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Preface
This book was prompted by engineers, scientists, and hardware managers who at-
tended short courses held on CCD and CMOS imagers at UCLA Extension, SPIE
conferences, and various seminars. Roughly 20% of course material presented is
typically allocated to the photon transfer characterization technique necessary to
set the stage for other sessions that require its application. Course evaluation forms
generated by students requested more in-depth discussions about the measurement
standard, and they suggested that a reference book on photon transfer be written.
Encouraged by these recommendations, after 25 years of teaching these courses,
this short book finally materialized.

Photon Transfer is designed for a wide audience—from the novice to the ad-
vanced user already familiar with the method. For first-time users, the book’s pri-
mary purpose is to give sufficient guidelines to accurately generate, calibrate, and
understand imaging data products made through the photon transfer method. With
this goal in mind, Chapters 2–4 represent background and theoretical material nec-
essary to fundamentally demonstrate how the technique works. Chapter 5 then
discusses the mechanics of generating photon transfer curves before proceeding
into more-complex photon transfer products.

Experienced users may find the material presented in Chapters 6–12 to be new
territory. As this book was written, the author discovered many new photon-transfer
characteristics, even after more than 30 years of previous study and use (e.g., Chap-
ter 7 on the subject of V/e− nonlinearity, Chapter 8 on flat fielding, and Chapter 9
on the modulation photon transfer curve). It is likely that readers will also discover
new ways to apply photon transfer on future imaging technologies and applications.

The book contains more than 230 figures that present experimental CCD and
CMOS data products and modeling simulations connected to photon transfer. Con-
tents also provide hundreds of relations that support photon transfer theory, simula-
tions, and data presented. For the more-important equations, 57 example problems
are presented to demonstrate how the relations are used. Appendix A presents
a spreadsheet of experimental CMOS data used to exercise the photon transfer
method and produce numerous products and transfer curves. Appendices B–D
present example computer photon transfer simulation programs utilized through-
out the book.
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Chapter 1

Introduction
1.1 Photon Transfer History and Application

Photon transfer (PT) is a valuable testing methodology employed in the design,
operation, characterization, optimization, calibration, specification, and application
of solid state imagers and camera systems (most notably CCD and CMOS). As far
as the author knows, PT began its evolution during the era of vidicon tubes used by
NASA’s early planetary imaging missions. The noise floor for these imagers was
typically constant with light level, although a slight noise elevation near saturation
was occasionally observed. Researchers speculated that the noise increase was
associated with photon shot noise and prepared rudimentary plots to graph the noise
source and better understand its nature. These plots may have been the first photon
transfer curves (PTCs) generated by an area array imager in which noise was plotted
against signal.

In the mid-1970s the charge-coupled device (CCD) began to replace the vidicon
to become the premier imager for NASA and the imaging world.1 This new solid
state imager exhibited a read noise floor considerably lower than that of the vidicon
(40 times less at that time). Photon shot noise was clearly observed, and the title
“shot noise limited” was given to the sensor to signify its ideal performance. At the
same time the CCD and PTC were immediately married. Although the formal name
“photon transfer curve” would come a few years later, the new testing technique
was formally born and would become an important measurement standard for the
imaging community. Today PT is routinely used and continues to evolve along with
the multitude of new imaging technologies in development.

The PT technique is applicable to all imaging disciplines. For example, CCD
and CMOS solid state physicists as well as design and fabrication/process engineers
rely on PT feedback to assist in the development and production of quality imagers.
Table 1.1 lists key sensor performance parameters that are measured and optimized
by PT and the chapters in this book where they are discussed.

Camera companies and their customers also regularly use a PTC for trouble
shooting, characterization, optimization, and calibration purposes. The system level
performance parameters listed in Table 1.2 depend on PT results.
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Table 1.1 Detector performance parameters.

Performance parameter Symbol Unit Chapter
Interacting quantum efficiency QEI interacting photons/

incident photons
2

Quantum efficiency QE e−/incident photons 2
Quantum yield ηi electrons/interacting

photons
2

Fano factor FF 3
Pixel FPN quality factor PN 3
Charge collection efficiency CCE 4
Effective quantum yield ηE e−/photon 4
Sense node capacitance CSN F 4
Sense node gain ASN V/e− 4
Charge capacity SFW e− 5
Dynamic range DR 5
Image lag factor ILAG 5
Read noise σREAD e− rms 5
V/V nonlinearity NL 7
V/e− signal nonlinearity NLS 7
V/e− noise nonlinearity NLN 7
Dark current figure of merit DFM nA/cm2 at 300 K 11
Dark current FPN quality factor DN 11
Dark current nonlinearity NLD 11
Offset fixed pattern noise σOFF e− rms 11
Pixel source follower noise σSF e− rms 11
Reset noise σRESET e− rms 11
Pixel responsivity Re e−/lux-sec 12

Note that the performance parameters listed in Tables 1.1 and 1.2 are specified
in absolute units (e.g., electrons). In contrast, sensor and camera systems that use
relative units to specify performance can be very puzzling. For example, it is im-
possible to discern if a pixel’s charge capacity is satisfactory if it is specified in
output volts. But there is no misunderstanding about a full-well specification given
in electron units. Some parameters may be encountered that fool one’s intuition.
For example, a low read noise voltage generated by a detector may seem to achieve
better signal-to-noise (S/N) performance relative to a higher noise floor. However,
when the same noise is measured in electrons, the higher noise voltage may prove
to be superior (e.g., refer to Chapter 11 on reset noise). The absolute scientific units
provided by PT take the guesswork out of properly specifying performance.

Raw data generated by a camera system are measured in the form of relative
digital numbers, or DNs (i.e., a pixel’s signal is encoded in DN). The DN is phys-
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Table 1.2 Camera system performance parameters.

Performance parameter Symbol Units Chapter
Analog to digital converter (ADC) KADC(e−/DN) e−/DN 4
sensitivity
ADC offset SADC_OFF(DN) DN 4
ADC sensitivity variance σK e−/DN rms 6
ADC noise sensitivity NADC(e−/DN) e−/DN 7
ADC signal sensitivity SADC(e−/DN) e−/DN 7
Flat-fielding quality factor QFF e− 8
Flat-field S/N (S/N)FF 10
Image S/N (S/N)I 10
Maximum image S/N (S/N)I_MAX 10
ADC quantizing noise σADC e− rms 11
System noise σSYS e− rms 11
Absolute flat-field S/N [S/N]L_FF 12
Absolute image S/N [S/N]L_I 12
Minimum detectable luminance LMIN lux 12
Image luminance required for S/N = 10 LQ lux 12

ically meaningless. Therefore, it is essential that a constant be found that converts
DN units to absolute electron units. Deriving this constant may seem like a daunt-
ing task considering the multitude of transfer functions associated with a camera
system, especially if the accuracy required for this constant must sometimes be bet-
ter than 1% for scientific work. Luckily, PT can treat a camera system, no matter
how complex it is, as a black box and determine the desired conversion constant
with very little effort. The user needs only to expose the camera to a light source and
measure the signal and noise output DN responses for a small group of pixels. From
there PT is applied, and almost magically, the desired e−/DN constant is obtained.

Photon transfer is one of the first go/no-go tests performed to determine the
health of a new camera system. Frequently, PTC plots are disappointing on the first
try because a new camera may be filled with problems. PT aids troubleshooting
with routines to identify issues ranging from solid state sensor problems to soft-
ware data acquisition deficiencies. PT keeps everyone honest (including software
engineers!) by providing absolute information each step of the way. Dozens of
PTCs may be generated before a camera can be declared “operational,” and even
more curves to title it “optimized.” But in the end, the efforts will be worthwhile to
ensure that a camera is achieving the most reliable high performance possible.

Fortunately, testers have prior knowledge about what a PTC should look like
before beginning the process. PTC “shape” is dictated by Mother Nature, who her-
self is described by a few PT relations. Many PTCs presented in this text are com-
puter simulated using derived theoretical PT relations (e.g., refer to the appendix for
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example computer programs). Textbook experimental PTCs will precisely follow
simulation results only when a system is in perfect working order as judged by PT.

When executing PT, initially it may seem like a lifetime before good results
materialize. However, as experience is gained with PTC, data will be generated
in short order (experts can generate PTCs in less than a minute). The necessity
for high-speed PT testing is warranted because each camera modification requires
a new e−/DN calibration. For example, when attempting to lower the read noise
through a camera change, the DN noise level must be converted to electrons through
e−/DN in order to verify if the fix worked (recall that a lower DN noise change
could actually mean a higher electron noise level). Similar to peeling an onion,
read noise sources are eliminated one by one through the routine. Therefore, it is
desirable to run PT experiments quickly. PT also enables testers to tweak most
other parameters for optimum performance with a fast turnaround.

The end user will also find PT valuable. For example, generating a PTC will
verify if a camera purchase meets specifications before serious application in the
field takes place. An application may require absolute calibration to measure sig-
nals with very high accuracy (a <1% photometry error is routine for astronomers).
PTCs will demonstrate and confirm that a camera system is stable and reliable.
Image processing algorithms are often applied to remove fixed pattern noise (FPN)
sources to obtain high S/N performance, especially when working with low-contrast
images. PTCs validate that the software and hardware for this important purpose
are in order. As will be shown in Chapter 12, PT is also a valuable tool that joins
commercial photometric and scientific radiometric measurement units.

1.2 Photon Transfer Family

It is remarkable that only two measurements—average signal and rms noise—can
produce the amount of information contained in this book. In addition to the data
products presented in Tables 1.1 and 1.2, different transfer curves can be generated
from the same two parameters for further characterization results. As it turns out,
format is an important factor in extracting the most information from a PTC; there-
fore, specific plotting routines have been invented for this purpose. Collectively,
these routines are called the “photon transfer family.” Tables 1.3–1.17 present the
principal transfer curves contained for the family. By far the most exercised plot is
the classical PTC (Table 1.3) and the variance PTC (Table 1.4). This data will give
the user significant insight about whether a camera system is in proper working
order as well as supply many of the performance parameters listed in Tables 1.1
and 1.2. Note that some PTCs are composed of multiple plots that differentiate
noise sources (grouped as “sets”). Also, PTC data are usually plotted in both DN
and electron units, which produces supplementary information.

Each performance parameter and transfer curve presented in Tables 1.1–1.17
will be encountered in this book, including many others. Theoretical PT relations
are also derived for each curve to support the experimental data taken.
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Table 1.3 Photon transfer curve (PTC).

Set Plots Units Chapter
Set 1 read, shot, FPN (total noise) vs. signal log rms DN vs. log DN 5
Set 1 read, shot noise vs. signal log rms DN vs. log DN 5
Set 1 shot noise vs. signal log rms DN vs. log DN 5
Set 1 FPN vs. signal log rms DN vs. log DN 5
Set 2 read, shot, FPN (total noise) vs. signal log rms e− vs. log e− 5
Set 2 read, shot noise vs. signal log rms e− vs. log e− 5
Set 2 shot noise vs. signal log rms e− vs. log e− 5
Set 2 FPN vs. signal log rms e− vs. log e− 5

Table 1.4 Variance photon transfer curve (VPTC).

Set Plots Units Chapter
Set 1 shot noise variance vs. signal (rms DN)2 vs. DN 5

Table 1.5 V/V nonlinearity.

Set Plots Units Chapter
Set 1 KADC(e−/DN) vs. signal e−/DN vs. log DN 7
Set 2 KADC(e−/DN) vs. signal e−/DN vs. log e− 7

Table 1.6 V/e− nonlinearity.

Set Plots Units Chapter
Set 1 SADC(e−/DN) vs. signal signal e−/DN vs. log DN 7
Set 1 NADC(e−/DN) vs. signal noise e−/DN vs. log DN 7
Set 2 SADC(e−/DN) vs. signal signal e−/DN vs. log e− 7
Set 2 NADC(e−/DN) vs. signal noise e−/DN vs. log e− 7

Table 1.7 Nonlinearity residuals.

Set Plots Units Chapter
Set 1 nonlinearity vs. signal % vs. log DN 7
Set 2 nonlinearity vs. signal % vs. log e− 7

Table 1.8 KADC(e−/DN) histogram.

Set Plots Units Chapter
Set 1 occurrences vs. KADS(e−/DN) occurrences vs. e−/DN 6
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Table 1.9 Quantum yield.

Set Plots Units Chapter
Set 1 quantum yield vs. wavelength e−/interacting photon

vs. wavelength
2

Table 1.10 Flat-fielding photon transfer curve (FFPTC).

Set Plots Units Chapter
Set 1 read, shot, FPN (total noise) vs. signal log rms DN vs. log DN 8
Set 1 read, shot noise vs. signal log rms DN vs. log DN 8
Set 1 read, shot noise vs. signal (after FF) log rms DN vs. log DN 8
Set 2 read, shot noise, FPN vs. signal log rms e− vs. log e− 8
Set 2 read, shot noise (total noise) vs. signal log rms e− vs. log e− 8
Set 2 read, shot noise vs. signal (after FF) log rms e− vs. log e− 8

Table 1.11 Modulation photon transfer curve (MPTC).

Set Plots Units Chapter
Set 1 image modulation vs. signal log rms DN vs. log DN 9
Set 1 read, shot, FPN vs. signal log rms DN vs. log DN 9
Set 1 read, shot noise vs. signal log rms DN vs. log DN 9
Set 2 image modulation vs. signal log rms e− vs. log e− 9
Set 2 read, shot, FPN vs. signal log rms e− vs. log e− 9
Set 2 read, shot noise vs. signal log rms e− vs. log e− 9

Table 1.12 Signal-to-noise transfer curve.

Set Plots Units Chapter
Set 1 read, shot, FPN (total noise) S/N vs. signal log S/N vs. log DN 10
Set 1 read, shot S/N vs. signal log S/N vs. log DN 10
Set 2 read, shot, FPN (total noise) S/N vs. signal log S/N vs. log e− 10
Set 2 read, shot S/N vs. signal log S/N vs. log e− 10

Table 1.13 Flat-fielding signal-to-noise transfer curve.

Set Plots Units Chapter
Set 1 S/N vs. signal (after FF) log S/N vs. log DN 10
Set 2 S/N vs. signal (after FF) log S/N vs. log e− 10
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Table 1.14 Image signal-to-noise transfer curve.

Set Plots Units Chapter
Set 1 Image S/N vs. signal (with FPN) log S/N vs. log DN 10
Set 1 Image S/N vs. signal (without FPN) log S/N vs. log DN 10
Set 2 Image S/N vs. signal (with FPN) log S/N vs. log e− 10
Set 2 Image S/N vs. signal (without FPN) log S/N vs. log e− 10

Table 1.15 Dark transfer curve (DTC).

Set Plots Units Chapter
Set 1 Dark read, shot, FPN (total noise) vs. signal log DN vs. log DN 11
Set 1 Dark read, shot noise vs. signal log DN vs. log DN 11
Set 2 Dark read, shot, FPN (total noise) vs. signal log e− vs. log e− 11
Set 2 Dark read, shot noise vs. signal log e− vs. log e− 11

Table 1.16 Lux transfer curve (LTC).

Set Plots Units Chapter
Set 1 S/N vs. luminance (with FPN) log S/N vs. log lux 12
Set 1 S/N vs. luminance (without FPN) log S/N vs. log lux 12

Table 1.17 Modulation lux transfer curve (MLTC).

Set Plots Units Chapter
Set 1 S/N vs. luminance (with FPN) log S/N vs. log lux 12
Set 1 S/N vs. luminance (without FPN) log S/N vs. log lux 12

1.3 Chapter Review

This section summarizes each chapter in this book:
Chapter 2, Photon Interaction, briefly reviews the photoelectric effect as ap-

plied to semiconductors stimulated with energetic particles. Although varieties of
particles, carriers, and semiconductors can be involved in the PT process, this book
assumes that photons, electrons, and silicon are responsible for generating elec-
tronic images. PT plays a role in measuring the number of photons that interact
photoelectrically with the silicon, a performance parameter referred to as quantum
efficiency (QE). For energetic photons, multiple electrons are generated, a perfor-
mance parameter referred to as quantum yield. This characteristic is important
because a PT response is dependent on photon wavelength, which allows incident
photon energy and related quantum yield to be determined.
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Chapter 3, Photon Transfer Noise Sources, introduces four fundamental noise
sources measured by PT. Two sources, shot noise and Fano noise, are related to
initial photo-carrier generation. Photon shot noise plays a major role in providing
the information necessary to determine the e−/DN conversion constant found by
the PTC. The third noise source, pixel FPN, is present because charge collection
from pixel to pixel is different. Although FPN seems to be insignificant (only
1% pixel nonuniformity is measured for CCD and CMOS detectors), the noise
source dominates the sensor’s dynamic range and has a dramatic limiting effect
on S/N performance. The last noise source, read noise, limits the accuracy for all
measurements made by PT.

Chapter 4, Photon Transfer Theory, presents transfer functions for a typical
camera system with the photon as the input and DN as the output. General PT
equations are derived for the various sensitivity functions internal to the system
that relate DN, volt, electron, and photon measurement units (e.g., e−/DN). We
demonstrate how quantum efficiency, quantum yield, and charge collection effi-
ciency (CCE) are measured by manipulating the sensitivity constants.

Chapter 5, Photon Transfer Curve, reviews camera and software setup require-
ments to perform PT experiments. Experimental data is used to show a step-by-step
procedure used to generate a PTC. The classical PTC is introduced, showing four
distinct noise regimes in the plots (read noise, shot noise, FPN, and full well). PTC
computer simulations are employed to exercise PT equations derived for the plots.
Various performance parameters are then extracted from the PTCs, including the
important e−/DN conversion constant. Common signal processing errors that add
uncertainty to the ideal PTC response are reviewed and demonstrated. An advanced
measuring technique is described that generates a full PTC from a single frame of
data. The variance PTC, an alternate graphing format, is presented to graphically
determine e−/DN in the presence of read noise. The last section of the chapter
includes many sample experimental PTC data products.

Chapter 6, e−/DN Variance, theoretically derives the formulas required to de-
termine the e−/DN constant to a specific degree of accuracy. PTC simulations and
data products verify the precision achieved for the relations presented. The analy-
sis is also applicable to other camera sensitivity parameters that require a desired
degree of accuracy.

Chapter 7, Nonlinearity, discusses V/V gain nonlinearity common to CCD and
CMOS sensors. The problem is quantified by taking a standard PTC data set and
plotting e−/DN as a function of signal. Signal processing algorithms are presented
that remove the nonlinearity problem. This chapter also deals with V/e− nonlinear-
ity, a more serious gain problem associated with CMOS detectors. Detailed analy-
sis presents the impact of V/e− gain nonlinearity on PTC results. The last section
shows that PTC can separate the effects of V/V and V/e− nonlinearity issues when
both problems are present.
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Chapter 8, Flat Fielding, demonstrates a popular image signal processing tech-
nique used to remove FPN in images to achieve shot noise limited performance (the
best possible performance). The chapter begins by demonstrating the mechanics of
the flat-fielding technique through simulation. A general formula is derived that
predicts the resultant noise contained in an image after flat fielding is performed.
Various before and after flat-field simulations are presented that demonstrate the
flat-fielding routine. The PTC is then used to verify expected results.

Chapter 9, Modulation Photon Transfer, derives the response generated by a de-
tector stimulated by a sinusoidal light source. Important results from analysis and
simulations show that the average sinusoidal shot noise and FPN are approximately
equivalent to a uniform light response with the same average signal level. Similar
conclusions are extended to real images. The “modulation PTC” plots image modu-
lation as a function of average signal. An “image modulation constant” is extracted
from the curve, a product of incoming scene contrast and system modulation trans-
fer function (MTF). The parameter is used to quantify image S/N performance in
the following chapter.

Chapter 10, Signal-to-noise Performance, replots PTC data as S/N as a function
of signal. Image S/N plots are generated from modulation PTC data. An important
relation is also derived to show that S/N for an image is the product of the flat-field
S/N and the image modulation constant. Simulated images are presented to demon-
strate that quality images required S/N > 10. Analysis includes S/N improvements
achieved when FPN is removed through flat fielding. The chapter closes by show-
ing S/N improvements made when multiple frames of an image are averaged.

Chapter 11, Read Noise, discusses important noise sources found in CCD and
CMOS cameras that are collectively called the read noise floor. Noise sources
analyzed include pixel source follower noise, sense node reset noise, thermal dark
current noise, ADC quantizing noise, offset FPN, and system noise. Relations are
given for each source and show their unique influence on PTC results.

Chapter 12, Lux Transfer, describes a powerful extension of the PTC that plots
S/N as a function of absolute light level. The LTC is a valuable standard that col-
lects all detector and camera performance parameters into a single performance
curve. Also presented is the “modulation LTC,” an extension of modulation PTC
that plots image S/N as a function of absolute light level. Numerous data prod-
ucts are derived from these two curves, including minimum detectable luminance
level, luminance required for image S/N > 10, and pixel responsivity (e−/lux-sec).
Radiometric and photometric units are married by the LTC.

Appendix A presents tables containing raw experimental data generated by a
CMOS imager. Discussions take the user through a step-by-step process to gener-
ate various PTC results from the data. Appendixes B, C, and D contain MatLab
simulation programs that generate PTCs and LTCs.





Chapter 2

Photon Interaction
2.1 Photoelectric Effect

Photons incident on a semiconductor generate electron-hole pairs through a process
known as the photoelectric absorption effect or simply the photoelectric effect (re-
fer to Fig. 2.1). Once created, the carriers are free to move in the semiconductor
lattice, where they are quickly collected by pixel elements (pixels). The majority of
silicon CCD and CMOS imagers are designed and fabricated to generate electrons
and discard holes through a device ground return. Particles other than photons can
also produce signal carriers by ionizing silicon atoms as they travel through the lat-
tice, including high-energy electrons, protons, ions, etc. Any high-energy particle
that is in a charged state can free primary valence electrons that collide with other
silicon atoms to generate secondary electrons (e.g., refer to Fig. 4.5, which shows
proton ionizing events). For PT discussions in this text, it will be assumed that
photons, electrons, and silicon are responsible for generating electronic pictures.

Figure 2.1(a) shows the photoelectric effect taking place when an interacting
photon has adequate energy to overcome the silicon bandgap energy by remov-
ing a valence electron into the conduction band. Figure 2.1(b) shows an energetic
photon that has extra energy to generate multiple electrons by the conduction band
electron, which is explained in Sec. 2.3. For silicon, the minimum photon en-
ergy requirement to free a valence electron is approximately 1.14 eV, or in terms of
wavelength,

(a) (b)

Figure 2.1 (a) Photoelectric effect where a single electron-hole pair and (b) multiple electron
holes are generated per interacting photon.
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λ =
12,390

hν

, (2.1)

where hν is the energy of the photon (eV), and λ is its wavelength (A).

Example 2.1

What is the corresponding wavelength for a 1.14 eV photon? Calculate the solution
in units of A, nm, μm, and cm.

Solution:
From Eq. (2.1),

λ =
12,390
1.14

= 10, 868A (1086.8 nm, 1.0868 μm,

and 1.0868 × 10−4 cm).

For photon energies less than 1.14 eV, the photoelectric effect does not take
place and the silicon is transparent. Therefore, direct imagery is not possible for
wavelengths beyond 10,868 A.

The photoelectric effect for silicon extends over a very wide photon energy
range, from 1 to 10 keV (10,000 to 1 A). For example, Fig. 2.2 plots the photon
interacting efficiency of silicon as a function of photon energy (eV) and wavelength
(A) for a backside-illuminated silicon detector of 10-μm thickness. As labeled in
the figure, the spectral sensitivity covers the near infrared (IR), visible, ultraviolet
(UV), extreme UV (EUV), and soft x-ray regions. The response is IR-limited by
the silicon bandgap energy and by the photon’s cross-section in the hard x-ray.
Sensitivity at the IR/x-ray edges is solely dependent on the silicon thickness’ ability
to capture incident photons.

Figure 2.2 Broadband interacting QE for a backside illuminated silicon imager as a function
of wavelength and photon energy.
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2.2 Quantum Efficiency

The ability of a semiconductor to produce electrons from incident photons is re-
ferred to as its quantum efficiency (QE)—e−/incident photon—which is defined as

QE = ηiQEI, (2.2)

where ηi is the quantum yield gain (e−/interacting photon) discussed in Sec. 2.3,
and QEI is called the interacting QE. QEI is defined as

QEI =
PI

P
, (2.3)

where P is the average number of incident photons per pixel, and P I is the average
number of interacting photons per pixel. Note that QE can be greater than unity be-
cause of quantum yield gain, whereas QEI is always less than unity. QEI provides
a figure of merit to show the user how well the sensor manufacturer has allowed
incident photons to interact with the semiconductor.

Although QEI data sheets are usually provided by the manufacturer, the per-
formance parameters can also be verified by the user. Figure 2.3 shows a QE test
configuration using a calibrated silicon photodiode that covers a spectral range of
2,500 to 11,000 A. The diode and sensor in question are in close proximity to in-
tercept the same number of incident photons. The illumination shown in the figure
is provided by a 100-W quartz lamp in conjunction with a diffuser to scatter light
uniformly across both devices (monochrometers also can be used to make detailed

Figure 2.3 QE measurement set-up.
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QE measurements). Interference filters are used to filter light and measure QE as
a function of wavelength. QE is determined by comparing responses of the sensor
and standard diode through the relation

QE =
ADS(DN)KADC(e−/DN)QED

PASDtI
, (2.4)

where AD is the active area of a standard photodiode (cm2), QED is the quantum
efficiency of the standard diode, PA is the area of a pixel (cm2), SD is the photo
signal generated by the diode (e−/sec), tI is the exposure or integration time for the
sensor (sec), and KADC(e−/DN) is a constant found through PT that converts the
DN to electron units (refer to Chapter 4). The term QED in Eq. (2.4) is the QE of
the standard diode. These data are often supplied by the manufacturer in the form
of spectral responsivity (ampere/watt) as a function of wavelength. This quantity
can be converted to QED by the equation

QED =
12,390Re

λ
, (2.5)

where Re is the standard diode responsivity (A/W). Figure 2.4 shows a typical
response generated by a silicon photodiode. The responsivity covers the near-UV
(2500 A) to the near IR (11,000 A).

Figure 2.4 Standard silicon-calibrated photodiode used for QE measurement.
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Example 2.2

Determine QE, assuming the following test data and parameters:

S(DN) = 25,000

KADC(e−/DN) = 10

AD = 1 cm2

PA = 4 × 10−6 cm2

QED = 0.75

SD = 6.25 × 1010 e−/sec

tI = 1.5 sec

Solution:
From Eq. (2.4),

QE =
1 × (2.5 × 104) × 10 × 0.75

(4 × 10−6) × (6.25 × 1010) × 1.5
= 0.5.

For backside-illuminated sensors, one can cross-check the appropriate QE and
QEI measurements through the equation

QEI = (1 − RREF)
(
1 − e−(TEPI/LA)

)
, (2.6)

where RREF is the silicon reflection coefficient factor, TEPI is the optical active
thickness of the sensor (typically the epitaxial silicon thickness in μm), and LA is
the silicon photon absorption length (μm). Table 2.1 provides approximate values
for RREF and LA as a function of wavelength.

When the sensor has an antireflection (AR) coating, the QE is approximated
through

QEI = EAR

(
1 − e−(TEPI/LA)

)
, (2.7)

where EAR is the AR efficiency factor, which varies depending on which coating
is used.
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Table 2.1 Approximate values for RREF and LA as a function of wavelength.

Wavelength Absorption Reflection AR Coating
(nm) Length Coefficient Efficiency

(μm) Factor
300 .0065 .63 .46
320 .00851 .58 .47
340 .0115 .58 .48
360 .0286 .60 .72
380 .0667 .55 .8
400 .2 .5 .85
420 .2976 .48 .89
440 .43 .46 .92
460 .5814 .44 .94
480 .7752 .42 .95
500 .9804 .405 .96
520 1.2048 .39 .963
540 1.4265 .38 .962
560 1.6666 .37 .961
580 1.9305 .36 .960
600 2.2472 .355 .959
620 2.5773 .354 .958
640 2.9851 .353 .957
660 3.4722 .352 .956
680 4.0650 .351 .955
700 4.7619 .350 .954
720 5.5555 .349 .953
740 6.4935 .348 .952
760 7.6336 .347 .951
780 8.9285 .346 .950
800 10.5263 .345 .949
820 12.7388 .344 .948
840 15.3846 .343 .947
860 18.6915 .342 .946
880 22.9985 .341 .945
900 28.5714 .340 .944
920 35.08 .338 .943
940 43.47 .336 .942
960 54.34 .334 .941
980 70.42 .332 .941

1000 93.45 .330 .940
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Figure 2.5 QE-modeled response with and without an antireflection coating.

Example 2.3

Plot Eqs. (2.6) and (2.7) using the data supplied in Table 2.1. Assume TEPI = 10
and 25 μm.

Solution:
Figure 2.5 shows the desired QE plots.

The average number of electrons generated per pixel as a function of incident
photons is

S = QEIηiP = ηiPI, (2.8)

where S is the signal (e−).

2.3 Quantum Yield

For silicon, photon energy that ranges from 1.14 to 3.1 eV (11,868–4,000 A) will
generate a single electron. This spectral range covers the near-IR (i.e., 7,000–
11,000 A) and visible (i.e., 4,000–7,000 A) regions. Energies greater than ap-
proximately 3.1 eV will produce multiple electrons because the energetic electron
injected will collide with other silicon atoms and free additional electrons [refer
to Fig. 2.1(b)]. Figure 2.6 presents quantum yield data from a CCD showing that
multiple electron generation begins to take place beyond 4000 A. The critical wave-
length at the onset of the effect is dependent on the internal electric fields within the
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Figure 2.6 Measured quantum yield in the UV by photon transfer.

sensor and therefore varies from sensor to sensor because of processing differences.
Chapter 4 will describe how quantum yield is measured with the PT technique.

The quantum yield gain for interacting photon energies > 10 eV is given by the
relation

ηi =
hν

Ee-h
. (2.9)

This relation in terms of wavelength is

ηi =
12,390
Ee-hλ

, (2.10)

where Ee-h is the energy required to generate an electron-hole pair (which for sil-
icon is approximately 3.65 eV/e− at room temperature). This energy requirement
is greater than the silicon bandgap (i.e., 1.14 eV) because the conservation of mo-
mentum principle requires that some energy transfers to the excitation of the lattice
vibrations and phonons (i.e., heat). Equation (2.9) is valid only for photon energies
> 10 eV. Unfortunately, a simple quantum yield relation for the 3.1–10 eV range is
not possible.

Example 2.4

Find the quantum yield gain for 10 eV and 5.9 keV photons.

Solution:
From Eq. (2.9),

ηi =
10

3.65
= 2.74 e−/interacting photon at 10 eV,

and

ηi =
5900
3.65

= 1620 e−/interacting photon at 5.9 keV.
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Important Points

1. The photoelectric effect for silicon imagers extends over a useful photon energy
range of 1–10,000 eV (1–10,000 A).

2. QE performance is the fraction of the incident photons that interact multiplied
by the quantum yield. Interacting QE is only specified by the percentage of
photons that interact.

3. The quantum yield gain is unity for visible and near-IR light and increases when
the photon energy is > 3.1 eV (4000 A).

4. The PT conversion constant e−/DN is necessary to measure QE, QEI, and ηi.
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Photon Transfer Noise Sources
When photons strike a detector, interactions immediately produce a signal vari-
ance or noise from pixel-to-pixel. This chapter introduces four fundamental noise
sources important to PT work. The first two sources, signal shot noise and Fano
noise, are related to photon interaction. The third noise source, fixed pattern noise,
is associated with pixel-to-pixel sensitivity nonuniformity. The fourth source, read
noise, encompasses all other noise sources that are not dependent on signal strength.
Shot noise increases by the square root of signal, whereas FPN increases propor-
tionally with signal. Fano noise increases by the square root of photon energy (or
quantum yield).

3.1 Photon Shot Noise

Signal shot noise is fundamentally connected to the way photons spatially arrive
on a detector. For example, Fig. 3.1 shows a Monte Carlo simulation where 200
photons are randomly interacting with a 20 × 20 pixel region. As can be seen, the
number of photon interactions varies from zero to four interactions per pixel. The
standard deviation (or rms) for the number of interactions per pixel is called photon
shot noise.

Photon shot noise—a spatially and temporally random phenomenon described
by Bose-Einstein statistics—is expressed by

σSHOT(PI)2 = PI
ehc/λkT

ehc/λkT − 1
, (3.1)

where σSHOT(PI)2 is the interacting photon shot noise variance, h is Planck’s con-
stant (6.626 × 10−34 J-s), λ is the photon wavelength (cm), k is Boltzmann’s con-
stant (1.38 × 10−23 J/K), c is the speed of light (2.99 × 108 m/sec), and T  is
absolute temperature (K).2–4

Figure 3.2 plots Eq. (3.1) as a function of wavelength (μm) and the temperature
of the semiconductor. For wavelengths greater than 10 μm, photons couple with
phonons (i.e., lattice vibrations in a solid) that increase the shot noise. As the
operating temperature is reduced, the semiconductor produces less coupling action
and variance as seen in the plot. However, for silicon detectors this phenomenon
is not observed since the photoelectric effect for wavelengths >1 μm can not take
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Figure 3.1 Monte Carlo simulation showing photons interacting with pixels.

Figure 3.2 Photon shot noise variance as a function of wavelength.

place. Assuming that hc/λ � kT , Eq. (3.1) reduces to the familiar shot noise
relation characteristic of visible imagers as

σSHOT(PI) = P
1/2
I . (3.2)

Photon shot noise is described by the classical Poisson probability distribution,

pi =
P i

I

i!
e−PI , (3.3)

where pi is the probability that there are i interactions per pixel.
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Example 3.1

Find the probability that 0, 1, 2, and 3 photons interact with a pixel, assuming an
average of 1 interacting photon per pixel.

Solution:
From Eq. (3.3):

p0 =
10

0!
e−1 = 0.368 0 photon interactions

p1 =
11

1!
e−1 = 0.368 1 photon interaction

p2 =
12

2!
e−1 = 0.184 2 photon interactions

p3 =
13

3!
e−1 = 0.0613 3 photon interactions

Figure 3.3 shows results from a random number generator governed by Poisson
statistics. The histogram plots occurrences as a function of interacting photons per
pixel, assuming 90,000 pixels and 90,000 interacting photons (i.e., PI = 1). The
resultant distribution follows the Poisson formula given by Eq. (3.3). For example,
33,200 pixels have one photon interaction, whereas 33,070 pixels show no interac-
tions. The results are expanded and plotted in Fig. 3.4 on a log curve that shows six
pixels with seven events.

Figure 3.3 also shows a Gaussian curve to fit data for Example 3.1 that follows

Figure 3.3 Interacting-photons-per-pixel histogram for Fig. 3.1 assuming 1 photon/pixel av-
erage.
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Figure 3.4 Logarithmic histogram for Fig. 3.3.

Figure 3.5 Interacting-photons-per-pixel histogram assuming 3 photons/pixel average.

the relation

pi =
1

(2π)1/2σPI
e−(i−PI)

2/2σ2
PI . (3.4)

A Gaussian distribution approximates a Poisson distribution when the number of
interacting photons per pixel is large. For example, Fig. 3.5 is a histogram plot that
assumes PI = 3, which exhibits a better fit to the Poisson distribution. Figure 3.6
is a histogram for PI = 20 and shows a near-perfect normal distribution.

3.2 Signal Shot Noise

The signal shot noise generated by interacting photons is given by

σSHOT = ηi(PI)1/2, (3.5)

where σSHOT is the signal shot noise (rms e−). Substituting Eq. (2.8) into Eq. (3.5)
yields

σSHOT = (ηiS)1/2. (3.6)
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Figure 3.6 Interacting-photon-per-pixel histogram assuming 20 photons/pixel average.

Equation (3.6) is used extensively throughout this book. The relation will be veri-
fied through simulation in Figs. 3.9–3.11.

Example 3.2

Assume from Example 3.1 that each interacting photon generates an electron. Add
random noise to the response histogram shown in Fig. 3.3 to produce histograms
for the following noise levels: 0.1, 0.2, 0.3, 0.4, and 0.5 e− rms.

Solution:
Figure 3.7 shows the desired histograms. Note that the noise degrades the reso-
lution between electron peaks. Although some CCD and CMOS imagers exhibit
read noise levels slightly less than 1 e−, the noise level is still too high to resolve
single-photon interactions. Is it coincidental that the detector’s noise level is just
shy of doing this?

3.3 Fano Noise
If all the energy of an interacting photon was spent in the production of electron-
hole (e-h) pairs, then there would be no variation in the number of e-h pairs pro-
duced. On the other hand, if the energy was partitioned between breaking covalent
bonds and lattice vibrations, or if phonon production was uncorrelated, Poisson
statistics would apply. But neither is the case in nature. The variance in multiple
electron-hole charge generation, called Fano noise, is empirically described by

σFN = (FFηi)1/2 =
(

FF
hν

Ee-h

)1/2

, (3.7)

where σFN is the Fano noise (e− rms), and FF is referred to as the Fano factor,
which is defined by the variance in the number of electrons generated divided by
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Figure 3.7 Histograms showing influence of different read noise levels on Fig. 3.3.

the average number of electrons generated per interacting photon. The Fano fac-
tor is approximately 0.1 for silicon and is applicable for photon energies greater
than 10 eV.1 Figure 3.8 plots Fano noise as a function of photon energy and wave-
length. Note that Fano noise becomes appreciable in the soft x-ray regime (i.e.,
when greater than the read noise floor of 1 e− rms). Ultra-low read noise CCD and
CMOS imagers and cameras are Fano noise-limited through out the x-ray spectrum
(and are referred to as such).

Example 3.3

Determine the Fano noise, assuming a quantum yield of 1620 e− per interacting
photon (hν = 5.9 keV).

Solution:
From Eq. (3.7),

σFN = (0.1 × 1620)1/2 = 12.7 e−.
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Figure 3.8 Fano noise as a function of photon energy and wavelength.

Figure 3.9 presents a simulation experiment where 90,000 pixels are exposed to
an average photon flux of three interacting photons/pixel with ηi = 10 e−/interacting
photons. Note that the signal peaks that define the Poisson envelope are separated
by 10 e− at locations given by

SPEAK = NPηi, (3.8)

where SPEAK is the signal charge peak level, and NP is the number of multiple
photon interactions per pixel that take place. For example, NP = 4 produces a
signal peak at 40 e−.

The corresponding standard deviation caused by Fano noise about each signal
peak is given by

σFN_PEAK = (NPFFηi)1/2. (3.9)

Figure 3.9 Charge-generated-per-pixel histogram with Fano noise present (ni = 10 e−/
photon, PI = 3 photons/pixel).
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Note that the noise about each peak increases with NP because the Fano noise
for multiple pixel-photon interactions is added in quadrature by (NP)1/2. This
broadening effect is seen in Fig. 3.9, where the separation between signal peaks is
less pronounced. Figure 3.10 shows a similar histogram where the average photon
flux rate is increased from three to 10 interacting photons/pixel. Note that the
signal peaks are unresolved for large NP because of Fano noise. Figure 3.11 shows
how the resolution improves when the quantum yield is increased from 10 to 30
electrons/interacting photon.

When signal shot noise and Fano noise are added in quadrature, the net noise is

σSHOT+FN = (σ2
SHOT + σ2

FN)1/2. (3.10)

Substituting Eqs. (3.6) and (3.7) into Eq. (3.10) yields

σSHOT+FN = (ηi(S + FF))1/2. (3.11)

Figure 3.10 Charge-generated-per-pixel histogram with Fano noise (ni = 10 e−/photon,
PI = 10 photons/pixel).

Figure 3.11 Charge-generated-per-pixel histogram with Fano noise (ni = 30 e−/photon,
PI = 10 photons/pixel).
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Note that relative to signal shot noise, Fano noise is only important when the
number of photon interactions per pixel is very small (i.e., when the average signal
is small). Figure 3.12 shows a PTC plot of σSHOT and σSHOT+FN as a function of
signal and different quantum yields. Fano noise is only significant in the plots when
S < 1 e−. This condition takes place for single photon detection x-ray applications.

Example 3.4

Determine the signal shot noise and Fano noise for the histograms shown in Figs. 3.9–
3.11.

Solution:
From Eqs. (3.6) and (3.7),
Figure 3.9 (ηi = 10, PI = 3)

σSHOT = 10(3)1/2 = 17.32 e−

σFN = (0.1 × 10)1/2 = 1 e−

Figure 3.10 (ηi = 10, PI = 10)

σSHOT = 10(10)1/2 = 31.63 e−

σFN = (0.1 × 10)1/2 = 1 e−

Figure 3.12 PTCs showing Fano noise dominating shot noise for small average signals.
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Figure 3.13 Shot noise versus signal PTCs for different quantum yields.

Figure 3.11 (ηi = 30, PI = 10)

σSHOT = 30(10)1/2 = 95 e−

σFN = (0.1 × 30)1/2 = 1.732 e−

Figure 3.13 plots σSHOT as a function of S and different ηi. Note that for a
given signal level, the signal shot noise increases by the square root of quantum
yield [i.e., Eq. (3.6)].

3.4 Fixed Pattern Noise

After the photoelectric effect takes place, the pixels collect the photoelectrons gen-
erated. The charge collection process is not perfect because some pixels collect
charge more efficiently than others, resulting in pixel-to-pixel sensitivity differ-
ences. The effect generates FPN in an image.1 This noise is called “fixed” because
it is not random—it is spatially the same pattern from image to image.

FPN is defined by the relation

σFPN = PNS, (3.12)

where σFPN is the FPN (rms e−), and PN is the FPN quality factor, which is ap-
proximately 0.01 (1%) for CCD and CMOS sensors.
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PN is one of the first data products produced by a PTC (refer to Chapter 5). It is
measured by the ratio of rms noise to the mean signal for a uniform light stimulus.
For example, a 1% FPN implies that the rms noise is 1% of the mean signal level.

Unlike shot noise, which varies as the square root of signal [i.e., Eq. (3.6)],
FPN is proportional to signal. It is for this reason that FPN for visible and near-
IR applications will dominate signal shot noise over most of a sensor’s dynamic
range. This characteristic will be very important to signal-to-noise performance
discussions in Chapter 10.

Example 3.5

Compare signal shot noise and FPN for a signal level of 2×105 e−. Assume ηi = 1
and PN = 0.05.

Solution:
From Eq. (3.6), the shot noise is

σSHOT = (2 × 105)2 = 447 e−.

From Eq. (3.12), the FPN is

σFPN = (2 × 105) × 0.05 = 10,000 e−.

Figure 3.14 presents a sinusoidal image that possesses maximum and minimum
signal excursions of 200,000 and 0 e−, respectively, assuming PN = 5%. The
images demonstrate the signal-to-noise difference when FPN dominates.

Figure 3.14 Sinusoidal images with and without FPN at the same average signal level.
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FPN and shot noise can be compared by their ratio [i.e., Eqs. (3.12) and (3.6)]
as

σFPN

σSHOT
= PN

(
S

ηi

)1/2

. (3.13)

Figure 3.15 plots this ratio as a function of signal and quantum yield.
The signal level where FPN equals signal shot noise is found by setting

Eq. (3.13) to unity and solving for signal to produce

SSHOT=FPN =
ηi

P 2
N

; (3.14)

or, in terms of photon energy,

SSHOT=FPN =
hν

3.65P 2
N

. (3.15)

Example 3.6

Determine the signal level when σFPN = σSHOT for ηi = 1 and 100. Assume
PN = 0.01.

Solution:
From Eq. (3.14),

SSHOT=FPN =
1

0.012
= 10,000 e−, ηi = 1;

Figure 3.15 FPN/shot noise ratio as a function of signal at different quantum yields.



Photon Transfer Noise Sources 33

and

SSHOT=FPN =
100

0.012
= 106 e−, ηi = 100.

These results are also shown in Fig. 3.15.
Most CMOS and CCD detectors do not exhibit a charge capacity as large as

106 e−. Therefore, x-ray sensors will be dominated by signal shot noise instead of
FPN common to visible detectors (also refer to Fig. 10.3).

As mentioned above, the minimum FPN for CCD and CMOS imagers is ap-
proximately 1% of the signal level. Many other FPN sources contribute to a mea-
surement increase of PN above the ideal. For example, dust particles situated above
pixels block the incoming light and generate additional FPN. A few particulates
within a region of interest can have a dramatic effect on PT statistics. When FPN
noise is limited by this problem, PN represents a measurement of device cleanliness
and not the detector itself. Optical effects such as vignetting, shading, and inter-
ference fringing also fall into the category of FPN sources. For example, Fig. 3.16
shows a 5461 A flat-field image with deep fringes generated by a CCD. The inter-
ference pattern is caused by light reflections between the sensor’s surface and the
optical window, which are nearly perfectly flat to one another. This image exhibits
a FPN of approximately 10%—10 times greater than the ideal pixel-to-pixel FPN
nonuniformity. Fortunately, all FPN sources can be readily removed through the
process of flat fielding (see Chapter 8).

Figure 3.16 Optical interference fringes and dust spots resulting in high FPN.
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3.5 Read Noise

Chapter 11 is devoted to important read noise sources encountered in CCD and
CMOS imagers and camera systems. Read noise is defined as any noise source that
is not a function of signal.

Shot noise, FPN, and Fano noise can be added in quadrature with read noise to
produce the total noise equation,

σTOTAL = (σ2
READ + σ2

FN + σ2
SHOT + σ2

FPN)1/2; (3.16)

or, equivalently,

σTOTAL = (σ2
READ + ηiFF + ηiS + (PNS)2)1/2, (3.17)

where σTOTAL is the total noise (e− rms), and σREAD is the read noise (rms e−).
The four noise sources are Gaussian distributed. The PTCs generated in Chapter 5
plot each noise source separately as a function of signal.

Important Points

1. Shot and Fano noise are fundamentally related to the charge generated by a
photon’s interaction with a semiconductor.

2. Shot noise increases by the square root of the signal and quantum yield, whereas
Fano noise increases by the square root of the quantum yield.

3. Fano noise is observed in PTCs when the number of interacting photons is less
than the number of pixels.

4. FPN is associated with pixel-to-pixel sensitivity differences that increase di-
rectly with signal.

5. The minimum FPN noise achieved by CCD and CMOS imagers is approxi-
mately 1% of the signal level.

6. For wavelengths > 4000 A, FPN begins to dominate shot noise at a signal level
of approximately 10,000 e− (i.e., 1/P 2

N). For wavelengths < 4000 A, shot noise
increases relative to FPN by the quantum yield gain.

7. Read noise encompasses all noise sources that are signal independent.
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Photon Transfer Theory
4.1 Photon Transfer Relation

A functional block diagram for a typical CCD/CMOS camera system is illustrated
in Fig. 4.1. The system shown is described by the six transfer functions related to
the semiconductor, pixel detector, and electronics that process the video signal. The
input to the camera is expressed in units of the average number of incident photons
per pixel (P ), and the final output signal is given as the average DN encoded for
each pixel. The output is related to the input gain relation

S(DN)
P

= QEIηiASNASFACDSAADC, (4.1)

where the individual gain functions are given in Table 4.1.
The signal and shot noise parameters at each point in the block diagram are

listed in Table 4.2.
The gain functions contained in Eq. (4.1) are difficult to measure individually

with good precision (<1% rms), especially those parameters related to the internal
workings of the sensor. The PT method provides us with a solution to find the
overall camera transfer function [Eq. (4.1)] accurately without knowing individual
transfer functions. However, the PT technique is only fully applicable if a detector’s
response is shot noise-limited as explained below. Fortunately, this is the case for
solid state sensors such as CCD and CMOS imagers.

Figure 4.1 Typical solid state camera system showing internal gain functions and signal and
noise parameters.
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Table 4.1 Camera gain functions.

Parameter Gain Function Symbol
Quantum efficiency PI/P QEI

Quantum yield gain S/PI ηi

Sense node gain S(VSN)/S ASN

Source follower gain S(VSF)/S(VSN) ASF

CDS gain S(VCDS)/S(VSF) ACDS

ADC gain S(DN)/S(VCDS) AADC

Table 4.2 Camera signal and noise parameters.

Parameter Average Signal Noise (rms)
Incident photons P σSHOT(P )
Interacting photons PI σSHOT(PI)
Sense node electrons S σSHOT

Sense node voltage S(VSN) σSHOT(VSN)
Source follower voltage S(VSF) σSHOT(VSF)
CDS voltage S(VCDS) σSHOT(VCDS)
ADC signal S(DN) σSHOT(DN)

The general PT formula will now be derived. Figure 4.2 shows a general camera
block diagram where the input signal exhibits shot noise characteristics. That is,
from Eq. (3.2),

σA = A1/2, (4.2)

where A is the mean input signal level, and σA is the input noise standard deviation
(or rms).

Figure 4.2 Black box camera system with a constant K(A/B) used to transfer output signal
(B) and noise (σB) measurements to the input.
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A sensitivity constant defined as K(A/B) relates and transfers output signal
and noise measurements to the input. In other words,

A = BK(A/B) (4.3)

and
σA = σBK(A/B), (4.4)

where B and σB are the measured output mean signal level and noise standard devi-
ation, respectively. Units for output B and input A will be different; generally, A is
specified in absolute physical units that describe shot noise characteristics (photons
and electrons), whereas B is specified in relative nonphysical units generated by an
amplifier or analog-to-digital converter (volt and DN).

At this point in the analysis K(A/B) is unknown. However, substituting Eqs.
(4.3) and (4.4) into Eq. (4.2) and solving for K(A/B) yields the desired result:

K(A/B) =
B

σ2
B

, (4.5)

where K(A/B) is referred to the sensitivity constant of the system. Equation (4.5)
is called the PT relation, an important equation that is the basis of the PT technique.
Note that K(A/B) is simply found by measuring output statistics (i.e., mean and
noise variance) without knowledge of the individual camera transfer functions.

For a given set of measured B and σB output quantities, there is only one unique
value for K(A/B) that will satisfy the special input condition σA = A1/2. It is
also important to note from Eq. (4.5) that σB �= B1/2, because if that were the case,
K(A/B) would be forced to unity. As will be shown later, this would be an ex-
tremely rare setting for a camera system (mere coincidence). Also, it will be shown
that K(A/B) is adjusted to achieve optimum camera performance. K(A/B) is
usually tuned optimally by changing the voltage gain of an amplifier stage (typi-
cally block 5 in Fig. 4.1). Note that increasing the gain between A and B causes
the sensitivity constant K(A/B) to decrease.

It should be emphasized that gain functions are employed when referring the
input of a measuring device to its output (i.e., from left to right in Fig. 4.1). Sen-
sitivity functions are used to transfer output measurements to the input (i.e., from

Table 4.3 Sense node sensitivities (ηi = 1).

Sensitivity Symbol Sensitivity Gain
Parameter
Sense node KSN(e−/VSN) S(VSN)/σSHOT(VSN)2 ASN

Source follower KSF(e−/VSF) S(VSF)/σSHOT(VSF)2 ASNASF

CDS KCDS(e−/VCDS)S(VCDS)/σSHOT(VCDS)2 ASNASFACDS

ADC KADC(e−/DN) S(DN)/σSHOT(DN)2 ASNASFACDSAADC
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Table 4.4 Interacting photon sensitivities (ηi ≥ 1).

Sensitivity Symbol Sensitivity Gain
Parameter

Interacting KSN(PI/e−) S(VSN)/σSHOT(VSN)2 ηi

photon

ADC KADC(PI/DN) S(DN)/σSHOT(DN)2 ηiASNASFACDSAADC

Table 4.5 Incident photon sensitivities (ηi ≥ 1).

Sensitivity Symbol Sensitivity Gain
Parameter

Incident KPI(P/PI) (QEI)−1 QEI

photon

ADC KADC(P/DN) (QEI)−1S(DN)/ QEIηiASNASFACDSAADC

σSHOT(DN)2

right to left in Fig. 4.1). For example, to convert output units to input units, mul-
tiply the output by the sensitivity factor K(A/B). Equation (4.5) can now be ap-
plied to derive the most commonly applied sensitivity camera constants listed in
Tables 4.3–4.5.

4.2 Sense Node Sensitivities

4.2.1 Sense node sensitivity

Figure 4.3 shows the sense node region, common to all CCD and CMOS detectors,
where signal charge is converted to a working voltage and buffered by a source
follower amplifier (i.e., the third block shown in Fig. 4.1). Relationships linking
sense node capacitance, V/e− sense node gain, e−/V sensitivity, and charge and
voltage on this node are related through the differential equation

CSN = q
dS

dVSN
, (4.6)

where CSN is the sense node capacitance (F), VSN is the sense node voltage, S is
the signal (e−), and q is the charge of an electron (1.6 × 10−19C).

Integrating Eq. (4.6) with respect to VSN yields

S =
1
q

∫ VREF

VSN

CSNdVSN, (4.7)

where VREF is the reference voltage on the sense node after the sense node is reset.
The limits of integration are set for negative (i.e., electron) changing signals on the
sense node.
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Figure 4.3 Typical CCD/CMOS sense node region where signal charge and related noise
are converted to a working output voltage.

For linear detectors, CSN is a constant and invariant to signal. Chapter 7 ana-
lyzes the situation when the sense node capacitance varies with signal. Integrating
Eq. (4.7) with a fixed CSN yields

S =
CSN(VREF − VSN)

q
. (4.8)

The sense node voltage is

VSN = VREF − S(VSN), (4.9)

where S(VSN) is the sense node signal voltage.
Equation (4.9) reduces Eq. (4.8) to

S =
CSNS(VSN)

q
. (4.10)

From Eq. (4.10), the sense node sensitivity is

KSN(e−/VSN) =
S

S(VSN)
=

CSN

q
=

1
ASN

. (4.11)

From the PT Eq. (4.5), the shot noise voltage on the sense node is

σSHOT(V SN) =
[

S(VSN)
KSN(e−/VSN)

]1/2

; ηi = 1. (4.12)
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4.2.2 Sense node to source follower sensitivity

The source follower output voltage is given by

VSF = VSF_OFF − S(VSF), (4.13)

where VSF is the source follower output voltage, S(VSF) is the source follower
signal voltage, and VSF_OFF is the DC source follower offset voltage.

The sense node to source follower sensitivity node is found through the PT Eq.
(4.5), which yields

KSF(e−/VSF) =
S(VSF)

σSHOT(VSF)2
; ηi = 1. (4.14)

In terms of sense node sensitivity,

KSF(e−/VSF) =
KSN(e−/VSN)

ASF
, (4.15)

where ASF is the source follower voltage gain.

Example 4.1

Determine KSF(e−/VSF), S, σSHOT, KSN(e−/VSN), ASN, and CSN from the fol-
lowing data measurements made at the output of the source follower:

S(VSF) = 0.016 V

σSHOT(VSF) = 0.000315 V

Assume ASF = 0.9 V/V, and ηi = 1 (i.e., visible or near IR light).

Solution:
Applying Eq. (4.14) to the data yields

KSF(e−/VSF) =
0.016

0.0003152
= 1.61 × 105 e−/V.

Converting the source follower signal voltage to electrons,

S = KSF(e−/VSF) × S(VSF) = 2560 e−.

Converting the source follower noise voltage to electrons,

σSHOT = KSF(e−/VSF) × σSHOT(VSF) = 51 e− rms.

From Eq. (4.15), the sense node sensitivity is

KSN(e−/VSN) = (1.61 × 105) × 0.9 = 1.45 × 105 e−/V.
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The reciprocal of the sense node sensitivity is the sense node gain,

ASN =
1

KSN(e−/VSN)
= 6.9 × 10−6 V/e−.

From Eqs. (4.10) and (4.15), the sense node capacitance is

CSN = (1.6 × 10−19) × 0.9 × (1.45 × 105) = 2.01 × 10−14 F.

It is amazing that only two relative measurements (signal and noise voltages) at
the output of the source follower produce such a wealth of absolute information
through the PT technique.

4.2.3 Sense node to CDS sensitivity

For positive going signals, the CDS output voltage is given by

VCDS = VCDS_OFF + S(VCDS), (4.16)

where VCDS is the CDS output voltage, S(VCDS) is the CDS signal voltage, and
VCDS_OFF is the CDS offset voltage.

The sense node to CDS sensitivity is found through the PT Eq. (4.5), which
yields

KCDS(e−/VCDS) =
S(VCDS)

σSHOT(VCDS)2
; ηi = 1. (4.17)

In terms of sense node sensitivity,

KCDS(e−/VCDS) =
KSN(e−/VSN)

ASFACDS
, (4.18)

where ACDS is the CDS voltage gain.

4.2.4 Sense node to ADC sensitivity

For positive going signals, the ADC output signal is

DNADC = SADC_OFF(DN) + S(DN), (4.19)

where DNADC is the raw ADC output signal, S(DN) is the true signal, and
SADC_OFF(DN) is the ADC offset level.

From PT, the sense node to ADC sensitivity is

KADC(e−/DN) =
S(DN)

σSHOT(DN)2
; ηi = 1. (4.20)

In terms of sense node sensitivity,

KADC(e−/DN) =
KSN(e−/VSN)

ASFACDSAADC
. (4.21)
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Example 4.2

Find KADC(e−/DN), S, σSHOT, KSN(e−/VSN), CSN, and ASN from the following
data taken at the output of the ADC:

DNADC = 10,800

SADC_OFF(DN) = 800

σSHOT(DN) = 50

Assume ASF = 0.9 V/V, ACDS = 10 V/V, AADC = 3250 DN/V, and ηi = 1.
Convert DN signal and noise levels to electrons.

Solution:
From Eq. (4.19), the ADC signal is

S(DN) = 10,800 − 800 = 10,000.

From Eq. (4.20), the ADC sensitivity is

KADC(e−/DN) =
10,000

502
= 4.

Signal and noise in electrons are

S = 4 × 10,000 = 40,000 e−

σSHOT = 40,0001/2 = 200 e−

From Eq. (4.21), the sense node sensitivity is

KSN(e−/VSN) = 0.9 × 10 × 3250 × 4 = 1.17 × 105 e−/V.

From Eq. (4.11), the sense node capacitance is

CSN = (1.6 × 10−19) × 1.17 × 105 = 1.87 × 10−14 F.

The sense node gain is

ASN =
1

KSN(e−/VSN)
=

1
1.17 × 105 e−/V

= 8.54 × 10−6 V/e−.

4.3 Interacting Photon Sensitivities

4.3.1 Interacting photon sensitivity

The interacting photon sensitivity is defined by the quantum yield,

KSN(PI/e−) = (ηi)−1. (4.22)
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4.3.2 Interacting photon to ADC sensitivity

The interacting photon to ADC sensitivity, from PT Eq. (4.5), is

KADC(PI/DN) =
S(DN)

σSHOT(DN)2
for all ηi. (4.23)

Noting that

KADC(PI/DN) =
KADC(e−/DN)

ηi
, (4.24)

and solving for ηi yields

ηi =
KADC(e−/DN)
KADC(PI/DN)

=
KADC(e−/DN)σSHOT(DN)2

S(DN)
. (4.25)

Example 4.3

Find KADC(PI/DN), KADC(e−/DN), ηi, and the photon energy for the following
data taken at the output of the ADC:

ηi = 1 (i.e., visible or near IR stimulus)
S(DN) = 10,000
σSHOT(DN) = 70

ηi > 1 (working wavelength)
S(DN) = 25,000
σSHOT(DN) = 700

Solution:

ηi = 1

From Eq. (4.20),

KADC(e−/DN) =
10,000

702
= 2.04;

ηi > 1.

From Eq. (4.23),

KADC(PI/DN) =
25,000
7002

= 0.051.

From Eq. (4.25), the quantum yield is

ηi =
2.04
0.051

= 40 e−/interacting photon.

The quantum yield corresponds to a photon energy of approximately 40 × 3.65 =
146 eV [Eq. (2.9)].
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4.4 Incident Photon Sensitivities

4.4.1 Incident photon sensitivity

The incident photon sensitivity is equal to the interacting QE found experimentally
[i.e., Eq. (2.4)]:

KPI(P/P I) = QE−1
I . (4.26)

4.4.2 Incident photon to ADC sensitivity

Incident photon to ADC sensitivity is given by

KADC(P/DN) =
KADC(PI/DN)

QEI

for all ηi. (4.27)

Example 4.4

From Example 4.3, find KADC(P/DN) assuming QEI = 0.5.

Solution:
From Eq. (4.27),

KADC(P/DN) =
0.051
0.5

= 0.102.

4.5 Photon Transfer General Derivation

KADC(e−/DN) in terms of output DN statistics can be derived on first principles
starting with the equation

S(DN) =
PI

KADC(e−/DN)
, (4.28)

where unity quantum yield is assumed. The variance of Eq. (4.28) is found by the
propagation of errors formula, i.e.,

σ2
SHOT(DN) =

[
∂S(DN)

∂PI

]2

σ2
PI

+
[

∂S(DN)
∂KADC(e−/DN)

]2

σ2
KADC(e−/DN)

. (4.29)

Performing the differentiation yields

σSHOT(DN)2 =
[

1
KADC(e−/DN)

]2

σ2
PI

+
[ −PI

KADC(e−/DN)2

]2

σ2
KADC(e−/DN)

.

(4.30)
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Assuming σ2
K(e−/DN)

= 0 (i.e., if a sufficient number of pixels are sampled) and

σ2
PI

= PI, Eq. (4.30) reduces to

σSHOT(DN)2 =
[

1
KADC(e−/DN)

]2

PI. (4.31)

Substituting Eq. (4.28) into Eq. (4.31) and solving for KADC(e−/DN) yields

KADC(e−/DN) =
S(DN)

σ2
SHOT(DN)

. (4.32)

4.6 Effective Quantum Yield

4.6.1 Photon event charge sharing

As long as all of the charge generated by a photon is collected by the target pixel
and not by neighboring pixels, Eq. (4.25) can be applied to determine the quantum
yield. However, charge may be shared if the diameter of the initial electron cloud
immediately after a photon interacts is comparable to the pixel size. This effect
may take place for high-energy soft x-rays where cloud diameter increases with
photon energy.

Charge sharing also occurs when a pixel’s active volume is only partially
depleted—that is, regions of the pixel where electric fields do not exist, allowing
electrons to wander into neighboring pixels.1 The charge diffusion problem is pre-
sented in Figs. 4.4 through 4.5. Figure 4.4 shows 5.9-keV soft x-ray photon events
(1620 e−) generated by a CCD that exhibits a significant charge diffusion problem.
Photons that penetrate and interact below the pixel’s depletion region diffuse into
many pixels around the target pixel. Figure 4.5 shows the charge diffusion problem
for three 9-MeV grazing incident protons that interact with the same CCD. The
protons ionize the silicon atoms, generating a signal charge that initially collects in
single pixels along the track. However, as the proton goes deeper into the silicon,
beyond the depletion region, the charge cloud grows in size and occupies more than
a dozen pixels before the proton finally stops.

The quantum yield measured will be lower than expected if electrons from a
photon event are shared among the pixels. The measurement effect is a reduction
of the true, measured shot noise. That is,

σSHOT = (ηES)1/2, (4.33)

where ηE is the effective quantum yield that is measured. If charge sharing takes
place, the effective quantum yield will always be less than the ideal quantum yield
(i.e., ηE < ηi).

Quantum yield is measured more accurately with larger pixel sensors because
the pixels represent a larger target for the charge cloud to collect. Also, pixels can
be summed to improve the measurement (e.g., 2 × 2 sum). This can be achieved
either on-chip for a CCD or off-chip for a CMOS sensor.
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Figure 4.4 Fe-55 1620 e− x-ray photons taken from a CCD that exhibits charge diffusion
and collection problems.

4.6.2 Charge collection efficiency

The effective quantum yield measured represents a figure of merit for how well
pixels collect signal charge. Charge collection efficiency (CCE) is defined as1

CCE =
ηE

ηi
. (4.34)

Figure 4.6 shows a 5.9-keV x-ray quantum yield histogram taken from a CCD
with 15-μm pixels. The array was uniformly illuminated with x-rays (approxi-
mately five x-rays per pixel). The quantum yield was calculated using Eq. (4.25)
for many different 40 × 40 pixel subarrays across the sensor. Data were then dis-
played in the histogram shown. The average effective quantum yield measured was
900 e− significantly less than the ideal quantum yield of 1620 e−. The less-than-
optimum response was caused by field-free silicon that resulted in charge diffu-
sion and sharing as well as some recombination loss within the substrate of the
device.
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Figure 4.5 9 MeV proton events showing charge diffusion characteristics by the same CCD
in Fig. 4.4.

Figure 4.6 CCD Fe-55 histogram showing that the effective quantum yield is less than the
ideal quantum yield because of charge collection problems.
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Example 4.5

Calculate the CCE for the PT results in Fig. 4.6.

Solution:
From Eq. (4.34),

CCE =
900
1620

= 0.556.

Important Points

1. PT relations [e.g., KADC(e−/DN)] are found by measuring the output signal
statistics. When finding the relations, the camera can be treated as a black box
as long as the input exhibits shot noise behavior.

2. Given the output mean and variance quantities, only one unique PT relation
satisfies the input shot noise statistics (i.e., noise = signal1/2).

3. The PT relation allows relative output measurement units (DN, volt) to be con-
verted to absolute input physical units (electrons and photons).

4. The PT relation is used to determine internal camera transfer functions [e.g.,
sense node gain (V/e−) and sense node capacitance].

5. Quantum efficiency and quantum yield performance parameters are found
through the PT relation.

6. Charge sharing between pixels lowers shot noise and quantum yield measure-
ments.

7. The PT relation is used to measure pixel CCE performance of a detector.
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Photon Transfer Curve
5.1 PTC Setup and Generation

This chapter opens by discussing the mechanics of generating a PTC. An ideal PTC
response from a camera system exposed to a uniform light source is illustrated in
Fig. 5.1. For a subarray of pixels, rms noise is plotted as a function of average
signal at different light levels (or exposure times). Four distinct noise regimes
are identified in a PTC. The first regime, read noise, represents the random noise
measured under totally dark conditions, which often includes several different noise
contributors (refer to Chapter 12). As the light illumination is increased, read noise
gives way to photon shot noise, which represents the middle region of the curve.
Since the plot in Fig. 5.1 is on log-log coordinates, shot noise is characterized by
a line with a slope of 1/2. The third regime is associated with pixel FPN, which
produces a characteristic slope of unity because signal and FPN scale together.

The fourth region occurs when the subarray of pixels enters the full-well re-
gime. In this region the noise modulation typically decreases as saturation is ap-
proached. Although shot noise always decreases, for some arrays the FPN may
actually increase (CMOS detectors often exhibit this characteristic). This happens
because some columns of the array may reach full well before others, generating a

Figure 5.1 Ideal total noise PTC illustration showing the four classical noise regimes.
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fixed-pattern, column-to-column noise. In either case, a rapid noise deviation from
the 1/2 or 1 slope curves indicates that full well has taken place. In general, PTC
represents a very sensitive test tool for detecting full-well conditions.

PTC measurements are made initially in computer DN units that will be con-
verted to electron units later. For statistical reasons, it is desirable to include as
many pixels in a PTC measurement as possible. Chapter 6 will show that measure-
ment accuracy is proportional to the square root of the number of pixels sampled.
For example, a 20 × 20 pixel subarray will exhibit a 7% standard deviation for the
data products produced. When greater accuracy is required, additional pixels must
be interrogated (20,000 pixels will yield 1% accuracy).

Usually, the exposure time is varied for a PTC sequence, letting the charge in-
tegration period and frame readout time remain constant. For fast PTC generation,
the exposure time is increased logarithmically to cover the dynamic range more
quickly. Exposure time can be controlled by a mechanical shutter or a pulsed light
source. It is also possible to vary the light intensity and keep the exposure time con-
stant by allowing the computer to control the power supply voltage to a light source.
A low-cost light-emitting diode (LED) is often utilized for start-up systems. LEDs
can be turned “on” and “off” very quickly, which allows for very short exposure
periods (a few microseconds is possible). This feature is advantageous because fast
exposures are necessary to cover the full dynamic range of the sensor. A response
of four to five orders of magnitude may be required for high-end/scientific camera
systems. Several LEDs can be run in parallel to provide an intense flat-field light
source. The color of the LED is not critical for PTC work; however, FPN typi-
cally shows some wavelength dependence. Light uniformity across the subarray of
pixels being sampled needs to be better that 1%, or FPN measurements will be in
error; shot noise is insensitive to field flatness.

The average signal level is plotted only after a fixed average electrical offset
level is removed from the raw pixel values that were initially stored in the computer
(refer to Fig. 5.2). In equation form,

S(DN) =
∑NPIX

i=1 DNi_ADC

NPIX
− SADC_OFF(DN), (5.1)

where S(DN) is the average signal level, DNi_ADC is the raw signal value of the
ith raw video pixel, NPIX is the number of pixels contained in the subarray, and
SADC_OFF(DN) is the ADC offset level [refer to Eq. (4.19)].

Strictly speaking, the absolute offset level represents the signal measured from
a region on the array where electrons are not generated. This includes “background
electrons” generated by sources other than photo-generated charge, such as thermal
dark current. For CCDs, the zero electron level is readily found by “over scanning”
the sensor’s horizontal register. The “virtual pixels” that follow the last horizontal
video pixel of each line represent the best measurement of zero charge and off-
set. The overscanned pixels from each line are stored in a computer along with
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Figure 5.2 Illustration showing the raw signal and offset levels for a row of pixels.

the raw video pixels. The average of the over-scanned pixels represents the de-
sired ADC offset level. The single offset value produced [i.e., SADC_OFF(DN)] is
subtracted from the averaged raw video pixel values to find the true average signal
level, S(DN) [i.e., Eq. (5.1)].

For CMOS sensors, finding a pixel region in absence of electrons is not possible
because all pixels are active. In this case, the offset value is determined from several
dark frames that are averaged to reduce the random noise they contain (read noise,
dark current shot noise, etc.). That is,

OFFi(DN) =
∑NF

j=1 offj(DN)
NF

, (5.2)

where OFFi(DN) is the averaged offset subarray based on j dark frames, offj(DN)
is the jth offset frame, and NF is the number of offset frames averaged.

The resultant offset subarray described by Eq. (5.2) is stored and later sub-
tracted pixel by pixel from subsequent raw video subarrays to obtain the true photo-
generated signal, i.e.,

S(DN) =
∑NPIX

i=1 DNi_ADC − OFFi(DN)
NPIX

, (5.3)

where OFFi(DN) is the offset signal level of the ith offset pixel.
Noise for the ordinate of Fig. 5.1 is found by calculating the standard deviation

(or rms) of the pixel values from the subarray after the offset value is removed.
That is,

σTOTAL(DN) =
{∑NPIX

i=1 [Si(DN) − S(DN)]2

NPIX

}1/2

, (5.4)

where σTOTAL(DN) is the total noise (read noise, shot noise, and FPN) plotted in
Fig. 5.1, and Si(DN) is the signal value of the ith raw video pixel without offset.
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The FPN must be removed to obtain the shot/read noise response. FPN is elimi-
nated by differencing, pixel by pixel, two identical frames taken back-to-back at the
same exposure level, which is illustrated in Fig. 5.3. The standard of the difference
is given by

σΔ(DN) =

[∑NPIX
i=1 (DN1i_ADC − DN2i_ADC)2

NPIX

]1/2

, (5.5)

where DN1i_ADC and DN2i_ADC are the raw signal values of the ith raw video
pixel for the first frame and the second subarrays taken back-to-back.

It is important to divide the result in Eq. (5.5) by 21/2 because random noise
increases by this amount: when two identical frames are either subtracted (as in
this case) or added, the random noise component of the resultant frame increases
by 21/2. Therefore, the true random noise from the differencing process is

σREAD+SHOT(DN) =
σΔ

21/2
, (5.6)

where σREAD+SHOT(DN) is the read noise and shot noise.

Figure 5.3 Illustration showing how FPN is removed by subtracting two back-to-back frames.

5.2 PTC Family

Individual PTCs for each noise component are typically plotted as a family (refer
to Fig. 5.4). For example, from the PT Eq. (4.20), the shot noise is given by

σSHOT(DN) =
[

S(DN)
KADC(e−/DN)

]1/2

. (5.7)

From Eq. (3.12), the FPN is given as

σFPN(DN) = PNS(DN). (5.8)

The total noise shown in Fig. 5.1, which includes read noise, shot noise, and
FPN, is found by the quadrature sum of the individual noise sources:

σTOTAL(DN) =
{

σREAD(DN)2 +
S(DN)

KADC(e−/DN)
+ [PNS(DN)]2

}1/2

. (5.9)
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Figure 5.4 Classical PTC set plotted in DN units showing various data products.

Shot and read noise are separated from total noise by

σSHOT+READ(DN) =
[
σTOTAL(DN)2 − σFPN(DN)2

]1/2
. (5.10)

Shot noise is separated from σSHOT+READ(DN) by

σSHOT(DN) =
[
σSHOT+READ(DN)2 − σREAD(DN)2

]1/2
. (5.11)

The next two examples demonstrate how σTOTAL(DN), σREAD(DN),
σSHOT(DN), and σFPN(DN) are plotted as a family to form the “classical PTC
set.”

Example 5.1

Using the equations above, generate PTCs for σTOTAL(DN), σREAD(DN),
σSHOT(DN), and σFPN(DN) as a function of S(DN). Validate KADC(e−/DN) for
a single point on the shot noise curve. Also confirm PN using a single point on the
FPN curve. Determine the sensor’s dynamic range. On a separate graph, plot each
noise source in electron units. Assume σREAD(DN) = 3.33 DN, KADC(e−/DN) =
1.5, ηi = 1 e−/photon, PN = 0.02 (2%), and a charge capacity of SFW(DN) =
233,000 DN.

Solution:
From Eqs. (5.7) and (5.8), the shot noise and FPN are

σSHOT(DN) =
[
S(DN)

1.5

]1/2

and

σFPN(DN) = 0.02 × S(DN).
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From Eq. (5.9), the total noise is given by

σTOTAL(DN) =
{

3.332 +
S(DN)

1.5
+ [0.02 × S(DN)]2

}1/2

.

Each noise source is plotted in Fig. 5.4. The read noise, shot noise, and FPN show
slopes of 0, 1/2, and unity, respectively.

KADC(e−/DN) is calculated from a single data point on the shot noise curve
shown in Fig. 5.4. For example, a signal level of 10,000 DN corresponds to a shot
noise level of approximately 82 DN. From Eq. (4.20),

KADC(e−/DN) =
10,000

822
= 1.5.

The FPN quality factor, PN, is found from a single data point on the FPN curve and
by applying Eq. (5.8). For example, a signal level of 10,000 DN corresponds to a
FPN of 200 DN to produce a PN of

PN =
200

10,000
= 0.02 (2%).

The PTC shows that the shot and FPN noise are rapidly turning over at approxi-
mately 233,000 DN, indicating the full-well condition. The corresponding charge
capacity in electron units is

SFW = 233,000 DN × 1.5 e−/DN = 350,000 e−,

and the read noise in electron is

σREAD = 3.3 DN × 1.5 e−/DN = 5 e−.

The dynamic range is defined as the ratio of full well to read noise, which yields

DR =
SFW

σREAD
=

350,000
5

= 70,000.

The dynamic range can also be given in db units by

DR(db) = 20 × log10(DR) = 20 × log(70,000) = 97.

Figure 5.5 converts the PTCs shown in Fig. 5.4 into units of electrons using
KADC(e−/DN) = 1.5. Note that the FPN curve does not shift during the con-
version process, as does the shot noise curve. Also, the shot noise tracks the square
root of signal (i.e., σSHOT = S1/2), which is not the case for the DN shot noise
plot (i.e., σSHOT(DN) �= S(DN)1/2).
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Figure 5.5 Classical PTC data set plotted in electron units.

KADC(e−/DN) can also be found graphically by extending the slope 1/2 shot
noise line back to the signal axis as shown in Figs. 5.1 and 5.4. The signal intercept
represents the value KADC(e−/DN) [i.e., KADC(e−/DN) = S(DN)]. This result
is proved by first taking the logarithm of Eq. (4.20) to produce

log KADC(e−/DN) = log S(DN) − 2 log σSHOT(DN); (5.12)

letting σSHOT(DN) = 1 and solving for KADC(e−/DN) yields

log KADC(e−/DN) = log S(DN) − 2 log 1 = log S(DN); (5.13)

and taking the antilog of both sides yields

KADC(e−/DN) = S(DN). (5.14)

Also note that the FPN curve intercept on the signal axis is equal to 1/PN. This is
shown by taking the logarithm of Eq. (5.8) to produce

log σFPN(DN) = log PN + log S(DN). (5.15)

Letting σFPN(DN) = 1 and solving for PN yields

PN =
1

S(DN)
. (5.16)

KADC(e−/DN) and PN are both graphically determined in Figs. 5.1 and 5.4.

Example 5.2

From the data table below, generate PTCs for σTOTAL(DN), σREAD+SHOT(DN),
σSHOT(DN), and σFPN(DN). Plot the results in DN units. Determine
KADC(e−/DN), PN, σREAD, SFW, and dynamic range.
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Raw Offset Signal Total Δ Shot FPN
signal SADC_OFF S(DN) Noise Noise Noise σFPN(DN)
DNADC (DN) σTOTAL (DN) σSHOT

(DN) (DN)
1.03E+02 1.02E+02 1.00E+00 4.95E+00 5.08E+00 8.73E−01 2.00E−02
1.04E+02 1.02E+02 1.62E+00 5.26E+00 5.18E+00 1.35E+00 3.20E−02
1.05E+02 1.02E+02 2.63E+00 4.93E+00 4.95E+00 7.16E−01 5.30E−02
1.06E+02 1.02E+02 4.27E+00 5.24E+00 5.20E+00 1.41E+00 8.50E−02
1.09E+02 1.02E+02 6.92E+00 5.36E+00 5.17E+00 1.30E+00 1.38E−01
1.13E+02 1.02E+02 1.12E+01 5.56E+00 5.33E+00 1.86E+00 2.24E−01
1.20E+02 1.02E+02 1.82E+01 6.33E+00 6.15E+00 3.58E+00 3.64E−01
1.32E+02 1.02E+02 2.95E+01 6.39E+00 6.51E+00 4.17E+00 5.90E−01
1.50E+02 1.02E+02 4.79E+01 7.87E+00 7.93E+00 6.16E+00 9.57E−01
1.80E+02 1.02E+02 7.76E+01 9.19E+00 8.96E+00 7.44E+00 1.55E+00
2.28E+02 1.02E+02 1.26E+02 1.08E+01 1.05E+01 9.22E+00 2.52E+00
3.06E+02 1.02E+02 2.04E+02 1.36E+01 1.27E+01 1.16E+01 4.08E+00
4.33E+02 1.02E+02 3.31E+02 1.76E+01 1.57E+01 1.49E+01 6.62E+00
6.39E+02 1.02E+02 5.37E+02 2.23E+01 1.95E+01 1.89E+01 1.07E+01
9.73E+02 1.02E+02 8.71E+02 2.98E+01 2.46E+01 2.41E+01 1.74E+01
1.51E+03 1.02E+02 1.41E+03 4.27E+01 3.06E+01 3.02E+01 2.83E+01
2.39E+03 1.02E+02 2.29E+03 5.92E+01 3.83E+01 3.80E+01 4.58E+01
3.82E+03 1.02E+02 3.72E+03 9.16E+01 5.13E+01 5.11E+01 7.43E+01
6.13E+03 1.02E+02 6.03E+03 1.39E+02 6.41E+01 6.39E+01 1.20E+02
9.87E+03 1.02E+02 9.77E+03 2.15E+02 7.75E+01 7.73E+01 1.95E+02
1.60E+04 1.02E+02 1.58E+04 3.28E+02 1.02E+02 1.02E+02 3.13E+02
2.58E+04 1.02E+02 2.57E+04 5.06E+02 1.18E+02 1.18E+02 4.87E+02
4.18E+04 1.02E+02 4.17E+04 6.79E+02 1.33E+02 1.33E+02 6.63E+02
6.77E+04 1.02E+02 6.76E+04 5.24E+02 8.35E+01 8.33E+01 5.09E+02
1.10E+05 1.02E+02 1.10E+05 3.51E+01 4.20E+00 2.71E+00 3.39E+01
1.78E+05 1.02E+02 1.78E+05 0.00E+00 0.00E+00 5.00E+00 0.00E+00

Solution:
The raw signal values are given in the first column of the table. The ADC off-
set level is tabulated in the second column and is subtracted from the first col-
umn to produce the true signal level, S(DN), tabulated in the third column. The
fourth column is the standard deviation of S(DN), which represents the total noise,
σTOTAL(DN), and is plotted in Fig. 5.6. From this curve, the read noise,
σREAD(DN), is approximately 5 DN for the lowest signal level taken. The slope 1
portion of the curve is used to find PN [graphically or through Eq. (5.8)], which
yields PN = 0.02.

FPN is eliminated by differencing, pixel by pixel, two identical images taken
back to back at the same exposure level illustrated in Fig. 5.3. The standard
deviation of the frame difference (divided by 21/2 as discussed above) is
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tabulated in the fifth column and represents only random noise (i.e., σREAD+SHOT).
σREAD+SHOT noise is plotted in Fig. 5.6. Shot noise without read noise is found
through Eq. (5.11) as

σSHOT(DN) = (σREAD+SHOT(DN)2 − 52)1/2,

which is tabulated in the sixth column and plotted in Fig. 5.6.
The FPN curve is found from

σFPN(DN) = 0.02 × S(DN).

This data is contained in the seventh column and plotted in Fig. 5.6.
KADC(e−/DN) is determined from a data point on the shot noise curve. For

example, when σSHOT(DN) = 100 DN and S(DN) = 15,000 DN, they yield

KADC(e−/DN) =
15,000
1002

= 1.5 e−/DN.

Full well is found where the noise begins to decrease with signal and deviates either
from the shot noise slope 1/2 curve or the FPN slope 1 curve. In electron units, full
well is approximately

SFW = KADC(e−/DN) × SFW(DN) = 1.5 × 40,000 = 60,000 e−.

Read noise in electron units is

σREAD = KADC(e−/DN) × σREAD(DN) = 1.5 × 5 = 7.5 e−.

The dynamic range is

DR =
SFW

σREAD
=

60,000
7.5

= 8000.

Figure 5.6 Experimental PTC set.
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In db,

DR(db) = 20 log10(8000) = 78.

For PTC measurements when the quantum yield is greater than unity, the shot
noise in DN units from Eq. (4.23) is

σSHOT(DN) =
[

S(DN)
KADC(PI/DN)

]1/2

=
[

ηiS(DN)
KADC(e−/DN)

]1/2

. (5.17)

The total noise is

σTOTAL(DN) =
[
σREAD(DN)2 +

ηiS(DN)
KADC(e−/DN)

+ [PNS(DN)]2
]1/2

. (5.18)

Example 5.3

From Example 5.1, generate total noise PTCs when assuming ηi = 1, 3, 10, 25, 50,
and 100 e−/interacting photon. Plot the results in DN units. Find the signal level
where FPN and shot noise are equal for each case. Also, graphically determine ηi.
Assume perfect CCE (i.e., ηE = ηi).

Solution:
From Eq. (5.18), the total noise is

σTOTAL(DN) =
{

3.332 + ηi
S(DN)

1.5
+ [0.02 × S(DN)]2

}1/2

and is plotted in Fig. 5.7 for each quantum yield factor. Note that FPN gives way
to shot noise as the quantum yield increases.

The signal level where FPN and shot noise are equal for each quantum yield
factor is found through Eq. (3.14), i.e.,

S =
1

(0.02)2
= 2500 e− ηi = 1

S =
3

(0.02)2
= 7500 e− ηi = 3

S =
10

(0.02)2
= 25,000 e− ηi = 10

S =
25

(0.02)2
= 62,500 e− ηi = 25

S =
50

(0.02)2
= 125,000 e− ηi = 50

S =
100

(0.02)2
= 250,000 e− ηi = 100
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Figure 5.7 Total noise and shot noise PTC responses for different quantum yields.

Figure 5.8 presents a magnified view of Fig. 5.7 that shows the KADC(PI/DN)
and KADC(e−/DN) intercept values. The quantum yield is determined from an
intercept value using Eq. (4.25):

ηi =
KADC(e−/DN)
KADC(PI/DN)

,

where KADC(e−/DN) = 1.5, and KADC(PI/DN) is the signal level when
σSHOT(DN) = 1. The quantum yields from this equation are

Figure 5.8 Magnified plots for Fig. 5.7 used to graphically determine the quantum yield
through K(PI/DN) and KADC(e−/DN).
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ηi =
1.5

1.500
= 1 e−/interacting photon

ηi =
1.5

0.500
= 3

ηi =
1.5

0.150
= 10

ηi =
1.5

0.060
= 25

ηi =
1.5

0.030
= 50

ηi =
1.5

0.015
= 100.

Quantum yield can also determined directly from Eq. (4.25) through

ηi =
KADC(e−/DN)σSHOT(DN)2

S(DN)
.

For example, the ηi = 100 shot noise curve contains a data point shown at S(DN) =
40, σSHOT(DN) = 51, which yields approximately

ηi = 1.5 × 512

40
= 98 e−.

5.3 PTC Errors

As discussed at the beginning of this chapter, it is critically important that the offset
[SADC_OFF(DN)] be removed from the raw signal with good precision. It is also
essential to track the offset level regularly because it can fluctuate. How often
an offset measurement is required comes through experience with one’s camera
system (offset stability varies significantly between cameras and is considered to
be an important figure-of-merit for system reliability).

A few DN of error in offset can significantly alter PT results. For example,
Fig. 5.9 shows the effect of offset error on the σREAD+SHOT curve when an in-
sufficient amount of offset is subtracted. Figure 5.10 presents the influence of the
error only on the σSHOT curve. Note that the offset error shifts data from the ideal
slope 1/2 shot noise curve. When the curve bends, KADC(e−/DN) cannot be de-
termined, which is mainly a problem for low signal levels. For example, Fig. 5.11
plots KADC(e−/DN) with signal for Fig. 5.10. Note that the signal level must be at
least 10 times greater than the offset error before KADC(e−/DN) exhibits reason-
able accuracy.

For low signals, read noise must also be eliminated, or KADC(e−/DN) will be
in error. Figure 5.12 presents PTCs for various read noise subtractions. The ideal
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Figure 5.9 PTCs showing the affect of various offset errors on read and shot noise
measurements.

Figure 5.10 PTCs showing the affect of various offset errors on shot noise.

Figure 5.11 Offset error influence on KADC(e−/DN) measurement.
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Figure 5.12 PTCs showing the affect of a read noise error on shot noise measurement.

Figure 5.13 Read noise error affect on KADC(e−/DN) measurement.

shot noise curve is obtained when σREAD = 3.33 DN is deducted. As Fig. 5.13
demonstrates, KADC(e−/DN) will be greater than the true value if too much read
noise is removed, and it will be underestimated if not enough is taken. Note that
the signal level must be 10 times greater than the noise error to ensure reasonable
accuracy for KADC(e−/DN).

FPN also needs to be removed for an accurate KADC(e−/DN) reading. FPN
can be removed either by differencing frames, as in Fig. 5.3, or through flat fielding,
a process discussed in Chapter 8. Figure 5.14 presents PTCs for σTOTAL(DN) and
σSHOT(DN). Note that only a small segment of the dynamic range is shot noise
limited for the total noise curve. Figure 5.15 plots KADC(e−/DN) based on the
total noise without read noise subtraction or FPN removal [i.e., KADC(e−/DN) =
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Figure 5.14 PTC showing a limited shot noise region for the total noise curve.

Figure 5.15 KADC(e−/DN) error when FPN or read noise are present.

S(DN)/σTOTAL(DN)2]. As can be seen, KADC(e−/DN) is in error when either
noise source is present and will always produce a smaller result than the true value.

The accuracy of KADC(e−/DN) can be confirmed by converting a PTC gener-
ated in DN units into electron units. Shot noise should precisely follow the square
root of signal if KADC(e−/DN) is correct. For example, Fig. 5.16 shows PTC elec-
tron plots based on DN data generated with KADC(e−/DN) = 2.0. Note that if
KADC(e−/DN) �= 2, the DN-to-electron conversion is in error, and the shot noise
relation does not apply (i.e., S �= (σSHOT)1/2). One can fine-tune KADC(e−/DN)
by forcing the relationship.

PT is also sensitive to charge transfer problems related to CCD and CMOS ar-
rays. Numerous deferred charge and image lag difficulties have been identified. In
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Figure 5.16 PTC shot noise responses in electron units for different KADC(e−/DN) errors
compared to the ideal.

general, these problems reduce the measured shot noise without influencing the
average signal. For example, Fig. 5.17 presents a PTC generated by a CMOS
imager that exhibits an image lag problem. Note that for low-level signals, shot
noise values are below the slope 1/2 curve. Figure 5.18 plots KADC(e−/DN) with
signal showing that KADC(e−/DN) is greater than the true value of 19 e−/DN for
low signal levels. Typically, when a PTC exhibits an initial decrease in KADC(e−/DN)
with signal, it indicates that a charge transfer problem is present.

Image lag is quantified from a PTC through the relation

ILAG =
σM_SHOT

σSHOT
=

σM_SHOT(DN)
σSHOT(DN)

. (5.19)

When the measured shot noise modulation is perfect (i.e. ILAG = 1), then it is
fairly safe to assume that a camera system will perfectly preserve the modulation

Figure 5.17 PTC shot noise response when image lag is present.
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Figure 5.18 KADC(e−/DN) plot for Fig. 5.17.

produced by a real image, at least in terms of reading that image out. Hence, it is
important that a PTC responce be ideal before acquiring images.

Example 5.4

The measured shot noise for the experimental CMOS data presented in Fig. 5.17
can be curve fitted with the equation

σM_SHOT(DN) = σSHOT(DN)
{

1 − 0.29 × exp
[
−S(DN)

1579

]}
. (E5.1)

Use this relation to generate a PTC and an image lag factor plot as a function of
signal.

Solution:
Figure 5.19 shows the required PTC.

Figure 5.19 Ideal and measured image lag PTC responses as a function of signal.
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Figure 5.20 Image lag factor as a function of signal for Fig. 5.19.

Substituting Eq. (E5.1) into Eq. (E5.19) produces the image lag factor:

ILAG =
[
1 − 0.29 × exp

(
− S

1579

)]
.

The image lag factor is plotted in Fig. 5.20.
It is advantageous to measure the image lag factor since clock and bias to a

detector are varied to achieve optimum performance.

5.4 Shutterless (Time-Delayed Integration) PTC

For CCD imagers, it is possible to generate a full PTC from a single frame of data
using the “shutterless” PTC method. In this method, the curve is generated without
a mechanical shutter or pulsed light source. Instead, the CCD is continuously ex-
posed to light and readout without an integration or shuttering cycle. The readout
mode is similar to the time-delayed integration (TDI) used by CCD cameras.

In the shutterless method, illumination is provided by a nonuniform light source
projected onto the CCD. For example, Fig. 5.21 shows a sinusoidal stimulus used to
generate a PTC. After the light is adjusted to slightly above full well (66,670 DN
in this case), and the video is stabilized, a specific number of data lines are read
and stored in a computer. Then S(DN) and σSHOT+READ(DN) are calculated for
each column of the array. Continuous readout and exposure eliminates FPN since
charge is smeared over many pixels during readout. Therefore, frame differencing
as performed above (Fig. 5.3) to obtain shot noise data is not required.

Figure 5.22 shows a simulated shutterless PTC for the sinusoidal light source
shown in Fig. 5.21. Signal and noise are measured for 1000 columns, thus produc-
ing 1000 data points that range from the read noise floor to full well. The number
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Figure 5.21 Sinusoidal stimulus used to generate a shutterless PTC.

Figure 5.22 Shutterless PTC using the stimulus shown in Fig. 5.21.

of lines read into the computer depends on the measurement accuracy required. For
example, a 1000-line reading yields a 5% measurement accuracy of KADC(e−/DN)
(a parameter derived in Chapter 6).

It should be pointed out that FPN and related PN information is lost with the
shutterless PTC technique. However, linearity information is preserved through the
KADC(e−/DN) plot, as shown in Fig. 5.23 for the PTC in Fig. 5.22.
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Figure 5.23 KADC(e−/DN) plot for Fig. 5.22.

5.5 Variance PTC

Noise variance can also be plotted as a function of signal instead of the standard
deviation. Assuming FPN is removed through frame differencing (i.e., Fig. 5.3),
the noise variance from Eq. (5.9) is

σREAD+SHOT(DN)2 = σREAD(DN)2 +
S(DN)

KADC(e−/DN)
. (5.19)

Note that this is a linear equation with the form

y = constant +
x

KADC(e−/DN)
, (5.20)

with slope [KADC(e−/DN)]−1. The read noise is the y-intercept value. Exam-
ple 5.5 demonstrates how KADC(e−/DN) and read noise are extracted from a vari-
ance PTC.

Example 5.5

From Example 5.1, plot the noise variance as a function of signal on linear coordi-
nates. Determine KADC(e−/DN) and the read noise from the plot.

Solution:
Figure 5.24 plots σSHOT(DN)2 with signal. A single data point from the linear
portion of the curve (i.e., below full well) yields the slope. For example,

S(DN) = 90,000 DN and σSHOT(DN)2 = 60,000;

slope =
60,000
90,000

= 0.666.



Photon Transfer Curve 69

Figure 5.24 Variance PTCs.

The corresponding ADC sensitivity is the reciprocal of the slope:

KADC(e−/DN) =
1

0.666
= 1.5.

Figure 5.25 plots σREAD+SHOT(DN) and σSHOT(DN) for low signal levels, show-
ing identical slopes for the two curves. Read noise is determined from the intercept
on the noise axis from the σREAD+SHOT(DN) curve. The plot yields

σREAD(DN)2 = 11,

σREAD(DN) = 3.33,

and

σREAD = 3.33 × 1.5 = 5 e−.

Figure 5.25 Magnified variance PTC responses for Fig. 5.24.
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Figures 5.26 and 5.27 compare the standard deviation and variance PTCs. Both
figures plot σREAD+SHOT(DN) for different read noise floors that vary from
2–400 e−, assuming KADC(e−/DN) = 100. Note that for high noise levels, it
is impossible to graphically find KADC(e−/DN) from the standard deviation PTC,
whereas the slope from the variance response is readily determined. Figure 5.28
shows results when read noise is subtracted from the PTCs in Fig. 5.26, thereby
producing the σSHOT(DN) curve. Two noise levels are shown (σREAD = 200
and 400 e−) for clarity only. Fitting a slope 1/2 line through the data points now
yields KADC(e−/DN). It should be mentioned that the accuracy in determining
KADC(e−/DN) for a given data set is identical for the variance and standard devi-
ation PTC methods (refer to Chapter 6).

Figure 5.26 PTCs for different read noise floors.

Figure 5.27 Corresponding variance PTCs for Fig. 5.26.
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Figure 5.28 Read noise removal for selected PTCs shown in Fig. 5.26, allowing
KADC(e−/DN) to be graphically measured.

When the quantum yield is greater than unity, the total noise variance is

σTOTAL(DN)2 = σREAD(DN)2 +
ηiS(DN)

KADC(e−/DN)
, (5.21)

which is a linear equation having a slope of ηi[KADC(e−/DN)]−1. That is, the
slope increases proportionally to the quantum yield.

Example 5.6

Plot the noise variance as a function of signal for ηi = 1 and 10. Assume
KADC(e−/DN) = 100.

Solution:
Figure 5.29 shows the desired curves. The quantum yield is found by the ratio of
the two slopes, i.e.,

ηi =
KADC(PI/DN) slope
KADC(e−/DN) slope

,

and

ηi =
0.1
0.01

= 10 e−/interacting photon.

5.6 Example Experimental PTC Data

Figure 5.30 presents a σREAD+SHOT PTC generated by a Hubble Space Telescope
CCD (WF/PC I).1 KADC(e−/DN) is found from any data point on the slope 1/2
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Figure 5.29 Variance PTCs used to measure quantum yield.

curve, which yields 2 e−/DN. Using this constant, full well and read noise (in DN
units) are converted to 60,000 e− and 16 e− rms, respectively. It is worth noting that
CCD performance has improved dramatically since the early Hubble CCDs. For ex-
ample, charge capacity for the same size pixel (15 μm) has increased to 500,000 e−.
Read noise has improved by a factor of 10 for the same signal-processing parame-
ters. PT has played a major role in increasing the CCD’s dynamic range in terms
of design, fabrication, and operating parameters.

It is a rare occasion when a satisfactory PTC is generated for a new camera
system that is powered for the first time. Hardware and software problems usually
stand in the way of good PTCs that are resolved one by one. For example, Fig-
ure 5.31 shows a CCD PTC that exhibits an undesired “kink” caused by an improper
vertical clock voltage setting that limits full-well performance to 240,000 e−. The
problem was fixed by lowering the clock voltage by 1.5 V, which in turn increased
the charge capacity to 350,000 e−. PTC anomalies like this are usually critical to

Figure 5.30 Early Hubble Space Telescope WF/PC I CCD PTC with FPN removed.



Photon Transfer Curve 73

Figure 5.31 Shot noise PTC showing a “kink” in the response indicative of an improper clock
voltage setting.

camera performance and should not be ignored. CCD and CMOS clock and voltage
optimization rely heavily on PT results.

Figure 5.32 shows σREAD+SHOT(DN) PTC responses generated by a CMOS
imager that incorporates two pixel architectures with different sense node V/e−

gains. The high and low gains produce ADC sensitivity values of 0.05 e−/DN and
0.18 e−/DN, respectively. As indicated, the read noise is 3 DN for both pixels
because the noise is generated downstream of the sense node (hence voltage and
DN read noise are identical). The shot noise curves are well separated because
their KADC(e−/DN) values are different. The DN data of Fig. 5.32 are converted
to electrons and plotted in Fig. 5.33. Note that the shot noise curves now overlap,
whereas the read noise curves separate. The shot noise for both curves is equal to
the square root of the signal and independent of KADC(e−/DN). However, the read
noise in electron units is different for two pixels because read noise varies inversely

Figure 5.32 CMOS PTCs for two different pixel architectures with low and high sense node
gains showing the same read noise floor of 3 DN rms.
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Figure 5.33 Corresponding PTCs for Fig. 5.32 measured in electron units showing read
noise levels of 5.8 e− and 1.5 e−.

with KADC(e−/DN). Read noise levels of 5.8 e− and 1.5 e− are measured for each
pixel type.

PTC is a useful tool to characterize many unique and unusual camera features
offered by CMOS imagers (a book could be written on the subject). For example,
the dynamic range for a CMOS pixel camera can be increased by using the reset
timing diagram shown in Fig. 5.34. Conventional timing, shown in Fig. 5.35(a), re-
sets the pixel once per charge-integration period. Timing for an “extended dynamic
range (XDR)” mode is shown in Fig. 5.35(b), where an additional reset clock is ap-
plied during the charge-integration period. The amplitude of the second reset clock
is adjusted to “clip” the signal on the sense node at a given level (labeled as SXDR)
and time period. After the second reset is applied, charge is allowed to integrate
until the conventional reset is applied. For example, Fig. 5.35 plots the sense node
charge throughout the integration period both with and without an XDR reset ap-

Figure 5.34 CMOS XDR set-up timing diagram.
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Figure 5.35 XDR sense node signal as a function of time.

plied. Note that without XDR, the charge level reaches 105 e−, whereas the XDR
signal only increases to 6× 104 e− and thereby compresses the signal. Figure 5.36
shows the response to a sinusoidal input, also with and without XDR applied. The
compression on the sine wave is apparent when the signal level becomes greater
than SXDR_RESET.

The maximum signal level generated by an XDR compressor is given by

SXDR = SXDR_RESET +
t1 − t2

t1
SFW, (5.22)

where SXDR_RESET is the signal level immediately after XDR reset takes place,
SFW is the full-well signal of the detector, t1 is the integration time, and t2 rep-
resents the time when the XDR reset is applied. Both SXDR_RESET and t2 are

Figure 5.36 XDR response compared to conventional response.
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Figure 5.37 PTCs for two different XDR timing conditions in comparison to a conventional
response.

usually set external to the sensor by the user. The compression achieved is given
simply by

CXDR =
SFW

SXDR
. (5.23)

A simulated PTC shot-noise response for XDR is demonstrated in Fig. 5.37 for two
different XDR settings. The next example will determine the compression achieved
from the curves.

Example 5.7

Determine the maximum XDR signal generated for the PT shown in Fig. 5.37 with
the two settings:

XDR setting #1:

SXDR_RESET = 1000 e−,

t1 = 1, t2 = 0.5.

XDR setting #2:

SXDR_RESET = 10000 e−,

t1 = 1, t2 = 0.9.

Assume SFW = 105 e− and determine the compression achieved for each setting.
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Solution:
From Eqs. (5.22) and (5.23), the maximum XDR signals and compression ratios
are:

XDR setting #1:

SXDR = 103 + 0.5 × 105 = 5.1 × 104 e−,

CXDR =
105

5.1 × 104
= 1.96.

XDR setting #2:

SXDR = 104 + 0.1 × 105 = 2.0 × 104 e−,

CXDR =
105

2 × 104
= 5.0.

Important Points

1. A PTC contains four noise regimes: read noise, shot noise, fixed pattern noise,
and full well.

2. A PTC is plotted on log-log coordinates to cover the full dynamic range of a
camera system.

3. PTC is initially plotted in DN units. To convert the PTC to electron units,
KADC(e−/DN) must be determined first.

4. Before a PTC can be generated, the ADC offset must be removed from raw
video pixel values to obtain the true signal level.

5. Absolute ADC offset represents a signal level of zero electrons.
6. FPN measurements are dependent on the uniformity of a light source (<1%

nonuniformity flatness is required). Shot noise measurements do not require a
uniform light source.

7. FPN can be removed by pixel-by-pixel differencing of two identical frames
taken back to back. The resultant frame contains only random noise (read and
shot noise). The resultant frame must be divided by 21/2 to find the true random
noise.

8. Full well is usually exceeded by a detector when either shot noise or FPN
rapidly decrease with signal.

9. The classical PTC contains individual plots for total noise, shot noise, and fixed
pattern noise.

10. KADC(e−/DN) and PN can be determined graphically from a PTC or through
the PT relation.

11. Full well and read noise are converted to electrons after KADC(e−/DN) is
found.
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12. For a PTC expressed in electron units, shot noise equals the square root of
signal.

13. Offset, read noise, and FPN must be precisely removed in order to determine
KADC(e−/DN).

14. Charge transfer problems are quantified by PTC. Charge transfer issues lower
the measured shot noise.

15. The shutterless PTC technique allows a shot noise PTC to be generated from a
single frame of data.

16. The variance PTC is advantageous in finding KADC(e−/DN) in the presence
of read noise.
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e−/DN Variance
This chapter derives a formula used to determine the measurement accuracy of
KADC(e−/DN). To show the error’s origin graphically, a shot noise PTC plotted on
linear scales is presented in Fig. 6.1. The data were simulated using a random num-
ber generator based on a 500-pixel subarray. The data points are scattered about the
ideal solid shot noise curve; the variance in data about the curve reflects upon the
error in measuring KADC(e−/DN). A histogram of KADC(e−/DN) with a stan-
dard deviation of 0.645 is shown in Fig. 6.2. The histogram in Fig. 6.3 shows an
improved standard deviation of 0.141 DN when 10,000 pixels are sampled. These
results suggest that the uncertainty in ADC sensitivity decreases by the square root
of the number of pixels sampled. It would also be informative to know how read
noise and signal level influence measurement accuracy. The analysis below in-
cludes these variables when KADC(e−/DN) variance is calculated.

The error behind KADC(e−/DN) is determined by applying the propagation of
errors formula to the equation

K =
S

N2 − R2
, (6.1)

Figure 6.1 Linear PTC showing shot noise build up with signal.
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Figure 6.2 KADC(e−/DN) histogram for Fig. 6.1 with 0.645 e−/DN rms variation.

Figure 6.3 KADC(e−/DN) histogram with 0.141 e−/DN rms variation.

where for short-hand notation we let K = KADC(e−/DN), N =
σREAD+SHOT(DN), R = σREAD(DN), and S = S(DN).

Applying the formula yields

σ2
K =

[
∂K

∂S

]2

σ2
S +

[
∂K

∂N

]2

σ2
N +

[
∂K

∂R

]2

σ2
R, (6.2)

where σ2
K is the variance of K.

Differentiating produces

σ2
K =

[
1

N2 − R2

]2

σ2
S +

[ −2SN

(N2 − R2)2

]2

σ2
N +

[
2SR

(N2 − R2)2

]2

σ2
R. (6.3)

Assuming photon statistics [i.e., KσS = (KS)1/2], the uncertainty in the signal
measured is

σ2
S =

S

KNPIX
, (6.4)
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where NPIX is the number of pixels sampled. The uncertainties in the noise sources
are

σ2
N =

N2

2NPIX
(6.5)

and

σ2
R =

R2

2NPIX
. (6.6)

By substituting Eqs. (6.4)–(6.6) and noting that

N2 =
S

K
+ R2, (6.7)

we find

σ2
K =

1
NPIX

(
K

S
+

2
(

S
K + R2

)2
K4

S2
+

2R4K4

S2

)
. (6.8)

If the read noise is negligible relative to signal shot noise, Eq. (6.8) simplifies to

σ2
K =

K

NPIX

(
1
S

+ 2K

)
. (6.9)

And if 1/S � 2K, then Eq. (6.9) reduces further to

σ2
K =

2K2

NPIX
. (6.10)

The error of K in percent is

%σK =
σK

K
× 100. (6.11)

Substituting Eq. (6.10) into Eq. (6.11) produces

%σK =
(

2
NPIX

)1/2

× 100. (6.12)

Note that K can be held to a 1% error when 20,000 pixels are sampled.

Example 6.1

Given the following parameters, determine the standard deviation of K:

K = 0.2 e−/DN

NPIX = 1000 pixels

S = 1000 DN

Assume read noise is negligible. Also calculate the percent error in K.
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Solution:
From Eq. (6.9),

σK =
[

0.2
1000

×
(

1
1000

+ 2 × 0.2
)]1/2

= 0.00895

From Eq. (6.12), the percent error of KADC(e−/DN) is

%σK =
(

2
1000

)1/2

× 100 = 4.47% rms.

Figure 6.4 plots Eq. (6.1) [i.e., K = S/(N2−R2)] as a function of S(DN). The
data is simulated by a random number generator based on the following assump-
tions: 500 pixels, R = 250 DN, and K = 0.2 e−/DN. Note that the variation in
data points about 0.2 e−/DN increases dramatically for low signal levels as the read
noise becomes influential. Figure 6.5 plots σK for various noise levels, including
the R = 250 DN assumed in Fig. 6.4. For high signal levels where read noise is not
a factor, σK = 0.0126 (%σK = 6.3%). Note also from the zero read noise curve
that signal level does not significantly influence e−/DN measurement accuracy, as
long as 1/S < 2K as assumed by Eq. (6.10).

Figure 6.6 shows individual PTCs for 108 pixels taken from an experimental
CMOS array. Each data point plotted is based on 512 samples/pixel. Note that
the read noise level for each pixel is different, a characteristic related to CMOS
arrays.5,6 The data saturates at 65,000 DN—the limit of the 16-bit analog-to-digital
converter used for this measurement. Figure 6.7 plots K as a function of signal for
each pixel. The results are similar to the simulation presented in Fig. 6.4, where the

Figure 6.4 KADC(e−/DN) versus signal showing σK variation with signal.
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Figure 6.5 KADC(e−/DN) standard deviation with signal and different read noise levels.

Figure 6.6 Low signal level PTCs for 108 CMOS pixels, each showing a different read noise
floor.

uncertainty in K increases as the signal enters the read noise regime. Figures 6.8
and 6.9 are high-level PTCs for the same sensor after the CDS voltage gain is
lowered by a factor of 10, which increases K and σK by the same factor.

Example 6.2

Determine σK and %σK for the PTC data in Figs. 6.7 and 6.9 at a signal level of
2 × 104 DN.

Solution (Fig. 6.7):
From Eq. (6.9):
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Figure 6.7 KADC(e−/DN) versus signal for Fig. 6.6 showing σK rms variation.

Figure 6.8 High signal level CMOS PTCs.

Figure 6.9 KADC(e−/DN) versus signal for Fig. 6.8 showing σK rms variation.
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σK =
(

2
512

)1/2

× 0.3 = 0.0188 DN

and [from Eq. (6.12)]

%σK =
(

2
512

)1/2

× 100 = 6.25% DN.

Solution (Fig. 6.9):
From Eq. (6.9):

σK =
(

2
512

)1/2

× 3 = 0.188 DN

and [from Eq. (6.12)]

%σK =
(

2
512

)1/2

× 100 = 6.25% DN.

It should be mentioned that CMOS detectors exhibit pixel-to-pixel e−/DN sen-
sitivity variations. This noise source is a different form of FPN compared to the
pixel-to-pixel charge-collection deviation. The net FPN (with the e−/DN variation
included) is given by

σNET = (σK
2 + σFPN

2)1/2. (6.13)

Fortunately, σK is usually less than σFPN, and the net FPN is still approximately
1% of the average signal level typically seen for the CCD.

Important Points

1. The measurement accuracy of e−/DN depends on signal, read noise, and the
number of pixels sampled.

2. Signal level has very little influence on e−/DN variance. However, read noise is
critical to measurement accuracy.

3. When read noise is negligible relative to shot noise, e−/DN variance is equal to
2/NPIX.
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Nonlinearity
7.1 Introduction

Two fundamental classes of gain nonlinearity exist for CMOS and CCD imagers:
V/V nonlinearity and V/e− nonlinearity. Ideally, V/V nonlinearity for a camera
system is dominated by the pixel’s source follower amplifier. Nonlinearity char-
acteristics for the amplifier can typically be controlled to less than 1% over a sen-
sor’s dynamic range. V/e− nonlinearity is related to sense node diode capacitance,
which increases as charge collects (refer to Fig. 4.3). For CCDs, the sense capac-
itance change is usually negligible (typically < 0.2% nonlinearity). However, for
CMOS detectors, V/e− nonlinearity can be significant, exceeding 200% for some
pixel architectures (e.g., refer to Sec. 7.3).

7.2 V/V Nonlinearity

Figure 7.1 shows simulated PTCs with V/V nonlinearity characteristics. Note that
the shot noise curve does not follow a slope of 1/2, indicating that KADC(e−/DN)

Figure 7.1 PTCs with V/V nonlinearity.
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is dependent on signal level and therefore nonlinear. The sensitivity varies from
1.5 e−/DN in the read noise regime to 6 e−/DN at full well. Unlike shot noise, the
FPN curve remains at a slope of unity because FPN and signal are both proportional
to KADC(e−/DN). However, it will be shown in Section 7.3 that the FPN slope
changes when V/e− nonlinearity is present. This characteristic helps distinguish
between V/V and V/e− nonlinearity issues.

The curve in Fig. 7.2 presents a nonlinearity plot of KADC(e−/DN) as a func-
tion of signal for Fig. 7.1. The sensitivity varies roughly in a linear fashion from 1.5
to 6 e−/DN. Nonlinearity is quantified from the plot through the relation

NLK(%) = 100
(

KADC(e−/DN) − KLOW(e−/DN)
KLOW(e−/DN)

)
, (7.1)

where NLK(%) is the nonlinearity of KADC(e−/DN), and KLOW(e−/DN) is the
ADC sensitivity at the lowest signal measured. Figure 7.3 plots NLK(%) for
Fig. 7.2, showing a maximum nonlinearity of 300% at full well.

Also included in Fig. 7.2 is a “least squares curve fit” to describe KADC(e−/
DN). Figure 7.4 shows the corresponding “nonlinearity residual errors” that are
used to compare data to the curve fit. The straight line fit is also used to remove
V/V nonlinearity from the PTC in conjunction with the relations

S(DN)LIN = S(DN)
KFIT(e−/DN)
KLOW(e−/DN)

(7.2)

and

σSHOT_LIN(DN) = σSHOT(DN)
KFIT(e−/DN)
KLOW(e−/DN)

, (7.3)

Figure 7.2 KADC(e−/DN) versus signal with least square curve fit.
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Figure 7.3 Nonlinearity plot for Fig. 7.2.

Figure 7.4 Nonlinearity residuals for least squares curve fit shown in Fig. 7.2.

where S(DN)LIN and σSHOT_LIN(DN) are the signal and shot noise levels after
linearization, and KFIT(e−/DN) is the ADC sensitivity from the least squares curve
fit equation. σFPN(DN) and σTOTAL(DN) can be made linear in a fashion similar
to that of shot noise.

Figure 7.5 shows a new PTC after linearization where the shot noise curve
now exhibits an improved slope 1/2 response (the dotted line in Fig. 7.5 represents
a perfect shot noise response for comparison). KADC(e−/DN) remains fixed at
approximately 1.5 e−/DN over the sensor’s dynamic range. Figure 7.6 plots the
new ADC sensitivity, using linearized data through
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Figure 7.5 PTCs with V/V nonlinearity corrected using least squares curve fit.

Figure 7.6 KADC(e−/DN) versus signal after V/V nonlinearity is corrected.

KFIT(e−/DN) =
SLIN(DN)

σSHOT_LIN(DN)2
. (7.4)

Figure 7.7 shows two sets of PTCs after Fig. 7.1 is converted to electron units
using KADC(e−/DN) and KFIT(e−/DN). Note that the discrepancy between the
two curves is small, demonstrating that the linearization process has done its job.
The Δ shown in the plot represents the difference between the two curves.

It should be mentioned that the nonlinearity plot of Fig. 7.2 produces the same
result as the conventional characterization method of measuring nonlinearity by
graphing signal as a function of exposure time. However, the exposure period
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Figure 7.7 PTCs with V/V nonlinearity corrected in electron units.

must be very linear in time to evaluate sensor nonlinearities < 1%. In practice,
this requirement may be difficult to realize when covering a large signal dynamic
range. For example, a mechanical shutter used to control exposure time usually ex-
hibits nonlinear behavior for short exposure periods. Also, such measurements are
sensitive to the stability level of the light source. Measuring nonlinearity by photon
transfer through the KADC(e−/DN) plot is not dependent on these variables.

Example 7.1

Assume that the ADC sensitivity and signal vary as

KADC(e−/DN) = 1.5(1+0.001t)

and

S = t,

where t is time (sec). Plot S, σSHOT, σFPN, S(DN), σSHOT(DN), and σFPN(DN)
as a function of time up to 104 sec. On a separate graph, generate PTCs for shot
noise and FPN as a function of S(DN). Graphically validate PN and determine
the extreme values of KADC(e−/DN). Also, plot KADC(e−/DN) as functions of S
and S(DN). Assume PN = 0.03.

Solution:
Figure 7.8 plots the signal and noise sources as a function of time. Figure 7.9 pre-
sents photon transfer plots of σSHOT(DN) and σFPN(DN) as a function of S(DN).
The intercept points on the signal axis (noise = 1 DN) indicates that KADC(e−/DN)
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Figure 7.8 V/V nonlinearity example showing individual signal and noise plots with time in
electron and DN units.

Figure 7.9 PTCs for V/V nonlinearity example showing KADC(e−/DN) variation.

Figure 7.10 KADC(e−/DN) versus signal for Fig. 7.9 in DN and electron units.
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changes from 1.5 to approximately 90 e−/DN. The dotted σFPN(DN) curve ex-
hibits a slope of unity with a signal intercept of PN = 1/33 = 0.03. Figure 7.10
plots KADC(e−/DN) as functions of S(DN) and S.

Figure 7.11 presents an experimental PTC generated by a CMOS charge trans-
fer pinned photodiode imager. The data points slowly deviate from the ideal slope
1/2 shot noise curve, which signifies that nonlinearity is present. Figure 7.12 plots
KADC(e−/DN), showing a variation of 1.84 to 2.5 e−/DN over the sensor’s dy-
namic range. Figure 7.13 plots nonlinearity using Eq. (7.1) based on a reference

Figure 7.11 PTC generated with a CMOS array with V/V nonlinearity.

Figure 7.12 KADC(e−/DN) versus signal for Fig. 7.11.
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Figure 7.13 Nonlinearity plot for Fig. 7.12.

Figure 7.14 KADC(e−/DN) versus signal with least squares curve fit for Fig. 7.11.

sensitivity of KLOW(e−/DN) = 1.84. Figure 7.14 plots KADC(e−/DN), along
with a curve fit, over the dynamic range of the sensor. Figure 7.15 shows the cor-
responding nonlinearity residual errors between the data and the straight line fit.
Figure 7.16 plots sense node gain (ASN) as a function of signal before and after the
data points are linearized.

7.3 V/e− Nonlinearity

Figure 7.17 presents a photon transfer plot generated by a CMOS imager with V/e−

sense node nonlinearity characteristics. V/e− nonlinearity is sometimes advanta-
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Figure 7.15 Nonlinearity residuals for least squares curve fit shown in Fig. 7.14.

Figure 7.16 Sense node gain (V/e−) for Fig. 7.15 after nonlinearity is corrected.

geous because the gain effect produces a small sense node capacitance for low
read noise and a large capacitance for high full-well performance. However, the
signal and noise sensitivities vary differently when V/e− nonlinearity exists. This
feature is unlike linear and V/V nonlinear characteristics, whose signal and noise
sensitivities are equivalent. The unique behavior associated with V/e− nonlinearity
significantly complicates data reduction algorithms. For example, when converting
linear or nonlinear V/V measurements from DN to electron units, the previously
used simple formulas are applied:

S = S(DN)KADC(e−/DN) (7.5)
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Figure 7.17 CMOS PTC showing V/e− nonlinearity.

and

σSHOT = σSHOT(DN)KADC(e−/DN). (7.6)

However, when V/e− exists, signal and noise levels must be determined individu-
ally through

S = S(DN)SADC(e−/DN) (7.7)

and

σSHOT = σSHOT(DN)NADC(e−/DN), (7.8)

where SSN(e−/DN) is referred to as the ADC signal sensitivity, and NSN(e−/DN)
is the corresponding ADC noise sensitivity.

In addition, when V/e− nonlinearity is present, CMOS and CCD performance
parameters can not be found by KADC(e−/DN). Instead, SADC(e−/DN) is used
to determine signal-related performance parameters, such as charge capacity, dark
current, quantum efficiency, etc. NADC(e−/DN) is employed to determine the sense
node capacitance and noise related parameters, such as FPN, shot noise, etc.

It should also be pointed out that SSN(e−/DN) and NSN(e−/DN) parameters
cannot be determined simply by making mean and rms DN measurements as per-
formed before. Recall that this was the case for linear (and V/V nonlinear) analy-
sis, where KADC(e−/DN) was found through the standard PT formula S(DN)/
σSHOT(DN)2. Fortunately, the photon transfer routine only needs to be slightly
modified to measure SSN(e−/DN) and NSN(e−/DN), as discussed at the end of this
section.

It is also important to note when CSN is fixed or changes negligibly; KADC(e−/
DN) = SADC(e−/DN) = NADC(e−/DN). This is typically the case when mea-
suring small signals. On the other hand, SADC(e−/DN) < NADC(e−/DN) if CSN

increases, and KADC(e−/DN) will produce erroneous measurement results.
A fundamental analysis of the V/e− nonlinearity problem begins by evaluating

the sense node signal sensitivity, SSN(e−/VSN), from the differential equation
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dS

dVSN
=

CSN

q
, (7.9)

where CSN is a function of sense node voltage, VSN.
The sense node noise sensitivity, NSN(e−/VSN), is directly governed by the

sense node capacitance through

NSN(e−/VSN) =
CSN

q
. (7.10)

Once CSN is known, SSN(VSN/e−) and NSN(e−/VSN) are derived from the rela-
tions above. From there, other sensitivity parameters are readily determined [e.g.,
SADC(e−/DN) or NADC(e−/DN)]. Example 7.2 demonstrates the subtle details be-
hind Eqs. (7.9) and (7.10).

Example 7.2

The photon transfer data shown in Fig. 7.17 is described by a sense node capaci-
tance that varies as

CSN = k1/VSN and 0.9 < VSN < 3.1, (E7.1)

where k1 = 10.909 × 10−15.
Using this relationship, generate the following plots by assuming VREF =

3.1 V and a system gain of A(DN/VSN) = ASFACDSAADC = 1.76 × 104 DN/V:

1. CSN versus VSN

2. S and σSHOT versus VSN

3. SSN(e−/VSN) and NSN(e−/VSN) versus VSN

4. S(VSN) and σSHOT(VSN) versus VSN

5. SSN(e−/DN), NSN(e−/DN), KADC(e−/DN) versus S
6. SSN(VSN/e−) and NSN(VSN/e−) versus VSN

7. False signal (e−) based on KADC(e−/DN) versus true signal (e−)
8. Nonlinearity for SSN(e−/DN), NSN(e−/DN), KADC(e−/DN) versus S

Solution:
From Eq. (E7.1), Fig. 7.18 plots CSN as a function of VSN.

The sense node is reset to VREF = 3.1 V. The signal voltage, S(VSN), causes
the sense node voltage to discharge following the equation:

VSN = VREF − S(VSN). (E7.2)

Solving the differential Eq. (7.9) yields

S =
k1
q

∫ VREF

VSN

1
VSN

dVSN. (E7.3)
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Figure 7.18 Sense node capacitance with sense node voltage.

Integrating Eq. (E7.3) produces the following:

S =
k1
q

ln
(

VREF

VSN

)
=

k1
q

ln
[

VREF

VREF − S(VSN)

]
. (E7.4)

The corresponding signal shot noise is

σSHOT = S1/2 =
{

k1
q

ln
[

VREF

VREF − S(VSN)

]}1/2

. (E7.5)

Figure 7.19 plots S and σSHOT with VSN.

Figure 7.19 Sense node signal and noise (e−) with sense node voltage.
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The signal sensitivity at the sense node is

SSN(e−/VSN) =
S

S(VSN)

=
(k1/q) ln{VREF/[VREF − S(VSN)]}

S(VSN)
.

(E7.6)

The noise sensitivity at the sense node is

NSN(e−/VSN) =
CSN

q
=

k1
q[VREF − S(VSN)]

. (E7.7)

Figure 7.20 plots SSN(e−/VSN) and NSN(e−/VSN) as a function of VSN. Note
when S(VSN) = 0, both equations become equal to k1/(q × VREF) = 2.2 ×
104 e−/V. Hence, KADC(e−/DN) = SADC(e−/DN) = NADC(e−/DN), indicating
that V/e− nonlinearity is not significant.

The signal voltage at the sense node is

S(VSN) =
S

SSN(e−/VSN)
. (E7.8)

The noise voltage at the sense node is

σSHOT(VSN) =
σSHOT

NSN(e−/VSN)
=

S1/2

NSN(e−/VSN)
. (E7.9)

Figure 7.21 plots S(VSN) and σSHOT(VSN) as a function of VSN by vary-
ing S(VSN) in Eqs. (E7.2) and (E7.4). It is interesting to note that the shot noise
voltage actually decreases with signal at the upper end of the dynamic range. This is

Figure 7.20 Sense node signal and noise sensitivities (e−/VSN) with sense node voltage.



100 Chapter 7

Figure 7.21 Sense node signal and noise voltage with sense node voltage.

because the noise gain (V/e−) is decreasing faster than the signal gain (V/e−). The
response is a unique characteristic associated with sense node V/e− nonlinearity.

The ADC signal sensitivity is

SADC(e−/DN) =
SSN(e−/VSN)
A(DN/VSN)

. (E7.10)

The ADC noise sensitivity is

NSN(e−/DN) =
NSN(e−/VSN)
A(DN/VSN)

, (E7.11)

where A(DN/VSN) = ASFACDSAADC. Figure 7.22 plots the ADC signal and
noise sensitivities as a function signal, S.

Figure 7.22 ADC sensitivities [SADC(e−/DN), NADC(e−/DN), KADC(e−/DN)] with
signal (e−).
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When the reciprocals are taken, the sensitivities produce the signal and noise
sense node gains. From Eqs. (E7.6) and (E7.7), the node gains, respectively, are

SSN(VSN/e−) =
S(VSN)

(k1/q) ln{VREF/[VREF − S(VSN)]} (E7.12)

and

NSN(VSN/e−) =
q[VREF − S(VSN)]

k1
. (E7.13)

They are plotted in Fig. 7.23 in μV/e−. Note that when S(VSN) = 0, both equations
become q × VREF/k1 = 45 × 10−6 V/e−.

S(DN) and σSHOT(DN) are given as

S(DN) = ASFACDSAADCS(VSN) (E7.14)

and

σSHOT(DN) = ASFACDSAADCσSHOT(VSN). (E7.15)

The linear (and nonlinear V/V) ADC sensitivity is

KADC(e−/DN) =
S(DN)

σSHOT(DN)2
. (E7.16)

The false signal and true signal are given as

SFALSE = S(DN)KADC(e−/DN) (E7.17)

and

STRUE = S(DN)SADC(e−/DN). (E7.18)

Figure 7.23 Signal and noise sense node gains (VSN/e−) with sense node voltage.
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Figure 7.24 False signal based on KADC(e−/DN) versus true signal based
on SADC(e−/DN).

Figure 7.24 plots the false signal as a function of the true signal. Note for sig-
nal levels less than 2 × 104 e−, both measurements are in fair agreement. The
false signal results in an overestimation of charge capacity. The true full well for
the sensor is approximately 80,000 e−, whereas the false measurement, based on
KADC(e−/DN), implies a charge capacity of almost 300,000 e−.

From Eq. (7.1), the nonlinearities for the three sensitivities are

NLK(%) = 100
[
KADC(e−/DN) − KLOW(e−/DN)

KLOW(e−/DN)

]
, (E7.19)

NLS(%) = 100
[
SADC(e−/DN) − SLOW(e−/DN)

SLOW(e−/DN)

]
, (E7.20)

and

NLN(%) = 100
[
NADC(e−/DN) − NLOW(e−/DN)

NLOW(e−/DN)

]
. (E7.21)

The above three equations are plotted in Fig. 7.25 as a function of signal. The
nonlinearity is 70% and 210% for SADC(e−/DN) and NADC(e−/DN), respectively,
at full well. The false nonlinearity for KADC(e−/DN) is 500%.

It should be mentioned that the shot noise level calculated from Eq. (7.8) is at a
specific average signal, S(DN). The sense node capacitance is assumed to be fixed
at that level for the noise calculation. In reality, noise excursions about S(DN) also
cause the sense node capacitance to change slightly. This effect will in turn produce
a measured noise that is slightly different from the calculated noise. Example 7.3
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Figure 7.25 Nonlinearity for SADC(e−/DN), NADC(e−/DN), KADC(e−/DN).

will show that the error is negligible, even for noise levels much greater than shot
noise and FPN.

Example 7.3

Assume a sense node noise modulation level of σNOISE(VSN) = 0.265 V for a
corresponding signal voltage of S(VSN) = 1.5 V, and assume A(DN/VSN) =
1.76 × 104 and VREF = 3.1 V. Then, use the parameters and equations derived
in Example 7.2 to calculate the following:

1. S
2. SSN(e−/VSN) and NSN(e−/VSN)
3. σNOISE(VSN)
4. SADC(e−/DN) and NSN(e−/DN)
5. S(DN) and σNOISE(DN)

Compare the calculated DN noise results to a random number simulator where
the sense node capacitance is allowed to vary with the noise modulation.

Solution:
From Eq. (E7.4), the signal on the sense node is

S =
k1
q

ln
[

VREF

VREF − S(VN)

]
,

and

S =
10.909 × 10−15

1.6 × 10−19
× ln

(
3.1

3.1 − 1.5

)
= 45,095 e−.
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From Eq. (E7.6), the sense node signal sensitivity is

SSN(e−/VSN) =
S

S(VSN)
=

45,095
1.5

= 30,063.

From Eq. (E7.7), the sense node noise sensitivity is

NSN(e−/VSN) =
CSN

q
=

k1
q × [VREF − S(VSN)]

,

NSN(e−/VSN) =
10.909 × 10−15

(3.1 − 1.5) × (1.6 × 10−19)
= 42,613.

From Eq. (E7.10) and (E7.11), the sense node noise is

σNOISE = σNOISE(VSN) × NSN(e−/VSN)
= 0.265 × 42,613 = 1.129 × 104 e− rms.

The ADC signal and noise sensitivities are

SADC(e−/DN) =
SSN(e−/VSN)
A(DN/VSN)

=
30,063

1.76 × 104
= 1.71 e−/DN

and

NADC(e−/DN) =
NSN(e−/VSN)
A(DN/VSN)

=
42,613

1.76 × 104
= 2.42 e−/DN.

The ADC signal noise and shot noise are

S(DN) =
S

SADC(e−/DN)
=

45,095
1.71

= 26,400

and

σNOISE(DN) =
σNOISE

NADC(e−/DN)
=

1.129 × 104

2.42
= 4666.

Figure 7.26(a) presents a noise histogram for a sense capacitance that is allowed
to vary by noise modulation. Note that the Gaussian distribution is skewed be-
cause of a changing sense capacitance. This output represents a measured result.
The Fig. 7.26(b) histogram assumes that the noise excursions do not influence the
sense capacitance and therefore exhibits a symmetrical response. This output vari-
ance represents a calculated result. Note that the calculated and simulated standard
deviations are in agreement [i.e., approximately σNOISE(DN) = 4670].

Although the shapes of the histograms in Fig. 7.26 are different, their stan-
dard deviations are nearly identical, showing very little error between calculated
and measured results (4672 DN versus 4771 DN, respectively). The error is even
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Figure 7.26 Comparison of measured and calculated shot noise levels.

Figure 7.27 Comparison of calculated versus measured noise with signal.

considerably smaller for shot and FPN compared to the noise level analyzed here.
For example, the shot noise is only 87.7 DN for a sense node signal of 1.5 V. Fig-
ure 7.27 plots the calculated versus the measured noise at the same sense node
signal of 1.5 V.

Photon transfer is employed to differentiate between V/V and V/e− nonlinear-
ity problems. For example, Figs. 7.28 and 7.29 are PTCs that plot shot noise and
FPN on log and linear scales. For the log plot, the shot noise curve does not follow
the slope 1/2 line, which is a sign that either V/V and/or V/e− nonlinearity exists.
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Figure 7.28 PTCs showing that FPN does not follow a slope 1 curve when V/e− is present.

Figure 7.29 Linear PTCs for Fig. 28.

However, also note that FPN does not follow the slope 1 curve, which indicates
that V/e− is definitely present (recall from Fig. 7.1 that FPN follows a unity slope
when V/V nonlinearity exists). Therefore, the onset of V/e− nonlinearity takes
place when FPN deviates from the slope 1 curve.

V/V and V/e− nonlinearity can also be distinguished by plotting SSN(e−/DN)
and NSN(e−/DN) with signal. For example, Fig. 7.30 shows such a plot generated
by a CMOS imager with both V/V and V/e− nonlinearity issues. Note that the
signal and noise sensitivities initially change together for low signal levels, indi-
cating that V/V nonlinearity is present. However, at a signal level of 15,000 DN
(56,000 e−), the two parameters separate, signifying that V/e− nonlinearity is also
at play.
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Figure 7.30 CMOS array with both V/e− and V/V nonlinearity.

The PTC shot noise curve shown in Fig. 7.28 can be made linear by the
relations

S(DN)LIN = S(DN)
SFIT(e−/DN)
SLOW(e−/DN)

(7.11)

and

σSHOT_LIN(DN) = σSHOT(DN)
NFIT(e−/DN)
NLOW(e−/DN)

, (7.12)

where S(DN)LIN and σSHOT_LIN(DN) are the signal and shot noise levels after
linearization, and SFIT(e−/DN) and NFIT(e−/DN) are the ADC signal and noise
sensitivities from a curve fit to SADC(e−/DN) and NADC(e−/DN) data. σFPN(DN)
and σTOTAL(DN) are made linear in a similar fashion as shot noise. Note that for
low signal levels,

SLOW(e−/DN) = NLOW(e−/DN) = KLOW(e−/DN). (7.13)

Figure 7.31 shows PTCs after Fig. 7.28 is made linear using Eqs. (7.11) and (7.12).
Absolute linearization is shown in Fig. 7.32, where the DN units in Fig. 7.28 have
been converted to electron units, using SADC(e−/DN) and NADC(e−/DN) directly.

As a side note, when V/e− is present it is more difficult to determine the FPN
nonuniformity factor, PN, from the total noise [σTOTAL(DN)] curve. The problem
is demonstrated in Figs. 7.28 and 7.29. However, by converting DN data to electron
units [using Eqs. (7.7) and (7.8)], the data are forced into a slope 1 curve (as shown
in Fig. 7.32). The FPN and the shot noise curves exhibit slopes of 1 and 1/2 up to
full well without nonlinearity. The FPN noise factor, PN, can then be determined
from the total noise curve, which is PN = 0.01 in this case.

Fortunately, the photon transfer technique discussed for linear and V/V nonlin-
ear systems only needs to be slightly modified to deal with V/e− nonlinearity and
experimentally determine SADC(e−/DN) and NADC(e−/DN) in a straightforward
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Figure 7.31 V/e− nonlinearity corrected for Fig. 7.17 in DN units.

Figure 7.32 V/e− nonlinearity corrected for Fig. 7.31 in electron units.

fashion. First, S is found at a low S(DN) level using the traditional photon transfer
relation [i.e., KADC(e−/DN) = S(DN)/σ2

SHOT(DN)] and Eq. (7.5). This can be
assumed because KADC(e−/DN) = SADC(e−/DN) at low signal levels. As CSN

begins to vary for higher signal levels, the light level (or exposure time) is precisely
tracked. This permits one to also follow S because the number of electrons gener-
ated is proportional to the relative light level measured. The data collected for S
and S(DN) give the signal sensitivity as a function of signal for all light levels
measured through

SADC(e−/DN) =
S

S(DN)
. (7.14)
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After S is known, NADC(e−/DN) is readily determined by measuring σSHOT(DN)
and using the relation

NADC(e−/DN) =
S1/2

σSHOT(DN)
. (7.15)

The sense node signal and noise sensitivities are found through

SSN(e−/VSN) = SADC(e−/DN)ASFACDSAADC (7.16)

and
NSN(e−/VSN) = NADC(e−/DN)ASFACDSAADC. (7.17)

Once NSN(e−/VSN) is known, the sense node capacitance is determined through
Eq. (7.10), i.e.,

CSN = qNSN(e−/VSN). (7.18)

Appendix A provides a step-by-step procedure that uses experimental data to gen-
erate PTCs and related data products for a camera system that exhibits V/e− non-
linearity.

Important Points

1. Two fundamental classes of gain nonlinearity exist for CMOS and CCD im-
agers: V/V nonlinearity and V/e− nonlinearity.

2. The K(e−/DN) nonlinearity plot is insensitive to exposure nonlinearity and light
source instability.

3. Nonlinear PTCs can be made linear through e−/DN.
4. Absolute linearization is achieved by converting DN units to electron units.
5. V/V nonlinearity influences the PTC shot noise curve, whereas the FPN curve

is not affected. Shot noise and FPN curves are both influenced when V/e−

nonlinearity exists.
6. Conventional linear or V/V nonlinear photon transfer analysis is not applicable

when V/e− nonlinearity is present.
7. Signal and noise sensitivity are equal when V/V nonlinearity is present but not

equal when V/e− exists.
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Flat Fielding
8.1 Theory

Fixed pattern noise is removed from images by a technique called flat fielding,
where a computer adjusts pixel sensitivities to be equal. Fixed pattern noise severely
limits S/N performance for CCD and CMOS imagers, which will be discussed in
Chapter 10. Fortunately, simple computer algorithms can remove FPN and achieve
the shot noise limit, thereby significantly improving S/N performance. The image
processing routine is based on the following linear equation:

SiCOR = μFF
SiRAW

SiFF
, (8.1)

where SiCOR is the signal level of the corrected ith pixel without FPN (e−), SiRAW

is the signal level of the ith raw uncorrected pixel (e−), SiFF is the signal level of
the ith flat-field pixel used to remove FPN (e−), and μFF is the average flat-field
signal level (e−). Equation (8.1) also can be applied directly to DN camera units as

SiCOR(DN) = μFF(DN)
SiRAW(DN)
SiFF(DN)

. (8.2)

For PT work, it should be mentioned that flat fielding can be substituted for the
frame differencing technique illustrated in Fig. 5.3 to remove FPN. In doing so,
the number of frames required to generate PTCs is reduced, and the flat-fielding
process is verified for theoretical shot noise limited performance.

The flat-fielding technique demonstrated in Fig. 8.1 shows two raw sinusoidal
video traces that are FPN limited (labeled as SRAW). Also presented is a flat-
field trace used to remove FPN (labeled as SFF). The solid dark curves shown
are the corrected traces after the raw traces are divided (pixel-by-pixel) by the flat-
field level and the result multiplied by μFF according to Eq. (8.1). Note that S/N
performance improves significantly after flat fielding. Figure 8.2 presents images
for the lowest-contrast sinusoidal shown in Fig. 8.1 before and after flat fielding is
performed. The improvement in image quality is obvious.

After flat fielding is performed, the corrected image contains “remnant shot
noise” from the flat field itself. Ideally, only shot noise from the raw signal should
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Figure 8.1 High- and low-contrast sinusoidal responses before and after flat fielding.

Figure 8.2 Images for Fig. 8.1 before and after flat fielding for the low-contrast sinusoid.
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be present. The amount of noise contained in the corrected image can be found by
the propagation of errors formula when applied to Eq. (8.1) as follows:

σ2
COR =

[
∂SCOR

∂SFF

]2

σ2
SHOT_FF +

[
∂SCOR

∂SRAW

]2

σ2
SHOT_RAW + σ2

READ, (8.3)

where σCOR is the noise of the corrected image, and σSHOT_FF and σSHOT_RAW

are the shot noise levels of the flat field and raw image, respectively. The analysis
assumes that the raw image itself is generated by a uniform source of illumination
(i.e., flat field).

Differentiating Eq. (8.3) yields

σ2
COR =

[−μFFSRAW

S2
FF

]2

σ2
SHOT_FF +

[
μFF

SFF

]2

σ2
SHOT_RAW + σ2

READ. (8.4)

After noting that μFF = SFF, Eq. (8.4) is simplified to

σCOR =

[
σ2

READ + σ2
SHOT_RAW +

(
SRAW

SFF
σSHOT_FF

)2
]1/2

. (8.5)

Note that the ideal shot noise limited response could be achieved if SFF � SRAW.
Unfortunately, this requirement can’t be met if SRAW is near full-well conditions.
However, the shot-noise contribution from the flat-field frame can be reduced to
a negligible level if several flat fields are averaged together before Eq. (8.1) is
applied. The resultant noise of the corrected image when the flat fields are averaged
is

σCOR =

[
σ2

READ + σ2
SHOT_RAW +

(
SRAW

SFFN
1/2
FF

σSHOT_FF

)2
]1/2

, (8.6)

where NFF is the number of flat fields taken and averaged.
Noting that σ2

SHOT_RAW = SRAW and σ2
SHOT_FF = SFF, Eq. (8.6) reduces to

σCOR =
{

σ2
READ +

[
SRAW

(
1 +

SRAW

QFF

)]}1/2

, (8.7)

where
QFF = SFFNFF. (8.8)

QFF is defined as the “flat field quality factor.”
Note that when SRAW/QFF � 1, and read noise is negligible, Eq. (8.7) re-

duces to
σCOR = S

1/2
RAW, (8.9)

producing the ideal shot noise limit. On a log-log plot, σCOR will exhibit a slope
of 1/2 as a function of signal.
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When SRAW/QFF � 1, Eq. (8.7) simplifies to

σCOR =
SRAW

Q
1/2
FF

, (8.10)

and the corrected noise increases linearly with signal, thus exhibiting a slope of
unity on a log-log plot and a slope of Q

−1/2
FF on linear coordinates.

For the special case when QFF = SFF = SRAW, Eq. (8.7) becomes

σCOR = (2SRAW)1/2 = 21/2σSHOT_RAW; (8.11)

i.e., when a flat field flattens another flat field at the same signal level, the resultant
shot noise is the square root of two times higher than the original shot noise level.

Example 8.1

Determine the noise level after flat fielding given that SRAW = 105 e−, and SFF =
105 e− for NFF = 1, 10, and 100. Compare the results to the ideal shot noise level.
Assume σREAD is negligible.

Solution:
The ideal shot noise limited response after flat fielding is (105)1/2 = 316 e−.
From Eq. (8.7),

σCOR =
{

105
[
1 +

105

(105 × 1)

]}1/2

= 21/2 × 316 = 447 e−

when NFF = 1;

σCOR = 331 e− when NFF = 10;

and

σCOR = 317 e− when NFF = 100.

Equating the corrected and raw noise levels reveals an interesting connection
between PN and QFF:{

σ2
READ +

[
SRAW

(
1 +

SRAW

QFF

)]}1/2

=
[
σ2

READ + SRAW + (SRAWPN)
]1/2

.

(8.12)
Simplifying and solving for QFF yields

QFF =
1

P 2
N

. (8.13)

Note that when QFF < 1/P 2
N, the corrected noise floor is actually greater than the

raw noise floor, which totally defeats the purpose of flat fielding.
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8.2 Photon Transfer Verification

Photon transfer is a powerful tool to confirm that FPN is being properly removed
through the flat-fielding technique. If the flat-fielding process is performed cor-
rectly, the ideal shot noise PTC will be obtained. Figure 8.3 presents PTCs of
σTOTAL(DN), σSHOT+READ(DN), and σCOR(DN), assuming QFF(DN) =
15,000. Note that the noise of the corrected curve is greater than the ideal shot
noise curve by 21/2 at 15,000 DN, as Eq. (8.11) predicts. Also, the corrected re-
sponse approaches a slope of unity when SRAW > SFF, as indicated by Eq. (8.10).
To achieve the shot noise limit over the sensor’s entire dynamic range, QFF(DN)
must be increased.

Figure 8.3 PTC verification if flat fielding is performed properly.

Example 8.2

Generate a set of PTCs after flat fielding for the PTCs in Example 5.1. Assume
QFF = 102, 103, 104, 105, and 106 e−, and NFF = 1. Calculate the flat-field level
where the corrected noise is greater than the raw noise. Assume PN = 0.02.

Solution:
Figure 8.4 shows the desired PTCs. A flat-field quality factor > 106 e− is required
for shot noise limited performance over the full dynamic range. From Eq. (8.13),
the noise contained in the corrected image is greater than the raw frame noise when

QFF <
1

0.022
< 2500 e−.

Note from Fig. 8.4 that the corrected PTC lays on top of the raw FPN curve when
Eq. (8.13) applies.
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Figure 8.4 PTC response with different flat-fielding quality factors compared to the ideal
shot noise response.

Figure 8.5 presents a random number simulation that further demonstrates the
flat-fielding process. The noise associated with the linearly increasing raw signal
shown is primarily dominated by FPN. The plot also includes four flat-field levels
with quality factors of QFF = 50,000; 10,000; 2000; and 500 e−. The simulation
then divides the raw pixel values by the flat-field pixels as defined by Eq. (8.1).
Figure 8.6 shows the corrected response for a quality factor of QFF = 50,000 that
leaves behind only shot noise. Figure 8.7 plots the shot noise contained in the

Figure 8.5 Raw signal response showing FPN build up along with four flat field levels with
different QFF.
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corrected response for each quality factor. Note that the noise level for QFF =
50,000 is slightly noisier than the ideal shot noise response also included in the
plot. As QFF is reduced, the corrected noise dramatically increases and surpasses
the FPN contained in the raw signal. Figure 8.8 shows the corrected noise responses
when NFF is increased from 1 to 10. Results show an improved response relative
to Fig. 8.7 by a factor of 101/2.

Figure 8.6 FPN removal after flat fielding is applied to the raw response shown in Fig. 8.5.

Figure 8.7 Noise level after flat fielding for each QFF level compared to the ideal shot noise
response.
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Figure 8.8 Noise reduction when 10 flat fields are averaged compared to the ideal shot
noise response.

8.3 Nonlinearity

Flat fielding is also applicable when V/V nonlinearity is present, as demonstrated
in the next example.

Example 8.3

Perform the same simulation exercise as Fig. 8.5 but assume the signal and ADC
sensitivity vary as

S = 10t

and

KADC(e−/DN) = 0.1 + 0.004S0.5,

where t is the exposure time (sec). Perform the simulation in DN units.

Solution:
The signal and noise relations in DN units are

S(DN) =
S

KADC(e−/DN)
,

σSHOT(DN) =
S1/2

KADC(e−/DN)
,

and

σFPN(DN) =
SPN

KADC(e−/DN)
.
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Figure 8.9 shows the PTCs of the above relations. The total noise curve with unity
slope indicates a FPN of 3%. As seen from the shot noise curve, the nonlinearity
causes KADC(e−/DN) to vary from 0.11 to 1.37 e−/DN.

Figure 8.10 presents noise simulation results where the raw signal and the four
flat-field levels are plotted as a function of exposure time. Figure 8.11 shows the
corrected response after flat fielding for QFF = 50,000 DN. Figure 8.12 plots the
shot noise for each quality factor, including the ideal shot noise level (assuming
NFF = 1).

Figure 8.9 PTC responses with V/V nonlinearity present.

Figure 8.10 Raw signal response with time showing V/V nonlinearity and four flat-field
levels.
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Figure 8.11 FPN removed from raw response by flat fielding for Fig. 8.10.

Figure 8.12 Noise level after flat fielding for each QFF compared to the ideal shot noise
response.

Although flat fielding produces theoretical performance for linear and V/V
nonlinear detectors, FPN cannot be entirely removed when V/e− nonlinearity is
present. Example 8.4 provides insight behind the severity of the problem.

Example 8.4

Refer back to Example 7.2, which introduced V/e− nonlinearity, and perform the
same simulation exercise as in Fig. 8.10 by assuming the same sense node capaci-
tance change as
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Figure 8.13 Raw response and flat field level for a sensor with V/e− nonlinearity measured
in Fig. 7.17.

CSN =
k1
VSN

, 0.9 < VSN < 3.1,

where k1 = 10.909 × 10−15.
To emphasize the V/e− nonlinearity problem on flat fielding, assume the shot

noise of the flat field is negligible (i.e., QFF = ∞) and use an abnormally large
FPN quality factor of PN = 0.1. Also, generate PTCs when SFF(DN) = 24,200
and PN = 0, 0.01, 0.03, and 0.10. Then keep PN fixed at 0.03 and make a different
set of PTCs for these flat-field levels: SFF(DN) = 794; 7442; 24,200; and 37,670.

Solution:
Figure 8.13 shows the flat-fielding simulation plot. SRAW(DN) and the related
noise increase nonlinearly with S because of a changing sense node capacitance.
Also shown is a flat-field level of SFF(DN) = 24,200, which is used to flatten
the raw signal. Figure 8.14 shows the corrected response. Although most of the
FPN is removed, a small amount of “remnant FPN” remains (as indicated). It is
only when SFF(DN) = SRAW(DN) that FPN is entirely eliminated, and the result
equals the ideal shot noise limit. Figure 8.15 plots the corrected noise levels for
different PN = 0, 0.01, 0.03, and 0.1. Note that the shot noise at the flat-field level
remains fixed, whereas the remnant FPN increases on either side of SFF(DN) and
becomes larger with PN.

Figures 8.16 and 8.17 show the corresponding PTCs plotted on linear and log
coordinates for PN = 0, 0.01, 0.03, and 0.10, with SFF(DN) = 24,200. Both the
raw and corrected responses are shown. Similar to the behavior seen in Fig. 8.14,
remnant FPN first increases, then decreases to the shot noise level at SFF(DN) =
24,200. Beyond that level, the noise level continually increases until full well is
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Figure 8.14 FPN removed by flat fielding for Fig. 8.13 showing remnant FPN due to V/e−

nonlinearity.

Figure 8.15 Noise responses showing remnant FPN becoming negligible when the FPN
quality factor PN approaches 0.01.

reached. Also shown in the figures are curves without FPN (i.e., PN = 0), which
represent the ideal response. Figure 8.18 shows a PTC on linear coordinates with
PN fixed at 0.03 for SFF(DN) = 794; 7,442; 24,200; and 37,670 DN (the signal
levels are indicated as dots in the figure). Note that the responses become closer
to the ideal shot noise response (shown in Fig. 8.16) as the flat-field signal level
increases. However, remnant FPN prevents the curve from exhibiting the perfect
response; only the indicated dots achieve that response.
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Figure 8.16 PTC responses before and after flat fielding showing remnant FPN for different
PN compared to the ideal shot noise response.

Figure 8.17 Log PTC responses for Fig. 8.16.

The CMOS detector analyzed in Example 8.4 is highly nonlinear. However, the
assumed FPN noise of 10% was highly exaggerated to show the V/e− nonlinearity
flat-fielding problem. Fortunately, the level of remnant FPN is negligible when the
FPN is 1%, which is typical of CCD and CMOS detectors (as demonstrated in Fig
8.15). However, other camera-related FPN sources, such as vignetting, shading,
and interference fringing, which are often greater than pixel-to-pixel FPN, can lead
to flattening issues. For example, Fig. 8.19 shows a response to a uniform light
stimulus where 10% shading across the pixels is present. Note that the flattened
response is the reverse of the raw trace because the modulation gain is greater
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Figure 8.18 PTC responses before and after flat fielding using different flat field levels to
remove FPN.

Figure 8.19 Raw and corrected responses showing remnant FPN due to image shading.

for the flat field than the raw trace [i.e., NFF(DN/e−) > NRAW(DN/e−)]. The
opposite effect occurs when NFF(DN/e−) < NRAW(DN/e−), as shown in Fig.
8.20. As before, remnant FPN is not present only when SFF(DN) = SRAW(DN).
PTCs can be generated to quantify the problem.

Important Points

1. Shot noise limited performance can be achieved by removing FPN through the
flat-fielding technique.

2. The amount of FPN removal is proportional to the square root of the number of
flat fields averaged and their signal level.
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Figure 8.20 Raw and corrected responses showing remnant FPN due to shading.

3. Flat fielding is totally effective in eliminating FPN for linear and V/V nonlinear
detectors.

4. FPN cannot be completely removed when V/e− nonlinearity exists.
5. Remnant FPN generated by V/e− nonlinear detectors is usually negligible rela-

tive to shot noise. However, camera-related FPN sources can lead to significant
remnant FPN.
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Modulation Photon Transfer
9.1 Introduction

Discussions to this point have assumed that a flat-field light source is used to stim-
ulate the detector. This chapter develops PT relations for nonuniform light sources,
such as a sinusoidal stimulus. Results derived in this chapter provide significant
insight and quantification of S/N performance for images in general, which is dis-
cussed in Chapter 10.

9.2 Sinusoidal Signal

Nonuniform light analysis begins by assuming that the detector’s output response
to a sinusoidal photon input source is described by

SIN = PQEI

{
1 + CPMTFD sin

[
π

(
fSnix

fN
+ 0.5

)]}
, (9.1)

where SIN is the pixel signal (e−), nix is the number of pixels across the array (i.e.,
nix = 1, 2, 3, etc.), and CP is the incident “photon contrast” defined by

CP =
SMAX(P ) − SMIN(P )
SMAX(P ) + SMIN(P )

, (9.2)

where SMAX(P ) and SMIN(P ) are the maximum and minimum number of incident
photons per pixel. In Eq. (9.1), MTFD is the pixel’s modulation transfer function
(MTF) given by

MTFD =
sin

(
πfSpf

2fN

)
πfSpf

2fN

, (9.3)

where fS is the spatial frequency of the sinusoidal input (cycles/cm), pf is the nor-
malized pixel aperture opening (the ratio of the active pixel opening to the pixel
pitch), and fN is the Nyquist spatial frequency defined by

fN =
1

2pix
, (9.4)

where pix is the pixel pitch (cm).
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Equation (9.1) can be simplified to

SIN = PQEI{1 + CD sin[π(fnix + 0.5)]}, (9.5)

where the normalized spatial frequency, f , is defined as

f =
fS

fN
. (9.6)

CD is the “detector’s contrast” defined as

CD = CIMTFD =
SMAX − SMIN

SMAX + SMIN
, (9.7)

where the detector’s maximum and minimum signal excursions are

SMAX = PQEI(1 + CD) (9.8)

and
SMIN = PQEI(1 − CD). (9.9)

Example 9.1

Plot Eqs. (9.1) and (9.5) by assuming P = 20,000 photons/pixel, QEI = 0.5,
CP = 1, and MTFD = 0.5 for f = 1 and f = 0.6.

Solution:
From Eq. 9.1, Figure 9.1 plots the input photon flux as a function of pixel distance
across the detector for the two spatial frequencies given. The discrete data points
shown represent the number of interacting photons per pixel.

Figure 9.1 Sinusoidal input light stimulus to the detector.
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Figure 9.2 Pixel output response (e−) to the photon input shown in Fig. 9.1.

Figure 9.2 plots the detector’s output signal given by Eq. (9.5) as a function of
the pixel for each spatial frequency.

Applying the general averaging relation

xm =
1
n

n∑
i=1

xi (9.10)

to Eq. (9.5) produces the mean signal level for the detector,

SSIN =
PQEI

nix

nix∑
1

1 + CD sin[π(fnix + 0.5)]. (9.11)

If the number of sinusoidal cycles sampled by the pixels is large (i.e., nix � 2/f ),
Eq. (9.11) reduces to

SSIN = PQEI =
SMAX + SMIN

2
. (9.12)

Applying the general standard deviation relation

σ =

[
1
n

N∑
i

(xi − xm)2
]1/2

(9.13)

to Eq. (9.5) produces the standard deviation (rms) level for the detector:

δSIN =
[

1
nix

nix∑
1

PQEI{1 + CD sin[π(fnix + 0.5)] − SSIN}2
]1/2

. (9.14)

If the number of sinusoidal cycles sampled by the pixels is large (i.e., nix � 2/f),
Eq. (9.14) reduces to

δSIN = 0.707SSINCD. (9.15)
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Figure 9.3 Output (SIN), average signal (SSIN), and rms modulation (δSIN) responses as a
function of pixel count.

From Eqs. (9.11) and (9.14), the mean and standard deviation are plotted in Fig. 9.3,
assuming f = 0.025, CD = 0.5, and SSIN = 10,000 e−. Note that the average
signal and corresponding standard deviation approach the constant level given by
Eqs. (9.12) and (9.15) for a large nix. Figure 9.4 shows similar plots for the spatial
frequency f = 0.91.

Example 9.2

Determine SMAX, SMIN, SSIN, and δSIN under steady-state conditions for Fig. 9.3.
Assume PQEI = 10,000 e−, CD = 0.5, and f = 0.025.

Figure 9.4 Similar responses as Fig. 9.3 at a higher spatial frequency.
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Solution:
From Eq. (9.5), the charge generated by the detector is

SIN = 10,000{1 + 0.5 sin[π(0.025 × nix + 0.5)]}.

From Eq. (9.8), the maximum signal level is

SMAX = 10,000 × (1 + 0.5) = 15,000 e−.

From Eq. (9.9), the minimum signal level is

SMIN = 10,000 × (1 − 0.5) = 5000 e−.

From Eq. (9.l2), the average signal is

SSIN =
10,000 + 5000

2
= 10,000 e−.

From Eq. (9.15), the standard deviation is

δSIN = 10,000 × 0.5
21/2

= 3536 e−.

9.3 Sinusoidal Noise

Shot noise and FPN vary sinusoidally with the signal described by Eq. (9.5). For
example, Figs. 9.5 and 9.6 plot shot noise and FPN generated for SSIN = 10,000 e−

Figure 9.5 Sinusoidal shot noise for different contrast levels.
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Figure 9.6 Sinusoidal FPN for different contrast levels.

at different contrast levels (CD = 1, 0.6, and 0.05). Each figure labels the average
noise level for each contrast level. Figure 9.7 plots the average noise for both
sources as a function of contrast, assuming several cycles are sampled (i.e., nix �
2/f ). Note that the FPN level is constant with contrast as

σSIN_FPN = PNSSIN. (9.16)

However, the shot noise is slightly dependent on contrast. For low-contrast signals,
the average rms shot noise can be approximated by

σSIN_SHOT ≈ S
1/2
SIN. (9.17)

Figure 9.7 Average sinusoidal shot noise and FPN as a function of contrast.
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Figure 9.8 Sinusoidal and uniform PTCs showing slightly different shot noise responses.

Note that Eq. (9.17) can be in error by as much as 10% for a 100% contrast level
as compared to a measured result. Discussions in this book will primarily focus on
low-contrast images where S/N performance is most critical. Therefore, it will be
assumed that Eq. (9.17) applies to the upcoming discussions. With this assumption,
the total noise associated with a sine wave response is simply

σSIN_TOTAL =
[
σ2

READ + SSIN + (PNSSIN)2
]1/2

. (9.18)

It is also important to note that sinusoidal noise is approximately equal to the noise
generated by a uniform light source when the average signal levels are the same
(i.e., SSIN = S). Therefore, we can equate flat field and sinusoidal noise through

σSIN_TOTAL =
[
σ2

READ + S + (PNS)2
]1/2

, SSIN = S, (9.19)

where S is the average flat-field level.
Figure 9.8 displays simulated PTCs generated by a sinusoidal source with 100%

contrast (i.e., CD = 1) and a flat-field source. Shot noise and FPN are plotted as a
function of the signal level, assuming S = SSIN. Note that the FPN curves for both
stimuli sources are identical. However, the shot noise curves differ slightly (10%)
for reasons that were explained in Fig. 9.7.

Example 9.3

Determine the average signal and shot noise, given that the signal varies as

SIN = 10,000e−nix/200{1 + CD sin[π(fnix + 0.5)]} (E9.1)



134 Chapter 9

Figure 9.9 Decaying sinusoidal responses with the contrast levels defined in Example 9.3.

Table 9.1 Measured and calculated results for average signal and corresponding shot noise.

CD = 1 CD = 0.6 CD = 0.2 CD = 0.05
Measured signal (e−) 6448 6392 6334 6313
Measured shot noise (e−) 71 76 78 78
Eq. (9.17), shot noise (e−) 80 80 79 79

Compare the simulated measured results to Eq. (9.17). Assume CD = 1, 0.6, 0.2,
0.05, and nix = 200 pixels.

Solution:
Figure 9.9 plots Eq. (E9.1) for the four contrast levels given. Table 9.1 provides
measured results for the average signal and corresponding shot noise. Equa-
tion (9.17) calculates the shot noise and is also tabulated. Note that Eq. (9.17)
is in agreement with measured results when the contrast is relatively low.

9.4 Modulation PTC

In Chapter 10 it will be shown that PTCs generated by an image quantify the im-
age’s S/N performance. The plots are referred to as modulation PTCs (MPTCs) and
are generated experimentally in the same fashion as flat-field PTCs. For example,
Fig. 9.10 shows a MPTC where rms modulation contained in the image is plotted as
a function of average signal. Also included are shot noise and FPN PTCs produced
by a uniform light stimulus.
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Figure 9.10 Uniform and image modulation PTC responses.

The total modulation contained in an image is composed of read noise, image
shot noise, and image FPN as well as the useful signal modulation. In equation
form, this is

σI_M =
(
σ2

READ + σ2
I_SHOT + σ2

I_FPN + δ2
I

)1/2
, (9.20)

where σI_M is the total image modulation, σI_SHOT and σI_FPN are the average
shot noise and FPN for the image, and δI is the rms signal modulation. All noise
sources, except the read noise, are generated by the image. The signal modulation
is derived from the useful contrast information contained in the image.

Equation (9.20) can be described in terms of signal as

σI_M =
[
σ2

READ + SI + (PNSI)2 + (MISI)2
]1/2

, (9.21)

where SI is the average signal level of the image. MI is referred to as the “image
modulation constant” that varies with image contrast. The parameter is defined as

MI =
δI

SI
=

[σ2
I_M − σ2

READ − SI − (PNSI)2]1/2

SI
. (9.22)

When the image noise sources are small relative to signal modulation, Eq. (9.22)
reduces to

MI =
δI

SI
=

σI_M

SI
, (9.23)

which exhibits a slope 1 response for large signal on a MPTC (as shown in Fig. 9.10).
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Example 9.4

Determine the image modulation constant, MI, for the MPTC shown in Fig. 9.10.

Solution:
The MPTC shows an example data point on the slope 1 curve used to calculate MI.
From Eq. (9.23),

MI =
103

104
= 0.1 (i.e., 10% modulation or contrast).

Note that the image modulation is 10 times greater than the average image FPN
(i.e., MI = 10PN); therefore, Eq. (9.23) applies.

Example 9.5

Determine the image modulation constant, MSIN, for a sinusoidal stimulus. As-
sume several cycles of the sinusoid are sampled such that Eq. (9.15) applies.

Solution:
From Eq. (9.15), the rms modulation for a sine wave response is

δSIN = 0.707 × CD × SSIN. (E9.2)

From Eq. (9.23),

MSIN = 0.707CD
SSIN

SSIN
= 0.707CD = 0.707 × CP × MTFD. (E9.3)

Example 9.6

Generate MPTCs in DN units for the sinusoidal image shown in Fig. 9.11 using the
following parameters:

CD = 1, 0.25, 0.0625, and 0.0313
σREAD = 5 e−

KADC(e−/DN) = 2.5
PN = 0.01

Also include shot noise and FPN flat-field PTCs. Calculate MSIN for the CD =
0.0313 contrast case and compare the result to the measured results from the MPTC.
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Figure 9.11 Sinusoidal image.

Solution:
Substituting Eq. (E9.3) into Eq. (9.21) yields the total sinusoidal modulation. In
electron units, this total is

σSIN_M =
[
σ2

READ+SSIN+(PNSSIN)2+(0.707CDSSIN)2
]1/2

. (E9.4)

And in DN units, the total sinusoidal modulation is

σSIN_M(DN)

=
[σ2

READ + SSIN + (PNSSIN)2 + (0.707CDSSIN)2]1/2

KADC(e−/DN)
.

(E9.5)

Figure 9.12 simulates Eq. (E9.5) using random number generators for the noise
sources to produce MPTCs for each contrast case. Also included for comparision
are the shot noise and FPN flat-field PTCs.

From Eq. (E9.3), the theoretical sinusoidal modulation factor is calculated for
CD = 0.0313 as

MSIN = 0.707 × CD = 0.707 × 0.0313 = 0.0221.

MSIN is measured from the MPTC shown in Fig. 9.12 using Eq. (9.22).
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Figure 9.12 Modulation PTCs for the image shown in Fig. 9.11 in comparison to flat field
PTC responses.

For example, Fig. 9.12 shows the following set of data points at SSIN(DN) = 2000:

σSIN_M = 56 DN (CD = 0.0313)
σREAD = 2 DN

σSIN_SHOT = 29 DN

σSIN_FPN = 20 DN

Substituting these quantities into Eq. (9.22) yields

MSIN =
(562 − 22 − 292 − 202)1/2

2000
=

20611/2

2000
= 0.022,

which is in agreement with the theoretical result from Eq. (E9.3).
Note that, as MSIN decreases, the MPTC curve approaches the flat-field FPN

responses, indicating that the quality of the image is degrading. When the contrast
becomes zero (i.e., MSIN = δI = 0), the image becomes equivalent to a flat field.
Figure 9.13 reduces the contrast factors relative to those applied in Fig. 9.12 to show
the transition that takes place (i.e., CD = 0.0313, 0.0156, 0.0078, and 0.0031).
Note that the lowest-contrast (CD = 0.0031, MSIN = 0.0022) curve essentially lies
on top of the FPN flat-field response, indicating that the image would be completely
lost in FPN. Figure 9.14 presents a similar set of curves with FPN removed; they
show that the two curves separate, indicating that the contrast would still be seen.
S/N performance for these imaging situations is discussed in Chapter 10.
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Figure 9.13 PTC responses with FPN and reduced contrast relative to Fig. 9.12.

Figure 9.14 PTC responses without FPN and with reduced contrast relative to Fig. 9.12.

Example 9.7

Plot the sinusoidal image modulation factor, MSIN, as a function of spatial fre-
quency for different normalized pixel fill factors (pf = 1, 0.5, 0.2, and 0.02). As-
sume for this plot that incident photon contrast is CP = 1 (i.e., 100% input photon
contrast).

Solution:
From Eq. (9.3),

MSIN = 0.707
sin

(
πfpf

2

)
πfpf

2

. (E9.6)
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Figure 9.15 plots MSIN as a function of spatial frequency for the desired pixel
fill factors indicated. Note that for very small pixel fill factors, the modulation
constant is invariant with spatial frequency and fixed at MSIN = 0.707.

Figure 9.16 presents a collection of MPTCs derived from different regions con-
tained in the image of Fig. 9.17. Figure 9.18 shows the partial images characterized
and labeled 2 through 5. Each image exhibits a different modulation factor depend-
ing on its contrast level. For example, the “rose” exhibits a modulation factor of
MI = 0.18. This signal modulation is only 3.6 times greater than the 5% FPN

Figure 9.15 Modulation factor as a function of spatial frequency for different pixel fill factors.

Figure 9.16 Modulation PTC responses for the images shown in Figs. 9.17–9.18.
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Figure 9.17 Image used to generate modulation PTC response shown in Fig. 9.16.

Figure 9.18 Images used to generate modulation PTC responses shown in Fig. 9.16.
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measured from a flat-field exposure and therefore exhibits poor image quality. The
background in image 5 shows FPN with a slight amount of shading in light. Hence,
the image modulation factor is only slightly greater than FPN (MI = 0.07 versus
PN = 0.05). FPN is greater than normal (i.e., PN = 0.01) for this sensor because
of pixel color filters.

Important Points

1. For a nonuniform light source, FPN is proportional to the average signal level.
Shot noise is equal to the square root of the average signal level, assuming that
the contrast of the image is relatively low.

2. The amount of useful signal modulation for an image is derived from the con-
trast contained in the image.

3. The total modulation contained in an image is composed of signal modulation
and noise sources (i.e., read noise, image shot, and FPN).

4. Image noise becomes equivalent to the noise contained in a flat-field image for
very low-contrast scenes, assuming the average signal levels are the same.

5. Modulation photon transfer curves (MPTCs) are used to quantify the S/N per-
formance for images (refer to Chapter 10).

6. The modulation constant derived by a MPTC specifies the amount of useful
signal modulation contained in an image. The parameter is proportional to the
incoming photon scene contrast and the pixel MTF.
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Signal-to-noise Performance
10.1 Uniform Stimulus

Data from a PTC provides signal-to-noise (S/N) performance directly (i.e., no fur-
ther data taking is necessary). S/N is determined by dividing signal by noise for
each PTC data point taken. The result is plotted as a function of signal in either DN
or electron units.

In equation form, S/N for a uniform flat-field stimulus input is given by

[
S
N

]
FF

=
S

σTOTAL
=

S

[σ2
READ + ηiS + (PNS)2]1/2

. (10.1)

Three different noise regimes exist over an S/N plot: read noise, shot noise, and
FPN. S/N for the read noise regime is

[
S
N

]
FF_READ

=
S

σREAD
, (10.2)

which is proportional to signal and produces a slope 1 curve when plotted on log-
log coordinates.

The S/N within the shot noise regime is

[
S
N

]
FF_SHOT

=
S

σSHOT
=

S

(ηiS)1/2
=

(
S

ηi

)1/2

(10.3)

and increases by the square root of signal with a slope of 1/2.
The S/N within the FPN regime is

[
S
N

]
FF_FPN

=
S

σFPN
=

1
PN

(10.4)

and is independent of signal, producing a slope of 0. The FPN regime begins at
a signal level of 1/P 2

N of approximately 10,000 e− for CCD and CMOS imagers.
Beyond this signal level, S/N performance is fixed at about 1/PN = 100.
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Example 10.1

For the PTCs shown in Fig. 5.4, plot [S/N]FF as a function of signal. Assume these
FPN quality factors: PN = 0.005, 0.01, 0.02, 0.04, and 0.08.

Solution:
Figure 10.1 shows the desired plots and S/N regimes. For high signals, [S/N]FF as-
ymptotically approaches 1/PN [Eq. (10.4)] at a signal level of 1/P 2

N e− [Eq. (3.14)].
Note that [S/N]FF appears to increase at full well. This behavior is only a full-
well saturation artifact where pixel crosstalk reduces noise modulation. In reality,
[S/N]FF actually dramatically decreases.

Example 10.2

For the flat-field quantum yield PTCs shown in Fig. 3.13, plot [S/N]FF as a function
of signal.

Solution:
Figure 10.2 presents the desired plots. For a given signal level, [S/N]FF decreases
by the square root of quantum yield [i.e., (Eq. 10.3)].

Signal-to-noise for x-ray imaging applications is severely limited by its shot
noise. For example, [S/N]FF = 10, given ηi = 1000 e− (i.e., 3.65 keV x-ray
photons) at a full-well level of 105 e−. In comparison, visible photons exhibit
a [S/N]FF of 316 for the same signal level.

Figure 10.1 Signal-to-noise as a function of signal and different FPN quality factors (PN) for
the PTC data presented in Fig. 5.5 showing four S/N regimes.
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Signal-to-noise degradation due to quantum yield is demonstrated in Fig 10.3,
which shows sinusoidal images at two different quantum yields. Signal-to-noise is
10 times lower for the ηi = 100 x-ray image compared to the ηi = 1 visible image.

Figure 10.2 Signal-to-noise with signal and quantum yield.

Figure 10.3 Images with corresponding video traces for visible (ηi = 1) and x-rays (ηi =
100).
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10.2 Image S/N Performance

The general S/N relation for an image is defined as[
S
N

]
I
=

δI

σI_TOTAL
=

MISI

[σ2
READ + SI + (PNSI)2]1/2

. (10.5)

Discussions in Chapter 9 showed that the noise level was equivalent for a low-
contrast image and a flat-field image when their average signal levels were the
same (i.e., SI = S). Therefore, letting SI = S in Eq. (10.5) produces[

S
N

]
I
= MI

[
S
N

]
FF

. (10.6)

This important relation shows that optimizing flat-field S/N produces the highest
S/N for an image. Note that [S/N]I is always less than [S/N]FF by the image mod-
ulation factor MI.

Example 10.3

Assuming S = SI, determine [S/N]SIN for a sinusoidal image given the following
parameters:

[S/N]FF = 500
CP = 0.01
MTFD = 0.5

Solution:
From Eqs. (10.6) and (E9.3),[

S
N

]
SIN

= 0.707CPMTFD

[
S
N

]
FF

. (E10.1)

When the given parameters are substituted,

[S/N]SIN = 0.707 × 0.01 × 0.5 × 500 = 1.76.

Figure 10.4 plots [S/N]SIN and [S/N]FF for different CD (with and without
FPN) for sinusoidal and flat-field illumination. [S/N]FF represents a standard for
the highest S/N that can be achieved (as observed in the figure). Quality images
require S/N > 10, a level indicated by the dotted line in Fig. 10.4. As demonstrated
in Fig. 10.4, for very low-contrast scenes, it is crucial to remove FPN. For example,
Fig. 10.5 presents a sinusoidal image with and without FPN removal for CD =
0.03125. A S/N improvement of 3.5 is achieved when FPN is eliminated at full
well (105 e−).
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Figure 10.4 Sinusoidal S/N for different contrasts with and without FPN in comparison to
flat-field responses.

Figure 10.5 Images taken from Fig. 10.4 showing S/N improvement when FPN is removed.

Example 10.4

Derive the read noise, shot noise, and FPN S/N regimes for an image and a
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sinusoidal stimulus. Also plot [S/N]SIN, given CD = 1, 0.25, and 0.0625. As-
sume PN = 0.02 and σREAD = 5.

Solution:
The S/N regimes for an image are given by

[
S
N

]
I_READ

=
MISI

σREAD
= MI

[
S
N

]
FF_READ

, (E10.2)

[
S
N

]
I_SHOT

= MIS
1/2
I = MI

[
S
N

]
FF_SHOT

, (E10.3)

and

[
S
N

]
I_FPN

=
MI

PN
= MI

[
S
N

]
FF_FPN

. (E10.4)

Assuming MI = 0.707CDSSIN, the corresponding S/N regimes for a sinusoidal
image are

[
S
N

]
SIN_READ

= 0.707CD
SSIN

σREAD
= 0.707CD

[
S
N

]
FF_READ

, (E10.5)

[
S
N

]
SIN_SHOT

= 0.707CDS
1/2
SIN = 0.707CD

[
S
N

]
FF_SHOT

, (E10.6)

and

[
S
N

]
SIN_FPN

= 0.707
CD

PN
= 0.707CD

[
S
N

]
FF_FPN

. (E10.7)

Figure 10.6 plots [S/N]SIN as a function of SSIN. Each noise regime is labeled.
[S/N]SIN reaches a maximum given by Eq. (E10.7), as indicated on the plot. For
example, for CD = 0.0625, the S/N performance is only

[S/N]SIN = 0.707 × 0.0625
0.02

= 2.2.

The sinusoidal image in Fig. 10.7 demonstrates improved image quality as [S/N]SIN

varies from 1 to 7. Although image quality is subjective, noticeably better imagery
occurs when [S/N]SIN > 10, where the “salt and pepper” noise is inconspicuous.
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Figure 10.6 Sinusoidal S/N plots for Example 10.4.

Figure 10.7 Sinusoidal image quality as a function of S/N compared to the ideal.

Example 10.5

Plot [S/N]I for the five images analyzed in Figs. 9.16–9.18 (given MI = 0.64, 0.42,
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0.23, 0.18, and 0.07). Generate individual S/N plots, with and without FPN. Also
show flat-field responses. Also calculate [S/N]I for image 4 (the “rose” image) with
and without FPN at a signal level of 1000 DN (50,000 e−). Assume PN = 0.05,
σREAD = 15 e−, and KADC(e−/DN) = 50.

Solution:
From Eq. (10.5), the [S/N]I is given by

[
S
N

]
I
= MI

SI

[152 + SI + (0.05SI)2]1/2
. (E10.8)

Figure 10.8 plots Eq. (E10.8) with and without FPN for the images, along with flat
field S/N curves. Note that images 2–5 fall below the criteria S/N > 10 for a quality
image because of FPN. When FPN is removed, the images are all acceptable for a
signal level of >100 DN (5000 e−). From Eq. (E10.8), the [S/N]I for image 4 with
FPN is

[S/N]I = 0.18 × 50, 000
[152 + 50, 000 + (0.05 × 50, 000)2]1/2

[S/N]I = 3.59.

From Eq. (E10.8), the [S/N]I for image 4 without FPN is

[S/N]I = 0.18 × 50, 000
(152 + 50, 000)1/2

[S/N]I = 40.3.

Note that the images shown in Fig. 9.18 are printed with FPN.

10.3 Flat Fielding

The S/N for a uniform illumination after FPN is removed by flat fielding is given
as [

S
N

]
FF_COR

=
S[

σ2
READ + S

(
1 +

S

QFF

)]1/2
. (10.7)

Assuming read noise is negligible, three special conditions apply to Eq. (10.7):

[
S
N

]
FF_COR

= Q
1/2
FF

S

QFF
� 1, (10.8)

[
S
N

]
FF_COR

= S1/2 S

QFF
� 1, (10.9)
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Figure 10.8 Signal-to-noise performance for the images presented in Figs. 9.17–9.18 com-
pared to flat-field S/N with and without FPN.

and [
S
N

]
FF_COR

=
(

S

2

)1/2

S = QFF. (10.10)

Equation (10.8) suggests that S/N is limitless by making QFF as large as desired.
However, the condition S/QFF � 1 is limited by the sensor’s full-well perfor-
mance. Equation (10.9) is the best performance that can be achieved (i.e., shot
noise limited).

Example 10.6

For the PTC in Fig. 5.4, plot the [S/N]FF_COR. Assume these flat-field quality
factors: QFF = 2 × 101, 2 × 102, 2 × 103, 2 × 104, and 2 × 105 e−.

Solution:
Figure 10.9 presents the desired curves. [S/N]FF_COR nearly reaches the ideal shot
noise limited response when QFF = 2 × 105 (e.g., NFF = 1 and SFW). Further
improvement is achieved by increasing NFF.

Assuming that read noise is negligible, the S/N improvement achieved by flat
fielding is [

S
N

]
FF_IM

=
[S/N]FF_COR

[S/N]FF
=

[
1 + SP 2

N

1 +
S

QFF

]1/2

. (10.11)

Note that when QFF = 1/P 2
N, then [S/N]FF_IM = 1 and is independent of signal.

Also, when S/QFF � 1 and SPN � 1, then [S/N]FF_IM = PNS1/2.
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Figure 10.9 Signal-to-noise for a uniform stimulus after flat fielding for different QFF com-
pared to the ideal shot noise response.

Example 10.7

Plot [S/N]FF_IM as a function of signal. Assume PN = 0.01, and QFF = 102, 103,
104, 105, 106, and 107 e−.

Solution:
The desired plots, from Eq. (10.11), are presented in Fig. 10.10. For signals less

Figure 10.10 Signal-to-noise improvement with signal and different flat-fielding quality fac-
tors.
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than 1000 e−, flat fielding serves no purpose because shot noise is greater than
FPN. In fact, if QFF < 1/P 2

N, the process will actually degrade S/N.

The S/N that is achieved for a corrected image is given by[
S
N

]
I_COR

=
MISI[

σ2
READ + SI

(
1 +

SI

QFF

)]1/2
, (10.12)

which, for low-contrast images, is equivalent to[
S
N

]
I_COR

= MI

[
S
N

]
FF_COR

. (10.13)

Also, from Eqs. (10.5) and (10.12), the improvement for a low-contrast image after
flat fielding is [

S
N

]
I_IM

=
[S/N]I_COR

[S/N]I
=

1 + P 2
NSI

1 +
SI

QFF

=
[

S
N

]
FF

. (10.14)

The maximum S/N that can be achieved for an image when FPN is optimally (SI/
QFF � 1) removed is given by[

S
N

]
I_MAX

= MI(SFW)1/2. (10.15)

Figure 10.11 presents a low-contrast sinusoidal image used to demonstrate S/N
improvement by flat fielding. Figure 10.12 shows the assumed photon input and
electron output responses for the parameters indicated. QFF varies from 1 to
104 e−, as indicated in Fig. 10.11. The S/N surpasses the raw S/N response when
QFF = 1/P 2

N = 2500 e−. The raw and ideal shot noise responses are also shown
on the right-hand side of the plot.

Example 10.8

Derive the sinusoidal [S/N]SIN_COR after FPN is removed by flat fielding.

Solution:
From Eq. (E9.3), the sinusoidal modulation factor is given by

MSIN = 0.707 × CD.

Substituting MSIN into Eq. (10.12) produces[
S
N

]
SIN_COR

=
0.707CDSSIN[

σ2
READ + SSIN

(
1 +

SSIN

QFF

)]1/2
, (E10.9)
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Figure 10.11 Image S/N improvement versus QFF compared to a raw response with FPN
and the ideal response without noise.

Figure 10.12 Photon and detector signals assumed for Fig. 10.11.

which is equivalent to

[
S
N

]
SIN_COR

= 0.707CD

[
S
N

]
FF_COR

. (E10.10)
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The three special conditions noted above also apply to Eq. (E10.9) and yield

[
S
N

]
SIN_COR

= 0.707CDQ
1/2
FF , SSIN/QFF � 1; (E10.11)

[
S
N

]
SIN_COR

= 0.707CDS
1/2
SIN, SSIN/QFF � 1; (E10.12)

and

[
S
N

]
SIN_COR

= 0.707CD

(
SSIN

2

)1/2

, SSIN = QFF. (E10.13)

Example 10.9

For the image in Fig. 10.11, plot [S/N]SIN_COR as a function of SSIN for the fol-
lowing flat-field quality factors: QFF = 10; 100; 1,000; and 10,000 e−. Also plot
the uncorrected S/N. Assume PN = 0.02.

Solution:
From Eq. (E10.9), Figure 10.13 shows the desired curves, including the ideal shot
noise curve and uncorrected responses.

Figure 10.13 S/N versus signal (SSIN) for Fig. 10.11.
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Example 10.10

Plot [S/N]SIN_MAX as a function of full well, given CDET = 1.0, 0.1, 0.01, and
0.001. Assume that FPN has been removed from the image.

Solution:
From Eq. (E9.3), the sinusoidal modulation factor is given by

MSIN = 0.707 × CD.

From Eq. (10.15),

[
S
N

]
SIN_MAX

= 0.707CDET(SFW)1/2.

Figure 10.14 presents the desired plots. Note that a detector contrast of 1% requires
a full well of 2 × 106 e− for good S/N performance (>10).

Figure 10.14 Maximum S/N versus full well for different detector contrasts.

10.4 Image Averaging

Multiple frames can be averaged to improve S/N performance beyond the standard
shot noise limit. The technique works as long as the images remain stationary
during the data-taking process.
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For uniform illumination, the S/N for frame averaging is given by[
S
N

]
FF_AV

=
S[

σ2
READ + S

NAV
+ (PNS)2

]1/2
, (10.16)

where NAV is the number of frames averaged. Note that random noise sources
(shot noise and read noise) are reduced by N

1/2
AV . However, frame averaging does

not improve S/N when FPN is present, unless the signal is smaller than <1/PN
2.

When flat fielding is employed to remove FPN, Eq. (10.16) simplifies to

[
S
N

]
FF_AV

=
SN

1/2
AV

(σ2
READ + S)1/2

= N
1/2
AV

[
S
N

]
FF

. (10.17)

And when read noise is negligible, Eq. (10.17) reduces to[
S
N

]
FF_AV

= (SNAV)1/2. (10.18)

Figure 10.15 plots Eqs. (10.16) and (10.17) for different NAV. S/N is limited to 50
when FPN is present (i.e., 1/PN = 1/0.02). In comparison, S/N can be improved
by more than an order of magnitude when FPN is removed and 10 images are
averaged at a signal level of 105 e−.

The S/N when multiple images are averaged is given by[
S
N

]
I_AV

=
MISI[

σ2
READ + SI

NAV
+ (PNSI)2

]1/2
= MI

[
S
N

]
FF_AV

, (10.19)

Figure 10.15 S/N versus signal for different frame averages with and without FPN.
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and after flat fielding,

[
S
N

]
I_AV

=
MISIN

1/2
AV

(σ2
READ + SI)1/2

= MI

[
S
N

]
FF_AV

= MIN
1/2
AV

[
S
N

]
FF

. (10.20)

Figure 10.16 presents simulated images that demonstrate the benefits of flat field-
ing and frame averaging when applied together on a very low-contrast scene. Fig-
ure 10.16(a) shows a sinusoidal image of low contrast (CD = 0.0025, SSIN =
105 e−). Signal modulation is barely visible because FPN is present (PN = 0.01).
Figure 10.16(b) is produced after FPN is removed, showing an improved response.
Figure 10.16(c) is the product after 100 images are averaged, thereby increasing the
S/N by a factor of 10. For comparison, Fig. 10.16(d) shows the response without
noise.

Example 10.11

For each image shown in Fig. 10.16, determine [S/N]SIN_AV. As used in Fig. 10.16,
assume the following parameters: CD = 0.0025, SSIN = 105 e−, PN = 0.01,
NAV = 100, and σREAD = negligible.

Figure 10.16 Raw, FPN removed, frame-averaged, and ideal sinusoidal responses.
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Solution:
From Eq. (10.19), the sinusoidal S/N with frame averaging is given by

[
S
N

]
SIN_AV

=
0.707CDSSIN[

σ2
READ + SSIN

NAV
+ (PNSSIN)2

]1/2
; (E10.14)

and after flat fielding [Eq. (10.20)],

[
S
N

]
SIN_AV

=
0.707CDSSINN

1/2
AV

(σ2
READ + SSIN)1/2

. (E10.15)

Figure 10.16(a) with FPN:

From Eq. (E10.14) and NAV = 1,

[S/N]SIN_AV =
0.707 × 0.0025 × 105

[105 + (0.01 × 105)2]1/2
= 0.178.

Figure 10.16(b) without FPN:

From Eq. (E10.15) and NAV = 1,

[S/N]SIN_AV =
0.707 × 0.0025 × 105

(105)1/2
= 0.558.

Figure 10.16(c) when averaging is applied:

From Eq. (E10.15) and NAV = 100,

[S/N]SIN_AV =
0.707 × 0.0025 × 105

(105/100)1/2
= 5.58.

Figure 10.16(d) exhibits a S/N of infinity without noise.

10.5 On-Chip Averaging

CCDs offer the feature of on-chip averaging, where a specified number of rows
and/or columns are summed and then read out. For example, a 1k×1k CCD imager
can be formatted into a 500 × 500 imager by a 2 column × 2 row summation. The
general flat-field S/N relation for on-chip summation is

[
S
N

]
FF_SUM

=
NXNYS

[σ2
READ + NXNYS(SP 2

N + 1)]1/2
, (10.21)

where NX and NY are the number of pixels summed in the column and the row
directions, respectively.
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The S/N for the three noise regimes are

[
S
N

]
FF_SUM_READ

=
NXNYS

σREAD
= NXNY

[
S
N

]
FF

, (10.22)

[
S
N

]
FF_SUM_SHOT

= (NXNYS)1/2 = (NXNY)1/2
[

S
N

]
FF

, (10.23)

and [
S
N

]
FF_SUM_FPN

=
(NXNY)1/2

PN
= (NXNY)1/2

[
S
N

]
FF

. (10.24)

The S/N for an image when pixel summing is employed is

[
S
N

]
I_SUM

=
NXNYMISI

[σ2
READ + NXNYSI(SIP 2

N + 1)]1/2
= MI

[
S
N

]
FF_SUM

. (10.25)

Example 10.12

Plot the flat-field S/N with and without FPN when on-chip summation is applied.
Assume PN = 0.01, σREAD = 10 e−, and use the following summing formats:

NX = 1 NY = 1
NX = 2 NY = 2
NX = 5 NY = 5

Solution:
From Eq. (10.21), Figs. 10.17 and 10.18 present the desired plots.

Important Points

1. Flat-field S/N is limited to approximately 100 (1/PN) for CCD and CMOS im-
agers. FPN dominates S/N performance for signals greater than about 10,000 e−

(1/P 2
N).

2. Shot noise limited performance is the best S/N performance that can be achieved.
Maximum S/N performance is equal to the square root of full well.

3. Flat-field S/N performance decreases by the square root of quantum yield. Vis-
ible and near-IR photons (ηi = 1) produce the highest S/N performance.

4. A uniform flat field produces the highest S/N. Image S/N is always less than
flat-field S/N by the modulation constant, MI.

5. S/N performance for low-contrast images is proportional to flat-field S/N.
6. Quality images require S/N > 10.
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Figure 10.17 S/N with signal for different on-chip summing formats with FPN.

Figure 10.18 S/N with signal for different on-chip summing formats without FPN.

7. Averaging images increases S/N by the square root of the number of frames
averaged, assuming FPN is removed. Averaging images does not improve S/N
when FPN dominates.

8. Pixel summing increases S/N by the square root of the number of pixels summed,
including images that are FPN limited.
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Read Noise
11.1 Introduction

The first data points collected by a PTC typically measure the read noise floor. This
chapter reviews common CCD and CMOS read noise sources and their unique in-
fluence on PTCs. Table 11.1 lists the noise types in the order they will be presented.
The general read noise equation is given by

σREAD = (σ2
SF+σ2

RESET +σ2
D_SHOT+σ2

D_FPN +σ2
ADC+σ2

OFF_FPN +σ2
SY)1/2.

(11.1)
It is important to point out that Eq. (11.1) is applied to all equations in the previous
chapters that contain the term σREAD.

11.2 Pixel Source Follower Noise

Ultimately, a pixel’s source follower MOSFET, shown in Fig. 4.3, limits the read
noise floor. Fortunately, other noise sources can usually be reduced to negligible
levels relative to source follower noise. For example, dark current noise is removed
by cooling the sensor to a low operating temperature. Remarkably, source follower
noise for high-performance CMOS and CCD cameras have been driven down to
approximately one noise electron rms.

To provide the reader some insight to the variables behind source follower read
noise, we present a general formula that theoretically determines its amplitude. In

Table 11.1 Types of noise.

Noise Source Symbol
Pixel source follower noise σSF

Sense node reset noise σRESET

Thermal dark current shot noise σD_SHOT

Dark current FPN σD_FPN

ADC quantizing noise σADC

Offset FPN σOFF

System noise σSY
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electron units, the noise source is given by

σSF =
1

ASNASF(1 − e−ts/τD)

[∫ ∞

0
SDET(f)HCDS(f)df

]1/2

, (11.2)

where σSF is the source follower noise (e− rms), f is electrical frequency (Hz), ts
is the correlated double sampling (CDS) sample-to-sample time (sec), and τD is the
CDS dominant time constant.1 HCDS(f) is the CDS transfer function, expressed
as

HCDS(f) =
[

1
1 + (2πfτD)2

]
[2 − 2 cos(2πfts)]. (11.3)

The second term of Eq. (11.3) describes the frequency response of the CDS proces-
sor. The first term sets the CDS bandwidth for white noise rejection before sam-
pling takes place through

B =
1

4τD
, (11.4)

where B is defined as the equivalent noise bandwidth (Hz). The dominant time
constant is nominally set to τD = 0.5ts for high-performance camera systems.

Pixel source follower MOSFET noise is composed of three components:
white noise, flicker noise, and random telegraph signal (RTS) noise. In the fre-
quency domain, the source follower’s output noise power spectrum, SDET(f), is
given by

SDET(f) = W (f)2
(

1 +
fc

f

)
+ SRTS(f), (11.5)

where W (f) is the thermal white noise (V/Hz1/2), fc is the flicker noise corner fre-
quency (i.e., the frequency where white and flicker noise are equal), and SRTS(f)
is the RTS noise power given by

SRTS(f) =
2ΔI2τRTS

4 + (2πfτRTS)2
, (11.6)

where τRTS is the RTS characteristic time constant (sec), and ΔI is the source fol-
lower current modulation induced by RTS (A). For CCD imagers, source follower
noise is typically limited by flicker noise, whereas CMOS detectors are limited by
RTS.5

Example 11.1

Plot the source follower read noise as a function of CDS sample-to-sample time,
given the following parameters:

W (f) = 15 nV/Hz1/2

ASF = 0.9 V/V
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τD = 0.5ts

ASN = 6 μV/e−

SRTS(f) = 0

Assume fc = 103, 104, 105, and 106 Hz.

Solution:
Applying Eq. (11.2), Fig. 11.1 shows the desired noise plots. Note that read noise
decreases by the square root of ts (or 2τD) and levels out when the 1/f corner
frequency is encountered (approximately at ts = 1/fc).

Figure 11.1 Source follower noise (rms e−) with sample time for different 1/f corner fre-
quencies.

11.3 Sense Node Reset Noise

Reset noise voltage is thermally generated by the channel resistance associated with
the reset MOSFET induced on the sense node capacitor (refer to Fig. 4.3).1 As a
result, the sense node reference voltage is different each time a pixel is reset. Reset
noise voltage is given by

σRESET(VSN) = (4kTBR)1/2, (11.8)

where σRESET(VSN) is the reset noise voltage (rms V), R is the MOSFET channel
resistance (ohms), k is Boltzmann’s constant (1.38 × 10−23 J/K), and T is the
operating temperature (K).

Substituting B = 1/4τ into Eq. (11.8) yields

σRESET(VSN) =
(

kTR

τ

)1/2

. (11.9)
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Noting that τ = RCSN, Eq. (11.9) can be simplified to

σRESET(VSN) =
(

kT

CSN

)1/2

. (11.10)

And since CSN = q/VSN, reset noise in terms of noise electrons is

σRESET =
(

kTCSN

q

)1/2

. (11.11)

Note that Eqs. (11.10) and (11.11) appear to be in conflict. According to Eq. (11.10),
reset noise voltage is lowered by increasing the sense node capacitance. On the
other hand, Eq. (11.11) indicates that decreasing the capacitance is the best strat-
egy. Obviously, for high S/N performance, it is desirable to have the number of
noise electrons as low as possible because a photo-generated signal is composed
of electrons. Therefore, Eq. (11.10) can be misleading. Together these equations
serve as a good example for why noise (and other) measurements need to be made
in the absolute units provided by photon transfer.

Assuming CSN = q/ASN, reset noise also can be expressed in terms of sense
node gain as

σRESET =
(

kT

qASN

)1/2

, (11.12)

and

σRESET(VSN) =
(

kTASN

q

)1/2

. (11.13)

Note that low reset noise is achieved by making sense node gain as high as possible
in terms of noise electrons.

Example 11.2

Determine the reset noise for a sense node gain of 1 μV/e−. Express in electron
and voltage units. Assume T = 300 K.

Solution:
From Eqs. (11.12) and (11.13), the reset noise on the sense node is

σRESET =
{

(1.38 × 10−23) × 300
[(1.6 × 10−19) × 10−6]

}1/2

= 160 e− rms,

and

σRESET(VSN) =
[
(1.38 × 10−23) × 300 × 10−6

(1.6 × 10−19)

]1/2

= 1.6 × 10−4 V rms.
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For CCDs, reset noise is entirely removed by CDS signal processing, and there-
fore it is not an issue. However, it is difficult to remove reset noise for specific
CMOS pixel architectures even if CDS processing is employed. For these pixels,
reset noise increases by 21/2 after CDS processing is applied because two sam-
ples are differenced. Two popular CMOS readout modes that exhibit this difficulty
are referred to as “rolling shutter” and “snap.”6,7 Figure 11.2 presents a family of
PTCs for these modes showing reset noise levels before and after CDS processing.
The PTCs demonstrate that reset noise is significantly greater than the 5 e− source
follower noise that was assumed in the simulation. For example, a state-of-the-art
sense node gain of 50 μV/e− generates 24 e− of reset noise before CDS processing
(as shown). A gain of 1000 μV/e− would be required to reduce reset noise to 5 e−,
which corresponds to a sense node capacitance of only 0.15 fF (this is not possible
through design). Eliminating reset noise for CMOS imagers is briefly discussed in
Sec. 11.6.

Figure 11.2 PTC responses for different sense node gains (V/e−) compared to the ideal
source follower noise without reset noise.

11.4 Dark Current Noise

All pixels naturally generate an unwanted source of charge, referred to as dark
current. Although many kinds of dark current sources exist, thermally generated
dark current is the most common source. The amount of dark charge produced
varies from pixel to pixel, which contributes to the read noise floor. Two forms
of thermal dark current noise exist: dark shot noise and dark FPN. The shot noise
component is given by

σD_SHOT = (D)1/2, (11.14)
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where D is the average dark current (e−) given as

D = tIDR, (11.15)

where tI is the integration time allowed to collect dark charge (sec). DR is the
average dark current rate (e−/sec/pixel) given by1

DR = 2.55 × 1015PADFMT 1.5e−Eg/(2kT ), (11.16)

where PA is the pixel area (cm−2); DFM is the dark current figure-of-merit at 300 K
(nA/cm2), which varies significantly depending on the sensor manufacturer; k is
Boltzmann’s constant (8.62 × 10−5 eV/K); and Eg is the silicon bandgap energy
given as

Eg = 1.1557 − 7.021 × 10−4T 2

1108 + T
. (11.17)

Dark current FPN is expressed as

σD_FPN = DDN, (11.18)

where DN is the dark current FPN quality factor. This parameter typically varies
between 10% and 40% for CCD and CMOS imagers. Note that “dark” FPN (DN)
is much greater than “light” FPN (PN) by approximately 10–40 times.

Example 11.3

Find the average dark current rate, and related shot noise and FPN, given the fol-
lowing parameters:

tI = 0.08 sec

DFM = 0.5 nA/cm2

DN = 0.3

T = 0 C (273 K)

PA = (8 × 10−4)2 cm2

Solution:
From Eq. (11.17), the bandgap energy is

Eg = 1.1557 − (7.021 × 10−4) × 2732

1108 + 273
= 1.120278 eV.

From Eq. (11.16), the average dark current rate is

DR = (2.55 × 1015) × (8 × 10−4)2 × 0.5 × 2731.5

× exp
[
− 1.120278

2 × (8.62 × 10−5) × 273

]
;



Read Noise 169

DR = 178.3 e−/sec.

From Eq. (11.15), the dark current signal is

D = tIDR = 0.08 × 178 = 14.2 e−.

From Eq. (11.14), the dark shot noise is

σD_SHOT = (14.2)1/2 = 3.77 e− rms.

From Eq. (11.18), the dark FPN is

σD_FPN = 14.2 × 0.3 = 4.26 e− rms.

Example 11.4

Generate a PTC where the read noise is composed of dark and source follower
noise. Assume the following:

KADC(e−/DN) = 1.5

σSF(DN) = 3.33

DFM = 0.5 nA/cm2

DN = 0.3

PA = (8 × 10−4)2 cm2

tI = .08 sec

T = 50, 40, 30, 20, 10, 0, −10, −20 C

Make separate plots, with and without dark current FPN.

Solution:
The read noise and signal shot noise together are

σREAD+SHOT = [σ2
SF + D + (DDN)2 + σ2

SHOT]1/2. (E11.1)

The read noise and signal shot noise without dark FPN is

σREAD+SHOT = (σ2
SF + D + σ2

SHOT)1/2. (E11.2)

Equations (E11.1) and (E11.2) are plotted in Figs. 11.3 and 11.4, respectively. Note
that the operating temperature must be less than −10 deg C for the dark current
noise to be negligible compared to source follower noise. In comparing figures, it
can be seen that dark FPN completely dominates dark shot noise.
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Figure 11.3 PTC responses with thermal dark current FPN at different operating
temperatures.

Figure 11.4 PTC responses with thermal dark current FPN removed.

Dark current parameters DN and DFM are found by plotting dark current shot
noise and FPN as a function of dark current signal. A PTC generated like this,
without a light source, is referred to as a “dark transfer curve” (DTC). Dark signal
is varied by changing either the integration time or the operating temperature. The
parameters KADC(e−/DN), D, DR, DFM, and DN all can be determined from a
DTC. Working equations to find these parameters are

KADC(e−/DN) =
D(DN)

σD_SHOT(DN)2
, (11.19)
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where D(DN) is the average dark current signal given by

D(DN) =
D

KADC(e−/DN)
. (11.20)

The dark current figure of merit is found by substituting Eq. (11.16) into Eq. (11.15)
and solving for DFM, which yields

DFM =
DR

2.55 × 1015PAT 1.5e−Eg/(2kT )
. (11.21)

The dark current FPN quality factor is defined by

DN =
σD_FPN(DN)

D(DN)
. (11.22)

Note that the dark current signal level, where the dark shot noise and dark FPN are
equal, is

DSHOT=FPN =
1

D2
N

. (11.23)

Example 11.5

Figure 11.5 shows DTCs with and without dark current FPN based on these
parameters:

KADC(e−/DN) = 1.5

σSF(DN) = 3.33

Figure 11.5 Dark transfer curve generated without light.
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DFM = nA/cm2

DN = 0.3

PA = (8 × 10−4)2 cm2

tI = 1 sec

T = 300 K

From the DTC curve presented, confirm KADC(e−/DN), D, DR, DFM, and DN.
Find the dark signal level where dark FPN begins to dominate dark shot noise.

Solution:
From Eq. (11.19) and data point 1 on the dark shot noise curve,

KADC(e−/DN) =
300

14.42
= 1.5.

From Eq. (11.20), the signal level at data point 1 is

D = 300 × 1.5 = 450 e−.

From Eq. (11.15), the dark current rate is

DR =
450
1

= 450 e−/sec.

From Eq. (11.17), the silicon bandgap at 300 K is

Eg = 1.1157 − 7.021 × 10−4 × 3002

1108 + 300
= 1.071.

From Eq. (11.21), the dark current figure of merit is

DFM =
450{

(2.55 × 1015) × (8 × 10−4)2 × 3001.5 exp
[
− 1.071

2 × (8.62 × 10−5) × 300

]}

= 0.052 nA/cm2.

From Eq. (11.22) and data point 2 on the FPN curve,

DN =
90
300

= 0.3.

From Eq. (11.23), the dark signal level where dark FPN starts to dominate dark
shot noise is

DSHOT=FPN =
1

(0.3)2
= 11 e−.
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Figure 11.6 shows the buildup of dark current for 150 CMOS pixels as a func-
tion of time. The data are used to generate the DTCs presented in Fig. 11.7 with and
without dark FPN. Note from Fig. 11.6 that dark current increases nonlinearly with
time, indicating that DFM is not a constant. Also note from Fig. 11.7 that the dark
FPN slope 1 curve shifts toward the right, which signifies that DN is decreasing
with the signal level. Figure 11.8 plots dark current nonlinearity using the relation

NLD = 1 − D(DN)m/tm
D(DN)/tI

, (11.24)

where NLD is the dark current nonlinearity, and D(DN)m is the dark signal at some
arbitrary time tm (shown in Fig. 11.8 at 2.6 sec).

Figure 11.6 Nonlinear dark current build-up for 256 CMOS pixels showing dark FPN.

Example 11.6

For Fig. 11.7, determine the variation of dark FPN over the signal range measured.

Solution:
From Eq. (11.22) and the two data points [at D(DN) = 1000)] shown in Fig. 11.7,

DN =
300
1000

= 0.3 (30%),

and

DN =
200
1000

= 0.2 (20%).

Nonlinearity characteristics shown in Figs. 11.6 to 11.8 are common to specific
types of CMOS and CCD imagers, where dark current is influenced by electric
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Figure 11.7 Dark transfer curves measuring dark current FPN nonlinearity with signal.

Figure 11.8 Dark current nonlinearity versus time for Fig. 11.6.

fields internal to a pixel. The fields decrease as signal charge collects, which in turn
reduces the dark current rate. Dark current analysis is complex for these sensors, so
DTC helps identify and quantify the problems like this. Fortunately, the majority
of imagers (especially CCDs) behave according to the dark current relations given
above.

PTC and DTC can be generated together on a single graph. For example,
Fig. 11.9 shows a PTC/DTC combination plot. The DTC is generated by changing
the integration time, yielding information for KADC(e−/DN), DN, and DFM para-
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Figure 11.9 DTC and PTC responses generated on the same plot.

meters. For high signals, the integration time is fixed and the light level is varied
to generate PTCs. The plot provides information for KADC(e−/DN) and PN. Note
that the dark and light shot noise curves merge on the slope 1/2 line, whereas the
two slope 1 curves are different and produce DN and PN.

11.5 ADC Quantizing Noise

11.5.1 Linear encoding

Figure 11.10 shows transfer characteristics for a linear ADC. As indicated, when
a pixel signal is digitized it introduces an uncertainty, which can add to the read
noise floor. The rms error about the perfect ramp response shown is called “ADC
quantizing noise.” For an ideal ADC, this noise amounts to

σADC(DN) =
(

1
12

)1/2

= 0.2887. (11.25)

In terms of rms noise electrons,

σADC = 0.2887KADC(e−/DN). (11.26)

Equation (11.26) shows that quantizing noise is dependent on the ADC sensitiv-
ity, KADC(e−/DN). This connection is demonstrated in Fig. 11.11, which presents
three 2 e− read noise images at different sensitivities (2, 10, and 100 e−/DN). As
KADC(e−/DN) increases, the quantizing noise becomes apparent until it dominates
the read noise floor. Figure 11.12 presents “stacked” column traces through each
image shown in Fig. 11.11. The quantizing noise “steps” become more apparent as
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Figure 11.10 ADC quantizing noise image and transfer curve.

Figure 11.11 ADC quantizing noise images being hidden by random source follower noise
by different KADC(e−/DN).
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Figure 11.12 Video column traces of Fig. 11.10.

the ADC sensitivity increases. Note that quantizing noise becomes completely hid-
den when KADC(e−/DN) is approximately equal to the random noise level. There-
fore, for proper noise encoding, we simply let

KADC(e−/DN) = σREAD. (11.27)

This relation forces read noise to 1 DN rms, without quantizing noise issues.
Figure 11.13 shows similar images where signal shot noise is introduced along

with the 2 e− read noise floor. Comparing Figs. 11.11 and 11.13 shows that
shot noise further hides the quantizing noise, which allows for a higher
KADC(e−/DN). In fact, the ADC sensitivity required for a camera system depends
on the lowest noise expected to be digitized, i.e.,

KADC(e−/DN) = σLOW, (11.28)

where σLOW is the lowest noise level encountered by a camera system (which
includes FPN sources).

Example 11.7

Determine the read and shot noise for each DN step shown in Fig. 11.13 without
ADC quantizing noise. Assume σSF = 2 e−.

Solution:
The random noise for each DN level is composed of source follower and shot noise,
i.e.,
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Figure 11.13 ADC quantizing noise images being hidden by random source follower and
shot noise with different KADC(e−/DN).

σREAD+SHOT(DN) =
{

[σREAD(DN)]2 +
S(DN)

KADC(e−/DN)

}1/2

. (E11.3)

Table 11.2 tabulates the noise level as calculated by Eq. (E11.3).
Table 11.2 and Fig. 11.13 can be compared. The noise levels tabulated should

be greater than σADC(DN) if proper encoding is to take place [i.e., greater than
0.2887 DN, as defined by Eq. (11.25)]. This is not the condition for the third
column. The second column is marginal, whereas the first column is satisfactory.

Besides encoding read noise properly, it is also important to encode the max-
imum signal level expected, which is typically the charge capacity of the sensor.
The full-well encoding required is determined by

NADC =
SFW

KADC(e−/DN)
, (11.29)

where NADC is the number of DN levels required from the ADC. Substituting
Eq. (11.27), which is the requirement to encode read noise properly into Eq. (11.29),
yields

NADC =
SFW

σREAD
, (11.30)
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which is simply the dynamic range for a camera system (a good rule of thumb to
remember).

The number of bits required from an ADC is

NBITS =
log(NADC)

log(2)
. (11.31)

Example 11.8

Plot the number of ADC bits required as a function of the lowest noise level to be
encoded for different full-well levels (104, 5 × 104, 105, 5 × 105, and 106 e−).

Solution:
From Eqs. (11.28) and (11.30), the number of DN levels required is

NADC =
SFW

σLOW
. (E11.4)

Figure 11.14 plots Eq. (E11.4). For example, 16 bits is required to encode an 8 e−

noise level and a 5 × 105 full-well signal.

Figure 11.14 Number of ADC bits required to encode specific noise and full-well levels.

Example 11.9

Assume a camera system will be taking pictures that are always FPN limited. De-
termine the number of ADC bits required, given that the full well is 105 e− and
PN = 0.01.
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Solution:
From Eqs. (11.28) and (11.30), the onset of FPN is

1
P 2

N

=
1

(0.01)2
= 10,000 e−.

Therefore, the lowest FPN to be encoded is

σFPN = 0.01 × 10,000 = 100 e−.

From Fig. 11.14, the number of bits required is

NBITS = 10.

Figure 11.15 shows σREAD+SHOT(DN) PTC responses, with and without ADC
quantizing noise, at different read noise levels (100 e−, 60 e−, and 2 e−). The
plots assume a fixed ADC sensitivity of KADC(e−/DN) = 100 and an 8-bit ADC.
When σREAD < KADC(e−/DN), quantizing error becomes appreciable. Note that
quantizing noise is cyclic with a signal period of 1 DN for the 2 e− noise case. The
cyclic signature is quenched when the noise level is above 0.5 DN. The dotted line
shown assumes a fixed quantizing noise of 0.2887 DN [i.e., Eq. (11.25)], which
is only valid when the cyclic pattern is not present. Figure 11.16 presents noise
variance PTCs using the same data set as Fig. 11.15, with and without quantizing
noise. KADC(e−/DN)−1 is equal to the slope of all curves (i.e., 1/100).

Figure 11.17 shows PTC data taken from a CMOS sensor that incorporates
an on-chip 10-bit ADC. The ADC exhibits a bit weighting problem: the noise

Figure 11.15 PTC responses showing how ADC quantizing noise becomes increasingly
dominant as random read noise decreases.
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Figure 11.16 Corresponding variance PTCs for Fig. 11.15.

Figure 11.17 PTC responses demonstrating an ADC bit weighting problem.

varies cyclically every 16 bits in the signal. The source of the difficulty is seen in
Fig. 11.18, where output DN is plotted against input signal. The staircase is inter-
rupted every 16 bits, which reflects each “kink” in the PTC. Assuming additional
ADC bits are available for full-well encoding, one can hide quantizing problems
like this by increasing the voltage gain before the ADC, but this is not desirable.

11.5.2 Nonlinear encoding

All PTCs presented previously show that linear encoding excessively encodes shot
noise and FPN. For example, a read noise of 10 e− is equivalent to 1 DN, assum-
ing KADC(e−/DN) = σREAD. However, a shot noise of 1000 e− is encoded to
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Figure 11.18 ADC transfer function showing the bit weighting problem characterized in
Fig. 11.17.

100 DN, which is a hundred times greater encoding power than is necessary. For
optimum shot noise digitization, KADC(e−/DN) should increase by the square root
of the signal (i.e., S1/2). Changing the ADC sensitivity in this manner will encode
the shot noise to a fixed 1 DN level over the sensor’s dynamic range. This encoding
processor is called a “square-rooter”—a powerful compression technique applied
to shot-noise-limited detectors.1

Figure 11.19 shows three PTCs that demonstrate the encoding compression
technique. The first labeled curve, KADC(e−/DN) = 2, produces the standard, lin-
early encoded total noise PTC. FPN is encoded to 500 DN at full well [SFW(DN) =
50,000]. The second plot assumes that KADC(e−/DN) = S1/2, which optimally

Figure 11.19 Square-rooter PTC responses showing optimum encoding for different
KADC(e−/DN).
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encodes shot noise to 1 DN. However, this sensitivity setting still over-encodes the
read noise and FPN, which is seen in Fig. 11.19 when the curve deviates from the
1 DN noise level. In order to compress all three noise sources optimally to 1 DN,
we let the ADC sensitivity vary as

KADC(e−/DN) =
[
σ2

READ + ηiS + (PNS)2
]1/2

. (11.32)

A PTC that assumes Eq. (11.32) is also shown in Fig. 11.19 as a flat-line response
of 1 DN. Note that only 100 DN is required to cover the detector’s dynamic range
compared to 50,000 DN for linear encoding. This represents a compression ratio
of 500 without information loss.

Substituting Eq. (11.32) into Eq. (11.29) determines the number of DN levels
required for optimum nonlinear encoding:

NADC =
SFW

[σ2
READ + ηiS + (PNS)2]1/2

. (11.33)

If FPN dominates read and shot noise at full well, Eq. (11.33) simply reduces to

NADC =
1

PN
. (11.34)

Example 11.10

For Fig. 11.19, determine the number of DN levels and ADC bits required, given
the following ADC sensitivities:

KADC(e−/DN) = 2

KADC(e−/DN) = S1/2

KADC(e−/DN) =
[
σ2

READ + S + (PNS)2
]1/2

Assume a full well of SFW = 105 e−, σREAD = 10 e−, and PN = 0.01.

Solution:

1. KADC(e−/DN) = 2
From Eqs. (11.29) and (11.31):

NADC =
105

2
= 50,000 DN

NBITS =
log(50,000)

log 2
= 15.6 (or 16 bits)
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2. KADC(e−/DN) = S1/2

From Eqs. (11.29) and (11.31):

NADC =
105

(105)1/2
= 316 DN

NBITS =
log(316)

log 2
= 8.3 (or 9 bits)

3. KADC(e−/DN) = [σ2
READ + S + (PNS)2]1/2

From Eqs. (11.34) and (11.31):

NADC =
1

0.01
= 100 DN

NBITS =
log(100)

log 2
= 6.6 (or 7 bits)

These results are shown in Fig. 11.19.

Figure 11.20 shows two PTCs that assume KADC(e−/DN) = S1/2 and
KADC(e−/DN) = 4×S1/2. The latter curve produces noise levels less than 1 DN,
taking the sensor into the quantizing noise regime. Although further compression
does take place (from 320 DN to 80 DN), the cyclic quantizing noise pattern also
emerges. As long as the noise level is >1 DN, quantizing noise is controlled, which
is the case when KADC(e−/DN) = S1/2.

Figure 11.21 presents images showing full 10-bit encoding with the signal com-
pressed to 6, 5, and 4 bits. Note that the 4-bit image has insufficient encoding and

Figure 11.20 Square-rooter PTC responses showing ADC quantizing noise when the read
noise level drops below 1 DN rms.
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Figure 11.21 Square-rooter images showing 6-, 5- and 4-bit compressions from 10 bits.

shows ADC quantizing noise. Additional square-root discussions, including hard-
ware implementation, are given in Ref. 1.

11.6 Offset Fixed Pattern Noise

Figures 5.9 and 5.10 demonstrated the importance of precisely knowing the offset
level for accurate signal measurement. For CCD imagers, the offset level needs to
be tracked for each amplifier port. For CMOS imagers, all pixels must be monitored
because each pixel exhibits a different offset level. For example, Fig. 11.22 presents
a single row of CMOS pixels showing 1000 e− rms of offset FPN.

CMOS offset FPN noise is significantly greater than reset noise, which itself is
greater than pixel source follower noise. For example, Fig. 11.23 compares offset,
reset, and source follower noise for a CMOS imager (250 e−, 28 e−, and 2.5 e−

rms, respectively). Also shown for reference are three 5.9 keV, 1620 e− x-ray
events contained in the row of pixels. Figure 11.24 is a magnified view showing
how much larger reset noise is to source follower noise.

For certain CMOS readout modes (rolling shutter and snap), “digital CDS”
(DCDS) is employed to remove offset FPN and reset noise (e.g., Figs. 11.23
and 11.24 were processed in this manner).8 DCDS processing first quickly reads
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Figure 11.22 CMOS pixel offset FPN.

Figure 11.23 CMOS array video traces that compare offset FPN, reset and source follower
noise levels.

all pixels after being globally reset. The offset/reset levels samples are stored in a
computer. Then the signal charge is integrated for a specified period of time. The
pixels are then read again, and their video levels are stored in the computer. Lastly,
the video and offset/reset levels are differenced by the computer, thus performing
DCDS. For example, Fig. 11.25 shows a video stream where four frames were
taken by a 128× 128 CMOS array. First, the sequence shows the offset/reset noise
samples collected for the first frame. The noise level is approximately 250 e−,
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Figure 11.24 Magnified view of Fig. 11.23 showing 1620 e− x-ray events imbedded in reset
and source follower noise.

Figure 11.25 Video trace comparing noise level before and after digital CDS processing.

consisting primarily of offset FPN. After collecting offset/reset levels, the device
integrates signal charge for 0.65 sec (not shown in the figure). The quiet region
shown is the processed video after the two samples are subtracted by computer
(i.e., DCDS). Offset and reset noise are removed entirely, reducing the read noise
level to 2.5 e−. The sequence is repeated three more times as shown. Note that
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some 1620 e− x-ray events are seen in the quiet processed regions. Figure 11.26
shows a full image of the x-ray events after DCDS is performed for the same im-
ager and processing conditions. For comparison, Fig. 11.27 shows the raw video
before DCDS processing, where offset/reset noise is present. Some x-ray events
are circled but are difficult to see in the 250 e− noise floor.

Offset FPN sources can enter downstream of the CDS processor. For example,
Fig. 11.28 is a dark image taken from a single addressed CMOS pixel that shows
an offset level that is systematically changing as it is read out. As the image shows,
the offset variance is the same from row to row. The top of Fig. 11.29 presents
a raw video trace taken before the offset pattern can be clearly seen. The second
trace is derived from a 100 frame average. The offset FPN can now be seen because
the averaging process reduces the random noise generated by source follower noise
by a factor of 10 (the image in Fig. 11.28 is derived from this data). The first and
second traces are then subtracted to remove the offset pattern. The bottom trace of
Fig. 11.29 is the result after subtraction. Note that the video only contains random
noise without offset FPN.

Figure 11.30 presents PTC data generated by a CMOS imager with CDS signal
processing applied. As indicated, the total noise curve, σTOTAL(DN), exhibits
some offset FPN created downstream of the CDS. This offset is removed by taking
two back-to-back frames for each data point and subtracting them (pixel by pixel).

Figure 11.26 Fe-55 1620 e− x-ray events after DCDS.



190 Chapter 11

Figure 11.27 Fe-55 1620 e− x-ray events before DCDS.

Figure 11.28 Systematic offset FPN.
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Figure 11.29 Raw signal, frame averaged offset FPN and differenced noise.

Figure 11.30 CMOS array PTC responses showing offset FPN after on-chip CDS process-
ing and removal through frame differencing.

The process removes both offset and pixel FPN, leaving only read and shot noise.
The result is plotted along with the shot noise curve.

11.7 System Noise

Dozens of system noise problems can potentially degrade the read noise floor,
including preamp noise, transient noise, synchronous and nonsynchronous logic
noise, settling and ringing noise, ground bounce noise, luminescence, clock phase
jitter noise, ADC feedback noise, power supply noise, circuit crosstalk noise, oscil-
lation noise, and electromagnetic noise, to name just a few. The majority of these
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sources are dynamic as the noise level changes from frame to frame. For example,
Fig. 11.31 shows two dark CMOS images taken at two different rates (2.25 and
5.0 Mpixels/sec). Although the system noise appears to be well behaved for the
slower rate, it increases significantly when the readout frequency is doubled. The
noise source is also nonsynchronous (i.e., not fixed from frame to frame), making it
difficult to remove by computer. For purposes of analysis, all system noise sources
are lumped together into one term called σSY. Ideally, the noise sources should not
be present.

Figure 11.31 System noise compared at two pixel rates.

Important Points

1. The pixel source follower amplifier ultimately limits the read noise floor for
CCD and CMOS imagers. PTC determines if the ideal noise floor has been
achieved.

2. Reset and offset FPN noise are removed by CDS/DCDS signal processing.
3. A dark transfer curve (DTC) is generated without a light source to determine

various dark current performance parameters, including the PT conversion con-
stant KADC(e−/DN).

4. Thermal dark current FPN dominates dark shot noise at all signal levels.
5. ADC quantizing noise is made negligible by hiding the noise in random noise,

such as pixel source follower noise. For proper noise encoding, KADC(e−/DN)
is made equal to the read noise level in electron units.

6. The number of DN levels required to encode both read noise and full well opti-
mally is equal to the sensor’s dynamic range.

7. Linear ADC encoding excessively digitizes the noise source, such as shot noise
and FPN. Optimal encoding is achieved when KADC(e−/DN) is made equal to
the noise level in electron units.
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Lux Transfer
12.1 Introduction

A lux transfer curve (LTC) is a powerful extension of PTC, whereas a PTC is
generated with an uncalibrated light source, and a LTC utilizes an absolute light
source.9 Therefore, LTC characterizes a camera system in absolute terms. For ex-
ample, commercial camera sensitivity is often quoted in terms of “minimum de-
tection limit” at an illumination level typically specified in units of lux. LTC will
produce this figure-of-merit parameter in addition to other absolute performance
parameters.

A LTC is based on the relation[
S
N

]
A_FF

=
SA

[σ2
READ + SA + (SAPN)2]1/2

, (12.1)

where [S/N]A_FF is the absolute flat-field S/N performance, and

SA = LNLtIQEIPATL[4f#2(1 + m)2]−1, (12.2)

which is the absolute signal (e−), where f# and m are the f number and mag-
nification of a lens above the imager, TL is the transmission of the lens, L is the
luminance light level emitted from a Lambertian diffuse surface that overfills the
collection lens (or detector if a lens is not used) given in lux, and NL is the number
of photons/cm2-sec for one lux. For example, the number of photons at a 0.550-μm
wavelength (green) for one lux is 4.02× 1011 photons/cm2-sec. Discussions below
assume this wavelength to be a standard.

Signal can also be expressed in radiometric units as

SA = NPtIQEIPATL[4f#2(1 + m)2]−1, (12.3)

where NP is photons/cm2/sec at a specific wavelength.
The following examples demonstrate how LTCs are generated and applied us-

ing the relations above. A simulation computer program used to create LTCs is
presented in Appendix C as a reference.
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Example 12.1

Generate a standard flat-field LTC, with and without pixel FPN, for the following
camera parameters:

TL = 1

f# = 30

m = 0.001

QEI = 0.8

PA = (8 × 10−4)2 = 6.4 × 10−7 cm2

SFW = 2 × 105 e−

σSF = 5 e−

PN = 0.01

λ = 0.550 μm

tI = 1000, 10, and 0.1 sec

Assume dark current is negligible (i.e., DFM = 0). Also, generate a LTC without a
lens for the same parameters.

Solution:
From Eqs. (12.1) and (12.2), Fig. 12.1 presents the desired LTCs. The read noise,
shot noise, and FPN regimes are labeled for the 0.1-sec curve. S/N performance for

Figure 12.1 Classical LTC as a function of lux light level showing three noise regimes.
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each exposure asymptotically approaches 100 (i.e., 1/PN) when FPN is present,

whereas the shot noise limited curves exhibit an S/N of 447 (i.e., S
1/2
FW) at full well.

The curves are used to predict the amount of light required to reach a specified S/N
level. For example, it takes 36 k lux to achieve S/N = 447 for a 0.1-sec exposure.

Figure 12.2 presents LTCs without a lens. Note in comparison to Fig. 12.1 that
the lens reduces the light level to the detector by 3600× because of the 4f#2 term
in Eq. (12.2) (i.e., 4 × 302). For a 0.1-sec exposure, it takes only 10 lux to achieve
maximum S/N (i.e., 447 without FPN).

Figure 12.2 Corresponding LTC for Fig. 12.1 without a lens.

Example 12.2

For the same camera parameters specified in Example 12.1, generate LTCs by vary-
ing the integration time for the family of light levels: L = 0.1, 10, and 1000.

Solution:
From Eqs. (12.1) and (12.2), Fig. 12.3 presents the desired LTCs.

Example 12.3

This LTC example includes dark current noise, which makes S/N perfor-
mance dependent on operating temperature. Generate a flat-field LTC, given the
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Figure 12.3 Corresponding LTC as a function of exposure time for Fig. 12.1.

following parameters:

DFM = 0.3 nA/cm2

DN = 0.30

T = 358 K

TL = 1

f# = 3

m = 0.001

QEI = 0.2

PA = (2 × 10−4)2 = 4 × 10−8 cm2

SFW = 104 e−

σSF = 10 e−

PN = 0.01

λ = 0.550 μm

tI = 0.001, 0.01, and 0.1 sec

For comparison, also provide a LTC without dark current FPN.

Solution:
The read noise is composed of source follower and dark noise, i.e.,

σREAD = (σ2
SF + σ2

D_SHOT + σ2
D_FPN)1/2, (E12.1)
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where the dark shot noise and FPN sources are described in Sec. 11.4. Substituting
this relation into Eq. (12.1) produces the LTC shown in Fig. 12.4. Dark current and
related noise generated for each exposure are indicated in the figure. For example,
for a 0.1 exposure, the dark current FPN totals 123 e− (i.e., σD_FPN = 413×DN)
and thus degrades S/N significantly. In Fig. 12.5, dark current FPN is removed.
In this case, the dark current shot noise of 20 e− degrades S/N only slightly (i.e.,
σD_SHOT = 4131/2).

Figure 12.4 LTC with thermal dark current with dark FPN.

Figure 12.5 Corresponding LTC for Fig. 12.4 without dark FPN.
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12.2 Minimum Detection Limit

Minimum detectable sensitivity is defined when S/N = 1, i.e., from Eq. (12.1):

1 =
SA

[σ2
READ + SA + (SAPN)2]1/2

. (12.4)

The illumination level for this condition is derived by first writing Eq. (12.4) into
quadratic form as

1 = (P 2
N − 1)S2

A + SA + σ2
READ. (12.5)

Since P 2
N � 1, Eq. (12.5) simplifies to

S2
A − SA − σ2

READ = 0. (12.6)

Solving for a positive signal yields

SA_MIN =
1 + (1 + 4σ2

READ)1/2

2
, S/N = 1, (12.7)

where SA_MIN is the absolute signal level for S/N = 1.
Substituting SA_MIN into Eq. (12.2) and solving for the amount of lux yields

LMIN =
SA_MIN

NLtIQEIPATL[4f#2(1 + m)2]−1
, (12.8)

where LMIN is the light level that produces S/N = 1.
Equation (12.8) represents an important performance camera figure of merit.

Note that the detection limits are indicated for the LTCs shown in Figs. 12.1–12.5.
For example, the limits for Fig. 12.1 are 10−4, 10−2, and 100 lux for the three
exposures analyzed.

High-performance, cooled, backside-illuminated imagers exhibit impressive
low-light sensitivity performance. For example, Fig. 12.6 analyzes an imager with

Figure 12.6 LTC generated for an ultra-sensitive astronomical camera system.
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a detection limit of 2 × 10−8 lux for the parameters indicated. A camera system
like this is typically found at astronomical observatories.

Example 12.4

Plot the detection limit as a function of read noise for different pixel sizes (pix = 2,
3, 4, 6, 10, and 15 μm). Assume these parameters:

TL = 1
f# = 3
m = 0.001
QEI = 0.25
SFW = 4 × 104 e−

PN = 0.01
λ = 0.550 μm
tI = 0.03 sec

Also plot the minimum illumination required for different f numbers (f# = 3, 5,
6, 8, 11, and 16). Assume pix = 4 μm.

Solution:
From Eq. (12.8), Figs. 12.7 and 12.8 present the desired plots. It is interesting
to compare these curves to small pixel–commercial camera data sheets that show
similar characteristics.

Figure 12.7 Minimum detectable light level as a function of read noise and pixel size.
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Figure 12.8 Minimum detectable light level as a function of read noise and lens f-number.

12.3 Responsivity

Responsivity is a common performance parameter used to specify a camera’s over-
all sensitivity. This figure of merit is defined as

Re(VSN) = ASNNLQEIPA, (12.9)

where Re(VSN) is the pixel responsivity at the pixel’s sense node (V/lux-sec), and
ASN is the pixel’s sense node gain (V/e−).

Note that V/lux-sec is a relative unit and can be misleading, depending on what
point within the camera the voltage is measured. For example, responsivity may
also be specified downstream of the sense node where the voltage gain is differ-
ent. This problem is circumvented by specifying responsivity in absolute terms of
e−/lux-sec as

Re = NLQEIPA. (12.10)

In this case, responsivity is only dependent on the pixel size and quantum efficiency,
and it is independent of voltage gain. It is assumed that the interacting QE applies
to the entire pixel and not just the pixel’s active fill factor.

Example 12.5

Plot pixel responsivity in units of V/lux-sec and e−/lux-sec, given the following
parameters:
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QEI = 0.25

PA = (4 × 10−4)2 = 1.6 × 10−7 cm2

λ = 0.550 μm (NL = 4.02 × 1011 photons/cm2-sec)

ASN = 10, 20, 30, 40, 50, and 60 μV/e−

Solution:
Figure 12.9 plots relative responsivity as defined by Eq. (12.9). The responsivity

Figure 12.9 Relative responsivity as function of pixel size and sense node gain (V/e−).

Figure 12.10 Absolute responsivity as a function of pixel size.
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is different depending on ASN. Figure 12.10 plots absolute responsivity using
Eq. (12.10), producing a single plot.

12.4 Modulation LTC

Assuming the contrast is relatively low (refer to Chapter 9), LTC also can be applied
to images through the relation[

S
N

]
A_I

=
MISI

[σ2
READ + SI + (SIPN)2]1/2

, (12.11)

where [S/N]A_I is the absolute S/N of the image, MI is the image modulation factor,
and SI is the absolute average signal level of the image given either by Eq. (12.2)
or Eq. (12.3).

From Chapter 10 discussions, [S/N]I can be expressed in terms of [S/N]FF

through [
S
N

]
A_I

=
[

S
N

]
A_FF

MI. (12.12)

This process produces a modulation LTC (MLTC). As discussed in Chapter 10,
optimum S/N for an image is achieved when flat-field S/N is maximized.

Example 12.6

Generate MLTCs, given that the image exhibits a modulation factor of MI =
0.0318. Assume the following parameters:

TL = 1

f# = 30

m = 0.001

QEI = 0.8

PA = (8 × 10−4)2 = 6.4 × 10−7 cm2

SFW = 2 × 105 e−

σSF = 5 e−

PN = 0.01

λ = 0.550 μm

tI = 1000, 10, and 0.1 sec

Solution:
From Eq. (12.11), Fig. 12.11 presents the desired modulation LTCs. Note that pixel
FPN must be removed before quality images can be obtained (i.e., S/N > 10). The
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Figure 12.11 Modulation LTC showing minimum detection limit (LMIN) and quality image
level (LQ).

Figure 12.12 Corresponding images for the three data points shown in Fig. 12.11.

horizontal line at S/N = 1 indicates the minimum detection limit for the camera.
Figure 12.12 shows simulated sinusoidal images with MI = 0.0318 for three data
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points shown in Fig. 12.11 (labeled 1, 2, and 3). The corresponding S/N perfor-
mance for each image is also indicated.

The signal level required to achieve a specified S/N is derived by first writing
Eq. (12.11) in quadratic form for SI as

S2
I

([
S
N

]2

A_I
− M2

I

)
+ SI

[
S
N

]2

A_I
+ σ2

READ

[
S
N

]2

A_I
= 0. (12.13)

From this equation, the signal SI is then solved for a specified S/N and read noise
level. Once the signal is known, the lux light level is determined through

LUX =
SI

NLUXtIQEIPATL[4f#2(1 + m)2]−1
. (12.14)

Example 12.7

Plot light level as a function of the image modulation constant for [S/N]A_I = 1, 2,
5, 10, 20, 30, 50, and 70. Assume the following parameters:

TL = 1

f# = 3

m = 0.001

QEI = 0.8

PA = (8 × 10−4)2 = 6.4 × 10−7 cm2

PN = 0.01

λ = 0.550 μm

tI = 1 sec

σSF = 10 e−

SFW = 105 e−

Vary the image modulation from 0 to 0.25. Make separate plots with and without
FPN.

Solution:
Figure 12.13 shows the desired plots without FPN. Note that full well limits S/N
performance to 70 for the highest modulation level (i.e., MI = 0.25). Figure 12.14
assumes that pixel FPN is present, limiting S/N to only 23 for the same modulation
level.
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Figure 12.13 Lux light level required to reach a specified S/N performance level with mod-
ulation factor (without FPN).

Figure 12.14 Lux light level required to reach a specified S/N performance level with mod-
ulation factor (with FPN).

12.5 Acceptable Image

A quality image is generated when S/N > 10 (i.e., the first acceptable image as
defined by the ISO12232 standard). In equation form, this is

10 =
MISI

[σ2
READ + SI + (SIPN)2]1/2

. (12.15)
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The illumination level required to meet this condition is found by writing
Eq. (12.15) in quadratic form as

10 = (100P 2
N − M2

I )S2
I + 100SI + 100σ2

READ. (12.16)

Solving for signal and substituting into

LQ =
SQ

NLtIQEIPATL[4f#2(1 + m)2]−1
(12.17)

yields the average lux level required to achieve S/N = 10.

Example 12.8

Use the same parameters as Example 12.7 and plot the light level required to
achieve [S/N]I = 10 for an image modulation of MI = 0.2 as a function of an
operating temperature that ranges from 200 to 400 K. Assume these dark current
parameters:

DFM = 0.3 nA/cm2

DN = 0.3

tI = 0.001, 0.01, 0.1, 1, and 10 sec

Plot the results with and without dark FPN.

Solution:
The read noise is composed of source follower and dark noise as defined by
Eq. (E12.1). From Eq. (12.17), Fig. 12.15 presents the desired plots. Note that

Figure 12.15 Lux light level to achieve a [S/N]I = 10 as a function of operating temperature.



Lux Transfer 207

the light level must be increased as the temperature (and dark current) increases.
Full well eventually limits performance for all exposures. Removing dark FPN
extends performance to higher operating temperatures, as shown.

12.6 LTC Ratio

LTCs can be compared through their ratio as

[
S
N

]
R

=

[
S
N

]
A_FF1[

S
N

]
A_FF2

, (12.18)

where (S/N)A_FF1 and (S/N)A_FF2 are the two LTC sets. Typically, one perfor-
mance parameter is varied to show performance tradeoffs as demonstrated in the
next example.

Example 12.9

Compare a flat-field LTC generated at an operating temperature of 300 K to other
LTCs taken at 260, 280, 300, 320, 340, 360, and 380 K. Assume the following
parameters:

TL = 1

f# = 3

m = 0.001

QEI = 0.8

PA = 6.4 × 10−7 cm2

SFW = 2 × 105

σSF = 5 e−

PN = 0.01

DFM = 0.1 nA/cm2

DN = 0 (assume dark current FPN is removed through subtraction)

λ = 0.550 μm

tI = 1 sec

On a separate plot, also generate individual LTCs for each operating temperature.
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Solution:
Figure 12.16 shows LTCs at each operating temperature. Note that S/N perfor-
mance does not improve as the operating temperature approaches 260 K because
dark current shot noise becomes negligible. From Eq. (12.18), Fig. 12.17 shows
LTC comparisons. For example, S/N performance at an operating temperature of
300 K is approximately 10 times better than 380 K operation for a 10−1 lux light
level.

Figure 12.16 LTC at different operating temperatures.

Figure 12.17 Comparison LTC for Fig. 12.16 showing S/N at different operating tempera-
tures relative to 300 K.
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12.7 LTC Data Sequence

Before a LTC is generated, dark and light PTCs are usually produced to determine
individual detector performance parameters (SFW, σREAD, PN, DN, DFM, etc.).
For example, Fig. 12.18 shows a flat-field PTC taken by a CMOS VGA imager
listing the parameters that were found, including a QE = 0.25. Theoretically, a
LTC is then generated by substituting PTC parameters into Eqs. (12.1) and (12.2).
This plot is shown in Fig. 12.19. Next, an absolute light source is used to gener-
ate an experimental LTC curve. Figure 12.20 shows this response. Modeling and
experimental data are in good agreement for the imager.

Figure 12.18 PTC responses for a CMOS imager.

Figure 12.19 Corresponding LTC for the CMOS array characterized in Fig. 12.18.
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Figure 12.20 Corresponding experimental LTC for the CMOS array characterized in
Fig. 12.18.

Example 12.10

For the LTC data shown in Fig. 12.20, determine the following:

1. Minimum detection limit, LMIN

2. Minimum detection limit, LMIN for a f# = 3 lens system
3. Relative responsivity, R(VSN)
4. Absolute responsitivity, R

Assume a sense node sensitivity of 40 μV/e−.

Solution:
From Fig. 12.20, the minimum detection limit for the imager is approximately
0.025 lux. A f# = 3 lens reduces the light by (4f#2) = 4× 32 = 36. Hence, the
minimum detectable light level is 0.9 lux.

From Eq. (12.9), the relative responsivity is

Re(VSN) = (40 × 10−6) × (4.02 × 1011) × 0.25 × (5.6 × 10−4)2

=1.26 V/lux-sec.

From Eq. (12.10), the absolute responsivity is

R = (4.02 × 1011) × 0.25 × (5.6 × 10−4)2 = 3.15 × 104 e−/lux-sec.

Important Points

1. A LTC is an extension of a PTC where data is generated by an absolute light
source.
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2. A LTC plots S/N performance as a function of absolute light level in photometric
(lux) or radiometric (photons/cm2-sec) units.

3. A LTC shows the minimum detectable light level for a camera system when
S/N = 0.

4. MLTCs show the light level required to produce a quality image when
S/N = 10.
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PTC Data Reduction Example
This appendix demonstrates how various photon transfer products are generated
from an experimental data set generated by a CMOS imager with V/e− nonlinearity.

Example A.1

Plot the following curves from the raw data set given in Table A.1:

Figure A.1 S(DN), σTOTAL(DN), σSHOT+READ(DN) versus L
Figure A.2 σTOTAL(DN), σSHOT(DN), σFPN(DN) versus S(DN)
Figure A.3 VSF versus VSN

Figure A.4 S(VSN), σSHOT(VSN) versus VSN

Figure A.5 KADC(e−/DN), SADC(e−/DN), NADC(e−/DN) versus S
Figure A.6 KADC(e−/DN), SADC(e−/DN), NADC(e−/DN) nonlinearity (%)
versus S
Figure A.7 σSHOT+FPN, σSHOT, σFPN versus S
Figure A.8 False S versus True S
Figure A.9 PN versus S
Figure A.10 SSN(e−/VSN), NSN(e−/VSN) versus S
Figure A.11 SSN(μVSN/e−), NSN(μVSN/e−) versus S

Figure A.12 Sense node S/N sensitivity ratio
SSN(e−/VSN)
NSN(e−/VSN)

versus S

Figure A.13 CSN versus VSN

Figure A.14 CSN versus S
Figure A.15 S/N(σSHOT+FPN, σSHOT) versus S

Table A.1 Raw experimental data.

COL A: Raw ADC signal, DNADC

COL B: Total noise, σTOTAL(DN)
COL C: Shot and read noise, σSHOT+READ(DN)
COL D: Relative light level, L
COL E: Light level gain, AL

Note that COL C is generated by differencing two identical frames taken back to
back, pixel by pixel, to remove FPN.
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Table A.1 Raw experimental data.

A B C D E
Shot+

Raw Total Read
Data Signal Noise Noise Light Light
Points (DN) (rms DN) (rms DN) Level Gain
1 1.16E+03 1.22E+01 1.22E+01 3.10E−02 1.00E+00
2 1.31E+03 1.63E+01 1.62E+01 6.20E−02 2.00E+00
3 1.57E+03 2.19E+01 2.15E+01 1.17E−01 3.77E+00
4 1.76E+03 2.52E+01 2.45E+01 1.57E−01 5.06E+00
5 1.94E+03 2.79E+01 2.70E+01 1.93E−01 6.23E+00
6 2.31E+03 3.32E+01 3.16E+01 2.70E−01 8.71E+00
7 2.57E+03 3.65E+01 3.45E+01 3.24E−01 1.05E+01
8 3.11E+03 4.27E+01 3.95E+01 4.36E−01 1.41E+01
9 3.38E+03 4.57E+01 4.20E+01 4.93E−01 1.59E+01
10 3.77E+03 4.99E+01 4.49E+01 5.75E−01 1.85E+01
11 4.58E+03 5.71E+01 5.00E+01 7.47E−01 2.41E+01
12 5.06E+03 6.14E+01 5.30E+01 8.49E−01 2.74E+01
13 6.22E+03 6.99E+01 5.82E+01 1.10E+00 3.55E+01
14 7.51E+03 7.84E+01 6.30E+01 1.40E+00 4.50E+01
15 8.78E+03 8.67E+01 6.70E+01 1.67E+00 5.39E+01
16 9.68E+03 9.20E+01 6.95E+01 1.89E+00 6.10E+01
17 1.10E+04 9.88E+01 7.24E+01 2.20E+00 7.10E+01
18 1.20E+04 1.03E+02 7.40E+01 2.46E+00 7.94E+01
19 1.27E+04 1.08E+02 7.60E+01 2.64E+00 8.52E+01
20 1.40E+04 1.15E+02 7.85E+01 2.97E+00 9.58E+01
21 1.57E+04 1.22E+02 7.95E+01 3.45E+00 1.11E+02
22 1.62E+04 1.26E+02 8.10E+01 3.59E+00 1.16E+02
23 1.69E+04 1.27E+02 8.09E+01 3.78E+00 1.22E+02
24 1.77E+04 1.31E+02 8.19E+01 4.03E+00 1.30E+02
25 1.86E+04 1.36E+02 8.27E+01 4.28E+00 1.38E+02
26 1.98E+04 1.39E+02 8.20E+01 4.65E+00 1.50E+02
27 2.12E+04 1.44E+02 8.30E+01 5.09E+00 1.64E+02
28 2.26E+04 1.51E+02 8.34E+01 5.56E+00 1.79E+02
29 2.36E+04 1.55E+02 8.43E+01 5.90E+00 1.90E+02
30 2.55E+04 1.54E+02 8.25E+01 6.57E+00 2.12E+02
31 2.65E+04 1.58E+02 8.15E+01 6.92E+00 2.23E+02
32 2.82E+04 1.63E+02 8.07E+01 7.56E+00 2.44E+02
33 2.97E+04 1.64E+02 8.00E+01 8.16E+00 2.63E+02
34 3.12E+04 1.64E+02 7.70E+01 8.82E+00 2.85E+02
35 3.20E+04 1.66E+02 7.63E+01 9.17E+00 2.96E+02
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Table A.1 (Continued.)

A B C D E
Shot+

Raw Total Read
Data Signal Noise Noise Light Light
Points (DN) (rms DN) (rms DN) Level Gain
36 3.37E+04 1.60E+02 7.20E+01 9.94E+00 3.21E+02
37 3.41E+04 1.59E+02 7.04E+01 1.02E+01 3.28E+02
38 3.50E+04 1.61E+02 7.00E+01 1.06E+01 3.43E+02
39 3.64E+04 1.51E+02 6.45E+01 1.14E+01 3.67E+02
40 3.71E+04 1.49E+02 6.15E+01 1.19E+01 3.83E+02
41 3.78E+04 1.38E+02 5.78E+01 1.24E+01 3.98E+02
42 3.83E+04 1.30E+02 5.28E+01 1.26E+01 4.07E+02
43 3.87E+04 1.11E+02 4.51E+01 1.29E+01 4.17E+02

Figure A.1 Signal and noise as a function of light level.

Assume the following parameters for the detector and camera system:

Source follower gain: ASF = 0.9 V/V
CDS gain: ACDS = 6 V/V
ADC gain: AADC = 3250 DN/V
Sense node reference voltage: VREF = 3.1 V
Source follower offset voltage: VSF_OFF = 1.9 V
ADC offset level: SADC_OFF(DN) = 1007
Read noise: σREAD(DN) = 5.93

Solution:
Figure A.1

S(DN), σTOTAL(DN), σSHOT+READ(DN) versus L.
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Table A.2 Calculated results.

COL F: Signal in DN units

S(DN) = DNADC − SADC_OFF(DN)

COL G: Signal shot noise

σSHOT(DN) = [σSHOT+READ(DN)2 − σREAD(DN)2]1/2

COL H: Pixel FPN

σFPN(DN) = [σTOTAL(DN)2 − σSHOT+READ(DN)2]1/2

COL I: Shot and FPN

σFPN+SHOT(DN) = [σFPN(DN)2 + σSHOT(DN)2]1/2

COL J: Source follower signal voltage

S(VSF) =
S(DN)

ACDS × AADC

Figure A.2
S(DN), σTOTAL(DN), σSHOT(DN), σFPN(DN) versus S(DN)

Table A.3 Calculated results.

COL K: Source follower voltage

VSF = VSF_OFF − S(VSF)

COL L: Source follower noise voltage

σSHOT(VSF) =
σSHOT(DN)
ACDSAADC

COL M: Sense node signal voltage

S(VSN) =
S(VSF)
ASF

COL N: Raw sense node voltage

VSN = VREF − S(VSN)

COL O: Sense node shot noise voltage

σSHOT(VSN) =
σSHOT(VSF)

ASF
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Table A.2 Calculated results.

F G H I J
FPN+ SF

Shot Shot Signal
Data Signal Noise FPN Noise Voltage
Points (DN) (rms DN) (rms DN) (rms DN) (V)
1 1.49E+02 1.07E+01 1.09E+00 1.07E+01 7.64E−03
2 2.99E+02 1.50E+01 2.27E+00 1.52E+01 1.53E−02
3 5.65E+02 2.07E+01 4.34E+00 2.11E+01 2.90E−02
4 7.57E+02 2.38E+01 5.87E+00 2.45E+01 3.88E−02
5 9.29E+02 2.63E+01 7.13E+00 2.73E+01 4.76E−02
6 1.30E+03 3.10E+01 1.00E+01 3.26E+01 6.68E−02
7 1.56E+03 3.40E+01 1.20E+01 3.60E+01 8.02E−02
8 2.10E+03 3.91E+01 1.62E+01 4.23E+01 1.08E−01
9 2.37E+03 4.16E+01 1.80E+01 4.53E+01 1.22E−01
10 2.76E+03 4.45E+01 2.18E+01 4.96E+01 1.42E−01
11 3.57E+03 4.96E+01 2.76E+01 5.68E+01 1.83E−01
12 4.05E+03 5.26E+01 3.10E+01 6.11E+01 2.08E−01
13 5.21E+03 5.79E+01 3.86E+01 6.96E+01 2.67E−01
14 6.51E+03 6.27E+01 4.67E+01 7.82E+01 3.34E−01
15 7.77E+03 6.67E+01 5.50E+01 8.65E+01 3.98E−01
16 8.67E+03 6.92E+01 6.03E+01 9.18E+01 4.45E−01
17 9.95E+03 7.22E+01 6.72E+01 9.86E+01 5.10E−01
18 1.10E+04 7.38E+01 7.23E+01 1.03E+02 5.64E−01
19 1.17E+04 7.58E+01 7.63E+01 1.08E+02 6.00E−01
20 1.30E+04 7.83E+01 8.46E+01 1.15E+02 6.64E−01
21 1.47E+04 7.92E+01 9.26E+01 1.22E+02 7.54E−01
22 1.52E+04 8.08E+01 9.60E+01 1.25E+02 7.79E−01
23 1.59E+04 8.06E+01 9.83E+01 1.27E+02 8.14E−01
24 1.67E+04 8.17E+01 1.03E+02 1.31E+02 8.58E−01
25 1.76E+04 8.25E+01 1.08E+02 1.36E+02 9.01E−01
26 1.88E+04 8.18E+01 1.12E+02 1.39E+02 9.64E−01
27 2.02E+04 8.28E+01 1.18E+02 1.44E+02 1.04E+00
28 2.16E+04 8.32E+01 1.26E+02 1.51E+02 1.11E+00
29 2.26E+04 8.41E+01 1.30E+02 1.55E+02 1.16E+00
30 2.45E+04 8.22E+01 1.30E+02 1.54E+02 1.26E+00
31 2.55E+04 8.13E+01 1.35E+02 1.57E+02 1.31E+00
32 2.72E+04 8.05E+01 1.42E+02 1.63E+02 1.39E+00
33 2.87E+04 7.98E+01 1.43E+02 1.64E+02 1.47E+00
34 3.02E+04 7.68E+01 1.45E+02 1.64E+02 1.55E+00
35 3.10E+04 7.61E+01 1.47E+02 1.66E+02 1.59E+00
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Table A.2 (Continued.)

F G H I J
FPN+ SF

Shot Shot Signal
Data Signal Noise FPN Noise Voltage
Points (DN) (rms DN) (rms DN) (rms DN) (V)
36 3.26E+04 7.18E+01 1.43E+02 1.60E+02 1.67E+00
37 3.31E+04 7.01E+01 1.42E+02 1.59E+02 1.70E+00
38 3.40E+04 6.97E+01 1.45E+02 1.61E+02 1.75E+00
39 3.53E+04 6.42E+01 1.37E+02 1.51E+02 1.81E+00
40 3.61E+04 6.12E+01 1.36E+02 1.49E+02 1.85E+00
41 3.68E+04 5.75E+01 1.25E+02 1.38E+02 1.89E+00
42 3.73E+04 5.25E+01 1.18E+02 1.29E+02 1.91E+00
43 3.77E+04 4.47E+01 1.02E+02 1.11E+02 1.93E+00

Figure A.2 Classical PTC responses showing FPN does not follow a slope 1 curve indicating
V/e− nonlinearity is present.

Figure A.3
VSF versus VSN

The slope of this curve is the source follower gain, ASF.
Figure A.4

S(VSN), σSHOT(VSN) versus VSN

For small signals, it can be assumed that

SADC(e−/DN) = NADC(e−/DN) = KADC(e−/DN) =
S(DN)

σSHOT(DN)2
.
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Table A.3 Calculated results.

K L M N O
Sense

SF Sense Sense Node
SF Shot Node Node Shot

Data Voltage Noise Signal Voltage Noise
Points (V) (rms V) (V) (V) (rms V)
1 1.89E+00 5.47E−04 8.49E−03 3.09E+00 6.08E−04
2 1.88E+00 7.71E−04 1.70E−02 3.08E+00 8.57E−04
3 1.87E+00 1.06E−03 3.22E−02 3.07E+00 1.18E−03
4 1.86E+00 1.22E−03 4.31E−02 3.06E+00 1.35E−03
5 1.85E+00 1.35E−03 5.29E−02 3.05E+00 1.50E−03
6 1.83E+00 1.59E−03 7.42E−02 3.03E+00 1.77E−03
7 1.82E+00 1.74E−03 8.91E−02 3.01E+00 1.93E−03
8 1.79E+00 2.00E−03 1.20E−01 2.98E+00 2.23E−03
9 1.78E+00 2.13E−03 1.35E−01 2.96E+00 2.37E−03
10 1.76E+00 2.28E−03 1.57E−01 2.94E+00 2.54E−03
11 1.72E+00 2.55E−03 2.03E−01 2.90E+00 2.83E−03
12 1.69E+00 2.70E−03 2.31E−01 2.87E+00 3.00E−03
13 1.63E+00 2.97E−03 2.97E−01 2.80E+00 3.30E−03
14 1.57E+00 3.22E−03 3.71E−01 2.73E+00 3.57E−03
15 1.50E+00 3.42E−03 4.43E−01 2.66E+00 3.80E−03
16 1.46E+00 3.55E−03 4.94E−01 2.61E+00 3.95E−03
17 1.39E+00 3.70E−03 5.67E−01 2.53E+00 4.11E−03
18 1.34E+00 3.78E−03 6.26E−01 2.47E+00 4.20E−03
19 1.30E+00 3.89E−03 6.67E−01 2.43E+00 4.32E−03
20 1.24E+00 4.01E−03 7.38E−01 2.36E+00 4.46E−03
21 1.15E+00 4.06E−03 8.37E−01 2.26E+00 4.52E−03
22 1.12E+00 4.14E−03 8.66E−01 2.23E+00 4.60E−03
23 1.09E+00 4.14E−03 9.05E−01 2.20E+00 4.60E−03
24 1.04E+00 4.19E−03 9.53E−01 2.15E+00 4.65E−03
25 9.99E−01 4.23E−03 1.00E+00 2.10E+00 4.70E−03
26 9.36E−01 4.19E−03 1.07E+00 2.03E+00 4.66E−03
27 8.64E−01 4.25E−03 1.15E+00 1.95E+00 4.72E−03
28 7.91E−01 4.27E−03 1.23E+00 1.87E+00 4.74E−03
29 7.39E−01 4.31E−03 1.29E+00 1.81E+00 4.79E−03
30 6.42E−01 4.22E−03 1.40E+00 1.70E+00 4.69E−03
31 5.93E−01 4.17E−03 1.45E+00 1.65E+00 4.63E−03
32 5.06E−01 4.13E−03 1.55E+00 1.55E+00 4.59E−03
33 4.29E−01 4.09E−03 1.63E+00 1.47E+00 4.55E−03
34 3.49E−01 3.94E−03 1.72E+00 1.38E+00 4.37E−03
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Table A.3 (Continued.)

K L M N O
Sense

SF Sense Sense Node
SF Shot Node Node Shot

Data Voltage Noise Signal Voltage Noise
Points (V) (rms V) (V) (V) (rms V)
35 3.10E−01 3.90E−03 1.77E+00 1.33E+00 4.33E−03
36 2.26E−01 3.68E−03 1.86E+00 1.24E+00 4.09E−03
37 2.01E−01 3.60E−03 1.89E+00 1.21E+00 4.00E−03
38 1.54E−01 3.58E−03 1.94E+00 1.16E+00 3.97E−03
39 8.73E−02 3.29E−03 2.01E+00 1.09E+00 3.66E−03
40 4.94E−02 3.14E−03 2.06E+00 1.04E+00 3.49E−03
41 1.22E−02 2.95E−03 2.10E+00 1.00E+00 3.28E−03
42 −1.08E−02 2.69E−03 2.12E+00 9.77E−01 2.99E−03
43 −3.24E−02 2.29E−03 2.15E+00 9.53E−01 2.55E−03

Figure A.3 Source follower output voltage versus sense node voltage.

Therefore,

KADC(e−/DN) =
S(DN)

σSHOT(DN)2
=

149
10.72

= 1.3 e−/DN.

From this result, the first light level generates a charge level of

S1 = S1(DN) × KADC(e−/DN) = 149 × 1.3 = 195 e−.

From this reference level, the charge generated for subsequent light levels are



Appendix A. PTC Data Reduction Example 221

Figure A.4 Sense node signal and noise voltage as a function of sense node voltage.

S = AL × 195 e−,

where AL is the light gain tabulated in COL E.

Table A.4: Calculated results.

COL P: Signal in electron units

S = AL × 195

COL Q: ADC signal sensitivity

SADC(e−/DN) =
S

S(DN)

COL R: ADC signal sensitivity nonlinearity

SADC(e−/DN) nonlinearity (%) = 100 × SADC(e−/DN) − 1.31
1.31

COL S: Signal shot noise in electron units

σSHOT = S1/2

COL T: ADC noise sensitivity

NADC(e−/DN) =
σSHOT

σSHOT(DN)

Table A.5: Calculated results.

COL U: ADC noise sensitivity nonlinearity

Assuming NADC(e−/DN)LOW = SADC(e−/DN)LOW = 1.31

NADC(e−/DN) nonlinearity (%) = 100 × NADC(e−/DN) − 1.31
1.31
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Table A.4 Calculated results.

P Q R S T
ADC ADC ADC
Signal Signal Shot Noise

Data Signal Sensitivity Linearity Noise Sensitivity
Points e− (e−/DN) (%) (rms e−) (e−/DN)
1 1.95E+02 1.31E+00 −9.73E−02 1.40E+01 1.31E+00
2 3.90E+02 1.30E+00 −4.31E−01 1.97E+01 1.31E+00
3 7.36E+02 1.30E+00 −5.65E−01 2.71E+01 1.31E+00
4 9.88E+02 1.30E+00 −4.12E−01 3.14E+01 1.32E+00
5 1.21E+03 1.31E+00 −2.43E−01 3.48E+01 1.32E+00
6 1.70E+03 1.30E+00 −5.00E−01 4.12E+01 1.33E+00
7 2.04E+03 1.30E+00 −5.26E−01 4.51E+01 1.33E+00
8 2.74E+03 1.31E+00 −3.53E−01 5.24E+01 1.34E+00
9 3.10E+03 1.31E+00 −1.99E−01 5.57E+01 1.34E+00
10 3.62E+03 1.31E+00 3.69E−02 6.01E+01 1.35E+00
11 4.70E+03 1.32E+00 5.02E−01 6.85E+01 1.38E+00
12 5.34E+03 1.32E+00 7.09E−01 7.31E+01 1.39E+00
13 6.93E+03 1.33E+00 1.57E+00 8.33E+01 1.44E+00
14 8.78E+03 1.35E+00 2.96E+00 9.37E+01 1.49E+00
15 1.05E+04 1.35E+00 3.23E+00 1.02E+02 1.54E+00
16 1.19E+04 1.37E+00 4.65E+00 1.09E+02 1.57E+00
17 1.38E+04 1.39E+00 6.16E+00 1.18E+02 1.63E+00
18 1.55E+04 1.41E+00 7.48E+00 1.24E+02 1.69E+00
19 1.66E+04 1.42E+00 8.28E+00 1.29E+02 1.70E+00
20 1.87E+04 1.44E+00 1.01E+01 1.37E+02 1.75E+00
21 2.17E+04 1.48E+00 1.27E+01 1.47E+02 1.86E+00
22 2.26E+04 1.49E+00 1.35E+01 1.50E+02 1.86E+00
23 2.38E+04 1.50E+00 1.43E+01 1.54E+02 1.91E+00
24 2.54E+04 1.52E+00 1.57E+01 1.59E+02 1.95E+00
25 2.69E+04 1.53E+00 1.69E+01 1.64E+02 1.99E+00
26 2.93E+04 1.56E+00 1.88E+01 1.71E+02 2.09E+00
27 3.20E+04 1.59E+00 2.10E+01 1.79E+02 2.16E+00
28 3.50E+04 1.62E+00 2.35E+01 1.87E+02 2.25E+00
29 3.71E+04 1.64E+00 2.52E+01 1.93E+02 2.29E+00
30 4.13E+04 1.68E+00 2.86E+01 2.03E+02 2.47E+00
31 4.35E+04 1.71E+00 3.03E+01 2.09E+02 2.57E+00
32 4.76E+04 1.75E+00 3.35E+01 2.18E+02 2.71E+00
33 5.13E+04 1.79E+00 3.66E+01 2.27E+02 2.84E+00
34 5.55E+04 1.83E+00 4.01E+01 2.36E+02 3.07E+00
35 5.77E+04 1.86E+00 4.20E+01 2.40E+02 3.16E+00
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Table A.4 (Continued.)

P Q R S T
ADC ADC ADC

Data Signal Signal Shot Noise
Points Signal Sensitivity Linearity Noise Sensitivity

e− (e−/DN) (%) (rms e−) (e−/DN)
36 6.25E+04 1.92E+00 4.62E+01 2.50E+02 3.48E+00
37 6.40E+04 1.93E+00 4.74E+01 2.53E+02 3.61E+00
38 6.69E+04 1.97E+00 5.01E+01 2.59E+02 3.71E+00
39 7.16E+04 2.03E+00 5.47E+01 2.68E+02 4.17E+00
40 7.47E+04 2.07E+00 5.81E+01 2.73E+02 4.47E+00
41 7.77E+04 2.11E+00 6.11E+01 2.79E+02 4.85E+00
42 7.94E+04 2.13E+00 6.28E+01 2.82E+02 5.37E+00
43 8.13E+04 2.16E+00 6.48E+01 2.85E+02 6.37E+00

COL V: ADC Sensitivity

KADC(e−/DN) =
S(DN)

σSHOT(DN)2
(false)

COL W: ADC Sensitivity nonlinearity

KADC(e−/DN) nonlinearity (%)

= 100 × KADC(e−/DN) − 1.31
1.31

(false)

COL X: Signal electron units

S = S(DN) × KADC(e−/DN) (false)

COL Y: Signal shot noise electron units

σSHOT = [S(DN) × KADC(e−/DN)]1/2 (false)

Columns V–Y determine certain “false” quantities that assume KADC(e−/DN) =
SADC(e−/DN) = NADC(e−/DN) over the full dynamic range of the sensor. This
assumption results in serious errors for most performance parameters. The false re-
sult shows why it is necessary to separately track SADC(e−/DN) and NADC(e−/DN)
when V/e− nonlinearity is present.

Figure A.5:
SADC(e−/DN), NADC(e−/DN), KADC(e−/DN) versus S

Figure A.6:
SADC(e−/DN), NADC(e−/DN), KADC(e−/DN) nonlinearity (%) versus S
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Table A.5 Calculated results.

U V W X Y
ADC False False False
Noise ADC ADC False Shot

Data Linearity Sensitivity Linearity Signal Noise
Points (%) (e−/DN) (%)
1 −2.00E−02 1.31E+00 5.75E−02 1.95E+02 1.40E+01
2 2.11E−01 1.32E+00 8.57E−01 3.95E+02 1.99E+01
3 2.08E−01 1.32E+00 9.86E−01 7.47E+02 2.73E+01
4 9.16E−01 1.34E+00 2.26E+00 1.01E+03 3.18E+01
5 9.75E−01 1.34E+00 2.21E+00 1.24E+03 3.53E+01
6 1.35E+00 1.35E+00 3.24E+00 1.76E+03 4.20E+01
7 1.49E+00 1.36E+00 3.55E+00 2.12E+03 4.61E+01
8 2.37E+00 1.38E+00 5.16E+00 2.89E+03 5.38E+01
9 2.24E+00 1.37E+00 4.73E+00 3.25E+03 5.70E+01
10 3.15E+00 1.39E+00 6.36E+00 3.85E+03 6.20E+01
11 5.40E+00 1.45E+00 1.05E+01 5.17E+03 7.19E+01
12 5.98E+00 1.46E+00 1.15E+01 5.91E+03 7.69E+01
13 9.77E+00 1.55E+00 1.86E+01 8.10E+03 9.00E+01
14 1.40E+01 1.65E+00 2.62E+01 1.08E+04 1.04E+02
15 1.72E+01 1.74E+00 3.31E+01 1.35E+04 1.16E+02
16 2.02E+01 1.81E+00 3.81E+01 1.57E+04 1.25E+02
17 2.45E+01 1.91E+00 4.59E+01 1.90E+04 1.38E+02
18 2.87E+01 2.02E+00 5.42E+01 2.22E+04 1.49E+02
19 2.98E+01 2.04E+00 5.57E+01 2.39E+04 1.55E+02
20 3.33E+01 2.12E+00 6.15E+01 2.74E+04 1.66E+02
21 4.19E+01 2.34E+00 7.87E+01 3.44E+04 1.85E+02
22 4.20E+01 2.33E+00 7.77E+01 3.54E+04 1.88E+02
23 4.60E+01 2.44E+00 8.64E+01 3.88E+04 1.97E+02
24 4.88E+01 2.51E+00 9.15E+01 4.19E+04 2.05E+02
25 5.18E+01 2.58E+00 9.72E+01 4.54E+04 2.13E+02
26 5.96E+01 2.81E+00 1.15E+02 5.29E+04 2.30E+02
27 6.50E+01 2.95E+00 1.25E+02 5.95E+04 2.44E+02
28 7.16E+01 3.12E+00 1.39E+02 6.76E+04 2.60E+02
29 7.49E+01 3.20E+00 1.44E+02 7.25E+04 2.69E+02
30 8.87E+01 3.63E+00 1.77E+02 8.90E+04 2.98E+02
31 9.59E+01 3.86E+00 1.95E+02 9.84E+04 3.14E+02
32 1.07E+02 4.20E+00 2.20E+02 1.14E+05 3.38E+02
33 1.17E+02 4.51E+00 2.44E+02 1.29E+05 3.59E+02
34 1.34E+02 5.13E+00 2.92E+02 1.55E+05 3.94E+02
35 1.41E+02 5.36E+00 3.09E+02 1.66E+05 4.08E+02
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Table A.5 (Continued.)

U V W X Y
ADC False False False
Noise ADC ADC False Shot

Data Linearity Sensitivity Linearity Signal Noise
Points (%) (e−/DN) (%)
36 1.66E+02 6.34E+00 3.84E+02 2.07E+05 4.55E+02
37 1.75E+02 6.73E+00 4.14E+02 2.23E+05 4.72E+02
38 1.83E+02 7.00E+00 4.34E+02 2.38E+05 4.88E+02
39 2.18E+02 8.57E+00 5.54E+02 3.03E+05 5.50E+02
40 2.41E+02 9.64E+00 6.36E+02 3.48E+05 5.90E+02
41 2.70E+02 1.11E+01 7.50E+02 4.10E+05 6.40E+02
42 3.10E+02 1.35E+01 9.32E+02 5.04E+05 7.10E+02
43 3.87E+02 1.88E+01 1.34E+03 7.09E+05 8.42E+02

Figure A.5 Signal and noise ADC sensitivities (e−/DN) as a function of signal.

Table A.6: Calculated results.

COL Z: FPN electron units

σFPN = σFPN(DN) × NADC(e−/DN)

COL AA: Shot and FPN electron units

σSHOT+FPN = (σ2
SHOT + σ2

FPN)1/2

COL AB: Total noise electron units

σTOTAL = (σ2
READ + σ2

SHOT + σ2
FPN)1/2



226 Appendix A. PTC Data Reduction Example

Table A.6 Calculated results.

Z AA AB AC AD
FPN+

FPN+ Shot+
Shot Read False

Data FPN Noise Noise PN PN

Points (rms e−) (rms e−) (rms e−) (%) (%)
1 1.43E+00 1.40E+01 1.60E+01 7.35E−01 7.35E−01
2 2.98E+00 2.00E+01 2.14E+01 7.63E−01 7.58E−01
3 5.69E+00 2.77E+01 2.88E+01 7.73E−01 7.67E−01
4 7.76E+00 3.24E+01 3.33E+01 7.86E−01 7.76E−01
5 9.44E+00 3.61E+01 3.69E+01 7.77E−01 7.68E−01
6 1.33E+01 4.33E+01 4.40E+01 7.84E−01 7.69E−01
7 1.60E+01 4.79E+01 4.85E+01 7.83E−01 7.68E−01
8 2.17E+01 5.67E+01 5.72E+01 7.90E−01 7.69E−01
9 2.42E+01 6.07E+01 6.12E+01 7.79E−01 7.61E−01
10 2.95E+01 6.70E+01 6.74E+01 8.16E−01 7.91E−01
11 3.81E+01 7.84E+01 7.88E+01 8.10E−01 7.73E−01
12 4.30E+01 8.48E+01 8.51E+01 8.05E−01 7.65E−01
13 5.56E+01 1.00E+02 1.00E+02 8.02E−01 7.42E−01
14 6.97E+01 1.17E+02 1.17E+02 7.94E−01 7.17E−01
15 8.44E+01 1.33E+02 1.33E+02 8.03E−01 7.07E−01
16 9.50E+01 1.45E+02 1.45E+02 7.99E−01 6.96E−01
17 1.10E+02 1.61E+02 1.61E+02 7.92E−01 6.75E−01
18 1.22E+02 1.74E+02 1.74E+02 7.88E−01 6.58E−01
19 1.30E+02 1.83E+02 1.83E+02 7.82E−01 6.52E−01
20 1.48E+02 2.01E+02 2.01E+02 7.91E−01 6.53E−01
21 1.72E+02 2.26E+02 2.27E+02 7.93E−01 6.30E−01
22 1.79E+02 2.33E+02 2.33E+02 7.91E−01 6.32E−01
23 1.88E+02 2.43E+02 2.43E+02 7.90E−01 6.19E−01
24 2.00E+02 2.56E+02 2.56E+02 7.89E−01 6.13E−01
25 2.15E+02 2.71E+02 2.71E+02 8.00E−01 6.16E−01
26 2.34E+02 2.90E+02 2.90E+02 8.00E−01 5.95E−01
27 2.55E+02 3.11E+02 3.11E+02 7.95E−01 5.83E−01
28 2.83E+02 3.39E+02 3.40E+02 8.10E−01 5.83E−01
29 2.98E+02 3.55E+02 3.55E+02 8.02E−01 5.74E−01
30 3.21E+02 3.80E+02 3.80E+02 7.77E−01 5.30E−01
31 3.46E+02 4.04E+02 4.04E+02 7.95E−01 5.29E−01
32 3.84E+02 4.42E+02 4.42E+02 8.07E−01 5.21E−01
33 4.06E+02 4.65E+02 4.65E+02 7.90E−01 4.98E−01
34 4.44E+02 5.02E+02 5.02E+02 8.00E−01 4.78E−01
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Table A.6 (Continued.)

Z AA AB AC AD
FPN+

FPN+ Shot+
Shot Read False

Data FPN Noise Noise PN PN

Points (rms e−) (rms e−) (rms e−) (%) (%)
35 4.64E+02 5.23E+02 5.23E+02 8.05E−01 4.74E−01
36 4.99E+02 5.58E+02 5.58E+02 7.98E−01 4.38E−01
37 5.14E+02 5.73E+02 5.73E+02 8.03E−01 4.30E−01
38 5.39E+02 5.98E+02 5.98E+02 8.05E−01 4.27E−01
39 5.69E+02 6.29E+02 6.29E+02 7.94E−01 3.86E−01
40 6.08E+02 6.67E+02 6.67E+02 8.14E−01 3.77E−01
41 6.07E+02 6.68E+02 6.68E+02 7.81E−01 3.40E−01
42 6.35E+02 6.95E+02 6.95E+02 8.00E−01 3.18E−01
43 6.50E+02 7.09E+02 7.09E+02 7.99E−01 2.70E−01

Figure A.6 Signal and noise nonlinearity as a function of signal.

COL AC: FPN quality factor

PN =
σFPN

S

COL AD: FPN quality factor

PN =
σFPN(DN)

S(DN)
(false)

Figure A.7:
σTOTAL, σSHOT, σFPN versus S
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Figure A.8:
False S versus true S

Figure A.9:
True PN and false PN versus S

Table A.7: Calculated results.

COL AE: Signal sense node sensitivity

SSN(e−/VSN) =
S

S(VSN)

Figure A.7 Corresponding PTC responses for Fig. A1.2 in electron units.

Figure A.8 False versus true signal based on KADC(e−/DN) and SADC(e−/DN),
respectively.
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Table A.7 Calculated results.

AE AF AG AH AI
Sense Sense Sense Sense False
Node Node Node Node Sense
Signal Noise Signal Noise Node

Data Sensitivity Sensitivity Gain Gain Gain
Points (e−/V) (e−/V) (μV/e−) (μV/e−) (μV/e−)
1 2.30E+04 2.30E+04 4.35E+01 4.35E+01 4.35E+01
2 2.29E+04 2.30E+04 4.37E+01 4.34E+01 4.31E+01
3 2.29E+04 2.30E+04 4.37E+01 4.34E+01 4.31E+01
4 2.29E+04 2.32E+04 4.37E+01 4.31E+01 4.25E+01
5 2.29E+04 2.32E+04 4.36E+01 4.31E+01 4.26E+01
6 2.29E+04 2.33E+04 4.37E+01 4.29E+01 4.21E+01
7 2.29E+04 2.33E+04 4.37E+01 4.29E+01 4.20E+01
8 2.29E+04 2.35E+04 4.37E+01 4.25E+01 4.14E+01
9 2.29E+04 2.35E+04 4.36E+01 4.25E+01 4.15E+01
10 2.30E+04 2.37E+04 4.35E+01 4.22E+01 4.09E+01
11 2.31E+04 2.42E+04 4.33E+01 4.13E+01 3.94E+01
12 2.32E+04 2.44E+04 4.32E+01 4.10E+01 3.90E+01
13 2.34E+04 2.52E+04 4.28E+01 3.96E+01 3.67E+01
14 2.37E+04 2.62E+04 4.22E+01 3.82E+01 3.45E+01
15 2.37E+04 2.70E+04 4.21E+01 3.71E+01 3.27E+01
16 2.41E+04 2.76E+04 4.16E+01 3.62E+01 3.15E+01
17 2.44E+04 2.86E+04 4.10E+01 3.50E+01 2.98E+01
18 2.47E+04 2.96E+04 4.05E+01 3.38E+01 2.82E+01
19 2.49E+04 2.98E+04 4.02E+01 3.35E+01 2.79E+01
20 2.53E+04 3.07E+04 3.95E+01 3.26E+01 2.69E+01
21 2.59E+04 3.26E+04 3.86E+01 3.07E+01 2.43E+01
22 2.61E+04 3.26E+04 3.83E+01 3.06E+01 2.45E+01
23 2.63E+04 3.36E+04 3.81E+01 2.98E+01 2.33E+01
24 2.66E+04 3.42E+04 3.76E+01 2.92E+01 2.27E+01
25 2.69E+04 3.49E+04 3.72E+01 2.86E+01 2.21E+01
26 2.73E+04 3.67E+04 3.66E+01 2.72E+01 2.03E+01
27 2.78E+04 3.79E+04 3.59E+01 2.64E+01 1.93E+01
28 2.84E+04 3.95E+04 3.52E+01 2.53E+01 1.82E+01
29 2.88E+04 4.02E+04 3.48E+01 2.49E+01 1.78E+01
30 2.96E+04 4.34E+04 3.38E+01 2.30E+01 1.57E+01
31 3.00E+04 4.50E+04 3.34E+01 2.22E+01 1.48E+01
32 3.07E+04 4.76E+04 3.26E+01 2.10E+01 1.36E+01
33 3.14E+04 4.98E+04 3.18E+01 2.01E+01 1.26E+01
34 3.22E+04 5.38E+04 3.11E+01 1.86E+01 1.11E+01
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Table A.7 (Continued.)

AE AF AG AH AI
Sense Sense Sense Sense False
Node Node Node Node Sense
Signal Noise Signal Noise Node

Data Sensitivity Sensitivity Gain Gain Gain
Points (e−/V) (e−/V) (μV/e−) (μV/e−) (μV/e−)
35 3.26E+04 5.54E+04 3.06E+01 1.80E+01 1.06E+01
36 3.36E+04 6.12E+04 2.98E+01 1.64E+01 8.99E+00
37 3.39E+04 6.33E+04 2.95E+01 1.58E+01 8.46E+00
38 3.45E+04 6.51E+04 2.90E+01 1.54E+01 8.14E+00
39 3.56E+04 7.31E+04 2.81E+01 1.37E+01 6.65E+00
40 3.63E+04 7.84E+04 2.75E+01 1.28E+01 5.91E+00
41 3.70E+04 8.51E+04 2.70E+01 1.18E+01 5.12E+00
42 3.74E+04 9.42E+04 2.67E+01 1.06E+01 4.22E+00
43 3.79E+04 1.12E+05 2.64E+01 8.94E+00 3.03E+00

Figure A.9 False and true FPN with signal based on KADC(e−/DN) and NADC(e−/DN),
respectively.

COL AF: Sense node noise sensitivity

NSN(e−/VSN) =
σSHOT

σSHOT(VSN)

COL AG: Signal sense node gain

SSN(VSN/e−) =
[

S

S(VSN)

]−1

COL AH: Noise sense node gain

NSN(VSN/e−) =
[

σSHOT

σSHOT(VSN)

]−1
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COL AI: False sense node gain

ASN = [S(DN) × KADC(e−/DN)/S(VSN)]−1 (false)

Figure A.10:
SSN(e−/VSN), NSN(e−/VSN) versus S

Figure A.11:
SSN(VSN/e−), NSN(VSN/e−) versus S

Table A.8: Calculated results.

COL AJ: Sense node sensitivity ratio

Sensitivity ratio =
SSN(e−/VSN)
NSN(e−/VSN)

Figure A.10 SADC(e−/DN) and NADC(e−/DN) sensitivities versus signal.

Figure A.11 Signal and noise sense node gains with signal.
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Table A.8 Calculated results.

AJ AK AL AM AN AO
Sense Sense False False
Node Node Sense Shot Shot

Data Sensitivity Cap. Cap. Noise Shot+FPN Noise
Points Ratio (fF) (fF) S/N S/N S/N
1 9.99E−01 3.68E+00 3.68E+00 1.40E+01 1.39E+01 1.40E+01
2 9.94E−01 3.69E+00 3.71E+00 1.97E+01 1.95E+01 1.99E+01
3 9.92E−01 3.69E+00 3.71E+00 2.71E+01 2.66E+01 2.73E+01
4 9.87E−01 3.71E+00 3.76E+00 3.14E+01 3.05E+01 3.18E+01
5 9.88E−01 3.71E+00 3.76E+00 3.48E+01 3.36E+01 3.53E+01
6 9.82E−01 3.73E+00 3.80E+00 4.12E+01 3.92E+01 4.20E+01
7 9.80E−01 3.73E+00 3.81E+00 4.51E+01 4.26E+01 4.61E+01
8 9.73E−01 3.77E+00 3.87E+00 5.24E+01 4.84E+01 5.38E+01
9 9.76E−01 3.76E+00 3.85E+00 5.57E+01 5.11E+01 5.70E+01
10 9.70E−01 3.79E+00 3.91E+00 6.01E+01 5.40E+01 6.20E+01
11 9.54E−01 3.88E+00 4.07E+00 6.85E+01 5.99E+01 7.19E+01
12 9.50E−01 3.90E+00 4.10E+00 7.31E+01 6.30E+01 7.69E+01
13 9.25E−01 4.04E+00 4.36E+00 8.33E+01 6.93E+01 9.00E+01
14 9.03E−01 4.19E+00 4.64E+00 9.37E+01 7.52E+01 1.04E+02
15 8.81E−01 4.31E+00 4.90E+00 1.02E+02 7.91E+01 1.16E+02
16 8.71E−01 4.42E+00 5.08E+00 1.09E+02 8.22E+01 1.25E+02
17 8.53E−01 4.58E+00 5.37E+00 1.18E+02 8.61E+01 1.38E+02
18 8.35E−01 4.74E+00 5.67E+00 1.24E+02 8.88E+01 1.49E+02
19 8.34E−01 4.78E+00 5.73E+00 1.29E+02 9.08E+01 1.55E+02
20 8.26E−01 4.90E+00 5.94E+00 1.37E+02 9.28E+01 1.66E+02
21 7.94E−01 5.22E+00 6.57E+00 1.47E+02 9.58E+01 1.85E+02
22 7.99E−01 5.22E+00 6.54E+00 1.50E+02 9.68E+01 1.88E+02
23 7.83E−01 5.37E+00 6.86E+00 1.54E+02 9.78E+01 1.97E+02
24 7.77E−01 5.48E+00 7.04E+00 1.59E+02 9.92E+01 2.05E+02
25 7.70E−01 5.59E+00 7.25E+00 1.64E+02 9.94E+01 2.13E+02
26 7.44E−01 5.87E+00 7.89E+00 1.71E+02 1.01E+02 2.30E+02
27 7.34E−01 6.07E+00 8.27E+00 1.79E+02 1.03E+02 2.44E+02
28 7.19E−01 6.31E+00 8.77E+00 1.87E+02 1.03E+02 2.60E+02
29 7.16E−01 6.43E+00 8.99E+00 1.93E+02 1.05E+02 2.69E+02
30 6.81E−01 6.94E+00 1.02E+01 2.03E+02 1.09E+02 2.98E+02
31 6.65E−01 7.21E+00 1.08E+01 2.09E+02 1.08E+02 3.14E+02
32 6.46E−01 7.61E+00 1.18E+01 2.18E+02 1.08E+02 3.38E+02
33 6.30E−01 7.97E+00 1.27E+01 2.27E+02 1.10E+02 3.59E+02
34 5.98E−01 8.62E+00 1.44E+01 2.36E+02 1.10E+02 3.94E+02
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Table A.8 (Continued.)

AJ AK AL AM AN AO
Sense Sense False False
Node Node Sense Shot Shot

Data Sensitivity Cap. Cap. Noise Shot+FPN Noise
Points Ratio (fF) (fF) S/N S/N S/N
35 5.89E−01 8.87E+00 1.50E+01 2.40E+02 1.10E+02 4.08E+02
36 5.50E−01 9.79E+00 1.78E+01 2.50E+02 1.12E+02 4.55E+02
37 5.36E−01 1.01E+01 1.89E+01 2.53E+02 1.12E+02 4.72E+02
38 5.30E−01 1.04E+01 1.96E+01 2.59E+02 1.12E+02 4.88E+02
39 4.86E−01 1.17E+01 2.41E+01 2.68E+02 1.14E+02 5.50E+02
40 4.63E−01 1.25E+01 2.71E+01 2.73E+02 1.12E+02 5.90E+02
41 4.35E−01 1.36E+01 3.13E+01 2.79E+02 1.16E+02 6.40E+02
42 3.97E−01 1.51E+01 3.80E+01 2.82E+02 1.14E+02 7.10E+02
43 3.39E−01 1.79E+01 5.29E+01 2.85E+02 1.15E+02 8.42E+02

COL AK: Sense capacitance

CSN = NSN(e−/VSN) × (1.6 × 10−19)

COL AL: False sense node capacitance

CSN = KSN(e−/VSN) × (1.6 × 10−19) (false)

COL AM: Shot noise S/N

S/N =
S

σSHOT

COL AN: Shot and FPN S/N

S/N =
S

(σ2
SHOT + σ2

FPN)1/2

COL AO: Shot noise S/N

S/N = [S(DN) × KADC(e−/DN)]1/2 (false)

Figure A.12:

Sensitivity ratio
SSN(e−/VSN)
NSN(e−/VSN)

versus S

Figure A.13:
CSN versus VSN
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Figure A.12 Signal and noise sensitivity ratio with signal.

Figure A.13 Sense capacitance versus sense node voltage showing measured and mod-
eled results.

Figure A.14 Sense node capacitance versus signal.
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Figure A.15 S/N versus signal with and without FPN.

Figure A.14:
CSN versus S

Figure A.15:
S/N(σSHOT+FPN, σSHOT) versus S





Appendix B

PTC Simulation Program with
Thermal Dark Current
The MatlabTM simulation program below generates a PTC using a random number
noise generator to simulate read noise, shot noise, and FPN. The program also
includes thermal dark current shot noise and FPN, which could influence the read
noise floor depending on the parameters (e.g., operating temperature). Figure B.1
shows a typical plot without dark current present, whereas Fig. B.2 includes dark
current noise. The plots shown are in DN units. A plotting routine in electron units
is also supplied. Refer to Chapter 5 for PTC relations used in the program. Dark
current equations are given in Chapter 11.

Figure B.1 Total noise and read+shot noise PTC responses.

% PTC simulation program with dark current
clear all; % clear workspace

PIX=1000; % number of pixels sampled
DATA=100; % number of data points
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Figure B.2 Total noise and read+shot noise PTC responses with thermal dark current.

% Parameters
edn=2; % e−/DN
RN_e=3; % read noise (e−)
RN=RN_e/edn; % read noise (DN)
FW_e=10ˆ5; % full well (e−)
FW=FW_e/edn; % full well (DN)
SCALE=DATA/log10(FW); % full well scale factor
PN = 0.02; % FPN factor

T=300; % operating temperature (K)
k1=8.62*10ˆ-5; % Boltzmann’s constant
DFM=0.5; % dark current figure of merit

(nA/cmˆ2)
DN=0.30; % dark FPN factor
PA=(8*10ˆ-4)ˆ2; % pixel area (cmˆ2)
t=.3; % integration time
Eg=1.1557-(7.021*10ˆ-4*Tˆ2)/(1108+T); % silicon band gap energy (eV)
DARK_e=t*2.55*10ˆ15*PA*DFM*Tˆ1.5* % dark current (e−)

*exp(-Eg/(2*k1*T));
DARK=DARK_e/edn; % dark current (DN)

% Program
randn(‘state’,sum(100*clock)) % randomize number generator
C=randn(PIX,1); % random number generator for FPN
F=randn(PIX,1); % random number generator for dark FPN

for i=1:DATA

sig=10ˆ(i/SCALE); % signal step (DN)

A=randn(PIX,DATA); % random number generator
B=randn(PIX,DATA); % random number generator
D=randn(PIX,DATA); % random number generator
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read = RN*A(1:PIX,i); % read noise (DN)
shot =(sig/edn)ˆ0.5*B(1:PIX,i); % shot noise (DN)

FPN=sig*PN*C(1:PIX,1); % FPN (DN)
Dshot=(DARK/edn)ˆ0.5*D(1:PIX,i); % dark shot noise (DN)
DFPN=DARK*DN*F(1:PIX,1); % dark FPN (DN)

SIG1(1:PIX,i)=sig+read+shot+FPN % read+shot+FPN+dark shot+dark
+Dshot+DFPN; FPN (DN)
SIG2(1:PIX,i)=sig+read+shot+FPN+Dshot; % read+shot+FPN+dark shot (DN)
SIG3(1:PIX,i)=sig+read+shot+Dshot; % read+shot+dark shot (DN)
SIG4(1:PIX,i)=sig+read+shot; % read+shot (DN)
SIG5(1:PIX,i)=sig+read+shot+FPN; % read+shot+FPN+dark shot

+dark FPN (DN)

end

SIGNAL=mean(SIG1); % signal(DN)
NOISE1=std(SIG1); % read+shot+FPN+dark shot+dark FPN (DN)
NOISE2=std(SIG2); % read+shot+FPN+dark shot (DN)
NOISE3=std(SIG3); % read+shot+dark shot (DN)
NOISE4=std(SIG4); % read+shot (DN)
NOISE5=std(SIG5); % read+shot+FPN (DN)

SIGNAL_e=mean(SIG1)*edn; % signal (e−)
NOISE1_e=std(SIG1)*edn; % read+shot+FPN+dark shot+dark FPN (e−)
NOISE2_e=std(SIG2)*edn; % read+shot+FPN+dark shot (e−)
NOISE3_e=std(SIG3)*edn; % read+shot+dark shot (e−)
NOISE4_e=std(SIG4)*edn; % read+shot (e−)
NOISE5_e=std(SIG1)*edn; % read+shot+FPN (e−)

% PTC Plot (DN)
plot(SIGNAL,NOISE1,‘k.’,SIGNAL,NOISE2,‘k.’,SIGNAL,NOISE3,‘k.’,SIGNAL,
NOISE4,‘k.’,SIGNAL,NOISE5,‘k.’);

% PTC Plot (e−)
plot(SIGNAL_e,NOISE1_e,‘k.’,SIGNAL_e,NOISE2_e,‘k.’,SIGNAL_e,NOISE3_
e,‘k.’,SIGNAL_e,NOISE4_e,‘k.’,SIGNAL_e,NOISE5_e,‘k.’);





Appendix C

PTC Simulation Program
with FPN Removal through
Flat Fielding
The MatlabTM simulation program below generates a PTC before and after FPN
noise is removed by the flat-fielding technique described in Chapter 8. Figure C.1
is a typical output showing total noise and the ideal shot noise response. The third
curve shows the noise response after FPN is removed.

Figure C.1 PTC responses before and after flat fielding.

% PTC simulation program with FPN removal through flat fielding
clear all; % clear workspace

% Parameters
PIX=1000; % number of pixels sampled
DATA=100; % number of data points



242 Appendix C. PTC Simulation Program

edn=2; % e−/DN
RN_e=3; % read noise (e−)
RN=RN_e/edn; % read noise (DN)
FW_e=10ˆ5; % full well (e−)
FW=FW_e/edn; % full well (DN)
SCALE=DATA/log10(FW); % full well scale factor
PN = 0.02; % FPN factor
FF=3*10ˆ4; % flat field for FPN removal (e−)
FF_DN=FF/edn; % flat field for FPN removal (DN)
NFF=1; % number of flat fields
Q=FF*NFF; % flat fielding quality factor

% Program
randn(‘state’,sum(100*clock)) % randomize number generators
C=randn(PIX,1); % random number generator for FPN

for i=1:DATA

sig=10ˆ(i/SCALE); % signal step (DN)

A=randn(PIX,DATA); % random number generator
B=randn(PIX,DATA); % random number generator
D=randn(PIX,DATA); % random number generator

read = RN*A(1:PIX,i); % read noise (DN)
shot =(sig/edn)ˆ0.5*B(1:PIX,i); % shot noise (DN)
FPN=sig*PN*C(1:PIX,1); % FPN

SIG1(1:PIX,i)=sig+read+shot+FPN; % read+shot+FPN+ (DN)
SIG2(1:PIX,i)=sig+read+shot; % read+shot (DN)

shot_FF =(FF_DN/edn)ˆ0.5*D(1:PIX,i)/NFFˆ0.5; % flat field shot noise (DN)
FPN_FF=FF_DN*PN*C(1:PIX,1); % flat field FPN(DN)

CAL(1:PIX,i) = FF_DN+read+shot_FF+FPN_FF; % flat field calibration frame (DN)

end

COR=FF_DN.*SIG1./CAL; % corrected frame without
FPN (DN)

SIGNAL=mean(SIG1); % signal(DN)

NOISE1=std(SIG1); % read+shot+FPN (DN)
NOISE2=std(SIG2); % read+shot (DN)
NOISE3=std(COR); % read+shot (DN) CORRECTED

SIGNAL_e=SIGNAL*edn; % signal (e−)
NOISE1_e=NOISE1*edn; % read+shot+FPN (e−)
NOISE2_e=NOISE2*edn; % read+shot (e−)



Appendix C. PTC Simulation Program 243

NOISE3_e=NOISE3*edn; % read+shot (e−) CORRECTED

% PTC PLOT (DN)
plot (SIGNAL,NOISE1,‘k.’,SIGNAL,NOISE2,‘k.’,SIGNAL,NOISE3,‘k.’);

%PTC PLOT (e−)
plot(SIGNAL_e,NOISE1_e,’k.’,SIGNAL_e,NOISE2_e,‘k.’,SIGNAL_e,NOISE3_e,‘k.’);





Appendix D

LTC Simulation Program with
Thermal Dark Current
The MatlabTM simulation program below generates a LTC with and without FPN.
Figure D.1 is a typical LTC for the parameters specified. Refer to Chapter 12 for
lux transfer relations used in this program.

Figure D.1 LTC responses with and without FPN.

% Lux transfer simulation program
clear all; % clear workspace

% Parameters
QE=0.8; % quantum efficiency
PA=(8*10ˆ-4)ˆ2; % pixel area (cmˆ2)
FW = 2*10ˆ5; % full well (e−)
RN=5; % read noise (e−)
PN=0.01; % pixel nonuniformity
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k1=8.62*10ˆ-5; % Boltzmann’s constant
T=300; % operating temperature
DFM=0; % dark current figure of merit
DN=0; % dark current FPN
Eg=1.1557-(7.021*10ˆ-4*Tˆ2)/(1108+T); % silicon band gap (eV)
t=1000; % integration time (sec)
DARK = t*2.55*10ˆ15*PA*DFM*Tˆ1.5* % dark current (e−)
exp(-Eg/(2*k1*T));

TL=1; % transmission of lens
fn=30; % f-number of the lens
mag=.001; % magnification of the lens
lense=TL*(4*fnˆ2*(1+mag)ˆ2)ˆ-1; % lens equation

row=20; % number of rows (pixels)
column=20; % number of columns (pixels)
Num =1000; % Number of exposures

% Program
randn(‘state’,sum(100*clock)); % randomize number generators

C=randn(row,column); % random number generator for FPN
D=randn(row,column); % random number generator for dark FPN

for k=1:Num;

A=randn(row,column); % random number generator for shot noise
B=randn(row,column); % random number generator of read noise
E=randn(row,column); % random array for dark shot noise

LUX(k)=10ˆ(10/3*log10(k)-4); % lux light level (lux)

for j =1:row;
for i=1:column;

sig(j,i)=LUX(k)*4*10ˆ11*t*QE*PA*lense; % signal (e−)
read(j,i) = RN*B(j,i); % read noise (e−)
shot(j,i) =A(j,i).* (sig(j,i)).ˆ.5; % shot noise (e−)

FPN(j,i) = C(j,i).*sig(j,i).*PN; % FPN (e−)
Dshot(j,i)= E(j,i).*DARKˆ.5; % dark shot noise (e−)
DFPN(j,i) = D(j,i).*DN.*DARK; % dark FPN (e−)

end
end
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SIG1=sig+read+shot+FPN+Dshot+DFPN; % read+shot+FPN+dark shot+dark
FPN (e−)

SIG2=sig+read+shot+Dshot+DFPN; % read+shot+dark shot+dark FPN (e−)

S1(k)=mean(mean(SIG1)’); % average signal for SIG1
N1(k)=mean(std(SIG1)’); % average noise for SIG1

if S1(k)>FW; % full well limit
S1(k)=0;
end

S2(k)=mean(mean(SIG2)’); % average signal for SIG2
N2(k)=mean(std(SIG2)’); % average noise for SIG2

if S2(k)>FW; % full well limit
S2(k)=0;
end

StoN(k)=S1(k)./N1(k); % S/N for SIG1
S2toN2(k)=S2(k)./N2(k); % S/N for SIG2

end

%Lux Tranfer Plot
plot(LUX,StoN,‘k’,LUX,S2toN2,‘k’);





Table of Symbols

Symbol Parameter Units Chapter
[S/N]A_FF Absolute flat field S/N 12
[S/N]A_I Absolute image S/N 12
[S/N]FF Flat field S/N 10
[S/N]FF_COR FPN corrected flat-field S/N 10
[S/N]FF_SUM Flat-field S/N with on-chip summing 10
[S/N]I Image S/N 10
[S/N]I_AV Image S/N with frame averaging 10
[S/N]I_COR FPN corrected image S/N 10
[S/N]I_MAX Maximum image S/N 10
[S/N]SIN Sinusoidal S/N 10
[S/N]SIN_AV Sinusoidal S/N with frame averaging 10
[S/N]SIN_COR FPN corrected sinusoidal S/N 10
[S/N]SIN_MAX Maximum sinusoidal S/N 10
A(DN/VSN) Sense node to ADC gain DN/V 7
AADC ADC gain DN/V 4
ACDS CDS gain V/V 4
AD Standard diode area cm2 2
ASF Source follower gain V/V 4
ASN Sense node gain V/e− 4
B Equivalent noise bandwidth Hz 11
c Speed of light cm/sec 3
CCE Charge collection efficiency 4
CD Detector contrast 9
CP Photon scene contrast 9
CSN Sense node capacitance F 4
D Dark current signal e− 11
D(DN) Dark current signal DN 11
DFM Dark current figure of merit nA/cm2 11
DN Digital number DN 4
DN Dark current FPN quality factor 11
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Continued

Symbol Parameter Units Chapter
DNADC Raw ADC signal DN 4
DR Dynamic range 5
DR Dark current rate e−/sec 11
Ee-h Energy to generate e−/hole pair eV/e− 2
Eg Silicon band gap energy eV 11
f Normalized spatial frequency cycles/cm 9
f Electrical frequency Hz 11
f# Lens f-number 12
fc Flicker noise corner frequency Hz 11
FF Fano factor 3
fN Nyquist spatial frequency cycles/cm 9
fS Spatial frequency cycles/cm 9
h Planck’s constant J-sec 3
HCDS(f) CDS transfer function 11
hν Photon energy eV 2
ILAG Image lag 5
k Boltzmann’s constant J/K 3
KADC(e−/DN) ADC sensitivity e−/DN 2
KADC(P/DN) ADC sensitivity incident

photon/DN
4

KADC(PI/DN) ADC sensitivity interacting
photon/DN

4

KCDS(e−/V CDS) CDS sensitivity e−/V 4
KPI(P/P I) Incident photon sensitivity 4
KSF(e−/V SF) Source follower sensitivity e−/V 4
KSN(e−/V SN) Sense node sensitivity e−/V 4
KSN(P I/e−) Interacting photon sensitivity interacting

photon/e−
4

L Luminance light level lux 12
LA Photon absorption length μm 2
LMIN Minimum luminance for

S/N = 1
lux 12

LQ Image luminance for S/N = 10 lux 12
m Lens magnification 12
MI Image modulation constant e− 9
MSIN Sinusoidal modulation constant e− 9
MTFD Detector MTF 9
NADC Number of ADC DN levels DN 11
NADC(e−/DN) ADC noise sensitivity e−/DN 7
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Continued

Symbol Parameter Units Chapter
NAV Number of frames averaged 10
NBITS Number of ADC bits bits 11
NFF Number of flat fields averaged 8
NL Number of photons for 1 lux photons 12
NLD Dark current nonlinearity 11
NLK V/V nonlinearity 7
NLN V/e− noise nonlinearity 7
NLS V/e− signal nonlinearity 7
NP Photon rate area density photons/cm2-sec 12
NPIX Number of pixels sampled pixels 5
NSN(e−/VSN) Sense node noise sensitivity e−/V 7
OFF(DN) Offset frame DN 5
P Incident photons photons 2
PA Pixel area cm2 2
PI Interacting photons photons 2
pix Pixel pitch cm 9
PN FPN quality factor 3
q Electron charge C 4
QE Quantum efficiency e−/incident photon 2
QED Standard diode QE e−/incident photon 2
QEI Interacting quantum efficiency interacting photons/

incident photons
2

QFF Flat-field quality factor e− 8
R Reset MOSFET channel

resistance
R 11

Re Standard diode responsivity A/W 2
Re Absolute responsivity e−/lux-sec 12
Re(VSN) Relative responsivity V/lux-sec 12
RREF Silicon reflection factor 2
S Flat-field signal e− 2
S(DN) ADC signal DN 2
S(VCDS) CDS signal V 4
S(VSF) Source follower signal V 4
S(VSN) Sense node signal V 4
SA Absolute signal e− 12
SA_MIN Minimum detectable signal

for S/N = 1
e− 12

SADC(e−/DN) ADC signal sensitivity e−/DN 7
SADC_OFF(DN) ADC offset DN 4
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Continued

Symbol Parameter Units Chapter
SD Standard photo diode signal e−/sec 2
SDET(f) Detector noise power spectrum 11
SFW Full well e− 5
SI Average image signal level e− 9
SiCOR Signal after FPN is removed e− 8
SiFF Flat-field correction signal level e− 8
SIN Sinusoidal pixel output signal e− 9
SiRAW Signal before FPN is removed e− 8
SMAX Maximum sinusoidal signal e− 9
SMAX(P ) Maximum sinusoidal photon input photons 9
SMIN Minimum sinusoidal signal e− 9
SMIN(P ) Minimum sinusoidal photon input photons 9
SRTS(f) RTS noise power spectrum 11
SSIN Average sinusoidal signal level e− 9
SSN(e−/VSN) Sense node signal sensitivity e−/V 7
T Temperature K 3
TEPI Silicon epi thickness μm 2
tI Integration time sec 2
TL Transmission of lens 12
ts CDS sample-to-sample time sec 11
VCDS CDS voltage V 4
VCDS_OFF CDS offset voltage V 4
VREF Sense node reference voltage V 4
VSF Source follower voltage V 4
VSF_OFF Source follower offset voltage V 4
VSN Sense node voltage V 4
W (f) Source follower white noise V/Hz1/2 11
δI Image signal modulation rms e− 9
ΔI RTS current modulation A 11
pf Pixel fill factor 9
δSIN Sinusoidal signal modulation rms e− 9
ηE Effective quantum yield e−/interacting

photons
4

ηi Quantum yield e−/interacting
photons

2

λ Wavelength A 2
μFF Average flat-field signal level e− 8
σADC ADC quantizing noise rms e− 11
σCOR Noise after FPN is removed rms e− 8
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Continued

Symbol Parameter Units Chapter
σD_FPN Dark current FPN rms e− 11
σD_FPN(DN) Dark current FPN rms DN 11
σD_SHOT Dark current shot noise rms e− 11
σD_SHOT(DN) Dark current shot noise rms DN 11
σFN Fano noise rms e− 3
σFPN Pixel FPN rms e− 3
σFPN(DN) Pixel FPN rms DN 5
σI_FPN Image FPN rms e− 9
σI_M Total image modulation rms e− 9
σI_SHOT Image shot noise rms e− 9
σI_TOTAL Total image noise rms e− 9
σK ADC sensitivity standard

deviation
rms e−/DN 6

σOFF Offset FPN noise rms e− 11
σREAD Read noise e− rms 5
σREAD(DN) Read noise rms DN 5
σREAD+SHOT(DN) Read and shot noise rms DN 5
σRESET Sense node reset noise rms e− 11
σRESET(VSN) Sense node reset noise voltage V 11
σSF(VSF) Pixel source follower noise

voltage
rms V 11

σSHOT ADC shot noise e− rms 3
σSHOT(DN) ADC shot noise rms DN 4
σSHOT(P ) Incident photon shot noise rms photons 4
σSHOT(PI) Interacting photon shot noise rms photons 3
σSHOT(VCDS) CDS shot noise voltage rms V 4
σSHOT(VSF) Source follower shot noise

voltage
rms V 4

σSHOT(VSN) Sense node shot noise voltage rms V 4
σSIN_FPN Sinusoidal FPN rms e− 9
σSIN_M Total sinusoidal modulation rms e− 9
σSIN_SHOT Sinusoidal shot noise rms e− 9
σSIN_TOTAL Total sinusoidal noise rms e− 9
σSY System noise rms e− 11
σTOTAL Total noise rms e− 3
σTOTAL(DN) Total noise rms DN 5
τD CDS dominate time constant sec 11
τRTS RTS characteristic time

constant
sec 11
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Index
A
absolute versus relative units, 2
analog-to-digital converter (ADC), 44, 175

ADC bits required, 180
DN levels required, 178, 184
e−/DN setting, 177
linear encoding, 175
nonlinear encoding, 182
optimum encoding, 184

C
camera

block diagram, 35
gain parameters, 35
incident photon gains and sensitivities,

44
interacting photon gains and sensitivities,

42
performance parameters, 3
sense node gains and sensitivities, 38
sensitivity parameters, 37

charge coupled device (CCD), 1
charge diffusion, 45
contrast function

detector contrast, 128
photon contrast, 127

correlated double sampler (CDS), 164
CDS bandwidth, 164
CDS dominant time constant, 164
CDS sample-to-sample time, 164

D
dark current, 167, 195, 207
dark current figure-of-merit, 168
dark FPN quality factor, 168
dark transfer curve (DTC), 170
detector performance parameters, 2
digital correlated double sampler (DCDS),

186
digital number (DN), 2
dynamic range, 54, 180

E
extended dynamic range (XDR), 74

F
Fano-factor, 25
flat fielding, 111

demonstration, 111

flat field quality factor, 113, 155
photon transfer verification, 115, 123
residual shot noise, 113
V/e− nonlinearity error, 120
V/V nonlinearity, 118

FPN removal, 52, 111
full well, 49, 54

I
image averaging, 156
image lag, 64
image lag factor, 64
interacting quantum efficiency, 13

L
lens equation, 193
luminance, 193
lux, 193
lux transfer curve (LTC), 193

experimental data, 209
lux transfer ratio, 207

M
minimum detection limit, 198
modulation constant,

image, 135, 202
sinusoidal, 136

modulation lux transfer curve (MLTC), 202
modulation photon transfer curve (MPTC),

134
modulation transfer function (MTF), 127,

139

N
noise

ADC bit-weighting noise, 181
ADC quantizing noise, 175
e−/DN noise, 85
Fano noise, 21, 25
fixed pattern noise,

dark current FPN, 168
interference fringing FPN, 33
offset FPN, 186
pixel FPN, 21, 30
remnant FPN, 121

flicker noise, 164
image noise, 135
pixel source follower noise, 163, 186
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random telegraph signal (RTS) noise,
164

read noise, 21, 34, 163
sense node reset noise, 165, 186
shot noise

Bose-Einstein statistics, 21
dark current shot noise, 167
Gaussian statistics, 24
photon shot noise, 21
Poisson statistics, 22
remnant shot noise, 111
signal shot noise, 24

sinusoidal noise, 131
system noise, 191
white noise, 164

nonlinearity, 87
dark current nonlinearity, 173
distinguishing between V/V and V/e−

nonlinearity, 106
least squares fit, 88
linearization, 88
nonlinearity definition, 88
nonlinearity residual errors, 88
PTC with V/e− nonlinearity, 107
PTC with V/V nonlinearity, 87
V/e−, 94
V/V, 87

Nyquist spatial frequency, 127

O
offset correction, 50
offset pixels, 50
on-chip averaging, 159

P
photoelectric effect, 11
photons

incident, 13
interacting, 13
wavelength-to-energy conversion, 12

photon transfer curve (PTC), 49
determining e−/DN graphically, 55
experimental PTC data, 71
PTC family, 4, 52
PTC FPN errors, 62
PTC history, 1
PTC noise regimes, 49
PTC offset errors, 60
PTC read noise errors, 60
PTC setup and generation, 49
shutterless PTC, 66
sinusoidal PTC, 133
variance PTC (VPTC), 68, 181

photon transfer relation, 37
derivation, 36, 44

e−/DN histogram, 80
e−/DN variance, 79

pixel FPN quality factor, 30

Q
quantum efficiency, 13

measurement, 13
quantum yield

effective, 45
ideal, 12, 13, 17
PTC, 58
VPTC, 72

R
responsivity, 200

absolute, 200
relative, 200
standard photo diode, 14

S
sense node region, 38

reference voltage, 39
reset switch, 39
sense node, 39
sense node capacitance, 38
source follower, 39

shot noise limit, 1, 111
signal-to-noise, 2

absolute S/N, 193
acceptable image S/N, 205
flat fielding S/N, 150
image S/N, 146
maximum S/N, 153, 156
quantum yield S/N, 145
S/N noise regimes, 143
sinusoidal S/N, 146
uniform S/N, 143

silicon,
anti-reflection coatings, 15
band-gap, 11, 168
electron-hole generation energy, 18
epitaxial thickness, 15
photon absorption length, 15
reflection, 15

sinusoidal stimulus, 127
square rooter encoder, 183
standard photo diode, 13

T
time delay integration (TDI), 66

X
x-ray response, 186
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