve the problem by a two-step procedure: Select an ordering of
the letters DEF'; construct a permutation of ABCDEF containing the given ordering of
the letters DEF. By Theorem 6.2.3, the first step can be done in 3! = 6 ways and, ac-
cording to Example 6.2.5, the second step can be done in 24 ways. By the Multiplication
Principle, the number of permutations of the letters ABCDEF containing the letters DEF
together in any order is 6 - 24 = 144. <

In how many ways can six persons be seated around a circular table? If a seating is
obtained from another seating by having everyone move n seats clockwise, the seatings
are considered identical.

SOLUTION Let us denote the persons as A, B, C, D, E, and F. Since seatings obtained
by rotations are considered identical, we might as well seat A arbitrarily. To seat the
remaining five persons, we can order them and then seat them in this order clockwise
from A. For example, the permutation CDBFE would define the seating in the adjacent
figure. Since there are 5! = 120 permutations of five elements, there are 120 ways that
six persons can be seated around a circular table.

The same argument can be used to show that there are (n — 1)! ways that n persons
can be seated around a circular table. <

Sometimes we want to consider an ordering of r elements selected from n available
elements. Such an ordering is called an r-permutation.

Example 6.2.9

Theorem 6.2.10

Example 6.2.11

Example 6.2.12

6.2 @ Permutations and Combinations 271

Definition 6.2.8 » An r-permutation of n (distinct) elements xi, ..., X, is an
ordering of an r-element subset of {xi, ..., x,}. The number of r-permutations of a set
of n distinct elements is denoted P(n, r).

Examples of 2-permutations of a, b, ¢ are ab, ba, and ca. |

If r = n in Definition 6.2.8, we obtain an ordering of all n elements. Thus an
n-permutation of n elements is what we previously called simply a permutation.
Theorem 6.2.3 tells us that P(n, n) = n!. The number P(n, r) of r-permutations of a
n-element set when r < n may be derived as in the proof of Theorem 6.2.3. The proof
of the theorem for n = 6 and r = 3 is illustrated in Figure 6.2.3.

C - A - E
Select 1st Select 2nd Select 3rd
element element element

Figure 6.2.3 The proof of Theorem 6.2.10 for n = 6 and
r = 3. An r-permutation of ABCDEF is constructed by
successively selecting the first element, then the second
element, and, finally, the third element.

The number of r-permutations of a set of n distinct objects is

P(n,r) =n(n—1)(n—2)---(n—r+1)
n!

T -0

r<n.

Proof We are to count the number of ways to order r elements selected from an
n-element set. The first element can be selected in n ways. Once the first element
has been selected, the second element can be selected in n — 1 ways. We continue se-
lecting elements until, having selected the (r — 1)st element, we select the rth element.
This last element can be chosen in n — r + 1 ways. By the Multiplication Principle, the
number of r-permutations of a set of n distinct objects is

n— D=2 (n— 4 1) = [nn—1)---m—r+D]n—r)(n—r—1)---2-1]

m—rm—r—1)---2-1

n!

= <

According to Theorem 6.2.10, the number of 2-permutations of X = {a, b, c}is P(3,2) =
3.2 = 6. These six 2-permutations are ab, ac, ba, bc, ca, cb. |

In how many ways can we select a chairperson, vice-chairperson, secretary, and treasurer
from a group of 10 persons?

SOLUTION We need to count the number of orderings of four persons selected from
a group of 10, since an ordering picks (uniquely) a chairperson (first pick), a vice-
chairperson (second pick), a secretary (third pick), and a treasurer (fourth pick). By
Theorem 6.2.10, the solution is

P(10,4) = 10-9-8 .7 = 5040

272 Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

or

10! 10!

Example 6.2.13 Inhow many ways can seven distinct Martians and five distinct Jovians wait in line if no
two Jovians stand together?

SOLUTION We can line up the Martians and Jovians by a two-step process: Line up the
Martians; line up the Jovians. The Martians can line up in 7! = 5040 ways. Once we have
lined up the Martians (e.g., in positions M;—M?7), since no two Jovians can stand together,
the Jovians have eight possible positions in which to stand (indicated by blanks):

My _My_Ms_My_Ms_Ms_M;_.

Thus the Jovians can stand in P(8,5) =8:7:6:5 -4 = 6720 ways. By the Multiplica-
tion Principle, the number of ways seven distinct Martians and five distinct Jovians can
wait in line if no two Jovians stand together is 5040 - 6720 = 33,868, 800. |

We turn next to combinations. A selection of objects without regard to order is
called a combination.

Definition 6.2.14 » GivenasetX = {x,..., x,} containing n (distinct) elements,

(a) An r-combination of X is an unordered selection of r-elements of X (i.e., an
r-element subset of X).

(b) The number of r-combinations of a set of n distinct elements is denoted C(n, r)

or (1)

Example 6.2.15 A group of five students, Mary, Boris, Rosa, Ahmad, and Nguyen, has decided to talk
with the Mathematics Department chairperson about having the Mathematics Depart-
ment offer more courses in discrete mathematics. The chairperson has said that she will
speak with three of the students. In how many ways can these five students choose three
of their group to talk with the chairperson?

SOLUTION In solving this problem, we must not take order into account. (For ex-
ample, it will make no difference whether the chairperson talks to Mary, Ahmad, and
Nguyen or to Nguyen, Mary, and Ahmad.) By simply listing the possibilities, we see
that there are 10 ways that the five students can choose three of their group to talk to the
chairperson:

MBR, MBA, MRA, BRA, MBN, MRN, BRN, MAN, BAN, RAN.

In the terminology of Definition 6.2.14, the number of ways the five students can choose
three of their group to talk with the chairperson is C(5, 3), the number of 3-combinations
of five elements. We have found that C(5, 3) = 10. 4

We next derive a formula for C(n, r) by counting the number of r-permutations of
an n-element set in two ways. The first way simply uses the formula P(n, r). The second
way of counting the number of r-permutations of an n-element set involves C(n, r).
Equating the two values will enable us to derive a formula for C(n, r).

We can construct r-permutations of an n-element set X in two successive steps:
First, select an r-combination of X (an unordered subset of r items); second, order it. For
example, to construct a 2-permutation of {a, b, ¢, d}, we can first select a 2-combination
and then order it. Figure 6.2.4 shows how all 2-permutations of {a, b, c, d} are obtained

Theorem 6.2.16

Example 6.2.17

Example 6.2.18

Example 6.2.19

6.2 & Permutations and Combinations 273

{a, b} {a, c} {a, d} {b, c} {b, d} {¢, d}

AAAA

ab ba ac ca ad da bc c¢b bd db cd dc
Figure 6.2.4 2-permutations of {a, b, c, d}.

in this way. The Multiplication Principle tells us that the number of r-permutations is
the product of the number of r-combinations and the number of orderings of r elements.
That is,

Pn,r)=C(n, rr!.

Therefore,

amm=mgd

Our next theorem states this result and gives some alternative ways to write C(n, r).

The number of r-combinations of a set of n distinct objects is

Pn,r) nn—1---(n—r+1) n!

Cln,r) = — 7 R

Proof The proof of the first equation is given before the statement of the theorem.
The other forms of the equation follow from Theorem 6.2.10. |

In how many ways can we select a committee of three from a group of 10 distinct per-
sons?

SOLUTION Since a committee is an unordered group of people, the answer is

10-9.
098=120.

C(10,3) = 3 <

In how many ways can we select a committee of two women and three men from a group
of five distinct women and six distinct men?

SOLUTION As in Example 6.2.17, we find that the two women can be selected in
C(5,2) = 10 ways and that the three men can be selected in C(6, 3) = 20 ways. The
committee can be constructed in two successive steps: Select the women; select the men.
By the Multiplication Principle, the total number of committees is 10 - 20 = 200. <

How many eight-bit strings contain exactly four 1°s?

SOLUTION An eight-bit string containing four 1’s is uniquely determined once we tell
which bits are 1. This can be done in C(8, 4) = 70 ways. <

274 Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Example 6.2.20 An ordinary deck of 52 cards consists of four suits

clubs, diamonds, hearts, spades
of 13 denominations each

ace, 2-10, jack, queen, king.

(a) How many (unordered) five-card poker hands, selected from an ordinary 52-card
deck, are there?

(b) How many poker hands contain cards all of the same suit?

(c) How many poker hands contain three cards of one denomination and two cards
of a second denomination?

SOLUTION
(a) The answer is given by the combination formula C(52, 5) = 2,598,960.

(b) A hand containing cards all of the same suit can be constructed in two succes-
sive steps: Select a suit; select five cards from the chosen suit. The first step can
be done in four ways, and the second step can be done in C(13, 5) ways. By the
Multiplication Principle, the answer is 4 - C(13,5) = 5148.

(c) A hand containing three cards of one denomination and two cards of a second
denomination can be constructed in four successive steps: Select the first denom-
ination; select the second denomination; select three cards of the first denomi-
nation; select two cards of the second denomination. The first denomination can
be chosen in 13 ways. Having selected the first denomination, we can choose the
second denomination in 12 ways. We can select three cards of the first denomi-
nation in C(4, 3) ways, and we can select two cards of the second denomination
in C(4, 2) ways. By the Multiplication Principle, the answer is

13:12-C(4,3)-C(4,2) = 3744. <

Example 6.2.21 How many routes are there from the lower-left corner of an n x n square grid to the
upper-right corner if we are restricted to traveling only to the right or upward? One such
route is shown in a 4 x 4 grid in Figure 6.2.5(a).

(a) (b)

Figure 6.2.5 (a) A 4 x 4 grid with a route from the lower-left
corner to the upper-right corner. (b) The route in (a) transformed
toaroutein a5 x 3 grid.

Example 6.2.22

6.2 & Permutations and Combinations 275

SOLUTION Each route can be described by a string of n R’s (right) and n U’s (up). For
example, the route shown in Figure 6.2.5(a) can be described by the string RUURRURU.
Any such string can be obtained by selecting n positions for the R’s, without regard to
the order of selection, among the 2n available positions in the string and then filling the
remaining positions with U’s. Thus there are C(2n, n) possible routes. 4

How many routes are there from the lower-left corner of an n x n square grid to the
upper-right corner if we are restricted to traveling only to the right or upward and if
we are allowed to touch but not go above a diagonal line from the lower-left corner to
the upper-right corner?

SOLUTION We call a route that touches but does not go above the diagonal a good
route, and we call a route that goes above the diagonal a bad route. Our problem is to
count the number of good routes. We let G,, denote the number of good routes and B,
denote the number of bad routes. In Example 6.2.21 we showed that G, +B,, = C(2n, n);
thus it suffices to compute the number of bad routes.

We call a route from the lower-left corner of an (n + 1) x (n — 1) grid to the
upper-right corner (with no restrictions) an (n + 1) x (n — 1) route. A 5 x 3 route is
shown in Figure 6.2.5(b). We show that the number of bad routes is equal to the number
of (n+ 1) x (n— 1) routes by describing a one-to-one, onto function from the set of bad
routes to the set of (n + 1) x (n — 1) routes.

Given a bad route, we find the first move (starting from the lower left) that takes
it above the diagonal. Thereafter we replace each right move by an up move and each
up move by a right move. For example, the route of Figure 6.2.5(a) is transformed to
the route shown in Figure 6.2.5(b). This transformation can also be effected by rotating
the portion of the route following the first move above the diagonal about the dashed line
shown in Figure 6.2.5(b). We see that this transformation does indeed assign to each bad
route an (n + 1) x (n — 1) route.

To show that our function is onto, consider any (n + 1) x (n — 1) route. Since
this route ends above the diagonal, there is a first move where it goes above the diag-
onal. We may then rotate the remainder of the route about the dashed line shown in
Figure 6.2.5(b) to obtain a bad route. The image of this bad route under our function is
the (n+ 1) x (n— 1) route with which we started. Therefore, our function is onto. Our
function is also one-to-one, as we can readily verify that the function transforms dis-
tinct bad routes to distinct (n + 1) x (n — 1) routes. Therefore, the number of bad routes
equals the number of (n+ 1) x (n — 1) routes.

An argument like that in Example 6.2.21 shows that the number of (n + 1) x (n — 1)
routes is equal to C(2n, n — 1). Thus the number of good routes is equal to

cQ B, = C(2 cQ 1y = &t @m):
@) = By = €@ = CRnn =D = D+ D
Coemt (1 1\ e 1
T alin—1)! <2_n+1)_n!(n—1)!'n(n+1)
el CCnn)

T+ Duln! . n+1

Exercises 75 and 76 outline an alternative proof using mathematical induction of
the formula C(2n, n) /(n + 1) for the number of good routes. Exercises 27-33, Section 9.8,
outline yet another way to derive the formula C(2n, n)/(n + 1). |

276 Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Go Online

For more on Catalan
numbers, see
goo0.gl/WRoK11

Example 6.2.23

The numbers C(2n,n)/(n + 1) are called Catalan numbers in honor of the
Belgian mathematician Eugene-Charles Catalan (1814—1894), who discovered an ele-
mentary derivation of the formula C(2n, n)/(n + 1). Catalan published numerous pa-
pers in analysis, combinatorics, algebra, geometry, probability, and number theory. In
1844, he conjectured that the only consecutive positive integers that are powers (i.e., #,
where j > 2) are 8 and 9. Over 150 years later, Preda Mihailescu proved the result (in
2002).

In this book, we denote the Catalan number C(2n, n)/(n + 1) as C,, n > 1, and
we define Cj to be 1. The first few Catalan numbers are

Co=1, Ci=1, (=2, C3=5 Cy=14, Cs=42

Like the Fibonacci numbers, the Catalan numbers have a way of appearing in unex-
pected places (e.g., Exercises 73 and 80-82, this section, and Exercises 30-32,
Section 7.1).

Our next example illustrates a common error in counting—namely, counting some
objects more than once.

What is wrong with the following argument, which purports to show that there are
C(8, 5)2° bit strings of length 8 containing at least five 0’s?

SOLUTION We can construct bit strings of length 8 by filling each of eight slots

with either O or 1. To ensure that there are at least five 0’s, we choose five slots and
place a 0 in each of them. The five slots can be chosen in C(8, 5) ways. We then fill the
remaining three slots with either O or 1. Since each of the three remaining slots can be
filled in two ways, the remaining slots can be filled in 2° ways. Thus there are C(8, 5)2°
bit strings of length 8 containing at least five 0’s.

The problem is that some strings are counted more than one time. For example,
suppose that we choose the first five slots and place 0’s in them

00000010 (6.2.1)

00000010 (6.2.2)
In the argument given, strings (6.2.1) and (6.2.2) are counted as distinct strings.

A correct way to count the bit strings of length 8 containing at least five 0’s is to
count the number of strings containing exactly five 0’s, the number of strings containing
exactly six 0’s, the number of strings containing exactly seven 0’s, and the number of
strings containing exactly eight 0’s and sum these numbers. Notice that here each string

6.2 & Permutations and Combinations 277

is counted one time since no string can contain exactly i 0’s and exactly j 0’s when
i #J.

To construct a bit string of length 8 containing exactly five 0’s, we choose five
slots for the 0’s and put 1’s in the other three slots. Since we can choose five slots
in C(8, 5) ways, there are C(8,5) bit strings of length 8 containing exactly five 0’s.
Similarly, there are C(8, 6) bit strings of length 8 containing exactly six 0’s, and so on.
Therefore, there are

C(8,5)+ C(8,6)+ C(8,7) + C(8,8)

bit strings of length 8 containing at least five 0’s. |

We close this section by providing another proof of Theorem 6.2.16 that gives
a formula for the number of r-element subsets of an n-element set. The proof is illus-
trated in Figure 6.2.6. Let X be an n-element set. We assume the formula P(n, r) =
n(n—1)---(n—r+ 1) that counts the number of orderings of r-element subsets chosen
from X. To count the number of r-element subsets of X, we do not want to take order into
account—we want to consider permutations of the same subset equivalent. Formally, we
define a relation R on the set S of r-permutations of X by the following rule: pRp; if
p1 and p, are permutations of the same r-element subset of X. It is straightforward to
verify that R is an equivalence relation on S.

If p is an r-permutation of X, then p is a permutation of some r-element subset
X, of X; thus, the equivalence class containing p consists of all permutations of X,. We
see that each equivalence class has r! elements. An equivalence class is determined by
the r-element subset of X that is permuted to obtain its members. Therefore, there are
C(n, r) equivalence classes. Since the set S has P(n, r) elements, by Theorem 3.4.16,
C(n,r)y=P(n,r)/rl.

ab ac ad bc bd cd
ba ca da cb db dc

Figure 6.2.6 The alternative proof of Theorem 6.2.16 for n = 4 and

r = 2. Each box contains an equivalence class for the relation R on the
set of 2-permutations of X = {a, b, ¢, d} defined by p,Rp, if p; and

p» are permutations of the same 2-element subset of X. There are

P(4,2) = 12 2-permutations of X and 2 ways to permute each
2-permutation. Since each equivalence class corresponds to a subset of X,
12/2 = C4,2).

In this section, we have presented techniques for counting objects where repetition
is not allowed. In Section 6.3, we will count objects where repetition is allowed.

6.2 Problem-Solving Tips

The key points to remember in this section are that a permutation takes order into ac-
count and a combination does not take order into account. Thus, a key to solving counting
problems is to determine whether we are counting ordered or unordered items. For ex-
ample, a line of distinct persons is considered ordered. Thus six distinct persons can wait
in line in 6! ways; the permutation formula is used. A committee is a typical example of
an unordered group. For example, a committee of three can be selected from a set of six
distinct persons in C(6, 3) ways; the combination formula is used.

278

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

6.2 Review Exercises

)

[*}

w

=

. What is a permutation of xy, . ..

. What is an r-permutation of xi, .. .

X, ?

. How many permutations are there of an n-element set? How is

this formula derived?

s X ?

. How many r-permutations are there of an n-element set? How

is this formula derived?

. What is an r-combination of {xi, ..

. How do we denote the number of r-permutations of an

n-element set?

L X0)?

. How many r-combinations are there of an n-element set? How

is this formula derived?

8. How do we denote the number of r-combinations of an

n-element set?

S m R W N

o

. How many permutations are there of a, b, ¢, d?
. List the permutations of a, b, c, d.
. How many 3-permutations are there of a, b, ¢, d?

. List the 3-permutations of a, b, ¢, d.

How many permutations are there of 11 distinct objects?

. How many 5-permutations are there of 11 distinct objects?

. In how many ways can we select a chairperson, vice-

chairperson, and recorder from a group of 11 persons?

. In how many ways can we select a chairperson, vice-

chairperson, secretary, and treasurer from a group of
12 persons?

. In how many different ways can 12 horses finish in the order

Win, Place, Show?

In Exercises 1018, determine how many strings can be formed

by ordering the letters ABCDE subject to the conditions
given.
10. Contains the substring ACE

. Contains the letters ACE together in any order

. Contains the substrings DB and AE

. Contains either the substring AE or the substring EA or both
. A appears before D. Examples: BCAED, BCADE

. Contains neither of the substrings AB, CD

. Contains neither of the substrings AB, BE

. A appears before C and C appears before £

. Contains either the substring DB or the substring BE or both

. In how many ways can five distinct Martians and eight distinct

Jovians wait in line if no two Martians stand together?

. In how many ways can five distinct Martians, ten distinct

Vesuvians, and eight distinct Jovians wait in line if no two
Martians stand together?

. In how many ways can five distinct Martians and five distinct

Jovians wait in line?

. In how many ways can five distinct Martians and five distinct

Jovians be seated at a circular table?

23.

In how many ways can five distinct Martians and five distinct
Jovians be seated at a circular table if no two Martians sit to-
gether?

. In how many ways can five distinct Martians and eight dis-

tinct Jovians be seated at a circular table if no two Martians sit
together?

In Exercises 25-27, let X = {a, b, c, d}.

25.
26.
27.

32.

Compute the number of 3-combinations of X.
List the 3-combinations of X.

Show the relationship between the 3-permutations and the
3-combinations of X by drawing a picture like that in Fig-
ure 6.2.4.

. In how many ways can we select a committee of three from a

group of 11 persons?

. In how many ways can we select a committee of four from a

group of 12 persons?

. At one point in the Illinois state lottery Lotto game, a per-

son was required to choose six numbers (in any order) among
44 numbers. In how many ways can this be done? The state
was considering changing the game so that a person would be
required to choose six numbers among 48 numbers. In how
many ways can this be done?

. Suppose that a pizza parlor features four specialty pizzas and

pizzas with three or fewer unique toppings (no choosing an-
chovies twice!) chosen from 17 available toppings. How many
different pizzas are there?

Suppose that the pizza parlor of Exercise 31 has a special price
for four pizzas. How many ways can four pizzas be selected?

Exercises 33-38 refer to a club consisting of six distinct men and
seven distinct women.

. In how many ways can we select a committee of five persons?

. In how many ways can we select a committee of three men

and four women?

. In how many ways can we select a committee of four persons

that has at least one woman?

36. In how many ways can we select a committee of four persons
that has at most one man?

37. In how many ways can we select a committee of four persons
that has persons of both sexes?

38. In how many ways can we select a committee of four persons
so that Mabel and Ralph do not serve together?

39. In how many ways can we select a committee of four Republi-
cans, three Democrats, and two Independents from a group of
10 distinct Republicans, 12 distinct Democrats, and four dis-
tinct Independents?

40. How many eight-bit strings contain exactly three 0’s?

41. How many eight-bit strings contain three 0’s in a row and
five 1’s?

How many eight-bit strings contain at least two 0’s in
arow?

*42.

In Exercises 43-51, find the number of (unordered) five-card poker
hands, selected from an ordinary 52-card deck, having the proper-
ties indicated.

43. Containing four aces

44. Containing four of a kind, that is, four cards of the same
denomination

45. Containing all spades

46. Containing cards of exactly two suits
47. Containing cards of all suits

48. Of the form A2345 of the same suit

49. Consecutive and of the same suit (Assume that the ace is the
lowest denomination.)

50. Consecutive (Assume that the ace is the lowest denomination.)

51. Containing two of one denomination, two of another denomi-
nation, and one of a third denomination

52. Find the number of (unordered) 13-card bridge hands selected
from an ordinary 52-card deck.

53. How many bridge hands are all of the same suit?
54. How many bridge hands contain exactly two suits?
55. How many bridge hands contain all four aces?

56. How many bridge hands contain five spades, four hearts, three
clubs, and one diamond?

57. How many bridge hands contain five of one suit, four of an-
other suit, three of another suit, and one of another suit?

58. How many bridge hands contain four cards of three suits and
one card of the fourth suit?

59. How many bridge hands contain no face cards? (A face card
is one of 10,7, Q, K, A.)

In Exercises 60-64, a coin is flipped 10 times.

60. How many outcomes are possible? (An outcome is a list of
10 H’s and T’s that gives the result of each of 10 tosses. For
example, the outcome

HHTHTHHHTH

279

6.2 ¢ Permutations and Combinations

represents 10 tosses, where a head was obtained on the first
two tosses, a tail was obtained on the third toss, a head was
obtained on the fourth toss, etc.)

61. How many outcomes have exactly three heads?
62. How many outcomes have at most three heads?
63. How many outcomes have a head on the fifth toss?

64. How many outcomes have as many heads as tails?

Exercises 65—68 refer to a shipment of 50 microprocessors of which
four are defective.

65. In how many ways can we select a set of four microproces-
sors?

66. In how many ways can we select a set of four nondefective
microprocessors?

67. In how many ways can we select a set of four microprocessors
containing exactly two defective microprocessors?

68. In how many ways can we select a set of four microprocessors
containing at least one defective microprocessor?

*69. Show that the number of bit strings of length n > 4 that con-

tain exactly two occurrences of 10is C(n + 1, 5).

*70. Show that the number of n-bit strings having exactly £ 0’s,

with no two 0’s consecutive, is C(n — k + 1, k).

*71. Show that the product of any positive integer and its k — 1

successors is divisible by k!.

72. Show that there are (2n — 1)(2n — 3) ---3 -1 ways to pick n
pairs from 2n distinct items.

Exercises 7377 refer to an election in which two candidates
Wright and Upshaw ran for dogcatcher. After each vote was tabu-
lated, Wright was never behind Upshaw. This problem is known as
the ballot problem.

73. Suppose that each candidate received exactly r votes. Show
that the number of ways the votes could be counted is C,, the
rth Catalan number.

74. Suppose that Wright received exactly r votes and Upshaw
received exactly u votes, r > u > 0. Show that the number of
ways the votes could be counted is C(r + u,r) — C(r + u,
r+1).

75. Suppose that Wright received exactly r votes and Upshaw re-
ceived exactly u votes, r > u > 0. Use inductiononn = r+u
to prove that the number of ways the votes could be counted is

— 1
% C(r+u,r).
76. Use Exercise 75 to derive the formula C(2n, n)/(n+ 1) for the
number of good routes as defined in Example 6.2.22.

77. Show that if exactly n votes were cast, the number of ways the
votes could be counted is C(n, [n/2]).

78. Suppose that we start at the origin in the xy-plane and take n
unit steps (i.e., each step is of length one), where each step is
either vertical (up or down) or horizontal (left or right). How
many such paths never go strictly below the x-axis?

280

79.

80.

81.

*82.

83.

84.

85.

86.

Suppose that we start at the origin in the xy-plane and take n
unit steps (i.e., each step is of length one), where each step is
either vertical (up or down) or horizontal (left or right). How
many such paths stay in the first quadrant (x > 0,y > 0)?

Show that the number of ways that 2n persons, seated around
a circular table, can shake hands in pairs without any arms
crossing is C,, the nth Catalan number.

A photo of 2n students, no two of which are the same height,
is to be taken subject to the following rules:

(a) There will be two rows each containing n students, all of
whom are standing.

(b) Each student in the back row must be taller than the stu-
dent standing directly in front of him.

(c) In each row, the students must be arranged in increasing
order of height.

Show that the number of ways to arrange the students is Cy,
the nth Catalan number.

Show that the print statement in the pseudocode

forij =1ton
for i = 1 to min(i;,n — 1)
foriz = 1 tomin(ip, n — 2)

for i,—1 = 1 to min(i,—2, 2)
fori, =1to1
println(iy, ia, ..., iy)

is executed C, times, where C, denotes the nth Catalan
number.

Suppose that we have n objects, r distinct and n — r identical.
Give another derivation of the formula

P(n,r)y=r!C(n,r)

by counting the number of orderings of the n objects in two
ways:
B Count the orderings by first choosing positions for the
r distinct objects.

B Count the orderings by first choosing positions for the
n — ridentical objects.

What is wrong with the following argument, which purports
to show that 4C(39, 13) bridge hands contain three or fewer
suits?

There are C(39, 13) hands that contain only clubs, di-
amonds, and spades. In fact, for any three suits, there are
(C(39, 13) hands that contain only those three suits. Since there
are four 3-combinations of the suits, the answer is 4C(39, 13).

What is wrong with the following argument, which purports to
show that there are 13% - 48 (unordered) five-card poker hands
containing cards of all suits?

Pick one card of each suit. This can be done in
13.13.13-13=13* ways. Since the fifth card can be
chosen in 48 ways, the answer is 13* - 48.

What is wrong with the following argument, which purports

to show that there are P(n, m)m"~"™ onto functions from the
n-element set X to the m-element set Y, n > m?

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

LetY = {y1,..., ym}. To ensure that a function from
X to Y is onto Y, we select an m-permutation of X, say
X1, ...,Xn, and assign x| the value yj, x; the value y,, ..., and
X the value y,,. We can select the m-permutation in P(n, m)
ways. The remainder of the n — m elements in X may be as-
signed values in Y arbitrarily. The first remaining element in
X can be assigned a value in Y in m ways. The next remaining
element in X can also be assigned a value in Y in m ways, and
so on. Thus the remaining n —m elements in X can be assigned
values in Y in m"~™ ways. Thus the number of functions from
X onto Y is P(n, m)m"™"™.

87. How many times is the string 10100001 counted in the

erroneous argument given in Example 6.2.23?

88. How many times is the string 10001000 counted in the

erroneous argument given in Example 6.2.23?

89. How many times is the string 00000000 counted in the

erroneous argument given in Example 6.2.23?

90. Let s, x denote the number of ways to seat n persons at k round

tables, with at least one person at each table. (The numbers s, x
are called Stirling numbers of the first kind.) The ordering of
the tables is not taken into account. The seating arrangement
at a table is taken into account except for rotations. Examples:

The following pair is not distinct:
A
D D
CQB Q QA Q

o~

The following pair is not distinct:

A D D A
C C
The following pair is distinct:
A D A C
C D

The following pair is distinct:

o

(a) Show thats,; = 0ifk > n.

(b) Show that s, , =1 foralln > 1.

(c) Show thats,; = —1)!foralln > 1.
(d) Show thats, ,—1 = C(n,2) foralln > 2.
(e) Show that

1 1 1
=mn-D!'{1+=-+=-+---
Sn2 = (n)<+2+3+ +n_1>
foralln > 2.

(f) Show that
n
> swx=n! foralln> 1.
k=1

(g) Find a formula for s, ,—2, n > 3, and prove it.

91. Let S, x denote the number of ways to partition an n-element
set into exactly k nonempty subsets. The order of the subsets
is not taken into account. (The numbers S,, are called Stirling
numbers of the second kind.)

(a) Show that S, =0if k > n.

(b) Show that S, , = 1foralln > 1.

Problem-Solving Corner

281

Problem-Solving Corner: Combinations

(c) Show thatS, ;= 1foralln> 1.

(d) Show that S5, = 3.

(e) Show that Syo =17.

(f) Show that Sy 3 = 6.

(g) Show that S, » =2""! — 1 foralln > 2.

(h) Show that S, ,—1 = C(n,2) foralln > 2.

(i) Find a formula for S, ,—>, n > 3, and prove it.
92. Show that there are

Z Sn,k
k=1

equivalence relations on an n-element set. [The numbers S, x
are Stirling numbers of the second kind (see Exercise 91).]

93. If X is an n-element set and Y is an m-element set, n < m, how
many one-to-one functions are there from X to Y?

94. If X and Y are n-element sets, how many one-to-one, onto
functions are there from X to Y?

95. Show that (n/k)* < C(n, k) < n*/k!.

Combinations

Problem

(a) How many routes are there from the lower-left
corner to the upper-right corner of an m x n grid
in which we are restricted to traveling only to
the right or upward? For example, the follow-
ing figure is a 3 x 5 grid and one route is shown.

n=>5

(b) Divide the routes into classes based on when
the route first meets the top edge to derive the
formula

> Clk+m—1,k)=C(m+n,m).
k=0

Attacking the Problem

Example 6.2.21 asked how many paths there were from
the lower-left corner to the upper-right corner of an

n x n grid in which we are restricted to traveling only
to the right or upward. The solution to that problem
encoded each route as a string of n R’s (right) and n
U’s (up). The problem then became one of counting
the number of such strings. Any such string can be ob-
tained by selecting n positions for the R’s, without re-
gard to the order of selection, among the 2n available
positions in the string and then filling the remaining po-
sitions with U’s. Thus the number of strings and num-
ber of routes are equal to C(2n, n).

In the present problem, we can encode each route
as a string of n R’s (right) and m U’s (up). As in the
previous problem, we must count the number of such
strings. Any such string can be obtained by selecting
n positions for the R’s, without regard to the order of
selection, among the n + m available positions in the
string and then filling the remaining positions with U’s.
Thus the number of strings and number of routes are
equal to C(n + m, n). We have answered part (a).

In part (b) we are given a major hint: Divide the
routes into classes based on when the route first meets
the top edge. A route can first meet the top edge at
any one of n + 1 positions. In the previous figure,
the route shown first meets the top edge at the third
position from the left. Before reading on, you might

282

think about why we might divide the routes into
classes.

Notice that when we divide the routes into classes
based on when the route first meets the top edge:

B The classes are disjoint.

(A route cannot first meet the top edge in two or more
distinct positions.) Notice also that every route meets
the top edge somewhere, so

= Every route is in some class.

In the terminology of Section 1.1 (see Example 1.1.25
and the discussion that precedes it), the classes par-
tition the set of routes. Because the classes partition
the set of routes, the Addition Principle applies and the
sum of the numbers of routes in each class is equal to
the total number of routes. (No route is counted twice
since the classes do not overlap, and every route is
counted once since each route is in some class.) Ev-
idently, the equation we’re supposed to prove results
from equating the sum of the number of routes in each
class to the total number of routes.

Finding a Solution

We have already solved part (a). For part (b), let’s look
at the 3 x 5 grid. There is exactly one route that first
meets the top edge at the first position from the left.
There are three routes that first meet the top edge at
the second position from the left:

([]

]

Notice that the only variation in the preceding figures
occurs between the start and the circled dot. To put it
another way, after a route meets the circled dot, there
is only one way to finish the trip. Therefore, it suffices

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

to count the number of routes from the lower-left cor-
ner to the upper-right corner of a 2 x 1 grid. But we
already solved this problem in part (a)! The number of
routes from the lower-left corner to the upper-right cor-
nerofa2 x 1 gridisequalto C2+ 1,1) = 3. Ina
similar way, we find that the number of routes that first
meet the top edge at the third position from the left is
equal to the number of routes from the lower-left cor-
ner to the upper-right corner of a 2 x 2 grid—namely,
C(2+2,2) = 6. By summing we obtain all the routes:

C(5+3,5 =C0O+2,0) +C(1+2,1)
+C2+2,2)+C3B3+2,3)
+CA+2,49+CG5+2,5).

If we replace each term C(k + 3 — 1, k) by its value,
we obtain

56 =1+3+6+10+ 15+ 21.

You should verify the preceding formula, find the six
routes that first meet the top edge at the third position
from the left, and see why the number of such routes is
equal to the number of routes from the lower-left cor-
ner to the upper-right corner of a 2 x 2 grid.

Formal Solution

(a) We can encode each route as a string of n R’s
(right) and m U’s (up). Any such string can
be obtained by selecting n positions for the
R’s, without regard to the order of selection,
among the n 4+ m available positions in the
string and then filling the remaining positions
with U’s. Thus the number of routes is equal to
C(n+ m,n).

(b) Eachroute can be described as a string contain-
ingn R’s and m U’s. The last U in such a string
marks the point at which the route first meets
the top edge. We count the strings by dividing
them into classes consisting of strings that end
U, UR, URR, and so on. There are

Cn+m—1,n)

strings that end U, since we must choose 7 slots
among the first n + m — 1 slots for the n R’s.
There are

Cn—1)+m—1,n—1)

strings that end UR, since we must choose
n — 1 slots from among the first (n — 1) +m — 1
slots for the n — 1 R’s. In general, there are
C(k + m — 1, k) strings that end UR"*. Since
there are C(m + n, m) strings altogether, the
formula follows.

6.3 @ Generalized Permutations and Combinations 283

Summary of Prob|em-So|ving Techniques ple of a partition of X, we could let X; be the set of

five-bit strings that contain exactly i zeros.

B Look for a similar problem and imitate its

solution. Exercises
1. Divide the routes into classes based on when the
= Counting the number of members of a set in two route first meets a vertical line, and use the Addi-
different ways leads to an equation. In particular, tion Principle to derive a formula like that proved
if {X;, X, ..., X,} is a partition of X, the Addi- in this section.

tion Principle applies and

n
X] =) 1Xil.
i=1

2. Divide the routes into classes based on when the
route crosses the slanted line shown.

B Directly enumerate some of the items to be \

counted.

B Look for patterns. \
Comments \
It’s important to verify that an alleged partition is truly
a partition before using the Addition Principle. If X is
the set of five-bit strings and X; is the set of five-bit

strings that contain i consecutive zeros, the Addition
Principle does not apply; the sets X; are not pairwise Use the Addition Principle to derive a formula like
disjoint. For example, 00001 € X, N X3. As an exam- that proved in this section.

6.3

Generalized Permutations
and Combinations

Example 6.3.1

Go Online

For more generalized
permutations and
combinations, see
g00.gl/WRoK11

In Section 6.2, we dealt with orderings and selections without allowing repetitions. In
this section we consider orderings of sequences containing repetitions and unordered
selections in which repetitions are allowed.

How many strings can be formed using the following letters?

MISSISSIPPI

SOLUTION Because of the duplication of letters, the answer is not 11!, but some num-
ber less than 11!.
Let us consider the problem of filling 11 blanks,

with the letters given. There are C(11, 2) ways to choose positions for the two P’s. Once
the positions for the P’s have been selected, there are C(9, 4) ways to choose positions
for the four S’s. Once the positions for the S’s have been selected, there are C(5, 4) ways
to choose positions for the four I’s. Once these selections have been made, there is one
position left to be filled by the M. By the Multiplication Principle, the number of ways
of ordering the letters is

11! 91 5! 11!

CALDCODCED =S5 msian — aqrarn — o n650- <

284 Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Theorem 6.3.2

Example 6.3.3

The solution to Example 6.3.1 assumes a nice form. The number 11 that appears
in the numerator is the total number of letters. The values in the denominator give the
numbers of duplicates of each letter. This method can be used to establish a general
formula.

Suppose that a sequence S of n items has n; identical objects of type 1, n, identical
objects of type 2, . . ., and n, identical objects of type 7. Then the number of orderings
of S'is

n!

n!n!---nl

Proof We assign positions to each of the n items to create an ordering of S. We
may assign positions to the n; items of type 1 in C(n, n;) ways. Having made these
assignments, we may assign positions to the n, items of type 2 in C(n — ny, np) ways,
and so on. By the Multiplication Principle, the number of orderings is

Cn,n)Cn—ny,n)Cn—mny —ny,n3)---Cln—ny — - —m_y, 1)
. n! (n—np)! n—ny —--—ni_y)!
T mlm—n)!m! (n—n —n)! 1! 0!
n!

nlnpl--n!

<

In how many ways can eight distinct books be divided among three students if Bill gets
four books and Shizuo and Marian each get two books?

SOLUTION Put the books in some fixed order. Now consider orderings of four B’s,
two §’s, and two M’s. An example is

BBBSMBMS.

Each such ordering determines a distribution of books. For the example ordering, Bill
gets books 1, 2, 3, and 6, Shizuo gets books 4 and 8, and Marian gets books 5 and 7.
Thus the number of ways of ordering BBBBSSMM is the number of ways to distribute
the books. By Theorem 6.3.2, this number is

8!
a0 <
We can give an alternate proof of Theorem 6.3.2 by using relations. Suppose that
a sequence S of n items has n; identical objects of type i fori = 1, ..., t. Let X denote
the set of n elements obtained from S by considering the n; objects of type i distinct for
i=1,...,t Forexample, if S is the sequence of letters

MISSISSIPPI,
X would be the set
M, 1, 51,8, 1,83, 84, I3, Py, Py, 14}.

We define a relation R on the set of all permutations of X by the rule: p;Rp; if p, is
obtained from p; by permuting the order of the objects of type 1 (but not changing
their location) and/or permuting the order of the objects of type 2 (but not changing

Example 6.3.4

Theorem 6.3.5

6.3 @ Generalized Permutations and Combinations 285

their location) . .. and/or permuting the order of the objects of type 7 (but not changing
their location); for example,

(I]S]S21253S413P1P214M) R ([2S3Sg[1 S4S]I3P1P2[4M).

It is straightforward to verify that R is an equivalence relation on the set of all permuta-
tions of X.

The equivalence class containing the permutation p consists of all permutations
of X that are identical if we consider the objects of type i identical fori = 1,...,1.
Thus each equivalence class has n;!n;! - - - n,! elements. Since an equivalence class is
determined by an ordering of S, the number of orderings of S is equal to the number of
equivalence classes. There are n! permutations of X, so by Theorem 3.4.16 the number
of orderings of § is

n!

! on!’

Next, we turn to the problem of counting unordered selections where repetitions
are allowed.

Consider three books: a computer science book, a physics book, and a history book.
Suppose that the library has at least six copies of each of these books. In how many
ways can we select six books?

SOLUTION The problem is to choose unordered, six-element selections from the set
{computer science, physics, history}, repetitions allowed. A selection is uniquely deter-
mined by the number of each type of book selected. Let us denote a particular
selection as
CS Physics History
X X X | x x| X

Here we have designated the selection consisting of three computer science books, two
physics books, and one history book. Another example of a selection is

CS Physics History
| x x x x| X X

which denotes the selection consisting of no computer science books, four physics books,
and two history books. We see that each ordering of six x’s and two |’s denotes a se-
lection. Thus our problem is to count the number of such orderings. But this is just the
number of ways C(8, 2) = 28 of selecting two positions for the |’s from eight possible
positions. Thus there are 28 ways to select six books. <

The method used in Example 6.3.4 can be used to derive a general result.

If X is a set containing ¢ elements, the number of unordered, k-element selections
from X, repetitions allowed, is

Ck+t—1,t—1)=Clk+t—1,k).

Proof LetX = {qy,...,a,}. Considerthe k + ¢ — I slots

286 Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Example 6.3.6

Example 6.3.7

Example 6.3.8

and k+ 17— 1 symbols consisting of k x’s and t — 1 |’s. Each placement of these symbols
into the slots determines a selection. The number n; of x’s up to the first | represents the
selection of n; a;’s; the number n, of x’s between the first and second |’s represents
the selection of n, a,’s; and so on. Since there are C(k +t — 1,1 — 1) ways to select
the positions for the |’s, there are also C(k + t — 1, ¢ — 1) selections. This is equal to
C(k +t — 1, k), the number of ways to select the positions for the x’s; hence there are

Ck+t—1,t—1)=Clk+t—1,k)

unordered, k-element selections from X, repetitions allowed. R |

Suppose that there are piles of red, blue, and green balls and that each pile contains at
least eight balls.

(a) In how many ways can we select eight balls?

(b) In how many ways can we select eight balls if we must have at least one ball of
each color?

SOLUTION
(a) By Theorem 6.3.5, the number of ways of selecting eight balls is
C8+3—-1,3—1)=C10,2) =45.

(b) We can also use Theorem 6.3.5 to solve part (b) if we first select one ball of each
color. To complete the selection, we must choose five additional balls. This can
be done in

C6+3-1,3—-1)=C(7,2)=21
ways. <
In how many ways can 12 identical mathematics books be distributed among the students
Anna, Beth, Candy, and Dan?

SOLUTION We can use Theorem 6.3.5 to solve this problem if we consider the problem
to be that of labeling each book with the name of the student who receives it. This is the
same as selecting 12 items (the names of the students) from the set {Anna, Beth, Candy,
Dan}, repetitions allowed. By Theorem 6.3.5, the number of ways to do this is

CI2+4—1,4—1) = C(15,3) = 455. <

(a) How many solutions in nonnegative integers are there to the equation
X1+ X0 +x3 + x4 =297 (6.3.1)
(b) How many solutions in integers are there to (6.3.1) satisfying x; > 0, x, > 1,

X3 > 2, x4 > 07?

SOLUTION
(a) Each solution of (6.3.1) is equivalent to selecting 29 items, x; of type i,
i=1,2,3,4. According to Theorem 6.3.5, the number of selections is

CQ9+4—1,4—1)=C(32,3) = 4960.

6.3 @ Generalized Permutations and Combinations 287

(b) Each solution of (6.3.1) satisfying the given conditions is equivalent to selecting
29 items, x; of type i, i = 1,2, 3, 4, where, in addition, we must have at least
one item of type 1, at least two items of type 2, and at least three items of type 3.
First, select one item of type 1, two items of type 2, and three items of type 3.
Then, choose 23 additional items. By Theorem 6.3.5, this can be done in

C23+4—1,4—1)=C(26,3) = 2600

ways. <

Example 6.3.9 How many times is the print statement executed?

forij=1ton
fori, =1toi
foriz =1toi,

.for iy = 11to i
println(iy, i, ..., i)
SOLUTION Notice that each line of output consists of k integers
iip - - - g, (6.3.2)
where
n>ip>ih>-->ipg>1, (6.3.3)

and that every sequence (6.3.2) satisfying (6.3.3) occurs. Thus the problem is to count
the number of ways of choosing k integers, with repetitions allowed, from the set
{1,2,...,n}. [Any such selection can be ordered to produce (6.3.3).] By Theorem
6.3.5, the total number of selections possible is C(k +n — 1, k). 4

6.3 Problem-Solving Tips

The formulas in Section 6.3 generalize the formulas of Section 6.2 by allowing repeti-
tions. A permutation is an ordering of sy, ..., s,, where the s; are distinct. There are n!
permutations. Now suppose that we have n items containing duplicates—specifically, n;
identical objects of type i, fori = 1, ..., . Then the number of orderings is
n!
_— (6.3.4)
m!np!---ng!
To determine whether one of these formulas may be relevant to a particular problem,
first be sure that the problem asks for orderings. If the items to be ordered are distinct,
the permutation formula may be used. On the other hand, if there are duplicates among
the items to be ordered, formula (6.3.4) may be used.

An r-combination is an unordered selection of r elements, repetitions not allowed,
from among n items. There are C(n, r) r-combinations. Now suppose that we want to
count unordered selections of k elements, repetitions allowed, from among ¢ items. The
number of such selections is

Ck+t—1,t—1). (6.3.5)

288

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

To determine whether one of these formulas may be relevant to a particular problem,
first be sure that the problem asks for unordered selections. If the items are to be selected
without repetition, the combination formula may be used. On the other hand, if the items
are to be selected with repetition, formula (6.3.5) may be used.

The following table summarizes the various formulas:

No Repetitions Repetitions Allowed
Ordered Selections n! n!/(ny!---ng!)
Unordered Selections C(n,r) Ck+t—1,t—1)

6.3 Review Exercises

1. How many orderings are there of n items of 7 types with n; iden-

tical objects of type i? How is this formula derived?

2. How many unordered, k-element selections are there from a

t-element set, repetitions allowed? How is this formula derived?

In Exercises 1-6, determine the number of strings that can be
formed by ordering the letters given.

1. GUIDE 2. SCHOOL

3. SALESPERSONS 4. GOOGOO

5. CLASSICS 6. SUGGESTS

7. How many strings can be formed by ordering the letters

oo

SALESPERSONS if the four S’s must be consecutive?

. How many strings can be formed by ordering the letters

SALESPERSONS if no two S’s are consecutive?

. How many strings can be formed by ordering the letters

SCHOOL using some or all of the letters?

Exercises 10—12 refer to selections among Action Comics, Super-
man, Captain Marvel, Archie, X-Man, and Nancy comics.

. How many ways are there to select six comics?
. How many ways are there to select 10 comics?

. How many ways are there to select 10 comics if we choose at

least one of each book?

. How many routes are there in the ordinary xyz-coordinate sys-

tem from the origin to the point (i, j, k), where i, j, and k are
positive integers, if we are limited to steps one unit in the posi-
tive x-direction, one unit in the positive y-direction, or one unit
in the positive z-direction?

. An exam has 12 problems. How many ways can (integer)

points be assigned to the problems if the total of the points
is 100 and each problem is worth at least five points?

. A bicycle collector has 100 bikes. How many ways can the

bikes be stored in four warehouses if the bikes and the ware-
houses are considered distinct?

. A bicycle collector has 100 bikes. How many ways can the

bikes be stored in four warehouses if the bikes are indistin-
guishable, but the warehouses are considered distinct?

17.

In how many ways can 10 distinct books be divided among
three students if the first student gets five books, the second
three books, and the third two books?

Exercises 18—24 refer to piles of identical red, blue, and green balls
where each pile contains at least 10 balls.

. In how many ways can 10 balls be selected?

. In how many ways can 10 balls be selected if at least one red

ball must be selected?

. In how many ways can 10 balls be selected if at least one red

ball, at least two blue balls, and at least three green balls must
be selected?

. In how many ways can 10 balls be selected if exactly one red

ball must be selected?

. In how many ways can 10 balls be selected if exactly one red

ball and at least one blue ball must be selected?

. In how many ways can 10 balls be selected if at most one red

ball is selected?

. In how many ways can 10 balls be selected if twice as many

red balls as green balls must be selected?

In Exercises 25-30, find the number of integer solutions of

X1 +x4+x3=15

subject to the conditions given.

. x1 >0, >0,x3>0
x> lLxp>1,x3>1
x1=Lx>0,x3>0
. x1>0,x0>0,x3=1
L 0<x1<6,x2>0,x3>0

L 0<x1<6,1<x<9,x3>0

*31.

32.

33.

34.

*35.

36.

37.

38.

6.4 ¢ Algorithms for Generating Permutations and Combinations

Find the number of solutions in integers to

X1+ x4+ x3+x4 =12
satisfying 0 < x; < 4,0 < x < 5,0 < x3 < 8§, and
0<x4 <9.

Prove that the number of solutions to the equation

X1+x+x3=n, n>3,

where x1, x2, and x3 are positive integers, is (n — 1)(n —2)/2.
Show that the number of solutions in nonnegative integers of
the inequality

xit+x+--+x, <M,

where M is a nonnegative integer, is C(M + n, n).

How many integers between 1 and 1,000,000 have the sum of
the digits equal to 15?

How many integers between 1 and 1,000,000 have the sum of
the digits equal to 20?

How many bridge deals are there? (A deal consists of par-
titioning a 52-card deck into four hands, each containing 13
cards.)

In how many ways can three teams containing four, two, and
two persons be selected from a group of eight persons?

A domino is a rectangle divided into two squares with each
square numbered one of 0, 1,...,6, repetitions allowed.
How many distinct dominoes are there?

Exercises 39—44 refer to a bag containing 20 balls—six red, six
green, and eight purple.

39.

40.

41.

42,

43.

In how many ways can we select five balls if the balls are con-
sidered distinct?

In how many ways can we select five balls if balls of the same
color are considered identical?

In how many ways can we draw two red, three green, and two
purple balls if the balls are considered distinct?

We draw five balls, then replace the balls, and then draw five
more balls. In how many ways can this be done if the balls are
considered distinct?

We draw five balls without replacing them. We then draw five
more balls. In how many ways can this be done if the balls are
considered distinct?

6.4

44.

45.

46.

47.

48.

49.
50.

*51.

52.

53.

289

We draw five balls where at least one is red, and then replace
them. We then draw five balls and at most one is green. In how
many ways can this be done if the balls are considered distinct?

In how many ways can 15 identical mathematics books be dis-
tributed among six students?

In how many ways can 15 identical computer science books
and 10 identical psychology books be distributed among five
students?

In how many ways can we place 10 identical balls in 12 boxes
if each box can hold one ball?

In how many ways can we place 10 identical balls in 12 boxes
if each box can hold 10 balls?

Show that (kn)! is divisible by (n!)¥.

By considering

forii=1ton
forip = 1to i
println(iy, iz)

and Example 6.3.9, deduce

nn+1)
7
Use Example 6.3.9 to prove the formula

l1+24---+n=

Ck—1,k—1)+Ck,k—1)+---+Cln+k—2,k—1)
=Ctk+n—1k).
Write an algorithm that lists all solutions in nonnegative inte-
gerstox] +x2 +x3 =n.

What is wrong with the following argument, which suppos-
edly counts the number of partitions of a 10-element set into
eight (nonempty) subsets?

List the elements of the set with blanks between them:

X]—X2—X3— X4—X5— Xg—X7—X§— X9— X]0.

Every time we fill seven of the nine blanks with seven verti-
cal bars, we obtain a partition of {xp, ..., xjo} into eight sub-
sets. For example, the partition {x1}, {x2}, {x3, x4} {x5}, {x6},
{x7, x8} {x9}, {x10} would be represented as

Xy | x2 | x3x4 | x5 | X6 | X7x8 | X9 | X10-

Thus the solution to the problem is C(9, 7).

Algorithms for Generating Permutations

and Combinations

Go Online
For more on generating
permutations, see
g00.g1/WRoK11

I, Iy, ..

The rock group Unhinged Universe has recorded n videos whose running times are
., t, seconds. A DVD is to be released that can hold C seconds. Since this is
the first DVD by Unhinged Universe, the group wants to include as much material as

290

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Example 6.4.2

possible. Thus the problem is to choose a subset {ij, ..., i} of {1,2,...,n} such that
the sum

k
> (6.4.1)
j=1

does not exceed C and is as large as possible. A straightforward approach is to examine
all subsets of {1, 2, ..., n} and choose a subset so that the sum (6.4.1) does not exceed
C and is as large as possible. To implement this approach, we need an algorithm that
generates all combinations of an n-element set. In this section we develop algorithms to
generate combinations and permutations.

Since there are 2" subsets of an n-element set, the running time of an algorithm that
examines all subsets is €2 (2"). As we saw in Section 4.3, such algorithms are impractical
to run except for small values of n. Unfortunately, there are problems (an example of
which is the DVD-filling problem described previously) for which no method much
better than the “list all” approach is known.

Our algorithms list permutations and combinations in lexicographic order.
Lexicographic order generalizes ordinary dictionary order.

Given two distinct words, to determine whether one precedes the other in the dic-
tionary, we compare the letters in the words. There are two possibilities:

1. The words have different lengths, and each letter in the shorter word
is identical to the corresponding letter in the longer word.

2. The words have the same or different lengths, and at some
position, the letters in the words differ. (6.4.2)

If 1 holds, the shorter word precedes the longer. (For example, “dog” precedes
“doghouse” in the dictionary.) If 2 holds, we locate the leftmost position p at which the
letters differ. The order of the words is determined by the order of the letters at position p.
(For example, “gladiator” precedes “gladiolus” in the dictionary. At the leftmost position
at which the letters differ, we find “a” in “gladiator” and “o0” in “gladiolus™; “a” precedes
“0” in the alphabet.)

Lexicographic order generalizes ordinary dictionary order by replacing the alpha-
bet by any set of symbols on which an order has been defined. We will be concerned

with strings of integers.

Definition 6.4.1 » Leta = s15,---s, and B = 11, -+ -1, be strings over
{1,2,...,n}. We say that « is lexicographically less than and write o < B if either

(@) p<qgands; = ¢ fori=1,...,p,
or

(b) for some i, s; # t;, and for the smallest such i, we have s; < t;.

In Definition 6.4.1, case (a) corresponds to possibility 1 of (6.4.2) and case (b) cor-
responds to possibility 2 of (6.4.2).

Leta = 132 and B = 1324 be strings over {1, 2, 3, 4}. In the notation of Definition 6.4.1,
p=3qg=4s51=1,5=3,53 =2,t;, = 1,tb = 3,13 = 2, and 14 = 4. Since
p=3<4=gqgands; =1 fori =1,2,3, condition (a) of Definition 6.4.1 is satisfied.
Therefore, o < B. |

Example 6.4.3

Example 6.4.4

Example 6.4.5

Example 6.4.6

Example 6.4.7

Example 6.4.8

6.4 & Algorithms for Generating Permutations and Combinations 291

Let @« = 13246 and B = 1342 be strings over {1, 2, 3, 4, 5, 6}. In the notation of Defini-
tion64.l,p=5qg=4s51=1, =3, 53=2,5=4,55=6,11 =1, =3, =4,
and 74 = 2. The smallest i for which s; # ¢; is i = 3. Since s3 < f3, by condition (b) of
Definition 6.4.1, @ < 8. R |

Leto = 1324 and B = 1342 be strings over {1, 2, 3, 4}. In the notation of Definition 6.4.1,
p=q=4,S1 =1, =3,53=2,5 =4,y =1,tpb = 3,13 = 4,and 1, = 2. The
smallest i for which s; # ¢; is i = 3. Since 53 < f3, by condition (b) of Definition 6.4.1,
a < B. <

Let o = 13542 and B = 21354 be strings over {1, 2, 3, 4, 5}. In the notation of Defi-
nition 6.4.1,s; = 1,50 =3, 53 =5, 54 =4, 55 =2, =2, b =1, =3, 14 = 5,
and t5 = 4. The smallest i for which s; # t;is i = 1. Since 5| < t;, by condition (b) of
Definition 6.4.1, o« < B. |

For strings of the same length over {1, 2, ..., 9}, lexicographic order is the same
as numerical order on the positive integers if we interpret the strings as decimal numbers
(see Examples 6.4.4 and 6.4.5). For strings of unequal length, lexicographic order may
be different than numerical order (see Example 6.4.3). Throughout the remainder of this
section, order will refer to lexicographic order.

First we consider the problem of listing all r-combinations of {1,2,...,n}. In
our algorithm, we will list the r-combination {xi, ..., x,} as the string s; - - - 5, where
5] < $ < --- < spand {x,...,x.} = {s1,...,s,}. For example, the 3-combination
{6, 2, 4} will be listed as 246.

We will list the r-combinations of {1, 2, ..., n} in lexicographic order. Thus the

first listed string will be 12 - - - r and the last listed string willbe (n —r+ 1) - - - n.

Consider the order in which the 5-combinations of {1, 2, 3, 4, 5, 6, 7} will be listed. The
first string is 12345, which is followed by 12346 and 12347. The next string is 12356,
followed by 12357. The last string will be 34567. <

Find the string that follows 13467 when we list the 5-combinations of X = {1, 2, 3, 4,
5,6,7}.

SOLUTION No string that begins 134 and represents a 5-combination of X exceeds
13467. Thus the string that follows 13467 must begin 135. Since 13567 is the smallest
string that begins 135 and represents a 5-combination of X, the answer is 13567. |

Find the string that follows 2367 when we list the 4-combinations of X ={1, 2, 3, 4,
5,6,7}.

SOLUTION No string that begins 23 and represents a 4-combination of X exceeds
2367. Thus the string that follows 2367 must begin 24. Since 2456 is the smallest string
that begins 24 and represents a 4-combination of X, the answer is 2456. |

A pattern is developing. Given a string « =s; ---s,, which represents the
r-combination {s, ..., s}, to find the next string 8 =1, ---t,, we find the rightmost
element s, that is not at its maximum value. (s, may have the maximum value n, s,_;
may have the maximum value n — 1, etc.) Then

i =s; fori=1,...,m—1.

292 Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

The element 7, is equal to s,, + 1. For the remainder of the string 8 we have
L R (sm+2)(sm+3) .

The algorithm follows.

Algorithm 6.4.9 Generating Combinations

This algorithm lists all 7-combinations of {1, 2, ..., n} in increasing lexicographic
order.
Input: r,n
Output: All r-combinations of {1, 2, ..., n} in increasing lexicographic
order
1. combination(r, n) {
2 fori=1tor
3 Si = i
4 println(sy, ..., s,) // print the first r-combination
5. fori =2to C(n,r) {
6 m=r
7 max_val = n
8 while (s,, == max_val) {
9. // find the rightmost element not at its maximum value
10. m=m—1
11. max_val = max_val — 1
12. }
13. /I the rightmost element is incremented
14. Sm=Sn+1
15. // the rest of the elements are the successors of s,
16. forj=m+1tor
17. §;i = S8j—1 + 1
18. println(sy, . .., s,) // print the ith combination
19. }
20. }

Example 6.4.10 We will show how Algorithm 6.4.9 generates the 5-combination of {1, 2, 3,4, 5, 6, 7}
that follows 23467. We are supposing that

S1=2, S2=3, S3=4, S4=6, S5=7.

At line 13, we find that s3 is the rightmost element not at its maximum value. At line 14,
s31s set to 5. At lines 16 and 17, s4 is set to 6 and s5 is set to 7. At this point

s1=2, =3, s3=5, s54=6, s5=7.

We have generated the 5-combination 23567, which follows 23467. |

We next prove that Algorithm 6.4.9 is correct, that is, that it generates all
r-combinations of {1, 2, ..., n} in increasing lexicographic order.

Theorem 6.4.11

Example 6.4.12

Example 6.4.13

6.4 & Algorithms for Generating Permutations and Combinations 293

Algorithm 6.4.9 generates all r-combinations of {1, 2, ..., n} in increasing lexico-
graphic order. Furthermore, each r-combination output by Algorithm 6.4.9 lists the
digits in increasing order.

Proof In this proof, “lexicographic order” means “increasing lexicographic order.”
We first show that Algorithm 6.4.9 generates r-combinations of {1, 2, ..., n} in lexi-
cographic order and that each r-combination lists the digits in increasing order. We use
induction on k to show that the kth r-combination output by Algorithm 6.4.9 lists the dig-
its in increasing order, and that the (k 4 1)st r-combination output by Algorithm 6.4.9
is lexicographically the next r-combination.

For k = 1 (base case), the first ~-combination output by Algorithm 6.4.91is 12 - - - r,
which has the digits in increasing order. If » = n, the proof is complete. Otherwise, in the
for loop at lines 519, Algorithm 6.4.9 generates the next (i.e., second lexicographically)
r-combination 12 - - - (r — 1)(r 4+ 1) and outputs it. This 7-combination has the digits in
increasing order.

If k = C(n, r), the proof is complete. Otherwise, for the inductive step, assume
that the kth r-combination output by Algorithm 6.4.9 has the digits in increasing order.
In the for loop at lines 5-19, Algorithm 6.4.9 generates the (k + 1)st (lexicographi-
cally, the next) r-combination, and, by construction, the digits are in increasing order.
The inductive step is complete. Therefore, Algorithm 6.4.9 generates r-combinations of
{1,2, ..., n} in lexicographic order, and each r-combination has the digits in increasing
order.

Finally, we show that Algorithm 6.4.9 generates all -combinations of {1, 2, ..., n}.
Suppose, by way of contradiction, that some r-combination is not generated by Algo-
rithm 6.4.9, and let s, with the digits listed in increasing order, be the least r-combination
(lexicographically) that is not generated. Then sisnot 12 - - - n because it is generated. Let
s" be the predecessor of s lexicographically. Since s is the least r-combination not gener-
ated, s is generated. But by construction Algorithm 6.4.9 generates the next
r-combination, which is s. This contradiction shows that Algorithm 6.4.9 generates all
r-combinations of {1, 2, ..., n}. 4

The 4-combinations of {1, 2, 3, 4, 5, 6} as listed by Algorithm 6.4.9 are

1234, 1235, 1236, 1245, 1246, 1256, 1345, 1346,
1356, 1456, 2345, 2346, 2356, 2456, 3456. |

LetX =1{1,2,3,4,5,6,7,8,9}.

(a) What is the first S-combination of X listed by Algorithm 6.4.9 that begins 24?
(b) What is the last 5-combination of X listed by Algorithm 6.4.9 that begins 13?

(c) How many 5-combinations of X begin 13?

SOLUTION

(a) The digit following 4 must be larger than 4 since each combination listed by Al-
gorithm 6.4.9 has the digits in increasing order. Since 246__,247__,248__, ...
are lexicographically larger than 245__, and Algorithm 6.4.9 lists the
5-combinations in lexicographic order, the digit following 4 must be 5. Similarly
the digit following 5 must be 6, and the final digit must be 7 giving us 24567.
Therefore the first 5-combination of X listed by Algorithm 6.4.9 that begins 24
is 24567.

294

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Example 6.4.14

Example 6.4.15

(b) The digit following 3 must be as large as possible but smaller than the last two
digits since Algorithm 6.4.9 lists 5-combinations with digits in increasing order.
Thus the digit following 3 must be 7; hence, the desired S-combination begins
137. Similarly the digit following 7 must be 8, and the digit following 8 must be 9.
Therefore, the last 5-combination of X listed by Algorithm 6.4.9 that begins 13
is 13789.

(c) Since Algorithm 6.4.9 generates all 5-combinations of X with the digits in in-
creasing order, the last three digits must be selected from

{4,5,6,7,8,9},

and there are C(6, 3) = 20 of them. Therefore, there are twenty 5-combinations
of X that begin 13. <4

Like the algorithm for generating r-combinations, the algorithm to generate per-
mutations will list the permutations of {1, 2, ..., n} in lexicographic order. (Exercise 26
asks for an algorithm that generates all r-permutations of an n-element set.)

To construct the permutation of {1, 2, 3, 4, 5, 6} that follows 163542, we should keep as
many digits as possible at the left the same.

Can the permutation following the given permutation have the form 1635__7?
Since the only permutation of the form 1635__ distinct from the given permutation is
163524, and 163524 is smaller than 163542, the permutation following the given per-
mutation is not of the form 1635__.

Can the permutation following the given permutation have the form 163___? The
last three digits must be a permutation of {2, 4, 5}. Since 542 is the largest permutation
of {2, 4, 5}, any permutation that begins 163 is smaller than the given permutation. Thus
the permutation following the given permutation is not of the form 163___.

The reason that the permutation following the given permutation cannot begin
1635 or 163 is that in either case the remaining digits in the given permutation (42 and
542, respectively) decrease. Therefore, working from the right, we must find the first
digit d whose right neighbor r satisfies d < r. In our case, the third digit, 3, has this
property. Thus the permutation following the given permutation will begin 16.

The digit following 16 must exceed 3. Since we want the next smallest permuta-
tion, the next digit is 4, the smallest available digit. Thus the desired permutation begins
164. The remaining digits 235 must be in increasing order to achieve the minimum value.
Therefore, the permutation following the given permutation is 164235. <

We see that to generate all of the permutations of {1, 2, ..., n}, we can begin with
the permutation 12 - - - n and then repeatedly use the method of Example 6.4.12 to gener-
ate the next permutation. We will end when the permutation n(n — 1) - - - 21 is generated.

Using the method of Example 6.4.14, we can list the permutations of {1, 2, 3, 4} in lex-
icographic order as

1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143,
2314, 2341, 2413, 2431, 3124, 3142, 3214, 3241,
3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321. <

The algorithm follows.

Algorithm 6.4.16

Go Online

For a C program
implementing this
algorithm, see
g00.g1l/DvrXEv

6.4 & Algorithms for Generating Permutations and Combinations 295

Generating Permutations

This algorithm lists all permutations of {1, 2,...,n} in increasing lexicographic
order.
Input: n
Output: All permutations of {1, 2, ..., n} in increasing lexicographic order
1. permutation(n) {
2 fori=1ton
3 Si = i
4 println(sy, ..., s,) // print the first permutation
5. fori =2 ton!{
6 m=n-—1
7 while (s,, > Siur1)
8 // find the first decrease working from the right
9. m=m—1
10. k=n
11. while (s,, > si)
12. // find the rightmost element s; with s, < si
13. k=k—1
14. swap(Sm, Sk)
15. p=m+1
16. qg=n
17. while (p < ¢) {
18. /I swap s,,+1 and s, swap sy, and s,_;, and so on
19. swap(sp, Sq)
20. p=p+1
21. g=q—1
22. }
23. println(sy, ..., s,) // print the ith permutation
24, }
25. }

We leave the proof that Algorithm 6.4.16 is correct to the exercises (see Exercise 33).

Example 6.4.17 Show how Algorithm 6.4.16 generates the permutation that follows 163542.

SOLUTION Suppose that
S]=1, S2=6, S3=3, S4=5, .5‘524, 5622

and that we are at line 6. The largest index m satisfying s,, < s,,+1 is 3. At lines 10-13,
we find that the largest index k satisfying s; > s, is 5. At line 14, we swap s,, and s;.
At this point, we have s = 164532. At lines 15-22, we reverse the order of the elements
s4555¢ = 532. We obtain the desired permutation, 164235. <4

Example 6.4.18 LetX ={1,2,3,4,5,6,7,8,9}.

(a) What is the first permutation of X listed by Algorithm 6.4.16 that begins 48?
(b) What is the last permutation of X listed by Algorithm 6.4.16 that begins 48?

(c) How many permutations of X begin 48?

296 Chapter 6 ¢ Counting Methods and the Pigeonhole Principle
SOLUTION
(a) The digit following 8 must be 1 since 482 --- ,483--- , ... are lexicographically
larger than 481 - - -, and Algorithm 6.4.16 lists the permutations in lexicographic
order. Similarly the next digits must be 235679. Therefore the first permutation
of X listed by Algorithm 6.4.16 that begins 48 is 481235679.

The digit following 8 must be as large as possible since Algorithm 6.4.16 lists the
permutations in lexicographic order. Thus the digit following 8 is 9. Similarly,
the next digits must be 765321. Therefore, the last permutation of X listed by
Algorithm 6.4.16 that begins 48 is 489765321.

(b)

(c) The permutations of X that begin 48 are 48 followed by a permutation of

{1,2,3,5,6,7,9},

and there are 7! = 5040 of them. Therefore, there are 5040 permutations of X

that begin 48.

4

6.4 Review Exercises

1. Define lexicographic order.

2. Describe the algorithm for generating r-combinations.

In Exercises 1-3, find the r-combination that will be generated by
Algorithm 6.4.9 with n = 7 after the r-combination given.

1.

1356 2. 12367 3. 14567

In Exercises 4-6, find the permutation that will be generated by
Algorithm 6.4.16 after the permutation given.

3. Describe the algorithm for generating permutations.

18

How many 6-combinations of X listed by Algorithm 6.4.9 end
46?

How many 6-combinations of X listed by Algorithm 6.4.9 start
2 and end 79?

. What is the first permutation of X listed by Algorithm 6.4.16

that ends 977

4. 12354 5. 625431 6. 12876543 21. What is the last permutation of X listed by Algorithm 6.4.16
7. For each string in Exercises 1-3, explain (as in Exam- that ends 3972 . .)
ple 6.4.10) exactly how Algorithm 6.4.9 generates the next 22. How many permutations of X listed by Algorithm 6.4.16 end
r-combination. 19387
8. For each string in Exercises 4-6, explain (as in Exam- 23. How many permutations of X listed by Algorithm 6.4.16 end
ple 6.4.17) exactly how Algorithm 6.4.16 generates the next 12342
permutation. 24. Modify Algorithm 6.4.9 so that line 5
9. Show the output from Algorithm 6.4.9 whenn = 6 and r = 3. 5. fori =210 C(n,) {
10. Show the output from Algorithm 6.4.9 whenn = 6 and r = 2. ’
11. Show the output from Algorithm 6.4.9 whenn = 7and r = 5. is eliminated. Base the terminating condition on the fact that
12. Show the output from Algorithm 6.4.16 when n = 2. the last r-combination has every element s; equal to its maxi-
13. Show the output from Algorithm 6.4.16 when n = 3. mum value.

In Exercises 14-23, let X = {1,2,3,4,5,6,7, 8, 9}.

. What is the first 5-combination of X listed by Algorithm 6.4.9

that ends 79?

. What is the last 5-combination of X listed by Algorithm 6.4.9

that ends 68?

. How many 5-combinations of X listed by Algorithm 6.4.9 end

89?7

. How many 5-combinations of X listed by Algorithm 6.4.9 end

537

. Modify Algorithm 6.4.16 so that line 5

5. fori=2ton!{

is eliminated. Base the terminating condition on the fact that
the last permutation has the elements s; in decreasing order.

. Write an algorithm that generates all r-permutations of an

n-element set.

. Write an algorithm whose input is an r-combination of

{1,2,...,n}. The output is the next (in lexicographic

28.

29.

30.

order) r-combination. The first r-combination follows the last
r-combination.

Write an algorithm whose input is a permutation of
{1,2,...,n}. The output is the next (in lexicographic or-
der) permutation. The first permutation follows the last
permutation.

Write an algorithm whose input is an r-combination of
{1,2,...,n}. The output is the previous (in lexicographic
order) r-combination. The last r-combination precedes the
first -combination.

Write an algorithm whose input is a permutation of
{1,2, ..., n}. The output is the previous (in lexicographic or-
der) permutation. The last permutation precedes the first per-
mutation.

6.5

6.5 ¢ Introduction to Discrete Probability 297

*31. Write a recursive algorithm that generates all 7-combinations
of the set {s1, 52, ..., s,}. Divide the problem into two sub-
problems:

B List the r-combinations containing s7.
B List the r-combinations not containing s .

32. Write a recursive algorithm that generates all permuta-

tions of the set {si,s2,...,s,}. Divide the problem into n
subproblems:

B List the permutations that begin with s;.
B List the permutations that begin with s,.

B List the permutations that begin with s,,.
33. Show that Algorithm 6.4.16 is correct.

Introduction to Discrete Probability™

Probability was developed in the seventeenth century to analyze games and, in this
earliest form, directly involved counting. For example, suppose that a six-sided fair die
whose sides are labeled 1,2, 3,4, 5, 6 is rolled (see Figure 6.5.1). “Fair” means that

Go Online

For more on
probability, see
g00.gl/WRoK11

each number is equally likely to appear when the die is rolled. To compute the chance
or probability that an even number appears, we first count how many ways an even
number can appear (three: 2, 4, 6) and how may ways an arbitrary number can appear
(six: 1,2, 3, 4,5, 6); then, the probability is the quotient: 3/6 = 1/2. After introducing

some terminology, we will give several examples of computing probabilities.

Figure 6.5.1 Rolling a fair die.
“Fair” means that each number is
equally likely to appear when the die
is rolled. [Photo by the author. Hand
courtesy of Ben Schneider.]

An experiment is a process that yields an outcome. An event is an outcome or
combination of outcomes from an experiment. The sample space is the event consisting

of all possible outcomes.

Example 6.5.1

Examples of experiments are

B Rolling a six-sided die.

B Randomly selecting 5 microprocessors from a lot of 1000 microprocessors.

m Selecting a newborn child at St. Rocco’s Hospital.

TThis section can be omitted without loss of continuity.

298

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Example 6.5.3

Example 6.5.4

Example 6.5.5

Examples of events that might occur when the previous experiments are performed are

B Obtaining a 4 when rolling a six-sided die.
B Finding no defective microprocessors out of 5 randomly chosen from a lot of 1000.
m Selecting a newborn female child at St. Rocco’s Hospital.

The sample spaces for the previous experiments are

B The numbers 1, 2, 3, 4, 5, 6—all possible outcomes when a die is rolled.

® All possible combinations of 5 microprocessors selected from a lot of 1000 micro-
processors.

= All newborn children at St. Rocco’s Hospital. <

If all outcomes in a finite sample space are equally likely, the probability of an
event is defined as the number of outcomes in the event divided by the number of out-
comes in the sample space. In the following section, we will relax the assumption that
all outcomes are equally likely.

Definition 6.5.2 » Let S be a finite sample space in which all outcomes are
equally likely. The probability P(E) of an event E from S is
|E|

P(E)= —.f
(E) S|

Two fair dice are rolled. What is the probability that the sum of the numbers on the dice
is 10?

SOLUTION Since the first die can show any one of six numbers and the second die
can show any one of six numbers, by the Multiplication Principle there are 6 -6 = 36
possible sums; that is, the size of the sample space is 36. There are three possible ways
to obtain the sum of 10—(4, 6), (5, 5), (6, 4)—that is, the size of the event “obtaining a
sum of 10” is 3. [The notation (x, y) means that we obtain x on the first die and y on the
second die.] Therefore, the probability is 3/36 = 1/12. <

Five microprocessors are randomly selected from a lot of 1000 microprocessors among
which 20 are defective. Find the probability of obtaining no defective microprocessors.

SOLUTION There are C(1000, 5) ways to select 5 microprocessors among 1000. There
are C(980, 5) ways to select 5 good microprocessors since there are 1000 — 20 = 980
good microprocessors. Therefore, the probability of obtaining no defective micropro-
Cessors is

C(980, 5) 980:979-978 -977-976
= = 0.903735781.
C(1000,5) 1000 -999 998 -997 - 996 <

In a state lottery game, to win the grand prize the contestant must match six distinct
numbers, in any order, among the numbers 1 through 52 randomly drawn by a lottery
representative. What is the probability of choosing the winning numbers?

fRecall that |X| is the number of elements in a finite set X.

Example 6.5.6

6.5 ¢ Introduction to Discrete Probability =~ 299

SOLUTION Six numbers among 52 can be selected in C(52, 6) ways. Since there is
one winning combination, the probability of choosing the winning numbers is
1 B 6!
C(52,6) 52.51.50.49.48-47

= 0.000000049. <

A bridge hand consists of 13 cards from an ordinary 52-card deck. Find the probability
of obtaining a 4-4-4-1 distribution, that is, four cards in each of three different suits and
one card of a fourth suit.

SOLUTION There are C(52, 13) bridge hands. The one-card suit can be chosen in
4 ways, and the card itself can be chosen in 13 ways. Having chosen this card, we must
choose four cards from each of the three remaining suits, which can be done in C(13, 4)3
ways. Thus there are 4 - 13 - C(13, 4)3 hands with a 4-4-4—1 distribution. Therefore, the
probability of obtaining a 4-4-4—1 distribution is

4.13-C(13,4)3

= 0.03.
C(52,13) <

6.5 Review Exercises

1. What is an experiment?

2. What is an event?

3. What is a sample space?

4. If all outcomes in a finite sample space are equally likely, how

is the probability of an event defined?

6.5 Exercises

In Exercises 1—4, suppose that a coin is flipped and a die is rolled.

1. List the members of the sample space.

List the members of the event “the coin shows a head and the
die shows an even number.”

List the members of the event “the die shows an odd number.”

List the members of the event “the coin shows a head and the
die shows a number less than 4.”

In Exercises 5-7, two dice are rolled.

S.

List the members of the event “the sum of the numbers on the
dice is even.”

List the members of the event “doubles occur” (i.e., the num-
bers are the same on both dice).

List the members of the event “4 appears on at least one die.”

Give an example of an experiment different from those in this
section.

Give an example of an event when the experiment of Exercise
8 is performed.

. What is the sample space for the experiment of Exercise 8?
. One fair die is rolled. What is the probability of getting a 5?
. One fair die is rolled. What is the probability of getting an even

number?

13

14

One fair die is rolled. What is the probability of not getting
a5?

A card is selected at random from an ordinary 52-card deck.
What is the probability that it is the ace of spades?

. A card is selected at random from an ordinary 52-card deck.

What is the probability that it is a jack?

. A card is selected at random from an ordinary 52-card deck.

What is the probability that it is a heart?

. Two fair dice are rolled. What is the probability that the sum

of the numbers on the dice is 9?

. Two fair dice are rolled. What is the probability that the sum

of the numbers on the dice is odd?

. Two fair dice are rolled. What is the probability of doubles?

. Four microprocessors are randomly selected from a lot of 100

microprocessors among which 10 are defective. Find the prob-
ability of obtaining no defective microprocessors.

. Four microprocessors are randomly selected from a lot of

100 microprocessors among which 10 are defective. Find
the probability of obtaining exactly one defective micropro-
Cessor.

. Four microprocessors are randomly selected from a lot of 100

microprocessors among which 10 are defective. Find the prob-
ability of obtaining at most one defective microprocessor.

300

23. In the California Daily 3 game, a contestant must select
three numbers among O to 9, repetitions allowed. A “‘straight
play” win requires that the numbers be matched in the ex-
act order in which they are randomly drawn by a lottery rep-
resentative. What is the probability of choosing the winning
numbers?

24. In the California Daily 3 game, a contestant must select three
numbers among 0 to 9. One type of “box play” win requires
that three numbers match in any order those randomly drawn
by a lottery representative, repetitions allowed. What is the
probability of choosing the winning numbers, assuming that
the contestant chooses three distinct numbers?

25. In the Maryland Lotto game, to win the grand prize the con-
testant must match six distinct numbers, in any order, among
the numbers 1 through 49 randomly drawn by a lottery rep-
resentative. What is the probability of choosing the winning
numbers?

26. In the multi-state Big Game, to win the grand prize the con-
testant must match five distinct numbers, in any order, among
the numbers 1 through 50, and one Big Money Ball num-
ber between 1 and 36, all randomly drawn by a lottery rep-
resentative. What is the probability of choosing the winning
numbers?

27. In the Maryland Cash In Hand game, to win the grand prize
the contestant must match seven distinct numbers, in any or-
der, among the numbers 1 through 31 randomly drawn by a
lottery representative. What is the probability of choosing the
winning numbers?

28. Find the probability of obtaining a bridge hand with 5-4-2-2
distribution, that is, five cards in one suit, four cards in another
suit, and two cards in each of the other two suits.

29. Find the probability of obtaining a bridge hand consisting only
of red cards, that is, no spades and no clubs.

Exercises 30-33 concern an unprepared student who takes a
10-question true—false quiz and guesses at the answer to every
question.

30. What is the probability that the student answers every question
correctly?

31. What is the probability that the student answers every question
incorrectly?

32. What is the probability that the student answers exactly one
question correctly?

33. What is the probability that the student answers exactly five
questions correctly?

Exercises 34-36 refer to a small consumer survey in which 10 peo-
ple were asked to choose a cola among Coke, Pepsi, and RC.

34. If each person chose a cola randomly, what is the probability
that no one chose Coke?

35. If each person chose a cola randomly, what is the probability
that at least one person did not choose Coke?

36. If each person chose a cola randomly, what is the probability
that everyone chose Coke?

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

37. If five student records are chosen randomly, what is the prob-
ability that they are chosen so that the first record selected has
the lowest grade point average (GPA), the second selected has
the second-lowest GPA, and so on? Assume that the GPAs are
distinct.

Exercises 38—40 concern three persons who each randomly choose
a locker among 12 consecutive lockers.

38. What is the probability that the three lockers chosen are
consecutive?

39. What is the probability that no two lockers are consecutive?

40. What is the probability that at least two of the lockers are
consecutive?

Exercises 41-44 deal with a roulette wheel that has 38 numbers:
18 red, 18 black, a 0, and a 00 (0 and 00 are neither red nor
black). When the wheel is spun, all numbers are equally likely to
be selected.

41. What is the probability that the wheel lands on a black num-
ber?

42. What is the probability that the wheel lands on a black number
twice in a row?

43. What is the probability that the wheel lands on 0?
44. What is the probability that the wheel lands on 0 or 00?

Exercises 45—48 concern the Monty Hall problem, in which a con-
testant chooses one of three doors; behind one of the doors is a car,
and behind the other two are goats. After the contestant chooses a
door, the host opens one of the other two doors that hides a goat.
(Because there are two goats, the host can open a door that hides
a goat no matter which door the contestant first chooses.) The host
then gives the contestant the option of abandoning the chosen door
in favor of the still-closed, unchosen door. For each strategy, what
is the probability of winning the car?

45. Stay with the door initially chosen.

46. Make a random decision about whether to stay with the door
initially chosen or switch to the unchosen, unopened door.

47. Switch to the unchosen, unopened door.

48. Suppose that the host forgets which door hides the car and,
after the contestant chooses a door, picks a door at ran-
dom. If the door hides a car, the game is over. Assuming
that the host chooses a door that hides a goat, what is the
probability of winning the car for each strategy in Exercises
45-477

Exercises 49-51 concern a variant of the Monty Hall problem, in
which a contestant chooses one of four doors; behind one of the
doors is a car, and behind the other three are goats. After the con-
testant chooses a door, the host opens one of the other three doors
that hides a goat. The host then gives the contestant the option of
abandoning the chosen door in favor of one of the two still-closed,
unchosen doors. For each strategy, what is the probability of win-
ning the car?

49. Stay with the door initially chosen.

50.

51.

52.

53.

Make a random decision about whether to stay with the door
initially chosen or switch to one of the unchosen, unopened
doors.

Switch to one of the unchosen, unopened doors. The choice
between the two unchosen, unopened doors is made randomly.

In a multiple-choice exam, one question has three choices:
A, B, C. A student randomly chooses A. The teacher then
states that choice C is incorrect. What is the probability of
a correct answer if the student stays with choice A? What is
the probability of a correct answer if the student switches to
choice B?

Is the following reasoning correct? A county health inspec-
tor told a restaurant offering four-egg quiches that, because
research by the FDA (Food and Drug Administration) shows

54.

6.6 ¢ Discrete Probability Theory 301

that one in four eggs is contaminated with salmonella bacteria,
the restaurant should use only three eggs in each quiche.

A two-person game is played in which a fair coin is tossed
until either the sequence HT (heads, tails) or the sequence TT
(tails, tails) appears. If HT appears, the first player wins; if TT
appears, the second player wins. Would you rather be the first
or second player? Explain.

Exercises 55 and 56 refer to 10 identical compact discs that are
randomly given to Mary, Ivan, and Juan.

55.

56.

What is the probability that each person receives at least two
compact discs?

What is the probability that Ivan receives exactly three com-
pact discs?

6.6

Discrete Probability Theory™

Example 6.6.2

In Section 6.5, we assume that all outcomes are equally likely; that is, if there are n
possible outcomes, the probability of each outcome is 1/n. In general, the outcomes are
not equally likely. For example, a “loaded” die is weighted so that certain numbers are
more likely to appear than others. To handle the case of outcomes that are not equally
likely, we assign a probability P(x) to each outcome x. The values P(x) need not all be
the same. We call P a probability function. Throughout this section, we assume that all
sample spaces are finite.

Definition 6.6.1 » A probability function P assigns to each outcome x in a sam-
ple space S a number P(x) so that
0<Plx) <1 forall x € S,

and

ZP(x) =1.

xe$§

The first condition guarantees that the probability of an outcome is nonnegative
and at most 1, and the second condition guarantees that the sum of all the probabilities
is 1—that is, that some outcome will occur when the experiment is performed.

Suppose that a die is loaded so that the numbers 2 through 6 are equally likely to appear,
but that 1 is three times as likely as any other number to appear. To model this situation,
we should have

P(2) = P(3) = P(4) = P(5) = P(6)

and

P(1) = 3P(2).

TThis section can be omitted without loss of continuity.

302 cChapter 6 ¢ Counting Methods and the Pigeonhole Principle

Example 6.6.4

Theorem 6.6.5

Since

1= P(1) + P(2) + P(3) + P(4) + P(5) + P(6)
=3P(2) + P(2) + P(2) + P(2) + P(2) + P(2) = 8P(2),

we must have P(2) = 1/8. Therefore,
1
P(2) =P(3) = P@) =P(5) =P(6) = 3
and

P(1) = 3P(2) = % <

The probability of an event E is defined as the sum of the probabilities of the
outcomes in E.

Definition 6.6.3 » Let E be an event. The probability of E, P(E), is

P(E) =) P().

xeE

Given the assumptions of Example 6.6.2, the probability of an odd number is

31 1 5

PH)+PB)+PO)=-+-+-=-.

(1 +P3B)+PO) ststs=3
Of course, for a fair die (with equally likely probabilities), the probability of an odd
number is 1/2. <

Formulas

We next develop some formulas that are useful in computing probabilities.

Let E be an event. The probability of E, the complement of E, satisfies

P(E) + P(E) = 1.

Proof Suppose that £ = {xi, ..., x;} and E= {Xts1,...,x,}. Then

n

k
P(E)=> Px) and PE)= Y Px).
i=1

i=k+1

Now

k n
P(E)+P(E) =) Px)+ Y P(x)
i=1

i=k+1
=Y Pkx)=1
i=1

The last equality follows from Definition 6.6.1, which states that the sum of the proba-
bilities of all outcomes equals 1. <

Example 6.6.6

Example 6.6.7

Go Online

For more on the
birthday problem, see
g00.gl/WRoK11

Example 6.6.8

6.6 ¢ Discrete Probability Theory 303

Theorenl 6.6.5 is often useful when it is easier to compute P(E) than P(E). After
computing P(E), we may obtain P(E) by subtracting P(E) from 1.

Five microprocessors are randomly selected from a lot of 1000 microprocessors among
which 20 are defective. In Example 6.5.4, we found that the probability of obtaining no
defective microprocessors is 0.903735781. By Theorem 6.6.5, the probability of obtain-
ing at least one defective microprocessor is

1 —0.903735781 = 0.096264219.

Notice how much more complex a direct approach would be to calculate the prob-
ability of obtaining at least one deficient microprocessor. We would have to calculate
the probability of obtaining exactly one deficient microprocessor, then exactly two de-
ficient microprocessors, then exactly three deficient microprocessors, then exactly four
deficient microprocessors, and then exactly five deficient microprocessors; and then sum
the resulting probabilities:

C(20, 1)C(980, 4) + C(20, 2)C(980, 3) + C(20, 3)C(980, 2)
1 C(20, 4)C(980, 1) + C(20, 5)C(980, 0)
C(1000, 5) <

Birthday Problem Find the probability that among n persons, at least two people have
birthdays on the same month and date (but not necessarily in the same year). Assume
that all months and dates are equally likely, and ignore February 29 birthdays.

SOLUTION We let E denote the event “at least two persons have the same birthday.”
Then E is the event “no two persons have the same birthday.” As we shall see, it is easier
to compute P(E) than P(E). We can use Theorem 6.6.5 to obtain the desired probability.

Since all months and dates are equally likely and we are ignoring February 29 birth-
days, the size of the sample space is 365".

The first person’s birthday can occur on any one of 365 days. If no two persons
have the same birthday, the second person’s birthday can occur on any day except the day
of the first person’s birthday. Therefore, the second person’s birthday can occur on any
one of 364 days. Similarly, the third person’s birthday can occur on any one of 363 days.
It follows that the size of the event “no two persons have the same birthday” is

365-364--- (365 —n + 1).

By Theorem 6.6.5, the probability that at least two persons have birthdays on the
same month and date is

| 365-364--- (365 —n+1)
365" '

For n =22, the probability is 0.475695, and for n = 23, the probability is 0.507297.
Thus if n > 23, the probability is greater than 1/2 that at least two persons have birth-
days on the same month and date. Many persons would guess that n would have to be
considerably larger than 23 for the probability to be greater than 1/2. |

If E| and E, are events, the event E| U E, represents the event £ or E, (or both),
and the event E| N E, represents the event E| and E,.

Among a group of students, some take art and some take computer science. A student
is selected at random. Let A be the event “the student takes art,” and let C be the event
“the student takes computer science.” Then A U C is the event “the student takes art or

304 Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

computer science or both,” and A N C is the event “the student takes art and computer
science.” <

The next theorem gives a formula for the probability of the union of two events.
In the case of equally likely outcomes, it is an application of the Inclusion-Exclusion
Principle for two sets (see Theorem 6.1.13).

Theorem 6.6.9 Let E; and E; be events. Then

P(E, UE) = P(E|) + P(Ey) — P(E; N Ey).

Proof Let
E1 = {xl,...,xi}
Ez = {yl,...,yj}
E\NE, ={z1,..., 2},

and assume that each set element is listed exactly one time per set (see Figure 6.6.1).
Then in the list

x]9‘--’xi5yl’-'~7yja

z1, ..., 2x occurs twice. It follows that

i J k
P(E\UE) =Y Px)+ Y POo)— Y Pz)
t=1 t=1 =1

= P(E1) + P(Ey) — P(E1 N Ey).

E E,

Figure 6.6.1 Events E| and E;. The x’s denote the
elements in E1, the y’s denote the elements in E;, and the z’s
denote the elements in E; N E,. The z’s are thus found
twice: once among the x’s and again among the y’s.

Example 6.6.10 Two fair dice are rolled. What is the probability of getting doubles (two dice showing
the same number) or a sum of 67

Corollary 6.6.11

Example 6.6.12

6.6 ¢ Discrete Probability Theory 305

SOLUTION We let E;| denote the event “get doubles” and E, denote the event “get a
sum of 6.” Since doubles can be obtained in six ways,

6 1

Since the sum of 6 can be obtained in five ways [(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)],

5
P(Ey) = 5.

The event E1 N E, is “get doubles and get a sum of 6.” Since this last event can occur
only one way (by getting a pair of 3s),

1
P(E/NEy) = .

By Theorem 6.6.9, the probability of getting doubles or a sum of 6 is

P(E\UE,) = P(E\) + P(Ey) — P(E1 N Ey)
s 5
T 6 36 36 18 <

Events E| and E, are mutually exclusive if £; N E; = @. It follows from Theo-
rem 6.6.9 that if E; and E, are mutually exclusive,

P(E\ U Ey) = P(E)) + P(Ey).

If E,| and E, are mutually exclusive events,

P(Ey UE,) = P(E)) + P(Ey).

Proof Since E, and E, are mutually exclusive events, £} N E, = &. Therefore,
P(E| N E;) = 0. Theorem 6.6.9 now gives

P(E\ U E3) = P(E1) + P(Ey) — P(E| N Ey) = P(Ey) + P(E). <

Two fair dice are rolled. Find the probability of getting doubles or the sum of 5.

SOLUTION We let E| denote the event “get doubles” and E, denote the event “get the
sum of 5.” Notice that £| and E, are mutually exclusive: You cannot get doubles and the
sum of 5 simultaneously. Since doubles can be obtained in six ways,

6 1

Since the sum of 5 can be obtained in four ways [(1, 4), (2, 3), (3, 2), (4, 1)],
P(E,) = 4 1
Y736 9
By Corollary 6.6.11,

P(EyUEy) = P(E) +P(Ey)) =~ +

306

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Example 6.6.14

1,12,1]3,1]|41]51]6,1
1,21 2,213,2]42|52]6,2
1,3123(33|43|53]6,3
1,4 2,4|3,4|44|54]6,4
1,5125(35|45|55]6,5
1,6 | 2,6 | 3,6 | 4,6 | 5,6 | 6,6

Figure 6.6.2 Rolling two fair dice.
Since each outcome is assigned the
value 1/36, the probability of getting a
sum of 10 is 1/12. If at least one die
shows a 5, one of the shaded outcomes
occurs. The shaded outcomes become
the new sample space, and each shaded
outcome is reassigned the value 1/11.
The probability of getting a sum of 10
given that at least one 5 occursis 1/11.

Conditional Probability

Suppose that we roll two fair dice. The sample space consists of all 36 possible outcomes
with each outcome assigned the value 1/36 (see Figure 6.6.2). The probability of getting
a sum of 10 is 1/12, the sum of the values of the outcomes that add up to 10.

Let us modify the example slightly. Suppose that we roll two dice and we are told
that at least one die is 5. Now the probability of getting a sum of 10 is no longer 1/12
because we know that one of the outcomes shown shaded in Figure 6.6.2 has occurred.
Since the 11 outcomes shaded are equally likely, the probability of getting a sum of 10
given that at least one die is 5 is 1/11. A probability given that some event occurred is
called a conditional probability.

We now discuss conditional probabilities in general. We let P(E | F) denote the
probability of E given F. In this situation, F' becomes the new sample space. Since the
values of the outcomes in F originally summed to P(F), we change the value of each
outcome in F by dividing it by P(F) so that the reassigned values sum to 1. The outcomes
that satisfy E given that F occurred are precisely the outcomes in £ N F. Summing the
reassigned values of the outcomes in E N F, we obtain the value of P(E | F):

P(ENF)
P(F)

This discussion motivates the following definition.

Definition 6.6.13 » Let E and F be events, and assume that P(F) > 0. The
conditional probability of E given F is

P(ENF)

PE|F) = PF)

Use Definition 6.6.13 to compute the probability of getting a sum of 10, given that at
least one die shows 5, when two fair dice are rolled.

Example 6.6.15

Example 6.6.17

6.6 ¢ Discrete Probability Theory 307

SOLUTION Let E denote the event “getting a sum of 10,” and let F denote the event
“at least one die shows 5.” The event E N F is “getting a sum of 10 and at least one die
shows 5.” Since only one outcome belongs to £ N F,

1
P(ENF) = -

Since 11 outcomes belong to F (see Figure 6.6.2),

P(F) = 11
- 36"
Therefore,
1
P(ENF) 36 1
PE|F)= ———— =+ = —.
E1F P(F) 1111
36 4

Weather records show that the probability of high barometric pressure is 0.80, and the
probability of rain and high barometric pressure is 0.10. Using Definition 6.6.13, the
probability of rain given high barometric pressure is

P(RNH) 0.10

PR|H) = — —— = —— =0.125,
P(H) 0.80

where R denotes the event “rain,” and H denotes the event “high barometric pressure.”
|

Independent Events

If the probability of event E does not depend on event F in the sense that P(E | F) = P(E),
we say that £ and F' are independent events. By Definition 6.6.13,

P(ENF)
PE|F)=———
P(F)
Thus if £ and F are independent events,
P(ENF)
P(E)=P(E|F) = W

or
P(ENF) = P(E)P(F).

We take this last equation as the formal definition of independent events.

Definition 6.6.16 » Events E and F are independent if

P(ENF) = P(E)P(F).

Intuitively, if we flip a fair coin twice, the outcome of the second toss does not depend
on the outcome of the first toss (after all, coins have no memory). For example, if H is
the event “head on first toss,” and 7 is the event “tail on second toss,” we expect that
events H and T are independent. Use Definition 6.6.16 to verify that H and 7 are indeed
independent.

308

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Example 6.6.18

Example 6.6.19

SOLUTION The event H N T is the event “head on first toss and tail on second toss.”
Thus P(HNT) = 1/4. Since P(H) = 1/2 = P(T), we have

1 1 1
PHNT) = i (5) <§> = P(H)P(T).

Therefore, events H and T are independent. <

Joe and Alicia take a final examination in discrete mathematics. The probability that Joe
passes is 0.70, and the probability that Alicia passes is 0.95. Assuming that the events
“Joe passes” and “Alicia passes” are independent, find the probability that Joe or Alicia,
or both, passes the final exam.

SOLUTION We let J denote the event “Joe passes the final exam” and A denote the
event “Alicia passes the final exam.” We are asked to compute P(J U A).
Theorem 6.6.9 says that

P(JUA) =P(J)+P@A) —PUNA).

Since we are given P(J) and P(A), we need only compute P(J N A). Because the events
J and A are independent, Definition 6.6.16 says that

P(JNA)=PU)PA) = (0.70)(0.95) = 0.665.
Therefore,

P(JUA) =P(J)+ PA) —P(JUNA)=0.70 + 0.95 — 0.665 = 0.985. <

Pattern Recognition and Bayes' Theorem

Pattern recognition places items into various classes based on features of the items.
For example, wine might be placed into the classes premium, table wine, and swill based
on features such as acidity and bouquet. One way to perform such a classification uses
probability theory. Given a set of features F', one computes the probability of a class
given F for each class and places the item into the most probable class; that is, the class C
chosen is the one for which P(C | F) is greatest.

Let R denote class premium, T denote class table wine, and S denote class swill. Suppose
that a particular wine has feature set F' and

P(R|F)=0.2, P(T|F)=0.5, P(S|F)=0.3.

Since class fable wine has the greatest probability, this wine would be classified as table
wine. <

Bayes’ Theorem is useful in computing the probability of a class given a set of
features.

Theorem 6.6.20

Example 6.6.21

6.6 ¢ Discrete Probability Theory 309

Bayes' Theorem
Suppose that the possible classes are Cy, ..., C,. Suppose further that each pair of
classes is mutually exclusive and each item to be classified belongs to one of the
classes. For a feature set F, we have

P(F|G)P(C)
> et P(F | CHP(Cy)

P(C;|F) =

Proof By Definition 6.6.13,

P(C, | F) = P(CiNF)
S O
and again by Definition 6.6.13,
P(FNC)
PF|C) = ——F
S (@)

Combining these equations, we obtain

P(C;|F) = P(C;NF) P(F|C)P(C))
TPy T PR

To complete the proof of Bayes’ Theorem, we need to show that

P(F) = P(F|C)P(C)).
i=1
Because each item to be classified belongs to one of the classes, we have

F=FNCHUFNC)U---UFNC).

Since the C; are pairwise mutually exclusive, the F'N C; are also pairwise mutually ex-
clusive. By Corollary 6.6.11,

P(F)=P(FNC)+PFNCy)+---+PFNC).
Again by Definition 6.6.13,
P(FNC;) =P(F|Cy)P(C)).
Therefore,

P(F) = P(F|C)P(C)),

i=1
and the proof is complete. |
Telemarketing At the telemarketing firm SellPhone, Dale, Rusty, and Lee make calls.

The following table shows the percentage of calls each caller makes and the percentage
of persons who are annoyed and hang up on each caller:

Caller
Dale Rusty Lee
Percent of calls 40 25 35

Percent of hang-ups 20 55 30

310

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Example 6.6.22

Let D denote the event “Dale made the call,” let R denote the event “Rusty made
the call,” let L denote the event “Lee made the call,” and let H denote the event “the
caller hung up.” Find P(D), P(R), P(L), P(H | D), P(H |R),P(H|L), P(D|H), P(R|H),
P(L|H), and P(H).

SOLUTION Since Dale made 40 percent of the calls, P(D) = 0.4. Similarly, from the
table we obtain P(R) = 0.25 and P(L) = 0.35.

Given that Dale made the call, the table shows that 20 percent of the persons hung
up; therefore, P(H | D) = 0.2. Similarly,

P(H|R) = 0.55 and P(H | L) = 0.3.

To compute P(D | H), we use Bayes’ Theorem:

P(H | D)P(D)

P(H|D)P(D) + P(H|R)P(R) + P(H | L)P(L)
(0.2)(0.4)

= (0.2)(0.4) + (0.55)(0.25) + (0.3)(0.35)

P(D|H) =

= 0.248.

A similar computation using Bayes’ Theorem gives P(R|H) = 0.426. Again using
Bayes’ Theorem or noting that

P(D|H) +P(R|H) + P(L|H) = 1,

we obtain P(L | H) = 0.326.
Finally, the proof of Bayes’ Theorem shows that

P(H) = P(H|D)P(D) + P(H|R)P(R) + P(H |L)P(L)

= (0.2)(0.4) + (0.55)(0.25) + (0.3)(0.35) = 0.3225. <

Detecting the HIV Virus The enzyme-linked immunosorbent assay (ELISA) test is
used to detect antibodies in blood and can indicate the presence of the HIV virus. Ap-
proximately 15 percent of the patients at one clinic have the HIV virus. Furthermore,
among those that have the HIV virus, approximately 95 percent test positive on the
ELISA test. Among those that do not have the HIV virus, approximately 2 percent test
positive on the ELISA test. Find the probability that a patient has the HIV virus if the
ELISA test is positive.

SOLUTION The classes are “has the HIV virus,” which we denote H, and “does not
have the HIV virus” (H). The feature is “tests positive,” which we denote Pos. Using this
notation, the given information may be written

P(H) =0.15, P(H)=0.85, P(Pos|H) =095 P(Pos|H) = 0.02.

Bayes’ Theorem gives the desired probability:
P(Pos | H)P(H)
P(Pos | H)P(H) + P(Pos | H)P(H)

_ (0.95)(0.15) 0803
(0.95)(0.15) + (0.02)(0.85) <

P(H | Pos) =

6.6 ¢ Discrete Probability Theory 311

6.6 Review Exercises

1. What is a probability function?

2. If P is a probability function and all outcomes are equally
likely, what is the value of P(x), where x is an outcome?

3. How is the probability of an event defined?

4. If E is an event, how are P(E) and P(E) related? Explain how
the formula is derived.

5. If E| and E; are events, what does the event E; U E, represent?
6. If E| and E; are events, what does the event Ej N E, represent?

7. If Ey and E» are events, how are P(E|UE)), P(E1NE>), P(Ey),
and P(E») related? Explain how the formula is derived.

8. Explain what it means for two events to be “mutually
exclusive.”

9. Give an example of mutually exclusive events.

10. If E; and E, are mutually exclusive events, how are P(E; U
E»), P(E1), and P(E>) related? Explain how the formula is de-
rived.

11. Give an informal, intuitive description of the meaning of the
event E given F.

12. How is the event E given F denoted?

13. Give a formula for the probability of E given F.

14. Explain what it means for two events to be “independent.”
15. Give an example of independent events.

16. What is pattern recognition?

17. State Bayes’ Theorem. Explain how the formula is derived.

Exercises 1-3 refer to Example 6.6.2 in which a die is loaded so
that the numbers 2 through 6 are equally likely to appear, but 1 is
three times as likely as any other number to appear.

1. One die is rolled. What is the probability of getting a 5?

2. One die is rolled. What is the probability of getting an even
number?

3. One die is rolled. What is the probability of not getting a 5?
Exercises 4-9 refer to a die that is loaded so that the numbers 1

and 3 are equally likely to appear and 2, 4, 5, and 6 are equally
likely to appear. However, 1 is three times as likely to appear as 2.

4. One die is rolled. Assign probabilities to the outcomes that
accurately model the likelihood of the various numbers to ap-
pear.

One die is rolled. What is the probability of getting a 3?

One die is rolled. What is the probability of getting a 4?

One die is rolled. What is the probability of not getting a 3?
One die is rolled. What is the probability of getting a 1 or a 4?

° ® A

One die is rolled. What is the probability of getting a 1 or a 4
ora6?

Exercises 10-19 refer to dice that are loaded so that the numbers
2, 4, and 6 are equally likely to appear. 1, 3, and 5 are also equally
likely to appear, but 1 is three times as likely as 2 is to appear.

10. One die is rolled. Assign probabilities to the outcomes that ac-
curately model the likelihood of the various numbers to appear.
11. One die is rolled. What is the probability of getting a 5?

12. One die is rolled. What is the probability of getting an even
number?

13. One die is rolled. What is the probability of not getting a 5?

14. Two dice are rolled. What is the probability of getting doubles?

15. Two dice are rolled. What is the probability of getting a sum
of 7?7

16. Two dice are rolled. What is the probability of getting doubles
or a sum of 67

17. Two dice are rolled. What is the probability of getting a sum
of 6 given that at least one die shows 2?

18. Two dice are rolled. What is the probability of getting a sum
of 6 or doubles given that at least one die shows 2?

19. Two dice are rolled. What is the probability of getting a sum
of 6 or a sum of 8 given that at least one die shows 2?

In Exercises 20-24, suppose that a coin is flipped and a die is
rolled. Let E\ denote the event “the coin shows a tail,” let E»
denote the event “the die shows a 3,” and let E5 denote the event
“the coin shows heads and the die shows an odd number.”

20. List the elements of the event E| or E».
21. List the elements of the event E» and E3.
22. Are Ej and E> mutually exclusive?

23. Are Ej and E3 mutually exclusive?

24. Are E; and E3 mutually exclusive?

25. Six microprocessors are randomly selected from a lot of
100 microprocessors among which 10 are defective. Find
the probability of obtaining no defective microprocessors.

26. Six microprocessors are randomly selected from a lot of
100 microprocessors among which 10 are defective. Find the
probability of obtaining at least one defective microprocessor.

27. Six microprocessors are randomly selected from a lot of
100 microprocessors among which 10 are defective. Find
the probability of obtaining at least three defective micropro-
Cessors.

312

Exercises 28-35 refer to a family with four children. Assume that
it is equally probable for a boy or a girl to be born.

28.
29.
30.

31.

32.

33.

34.

35.

36.

What is the probability of all girls?

What is the probability of exactly two girls?

What is the probability of at least one boy and at least one
girl?

What is the probability of all girls given that there is at least
one girl?

What is the probability of exactly two girls given that there is
at least one girl?

What is the probability of at least one boy and at least one girl
given that there is at least one girl?

Are the events “there are children of both sexes” and “there is
at most one boy”” independent?

Are the events “there is at most one boy” and “there is at most
one girl” independent?

A family has n children. Assume that it is equally probable
for a boy or a girl to be born. For which values of n are the
events “there are children of both sexes” and “there is at most
one girl” independent?

Exercises 37-45 refer to a fair coin that is repeatedly flipped.

37.

38.

39.

40.

41.

42.

44.

45.

46.

If the coin is flipped 10 times, what is the probability of no
heads?

If the coin is flipped 10 times, what is the probability of exactly
five heads?

If the coin is flipped 10 times, what is the probability of exactly
four or five or six heads?

If the coin is flipped 10 times, what is the probability of at
least one head?

If the coin is flipped 10 times, what is the probability of at
most five heads?

If the coin is flipped 10 times, what is the probability of exactly
five heads given at least one head?

. If the coin is flipped 10 times, what is the probability of exactly

four or five or six heads given at least one head?

If the coin is flipped 10 times, what is the probability of at
least one head given at least one tail?

If the coin is flipped 10 times, what is the probability of at
most five heads given at least one head?

Suppose that you buy a lottery ticket containing k distinct
numbers from among {1,2,...,n}, 1 <k < n. To determine
the winning ticket, k balls are randomly drawn without re-
placement from a bin containing » balls numbered 1, 2, .. ., n.
What is the probability that at least one of the numbers on your
lottery ticket is among those drawn from the bin?

Exercises 47-50 ask about the following situation. In a small
charity fundraiser, 70 tickets are sold numbered 1 through 70.
Each person buys one ticket. Later in the evening, 20 numbers
are randomly drawn from among 1 through 70, and those holding
these numbers win modest prizes. Among those buying the tickets
are Maya and Chloe.

47.

48.
49.

52.

54.

55.

56.

58.

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

What is the probability that either Maya or Chloe (or both)
wins a prize?
What is the probability that both Maya and Chloe win prizes?

What is the probability that either Maya or Chloe, but not
both, wins a prize?

. What is the probability that Maya, but not Chloe, wins a prize?

. Prove that Algorithm 4.2.4, which generates random permu-

tations, can potentially output any permutation of the input
and that all outcomes are equally likely.

Mr. Wizard suggests changing the third line of Algorithm
4.2.4, which generates random permutations, to

Swap(ais amnd(l,n))
Show that in Mr. Wizard’s version, the algorithm can po-

tentially output any permutation of the input, but that the
outcomes are not equally likely.

. Find the probability that among n persons, at least two people

have birthdays on April 1 (but not necessarily in the same
year). Assume that all months and dates are equally likely,
and ignore February 29 birthdays.

Find the least n such that among n persons, the probability
that at least two persons have birthdays on April 1 (but not
necessarily in the same year) is greater than 1/2. Assume that
all months and dates are equally likely, and ignore February
29 birthdays.

Find the probability that among n > 3 persons, at least three
people have birthdays on the same month and date (but not
necessarily in the same year). Assume that all months and
dates are equally likely, and ignore February 29 birthdays.

Under the conditions of Exercise 55, find the minimum value
of n for which the probability of at least three people having
birthdays on the same month and date is greater than or equal
to 1/2.

. Suppose that a professional wrestler is selected at random

among 90 wrestlers, where 35 are over 350 pounds, 20 are
bad guys, and 15 are over 350 pounds and bad guys. What is
the probability that the wrestler selected is over 350 pounds
or a bad guy?

Suppose that the probability of a person having a headache
is 0.01, that the probability of a person having a fever given
that the person has a headache is 0.4, and that the probability
of a person having a fever is 0.02. Find the probability that a
person has a headache given that the person has a fever.

Exercises 59-62 refer to a company that buys computers from
three vendors and tracks the number of defective machines. The
following table shows the results.

Vendor
Acme DotCom Nuclear
Percent purchased 55 10 35
Percent defective 1 3 3

6.7 ¢ Binomial Coefficients and Combinatorial Identities

Let A denote the event “the computer was purchased from Acme,”

let

D denote the event “the computer was purchased from Dot-

Com,” let N denote the event “the computer was purchased
from Nuclear,” and let B denote the event “the computer was
defective.”

59.
60.
61.
62.
63.

64.

65.

66.

Find P(A), P(D), and P(N).
Find P(B|A), P(B| D), and P(B|N).
Find P(A | B), P(D | B), and P(N | B).
Find P(B).
In Example 6.6.22, how small would P(H) have to be so that
the conclusion would be “no HIV” even if the result of the test
is positive?
Show that for any events E; and E»,
P(E\ N Ep) > P(E) + P(Ep) — 1.

Use mathematical induction to show thatif £, E», ..., E, are
events, then

P(E\UE,U---UE,) < ZP(E,-).

i=1

If E and F are independent events, are E and F independent?

6.7

67.
68.

69.

313

If E and F are independent events, are E and F independent?

Is the following reasoning correct? Explain.

A person, concerned about the possibility of a bomb on
a plane, estimates the probability of a bomb on a plane to be
0.000001. Not satisfied with the chances, the person computes
the probability of fwo bombs on a plane to be

0.0000012 = 0.000000000001.

Satisfied with the chances now, the person always carries a
bomb on a plane so that the probability of someone else car-
rying a bomb, and thus there being two bombs on the plane,
is 0.000000000001—small enough to be safe.

A track enthusiast decides to try to complete the East-South-
East Marathon. The runner will stop if the marathon is com-
pleted or after three attempts. The probability of completing
the marathon in one attempt is 1/3. Analyze the following
argument that, assuming independence, purportedly shows
that the runner is almost, but not quite, certain to complete the
marathon.

Since the probability of each attempt is 1/3 = 0.3333,
after three attempts the probability of completing the marathon
is 0.9999, which means that the runner is almost, but not quite,
certain to complete the marathon.

Binomial Coefficients and

Combinatorial Identities

At first glance the expression (a4-b)" does not have much to do with combinations; but as
we will see in this section, we can obtain the formula for the expansion of
(a+b)" by using the formula for the number of r-combinations of n objects. Frequently,
we can relate an algebraic expression to some counting process. Several advanced count-
ing techniques use such methods (see [Riordan; and Tucker]).

Go Online

For more on the
binomial theorem, see
g00.gl/WRoK11

(a + b)". Since

(a+b)"=@+b)(a+b)---(a+ D),

The Binomial Theorem gives a formula for the coefficients in the expansion of

(6.7.1)

n factors

the expansion results from selecting either a or b from each of the n factors, multiply-
ing the selections together, and then summing all such products obtained. For example,
in the expansion of (a + b)3, we select either a or b from the first factor (a + b); either
a or b from the second factor (a + b); and either a or b from the third factor (a + b);
multiply the selections together; and then sum the products obtained. If we select a from
all factors and multiply, we obtain the term aaa. If we select a from the first factor,
b from the second factor, and a from the third factor and multiply, we obtain the term
aba. Table 6.7.1 shows all the possibilities. If we sum the products of all the selections,

we obtain

(a+b)?

(a+b)(a+Db)(a+D)
aaa + aab + aba + abb + baa + bab + bba + bbb
a® + a*b + a®’b + ab* + a*b + ab* + ab* + b*

= a® 4 3a*b + 3ab* + b>.

314 Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Theorem 6.7.1

Example 6.7.2

Example 6.7.3

TABLE 6.7.1 m Computing (a + b)3

Selection from Selection from Selection from
First Factor Second Factor Third Factor Product of
(a+b) (a+Db) (a+Db) Selections
a a a aaa = a°
a a b aab = a*b
a b a aba = a*b
a b b abb = ab*
b a a baa = a*b
b a b bab = ab*
b b a bba = ab*
b b b bbb = b*

In (6.7.1), a term of the form " *b* arises from choosing b from k factors and a
from the other n — k factors. But this can be done in C(n, k) ways, since C(n, k) counts
the number of ways of selecting k things from n items. Thus a"~*b* appears C(n, k)
times. It follows that

(a+b)" = Cn, 0)d"b’ + C(n, Ha"'b' + C(n, 2)a"%b*
44+ Cn,n—Da'v"" + Cn, n)ap". (6.7.2)

This result is known as the Binomial Theorem.

Binomial Theorem
If @ and b are real numbers and # is a positive integer, then

(a+b)" = Z C(n, k)d" b~
k=0

Proof The proof precedes the statement of the theorem. <

The Binomial Theorem can also be proved using induction on n (see Exercise 17).
The numbers C(n, r) are known as binomial coefficients because they appear in
the expansion (6.7.2) of the binomial a + b raised to a power.

Taking n = 3 in Theorem 6.7.1, we obtain

(a+b) =C3,0a°b° + C3, Ha*b' + C(3,2)a'b* + C(3, 3)a’b’
= +3d*b + 3ab* + 1. <

Expand (3x — 2y)* using the Binomial Theorem.
SOLUTION If we take @ = 3x, b = —2y, and n = 4 in Theorem 6.7.1, we obtain

Bx —2y)* = (a + b)*
= C4,00a*’ + 4, DHa’b' + €4, 2)d*p*
+C4,3)a'b® + C4,4)a’b*
= C(4,0)(30)*(—2y)" + C4, (3 (—2y)"
+C(4,2)(3x)%*(—2y)* + C(4,3)(3x)" (—2y)°

Example 6.7.4

Example 6.7.5

Figure 6.7.1 Pascal’s triangle.

Go Online

A biography of
Pascal is at
g00.gl/WRoK11

Theorem 6.7.6

6.7 ® Binomial Coefficients and Combinatorial Identites 315

+C4, 430" (—2y)*
= 3% + 4.3 (—2y) + 6327 (—2)%?
+4030 (=2 + (=2)%*
= 81x* — 216x°y 4 216x%y* — 96xy° + 16y*. |

Find the coefficient of a’b* in the expansion of (a + b)°.

SOLUTION The term involving a’b* arises in the Binomial Theorem by taking n = 9
and k = 4:

C(n, k)d"*b* = €9, Ha’b* = 126a°b*.

Thus the coefficient of a’b* is 126. 2 |

Find the coefficient of x*y*z* in the expansion of (x 4 y + z)°.

SOLUTION Since
x+y+2°=@+y+2)x+y+2)---(x+y+2) (nine terms),

we obtain x*y*z* each time we multiply together x chosen from two of the nine terms,
y chosen from three of the nine terms, and z chosen from four of the nine terms. We can
choose two terms for the x’s in C(9, 2) ways. Having made this selection, we can choose
three terms for the y’s in C(7, 3) ways. This leaves the remaining four terms for the z’s.
Thus the coefficient of x%y*z* in the expansion of (x + y + 2)? is

9! 7! 9!

- = 1260. <
20713141 ~ 213141

c0,2)C(1,3) =

We can write the binomial coefficients in a triangular form known as Pascal’s
triangle (see Figure 6.7.1). The border consists of 1’s, and any interior value is the sum
of the two numbers above it. This relationship is stated formally in the next theorem. The
proof is a combinatorial argument. An identity that results from some counting process
is called a combinatorial identity and the argument that leads to its formulation is called
a combinatorial argument.

Cn+1,k)=C(n,k—1)+ C(n, k)

forl <k <n.

Proof LetX be aset with nelements. Choose a ¢ X. Then C(n+ 1, k) is the number
of k-element subsets of ¥ = X U {a}. Now the k-element subsets of Y can be divided
into two disjoint classes:

1. Subsets of ¥ not containing a.

2. Subsets of Y containing a.

The subsets of class 1 are just k-element subsets of X and there are C(n, k) of these. Each
subset of class 2 consists of a (k — 1)-element subset of X together with a and there are
C(n, k — 1) of these. Therefore,

Cn+1,k)y=C(n, k—1)+ C(n, k). |

316

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Example 6.7.7

Example 6.7.8

Example 6.7.9

Theorem 6.7.6 can also be proved using Theorem 6.2.17 (Exercise 18 of this
section).

We conclude by showing how the Binomial Theorem (Theorem 6.7.1) and
Theorem 6.7.6 can be used to derive other combinatorial identities.

Use the Binomial Theorem to derive the equation

Z Cn, k) = 2". (6.7.3)
k=0

SOLUTION The sum is the same as the sum in the Binomial Theorem,

> Cn. kya" v,

k=0

except that the expression @"*b¥ is missing. One way to “eliminate” this expression is
to take a = b = 1, in which case the Binomial Theorem becomes

n n
V'=(141)"=) Coh 1" F1F =) Con, k).
k=0 k=0 <
There are often many different ways to prove a result. In Example 6.7.7, we used
an algebraic technique (the Binomial Theorem) to prove equation (6.7.3). In the next
two examples, we first give a combinatorial proof and then a proof using mathematical
induction of equation (6.7.3).

Prove equation (6.7.3) using a combinatorial argument.

SOLUTION Given an n-element set X, C(n, k) counts the number of k-element subsets
of X. Thus the left side of equation (6.7.3) counts the total number of subsets of X.
But the number of subsets of X is 2" (see Theorem 2.4.6), and equation (6.7.3) follows
immediately. <

Prove equation (6.7.3) using mathematical induction.

SOLUTION The Basis Step (n = 0) is readily verified.
For the Inductive Step, we first assume that equation (6.7.3) is true for n. Using
Theorem 6.7.6, we have

n+1 n
ZC(n—i— 1,k) = Cn + 1,0)+ZC(n+ LE+Cn+1,n+1)
k=0 k=1

=14 [Co.k—1)+ Cn. k)] +1
k=1

=2+ZH:C(n,k—1)+zn:C(n,k)

k=1 k=1

> Cn. k) — C(n.n) > Cn. k) — C(n.0)
k=0 k=0
=24R"—1]4+[2"—1]=2.2" = 2", <

=2+ +

6.7 ® Binomial Coefficients and Combinatorial Identites 317

Example 6.7.10 Use Theorem 6.7.6 to show that

> Cli.ky=Con+1.k+1). (6.7.4)
i=k

SOLUTION We use Theorem 6.7.6 in the form
Cli,k)=C@i+1,k+1)—C@, k+1)
to obtain

Clk,k) + Ctk+1,k) + Clk+2,k) +---+ C(n, k)
=1+Ctk+2,k+1)—=Clk+1,k+1)+Clk+3,k+1)
—Ck+2,k+1)+---+Cn+1,k+1) - Cn, k+1)

=Cn+1,k+1). <
Exercise 51, Section 6.3, shows another way to prove equation (6.7.4).
Example 6.7.11 Use equation (6.7.4) to find the sum 1 + 2+ --- + n.
SOLUTION We may write
1+24---+n=C(, H+C2,H)+---+Cn,1)
=Cn+1,2) by equation (6.7.4)
_(n+Dn
= 7 <
6.7 Review Exercises
1. State the Binomial Theorem. 3. What is Pascal’s triangle?
2. Explain how the Binomial Theorem is derived. 4. State the formulas that can be used to generate Pascal’s triangle.
6.7 Exercises
1. Expand (x + w4 using the Binomial Theorem. 10. (x+y+2)'"°
2. Expand (2c — 3d)> using the Binomial Theorem. 1. wH+x+y+2)"?
10 2
In Exercises 3-9, find the coefficient of the term when the expres- *12- (X +y+2) 7w +x+y+2)
sion is expanded. 13. Find the next row of Pascal’s triangle given the row
4. 11
3oxyh 4y 17 21 35 35 21 7 1
4. 55 2s —n'?
5. 30 (x+y+2)1° 14. (a) Show that C(n, k) < C(n, k+1) ifand onlyifk < (n—1)/2.
6. w2x3y2z5; Qw4+ x+3y+ z)12 (b) Use part (a) to deduce that the maximum of C(n, k) for
7. a2x3; (a+x+c)2(a +x—|—d)3 k=0,1,...,nis C(n, I_I’l/ZJ)
8. a2x3; (a+ax+x)(a +)C)4 15. Prove that
9. &x*; (a+ Jax +x)*(a + x)° m
D (=DFC k) = (=1)"C(n— 1, m)
In Exercises 10—12, find the number of terms in the expansion of k=0

each expression.
forallm,0 <m <n—1.

318

16.

17.
18.
19.

*20.
21.

*22.

23.

24,

25.

26.
27.

28.
*29.

*30.

«31.

Use the Binomial Theorem to show that

n
0="> (=D*C(n. k.
k=0
Use induction on 7 to prove the Binomial Theorem.

Prove Theorem 6.7.6 by using Theorem 6.2.16.

Give a combinatorial argument to show that
C(n,k) =C(n,n—k).

Prove equation (6.7.4) by giving a combinatorial argument.

Find the sum
1:24+2.3+---+(n—1Dn.
Use equation (6.7.4) to derive a formula for
12422+ +n2
Use the Binomial Theorem to show that

n
ZZkC(n, k) = 3"

k=0

Suppose that n is even. Prove that

n/2 n/2
> Cm 2 =2""=>"Cn 2k~ 1).
k=0 k=1
Prove
n__ i n—i—j
(@a+b+c) _0<;j<n4i!j! (n—i—j)!ab]c)

Use Exercise 25 to write the expansion of (x + y + z)°.
Prove
n!
Y= Y
Niln—i—7)!

o<irj<n ! (n—i— !
Prove that 2C(2n — 1, n) = C(2n, n) foralln > 1.
Prove that

n—1
ZC(n —1,)Cn,n—i)=C2n—1,n)
i=0

foralln > 1.

Give a combinatorial argument to prove that

Z C(n, k)% = C(2n, n).

k=0

Prove that for all n, ¢g,and k,0 < g <nand0 < k < n,

q
Cln,q) = Clk.)C(n— k. q—).
i=0

If j > i, define C(i,j) to be 0. Notice that Exercise 30 is a
special case of this result with n replaced by 2n, and k and ¢
replaced by n. Hint: Use a combinatorial argument. Consider
k red balls and n — k blue balls to be distributed into containers
of size g and n — q.

32.

33.

*34.

. A smoothing sequence by, . .

36.

37.

38.

*39.

40.

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Prove
n
n(14+0"" =" Co bk
k=1
Use the result of Exercise 32 to show that

n
n2"! = "kCn, k). (6.7.5)
k=1
Prove equation (6.7.5) by induction.

., bx—1 is a (finite) sequence sat-
isfying b; >0 fori = 0,...,k — 1,and Y5 /b = 1. A
smoothing of the (infinite) sequence ay, az, . .. by the smooth-
ing sequence by, . . ., by_ is the sequence {aj’»} defined by

k—1

/ } :
aj = a,‘+jb,‘.

i=0

The idea is that averaging smooths noisy data.
The binomial smoother of size k is the sequence

Bo Bi—1
2—n,..., 2n

., Bx—1 is row n of Pascal’s triangle (row 0 being

)

where By, ..
the top row).
Let cp,c; be the smoothing sequence defined by
co = ¢ = 1/2. Show that if a sequence a is smoothed by c, the
resulting sequence is smoothed by ¢, and so on k times; then,
the sequence that results can be obtained by one smoothing of
a by the binomial smoother of size k + 1.
In Example 6.1.6 we showed that there are 3" ordered
pairs (A, B) satisfying A CB C X, where X is an n-element
set. Derive this result by considering the cases |A|=0,
|A|=1,...,|A| = n, and then using the Binomial Theorem.

Show that
- 1
> Clk,mH, = Cn+1,m+ 1) (H,M - 7>
= m+ 1

for all n > m, where Hy, the kth harmonic number, is defined
as

Prove that

n 1 n+1n—1 0i
gcm,i): on i1

foralln € Z*.
Prove that

/2]
> Ctn—kk) =1,

k=0
for all n > 1, where f,, is the nth Fibonacci number.

Prove that if p is prime, C(p, i) is divisible by p for all i,
I<i<p-—1.

6.8 & The Pigeonhole Principle 319

41. Prove Fermat'’s little theorem, which states that if p is a prime ~ *43. Prove that for each k € Z"*"“, there exist constants
and a is a positive integer, p divides a’ — a. Hint: (j + 1) — Co, Cq, ..., Ck, depending on k, such that

42,

P —1=3"LCp,bjforallj, 1 <j<a—1.

Prove that

n nk+1

k k k—1
E = + Cyn" + Cy—1n + -4+ Cin+ Cy,
pu k+1

m m n n
(m—{-n) <m+n> Cin+n,m) <1 for all n € Z%*. Hint: Use Strong Induction on k; Exer-

for all m, n € Z*. Hint: Consider the term for k = m in the

ik+l.

cise 70, Section 2.4, with a; = ; and the Binomial

Theorem.

binomial theorem expansion of (x -+ y)”*" for appropriate x

and y.

6.8

The Pigeonhole Principle

Go Online

For more on the
Pigeonhole Principle,
see
goo.gl/WRoK11

Go Online

A biography of
Dirichlet is at
g00.gl/WRoK11

Pigeonhole Principle
(First Form)

Example 6.8.1

The Pigeonhole Principle (also known as the Dirichlet Drawer Principle or the Shoe
Box Principle) is sometimes useful in answering the question: Is there an item having
a given property? When the Pigeonhole Principle is successfully applied, the principle
tells us only that the object exists; the principle will not tell us how to find the object or
how many there are.

The first version of the Pigeonhole Principle that we will discuss asserts that if
n pigeons fly into k pigeonholes and k < n, some pigeonhole contains at least two pi-
geons (see Figure 6.8.1). The reason this statement is true can be seen by arguing by
contradiction. If the conclusion is false, each pigeonhole contains at most one pigeon
and, in this case, we can account for at most k pigeons. Since there are n pigeons and
n > k, we have a contradiction.

¢

Figure 6.8.1 n = 6 pigeons in k = 4 pigeonholes. Some pigeonhole contains at least
two pigeons.

If n pigeons fly into k pigeonholes and k < n, some pigeonhole contains at least two
pigeons.

We note that the Pigeonhole Principle tells us nothing about how to locate the
pigeonhole that contains two or more pigeons. It only asserts the existence of a pigeon-
hole containing two or more pigeons.

To apply the Pigeonhole Principle, we must decide which objects will play the
roles of the pigeons and which objects will play the roles of the pigeonholes. Our first
example illustrates one possibility.

Ten persons have first names Alice, Bernard, and Charles and last names Lee, McDuft,
and Ng. Show that at least two persons have the same first and last names.

320 Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Example 6.8.2

Pigeonhole Principle
(Second Form)

Example 6.8.3

Example 6.8.4

SOLUTION There are nine possible names for the 10 persons. If we think of the persons
as pigeons and the names as pigeonholes, we can consider the assignment of names to
people to be that of assigning pigeonholes to the pigeons. By the Pigeonhole Principle,
some name (pigeonhole) is assigned to at least two persons (pigeons). <

A proof using the Pigeonhole Principle can often be recast as a proof by contra-
diction. (After all, the validity of the Pigeonhole Principle was verified using proof by
contradiction!) Although the proofs are essentially the same, one may be easier than the
other for a particular individual to construct.

Give another proof of the result in Example 6.8.1 using proof by contradiction.

SOLUTION Suppose, by way of contradiction, that no two of the 10 people in Exam-
ple 6.8.1 have the same first and last names. Since there are three first names and three
last names, there are at most nine people. This contradiction shows that there are at least
two people having the same first and last names. <

We next restate the Pigeonhole Principle in an alternative form.

If f is a function from a finite set X to a finite set ¥ and |X| > |Y|, then f(x;) = f(x2)
for some x1, x; € X, x| # x».

The second form of the Pigeonhole Principle can be reduced to the first form by
letting X be the set of pigeons and Y be the set of pigeonholes. We assign pigeon x
to pigeonhole f(x). By the first form of the Pigeonhole Principle, at least two pigeons,
X1, Xy € X, are assigned to the same pigeonhole; that is, f(x;) =f(x,) for some x;, x, €
X , X1 7& X2.

Our next examples illustrate the use of the second form of the Pigeonhole Principle.

If 20 processors are interconnected, show that at least 2 processors are directly connected
to the same number of processors.

SOLUTION Designate the processors 1, 2, ..., 20. Let a; be the number of processors
to which processor i is directly connected. We are to show that a; = a;, for some i # .
The domain of the function a is X = {1, 2, ..., 20} and the range Y is some subset of
{0, 1, ..., 19}. Unfortunately, |X| = [{0, 1, ..., 19}| and we cannot immediately use the
second form of the Pigeonhole Principle.

Let us examine the situation more closely. Notice that we cannot have a; = 0, for
some i, and a; = 19, for some j, for then we would have one processor (the ith processor)
not connected to any other processor while, at the same time, some other processor
(the jth processor) is connected to all the other processors (including the ith processor).

Thus the range Y is a subset of either {0, 1, ..., 18} or {1,2, ..., 19}. In either case,
|Y| < 20 = |X|. By the second form of the Pigeonhole Principle, a; = a;, for some
i # J, as desired. <4

Show that if we select 151 distinct computer science courses numbered between 1 and
300 inclusive, at least two are consecutively numbered.

SOLUTION Let the selected course numbers be

Cy, €y ..., C15]. (6.8.1)

Example 6.8.5

Pigeonhole Principle
(Third Form)

Example 6.8.6

6.8 ¢ The Pigeonhole Principle 321

The 302 numbers consisting of (6.8.1) together with
Cl+1, C2+1, oy C151+1 (682)

range in value between 1 and 301. By the second form of the Pigeonhole Principle, at
least two of these values coincide. The numbers (6.8.1) are all distinct and hence the
numbers (6.8.2) are also distinct. It must then be that one of (6.8.1) and one of (6.8.2)
are equal. Thus we have ¢; = ¢; + 1 and course ¢; follows course c;. <4

An inventory consists of a list of 89 items, each marked “available” or “unavailable.”
There are 50 available items. Show that there are at least two available items in the list
exactly nine items apart. (For example, available items at positions 13 and 22 or positions
69 and 78 satisfy the condition.)

SOLUTION Let a; denote the position of the ith available item. We must show that
a; — a; = 9 for some 7 and j. Consider the numbers

ay, as, e, aso (6.8.3)
and
ar+9, a+9, ..., as+9. (6.8.4)

The 100 numbers in (6.8.3) and (6.8.4) have possible values from 1 to 98. By the second
form of the Pigeonhole Principle, two of the numbers must coincide. We cannot have
two of (6.8.3) or two of (6.8.4) identical; thus some number in (6.8.3) is equal to some
number in (6.8.4). Therefore, a; — a; = 9 for some i and j, as desired. |

We next state yet another form of the Pigeonhole Principle.

Let f be a function from a finite set X into a finite set Y. Suppose that |[X| = n and
|Y| = m. Let k = [n/m]. Then there are at least k distinct values ay, . .., a; € X such
that

fla) =fla) = - = fla).

To prove the third form of the Pigeonhole Principle, we argue by contradiction.

Let Y = {yi, ..., ym}- Suppose that the conclusion is false. Then there are at most k — 1
distinct values x € X with f(x) = y;; there are at most k — 1 distinct values x € X with
f(x) = yo; ...; there are at most k — 1 distinct values x € X with f(x) = y,,. Thus there

are at most m(k — 1) members in the domain of f. But
n

mk—1) <m— =n,
m

which is a contradiction. Therefore, there are at least k distinct values, a;, ..., a; € X,
such that

fla) =f(a) = = fla).

Our last example illustrates the use of the third form of the Pigeonhole Principle.

A useful feature of black-and-white pictures is the average brightness of the picture. Let
us say that two pictures are similar if their average brightness differs by no more than

322 cChapter 6 ¢ Counting Methods and the Pigeonhole Principle

some fixed value. Show that among six pictures, there are either three that are mutually
similar or three that are mutually dissimilar.

SOLUTION Denote the pictures Py, P,, ..
(PlaP2)7 (P17P3)7 (P19P4)9

., Pg. Each of the five pairs
(P1, Ps), (P1, Pe),

has the value “similar” or “dissimilar.” By the third form of the Pigeonhole Principle,
there are at least [5/27 = 3 pairs with the same value; that is, there are three pairs

(P, P), (P,P), (P,Pp)

all similar or all dissimilar. Suppose that each pair is similar. (The case that each pair is
dissimilar is Exercise 14.) If any pair

(P, Py, (Pi, Po), (P, Pr) (6.8.5)

is similar, then these two pictures together with P; are mutually similar and we have
found three mutually similar pictures. Otherwise, each of the pairs (6.8.5) is dissimilar
and we have found three mutually dissimilar pictures. <

6.8 Review Exercises

2. Give an example of the use of each form of the Pigeonhole Prin-
ciple.

1. State three forms of the Pigeonhole Principle.

6.8 Exercises

. Prove that if five cards are chosen from an ordinary 52-card
deck, at least two cards are of the same suit.

. Prove that among a group of six students, at least two received
the same grade on the final exam. (The grades assigned were
chosen from A, B, C, D, F)

. Suppose that each person in a group of 32 people receives a
check in January. Prove that at least two people receive checks
on the same day.

. Prove that among 35 students in a class, at least two have first
names that start with the same letter.

. Prove that if f is a function from the finite set X to the finite

10.

Is it possible to interconnect five processors so that exactly
two processors are directly connected to an identical number
of processors? Explain.

. An inventory consists of a list of 115 items, each marked

“available” or “unavailable.” There are 60 available items.
Show that there are at least two available items in the list ex-
actly four items apart.

. An inventory consists of a list of 100 items, each marked

“available” or “unavailable.” There are 55 available items.
Show that there are at least two available items in the list ex-
actly nine items apart.

set ¥ and |X| > |Y], then f is not one-to-one. *13. Aninventory consists of a list of 80 items, each marked “avail-
. ble” or ilable.” Th 50 available items. Show that

 Sopos tht i it s s skt fom e s 2 P Torare 0l s S

{1,2,3,4,5,6,7,8,9, 10}. Prove that at least two of the six ..

1 t.

have a sum equal to 11. Hint: Consider the partition {1, 10}, Of Stx 16etns apar

(2,91, (3, 8}, (4,7}, {5, 6). 14. Complete Example 6.8.§ by ghowing that if the pairs (Py, P),

Thirteen persons have first names Dennis, Evita, and (P1, Py), (P1, Py) are dissimilar, there are three pictures that
. Ferdinand and last names Oh, Pietro ,Quine ’ and are mutually similar or mutually dissimilar.

Rostenkowski. Show that at least two persons have the same 15. Does the conclusion to Example 6.8.6 necessarily follow if

first and last names. there are fewer than six pictures? Explain.
. Eighteen persons have first names Alfie, Ben, and Cissi and 16. Does the conclusion to Example 6.8.6 necessarily follow if

last names Dumont and Elm. Show that at least three persons there are more than six pictures? Explain.

have the same first and last names. 17. Prove that for any positive integer n, there exists a positive in-

. Professor Euclid is paid every other week on Friday. Show that
in some month she is paid three times.

teger which, when expressed in decimal, consists of at most n
0Os and 1s and is a multiple of n. Hint: Consider the set of the

nintegers, {1, 11, 111, ...}, using only 1s, and the remainders
of these numbers when divided by 7.

Answer Exercises 18-21 to give an argument that shows that if X is
any (n+2)-element subset of {1, 2, ..., 2n+ 1} and m is the great-
est element in X, there exist distinct i and j in X withm = i + J.

For each element k € X — {m}, let
m
k ifk < —
k= 2
ay =
m—k ifk> =
5

18. How many elements are in the domain of a?
19. Show that the range of a is contained in {1, 2, ..., n}.

20. Explain why Exercises 18 and 19 imply that a; = a; for some
i#j.

21. Explain why Exercise 20 implies that there exist distinct i and
jinX withm =i+ .

22. Give an example of an (n + 1)-element subset X of
{1,2,...,2n+ 1} having the property: For no distinct i, j € X
dowehavei+jeX.

Answer Exercises 23-26 to give an argument that proves the
following result.

A sequence ay, ay, . .., a4 ofn2 + 1 distinct numbers
contains either an increasing subsequence of length
n+ 1 or a decreasing subsequence of length n + 1.

Suppose by way of contradiction that every increasing or de-
creasing subsequence has length n or less. Let b; be the length of
a longest increasing subsequence starting at a;, and let c¢; be the
length of a longest decreasing subsequence starting at a;.

23. Show that the ordered pairs (b;, ¢;), i = 1,...,n%> + 1, are
distinct.

24. How many ordered pairs (b;, ¢;) are there?

25. Explainwhy 1 <b; <nand 1 <¢; <n.

26. What is the contradiction?

Answer Exercises 27-30 to give an argument that shows that in a

group of 10 persons there are at least two such that either the dif-

ference or sum of their ages is divisible by 16. Assume that the ages
are given as whole numbers.

Let ay, ..., ajo denote the ages. Let r; = a; mod 16 and let
ri ifl‘l' <8
=
’ 16 —r; ifr; > 8.

27. Show that sy, ..
28. Explain why s; = s; for some j # k.

., $10 range in value from O to 8.

29. Suppose that s; = s for some j # k. Explain why if s; = r;
and s; = ry or s; = 16 — rj and sx = 16 — ry, then 16 divides
aj — dg.

30. Show that if the conditions in Exercise 29 fail, then 16 divides
aj + ag.

*32.

*33.

*34.

*35.

*36.

*37.

38.

39.

40.

41.

Chapter 6.8 Exercises 323

. Show that in the decimal expansion of the quotient of two in-

tegers, eventually some block of digits repeats. Examples:

217
— = 0.32878787....

1
- =0.1666...,
6 01666 660

Twelve basketball players, whose uniforms are numbered 1
through 12, stand around the center ring on the court in an ar-
bitrary arrangement. Show that some three consecutive players
have the sum of their numbers at least 20.

For the situation of Exercise 32, find and prove an estimate for
how large the sum of some four consecutive players’ numbers
must be.

Let f be a one-to-one function from X = {1, 2, ..., n} onto X.
Letf* = fofo---of denote the k-fold composition of f with
itself. Show that there are distinct positive integers i and j such
that fi(x) = f/(x) for all x € X. Show that for some positive
integer k, f*(x) = x for all x € X.

A 3 x 7 rectangle is divided into 21 squares each of which is
colored red or black. Prove that the board contains a nontrivial
rectangle (not 1 x k or k x 1) whose four corner squares are
all black or all red.

Prove that if p ones and g zeros are placed around a circle in
an arbitrary manner, where p, ¢, and k are positive integers
satisfying p > kg, the arrangement must contain at least k
consecutive ones.

Write an algorithm that, given a sequence a, finds the length
of a longest increasing subsequence of a.

A 2k x 2k grid is divided into 4k> squares and four k x k
subgrids. The following figure shows the grid for k = 4:

Show that it is impossible to mark k squares in the upper-left,
k x k subgrid and k squares in the lower-right, k x k subgrid
so that no two marked squares are in the same row, column, or
diagonal of the 2k x 2k grid.

This is a variant of the n-queens problem, which we dis-
cuss in detail in Section 9.3.

Prove that every (n + 1)-element subset of {1,2,...,2n}
contains two distinct integers p and ¢ such that
gcd(p, g) = 1. Hint: Let{ay, ..., ay+1} be an (n+ 1)-element
subset of {1, 2, ..., 2n}. Consider the list ay, ..., ay+1, a1 +
1,...,an+1 +1

Show that if “(n + 1)-element subset” is changed to
“n-element subset” in Exercise 39, the statement is false.

Prove that every (n+ 1)-element subset of {1, 2, ..., 2n} con-
tains two distinct integers p and ¢ such that p divides ¢. Hint:

324

If X is an (n + 1)-element subset of {1, 2, ..., 2n}, write the
numbers in X in the form 2"k, where k is odd.

. Prove Exercise 41 using mathematical induction.

. Show that if “(n + 1)-element subset” is changed to

“n-element subset” in Exercise 41, the statement is false.

. Prove that a planar polygon with n sides, n > 3, has at least

three interior angles each less than 180 degrees. Assume no

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

0-degree interior angles. As an example, in the following fig-
ure angles A, C, and E are each less than 180 degrees.

Chapter 6 Notes

An elementary book concerning counting methods is [Niven, 1965]. References on com-
binatorics are [Brualdi; Even, 1973; Liu, 1968; Riordan; and Roberts]. [Vilenkin] contains
many worked-out combinatorial examples. [Benjamin] contains an outstanding collection of
combinatorial proofs. The general discrete mathematical references [Liu, 1985; and Tucker]
devote several sections to the topics of Chapter 6. [Even, 1973; Hu; and Reingold] treat
combinatorial algorithms. References on probability are [Billingsley; Ghahramani;
Kelly; Ross; and Rozanov]. [Fukunaga; Gose; and Nadler] are texts on pattern

recognition.

Several proofs of Fermat’s little theorem can be found at http://en.wikipedia.org/wiki/
Proofs_of_Fermat’s_little_theorem.

Chapter 6 Review

Section 6.1

1.
2.
3.

Multiplication Principle
Addition Principle
Inclusion-Exclusion Principle

Section 6.2

4.
S.
6.

. r-combination of {x,..

Permutation of xy, ..., x,: ordering of x, ..., x,

n! = number of permutations of an n-element set
r-permutation of xj,...,x,: ordering of r elements of
Xy ooy Xp

. P(n, r): number of r-permutations of an n-element set;

Pn,ry=nn—1)---(n—r+1)

., Xz} (unordered) subset of

{x1,...,x,} containing r elements

. C(n,r): number of r-combinations of an n-element set;

Cn,r) =P, r)/r'=n!/[(n—r)'r]

Section 6.3

10.

11.

Number of orderings of n items of ¢ types with n; identical
objects of type i = n!/[n;!---n,!]

Number of unordered, k-element selections from a
t-element set, repetitions allowed = C(k + ¢ — 1, k)

Section 6.4

12.
13.

Lexicographic order
Algorithm for generating r-combinations: Algorithm 6.4.9

14.

Algorithm for
6.4.16

generating permutations: Algorithm

Section 6.5

. Experiment

. Event

. Sample space

. Probability of an event when all outcomes are equally

likely

Section 6.6

. Probability function

. Probability of an event

. If Eis an event, P(E) + P(E) = 1.

. If E| and E, are events, P(E; U E,) = P(E,) + P(E») —

P(E| N Ey).

. Events E;| and E, are mutually exclusive if £} N E, = &.
. If events E| and E, are mutually exclusive, P(E| U E;) =

P(E)) + P(E).

. If E and F are events and P(F) > 0, the conditional proba-

bility of E given F is P(E | F) = P(E N F)/P(F).

. Events E and F are independent if P(E N F) = P(E)P(F).
. Bayes’ Theorem: If the possible classes are Ci, ...

s Co,
each pair of these classes is mutually exclusive, and each
item to be classified belongs to one of these classes, for a
feature set F we have

PF|C)
i P(FICHP(C)

P(C;|F) =

http://en.wikipedia.org/wiki/Proofs_of_Fermat%E2%80%99s_little_theorem
http://en.wikipedia.org/wiki/Proofs_of_Fermat%E2%80%99s_little_theorem

Section 6.7

28.
29.

Binomial Theorem: (a + b)" = Y ;_, C(n, k)a*b*
Pascal’s triangle: C(n+ 1,k) = C(n, k — 1) + C(n, k)

Chapter 6 Self-Test 325

Section 6.8

30.

Pigeonhole Principle (three forms)

Chapter 6 Self-Test

1. How many eight-bit strings begin with 0 and end with 101?

11.

12.

13.

14.

15.

16.

17.

. How many 3-combinations are there of six objects?

. How many strings can be formed by ordering the letters

ABCDEF if A appears before C and E appears before C?

. How many strings can be formed by ordering the letters

ILLINOIS?

. How many strings can be formed by ordering the letters

ILLINOIS if some [appears before some L?

. How many ways can we select three books each from a dif-

ferent subject from a set of six distinct history books, nine
distinct classics books, seven distinct law books, and four
distinct education books?

. How many functions are there from an n-element set onto

{0, 1}?

. How many six-card hands chosen from an ordinary 52-card

deck contain three cards of one suit and three cards of an-
other suit?

. Expand the expression (s—7)* using the Binomial Theorem.
10.

Show that every set of 15 socks chosen among 14 pairs of
socks contains at least one matched pair.

A seven-person committee composed of Greg, Hwang,
Isaac, Jasmine, Kirk, Lynn, and Manuel is to select a chair-
person, vice-chairperson, social events chairperson, secre-
tary, and treasurer. How many ways can the officers be
chosen if either Greg is secretary or he is not an officer?

A shipment of 100 compact discs contains five defective
discs. In how many ways can we select a set of four com-
pact discs that contains more defective than nondefective
discs?

In how many ways can 12 distinct books be divided among
four students if each student gets three books?

Find the coefficient of x’yz* in the expansion of (2x +
y+2)8%
Use the Binomial Theorem to prove that

n
> o2 =D b = 1.
k=0
How many integer solutions of
X1 +x+x3+x43 =17

satisfy x; > 0,xp > 1, x3 > 2, x4 > 37

Nineteen persons have first names Zeke, Wally, and Linda;
middle names Lee and David; and last names Yu, Zamora,

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

and Smith. Show that at least two persons have the same
first, middle, and last names.

Rotate Pascal’s triangle counterclockwise so that the top
row consists of 1’s. Explain why the second row lists the
positive integers in order 1, 2,

An inventory consists of a list of 200 items, each marked
“available” or “unavailable.” There are 110 available items.
Show that there are at least two available items in the list
exactly 19 items apart.

Let P = {p1, p2, p3, pa, ps} be a set of five (distinct) points
in the ordinary Euclidean plane each of which has integer
coordinates. Show that some pair has a midpoint that has
integer coordinates.

Find the 5-combination that will be generated by
Algorithm 6.4.9 after 12467 if n = 7.

Find the 6-combination that will be generated by Algo-
rithm 6.4.9 after 145678 if n = 8.

Find the permutation that
Algorithm 6.4.16 after 6427135.

Find the permutation that will be generated by Algo-
rithm 6.4.16 after 625431.

A card is selected at random from an ordinary 52-card deck.
What is the probability that it is a heart?

A coin is loaded so that a head is five times as likely to
occur as a tail. Assign probabilities to the outcomes that ac-
curately model the likelihood of the outcomes to occur.

will be generated by

A family has three children. Assume that it is equally prob-
able for a boy or a girl to be born. Are the events “there
are children of both sexes” and “there is at most one girl”
independent? Explain.

Two fair dice are rolled. What is the probability that the sum
of the numbers on the dice is 8?

In the Maryland Cash In Hand game, the contestant chooses
seven distinct numbers among the numbers 1 through 31.
The contestant wins a modest amount ($40) if exactly five
numbers, in any order, match those among the seven dis-
tinct numbers randomly drawn by a lottery representative.
What is the probability of winning $40?

Joe and Alicia take a final examination in C++. The proba-
bility that Joe passes is 0.75, and the probability that Alicia
passes is 0.80. Assume that the events “Joe passes the fi-
nal examination” and “Alicia passes the final examination”
are independent. Find the probability that Joe does not pass.
Find the probability that both pass. Find the probability that
both fail. Find the probability that at least one passes.

326

31.

Trisha, Roosevelt, and José write programs that sched-
ule tasks for manufacturing dog toys. The following table
shows the percentage of code written by each person and
the percentage of buggy code for each person.

Coder
Trisha Roosevelt José
Percent of code 30 45 25
Percent of bugs 3 2 5

32.

Chapter 6 ¢ Counting Methods and the Pigeonhole Principle

Given that a bug was found, find the probability that it was
in the code written by José.

Find the probability of obtaining a bridge hand with 6-5-
2-0 distribution, that is, six cards in one suit, five cards in
another suit, two cards in another suit, and no cards in the
fourth suit.

Chapter 6 Computer Exercises

1.

Write a program that generates all r-combinations of the
elements {1, ..., n}.

. Write a program that generates all permutations of the ele-

ments {1, ..., n}.

. Write a program that generates all r-permutations of the el-

ements {1, ..., n}.

. [Project] Report on algorithms different from those

presented in this chapter for generating combinations and
permutations. Implement some of these algorithms as pro-
grams.

. Write a program that lists all permutations of ABCDEF in

which A appears before D.

6.

10.

Write a program that lists all permutations of ABCDEF in
which C and E are side by side in either order.

. Write a program that lists all the ways that m distinct Mar-

tians and n distinct Jovians can wait in line if no two Jovians
stand together.

. Write a program to compute the Catalan numbers.
. Write a program that generates Pascal’s triangle to level n,

for arbitrary n.

Write a program that finds an increasing or decreasing sub-
sequence of length n + 1 of a sequence of n> + 1 distinct
numbers.

7.1 Introduction
7.2 Solving Recurrence

Chapter 7

RECURRENCE
RELATIONS

This chapter offers an introduction to recurrence relations. Recurrence relations are use-
ful in certain counting problems. A recurrence relation relates the nth element of a se-
quence to its predecessors. Because recurrence relations are closely related to recursive
algorithms, recurrence relations arise naturally in the analysis of recursive algorithms.

Introduction

Relations
7.3 Applications to the
Analysis of Algorithms
7.4 The Closest-Pair
Problem
7.1
Go Online
For more on

recurrence relations, see
goo.gl/P8Y2SF

Consider the following instructions for generating a sequence:

1. Start with 5.
2. Given any term, add 3 to get the next term.

If we list the terms of the sequence, we obtain
5,8,11,14,17,.... (7.1.1)

The first term is 5 because of instruction 1. The second term is 8 because instruction 2
says to add 3 to 5 to get the next term, 8. The third term is 11 because instruction 2 says
to add 3 to 8 to get the next term, 11. By following instructions 1 and 2, we can compute
any term in the sequence. Instructions 1 and 2 do not give an explicit formula for the
nth term of the sequence in the sense of providing a formula that we can “plug » into”
to obtain the value of the nth term, but by computing term by term we can eventually
compute any term of the sequence.

If we denote the sequence (7.1.1) as ay, a, . .., we may rephrase instruction 1 as

a =5 (7.1.2)
and we may rephrase instruction 2 as

a, = ap—1 + 3, n>2. (7.1.3)

TThis section can be omitted without loss of continuity.

327

328 Chapter 7 ® Recurrence Relations

Example 7.1.2

Example 7.1.3

Go Online

For more on
compound interest, see
g00.gl/P8Y2SF

Taking n = 2 in (7.1.3), we obtain a, = a; + 3. By (7.1.2), a; = 5; thus
am=a+3=5+3=8.

Taking n = 3 in (7.1.3), we obtain az = a, + 3. Since a, = 8§,
az=a+3=8+3=11I

By using (7.1.2) and (7.1.3), we can compute any term in the sequence just as we did
using instructions 1 and 2. We see that (7.1.2) and (7.1.3) are equivalent to instructions
1 and 2.

Equation (7.1.3) furnishes an example of a recurrence relation. A recurrence
relation defines a sequence by giving the nth value in terms of certain of its predecessors.
In (7.1.3) the nth value is given in terms of the immediately preceding value. In order for
a recurrence relation such as (7.1.3) to define a sequence, a “start-up” value or values,
such as (7.1.2), must be given. These start-up values are called initial conditions. The
formal definitions follow.

Definition 7.1.1 » Arecurrence relation for the sequence ag, aj, . . . is anequa-
tion that relates a,, to certain of its predecessors ag, aj, . . ., dp—|.
Initial conditions for the sequence ay, ay, . . . are explicitly given values for a finite

number of the terms of the sequence.

We have seen that it is possible to define a sequence by a recurrence relation to-
gether with certain initial conditions. Next we give several examples of recurrence rela-
tions.

The Fibonacci sequence (see the discussion following Algorithm 4.4.6) is defined by the
recurrence relation f,, = f,—1 + f,—2, n > 3, and initial conditions fj = 1, f, = 1. <

A person invests $1000 at 12 percent interest compounded annually. If A, represents the
amount at the end of n years, find a recurrence relation and initial conditions that define
the sequence {A,}.

SOLUTION At the end of n — 1 years, the amount is A,,_;. After one more year, we
will have the amount A, plus the interest. Thus

Ay =Ap1 4+ (0.12)A,_; = 1.12)A,_;, n>1. (7.1.4)

To apply this recurrence relation for n = 1, we need to know the value of Ay. Since
Ao is the beginning amount, we have the initial condition

Ay = 1000. (7.1.5)
<

The initial condition (7.1.5) and the recurrence relation (7.1.4) allow us to compute
the value of A, for any n. For example,

Az = (1.12)A; = (1.12)(1.12)A,
— (1.12)(1.12)(1.12)A0 = (1.12)3(1000) = 1404.93. (7.1.6)

Thus, at the end of the third year, the amount is $1404.93.

Algorithm 7.1.4

Example 7.1.5

7.1 @ |Introducton 329
The computation (7.1.6) can be carried out for an arbitrary value of n to obtain

Ap = (1.12)A,_,

= (1.12)"(1000).

We see that sometimes an explicit formula can be derived from a recurrence relation
and initial conditions. Finding explicit formulas from recurrence relations is the topic of
Section 7.2.

Although it is easy to obtain an explicit formula from the recurrence relation and
initial condition for the sequence of Example 7.1.3, it is not immediately apparent how
to obtain an explicit formula for the Fibonacci sequence. In Section 7.2 we give a method
that yields an explicit formula for the Fibonacci sequence.

Recurrence relations, recursive algorithms, and mathematical induction are closely
related. In