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Preface

... The numerical interpretation ... is however necessary. ... So long
as it is not obtained, the solutions may be said to remain incomplete and
useless, and the truth which it is proposed to discover is no less hidden
in the formulae of analysis than it was in the physical problem itself.

-Joseph Fourier, The Analytic Theory of Heat

This book covers most of the standard topics in multivariate calculus, and a
substantial part of a standard first course in linear algebra. The teacher may
find the organization rather less standard.

There are three guiding principles which led to our organizing the material
as we did. One is that at this level linear algebra should be more a convenient
setting and language for multivariate calculus than a subject in its own right.
We begin most chapters with a treatment of a topic in linear algebra and then
show how the methods apply to corresponding nonlinear problems. In each
chapter, enough linear algebra is developed to provide the tools we need in
teaching multivariate calculus (in fact, somewhat more: the spectral theorem
for symmetric matrices is proved in Section 3.7). We discuss abstract vector
spaces in Section 2.6, but the emphasis is on R°, as we believe that most
students find it easiest to move from the concrete to the abstract.

Another guiding principle is that one should emphasize computationally ef-
fective algorithms, and prove theorems by showing that those algorithms really
work: to marry theory and applications by using practical algorithms as the-
oretical tools. We feel this better reflects the way this mathematics is used
today, in both applied and in pure mathematics. Moreover, it can be done with
no loss of rigor.

For linear equations, row reduction (the practical algorithm) is the central
tool from which everything else follows, and we use row reduction to prove all
the standard results about dimension and rank. For nonlinear equations, the
cornerstone is Newton's method, the best and most widely used method for
solving nonlinear equations. We use Newton's method both as a computational
tool and as the basis for proving the inverse and implicit function theorem,
rather than basing those proofs on Picard iteration, which converges too slowly
to be of practical interest.

xi



xii Preface

Jean Dieudonnt, for many
years a leader of Bourbaki, is the
very personification of rigor in
mathematics. In his book In-
finitesimal Calculus, he put the
harder proofs in small type, say-
ing " ... a beginner will do well
to accept plausible results without
taxing his mind with subtle proofs

Following this philosophy, we
have put many of the more diffi-
cult proofs in the appendix, and
feel that for a first course, these
proofs should be omitted. Stu-
dents should learn how to drive be-
fore they learn how to take the car
apart.

In keeping with our emphasis on computations, we include a section on
numerical methods of integration, and we encourage the use of computers to
both to reduce tedious calculations (row reduction in particular) and as an
aid in visualizing curves and surfaces. We have also included a section on
probability and integrals, as this seems to us too important a use of integration
to be ignored.

A third principle is that differential forms are the right way to approach the
various forms of Stokes's theorem. We say this with some trepidation, espe-
cially after some of our most distinguished colleagues told us they had never
really understood what differential forms were about. We believe that differ-
ential forms can be taught to freshmen and sophomores, if forms are presented
geometrically, as integrands that take an oriented piece of a curve, surface, or
manifold, and return a number. We are aware that students taking courses
in other fields need to master the language of vector calculus, and we devote
three sections of Chapter 6 to integrating the standard vector calculus into the
language of forms.

The great conceptual simplifications gained by doing electromagnetism in
the language of forms is a central motivation for using forms, and we will apply
the language of forms to electromagnetism in a subsequent volume.

Although most long proofs have been put in Appendix A, we made an excep-
tion for the material in Section 1.6. These theorems in topology are often not
taught, but we feel we would be doing the beginning student a disservice not
to include them, particularly the mean value theorem and the theorems con-
cerning convergent subsequences in compact sets and the existence of minima
and maxima of functions. In our experience, students do not find this material
particularly hard, and systematically avoiding it leaves them with an uneasy
feeling that the foundations of the subject are shaky.

Different ways to use the book

This book can be used either as a textbook in multivariate calculus or as an
accessible textbook for a course in analysis.

We see calculus as analogous to learning how to drive, while analysis is
analogous to learning how and why a car works. To use this book to "learn
how to drive," the proofs in Appendix A should be omitted. To use it to "learn
how a car works," the emphasis should be on those proofs. For most students,
this will be best attempted when they already have some familiarity with the
material in the main text.

Students who have studied first year calculus only

(1) For a one-semester course taken by students have studied neither linear
algebra nor multivariate calculus, we suggest covering only the first four chap-
ters, omitting the sections marked "optional," which, in the analogy of learning
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to drive rather than learning how a car is built, correspond rather to learning
how to drive on ice. (These sections include the part of Section 2.8 concerning
a stronger version of the Kantorovitch theorem, and Section 4.4 on measure
0). Other topics that can be omitted in a first course include the proof of the
fundamental theorem of algebra in Section 1.6, the discussion of criteria for
differentiability in Section 1.9, Section 3.2 on manifolds, and Section 3.8 on
the geometry of curves and surfaces. (In our experience, beginning students
do have trouble with the proof of the fundamental theorem of algebra, while
manifolds do not pose much of a problem.)

(2) The entire book could also be used for a full year's course. This could be
done at different levels of difficulty, depending on the students' sophistication
and the pace of the class. Some students may need to review the material
in Sections 0.3 and 0.5; others may be able to include some of the proofs in
the appendix, such as those of the central limit theorem and the Kantorovitch
theorem.

(3) With a year at one's disposal (and excluding the proofs in the appendix),
one could also cover more than the present material, and a second volume is
planned, covering

applications of differential forms;
abstract vector spaces, inner product spaces, and Fourier series;
electromagnetism;
differential equations;
eigenvalues, eigenvectors, and differential equations.

We favor this third approach; in particular, we feel that the last two topics
above are of central importance. Indeed, we feel that three semesters would
not be too much to devote to linear algebra, multivariate calculus, differential
forms, differential equations, and an introduction to Fourier series and partial
differential equations. This is more or less what the engineering and physics
departments expect students to learn in second year calculus, although we feel
this is unrealistic.

Students who have studied some linear algebra or multivariate
calculus

The book can also be used for students who have some exposure to either
linear algebra or multivariate calculus, but who are not ready for a course in
analysis. We used an earlier version of this text with students who had taken
a course in linear algebra, and feel they gained a great deal from seeing how
linear algebra and multivariate calculus mesh. Such students could be expected
to cover Chapters 1-6, possibly omitting some of the optional material discussed
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We view Chapter 0 primarily
as a resource for students, rather
than as part of the material to be
covered in class. An exception is
Section 0.4, which might well he
covered in a class on analysis.

Mathematical notation is not
always uniform. For example, JAS
can mean the length of a matrix
A (the meaning in this book) or
it can mean the determinant of
A. Different notations for partial
derivatives also exist. This should
not pose a problem for readers
who begin at the beginning and
end at the end, but for those who
are using only selected chapters,
it could be confusing. Notations
used in the book are listed on the
front inside cover, along with an
indication of where they are first
introduced.

xiv Preface

above. For a less fast-paced course, the book could also be covered in an entire
year, possibly including some proofs from the appendix.

Students ready for a course in analysis

If the book is used as a text for an analysis course, then in one semester one
could hope to cover all six chapters and some or most of the proofs in Appendix
A. This could be done at varying levels of difficulty; students might be expected
to follow the proofs, for example, or they might be expected to understand them
well enough to construct similar proofs. Several exercises in Appendix A and
in Section 0.4 are of this nature.

Numbering of theorems, examples, and equations

Theorems, lemmas, propositions, corollaries, and examples share the same num-
bering system. For example, Proposition 2.3.8 is not the eighth proposition of
Section 2.3; it is the eighth numbered item of that section, and the first num-
bered item following Example 2.3.7. We often refer back to theorems, examples,
and so on, and hope this numbering will make them easier to find.

Figures are numbered independently; Figure 3.2.3 is the third figure of Sec-
tion 3.2. All displayed equations are numbered, with the numbers given at
right; Equation 4.2.3 is the third equation of Section 4.2. When an equation
is displayed a second time, it keeps its original number, but the number is in
parentheses.

We use the symbol L to mark the end of an example or remark, and the
symbol 0 to mark the end of a proof.

Exercises

Exercises are given at the end of each chapter, grouped by section. They range
from very easy exercises intended to make the student familiar with vocabulary,
to quite difficult exercises. The hardest exercises are marked with a star (or, in
rare cases, two stars). On occasion, figures and equations are numbered in the
exercises. In this case, they are given the number of the exercise to which they
pertain.

In addition, there are occasional "mini-exercises" incorporated in the text,

with answers given in footnotes. These are straightforward questions contain-

ing no tricks or subtleties, and are intended to let the student test his or her

understanding (or be reassured that he or she has understood). We hope that
even the student who finds them too easy will answer them; working with pen
and paper helps vocabulary and techniques sink in.
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Web page

Errata will be posted on the web page

http://math.cornell.edu/- hubbard/vectorcalculus.

The three programs given in Appendix B will also be available there. We plan
to expand the web page, making the programs available on more platforms, and
adding new programs and examples of their uses.

Readers are encouraged to write the authors at jhh8@cornell.edu to signal
errors, or to suggest new exercises, which will then be shared with other readers
via the web page.
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0

Preliminaries

We recommend not spending
much time on Chapter 0. In par-
ticular, if you are studying multi-
variate calculus for the first time
you should definitely skip certain
parts of Section 0.4 (Definition
0.4.4 and Proposition 0.4.6). How-
ever, Section 0.4 contains a discus-
sion of sequences and series which
you may wish to consult when we
come to Section 1.5 about conver-
gence and limits, if you find you
don't remember the convergence
criteria for sequences and series
from first year calculus.

0.0 INTRODUCTION

This chapter is intended as a resource, providing some background for those
who may need it. In Section 0.1 we share some guidelines that in our expe-
rience make reading mathematics easier, and discuss a few specific issues like
sum notation. Section 0.2 analyzes the rather tricky business of negating math-
ematical statements. (To a mathematician, the statement "All seven-legged
alligators are orange with blue spots" is an obviously true statement, not an
obviously meaningless one.) Section 0.3 reviews set theory notation; Section
0.4 discusses the real numbers; Section 0.5 discusses countable and uncountable
sets and Russell's paradox; and Section 0.6 discusses complex numbers.

0.1 READING MATHEMATICS

The most efficient logical order for a subject is usually different from the
best psychological order in which to learn it. Much mathematical writing
is based too closely on the logical order of deduction in a subject, with too
many definitions without, or before, the examples which motivate them,
and too many answers before, or without, the questions they address.-
William Thurston

Reading mathematics is different from other reading. We think the following
guidelines can make it easier. First, keep in mind that there are two parts to
understanding a theorem: understanding the statement, and understanding the
proof. The first is more important than the second.

What if you don't understand the statement? If there's a symbol in the
formula you don't understand, perhaps a b, look to see whether the next line
continues, "where b is such-and-such." In other words, read the whole sentence
before you decide you can't understand it. In this book we have tried to define
all terms before giving formulas, but we may not have succeeded everywhere.

If you're still having trouble, skip ahead to examples. This may contradict
what you have been told-that mathematics is sequential, and that you must
understand each sentence before going on to the next. In reality, although
mathematical writing is necessarily sequential, mathematical understanding is
not: you (and the experts) never understand perfectly up to some point and

1



2 Chapter 0. Preliminaries

The Greek Alphabet

Greek letters that look like Ro-
man letters are not used as mathe-
matical symbols; for example, A is
capital a, not capital a. The letter
X is pronounced "kye," to rhyme
with "sky"; p, V' and f may rhyme
with either "sky" or "tea."

a A alpha
B beta

-Y r gamma
6 A delta

v N

0 0

E epsilon
Z zeta

H eta

8 theta

I iota

K kappa
A lambda
M mu

nu
xi
omicron

7r II pi
p P rho
o E sigma
r T tau
v T upsilon
'p,'o ID phi
X X chi
0 lY psi
w fi omega

In Equation 0.1.3, the symbol
EL, says that the sum will have
n terms. Since the expression be-
ing summed is a,,kbk,j, each of
those n terms will have the form
ab.

not at all beyond. The "beyond," where understanding is only partial, is an
essential part of the motivation and the conceptual background of the "here and
now." You may often (perhaps usually) find that when you return to something
you left half-understood, it will have become clear in the light of the further
things you have studied, even though the further things are themselves obscure.

Many students are very uncomfortable in this state of partial understanding,
like a beginning rock climber who wants to be in stable equilibrium at all times.
To learn effectively one must be willing to leave the cocoon of equilibrium. So
if you don't understand something perfectly, go on ahead and then circle back.

In particular, an example will often be easier to follow than a general state-
ment; you can then go back and reconstitute the meaning of the statement in
light of the example. Even if you still have trouble with the general statement,
you will be ahead of the game if you understand the examples. We feel so
strongly about this that we have sometimes flouted mathematical tradition and
given examples before the proper definition.

Read with pencil and paper in hand, making up little examples for yourself
as you go on.

Some of the difficulty in reading mathematics is notational. A pianist who
has to stop and think whether a given note on the staff is A or F will not be
able to sight-read a Bach prelude or Schubert sonata. The temptation, when
faced with a long, involved equation, may be to give up. You need to take the
time to identify the "notes."

Learn the names of Greek letters-not just the obvious ones like alpha, beta,
and pi, but the more obscure psi, xi, tau, omega. The authors know a math-
ematician who calls all Greek letters "xi," (t:) except for omega (w), which he
calls "w." This leads to confusion. Learn not just to recognize these letters, but
how to pronounce them. Even if you are not reading mathematics out loud, it
is hard to think about formulas if f, i¢, r, w, W are all "squiggles" to you.

Sum and product notation

Sum notation can be confusing at first; we are accustomed to reading in one

requires what we might call two-dimensional (or even three-dimensional) think-
ing. It may help at first to translate a sum into a linear expression:

dimension, from left to right, but something like

ai,kbk,i
k=1

0.1.1

F _2i = 2° + 21 + 22... 0.1.2

i=o

or

n

E
k=1

0.1.3
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j

4

3

2

1

...{]---- E].......

Two E placed side by side do not denote the product of two sums; one sum
is used to talk about one index, the other about another. The same thing could
be written with one E, with information about both indices underneath. For
example,

3 4

Ey-(i+j)= Y_ (i+j)
i=1 j=2 i from 1 to 3,

j from 2 to 4

_ (21+3) + (t2)=2 j=2

_ ((1+2)+(1+3)+(1+4))
+ ((2 + 2) + (2 + 3) + (2 + 4))

+((3+2)+(3+3)+(3+4));
- this double suns is illustrated in Figure 0.1.1.
i Rules for product notation are analogous to those for sum notation:

FIGURE 0.1.1.
In the double sum of Equation

0.1.4, each sum has three terms, so
the double sum has nine terms.

When Jacobi complained that
Gauss's proofs appeared unmoti-
vated, Gauss is said to have an-
swered, You build the building and
remove the scaffolding. Our sym-
pathy is with Jacobi's reply: he
likened Gauss to the fox who
erases his tracks in the sand with
his tail.

n7
11 at = a1 a2 - an; for example, fl i = n!.
i=1 i=1

Proofs

0.1.4

We said earlier that it is more important to understand a mathematical state-
ment than to understand its proof. We have put some of the harder proofs in
the appendix; these can safely be skipped by a student studying multivariate
calculus for the first time. We urge you, however, to read the proofs in the main
text. By reading many proofs you will learn what a proof is, so that (for one
thing) you will know when you have proved something and when you have not.

In addition, a good proof doesn't just convince you that something is true;
it tells you why it is true. You presumably don't lie awake at night worrying
about the truth of the statements in this or any other math textbook. (This
is known as "proof by eminent authority"; you assume the authors know what
they are talking about.) But reading the proofs will help you understand the
material.

If you get discouraged, keep in mind that the content of this book represents
a cleaned-up version of many false starts. For example, John Hubbard started
by trying to prove Fubini's theorem in the form presented in Equation 4.5.1.
When he failed, he realized (something he had known and forgotten) that the
statement was in fact false. He then went through a stack ofscrap paper before
coming up with a correct proof. Other statements in the book represent the
efforts of some of the world's best mathematicians over many years.
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0.2 How TO NEGATE MATHEMATICAL STATEMENTS

Even professional mathematicians have to be careful not to get confused
when negating a complicated mathematical statement. The rules to follow are:

(1) The opposite of

(For all x, P(x) is true]

is [There exists x for which P(z) is not true].
0.2.1

Above, P stands for "property." Symbolically the same sentence is written:

The opposite of b'x, P(x) is 3x( not P(x). 0.2.2

Instead of using the bar I to mean "such that" we could write the last line
(3x)(not P(x)). Sometimes (not in this book) the symbols ti and -' are used
to mean "not."

(2) The opposite of

[There exists x for which R(x) is true ]

is [For all x, R(z) is not true].

Statements that to the ordi-
nary mortal are false or meaning-
less are thus accepted as true by
mathematicians; if you object, the
mathematician will retort, "find
me a counter-example."

0.2.3

Symbolically the same sentence is written:

The opposite of (3x)(P(x)) is (dx) not P(x). 0.2.4

These rules may seem reasonable and simple. Clearly the opposite of the
(false) statement, "All rational numbers equal 1," is the statement, "There
exists a rational number that does not equal 1."

However, by the same rules, the statement, "All seven-legged alligators are
orange with blue spots" is true, since if it were false, then there would exist a
seven-legged alligator that is not orange with blue spots. The statement, "All
seven-legged alligators are black with white stripes" is equally true.

In addition, mathematical statements are rarely as simple as "All rational
numbers equal 1." Often there are many quantifiers and even the experts have
to watch out. At a lecture attended by one of the authors, it was not clear to
the audience in what order the lecturer was taking the quantifiers; when he was
forced to write down a precise statement, he discovered that he didn't know
what he meant and the lecture fell apart.

Here is an example where the order of quantifiers really counts: in the defi-
nitions of continuity and uniform continuity. A function f is continuous if for
all x, and for all e > 0, there exists d > 0 such that for all y, if Ix - yl < b, then
If(z) - f (y) I < e. That is, f is continuous if

(dx)(Vt>0)(36>0)(dy)(Ix-yl <6 If(z)-f(y)I <e). 0.2.5
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There is nothing new about
the concept of "set" denoted by
{alp(a)}. Euclid spoke of geo-
metric loci, a locus being the set
of points defined by some prop-
erty. (The Latin word locus means
"place"; its plural is loci.)

A function f is uniformly continuous if for all c > 0, there exists 6 > 0 for
all x and all y such that if Ix - yI < 6, then If(x) - f (y)I < e. That is, f is
uniformly continuous if

(b'e > 0)(35 > 0)(Vx)(Vy) (Ix - yl < 6 If(x) - f(y)I < E). 0.2.6

For the continuous function, we can choose different 6 for different x; for the
uniformly continuous function, we start with a and have to find a single 6 that
works for all x.

For example, the function f (x) = x2 is continuous but not uniformly con-
tinuous: as you choose bigger and bigger x, you will need a smaller 6 if you
want the statement Ix - yI < 6 to imply If(x) - f(y) I < e, because the function
keeps climbing more and more steeply. But sin x is uniformly continuous; you
can find one 6 that works for all x and all y.

0.3 SET THEORY

At the level at which we are working, set theory is a language, with a vocab-
ulary consisting of seven words. In the late 1960's and early 1970's, under the
sway of the "New Math," they were a standard part of the elementary school
curriculum, and set theory was taught as a subject in its own right. This was a
resounding failure, possibly because many teachers, understandably not know-
ing why set theory was being taught at all, made mountains out of molehills. As
a result the schools (elementary, middle, high) have often gone to the opposite
extreme, and some have dropped the subject altogether.

The seven vocabulary words are

E "is an element of"
{a Ip(a)} "the set of a such that p(a) is true"
C "is a subset of" (or equals, when A c A)
fl "intersect": A n B is the set of elements of both A and B.
U "union": A U B is the set of elements of either A or B

or both.
x "cross": A x B is the set of pairs (a, b) with a E A and

bEB.
"complement": A - B is the set of elements in A that

are not in B.

One set has a standard name: the empty set Q1, which has no elements.
There are also sets of numbers that have standard names; they are written in
black-board bold, a font we use only for these sets. Throughout this book and
most other mathematics books (with the exception of 11, as noted in the margin
below), they have exactly the same meaning:



6 Chapter 0. Preliminaries

N is for "natural," Z is for
"Zahl," the German for number,
Q is for "quotient," 1llB is for "real,"
and C is for "complex." Mathe-
matical notation is not quite stan-
dard: some authors do not include
0inH.

When writing with chalk on a
black board, it's hard to distin-
guish between normal letters and
bold letters. Black-board bold
font is characterized by double
lines, as in N and R.

Although it may seem a bit
pedantic, you should notice that

U In and {l,, n E 7L}
nEZ

are not the same thing: the first
is a subset of the plane; an ele-
ment of it is a point on one of
the lines. The second is a set of
lines, not a set of points. This
is similar to one of the molehills
which became mountains in the
new-math days: telling the differ-
ence between 0 and {,}, the set
whose only element is the empty
set.

N "the natural numbers" {0, 1, 2.... }
Z "the integers," i.e., signed whole numbers {... , -1, 0,1, ... }
Q "the rational numbers" p/q, with p, q E Z, q 96 0
R "the real numbers," which we will think of as infinite decimals
C "the complex numbers" {a + ibl a, b E R}

Often we use slight variants of the notation above: {3, 5, 7} is the set consist-
ing of 3, 5, and 7, and more generally, the set consisting of some list of elements
is denoted by that list, enclosed in curly brackets, as in

In I n E N and n is even } _ {0, 2,4.... }, 0.3.1

where again the vertical line I means "such that."
The symbols are sometimes used backwards; for example, A D B means

B C A, as you probably guessed. Expressions are sometimes condensed:

{x E R I x is a square } means {x I x E R and x is a square }, 0.3.2

i.e., the set of non-negative real numbers.
A slightly more elaborate variation is indexed unions and intersections: if

Sa is a collection of sets indexed by a E A, then

n Sa denotes the intersection of all the Sa, and
aeA

U Sa denotes their union.
aEA

For instance, if In C R2 is the line of equation y = n, then Uney In is the set
of points in the plane whose y-coordinate is an integer.

We will use exponents to denote multiple products of sets; A x A x . x A
with n terms is denoted A": the set of n-tuples of elements of A.

If this is all there is to set theory, what is the fuss about? For one thing,
historically, mathematicians apparently did not think in terms of sets, and
the introduction of set theory was part of a revolution at the end of the 19th
century that included topology and measure theory. We explore another reason
in Section 0.5, concerning infinite sets and Russell's paradox.

0.4 REAL NUMBERS

Showing that all such construc- All of calculus, and to a lesser extent linear algebra, is about real numbers.
tions lead to the same numbers is In this introduction, we will present real numbers, and establish some of their
a fastidious exercise, which we will most useful properties. Our approach privileges the writing of numbers in base
not pursue. 10; as such it is a bit unnatural, but we hope you will like our real numbers

being exactly the numbers you are used to. Also, addition and multiplication
will be defined in terms of finite decimals.
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There are more elegant
approaches to defining real num-
bers, (Dedekind cuts, for instance
(see, for example, Michael Spivak,
Calculus, second edition, 1980, pp.
554-572), or Cauchy sequences of
rational numbers; one could also
mirror the present approach, writ-
ing numbers in any base, for in-
stance 2. Since this section is par-
tially motivated by the treatment
of floating-point numbers on com-
puters, base 2 would seem very
natural.

The least upper bound prop-
erty of the reals is often taken as
an axiom; indeed, it characterizes
the real numbers, and it sits at
the foundation of every theorem in
calculus. However, at least with
the description above of the reals,
it is a theorem, not an axiom.

The least upper bound sup X
is sometimes denoted 1.u.b.X; the
notation max X is also sometimes
used, but suggests to some people
that max X E X.

Numbers and their ordering

By definition, the set of real numbers is the set of infinite decimals: expressions
like 2.95765392045756..., preceded by a plus or a minus sign (in practice the
plus sign is usually omitted). The number that you usually think of as 3 is the
infinite decimal 3.0000... , ending in all zeroes.

The following identification is absolutely vital: a number ending in all 9's is
equal to the "rounded up" number ending in all 0's:

0.350000.... 0.4.1

Also, +.0000 . _ -.0000.... Other than these exceptions, there is only one
way of writing a real number.

Numbers that start with a + sign, except +0.000... , are positive; those
that start with a - sign, except -0.00.... are negative. If x is a real number,
then -x has the same string of digits, but with the opposite sign in front. For
k > 0, we will denote by [x]k the truncated finite decimal consisting of all the
digits of x before the decimal, and exactly k digits after the decimal. To avoid
ambiguity, if x is a real number with two decimal expressions, Ink will be the
finite decimal built from the infinite decimal ending in 0's; for the number in
Equation 0.4.1, [x]3 = 0.350.

Given any two different numbers x and y, one is always bigger than the other.
This is defined as follows: if x is positive and y is non-positive, then x > Y. If
both are positive, then in their decimal expansions there is a first digit in which
they differ; whichever has the larger digit in that position is larger. If both are
negative, then x > y if -y > -x.

The least upper bound property

Definition 0.4.1 (Upper bound; least upper bound). A number a is
an upper bound for a subset X C P if for every x E X we have x< a. A
least upper bound is an upper bound b such that for any other upper bound
a, we have b < a. The least upper bound is denoted sup.

Theorem 0.4.2. Every non-empty subset X C Ilt that has an upper bound
has a least upper bound sup X.

Proof. We will construct successive decimals of sup X. Let us suppose that
x E X is an element (which we know exists, since X 34 (b) and that a is an
upper bound. We will assume that x > 0 (the case x < 0 is slightly different).
If x = a, we are done: the least upper bound is a.
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Recall that ]a]j denotes the fi-
nite decimal consisting of all the
digits of a before the decimal, and
j digits after the decimal.

We use the symbol to mark
the end of a proof, and the symbol
A to denote the end of an example
or a remark.

Because you learned to add,
subtract, divide, and multiply in
elementary school, the algorithms
used may seem obvious. But un-
derstanding how computers sim-
ulate real numbers is not nearly
as routine as you might imagine.
A real number involves an infinite
amount of information, and com-
puters cannot handle such things:
they compute with finite decimals.
This inevitably involves rounding
off, and writing arithmetic subrou-
tines that minimize round-off er-
rors is a whole art in itself. In
particular, computer addition and
multiplication are not commuta-
tive or associative. Anyone who
really wants to understand numer-
ical problems has to take a serious
interest in "computer arithmetic."

If x F6 a. there is a first j such that the jth digit of x is smaller than the jth
digit of a. Consider all the numbers in [x, a] that can be written using only j
digits after the decimal, then all zeroes. This is a finite non-empty set; in fact
it has at most 10 elements, and ]a] j is one of them. Let bj be the largest which
is not an upper bound. Now consider the set of numbers in [bj, a] that have
only j + 1 digits after the decimal point, then all zeroes. Again this is a finite
non-empty set, so you can choose the largest which is not an upper bound; call
it bj+t. It should be clear that bj+t is obtained by adding one digit to bj. Keep
going this w a y , defining numbers bj+2, 8 3 + 3 . . . . . each time adding one digit to
the previous number. We can let b be the number whose kth decimal digit is
the same as that of bk; we claim that b = sup X.

Indeed, if there exists y E X with y > b, then there is a first digit k of y
which differs from the kth digit of b, and then bk was not the largest number
with k digits which is not an upper bound, since using the kth digit of y would
give a bigger one. So 6 is an upper bound.

Now suppose that b' < b is also an upper bound. Again there is a first digit
k of b which is different from that of Y. This contradicts the fact that bk was
not an upper bound, since then bk > b'.

Arithmetic of real numbers

The next task is to make arithmetic work for the reals: defining addition, mul-
tiplication, subtraction, and division, and to show that the usual rules of arith-
metic hold. This is harder than one might think: addition and multiplication
always start at the right, and for reals there is no right.

The underlying idea is to show that if you take two reals, truncate (cut) them
further and further to the right and add them (or multiply them, or subtract
them, etc.) and look only at the digits to the left of any fixed position, the
digits we see will not be affected by where the truncation takes place, once it is
well beyond where we are looking. The problem with this is that it isn't quite
true.

Example 0.4.3 (Addition). Consider adding the following two numbers:

.222222...222...

.777777...778...

The sum of the truncated numbers will be .9999...9 if we truncate before the
position of the 8, and 1.0000...0 if we truncate after the 8. So there cannot
be any rule which says: the 100th digit will stay the same if you truncate after
the Nth digit, however large N is. The carry can come from arbitrarily far to
the right.

If you insist on defining everything in terms of digits, it can be done but
is quite involved: even showing that addition is associative involves at least
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iL' stands for "finite decimal."

We use A for addition, At for
multiplication, and S for subtrac-
tion; the function Assoc is needed
to prove associativity of addition.

Since we don't yet have a no-
tion of subtraction in r.. we can't
write {x-y) < f, much less E(r, -
y,)' < e2, which involves addition
and multiplication besides. Our
definition of k-close uses only sub-
traction of finite decimals.

The notion of k-close is the cor-
rect way of saying that two num-
hers agree to k digits after the dec-
imal point. It takes into account.
the convention by which a num-
her ending in all 9's is equal to the
rounded up number ending in all
0's: the numbers .9998 and 1.0001
are 3-close.

The functions A and AI sat-
isfy the conditions of Proposition
0.4.6; thus they apply to the real
numbers, while A and At without
tildes apply to finite decimals.

six different cases, and although none is hard, keeping straight what you are
doing is quite delicate. Exercise 0.4.1 should give you enough of a taste of
this approach. Proposition 0.4.6 allows a general treatment; the development
is quite abst act, and you should definitely not think you need to understand
this in order to proceed.

Let us denote by liu the set of finite decimals.

Definition 0.4.4 (Finite decimal continuity). A mapping f : ®" -s D
will be called finite decimal continuous (1D--continuous) if for all integers N
and k, there exists I such that if (x1, ... , xn) and (yt, ... , yn) are two elements
of D" with all Ix,I, IyiI < N, and if 1xi - yip < 10-1 for all i = 1,..., n, then

If(xt,...,xn) - ,f(yt,...,yn)I < 10-k. 0.4.2

Exercise 0.4.3 asks you to show that the functions A(x,y) = x+y, M(x, y) =
xy, S(x, y) = x - y, Assoc(x,y) = (x + y) + z are D-continuous, and that 1/x
is not.

To see why Definition 0.4.4 is the right definition, we need to define what it
means for two points x, y E 1k" to be close.

Definition 0.4.5 (k-close). Two points x, y E ll8" are k-close if for each
i = 0,..., n, then 11-ilk - (11i)k! < 10-k.

Notice that if two numbers are k-close for all k, then they are equal (see
Exercise 0.4.2).

If f ::3,-" is T'-continuous, then define f : 118" R by the formula

f (x) = sap inf f ([xt)t, ... , Ixnlt) 0.4.3

Proposition 0.4.8. The function f : 1k" -+ 1k is the unique function that
coincides with f on IID" and which satisfies that the continuity condition for
all k E H, for all N E N, there exists l E N such that when x, y Elk" are
1-close and all coordinates xi of x satisfy IxiI < N, then f (x) and f (y) are
k-close.

The proof of Proposition 0.4.6 is the object of Exercise 0.4.4.
With this proposition, setting up arithmetic for the reals is plain sailing.
Consider the Li'continuous functions A(x, y) = x + y and M(x, y) = xy; then

we define addition of reals by setting

x + y = A(x. y) and xy = M(x, y). 0.4.4

It isn't harder to show that the basic laws of arithmetic hold:
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It is one of the basic irritants
of elementary school math that
division is not defined in the world
of finite decimals.

All of calculus is based on this
definition, and the closely related
definition of limits of functions.

If a series converges, then the
same list of numbers viewed as a
sequence must converge to 0. The
converse is not true. For example,
the harmonic series

+2+3+...
does not converge, although the

terms tend to 0.

x+y=y+x
(x+y)+z=x+(y+z)
x+(-x)=0
xy = yx
(xy)z = x(yz)

x(y + z) = xy + xz

Addition is commutative.
Addition is associative.
Existence of additive inverse.
Multiplication is commutative.
Multiplication is associative.
Multiplication is distributive over addition.

These are all proved the same way: let us prove the last. Consider the

function Il3 -+ D given by

F(x, y, z) = M(x, A(y, z)) - A(M(x, y), M(x, z)). 0.4.5

We leave it to you to check that F is iD-continuous, and that

F(x, y, z) = M (x, A(y, Z)) - A(M(x, Y), M(x, z)). 0.4.6

But F is identically 0 on D3, and the identically 0 function on pt3 is a function

which coincides with 0 on D3 and satisfies the continuity condition of Proposi-
tion 0.4.6, so F vanishes identically by the uniqueness part of Proposition 0.4.6.
That is what was to be proved.

This sets up almost all of arithmetic; the missing piece is division. Exercise
0.4.5 asks you to define division in the reals.

Sequences and series

A sequence is an infinite list (of numbers or vectors or matrices ... ).

Definition 0.4.7 (Convergent sequence). A sequence an of real numbers
is said to converge to the limit a if for all e > 0, there exists N such that for
all n>N,wehave Ia-anI<e.

Many important sequences appear as partial sums of series. A series is a
sequence where the terms are to be added. If al, a2.... is a series of numbers,
then the associated sequence of partial sums is the sequence 81, s2, ... , where

N

aN = > an. 0.4.7

n:1

For example, if al = 1, a2 = 2, as = 3, and so on, then 34 = I + 2 + 3 + 4.
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Example of geometric series:

2.020202 =

2 + 2(.01) + 2(.01)2 + ...

2

1 (.01)

200

T91

It is hard to overstate the im-
portance of this problem: prov-
ing that a limit exists without
knowing ahead of time what it
is. It was a watershed in the his-
tory of mathematics, and remains
a critical dividing point between
first year calculus and multivari-
ate calculus, and more generally,
between elementary mathematics
and advanced mathematics.

Definition 0.4.8 (Convergent series). If the sequence of partial sums of

a series has a limit S, we say that the series converges, and its limit is

= S.E a.
n=1

Example 0.4.9 (Geometric series). If Sri < 1, then

0.4.8

arn 0.4.9
1-rn=0

Indeed, the following subtraction shows that Sn(1 - r) = a - arn+1:

Sn =a+ ar + are +ar3 + + arn

Snr = ar + aT2 + ar3 + . + arn + arn+1 .4.10

Sn(l - r) = a - arn+1

But limn,, arn+1 = 0 when Sri < 1, so we can forget about the -arn+l: as
n-.oo,wehave S.-.a/(1- r). .

Proving convergence

The weakness of the definition of a convergent sequence is that it involves the
limit value. At first, it is hard to see how you will ever be able to prove that a
sequence has a limit if you don't know the limit ahead of time.

The first result along these lines is the following theorem.

Theorem 0.4.10. A non-decreasing sequence an converges if and only if
it is bounded.

Proof. Since the sequence an is bounded, it has a least upper bound A. We
claim that A is the limit. This means that for any e > 0, there exists N such
that if n > N, then Ian - Al < e. Choose e > 0; if A - an > e for all n, then
A - e is an upper bound for the sequence, contradicting the definition of A. So
there is a first N with A - as,, < e, and it will do, since when n > N, we must
haveA-an<A-aN<e.

Theorem 0.4.10 has the following consequence:

Theorem 0.4.11. If an is a series such that the series of absolute values

IanI converges, then so does the series
n=1

an.
n=1
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One unsuccessful 19th century
definition of continuity stated that
a function f is continuous if it sat-
isfies the intermediate value the-
orem: if, for all a < b, f takes
on all values between f(a) and
f (b) at some c E (a, b]. You are
asked in Exercise 0.4.7 to show
that this does not coincide with
the usual definition (and presum-
ably not with anyone's intuition of
what continuity should mean).

Proof. The series F' 1 an + Ianl is a series of non-negative numbers, and
so the partial sums b,,, = En=1(an + Ian]) are non-decreasing. They are also
bounded:

b,n = Y(an + Ian]) < E 2Ia,I = 2L Ianl <_ 2 L ]anl. 0.4.11
n=1 n=1 n=1 n-1

So (by Theorem 0.4.10) the b- form a convergent sequence, and finally

an = (an + Ianl) + (- Ial) 0.4.12
n=1 n=1 n=1

represents the series E,°°_1 an as the sum of two numbers, each one the sum of
a convergent series.

The intermediate value theorem

The intermediate value theorem is a result which appears to be obviously true,
and which is often useful. Moreover, it follows easily from Theorem 0.4.2 and
the definition of continuity.

Theorem 0.4.12 (Intermediate value theorem). If f : [a, b] -. it is
a continuous function such that f (a) < 0 and f (b) > 0, then there exists
c e [a, b] such that f (c) = 0.

Proof. Let X be the set of x E [a, b] such that f (x) < 0. Note that X is
non-empty (a is in it) and it has an upper bound, namely b, so that it has a
least upper bound, which we call c. We claim f (c) = 0.

Since f is continuous, for any f > 0, there exists 6 > 0 such that when
Ix - cl < 6, then If(x) - f (c) I < E. Therefore, if f (c) > 0, we can set e = f (c),
and there exists 6 > 0 such that if Ix - c] < 6, then If (x) - f (c) I < f (c). In
particular, we see that if x > c - 6/2, f (x) > 0, so c - 6/2 is also an upper
bound for X, which is a contradiction.

If f(c) < 0, a similar argument shows that there exists 6 > 0 such that
f (c + 6/2) < 0, contradicting the assumption that c is an upper bound for X.
The only choice left is f (c) = 0.

0.5 INFINITE SETS AND RUSSELL'S PARADOX

One reason set theory is accorded so much importance is that Georg Cantor
(1845-1918) discovered that two infinite sets need not have the same "number"
of elements; there isn't just one infinity. You might think this is just obvious,
for instance because there are more whole numbers than even whole numbers.
But with the definition Cantor gave, two sets A and B have the same number of



This argument simply flabber-
gasted the mathematical world;
after thousands of years of philo-
sophical speculation about the in-
finite, Cantor found a fundamen-
tal notion that had been com-
pletely overlooked.

It would seem likely that lIF and
1 have different infinities of ele-
ments, but that is not the case (see
Exercise 0.4.5).

0.5 Infinite Sets and Russell's Paradox 13

elements (the same cardinality) if you can set up a one-to-one correspondence

between them. For instance
0 1 2 3 4 5 6

0 2 4 6 8 10 12
0.5.1

establishes a one to one correspondence between the natural numbers and the
even natural numbers. More generally, any set whose elements you can list has
the same cardinality as N. But Cantor discovered that 1i does not have the
same cardinality as N: it has a bigger infinity of elements. Indeed, imagine
making any infinite list of real numbers, say between 0 and 1, so that written
as decimals, your list might look like

.154362786453429823763490652367347548757...

.987354621943756598673562940657349327658...

.229573521903564355423035465523390080742...

.104752018746267653209365723689076565787...

.026328560082356835654432879897652377327...

0.5.2

Now consider the decimal formed by the elements of the diagonal digits (in bold
above).18972... , and modify it (almost any way you want) so that every digit
is changed, for instance according to the rule "change 7's to 5's and change
anything that is not a 7 to a 7": in this case, your number becomes .77757... .
Clearly this last number does not appear in your list: it is not the nth element
of the list, because it doesn't have the same nth decimal.

Sets that can be put in one-to-one correspondence with the integers are called
countable, other infinite sets are called uncountable; the set R of real numbers
is uncountable.

All sorts of questions naturally arise from this proof: are there other infinities
besides those of N and R? (There are: Cantor showed that there are infinitely
many of them.) Are there infinite subsets of l that cannot be put into one to
one correspondence with either R or 7L? This statement is called the continuum
hypothesis, and has been shown to be unsolvable: it is consistent with the other
axioms of set theory to assume it is true (Godel, 1938) or false (Cohen, 1965).
This means that if there is a contradiction in set theory assuming the continuum
hypothesis, then there is a contradiction without assuming it, and if there is
a contradiction in set theory assuming that the continuum hypothesis is false,
then again there is a contradiction without assuming it is false.

Russell's paradox

Soon after Cantor published his work on set theory, Bertrand Russell (1872-
1970) wrote him a letter containing the following argument:
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This paradox has a long his-
tory, in various guises: the Greeks
knew it as the paradox of the bar-
ber, who lived on the island of Mi-
los, and decided to shave all the
men of the island who did not
shave themselves. Does the bar-
ber shave himself?

Complex numbers (long consid-
ered "impossible" numbers) were
first used in 16th century Italy,
as a crutch that made it possi-
ble to find real roots of real cubic
polynomials. But they turned out
to have immense significance in
many fields of mathematics, lead-
ing John Stillwell to write in his
Mathematics and Its History that
"this resolution of the paradox of

was so powerful, unexpected
and beautiful that only the word
'miracle' seems adequate to de-
scribe it."

Consider the set X of all sets that do not contain themselves. If X E X,
then X does contain itself, so X V X. But if X 0 X, then X is a set which
does not contain itself, so X E X.

Russell's paradox was (and remains) extremely perplexing: Cantor's reaction
was to answer that Russell had completely destroyed his work, showing that
there is an inconsistency in set theory right at the foundation of the subject.
History has been kinder, but Russell's paradox has never been quite "resolved."
The "solution," such as it is, is to say that the naive idea that any property
defines a set is untenable, and that sets must be built up, allowing you to take
subsets, unions, products, ... of sets already defined; moreover, to make the
theory interesting, you must assume the existence of an infinite set. Set theory
(still an active subject of research) consists of describing exactly the allowed
construction procedures, and seeing what consequences can be derived.

0.6 COMPLEX NUMBERS

Complex numbers are written a + bi, where a and b are real numbers, and
addition and multiplication are defined in Equations 0.6.1 and 0.6.2. It follows
from those rules that i = V1___1.

The complex number a + ib is often plotted as the point (b) E R2. The
real number a is called the real part of a + ib, denoted Re (a + ib), and the real
number b is called the imaginary part, denoted Im (a + ib). The reals R can be
considered as a subset of the complex numbers C, by identifying a E iR with
a + iO E C; such complex numbers are called "real," as you might imagine.
Real numbers are systematically identified with the real complex numbers, and
a + i0 is usually denoted simply a.

Numbers of the form 0 + ib are called purely imaginary. What complex
numbers, if any, are both real and purely imaginary?' If we plot a + ib as the
point (b) E W, what do the purely real numbers correspond to? The purely
imaginary numbers?2

Arithmetic in C

Complex numbers are added in the obvious way:

(al + ibi) + (a2 + ib2) = (a, + a2) + i(bt + b2). 0.6.1

Thus the identification with R2 preserves the operation of addition.

'The only complex number which is both real and purely imaginary is 0 = 0 + Oi.
2The purely real numbers are all found on the z-axis, the purely imaginary numbers

on the y-axis.



Equation 0.6.2 is not the only
definition of multiplication one
can imagine. For instance, we
could define (a, +ib,) «(a2+ib2) =
(a,a2)+i(b,b2) But in that case,
there would be lots of elements
by which one could not divide,
since the product of any purely
real number and any purely imag-
inary number would be 0:

(a, + t0) (0 + ib2) = 0.

If the product of any two non-zero
numbers a and j3 is 0: a$ = 0,
then division by either is impossi-
ble; if we try to divide by a, we
arrive at the contradiction 0 = 0:

,(i=Qa=Qa= 0=0.
a a a

These four properties, concern-
ing addition, don't depend on the
special nature of complex num-
bers; we can similarly define addi-
tion for n-tuples of real numbers,
and these rules will still be true.

The multiplication in these five
properties is of course the special
multiplication of complex num-
bers, defined in Equation 0.6.2.
Multiplication can only be defined
for pairs of real numbers. If we
were to define a new kind of num-
ber as the 3-tuple (a,b,c) there
would be no way to multiply two
such 3-tuples that satisfies these
five requirements.

There is a way to define mul-
tiplication for 4-tuples that satis-
fies all but commutativity, called
Hamilton's quaternions.
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What makes C interesting is that complex numbers can also be multiplied:

(at + ib1)(a2 + ib2) = (aia2 - b1b2) + i(aib2 + a2b1). 0.6.2

This formula consists of multiplying al +ib1 and a2+ib2 (treating i like the
variable x of a polynomial) to find

(al + ibl)(a2 + ib2) = a1a2 + i(aib2 + a2b1) + i2(blb2) 0.6.3

and then setting i2 = -1.

Example 0.6.1 (Multiplying complex numbers).

(a) (2 + i)(1 - 3i) = (2 + 3) + i(1 - 6) = 5 - 5i (b) (1 + i)2 = 2i. L 0.6.4

Addition and multiplication of reals viewed as complex numbers coincides
with ordinary addition and multiplication:

(a + iO) + (b+ iO) = (a + b) + iO (a + iO)(b + i0) = (ab) + iO. 0.6.5

Exercise 0.6.1 asks you to check the following nine rules, for Z1, Z2 E C:

(1) (zl+z2)+z3 = z1+(z2+z3) Addition is associative.
(2) z1 + z2 = z2 + ZI Addition is commutative.
(3) z + 0 = z 0 (i.e., the complex number 0 + Oi)

is an additive identity.
(4) (a + ib) + (-a - ib) = 0 (-a - ib) is the additive inverse

of a+ ib.

(5) (z1z2)Z3 = Zi(z2Z3) Multiplication is associative.

(6) zlz2 = z2z1 Multiplication is commutati
(7) lz = z 1 (i.e., the complex number

is a multiplicative identi
(8) (a + ib) - ice) = I If z 0, then z has a multip

inverse.

(9) Zl(z2 + Z3) = zlz2 + z1z3 Multiplication is distributive

addition.

1 + Oi)
ty.
licative

over

The complex conjugate

Definition 0.6.2 (Complex conjugate). The complex conjugate of the
complex number z = a + ib is the number z = a - ib.

Complex conjugation preserves all of arithmetic:

z+w=z+w and zw=iw. 0.6.6

ve.
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FIGURE 0.6.1.
When multiplying two complex

numbers, the absolute values are
multiplied and the arguments (po-
lar angles) are added.

The real numbers are the complex numbers z which are equal to their complex
conjugates: z = z, and the purely imaginary complex numbers are those which
are the opposites of their complex conjugates: z = -z.

There is a very useful way of writing the length of a complex number in
terms of complex conjugates: If z = a + ib, then zz = a2 + b2. The number

IzJ= a2+62=v 0.6.7

is called the absolute value (or the modulus) of z. Clearly, Ja+ibl is the distance

from the origin to (b).

Complex numbers in polar coordinates

Let z = a+ib 96 0 be a complex number. Then the point (b) can be represented

in polar coordinates as (r cos 9) , whereTsln9

r= a2+b2=JzJ, 0.6.8

and 0 is an angle such that

so that

cos0= a and sing= b

r r 0.6.9

z = r(cos 0 + isin 0). 0.6.10

The polar angle 9, called the argument of z, is determined by Equation 0.6.9
up to addition of a multiple of 21r.

The marvelous thing about this polar representation is that it gives a geo-
metric representation of multiplication, as shown in Figure 0.6.1.

Proposition 0.6.3 (Geometrical representation of multiplication of
complex numbers). The modulus of the product zlz2 is the product of
the moduli IziI Jz2I.

The polar angle of the product is the sum of the polar angles 01, 02:

(rl(cos9l+isin81))(r2(cos02+isin92))

Proof. Multiply out, and apply the addition rules of trigonometry:

cos(01 + 02) = cos 01 cos 92 - sin 01 sin 92

sin(91+92)=sin91cos92+cos91sin92. 0.6.11

The following formula, known as de Moivre's formula, follows immediately:



U2
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U4

FIGURE 0.6.2.

The fifth roots of z form a reg-
ular pentagon, with one vertex at
polar angle 9/5, and the others ro-
tated from that one by multiples of
21r /5.

Immense psychological difficul-
ties had to he overcome before
complex numbers were accepted
as an integral part of mathemat-
ics; when Gauss came up with
his proof of the fundamental the-
orem of algebra, complex num-
bers were still not sufficiently re-
spectable that he could use them
in his statement of the theorem
(although the proof depends on
them).
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Corollary 0.6.4 (De Moivre's formula). If z = r(cos 6 + i sin 0), then

z" = r"(cosn6+isill n0). 0.6.12

De Moivre's formula itself has a very important consequence, showing that in
the process of adding a square root of -1 to the real numbers, we have actually
added all the roots of complex numbers one might hope for.

Proposition 0.6.5. Every complex number z = r(cos 9 + i sin 0) with r 94 0
has n distinct complex nth roots, which are the numbers

Icos9+2kx+isin9+2k7r\ k=0....,n-1. 0.6.13.
\l n n J

Note that rt/" stands for the positive real nth root of the positive number
r. Figure 0.6.2 illustrates Proposition 0.6.5 for n = 5.

Proof. All that needs to be checked is that

(1) (rt/")" = r, which is true by definition;

0 +2k7r 0 +2k7r
cosn =costl and sinn =sing, 0.6.14

(2)

n n
which is true since nB}2kx = 0+2k7r. and sin and cos are periodic with
period 27r; and

The numbers in Equation 0.6.13 are distinct. which is true since the
polar angles do not differ by a multiple of 27r. 0

(3)

A great deal more is true: all polynomial equations with complex coefficients
have all the roots one might hope for. This is the content of the fundamen-
tal theorem of algebra, Theorem 1.6.10, proved by d'Alembert in 1746 and by
Gauss around 1799. This milestone of mathematics followed by some 200 years
the first introduction of complex numbers, about 1550, by several Italian math-
ematicians who were trying to solve cubic equations. Their work represented
the rebirth of mathematics in Europe after a long sleep, of over 15 centuries.

Historical background: solving the cubic equation

We will show that a cubic equation can he solved using formulas analogous to
the formula

-b ± vb2 - 4ac
2a

for the quadratic equation ax2 + bx + e = 0.

0.6.15
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Let us start with two examples; the explanation of the tricks will follow.

Example 0.6.6 (Solving a cubic equation). Let its solve the equation
x3 + x + 1 = 0. First substitute x = u - 1/3u, to get

/ \ / _ 1
-70- +u- I +1=0. 0.6.16lu

3u
I +lu

3u )

0.6.17

This is a quadratic equation for u3, which can be solved by formula 0.6.15, to
yield

After simplification and multiplication by u3 this becomes

u6+u3-27=0.

u3=2 \-1t 21I 0.0358...,-1.0358.... 0.6.18

Both of these numbers have real cube roots: approximately ul 0.3295 and

u2 -- -1.0118.
This allows its to find x = u - 1/3u:

1 1X = ril -
3u1 = u2 - 3u2 .::

-0.6823. A 0.6.19

Here we see something bizarre:
in Example 0.6.6, the polynomial
has only one real root and we can
find it using only real numbers,
but in Example 0.6.7 there are
three real roots, and we can't find
any of them using only real num-
bers. We will see below that it is
always true that when Cardano's
formula is used, then if a real poly-
nomial has one real root, we can
always find it using only real num-
bers, but if it has three real roots,
we never can find any of them us-
ing real numbers.

Example 0.6.7. Let us solve the equation x3 - 3x + 1 = 0. As we will explain
below, the right substitution to make in this case is x = It + 1/u, which leads
to

3// \1u+1 -3(u+ +1=0. 0.6.20
\\\\\\ u u

After multiplying out, canceling and multiplying by u3, this gives the quadratic
equation

ue+u3+1=0 with solutions vt,2=
-1

2x/=cos23 ±i sin T. 0.6.21

The cube roots of v1 (with positive imaginary part) are

2a 21r 8ir Sir 14a 141rcos-- + i sin 9 , cos
9

+ i sin T, cos 9 + i sin 9 . 0.6.22

In all three cases, we have 1/u = U, so that u + 1/u = 2Reu, leading to the
three roots

2n
xl = 2cos

9
- 1.532088, x2 = 2cos 9 -1.879385,

147r
x3 = 2cos 9 - 0.347296. A

0.6.23
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The substitutions x = u - 1/3u
in Example 0.6.6 and x = u +
1/u in Example 0.6.7 were special
cases.

Derivation of Cardano's formulas

If we start with the equation x3 - ax-' + bx + c = 0, we can eliminate the term
in x2 by setting x = y - a/3: the equation becomes

2 3

y3+py+q=0, wherep=b- 3 andq=c - --+ 27- 0.6.24

Eliminating the term in x2
means changing the roots so that
their sum is 0: If the roots of a cu-
bic polynomial are ai,a2, and a3,
then we can write the polynomial
as

p = (x - ai)(x - a2)(x - a3)

= x3 - (at + a2 + a3)x2

+ (aia2 + aia3 + a2a3)x

- aia2a3.

Thus eliminating the term in x2
means that ai + a2 + a3 = 0. We
will use this to prove Proposition
0.6.9.

Now set y = u - L; the equation y3 + py + q = 0 then becomes
3

,a6 + qu3 - 27 = 0, 0.6.25

which is a quadratic equation for u3.
Let v1 and v2 be the two solutions of the quadratic equation v2 + qv - 27,

and let 8i,1, ui_2, u;,3 be the three cubic roots of vi for i = 1, 2. We now have
apparently six roots for the equation x3 + px + q = 0: the numbers

yi,j = ui,j - P
, i = 1, 2; j = 1, 2, 3. 0.6.26

3ui,j

Exercise 0.6.2 asks you to show that -p/(3u,,j) is a cubic root of v2, and
that we can renumber the cube roots of v2 so that -p/(3u1,j) = u2,j. If that is
done, we find that y',j = y2,j for j = 1, 2, 3; this explains why the apparently
six roots are really only three.

The discriminant of the cubic

Definition 0.6.8 (Discriminant of cubic equation). The number A =
27q2 + 4p3 is called the discriminant of the cubic equation x3 + px + q.

Proposition 0.6.9. The discriminant A vanishes exactly when x3+px+q = 0
has a double root.

Proof. If there is a double root, then the roots are necessarily {a, a, -2a} for
some number a, since the sum of the roots is 0. Multiply out

(x - a)2(x + 2a) = x3 - 3a2x + 2a3, sop = -3a2 and q = 2a3,

and indeed 4p3 + 27q 2 = -4.27a6 + 4. 27a6 = 0.
Now we need to show that if the discriminant is 0, the polynomial has a

double root. Suppose A = 0, and call a the square root of -p/3 such that
2a3 = q; such a square root exists since 4a6 = 4(-p/3)3 = -4p3/27 = q2. Now
multiply out

(x - a)2(x + 2a) = x3 + x(-4a2 + a2) +2a 3 = x3 + px + q,

and we see that a is a double root of our cubic polynomial.
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Cardano's formula for real polynomials

Suppose p,q are real. Figure 0.6.3 should explain why equations with double

roots are the boundary between equations with one real root and equations

with three real roots.

Proposition 0.8.10 (Number of real roots of a polynomial). The
real cubic polynomial x3 + px + q has three real roots if the dfscriminant
27q2 + 4ps < 0, and one real root if 27q2 + 4ps > 0.

Proof. If the polynomial has three real roots, then it has a positive maximum

at - -p/3, and a negative minimum at -p/3. In particular, p must be
negative. Thus we must have

FIGURE 0.6.3.
The graphs of three cubic poly-

nomials. The polynomial at the
top has three roots. As it is varied,
the two roots to the left coalesce to
give a double root, as shown by the
middle figure. If the polynomial
is varied a bit further, the double
root vanishes (actually becoming a
pair of complex conjugate roots).

After a bit of computation, this becomes the result we want:

3

q2+ 27 <0.

q) < 0. 0.6.27

0.6.28

Thus indeed, if a real cubic polynomial has three real roots, and you want to
find them by Cardano's formula, you must use complex numbers, even though
both the problem and the result involve only reals. Faced with this dilemma,
the Italians of the 16th century, and their successors until about 1800, held
their noses and computed with complex numbers. The name "imaginary" they
used for such numbers expresses what they thought of them.

Several cubits are proposed in the exercises, as well as an alternative to
Cardano's formula which applies to cubits with three real roots (Exercise 0.6.6),
and a sketch of how to deal with quartic equations (Exercise 0.6.7) .

0.7 EXERCISES

Exercises for Section 0.4: 0.4.1 (a) Let x and y be two positive reals. Show that x + y is well defined
Real Numbers by showing that for any k, the digit in the kth position of [SIN + [yJN is the

same for all sufficiently large N. Note that N cannot depend just on k, but
must depend also on x and y.
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Stars (*) denote difficult exer-
cises. Two stars indicate a partic-
ularly challenging exercise.

Many of the exercises for Chap-
ter 0 are quite theoretical, and
too difficult for students taking
multivariate calculus for the first
time. They are intended for use
when the book is being used for a
first analysis class. Exceptions in-
clude Exercises 0.5.1 and part (a)
of 0.5.2.

digit 0 1

position

even left right

odd right left

Table 0.4.6

*(b) Now drop the hypothesis that the numbers are positive, and try to
define addition. You will find that this is quite a bit harder than part (a).

*(c) Show that addition is commutative. Again, this is a lot easier when the
numbers are positive.

**(d) Show that addition is associative, i.e., x + (y + z) = (x + y) + z. This
is much harder, and requires separate consideration of the cases where each of
x. y and z is positive and negative.

0.4.2 Show that if two numbers are k-close for all k, then they are equal.

*0.4.3 Show that the functions A(x,y) = x + y, M(x,y) = xy, S(x,y) _
x - y, (x + y) + z are D-continuous. and that 1/x is not. Notice that for A and
S. the I of Definition 0.4.4 does not depend on N, but that it does for M.

**0.4.4 Prove Proposition 0.4.6. This can be broken into the following steps.
(a) Show that supk inft>k f ([xt]t, ... , [xn]1) is well defined, i.e., that the sets

of numbers involved are bounded. Looking at the function S from Exercise
0.4.3, explain why both the sup and the inf are there.

(b) Show that the function f has the required continuity properties.
(c) Show the uniqueness.

*0.4.5 Define division of reals, using the following steps.
(a) Show that the algorithm of long division of a positive finite decimal a by

a positive finite decimal b defines a repeating decimal a/b, and that b(a/b) = a.
(b) Show that the function inv(x) defined for x > 0 by the formula

inv(x) = infl/[x]k
k

satisfies xinv(x) = 1 for all x > 0.
(c) Now define the inverse for any x 0 0, and show that x inv(x) = I for all

x#0.

**0.4.6 In this exercise we will construct a continuous mapping ry : [0, 1] -.
R2, the image of which is a (full) triangle T. We will write our numbers in (0, 1]

in base 2, so such a number might be something like .0011101000011... , and
we will use Table 0.4.6.

Take a right triangle T. We will associate to a string s = Si, S2.... of digits
0 and 1 a sequence of points xo,x1,x2,... of T by starting at the right angle

xo(s), dropping the perpendicular to the opposite side, landing at xt(s), and

deciding to turn left or right according to the digit st, as interpreted by the

bottom line of the table, since this digit is the first digit (and therefore in an

odd position): on 0 turn right and on 1 turn left.
Now drop the perpendicular to the opposite side, landing at x2(2), and turn

right or left according to the digit s2, as interpreted by the top line of the table,
etc.
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This construction is illustrated in Figure 0.4.6.
Xo (a) Show that for any string of digits (d), the sequence x. (,I) converges.

(b) Suppose a number t E [0,1] can be written in base 2 in two different
ways (one ending in 0's and the other in l's), and call (s), (s') the two strings
of digits. Show that

lim xn(s) = lira xn(s').
... ` n-oo n-co

Xj
X1 Hint: Construct the sequences associated to .1000... and .0111....

FIGURE 0.4.6. This allows us to define y(t) = limn-,o xn().
This sequence corresponds to (c) Show that y is continuous.

the string of digits (d) Show that every point in T is in the image of y. What is the maximum
00100010010.... number of distinct numbers t1,...,tk such that y(ti) _ = y(tk)? Hint:

Choose a point in T, and draw a path of the sort above which leads to it.

0.4.7 (a) Show that the function

f(x)
sins ifx 0

-t0 ifx=0
is not continuous.

(b) Show that f satisfies the conclusion of the intermediate value theorem:
if f(x1) = al and 1(x2) = a2, then for any number a between a1 and a2, there
exists a number x between x1 and x2 such that f (x) = a.

Exercises for Section 0.5 0.5.1 (a) Show that the set of rational numbers is countable, i.e., that you
Infinite Sets can list all rational numbers.

and Russell's Paradox (b) Show that the set ® of finite decimals is countable.

0.5.2 (a) Show that the open interval (-1,1) has the same infinity of points
as the reals. Hint: Consider the function g(x) = tan(irz/2).

*(b) Show that the closed interval [-1,11 has the same infinity of points as
the reals. For some reason, this is much trickier than (a). Hint: Choose two
sequences, (1) ao = 1, a1,a2i...; and (2) bo = -1,b1,b2,... and consider the
map

g(x) = x if x is not in either sequence.

9(an) = an+r
9(bn) = bn+1

'(c) Show that the points of the circle

( )ER2Ix2+y2=1}
have the same infinity of elements as R. Hint: Again, try to choose an appro-
priate sequence.



Exercise 0.5.4, part (h): This
proof, due to Cantor, proves that
transcendental numbers exist
without exhibiting a single one.
Many contemporaries of Cantor
were scandalized, largely for this
reason.

Exercise 0.5.5 is the one-dimen-
sional case of the celebrated Brou-
wer fixed point theorem, to he dis-
cussed in a subsequent volume. In
dimension one it is an easy con-
sequence of the intermediate value
theorem, but in higher dimensions
(even two) it is quite a delicate re-
sult.

Exercises for Section 0.6:
Complex Numbers

For Exercise 0.6.2, see the sub-
section on the derivation of Car-
dano's formulas (Equation 0.6.26
in particular).
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*(d) Show that R2 has the same infinity of elements as R.

*0.5.3 Is it possible to make a list of the rationale in (0. 1], written as deci-
mals. so that the entries on the diagonal also give a rational number?

*0.5.4 An algebraic number is a root of a polynomial equation with integer
coefficients: for instance, the rational number p/q is algebraic, since it is a
solution of qx - p = 0, and so is f. since. it is a root of x2 - 2 = 0. A number
that is not algebraic is called transcendental. It isn't obvious that there are any
transcendental numbers; the following exercise gives a (highly unsatisfactory)
proof for their existence.

(a) Show that the set of all algebraic numbers is countable, Hint: List the
finite collection of all roots of linear polynomials with coefficients with absolute
value < 1. Then list the roots of all quadratic equations with coefficients < 2
(v4hic.h will include the linear equations, for instance ():r2 + 2x - I = 0), then
all roots of cubic equation with coefficients < 3, etc.

(b) Derive from part (a) that. there exist transcendental numbers, in fact
uncountably many of them.

0.5.5 Show that, if f : [a. b] - [a. h] is continuous. there exists c E (a, b) with
f (c) = c-

0.5.6 Show that if p(x) is a polynomial of odd degree with real coefficients,
then there is a real number c such that f(c) = 0.

0.6.1 Verify the nine rules for addition and multiplication of complex num-
hers. Statements (5) and (9) are the only ones that are not immediate.

0.6.2 Show that -p/(3ui.j) is a cubic root of u'2. and that we can renumber
the cube roots of so that -p/(3ue,j) = u2.j.

0.6.3 (a) Find all the cubic roots of 1.

(b) Find all the 4th roots of 1.

*(c) Find all the 5th roots of 1. Use your formula to construct a regular
pentagon using ruler and compass construction.

(d) Find all the 6th roots of 1.

0.6.4 Show that the following cubits have exactly one real root, and find it.
(a)x3-18x+35=0
(h)x3+3x2+.r+2=0

0.6.5 Show that the polynomial x3 - 7x + 6 has three real roots, and find
them.
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In Exercise 0.6.6. part (a). use
de Moivre's formula:

cos n0 +i sin nB = (cos B + i sin 0)".

Exercise 0.6.7 uses results from
Section 3.1.

FIGURE 0.6.7(A).
The two parabolas of Equation

0.7.1: note that their axes are re-
spectively the y-axis and the x-
axis.

FlcultE 0.6.7(8).
The three pairs of lilies that

go through the intersections of the
two parabolas.

0.6.8 There is a way of finding the roots of real cubics with three real roots,
using only real numbers and a bit of trigonometry.

(a) Prove the formula 4 cos' 0 - 3 cosO.- cos 38 = 0 .

(b) Set y = ax in the equation x3 + px + q = 0. and show that there is a
value of a for which the equation becomes 4y:' - 3y - qt = 0; find the value of
a and of qt.

(c) Show that there exists an angle 0 such that 30 = qt precisely when
2782 +4p3 < 0, i.e.. precisely when the original polynontial has three real roots.

(d) Find a formula (involving arccos) for all three roots of a real cubic poly-
nomial with three real roots.

*0.6.7 In this exercise, we will find formulas for the solution of 4th degree
polynomials, known as quartics. Let w4 + aeo3 + bw2 + cu: + it be a quartic
polynomial.

(a) Show that if we set w = x - a/4, the quartic equation becomes

xa+px2+qx+r=0,
and compute p, q and r in terms of a. b. c. d.

(b) Now set y = x2 +p/2, and show that solving the quartic is equivalent to
finding the intersections of the parabolas I i and F2 of equation

z
x2-y+p/2=0 and y2+gx+r-

4

=0

respectively, pictured it? Figure 0.6.7 (A).
The parabolas Ft and F2 intersect (usually) in four points, and the curves

of equation
'l

{x) =x2_y+p/2+nx(yz+qx+r- 4 1 =0 0.7.1

are exactly the curves given by quadratic equations which pass through those
four points; some of these curves are shown in Figure 0.6.7 (C).

(c) What can you say about the curve given by Equation 0.7.1 when in = 1?
When to is negative? When in is positive?

(d) The assertion in (b) is not quite correct: there .is one curve that passes
through those four points, and which is given by a quadratic equation. that is
missing from the family given by Equation 0.7.1. Find it.

(e) The next step is the really clever part oft he solution. Among t here curves,
there are three, shown in Figure 0.6.7(B), that consist of a pair of lines, i.e.,
each such "degenerate" curve consists of a pair of diagonals of the quadrilateral
formed by the intersection points of the parabolas. Since there are three of
these, we may hope that the corresponding values of in are solutions of a cubic
equation. and this is indeed the case. Using the fact that a pair of lines is not
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a smooth curve near the point where they intersect, show that the numbers
m for which the equation f= 0 defines a pair of lines, tend the coordinates
x, y of the point where they intersect, are the solutions of the system of three
equations in three unknowns,

z
y2 + qx + r - 4 + m(x' - y - p/2) = 0

2y-in=0
q + 2rnx = 0.

(f) Expressing x and y in. terms of in using the last two equations, show that
m satisfies the equation

m3-2pm2+(p2-4r)m+q2=0
for m; this equation is called the resolvent cubic of the original quarLic equation.

FiCURE 0.6.7(3). The curves f,,, I

J
=a:2-y+p/2-.6ni (y2+q.x+r- =0

for seven different values of rn.

Let m1, m2 and m3 be the roots of the equation, and let (Y1) , (M2) and
x3 1 be the corresponding points of intersection of the diagonals. This doesn't(y3

quite give the equations of the lines forming the two diagonals. The next part
gives a way of finding them.
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(g) Let (yt ) be one of the points of intersection, as above, and consider the

line Ik through the point (y,) with slope k, of equation

y - yt = k(x-xt).
Show that the values of k for which !k is a diagonal are also the values for which
the restrictions oft he two quadratic functions y2 +qx + r - ! and x2 -y - p/2
to 1k are proportional. Show that this gives the equations

1 _ -k kx1 - yj + p/2
k2 2k(-kxt + yt) + q (kxi - yt )2 - p2/4 + r'

which can be reduced to the single quadratic equation

k2(x1 -yt+a/l)=y1 +bxt -a2/4+c.
Now the full solution is at hand: compute (m I.xi.yt) and (M2, X2,Y2); YOU

can ignore the third root of the resolvertt cubic or use it to check your an-
swers. Then for each of these compute the slopes k,,t and k,,2 = -k,,1 from the
equation above. You now have four lines, two through A and two through B.
Intersect them in pairs to find the four intersections of the parabolas.

(h) Solve the quartic equations

.r'-4x2+x+1=0 and x4+4x3 +x-1=0.
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Vectors, Matrices, and Derivatives

It is sometimes said that the great discovery of the nineteenth century was
that the equations of nature were linear, and the great discovery of the
twentieth century is that they are not.-Tom Korner, Fourier Analysis

1.0 INTRODUCTION

In this chapter, we introduce the principal actors of linear algebra and multi-
variable calculus.

By and large, first year calculus deals with functions f that associate one
number f(x) to one number x. In most realistic situations, this is inadequate:
the description of most systems depends on many functions of many variables.

In physics, a gas might be described by pressure and temperature as a func-
tion of position and time, two functions of four variables. In biology, one might
be interested in numbers of sharks and sardines as functions of position and
time; a famous study of sharks and sardines in the Adriatic, described in The
Mathematics of the Struggle for Life by Vito Volterra, founded the subject of
mathematical ecology.

In micro-economics, a company might be interested in production as a func-
tion of input, where that function has as many coordinates as the number of
products the company makes, each depending on as many inputs as the com-
pany uses. Even thinking of the variables needed to describe a macro-economic
model is daunting (although economists and the government base many deci-
sions on such models). The examples are endless and found in every branch of
science and social science.

Mathematically, all such things are represented by functions f that take n
numbers and return m numbers; such functions are denoted f : R" -* R"`. In
that generality, there isn't much to say; we must impose restrictions on the
functions we will consider before any theory can be elaborated.

The strongest requirement one can make is that f should be linear, roughly
speaking, a function is linear if when you double the input, you double the
output. Such linear functions are fairly easy to describe completely, and a
thorough understanding of their behavior is the foundation for everything else.

The first four sections of this chapter are devoted to laying the foundations of
linear algebra. We will introduce the main actors, vectors and matrices, relate
them to the notion of function (which we will call transformation), and develop
the geometrical language (length of a vector, length of a matrix, ... ) that we

27
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The notion that one can think
about and manipulate higher di-
mensional spaces by considering a
point in n-dimensional space as a
list of its n "coordinates" did not
always appear as obvious to math-
ematicians as it does today. In
1846, the English mathematician
Arthur Cayley pointed out that a
point with four coordinates can be
interpreted geometrically without
recourse to "any metaphysical no-
tion concerning the possibility of
four-dimensional space."

"Vol" denotes the number of
shares traded, "High" and "Low,"
the highest and lowest price paid
per share, "Close," the price when
trading stopped at the end of the
day, and "Chg," the difference be-
tween the closing price and the
closing price on the previous day.

will need in multi-variable calculus. In Section 1.5 we will discuss sequences,
subsequences, limits and convergence. In Section 1.6 we will expand on that
discussion, developing the topology needed for a rigorous treatment of calculus.

Most functions are not linear, but very often they are well approximated by
linear functions, at least for some values of the variables. For instance, as long
as there are few hares, their number may well double every year, but as soon
as they become numerous, they will compete with each other, and their rate of
increase (or decrease) will become more complex. In the last three sections of
this chapter we will begin exploring how to approximate a nonlinear function
by a linear function-specifically, by its higher-dimensional derivative.

1.1 INTRODUCING THE ACTORS: VECTORS

Much of linear algebra and multivariate calculus takes place within 1R". This
is the space of ordered lists of n real numbers.

You are probably used to thinking of a point in the plane in terms of its two
coordinates: the familiar Cartesian plane with its x, y axes is JR2. Similarly, a
point in space (after choosing axes) is specified by its three coordinates: Carte-
sian space is IR3. Analogously, a point in R" is specified by its n coordinates;
it is a list of n real numbers. Such ordered lists occur everywhere, from grades
on a transcript to prices on the stock exchange.

Seen this way, higher dimensions are no more complicated than t2 and 1R3;
the lists of coordinates just get longer. But it is not obvious how to think about
such spaces geometrically. Even the experts understand such objects only by
educated analogy to objects in JR2 or 1R3; the authors cannot "visualize 1R4" and
we believe that no one really can. The object of linear algebra is at least in part
to extend to higher dimensions the geometric language and intuition we have
concerning the plane and space, familiar to us all from everyday experience. It
will enable us to speak for instance of the "space of solutions" of a particular
system of equations as being a four-dimensional subspace of 1R7.

Example 1.1.1 (The stock market). The following data is from the Ithaca
Journal, Dec. 14, 1996.

LOCAL NYSE STOCKS

Vol High Low Close Chg
Airgas 193 241/2231/s 235/s -3/s
AT&T 36606 391/4383/s 39 3/5
Borg Warner 74 383/5 38 38 -3/5
Corning 4575 443/4 43 441/4 1/2
Dow Jones 1606 331/4 321/2 331/4 1/5
Eastman Kodak 7774 805/s791/4 793/s -3/4
Emerson Elec. 3335 973/s 955/s 955/,-11/,
Federal Express 5828 421/2 41 415/5 11/2



Each of these lists of eight num-
bers is an element of Its; if we were
listing the full New York Stock Ex-
change, they would be elements of
It3356

The Swiss mathematician Leon-
hard Euler (1707-1783) touched on
all aspects of the mathematics and
physics of his time. He wrote text-
books on algebra, trigonometry,
and infinitesimal calculus; all texts
in these fields are in some sense
rewrites of Euler's. He set the no-
tation we use from high school on:
sin, cos, and tan for the trigono-
metric functions, f (x) to indicate
a function of the variable x are
all due to him. Euler's complete
works fill 85 large volumes-more
than the number of mystery nov-
els published by Agatha Christie;
some were written after he became
completely blind in 1771. Euler
spent much of his professional life
in St. Petersburg. He and his
wife had thirteen children, five of
whom survived to adulthood.
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We can think of this table as five columns, each an element of 1R8:

r 193 24'/2 231/s

1 36606 391/a 383/8

74 383/s 38

4575 3 43
Vol =

1606 High =
331

/4 Low = 321/2

7774 805/8 791/4

3335 973/8 955/s
5828 421/2 41

Close =

235/8
39
38

441/4
331/4
793/s
955/8
415/8

Chg =

-3/S

3/e

-3/8
1/2

1/8

-3 /4
-11/8

11/2

A

Note that we write elements of IR" as columns, not rows. The reason for
preferring columns will become clear later: we want the order of terms in matrix
multiplication to be consistent with the notation f (x), where the function is
placed before the variable-notation established by the famous mathematician
Euler. Note also that we use parentheses for "positional" data and brackets for
"incremental" data; the distinction is discussed below.

Points and vectors: positional data versus incremental data

An element of lR" is simply an ordered list of n numbers, but such a list can
be interpreted in two ways: as a point representing a position or as a vector
representing a displacement or increment.

Definition 1.1.2 (Point, vector, and coordinates). The element of R"
with coordinates x1, x2, ... , x" can be interpreted in two ways: as the point

x =
Z

I , or as the vector 3T = IXxl , which represents an increment.
x"l

"

Example 1.1.3 (An element of t2 as a point and as a vector). The
element of lR2 with coordinates x = 2, y = 3 can be interpreted as the point
(2)

in the plane, as shown in Figure 1.1.1. But it can also be interpreted as
3

the instructions "start anywhere and go two units right and three units up,"
rather like instructions for a treasure hunt: "take two giant steps to the east,



3

2

FIGURE 1.1.1.

The point 1 3 I .

FIGURE 1.1.2.
All the arrows represent the

same vector, 13 J .

As shown in Figure 1.1.2, in the
plane (and in three-dimensional
space) a vector can be depicted as
an arrow pointing in the direction
of the displacement. The amount
of displacement is the length of the
arrow. This does not extend well
to higher dimensions. How are we
to picture the "arrow" in 83356
representing the change in prices
on the stock market? How long is
it, and in what "direction" does it
point? We will show how to com-
pute these magnitudes and direc-
tions for vectors in R' in Section
1.4.
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and three to the north"; this is shown in Figure 1.1.2. rHeere we are interested in

the displacement: if we start at any point and travel 13J, how far will we have

gone, in what direction? When we interpret an element of R" as a position, we
call it a point; when we. interpret it as a displacement, or increment, we call it
a vector. A

Example 1.1.4 (A point as a state of a system). It is easy to think of a
point in R2 or 1123 as a position; in higher dimensions, it can be more helpful to
think of a point as a "state" of a system. If 3356 stocks are listed on the New
York Stock Exchange, the list of closing prices for those stocks is an element
of 3366 and every element of 83356 is one theoretically possible state of the
stock market. This corresponds to thinking of an element of 83368 as a point.

The list telling how much each stock gained or lost compared with the pre-
vious day is also an element of 83356, but this corresponds to thinking of the
element as a vector, with direction and magnitude: did the price of each stock
go up or down? How much? A

Remark. In physics textbooks and some first year calculus books, vectors are
often said to represent quantities (velocity, forces) that have both "magnitude"
and "direction," while other quantities (length, mass, volume, temperature)
have only "magnitude" and are represented by numbers (scalars). We think
this focuses on the wrong distinction, suggesting that some quantities are always
represented by vectors while others never are, and that it takes more information
to specify a quantity with direction than one without.

The volume of a balloon is a single number, but so is the vector expressing
the difference in volume between an inflated balloon and one that has popped.
The first is a number in Il2, while the second is a vector in R. The height of
a child is a single number, but so is the vector expressing how much he has
grown since his last birthday. A temperature can be a "magnitude," as in "It
got down to -20 last night," but it can also have "magnitude and direction," as
in "It is 10 degrees colder today than yesterday." Nor can "static" information
always be expressed by a single number: the state of the Stock Market at a
given instant requires as many numbers as there are stocks listed-as does the
vector describing the change in the Stock Market from one day to the next.
A

Points can't be added; vectors can

As a rule, it doesn't make sense to add points together, any more than it makes
sense to "add" the positions "Boston" and "New York" or the temperatures 50
degrees Fahrenheit and 70 degrees Fahrenheit. (If you opened a door between
two rooms at those temperatures, the result would not be two rooms at 120
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We will not consistently use
different notation for the point

zero and the zero vector, although
philosophically the two are quite

different. The zero vector, i.e., the
"zero increment," has a universal
meaning, the same regardless of

the frame of reference. The point
zero is arbitrary, just as "zero de-

grees" is arbitrary, and has a dif-

ferent meaning in the Centigrade

system and in Fahrenheit.

Sometimes, often at a key point
in the proof of a hard theorem,
we will suddenly start thinking of
points as vectors, or vice versa;
this happens in the proof of Kan-
torovitch's theorem in Appendix
A.2, for example.

a2-b2 a-

FIGURE 1.1.3.

The difference a - b between
point a and point b is the vector

joining them. The difference can

be computed by subtracting the

coordinates of b from those of a.

degrees!) But it does make sense to measure the difference between points (i.e.,
to subtract them): you can talk about the distance between Boston and New
York, or about the difference in temperature between two rooms. The result
of subtracting one point from another is thus a vector specifying the increment
you need to add to get from one point to another.

You can also add increments (vectors) together, giving another increment.
For instance the vectors "advance five meters east then take two giant steps

south" and "take three giant steps north and go seven meters west" can be

added, to get "advance 2 meters west and one giant step north."
Similarly, in the NYSE table in Example 1.1.1, adding the Close columns on

two successive days does not produce a meaningful answer. But adding the Chg
columns for each day of a week produces a perfectly meaningful increment: the
change in the market over that week. It is also meaningful to add increments
to points (giving a point): adding a Chg column to the previous day's Close
column produces the current day's Close-the new state of the system.

To help distinguish these two kinds of elements of 1k", we will denote them
differently: points will be denoted by boldface lower case letters, and vectors
will be lower case boldface letters with arrows above them. Thus x is a point
in 1R2, while z is a vector in 1R2. We do not distinguish between entries of
points and entries of vectors; they are all written in plain type, with subscripts.
However, when we write elements of Ut" as columns, we will use parentheses for

a point x and square brackets for a vector x': in 1182, x = (a1 1 and x' = LX1 Jl\ x2 x2

Remark. An element of R" is an element of RI-i.e., an ordered list of
numbers-whether it is interpreted as a point or as a vector. But we have very
different images of points and vectors, and we hope that sharing them with you
explicitly will help you build a sound intuition. In linear algebra, you should
just think of elements of R" as vectors. However, differential calculus is all
about increments to points. It is because the increments are vectors that linear
algebra is a prerequisite for multivariate calculus: it provides the right language
and tools for discussing these increments.

Subtraction and addition of vectors and points

The difference between point a and point b is the vector a - b, as shown in
Figure 1.1.3.

Vectors are added by adding the corresponding coordinates:

vt wt vl + wl

V2 + W2 _ V2 + W2

V n wn V. + W.

V V+W
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the result is a vector. Similarly, vectors are subtracted by subtracting the
corresponding coordinates to get a new vector. A point and a vector are added

by adding the corresponding coordinates: the result is a point.
in the plane. the sum v" + w is the diagonal of the parallelogram of which

two adjacent sides are v and w, as shown in Figure 1.1.4 (left). We can also
add vectors by placing the beginning of one vector at the end of the other, as
shown in Figure 1.1.4 (right).

If we were working with com-
plex vector spaces, our scalars
would be complex numbers: in
number theory, scalars might be
the rational numbers: in coding
theory, they might be elements of
a finite field. (You may have run
into such things tinder the name of
"clock arithmetic.") We use the
word "scalar" rather than "real
number" because most theorems
in linear algebra are just as true
for complex vector spaces or ratio-
nal vector spaces as for real ones,
and we don't want to restrict the
validity of the statements unnec-
essarily.

The symbol E means "element
of." Out loud, one says "in." The
expression '1_V E V" means "x E
V and Y E V." If you are unfamil-
iar with the notation of set theory.
see the discussion in Section 0.:3.

FIGURE 1.1.4. In the plane, the sum v + w is the diagonal of the parallelogram at
left. We can also add them by putting them head to tail.

Multiplying vectors by scalars

Multiplication of a vector by a scalar is straightforward:

.

ax,

a
x _

LaxnJ

for example, f
1

1

=
-lf 1.1.2

[
1v

2 2V'

In this book, our vectors will be lists of real numbers, so that our scalars-
the kinds of numbers we are allowed to multiply vectors or matrices by-are
real numbers.

Subspaces of T-."

A subspace of IR" is a subset of R" that is closed under addition and multipli-
cation by scalars.' (This R" should be thought of as made up of vectors, not
points.)

'In Section 2.6 we will discuss abstract vector spaces. These are sets in which
one can add and multiply by scalars, and where these operations satisfy rules (ten of
them) that make them clones of is". Subspaces of IR" will be our main examples of
vector spaces.
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Definition 1.1.5 (Subspace of IR"). A non-empty subset V E R' is called
a subspace if it is closed under addition and closed under multiplication by
scalars; i.e., V is a subspace if when

x, y E V , and a E 118, then z+ y E V and arZ E V.

To he closed under multiplica-
tion a subspace must contain the
zero vector, so that

For example, a straight line through the origin is a subspace of II22 and of 1F3.
A plane through the origin is a subspace of 1183. The set consisting of just the
zero vector {ti} is a subspace of any R1, and H8" is a subspace of itself. These
last two, {0} and 18", are considered trivial subspaces.

Intuitively, it is clear that a line that is a subspace has dimension 1, and
a plane that is a subspace has dimension 2. Being precise about what this
means requires some "machinery" (mainly the notions of linear independence
and span), introduced in Section 2.4.

The standard basis vectors

The notation for the standard
basis vectors is ambiguous; at
right we have three different vec-
tors, all denoted er. The subscript
tells us which entry is 1 but does
not say how many entries the vec-
tor has-- i.e., whether it is a vector
in p2, IR:' or what.

The standard basis vectors in
II82 and AY3 are often denoted i, j,
and k:

1 1

i = e, = llj or 0 .

0

3=e'2=01 or
1

k=e3= [oJ
01

:

0
01

We do not use this notation but
mention it in case you encounter
it elsewhere.

We will meet one particular family of vectors in 1B" often: the standard basis
vectors. In P.2 there are two standard basis vectors, a and 42; in 1183, there are
three:

inP 2 : e10in; : 't=01 ,e3=0Jr( 1l r0

0 0 11

Similarly, in P. there are five standard basis vectors:

11 101 f0
0 1 0

e1 = 0 , e'2= 0 ..... e5= 0

0

.

0 O1

Definition 1.1.6 (Standard basis vectors). The standard basis vectors
in 18" are the vectors ej with n entries, the jth entry 1 and the others zero.

Geometrically, there is a close connection between the standard basis vectors
in 1182 and a choice of axes in the Euclidean plane. When in school you drew
an x-axis and y-axis on a piece of paper and marked off units so that you could
plot a point, you were identifying the plane with R2: each point on the plane
corresponded to a pair of real numbers-its coordinates with respect to those
axes. A set of axes providing such an identification must have an origin, and
each axis must have a direction (so you know what is positive and what is
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4 y

FIGURE 1.1.5.

negative) and it must have units (so you know, for example, where x = 3 or
y = 2 is).

Such axes need not be at right angles, and the units on one axis need not
be the same as those on the other, as shown in Figure 1.1.5. However, the
identification is more useful if we choose the axes at right angles (orthogonal)
and the units equal; the plane with such axes, generally labeled x and y, is
known as the Cartesian plane. We can think that e't measures one unit along
the x-axis, going to the right, and e2 measures one unit along the y-axis, going
"up

The point marked with a cir- Vector fields
cle is the point 13 I in this non-

Virtuall all of h i d l ith fi ld Th ly p ys cs s wea e s. e e ectric and magnetic fields oforthogonal coordinate system.

electromagnetism, the gravitational and other force fields of mechanics, the
velocity fields of fluid flow, the wave function of quantum mechanics, are all
"fields." Fields are also used in other subjects, epidemiology and population
studies, for instance.

By "field" we mean data that varies from point to point. Some fields, like
r temperature or pressure distribution, are scalar fields: they associate a number

to every point. Some fields, like the Newtonian gravitation field, are best mod-
eled by vector fields, which associate a vector to every point. Others, like the
electromagnetic field and charge distributions, are best modeled by form fields,
discussed in Chapter 6. Still others, like the Einstein field of general relativity
(a field of pseudo inner products), are none of the above.

Definition 1.1.7 (Vector field). A vector field on 1R" is a function whose
input is a point in 1V and whose output is a vector (also in lR") emanating
from that point.

FIGURE 1.1.6.

A vector field associates a vec-

tor to each point. Here we show

the radial vector field

F(b)
= LtJ

Vector fields generally are easier to
depict when one scales the vectors
down, as we have done above and
in Figure 1.1.7.

We will distinguish between functions and vector fields by putting arrows on
vector fields, as in f in Example 1.1.8.

Example 1.1.8 (Vector fields in RI). The identity function in 1R2

f (y) =
(
ly)

takes a point in R2 and returns the same point.

Fe\y/ - Ly]

1.1.3

1.1.4

takes a point in R2 and assigns to it the vector corresponding to that point, as
shown in Figure 1.1.6. To the point with coordinates 1 1) it assigns1 () g7ns the vector

to the point with coordinates (4,2) it assigns the vector 12J 2.

But the vector field



1.2 Matrices 35

Actually, a vector field simply
associates to each point a vector;

how you imagine that vector is up
to you. But it is always helpful

to imagine each vector anchored

at, or emanating from, the corre-
sponding point.

FIGURE 1.1.7.
The vector field

1Fe\y/l - dLxy-bJ

When a matrix is described,
height is given first, then width:
an m x n matrix is m high and
n wide. After struggling for years
to remember which goes first, one
of the authors hit on a mnemonic:
first take the elevator, then walk
down the hall.

Similarly, the vector field F (y) = I Xp_ shown in Figure 1.1.7, takes

A
a point in RZ and a s s i g n s to it the vector [x1_'2].

x - y
Vector fields are often used to describe the flow of fluids or gases: the vector

assigned to each point gives the velocity and direction of the flow. For flows that
don't change over time (steady-state flows), such a vector field gives a complete
description. In more realistic cases where the flow is constantly changing, the
vector field gives a snapshot of the flow at a given instant. Vector fields are also
used to describe force fields such as electric fields or gravitational fields.

1.2 INTRODUCING THE ACTORS: MATRICES

Probably no other area of mathematics has been applied in such numerous
and diverse contexts as the theory of matrices. In mechanics, electro-
magnetics, statistics, economics, operations research, the social sciences,
and so on, the list of applications seems endless. By and large this is
due to the utility of matrix structure and methodology in conceptualiz-
ing sometimes complicated relationships and in the orderly processing of
otherwise tedious algebraic calculations and numerical manipulations.-
James Cochran, Applied Mathematics: Principles, Techniques, and Ap-
plications

The other central actor in linear algebra is the matrix.

Definition 1.2.1 (Matrix). An m x n matrix is a rectangular array of
entries, m high and n wide.

We use capital letters to denote matrices. Usually our matrices will be arrays
of numbers, real or complex, but matrices can be arrays of polynomials, or of
more general functions; a matrix can even be an array of other matrices. A
vector V E 1Rm is an m x 1 matrix.

Addition of matrices, and multiplication of a matrix by a scalar, work in the
obvious way:

Example 1.2.2 (Addition of matrices and multiplication by a scalar).

2 1 1 2 3 -
4 1] -

[1

I 2, +

[0

- 3]
and 2[-2 3,=[-4 2 6, o

So far, it's not clear that matrices gain us anything. Why put numbers (or
other entries) into a rectangular array? What do we gain by talking about the



How would you add the niatri-
ces

[0 2 3]
and

10

22

?

You can't: matrices can be added
only if they have the same height
and same width.

Matrices were introduced by
Arthur Cayley, a lawyer who be-
came a mathematician, in A Mem-
oir on the Theory of Matrices,
published in 1858. He denoted the
multiplication of a 3 x 3 matrix by

x
the vector y using the format

z

(a, b, c0x,y,z)
a' , b' , c

a', b", c"

" ... when Werner Heisenberg
discovered `matrix' mechanics in
1925, he didn't know what a ma-
trix was (Max Born had to tell
him), and neither Heisenberg nor
Born knew what to make of the
appearance of matrices in the con-
text of the atom."-Manfred R.
Schroeder, "Number Theory and
the Real World," Mathematical
lntelligencer, Vol. 7, No. 4

36 Chapter 1. Vectors, Matrices, and Derivatives

1

a

2 x 2 matrix [ dJ rather than the point {b] C Q24? The answer is that the

d
matrix format allows another operation to be performed: matrix multiplication.
We will see in Section 1.3 that every linear transformation corresponds to mul-
tiplication by a matrix. This is one reason matrix multiplication is a natural
and important operation; other important applications of matrix multiplication
are found in probability theory and graph theory.

Matrix multiplication is best learned by example. The simplest way to mul-
tiply A times B is to write B above and to the right of A. Then the product
All fits in the space to the right of A and below B, the i,jth entry of AB
being the intersection of the ith row of A and the jth column of B, as shown in
Example 1.2.3. Note that for AB to exist, the width of A must equal the height
of B. The resulting matrix then has the height of A and the width of B.

Example 1.2.3 (Matrix multiplication). The first entry of the product
AB is obtained by multiplying, one by one, the entries of the first row of A by
those of the first column of B, and adding these products together: in Equation
1.2.1, (2 x 1) + (-1 x 3) = -1. The second entry is obtained by multiplying
the first row of A by the second column of B: (2 x 4) + (-1 x 0) = 8. After
multiplying the first row of A by all the columns of B, the process is repeated
with the second row of A: (3 x 1) + (2 x 3) = 9, and so on.

[A)[B) = [AB]

Given the matrices

A- [2 30] B= [o 11 C = [1 -10
-1i

AB

D= 2 2
1 1[1 01

D

1.2.1

what are the products All, AC and CD? Check your answers below.2 Now
compute BA. What do you notice? What if you try to compute CA?3

2AB=[0 5]; AC=[b -2 _i] ; CD=
g

_ij.
3Matrix multiplication is not commutative; BA =

12 2

3}, which is not equal to

AB = 1 0 5l . Although the product AC exists, you cannot compute CA.



1.2 Matrices :17

Definition 1.2.4 says nothing
new, but it provides some prac-
tice moving between the concrete
(multiplying two particular matri-
ces) and the symbolic (express-
ing this operation so that it ap-
plies to any two matrices of appro-
priate dimensions, even if the en-
tries are complex numbers or even
functions, rather than real num
bers.) In linear algebra one is
constantly moving from one form
of representation (one "language")
to another. For example, as we
have seen, a point in !F" can be
considered as a single entity, b, or
as the ordered list of its coordi-
nates; matrix A can be thought of
as a single entity or as a rectangu-
lar array of its entries.

In Example 1.2.3. A is a 2 x 2
matrix and B is a 2 x 3 matrix, so
that n=2, m=2andp=3, the
product C is then a 2 x 3 matrix.
If we set i = 2 and j = 3, we see
that the entry C2.3 of the matrix C
is

c2.3 = a2,1 b1,3 + n2,2b2.3

= (3 - -2) + (2.2)
=-6+4=-2.

Using the format for matrix
multiplication shown in Example
1.2.3, the i, jth entry is the entry
at the intersection of the ith row
and jth column.

Below we state the formal definition of the process we've just, ch'scribed. U

the indices bother you, do refer to Figure 1.2.1.

Definition 1.2.4 (Matrix multiplication). If A is an m x n matrix whose
(i,j)th entry is a;,J, and B is an n x p matrix whose (i, j)th entry is bi,,.
then C = AB is the m x p matrix with entries

cij = [_ ai,kbk,]
k=1

=ac,tbtj +ai,2b2,3++a;."b".j.

p

1

ith
row

n jth
col.

1.2.2

FIGURE 1.2.1. The entry ei,j of the matrix C = AB is the sum of the products of
the entries of the ai,k of the matrix A and the corresponding entry bk.,, of the matrix
B. The entries a,,k are all in the ith row of A; the first index i is constant.. and the
second index k varies. -The entries bk,r are all in the jth column of B: the first index
k varies, and the second index j is constant. Since the width of A equals the height
of B, the entries of A and those of B can be paired up exactly.

Remark. Often people write a problem in matrix multiplication in a row:
[A][B] = [AB]. The format shown in Example 1.2.3 avoids confusion: the

product of the ith row of A and the jth column of B lies at. the intersect ion of

that row and column. It also avoids recopying matrices when doing repeated



AB

1

FIGURE 1.2.2.
The ith column of the product

AB depends on all the entries of
A but only the ith column of B.

A AB

I

FIGURE 1.2.3.
The jth row of the product AB

depends on all the entries of B but
only the jth row of A.
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multiplications, for example A times B times C times D:

[ B ,
[ C ] [

D ]

[ A ] [ (AB)
]

[(AB)CI i (ABC)D]]]

6 1.2.3

Multiplying a matrix by a standard basis vector

Observe that multiplying a matrix A by the standard basis vector e'i selects out
the ith column of A, as shown in the following example. We will use this fact
often.

Example 1.2.5 (The ith column of A is Ad j). Below, we show that the
second column of A is Ae"z:

F2

I I001
3 -2 0 -2
2 1 2 1

0 4 3 4

1 0 2 0

A AE.
A 1.2.4

Similarly, the ith column of AB is Aiii, where bi is the ith column of B, as
shown in Example 1.2.6 and represented in Figure 1.2.2. The jth row of AB is
the product of the jth row of A and the matrix B, as shown in Example 1.2.7
and Figure 1.2.3.

Example 1.2.6. The second column of the product AB is the same as the
product of the second column of A and the matrix B:

B i;2

1 4 -2 4
[ 3 0 2] [0]

2 -1
[3

2

2] [ 9 12 -2] [3 2] [ 2]

A AB A A'2

1.2.5

Example 1.2.7. The second row of the product AB is the same as the product
of the second row of A and the matrix B:

[11 [21.
multiplies the 2nd column by 1:

4
x 1 =

4
0 0
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In his 1858 article on matrices,
Cayley stated that matrix multi-
plication is associative but gave no
proof. The impression one gets is
that he played around with ma-
trices (mostly 2 x 2 and 3 x 3)
to get some feeling for how they
behave, without worrying about
rigor. Concerning another matrix
result (the Cayley-Hamilton theo-
rem) he verifies it for 3 x 3 matri-
ces, adding I have not thought it
necessary to undertake the labour
of a formal proof of the theorem in
the general case of a matrix of any
degree.

p

1

FIGURE 1.2.4.
This way of writing the ma-

trices corresponds to calculating
(AB)C.

FIGURE 1.2.5.
This way of writing the ma-

trices corresponds to calculating

1=1

A(BC). = L
1=1k=1 k=1 1=1

kth entry of BC

B

[ 1 44 -21 2
2 -1 -1 8 -6 [ 3 0 2]

13 2] [ 9 12 -2] (3 2] ] 9 12 -2]
A AB

1.2.6

Matrix multiplication is associative

When multiplying the matrices A, B, and C, we could set up the repeated
multiplication as we did in Equation 1.2.3, which corresponds to the product
(AB)C. We can use another format to get the product A(BC):

[A] [ AB ] [ (AB)C ]
or [ B ] [ (BC) ] . 1.2.7

[ A ] l[ A(BC) ]
Is (AB)C the same as (AB)C? In Section 1.3 we give a conceptual reason why
they are; here we give a computational proof.

Proposition 1.2.8 (Matrix multiplication Is associative). If A is an
n x m matrix, B is an m x p matrix and C is a p x q matrix, so that (AB)C
and A(BC) are both defined, then they are equal:

(AB)C = A(BC). 1.2.8

Proof. Figures 1.2.4 and 1.2.5 show that the i,jth entry of both A(BC) and
(AB)C depend only on the ith line of A and the jth column of C (but on all the
entries of B), and that without loss of generality we can assume that A is a line
matrix and that C is a column matrix, i.e., that n = q = 1, so that both (AB)C
and A(BC) are numbers. The proof is now an application of associativity of
multiplication of numbers:

> akbk,i J ct(AB)C = > (
k=l /

tth entry of AB

akbk,lc! _ E ak (bi) A(BC).

1.2.9



Exercise 1.2.2 provides prac-
tice on matrix multiplication. At
the end of this section, Example
1.2.22, involving graphs, shows a
setting where matrix multiplica-
tion is a natural and powerful tool.
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Non-commutativity of matrix multiplication

As we saw earlier, matrix multiplication is most definitely not commutative. It
may well be possible to multiply A by B but not B by A. Even if both matrices
have the same number of rows and columns, AB will usually not equal BA, as
shown in Example 1.2.9.

I
0 1

1 0
1

Example 1.2.9 (Matrix 1multiplication

multiply the matrix [ 0 11 by the matrix

depend on which one you put first:

is not equal to L\ 1.2.10

The identity matrix

The identity matrix I plays the same role in matrix multiplication as the number
1 does in multiplication of numbers: IA = A = Al.

The main diagonal is also called
the diagonal. The diagonal from
bottom left to top right is the anti-
diagonal.

Multiplication by the identity
matrix I does not change the ma-
trix being multiplied.

The columns of the identity
matrix In are of course the stan-
dard basis vectors e"1,...,e,,:

Definition 1.2.10 (Identity matrix). The identity matrix I. is then x n-
matrix with is along the main diagonal (the diagonal from top left to bottom
right) and 0's elsewhere.

For example,

1

1 0 0 0

I2 = [0 0
and 14 = 0 0 0

0
1.2.11

0 0 0 1

If A is an n x m-matrix, then

IA = Al = A, or, more precisely, Alm = A, 1.2.12

1 0 0 0 since if n 96 rn one must change the size of the identity matrix to match the
I4= 0 1 0 0 size of A. When the context is clear, we will omit the index.

0 0 1 0

0
el

0
e2

0
e3

1

e'4
Matrix inverses

is not commutative). If you

[ 0
11, the answer you get will

1 0

The inverse A-r of a matrix A plays the same role in matrix multiplication as
the inverse 1/a does for the number a. We will see in Section 2.3 that we can
use the inverse of a matrix to solve systems of linear equations.
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We will see in Section 2.3 that
only square matrices can have a
two-sided inverse, i.e., an inverse.
Furthermore, if a square matrix
has a left inverse then that left in-
verse is necessarily also a right in-
verse; similarly, if it has a right in-
verse, that right inverse is neces-
sarily a left inverse.

It is possible for a non-square
matrix to have lots of left inverses
and no right inverse, or lots of
right inverses and no left inverse,
as explored in Exercise 1.2.20.

While we can write the inverse
of a number x either as x-' or as
1/x, giving xx-' = x(1/x) = 1,
the inverse of a matrix A is only
written A-'. We cannot divide
by a matrix. If for two matrices
A and B you were to write A/B,
it would be unclear whether this
meant

B-'A or AB-'.

The only number that does not have an inverse is 0, but many matrices do
not have inverses. In addition, the non-commutativity of matrix multiplication
makes the definition more complicated.

Definition 1.2.11 (Left and right inverses of matrices). Let A be a
matrix. If there is another matrix B such that

BA = I,

then B is called a left inverse of A. If there is another matrix C such that

AC = I,

then C is called a right inverse of A.

It is possible for a nonzero matrix to have neither a right nor a left inverse.

Example 1.2.12 (A matrix with neither right nor left inverse). The
matrix I 1 01 does not have a right or a left inverse. To see this, assume it

has a right inverse. Then there exists a matrix I a bJ such that

L0 01 [c
dl -

L0 of

1.2.13

But that product is 10
0 J , i.e., in the bottom right-hand corner, 0 = 1. A

similar computation shows that there is no left inverse. A

Definition 1.2.13 (Invertible matrix). An invertible matrix is a matrix
that has both a left inverse and a right inverse.

Associativity of matrix multiplication gives us the following result:

Proposition and Definition 1.2.14. If a matrix A has both a left and a
right inverse, then it has only one left inverse andone right inverse, and they
are identical; such a matrix is called the inverse of A and is denoted A-'.

Proof. If a matrix A has a right inverse B, then AB = I. If it has a left
inverse C, then CA = I. So

C(AB) =CI=C and (CA)B=IB=B, so C=B. 0 1.2.14

We discuss how to find inverses of matrices in Section 2.3. A formula exists
for 2 x 2 matrices: the inverse of

A= [c d] is A-t = 1
d

b 1.2.15l ad-bc [-c -a]'
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We are indebted to Robert Ter-
rell for the mnemonic, "socks on,
shoes on; shoes off, socks off." To
undo a process, you undo first the
last thing you did.

If then its transpose
Id
v"' = [1 0 1).

is

Do not confuse a matrix with
its transpose, and in particular,
never write a vector horizontally.
If you write a vector written hor-
izontally you have actually writ-
ten its transpose; confusion be-
tween a vector (or matrix) and its
transpose leads to endless difficul-
ties with the order in which things
should be multiplied, as you can
see from Theorem 1.2.17.

as Exercise 1.2.12 asks you to confirm by matrix multiplication of AA-' and
A-' A. (Exercise 1.4.12 discusses the formula for the inverse of a 3 x 3 matrix.)

Notice that a 2 x 2 matrix is invertible if ad - be 0. The converse is also
true: if ad - be = 0. the matrix is not invertible, as you are asked to show in
Exercise 1.2.13.

Associativity of matrix multiplication is also used to prove that the inverse

of the product of two invertible matrices is the product of their inverses, in
reverse order:

Proposition 1.2.15 (The inverse of the product of matrices). If A
and B are invertible matrices, then AB is invertible, and the inverse is given
by the formula

(AB)-1 = B-'A-'. 1.2.16

Proof. The computation

(AB)(B-'A-') = A(BB-')A'' = AA-' = I 1.2.17

and a similar one for (B-'A`')(AB) prove the result.

Where was associativity used in the proof? Check your answer below."

The transpose

The transpose is all operation on matrices that will be useful when we come to
the dot product, and in many other places.

Definition 1.2.16 (Transpose). The transpose AT of a matrix A is formed
by interchanging all the rows and columns of A, reading the rows from left
to right, and columns from top to bottom.

_ 1 3
For example, if A = 13

0 2 ] °
then AT = 4 0 .

L-2 2

The transpose of a single row of a matrix is a vector; we will use this in
Section 1.4.

4Associativity is used for the first two equalities below:

D (EF) (DE) F

(B- 1 (B))=A((BB')A:"=A(IA')=/.
(AB) C A (BC)
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The proof of Theorem 1.2.17
is straightforward and is left as
Exercise 1.2.14.

Theorem 1.2.17 (The transpose of a product). The transpose of a
product is the product of the transposes in reverse order:

(AB)T = BT AT T. 1.2.18

1 1 0 Some special kinds of matrices
1 0 3
0 3 0

A symmetric matrix Definition 1.2.18 (Symmetric matrix). A symmetric matrix is equal to
its transpose. An anti-symmetric matrix is equal to minus its transpose.

0 1 2

1 0 3 Definition 1.2.19 (Triangular matrix). An upper triangular matrix is a-2 -3 0 square matrix with nonzero entries only on or above the main diagonal. A
An anti-symmetric matrix lower triangular matrix is a square matrix with nonzero entries only on or

below the main diagonal.

1 1 0 3

0 2 0 0

0 0 1 0

0 0 0 0

An upper triangular matrix

2 0 0 0

0 2 0 0

0 0 1 0

0 0 0 1

A diagonal matrix

Exercise 1.2.10 asks you to show

that if A and B are upper trian-
gular n x n matrices, then so is

AB.

Definition 1.2.20 (Diagonal matrix). A diagonal matrix is a square
matrix with nonzero entries (if any) only on the main diagonal.

What happens if you square the diagonal matrix I a 0J? If you cube it?5

Applications of matrix multiplication: probabilities and graphs

While from the perspective of this book matrices are most important because
they represent linear transformations, discussed in the next section, there are
other important applications of matrix multiplication. Two good examples are
probability theory and graph theory.

Example 1.2.21 (Matrices and probabilities). Suppose you have three
reference books on a shelf: a thesaurus, a French dictionary, and an English
dictionary. Each time you consult one of these books, you put it back on the
shelf at the far left. When you need a reference, we denote the probability that
it will be the thesaurus P1, the French dictionary P2 and the English dictionary
P3. There are six possible arrangements on the shelf: 12 3 (thesaurus, French
dictionary, English dictionary), 13 2, and so on.

6[0 a]s - [ 0 a2J' [0 a)s [ 0 a,



For example. the move from
(213) to (321) has probability P3
(associated with the English dic-
tionary), since if you start with
the order (2 1:3) (French dictio-
nary, thesaurus, English dictio-
nary), consult the English dictio-
nary, and put it hack to the far
left, you will then have the order
(321). So the entry at the 3rd
row, 6th column is Pi. The move
from (2 13) to (312) has proba-
bility 0, since moving the English
dictionary won't change the posi-
tion of the other books. So the
entry at the 3rd row, 5th column
is 0.

A situation like this one, where
each outcome depends only on the
one just before it, it called a
Markov chain.

Sometimes easy access isn't
the goal. In Zola's novel Au Bon-
hear des Dames. the epic story of
the growth of the first big depart-
ment store in Paris, the hero has
an inspiration: he places his mer-
chandise in the most inconvenient
arrangement possible, forcing his
customers to pass through parts
of the store where they otherwise
wouldn't set foot, and which are
mined with temptations for im-
pulse shopping.
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We can then write the following 6 x 6 transition matrix, indicating the prob-

ability of going from one arrangement to another:

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

(1,2.3) P, 0 P2 0 P3 0

(1,3,2) 0 P1 P2 0 P3 0

(2,1.3) P, 0 P2 0 0 P3

(2, 3,1) P, 0 0 P2 0 P3

(3,1, 2) 0 P1 0 P2 P3 0

(3,2,1) 0 Pt 0 P2 0 P3

Now say you start with the fourth arrangement, (2,3,1). Multiplying the line
matrix (0, 0, 0, 1. 0: 0) (probability 1 for the fourth choice, 0 for the others) by the
transition matrix T gives the probabilities P1, 0, 0, P2, 0, P3. This is of course
just the 4th row of the matrix. The interesting point here is to explore the
long-term probabilities. At the second step, we would multiply the line matrix
P1, 0, 0, P2, 0, P3 by T; at the third we would multiply that product by T, ... .

If we know actual values for P1, P2, and P3 we can compute the probabilities
for the various configurations after a great many iterations. If we don't know
the probabilities, we can use this system to deduce them from the configuration
of the bookshelf after different numbers of iterations.

This kind of approach is useful in determining efficient storage. How should a
lumber yard store different sizes and types of woods, so as little time as possible
is lost digging out a particular plank from under others? For computers, what
applications should be easier to access than others? Based on the way you use
your computer, how should its operating system store data most efficiently? L

Example 1.2.22 is important for many applications. It introduces no new
theory and can be skipped if time is at a premium, but it provides an enter-
taining setting for practice at matrix multiplication, while showing some of its
power.

Example 1.2.22 (Matrices and graphs). We are going to take walks on
the edges of a unit cube; if in going from a vertex Vi to another vertex Vk we
walk along it edges, we will say that our walk is of length it. For example, in
Figure 1.2.6. if we go from vertex Vt to V6, passing by V4 and V5, the total
length of our walk is 3. We will stipulate that each segment of the walk has to
take us from one vertex to a different vertex; the shortest possible walk from a
vertex to itself is of length 2.

How many walks of length n are there that go from a vertex to itself, or, more
generally, from a given vertex to a second vertex? As we will see in Proposition
1.2.23, we answer that question by raising to the nth power the adjacency
matrix of the graph. The adjacency matrix for our cube is the 8 x 8 matrix



You may appreciate this result
more if you try to make a rough
estimate of the number of walks
of length 4 from a vertex to itself.
The authors did and discovered
later that they had missed quite
a few possible walks.

As you would expect, all the 1's
in the adjacency matrix A have
turned into 0's in A4; if two ver-
tices are connected by a single
edge, then when n is even there
will be no walks of length n be-
tween them.

Of course we used a computer
to compute this matrix. For all
but simple problems involving ma-
trix multiplication, use Matlab or
an equivalent.
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whose rows and columns are labeled by the vertices V1..... Vs, and such that
the i, jth entry is 1 if there is an edge joining V to V and 0 if not, as shown in
Figure 1.2.6. For example, the entry 4, 1 is I (underlined in the matrix) because
there is an edge joining V4 to V; the entry 4,6 is 0 (also underlined) because
there is no edge joining V4 to Vs.

V1 V2 V3 V4 V5 V6 V7 Vs

V, 0 1 0 1 0 1 0 0

V2 1 0 1 0 0 0 1 0
V3 0 1 0 1 0 0 0 1

A=V4 1 0 1 0 1 Q 0 0
V5 0 0 0 1 0 1 0 1

V6 1 0 0 0 1 0 1 0
V7 0 1 0 0 0 1 0 1

Vs 0 0 1 0 1 0 1 0

FIGURE 1.2.6. Left: The graph of a cube. Right: Its adjacency matrix A. If two
vertices V,1 and V, are joined by a single edge, the (i, j)th and (j,i)th entries of the
matrix are 1; otherwise they are 0.

The reason this matrix is important is the following.

Proposition 1.2.23. Fbr any graph formed of vertices connected by edges,
the number of possible walks of length n from vertex V to vertex V, is given
by the i, jth entry of the matrix An formed by taking the nth power of the
graph's adjacency matrix A.

For example, there are 20 different walks of length 4 from V5 to V7 (or vice
versa), but no walks of length 4 from V4 to V3 because

A4 =

21 0 20 0 20 0 20 0
0 21 0 20 0 20 0 20

20 0 21 0 20 0 20 0
0 20 0 21 0 20 0 20

20 0 20 0 21 0 20 0
0 20 0 20 0 21 0 20

20 0 20 0 20 0 21 0
0 20 0 20 0 20 0 21,

Proof. This will be proved by induction, in the context of the graph above;
the general case is the same. Let B. be the 8 x 8 matrix whose i, jth entry is
the number of walks from V to V. of length n, for a graph with eight vertices;
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we must prove B. = An. First notice that B, = A' = A: the number Ai,j is
exactly the number of walks of length 1 from v; to vj.

Next, suppose it is true for n, and let us see it for n + 1. A walk of length
n + I from V. to V must be at some vertex Vk at time n. The number of such
walks is the sum, over all such Vk, of the number of ways of getting from Vi to
Vk in n steps, times the number of ways of getting from Vk to Vj in one step.
This will be 1 if V,, is next to Vj, and 0 otherwise. In symbols, this becomes

(Bn+1),,j = E (Bn)i,k (Bl)k,j

.r No. wNo. of
wavs

Nto No. w eye k to
i to j in n+l steps for all kin n steps j in I step

vertices k

B

(A')i,k 1-1-1 A' ' )i j.
inductive def. DeC,

hypothesis fA

Like the transition matrices of
probability theory, matrices repre-
senting the length of walks from
one vertex of a graph to another
have important applications for
computers and multiprocessing.

which is precisely the definition of An+t

1.2.19

Above, what do we mean by A°? If you look at the proof, you will see that
what we used was

A° _ ((... (A)A)A)A. 1.2.20

r, factors

Exercise 1.2.15 asks you to con-
struct the adjacency matrix for a
triangle and for a square. We
can also make a matrix that al-
lows for one-way streets (one-way
edges), as Exercise 1.2.18 asks you

Matrix multiplication is associative, so you can also put the parentheses any
way you want; for example,

A° = (A(A(A)...)). 1.2.21

In this case, we can see that it is true, and simultaneously make the associativity
less abstract: with the definition above, B°Bm = Bn+m. Indeed, a walk of
length n + m from Vi to Vj is a walk of length n from V to some Vk, followed
by a walk of length in from Vk to Vj. In formulas, this gives

e

(Bn+m)i,j = Y(Bn)i,k(Bm)k,j 1.2.22
k=1

to show.
1.3 WHAT THE ACTORS Do: A MATRIX

AS A TRANSFORMATION

In Section 2.2 we. will see how matrices are used to solve systems of linear
equations, but first let us consider a different view of matrices. In that view,
multiplication of a matrix by a vector is seen as a linear transformation, a
special kind of mapping. This is the central notion of linear algebra, which



The words mapping (or map)
and function are synonyms, gen-
erally used in different contexts.
A function normally takes a point
and gives a number. Mapping is a
more recent word; it was first used
in topology and geometry and has
spread to all parts of mathemat-
ics. In higher dimensions, we tend
to use the word mapping rather
than function, but there is noth-
ing wrong with calling a mapping
from 1W5 -. 1W.5 a function.

FIGURE 1.3.1.
A mapping: every point on the

left goes to only one point on the
right

FIGURE 1.3.2.
Not a mapping: not well de-

fined at a, not defined at b.

The domain of our mathemati-
cal "final grade function" is R"; its
range is R. In practice this func-
tion has a "socially acceptable"
domain of the realistic grade vec-
tors (no negative numbers, for ex-
ample) and also a "socially accept-
able" range, the set of possible fi-
nal grades. Often a mathemati-
cal function modeling a real sys-
tem has domain and range consid-
erably larger than the realistic val-
ues.
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allows us to put matrices in context and to see them as something other than
"pushing numbers around."

Mappings

A mapping associates elements of one set to elements of another. In common
speech, we deal with mappings all the time. Like the character in Moliere's play
Le Bourgeois Gentilhomme, who discovered that he had been speaking prose
all his life without knowing it, we use mappings from early childhood, typically
with the word "of" or its equivalent: "the price of a book" goes from books to
money; "the capital of a country" goes from countries to cities.

This is not an analogy intended to ease you into the subject. "The father of"
is a mapping. not "sort of like" a mapping. We could write it with symbols:
f(x) = y where x = a person and y = that person's father: ((John Jr.) =
John. (Of course in English it would be more natural to say, "John Jr.'s father"
rather than "the father of John Jr." A school of algebraists exists that uses
this notation: they write (x)f rather than f(x).)

The difference between expressions like "the father of" in everyday speech

and mathematical mappings is that in mathematics one must be explicit about
things that are taken for granted in speech.

Rigorous mathematical terminology requires specifying three things about a
mapping:

(1) the set of departure (the domain),
(2) the set of arrival (the range),
(3) a rule going from one to the other.

If the domain of a mapping M is the real numbers 118 and its range is the
rational numbers Q, we denote it M : IW - Q, which we read "M from R to
Q." Such a mapping takes a real number as input and gives a rational number
as output.

What about a mapping T : 118" RI? Its input is a vector with n entries;
its output is a vector with m entries: for example, the mapping from 1W" to 118
that takes n grades on homework, tests, and the final exam and gives you a
final grade in a course.

The rule for the "final grade" mapping above consists of giving weights to
homework, tests, and the final exam. But the rule for a mapping does not
have to be something that can be stated in a neat mathematical formula. For
example, the mapping M : 1 --. 1W that changes every digit 3 and turns it into
a 5 is a valid mapping. When you invent a mapping you enjoy the rights of an
absolute dictator; you don't have to justify your mapping by saying that "look,
if you square a number x, then multiply it by the cosine of 2a, subtract 7 and
then raise the whole thing to the power 3/2, and finally do such-and-such, then
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if x contains a 3, that 3 will turn into a 5. and everything else will remain

unchanged." There isn't any such sequence of operations that will "carry out"

your mapping for you. and you don't need ones
A mapping going "from" IR" "to" ?:is said to be defined on its domain R:".

A mapping in the mathematical sense must be well defined: it must be defined

at every point of the domain, and for each, must return a unique element of

the range. A mapping takes you, unambiguously, from one element of the set
of departure to one element of the set of arrival, as shown in Figures 1.3.1 and
1.3.2. (This does not mean that you can go unambiguously (or at all) in the
reverse direction: in Figure 1.3.1, going backwards from the point din the range
will take you to either a or b in the domain, and there is no path from c in the
range to any point in the domain.)

Not all expressions "the this of the that" are true mappings in this sense.
"The daughter of." as a mapping from people to girls and women. is not ev-
erywhere defined. because not everyone has a daughter; it. is not well defined
because some people have more than one daughter. It is not a mapping. But
"the number of daughters of," as a mapping from women to numbers, is every-
where defined and well defined, at a particular time. And "the father of," as
a mapping from people to men, is everywhere defined, and well defined; every
person has a father, and only one. (We speak here of biological fathers.)

Note that in correct mathemat-
ical usage, "the father of" as a
mapping from people to people is
not the same mapping as "the fa-
ther of" as a mapping from peo-
ple to men. A mapping includes a
domain, a range, and a rule going
from the first to the second.

Remark. We use the word "range" to mean the space of arrival, or "target
space"; some authors use it to mean those elements of the arrival space that are
actually reached. In that usage, the range of the squaring function F : f;<. R'

given by F(x) = r2 is the non-negative real numbers, while in our usage the
range is R. We will see in Section 2.5 that what these authors call the range,
we call the image. As far as we know, those authors who use the word range to
denote the image either have no word for the space of arrival, or use the word
interchangeably to mean both space of arrival and image. We find it useful to
have two distinct words to denote these two distinct objects. A

6Here's another "pathological" but perfectly valid mapping: the mapping M : 1k -+
that takes every number in the interval (0, lj that can be written in base 3 without

using l's, changes every 2 to a 1, and then considers the result as a number in base 2.
If the number has a 1, it changes all the digits after the first 1 into 0's and considers
the result as a number in base 2. Cantor proposed this mapping to point out the need
for greater precision in a number of theorems, in particular the fundamental theorem
of calculus. At the time it was viewed as pathological but it turns out to he important
for understanding Newton's method for cubic polynomials in the complex. Mappings
just like it occur everywhere in complex dynamics--a surprising discovery of the early
1980's.
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FIGURE 1.3.3.

Existence and uniqueness of solutions

Given a mapping T, is there a solution to the equation T(x) = b, for every b in
the range (set of arrival)? If so, the mapping is said to be onto, or surjective.
"Onto" is thus a way to talk about the existence of solutions. The mapping
"the father of" as a mapping from people to men is not onto, because not all
men are fathers. There is no solution to the equation "The father of x is Mr.
Childless." An onto mapping is shown in Figure 1.3.3.

A second question of interest concerns uniqueness of solutions. Is there at

most one solution to the equation T(x) = b for every b in the set of arrival or,,
An onto mapping,

point.
ot1-1, a

might there be many? If there is at most one solution to the equation T(x) = b,
and b go to

the
he same .

"

FIGURE 1.3.4.
A mapping: 1-1, not onto, no

points go to a or to b.

"Onto" is a way to talk about
the existence of solutions: a map-
ping T is onto if there is a solution
to the equation T(x) = 6, for every
b in the set of arrival (the range
of T). "One to one" is a way to
talk about the uniqueness of solu-
tions: T is one to one if for every
b there is at most one solution to
the equation T(x) = b.

the mapping T is said to be one to one, or injective. The mapping the father
of" is not one to one. There are, in fact, four solutions to the equation "The
father of x is John Hubbard." But the mapping "the twin sibling of," as a
mapping from twins to twins, is one to one: the equation "the twin sibling of x
= y" has a unique solution for each y. "One to one" is thus a way to talk about
the uniqueness of solutions. A one to one mapping is shown in Figure 1.3.4.

A mapping T that is both onto and one to one (also called bijective) has
an inverse mapping T-1 that undoes it. Because T is onto, T-1 is everywhere
defined; because T is one to one, T-1 is well defined. So T-1 qualifies as a
mapping. To summarize:

Definition 1.3.1 (Onto). A mapping is onto (or surjective) if every element
of the set of arrival corresponds to at least one element of the set of departure.

Definition 1.3.2 (One to one). A mapping is one to one (or injective) if
every element of the set of arrival corresponds to at most one element of the
set of departure.

Definition 1.3.3 (Bijective). A mapping is bijective if it is both onto and
one to one. A bijective mapping is invertible.

Example 1.3.4 (One to one and onto). The mapping "the Social Security
number of" as a mapping from Americans to numbers is not onto because there
exist numbers that aren't Social Security numbers. But it is one to one: no two
Americans have the same Social Security number.

The mapping f(x) = x2 from real numbers to real positive numbers is onto
because every real positive number has a real square root, but it is not one
to one because every real positive number has both a positive and a negative
square root. L
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Composition of mappings

Often one wishes to apply, consecutively, more than one mapping. This is

known as composition.

Definition 1.3.5 (Composition). The composition fog of twomapping,

f and g, is
A composition is written from

left to right but computed from
right to left: you apply the map-
ping 9 to the argument x and
then apply the mapping f to the
result. Exercise 1.3.12 provides
some practice.

When computers do composi-
tions it is not quite true that com-
position is associative. One way of
doing the calculation may be more
computationally effective than an-
other; because of round-off errors,
the computer may even come up
with different answers, depend-
ing on where the parentheses are
placed.

Although composition is asso-
ciative, in many settings,

((f o g) o h) and (f o (g o h))

correspond to different ways of
thinking. Already, the "father
of the maternal grandfather" and
"the paternal grandfather of the
mother" are two ways of thinking
of the same person; the author of a
biography might use the first term
when focusing on the relationship
between the subject's grandfather
and that grandfather's father, and
use the other when focusing on the
relationship between the subject's
mother and her grandfather.

(f o g) (x) = f(g(x))
1.3.1

Example 1.3.6 (Composition of "the father of and "the mother of").
Consider the following two mappings from the set of persons to the set of persons
(alive or dead): F, "the father of," and M, "the mother of." Composing these
gives:

F o M (the father of the mother of = maternal grandfather of)

M o F (the mother of the father of = paternal grandmother of).

It is clear in this case that composition is associative:

Fo(FoM)=(FoF)oM. 1.3.2

The father of David's maternal grandfather is the same person as the paternal
grandfather of David's mother. Of course it is not commutative: the "father of
the mother" is not the "mother of the father.") 0

Example 1.3.7 (Composition of two functions). If f (x) = x - 1, and
y(x) = x', then

(f o 9)(x) = f(g(x)) = x2 - 1. A 1.3.3

Proposition 1.3.8 (Composition is associative). Composition is asso-
dative:

fogoh=(fog)oh=fo(poh). 1.3.4

Proof. This is simply the computation

((f o 9) o h)(x) = (f o 9)(h(x)) = f(9(h(x))) whereas

(10(90 h)) (x) = f ((9 o h)(x)) = f (9(h(x))). 1.3.5

You may find this "proof" devoid of content. Composition of mappings is
part of our basic thought processes: you use a composition any time you speak
of "the this of the that of the other."
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The words transformation and
mapping are synonyms, so we
could call the matrix A of Figure
1.3.5 a mapping. But in linear al-
gebra the word transformation is
more common. In fact, the matrix
A is a linear transformation, but
we haven't formally defined that
term yet.

Mathematicians usually denote
a linear transformation by its as-
sociated matrix; rather than say-
ing that the "dinners to shopping
list" transformation is the multi-
plication Ab = c', they would call
this transformation A.

Matrices and transformations

A special class of mappings consists of those mappings that are encoded by
matrices. By "encoded" we mean that multiplication by a matrix is the rule
that turns an input vector into an output vector: just as f(x) = y takes a
number x and gives y, A'7 = w takes a vector v' and gives a vector w.

Such mappings, called linear transformations, are of central importance in
linear algebra (and every place else in mathematics). Throughout mathemat-
ics, the constructs of central interest are the mappings that preserve whatever
structure is at hand. In linear algebra, "preserve structure" means that you can
first add, then map, or first map, then add, and get the same answer; similarly,
first multiplying by a scalar and then mapping gives the same result as first
mapping and then multiplying by a scalar.) One of the great discoveries at the
end of the 19th century was that the natural way to do mathematics is to look
at sets with structure, such as R°, with addition and multiplication by scalars,
and to consider the mappings that preserve that structure.

We give a mathematical definition of linear transformations in Definition
1.3.11, but first let's see an example.

Example 1.3.9 (Frozen dinners). In a food processing plant making three
types of frozen dinners, one might associate the number of dinners of various
sorts produced to the total ingredients needed (beef, chicken, noodles, cream,
salt, ... ). As shown in Figure 1.3.5, this mapping is given by multiplication (on
the left) by the matrix A, which gives the amount of each ingredient needed for
each dinner: A tells how to go from b, which tells how many dinners of each kind
are produced, to the product 46, which tells the total ingredients needed. For
example, 21 pounds of beef are needed, because (.25 x 60)+(.20 x 30)+(0 x 40) _
21. For chicken, (0 x 60) + (0 x 30) + (.45 x 40) = 18.

e Dinners
produced

60 stroganoff
30 ravioli

40 fried chicken

Ihe. of beef

lbs. of chicken H
21 lb of beef

18 lb of chicken
... lb of noodles

lb of rice

lbs. of noodles -+
lbs. of rice --p

.25 .20

0 0

liters of cream -
beef stroganoff ravioli fried chicken

A Ingredients per dinner

liters of cream

e Total needed

FIGURE 1.3.5. The matrix A is the transformation associating the number of dinners
of various sorts produced to the total ingredients needed. o
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Example 1.3.10 (Frozen foods: composition). For the food plant of
Example 1.3.9, one might make a matrix D, 1 high and n wide (n being the
total number of ingredients), that would list the price of each ingredient, per
pound or liter. The product DA would then tell the cost of each ingredient in

each dinner, since A tells how much of each ingredient is in each dinner. The
product (DA)b would give the total cost of the ingredients for all b' dinners.
We could also compose these transformations in a different order, first figuring
how much of each ingredient we need for all b' dinners-the product Ab. Then,
using D, we could figure the total cost: D(Ab'). Clearly, (DA)b = D(Ab'),
although the two correspond to slightly different perspectives. A

Notice that matrix multiplica-
tion emphatically does not allow
for feedback. For instance, it does
not allow for the possibility that
if you buy more you will get a
discount for quantity, or that if
you buy even more you might cre-
ate scarcity and drive prices up.
This is a key feature of linearity,
and is the fundamental weakness
of all models that linearize map-
pings and interactions.

T(2x)-2T(x)

'x
FIGURE 1.3.6.

For any linear transformation

T,

T(ax) = aT(x).

Real-life matrices

We kept Example 1.3.9 simple, but you can easily see how this works in a more
realistic situation. In real life-modeling the economy, designing buildings,
modeling airflow over the wing of an airplane-vectors of input data contain
tens of thousands of entries, or more, and the matrix giving the transformation
has millions of entries.

We hope you can begin to see that a matrix might be a very useful way of
mapping from R" to IR'". To go from lRs, where vectors all have three entries,

v = v2 , to R1, where vectors have four entries,

WI

W2
W3 ,

W4

you would

multiply i on the left by a 4 x 3 matrix:

V3L J
.. ... .. 101

... ... ... 102

... ... ... W3
wa

1.3.6

One can imagine doing the same thing when the n and m of IR" and IR"' are
arbitrarily large. One can somewhat less easily imagine extending the same idea
to infinite-dimensional spaces, but making sense of the notion of multiplication
of infinite matrices gets into some deep water, beyond the scope of this book.
Our matrices are finite: rectangular arrays, m high and n wide.

Linearity

The assumption that a transformation is linear is the main simplifying assump-
tion that scientists and social scientists (especially economists) make to under-
stand their models of the world. Roughly speaking, linearity means that if you
double the input, you double the output; triple the input, triple the output ... .
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The Italian mathematician Sal-
vatore Pincherle, one of the early
pioneers of linear algebra, called
a linear transformation a distribu-
tive transformation (opernzioni
distributive), a name that is per-
haps more suggestive of the formu-
las than is "linear."

Every linear transformation is
given by a matrix. The matrix can
be found by seeing how the trans-
formation acts on the standard ba-
sis vectors

1 0
0

0
0 1

In Example 1.3.9, the transformation A is linear: each frozen beef stroganoff
dinner will require the same amount of beef, whether one is making one dinner
or 10,000. We treated the price function D in Example 1.3.10 as linear, but in
real life it is cheaper per pound to buy 10,000 pounds of beef than one. Many,
perhaps most, real-life problems are nonlinear. It is always easier to treat them
as if they were linear; knowing when it is safe to do so is a central issue of

applied mathematics.

Definition 1.3.11 (Linear transformation). A linear transformation
T : R" --+ 1R'" is a mapping such that for all scalars a and all V, w E lR",

T(v + w) = T(v) + T(') and T(ail) = aT (8). 1.3.7

The two formulas can be combined into one (where b is also a scalar):

T(av" + bw) = aT(v") + bT(*). 1.3.8

Example 1.3.12 (Linearity at the checkout counter). Suppose you need
to buy three gallons of cider and six packages of doughnuts for a Halloween
party. The transformation T is performed by the scanner at the checkout
counter, reading the UPC code to determine the price. Equation 1.3.7 is noth-
ing but the obvious statement that if you do your shopping all at once, it will
cost you exactly the same amount as it will if you go through the checkout line
nine times, once for each item:

T(3gal.cider+6 pkg. doughnuts) =3(T(1gal.cider))+6(T(1pkg. doughnuts)),

unless the supermarket introduces nonlinearities such as "buy two, get one free."

Example 1.3.13 (A matrix gives a linear transformation). Let A be an
m x n matrix. Then A defines a linear transformation T : IlI:" - iRm by matrix
multiplication:

T(V) = A. 1.3.9

Such mappings are indeed linear, because A(' +w) = AV + A* and A(CV)
cA3, as you are asked to check in Exercise 1.3.14. t,

The crucial result of Theorem 1.3.14 below is that every linear transformation
1R" - iR" is given by a matrix, which one can construct by seeing how the
transformation acts on the standard basis vectors. This is rather remarkable. A
priori the notion of a transformation from 1R" to 1R" is quite vague and abstract;
one might not think that merely by imposing the condition of linearity one could
say something so precise about this shapeless set of mappings as saying that
each is given by a matrix.
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To find the matrix for a linear
transformation, ask: what is the
result of applying that transforma-
tion to the standard basis vectors?
The ith column of the matrix for
a linear transformation T is T(e,);
to get the ith column of the ma-
trix, just ask: what does the trans-
formation do to e',?

I

FIGURE 1.3.7.

The orthogonal projection of
the point I

/
I onto the x-axis

is the point I /0) . "Projection"

means we draw a line from the
point to the x-axis. "Orthogonal"
means we make that line perpen-
dicular to the x-axis.

FIGURE 1.3.8.
Every point on one face is re-

Theorem 1.3.14 (Linear transformations given by matrices). Every
linear transformation T :1R" - IItm is given by multiplication by the m x n
matrix [TJ, the ith column of which isT(ei).

Putting the columns together, this gives T(N7) = (21 -7. This means that
Example 1.3.13 is "the general" linear transformation in R".

Proof. Start with a linear transformation T : P" - 1Rm, and manufacture the
matrix IT] according to the rule given immediately above: the ith column of
[T] is T(ei). We may write any vector v E R" in terms of the standard basis
vectors:

vl 1 0

V2 0 1

v1 +v2 0 i ... } vn

vn 0 0

8, aj

We can write this more succinctly:

v" = v1e'1 + v2e'2 + + vneen, or, with sum notation,

Then by linearity,
n n

T(V) = T2viii = Fv1T(e ),
i=1 i=1

which is precisely the column vector [TJv.

0

1.3.10

0
1

e"

n
v" _ r viei. 1.3.11

i=1

1.3.12

If this isn't apparent, try translating it out of sum notation:

n T(4,) T(52) T(8")
fIfrr

T(V)viT(ei)=v1 [] +v2 L] +...+vn [}
Ift

s_I \r 4 `\r
Of I2

2of Ir11l.
not 7071,

1.3.13

fiected to the corresponding point Example 1.3.15 (Finding the matrixof & linear transformation). What
of the other. is the matrix for the transformation that takes any point in 1R2 and gives its
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orthogonal (perpendicular) projection on the x-axis, as illustrated in Figure
1.3.7? You should assume this transformation is linear. Check your answer in

the footnote below-7
What is the orthogonal projection on the line of equation x = y of the point

(_1)? Again, assume this is a linear transformation, and check below .8

Example 1.3.16 (Reflection with respect to a line through the origin).
Let us show that the transformation that reflects a point through a line through
the origin is linear. This is the transformation that takes a point on one side
of the line and moves it perpendicular to the line, crosses it, and continues the
same distance away from the line, as shown in Figure 1.3.8.

We will first assume that the transformation T is linear, and thus given by a
matrix whose ith column is T(e'i). Again, all we have to do is figure out what
the T does to e'i and g2. We can then apply that transformation to any point
we like, by multiplying it by the matrix. There's no need to do an elaborate
computation for each point.

To obtain the first column of our matrix we thus consider where e'1 is mapped
to. Suppose that our line makes an angle 8 (theta) with the x-axis, as shown

in Figure 1.3.9. Then gt is mapped to
L

cos 261 To get the second column, we
Lsin20 J

'The matrix is I 0], which you will note is consistent with Figure 1.3.7, since

[ 1 0] [ 'I = [ 1 ] . If you had trouble with this question, you are making life too
0 01 0

hard for yourself. The power of Theorem 1.3.14 is that you don't need to look for the
transformation itself to construct its matrix. Just ask: what is the result of applying
that transformation to the standard basis vectors? The ith column of the matrix for
a linear transformation T is T(e'i). So to get the first column of the matrix, ask, what.

projected ontodoes the transformation do to e"i? Since ei lies on the x-axis, it

N.itself. The first column of the transformation matrix is thus 'i = I OJ. The second

standard basis vector, 42, lies on the y-axis and is projected onto the origin, so the

second column of the matrix is 0
[01

1/2 1/2aThe matrix for this linear transformation is 11/2
1/21 ' since the perpendicular

line from 10] to the line off equation x = y intersects that line at 11/2 I , as does

the perpendicular line from I I . To determine the orthogonal projection of the point

1 _ i I/, we multiply r 11/2/2
fill/2,

[ 1 ] = [ 1, Note that we have to consider the

point /f 3 I as a vector in order to carry out the multiplication; we can't multiply a
\\\

matrix and a point.
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see that e2 is mapped to

cos(2B-90°) _ sin26
sin (20 - 90°), [- cos20

So the "reflection" matrix is
ic2

T(c,) Jos I
in 20J

r cos 20 sin 201

sin 20 -cos 20

FIGURE 1.3.9.
The reflection maps

1 c 2B
e", _ [O]

to
sin
os 2B]

and

_ (0 sin2Be2-f1 to I-cos2BJ.

Exercise 1.3.15 asks you to use
composition of the transformation
in Example 1.3.17 to derive the
fundamental theorems of trigo-
nometry.

,ei

For example, we can compute that the point with coordinates x = 2, y = 1

1.3.14

reflects to the point
2 cos 20 + sin 20 1 since

12sin26-cos 20

cos 20 sin 20l 2 2 cos 20 + sin 20
[ 2 sin 20 - cos 2B[ sin 20 -cos 20 J L i I

1.3.15

sin 20T("2-cos
28

1.3.16

The transformation is indeed linear because given two vectors v and w, we
have T(v + w) = T(v') +T(w), as shown in Figure 1.3.10. It is also apparent
from the figure that T(cv") = cT(v"). A

Example 1.3.17 (Rotation by an angle 0). The matrix giving the trans-
formation R ("rotation by 0 around the origin") is

[R(e1),R(e2)J =
f cos0 -sin01

.
Lsin0 cosB

The transformation is linear, as shown in Figure 1.3.11: rather than thinking
of rotating just the vectors v" and w, we can rotate the whole parallelogram
P('',*) that they span. Then R(P(v,w)) is the parallelogram spanned by
R(v), R(w), and in particular the diagonal of R(P(v, w)) is R(v + w). 0

FIGURE 1.3.10. Reflection is linear: the sum of the reflections is the reflection of
the sum.
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Exercise 1.3.13 asks you to find the matrix for the transformation R3 --* R3

that rotates by 30° around the y-axis.

Now we will see that composition corresponds to matrix multiplication.

Theorem 1.3.18 (Composition corresponds to matrix multiplica-
tion). Suppose S : 1R" .1R"' and T : IR1 1Rt are linear transformations
given by the matrices [S] and [T] respectively. Then the matrix of the com-
position T o S equals the product IT] IS) of the matrices of S and T:

IT o S) = [T](S]. 1.3.17

Proof. This is a statement about matrix multiplication and cannot be proved
without explicit reference to how matrices are multiplied. Our only references
to the multiplication algorithm will be the following facts, both discussed in
Section 1.1.

4iv

(1) Aei is the ith column of A (as illustrated by Example 1.2.5);
(2) the ith column of AB is Abi, where b; is the ith column of B (as

illustrated by Example 1.2.6).
FIGURE 1.3.11. Now to prove the theorem; to make it unambiguous when we are applying

Rotation is linear: the sum of a transformation to a variable and when we are multiplying matrices, we will
the rotations is the rotation of the write matrix multiplication with a star *.
sum.

Many mathematicians would
say that Theorem 1.3.18 justifies
the definition of matrix multipli-
cation. This may seem odd to the
novice, who probably feels that
composition of linear mappings is
more baroque than matrix multi-
plication.

Exercise 1.3.16 asks you to con-
firm by matrix multiplication that
reflecting a point across the line,
and then back again, lands you
back at the original point.

The composition (T o S) is itself a linear transformation and thus can be
given by a matrix, which we will call IT o S], accounting for the first equality
below. The definition of composition gives the second equality. Next we replace
S by its matrix (S], and finally we replace T by its matrix:

[To S]* e'i = (T o T(S(e-i)) = T((SJ * e";) _ ITJ * ([S] * e,). 1.3.18

So the first term in this sequence, IT o S] * e":, which is the ith column of

1.3.19

Each column of IT o 5] is equal to the corresponding column of (T] * [S], so
the two matrices are equal. 0

IT o SJ by fact (1), is equal to

[T] * the ith column of [S],

which is the ith column of [T] * [S] by fact (2).

We gave a computational proof of the associativity of matrix multiplication
in Proposition 1.2.8; this associativity is also an immediate consequence of
Theorem 1.3.18.

Corollary 1.3.19. Matrix multiplication is associative: if A, B, Care matri-
ces such that the matrix multiplication (AB) C is allowed, then so is A (BC),
and they are equal.

Proof. Composition of mappings is associative. 0
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1.4 GEOMETRY OF R"

... To acquire the feeling for calculus that is indispensable even in the
most abstract speculations, one must have learned to distinguish that
which is "big" from that which is "little," that which is "preponderant"
and that which is "negligible. "-Jean Dieudonne, Calcul infinitesimal

Whereas algebra is all about equalities, calculus is about inequalities: about
things being arbitrarily small or large, about some terms being dominant or
negligible compared to others. Rather than saying that things are exactly true,
we need to be able to say that they are almost true, so they "become true in
the limit."

For example, (5 + h)3 _ 125 + 75h + ..., so if h = .01, we could use the
approximation

(5.01)3 125 + 125.75. 1.4.1

The issue then is to quantify the error.
Such notions cannot be discussed in the language about R" that has been

developed so far: we need lengths of vectors to say that vectors are small, or
that points are close to each other. We will also need lengths of matrices to say
that linear transformations are "close" to each other. Having a notion of dis-
tance between transformations will be crucial in proving that under appropriate
circumstances Newton's method converges to a solution (Section 2.7).

In this section we introduce these notions. The formulas are all more or
less immediate generalizations of the Pythagorean theorem and the cosine law,
but they acquire a whole new meaning in higher dimensions (and more yet in
infinitely many dimensions).

The dot product

The dot product in R" is the basic construct that gives rise to all the geometric
notions of lengths and angles.

Definition 1.4.1 (Dot product). The dot product it y' of two vectors
z, y7 E R" is:

Xi Ih

X2 ih
The dot product is also known x . Y = =x11/1 + Z2y2 + + ynY". 1.4.2

as the standard inner product.
xn 1/n

For example,

1 1

2 0 =(1x1)+(2x0)+(3x1)=4.
3 1
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The dot product is obviously commutative:
1.4.3

1.4.4

The dot product of two vectors can be written as the matrix product of the

transpose of one vector by the other: x' Y =:2TY = y'TR.

and it is not much harder to check that it is distributive, i.e., that

(Yl+Y2)=(X'91)+(x"'Y2), and

(x"1 +X2) 9 = (X1 Y) + (X2 Y)-

is the same as
yn

(xi x2 ... xn] (x11/1
+x2Y2+..+xnyn].

transpose Cr ATY

1.4.5

What we call the length of a
vector is often called the Euclidean
norm.

Some texts use double lines to
denote the length of a vector: ]]d]]
rather than ]d]. We reserve double
lines to denote the norm of a ma-
trix, defined in Section 2.8. Please
do not confuse the length of a vec-
tor with the absolute value of a
number. In one dimension, the
two are the same; the "length" of
the one-entry vector 8 = (-2] is

22=2.

Conversely, the i, jth entry of the matrix product AB is the dot product of
the jth column of B and the transpose of the ith row of A. For example, the
entry 1, 2 of AB below is 5, which is the dot product of the transpose of the
first row of A and the second column of B:

B

[ lI IJ

[3 4]
[3 5

3]

,

A AB

5=
[2] [1i

transpose, 2nd col.
let row Of A of B

1.4.6

Defhnition 1.4.2 (Length of a vector). The length 1:91 of a vector R is

(ji]_ = xi+xz+...+xn. 1.4.7

What is the length (d( ofd = 1 ?9

Length and dot product: geometric interpretation in 1(82 and 23

In the plane and in space, the length of a vector has a geometric interpretation:
(X( is then the ordinary distance between 0 and :9. As indicated by Figure 1.4.1,

9Its length is ]v] = 12 + 1 + 1 = f.

1/1

1/2



Definition 1.4.2 is a version of
the Pythagorean theorem: in two

dimensions, the vector z = I xl
x2

is the hypotenuse of a right trian-
gle of which the other two sides
have lengths x, and x2:

X2 = x11 + x21.

FIGURE 1.4.2.
The cosine law gives

IX-311= IX12+1311-2191131cosa.
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this is exactly what the Pythagorean theorem says in the case of the plane; in
space, this it is still true, since OAB is still a right triangle.

FIGURE 1.4.1. In the plane, the length of the vector with coordinates (a, b) is the

ordinary distance between 0 and the point 1 ba].. In space, the length of the vector with

coordinates (a, b, c) is the ordinary distance between 0 and the point with coordinates

(a,b,c).

The dot product also has an interpretation in ordinary geometry:

Proposition 1.4.3 (Geometric interpretation of the dot product).
If rT, 3 are two vectors in Ills or Ps, then

1.4.8

where a is the angle between it and Y.

Remark. Proposition 1.4.3 says that the dot product is independent of the
coordinate system we use. You can rotate a pair of vectors in the plane, or in
space, without changing the dot product, as long as you don't change the angle
between them. 0
Proof. This is an application of the cosine law from trigonometry, which says
that if you know all of a triangle's sides, or two sides and the angle between
them, or two angles and a side, then you can determine the others. Let a
triangle have sides of length a, b, c, and let ry be the angle opposite the side with
length c. Then

c2 = a2 + b2 - 2ab cosy. Cosine Law 1.4.9

Consider the triangle formed by the three vectors 9, y and if - y', and let a be
the angle between :W and y', as shown in Figure 1.4.2.



If you don't see how we got
the numerator in Equation 1.4.12,
note that the dot product of a
standard basis vector e"; and any
vector v' is the ith entry of V. For
example, in 1R3,

J'C2

= IV3 I010=0
+V2+0= V2.

FIGURE 1.4.3.
The projection of $ onto the

line spanned by 1 is z'. This gives

:9 I9I131 co+a

= I9lwI131 = IXIIi.
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Applying the cosine law, we find

Ix'-3712=1X12+13712-21X11371cosa. 1.4.10

But we can also write (remembering that the dot product is distributive):

Ix"-YI2=(X-37).(X-Y')=
=(XX)-(37'X)-(X'37)+(37''37)

This leads to

1.4.11

X 37 = IXI137I toss, (1.4.8)

which is the formula we want.

Example 1.4.4 (Finding an angle). What is the angle between the diagonal
of a cube and any side? Let us assume our cube is the unit cube 0 < z, y, x < 1,

so that the standard basis vectors el, e"2, "g are sides, and the vector

Id
is a diagonal. The length of the diagonal is Idl = f, so the required angle a
satisfies

1
oos a = ill _ = 735

1.4.12

Thus a = arccos f/3 ru 54.7°.

Corollary 1.4.5 restates Proposition 1.4.3 in terms of projections; it is illus-
trated by Figure 1.4.3.

Corollary 1.4.5 (The dot product in terns. of projections). I(9 and
37 are two vectors in R2 or IR2, then X 37 is the product of IXI and the signed
length of the projection of 37 onto the line spanned by X. The signed length
of the projection is positive if it points in the direction of it, it is negative if
it points in the opposite direction.

Defining angles between vectors in ur

We want to use Equation 1.4.8 backwards, to provide a definition of angles in
1R1, where we can't invoke elementary geometry when n > 3. Thus, we want to
define

a = arccos i.e., define a so that cosy =
1'.11'w

1.4.13
1

vw



/LV
FwuKE 1.4.4.

Left to right: a positive dis-
criminant gives two roots; a zero
discriminant gives one root; a neg-
ative discriminant gives no roots.
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But there's a problem: how do we know that

1.4.14
WWw

so that the arccosine exists? Schwarz's inequality provides the answer.'o It is
an absolutely fundamental result regarding dot products.

Theorem 1.4.6 (Schwarz's Inequality). For any two vectors S and w,

I-7 *1 5 ICI A. 1.4.15

The two sides are equal if and only if i or * is a multiple of the other by a
scalar.

Proof. Consider the function Is+twI2 as a function of t. It is a second degree
polynomial of the form at2 + bt + c; in fact,

Iv + t rV 12 = Itw + -712 = Iwl2t2 + 2(' w)t + IVI2. 1.4.16

All its values are > 0, since it is the left-hand term squared; therefore, the
graph of the polynomial must not cross the t-axis. But remember the quadratic
formula you learned in high school: for an equation of the form ate+bt+c = 0,

t= -b
2a

1.4.17

If the discriminant (the quantity b2 -4ac under the square root sign) is positive,
the equation will have two distinct solutions, and its graph will cross the t-axis
twice, as shown in the left-most graph in Figure 1.4.4.

Substituting 1R'I2 for a, 2V-* for b and I112 for c, we see that the discriminant
of Equation 1.4.16 is

4(' w)2 - 4IWI21w12. 1.4.18

All the values of Equation 1.4.16 are > 0, so its discriminant can't be positive:

4(v' w)2 -4 JV121*12 < 0, and therefore Iv wI < Iv'IIw1,

which is what we wanted to show.
The second part of Schwarz's inequality, that 1V w1 = IVI IwI if and only

if V or w is a multiple of the other by a scalar, has two directions. If * is a
multiple of v', say * = tv, then

IV . w1= ItllV12 = (IVI)(ItIIUU = IfII*I, 1.4.19

'OA more abstract form of Schwarz's inequality concerns inner products of vectors
in possibly infinite-dimensional vector spaces, not just the standard dot product in
ie. The general case is no more difficult to prove: the definition of an abstract inner
product is precisely what is required to make this proof work.
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The proof of Schwarz's inequal-
ity is clever; you can follow it
line by line, like any proof which
is written out in detail, but you
won't find it by simply following
your nose! There is considerable
contention for the credit: Cauchy
and Bunyakovski are often consid-
ered the inventors, particularly in
France and in Russia.

We see that the dot product of
two vectors is positive if the angle
between them is less than a/2, and
negative if it is bigger than a/2.

We prefer the word orthogonal
to its synonym perpendicular for
etymological reasons. Orthogonal
comes from the Greek for "right
angle," while perpendicular comes
from the Latin for "plumb line,"
which suggests a vertical line. The
word normal is also used, both
as a noun and as an adjective, to
express a right angle.

FIGURE 1.4.5.
The triangle inequality:

Ii+91<191+191-

so that Schwarz's inequality is satisfied as an equality.

Conversely, if Jv' w1 = IvIJwJ, then the discriminant in Equation 1.4.18 is
zero, so the polynomial has a single root to:

It7+ tow12 = 0, i.e., v = -tow 1.4.20

and v" is a multiple of*.

Schwarz's inequality allows us to define the angle between two vectors, since
we are now assured that

-1< as-b <1,
Iallbl

(1.4.14)

Definition 1.4.7 (The angle between two vectors). The angle between
two vectors i and w in R" is that angle a satisfying 0 < a < ir such that

I-7I Iwl
1.4.21

Corollary 1.4.8. Two vectors are orthogonal if their dot product is zero.

Schwarz's inequality also gives us the triangle inequality: when traveling
from London to Paris, it is shorter to go across the English Channel than by
way of Moscow.

Theorem 1.4.9 (The triangle inequality). For any vectors 9 and S7 in

1.4.22

IX+yl2 = IXI2+2X.Y+1812 s Ii12+219I1yl+lyl2 = (IXI+IYI)2, 1.4.23
Schwarz

Ix+yl s I=I+M.

Proof. This inequality is proved by the following computation:

so that Ix" + YI < IXI + IA.

This is called the triangle inequality because it can be interpreted (in the
case of strict inequality, not <) as the statement that the length of one side of
a triangle is less than the sum of the lengths of the other two sides. If a triangle
has vertices 0, x and i+y', then the lengths of the sides are Ii1, Ji+Y-i] = JYJ
and I+Yj, as shown in Figure 1.4.5.
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In some texts, AlCdenotes the
determinant of the matrix A. We
use detA to denote the determi-
nant.

The length IAA is also called
the Minkowski norm (pronounced
MinKOVski). We find it simpler
to call it the length, generalizing
the notion of length of a vector.
Indeed, the length of an n x 1
matrix is identical to the length
of the vector in IR" with the same
entries.

You shouldn't take the word
"length" too literally; it's just a
name for one way to measure ma-
trices. (A more sophisticated mea-
sure, considerably harder to com-
pute, is discussed in Section 2.8.)

Thinking of an m x n matrix
as a point in J<l'nn', we can see
that two matrices A and B (and
therefore, the corresponding linear
transformations) are close if the
length of their difference is small;
i.e., if JA - 81 is small.

Measuring matrices

The dot product gives a way to measure the length of vectors. We will also
need a way to measure the "length" of a matrix (not to be confused with either
its height or its width). There is an obvious way to do this: consider an m x n
matrix as a point in IRnm, and use the ordinary dot product.

Definition 1.4.10 (The length of a matrix). If A is an n x m matrix,
its length Al Cis the square root of the sum of the squares of all its entries:

n m
JA12 = a? j. 1.4.24

i=1 j=1

For example, the length Al Cof the matrix A = I 0 1 ] is f, since 1 + 4 +

0+ 1 = 6. What is the length of the matrix B =
fill

2 1 ?uu

11 0 3

If you find double sum notation confusing, Equation 1.4.24 can be rewritten
as a single sum:

1A12 = a2 j : we sum all ni j for i from 1 to n and j from I to m.

As in the case of the length of a vector, do not confuse the length JAI of a
matrix with the absolute value of a number. (But the length of the I x 1 matrix
consisting of the single entry [n] is indeed the absolute value of n.)

Length and matrix multiplication

We said earlier that the point of writing the entries of rRmn as matrices is
to allow matrix multiplication, yet it isn't clear that this notion of length, in
which a matrix is considered simply as a list of numbers, is in any way related
to matrix multiplication. The following proposition says that it is.

Proposition 1.4.11. (a) If A is an n x m matrix, and b is a vector in R1,
then

IA61 < JAII91. 1.4.25

(b) If A is an n x m matrix, and B is a m x k matrix, then

JABI < JAI JBI. 1.4.26

"IBI =4, since 1+4+0+1+1+9= 16.



Proposition 1.4.11 will soon be-
come an old friend; it is a very use-
ful tool in a number of proofs.

Of course, part (a) is the spe-
cial case of part (b) (where k = 1),
but the intuitive content is suffi-
ciently different that we state the
two parts separately. In any case,
the proof of the second part fol-
lows from the first.

Remark 1.4.12. It follows from
Proposition 1.4.11 that a linear
transformation is continuous. Say-
ing that a linear transformation A
is continuous means that for every
e and every x E lRn, there exists
a 6 such that if I% - YI < 6, then
IAx - Ayj < r. By Proposition
1.4.11,

IAx"-AYI = IA(x"- 7)I <- IAIIX- 7I.
So, set

6 =IAI

Then if we have Iz - YI < 6,

iX-YI <
IAI

and

IAx - Ayj < IAI = e.

We have actually proved more:
the 6 we found did not depend on
x; this means that a linear trans-
formation iR' -. R" is always uni-
formly continuous. The definition
of uniform continuity was given in
Equation 0.2.6. A
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Proof. First note that if the matrix A consists of a single row, i.e., if A = aT
is the transpose of a vector a, the assertion of the theorem is exactly Schwarz's
inequality:

IA6I = la . bl <- IaI IGI = IAI I91 . 1.4.27

IaTbl

The idea of the proof is to consider that the rows of A are the transposes of
vectors a1, ... An, as shown in Figure 1.4.6, and to apply the argument above
to each row separately. Remember that since the ith row of A is i(, the ith
entry (Ab')i of Ab' is precisely the dot product ai b. (This accounts for the
equal sign marked (1) in Equation 1.4.28.)

[6l
aT a1 b = (Ab)1

a2T a2 . b = (Ab)2

an (Ab)n
matrix

FIGURE 1.4.6. Think of the rows of A as the transposes of the vectors a't, a"2, ... , a"n.
Then the product a'i rb' is the same as the dot product at G. Note that Ab is a vector,
not a matrix.

vector Ab

This leads to

IA612 = F (Al)z -
=1 (i)

i=1

1.4.28

Now use Schwarz's inequality (2); factor out I6I2 (step 3), and consider (step
4) the length squared of A to be the sum of the squares of the lengths of a "i.
(Of course, IaiI2 = IaTI2). Thus,

n n n
( Eli`& ' b)2

I2IbI2 = (lI2) 1612 IAI2IbI2.
(4)

This gives us the result we wanted:

IA6I2 < IAI2IbI2.

1.4.29
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When solving big systems of
linear questions was in any case
out of the question, determinants
were a reasonable approach to the
theory of linear equations. With
the advent of computers they lost
importance, as systems of linear
equations can be solved far more
effectively with row reduction (to
be discussed in Sections 2.1 and
2.2). However, determinants have
an interesting geometric interpre-
tation; in Chapters 4, 5 and espe-
cially 6, we use determinants con-
stantly.

For the second, we decompose the matrix B into its columns and proceed as
above. Let b1, ... , bk be the columns of B. Then

k k k

IAB12 = F

IAb'jI2

< Y IAI2I 2 = IAI2 Ib' 12 =JA 12 JB12,

j=j j=1

which proves the second part.

1.4.30

Recall that the formula for the
inverse of a 2 x 2 matrix A
a 6

c d] is

A_1 = 1 d b

ad - be -c a ]
So a 2 x 2 matrix A is invertible if
and only if det A 0 0.

In this section we limit our dis-
cussion to determinants of 2 x 2
and 3 x 3 matrices; we discuss de-
terminants in higher dimensions in
Section 4.8.

Determinants in R2

The determinant is a function of square matrices: it takes a square matrix as
input and gives a number as output.

Definition 1.4.13 (Determinant in R2). The determinant of a 2 x 2

matrix I a2
bt J isa

det ra, bt
1 = a1b2 - a2b1.

1a2 b2
1.4.31

The determinant is an interesting number to associate to a matrix because
if we think of the determinant as a function of the vectors a and b in 1R2, then
it has a geometric interpretation, illustrated by Figure 1.4.7:

Proposition 1.4.14 (Geometric interpretation of the determinant in
1R2). (a) The area of the parallelogram spanned by the vectors

6=1a2J and '
i s I detf a', b]

(b) The determinant detf a', b] is positive if and only if b lies counterclock-
wise from 9; it is negative If and only if bb lies clockwise from aa.

Proof. (a) The area of the parallelogram is its height times its base. Its base
is _TF2. Its height h isvfbT,

h=sinBral=sing ai+a2. 1.4.32

We can compute cos9 by using Equation 1.4.8:

cos9= a-b = aibi+a2lr2
1a11b1 a + a2 bt + b2

1.4.33
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So we get sin 0 as follows:

sin 0 1 - cost B =
(ai + a2)(bi + b2) - (albs + a2b2)2

(a1 + az)(b1 + b2)

,b,2 - 2alblazbz - 452_ ai6i + aib2 + a4b2 + a2b2 - a2

(ai + a2)(bi + b2)

(alb2 - azbi)2

(a2 + a2)(bl + 2)

b1

a1

FIGURE 1.4.7.
The area of the parallelogram

spanned by s and b is I det(a, bJI.

tc

a
b

c\

.-c

b

FIGURE 1.4.8.

In the two cases at the top, the
angle between 6 and c' is less than
7r/2, so det(a, b) > 0; this cor-
responds to 6 being counterclock-
wise from a". At the bottom, the
angle between b and c' is more
than a/2; in this case, b is clock-
wise from a', and det(a, 6) is neg-
ative.

Using this value for sin Bin the equation for the area of a parallelogram gives

Area = 151 IaIsine
base height

bl + b2 ai + a2

V (ais +
albz

a2z)(b2.261)2

Inlbz - azbiI.
+

b2) _.
base determinant

height

1.4.34

1.4.35

(b) The vector c" obtained by rotating a' counterclockwise by it/2 is c' _

a J , and we see that d b = detf a', 6]:

L

bi
b2]

1.4.36

Since (Proposition 1.4.3) the dot product of two vectors is positive if the angle
between them is less than a/2, the determinant is positive if the angle between
b and c' is less than rr/2. So b lies counterclockwise from 1, as shown in Figure
1.4.8. 0

Exercise 1.4.6 gives a more geometric proof of Proposition 1.4.14.

Determinants in R3

Definition 1.4.15 (Determinant in R3). The determinant of a 3 x 3
matrix is

lat bl

det a2 b2

43 b3

cl rr 1

b2 -oz = -I det lbs
C3 J

- az det rb3 c91 + as detr
02

C3 ` J `` J

= al(b2cs - b3c2) - a2(bics - becl) + as(blo2 - b2ci).
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Exercise 1.4.12 shows that a
3 x 3 matrix is invertible if its de-
terminant is not 0,

For larger matrices, the formu-
las rapidly get out of hand; we will
see in Section 4.8 that such de-
terminants can be computed much
more reasonably by row (or col-
umn) reduction.

The determinant can also be

computed using the entries of the
first row, rather than of the first

column, as coefficients.

Each entry of the first column of the original matrix serves as the coefficient
for the determinant of a 2 x 2 matrix; the first and third (aI and a3) are positive,

the middle one is negative. To remember which 2 x 2 matrix goes with which
coefficient, cross out the row and column the coefficient is in; what is left is the

matrix you want. To get the 2 x 2 matrix for the coefficient a2:

a b1 e1

f

a b3 C3 b3lb1

c t
C3 1.4.37

Example 1.4.16 (Determinant of a 3 x 3 matrix).

3 1 -2
2 4 1 -2 1 -2det

L1 0
2 4] =3det [0 1] - 1det {0 1] +2det

[2

4] 1.4.38

=3(2-0)-(1+0)+2(4+4)=21

The cross product of two vectors

Although the determinant is a number, as is the dot product, the cross product
is a vector:

Definition 1.4.17 (Cross product in 1R3). The cross product as x b in
IRS is

det I1a2

b2]
1 l I

r111

a3 b3

b sibs-asbs11
Ia2I
I

xl 2I = I -dotl a i ]
-albs + a3b1 1 4 39

L L

63

lll 3
b3

I alb2 - alb
. .

at

dot [ bit
a2 bet

The cross product exists only in
R3 (and to some extent in 1R7). Think of your vectors as a 3 x 2 matrix; first cover up the first row and take

the determinant of what's left. That gives the first entry of the cross product.
Then cover up the second row and take minus the determinantof what's left,
giving the second entry of the cross product. The third entry is obtained by
covering up the third row and taking the determinant of what's left.
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Like the determinant, the cross
product has a geometric interpre-
tation.

The right-hand rule: if you
put the thumb of your right hand
on a and your index finger on b,
while bending your third finger,
then your third finger points in the
direction of a x b. (Alternatively,
curl the fingers of your right hand
from a to b; then your right thumb
will point in the direction of axb.)

Example 1.4.18 (Cross product of two vectors in E3).

det
10

= [:]. A 1.4.40

3

Proposition 1.4.19 (Geometric interpretation of the cross product).
The cross product as x b In the vector satisfying three properties:

(1) It is orthogonal to the plane spanned by a and b; i.e.,

and 1.4.41

(2) Its length Ii x 61 is the area of the parallelogram spanned by a and

b;

(3) The three vectors a b and a x b satisfy the right-hand rule.

Proof. For the first part, it is not difficult to check that the cross product
a x 9 is orthogonal to both a and 1: we check that the dot product in each
case is zero (Corollary 1.4.8). Thus a x 9 is orthogonal to as because

1.4.42

= ala2b3 - a1a3b2 - a1a2b3 + a2a3b1 + a1a3b2 - a2a3b1 = 0.

For the second part, the area of the parallelogram spanned by a" and l is
jal 191 sin 0, where 0 is the angle between a' and b. We know (Equation 1.4.8)
that

x b) =

I
a2 -alb3+a3b1
a3 alb2 - a2b1

det
L

0
1

131 x

L 4

] = det [
1

3

Definition 1.4.17 of exb

a 1 a2U3 - a3o2

cosO =
a- b albs + a2b2 + a3b3-=
RA a1 + a2 + a3 1 + b2 + b3'

so we have

sing= 1-cos20 1- (albs+a2b2+a3b3)2
(al + a2 + a3)(bi + b2 + b3)

_ (ai + a2 + a3)(bi + b2 + b3) - (a1b1 + a2b2 + a3b3)2

(a, + a2 + a3)(bi + b2 + b3)

1.4.43

1.4.44
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The last equality in Equation
1.4.47 comes of course from Defi-
nition 1.4.17.

You may object that the middle
term of the square root looks dif-
ferent than the middle entry of the
cross product as given in Defini-
tion 1.4.17, but since we are squar-
ing it,

(-albs + aabl)2 = (a,b3 - a3b,)2.

so that

IaIIbI sin B = (ai + a2 + a3)(bl + b2 + b3) - (atbl + a2b2 + a3b3)2. 1.4.45

Carrying out the multiplication results in a formula for the area that looks
worse than it is: a long string of terms too big to fit on this page under one
square root sign. That's a good excuse for omitting it here. But if you do the
computations you'll see that after cancellations we have for the right-hand side:

aib2+a2b -2a1b, a2b2+a1b3+a3bi-2a1bla3b3+a2b3+a3b2-2a2b2a3b3,

(a,b2-a2b,)2 (albs-a36, )2 (n263-a3b2)3
1.4.46

which conveniently gives us

Area = Q191 sin 0 = (aib2 - a2b,)2 + (a1b3 - a3b,)2 + (a2b3 - a3b2)2

Iaxbl.
1.4.47

So far, then, we have seen that the cross product a x b is orthogonal to a
and b', and that its length is the area of the parallelogram spanned by a and b.
What about the right-hand rule? Equation 1.4.39 for the cross product cannot
actually specify that the three vectors obey the right-hand rule, because your
right hand is not an object of mathematics.

What we can show is that if one of your hands fits 91, 62, 63, then it will also
fit a, b, a x b. Suppose a and b are not collinear. You have one hand that fits
aa, b, a x b'; i.e., you can put the thumb in the direction of aa, your index finger in
the direction of b and the middle finger in the direction of a x b without bending
your knuckles backwards. You can move a' to point in the same direction as
ei, for instance, by rotating all of space (in particular b, a x b and your hand)
around the line perpendicular to the plane containing i and e't. Now rotate all
of space (in particular a x b and your hand) around the x-axis, until b is in the
(x, y)-plane, with the y-coordinate positive. These movements simply rotated
your hand, so it still fits the vectors.

Now we see that our vectors have become

a'= 0 and bb=
[bi

b2 , so ax'= 0 . 1.4.48

a

I,I0 0 JJ abz

Thus, your thumb is in the direction of the positive x-axis, your index finger
is horizontal, pointing into the part of the (z, y)-plane where y is positive, and
since both a and b2 are positive, your middle finger points straight up. So
the same hand will fit the vectors as will fit the standard basis vectors: the
right hand if you draw them the standard way (x-axis coming out of the paper
straight at you, y-axis pointing to the right, z-axis up.) L



The word parallelepiped seems
to have fallen into disuse; we've
met students who got a 5 on the
Calculus BC exam who don't
]mow what the term means. It is
simply a possibly slanted box: a
box with six faces, each of which
is a parallelogram; opposite faces
are equal.

The determinant is 0 if the
three vectors are co-planar.

0

FIGURE 1.4.9.
The determinant of 9, b, c' gives

the volume of the parallelepiped
spanned by those vectors.
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Geometric interpretation of the determinant in 123

The determinant of three vectors a", b' and c can also be thought of as the dot
product of one vector with the cross product of the other two, a (G x iff):

[a, I

a3

- det

det

b2 C2

b3 C3

bt ci
b3 C3

b1

cl]
b2 C2

=a1 detlb3 C3]-a2det[b3 C3]+a3 det b2 C2].

1.4.49

As such it has a geometric interpretation:

Proposition 1.4.20. (a) The absolute value of the determinant of three
vectors a, b, c" forming a 3 x 3 matrix gives the volume of the parallelepiped
they span.

(b) The determinant is positive if the vectors satisfy the right-hand rule,
and negative otherwise.

Proof. (a) The volume is height times the area of the base, the base shown
in Figure 1.4.9 as the parallelogram spanned by b and c'. That area is given
by the length of the cross product, Ib x c"I. The height h is the projection of as
onto a line orthogonal to the base. Let's choose the line spanned by the cross
product G x c--that is, the line in the same direction as that vector. Then
h = Ia'I cos 9, where 9 is the angle between a and b x c, and we have

Volume of parallelepiped = Ib x cI IaI cos 9 = I a (b x c') I. 1.4.50

bee height determinant

(b) The determinant is positive if cos9 > 0 (i.e., if the angle between 9 and
x c is less than it/2). Put your right hand to fit b' x c, b', c"; since b x c' is

perpendicular to the plane spanned by b and c', you can move your thumb in
any direction by any angle less than it/2, in particular, in the direction of a".
(This requires a mathematically correct, very supple thumb.)

Remark. The correspondence between algebra and geometry is a constant

theme of mathematics. Figure 1.4.10 summarizes the relationships discussed in
this section. A
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Correspondence of Algebra and Geometry

Operation Algebra Geometry

dot product v w = I', m; v ' w = w"I iwI cos

determinant of
2 x 2 matrix det.

r al bi 1 alb= a1b2 - I det (ai bi J = Area of parallelogramLag
b2

ai bi a2b3 - b2a3 (a x b) 1 a", (a x b) 1 b

fa2l x (b2l = b1a3 - aib3
[

Length = area of parallelogram
cross product

L a3 J L b3 J a I b2 - a2bt Right-hand rule

determinant
of 3 x 3 matrix det

rai bi ci
a2 b2 c2 = a (b' x c") det[A,9,cfl = Volume of parallelepiped
a3 b3 c3

L

FIGURE 1.4.10. Mathematical "objects" often have two interpretations: algebraic
and geometric.

1.5 CONVERGENCE AND LIMITS

The inventors of calculus in the
17th century did not have rigor-
ous definitions of limits and con-
tinuity; these were achieved only
in the 1870s. Rigor is ultimately
necessary in mathematics, but it
does not always come first, as
Archimedes acknowledged about
his own work, in a manuscript
discovered in 1906. In it Archi-
medes reveals that his deepest re-
sults were found using dubious in-
finitary arguments, and only later
proved rigorously, because "it is of
course easier to supply the proof
when we have previously acquired
some knowledge of the questions
by the method, than it is to find it
without any previous knowledge."
(We found this story in John Still-
well's Mathematics and Its His-
tory.)

In this section, we collect the relevant definitions of limits and continuity.
Integrals, derivatives, series, approximations: calculus is all about convergence
and limits. It could easily be argued that these notions are the hardest and
deepest of all of mathematics. They give students a lot of trouble, and his-
torically, mathematicians struggled to come up with correct definitions for two
hundred years. Fortunately, these notions do not become more difficult in sev-
eral variables than they are in one variable.

More students have foundered on these definitions than on anything else in
calculus: the combination of Greek letters, precise order of quantifiers, and
inequalities is a hefty obstacle. Working through a few examples will help you
understand what the definitions mean, but a proper appreciation can probably
only come from use; we hope you have already started on this path in one-
variable calculus.

Open and closed sets

In mathematics we often need to speak of an open set U; whenever we want to
approach points of a set U from every side, U must be open.

Think of a set or subset as your property, surrounded by a fence. The set is
open (Figure 1.5.1) if the entire fence belongs to your neighbor. As long as you
stay on your property, you can get closer and closer to the fence, but you can



FIGURE 1.5.1.

An open set includes none of
the fence; no matter how close a
point in the open set is to the
fence, you can always surround it
with a ball of other points in the
open set.

FIGURE 1.5.2.
A closed set includes its fence.

Note that Ix - yJ must be less
than r for the ball to be open; it
cannot be = r.

The symbol C used in Defini-
tion 1.5.3 means "subset of." If
you are not familiar with the sym-
bols used in set theory, you may
wish to read the discussion of set
theoretic notation in Section 0.3.
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never reach it. No matter how close you are to your neighbor's property, there
is always an epsilon-thin buffer zone of your property between you and it just
as no matter how close a non zero point on the real number line is to 0, you
can always find points that are closer.

The set is closed (Figure 1.5.2) if you own the fence. Now, if you sit on your
fence, there is nothing between you and your neighbor's property. If you move
even an epsilon further, you will be trespassing.

What if some of the fence belongs to you and some belongs to your neighbors?
Then the set is neither open nor closed.

Remark 1.5.1. Even very good students often don't see the point of specifying
that a set is open. But it is absolutely essential, for example in computing
derivatives. If a function f is defined on a set that is not open, and thus contains
at least one point x that is part of the fence, then talking of the derivative of f
at x is meaningless. To compute f'(x) we need to compute

fi(x)=hi mh(f(x+h)-f(x)), 1.5.1

but f (x + h) won't necessarily exist for It arbitrarily small, since x + h may be
outside the fence and thus not in the domain of f. This situation gets much
worse in lR°.12 L

In order to define open and closed sets in proper mathematical language, we
first need to define an open ball. Imagine a balloon of radius r, centered around
a point x. The open ball of radius r around x consists of all points y inside
the balloon, but not the skin of the balloon itself: whatever y you choose, the
distance between x and y is always less than the radius r.

Definition 1.5.2 (Open ball). For any x E r and any r > 0, the open
ball of radius r around x is the subset

B,.(x) = (y E R' such that Ix - yI < r}. 1.5.2

We use a subscript to indicate the radius of a ball B; the argument gives the
center of the ball: a ball of radius 2 centered at the point y would be written

subset is open if every point in it is contained in an open ball that itself
is contained in the subset:

Definition 1.5.3 (Open set of R°). A subset U C ]R" is open in 1R° if for
every point x E U, there exists r > 0 such that B,(x) G U.

121t is possible to make sense of the notion of derivatives in closed sets, but these
results, due to the great American mathematician Hassler Whitney, are extremely
difficult, well beyond the scope of this book.



Note that parentheses denote

an open set: (a, b), while brackets

denote a closed set: ]a, b]. Some-
times, especially in France, back-

wards brackets are used to denote

an open set: ]a, b[= (a, b).

The use of the word domain in
Example 1.5.6 is not really mathe-
matically correct: a function is the
triple of

(1) a set X: the domain;
(2) a set Y: the range;
(3) a rule f that associates an

element f(x) E Y to each
element x E X.

Strictly speaking, the formula
1/(y - x2) isn't a function until
we have specified the domain and
the range, and nobody says that
the domain must be the comple-
ment of the parabola of equation
y = x2: it could be any subset of
this set. Mathematicians usually
disregard this, and think of a for-
mula as defining a function, whose
domain is the natural domain of
the formula, i.e., those arguments
for which the formula is defined.
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However close a point in the open subset U is to the "fence" of the set, by

choosing r small enough, you can surround it with an open ball in W' that is

entirely in the open set, not touching the fence.
A set that is not open is not necessarily closed: an open set owns none of its

fence. A closed set owns all of its fence:

Definition 1.5.4 (Closed set of Re). A closed set of 1R", C C IR", is a set

whose complement 1R" - C is open.

Example 1.5.5 (Open sets).

(1) If a < b, then the interval

(a,b)={xERIa<x<b} 1.5.3

is open. Indeed, if x E (a,b), set r = min{x - a,b - x}. Both these
numbers are strictly positive, since a < r < b, and so is their minimum.
Then the ball {y I y - x < r } is a subset of (a, b).

(2) The infinite intervals (a, oo), (-oo, b) are also open, but the intervals

(a,b]={xEiR]a<x<b} and[a,b]={xElRIa<x<b} 1.5.4

are not.
(3) The rectangle

(a,b)x(c,d)={(x)ER2Ia<x<b, c<y<d} 1.5.5

is also open.

Natural domains of functions

We will often be interested in whether the domain of definition of a function-
what we will call its natural domain-is open or closed, or neither.

Example 1.5.6 (Checking whether the domain of a function is open
or closed). The natural domain of the function 1/(y - x2) is the subset of lR2
where the denominator is not 0, i.e., the natural domain is the complement of
the parabola P of equation y = x2. This is more or less obviously an open set,
as suggested by Figure 1.5.3.

We can see it rigorously as follows. Suppose (b) ¢ P, so that ]b - a2 1 _
C > 0, for some constant C. Then if

1.5.6



FIGURE 1.5.3.
It seems obvious that given a

point off the parabola P, you can
draw a disk around the point that
avoids the parabola. Actually
finding a formula for the radius of
such a disk is more tedious than
you might expect.
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we have13

J (b + v) - (a + u)21= Ib - a2 + v - eau -u21 > C - (I vI + 2IaI1ul + Iu12)

>C-I3+3+31=0 1.5.7

Therefore, (b + v ) is not on the parabola. This means that we can draw

a square of side length 2r around the point (b) and know that any point in

that open square will not be on the parabola. (We used that since Jul < 1, we
have Iu12 < Jul.)

If we had defined an open set in terms of squares around points rather than
balls around points, we would now be finished: we would have shown that the
complement of the parabola P is open. But to be complete we now need to point
out the obvious fact that there is an open ball that fits in that open square.
We do this by saying that if I (b + v) - (b) I < r (i.e., if (b + v) is in the

circle of radius r around (b)) then Jul, Iv1 < r (i.e., it is also in the square

of side length 2r around (6) ). Therefore the complement of the parabola I.
open. A

This seems like a lot of work to prove something that was obvious to begin
with. However, now we can actually compute the radius of an open disk around

any point off the parabola. For the point (3), what is the radius of such a
disk? Check your answer below.14 The answer you get will not be sharp: there
are points between that disk and the parabola. Exercise 1.5.6 asks you to find
a sharper result; Exercise 1.5.7 asks you to find the exact result. A

Example 1.5.7 (Natural domain). What is the natural domain of the
function

1.5.8

i.e., those arguments for which the formula is defined? If the argument of the
square root is non-negative, the square root can be evaluated, so the first and
the third quadrants are in the natural domain. The x-axis is not (since y = 0
there), but the y-axis with the origin removed is in the natural domain, since

13How did we make up this proof? We fiddled, starting at the end and seeing what
r should be in order for the computation to come out. Note that if a = 0, then C/(61al
is infinite, but this does not affect the choice of r since we are choosing a minimum.

1'Forx=2,y=3 wehave C=ly-x21/=113-4I=1,sor=min{1,3,"}=

1/12. The open disk of radius 1/12 around 1 3 1 does not intersect the parabola.



FIGURE 1.5.4.
The natural domain of the func-

tion

f ( Y ) =
y.

is neither open nor closed.

Infinite decimals are actually
limits of convergent sequences. If
ao = 3, a, = 3.1,a2 = 3.14,
.... an = it to n decimal places,
how large does M have to be so
that if n > M, then Ian - al <
10-3? The answer is M = 3: 7r -
3.141 = .0005926.... The same
argument holds for any real num-
ber.
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x/y is zero there. So the natural domain is the region drawn in Figure 1.5.4-

Several similar examples are suggested in Exercise 1.5.8.

Convergence

Unless we state explicitly that a sequence is finite, sequences will be infinite.
A sequence of points at, a2... converges to a if, by choosing a point any far
enough out in the sequence, you can make the distance between all subsequent
points in the sequence and a as small as you like:

Definition 1.5.8 (Convergent sequence). A sequence of points at, a2 ...
in IR" converges to a E 1R" if for all e > 0 there exists M such that when
m > M, then dam - al < e. We then call a the limit of the sequence.

Exactly the same definition applies to a sequence of vectors: just replace a
in Definition 1.5.8 by a, and substitute the word "vector" for "point."

Convergence in Lit" is just n separate convergences in IR:

Proposition 1.5.9. A sequence (am) = aI, a2,... with ai E 1R" converges
to a if and only if each coordinate converges; i.e., if for all j with I < j < n
the coordinate (am), converges to a the jth coordinate of the limit a.

The proof is a good setting for understanding how the e - M game is played
(where M is the M of Definition 1.5.8). You should imagine that your opponent
gives you an epsilon and challenges you to find an M that works, i.e., an M
such that when m > M, then I (am), - a,,I < e. You get extra points for style
for finding a small M, but it is not necessary in order to win the game.

(am)1

Proof. Let us first see the easy direction: the statement that am =

(Gm)n
converges implies that for each j = 1, ... , n, the sequence of numbers (am),
converges. The challenger hands you an epsilon. Fortunately you have a team-
mate who knows how to play the game for the sequence am, and you hand her
the epsilon you just got. She promptly hands you back an M with the guaran-
tee that when m > M, then Iam - al < e (since the sequence am is convergent).
The length of the vector am - a is

2 2lam - al = \(am)1 - Q,l) - ... + ((Q'm )n - Qn ,
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This is typical of all proofs
involving convergence and limits:
you are given an a and challenged
to come up with a 6 (or M or
whatever) such that a certain
quantity is less than s.

Your "challenger" can give you
any c > 0 he likes; statements
concerning limits and continuity
are of the form "for all epsilon,
there exists ....'

so you give that M to your challenger, with the argument that

l(am)/ - a31 5 lam - al < E.

He promptly concedes defeat.

1.5.9

Now let us try the opposite direction: the convergence of the coordinate se-
quences (am)p implies the convergence of the sequence a,,,. Again the challenger
hands you an f > 0. This time you have is teammates, each of whom knows how
the play the game for a single convergent coordinate sequence (am)p. After a
bit of thought and scribbling on a piece of paper, you pass along e/,/ to each
of them. They dutifully return to you cards containing numbers Ml ... M,,,
with the guarantee that

I(am)j - all < when m>MI. 1.5.10T.
You sort through the cards and choose the one with the largest number,

M = max{Ml ... M }, 1.5.11

which you pass on to the challenger with the following message:
if m > M, then m > Mj for each j = 1.. = n, so I (am)p - aj I < c/ f , so

lam - al=

V( " Y+...+ f)2 nn2 -E.vrn

1.5.12

The scribbling you did was to figure out that handing e/ f to your team-
mates would work. What if you can't figure out how to "slice up" a so that the
final answer will be precisely e? In that case, just work directly with a and see
where it takes you. If you use e instead of e/ f in Equations 1.5.10 and 1.5.12,
you will end up with

lam - al<ef. 1.5.13

You can then see that to land on the exact answer, you should have chosenf.
In fact, the answer in Equation 1.5.13 is good enough and you don't really

need to go back and fiddle. Intuitively, "less than epsilon" for any e > 0 and
"less than some quantity that goes to 0 when epsilon goes to 0" achieve the
same goal: showing that you can make some quantity arbitrarily small. The
following theorem states this precisely; you are asked to prove it in Exercise
1.5.12.



Recall that BR denotes a ball of
radius R; the ball BR(0) is a ball
of radius R centered at the origin.
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Theorem 1.5.10 (Elegance Is not required). Let u(e), with e > 0, be
a function such that u(e) --. 0 as a -+ 0. Then the following two statements
are equivalent:

(1) For all e > 0, there exists a 6 > 0 such that when Ix - xol < 6, then
IA X) - f (xo)I < u(e).

(2) For all e > 0, there exists a 6 > 0 such that when Ix - xol < 6, then
If(x) - f(xo)I < C.

In practice, the first statement is the one mathematicians use most often.
The following result is of great importance, saying that the notion of limit

is well defined: if the limit is something, then it isn't something else. It could
be reduced to the one-dimensional case as above, but we will use it as an
opportunity to play the e, M game in more sober fashion.

Proposition 1.5.11. If the sequence of points at, a2 ... in R° converges to
a and to b, then a = b.

Proof. Suppose a 0 b, and set eo = (Ia-bI)/4; our assumption a 0 b implies
that to > 0. Thus, by the definition of the limit, there exists M1 such that
Iaa - al < co when n > Ml, and M2 such that Ian - bi < eo when n > M2.
Set M = max{Ml, M2). If n > M, then by the triangle inequality (Theorem
1.4.9),

Ia - bI = I(a - (a. - b)I < Ia - and + Ian - bi < 2eo = Ia - bI/2. 1.5.14
<CO <co

This is a contradiction, so a = b. 0

Theorem 1.5.13 states rules concerning limits. First, we need to define a
bounded set.

Definition 1.5.12 (Bounded set). A subset X C Rn is bounded if it is
contained in a ball in R" centered at the origin:

XCBR(0) forsomeR<oo. 1.5.15

The ball containing the bounded set can be very big, but its radius must be
finite.
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Illustration for part (d):: Let

cm = 1/m and a-= I m I.

Then c,,, converges to 0, but

lim (c,,.am) # 0.

Why is the limit not 0 as in part
(d)? Because am is not bounded.

Exercise 1.5.13 asks you to
prove the converse: if every con-
vergent sequence in a set C C 1W"
converges to a point in C, then C
is closed.

Theorem 1.5.13 (Limits). Let am, bm be two sequences of points in R',
and c,,, be a sequence of numbers. Then

(a) If am and b,,, both converge, then so does am + bm, and

lim (am + bm) = lim am + lim bm.
m-.oo m- SO

(b) If am and cm both converge, then so does cmam, and

Hill (cmam) lim cm) ( lim
oo

am) .
m-»oo mom m

(c) Ma- and bm both converge, then so does am bm, and

lim (am - bm) _ ( lim am) ( lim bm)
m-oo m-.oo m-.oo

(d) If am is bounded and cm converges to 0, then

lim (cmam) = 0.
ao

We will not prove Theorem 1.5.13, since Proposition 1.5.9 reduces it to the
one-dimensional case; the proof is left as Exercise 1.5.16.

There is an intimate relationship between limits of sequences and closed sets:
closed sets are "closed under limits."

Proposition 1.5.14. If x1, x2, ... is a convergent sequence in a closed set
C C W', converging to a point xe E 1i", then xo E C.

Intuitively, this is not hard to see: a convergent sequence in a closed set can't
approach a point outside the set without leaving the set. (But a sequence in a
set that is not closed can converge to a point of the fence that is not in the set.)

Proof. Indeed, if xo 0 C, then xo E (R" - C), which is open, so there exists
r > 0 such that Br(xo) C (R" - C). Then for all m we have Ix- - xol > r.
On the other hand, by the definition of convergence, we must have that for any
e > 0 we have Ixm - xol < e for m sufficiently large. Taking e = r/2, we see
that this is a contradiction.

Subsequences

Subsequences are a useful tool, as we will see in Section 1.6. They are not
particularly difficult, but they require somewhat complicated indices, which are
scary on the page and tedious to type.
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Sometimes the subsequence

Definition 1.5.15 (Subsequence). A subsequence of a sequence a1, a2, .. .
is a sequence formed by taking first some element of the original sequence,
then another element further on, and yet another, yet further along .... It
is denoted ai(l),ail2l,..., where i(k) > i(j) when k > j.

You might take all the even terms, or all the odd terms, or all those whose
index is a prime, etc. Of course, any sequence is a subsequence of itself. The
index i is the function that associates to the position in the subsequence the
position of the same entry in the original sequence. For example, if the original
sequence is

1 1 1 1 1 1

1' 2' 3' 4' 5' 6 "' and the subsequence is
a, a2 as a4 ay ae

1 1 1

2 ' 4 ' 6
am) ail]) ai(3)is denoted a;, , a;, , ... .

The proof of Proposition 1.5.16
is left as Exercise 1.5.17, largely
to provide practice with the lan-
guage.

The closure of A is thus A plus

its fence. If A is closed, then

'A = A

we see that i(1) = 2, since 1/2 is the second entry of the original sequence.
Similarly, i(2) = 4,i(3) = 6,.... (In specific cases, figuring out what i(1),i(2),
etc. correspond to can be a major challenge.)

Proposition 1.5.16. If a sequence at converges to a, then any subsequence
of at converges to the same limit.

Limits of functions

Limits like lim,xa f (x) can only be defined if you can approach xo by points
where f can be evaluated. The notion of closure of a set is designed to make
this precise.

Definition 1.5.17 (Closure). If A C IR" is a subset, the closure of A,
denoted A, is the set of all limits of sequences in A that converge in 1!t".

For example, if A = (0, 1) then A = [0, 1]; the point 0 is the limit of the
sequence 1/n, which is a sequence in A and converges to a point in R.

When xo is in the closure of the domain of f, we can define the limit of
a function, f (x). Of course, this includes the case when xo is in the
domain of f, but the really interesting case is when it is in the boundary of the
domain.

Example 1.5.18. (a) If A = (0,1) then A = [0,1], so that 0 and 1 are in A.
Thus, it makes sense to talk about

im(1 + x)1/= 1.5.16

because although you cannot evaluate the function at 0, the natural domain of
the function contains 0 in its closure.
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FIGURE 1.5.5.
The region in example 1.5.18,

(c). You can approach the origin
from this region, but only in rather
special ways.

Definition 1.5.19 is not stan-
dard in the United States but is
quite common in France. The
standard version substitutes 0 <
Ix - xol < d for our Ix - xol < d.
The definition we have adopted
makes little difference in applica-
tions, but has the advantage that
allowing for the case where x = xo
makes limits better behaved un-
der composition. With the stan-
dard version, Theorem 1.5.22 is
not true.

A mapping f : R" 1R' is
an "1R'-valued" mapping; its ar-
gument is in R" and its values are
in k". Often such mappings are
called "vector-valued" mappings
(or functions), but usually we are
thinking of its values as points
rather than vectors. Note that
we denote an 1R'"-valued mapping
whose values are points in R-
with a boldface letter without ar-
row: f. Sometimes we do want to
think of the values of a mapping
]R" -. 1R" as vectors: when we are
thinking of vector fields. We de-
note a vector field with an arrow:

ff.For

(b) The point (0) is in the closure of

U = { (Vx) E IR2 I 0 < x2 + y2 < 1 } (the unit disk with the origin removed)

(c) The point (0) is also in the closure of U (the region between two parabo-

las touching at the origin, shown in Figure 1.5.5):

U={(y)ER2S lyl<x2}

Definition 1.5.19 (Limit of a function). A function f : U W' has
the limit a at x0:

Jim f (x) =a 1.5.17
x-.xo

if xo E U and if for all e > 0, there exists b > 0 such that when Ix - xoI < b,
and x E U, then If(x) - al < e.

That is, as f is evaluated at a point x arbitrarily close to x0, then f (xo) will

be arbitrarily close to a.
Since we are not requiring that x0 E U, f(xo) is not necessarily defined, but

if it is defined, then for the limit to exist we must have

lim f(x) = f(xo). 1.5.18
x-»x0

Limits of mappings with values in R-

As is the case for sequences (Proposition 1.5.9), it is the same thing to claim

that an RI-valued mapping f : R" -.1R"' has a limit, and that its components
have limits, as shown in Proposition 1.5.20. Such a mapping is sometimes

written in terms of the "sub-functions" (coordinate functions) that define each

new coordinate. For example, the mapping f :1R2 + ]3

f (z) (z)1!
x-y

can be written f= f2
('f3)

where f, (x) = xy,f2(x) = x2y, and f3(x) = x - y.



Recall (Definition 1.5.17) that
U denotes the closure of U: the
subset of 1" made up of the set of
all limits of sequences in U which
converge in IIt".

If you gave e/v to your team-
mates, as in the proof of Proposi-
tion 1.5.9, you would end up with

If(x) - al < e,

rather than jf(x) - al < e ,n. In
some sense this is more "elegant."
But Theorem 1.5.10 says that it is
mathematically just as good to ar-
rive at less than or equal to epsilon
times some fixed number or, more
generally, anything that goes to 0
when a goes to 0.
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fl(x)
Proposition 1.5.20. Let f(x) = be a function defined on a do-

fm (x)
main U C Ill", and let xo E lF" be a point in U. Then limx_,5 f = a exists
if and only if each of limx_.,.0 ft = a; exists, and

x-»xe

llmx .xc fl

hmx +xo fm a\ m

Proof. Let's go through the picturesque description again. The proof has an
"if" part and an "only iF' part.

For the "if" part, the challenger hands you an e > 0. You pass it on to a
teammate who returns a 6 with the guarantee that when Ix - xol < 6, and
f(x) is defined, then If(x) - of < e. You pass on the same 6, and a;, to the
challenger, with the explanation:

If;(x) - ail < lf(x) - al < e. 1.5.21

For the "only if" part, the challenger hands you an e > 0. You pass this a to
your teammates, who know how to deal with the coordinate functions. They
hand you back You look through these, and select the smallest one,
which you call 6, and pass on to the challenger, with the message

"If Ix - xoI < 6, then fix; - (xo),l < 6 < 6;, so that 1 fi(x) - ail < e, so that

V fl(x) - al)2+... +(fm(x) - am)2 < e2+ = E_,/M,11(x) -al= (

m terms
1.5.22

which goes to 0 as e goes to 0. You win!

Theorem 1.5.21 (Limits of functions). Let IF and g be functions from
U--1lm,andhafunction from U -+I2.

(a) If limx.xo f(x) and limx.xe g(x) exist, then lim,,,(f+g)(x) exists,
and

x_,ro x-.MO

(b) If limx_.xa f(x) and lim,,, h(x) exist, then limx, hf(x) exists,
and

x-+xs x-»,ro

lim f a= 1.5.20

lim f(x) + lun g(x) = lim (f + g)(x). 1.5.23

lira h(x) lira f(x) = lim hf(x). 1.5.24x-.xe

al



1.5 Convergence and Limits 83

We could substitute

f
2(Ig(xo)I + f)

in Equation 1.5.29, and
f

2(If(xo)I + e)

in Equation 1.5.30. This would
give

If(x) g(x) - f(xo) g(xo)I
< flg(x)I + fIf(xo)I

2(Ig(xo)I + f) 2(If(xo)I + f)
< C.

Again, if you want to land exactly
on epsilon, fine, but mathemati-
cally it is completely unnecessary.

(c) If lim,_.,, f(x) exists, and lima-.,m h(x) exists and is different from 0,

then limx.xo(h)(x) exists, and

limx_.xo f(x) = f
lima-xo h(x) x mo h x) 1.5.25

(d) If limx.xo f(x) and g(x) exist, then so does limx_.x,(f g),
and

lim f(x) lim g(x) = lim (f g)(x).
X-.xo x-XO x-.xo

(e) If f is bounded and limx_,x, h(x) = 0, then

lim (hf)(x) = 0.x-xo

1.5.26

1.5.27

(f) If limx_xo f(x) = 0 and h(x) is bounded, then

lim (hf)(x) = 0. 1.5.28x-o

Proof. The proofs of all these statements are very similar; we will do only (d),
which is the hardest. Choose e (think of the challenger giving it to you). Thenfor f

for f

(1) Find a 61 such that when Ix - xoI < 61, then

Ig(x) - g(xoI < e-

(2) Next find a 62 such that when Ix - xoI < 62, then

If (x) - f(xo)I < E.

1.5.29

1.5.30

Now set 6 to be the smallest of 61 and 62, and consider the sequence of inequal-
ities

If(x) g(x) - f(xo) g(xo) I
= If (x) . g(x) -f(xo) g(x) + f(xo) . g(x) -f(xo) . g(xo) I

=0

5 If (x) g(x) - f(xo) . 9(x) l + If (xo) . g(x) - f(xo) g(xo)I 1.5.31

= I (f (x) - f(xo)) . g(x) I + If (xo) - (g(x) - g(xo)) 1

< 1(f (x) - f(xo)) I Ig(x)I + If (xo)I I (g(x) - g(xo)) 1

<- eIg(x)I +fIf(xo)I = f(Ig(x)I + If(xo)I)

Now g(x) is a function, not a point, so we might worry that it could get big faster
than a gets small. But we know that when Ix-xol < 6, then Ig(x) -g(xo)I < e,
which gives

Ig(x)I < f + Ig(xo)I. 1.5.32
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There is no natural condition
that will guarantee that

f(x) # f(xo);

if we had required x 34 xo in our
definition of limit, this argument
would not work.

So continuing Equation 1.5.31, we get

e(Ig(x)1 + If(xo)I) < c(c + Ig(xo)I) + eIf(xo)I, 1.5.33

which goes to 0as egoes to 0.

Limits also behave well with respect to compositions.

Theorem 1.5.22 (Limit of a composition). If U C 1R", V C R' are
subsets, and f : U -+ V and g : V -' ]ltk are mappings, so that g o f
is defined, and if yo aef limx_.., f(x), and limy-Yo g(y) both exist, then
lim,-,. go f(x), exists, and

lira

go

f (x) = lim g(y).
zxo Y-+YO

Proof. For all f > 0 there exists 61 such that if ly - yol < 61, then Ig(y) -
g(yo)I < e. Next, there exists 6 such that if Ix-xol < 6, then lf(x)-f(xo) I < 61.
Hence

1.5.34

Ig(f(x)) - g(f(xo))I < c when Ix - xol < 6. 1.5.35

Theorems 1.5.21 and 1.5.22 show that if you have a function f : IlFn -s IR
given by a formula involving addition, multiplication, division and composition
of continuous functions, and which is defined at a point xo, then f (x)
exists, and is equal to f (xo).

Example 1.5.23 (Limit of a function). We have

lim x2 sin(xy) = 32 sin(-3) " -1.27.... 1.5.36

H-3)
In fact, the function x2 sin(xy) has limits at all points of the plane, and the
limit is always precisely the value of the function at the point. Indeed, xy is the
product of two continuous functions, as is x2, and sine is continuous at every
point, so sin(xy) is continuous everywhere; hence also x2 sin(xy). 0

In Example 1.5.23 we just have multiplication and sines, which are pretty
straightforward. But whenever there is a division we need to worry: are we
dividing by 0? We also need to worry whenever we see tan: what happens
if the argument of tan is xr/2 + k'r? Similarly, log, cot, see, csc all introduce
complications.

In one dimension, these problems are often addressed using l'HSpital's rule
(although Taylor expansions often work better).

Much of the subtlety of limits in higher dimensions is that there are lots
of different ways of approaching a point, and different approaches may yield
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FIGURE 1.5.6.
The function of Example 1.5.24

is continuous except at the ori-
gin. Its value is 1/e along the
"crest line" y = ±x2, but van-
ishes on both axes, forming a very
deep canyon along the x-axis. If
you approach the origin along any
straight line y = mx with m 96
0, the path will get to the broad
valley along the y-axis before it
reaches the origin, so along any
such path the limit off exists and
is 0.
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different limits, in which case the limit may not exist. The following example

illustrates some of the difficulties.

Example 1.5.24 (A case where different approaches give different lim-

its). Consider the function

l je- ifx96 0

f(x) 1 x
0 ifx=0,

shown in Figure 1.5.6. Does f {0) exist?

1.5.37

A first idea is to approach the origin along straight lines. Set y = mx. When
m = 0, the limit is obviously 0, and when m 34 0, the limit becomes

lim a-Imp; 1.5.38a-o x
this limit exists and is always 0, for all values of m. Indeed,

lim l e 11t = lim 8 = 0.
t-.o t s-.oo es

1.5.39

So however you approach the origin along straight lines, the limit always exists,
and is always 0. But if you set y = kx2 and let x ---' 0, approaching 0 along a
parabola, you find something quite different:

o Ikle-M = Ikle lkl, 1.5.40

which is some number that varies between 0 and 1/e (see Exercise 1.5.18). Thus
if you approach the origin in different ways, the limits may be different. A

Continuous functions

Continuity is the fundamental notion of topology, and it arises throughout
calculus also. It took mathematicians 200 years to arrive at a correct definition.
(Historically, we have our presentation out of order: it was the search for a
usable definition of continuity that led to the correct definition of limits.)

Definition 1.5.25 (Continuous function). Let X C R". Then a mapping
f : X -+ Rm is continuous at xo E X if

lim f(x) = f(xo); 1.5.41

f is continuous on X if it Is continuous at every point of X.
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A map f is continuous at xo if
you can make the difference be-
tween f(x) and f(xo) arbitrarily
small by choosing x sufficiently
close to X. Note that jf(x) -
f(xo)I must be small for all x "suf-
ficiently close" to xo. It is not
enough to find a 6 such that for
one particular value of x the state-
ment is true. However, the "suffi-
ciently close" (i.e., the choice of 6)
can be different for different val-
ues of x. (If a single 6 works for all
x, then the mapping is uniformly
continuous.)

We started by trying to write
this in one simple sentence, and
found it was impossible to do so
and avoid mistakes. If defini-
tions of continuity sound stilted,
it is because any attempt to stray
from the "for all this, there exists
that..." inevitably leads to ambi-
guity.

Note that with the definition of
limit we have given, it would be
the same to say that a function
f : U -. 1R" is continuous at
xo E U if and only if f(x)
exists.

There is a reformulation in terms of epsilons and deltas:

Proposition 1.5.26 (Criterion for continuity). The map f : X -. IRm
is continuous at xo if and only if for every e > 0, there exists 6 > 0 such that
when Ix - xol < 6, then If(x) - f (xo)I < e.

Proof. Suppose the c, b condition is satisfied, and let x;, i = 1, 2, ... be a
sequence in X that converges to xo E X. We must show that the sequence
f(x,), i = 1,2,... converges to f(xo), i.e., that for any e > 0, there exists N
such that when n > N we have jf(x) - f(xo)l < e. To find this N, first find
the 6 such that Ix - xoI < 6 implies that If(x) - f(xo)I < e. Next apply the
definition of a convergence sequence to the sequence x;: there exists N such
that if n > N, then Ixn - xoI < 6. Clearly this N works.

For the converse, remember how to negate sequences of quantifiers (Section
0.2). Suppose the f,6 condition is not satisfied; then there exists co > 0 such
that for all 6, there exists x E X such that Ix -xoI < 6 but If(x) - f(XO) I > to.
Let 6n = 1 /n, and let xn E X be such a point; i.e.,

Ixn - x,I < n and If(xn) - f(xo)I > Co. 1.5.42

The first part shows that the sequence xn converges to xo, and the second part
shows that f(xn) does not converge to f(xo).

The following theorem is a reformulation of Theorem 1.5.21; the proof is left
as Exercise 1.5.19.

Theorem 1.5.27 (Combining continuous mappings). Let U be a sub-
set of R', f and g mappings U -+ 1Rm, and h a function U -s R.

(a) If f and g are continuous at xo, then so is f + g.
(b) If f and h are continuous at xo, then so is hf.

(c) If f and h are continuous at xo, and h(xo) # 0, then then so is f
(d) If f and g are continuous at xo, then so is IF g

(e) If f is bounded and It is continuous at xo, with h(xo) = 0, then hf is
continuous at xo.

We can now write down a fairly large collection of continuous functions on
R": polynomials and rational functions.

A monomial function on 2" is an expression of the form x ' ... xk," with
integer exponents k1..... kn > 0. For instance, x2yzs is a monomial on IR3,
and xtx2x4 is a monomial on R4 (or perhaps 1R" with n > 4). A polynomial
function is a finite sum of monomials with real coefficients, like x2y + 3yz. A
rational function is a ratio of two polynomials, like x-Ys

xy+s
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FIGURE 1.5.7.
A convergent series of vectors.

The kth partial sum is gotten by
putting the first k vectors nose to
tail.

Absolute convergence means

that the absolute values converge.

Proposition 1.5.30 is very im-
portant; we use it in particular
to prove that Newton's method's
converges.

Corollary 1.5.28 (Continuity of polynomials and rational functions).
(a) Any polynomial function R" - H is continuous on all of Ill".
(b) Any rational function is continuous on the subset of 1IP" where the

denominator does not vanish.

Series of vectors

As is the case for numbers (Section 0.4), many of the most interesting sequences
arise as partial sums of series.

Definition 1.5.29 (Convergent series of vectors). A series E,_1 a"; is
convergent if the sequence of partial sums

n

inE4- 1.5.43
i=1

is a convergent sequence of vectors. In that case the infinite sum is
oo

An.lim 1.5.44
i=1

o

Proposition 1.5.30 (Absolute convergence implies convergence).

If D4 converges, then converges.
i=3 i=1

Proof. Proposition 1.5.9 says that it is enough to check this component by
component; in one variable, it is a standard statement of elementary calculus
(Theorem 0.4.11). 0

Geometric series of matrices

When he introduced matrices, Cayley remarked that square matrices "comport
themselves as single quantities." In many ways, one can think of a square
matrix as a generalized number; many constructions possible with numbers are
also possible with matrices. Here we will am that a standard result about the
sum of a geometric series applies to matrices as well; we will need this result
when we discuss Newton's method for solving nonlinear equations, in Section
2.7. In the exercises we will explore other series of matrices.

Definitions 1.5.8 and 1.5.29 apply just as well to matrices as to vectors, since
when distances are concerned, if we denote by Mat (n, m) the set of n x m
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Example: Let

A = I 0 1/41. Then

A2 = 0 (surprise!), so that the
infinite series of Equation 1.5.48
becomes a finite sum:

(I-A)-'=I+A,
andf

} `
0 1/41-' - l0 114[i

We will see in Section 2.3 that if
a square matrix has either a right
or a left inverse, that inverse is
necessarily a true inverse; check-
ing both directions is not actually
necessary.

matrices, then Mat (n, m) is the same as R"-. In particular, Proposition 1.5.9
applies: a series

1.5.45

of n x m matrices converges if for each position (i, j) of the matrix, the series
of the entries (A,,)( 3) converges.

Recall (Example 0.4.9) that the geometric series S = a + ar + aT2 +
converges if Irl < 1, and that the sum is a/(1 - r). We want to generalize this
to matrices:

Ak
k=1

Proposition 1.5.31. Let A be a square matrix. If I AI < 1, the series

S=I+A+A2+ 1.5.48

converges to (I - A)-1.

Proof. We use the same trick used in the scalar case of Example 0.4.9. Denote
by Sk the sum of the first k terms of the series, and subtract from Sk the product
SkA, to get St(I - A) = I - Ak+1:

Sk =
SkA =

Ak+1

1.5.49

IAk+'I s IAIkJAI = JAIk+1, 1.5.50

so limk_- Ak+1 = 0 when JAI < 1, which gives us

5(1 - A) = lim Sk(I - A) = lim (I - Ak+') = I - lim Ak+1 = I. 1.5.51k-.oo k-,oo k-.m

Sk(1-A) = I
We know (Proposition 1.4.11 b) that

0

Since S(1 - A) = I, S is a left inverse of (I - A). If in Equation 1.5.49 we
had written ASk instead of SkA, the same computation would have given us
(I - A)S = I, showing that S is a right inverse. So by Proposition 1.2.14, S is
the inverse of (1 - A).

Corollary 1.5.32. If JAI < 1, then (I - A) is invertible.

Corollary 1.5.33. The set of invertible n x n matrices is open.

Proof. Suppose B is invertible, and IHI < 1/JB-'I. Then I - B-'HJ < 1, so
I+B-'H is invertible (by Corollary 1.5.32), and

(I + B-'H)-'B-' = (B(I + B--' H))-' = (B + H)-'. 1.5.52
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Thus if JHJ < 111B-'J, the matrix B + H is invertible, giving an explicit
neighborhood of B made up of invertible matrices.

1.6 FOUR BIG THEOREMS

When they were discovered, the
examples of Peano and Cantor
were thought of as aberrations. "I
turn with terror and horror from
this lamentable scourge of contin-
uous functions with no derivatives
.. ." wrote Charles Hermite in
1893. Six years later, the French
mathematician Henri Poincare
lamented the rise of "a rabhle of
functions ... whose only job, it
seems, is to look as little as pos-
sible like decent and useful func-
tions."

"What will the poor student
think?" Poincare worried. "He
will think that mathematical sci-
ence is just an arbitrary heap of
useless subtleties; either he will
turn from it in aversion, or he will
treat it like an amusing game."

Ironically, although Poincare
wrote that these functions, "spe-
cially invented only to show up the
arguments of our fathers," would
never have any other use, he was
ultimately responsible for show-
ing that seemingly "pathological"
functions are essential in describ-
ing nature, leading to such fields
as chaos and fractals.

Definition 1.6.1 is amazingly
important, invading whole chap-
ters of mathematics; it is the basic
"finiteness criterion" for spaces.
Something like half of mathemat-
ics consists of showing that some
space is compact.

In this section we describe a number of results, most only about 100 years
old or so. They are not especially hard, and were mainly discovered after vari-
ous mathematicians (Peano, Weierstrass, Cantor) found that many statements
earlier thought to be obvious were in fact false.

For example, the statement a curve in the plane has area 0 may seem obvi-
ous. Yet it is possible to construct a continuous curve that completely fills up a
triangle, visiting every point at least once! The discovery of this kind of thing
forced mathematicians to rethink their definitions and statements, putting cal-
culus on a rigorous basis.

These results are usually avoided in first and second year calculus. Two
key statements typically glossed over are the mean value theorem and the inte-
grability of continuous functions. These are used-indeed, they are absolutely
central-but often they are not proved.'5 In fact they are not so hard to prove
when one knows a bit of topology: notions like open and closed sets, and max-
ima and minima of functions, for example.

In Section 1.5 we introduced some basic notions of topology. Now we will
use them to prove Theorem 1.6.2, a remarkable non-constructive result that will
enable us to prove the existence of a convergent subsequence without knowing
where it is. We will use this theorem in crucial ways to prove the mean value
theorem and the fundamental theorem of algebra (this section), to prove the
spectral theorem for symmetric matrices (Theorem 3.7.12) and to see what
functions can be integrated (Section 4.3).

In Definition 1.6.1 below, recall that a subset X C IR" is bounded if it is
contained in a ball centered at the origin (Definition 1.5.12).

Definition 1.6.1 (Compact set). A subset C C lll" is compact if it is
closed and bounded.

The following theorem is as important as the definition, if not more so.

Theorem 1.6.2 (Convergent subsequence in a compact set). If a
compact set C C IR" contains a sequence xt, x2, ... , then that sequence has
a convergent subsequence x;111, x,(2), ... whose limit is in C.

Note that Theorem 1.6.2 says nothing about what the convergent subse-
quence converges to; it just says that a convergent subsequence exists.

15One exception is Michael Spivak's Calculus.
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If the large box contains an infi-
nite sequence, then one of the four
quadrants must contain a conver-
gent subsequence. If that quad-
rant is divided into four smaller
boxes, one of those small boxes
must contain a convergent subse-
quence, and so on.

Several more properties of com-
pact sets are stated and proved in
Appendix A.17.
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Proof. The set C is contained in a box -10N < xi < 10N for some N.
Decompose this box into boxes of side 1 in the obvious way. Then at least one
of these boxes, which we'll call B0, must contain infinitely many terms of the
sequence, since the sequence is infinite and we have a finite number of boxes.
Choose some term xi(o) in Bo, and cut up Bo into 10" boxes of side 1/10 (in
the plane, 100 boxes; in V. 1,000 boxes). At least one of these smaller boxes
must contain infinitely many terms of the sequence. Call this box B1, choose
xitil E B1 with i(1) > i(0). Now keep going: cut up Bt into 10" boxes of
side 1/102; again, one of these boxes must contain infinitely many terms of
the sequence; call one such box B2 and choose an element xi(2) E B2 with
i(2) > i(1) ...

Think of the first box Bo as giving the coordinates, up to the decimal point,
of all the points in B0. (Because it is hard to illustrate many levels for a decimal
system, Figure 1.6.1 illustrates the process for a binary system.) The next box,
B1, gives the first digit after the decimal point.16 Suppose, for example, that
Bo has vertices (1,2), (2,2), (1,3) and (2,3); i.e., the point (1,2) has coordinates
x = 1, y = 2, and so on. Suppose further that Bt is the small square at the top
right-hand corner. Then all the points in B1 have coordinates (x = 1.9... , y =
2.9... ). When you divide B1 into 102 smaller boxes, the choice of B2 will
determine the next digit; if B2 is at the bottom right-hand corner, then all
points in B2 will have coordinates (x = 1.99... , y = 2.90... ), and so on.

Of course you don't actually know what the coordinates of your points are,
because you don't know that B1 is the small square at the top right-hand corner,
or that B2 is at the bottom right-hand corner. All you know is that there exists
a first box Bo of side 1 that contains infinitely many terms of the original
sequence, a second box B1 E Bo of side 1/10 that also contains infinitely many
terms of the original sequence, and so on.

Construct in this way a sequence of nested boxes

Bo3B1jB2:) ... 1.6.1

with Bm of side 10'", and each containing infinitely many terms of the se-
quence; further choose xi(m) E B. with i(m + 1) > i(m).

Clearly the sequence xifml converges; in fact the mth term beyond the der.-
imal point never changes after the mth choice. The limit is in C since C is
closed.

You may think "what's the big deal?" To see the troubling implications of
the proof, consider Example 1.6.3.

Example 1.6.3 (Convergent subsequence). Consider the sequence

xm = sin 10". 1.6.2

16To ensure that all points in the same box have the same decimal expansion, we
should say that our boxes are all open on the top and on the right.
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Remember (Section 0.3) that U
means "union": A U B is the set of
elements of either A or B or both.

This is certainly a sequence in the compact set C = (-1, 1), so it 4DflTa1R6-
a convergent subsequence. But how do you find it? The first step of the
construction above is to divide the interval [-1, 1) into three sijb interv
"boxes"), writing

[-1'1) = [- 1,0) U [0,1) U {1}.

Now how do we choose which of the three "boxes" above shoulih,_be Mtirst'
box Bs? We know that xm will never be in the box {1}, since sing
only if B = r/2 + 2kx for some integer k and (since r is irrational) 101 cannot
be r/2 + 2kr. But how do we choose between (-1,0) and (0,1)? If we want
to choose (0, 1), we must be sure that we have infinitely many positive x,,,. So,
when is xm = sin 10"' positive?

Since sin B is positive for 0 < 0 < r, then x,,, is positive when the fractional
part of 10m/(2r) is greater than 0 and less than 1/2. ( By "fractional part"
we mean the part after the decimal; for example 5/3 = 1 + 2/3 = 1.666... ;
the fractional part is .666....) If you don't see this, consider that (as shown in
Figure 1.6.2) sin 2ra depends only on the fractional part of a:

= 0 if a is an integer or half-integer

sin 2ra > 0 if the fractional part of a is < 1/2 1.6.4

3/2 < 0 if the fractional part of a is > 1/2
If instead of writing xm = sin 10' we write

10, 10-x_ = sin 2ir-x , i.e. a =
2x ' 1.6.5

FIGURE 1.6.2.
Graph of sin 2rx. If the frac-

tional part of a number x is be-
tween 0 and 1/2, then sin 2rx > 0;
if it is between 1/2 and 1, then
sin 2rx < 0.

we see, as stated above, that xm is positive when the fractional part of 10-/(2x)
is less than 1/2.

So if a convergent subsequence of xm is contained in the box [0,1), an infinite
number of 10'/(2r) must have a fractional part that is less than 1/2. This will
ensure that we have infinitely many xm = sin 10'a in the box 10, 1).

For any single x,,,, it is enough to know that the first digit of the fractional
part of 10'"/(2x) is 0, 1, 2, 3 or 4: knowing the first digit after the decimal
point tells you whether the fractional part is less than or greater than 1/2. Since
multiplying by 10'" just moves the decimal point to the right by m, knowing
whether the fractional part of every 10'/(2x) starts this way is really a question
about the decimal expansion of z : do the digits 0,1,2,3 or 4 appear infinitely
many times in the decimal expansion of

1 = .1591549...?
2x 1.6.6

Note that we are not saying that all the 10"'/(2x) must have the decimal
point followed by 0,1,2,3, or 4! Clearly they don't. We are not interested in
all the x,,,; we just want to know that we can find a subsequence of x,,, that
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The point is that although the
sequence x,,, = sin 10' is a se-
quence in a compact set, and
therefore (by Theorem 1.6.2) con-

tains a convergent subsequence,

we can't begin to "locate" that

subsequence. We can't even say

whether it is in [-1,0) or [0, 1).

Recall that compact means
closed and bounded.

Although the use of the words
least upper bound and sup is com-
pletely standard, some people use
maximum as another synonym for
least upper bound, not a least up-
per bound that is achieved, as
we have defined it. Similarly,
some people use the words greatest
lower bound and minimum inter-
changeably; we do not.

converges to something inside the box [0, 1). For example, :rr is not it the box
(0, 1), since 10 x .1591549... = 1.591549...: the fractional part starts with 5.
Nor is x2, since 102 x.1591549 ... = 15.91549... ; the fractional part starts with
9. But x3 is in the box [0, 1), since the fractional part of l03 x .1591549... _
159.1549... starts with a. 1.

Everyone believes that the digits 0,1,2,3 or 4 appear infinitely many times in
the decimal expansion of 2l,: it is widely believed that zr is a normal number.
i.e., where every digit appears roughly 1/10th of the time, every pair of digits
appears roughly 1/100th of the time, etc. The first 4 billion digits of r have
been computed and appear to bear out this conjecture. Still, no one knows how
to prove it; as far as we know it is conceivable that all the digits after the IO
billionth are 6's, 7's and 8's.

Thus, even choosing the first "box" Bo requires some god-like ability to "see"
this whole infinite sequence, when there is simply no obvious way to do it_ L

Theorem 1.6.2 is non-constructive: it proves that something exists but gives
not the slightest hint of how to find it. Many mathematicians of the cud of
the 19th century were deeply disturbed by this type of proof; even today, it
school of mathematicians called the intuitionists reject this sort of thinking.
They demand that in order for a number to be determined, one give a rule
which allows the computation of the successive decimals. Intuitionists are pretty
scarce these days: we have never met one. But we have a certain sympathy
with their views, and much prefer proofs that involve effectively computable
algorithms, at least implicitly.

Continuous functions on compact sets

We can now explore some of the consequences of Theorem 1.6.2.

One is that a continuous function defined on a compact subset has both a
maximum and a minimum. Recall from first year calculus and from Sect ion
0.4 the difference between a least upper bound and a maximum (sintilarly. the
difference between a greatest lower bound and a minimum).

Definition 1.6.4 (Least upper bound). A number x is the least upper
bound of a function f defined on a set C if x is the smallest number such
that f (a) < x for all a E C. It is also called supremum, abbreviated sup.

Definition 1.6.5 (Maximum). A number x is the maximum of a function
f defined on a set C if it is the least upper bound off and there exists b E C
such that f(b) = x.



On the open set (0, 1) the great-
est lower bound of f (.r) = x2 is
0. and f has no minimum. On
the closed set [0, 1]. 0 is both the
greatest lower bound and the min-
imuin of f.

Recall that "compact" means
closed and bounded.
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For example, on the open set (0, 1) the least upper bound of f(x) = x1 is
1, and f has no maximum. On the closed set [0, 1], 1 is both the least tipper
bound and the maximum of f.

Definition 1.6.6 (Greatest lower bound, minimum). A number y is
the greatest lower bound of a function f defined on a set C if y is the largest
number such that f (a) > x for all a E C. The word infimum, abbreviated
inf, is a synonym for greatest lower bound. The number y is the minimum
off if there exists b E C such that f (b) = y.

Theorem 1.6.7 (Existence of minima and maxima). Let C C IRn be a
compact subset, and f : C -t IR be a continuous function. Then there exists
a point a E C such that f (a) > f (x) for all x E C, and a point b E C such
that f(b) < f(x) for all x E C.

Here are some examples to show that the conditions in the theorem are
necessary. Consider the function

0 when x = 0
1.6.7f(x)={ t

l s otherwise,

defined on the compact set [0,1]. As x - 0, we see that f (x) blows up to
infinity; the function does not have a maximum (it is not bounded). This
function is not continuous, so Theorem 1.6.7 does not apply to it.

The function f(x) = 1/x, defined on (0,1], is continuous but it has no
maximum either; this time the problem is that (0, 11 is not closed, hence not
compact. And the function f (x) = x, defined on all of lR, is not bounded either;
this time the problem is that lli' is not bounded, hence not compact,. Exercise
1.6.1 asks you to show that if A C 1R° is any non-compact subset, then there
always is a continuous unbounded function on A.

Proof. The proof is by contradiction. Assume f is unbounded. Then for
any integer N, no matter how large, there exists a point XN E C such that
If(x,N)I > N. By Theorem 1.6.2, the sequence xN must contain a convergent
subsequence xN(j), which converges to some point b E C. Since f is continuous
at b, then for any e, there exists a b > 0 such that when Ix - hl < b, then
If(x) - f(b)I < e; i.e., If(x)I < If(b)I + E.

Since the xN)i) converge to b, we will have I xN(i) - bI < 6 for j sufficiently
large. But as soon as N(j) > I f (b)I + e, we have

If(xngj))I > N(j) > If(b)I +e, 1.6.8

a contradiction.
Therefore, the set of values off is bounded, which means that f has a least

upper bound M. What we now want to show is that f has a maximum: that.
there exists a point a E C such that f (a) _ M.
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There is a sequence xi such that

lim f (xi) = M.

We can again extract a convergent subsequence xilml that converges to some
point a E C. Then, since a = limm-,o xilml,

f (a) = nlinn f (xi(m)) = M. 1.6.10

The proof for the minimum works the same way. 0

Stated in terms of cars, the
mean value theorem may seem ob-
vious. But notice that the theo-
rem does not require that the deriv-
ative be continuous: even if it were
possible for a car to jump from go-
ing 59 mph to going 61 mph, with-
out ever passing through 60 mph,
it would still be true that a car
that traveled 60 miles in an hour
would have at some instant to be
going 60 mph.

We will have several occasions to use Theorem 1.6.7. First, we need the
following proposition, which you no doubt proved in first year calculus.

Proposition 1.6.8. If a function g defined and differentiable on an open in-
terval in R has a maximum (respectively a minimum) at c, then its derivative
at c is 0.

Proof. We will prove it only for the maximum. If g has a maximum at c, then
g(c) - g(c + h) > 0, so

g(c) - g(c + h) > 0 if h > 0
i.e., lim

g(c) - g(c + h)
1.6.11

it { <0 ifh<0; h-0 it

is simultaneously < 0 and > 0, so it is 0. 0

An essential application of Theorem 1.6.7 and Proposition 1.6.8 is the mean
value theorem, without which practically nothing in differential calculus can be
proved. The mean value theorem says that you can't drive 60 miles in an hour
without going exactly 60 mph at one instant at least: the average change in f
over the interval (a, 6) is the derivative of f at some point c E (a, b).

Theorem 1.6.9 (Mean value theorem). If f : to, b] -a R is continuous,
and f is differentiable on (a, b), then there exiebs c E (a, b) such that

f'(c)= f(b)b_f(a)

1.6.9

1.6.12

Note that f is defined on the closed and bounded interval [a, b], but we must
specify the open interval (a, b) when we talk about where f is differentiable.'?
If we think that f measures position as a function of time, then the right-hand
side of Equation 1.6.12 measures average speed over the time interval b - a.

'One could have a left-hand and right-hand derivative at the endpoints, but we
are not assuming that such one-sided derivatives exist.
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1.6.13

The function g represents the steady progress of a tortoise starting at f (a) and
constantly maintaining that average speed (alternatively, a car set on cruise

control):

b - a is f (b) - f (a), so its average speed is

m = f(b) - f(a)
b-a

Proof. Think of a function f as representing distance traveled (by a car or, as
in Figure 1.6.3, by a hare). The distance the hare travels in the time interval

g(x) = f(a) + m(x - a).

FIGURE 1.6.3.

The function h measures the distance between f and g:

h(x) = f(x) - g(x) = f(x) - (f(a) + m(x - a)). 1.6.14

It is a continuous function on [a, b), and h(a) = h(b) = 0. (The hare and the
tortoise start together and finish in a dead heat.)

If h is 0 everywhere, then f (x) = g(x) = f (a) + m(x - a) has derivative m
everywhere, so the theorem is true.

If It is not 0 everywhere, then it must take on positive values or negative
values somewhere, so it must have a positive maximum or a negative minimum,
or both. Let c be a point where it has such an extremum; then c E (a, b), so It
is differentiable at c, and by Proposition 1.6.8, h(c) = 0.

This gives 0 = h'(c) = f'(c) - m. (In Equation 1.6.14, x appears only twice;
A race between hare and tor- r

toise ends in a dead heat. The
function f represents the progress
of the hare, starting at time a and
ending at time b. He speeds ahead,
overshoots the mark, and returns.
Slow-and-steady tortoise is repre-
sented by 9(x) = f (a) + m(x - a).

Even if the coefficients a are
real, the fundamental theorem of
algebra does not guarantee that
the polynomial has any real roots;
the roots may be complex.

the f(x) contnbutes f (c) and the -mx contributes -m.)

The fundamental theorem of algebra

The fundamental theorem of algebra is one of the most important results of
all mathematics, with a history going back to the Greeks and Babylonians. It
was not proved satisfactorily until about 1830. The theorem asserts that every
polynomial has roots.

Theorem 1.6.10 (Fundamental theorem of algebra). Let

p(Z) = zk + ak-izk-1 + ... + ao 1.6.15

be a polynomial of degree k > 0 with complex coefficients. Then p has a
root: there exists a complex number zo such that p(zo) = 0.

-alt ar - 4ao

2

When k = 1, this is clear: the unique root is zo = -ao.
When k = 2, the famous quadratic formula tells you that the roots are

1.6.16



Niels Henrik Abel, born in
1802, assumed responsibility for a
younger brother and sister after
the death of their alcoholic father
in 1820. For years he struggled
against poverty and illness, trying
to obtain a position that would al-
low him to marry his fiancee; he
died from tuberculosis at the age
of 26, without learning that he
had been appointed professor in
Berlin.

Evariste Galois, born in 1811,
twice failed to win admittance to
Ecole Polytechnique in Paris, the
second time shortly after his fa-
ther's suicide. In 1831 he was
imprisoned for making an implied
threat against the king at a repub-
lican banquet; he was acquitted
and released about a month later.
He was 20 years old when he died
from wounds received in a duel.

At the time Gauss gave his
proof of Theorem 1.6.10, complex
numbers were not sufficiently re-
spectable that they could be men-
tioned in a rigorous paper: Gauss
stated his theorem in terms of real
polynomials. For a discussion of
complex numbers, see Section 0.6.

The absolute value of a com-

plex number z = x + iy is

1=1 = x2 + y2.
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(Recall above that the coefficient of z2 is 1.) This was known to the Greeks
and Babylonians.

The cases k = 3 and k = 4 were solved in the 16th century by Cardano and
others; their solutions are presented in Section 0.6.

For the next two centuries, an intense search failed to find anything analogous
for equations of higher degree. Finally, around 1830, two young mathematicians
with tragic personal histories, the Norwegian Hans Erik Abel and the French-
man Evariste Galois, proved that no analogous formulas exist in degrees 5 and
higher. Again, these discoveries opened new fields in mathematics.

Several mathematicians (Laplace, d'Alembert, Gauss) had earlier come to
suspect that the fundamental theorem was true, and tried their hands at proving
it. In the absence of topological tools, their proofs were necessarily short on
rigor, and the criticism each heaped on his competitors does not reflect well on
any of them. Although the first correct proof is usually attributed to Gauss
(1799), we will present a modern version of d'Alembert's argument (1746).

Unlike the quadratic formula and Cardano's formulas, our proof does not
provide a recipe to find a root. (Indeed, as we mentioned above, Abel and
Galois proved that no recipes analogous to Equation 1.6.16 exist.) This is a
serious problem: one very often needs to solve polynomials, and to this day
there is no really satisfactory way to do it; the picture on the cover of this
text is an attempt to solve a polynomial of degree 256. There is an enormous
literature on the subject.

Proof of 1.6.10. We want to show that there exists a number z such that
p(z) = 0. The strategy of the proof is first to establish that lp(z)l has a
minimum, and next to establish that its minimum is in fact 0. To establish
that lp(z)I has a minimum, we will show that there is a disk around the origin
such that every z outside the disk gives a value lp(z)l that is greater than lp(0)l.
The disk we create is closed and bounded, and lp(z)l is a continuous function,
so by Theorem 1.6.7 there is a point zo inside the disk such that lp(zo)l is the
minimum of the function on the disk. It is also the minimum of the function
everywhere, by the preceding argument. Finally-and this will be the main
part of the argument-we will show that p(zo) = 0.

We shall create our disk in a rather crude fashion; the radius of the disk we
establish will be greater than we really need. First, lp(z)l can be at least as
small as laol, since when z = 0, Equation 1.6.15 gives p(0) = ao. So we want to
show that for lzl big enough, lp(z)I > laol The "big enough" will be the radius
of our disk; we will then know that the minimum inside the disk is the global
minimum for the function.

It it is clear that for IzI large, Iz1' is much larger. What we have to ascertain
is that when lzl is very big, Jp(z)J > laol: the size of the other terms,

lak_1zk_1 + ... + arz + aol, 1.6.17

will not compensate enough to make ip(z)i < laol.
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The notation

sup{Iak-11,..., laol}

means the largest of

lak-l 1, ... , laol.

The triangle inequality can also
be stated as

Ivl - Iw1 <-13 + wl,

since

ICI=I"+w-WI

=Iv+w1+IwI.

First, choose the largest of the coefficients Iak_ 11, ... , lao I and call it A:

A = sup{lak_1I,...,Iaol}. 1.6.18

Then if IzI = R, and R > 1, we have

<ARk-1+ +AR+A
< ARk-1 + - + ARk-1 + ARk-1 = kAR1-1.

1.6.19
To get from the first to the second line of Equation 1.6.19 we multiplied all

the terms on the right-hand side, except the first, by RI, R2 ... up to Rk-1 in
order to get an Rk_1 in all k terms, giving kARk-1 in all. (We don't need to
make this term so very big; we're being extravagant in order to get a relatively
simple expression for the sum. This is not a case where one has be delicate
with inequalities.)

Now, when IzI = R, we have

IP(z)I = Iz k +ak_1zk-1 +... +ao 1.6.20

Rk abs. value <kARk-'

so using the triangle inequality,

IP(z)I ? lzkl - Iak-lzk-1 +... + alz + aol
> Rk - kARk-1 = Rk-1(R - kA).

1.6.21

FIGURE 1.6.4. Any z outside the disk of radius R will give lp(z)I > laol.

Of course Rk-1IR - kAl > Iaol when R = max{kA + laol,1}. So now we
know that any z chosen outside the disk of radius R will give lp(z)l > laol, as
shown in Figure 1.6.4. If the function has a minimum, that minimum has to
be inside the disk. Moreover, we know by Theorem 1.6.7 that it does have a
minimum inside the disk. We will denote by zo a point inside the disk at which
the function achieves its minimum.
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The big question is: is zo a root of the polynomial? Is it true that Ip(zo)I = 0?
Earlier we used the fact that for IzI large, Izkl is very large. Now we will use the
fact that for IzI small, Izkl is very small. We will also take into account that we
are dealing with complex numbers. The preceding argument works just as well

with real numbers, but now we will need the fact that when a complex number
is written in terms of its length r and polar angle 0, taking its power has the
following effect:

You might object, what hap-
pens to the middle terms, for ex-
ample, the 2a2zou in a2(zo+u)2 =
a24 + 2a2zou + a2u2? But that is
a term in u with coefficient a22zo,
so the coefficient a22zo just gets
added to b,, the coefficient of u.

(r(cos 0 + i sin 9)) k = rk (cos 9 + i sin 0). 1.6.22

As you choose different values of 9 then z = r(cos9+i sin 9) travels on a circle
of radius r. If you raise that number to the kth power, then it travels around a
much smaller circle (for r small), going much faster-k times around for every
one time around the original circle.

The formulas in this last part of the proof may be hard to follow, so first we
will outline what we are going to do. We are going to argue by contradiction,
saying that p(zo) 0 0, and seeing that we land on an impossibility. We will
then see that p(zo) is not the minimum, because there exists a point z such that
Ip(z)I < Ip(zo)I. Since we have already proved that Ip(zo)I is the minimum, our
assumption that p(zo) # 0 is false.

We start with a change of variables; it will be easier to consider numbers in
a circle around zo if we treat zo as the origin. So set z = zo + u, and consider
the function

p(z) = Zk + ak-l Zk-l + ... + ao = (Zo + u)k + ak-1(ZO + U)k-1 + ... + ae

= uk + bk_luk-1 + ... + bo = q(u),

where

1.6.23

bo = zo + ak_lzo-1 + ... + ao = p(zo). 1.6.24

This is a polynomial of degree k in u. We have grouped together all the terms
that don't contain u and called them bo.

Now, looking at our function q(u) of Equation 1.6.23, we choose the term
with the smallest power j > 0 that has a nonzero coefficient. (For example, if
we had q(u) = u° + 2u2 + 3u + 10, that term, which we call bjuj, would be 3u;
if we had q(u) = u5 + 2u4 + 5u3 + 1, that term would be 5u3.) We rewrite our
function as follows

(bj+luj+1 + ... + uk). 1.6.25

abe.val. smaller than IbjuJI for small u

Exercise 1.6.2 asks you to justify that I(bj+luj+l + . + uk)I < Ibjuj I for small
u. The construction is illustrated in Figure 1.6.5.

q(u) = bo + bjuj +
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Because there may be lots of
little terms b,+Iu1+' + +uk, you
might imagine that the first dog
holds a shorter leash for a smaller
dog who is running around him,
that smaller dog holding a yet
shorter leash for a yet smaller dog
who is running around him... .

'0

P_>

p(z)

Exercise 1.6.6 asks you to prove
that every polynomial over the
complex numbers can be factored
into linear factors, and that every
polynomial over the real numbers
can be factored into linear factors
and quadratic factors with com-
plex roots.

Recall that p is pronounced
"rho."

FIGURE 1.6.5. The point p(zo) = bo (the flagpole) is the closest that p(z) ever comes
to the origin, for all z. The assumption that the flagpole is different from the origin
(bo 0 0) leads to a contradiction: if Jul is small, then as z = zo + u takes a walk
around zp (shown at left), p(z) (the dog) goes around the flagpole and will at some
point be closer to the origin than is the flagpole itself (shown at right).

Now consider our number u written in terms of length p and polar angle 0:

u=p(cos9+isin0). 1.6.26

The numbers z = zo + u then turn in a circle of radius p around zo as we
change the angle 9. What about the numbers p(z)? If we were to forget about
the small terms grouped in parentheses on the right-hand side of Equation
1.6.25, we would say that these points travel in a circle of radius p' (smaller
than p for p < 1) around the point bo = p(zo). We would then see that, as
shown in Figure 1.6.5, that if pi < Ibol, some of these points are between bo and
0; i.e., they are smaller than bo. If we ignore the small terms, this would mean
that there exists a number z such that Ip(z)I < Ip(zo)I, contradicting the fact,
which we have proved that Ip(zo)I is the minimum of the function.

Of course we can't quite ignore the small terms, but we can show that they
don't affect our conclusion. Think of bo as a flagpole and bo+bju', with Jul = p
as a man walking on a circle of radius lbjlp' around that flagpole. He is walking
a dog that is running circles around him, restrained by a leash of radius less than
I bj I p sufficiently small. The leash represents the small terms. So when
the man is between 0 and the flagpole, the dog, which represents the point p(z)),
is closer to 0 than is the flagpole. That is, Ip(z)I is less than Ibol = Ip(zo)l. This
is impossible, because we proved that Ip(zo)I is the minimum of our function.
Therefore, our assumption that p(zo) 34 0 is false. 0

The proof of the fundamental theorem of calculus illustrates the kind of thing
we meant when we said, in the beginning of Section 1.4, that calculus is about
"some terms being dominant or negligible compared to other terms."
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1.7 DIFFERENTIAL CALCULUS: REPLACING NONLINEAR
TRANSFORMATIONS BY LINEAR TRANSFORMATIONS

Born: I should like to put to Herr Einstein a question, namely, how
quickly the action of gravitation is propagated in your theory ... .

Einstein: It is extremely simple to unite down the equations for the case
when the perturbations that one introduces in the field are infinitely small.
... The perturbations then propagate with the same velocity as light.

Born: But for great perturbations things are surely very complicated?

Einstein: Yes, it is a mathematically complicated problem. It is especially
difficult to find exact solutions of the equations, as the equations are
nonlinear.--Discussion after lecture by Einstein in 1913

The object of differential cal-
culus is to study nonlinear map-
pings by replacing them with linear
transformations; we replace non-
linear equations with linear equa-
tions, curved surfaces by their tan-
gent planes, and so on.

As mentioned in Section 1.3, in real life (and in pure mathematics as well) a
great many problems of interest are not linear; one must consider the effects of
feedback. A pendulum is an obvious example: if you push it so that it moves
away from you, eventually it will swing back. Second-order effects in other
problems may be less obvious. If one company cuts costs by firing workers, it
will probably increase profits; if all its competitors do the same, no one company
will gain a competitive advantage; if enough workers lose jobs, who will buy
the company's products? Modeling the economy is notoriously difficult, but
second-order effects also complicate behavior of mechanical systems.

The object of differential calculus is to study nonlinear mappings by replacing
them with linear transformations. Of course, this linearization is useful only if
you understand linear objects reasonably well. Also, this replacement is only
more or less justified. Locally, near the point of tangency, a curved surface may
be very similar to its tangent plane, but further away it isn't. The hardest part
of differential calculus is determining when replacing a nonlinear object by a
linear one is justified.

In Section 1.3 we studied linear transformations in R'. Now we will see
what this study contributes to the study of nonlinear transformations, more
commonly called mappings.

This isn't actually a reasonable description: nonlinear is much too broad a
class to consider. Dividing mappings into linear and nonlinear is like dividing
people into left-handed cello players and everyone else. We will study a limited
subset of nonlinear mappings: those that are, in a sense we will study with care,
"well approximated by linear transformations."

Derivatives and linear approximation in one dimension

In one dimension, the derivative is the main tool used to linearize a function.
Recall from one variable calculus the definition of the derivative:
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The derivative of a function f : IE -* R, evaluated at a, is

f(a) = lim 1 (f(a + h) - f(a)).h-o h
1.7.1

Limiting the domain as we do
in Definition 1.7.1 is necessary, be-
cause many interesting functions
are not defined on all of R, but
they are defined on an appropriate
open subset U C R. Such func-
tions as log x, tan x and 1/x are
not defined on all of IR; for exam-
ple, 11x is not defined at 0. So if
we used Equation 1.7.1 as our def-
inition, tan x or log x or 1/x would
not be differentiable.

We discussed in Remark 1.5.1
why it is necessary to specify an
open set when talking about de-
rivatives.

Exercises 1.7.1, 1.7.2, 1.7.3,
and 1.7.4 provide some review of
tangents and derivatives.

Although it sounds less friendly, we really should say:

Definition 1.7.1 (Derivative). Let U be an open subset of IR, and f :
U - IR a function. Then f is differentiable at a E U if the limit

f'(a) = ,,limo 1(f (a + h) - f (a)) exists. 1.7.2

Students often find talk about open sets U E IR and domains of definition
pointless; what does it mean when we talk about a function f : U - IIR? This
is the same as saying f : IlR -s R, except that f (x) is only defined if x is in U.

Example 1.7.2 (Derivative of a function from I!R R). If f (x) = x2,
then f'(x) = 2x. This is proved by writing

fi(x) hi oh((x+h)2-x2)=hi oh(2xh+h2)=2x+li mh=2x. 1.7.3

The derivative 2x of the function f(x) = x2 is the slope of the line tangent
to f at x; one also says that 2x is the slope of the graph off at x. In higher
dimensions, this idea of the slope of the tangent to a function still holds, al-
though already in two dimensions, picturing a plane tangent to a surface is
considerably more difficult than picturing a line tangent to a curve.

Partial derivatives

One kind of derivative of a function of several variables works just like a de-
rivative of a function of one variable: take the derivative with respect to one

variable, treating all the others as constants.

Definition 1.7.3 (Partial derivative). Let U be an open subset of IIR"
and f : U -* R a function. The partial derivative of f with respect to the
ith variable, and evaluated at a, is the limit

al al

D.f(a)=hk oh f a;+h -f a; 1.7.4

an a
if the limit exists, of course.



The partial derivative D, f
measures change in the direction
of the vector a",; the partial deriv-
ative D2f measures change in the
direction of the vector ez; and so
on.

Different notations for the par-

tial derivative exist:

Dif=8. , D2f=F

... D,f=oi
A notation often used in partial
differential equations is

f=, = Dif.
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We can rewrite Equation 1.7.4, using standard basis vectors:

i
of(a+hei)-f(a)

Dif(a)= hh
1.7.5

since all the entries of ei are 0 except for the ith entry, which is 1, so that

a"

The partial derivative Di f (a) answers the question, how fast does the func-
tion change when you vary the ith variable, keeping the other variables con-
stant? It is computed exactly the same way as derivatives are computed in first
year calculus. To take the partial derivative with respect to the first variable

of the function f
/
I yx I = xy, one considers y to be a constant and computes

Dif = y.

What is Dl f if f C x x3 + x2y + y2? What is D2f? Check your answers
y

below.18

Remark. There are at least four commonly used notations for partial deriva-
tives, the most common being

of of of
axl'axe ...,axi 1.7.7

for the partial derivative with respect to the first, second, ... ith variable. We
prefer the notation Di f, because it focuses on the important information: with
respect to which variable the partial derivative is being taken. (In problems
in economics, for example, where there may be no logical order to the vari-
ables, one might assign letters rather than numbers: D,,, f for the "wages"
variable, D5 f for the "prime rate," etc.) It is also simpler to write and looks
better in matrices. But we will occasionally use the other notation in examples
and exercises, so that you will be familiar with it. A

Pitfalls of partial derivatives

One eminent French mathematician, Adrien Douady, complains that the no-
tation for the partial derivative omits the most important information: which
variables are being kept constant.

1eDif =3x2+2xy and D2f =x2+2y.

a,

a+hei= ai+hi 1.7.6

/JI



All notations for the partial
derivative omit crucial informa-
tion: which variables are being
kept constant. In modeling real
phenomena, it can be difficult even
to know what all the variables are.
But if you don't, your partial de-
rivatives may be meaningless.

Note that the partial derivative
of a vector-valued function is a
vector.

We use the standard expres-
sion, "vector-valued function,"

but note that the values of such

a function could be points rather

than vectors; the difference in

Equation 1.7.8 would still be a vec-
tor.

We give two versions of Equa-
tion 1.7.10 to illustrate the two no-
tations and to emphasize the fact
that although we used x and y to
define the function, we can evalu-
ate it at variables that look differ-
ent.
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For instance, consider the very real question: does increasing the minimum
wage increase or decrease the number of minimum wage jobs? This is a question
about the sign of

D minimum wage f,

where x is the economy and f (x.) = number of minimum wage jobs.

But this partial derivative is meaningless until you state what is being held
constant, and it isn't at all easy to see what this means. Is public investment to
be held constant, or the discount rate, or is the discount rate to be adjusted to
keep total unemployment constant, as appears to be the present policy? There
are many other variables to consider, who knows how many. You can see here
why economists disagree about the sign of this partial derivative: it is hard if
not impossible to say what the partial derivative is, never mind evaluating it.

Similarly, if you are studying pressure of a gas as a function of temperature,
it makes a big difference whether the volume of gas is kept constant or whether
the gas is allowed to expand, for instance because it fills a balloon.

Partial derivatives of vector-valued functions

The definition of a partial derivative makes just as good sense for a vector-
valued function (a function from IR" to IR"). In such a case, we evaluate the
limit for each component of IF, defining

llall [a'\\ 1

D'f(a)
n o h

IF

10i!ti
-f ai I _ I I 1.7.8

a" a"

Example 1.7.4. Let f : lR2 --e IR3 be given by

ft (y) =xy

Difm(a).

(\
=

xy
fz /1 sin (x + y), written more simply f sin (x + y)

xp

(-Y) -
x2 y2

f3(y) =x2-y2

The partial derivative off with respect to the first variable is

Dif (y cos(xy +y)] or d (b) = I cos(a
6

+b) I .

2x 2a

1.7.9

1.7.10
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What is the partial derivative with respect to the second variable?'9 What

are the partial derivatives at (b) of the function

zf(x) y 'f

y

How would you rewrite the answer, using the notation of Equation 1.7.7?20

Partial derivatives measure the
rate at which f varies as the vari-
able moves in the direction of the
standard basis vectors. Direction-
al derivatives measure the rate at
which f varies when the variable
moves in any direction.

Some authors consider that
only vectors v of length I can be
used in the definition of directional
derivatives. We feel this is an un-
desirable restriction, as it loses the
essential linear character of the di-
rectional derivative as a function
of v'.

Directional derivatives

The partial derivative

1.7.11

measures the rate at which f varies as the variable x moves from a in the
direction of the standard basis vector e;. It is natural to want to know how f
varies when the variable moves in any direction v:

f(a + he;) - f(a)

h-0 h

Definition 1.7.5 (Directional derivative). The directional derivative of
f at a in the direction v,

rn
h

. .

measures the rate at which f varie s when x moves from a in the direction Q.

Example 1.7.6 (Computing a d ir ect
I

ional derivative). Let us compute

2the derivative in the direction v' = 2 of the function f (y)

1

= xysinx,

1 1 h l
(evaluated at the point a =

1

. We have by = h 2 = h) , so

In /2
Equation 1.7.12 becomes / L

f(a+hi) f(a)

lioh (1+h)(1+2h)sin(2 +h)-(1 1 sin 2). 1.7.13

x 1

39 J62f -T (X +
-2y

aODf(abl= 20n6j;

(b) _ [20b]; 51 (b - -Qnb]

f(a+ h7) - f(a)
U 1 7 12
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Using the formula sin(a + b) = sin a cos b + cos a sin b, this becomes

=i =o

li o h (((1 + h)(1 +
2h)(sin

IT
cosh + cos 2 sin h)) - sin 2 }

= lim 1 (((1+3h+2h2)(cosh)) - 1) 1.7.14
h--o h

ni
oh(cosh-1)+h mh2h2cosh=0+3+0=3. A

The derivative in several variables

Often we will want to see how a system changes when all the variables are
allowed to vary; we want to compute the whole derivative of the function. We
will see that this derivative consists of a matrix, called the Jacobian matrix,
whose entries are the partial derivatives of the function. We will also see that
if a function is differentiable, we can extrapolate all its directional derivatives
from the Jacobian matrix.

Definition 1.7.1 from first year calculus defines the derivative as the limit

change in f f(a + h) - f(a)
change in x'

i.e.,
h

1.7.15

as h (the increment to the variable x) approaches 0. This does not generalize
well to higher dimensions. When f is a function of several variables, then an
increment to the variable will be a vector, and we can't divide by vectors.

It is tempting just to divide by Jhi, the length of h:

f'(a) = lim 1 (f(a+h')- f(a)). 1.7.16
h-o ihJ

This would allow us to rewrite Definition 1.7.1 in higher dimensions, since we
can divide by the length of a vector, which is a number. But this wouldn't
work even in dimension 1, because the limit changes sign when h approaches
0 from the left and from the right. In higher dimensions it's much worse. All
the different directions from which 1 could approach 0 give different limits. By
dividing by phi in Equation 1.7.16 we are canceling the magnitude but not the
direction.

We will rewrite it in a form that does generalize well. This definition will
emphasize the idea that a function f is differentiable at a point a if the increment
A f to the function is well approximated by a linear function of the increment
h to the variable. This linear function is f'(a)h.
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When we call f'(a)h a linear
function, we mean the linear func-
tion that takes the variable h and
multiplies it by f'(a)-i.e., the
function h - f(a) h (to be read,
"h maps to f'(a) h"). Usually the
derivative of f at a is not a linear
function of a. If f (x) = sin x or
f(x) = x3, or just about anything
except f (x) = x2, then f(a) is not
a linear function of a. But h
f'(a) h is a linear function of h.
For example, h .- (sin x)h is a lin-
ear function of h, since (sin x)(hi+
h2) = (sinx)hi +(sin x)h2.

Note the difference between
("maps to") and -. ("to"). The
first has a "pusher."

FIGURE 1.7.1.
The mapping

f( =(x2x y)
takes the shaded square in the

square at top to the shaded area

at bottom.

Definition 1.7.7 (Alternate definition of the derivative). A function
f is differentiable at a, with derivative m, if and only if

linear ctioa
Af

r x
ni o h

(f (a + h) - f (a) - (mh) ) = 0. 1.7.17

The letter A, named "delta," denotes "change in"; Af is the change in
the function; Ax = h is the change in the variable x. The function mh that
multiplies h by the derivative m is thus a linear function of the change in x.

We are taking the limit as h --. 0, so h is small, and dividing by it makes
things big; the numerator-the difference between the increment to the function
and the approximation of that increment-must be very small when h is near
0 for the limit to be zero anyway (see Exercise 1.7.11).

The following computation shows that Definition 1.7.7 is just a way of re-
stating Definition 1.7.1:

/
J'(a) by Equation 1.7.2

lim h ((f (a + h) - f (a)) - [f'(a)Jh> = hUrn f
(a + h) - f (a) f'(ha)h

-0 h

= f(a) - f(a) = 0. 1.7.18

Moreover, the linear function h ' -. f'(a)h is the only linear function satisfying
Equation 1.7.17. Indeed, any linear function of one variable can be written
h mh, and

\\0=himoI((f(a+h)-f(a))-mhl=Ji of(a+hh-f(a)_ =f'(a)-m
// 1.7.19

so f(a) = m.

The derivative in several variables: the Jacobian matrix

The point of rewriting the definition of the derivative is that with Definition
1.7.7, we can divide by phi rather than h; m = f(a) is also the unique number
such that

A f linear function of h

n o (f (a + h) --f (a) - (ff (a h) ) =0. 1.7.20

It doesn't matter if the limit changes sign, since the limit is 0; a number close
to 0 is close to 0 whether it is positive or negative.

Therefore we can generalize Equation 1.7.20 to mappings in higher dimen-
sions, like the one in Figure 1.7.1. As in the case of functions of one variable, the
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key to understanding derivatives of functions of several variables is to think that
the increment to the function (the output) is approximately a linear function
of the increment to the variable (the input): i.e., that the increment

Af = f (a + h') - f (a) 1.7.21

is approximately a linear function of the increment
In the one-dimensional case, A f is well approximated by the linear function

h -. f'(a)h. We saw in Section 1.3 that every linear transformation is given by
a matrix; the linear transformation h .-+ f'(a)h is given by multiplication by
the 1 x 1 matrix [f'(a)].

For a mapping from lRn - IR'", the role of this 1 x 1 matrix is played by a
m x n matrix composed of the partial derivatives of the mapping at a. This
matrix is called the Jacobian matrix of the mapping f; we denote it [Jf(a)]:

Definition 1.7.8 (Jacobian matrix). The Jacobian matrix of a function
f is the m x n matrix composed of the partial derivatives off evaluated at
a:

Difr(a) ... Dnf1(a)
[Jf(a)] = 1.7.22

D1fm(a) ... Dnfm(a)

Note that in the Jacobian mar
trix we write the components of f
from top to bottom, and the vari-
ables from left to right. The first
column gives the partial deriva-
tives with respect to the first vari-
able; the second column gives the
partial derivatives with respect to
the second variable, and so on.

Example 1.7.9. The Jacobian matrix of the function in Example 1.7.4 is

[if (v)} = {cos(x+Y)

J

1.7.23
2x -2y

The first column of the Jacobian matrix gives D1f, the partial derivative with
respect to the first variable, x; the second column gives D2f, the partial deriv-
ative with respect to the second variable, y. 0

What is the Jacobian matrix of the function f () = (2x2Y2)?
x3yCheck

21your answer below.

3x'y x3 l
'1 [Jf ( ), = 4xy2 4x2y l . The first column is Dl f (the partial derivatives

y x

with respect to the first variable); the second is D2f. The first row gives the partial
derivatives for f (b l = x3y; the second row gives the partial derivatives for f

/
I XY) _

2x'y2, and the third/gives the partial derivatives for f (-Y) = xy.
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The fact that the derivative of
a function in several variables is
represented by the Jacobian ma-
trix is the reason why linear alge-
bra is a prerequisite to multivari-
able calculus.

We will examine the issue of
such pathological functions in Sec-
tion 1.9.

When is the Jacobian matrix of a function its derivative?

We would like to say that if the Jacobian matrix exists, then it is the derivative
of f. That is, we would like to say that the increment f(a + h) - f(a) is
approximately [Jf(a)]h, in the sense that

\
lirn 1 I (f(a+h)-f(a))-[Jf(a)]1) =0. 1.7.24
6-o [h[ \\\

This is the higher-dimensional analog of Equation 1.7.17, which we proved
in one dimension. Usually it is true in higher dimensions: you can calculate
the derivative of a function with several variables by computing its partial
derivatives, using techniques you already know, and putting them in a matrix.

Unfortunately, it isn't always true: it is possible for all partial derivatives of
a function f to exist, and yet for f not to be differentiable! The best we can do
without extra hypotheses is the following statement.

Theorem 1.7.10 (The Jacobian matrix and the derivative). If there
is any linear transformation L such that

\
lim 1 I (f(a+h) - f(a)) - (L(h'))) = 0, 1.7.25
9-o [hI \\l

then all partial derivatives of f at a exist, and the matrix representing L is
[Jf(a)). In particular, such a linear transformation is unique.

Definition 1.7.11 (Derivative). If the linear transformation of Theorem
1.7.10 exists, f is differentiable at a, and the linear transformation represented
by [Jf(a)] is its derivative [Df(a)]: the derivative off at a.

Remark. It is essential to remember that the derivative [Df(a)] is a matrix
(in the case of a function f : R -+ R, a 1 x 1 matrix, i.e., a number). It is
convenient to write [Df(a)] rather than writing the Jacobian matrix in full:

D1ft(a) ... Dah(a)
[Df(a)] = [Jf(a)] = 1.7.26

D, f-' ... Dnfm(a)

But when you see [Df(a)], you should always be aware of its dimensions. Given
a function f : R3 -+ 1182, what are the dimensions of its derivative at a, [Df(a)]?
Check your answer below.22 p

22Since f : R' _ R2 takes a point in R' and gives a point in R2, similarly, [Df(a)]
takes a vector in_?' and gives a vector in R2. Therefore [Df(a)] isa 2 x 3 matrix.



In Equation 1.7.27 for the di-
rectional derivative, we use the in-
crement vector hi rather than h
because we are measuring the de-
rivative only in the direction of a
particular vector v.

Example: You are standing at
the origin on a hill with height

f (Y.)
Yy\

I =3x+8y.

When you step in direction v =

2

J ,your rate of ascent is

[Df = [3, 81 1 21 = 19.
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We will prove Theorem 1.7.10 after some further discussion of directional

derivatives, and a couple of extended examples of the Jacobian matrix as de-

rivative.

Extrapolating directional derivatives from partial derivatives

If a function is differentiable, we can extrapolate all its directional derivatives
from its partial derivatives-i.e., from its derivative:

Proposition 1.7.12 (Computing directional derivatives from the de-
rivative). If f is differentiable at a, then an directional derivatives of f at
a exist; the directional derivative in the direction v is given by the formula

m
f(a+h) - f(a) _ [Df(a)]v. 1.7.27

n
h

Example 1.7.13 (Computing a directional derivative from the Jaco-
bian matrix). Let us use Proposition 1.7.12 to compute the directional de-

rivative of Example 1.7.6. The partial derivatives of f ] y ] = xy sin z are

Dl f = y sin z, D2 f = x sin z and D3f = xy cos z, so its derivative evaluated
1

at the point 1 ] is the one-row matrix [1, 1, 0]. (The commas may be
a/2

misleading but omitting them might lead to confusion with multiplication.)
1

Multiplying this by the vector v' = 2 does indeed give the answer 3, which
1

is what we got before. 0
Proof of Proposition 1.7.12. The expression

r(h') = (f(a+h) - f(a)) - ]Df(a)]h' 1.7.28

defines the "remainder" r (h)-the difference between the increment to the
function and its linear approximation-as a function of the increment h. The
hypothesis that f is differentiable at a says that

lim
r(h)

= 0.
6-.o [h[

Substituting Mi for h in Equation 1.7.28, we find

1.7.29

r(hv') = f(a + hv') - f(a) - ]Df(a)]hv', 1.7.30
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To follow Equation 1.7.32, re-
call that for any linear transforma-
tion T, we have

T(at) = aT(v').

The derivative [Df(a)] gives a lin-
ear transformation, so

[Df(a)]ht = h[Df(a)] 7.

Once we know the partial deri-
vatives of f, which measure rate of
change in the direction of the stan-
dard basis vectors, we can com-
pute the derivatives in any direc-
tion.

This should not come as a sur-
prise. As we saw in Example
1.3.15, the matrix for any linear
transformation is formed by see-
ing what the transformation does
to the standard basis vectors: The
ith column of the matrix [T) is
T(e;),. One can then see what T 1h1does to any vector t by multiply- xy with regard to y is x, and so on. Our increment vector will be k 1.

ing (T]t The Jacobian matrix is.

the matrix for the "rate of change"
transformation, formed by seeing
what that transformation does to
the standard basis vectors.

and dividing by h gives

IvI (]v
_ f(a+hh) - f(a) - ]Df(a)]v', 1.7.31

where we have used the linearity of the derivative to write

[Df(a)]hv' = h[Df(a)Jv' = [Df(a)]v
h h

The term

1.7.32

1.7.33

on the left side of Equation 1.7.31 has limit 0 as h -. 0 by Equation 1.7.29, so

r(hv')
hltl

h-o h

f(a + ht) - f(a) - [Df(a))v = 0.lim 1.7.34

Example 1.7.14 (The Jacobian matrix of a function f : IR2 -+ R2). Let's
see, for a fairly simple nonlinear mapping from R2 to R2, that the Jacobian
matrix does indeed provide the desired approximation of the change in the
mapping. The Jacobian matrix of the mapping

ll1lf (YX
x2xyy2) LJf .vli - [2x 2y 1.7.35

since the partial derivative of xy with regard to x is y, the partial derivative of

Plugging this vector, and the Jacobian matrix of Equation 1.7.35, into Equar
tion 1.7.24, we get

/( l ( al i f1 1 0.
k

limA

26+kf \b/ [2a -7)] LkJ/)Tk

f(a+1) f(a) Jacobian matrix li
1.7.36

The Vh2 -+k2 at left is [h], the length of the increment vector (as defined in

Equation 1.4.7). Evaluating fat (
b +

k) and at t ba),
, we have

lim 1
(a + h)(b + k)

0.h +k ((
ab62))-bh + ak ])?

(a+h)2-(b+k)2-a2- [2ah-2bk

[ J (J 1.7.37
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For example, at (a) = (1),
b 1the

function

f \y/ sx2x-Y2/
\

o/f Equation 1.7.35 gives f I a f =

1 J , and we are asking whether
0

f\1/+[2 -2] [k]
_ (1+h+k1

l 2h - 2k J
is a good approximation to

f (I+h
l+k)

1+h+k+hk
2h-2k+h2-k2

(That is, we are asking whether
the difference is smaller than lin-
ear. In this case, it clearly is: the
first entry differs by the quadratic
term hk, the second entry by the
quadratic term h2 - k2.)

After some computations the left-hand side becomes

1 ab+ak+bh+hk-ab-bh-ak
ltm h +77-2 k [a2+2ah+h2-b2-2bk-k2-a2+b2-2ah+2bk '

[k][0]

1.7.38

which looks forbidding. But all the terms of the vector cancel out except those

that are underlined, giving us

2+k [h2-k2] ? [pl.J
[kj

10.]7h
1.7.39

Indeed, the hypotenuse of a triangle is longer than either of its other sides,

0<IhI< h +k2 and 0<IkI< h +k, so

and we have

Similarly,

hk _ h
IkI < IkI,0 <

I h +k h +k I

h +k - h u

[k]~[O] [k]~[O]

0 < lim

squeezed between
O and 0

0 < I h+ k I
IhI I h+ k l +IkI

so

k

h +k

1.7.40

1.7.41

< IhI + IkI, 1.7.42

squeezed between
0 and0

h2 - k20< hlim0
I h +k hlimo (IhI+IkI)=0+0=0.

[k]~[0] [k]~[0]

hk
lim IkI = 0.

I

1.7.43



When we speak of Mat (n, n)
as the space of it x n matrices
we mean that we can identify an
it x it matrix with an element of
lit"'. In Section 2.6 we will see
that Mat (n, n) is an example of
an abstract vector space, and we
will be more precise about what
it means to identify such a space
with an appropriate V.

If you wonder how we found the
result of Equation 1.7.45, look at
the comment accompanying Equa-
tion 1.7.48.

We could express the deriva-
tive of the function f(x) = x2 as
f'(x) : h - 2xh.

Equation 1.7.48 shows that

AH + HA

is exactly the linear terms in H of
the increment to the function, so
that subtracting them leaves only
higher degree terms; i.e., AH+HA
is the derivative.
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Example 1.7.15 (The derivative of a matrix squared). In most serious
calculus texts, the first example of a derivative is that if f (x) = z2, then
f'(x) = 2x, as shown in Equation 1.7.3. Let us compute the same thing when
a matrix, not a number, is being squared. This could be written as a function
Il8" - R"', and you are asked to spell this out for n = 2 and it = 3 in Exercise
1.7.15. But the expression that you get is very unwieldy as soon as n > 2, as
you will see if you try to solve the exercise. This is one time when a linear
transformation is easier to deal with than the corresponding matrix. It is much
easier to denote by Mat (n, n) the space of it x n matrices, and to consider the
mapping S : Mat (n, n) -+ Mat (n, n) given by

S(A) = A2. 1.7.44

(The S stands for "square.")

In this case we will be able to compute the derivative without computing the
Jacobian matrix. We shall see that S is differentiable and that its derivative
[DS(A)] is the linear transformation that maps H to AH + HA:

(DS(A)IH = AH + HA, also written [DS(A)] : H -+ AH + HA. 1.7.45

Since the increment is a matrix, we denote it H. Note that if matrix multipli-
cation were commutative, we could denote this derivative 2AH or 2HA-very
much like the derivative f' = 2x for the function f (x) = z2.

To make sense of Equation 1.7.45, a first thing to realize is that the map

[DS(A)] : Mat (n, n) -. Mat (n, n) , H.-. AH + HA 1.7.46

is a linear transformation. Exercise 2.6.4 asks you to check this, along with
some extensions.

Now, how do we prove Equation 1.7.45?
Well, the assertion is that

fli m IH] I (S(A+ H) - S(A)) - (AH + HA) I = 0. 1.7.47
increment linear function of

to mapping increment to variable

Since S(A) = A2,

JS(A + H) - S(A) - (AH + HA)I = I (A + H)2 - A2 - AH - HAJ

=JA 2 +AH+HA+H 2 -A2 -AH-HA)

= ]H21. 1.7.48

So the object is to show that
i2

imHJ= 0.
H

.7.49
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Exercise 1.7.20 asks you to
compute the Jacobian matrix and
verify Proposition 1.7.16 in the
case of 2 x 2 matrices. It should
be clear from the exercise that us-
ing this approach even for 3 x 3
matrices would be extremely un-
pleasant.

Since JH21 < JHI2 (by Proposition 1.4.11), this is true. 'ni

Exercise 1.7.18 asks you to prove that the derivative AH + HA is the "same"
as the Jacobian matrix computed with partial derivatives, for 2 x 2 matrices.
Much of the difficulty is in understanding S as a mapping from 1R4 -. R4.

Here is another example of the same kind of thing. Recall that if f (x) = 1/x,
then f(a) = -1/a2. Proposition 1.7.16 generalizes this to matrices.

Proposition 1.7.16. The set of invertible matrices is open in Mat (n, n),
and if f(A) = A-1, then f is differentiable, and

[Df (A)]H = -A''HA-1. 1.7.50

Note the interesting way in which this reduces to f'(a)h = -h/a2 in one
dimension.

Proof. (Optional) We proved that the set of invertible matrices is open in
Corollary 1.5.33.

((A+

Now we need to show that

.H- IHI H 1_A - -A-1HA 1 =0. 1.7.51

increment to mapping linear function of H

Our strategy (as in the proof of Corollary 1.5.33) will be to use Proposition
1.5.31, which says that if B is a square matrix such that IBI < 1, then the
series I + H + B2 + converges to (I - B) '. (We restated the proposition
here changing the A's to B's to avoid confusion with our current A's.) We also
use Proposition 1.2.15 concerning the inverse of a product of invertible matrices.
This gives the following computation:

Prop. 1.2.15

(A+H)-' _ (A(I+A-'H))-' _ (I+A-'H) 'A-'

_ (1- (-A-'H)) 1
A-1

sum of series in line below

Since H - 0 in Equation 1.7.51,
we can assume that JA 'HJ < 1,
so treating (I + A ' H) ' as the
sum of the series is justified.

= I A-' 1.7.52

serim f+B+B2+..., where B=-A H

(Now we consider the first term, second terms,
and remaining terms:)

=A-' -A-'HA-'+((-A-'H)2+(-A-'H)3+...)A-1
tat 2nd others

It may not be immediately obvious why we did the computations above. The
point is that subtracting (A-' - A-'HA-1) from both sides of Equation 1.7.52
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Switching from matrices to
lengths of matrices in Equation
1.7.54 has several important con-
sequences. First, it allows us, via
Proposition 1.4.11, to establish an
inequality. Next, it explains why
we could multiply the IA-iI2 and

IA-'I to get IA-'13: matrix mul-
tiplication isn't commutative, but
multiplication of matrix lengths is,
since the length of a matrix is a
number. Finally, it explains why
the sum of the series is a fraction
rather than a matrix inverse.

gives us, on the left, the quantity that really interests us: the difference between
the increment of the function and its approximation by the linear function of
the increment to the variable:

((A + H)-' - A-') - (-A-'HA-1)
increment to function linear function of

increment to variable

= ((-A-'H)2 + (-A-'H)3 + )A-' 1.7.53

= (A-'H)2 (1 + (-A-'H) + (-A-'H)2 +... )A-'.

Now applying Proposition 1.4.11 to the right-hand side gives us

I(A+H)-'-A-' +A-'HA-'I

< IA-'HI2 I1 + (-A-'H) + (-A-'H)' + ... IA-'I,

and the triangle inequality gives
convergent geometric aeries 1.7.54

IA-`HI2IA-'I(1+I-A-'HI+I -A-'HI2+...)

< IHI2IA 'I3 1 - IA 1HI.

Recall (Exercise 1.5.3) that the
triangle inequality applies to con-

Now suppose H so small that IA-'HI < 1/2, so that

vergent infinite sums. 1

We see that

l, I

1 - IA-1HI < 2.

I(A+H)-'-A-'+A-'HA-'I S o2IHIIA-113=0.

1.7.55

1.7.56

Proving Theorem 1.7.10 about the Jacobian matrix

Now it's time that we proved Theorem 1.7.10. We restate it here:

Theorem 1.7. 10 (The Jacobian matrix as derivative). If there is any
linear transformation L such that

Jim
(f(a+h') - f(a)) - L(h') - 0 (1.7.25)n-o IhI ,

then all partial derivatives of IF at a exist, and the matrix representing L is
(Jf(a)].
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Proof. We know (Theorem 1.3.14) that the linear transformation L is repre-
sented by the matrix whose ith column is so we need to show that

Le', = Dif, 1.7.57

Dif being by definition the ith column of the Jacobian matrix [Jf(a)].
Equation 1.7.25 is true for any vector h, including ti,, where t is a number:

lim
(f(a + te'i) - f (a)) - L(tei) = 0. 1.7.58

te,-o I tell

We want to get rid of the absolute value signs in the denominator. Since
Ite"il = Itlleil (remember t is a number) and Ieil = 1, we can replace ItseiI by Itl.
The limit in Equation 1.7.58 is 0 fort small, whether t is positive or negative,
so we can replace Iti by t:

This proof proves that if there
is a derivative, it is unique, since a
linear transformation has just one
matrix.

f(a + tei) - f(a) - L(tei) =
li 0 1 7 59m

W, -0 t

Using the linearity of the derivative, we see that

. . .

L(te",) = tL(e'i), 1.7.60

so we can rewrite Equation 1.7.59 as

li
f(a + to"",) - f(a) - L(" ) = 0 1 7 61m

t', _o
e i

t
. . .

The first term is precisely Definition 1.7.5 of the partial derivative. So L(gi) _

Dif(a): the ith column of the matrix corresponding to the linear transformation

L is indeed Dif. In other words, the matrix corresponding to L is the Jacobian
matrix. 0

1.8 RULES FOR COMPUTING DERIVATIVES

In this section we state rules for computing derivatives. Some are grouped in
Theorem 1.8.1 below; the chain rule is discussed separately, in Theorem 1.8.2.
These rules allow you to differentiate any function that is given by a formula.

Theorem 1.8.1 (Rules for computing derivatives). Let U C R" be an
open set.

(1) If f : U -. R'" is a constant function, then f is differentiable, and its de-
rivative is [01 (i.e., it is the zero linear transformation R" R'", represented
by them x n matrix filled with zeroes)
(2) If f : R" -. R"' is linear, then it is differentiable everywhere, and its
derivative at all points a is f:

[Df(a)J-7 = f(v"). 1.8.1



116 Chapter 1. Vectors, Matrices, and Derivatives

Note that the terms on the
right of Equation 1.8.4 belong to
the indicated spaces, and therefore
the whole expression makes sense;
it is the sum of two vectors in ]Rm,
each of which is the product of a
vector in R'" and a number. Note
that [Dg(a))v' is the product of a
line matrix and a vector, hence it
is a number.

The expression f, g : U R-
in (4) and (6) is shorthand for
f: U - IR" and g: U IR'.
We discussed in Remark 1.5.1 the
importance of limiting the domain
to an open subset.

(5) Example of fg: if

f(X)=X2 and g(x)= (\sin x
x )

2

then fg(x) _ ( ys s x I .

(6) Example of f g: if

f(x)= (xi) g(x) (cosx)
then their dot product is

(f g)(x) = x sin x + x2 cos x.

(3) If ft, ... , f n : U -+ lR are m scalar-valued functions differentiable at a,
then the vector-valued mapping

fl
f = : U -,1R"' is differentiable at a, with derivative

fm
[Dfl(a))v

1.8.2

[Df (a))i _
[Dfm(a)),7

(4) If f, g : U -,1R"` are differentiable at a, then so is f + g, and

(5)

ID (f + g) (a)) = [Df(a)] + [Dg(a)] . 1.8.3

If f : U -i Ilk and g : U -+ IR' are differentiable at a, then so is f g, and
the derivative is given by

[Df g(a))-7 = f (a) [Dg(a)J! + f'(a)f g(a). 1.8.4

It 1"' it R-

(6) If f, g : U P'" are both differentiable at a, then so is the dot product
f g : U -+ R, and (as in one dimension)

[D(f g)(a)[' = [Df (a)1-7 ' g(a) + f (a)' [Dg(a)]v. 1.8.5
a-

1'"
--

1' 1'^ R-

As shown in the proof below, the rules are either immediate, or they are
straightforward applications of the corresponding one-dimensional statements.
However, we hesitate to call them (or any other proof) easy; when we are
struggling to learn a new piece on the piano, we do not enjoy seeing that it has
been labeled an "easy piece for beginners."

Proof of 1.8.1. (1) If f is a constant function, then f(a+h) = f(a), so the
derivative [Df(a)) is the zero linear transformation:

lim lll(f(a+h)-f(a)- Oh )= lim -0=0.
ego h' ' h-0 1.8.6

(2) Suppose f(a) is linear. Then [Df(a)) = f:

lim 1' (f(a+ f(a) - f(')) = 0, 1.8.7
n-o IhI

since f(a+ h') = f(a) + f(h').
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(3) Just write everything out:

fi(a + h) ft (a) [Dfi(a)]h

lim 1 : I - -
fi .o h

fn,(a + h) fn(a) [D fm(a)Jti

h (ft(a+h) - ft(a) - [Dft(a)]h) 1

_ 0.

1.8.8

limn-0 h(fm(a+h) - fm(a) - [Dfm(a)]h)

According to a contemporary,
the French mathematician Laplace
(1749-1827) used the formula it
est aise a voir ("it's easy to see")
whenever he himself couldn't re-
member the details of how his rea-
soning went, but was sure his con-
clusions were correct. "I never
come across one of Laplace's 'Thus
it plainly appears' without feeling
sure that I have hours of hard work
before me to fill up the chasm
and find out and show how it
plainly appears," wrote the nine-
teenth century mathematician N.
Bowditch.

(4) F. nctions are added point by point, so we can separate out f and g:

(f + g)(a+ h) - (f + g)(a) - ([Df(a)] + [Dg(a)])h 1.8.9

= (f(a+h) - f(a) - [Df(a)]h) + (g(a+h) - g(a) - [D9(a)JS).
Now divide by 191, and take the limit as ]h] -+ 0. The right-hand side gives
0 + 0 = 0, so the left-hand side does too.

(5) By part (3), we may assume that m = 1, i.e., that g = g is scalar valued.
Then

Jacobian matrix ffg

[Df9(a)]h = [(Dtf9)(a), ... , (Dnf9)(a)] 1.8.10

= [f (a)(Dt9)(a) + (Dtf)(a)9(a)...... f(a)(Dn9)(a) + (Dnf)(a)9(a)]
in one variable,(fg)'=fg'+f'g

= f (a) [(Dig)(a), ... , (D..g)(a)Jh + [(D_f)(a), - .. (Dnf)(a)]9(a)h
Jacobian matrix ofg Jacobian matrix off

= f(a)([D9(a)]9) + ((Df(a)]9)9(a)

(6) Again, write everything out:

def. of

[D(f g)(a))h
dot Prod. r a h[D( fi9ia)]h = = L(D(f.9i)( )]

i=1

(S) n

= E([Dfi(a)Jh)9i(a) + fi(a)([D9i(a)Jh)
1.8.11

i=f

def. of
dot prod.

= ([Df(a)]h) ' g(a) + f(a) ((Dg(a)Jh)
The second equality uses rule (4) above: f g is the sum of the figi,so the
derivative of the sum is the sum of the derivatives. The third equality uses rule
(5). A more conceptual proof of (5) and (6) is sketched in Exercise I.B.I. 0
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Some physicists claim that the
chain rule is the most important
theorem in all of all mathematics.

The chain rule is proved in Ap-
pendix A. 1.

The chain rule

One rule for differentiation is so fundamental that it deserves a subsection of
its own: the chain rule, which states that the derivative of a composition is the
composition of the derivatives, as shown in Figure 1.8.1.

Theorem 1.8.2 (Chain rule). Let U C ]g", V C R' be open sets, let
g : U -. V and f : V --. RP be mappings and let a be a point of U. If g is
differentiable at a and f is differentiable at g(a), then the composition f o g
is differentiable at a, and its derivative is given by

[D(f o g)(a)] = [Df(g(a))] o [Dg(a)]. 1.8.12

In practice, when we use the chain rule, most often these linear transforms,
tions will be represented by their matrices, and we will compute the right-hand
side of Equation 1.8.12 by multiplying the matrices together:

[D(f og)(a)] = [Df(g(a))][Dg(a)). 1.8.13

[DS(a)][Df(b)l

[D(f gXa)] W fr \
[DS(a)]W_

[1)9(a)] v

[Dg(a)l[Df(b)]v"=

[D(f gHa)N

FIGURE 1.8.1. The function g maps a point a E U to a point g(a) E V. The function
f maps the point g(a) = b to the point f(b). The derivative of g maps the vector v"
to (Dg(a)IN) = w. The derivative off o g maps V to (Df(b)](w).

Remark. One motivation for discussing matrices, matrix multiplication, linear
transformations and the relation of composition of linear transformations to
matrix multiplication at the beginning of this chapter was to have these tools
available now. In coordinates, and using matrix multiplication, the chain rule
states that

m

Di(f og);(a) _ FDkf,(g(a))D,gk(a) 1.8.14
k=1
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In Example 1.8.3, R3 plays the
role of V in Theorem 1.8.2.

You can see why the range of
g and the domain of f must be
the same (i.e., V in the theorem;
R3 in this example): the width of
[Df(g(t))i must equal the height
of [Dg(t)] for the multiplication to
be possible.

We will need this form of the chain rule often, but as a statement, it is a disaster:

it makes a fundamental and transparent statement into a messy formula, the

proof of which seems to be a computational miracle. i
Example 1.8.3 (The derivative of a composition). Suppose g : IR IR3

and f : lR3 -+ lR are the functions

Y = x2 + y2 + z2; g(t) 0= 0f
\z/ t

1.8.15

Equation 1.7.45 says that the

derivative of the "squaring func-

tion" f is

[D f(A)]H = AR + HA.

In the second line of Equation
1.8.19, g(A) = A-' plays the role
of A above, and -A-'HA-' plays
the role of H.

Notice the interesting way this
result is related to the one-variable
computation: if f (s) = x 2, then
fl(X) = -2x-3. Notice also how
much easier this computation is,
using the chain rule, than the
proof of Proposition 1.7.16, with-
out the chain rule.

The derivatives (Jacobian matrices) of these functions are computed by com-
puting separately the partial derivatives, giving, for f,

r (x
D f yj _ [2x, 2y, 2z]. 1.8.16

z

(The derivative of f is a one-row matrix.) The derivative of f evaluated at g(t)

is thus 12t, 2t2, 2t3]. The derivative of g at t is

[Dg(t)) = 2t
3t2

So the derivative at t of the composition f o g is

1.8.17

[D(f o g)(t)] _ [D f (g(t))] o [Dg(t)] = [2t, 2t2, 2t3] 2t = 2t + 4t3 + 6t5.

[Df . 3t2WO)l
IDg(t)I

A 1.8.18

Example 1.8.4 (Composition of linear transformations). Here is a case
where it is easier to think of the derivative as a linear transformation than as
a matrix, and of the chain rule as speaking of a composition of linear transfor-
mations rather than a product of matrices. If A and H are n x n matrices, and
f(A) = A2,g(A) = A-', then (f og)(A) = A-2. To compute the derivative of
fog we use the chain rule in the first line, Proposition 1.7.16 in the second and

1.8.19

Exercise 1.8.7 asks you to compute the derivatives of the maps A - A-3
and A A-".

Equation 1.7.45 in the third:

[Df og(A)]H = [Df(g(A))][Dg(A)]H

= [Df(g(A))](-A-'HA-')
= A-1(-A-'HA-') + (-A-'HA-1)A-'

_ -(A-2HA-' +A-'HA-2).
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1.9 THE MEAN VALUE THEOREM AND CRITERIA FOR
DIFFERENTIABILITY

I turn. with terror and horror from this lamentable scourge of con-
tinuous functions with no derivatives.-Charles Hermite, in a letter to
Thomas Stieltjes, 1893

In this section we discuss two applications of the mean value theorem (The-
orem 1.6.9). The first extends that theorem to functions of several variables,
and the second gives a criterion for when a function is differentiable.

The mean value theorem for functions of several variables

The derivative measures the difference of the values of functions at different

points. For functions of one variable, the mean value theorem says that if

f : [a. b] -. Ilk is continuous, and f is differentiable on (a. b), then there exists
c E (a. b) such that

f(b) - f(a) = f'(c)(b - a). 1.9.1

The analogous statement in several variables is the following.

Theorem 1.9.1 (Mean value theorem for functions of several vari-
ables). Let U c 118" be open, f : U -+ R be differentiable, and the segment
[a, b] joining a to b be contained in U. Then there exists c E (a, b] such that

f (b) - f (a) = [D f (c)](b - a). 1.9.2

Corollary 1.9.2. If f is a function as defined in Theorem 1.9.1, then

If (b) - f(a)] < ( sup I [Df(c)] I)]b - a]. 1.9.3
cE la.bl

Proof of Corollary 1.9.2. This follows immediately from Theorem 1.9.1 and
Proposition 1.4.11.

Proof of Theorem 1.9.1. Note that as t varies from 0 to 1, the point
(1-t)a+tb moves from a to b. Consider the mapping g(t) = f ((1-t)a+tb). By
the chain rule, g is differentiable, and by the one-variable mean value theorem,
there exists to such that

g(1) - g(0) = g'(to)(l - 0) = 9 (to). 1.9.4
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FIGURE 1.9.1.

Set c = (1 - to)a+tob. By Proposition 1.7.12, we can express g'(to) in terms
of the derivative of f :

g '(to) = lim g(to + s) - g(to) = f (c + s(b - a)) - f (c)
. [Df (c)](b - a).s-o 5 s

1.9.5

So Equation 1.9.4 reads

f (b) - f (a) = [Df (c)](b - a). 1.9.6

Criterion for differentiability

Most often, the Jacobian matrix of a function is its derivative. But as we
mentioned in Section 1.7, this isn't always true. It is perfectly possible for all
partial derivatives of f to exist, and even all directional derivatives, and yet
for f not to be differentiable! In such a case the Jacobian matrix exists but
does not represent the derivative. This happens even for the innocent-looking
function

(x x2y

f (y) = x2+y2'
Actually, we should write this function

\0/f(x) xx if \y/ #

0 if (x (0),
1.9.7The graph of f is made up of

straight lines through the origin,
so if you leave the origin in any
direction, the directional deriva-
tive in that direction certainly ex-
ists. Both axes are among the lines
making up the graph, so the direc-
tional derivatives in those direc-
tions are 0. But clearly there is
no tangent plane to the graph at
the origin.

"Vanish" means to equal 0.
"Identically" means "at every
point."

shown in Figure 1.9.1. You have probably learned to be suspicious of functions
that are defined by different formulas for different values of the variable. In this

case, the value at (0) is really natural, in the sense that as (Y) approaches

(00), the function f approaches 0. This is not one of those functions whose
value takes a sudden jump; indeed, f is continuous everywhere. Away from the
origin, this is obvious; f is then defined by an algebraic formula, and we can
compute both its partial derivatives at any point (U)

(00).
That f is continuous at the origin requires a little checking, as follows. If

x2 + y2 = r2, then JxJ < r and I yj < r so (x2y] < r3. Therefore,

if(x)IS
3

-2=r, and
]Jim

f(x)=0. 1.9.8
Y r y

So f is continuous at the origin. Moreover, f vanishes identically on both axes,
so both partial derivatives of f vanish at the origin.



If we change our function, re-
placing the x2y in the numera-
tor of the algebraic formula by xy,
then the resulting function, which
we'll call g, will not be continu-
ous at the origin. If x = y, /then

g = 1/2 no matter how close I x I
Y

gets to the origin: we then have

x2
)

9 (x x) _= 2x2 = 2 .
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So far, f looks perfectly civilized: it is continuous, and both partial deriva-

tives exist everywhere. But consider the derivative in the direction of the vector

i.e., the directional derivative

limf
\0f(p)_hmto _1

1.9.9i o

t t .0 2t3 2

This is not what we get when we compute the same directional derivative by

multiplying the Jacobian matrix of f by the vector as in the right-hand

side of Equation 1.7.27:
111

Dif (0),D2f (00)] {1] =(0,0] { ] =0. 1.9.10

Jaeobian matrix 131(0)1

Thus, by Proposition 1.7.12, f is not differentiable.
In fact, things can get worse. The function we just discussed is continuous,

but it is possible for all directional derivatives of a function to exist, and yet
for the function not to be continuous, or even bounded in a neighborhood of 0,
as we saw in Example 1.5.24; Exercise 1.9.2 provides another example.

Continuously differentiable functions

The lesson so far is that knowing a function's partial derivatives or directional
derivatives does not tell you either that the function is differentiable or that it
is continuous. Even in one variable, derivatives alone reveal much less than you
might expect; we will see in Example 1.9.4 that a function f : R - R can have
a positive derivative at x although it does not increase in a neighborhood of x!

Of course we don't claim that derivatives are worthless. The problem in
these pathological cases is that the function is not continuously differentiable: its
derivative is not continuous. As long as a function is continuously differentiable,
things behave nicely.

Example 1.9.3 (A function that has partial derivatives but is not
differentiable). Let us go back to the function of Equation 1.9.7, which we
just saw is not differentiable:

2

X7 y if
GO 0 (00)fly/ =

0
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FIGURE 1.9.2.
Graph of the function f (x) _

i + lix2 sin 1. The derivative of f
does not have a limit at the origin,
but the curve still has slope 1/2
there.

and reconsider its partial derivatives. We find that both partials are 0 at the

origin, and that away from the origin-i.e., if (y) 34 (0) then

(x -_ (x2 + 92)(2xy) - x2y(2x) = 2xy3D( y l (x2 + y2)2 (x2 + y2)2
1.9.11

xl (x2 + y2)(x2) - x2y(2y) = x4 - x2y2

D2f (y/ (x2+y2)2 (x2+y2)2

These partial derivatives are not continuous at the origin, as you will see if
you approach the origin from any direction other than one of the axes. For
example, if you compute the first partial derivative at the point (t) of the
diagonal, you find the limit

f (t) = 20 °
lim D =

1
1.9.12It-o t (2t2)2 21

which is not the value of

D,f(0)=0. A 1.9.13

Example 1.9.4 (A differentiable yet pathological function in one vari-
able). Consider the function

f(x)= 2+x2sin-, 1.9.14

a variant of which is shown in Figure 1.9.2. To be precise, one should add
f (O) = 0, since sin 1 /x is not defined there, but this was the only reasonable
value, since

lim x2 sin 1 = 0. 1.9.15x-o x
Moreover, we will see that the function f is differentiable at the origin, with
derivative

f'(0) = 2. 1.9.16

This is one case where you must use the definition of the derivative as a limit;
you cannot use the rules for computing derivatives blindly. In fact, let's try.
We find

, 1 1 2 1 1 1 1 1
f (x) =

2
+ 2x sin

x
+ x cost -

z2
=

2
+ 2x sin - -cos-. 1.9.17

This formula is certainly correct for z # 0, but f'(x) doesn't have a limit when
x -. 0. Indeed,

lim o2+2xsin-=2 1.9.18
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does exist, but cos 1/x oscillates infinitely many times between -1 and 1. So f
will oscillate from a value near -1/2 to a value near 3/2. This does not mean

that f isn't differentiable at 0. We can compute the derivative at 0 using the

The moral of the story is: only
study continuously differentiable
functions.

A function that is continuously
differentiable-i.e., whose deriva-
tive is continuous-is known as a
C' function.

If you come across a function
that is not continuously differen-
tiable (and you may find such
functions particularly interesting)
you should be aware that none of
the usual tools of calculus can be
relied upon. Each such function
is an outlaw, obeying none of the
standard theorems.

definition of the derivative:

lf'(0)hi
oh(02h+(0+h)2sin0+h)

h
oh(2+h2sinh/

=2+limhsinh=2,
h-o

1.9.19

since (by Theorem 1.5.21, part (f)) limh.o h sin exists, and indeed vanishes.
Finally, we can see that although the derivative at 0 is positive, the function

is not increasing in any neighborhood of 0, since in any interval arbitrarily close

to 0 the derivative. takes negative values; as we saw above, it oscillates from a
value near -1/2 to a value near 3/2. L

This is very bad. Our whole point is that the function should behave like its
best linear approximation, and in this case it emphatically doesn't. We could
easily make up examples in several variables where the same occurs: where the
function is differentiable, so that the Jacobian matrix represents the derivative,
but where that derivative doesn't tell you much.

Determining whether a function is continuously differentiable

Fortunately, you can do a great deal of mathematics without ever dealing with
such pathological functions. Moreover, there is a nice criterion that allows us
to check whether a function in several variables is continuously differentiable:

Theorem 1.9.5 (Criterion for differentiability). MU is an open subset
of R", and f : U -, R"` is a mapping such that all partial derivatives of f
exist and are continuous on U, then f is differentiable on U, and its derivative
is given by its Jacobian matrix.

Definition 1.9.6 (Continuously differentiable function). A function
is continuously differentiable on U c R" if all its partial derivatives exist and
are continuous on U.

Most often, when checking that a function is differentiable, the criterion of
Theorem 1.9.5 is the tool used. Note that the last part, "... and its derivative is
given by its Jacobian matrix," is obvious; if a function is differentiable, Theorem
1.7.10 tells us that its derivative is given by its Jacobian matrix. So the point
is to prove that the function is differentiable. Since we are told that the partial
derivatives of f are continuous, if we prove that f is differentiable, we will have
proved that it is continuously differentiable.
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In Equation 1.9.20 we use the

interval (a,a + h), rather than

(a, b), making the statement

f,(c) - f(a + h) - f(a)

it

or

hf'(c) = f (a + h) - f (a).

It will become clearer in Chap-
ter 2 why we emphasize the di-
mensions of the derivative ]Df(a)].
The object of differential calculus
is to study nonlinear mappings by
studying their linear approxima-
tions, using the derivative. We
will want to have at our disposal
the techniques of linear algebra.
Many will involve knowing the di-
mensions of a matrix.

(What are the dimensions of the derivative of the function f described in
Theorem 1.9.5? Check your answer below.23)

Proof. This is an application of Theorem 1.6.9, the mean value theorem. What
we need to show is that

lim 1 f(a + h') - f(a) - [Jf(a)Jh = 0. 1.9.20
h-0 ]hi

First, note (Theorem 1.8.1, part (3)), that it is enough to prove it when
rn = 1 (i.e., f : U - R).

Next write

al + hi at

a2 + h2 a2
f(a + h) - f(a) = f - f . 1.9.21

an + h (a.
in expanded form, subtracting and adding inner terms:

f(a + h) - f(a) =
at + ht al

f
(a2+h2) _f (a2 h2

an + hn an + hn

ala I
f a2 + h2 a2

+ -f

an + hn an + hn

added

subtracted

al at

+ f
a2

- f
a2

an + hn an

1.9.22

The function f goes from a subset of pgn to 1R-, so its derivative takes a vector
in 1' and gives a vector in ll2'". Therefore it is an m x n matrix, m tall and n wide.
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By the mean value theorem, the ith term above is

a,

a2

a1

az

a,

a2
1

f a, + h, -f ai = hiDif bi 1.9.23

a+, + hi+, + hi+, a,+, + hi+,

an+hn an+hn
ith term

for some bi E (a,, ai+h,]: there is some point bi in the interval (ai, ai+hi) such
that the partial derivative Dif at b; gives the average change of the function f
over that interval, when all variables except the ith are kept constant.

Since f has n variables, we need to find such a point for every i from 1 to n.

We will call these points ci:

a,
a2

ci = I bi

ai+1 + hi+,

n

this gives f(a+h) - f(a) = r1hiDif(ci).

i=1

an+h,j

Thus we find that
n

f (a + f (a) - Dif (a)hi = hi (Dif (ci) - Dif (a))

=E" , U,f(a)h,
,_,

1.9.24

So far we haven't used the hypothesis that the partial derivatives Dif are
continuous. Now we do. Since D; f is continuous, and since ci tends to a as
h' 0, we see that the theorem is true:

The inequality in the second

line of Equation 1.9.25 comes from Et, Dif(s)h:
the fact that Ih,l/lhl G 1.

lim If(a+h) - f(a) - (Jf(a)]h I = lim "jDif(ci) - Dif(a)j6-0 A k =o

< lim IDif(ci) - Dif(a)I = 0.
h-0 i=,

0 1.9.25
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1.10 EXERCISES FOR CHAPTER ONE

0

=f (a2+h2)-f (a2+h2)+f (a2+h2)(ag)
bi a,

=hlDif [a2+h2J +h2D2f [b2I
=hiDif(ci)+h2D2f(c2) A 1.9.26

Exercises for Section 1.1:

Vectors

(a)

(d)

(g)

Example 1.9.7. Here we work out the above computation when f is a function
on R2:

f(a,+ht f(alla2+h2 a2

1.1.1 Compute the following vectors by coordinates and sketch what you did:

(a) [3] + [1] (b) 2 [4] (c) [3] -
L1J

(d) 12J +et

1.1.2 Compute the following vectors:

is not, why not?

(a)y=-2x-5 (b)y=2x+1
1.1.5 Sketch the following vector fields:

r3? [-i
1

(a) x + (b) c +
vr2

1 2 211
1.1.3 Name the two trivial subspaces of R".

1.1.4 Which of the following lines are subspaces of R2 (or R')? For any that

F(y)=[°]

F(y) - [y,
F(y)-[x-y]

z x2 + y2
z -ZL 1

(b)

(e)

(h)

0 (k)(S) f (-) =

(c)

(f)

(i)

(1)

(c)
5xy= 2.

z -z



128 Chapter 1. Vectors, Matrices, and Derivatives

Exercises for Section 1.2:

Matrices

In Exercise 1.2.2, remember to
use the format:

17 81
9 0

1 2

1.1.6 Suppose that in a circular pipe of radius a, water is flowing in the
direction of the pipe, with speed a2 - r2, where r is the distance to the axis of
the pipe.

(a) Write the vector field describing the flow if the pipe is in the direction of
the z-axis.

(b) Write the vector field describing the flow if the axis of the pipe is the
unit circle in the (x, y)-plane.

1.2.1 (a) What are the dimensions of the following matrices?

11
7r 1

a(a) [d e f ] (b) [0 2] (c) 0 1 ;
1 0

(d) I1 1

0 0 0] (e) [0
0

1

(b) Which of the above matrices can be multiplied together?

1.2.2 Perform the following matrix multiplications when it is possible.

14 5 6]
(a)

14 5
2 37 1 2

[_I 4

6] [1 2] ; (b)
[0 31 -2

....

[711]

_ 11 2 0A
3 1 -1,

2 5 1

B= 1 4 2
1 3 3

Matrices for Exercise 1.2.4

(e) 3] ; (f)

1.2.3 Compute the following without doing any arithmetic.

rr 7 2 v4
0

6a 2 3a21

[
(a) 16 8 a2 21

0
(b) f 4 2,/a- 2

J

e2 (c)

3
l3 f a 7 0 Il` 5 12 3 J

1.2.4 Given the matrices A and B in the margin at left,

[-4]

1 8 6
2 4 43

(a) Compute the third column of AB without computing the entire matrix
AB.

(b) Compute the second row of AB, again without computing the entire
matrix AB.

1.2.5 For what values of a do the matrices

= 1 1 1 U

A 1 0 ]
and B = [ a 1 ] satisfy AB = BA?



1 0A_

1 0

B=

Matrices for Exercise 1.2.9

Recall that Mat (n, m) denotes
the set of n x m matrices.
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1.2.6 For what values of a and b do the matrices

A = [Q a] and B= [b 101 satisfy AB = BA?

1.2.7 From the matrices below, find those

Jthat

are transposes of each other.

1 2 3 1 x 1 1 x2 2

(a) 0 (b) ] (c)

1 x2 2 3 x2 2 1 2 3

2 1r2 r 1 0 2 0 3 1(
1

( d) 0
2 0 x2J

( )
Ia 0 2

( )
f

x
0 x2

1 x 1

I L 2 f J

3
I 1 f 2

1.2.8 Given the two matrices A = [ 1
0 J

(a) What are their transposes?

and B = [
2 1 0 J .

(b) Without computing AB what is (AB)T?
(c) Confirm your result by computing AB.

A (d)
What happens if you do part (b) using the incorrect formula (AB)T =TBT?

1.2.9 Given the matrices A, B, and C at left, which of the following expres-
sions make no sense?

(a) AB (b) BA (c) A + B (d) AC

(e) BC (f) CB (g) AP (h) BTA (i) BTC

1.2.10 Show that if A and B are upper-triangular n x n matrices, then so is
AB.

1.2.11 (a) What is the inverse of the matrix A = [a b] for a 3& 0?

(b) If we identify Mat (2,2) with P4 in the stand lard way, what is the angle
between A and A-'? Under what condition are A and A-' orthogonal?

1.2.12 Confirm by matrix multiplication that the inverse of

A= [a bl is A-'= 1 d -b
c dJ ad - bc [-c aJ

1.2.13 Prove that a matrix [ a b 1 is not invertible if ad - be = 0.

1.2.14 Prove Theorem 1.2.17: that the transpose of a product is the product
of the transposes in reverse order:

(AB)T = BT AT T.
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"Stars" indicate difficult exer-
cises.

Graphs for Exercise 1.2.18

1.2.15 Recall from Proposition 1.2.23, and the discussion preceding it, what
the adjacency graph of a matrix is.

(a) Compute the adjacency matrix AT for a triangle and AS for a square.

(b) For each of these, compute the powers up to 5, and explain the meaning
of the diagonal entries.

(c) For the triangle, you should observe that the diagonal terms differ by 1
from the off-diagonal terms. Can you prove that this will be true for all powers
of AT?

(d) For the square, you should observe that half the terms are 0 for even
powers, and the other half are 0 for odd powers. Can you prove that this will
be true for all powers of As?

*(e) Show that half the terms of the powers of an adjacency matrix will be 0
for even powers, and the other half are 0 for odd powers, if and only if you can
color the vertices in two colors, so that every edge joins a vertex of one color to
a vertex of the other.

1.2.16 (a) For the adjacency matrix A corresponding to the cube (shown in
Figure 1.2.6), compute A2, A3 and A4. Check directly that (A2)(A2) = (A3)A.

(b) The diagonal entries of A4 should all be 21; count the number of walks
of length 4 from a vertex to itself directly.

(c) For this same matrix A, some entries of A" are always 0 when n is even,
and others (the diagonal entries for instance) are always 0 when n is odd. Can
you explain why? Think of coloring the vertices of the cube in two colors, so
that each edge connects vertices of opposite colors.

(d) Is this phenomenon true for AT, AS? Explain why, or why not.

1.2.17 Suppose we redefined a walk on the cube to allow stops: in one time
unit you may either go to an adjacent vertex, or stay where you are.

(a) Find a matrix B such that B;j counts the walks from V; to Vj of length
n.

(b) Compute B2, B3 and explain the diagonal entries of B3.

1.2.18 Suppose all the edges of a graph are oriented by an arrow on them.
We allow multiple edges joining vertices, so that there might be many (a su-
perhighway) joining two vertices, or two going in opposite directions (a 2-way
street). Define the oriented adjacency matrix to be the square matrix with both
rows and columns labeled by the vertices, where the (i,j) entry is m if there
are m oriented edges leading from vertex i to vertex j.

What are the oriented adjacency matrices of the graphs at left?



"Stars" indicate difficult exer-
cises.

Exercises for Section 1.3:
A Matrix as a Transformation
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1.2.19 An oriented walk of length n on an oriented graph consists of a se-

quence of vertices V 0 , V1, ... , V. such that V,, V;+i are, respectively, the begin-

ning and the end of an oriented edge.
(a) Show that if A is the oriented adjacency matrix of an oriented graph,

then the (i, j) entry of A' is the number of oriented walks of length n going

from vertex i to vertex j.
(b) What does it mean for the oriented adjacency matrix of an oriented graph

to be upper triangular? lower triangular? diagonal?

a
l

0
01 .1.2.20 (a) Show that I 0

J
is a left inverse of 1

0

L 0 1

0 O1
(b) Show that the matrix 1 0 J has no right inverse.

0 1

(c) Find a matrix that has infinitely many right inverses. ('fly transposing.)

1.2.21 Show that

f
0

[ 0 10 c

c J has an inverse of the form
L 0

0
10

zz

]

and find it.

'1.2.22 What 2 x 2 matrices A satisfy

A2 = 0, A2=1, A2 = -I?

1.3.1 Are the following true functions? That is, are they both everywhere
defined and well defined?

(a) "The aunt of," from people to people.
(b) f (x) = 1, from real numbers to real numbers.
(c) "The capital of," from countries to cities (careful-at least two countries,

the Netherlands and Bolivia, have two capitals.)

1.3.2 (a) Give one example of a linear transformation T: R4 -+ R2.
(b) What is the matrix of the linear transformation Si : 1R3 -+ R3 cone-

sponding to reflection in the plane of equation x = y? What is the matrix
corresponding to reflection S2 : R3 -. R3 in the plane y = z? What is the
matrix of St o S2?

1.3.3 Of the functions in Exercise 1.3.1, which are onto? One to one?

1.3.4 (a) Make up a non-mathematical transformation that is bijective (both
onto and one to one). (b) Make up a mathematical transformation that is
bijective.



In Exercise 1.3.9, remember
that the height of a matrix is given
first: a 3 x 2 matrix is 3 tall and 2
wide.

1 3 0 11
(a) A = 0 3 1 51

1 2 0 1

ai bl
a2 b2

(b) B = a3 b3

a4 b4

1a, b5

(c) C = ilr 1 0 v]
0 -1 2 1

D=[1 0 -2 5).

Matrices for Exercise 1.3.10
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1.3.5 (a) Make up a non-mathematical transformation that is onto but not
one to one, (b) Make up a mathematical transformation that is onto but not
one to one.

1.3.6 (a) Make up a non-mathematical transformation that is one to one but
not onto. (h) Make up a mathematical transformation that is one to one but
not onto.

1.3.7 The transformation f(x) = x2 from real numbers to real positive num-
bers is onto but not one to one.

(a) Can you make it 1-1 by changing its domain? By changing its range?

(b) Can you make it not onto by changing its domain? By changing its
range?

1.3.8 Which of the following are characterized by linearity? Justify your
answer.

(a) The increase in height of a child from birth to age 18.

(b) "You get what you pay for."

(c) The value of a bank account at 5 percent interest, compounded daily, as
a function of time.

(d) "Two can live as cheaply as one."

(e) "Cheaper by the dozen"

1.3.9 For each of the following linear transformations, what must be the
dimensions of the corresponding matrix?

(a) T : R2 1123 (b) T: R3 5l3

(c) T : I24 -+ 1182 (d) T : R4 R

1.3.10 For the matrices at left, what is the domain and range of the corre-
sponding transformation?

1.3.11 For a class of 150 students, grades on a mid-term exam, 10 homework
assignments, and the final were entered in matrix form, each row corresponding
to a student, the first column corresponding to the grade on the mid-term, the
next 10 columns corresponding to grades on the homeworks and the last column
corresponding to the grade on the final. The final counts for 50 percent, the
mid-term counts for 25 percent, and each homework for 1.5 percent of the final
grade. What is the transformation T : 11812 - R that assigns to each student
his or her final grade?

1.3.12 Perform the composition f ogoh for the following functions and values
of X.

(a) f(x) = x2 - 1, g(x) = 3x, h(x) = -x + 2, for x = 2.
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(b) f (x) = x2, g(x) = x - 3, h(x) = x - 3, for x = 1.

1.3.13 Find the matrix for the transformation from +i3 - ,R3 that rotates by
30" around the y-axis.

1.3.14 Show that the mapping from R° to lR- described by the product A'
is indeed linear.

In Exercise 1.3.18 note that the
symbol - (to be read, "maps to")
is different from the symbol -. (to
be read "to"). While -. describes
the relationship between the do-
main and range of a mapping, as
in T : 1R2 --+ 1R, the symbol - de-
scribes what a mapping does to a
particular input. One could write
f(x) = x2 as f : x -. x2.

(a) 12J (b) I V

(c) 1-d (d) L

22

1

Vectors for Exercise 1.4.2

Exercises for Section 1.4:
Geometry in 1R^

1.3.15 Use composition of transformations to derive from the transformation
in Example 1.3.17 the fundamental theorems of trigonometry:

cos(01 + 92) = cos 01 cos 92 - sin 91 sin 92

sin(91 + 02) = sin 01 cos 02 + cos 01 sin 92.

1.3.16 Confirm (Example 1.3.16) by matrix multiplication that reflecting a
point across the line, and then back again, lands you back at the original point.

1.3.17 If A and B are n x n matrices, their Jordan product is

AB+BA
2

Show that this product is commutative but not associative.

1.3.18 Consider 1R2 as identified to C by identifying (b) to z = a + ib.
Show that the following mappings C - C are linear transformations, and

give their matrices:

(a) R: z .- E(z) (the real part of z);
(b) a: z -. %z) (the imaginary part of z);
(c) c : z .- -z (the complex conjugate of z, i.e., z = a - ib if z = a + ib);
(d) mw : z - wz, where to = u + iv is a fixed complex number.

1.3.19 Show that the set of complex numbers {zI E(wz) = 0} with fixed
w E C is a subspace of RI = C. Describe this subspace.

1.4.1 If v and w are vectors, and A is a matrix, which of the following are
numbers? Which are vectors?

v' x w; V.*; I%ui; JAI; det A; AV.

1.4.2 What are the lengths of the vectors in the margin?

1.4.3 (a) What is the angle between the vectors (a) and (b) in Exercise 1.4.2?
(b) What is the angle between the vectors (c) and (d) in Exercise 1.4.2?

1.4.4 Calculate the angles between the following pairs of vectors:
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FIGURE 1.4.6.
(When figures and equations

are numbered in the exercises,
they are given the number of the
exercise to which they pertain.)

(a)
lO 21

(b) 12 4 1

0 1 3

-2 5 3ll
(c) -1 3 4J

-2 3 7

1 2 6
(d) 0 1 -3

1 0 -2

Matrices for Exercise 1.4.9

1 2 3
(a} -1 1 1

2 2 2

a b c
(b) 0 d e

() 0 1

fb 0
(c)

a
c d 0
e 1 g

Matrices for Exercise 1.4.11

1 1

0 1

(c) lim, (angle between 0 1 as vectors in R").

0 1

r1 1

1 'j(a) [oI 11J (b) _I 1

0 1
0 1L

1.4.5 Let P be the parallelepiped 0!5 x < a, 0 < y < b, 0 < z < c.
(a) What angle does a diagonal make with the sides? What relation is there

between the length of a side and the corresponding angle?
(b) What are the angles between the diagonal and the faces of the paral-

lelepiped? What relation is there between the area of a face and the corre-

sponding angle?

1.4.8 (a) Prove Proposition 1.4.14 in the case where the coordinates a and b
are positive, by subtracting pieces 1-6 from (a1 +b1)(a2 +b2), as suggested by
Figure 1.4.6.

(b) Repeat for the case where b1 is negative.

1.4.7 (a) Find the equation of the line in the plane through the origin and

perpendicular to the vector I -2]
L 1

(b) Find the equation of rthe line in the plane through the point (3) and

perpendicular to the vector 1 2-1
l 4

1.4.8 (a) What is the length of V. = 61 + + e" E 1Rn?

(b) What is the angle an between V. and e1? What is

1.4.9 Compute the determinants of the matrices at left.

1.4.10 Compute the determinants of the matrices

(a) [i -0 (b) [ ] (c) 0I
1.4.11 Compute the determinants of the matrices in the margin at left.

1.4.12 Confirm the following formula for the inverse of a 3 x 3 matrix:

al bl cl 1 1 b2c3 - b3c2 b3c1 - blc3 blc2 - b2c1

a2 b2 C2

11II

det A

IIIra3c2

- a2c3 a1c3 - a3c1 a2C1 - a1c2
a3 b3 C3.1 L a2b3 - a3b2 a3b1 - alb3 a1b2 - a2b1
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1.4.13 (a) What is the area of the parallelogram with vertices at

(0)'
(2)'

(1)' (7)?
(b) What is the area of the parallelogram with vertices at

(0)'
(2)' (-1)' (s)?

In part (c) of Exercise 1.4.18
think of the geometric definition of
the cross product, and the defini-
tion of the determinant of a 3 x 3
matrix in terms of cross products.

1.4.14 Compute the following cross products:

(a)
C 3

-Y 2y
z, x [0] (b) [52']

x [3, (c) [-6, x [2,
1.4.15 Show that the cross product of two vectors pointing in the same di-
rection is zero.

1 2] 1

1.4.18 Given the vectors 1 = 2 , v = 0 , w = 0

1 1 -1
(a) Compute u x (v' x w) and (tl x -7) x
(b) Confirm that v' (v" x w) = 0. What is the geometrical relationship of v"

and ' x w?

1.4.17 Given two vectors, V and w, show that (v' x w) = -(w x -7).

1.4.18 Let A be a 3 x 3 matrix with columns a', 6, c, and let QA be the 3 x 3
matrix with rows

(b x c')T, (c x a)T, (a" x 6)T.

(a) Compute QA when

1 2 0
A= 0 -1 1

1 1 -1

(b) What is the product QA A in the case of (a) above?
(c) What is QA A for any 3 x 3 matrix A?
(d) Can you relate this problem to Exercise 1.4.12?

1.4.19 (a) What is the length of

'n=e1+292+...+ndn=Eap ?

i=1
(b) What is the angle an,k between w and 6k?
*(c) What are the limits

lim on,k , lim an,n , lim an In/21new n-w n--



Exercises for Section 1.5:

Convergence and Limits

1 E E

B= 0 1 E ,

0 0 1

Matrix for Exercise 1.5.1
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where In/2J stands for the largest integer not greater than n/2?

1.4.20 For the two matrices and the vector

A = [1
01,

B = [0
0]

CC=

[1]

(a) compute IAI, IBI. 161;

(b) confirm that: IABI <- IAIIBI, IAei 5 IAIIEJ, and IBcI 5 IBIicI.

1.4.21 Use direct computation to prove Schwarz's inequality (Theorem 1.4.6)
in jg2 for the standard inner product (dot product); i.e., show that for any
numbers xl, x2, yl, y2, we have

Ixl yl + xzysI <_ xz y. + yz.

1.5.1 Find the inverse of the matrix B at left, by finding the matrix A such
that B = I - A and computing the value of the series S = I + A + A2 + A3 +....
This is easier than you might fear!

1.5.2 Following the procedure in Exercise 1.5.1, compute the inverse of the
matrix B at left, where IEI < 1, using a geometric series.

1.5.3 Suppose Ex l x; is a convergent series in IR^. Show that the triangle
inequality applies:

x

1 EB __
+E 1 ]

Matrix for Exercise 1.5.2

1.5.4 Let A be a square n x n matrix, and define

eAjAt=I+A+2 A2+31 A3+....
k=O

(a) Show that the series converges for all A, and find a bound for IeAI in
terms of IAI and n.

(b) Compute explicitly eA for the following values of A:

(1) [0 b1 , (2) [0 01 , (3) [-a 01.

For the third above, you might look up the power series for sin x and cos x.
(c) Prove the following, or find counterexamples:

(1) Do you think that eA+a = aAe" for all A and B? What if AB = BA?
(2) Do you think that e2A = (aA)2 for all A?

1.5.5 For each of the following subsets X of IR and IR2, state whether it is
open or closed (or both or neither), and prove it.
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(a){XEIRI0<x<1} (b){(y)ER2I1<x2+y2<2}

(d)1( )EE2Iy=01J

*(e) {Q C R} (the rational numbers)

1.5.6 (a) Show that the expression

I

2x - ,3/I2
is a polynomial p(x) of degree 4, and compute it.

(b) Use a computer to plot it: observe that it has two minima and a maxi-
mum. Evaluate approximately the absolute minimum: you should find some-
thing like .0663333....

(c) What does this say about the radius of the largest disk centered at (23)

which does not intersect the parabola of equation y = x2. Is the number 1/12
found in Example 1.5.6 sharp?

(d) Can you explain the meaning of the other local maxima and minima?

1.5.7 Find a formula for the radius r of the largest disk centered at (3) that

doesn't intersect the parabola of equation y = x2, using the following steps:

(a) Find the distance squared (3) - (z2 )
12

as a 4th degree polynomial in
X.

(b) Find the zeroes of the derivative by the method of Exercise 0.6.6.

(c) Find r.

1.5.8 For each of the following formulas, find its natural domain, and show
whether it is open, closed or neither.

(a) sill v (b) log x2 --y (c) loglogx

(d) aresin-sue (e) a°-v (f) .
1.5.9 What is the natural domain of the function

lim (1 + x)'1' of Example 1.5.18?

1.5.10 (a) Show that if U C 1F" is open, and V Is an open subset of U, then
V is an open subset of R".

(b) Show that if A is a closed subset of 11U and B is closed in A, then B is
closed in II8".

1.5.11 Show that if X is a subset of II8", then X is closed.
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1.5.12 Suppose that 0: (0, oo) -+ (0, oo) is a function such that limo 0(e) _
0.

(a) Let a,, a2.... be a sequence in Q8". Show that this sequence converges
to a if and only if for any c > 0, there exists N such that for n > N, we have

Ian - al < O(E).
(b) Find an analogous statement for limits of functions.

1.5.13 Prove the converse of Proposition 1.5.14: i.e., prove that if every con-
vergent sequence in a set C C R" converges to a point in C, then C is closed.

1.5.14 State whether the following limits exist, and prove it.

(a)

(;)-.( )
x+y

IxIy
(b) (vlyfa) x2+y2

x2

lim
) x2 + y3 -3(d)

H2 /

(f) lim
(x2 +Y 2)2

\y/~ +o) xy
s (g) \rlim(x2 + y2)(1og Ixyl), defined when xy # 0.

l/y/)\~\°
(h) lim (x2 +Y 2) log(X2 + y2)

(y)_(0)
1.5.15 (a) Let D' C 1R2 be the region 0 < x2 + y2 < 1, and let f : D` -- ]1
be a function. What does the following assertion mean?

lim

(v) (°)f

s
\y

l/
-a.

(b) For the two functions below, either show that the limit exists and find
it, or show that the limit does not exist:

(x _ sin x+f ( x2+y2 g(y OxI+IyUI°S(x2+y')

1.5.16 Prove Theorem 1.5.13.

1.5.17 Prove Proposition 1.5.16: If a sequence ak converges to a', then any
subsequence converges to the same limit.
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_ cosm9 sin m1
A " [ - sin mo cos m9

1.5.18 (a) Show that the function f(x) = [xle-lzl has an absolute maximum
at some x > 0.

(b) What is the maximum of the function?
(c) Show that the image of f is [0, 1/e].

1.5.19 Prove Theorem 1.5.27.

1.5.20 For what numbers 9 does the sequence of matrices A- (shown at left)
converge? When does it have a convergent subsequence?

1.5.21 (a) Let Mat (n, m) denote the space of n x m matrices, which we will
Sequence for Exercise 1.5.20 identify with R". For what numbers a E R does the sequence of matrices

An E Mat (2,2) converge as n oo, when A = [a a] ? What is the limit?
a a

(b) What about 3 x 3 matrices filled with a's, or n x n matrices?

1.5.22 Let U C Mat (2,2) be the set of matrices A such that I -A is invertible.
(a) Show that U is open, and find a sequence in U that converges to I.
(b) Consider the mapping f : U - Mat (2,2) given by

f(A) = (A2 - I)(A - I)-1
Does limA_1 f (A) exist? If so, what is the limit?

*(c) Let B = 1 1 -1 J, and let V C Mat (2, 2) be the set of matrices A

such that A - B is invertible. Again, show that V is open, and that B can be
approximated by elements of V.

*(d) Consider the mapping g : V -+ Mat (2,2) given by

g(A) = (A2 - B2)(A - B)-1.
Does limA_.B g(A) exist? If so, what is the limit?

1.5.23 (a) Show that the matrix A = I 0 1 J represents a continuous map-
ping R2 y 192. L

*(b) Find an explicit b in terms of E.
(c) Now show that the mapping

is continuous for any a, b, d, c.

1.5.24 Let a
3.14...

" = 2 78
1;

i.e., the two entries are n and e, to n places.

How large does M have to be so that la" - f e
J

I < 10-37 How large does M

have to be so that a" - I l l < 10-4? L

`J
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1.5.25 Which of the following functions are continuous at (00)?

(a)f(y)-x
++ Y

(c) f (y) =(x2+y2)loglx+yi
((x x2+ 2(e) f 1y) izI+M"3

(b)f(y)= 1-x2_y2

(d) f (y) = (x2 + y2) log(x2 + 2y2)

Exercises for Section 1.6: 1.6.1 Let A C 11" be a subset that is not compact. Show that there exists a
Four Big Theorems continuous unbounded function on A.

Hint: If A is not bounded, then consider f (x) = lxJ. If A is not closed, then
consider f(x) = I/tx - at for an appropriate a.

1.6.2 In the proof of the fundamental theorem of algebra (Theorem 1.6.10),
justify the statement (Equation 1.6.25) that

l(bb+lu'+' + + uk)J < Jb1uij for small u.

1.6.3 Set z = x + iy, where x, y e R. Show that the polynomial

P(z) = 1 + x2y2

has no roots. Why doesn't this contradict Theorem 1.6.10?

1.6.4 Find, with justification, a number R such that there is a root of p(z) _
z5 + 4z3 + 3iz - 3 in the disk izi < R. (You may use that a minimum of Cpl is
a root of p.)

1.6.5 Consider the polynomial

p(z)=zs+4z4+z+2=z6+q(x).
(a) Find R such that 1zs1 > Jq(z)l when izI > R.

(b) Find a number Rl such that you are sure that the minimum of lp(z)i
occurs for IzJ < R1.

1.6.6 Prove that:

(a) Every polynomial over the complex numbers can be factored into linear
factors.

(b) Every polynomial over the real numbers can be factored into linear factors
and quadratic factors with complex roots.

1.6.7 Find a number R for which you can prove that the polynomial

p(z)

has a root for I z I < R. Explain your reasoning.
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Exercises for Section 1.7: 1.7.1 Find the equation of the line tangent to the graph of f (x) at
Differential Calculus for the following functions:

(a) Ax) = sin x , a = 0 (b) f (x) = cos x , a = it/3
(c) f(x)=cosx, a=0 (d) f(x) = 1/x , a = 1/2.

1.7.2 For what a is the tangent to the graph of f (x) = e-s at (eaa) a line
of the form y = mx?

1.7.3 Example 1.7.2 may lead you to expect that if f is differentiable at a,
then f (a + h) - f (a) - f'(a)h has something to do with P. It is not true that
once you get rid of the linear term you always have a term that includes h2.
Tly computing the derivative of

(a) f(x) = 1x13"2 at 0 (b) f(x) = xlogjxj at 0 (c) f(x) = x/ logIx1, also
at 0

1.7.4 Find f'(x) for the following functions f.

(a) f(x)=sin3(x2+cosx) (b) f(x)=cos2((x+sinx)2)
(c) f(x) = (cosx)4 sinx (d) f(x) = (x +sin4x)3

sinx2sin3x(e) f(x) _ 3
)l(f) f(x) =sin (

s nom/

You really must learn the nota-
tion for partial derivatives used in
Exercise 1.7.7, as it is used prac-
tically everywhere, but we much
prefer D, f, etc.

1.7.5 Using Definition 1.7.1, show that x2 and Y x-2 are not differentiable
at 0, but that VI'X-4 is.

1.7.6 What are the partial derivatives DI f and D2f of the following func-
tions, at the points (2) and (_I2):

(a) f (y) = V. -2+-y; (b) f (X) X2
(y)

(c)f y)=cosxy+ycosy; (d) f(y) z
x+y2

1.7.7 Calculate the partial derivatives

fix, and for the vector-valued functions:

1 x +y
(a) f (y) - X 2y

y2

J
and (b) f (y) = xy

2

Jsin(x - y) sine xy /
1.7.8 Write the answers to Exercise 1.7.7 in the form of the Jacobian matrix.
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1.7.9 (a) Given a vector-valued function

r x 1 / j \ 2z cos(x2 + y) cos(xz + y)f \
y

1 - I f2 I , with Jacobian matrix I yexy xexb

what is D, of the function fl? D2 of the function fl? D2 of f2?

(b) What are the dimensions of the Jacobian matrix of a vector-valued func-
tion

f\y/ fil
= fz ?

f3

1.7.10 What is the derivative of the function f : Q2" -. 1R" given by the

formula f(x) = Ix12x?

1.7.11 Show that if f (x) = IxI, then for any number m,

Jim (f (0 + h) - f (O) - mh) = 0,

but that

lim h (f (0 + h) - f (0) - mh) = 0

never exists: there is no number m such that mh is a "good approximation" to
f(h) - f(0) in the sense of Definition 1.7.7.

1.7.12 (a) Show that the mapping

Mat(n,n) --. Mat(n,n), A- A3

is differentiable, and compute its derivative.

(b) Compute the derivative of the mapping

Mat (n, n)-.Mat (n, n), A A't for any integer k > 1.

1.7.13 (a) Define what it means for a mapping F : Mat (n, m) -. Mat (k,1)
to be differentiable at a point A E Mat (n, m).

(b) Consider the function F : Mat (n, m) - Mat (n, n) given by

F(A) = AAT .

Show that F is differentiable, and compute the derivative (I)F(A)J.

1.7.14 Compute the derivative of the mapping A r-. AA"-.

1.7.15 Let A = f a dl and A2= (a' dil
L J l i iJ
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fa ai

S b = b`

c cl

d d,

(a) Write the formula for the function S: R' 1R° defined at left.

(b) Find the Jacobian matrix of S.
(c) Check that your answer agrees with Example 1.7.15.
(d) (For the courageous): Do the same for 3 x 3 matrices.

The function of Exercise 1.7.15
1.7.16 Which of the following functions are differentiable at (0)?

sin x
if ( ) 6 ( 0)

) = sin(ezV)(a) f ( (b) f ( )
X +y 0Y 9

y y
0

if ( y) - (O)
x2

if ( ) # ( )(c) f(y)=Ix +yl (d)
y O

0 if
y) - (O)

1.7.17 Find the Jacobian matrices of the following mappings:

(a) f (&) = sin(xy) b) f (y) =
(.2+y')

Hint for 1.7.20 (a): Think of

r 1

a

A = I a dl as the element b
111

d
of R4. Use the formula for com-
puting the inverse of a 2 x 2 matrix
(Equation 1.2.15).

(c)f(y)-(x+y) d)f(B)_(rsin9)
1.7.18 In Example 1.7.15, prove that the derivative AH + HA is the "same"
as the Jacobian matrix computed with partial derivatives.

1.7.19 (a) Let U C 1R" be open and f : U -, Rm be a mapping. When is f
differentiable at a E U? What is its derivative?

(b) Is the mapping f : R' -*1R" given by

f(f) = IXIX

differentiable at the origin? If so, what is its derivative?

1.7.20 (a) Compute the derivative (Jacobian matrix) for the function f(A) _
A-' described in Proposition 1.7.16, when A is a 2 x 2 matrix.

(b) Show that your result agrees with the result of Proposition 1.7.16.

1.7.21 Considering the determinant as a function only of 2 x 2 matrices, i.e.,
det : Mat (2,2) R, show that

[D det(I)]H = h1,1 + h2,2,

where I of course is the identity and H is the increment matrix

H = [hi,, h,,2
J

h2,, h2,2
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Exercises for Section 1.8:
Rules for Computing Derivatives

Hint for Exercise 1.8.2: think of
the composition of

t Gt) and

x

1.8.1 (a) Prove Leibnitz's rule (part (5) of Theorem 1.8.1) directly when
f : U -+ R and g : U -. R- are differentiable at a, by writing

lim
([Dg(a)]h)- ([Df(a)])g(a)I

=0,
h-»o IllI

and then developing the term under the limit:

l(f(a+h)-f(a)) g(a+1)I-g(a)+f(a) ((a +)-g(a -[D(a)]1

+ f(a+) - f(a) -

[Df(a)]gOl

Ihl )
a

(b) Prove the rule for differentiating dot products (part (6) of Theorem 1.8.1)
by a similar decomposition.

(c) Show by a similar argument that if f', g : U -+ R3 are both differentiable
at a, then so is the cross product f x g : U -. R3. Find the formula for this
derivative.

1.8.2 (a) What is the derivative of the function

r
At)(t) = J d,

, defined for s > 1?
1 s+sins

(b) When is f increasing or decreasing?

ds 1.8.3 Consider the function

,Y a+sins'
both of which you should know

how to differentiate,

(XI) n-1

f = F-zix,+1

xn 2 1

t

and the curve y : R -+ R^ given by -y(t)
(t.).

o(t,
What is the derivative of the function t - f (ry(t))?

1.8.4 'I}ue or false? Justify your answer. If f : R2 - R2 is a differentiable
function with

f (0) _ (1 and [Df(0)]

there is no smooth mapping g : R2 -. R2 with

(g(1) = (0) and fog( ((U)
= ( ),

1.8.5 Let io : R -. R be any differentiable function. Show that the function

f (Y) =y'P(x2-Y2)
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Hint for part (b): What is the
"partial derivative of f with re-
spect to the polar angle 0"?

Exercises for Section 1.9:
Criteria for Differentiability

satisfies the equation

l l l
!D1f( ) +yD2f(11) y2f

r
\y

1.8.6 (a) Show that if a function f : JR2 -+ R2 can be written W(x2 + y2) for
some function 'p : JR --. llt, then it satisfies

xD2f - yD1f = 0.

'(b) Show the converse: every function satisfying xD2f - yDlf = 0 can be
written Ip(x2 + y2) for some function p: 8 R.

1.8.7 Referring to Example 1.8.4: (a) Compute the derivative of the map
A -A-3;

(b) Compute the derivative of the map A - A-".

1.8.8 If f (y) = ( ) for some differentiable function 'p : R -. 2, showX-Y
that

xDif + yD2f =0.

1.8.9 'IYue or false? Explain your answers. (a) If f : R2 -+ JR2 is differentiable,
and [Df(0)) is not invertible, then there is no function g : R2 -+ JR2 such that
g o f(x) = X.

(b) Differentiable functions have continuous partial derivatives.

1.9.1 Show that the function

_ 2 + x2 sin : if x 34 0
f(x)-{0 ifx=0

is differentiable at 0, with derivative f'(0) = 1/2.

1.9.2 (a) Show that for

2 3f(xy)32 if (y) M
0 if(yl-(0),

all directional derivatives exist, but that f is not//differentiable at the origin.

(b) Show that there exists a function which has directional derivatives ev-
erywhere and isn't continuous, or even bounded. (Hint: Consider Example
1.5.24.)



'C 0f(yl_ 2 +9 `f\y/\0/

if (YXXO)
Function for Exercise 1.9.3

Hint for Exercise 1.9.4, part
(c): You may find the following
fact useful: Isinxl < x for all
xEIR.
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1.9.3 Consider the function defined on 1R2 given by the formula at left.
(a) Show that both partial derivatives exist everywhere.
(b) Where is f differentiable?

1.9.4 Consider the function f : R2 - R given by

0 if (y ) - (0
0(a) What does it mean to say that f is differenttfable at (0)?

(b) Show that both partial derivatives Dl f (p) and D2 f (0) exist,
compute them.

(c) Is f differentiable at (00)?

1.9.5 Consider the function defined on fl defined by the formulas

z 0

(a) Show that all partial derivatives exist everywhere.
(b) Where is f differentiable?

sin
2 ifl 1101

y \ / \\\+ YfW_

X

0

if () 0-z 0

if y = 0

X

0

and
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Solving Equations

Some years ago, John Hubbard was asked to testify before a subcommittee
of the U.S. House of Representatives concerned with science and technol-
ogy. He was preceded by a chemist from DuPont who spoke of modeling
molecules, and by an official from the geophysics institute of California,
who spoke of exploring for oil and attempting to predict tsunamis.

When it was his turn, he explained that when chemists model mole-
cules, they are solving Schrodinger's equation, that exploring for oil re-
quires solving the Gelfand-Levitan equation, and that predicting tsunamis
means solving the Navier-Stokes equation. Astounded, the chairman of
the committee interrupted him and turned to the previous speakers. "Is
that true, what Professor Hubbard says?" he demanded. "Is it true that
what you do is solve equations?"

In every subject, language is in-
timately related to understanding.

"It is impossible to dissociate
language from science or science
from language, because every nat-
ural science always involves three
things: the sequence of phenom-
ena on which the science is based;
the abstract concepts which call
these phenomena to mind; and the
words in which the concepts are
expressed. To call forth a con-
cept a word is needed; to portray a
phenomenon, a concept is needed.
All three mirror one and the same
reality."-Antoine Lavoisier, 1789.

'Professor Hubbard, you al-
ways underestimate the difficulty
of vocabulary."-Helen Chigirin-
simya, Cornell University, 1997.

2.0 INTRODUCTION

All readers of this book will have solved systems of simultaneous linear equa-
tions. Such problems arise throughout mathematics and its applications, so a
thorough understanding of the problem is essential.
What most students encounter in high school is systems of it equations in it
unknowns, where n might be general or might be restricted ton = 2 and n = 3.
Such a system usually has a unique solution, but sometimes something goes
wrong: some equations are "consequences of others," and have infinitely many
solutions; other systems of equations are "incompatible," and have no solutions.
This chapter is largely concerned with making these notions systematic.

A language has evolved to deal with these concepts, using the words "lin-
ear transformation," "linear combination," "linear independence," "kernel,"
"span," "basis," and "dimension." These words may sound unfriendly, but
they correspond to notions which are unavoidable and actually quite trans-
parent if thought of in terms of linear equations. They are needed to answer
questions like: "how many equations are consequences of the others?"

The relationship of these words to linear equations goes further. Theorems
in linear algebra can be proved with abstract induction proofs, but students
generally prefer the following method, which we discuss in this chapter:

Reduce the statement to a statement about linear equations, row reduce
the resulting matrix, and see whether the statement becomes obvious.

147
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If so, the statement is true; otherwise it is likely to be false.
Solving nonlinear equations is much harder. In the days before computers,

finding solutions was virtually impossible; even in the good cases, where math-

ematicians could prove that solutions existed, they were usually not concerned

with whether their proof could be turned into a practical algorithm to find the

solutions in question. The advent of computers has made such an abstract ap-
proach unreasonable. Knowing that a system of equations has solutions is no
longer enough; we want a practical algorithm that will enable us to solve them.
The algorithm most often used is Newton's method. In Section 2.7 we will show
Newton's method in action, and state Kantorovitch's theorem, which guaran-
tees that under appropriate circumstances Newton's method converges to a
solution.; in Section 2.8 we discuss the superconvergence of Newton's method
and state a stronger version of Kantorovitch's theorem, using the norm of a
matrix rather than its length.

In Section 2.9 we will base the implicit and inverse function theorems on
Newton's method. This gives more precise statements than the standard ap-
proach, and we do not believe that it is harder.

2.1 THE MAIN ALGORITHM: Row REDUCTION

Suppose we want to solve the system of linear equations

2x + y + 3z = 1

X -y =1
2x +z=1.

2.1.1

We could add together the first and second equations to get 3x + 3z = 2.
Substituting (2 - 3z)/3 for x in the third equation will give z = 1/3, hence
x = 1/3; putting this value for x into the second equation then gives y = -2/3.

In this section we will show how to make this approach systematic, using row
reduction. The big advantage of row reduction is that it requires no cleverness,
as we will see in Theorem 2.1.8. It gives a recipe so simple that the dumbest
computer can follow it.

The first step is to write the system of Equation 2.1.1 in matrix form. We can
write the coefficients as one matrix, the unknowns as a vector and the constants
on the right as another vector:

2 _I 1o
0 1) [z][2 [1)

coefficient matrix (A) vector of unknowns (21) constants (6)

Our system of equations can thus be written as the matrix multiplication
AxZ = b':



The matrix A uses position to
impart information, as do Arabic
numbers; in both cases, 0 plays
a crucial role as place holder. In
the number 4084, the two 4's have
very different meanings, as do the
l's in the matrix: the 1 in the first
column is the coefficient of x, the
l's in the second column are the
coefficients of y, and that in the
third column is the coefficient of
Z.

Using position to impart infor-
mation allows for concision; in Ro-
man numerals, 4084 is

MMMMLXXXIIII.
(To some extent, we use position
when writing Roman numerals, as
in IV = 4 and VI = 6, but the Ro-
mans themselves were quite happy
writing their numbers in any or-
der, MMXXM for 3020, for exam-
ple.)

The ith column of the matrix A
corresponds to the ith unknown.

The first subscript in a pair of
subscripts refers to vertical posi-
tion, and the second to horizontal
position: a1,n is the coefficient for
the top row, nth column: first take
the elevator, then walk down the
halL

The matrix [A, b] is shorthand
for the equation Ax = b.
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A

2

1 1

[2 01 11 Id
b'

2.1.2

We now use a shorthand notation, omitting the vector x', and writing A and
as a single matrix, with b the last column of the new matrix:

12 1 3 1

1 -1 0 1

2 0 1 1

A b'

More generally, we see that a system of equations

a1,1xI +' '+ al,nxn = bl

2.1.3

2.1.4

amlxl +...+

is the same as Ax' = b:

am,nxn = bm

all ... al,n r xl b1 a1 ,1 al,n bl]= [
2.1.5

am1amn xn

b

m am,1 ... am,n bm

A a b" [A$l

We denote by [A, b], with a comma, the matrix obtained by putting side-by-
side the matrix A of coefficients and the vector b, as in the right-hand side of
Equation 2.1.5. The comma is intended to avoid confusion with multiplication;
we are not multiplying A and b.

How would you write in matrix form the system of equations

a+3z=2
2x+y+z=0

2y + z = 1?
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Check your answer below. i

Row operations

Remark 2.1.2. We could just as
well talk about column operations,
substituting the word column for
the word row in Definition 2.1.1.
We will use column operations in
Section 4.8.

We can solve a system of linear equations by row reducing the corresponding
matrix, using row operations.

Definition 2.1.1 (Row operations). A row operation on a matrix is one
of three operations:

(1) Multiplying a row by a nonzero number,

(2) Adding a multiple of a row onto another row,
(3) Ezchanging two rows.

Exercise 2.1.3 asks you to show that the third operation is not necessary;
one can exchange rows using operations (1) and (2).

There are two good reasons why row operations are important. The first
is that they require only arithmetic: addition, subtraction, multiplication and
division. This is what computers do well; in some sense it is all they can do.
And they spend a lot of time doing it: row operations are fundamental to most
other mathematical algorithms.

The other reason is that they will enable us to solve systems of linear equa-
tions:

Theorem 2.1.3. If the matrix [A, bj representing a system of linear equa-
tions Ail = b can be turned into [A', b'') by a sequence of row operations,
then the set of solutions of Aif = b and set of solutions of Al = b' coincide.

Proof. Row operations consist of multiplying one equation by a nonzero num-
ber, adding a multiple of one equation to another and exchanging two equations.
Any solution of A, = b is thus a solution of A'if = P. In the other direction,
any row operation can be undone by another row operation (Exercise 2.1.4), so
any solution A'x" = b' is also a solution of AR = b.

Theorem 2.1.3 suggests that we solve AR = b by using row operations to
bring the system of equations to the most convenient form. In Example 2.1.4
we apply this technique to Equation 2.1.1. For now, don't worry about how
the row reduction was achieved; this will be discussed soon, in the proof of
Theorem 2.1.8. Concentrate instead on what the row reduced matrix tells us
about solutions to the system of equations.

2

1 [0 2 1 1

]
'

i.e., [21 1 1 0
0 2

0

1 J [z) - [1 J
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Example 2.1.4 (Solving a system of equations with row operations).
To solve

We said not to worry about
how we did the row reduction in
Equation 2.1.7. But if you do
worry, here are the steps: To get
(1), divide Row I by 2, and add
--1/2 Row 1 to Row 2, and sub-
tract Row 1 from Row 3. To get
from (1) to (2), multiply Row 2 by
-2/3, and then add that result to
Row 3. From (2) to (3), subtract
half of Row 2 from Row 1. For (4),
subtract Row 3 from Row I. For
(5), subtract Row 3 from Row 2.

r1 1/2 3/2 1/2

(1)

L0

-3/2 -3/2 1/2
0 -1 -2 0

1 1/2 3/2 1/2

(2) 0 1 1 -1/3
0 0 -1 -1/3

1 0 1 2/3
(3) 0 1 1 -1/3

0 0 1 1/3

1 0 0 1/3
(4) 0 1 1 -1/3

0 0 1 1/3

1 0 0 1/3
(5) 0 1 0 -2/3

0 0 1 1/3

Echelon form is generally con-
sidered best for solving systems of
linear equations. (But it is not
quite best for all purposes. See
Exercise 2.1.9.)

2x+y+3z= 1
x-y 2.1.6

2x + z = 1,

we can use row operations to bring the matrix

2 1 3 1 1 0 0 1/3
1 -1 0 1 to the form 0 1 0 -2/3.1 2.1.7

2 0 1 1 L0 0 1 1/3

A b'

(To distinguish the new A and b from the old, we put a "tilde" on top: A, b.) In
this case, the solution can just be read off the matrix. If we put the unknowns
back in the matrix, we get

x 0 0 1/31 x = 1/3
0 y 0 -2/3 or y = -2/3 2.1.8

0 0 z 1/3 z = 1/3

Echelon form

Of course some systems of linear equations may have no solutions, and others
may have infinitely many. But if a system has solutions, they can be found by
an appropriate sequence of row operations, called row reduction, bringing the
matrix to echelon form, as in the second matrix of Equation 2.1.7.

Definition 2.1.5 (Echelon form). A matrix is in echelon form if.

(1) In every row, the first nonzero entry is 1, called a pivotal 1.

(2) The pivotal 1 of a lower raw is always to the right of the pivotal 1 of
a higher row;

(3) In every column that contains a pivotal 1, all other entries are 0.

(4) Any rows consisting entirely of 0's are at the bottom.

Clearly, the identity matrix is in echelon form.

Example 2.1.6 (Matrices in echelon form). The following matrices are in
echelon form; the pivotal 1's are underlined:

1

[0 0 1 1] [0 0 0 1, [0 0 0 0 0 0 1 2,
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Row reduction to echelon form
is really a systematic form of elim-
ination of variables. The goal is to
arrive, if possible, at a situation
where each row of the row-reduced
matrix corresponds to just one
variable. Then, as in Equation
2.1.8, the solution can be just be
read off the matrix.

Essentially every result in the
first six sections of this chapter is
an elaboration of Theorem 2.1.8.

In MATLAB, the command
rref ("row reduce echelon form")
brings a matrix to echelon form.

Once you've gotten the hang
of row reduction you'll see that it
is perfectly simple (although we
find it astonishingly easy to make
mistakes). There's no need to look
for tricks; you just trudge through
the calculations.

Computers use algorithms that
are somewhat faster than the one
we have outlined. Exercise 2.1.9
explores the computational cost of
solving a system of n equations in
n unknowns. Partial row reduc-
tion with back-substitution, de-
fined in the exercise, is roughly a
third cheaper than full row reduc-
tion. You may want to take short-
cuts too; for example, if the first
row of your matrix starts with a
3, and the third row starts with
a 1, you might want to make the
third row the first one, rather than
dividing through by 3.

Example 2.1.7 Matrices not in echelon form). The following matrices
are not in echelon form. Can you say why not?2

[ 1 [0 0 0 1] [0 1 0] [0 0 -0 0 1 -21

Exercise 2.1.5 asks you to bring them to echelon form.

How to row reduce a matrix

The following result and its proof are absolutely fundamental:

Theorem 2.1.8. Given any matrix A, there exists a unique matrix A in
echelon form that can be obtained from A by row operations.

Proof. The proof of this theorem is more important than the result: it is an
explicit algorithm for computing A. Called row-reduction or Gaussian elimina-
tion (or several other names), it is the main tool for solving linear equations.

Row reduction: the algorithm. To bring a matrix to echelon form:

(1) Look down the first column until you find a nonzero entry, called a pivot.
If there is none, look down the second column, etc.

(2) Put the row containing the pivot in the first row position, and then divide
it by the pivot to make its first entry a pivotal 1, as defined above.

(3) Add appropriate multiples of this row onto the other rows to cancel the
entries in the first column of each of the other rows.

Now look down the next column over, (and then the next column if necessary,
etc.) starting beneath the row you just worked with, and look for a nonzero
entry (the next pivot). As above, exchange its row with the second row, divide
through, etc.

This proves existence of a matrix in echelon form that can be obtained from
a given matrix. Uniqueness is more subtle and will have to wait; it uses the
notion of linear independence, and is proved in Exercise 2.4.10.

Example 2.1.9 (Row reduction). Here we row reduce a matrix. The R's
refer in each case to the rows of the immediately preceding matrix. For example,
the second row of the second matrix is labeled Rl + R2, because that row is
obtained by adding the first and second rows of the preceding matrix.

2The first matrix violates rule (2); the second violates rules (1) and (3); the third
violates rule (4), and the fourth violates rule (3).
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Just as you should know how
to add and multiply, you should
know how to row reduce, but the
goal is not to compete with a com-
puter, or even a scientific calcula-
tor; that's a losing proposition.

This is not a small issue. Com-
puters spend most of their time
solving linear equations by row re-
duction. Keeping loss of precision
due to round-off errors from get-
ting out of hand is critical. En-
tire professional journals are de-
voted to this topic; at a university
like Cornell perhaps half a dozen
mathematicians and computer sci-
entists spend their lives trying to
understand it.

1 2 3 11

[10

2 3 1 1 2 3 1

-1 1 0 2J Ri + R2 3 3 3 -+ R2/3 0 j, 1 1

1 0 1 2 R 3 - R , 0 -2 -2 1

R1-2R2 r1 0 1 -11 0 1 -11
-, 0 1 1 1 -- 0 1 1 1.

R3 + 2R2 0 0 0 3 R3/3 0 0 0 1

Note that in the fourth matrix we were unable to find a nonzero entry in the
third column, third row, so we had to look in the next column over, where there
is a3. 0

Exercise 2.1.7 provides practice in row reducing matrices. It should serve also
to convince you that it is indeed possible to bring any matrix to echelon form.

When computers row reduce: avoiding loss of precision

Matrices generated by computer operations often have entries that are really
zero but are made nonzero by round-off error: for example, a number may be
subtracted from a number that in theory is the same, but in practice is off by,
say, 10-50, because it has been rounded off. Such an entry is a poor choice
for a pivot, because you will need to divide its row through by it, and the row
will then contain very large entries. When you then add multiples of that row
onto another row, you will be committing the basic sin of computation: adding
numbers of very different sizes, which leads to loss of precision. So, what do
you do? You skip over that almost-zero entry and choose another pivot. There
is, in fact, no reason to choose the first nonzero entry in a given column; in
practice, when computers row reduce matrices, they always choose the largest.

Example 2.1.10 (Thresholding to avoid round-off errors). If you are
computing to 10 significant digits, then 1 + 10-10 = 1.0000000001 = 1. So
consider the system of equations

10-lox + 2y = 1

x+y=1,
the solution of which is

1 1 - 10-10

2.1.9

2.1.10

If you are computing to 10 significant digits, this is x = y = .5. If you actually
use 10-10 as a pivot, the row reduction, to 10 significant digits, goes as follows:

x
2 - 10-10' "2-10-10'
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Recall (Equations 2.1.4 and
2.1.5) that Ax = b represents a
system of equations, the matrix A
giving the coefficients, the vector x"
giving the unknowns (for example,
for a system with three unknowns,

x
x = y and the vector b con-

x
tains the solutions. The matrix
(A, b[ is shorthand for Ax = b'.

[101 2

1] - [1
2.11010 11101 - [o

-210010

-1010]1

2.1.11

The "solution" shown by the last matrix reads x = 0, which is badly wrong: x
is supposed to be .5. Now do the row reduction treating 10-10 as zero; what
do you get? If you have trouble, check the answer in the footnote.3

Exercise 2.1.8 asks you to analyze precisely where the troublesome errors
occurred. All computations have been carried out to 10 significant digits only.

2.2 SOLVING EQUATIONS USING Row REDUCTION

In this section we will see, in Theorem 2.2.4, what a row-reduced matrix
representing a system of linear equations tells us about its solutions. To solve
the system of linear equations Ait = b, form the matrix [A, b] and row reduce

it to echelon form, giving [A, G). If the system has a unique solution, it can
then be read off the matrix, as in Example 2.1.4. If it does not, the matrix will
tell you whether there is no solution, or infinitely many solutions. Although
the theorem is practically obvious, it is the backbone of the entire part of linear
algebra that deals with linear equations, dimension, bases, rank, and so forth.

Remark. In Theorem 2.1.8 we used the symbol tilde to denote the echelon
form of a matrix: A is the echelon form of A, obtained by row reduction. Here,

[A, b] represents the echelon form of the entire "augmented" matrix [A, b]: i.e.,

it is [A, b]. We use two tildes rather than one wide one because we need to talk

about b independently of A.

In the matrix [A, b], the columns of A correspond in the obvious way to
the unknowns x1 of the system Al = b: the ith column corresponds to the
ith unknown. In Theorem 2.2.4 we will want to distinguish between those
unknowns corresponding to pivotal columns and those corresponding to non-
pivotal columns.

Definition 2.2.1 (Pivotal column). A pivotal column of A is a column
of A such that the corresponding column of A contains a pivotal 1.

3Remember to put the second row in the first row position:
10110

1
1]

[1

1

2
1]

10
2 1]

10
1 .5]

[1
1 .5]'

2
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The terms "pivotal" and "non-
pivotal" do not describe some in-
trinsic quality of a particular un-
known. If a system of equations
has both pivotal and non-pivotal
unknowns, which are pivotal and
which are not may depend on the
order in which you order the un-
knowns. as illustrated by Exercise
2.2.1.

The row reduction in Example
2.2.3 is unusually simple in the
sense that it involves no fractions;
this is the exception rather than
the rule. Don't be alarmed if your
calculations look a lot messier.

In Example 2.2.3 the non-
pivotal unknown z corresponds to
the third entry of x'; the system of
equations

2x+y+3z=1
a-y=1

.r+y+2z=1
corresponds to the multiplication

2 1 3
1 -1 0
1 1 2

A non-pivotal column is a column of A such that the corresponding column
of A does not contain a pivotal 1.

Definition 2.2.2 (Pivotal unknown). A pivotal unknown (or pivotal
variable) of a system of linear equations Ax = b is an unknown corresponding
to a pivotal column of A: xi is a pivotal unknown if the ith column of A
contains a pivotal 1. A non-pivotal unknown corresponds to a non-pivotal
column of A: xi is a non-pivotal unknown if the jth column of A does not
contain a pivotal 1.

Example 2.2.3 (Pivotal and non-pivotal unknowns). The matrix

2 1 0 1

[A, -1 0 1

1 1 2 1

corresponding to the system of equations

2x+y+3z=1
x - y = 1 row reduces to

x+y+2z=1

0 0 1 0
IILO

1

1 1 0 ,

0 0 0 1

lA.b]

so x and y are pivotal unknowns, and z is a non-pivotal unknown. D

Here is what Theorems 2.1.3 and 2.1.8 do for us:

Theorem 2.2.4 (Solutions to linear equations). Represent the system
Ax = b, involving m linear equations in n unknowns, by the m x (n + 1)
matrix [A, b], which row reduces to Then

(1) If the row-reduced vector b contains a pivotal 1, the system has no
solutions.

(2) If 1 does not contain a pivotal 1, then:

(a) if there are no non-pivotal unknowns (i.e., each column of A
contains a pivotal 1), the system has a unique solution;

(b) if at least one unknown is non-pivotal, there are infinitely many
solutions; you can choose freely the values of the non-pivotal
unknowns, and these values will determine the values of the
pivotal unknowns.

There is one case where this is of such importance that we isolate it as a
separate theorem, even though it is a special case of part (2a).



The nonlinear versions of these
two theorems are the inverse func-
tion theorem and the implicit
function theorem, discussed in
Section 2.9. In the nonlinear case,
we define the pivotal and non-
pivotal unknowns as being those
of the linearized problems; as in
the linear case, the pivotal un-
knowns are implicit functions of
the non-pivotal unknowns. But
those implicit functions will be de-
fined only in a small region, and
which variables are pivotal and
which are not depends on where
we compute our linearization.

Note, as illustrated by Equa-
tion 2.2.2, that if b (i.e., the last
column in the row-reduced matrix
[A, b[) contains a pivotal 1, then
necessarily all the entries to the
left of the pivotal 1 are zero, by
definition.

In this case, the solutions form
a family that depends on the single
non-pivotal variable, z; A has one
column that does not contain a
pivotal 1.
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Theorem 2.2.5. A system ADZ = 9 has a unique solution for every b' if and

only if A row reduces to the identity. (For this to occur, there must be as

many equations as unknowns, i.e., A must be square.)

We will prove Theorem 2.2.4 after looking at some examples. Let us consider

the case where the results are most intuitive, where n = m. The case where the

system of equations has a unique solution is illustrated by Example 2.1.4. The
other two-no solution and infinitely many solutions-are illustrated below.

Example 2.2.6 (A system with no solutions). Let us solve

2x +

The matrix

Y + 3z =1

x-y=1
x+y+2z=1.

2 1 3 1

1 -1 0 1 row reduces to
1 1 2 1

2.2.1

1 0 1 0

0 1 1 0 . 2.2.2
0 0 0 1

so the equations are incompatible and there are no solutions; the last row tells
usthat 0=1. A

Example 2.2.7 (A system with infinitely many solutions). Let us solve

2x+y+3z=1
x-y =I
x+y+2z=1/3.

2.2.3

The matrix
2 1 3 1 0 1 2 3r l

1 0 1/3
row reduces to 100 0 1

0
-1/031. 2.2.4

The first row of the matrix says that x + z = 2/3; the second that y + z =
-1/3. You can choose z arbitrarily, giving the solutions

2/3 - z
-1/3-z

z

2.2.5

there are as many solutions as there are possible values of z-an infinite number.
In this system of equations, the third equation provides no new information; it
is a consequence of the first two. If we denote the three equations R1, R2 and
R3 respectively, then R3 = 1/3 (2R1 - R2):



If we had arranged the columns
differently, a different variable
would be non-pivotal; the four
variables here play completely
symmetrical roles.

1 0 1 0
[A, bj = 0 1 1 0

0 0 0 1

b
FIGURE 2.2.1.

Case 1: No solution.
The row-reduced column b' con-
tains a pivotal 1; the third line
reads 0 = 1. (The left-hand side
of that line must contain all 0's;
if the third entry were not 0, it
would be a pivotal 1, and then b
would contain no pivotal 1.)

1 0 0 b1

[A, b] = 0 1 0 b2

0 0 1 b3

0 0 0 0

FIGURE 2.2.2.

Case 2a: Unigue solution.
Each column of A contains a piv-
otal 1, giving

xl = bi; x2 = b2; x3 = b3.
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2R1 4x+2y+6z = 2
-R2 -x + y =-I

2R1-R2=3R3 3x+3y+6z= I. A

In the examples we have seen so far, b was a vector with numbers as entries.
What if its entries are symbolic? Depending on the values of the symbols,

different cases of Theorem 2.2.4 may apply.

Example 2.2.8 (Equations with symbolic coefficients). Suppose we want
to know what solutions, if any, exist for the system of equations

x1+x2=al
x2+x3=a2

2.2.6

X3 + x4 = a3

X4 + X1 = a4.

Ro w operations brin

1 1 0 0 al

g the mat rix

1 0 0 1 al + a3 - a2
0 1 1 0 n2

to
0 1 0 -1 a2 - a3

2.2.7
0 0 1 1 a3 0 0 1 1 a3

1 0 0 1 a4 0 0 0 0 a2 + a4 - al - a3

so a first thing to notice is that there are no solutions if a2+a4 -al -a3 # 0: we

are then in case (1) of Theorem 2.2.4. Solutions exist only if a2+a4-a1-a3 = 0.
If that condition is met, we are in case (2b) of Theorem 2.2.4: there is no pivotal
1 in the last column, so the system has infinitely many solutions, depending
on the value of the single non-pivotal variable, x4, corresponding to the fourth
column. 0

Proof of Theorem 2.2.4. Case (1). If the row-reduced vector b contains a
pivotal 1, the system has no solutions.

Proof: The set of solutions of Ax = b is the same as that of Al = b by
Theorem 2.1.3. If bf is a pivotal 1, then the jth equation of Al = b reads 0 = 1
(as illustrated by the matrix in Figure 2.2.1), so the system is inconsistent.

Case (2a). If b does not contain a pivotal 1, and each column of A contains
a pivotal 1, the system has a unique solution.

Proof This occurs only if there are at least as many equations as _unknowns
(there may be more, as shown in Figure 2.2.2). If each column of A contains

a pivotal 1, and b has no pivotal 1, then for each variable xi there is a unique
solution x; = bi; all other entries in the ith row will be 0, by the rules of row
reduction. If there are more equations than unknowns, the extra equations
do not make the system incompatible, since by the rules of row reduction,
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il
1 0 -1 bi

[A, bl = 0 1 2 b2

0 0 0 0

rr1 0 3 0 2 bl
(B, bJ = I 0 1 1 0 0 b2

l0 0 0 1 1 b3

the corresponding rows will contain all 0's, giving the correct if uninformative
equation 0 = 0.

Case (2b) If to does not contain a pivotal 1, and at least one column of A

contains no pivotal 1, there are infinitely many solutions: you can choose freely
the values of the non-pivotal unknowns, and these values will determine the

values of the pivotal unknowns.

Proof: A pivotal 1 in the ith column corresponds to the pivotal variable x,.
The row containing this pivotal 1 (which is often the ith row but may not be,
as shown in Figure 2.2.3, matrix B) contains no other pivotal l's: all other non-
zero entries in that row correspond to non-pivotal unknowns. (For example, in
the row-reduced matrix A of Figure 2.2.3, the -1 in the first row, and the 2 in
the second row, both correspond to the non-pivotal variable x3.)

Thus if there is a pivotal 1 in the jth row, corresponding to the pivotal
unknown xi, then xi equals bj minus the sum of the products of the non-pivotal
unknowns xk and their (row-reduced) coefficients in the jth row:

Xi = bj >aj,kxk 2.2.8

sum of products of the
non-pivotal unknowns in

jth row and their coefficients

FIGURE 2.2.3.
Case 2b: Infinitely many solu-

tions (one for each value of non-

For the matrix A of Figure 2.2.3 we get

xl = bf +X3 and 2=b2-2x3;
pivotal variables). we can make x3 equal anything we like; our choice will determine the values of

the pivotal variables xl and x2. What are the equations for the pivotal variables
of matrix B in Figure 2.2.3?4

How many equations in how many unknowns?

In most cases, the outcomes given by Theorem 2.2.4 can be predicted by con-
sidering how many equations you have for how many unknowns. If you have n
equations for n unknowns, most often there will be a unique solution. In terms
of row reduction, A will be square, and most often row reduction will result in
every row of A having a pivotal 1; i.e., A will be the identity. This is not always
the case, however, as we saw in Examples 2.2.6 and 2.2.7.

4The pivotal variables x1, x2 and x4 depend on our choice of values for the non-

pivotal variables x3 and z5:

xt=bl-3x3-2x5
X2 =64-x3
x4=63-x5.
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FIGURE 2.2.4.

If you have more equations than unknowns, as in Exercise 2.1.7(b), you would
expect there to be no solutions; only in very special cases can n - I unknowns
satisfy n equations. In terms of row reduction, in this case A will have more
rows than columns, and at least one row of ,9 will not have a pivotal 1. A row

of A without a pivotal 1 will consist of 0's; if the adjacent entry of b' is non-zero
(as is likely), then the solution will have no solutions.

If you have fewer equations than unknowns, as in Exercise 2.2.2(e), you would
expect infinitely many solutions. In terms of row reduction, A will have fewer
rows than columns, so at least one column of A will contain no pivotal 1: there

will be at least one non-pivotal unknown. In most cases, b will not contain a
pivotal 1. (If it does, then that pivotal I is preceded by a row of 0's.)

Geometric interpretation of solutions

These examples have a geometric interpretation. The top graph in Figure 2.2.4
shows the case where two equations in two unknowns have a unique solution.

As you surely know, two equations in two unknowns,

a1 x + b1y = C1
2.2.9a2x+b2y=r.2,

are incompatible if and only if the lines 11 and f2 in R2 with equations a1x +
b1U = c1 and a2x + b2y = c2 are parallel (middle graph, Figure 2.2.4). The
equations have infinitely many solutions if and only if 11 = 22 (bottom graph,
Figure 2.2.4).

When you have three equations in three unknowns, each equation describes
a plane in R3. The top graph of Figure 2.2.5 shows three planes meeting in a
single point, the case where three equations in three unknowns have a unique
solution.

There are two ways for the equations in 1R3 to be incompatible which meansTop: Two lines meet in a s
,

in- that the planes do not intersect. One way is that two of the planes are parallel,gle point, representing the unique
but this is not the only, or even the usual way: they will also be incompatiblesolution to two equations in two
if no two are parallel, but the line of intersection of any two is parallel to theunknowns. Middle: A case where
third, as shown by the middle graph of Figuretwo equations in two unknowns p gore 2.2.5. This latter possibility

have no solution. Bottom: Two occurs in Example 2.2.6.

lines are colinear, representing a There are also two ways for equations in R3 to have infinitely many solutions.
case where two equations in two The three planes may coincide, but again this is not necessary or usual. The
unknowns have infinitely many so- equations will also have infinitely many solutions if the planes intersect in a
lutions. common line, as shown by the bottom graph of Figure 2.2.5. (This second

possibility occurs in Example 2.2.7.)
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Solving several systems of linear equations with one matrix

Theorem 2.2.4 has all additional spinoff. If volt want to solve several systems
of n linear equations in it unknowns that have the same matrix of coefficients,

von can deal with them all at using row reduction. This will be useful
when we compute inverses of matrices in Section 2.3.

Corollary 2.2.9 (Solving several systems of equations simultane-
ously). Several systems ofn linear equations in n unknowns, with the same
coefficients (e.g. Ax = b1. .. Ax = bk) can be solved at once with row
reduction. Form the matrix

[A,bl,... bk] and row reduce it to get [A,bl,... ,bkj.

If .4 is the identity, then b, is the solution to the ith equation M = b;.

If A row reduces to the identity the row reduction is completed by the time
one has dealt with the last. row of A. The row operations needed to turn A into
A affect each b but the b; do not affect each other.

Example 2.2.10 (Several systems of equations solved simultaneously).
Suppose we want to solve the three systems

2r+y+3z=1 2r+y+3z= 2 2x + y + 3z = 0

(1) .r - y+ z =1 (2) .r-y+ z= 0 (3) X - y + z = I

r+y+2z = 1.
We form the matrix

r+y+2z= 1. x + y + 2z = I.

2 1 3 1 2 111 1 0 0 -2 2 -5II
1 1 1 1 0 1 , whic h row reduces to

I
0 1 0 -1 1 21

l 1 2 1 1 1 0 0 1 2 - l 4

A G! L7 Irr

l
lbr rb2

l
b3

T'icutte 2.2.5. The solution to the first system of equations is -1
J

t e
-21

theyI =
I

-1 ;

Top: 't'hree equations in three
2 z J 2

unknowns m<wt in a single point,
representing the unique solution 2 5

to three rrpuations in three tin- solution to the second is I the solution to the third is -2
knowns. Middle: Three equations -1 4

in three nnknowns have nn solu-
tion. Bottom: Three etpno- 2.3 MATRIX INVERSES AND ELEMENTARY MATRICES
lions in dine unknowns
have infinitely many solutions. In this section we will see that matrix inverses give another way to solve equa-

tions. We will also introduce the modern view of row reduction: that a row
operation is equivalent to natitiplving a matrix by an elernentany mairtr.
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Only square matrices can have
inverses: Exercise 2.3.1 asks you
to (1) derive this from Theorem
2.2.4, and (2) show an example
where AB = I, but BA 54 1.

Such a B would be only a "one-
sided inverse" for A, not a real
inverse; a "one-sided inverse" can
give uniqueness or existence of so-
lutions to Ax' = b, but not both.

To construct the matrix [Al I] of
Theorem 2.3.2, you put A to the
left of the corresponding identity
matrix. By "corresponding" we
mean that if A is is x is, then the
identity matrix I must be is x n.

Solving equations with matrix inverses

Recall from Section 1.2 that the inverse of a matrix A is another matrix A
such that AA-1 = A-1A = I, the identity. In that section we discussed two
results involving inverses, Propositions 1.2.14 and 1.2.15. The first says that if
a matrix has both a left and a right inverse, then those inverses are identical.
The second says that the product of two invertible matrices is invertible. and
that the inverse of the product is the product of the inverses, in reverse order.

Inverses give another way to solve equations. If a matrix A has an inverse
A-i, then for any b the equation Ax = b has a unique solution, namely x" _
A-1b.

One can verify that A-16 is a solution by plugging it into the equation
Ax"=b9:

A(A-1b) = (AA-')6 = 16 = b'. 2.3.1

This makes use of the associativity of matrix multiplication.
The following computation proves uniqueness:

A x " = bb, so A-1 Az = A 1 b'; since A -'AR = x', we have z = A -16.
2.3.2

Again we use the associativity of matrix multiplication. Note that in Equation
2.3.1 the inverse of A is on the right; in Equation 2.3.2 it is on the left.

The above argument, plus Theorem 2.2.5, proves the following proposition.

Proposition 2.3.1. A matrix A is invertible if and only if it row reduces to
the identity.

In particular, to be invertible a matrix must be square.

Computing matrix inverses

Computing matrix inverses is rarely a good way to solve linear equations, but
it is nevertheless a very important construction. Equation 1.2.15 shows how
to compute the inverse of a 2 x 2 matrix. Analogous formulas exist for larger
matrices, but they rapidly get out of hand. The effective way to compute matrix
inverses for larger matrices is by row reduction:

Theorem 2.3.2 (Computing a matrix inverse). If A is a n x is matrix,
and you construct the n x 2n augmented matrix [A[I] and row reduce it, then
either:

(1) The first n columns row reduce to the identity, in which case the last
n columns of the row-reduced matrix are the inverse of A, or

(2) The first n columns do not row reduce to the identity, in which case
A does not have an inverse.
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Example 2.3.3 (Computing a matrix inverse).
2 1 3 3 -1 4

A = 1

[
-1 1

]

has inverse A-' = 1 -1 -1 , 2.3.3

1 1 2 -2 1 3

because

2 1 3 1 0 0 1 0 0 3 -1 4

1 -1 1

L

0 1 0 J row reduces to 0 1 0 1 -1 -1 . 2.3.4

1 1 2 0 0 1 0 0 1 -2 1 3

We haven't row reduced the
matrix to echelon form; as soon
we see that the first three columns
are not the identity matrix, there's
no point in continuing; we already
know that A has no inverse.

Exercise 2.3.3 asks you to confirm that you can use this inverse matrix to
solve the system of Example 2.2.10. L

Example 2.3.4 (A matrix with no inverse). Consider the matrix of Ex-
amples 2.2.6 and 2.2.7, for two systems of linear equations, neither of which has
a unique solution:

r2 1 31

A= 1 -1 01.
1 1 2

2.3.5

This matrix has no inverse A-r because

2 1 3 1 0 0 1 0 1 1 0 1

1

[
-1 0 0 1 0 row reduces to

1

0 1 1 -1 0 2 .

1 1 2 0 0 1 0 0 0 -2 1 3
2.3.6

Proof of Theorem 2.3.2. Suppose [All] row reduces to (IJB). Since A row
reduced to the identity, the ith column of B is the solution x; to the equation
Ax"; =e';.

This uses Corollary 2.2.9. In Example 2.2.10 illustrating that corollary, AB

row reduced to IB, so the ith column of B (i.e., b;) is the solution to the
equation A5 = bbi. We repeat the row reduction of that example here:

2 1 3 1 2 01 (1 0 0 -2 2 _ 51
1 -1 1 1 0 1 row teducce to I O 1 0 -1 1 2 ,

1 1 2 1 1 1

L

0 0 1 2 -1 4
A b, bz b3 I ba b,

so Ab; = b;.

Similarly, when AI row reduces to IB, the ith column of B (i.e., b;) is the
solution to the equation Al, = e;:

2 1 1 01 rl 0 3 -
1 -1 1

0
0

1

1 0 1 row reduces to
-

0
1

1 0 1

-11

1 4

2.3.7
1 1 2 0 0 1 0 0 1 -2 1 3
A 51 92 d9 1 b, b2 63
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x

1 0 ... 0 . .. 0

0 1 ... 0 . .. 0

0 0 ... X . .. 0 i

0 0 ... 0 . .. 1

Type 1: El (i, x)

1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 1

Example type 1: E1 (3, 2)

Recall (Figure 1.2.3) that the
ith row of E,A depends on all the
entries of A but only the ith row
of El.

0 ... 0 ... 1

Type 2: E2(i,j,x)

so A} 1 = e,. So we have:

A(bt,b2....G,,j = (e1,e2,...e',,j. 2.3.8

a I

This tells us that B is a right inverse of A: that AB = I.
We already know by Proposition 2.3.1 that if A row reduces to the identity it

is invertible, so by Proposition 1.2.14, B is also a left inverse, hence the inverse
of A. (At the end of this section we give a slightly different proof in terms of
elementary matrices.)

Elementary matrices

After introducing matrix multiplication in Chapter 1, we may appear to have
dropped it. We haven't really. The modern view of row reduction is that any
row operation can be performed on a matrix by multiplying A on the left by an
elementary matrix. Elementary matrices will simplify a number of arguments
further on in the book.

There are three types of elementary matrices, all square, corresponding to the
three kinds of row operations. They are defined in terms of the main diagonal,
from top left to bottom right. We refer to them as "type 1," "type 2,"and "type
3," but there is no standard numbering; we have listed them in the same order
that we listed the corresponding row operations in Definition 2.1.1.

Definition 2.3.5 (Elementary matrices).
(1) The type 1 elementary matrix El (i, x) is the square matrix where every

entry on the main diagonal is 1 except for the (i, i)th entry, which is x # 0,
and in which all other entries are zero.

(2) The type 2 elementary matrix E2(i, j, x), for i # j, is the matrix where

.1

all the entries on the main diagonal are 1, and all other entries are 0 except
for the (i, j)th, which is x. (Remember that the first index, i, refers to which
row, and the second, j, refers to which column. While the (i,j)th entry is x,
the (j, i)th entry is 0.)

(3) The type 3 elementary matrix E3(i, j), i # j, is the matrix where the
entries i, j and j, i are 1, as are all entries on the main diagonal except i, i
and j, j, which are 0. All the others are 0.

1 0 3
0 1 0 Multiplying A on the left by El multiplies the ith row of A by x: E1A is
0 0 1 identical to A except that every entry of the ith row has been multiplied by x.

Example type 2: E2(1,3,-3) Multiplying A on the left by E2 adds (x times the jth row) to the ith row.
The matrix E3A is the matrix A with the ith and the jth rows exchanged.
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The type 3 elementary matrix
E3(i, j) is shown at right. It is the
matrix where the entries i, j and
j,i are 1, as are all entries on the
main diagonal except i,i. and j, j.
which are 0. All the others are 0.

A

1 0

0 2

2 1

1 1

1 0 0 0 1 0

0 1 0 0 0 2

0 0 2 0 4 2

0 0 0 1 1 1

elementary matrix

Multiplying A by this elementary
matrix multiplies the third row of
A by 2.

The proof is left as Exercise
2.3.13.

0 ... 0 ... 1 0

0 ... 0 1 0 0
1 0 0 0 0

0 ... 1 ... 0 0 0 0 1 0 0

0 ... 0 0 0 1 0 0 1 0 0 0

0 0 0 1 0

0 ... 0 ... 0 I 0 0 0 0 1

Type 3: E3(i, j) Example type 3
E3(2,3)

Example 2.3.6 (Multiplication by an elementary matrix). We can
multiply by 2 the third row of the matrix A, by multiplying it on the left by
the type 1 elementary matrix E1(3,2) shown at left. A

Exercise 2.3.8 asks you to confirm that multiplying a matrix A by the other
types of elementary matrices is equivalent to performing the corresponding row
operation. Exercise 2.1.3 asked you to show that it is possible to exchange rows
using only the first two row operations. Exercise 2.3.14 asks you to show this
in terms of elementary matrices. Exercise 2.3.12 asks you to check that column
operations can be achieved by multiplication on the right by an elementary
matrix of types 1,2, and 3 respectively.

Elementary matrices are invertible

One very important property of elementary matrices is that they are invertible,
and that their inverses are also elementary matrices. This is another way of
saying that any row operation can be undone by another elementary operation.
It follows from Proposition 1.2.15 that any product of elementary matrices is
also invertible.

Proposition 2.3.7. Any elementary matrix is invertible. More precisely,

(1) (Ej(i,x))-' = EL(i, _): the inverse is formed by replacing the x in
the (i, i)th position by 1/x. This undoes multiplication of the ith row
by x.

1(2) (Es(i, j, x)) = E2(i, j, -x): the inverse is formed by replacing the
x in the (i, j) th position by -x. This subtracts x times the jth row
from the ith row.

(3) (E3(i, j))_ t = E3(i, j): multiplication by the inverse exchanges rows
i and j a second time, undoing the first change.
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Of course in ordinary arith-
metic you can't conclude from 4 x
6 = 3 x 8 that 4 = 3 and 6 -
8, but in matrix multiplication if
[E][AII] = [I[B], then [E][A) = I
and (E) [I] = B, since the multipli-
cation of each column of A and of
I by [E] occurs independently of
all other columns:

[A[I]
[E] [EAIEI].

Equation 2.3.10 shows that
when row reducing a matrix of the
form [A[I], the right-hand side of
that augmented matrix serves to
keep track of the row operations
needed to reduce the matrix to
echelon form; at the end of the
procedure, I has been row reduced
to Ek ... E, = B, which is pre-
cisely (in elementary matrix form)
the series of row operations used.

Proving Theorem 2.3.2 with elementary matrices

We can now give a slightly different proof of Theorem 2.3.2 using elementary
matrices.

(1) Suppose that [All] row reduces to [IIB]. This can be expressed as mul-
tiplication on the left by elementary matrices:

Ek ... El [AII] = (I [B]

The left and right halves of Equation 2.3.9 give

2.3.9

Ek...E,A=I and Ek...E,I=B. 2.3.10

Thus B is a product of elementary matrices, which are invertible, so (by Propo-
sition 1.2.15) B is invertible: B-1 = Ei 1 ... E; l. Moreover, substituting the
right equation of 2.3.10 into the left equation gives BA = 1, so B is a left
inverse of A. We don't need to check that it is also a right inverse, but doing so
is straightforward: multiplying BA = I by B-1 on the left and B on the right
gives

I = B-1IB = B-1(BA)B = (B-1B)AB = AB. 2.3.11

So B is also a right inverse of A.

(2) If row reducing [A]I] row reduces to [A']A"], where A' is not the identity,
then (by Theorem 2.2.5), the equation A54 = e; either has no solution or has
infinitely many solutions for each i = 1,... n. In either case, A is noninvert-
ible.

2.4 LINEAR COMBINATIONS, SPAN, AND LINEAR
INDEPENDENCE

In 1750, questioning the general assumption that every system of n linear
equations in n unknowns has a unique solution, the great mathematician
Leonhard Euler pointed out the case of the two equations 3x - 2y = 5 and
4y = 6x - 10. "We will see that it is not possible to determine the two
unknowns x and y, " he wrote, "since when one is eliminated, the other
disappears by itself, and we are left with an identity from which we can
determine nothing. The reason for this accident is immediately obvious,
since the second equation can be changed to 6x - 4y = 10, which, being
just the double of the first, is in no way different from it."

Euler concluded by noting that when claiming that n equations are sufficient
to determine n unknowns, "one must add the restriction that all the equations
be different from each other, and that none of them is included in the others."
Euler's "descriptive and qualitative approach" represented the beginning of a
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More generally, these ideas ap-
ply in all linear settings, such as
function spaces and integral and
differential equations. Any time
the notion of linear combination
makes sense one can talk about
linear independence, span, ker-
nels, and so forth.

Example 2.4.1 (Linear1 combi-

nation). The vector 141 is a lin-

ear combination of the standard
basis vectors el and e2, since

[4)
=

3 [0] +4 [0)

3
But the vector 4 is not a linear

1

combination of the vectors
11 01

e1 = 0J and e'2 = l1J .

0 0

new way of thinking.5 At the time, mathematicians were interested in solving
individual systems of equations, not in analyzing them. Even Euler began his
argument by pointing out that attempts to solve the system fail; only then did
he explain this failure by the obvious fact that 3x - 2y = 5 and 4y = 6x - 10
are really the same equation.

Today, linear algebra provides a systematic approach to both analyzing and
solving systems of linear equations, which was completely unknown in Eider's
time. We have already seen something of its power. Row reduction to echelon
form puts a system of linear equations in a form where it is easy to analyze.
Theorem 2.2.4 then tells us how to read that matrix, to find out whether the
system has no solution, infinitely many solutions, or a unique solution (and, in
the latter case, what it is).

Now we will introduce vocabulary that describes concepts implicit in what
what we have done so far. The notions linear combinations, span and linear
independence give a precise way to answer the questions, given a collection of
linear equations, how many genuinely different equations do we have? How
many can be derived from the others?

Definition 2.4.2 (Linear combinations). I f V 1 ,.. . , ilk is a collection of
vectors in llt", then a linear combination of the V; is a vector * of the form

for any scalars a;.

i.1

2.4.1

In other words, the vector w is the sum of the vectors v1...... k, each

multiplied by a coefficient.
The notion of span is a way of talking about the existence of solutions to

linear equations.

Definition 2.4.3 (Span). The span of I,_., Sk is the set of linear com-
binations a1''1 + + akJk. It is denoted Sp (v'1.... , vk).

The word span is also used as a verb. For instance, the standard basis vectors
e"i and e2 span R2 but not R3. They span the plane, because any vector in the
plane is a linear combination a1 41 + a2 e2.

Geometrically, this means that any point in the x, y plane can be written in
terms of its x and y coordinates. The vectors ii and v shown in Figure 2.4.1
also span the plane.

5iean-Luc Dorier, ed., L'Enseignement de I'algtbre lindaire en question, La PensE e
Sauvage, Editions, 1997. Eider's description, which we have roughly translated,
is from "Sur une Contradiction Apparente daps la Doctrine des Lignes Courbes,"
MQmoires de l'Acaddmie des Sciences de Berlin 4 (1750).



FIGURE 2.4. 1.

The vectors d and v" span the
plane: any vector, such as ii, can
be expressed as the sum of com-
ponents in the directions d and 3,
i.e., multiples of d and v.

Like the word onto, the word
span is a way to talk about the
existence of solutions.

We used MATLAB to row reduce
the matrix in Equation 2.4.5, as
we don't enjoy row reduction and
tend to make mistakes.
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You are asked to show in Exercise 2.4.1 that Sp (v1..... v"k) is a subspace of

Rn and is the smallest subspace containing v"1......Vk.

Examples 2.4.4 (Span: two easy cases). In simple cases it is possible to
see immediately whether a given vector is in the span of a set of vectors.

21 r2
(1) Is the vector if = I 1

J

in the span of w = I 0 ? Clearly not; no
1 1

multiple of 0 will give the 1 in the second position of u

(2) Given the vectors

1 -2 1 0

1= U
2= 1 3s= 1 , tea=

01

, 2.4.2

-1 0 1 0

is v4 in the span of {v1, v2, v'3}? Check your answer below.6

Example 2.4.5 (Row reducing to check span). When it's not immediately
obvious whether a vector is in the span of other vectors, row reduction gives
the answer. Given the vectors

w t 2, [ '3 13 , 2.4.3
1

= l 2 1 , wz-1
1

l
, a3=['01

is v in the span of the other three? Here the answer is not apparent, so we
can take a more systematic approach. If v' is in the span of {w1, w2, w3}, then
x1w1 +x2w2+x3w3 = v; i.e., (writing wl, w2 and w3 in terms of their entries)
there is a solution to the set of equations

2x1 +X2 + 3x3 = 3

xl-x2 =3
x1 +x2 + 2x3 = 1.

2.4.4

Theorem 2.2.4 tells us how to solve this system; we make a matrix and row
reduce it:

[

2 1 3 3 1 0 1 2

1 -1 0 3 row reduces to 0 1 1 -1 . 2.4.5
1 1 2 1 0 0 0 0

6No. It is impossible to write V4 as a linear combination of the other three vectors.
Since the second and third entries of vl are 0, if Vq were in the span of
its second and third entries would depend only on 32 and V3. To achieve the 0 of the
second position, we must give equal weights to 72 and -73, but then we would also
have a 0 in the third position, whereas we need a 1.
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The vectors e'1 and e2 are lin-
early independent. 7There is only

one way to write 14J in terms of

er and e2:
111

3[1]+4[?] =[3]

But if we give rourrselves a third

vector, say v = 121, then we can

also write
111

[4] = [2] +2 10J .

The three vectors el,62 and v" are

not linearly independent.

Since the last column of the row reduced matrix contains no pivotal 1, there
is a solution: v" is in the span of the other three vectors. But the solution
is not unique: A has a column with no pivotal 1, so there are infinitely many
ways to express V as a linear combination of {wl,w2, W3}. For example,

V =2*1 -*2=w1 -2*2+W3. A

[110l 21
nd ['31 ? IsIs the vector V = `1

J

in the span of the vectors 0 , 1 , a
l1

1 1 0

01 21 [--2 1l

1 in the span of 2, 1 , and f 1

J

? Check your answers below.r

1 0 2 L0

Linear independence

Linear independence is a way to talk about uniqueness of solutions to linear
equations.

Definition 2.4.6 (Linear Independence). The vectors VI,... ,V 'k are
linearly independent if there is at most one way of writing a vector w as a
linear combination of V1, ... , Vk, i.e., if

k k

E xiv'i = yivi implies x1 = Y1, x2 = y2, ... , ak = yk 2.4.6
i=1 i=1

(Note that the unknowns in Definition 2.4.6 are the coefficients x,.) In other
words, if Vi, ... , v'k are linearly independent, then if the system of equations

has a solution, the sol

w

uti

=ZIVI+x

on is unique.

x kVk 2.4.7

?Yes , v is i

0

n the spa n of the others: V

1

3 01

3

] - 2
2

[ 1

l

[31+ since the matrix

0 1 3 1 row red uce s to 0 1

[
0 2

,
. No , is not in the span of the

1 1 0 1 0 0 1 1

2 1

others (as you might have suspected, since 2j is a multiple of [ 1J ). If we row2
0

[ 1 0 1/2 0
reduce the appropriate matrix we get 0

1

1 0 0 :the system of equations has

0 0 0 1
no solution.
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Like the term one to one, the

term linear independence is a way
to talk about uniqueness of solu-

tions.

The pivotal columns of a ma-
trix are linearly independent.

Non-pivotal is another way of
saying linearly dependent.

Saying that v' is in the span of
the vectors w,, w2, W3, wa means
that the system of equations has
a solution; since the four vectors
are not linearly independent, the
solution is not unique.

In the case of three linearly in-
dependent vectors in IR3, there is a
unique solution for every b E 1R3,
but uniqueness is irrelevant to the
question of whether the vectors
span R3; span is concerned only
with existence of solutions.

Example 2.4.7 (Linearly independent vectors). Are the vectors

w1 = [3'] , w2 = 1 > w3 -
-1 J

,

linearly independent? Theorem 2.2.5 says that a system Ax = b of n equations
in n unknowns has a unique solution for every b' if and only if A row reduces
to the identity. The matrix

1 -2 -1 1 0 0
2 1 1 row r educe s to 0 1 0
3 2 -1 0 0 1

*1 *3 *3

so the vectors are linearly independent: there is only one way to write a vector
v'i in Il83 as the linear combination a;w1 + b1w2 + c1W3. These three vectors
also span R3, since we know from Theorem 2.2.5 that any vector in R3 can be
written as a linear combination of them. D

Example 2.4.8 (Linearly dependent vectors). If we make the collection
of vectors in Example 2.4.7 linearly dependent, by adding a vector that is a
linear combination of some of them, say w4 = 2*2 + *3:

*1 = 1 2

3
, w2 =

2
1 , R'a = 1

r l
wa =

L

3 2.4.8

7
and use them to express some arbitrary vectors in R3, say S = -2 , we get

1

1 -2 -1 -5 7 1 0 0 0 -2
2 1 1 3 -2 which row reduces to 0 1 0 2 3

1
3 2 -1 3 1 0 0 1 1 -1

.4.9
Since the fourth column is non-pivotal and the last column has no pivotal 1, the
system has infinitely many solutions: there are infinitely many ways to write l
as a linear combination of the vectors w1 i X32, *3, #4. The vector v' is in the
span of those vectors, but they are not linearly independent. i

It is clear from Theorem 2.2.5 that three linearly independent vectors in R3
span R3: three linearly independent vectors in R3 row reduce to the identity,

1
sActually, not quite arbitrary. The first choice was [11, but that resulted in

1
messy fractions, so we looked for a vector that gave a neater answer.
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Calling a single vector linearly
independent may seem bizarre;
the word independence seems to
imply that there is something to
be independent from. But one can
easily verify that the case of one
vector is simply Definition 2.4.6
with k = 1; excluding that case
from the definition would create
all sorts of difficulties.

which means that (considering the three vectors as the matrix A) there will be
a unique solution for Az = 6 for every b E IR3.

But linear independence does not guarantee the existence of a solution, as
we see below.

Example 2.4.9. Let us modify the vectors of Example 2.4.7 to get

1 -2 -1 -7
u1= 3 . u2=

1
, u3= -1 , v= 1

0 -1 1 1

2.4.10

Linear independence is not re-
stricted to vectors in R": it also
applies to matrices (and more gen-
erally, to elements of arbitrary vec-
tor spaces). The matrices A, B
and C are linearly independent if
the only solution to

a3A+a2B+a3C=0 is

a1=a2=a3=0.

The vectors 61, u2, UU3 E R° are linearly independent, but v" is not in their span:
the matrix

1 -2 -1 -7 1 0 0 0

00
row reduces to 2.4.11

3 2 -1 1 0 0 0
0 -1 1 1 0 0 0 1

The pivotal 1 in the last column tells us that the system of equations has no
solution, as you would expect: it is rare that four equations in three unknowns
will be compatible. A

Example 2.4.10 (Geometrical interpretation of linear independence).

(1) One vector is linearly independent if it isn't the zero vector.

(2) Two vectors are linearly independent if they do not both lie on the same
line.

(3) Three vectors are linearly independent if they do not all lie in the same
plane.

These are not separate definitions; they are all examples of Definition 2.4.6.

Alternative definitions of linear independence

Many books define linear independence as follows, then prove the equivalence
of our definition:

Definition 2.4.11 (Alternative definition of linear independence).
A set of k vectors -71.... ..7k is linearly independent if and only if the only
solution to

a1v'1+a2V2+...+a0k-6 is at=o2_...=ak=0. 2.4.12
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More generally, more than n
vectors in R" are never linearly in-
dependent, and fewer than n vec-
tors never span.

The matrix of Equation 2.4.16
could have fewer than four pivotal
columns, and if it has four, they
need not be the first four. All that
matters for the proof is to know
that at least one of the first five
columns must be non-pivotal.

The matrix of Equation 2.4.18,

[Vl, V2, '73,V4,

A t

corresponds to the equation

a,

a2

a3

a4

1)1,1 1)1,2 1)1,3 1),,4 wl
1)2,1 1)2,2 1)2,3 V2,4 W2

V3,1 V3,2 1)3,3 1)3,4 W3

1)4,1 V4,2 V4,3 V4,4 W4

V5,1 V5,2 1)5,3 V5,4 w5

In one direction, we know that OVl +O' 2 +...+0-7k = 6, so if the coefficients
do not all equal 0, there will be two ways of writing the zero vector as a linear
combination, which contradicts Definition 2.4.6. In the other direction, if

blv'1+... bkvk and c1'1 +... CkVk 2.4.13

are two ways of writing a vector u as a linear combination of V i, ... ,Vk, then

(b1 - ci)Vl +... (bk - Ck)Vk = 0. 2.4.14

But if the only solution to that equation is bi - cl = 0, ... , bk = ck = 0, then
there is only one way of writing d as a linear combination of the Vi.

Yet another equivalent statement (as you are asked to show in Exercise 2.4.2)
is to say that V; are linearly independent if none of the v"; is a linear combination
of the others.

How many vectors that span RI can be linearly independent?

The following theorem is basic to the entire theory:

Theorem 2.4.12. In R", n + 1 vectors are never linearly independent, and
n - 1 vectors never span.

Proof. First, we will show that in IR°, five vectors are never linearly indepen-
dent; the general case is exactly the same, and a bit messier to write.

If we express a vector w E R4 using the five vectors

A71, 'V2, V3,14, u', 2.4.15

at least one column is non-pivotal, since there can be at most four pivotal l's:

1 0 0 0 ii', iui
0 1 0 0 uu2 w2
0 0 1 0 u3 W3
0 0 0 1 u4 w4

2.4.16

(The tilde indicates the row reduced entry: row reduction turns ui into ui.)
So there are infinitely many solutions: infinitely many ways that w can be
expressed as a linear combination of the vectors v'i, i 2, v"3, v"4, u'.

Next, we need to prove that n - 1 vectors never span Rh. We will show that
four vectors never span 1W'; the general case is the same.

Saying that four vectors do not span IR5 means that there exists a vector

w E R5 such that the equation

ai V1 + a2v2 + a3V3 + a4V4 = .w

has no solutions. Indeed, if we row reduce the matrix

2.4.17

(V71, 'V2, V3,174, w] 2.4.18
ba



What gives us the right to set
+os to 1 and set the other entries of
w to 0? To prove that four vectors
never span R", we need to find
just one vector w for which the
equations are incompatible. Since
any row operation can be undone,
we can assign any values we like to
our w, and then bring the echelon
matrix back to where it started.
[v1, v2, v3, v4, w). The vector w
that we get by starting with

and undoing the row operations
is a vector that makes the system
incompatible.
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we end up with at least one row with at least four zeroes: any row of A must
either contain a pivotal 1 or be all 0's, and we have five rows but at most four
pivotal l's:

1 0 0 0 w'1

0 1 0 0 w2

0 0 1 0 w3 2.4.19

0 0 0 1 w'4

0 0 0 0 w5

Set w5 = 1, and set the other entries of w to 0; then w5 is a pivotal 1, and the
system has no solutions; w is outside the span of our four vectors. (See the box
in the margin if you don't see why we were allowed to set iii = 1.)

We can look at the same thing in terms of multiplication by elementary
matrices; here we will treat the general case of n - 1 vectors in JR". Suppose
that the row reduction of [,VI.... , v" _ 1 j is achieved by multiplying on the left
by the product of elementary matrices E = Ek ... E1, so that

E([V'1...... "_1]) = V 2.4.20

is in echelon form; hence its bottom row is all zeroes.
Thus, to show that our n- I vectors do not span IR", we want the last column

of the augmented, row-reduced matrix to be

0
0

w= en; 2.4.21

we will then have a system of equations with no solution. We can achieve that
by taking w = E- 1e'": the system of linear equations a1v"1 + +an_iv'a_1 =
E `1e" has no solutions.

A set of vectors as a basis

Choosing a basis for a subspace of lR", or for R" itself, is like choosing axes
(with units marked) in the plane or in space. This allows us to pass from
non-coordinate geometry (synthetic geometry) to coordinate geometry (analytic
geometry). Bases provide a "frame of reference" for vectors in a subspace.

Definition 2.4.13 (Basis). Let V C II8" be a subspace. An ordered set of
vectors -71, ... , vk E V is called a basis of V if it satisfies one of the three
equivalent conditions.

(1) The set is a maximal linearly independent set: it is independent, and
if you add one more vector, the set will no longer be linearly independent.
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The direction of basis vectors
gives the direction of the axes; the
length of the basis vectors provides
units for those axes.

Recall (Definition 1.1.5) that
a subspace of IR" is a subset of
IR" that is closed under addition
and closed under multiplication by
scalars. Requiring that the vectors
be ordered is just a convenience.

1 0

0 0

e' = 0 ,...,e" = 0

0

The standard basis vectors

(2) The set is a minimal spanning set: it spans V, and if you drop one
vector, it will no longer span V.

(3) The set is a linearly independent set spanning V.

Before proving that these conditions are indeed equivalent, let's see some
examples.

Example 2.4.14 (Standard basis). The fundamental example of a basis is
the standard basis of IR"; our vectors are already lists of numbers, written with
respect to the "standard basis" of standard basis vectors, el , ... , in.

Clearly every vector in IR" is in the span of 41,. .. , e"":

al

2.4.22

a.

and it is equally clear that 91, ... , e" are linearly independent (Exercise 2.4.3).

Example 2.4.15 (Basis formed of n vectors in R"). The standard basis
is not the only one. For instance.

form a basis in IR2, as do
[ 11 , [

0'31 (but not [ 2 ],[ 0 . 5 ]

A

FIGURE 2.4.2.
The standard basis would not

be convenient when surveying this
yard. Use a basis suited to the job.

In general, if you choose at random n vectors in IR", they will form a basis.
In IR2, the odds are completely against picking two vectors on the same line; in
IR3 the odds are completely against picking three vectors in the same plane

You might think that the standard basis should be enough. But there are
times when a problem becomes much more straightforward in a different basis.
The best examples of this are beyond the scope of this chapter (eigenvectors,
orthogonal polynomials), but a simple case is illustrated by Figure 2.4.2. (Think
also of decimals and fractions. It is a great deal simpler to write 1/7 than
0.142857142857.... yet at other times computing with decimals is easier.)

In addition, for a subspace V c IR" it is usually inefficient to describe vectors
using all n numbers:

Example 2.4.16 (Using two basis vectors in a subspace of IR3). In the
subspace V C lR3 of equation x + y + z = 0, rather than writing a vector by
giving its three entries, we could write them using only two coefficients, a and

1 r 11
b, and the vectors wl = -10 and w2 = -0 For instance,

V = awl + b *2. 2.4.23
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One student asked, "When n >
3, how can vectors be orthogonal,
or is that some weird math thing
you just can't visualize?" Pre-
cisely! Two vectors are orthogonal
if their dot product is 0. In IR' and
1R3, this corresponds to the vectors
being perpendicular to each other.
The geometrical relation in higher
dimensions is analogous to that in
IR' and IR3, but you shouldn't ex-
pect to be able to visualize 4 (or
17, or 98) vectors all perpendicu-
lar to each other.

For a long time, the impossi-
bility of visualizing higher dimen-
sions hobbled mathematicians. In
1827, August Moebius wrote that
if two flat figures can be moved in
space so that they coincide at ev-
ery point, they are "equal and sim-
ilar." To speak of equal and sim-
ilar objects in three dimensions,
he continued, one would have to
be able to move them in four-
dimensional space, to make them
coincide. "But since such space
cannot be imagined, coincidence
in this case is impossible."

What other two vectors might you choose as a basis for V?9

Orthonormal bases

When doing geometry, it is almost always best to work with an orthonormal
basis. Below, recall that two vectors are orthogonal if their dot product is zero
(Corollary 1.4.80).

Definition 2.4.17 (Orthonormal basis). A basis 91,V2 ... vk of a sub-
space V c IR" is orthonormal if each vector in the basis is orthogonal to
every other vector in the basis, and if all basis vectors have length 1:

vi v"j= 0 for i # j and Iv"4 =1 for all i < k.

The standard basis is of course orthonormal.
The reason orthonormal bases are interesting is that the length squared of

a vector is the sum of the squares of its coordinates, with respect to any or-
thonormal basis. If V1, ... vk and w1, ... wk are two orthonormal bases, and

then

The proof is left as Exercise 2.4.4.
If all vectors in the basis are orthogonal to each other, but they don't all have

length 1, then the basis is orthogonal. Is either of the two bases of Example
2.4.15 orthogonal? orthonormal?10

Proposition 2.4.18. An orthogonal set of nonzero vectors v71.... , vk is lin-
early independent.

Proof. Suppose a1''1 + + akv'k = 0'. Take the dot product of both sides
with Vi:

(a1v1+....}akV'k)
2.4.24

2
9The vectors 0

1 )
0 area basis for V, as are -1/2] , I -11 ;the vectors

0
just need to be linearly independent and the sum of the entries of each vector must
be 0 (satisfying x + y + z = 0). Part of the "structure" of the subspace V is thus built
into the basis vectors.

10The first is orthogonal, since
lllI

i I [-1] = 1 - I = 0; the second is not, since

[0]
L

O'3] = I + 0 = 1. Neither is orthonormal; the vectors of the first basis each

have length v', and those of the second have lengths 2 and 9.25.
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The surprising thing about
Proposition 2.4.18 is that it al-
lows us to assert that a set of vec-
tors is linearly independent look-
ing only at pairs of vectors. It
is of course not true that if you
have a set of vectors and every pair
is linearly independent. the whole
set is linearly independent; con-
sider.. for instance, the three vec-

tors [I]
,
lo! and [

I]

By "nontrivial." we mean a so-
lution other than

ai=a2=...=a"=b=0.

So

at(vt.vi)+...+ai(vi.vi)+...+ak(vk. ,)=0. 2.4.25

Since the ' form an orthogonal set, all the dot products on the left are zero
except for the ith, so ai(v'i v'i) = 0. Since the vectors are assumed to be
nonzero, this says that ai = 0. 0

Equivalence of the three conditions for a basis

We need to show that the three conditions for a basis given in Definition 2.4.13
are indeed equivalent.

We will show that (1) implies (2): that if a set of vectors is a maximal linearly
independent set, it is a minimal spanning set. Let V C Ilk" be it subspace. If
an ordered set of vectors vt, ... , v'k E V is a maximal linearly independent set.
then for any other vector w E V, the set {'j...... Vk, w} is linearly dependent.,
and (by Definition 2.4.11) there exists a nontrivial relation

0. 2.4.26

The coefficient b is not zero, because if it were, the relation would then involve
only the v"'s, which are linearly independent by hypothesis. Therefore we can
divide through by b, expressing w as a linear combination of the

2.4.27

Moreover, v1,... , Vk is a minimal spanning set: if one of the v"i's is
omitted, the set no longer spans, since the omitted v; is linearly independent
of the others and hence cannot be in the span of the others.

This shows that (1) implies (2); the other implications are similar and left
as Exercise 2.4.7.

Now we can restate Theorem 2.4.12:

al _ ak .bvl+...+ bvti=-W.

Since * E V can be any vector in V, we see that the V's do span V.

Corollary 2.4.19. Every basis of R" has exactly n elements.

Indeed a set of vectors in IR" never spans R" if it has fewer than it elenients,
and it is never linearly independent if it has more than n elements (see 'rheoreni
2.4.12).

The notion of the dimension of a subspace will allow us to talk about such
things as the size of the space of solutions to a set of equations, or the number
of genuinely different equations.

Proposition and Definition 2.4.20 (Dimension). Every subspace E C
W has a basis, and any two bases of a subspace E have the same number of
elements, called the dimension of E.
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We can express any w, as a lin-
ear combination of the v'i because
the i7i span E.

It might seem more natural to
express the w's as linear combi-
nations of the 3's in the following
way:

wl = al,lvl +. + al,kVk

wp = a',,, Vl +... +a,,k Vk.

The a's then form the transpose of
matrix A we have written. We use
A because it is the change of basis
matrix, which we will see again in
Section 2.6 (Theorem 2.6.16).

The sum in Equation 2.4.28 is
not a matrix multiplication. For
one thing it is the sum of products
of numbers with vectors; for an-
other, the indices are in the wrong
order.

Proof. First we construct a basis of E. If E = {6}, the empty set is a basis of
E. Otherwise, choose a sequence of vectors v1, V2.... in E as follows: choose
vl 34 6, then v2 0 Sp (vl), then v'3 Sp (v'1, v'2), etc. Vectors chosen this
way are clearly linearly independent. Therefore we can choose at most n such
vectors, and for some m < n, vl...... k will span E. (If they don't span, we
can choose another.) Since these vectors are linearly independent, they form a
basis of E.

Now to see that any two bases have the same number of elements. Suppose
vl , ... , v'k and w 1, ... , wp are two bases of E. Then there exists an k x p matrix
A with entries ai,j such that

k

wj = ai,jv'i. 2.4.28
i=1

i.e., that wj can be expressed as a linear combination of the v'i. There also
exists a p x k matrix B with entries bl,i such that

p

vi = bl,iwt.
!=1

2.4.29

Substituting the value for vi of Equation 2.4.29 into Equation 2.4.28 gives
k p p / k

l\aj = ai.j bt,iwt =
I

btdai,j
wl. 2.4.30

icl !=1 t=1 i=1

t,jth entry of BA

This expresses wj as a linear combination of the w's, but since the w's are
linearly independent, Equation 2.4.30 must read

wj=0w1+Ow2+ +lwj+ +Owp. 2.4.31

So (Ei bl,iai,j) is 0, unless I = j, in which case it is 1. In other words, BA =1.
The same argument, exchanging the roles of the ad's and the w's, shows that

AB = 1. Thus A is invertible, hence square, and k = p.

Corollary 2.4.21. The only n-dimensional subspace ofR" is W itelf.

Remark. We said earlier that the terms linear combinations, span, and linear
independence give a precise way to answer the questions, given a collection of
linear equations, how many genuinely different equations do we have. We have
seen that row reduction provides a systematic way to determine how many of
the columns of a matrix are linearly independent. But the equations correspond
to the rows of a matrix, not to its columns. In the next section we will see that
the number of linearly independent equations in the system AR = b' is the same
as the number of linearly independent columns in A.
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2.5 KERNELS AND IMAGES

The kernel and the image of a linear transformation are important but rather
abstract concepts. They are best understood in terms of linear equations. Ker-
nels are related to uniqueness of solutions of linear equations, whereas images
are related to their existence.

The kernel is sometimes called
the "null-space." In Definition
2.5.1, the linear transformation T
is represented by a matrix [T[.

-2
I IThe vector -1 is in the ker-
L 3J

nel of 12 1 1

2 1 1

rl 1 11

2 -1 1

horoum

-10J
2l

-1J
3

It is the same to say that b' is
in the image of A and to say that
b is in the span of the columns of
A. We can rewrite Ax" = b' as

air1 +a"2x2 + + a,,x = b.
If Ax= b, then 9 is in the span of

since it can be written
as a linear combination of those
vectors.

Definition 2.5.1 (Kernel). The kernel of a linear transformation T, de-
noted kerT, is the set of vectors z such that T(x) = 0. When T is repre-
sented by a matrix [T], the kernel Is the set of solutions to the system of
linear equations (T]x" = 0.

Kernels are a way to talk about uniqueness of solutions of linear equations.

Proposition 2.5.2. The system of linear equations T(Z) = b' has at most
one solution for every b if and only if ker T = {0} (that is, if the only vector
in the kernel is the zero vector).

Proof. If the kernel of T is not 0, then there is more than one solution to
T(x) = 0 (the other one being of course x = 0).

In the other direction, if there exists a b' for which T(i) = b has more than
one solution, i.e.,

T(x1) = T(W2) = b and x1 # 22, then

T(x1 -x2)=T(x'1)-T('2)=9 -9 =0.

So (xt - x2) is a nonzero element of the kernel.

2.5.1

The image of a transformation is a way to talk about existence of solutions.

Definition 2.5.3 (Image). The image of T, denoted 1mg T, is the set of
vectors b' for which there exists a solution of T(>Z) = b.

For example, f 21 is in the image of [ i l , since

12 O1 [2] [2 2.5.2

Remark. The word image is not restricted to linear algebra; for example, the
image of f (x) = x2 is the set of positive reels. p
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Given the matrix and vectors below, which if any vectors are in the kernel

of A? Check your answer below."

The image is sometimes called
the "range"; this usage is a source
of confusion since many authors,
including ourselves, use "range"
to mean the entire set of arrival:
the range of a transformation T

The image of T is sometimes
denoted im T, but we will stick to
Img T to avoid confusion with "the
imaginary part." which is also de-
noted im. For any complex ma-
trix, both "image" and "imaginary
part" make sense.

The following statements are
equivalent:

(1) the kernel of A is 0;
(2) the only solution to the

equation Ax' = 0 is x = 0:
(3) the columns a", making up

A are linearly independent;
(4) the transformation given by

A is one to one;
(5) the transformation given by

A is injective;
(6) if the equation Az = b has

a solution, it is unique.

0 1A= [
1 0 2

2

p 1 0

1, v1= 1 V2= v3= 2

-1 0 -2

The image and kernel of a linear transformation provide a third language

for talking about existence and uniqueness of solutions to linear equations, as
summarized in Figure 2.5.1. It is important to master all three and understand
their equivalence. We may think of the first language as computational: does a
system of linear equations have a solution? Is it unique? The second language,
that of span and linear independence of vectors, is more algebraic.

The third language, that of image and kernel, is more geometric, concerning
subspaces. The kernel is a subspace of the domain (set of departure) of a linear
transformation; the image is a subspace of its range (set of arrival).

Algorithms Algebra Geometry

Row reduction Inverses of matrices
Solving linear equations Subspaces

Existence of solutions Span Images
Uniqueness of solutions Linear independence Kernels

FIGURE 2.5.1. Three languages for discussing solutions to linear equations: algo-
rithms, algebra, geometry

This may be clearer if we write our definitions more precisely, specifying
the domain and range of our transformation. Let T : lit" -. IRm be a linear
transformation given by the rn x n matrix [T]. Then:

(1) The kernel of T is the set of all vectors v E 118" such that [T],V _
0. (Note that the vectors in the kernel are in IIit". the domain of the
transformation.)

(2) The image of T is the set of vectors w E I such that there is a vector
v E II8" with [Tlv" = w. (Note that the vectors in the image are in itm,
the range of T.)

"The vectors v", and v3 are in the kernel of A, since AV, = 0 and A73 = 0. But
2 [2]

V2 is not, since Av2 = 3 . The vector 3is in the image of A.
3
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Thus by definition, the kernel of a transformation is a subset of its domain,
and the image is a subset of its range. In fact, they are also subspaces of the

Proposition 2.5.4 means that
the kernel and the image are closed

domain and range respectively.

under addition and under multi-
plication by scalars; if you add two proposition 2.5.4. If T : IRn IRtm is a linear transformation given by the

elements of the kernel you get an m x n matrix A, then the kernel of A is a subspace of Rn, and the image of
element of the kernel, and so on. A is a subspace of R.

The proof is left as Exercise 2.5.1.

Given the vectors and the matrix T below:

0
2

r1 -1 3 2 01 = r2l 1I Ill 1

T= 1

0
0 1 3 0 ,a'1- 2 ,a'2=

1 w3= 10 ,a'a= 2,
2 -1 1 0 1 3

2
1 0

0

which vectors have the right height to be in the kernel of V. To be in its image?
Can you find an element of its kernel? Check your answer below.12

Finding bases for the image and kernel

Suppose A is the matrix of T. If we row reduce A to echelon form A, we can
find a basis for the image, using the following theorem. Recall (Definition 2.2.1)
that a pivotal column of A is one whose corresponding column in A contains a
pivotal 1.

Theorem 2.5.5 (A basis for the Image). The pivotal columns of A form
a basis for Img A.

We will prove this theorem, and the analogous theorem for the kernel, after
giving some examples.

Example 2.5.6 (Finding a basis for the image). Consider the matrix A
below, which describes a linear transformation from R5 to R4:

12 The matrix T represents a transformation from IR' to IR3; it takes a vector in
R5 and gives a vector in V. Therefore w4 has the right height to be in the kernel
(although it isn't), and wl and *s have the right height to be in its image. Since the

0
1

sum of the second and fifth columns of T is 0, one element of the kernel is .0
0
1
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1 0 1 3 0 1 0 1 3 0

0 1 1 2 0 hhi w educes to A=
0 1 1 2 0

-A
1 1 2 5 1

, w roc r 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

The vectors of Equation 2.5.3
are not the only basis for the im-
age.

Note that while the pivotal
columns of the original matrix A
form a basis for the image, it is
not necessarily the case that the
columns of the row reduced matrix
A containing pivotal 1's form such
a basis. For example, they matrix

2

[1
21 row reduces to [0 01.

The vector I i
Jr

forms a basis for

the image, but I 0 does not.

The pivotal l's of the row-reduced matrix A are in columns 1, 2 and 5, so
columns 1, 2 and 5 of the original matrix A are a basis for the image:

1 'j, i , and

0
0

. 2.5.3

0 0 0

For example, the w below, which is in the image of A, can be expressed
uniquely as a linear combination of the image basis vectors:

7 1 0 0

2991+ii2-ii'3+2a'.4-3as= $ =7 +4 i -3 . 2.5.4

0 0 0 0

Note that each vector in the basis for the image has four entries, as it must,
since the image is a subspace of 1184. (The image is not of course !R4 itself; a
basis for R4 must have four elements.) A

A basis for the kernel

Finding a basis for the kernel is more complicated; you may find it helpful to
refer to Example 2.5.8 to understand the statement of Theorem 2.5.7.

A basis for the kernel is of course a set of vectors such that any vector
in the kernel (any vector w satisfying Aw = 0) can be expressed as a linear
combination of those basis vectors. The basis vectors must themselves be in
the kernel, and they must be linearly independent.

Theorem 2.2.4 says that if a system of linear equations has a solution, then
it has a unique solution for any value you choose of the non-pivotal unknowns.
Clearly Aw = 0 has a solution, namely w = 0. So the tactic is to choose
the values of the non-pivotal unknowns in a convenient way. We take our
inspiration from the standard basis vectors, which each have one entry equal to
1, and the others 0. We construct one vector for each non-pivotal column, by
setting the entry corresponding to that non-pivotal unknown to be 1, and the
entries corresponding to the other non-pivotal unknowns to be 0. (The entries
corresponding to the pivotal unknowns will be whatever they have to be to
satisfy the equation A' = 0.)
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In Example 2.5.6, the matrix A
has two non-pivotal columns, so
p = 2; those two columns are the
third and fourth columns of A, so
k,=3andk2=4.

An equation Ax = 0' (i.e., AR =
b where b = 0') is called homoge-
neous.

These two vectors are clearly
linearly independent; no "linear
combination" of v, could produce
the 1 in the fourth entry of V2,
and no "linear combination" of v2
could produce the 1 in the third
entry of V,. Basis vectors found
using the technique given in The-
orem 2.5.7 will always be linearly
independent, since for each entry
corresponding to a non-pivotal un-
known, one basis vector will have
1 and all the others will have 0.

Note that each vector in the
basis for the kernel has five entries,
as it must, since the domain of the
transformation is R5.

Theorem 2.5.7 (A basis for the kernel). Let p be the number of non-
pivotal columns of A, and k1..... kp be their positions. For each non-pivotal
column form the vector V1 satisfying A'/, = 0, and such that its kith entry
is 1, and its kith entries are all 0, for j i4 i. The vectors Vs...... p form a
basis of ker A.

We prove Theorem 2.5.7 below. First, an example.

Example 2.5.8 (Finding a basis for the kernel). The third and fourth
columns of A in Example 2.5.6 above are non-pivotal, so the system has a
unique solution for any values we choose of the third and fourth unknowns. In
particular, there is a unique vector v1 whose third entry is 1 and fourth entry
is 0, such that Av"1 = 0. There is another, V2i whose fourth entry is I and third
entry is 0, such that AV2 = 0:

V1 = I I , V2 =

LII

2.5.5

Now we need to fill in the blanks, finding the first, second, and fifth entries of
these vectors, which correspond to the pivotal unknowns. We read these values
from the first three rows of [A, 01 (remembering that a solution for Ax = 0 is
also a solution for Ax = 0):

1 0 1 3

00

x1 +23+3x4=0
[A' 0'1 =

0 1 1 2 0 0

1

i.e. x2 + 23 + 224 =0 2.5.6,
0 0 0 0 1 0

,
'

0 0 0 0 0 0 25 = 0,

which gives

21 = -23 - 3x4
22 = -23 - 224 2.5.7

25=0.

So for vV1i where x3 = 1 and 24 = 0, the first entry is x1 = -1, the second is
-1 and the fifth is 0; the corresponding entries for V2 are -3, -2 and 0:

-1 -3
-1 -2

v1 = 1 ; v2 = 0
0 1

0 0

2.5.8
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These two vectors form a basis of the kernel of A. For example, the vector

0

1

v = 3 is in the kernel of A, since AJ = 0, so it should be possible to

-1

0
express v as a linear combination of the vectors of the basis for the kernel.

Indeed it is: v = 3V, - v2. A

Now find a basis for the image and kernel of the following matrix:

2 1 3 1 1 0 1 0

1 -1 0 1, which row reduces to
]

0 1 1 0 , 2.5.9

1 1 2 1 0 0 0 1

checking your answer below.13

Proof of Theorem 2.5.5 (A basis for the image). Let A = [a'1 ... iii,,,
To prove that the pivotal columns of A form a basis for the image of A we need
to prove: (1) that the pivotal columns of A are in the image, (2) that they are
linearly independent and (3) that they span the image.

(1) The pivotal columns of A (in fact, all columns of A) are in the image,
since Ae, = a";.

(2) The vectors are linearly independent, since when all non-pivotal entries
of x are 0, the only solution of AR = 0 is i = 0. (If the pivotal
unknowns are also 0, i.e., if:R = 0, then clearly A9 = 0. This is the only
such solution, because the system has a unique solution for each value
we choose of the non-pivotal unknowns.)

(3) They span the image, since each non-pivotal vector vk is a linear com-
bination of the preceding pivotal ones (Equation 2.2.8).

Proof of Theorem 2.5.7 (A basis for the kernel). Similarly, to prove
that the vectors V, = v'1.... , .V, form a basis for the kernel of A, we must show

2 1

13The vectors 11

J

, f -1
J

, and [1'] form a basis for the image; the vector

is a basis for the kernel. The row-reduced matrix [A, 0] is

1 0 1 0 0
0 1 1 0 0, i.e.,
0 0 0 1 0

-1
-1

0

The third column of the original matrix is non-pivotal, so for the vector of the basis
of the kernel we set x3 = 1, which gives xl = -1,x2 = -1.



For a transformation T : 118" -.
1Rm the following statements are
equivalent:
(1) the columns of (T) span IRt;
(2) the image of T is II8";
(3) the transformation T is onto;
(4) the transformation T is surjec-
tive;
(5) the rank of T is m;
(6) the dimension of Img(T) is m.
(7) the row reduced matrix T has
no row containing all zeroes.
(8) the row reduced matrix T has
a pivotal 1 in every row.

For a transformation from l8"
to 1R", if ker(T) = 0, then the
image is all of 1R".

Recall (Definition 2.4.20) that
the dimension of a subspace of IR"
is the number of basis vectors of
the subspace. It is denoted dim.

The dimension formula says
there is a conservation law con-
cerning the kernel and the image:
saying something about unique-
ness says something about exis-
tence.

The rank of a matrix is the
most important number to asso-
ciate to it.
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that they are in the kernel, that they are linearly independent, and that they
span the kernel.

(1) By definition, Avi = 0, so vi E kerA.
(2) As pointed out in Example 2.5.8, the vi are linearly independent, since

exactly one has a nonzero number in each position corresponding to
non-pivotal unknown.

(3) Saying that the v; span the kernel means that any x' such that Ax = 0
can be written as a linear combination of the Vi. Indeed, suppose that
Az = 0. We can construct a vector w = xk, vl + xkzv2 + + x,Pvv
that has the same entry xk, in the non-pivotal column ki as does z.
Since Avi = 0, we have AW = 0. But for each value of the non-
pivotal variables, there is a unique vector x" such that Az = 0. Therefore

W.

Uniqueness and existence: the dimension formula

Much of the power of linear algebra comes from the following theorem, known
as the dimension formula.

Theorem 2.5.9 (Dimension formula). Let T : IR" -+ lRr" be a linear
transformation. Then

dim (ker T) + dim (1mg T) = n, the dimension of the domain. 2.5.10

Definition 2.5.10 (Rank and Nullity). The dimension of the image of
a linear transformation is called its rank, and the dimension of its kernel is
called its nullity.

Thus the dimension formula says that for any linear transformation, the rank
plus the nullity is equal to the dimension of the domain.

Proof. Suppose T is given by the matrix A. Then, by Theorems 2.5.5 and
2.5.7 above, the image has one basis vector for each pivotal column of A, and
the kernel has one basis vector for each non-pivotal column, so in all we find

dim (ker T) + dim (Img T) =number of columns of A= n. 0

Given a transformation T represented by a 3 x 4 matrix (T] with rank 2, what
is the domain and its range of the transformation? What is the dimension of
its kernel? Is it onto? Check your answers below.14

14The domain of T is 1R4 and its range is 1R3. The dimension of its kernel is 2, since
the dimension of the kernel and that of the image equal the dimension of the domain.
The transformation is not onto, since a basis for R3 must have three basis elements.
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The power of linear algebra
comes from Corollary 2.5.11. See
Example 2.5.14, and Exercises
2.5.10, 2.5.16 and 2.5.17. These
exercises deduce major mathemat-
ical results from this corollary.

Since Corollary 2.5.11 is an "if
and only if" statement, it can also
he used to deduce uniqueness from
existence: in practice this is not
quite so useful.

The most important case of the dimension formula is when the domain and
range have the same dimension. In this case, one can deduce existence of
solutions from uniqueness, and vice versa. Most often, the first approach is
most useful; it is often easier to prove that T(Z) = 0 has a unique solution
than it is to construct a solution of T(R) = b'. It is quite remarkable that
knowing that T(x) = 0 has a unique solution guarantees existence of solutions
for all T() = b. This is, of course, an elaboration of Theorem 2.2.4. But
that theorem depends on knowing a matrix. Corollary 2.5.11 can be applied
when there is no matrix to write down, as we will see in Example 2.5.14, and
in exercises mentioned at left.

Corollary 2.5.11 (Deducing existence from uniqueness). If T : II8" -+
Ill;" is a linear transformation, then the equation T(JI) = b has a solution for
any b E IR' if and only if the only solution to the equation T(R) = 0 is iZ = 0,
(i.e., if the kernel is zero).

Proof. Saying that T(g) = b' has a solution for any b E R" means that R" is
the image of T, so dim Img T = n, which is equivalent to dim ker(T) = 0.

The following result is really quite surprising: it says that the number of
linearly independent columns and the number of linearly independent rows of
a matrix are equal.

Proposition 2.5.12. Let A be a matrix. Then the span of the columns of
A and the span of the rows of A have the same dimension.

One way to understand this result is to think of constraints on the kernel of
A. Think of A as the m. x n matrix made up of its rows:

A= 2.5.11

Then the kernel of A is made up of the vectors x' satisfying the linear constraints
Al i = 0, ... , AmX = 0. Think of adding in these constraints one at a time.
Before any constraints are present, the kernel is all of 1k". Each time you add
one constraint, you cut down the dimension of the kernel by 1. But this is only
true if the new constraint is genuinely new, not a consequence of the previous
ones, i.e., if A; is linearly independent from A1,...,A,_1.

Let us call the number of linearly independent rows A, the row rank of A.
The argument above leads to the formula

dim ker A = n - row rank(A).



We defined linear combinations
in terms of linear combinations of
vectors, but (as we will see in Sec-
tion 2.6) the same definition can
apply to linear combinations of
other objects, such as matrices,
functions. In this proof we are ap-
plying it to row matrices.

The rise of the computer, with
emphasis on computationally ef-
fective schemes, has refocused at-
tention on row reduction as a way
to solve linear equations.

Gauss is a notable exception;
when he needed to solve linear
equations, he used row reduction.
In fact, row reduction is also called
Gaussian elimination.
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The dimension formula says exactly that

dim ker A = n - rank(A),

so the rank of A and the row rank of A should be equal.
The argument above isn't quite rigorous: it used the intuitively plausible but

unjustified "Each time you add one constraint, you cut down the dimension of
the kernel by 1." This is true and not hard to prove, but the following argument
is shorter (and interesting too).
Proof. Given a matrix, we will call the span of the columns the column space
of A and the span of the rows the row space of A. Indeed, the rows of A
are linear combinations of the rows of A, and vice versa since row operations
are reversible. In particular, the row space of A and of A coincide, where A
row-reduces to A.

The rows of A that contain pivotal l's are a basis of the row space of A: the
other rows are zero so they definitely don't contribute to the row space, and
the pivotal rows of A are linearly independent, since all the other entries in a
column containing a pivotal 1 are 0. So the dimension of the row space of A
is the number of pivotal 1's of A, which we have seen is the dimension of the
column space of A.

Corollary 2.5.13. A matrix A and its transpose AT have the same rank.

Remark. Proposition 2.5.12 gives us the statement we wanted in Section 2.4:
the number of linearly independent equations in a system of linear equations
Ax = b is the number of pivotal columns of A. Basing linear algebra on row
reduction can be seen as a return to Euler's way of thinking. It is, as Euler said,
immediately apparent why you can't determine x and y from the two equations
3x - 2y = 5 and 4y = 6x - 10. (In the original, "La raison de cet accident
saute d'abord aux yeux": the reason for this accident leaps to the eyes). In
that case, it is obvious that the second equation is twice the first. When the
linear dependence of a system of linear equations no longer leaps to the eyes,
row reduction provides a way to make it obvious.

Unfortunately for the history of mathematics, in the same year 1750 that Euler
wrote his analysis, Gabriel Cramer published a treatment of linear equations
based on determinants, which rapidly took hold, and the more qualitative ap-
proach begun by Euler was forgotten. As Jean-Luc Dorier writes in his may
on the history of linear algebra, 'I

... even if determinants proved themselves a valuable tool for study-
ing linear equations, it must be admitted that they introduced a certain
complexity, linked to the technical skill their use requires. This fact had
the undeniable effect of masking certain intuitive aspects of the nature of
linear equations ... A

153.-L. Dorier, ed., L'Enseignement de l'algPbre liniaire en question, La Pensee
Sauvage, Editions, 1997.



Note that by the fundamen-
tal theorem of algebra (Theorem
1.6.10), every polynomial can be
written as a product of powers
of degree 1 polynomials (Equa-
tion 2.5.12). Of course finding the
a, means finding the roots of the
polynomial, which may be very
difficult.
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Now let us see an example of the power of Corollary 2.5.11.

Example 2.5.14 (Partial fractions). Let

p(x) = (x - as)"...(x - ak)"k 2.5.12

be a polynomial of degree n = nr + + nk, with the ai distinct; for example,

x2-1=(x+1)(x- 1), withal=-1,a2=1;n1=n2=1, sothatn=2
x3-2x2+x=x(x-1)2,withal =O,a2=l;nl=1,n2=2, sothatn=3.

The claim of partial fractions is the following:

Proposition 2.5.15 (Partial fractions). For any such polynomial p of
degree n, and any polynomial q of degree < n, the rational function q/p can
be written uniquely as a sum of simpler terms, called partial fractions:

qq (x) ql (x) + ... qk(x)
p(x) (x - ai)^' (x - ak)nk'

with each q; a polynomial of degree < ni.

2.5.13

For example, when q(x) = 2x + 3 and p(x) = x2 - 1, Proposition 2.5.15
says that there exist polynomials q1 and q2 of degree less than I (i.e., numbers,
which we will call An and B0, the subscript indicating that they are coefficients
of the term of degree 0) such that

x2+1 = xx+ol+x- 2.5.14

If q(x) = x3 - 1 and p(x) = (x + 1)2(x - 1)2, then the proposition says that
there exist two polynomials of degree 1, ql = Aix + An and q2 = B1x + Bo,
such that

2 155
- +

. .
(x + 1)2(x - 1)2 (x + 1)2 (x - 1)2

In simple cases, it's clear how to find these terms. In the first case above, to
find the numerators An and Bo, we multiply out to get a common denominator:

2x+3 _ A0 + Bo = Ao(x - 1) + Bo(x + 1) (Ao+Bo)x+(Bo-Ao)
x72 ___j x+1 x-1 x2-1 x2-1
so that we get two linear equations in two unknowns:

-Ao+Bo=3 5 1

An + Bo = 2,
i.e., the constants B0 = 2, Ao 2.5.16

We can think of the system of linear equations on the left-hand side of Equation
2.5.16 as the matrix multiplication

I 1 1J IB0 -[2].

x3-1 Alx+A0 Blx+Bo

2.5.17
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What is the analogous matrix multiplication for Equation 2.5.15?16
What about the general case? If we put the right-hand side of Equation

2.5.13 on a common denominator we see that q(x)/p(x) is equal to

gl(x)(x -a2)12...(x -ak)"k+g2(x)(x -al)" (x - a3)"3... (x - ak)"k+ ... +gk(x)(x -a1)"' ... (x -ak_1)nk-1

Corollary 2.5.11: if T : Iii" -
R' is a linear transformation, the
equation T(R) = b has a solution
for any b' E IR" if and only if
the only solution to the equation
T(it)=0 isR=0.

We are thinking of the transfor-
mation T both as the matrix that
takes the coefficients of the q; and
returns the coefficients of q, and

as the linear function that takes

and returns the polyno-

mial q.

(x -a1)"'(x -a2)"'...(x - ak)"k
2.5.18

As we did in our simpler cases, we could write this as a system of linear
equations for the coefficients of the qi and solve by row reduction. But except
in the simplest cases, computing the matrix would be a big job. Worse, how
do we know that the system of equations we get has solutions? We might
worry about investing a lot of work only to discover that the equations were
incompatible.

Proposition 2.5.15 assures us that there will always be a solution, and Corol-
lary 2.5.11 provides the key.

Proof of Proposition 2.5.15 (Partial fractions). Note that the matrix we
would get following the above procedure would necessarily be an n x n matrix.
This matrix gives a linear transformation that has as its input a vector whose
entries are the coefficients of q1, ... qk. There are n such coefficients in all.
(Each polynomial q1 has n, coefficients, for terms of degree 0 through (n1 - 1),
and the sum of the ni equals n.) It has as its output a vector giving the n
coefficients of q (since q is of degree < n, it has n coefficients, 0... n - 1.)

Thus the matrix can be thought of a linear transformation T : iR" -+ 1Rn, and
by Corollary 2.5.11, Proposition 2.5.15 is true if and only if the only solution
of T(q1, , qk) = 0 is q1 = . . . = qk = 0. This will follow from Lemma 2.5.16:

16Multiplying out, we get

x3 (A1 + B1) + x2 (-2A1 + Ao + 2B1 + Bo) + x(A1 - 2Ao + Bi + 2Bo) + Ao + Bo
(x + 1)2(x - 1)2

so

Ao + Bo = -1 (coefficient of term of degree 0)

Al - 2Ao + B1 + 2Bo = 0 (coefficient of term of degree 1)

-2A1 + Ao + 2B1 + Bo = 0 (coefficient of term of degree 2)

Al + B1 = 1 (coefficient of term of degree 3);

0 1 0 1 AI -1
1 -2 1 2 As __ 0

-2 1 2 1 B1 0
1 0 1 0 Bo 1



The numerator in Equation 2.5.21
is of degree < n,, while the denom-
inator is of degree n,.

This example really put linear
algebra to work. Even after trans-
lating the problem into linear alge-
bra, via the linear transformation
T, the answer was not clear; only
after using the dimension formula
is the result apparent. The dimen-
sion formula (or rather, Corollary
2.5.11, the dimension formula ap-
plied to transformations from IR"
to R") tells us that if T : R n
IR" is one to one (solutions are
unique), then it is onto (solutions
exist).

Still, all of this is nothing more
than the intuitively obvious state-
ment that either n equations in
n unknowns are independent, the
good case, or everything goes
wrong at once-the transformation
is not one to one and therefore not
onto.
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Lemma 2.5.16. If q, 34 0 is a polynomial of degree < n,, then

lim
x-»u;

q+ (x)
(x - a,)"'

=00. 2.5.19

That is, if q, 34 0, then q,(x)/(x - a,)'- blows up to infinity.

Proof. It is clear that for values of x very close to a,, the denominator (x-a,)"'
will get very small; if all goes well the entire term will then get very big. But
we have to work a bit to make sure both that the numerator does not getsmall
equally fast, and that the other terms of the polynomial don't compensate.

Let us make the change of variables it = x - a,, so that

q, (x) = q,(u + a,), which we will denote q`,(u). 2.5.20

Then we have

lim
..

= oo if q, 0 0. 2.5.21
u_o

Indeed, if q, 0 0, then q, 54 0, and there exists a number m < n; such that

qi(u) = amum + ... + a",_iu'4-1 2.5.22

with am # 0. (This a,,, is the first nonzero coefficient; as it -+ 0, the term amum
is bigger than all the other terms.) Dividing by u"' we can write

qi(U) = I (a,n+...),.an, ,un,-m 2.5.23

where the dots ... represent terms containing u to a positive power, since
m < n,. In particular,

as U-0, I 1 I -+ oo and (am + ...) -am. 2.5.24anf -m

We see that as x -+ a,, the term q,(x)/(x - a,)n' blows up to infinity: the
denominator gets smaller and smaller while the numerator tends to am 34 0.

This ends the proof of Lemma 2.5.16.
Proof of Proposition 2.5.15, continued. Suppose q, 34 0. For all the other
terms qj, j 34 i, the rational functions

qj(x)
(x - aj)"i

2.5.25

have the finite limits qj(a,)/(a, - aj)n, as x -. a,, and therefore the sum

q(x) - q,(x) + + qk(x)

p(x) (x - ai)"' (x - a),)"k
2.5.26

has infinite limit as x --* a, and q cannot vanish identically. So T(qi,... , qk) 34 0
if some q, 0 0, and we can conclude- without having to compute any matrices
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We have already used vector
spaces that are not R": in Section
1.4 we considered an m x n matrix
as a point in R'-, and in Example
1.7.15 we spoke of the "space" Pk
of polynomials of degree at most
k. In each case we "identified" the
space with RN for some appropri-
ate N: we identified the space of
m x n matrices with R-, and we
identified P,,. with Rk+'. But just
what "identifying" means is not
quite clear, and difficulties with
such identifications become more
and more cumbersome.

You may think of these eight
rules as the "essence of R"," ab-
stracting from the vector space
IR" all its most important proper-
ties, except its distinguished stan-
dard basis. This allows us to work
with other vector spaces, whose el-
ements are not naturally defined
in terms of lists of numbers.

or solve any systems of equations-that Proposition 2.5.15 is correct: for any
polynomial p of degree n, and any polynomial q of degree < n, the rational
function q/p can be written uniquely as a sum of partial fractions.

2.6 AN INTRODUCTION TO ABSTRACT VECTOR SPACES

In this section we give a very brief introduction to abstract vector spaces,
introducing vocabulary that will be useful later in the book, particularly in
Chapter 6 on forms.

As we will see in a moment, a vector space is a set in which elements can
be added and multiplied by numbers. We need to decide what numbers we
are using, and for our purposes there are only two interesting choices: real
or complex numbers. Mainly to keep the psychological load lighter, we will
restrict our discussion to real numbers, and consider only real vector spaces,
to be called simply "vector spaces" from now on. (Virtually everything to be
discussed would work just as well for complex numbers.)

We will denote a vector in an abstract vector space by an underlined bold
letter, to distinguish it from a vector in R": v E V as opposed to v E R".

A vector space is anything that satisfies the following rules.

Definition 2.6.1 (Vector space). A vector space is a set V of vectors
such that two vectors can be added to form another vector, and a vector can
be multiplied by a scalar in R to form another vector. This addition and
multiplication must satisfy the following eight rules:

(1) Additive identity. There exists a vector 0 E V such that for any
v-EV,O+v--=v.

(2) Additive inverse. For any vv E V, there exists a vector -v_ E V such
that v_ + (-_v) = 0.

(3) Commutative law for addition. For all X, ME E V, we have vv + w =
w _ + v.

(4) Associative law for addition. For all v-r,xz,Ya E V, we have yt +
(Y2+Y3) _ (Yi +x2)+v9.

(5) Multiplicative identity. For all y E V we have lv = y.
(6) Associative law for multiplication. For all a, 0 E R and all v_ E V,

we have a(fly) = (af)x.
(7) Distributive law for scalar addition. Fbr all scalars a, i4 E ]R and all

y E V, we have (a +,6)v_ = ay + ax.
(8) Distributive law for vector addition. For all scalars a E R and

x,wE V, we have a(y+w)=ay +ava.
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Note that in Example 2.6.2 our
assumption that addition is well
defined in C[0,11 uses the fact that
the sum of two continuous func-
tions is continuous. Similarly,
multiplication by scalars is well
defined, because the product of a
continuous function by a constant
is continuous.

In some sense, this space ""is"

IR2, by identifying f ,b with [ 6 ] E

(R 2; this was not obvious from the
definition.

The primordial example of a vector space is of course IR" itself. More gen-
erally, a subset of IR" (endowed with the same addition and multiplication by
scalars as IR" itself) is a vector space in its own right if and only if it is a
subspace of IR" (Definition 1.1.5).

Other examples that are fairly easy to understand are the space Mat (n, m)
of n x m matrices, with addition and multiplication defined in Section 1.2, and
the space Pk of polynomials of degree at most k. In fact, these are easy to
"identify with 1R"."

But other vector spaces have a different flavor: they are somehow much too
big.

Example 2.6.2 (An Infinite-dimensional vector space). Consider the
space C(0,1) of continuous real-valued functions f (x) defined for 0 < x < 1.
The "vectors" of this space are functions f : (0,1) -+ IR, with addition defined as
usual by (f +g)(x) = f(x)+g(x) and multiplication by (af)(x) = a f(x). A

Exercise 2.6.1 asks you to show that this space satisfies all eight requirements
for a vector space.

The vector space C(0,1) cannot be identified with IR"; there is no linear
transformation from any IR" to this space that is onto, as we will see in detail in
Example 2.6.20. But it has subspaces that can be identified with appropriate
lR"'s, as seen in Example 2.6.3, and also subspaces that cannot.

Example 2.6.3 (A finite-dimensional subspace of C(0,1)). Consider the
space of twice differentiable functions f : IR -* IR such that D2 f = 0 (i.e.,
functions of one variable whose second derivatives are 0; we could also write
this f" = 0). This is a subspace of the vector space of Example 2.6.2, and is
a vector space itself. But since a function has a vanishing second derivative if
and only if it is a polynomial of degree at most 1, we see that this space is the
set of functions

fr,b(x) = a + bx. 2.6.1

Precisely two numbers are needed to specify each element of this vector space;
we could choose as our basis 1 and x.

On the other hand, the subspace C1(0,1) c C(0,1) of once continuously

differentiable functions on (0, 1) also cannot be identified with any RN; the
elements are more restricted than those of C(0,1), but not enough so that an

element can be specified by finitely many numbers.

Linear transformations

In Sections 1.2 and 1.3 we investigated linear transformations R4 - R"`. Now
we wish to define linear transformations from one (abstract) vector space to
another.
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Equation 2.6.2 is a shorter way
of writing both

T(v-, + vv-Z) = T(v-1) + T(y2)

Definition 2.6.4 (Linear transformation). If V and W are vector spaces,
a linear transformation T : V -. W is a mapping satisfying

T(av_r +f3v2) = aT(vi) +,6T(Y2)

for all scalars a,13 ER and all _vl,V2E V.

2.6.2

and

T(ay,) =cT(v,)

In order to write a linear trans-
formation from one abstract vec-
tor space to another as a ma-
trix, you have to choose bases:
one in the domain, one in the
range. As long as you are in finite-
dimensional vector spaces, you can
do this. In infinite-dimensional
vector spaces, bases usually do not
exist.

In Example 2.6.6, C[O,1] is the
space of continuous real-valued
functions f (x) defined for 0 < x <
1.

The function g in Example 2.6.6
is very much like a matrix, and
the formula for T. looks a lot like
E g;jfr. This is the kind of thing
we meant above when we referred
to "analogs" of matrices; it is as
much like a matrix as you can hope
to get in this particular infinite di-
mensional setting. But it is not
true that all transformations from
CIO, 11 to CIO, 11 are of this sort;
even the identity cannot be writ-
ten in the form T9.

In Section 1.3 we saw that every linear transformation T : R" -* Ilk" is given
by the matrix in Mat (n,m) whose ith column is T(6;) (Theorem 1.3.14). This
provides a complete understanding of linear transformations from Ilk"' to Ilk".

In the setting of more abstract vector spaces, linear transformations don't
have this wonderful concreteness. In finite-dimensional vector spaces, it is still
possible to understand a linear transformation as a matrix but you have to work
at it; in particular, you must choose a basis for the domain and a basis for the
range. (For infinite-dimensional vector spaces, bases usually do not exist, and
matrices and their analogs are usually not available.)

Even when it is possible to write a linear transformation as a matrix, it may
not be the easiest way to deal with things, as shown in Example 2.6.5.

Example 2.6.5 (A linear transformation difficult to write as a matrix).
If A E Mat (n, n), then the transformation Mat (n, n) - Mat (n, n) given by
H -. AH + HA is a linear transformation, which we encountered in Example
1.7.15 as the derivative of the mapping S : A ,--. A2:

[DS(A)]H = AH + HA. 2.6.3

Even in the case n = 3 it would be difficult, although possible, to write this
transformation as a 9 x 9 matrix; the language of abstract linear transformations
is more appropriate. A

Example 2.6.6 (Showing that a transformation is linear). Let us show
that if g (Y) is a continuous function on [0, 1] x [0, 1], then the transformation
Tg : CIO, 1] -. CIO, 11 given by

(Tg(f))(x)= f
tg(;)f(y)dy

0
2.6.4

is a linear transformation. For example, if g (y) = Ix - yl, then we would have

the linear transformation (T9(f))(x) = fo Ix - yI f(y)dy.
To show that Equation 2.6.4 is a linear transformation, we first show that

Tg(h + f2) = Tg(fi) + Tg(f2), 2.6.5

which we do as follows:
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The linear transformation in
Example 2.6.7 is a special kind of
linear transformation, called a lin-
ear differential operator. Solving
a differential equation is same as
looking for the kernel of such a
linear transformation. The coeffi-
cients could be any functions of x,
so it's an example of an important
class.

definition of addition

r l r l
in vector space

(T9(h + f 2 ) ) = f f 9 ( ) (fi + fz)(y) dy = f i 9 ( ) (fi(1/Z2() dy
= ft

(9( )ft(Y)+9( )fz(y)) d?/a

-Jot
9 ( y) ft(y)dy+1' 9 (y) f2(y) dy

_ (T9(fi))(x) + (T9(f2))(x) = (T9(ft) + Ts(f2))(x). 2.6.6

Next we show that T9(af)(x) = csT9(f)(x):

I

1T9(af)(x)= f 9()(.f)(y)dy=a f g(X)f(y)dy=cT9(f)(x). 2.6.7
u n

Example 2.6.7 (A linear differential operator). The transformation T :
C2(R) -. C(li2) given by the formula

(T(f))(x) = (x2 + 1)f"(x) - xf'(x) + 2f(x) 2.6.8

is a linear transformation, as Exercise 2.6.2 asks you to show.

Linear independence, span and bases

In Section 2.4 we discussed linear independence, span and bases for ll2" and
subspaces of IR". Extending these notions to arbitrary real vector spaces re-
quires somewhat more work. However, we will be able to tap into what we have
already done.

Let V be a vector space and let {v_} = v_t, ... , v_,,, be a finite collection of
vectors in V.

Definition 2.6.8 (Linear combination). A linear combination of the
vectors v1,.., vm is a vector v of the form

m

v__Ya;v_t, with at,...,amER. 2.6.9
ht

Definition 2.6.9 (Span). The collection of vectors {v_} = v_t, ... , v_,r, spans
V if and only if all vectors of V are linear combinations of v_t , ... , v,".
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Definition 2.6.10 (Linear independence). The vectors v,.... , v_m are
linearly independent if and only if any one (hence all) of the following three
equivalent conditions are met:

(1) There is only one way of writing a given linear combination; i.e., if

The concrete to abstract func-
tion -bl.i ("Phi v") takes a col-
umn vector a" E R- and gives an
abstract vector v E V.

ai v_; bi vi implies a1 = b1, a2 = b2, ... , am = b",. 2.6.10

(2) The only solution to

is 2.6.11

(3) None of the v_; is a linear combination of the others.

Definition 2.6.11 (Basis). A set of vectors vi, ... , vm E Visa basis of V
if and only if it is linearly independent and spans V.

The following definition is central. It enables us to move from the concrete
world of 18" to the abstract world of a vector space V.

Definition 2.6.12 ("Concrete to abstract" function 0j}). Let V be
a vector space, and let {v_} = v_l, ... , vm be a finite collection of vectors in
V. The "concrete to abstract" function is the linear transformation

{Y} : R'" -+ V given the formula

4{Y} [2]
_alv1+...+am Vm. 2.6.12

Example 2.6.13 (Concrete to abstract function). Let P2 be the space of
polynomials of degree at most 2, and consider its basis v, = 1, v2 = x, v3 = x2

rat
Then .{v} a2

J
= a1 + a2x + a3x2 identifies P2 with R3.

a3

Example 2.6.14 (To interpret a column vector, the basis matters). If
V = R2 and 49 is the standard basis, then

l l4'{a}([a])=[a], since ''{a}(f [aJ)=aei+b2=161. 2.6.13

(If V = R", and {e') is the standard basis, then O{e} is always the identity.)



Choosing a basis is analogous
to choosing a language. A lan-
guage gives names to an object or
an idea; a basis gives a name to
a vector living in an abstract vec-
tor space. A vector has many em-
bodiments, just as the words book,
livre, Buch ... all mean the same
thing, in different languages.

In Example 2.6.14, the func-
tion 4i{v} is given by the matrix
I1 _11

1

1; in this case, both the

domain and the range are L2.

You were asked to prove Propo-

sition 2.6.15 in the context of sub-
spaces of IR", in Exercise 2.4.9.

Why study abstract vector
spaces? Why not just stick to IR"?
One reason is that IR" comes with
the standard basis, which may not
be the best basis for the problem
at hand. Another is that when
you prove something about IR",
you then need to check that your
proof was "basis independent" be-
fore you can extend it to an arbi-
trary vector space.

Exercise 2.4.9 asked you to
prove Proposition 2.6.15 when V
is a subspace of IR".
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If instead we used the basis v'1 = I i J , v2 then

{v}([bI) _avl+bv'z=la+bl; 2.6.14

I a, in the new basis equals I a+bl in the standard basis. A
111

,Proposition 2.6.15 says that

ia-b
f (v_) is a basis of V, then the linear transfor-

mation {v} : IR- -. V allows us to identify IR" with V, and replace questions
about V with questions about the coefficients in IR"; any vector space with a
basis is "just like" IR". A look at the proof should convince you that this is just
a change of language, without mathematical content.

Proposition 2.6.15 (Linear independence, span, basis). If V is a
v e c t o r s p a c e , and {_} = v_1, ... , v are vectors in V, then:

(1) The set {v_} is linearly independent if and only if 4i(v) is one to one.

(2) The set {v_} spans V if and only if4S{Y} is onto.

(3) The set {v_} is a basis of V if and only if 4'{v} is one to one and onto
(i.e., invertible).

When {v_} is a basis, then is the "abstract to concrete" transformation.
It takes an element in V and gives the ordered list of its coordinates, with
regard to the basis {v_}. While 4!(v) synthesizes, $(v} decomposes: taking the
function of Example 2.6.13, we have

rat
{x} I a2 = a1 +a2x + a3x2

a3

a1

{,,}(al + a2x + a3x2) = a2

a3

2.6.15

Proof. (1) Definition 2.6.10 says that y1..... v" are linearly independent if
m m

F_ai v_i = >2 bi v_; implies a1 = b1, a2 =b2,..., am = bm. 2.6.16
t=1 t=1

That is exactly saying that {v}(a) _ t{v_}(b') if and only if a" = b, i.e., that
0{v} is one to one.
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The use of 4'() and its in-
verse to identify an abstract vector
space with 1R" is very effective but
is generally considered ugly; work-
ing directly in the world of ab-
stract vector spaces is seen as more
aesthetically pleasing. We have
some sympathy with this view.

(2) Definition 2.6.9 says that {v_} = _I, ... , v_m span V if and only if all
vectors of V are linear combinations of vi, ... , v_,,,; i.e., any vector v E V can

be written

y = aim, + ... + 0-Y. = {v_}1a)

In other words, ok{v} is onto.

2.6.17

Exercise 2.6.3 asks you to show
that in a vector space of dimen-
sion n, more than n vectors are
never linearly independent, and
fewer than n vectors never span.

How do we know that and
fsl exist? By Proposition 2.6.15,

the fact that {v_) and {w} are
bases means that '{x} and 0{r}
are invertible.

It is often easier to understand
a composition if one writes it in
diagram form, as in

1R' V RP,

in Equation 2.6.18. When writing
this diagram, one reverses the or-
der, following the order in which
the computations are done.

Equation 2.6.18 is the general
case of Equation 2.4.30, where we
showed that any two bases of a
subspace of ]R" have the same
number of elements.

(3) Putting these together, v_i, ... , Y. is a basis if and only if it is linearly

independent and spans V, i.e., if {v} is one to one and onto.

The dimension of a vector space

The most important result about bases is the following statement.

Theorem 2.6.16. Any two bases of a vector space have the same number of
elements.

The number of elements in a basis of a vector space V is called the dimension
of V, denoted dim:

Defnition 2.6.17 (Dimension of a vector space). The dimension of a
vector space is the number of elements of a basis of that space.

Proof of Theorem 2.6.16. Let {v_} and {w} be two bases of a vector space
V: {v_} the set of k vectors vl,... , yk, so that ${v} is a linear transformation
from Rk to V, and {w } the set of p vectors w1,..., w ,, so that t{,) is a linear
transformation RP to V. Then the linear transformation

o v} : ]Rk 1RP (i.e. 1Rk -. V -( RP), 2.6.18

his} ix1
change of basis matrix

is invertible. (Indeed, we can undo the transformation, using of{,},) But
it is given by an p x k matrix (since it takes us from Rk to RP), and we know
that a matrix can be invertible only if it is square. Thus k = p.

Remark. There is something a bit miraculous about this proof; we are able
to prove an important result about abstract vector spaces, using a matrix that
seemed to drop out of the sky. Without the material developed earlier in this
chapter, this result would be quite difficult to prove. The realization that the
dimension of a vector space needed to be well defined was a turning point in
the development of linear algebra. Dedekind's proof of this theorem in 1893
was a variant of row reduction. A



With our definition (Definition
2.6.11), a basis is necessarily finite,
but we could have allowed infinite
bases. We stick to finite bases be-
cause in infinite-dimensional vec-
tor spaces, bases tend to he use-
less. The interesting notion for
infinite-dimensional vector spaces
is not expressing an element of
the space as a linear combination
of a finite number of basis ele-
ments, but expressing it as a lin-
ear combination that uses infin-
itely many basis vectors i.e., as an
infinite series E°__oa,v_, (for ex-
ample, power series or Fourier se-
ries). This introduces questions of
convergence, which are interesting
indeed, but a bit foreign to the
spirit of linear algebra.

It is quite surprising that there
is a one to one and onto map from
It to C[O,1]; the infinities of ele-
ments they have are not different
infinities. But this map is not lin-
ear. Actually, it is already surpris-
ing that the infinities of points in
It and in 1k2 are equal; this is il-
lustrated by the existence of Peano
curves, described in Exercise 0.4.5.
Analogs of Peano curves can be
constructed in C(0,1].
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Example 2.6.18 (Change of basis). Let us see that the matrix A in the
proof of Proposition and Definition 2.4.20 (Equation 2.4.28) is indeed the change
of basis matrix

,V-1 o'Iw} ' RP -' Rk+ 2.6.19ill
expressing the new vectors (the Ws) in terms of the old (the V's.)

Like any linear transformation RP tk, the transformation 4){1 } o'D{w) has

a1,j

a k x p matrix A whose jth column is A(ej). This means

ak,,

01.j

= A(ej) = o4'{w}(ej) _ 41{'}(*i), 2.6.20

ak,J
or, multiplying the first and last term above by 4'{v},

a1.j
tlv) =

ak

alj'1 + + ak,jvk = wj. L 2.6.21

,

Example 2.6.19 (Dimension of vector spaces). The space Mat (n, m) is a
vector space of dimension nm. The space Pk of polynomials of degree at most
k is a vector space of dimension k + 1 . A

Earlier we talked a bit loosely of "finite-dimensional" and "infinite-dimen-
sional" vector spaces. Now we can be precise: a vector space is finite dimen-
sional if it has a finite basis, and it is infinite dimensional if it does not.

Example 2.6.20 (An infinite-dimensional vector space). The vector
space C(0,1] of continuous functions on 10, 1], which we saw in Example 2.6.2,
is infinite dimensional. Intuitively it is not hard to see that there are too many
such functions to be expressed with any finite number of basis vectors. We can
pin it down as follows.

Assume functions fl,...,f,, are a basis, and pick n + I distinct points 0 =

xl < x2 < 1 in 10, 11. Then given any values cl,..., cn+1, there
certainly exists a continuous function f(x) with f(x;) = c,, for instance, the

piecewise linear one whose graph consists of the line segments joining up the
x;points
c; '

If we can write f = k= akfk, then evaluating at the x,, we get

f(xi) = ci = > akfk(xi), i = 1,... n + 1. 2.6.22

k=1
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Recall that the derivative
(Dff(ao)] is a matrix, the Jacobian
matrix, whose entries are the par-
tial derivatives of f at ao. The in-
crement to the variable, x - ao, is
a vector.

We put an arrow over f to in-
dicate that elements of the range
of f are vectors; ao is a point and
f(ao) is a vector. In this way f is
like a vector field, taking a point
and giving a vector. But whereas
a vector field fl takes a point in
one space and turns it into a vector
in the same space, the domain and
range of f can be different spaces,
with different units. The only re-
quirement is that there must be as
many equations as unknowns: the
dimensions of the two spaces must
be equal. Newton's method has
such wide applicability that being
more precise is impossible.

This, f o r given ci's is a system of n+ 1 equations for then unknowns al, ... , a,,;
we know by Theorem 2.2.4 that for appropriate ci's the equations will be in-
compatible. Therefore there are functions that are not linear combinations of

fl..... fn, so fl_., f do not span C[0,1].

2.7 NEWTON'S METHOD

When John Hubbard was teaching first year calculus in France in 1976,
he wanted to include some numerical content in the curriculum. Those
were the early days of programmable calculators; computers for under-
graduates did not then exist. Newton's method to solve cubic polynomials
just about fit into the 50 steps of program and eight memory registers
available, so he used that as his main example. Writing the program was
already a problem, but then came the question of the place to start: what
should the initial guess be?

At the time he assumed that even though he didn't know where to start,
the experts surely did; after all, Newton's method was in practical use all
over the place. It took some time to discover that no one knew anything
about the global behavior of Newton's method. A natural thing to do was
to color each point of the complex plane according to what root (if any)
starting at that point led to. (But this was before the time of color screens
and color printers: what he actually did was to print some character at
every point of some grid: x's and 0's, for example.)

The resulting printouts were the first pictures of fractals arising from
complex dynamical systems, with its archetype the Mandelbrot set.

Theorem 2.2.4 gives a quite complete understanding of linear equations. In
practice, one often wants to solve nonlinear equations. This is a genuinely hard
problem, and when confronted with such equations, the usual response is: apply
Newton's method and hope for the best.

Let ff be a differentiable function from 1W' (or from an open subset of L4n)
to Rn. Newton's method consists of starting with some guess ao for a solution
of f(x) = 6. Then linearize the equation at ao: replace the increment to the
function, f(x) - f(ao), by a linear function of the increment, [Df(ao)](x - ao).
Now solve the corresponding linear equation:

f(ao) + [Df(ao))(x - ao) = 6. 2.7.1

This is a system of n linear equations in n unknowns. We can rewrite it

[Df.o)](x - ao = -f r(ao). 2.7.2

A >7 b



Note that Newton's method re-
quires inverting a matrix, which is
a lot harder than inverting a num-
ber; this is why Newton's method
is so much harder in higher dimen-
sions than in one dimension.

In practice, rather than find
the inverse of [Df(ao)], one solves
Equation 2.7.1 by row reduction,
or better, by partial row reduction
and back substitution, discussed
in Exercise 2.1.9. When applying
Newton's method, the vast major-
ity of the computational time is
spent doing row operations.

How do you come by your ini-
tial guess ao? You might have a
good reason to think that nearby
there is a solution, for instance be-
cause Jff(ao)l is small; we will see
many examples of this later: in
good cases you can then prove that
the scheme works. Or it might
be wishful thinking: you know
roughly what solution you want.
Or you might pull your guess out
of thin air, and start with a collec-
tion of initial guesses ao, hoping
that you will be lucky and that at
least one will converge. In some
cases, this is just a hope.
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Remember that if a matrix A has an inverse A', then for any b' the equation
Az = b has the unique solution A- 19, as discussed in Section 2.3. So if ]Df(ao)]
is invertible, which will usually be the case, then

x = ao - [Df(ao)]-tf(ao);

Call this solution al, use it as your new "guess," and solve

[Df(at)](x - at) = -f(ai),

2.7.3

2.7.4

calling the solution a2, and so on. The hope is that at is a better approximation
to a root than ao, and that the sequence ao, a1,. .. converges to a root of the
equation. This hope is sometimes justified on theoretical grounds, and actually
works much more often than any theory explains.

Example 2.7.1 (Finding a square root). How do calculators compute
the square root of a positive number b? They apply Newton's method to the
equation f(x) = x2 - b = 0. In this case, this means the following: choose
ao and plug it into Equation 2.7.2. Our equation is in one variable, so we can
replace [Dff(ao)] by f'(ao) = 2ao, as shown in Equation 2.7.5.

This method is sometimes introduced in middle school, under the name divide
and average.

at=no -2-(au-b)= 2(ao+ao)
.

2.7.5

Newton's method divide and average

(Exercise 2.7.3 asks you to find the corresponding formula for nth roots.)

The motivation for divide and average is the following: let a be a first guess
at Tb. If your guess is too big, i.e., if a > f, then b/a will be too small, and the
average of the two will be better than the original guess. This seemingly naive
explanation is quite solid and can easily be turned into a proof that Newton's
method works in this case.

Suppose first that ao > f; then we want to show that f < at < ao. Since
at =

2
(ao + b/ao), this comes down to showing

b< ((a0+ Qo) <aa, 2.7.6

or, if you develop, 4b < ao + 2b + o < 4ao. To see the left-hand inequality,
subtract 4b from each side:

ao + 2b + b2 - 4b = ao - 2b + b2 = (ao - b I2 > 0. 2.7.7ao ao a 0
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The right-hand inequality follows immediately from b < ao, hence b2/4 < ao:

a2+2b+ az <4no.
<2ag U

2.7.8

<ag

Two theorems from first
year calculus.

(1) If a decreasing sequence is
bounded below, it converges (see
Theorem 0.4.10).

(2) If a is a convergent se-
quence, and f is a continuous
function in a neighborhood of the
limit of the an, then

lim f(aa) = f(lima").

FIGURE 2.7.1.
Newton's method: each time

we calculate a"+, from an we are
calculating the intersection with
the x-axis of the line tangent to
the parabola y = x2 - b at a".

Recall from first year calculus (or from Theorem 0.4.10) that if a decreasing
sequence is bounded below, it converges. Hence the a; converge. The limit a
must satisfy

1 b _ 1 ba = Iim a;+1 = lim - ai + - a + -.-W
i-00 2 ai 2 a

i.e., a = vb. 2.7.9

What if you choose 0 < ao < r b? In this case as well, al > f:
2

4ao < 4b < ao + 2b +
62

. 2.7.10
ao

412

We get the right-hand inequality using the same argument used in Equation
2.7.7: 2b < ao +

o
4, sincsubtracting 2b from both sides gives 0 < (ao - o)

2.

Then the same argument as above applies to show that a2 < at. J
This "divide and average" method can be interpreted geometrically in terms

of Newton's method: Each time we calculate a we are calculating
the intersection with the x-axis of the line tangent to the parabola y = x2 - b
at an, as shown in Figure 2.7.1.

There aren't many cases where Newton's method is really well understood
far away from the roots; Example 2.7.2 shows one of the problems that can
arise, and there are many others.

Example 2.7.2 (A case where Newton's method doesn't work). Let's
apply Newton's method to the equation

X -x+2=0, 2.7.11

starting at x = 0 (i.e., our "guess" ao is 0). The derivative f(x) = 3x2 - 1, so
f'(0) _ -1, and f(0) = f/2, giving

al = ao - 1 f(ao) = ao - ao - ao +
v'2

r2
- 0 + _ 2.7.12

f (ao) 3a2 - 1 1 2

Since al = -,45/2, we have f(at) = 1/2, and

az= 22 -2(4 - 2 +2)=0. 2.7.13
2 2
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We're back to where we started, at ao = 0. If we continue, we'll bounce back

and forth between 4 and 0, never converging to any root:

Don't be too discouraged by
this example. Most of the time
Newton's method does work. It
is the best method available for
solving nonlinear equations.

This uses Equation 0.4.9 the
sum of a geometric series: If Irl <
1, then

n=0

We can substitute 362 for r in that
equation because E2 is small.

Remember that we said in the
introduction to Section 1.4, that
calculus is about " ... about some
terms being dominant or negli-
gible compared to other terms."
Just because a computation is
there doesn't mean we have to do
it to the bitter end.

If we continue, we'll bounce be-
tween a region around and a
region around 0, getting closer and
closer to these points each time.

....0 2 -0 2.7.14

Now let's try starting at some small c > 0. We have j'(e) = 362 - 1, and
f(E) = E3 - E + v/2-/2, giving us

a1 = 6 - 3621- 1 (63 + 2 I = E + 3 + 2 I 1 1362. 2.7.15

Now we can treat
1 2 a

1 - 362

This gives us

as the sum of the geometric series (1 +3f, + 9E +...).

al = E + I E3 _ e+ 2 I(I + 3E2 + 9E° + ...). 2.7.16

Now we just ignore terms that are smaller than E2, getting

a1 = 6 + (2 - )(I+ 3E2) + remainder

= 2 + 3 2E2
+ remainder.

Ignoring the remainder, and repeating the process, we get

2.7.17

3fE2 + 32262)3 2 + E2 + NC22
2 2 2a2

2 + 2 3(4+3 262)2_1
2.7.18

This looks unpleasant; let's throw out all the terms with J. We get

f_)3-4+4x_ 251(4) f fa2 _ 2 2 2 _ 2 _ -

2 12
= 2 = 0, 50 that

3(2) 1 z

a2 = 0 + cE2, where c is a constant.

We started at 0 + e and we've been sent back to 0 + cc21
2.7.19

We're not getting anywhere; does that mean there are no roots? Not at all.' 7
Let's try once more, with ao = -1. We have

ao-ao+4 2ap-4
at =ao- - - 1 = 3a -1 2.7.20

"Of course not. All odd-degree polynomials have real roots by the intermediate
value theorem, Theorem 0.4.12
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As we said earlier, the reason
Newton's method has become so
important is that people no longer
have to carry out the computa-
tions by hand.

Any statement that guarantees
that you can find solutions to non-
linear equations in any generality
at all is bound to be tremendously
important. In addition to the im-
mediate applicability of Newton's
method to solutions of all sorts
of nonlinear equations, it gives a
practical algorithm for finding im-
plicit and inverse functions. Kan-
torovitch's theorem then gives a
proof that these algorithms actu-
ally work.

A computer or programmable calculator can be programmed to keep iterating
this formula. It's slightly more tedious with a simple scientific calculator; with
the one the authors have at hand, we enter "1 +/- Min" to put -1 in the
memory ("MR") and then:

(2 x MR x MR x MR - 2Vdiv 2) div(3 x MR x MR - 1).

We get at = -1.35355...; entering that in memory by pushing on the "Min"
(or "memory in") key we repeat the process to get:

a2 = -1.26032... a4 = -1.25107...

a3 = -1.25116... as = -1.25107....
2.7.21

It's then simple to confirm that a5 is indeed a root, to the limits of precision of
the calculator or computer. 6

Does Newton's method depend on starting with a lucky guess? Luck some-
times enters into it; with a fast computer one can afford to try out several
guesses and see if one converges. But, you may ask, how do we really know
that solutions are converging? Checking by plugging in a root into the equa-
tion isn't entirely convincing, because of round-off errors. We shall see that
we can say something more precise. Kantorovitch's theorem guarantees that
under appropriate circumstances Newton's method converges. Even stating the
theorem is difficult. But the effort will pay off.

Lipschitz conditions

Imagine an airplane beginning its approach to its destination, its altitude rep-
resented by f. If it loses altitude gradually, the derivative f allows one to
approximate the function very well; if you know how high the airplane is at the
moment t, and what its derivative is at t, you can get a good idea of how high
the airplane will be at the moment t + h:

f(t+h) - f(t) + f(t)h. 2.7.22

But if the airplane suddenly loses power and starts plummeting to earth, the
derivative changes abruptly: the derivative of f at t will no longer be a reliable
gauge of the airplane's altitude a few seconds later.

The natural way to limit how fast the derivative can change is to bound the
second derivative; you probably ran into this when studying Taylor's theorem
with remainder. In one variable this is a good idea. If you put an appropriate
limit to f" at t, then the airplane will not suddenly change altitude. Bound-
ing the second derivative of an airplane's altitude function is indeed a pilot's
primary goal, except in rare emergencies.

To guarantee that Newton's method starting at a certain point will converge
to a root, we will need an explicit bound on how good an approximation

[Df(xo)]i is to f(xo + h) - f(xo). 2.7.23
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In Definition 2.7.3, U can be
a subset of li$"; the domain and
the range of f do not need to have
the same dimension. But when
we use this definition in the Kan-
torovitch theorem, those dimen-
sions will have to be the same.

As in the case of the airplane, to do this we will need some assumption on how
fast the derivative of f changes.

But in several variables there are lots of second derivatives, so bounding the
second derivative doesn't work so well. We will adopt a different approach:
demanding that the derivative off satisfy a Lipschitz condition.

Definition 2.7.3 (Lipschitz condition). Let IF : U IR' be a differen-
tiable mapping. The derivative (Df(x)) satisfies a Lipschitz condition on a
subset V C U with Lipschitz ratio M if for all x, y E V

[Df(x)( - (Df(y)) M Ix - yi . 2.7.24

distance distance
between deriv. between points

A Lipschitz ratio tells us some-
thing about how fast the deriva-
tive of a function changes.

It is often called a Lipschitz
constant. But M is not a true con-
stant; it depends on the problem
at hand; in addition, a mapping
will almost always have different
M at different points or on differ-
ent regions. When there is a sin-
gle Lipschitz ratio that works on
all of 118", we will call it a global
Lipschitz ratio.

Example 2.7.4 is misleading:
there is usually no Lipschitz ratio
valid on the entire space.

Note that a function whose derivative satisfies a Lipschitz condition is cer-

tainly continuously differentiable. Having the derivative Lipschitz is a require-

ment that the derivative is especially nicely continuous (it is actually close to

demanding that the function be twice continuously differentiable).

Example 2.7.4 (Lipschitz ratio: a simple case). Consider the mapping
f:ll82_,R2

\ xx2 1l
IF (xl

21 _

x2

2
I with derivative [Df(z2)1 - [2x1\\ xi +x2 L

Given two points x and y,

[Df(xi)] - [Df(yz)J = 12(xi01/i)

-2x2
1

-2(x2 - P2)1

0

2.7.25

2.7.26

Calculating the length of the matrix above gives

1[0 1/i)

-2(X2 .1/2)11=2
(xi- yl)2+(x2- y2)2=2I xi-yi

2(x1 2Y21
so

[Df(x)(- (Df(y)(I = 21x - yI; 2.7.27

in this case M = 2 is a Lipschitz ratio for (Df].

Example 2.7.5 (Lipschitz ratio: a more complicated case). Consider
the mapping f : R2 -+ 1R2 given by

_ 3
f (=2) = (x3 + x2) , with derivative [Df (x2) ] = [3x2 lx2 ]

2.7.28
1 // 1

Given two points x and y we have

[Df(xl)J - [Df(i/i)I -
0 -3(x2 -y2)

X2 y2 J 3(4-yi) 0
2.7.29
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and taking the length gives

Df(x2)]-[Df(y2)]I
l - yl)2(xl + yl)2 + (x2 - y2)2(x2 + y2)2.= 3V"(-X-

Therefore, when

(xt + yl )2 < A2 and (x2 + y2)2 < A2,

as shown in Figure 2.7.2, we have

lDf(x2)J-LDf\y2/JI:5 3AI(xi)-lyzl l' 2.7.32

FIGURE 2.7.2.
Equations 2.7.31 and 2.7.32 say

that when 1 " I and
/
( 1 areY Y2

in the shaded re/gion above,/then
3A is a Lipschitz ratio for [Df(x)).
It is not immediately obvious how
to translate this statement into a
condition on the points

x=(x21 and y=1

By sup{(xi + yi)2,(x2 + y2)2)

we mean "the greater of (xi +yl )2
and (x2 + y2)2." In this compu-
tation, we are using the fact that
for any two numbers a and b, we
always have

(a + b)2 < 2(a2 + b2),

since 0 < (a - b)2.

i.e., 3A is a Lipschitz ratio for [Df(x)].
When is the condition of Equation 2.7.31 satisfied? It isn't really clear that

we need to ask this question: why can't we just say that it is satisfied when it
is satisfied; in what sense can we be more explicit? There isn't anything wrong
with this view, but the requirement in Equation 2.7.31 describes some more or
less unimaginable region in R4. (Keep in mind that Equation 2.7.32 concerns
points x with coordinates x1, x2 and y with coordinates yi, y2, not the points of
Figure 2.7.2, which have coordinates x1,yi and x2,y2 respectively.) Moreover,
in many settings, what we really want is a ball of radius R such that when two
points are in the ball, the Lipschitz condition is satisfied:

I[Df(x)] - [Df(y)JI 5 3A]x - yi when [xi < R and [y[ < R. 2.7.33

If we require that Ix12 = xi + x2 < A2/4 and Iyl2 = y2 + y2 5 A2/4, then

sup{(xl +yi)2, (x2 +y2)2) < 2(xi +yi +x2+y2) = 2(Ix12+IYI2) 5 A2. 2.7.34

Thus we can assert that if

IXh IYI <_ 2 , then I[Df(x)J - [Df(y)JI <- 3AIx - yI. A 2.7.35

Computing Lipschitz ratios using higher partial derivatives

Most students can probably follow the computation in Example 2.7.5 line by
line, but even well above average students will probably feel that the tricks
used are way beyond anything they can be expected to come up with on their
own. Finding ratios M as we did above is a delicate art, and finding M's
that are as small as possible is harder yet. The manipulation of inequalities is
a hard skill to acquire, and no one seems to know how to teach it very well.
Fortunately, there is a systematic way to compute Lipschitz ratios, using higher
partial derivatives.

Higher partial derivatives are essential throughout mathematics and in sci-
ence. Mathematical physics is essentially the theory of partial differential equa-
tions. Electromagnetism is based on Maxwell's equations, general relativity
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Originally we introduced higher
partial derivatives in a separate
section in Chapter 3. They are so
important in all scientific applica-
tions of mathematics that it seems
mildly scandalous to slip them in
here, just to solve a computa-
tional problem. But in our expe-
rience students have such trouble
computing Lipschitz ratios-each
problem seeming to demand a new
trick-that we feel it worthwhile
to give a "recipe."

Different notations for partial

derivatives exist:
0z

D.i(D,f)(a) =ray dy;(a)

on Einstein's equation, fluid dynamics on the Navier-Stokes equation, quan-
tum mechanics on Schrodinger's equation. Understanding partial differential
equations is an prerequisite for any serious study of these phenomena. Here,
however, we will use them as a computational tool.

Definition 2.7.6 (Second partial derivative). Let U C R' be open,
and f : U IR be a differentiable function. If the function Di f is itself
differentiable, then its partial derivative with respect to the jth variable,

Dj (Dif

is called a second partial derivative of f.

Example 2.7.7 (Second partial derivative). Let f be the function

x
= 2x + xy3 + 2yz2. Then D2(Di f)

(a)
z b = D2 (2 ) = 3b2.

D,f

= fx,x, (a).

As usual, we specify the point a at Similarly, D3(D2 f)
x

y = D3 (3xy2 + 2z2) = 4z. 6
which the derivative is evaluated. z

D21

In Example 2.7.7 we evaluated
the partial derivatives off at both
(a)

b and at
\

Z

/
to emphasize

tthe fact that al hough we used x, y
and z to define f, we can evaluate
it on variables that look different.

Recall that a function is C2
if it is twice continuously differ-
entiable, i.e., if its second partial
derivatives exist and are continu-
ous.

We can denote D1(D1 j) by Dl f, D2(D2f) by D2 f, .... For the function
f \ y / = xy2 + sin x, what are Dl f, D22f, D1(D2 f ), and D2 (Dl f) ?11

Proposition 2.7.8 says that the derivative off is Lipschitz if IF is of class C2.

Proposition 2.7.8 (Derivative of a C2 mapping is Lipschitz). Let
U C R' be open, and f : U R' be a C2 mapping. If IDkDJfi(x)I <- ci,i,k
for all triples of indices 1 < i, j, k < n, then

1/2

IJDf(u)J - IDf(v)JI <
\

_ (ei,i,k)2) Iu - of. 2.7.36

Proof. Each of the Djf; is a scalar-valued function, and Corollary 1.9.2 tells
us that

'8D, f = y2 + cosx and D2f = 2xy, so

Di f = Di (y2 +cosx) = - sin x, D2f = D2(2xy) = 2x,
D1(D2f) = Di (2xy) = 2y, and D2(Di f) = D2(y2 +cosx) = 2y.
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Equation 2.7.37 uses the fact
that for any function g (in our
case, D, f, ),

lg(a+ '/) - g(a)l
\

< I supllD9(a+th)Jl l l hl;
10,11

remember that

I[Dg(a + th)[

=
(Dkg(a+tl))z

k1

1/2

I Djfi(a+ G) - Djfi(a)[ 5 ((c.J.k)2) Ih[.
k=1

By definition

2.7.37

l
1/2

[[Df(a+h)I - IDf(a)1I = E (Djfi(a+h) -Djf,(a))2 f 2.7.38
j-1 J

So

/

_ Y_ (cij,02 A.
1<i,j,k<n

In Equation 2.7.41 we use the
fact that crossed partials of f are
equal (Theorem 3.3.9).

The proposition follows by setting u = a + h', and v = a.

2.7.39

Example 2.7.9 (Redoing Example 2.7.5 the easy way). Let's see how
much easier it is to find a Lipschitz ratio in Example 2.7.5 using higher partial
derivataives. First we compute the first and second derivatives, for f1 = x1 -x2
andf2=xi+x2:

D1f = 1; D2f1 = -3x2; D1f2 = 3x2; DA = 1. 2.7.40

2.7.41

So our Lipschitz ratio is /36x 1 + 36x2 = 6/+ x2: again we can assert that

This gives

D1Dlf1 = 0; D1D2f1 = D2D1f1 = 0; D2D2f1 = -6x2

D1D1f2 = 6x1; D1D2f2 = D2D1f2 = 0; D2D2f2 = 0.

if

Ixl, lyl < B, then I[Df(x)) - [Df(y)II 5 6BIx - yl. L 2.7.42

Using higher partial derivatives, recompute the Lipchitz ratio of Example 2.7.4.
Do you get the same answer we did?19

'9The higher partial derivative method gives 2f; earlier we got 2, a better result.
A blunderbuss method guaranteed to work in all cases is unlikely to give results as
good as techniques adapted to the problem at hand. But the higher partial derivative
method gives results that are good enough.

(r l 1/2 2 1/2

l[Df(a+h)] - [Df(a)]I 5 E I I (ci,j,k)2 1
Ihl/i,j=1 \ k=1

21
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By fiddling with the trigonom-
etry, one can get the 86 down to

78 8.8, but the advantage of
Proposition 2.7.8 is that it gives
a systematic way to compute Lip-
schitz ratios; you don't have to
worry about being clever.

To go from the first to the sec-
ond line of Equation 2.7.44 we use
the fact that I sin I and I cos I are
bounded by 1.

The Kantorovitch theorem says
that if certain conditions are met,
the equation

Example 2.7.10 (Finding a Lipschitz ratio using second derivatives: a
second example). Let us find a Lipschitz ratio for the derivative of F (yx) _

sln(x + y) for IxI < 2, IyI < 2. We compute
cos(xy)

D1D1F1 = -sin(x+y), D2D1F1 = D1D2F1 = -sin(xy),

D2D2F1 = - sin(x + y);

D1D1F2 = -y2cos(xy), D2D1F2 = D1D2F2 = -(sin(xy)+yxcos(xy)),
D2D2F2 = x2 cos xy. 2.7.43

This gives

V4 sin2(x + y) + y4 cos2 xy + x4 cos2 xy + 2(sin xy + xy cos xy)2

< 4+y4+x4+2(1+IxyD)2.
2.7.44

ff(x) = 0

has a unique root in a neighbor-
hood Uo. In our airplane analogy,
where is the neighborhood men-
tioned? It is implicit in the Lip-
schitz condition: the derivative is
Lipschitz with Lipschitz ratio M
in the neighborhood Uo.

Remember that acceleration
need not be a change in speed-it
can also he a change in direction.

So for IxI < 2, IyI < 2, we have a Lipschitz ratio M < 4 + 16 + 16 + 50

86 < 9.3; i.e.,

[Df(u)] - [Df(v)]I < 9.3Iu - vI. A 2.7.45

Kantorovitch's theorem

Now we are ready to tackle Kantorovitch's theorem. It says that if the product
of three quantities is < 1/2, then the equation i(x) = 0 has a unique root in
a neighborhood Us, and if you start with initial guess ao in that neighborhood,
Newton's method will converge to that root.

The basic idea is simple. The first of the three quantities that must be small
is the value of the function at ao. If you are in an airplane flying close to
the ground, you are more likely to crash (find a root) than if you are several
kilometers up. The second quantity is the square of the inverse of the derivative
of the function at ao. In one dimension, we can think that the derivative must
be big.20 If your plane is approaching the ground steeply, it is much more likely
to crash than if it is flying almost parallel to the ground.

The third quantity is the Lipschitz ratio M, measuring the change in the
derivative (i.e., acceleration). If at the last minute the pilot pulls the plane out
of a nose dive, some passengers or flight attendants may be thrown to the floor
as the derivative changes sharply, but a crash will be avoided.

20Why the theorem stipulates the square of the inverse of the derivative is more
subtle. We think of it this way: the theorem should remain true if one changes the
scale. Since the "numerator" f(ao)M in Equation 2.7.48 contains two terms, scaling
up will change it by the scale factor squared. So the "denominator" IIDff(ao))-'I2
must also contain a square.
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Note that the domain and the
range of the mapping f have the
same dimension. In other words,
setting F(x) = 6, we get the same
number of equations as unknowns.
This is a reasonable requirement.
If we had fewer equations than un-
knowns we wouldn't expect them
to specify a unique solution, and
if we had more equations than un-
knowns it would be unlikely that
there will be any solutions at all.

In addition, if n 96 m, then
]Df(ao)] would not be a square
matrix, so it would not be invert-
ible.

The Kantorovitch theorem is
proved in Appendix A.2.

But it is not each quantity individually that must be small: the product
must be small. If the airplane starts its nose dive too close to the ground. even
a sudden change in derivative may not save it. If it starts its nose dive from
an altitude of several kilometers, it will still crash if it falls straight down. And
if it loses altitude progressively, rather than plummeting to earth, it will still
crash (or at least land) if the derivative never changes.

Theorem 2.7.11 (Kantorovitch's theorem). Let ao be a point in R", U
an open neighborhood of ao in 1R" and IF : U -+ R" a differentiable mapping,
with its derivative [Dff(ao)] invertible. Define

ho = -[Df(ao)]-'f(ao) , at = ao+ho , Uo = {xl Ix-atl5Ihol
2.7.46

If the derivative [Dff(x)] satisfies the Lipschitz condition

I[Df(ut)1- [Df(u2)1I < Mlul - u2l for all points u1, u2 E Uo, 2.7.47

and if the inequality

If(ao)II[Df(ao)]-'I2M<
2

2.7.48

is satisfied, the equation f(x) = 0' has a unique solution in Uo, and Newton's
method with initial guess ao converges to it.

If Inequality 2.7.48 is satisfied, then at each iteration we create a new ball
inside the previous ball, and with at most half the radius of the previous: IT, is
in Uo, U2 is in U1.... , as shown to the right of Figure 2.7.3. In particular, the
Lipschitz condition that is valid for Uo is valid for all subsequent balls. As the
radius of the balls goes to zero, the sequence ao, at.... converges to a, which
we will see is a root.

FIGURE 2.7.3. Equation 2.7.46 defines the neighborhood Uo for which Newton's
method is guaranteed to work when the inequality of Equation 2.7.48 is satisfied.
Left: the neighborhood Uo is the ball of radius IhoI = at - aol around a,, so au is on
the border of Uo. Right: a blow-up of Uo, showing the neighborhood U,.
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Equation 2.7.48:

f f(ao)I [Df(ao)[-'IZM 5

A good way to check whether
some equation makes sense is to
make sure that both sides have
the same units. In physics this is
essential.

We "happened to notice" that
sin 2 - 1 = -.0907 with the help
of a calculator. Finding an initial
condition for Newton's method is
always the delicate part.

The Kantorovitch theorem
does not say that the system of
equations has a unique solution; it
may have many. But it has one
unique solution in the neighbor-
hood Uo, and if you start with the
initial guess so, Newton's method
will find it for you.

Recall that the inverse of

A=[a dJ is
c

A-' = 1 1 d -6]
ad-bc j-c a'

The right units. Note that the right-hand side of Equation 2.7.48 is the
unitless number 1/2:

If(ao)I I[Di(ao)J-'I2M < 2.7.49

All the units of the left-hand side cancel. This is fortunate, because there is
no reason to think that the domain U will have the same units as the range;
although both spaces have the same dimension, they can be very different. For
example, the units of U might be temperature and the units of the range might
be volume, with f measuring volume as a function of temperature. (In this
one-dimensional case, f would be f.)

Let us see that the units on the left-hand side of Equation 2.7.48 cancel. We'll
denote by u the units of the domain, U, and by r the units of the range, R". The
term [ff(ao)[ has units r. A derivative has units range/domain (typically, dis-
tance divided by time), so the inverse of the derivative has units domain/range
= u/r, and the term I[Dff(ao)]`' I2 has units u2/r2. The Lipschitz ratio M is the
distance between derivatives divided by a distance in the domain, so its units
are r/u divided by u. This gives the following units:

u2 rr x r2 x u2;
both the is and the u's cancel out.

2.7.50

Example 2.7.12 (Using Newton's method). Suppose we want to solve
the two equations

cos(x - y) = y _ _-(X- [0] 2.7.51sin(x+y)=x, i.e. F(y)- [c

We just happen to notice that the equation is close to being satisfied at (11 )

cos(1 - 1) - 1 = 0 and sin(1 + 1) - 1 = -.0907.... 2.7.52

Let us check that starting Newton's method at ao = (1) works. To do this
we must see that the inequality of Equation 2.7.48 is satisfied. We just saw that
[F(ao)1 -.0907 < I. The derivative at ao isn't much worse:

[DF(ao)) _ [cos2 0
I

1
1 , so [DF(ao)]'' = 1 cos2- cos 2 cos2-1 [1-cos2 0

and 2.7.53

[DF(ao)]
t

12 I
-(cos 2-1}2((COS2)2+1+(1-cos2)2)_ 1.1727<2,

as you will see if you put it in your calculator.



2.7 Newton's Method 209

Rather than compute the Lipschitz ratio for the derivative using higher par-
tial derivatives, we will do it directly, taking advantage of the helpful formulas
I sin a - sin bl < la - b], I cos a - cos bI < la - bl.21 These make the computation
manageable:

[DP( yi )] - [DF( 92 )]I - I [ cos(xxi 1+ yy) ) cos(x22- y2) ) cos(x] + y]) - cos(x2 - 92)

rl-(x]-III) + (x2-92)1 I(xi-91)-(x2 - y2)I
Il

I(xl + y1) - (x2 - 92)I 1(x1 + y]) - (x2 - y2)I

The Kantorovitch theorem
does not say that if Inequality
2.7.48 is not satisfied, the equation
has no solutions; it does not even
say that if the inequality is not sat-
isfied, there are no solutions in the
neighborhood Uo. In Section 2.8
we will see that if we use a different
way to measure [Df(ao)], which is
harder to compute, then inequal-
ity 2.7.48 is easier to satisfy. That
version of Kantorovitch's theorem
thus guarantees convergence for
some equations about which this
somewhat weaker version of the
theorem is silent.

The MATLAB program "New-
ton.m" is found in Appendix B.I.

2.7.54

Thus M = 2 is a Lipschitz constant for [DP]. Putting these together, we see
that

4 ((xl -x2)2 + (y] - y2)2) = 2 I (n1) - \ X2 11

IF(ao)I I[DP(ao)J-]I2 M < .1 2. 2 = .4 < .5 2.7.55

so the equation has a solution, and Newton's method starting at (1) will
converge to it. Moreover,

1 r 2 11 r 0 2-1sin - 064_
1i

cos 1-coa 2 .
2 7 56

0 cost - 1 1 -cost 0 J `sin 2 -1 0 0
. .

so Kantorovitch's theorem guarantees that the solution is within .064 of (936).
1

The computer says that the solution is actually (:998) correct to three decimal
places.

Example 2.7.13 (Newton's method, using a computer).
use the MATLAB program to solve the equations

Now we will

x2 - y + sin(x - y) = 2 and y2 - x = 3,

starting at (2) and at (-22).

The equation we are solving is

2.7.57

P(X) - [x2-y+s x(x 3y)-2] = [O] .Y
2.7.58

21 By the mean value theorem, there exists a c between a and b such that

Isina - sinbl =

I cl sin a sin bI < la - bl.



In fact, it superconverges: the
number of correct decimals rough-
ly doubles at each iteration; we
see 1, then 3, then 8, then 14 cor-
rect decimals. We will discuss su-
perconvergence in detail in Section
2.8.
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Starting at (2), the MATLAB Newton program gives the following values:

2 2.1 2.10131373055664
xo = (2) ' xl = ( 2.27) ' xz = ( 2.25868946388913) '

2.10125829441818 2.10125829294805
X3 = ( 2.25859653392414) ' x4 = ( 2.25859653168689 '

2.7.59

and the first 14 decimals don't change after that. Newton's method certainly
does appear to converge.

But are the conditions of Kantorovitch's theorem satisfied? The MATLAB
program prints out a "condition number," cond, at each iteration, which is

Ax-)I I[DF(xi)[-'j'. Kantorovitch's Theorem says that Newton's method

will converge if cond M < 1/2, where M is a Lipschitz constant for [DP] on
Ui.

We first computed this Lipschitz constant without higher partial derivatives,
and found it quite tricky. It's considerably easier with higher partial derivatives:

D,Dtfl = 2 - sin(x - y); D1D2f1 = sin(x - y); D2D2I1 = -sin(x - y)
D. D1 f2 = -1; D,D2f2 = 0; D2D2f2 = 2, 2.7.60

so

E(D;Djfk)2 = (2 - sin(x - y))2 + 2(sin(x - y))2 + (sin(x - y))2 + 4;

ij

E(D;Djfk)2I <9+2+1+4= 16;
i,j

2.7.61

M = 4 is a Lipschitz constant for F on all of llt2.
Let us see what we get when coed M < 1/2. At the first iteration, cond

= 0.1419753 (the exact value is //18), and 4 x 0.1419753 > .5. So Kan-
torovitch's theorem does not assert convergence, but it isn't far off. At the next
iteration, we find cond = 0.00874714275069, and this works with a lot to spare.

What happens if we start at (-2 ) ? The computer gives

x° _ (
2),

xl = ( 1.3061391732438 ), x2 = ( 1.10354485721642 )

xs - ( 108572208 4222 ) ' xa = ( 1.08557875385529 )
1.82151878872556

X5 = 1.08557874485200 ) ' , '

and again the numbers do not change if we iterate the process further. It
certainly converges fast. The condition numbers are

0.3337, 0.1036, 0.01045, .... 2.7.62
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point in in domain
domain

ado (Df(soJ ` f{ao)

vector
In r nge

point minus vector equal, point

The computation we had made for the Lipschitz constant of the derivative is
still valid, so we see that the condition of Kantorovitch's theorem fails rather
badly at the first step (and indeed, the first step is rather large), but succeeds
(just barely) at the second. L

Remark. Although both the domain and the range of Newton's method are
n-dimensional, you should think of them as different spaces. As we mentioned,
in many practical applications they have different units. It is further a good
idea to think of the domain as made up of points, and the range as made up of
vectors. Thus f(a,) is a vector, and hi = -[Dff(a;)]-lf(a.) is an increment in
the domain, i.e., a vector. The next point &+1 = a + h'i is really a point: the
sum of a point and an increment.

Remark. You may not find Newton's method entirely satisfactory; what if you
don't know an initial "seed" ao? Newton's method is guaranteed to work only
when you know something to start out. If you don't, you have to guess and hope
for the best. Actually, this isn't quite true. In the nineteenth century, Cayley
showed that for any quadratic equation, Newton's method essentially always
works. But quadratic equations form the only case where Newton's method
does not exhibit chaotic behavior.22

2.8 SUPERCONVERGENCE

Kantorovitch's theorem is in some sense optimal: you cannot do better than
the given inequalities unless you strengthen the hypotheses.

and Theorem 2.7.11 guarantees that Newton's method will work, and will con-
verge to the unique root a = 1. The exercise further asks you to check that
h. = 1/2"+1 so a = 1-1/2a}1, exactly the rate of convergence advertised. A

Example 2.8.1 is both true and squarely misleading. If at each step Newton's
method only halved the distance between guess and root, a number of simpler
algorithms (bisection, for example) would work just as well.

the best Lipschitz ratio for f' is 2, so the product

If(ao)I 1(f,(ao))-1I2M = 1. (-2)2 .2=

Example 2.8.1 (Slow convergence). Consider solving f (x) = (x - 1)2 = 0
by Newton's method, starting at ao = 0. Exercise 2.8.1 asks you to show that

22For
a precise description of how Newton's method works for quadratic equations,

and for a description of how things can go wrong in other cases, see J. Hubbard and
B. West, Differential Equations, A Dynamical Systems Approach, Part I, Texts in
Applied Mathematics No. 5, Springer-Verlag, N.Y., 1991, pp. 227-235.
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Newton's method is the favorite scheme for solving equations because usually

it converges much, much faster than in Example 2.8.1. If, instead of allowing

the product in Inequality 2.7.48 to be <- 1/2, we insist that it be strictly less

than 1/2:

As a rule of thumb, if Newton's
method hasn't converged to a root
in 20 steps, you've chosen a poor
initial condition.

The 1/2 in xo = 1/2 is unre-
lated to the 1/2 of Equation 2.8.2.
If we were to define superconver-
gence using digits in base 10, then
the same sequence would super-
converge starting at x3 < 1/10.
For it to start superconverging at
xo, we would have to have xo
1/10.

If(ao)II[Df(ao)]_'I2M = k < 1
2

then Newton's method superconverges.

2.8.2

How soon Newton's method starts superconverging depends on the problem

at hand. But once it starts, it is so fast that within four more steps you will

have computed your answer to as many digits as a computer can handle. In
practice, when Newton's method works at all, it starts superconverging soon.

What do we mean when we say that a sequence ao, al, ... superconverges?
Our definition is the following:

Definition 2.8.2 (Superconvergence). Set xi = Ia;+I -ail; i.e., xi repre-
sents the difference between two successive entries of the sequence. We will
say that the sequence ao,al,... superconverges if, when the x; are written
in base 2, then each number xi starts with 2' - 1 ss 2' zeroes.

starting with xo = 1/2 (writtenFor example, the sequence xn+1 = X2,
.1 in base 2), superconverges to zero, as shown in the left-hand side of Figure
2.8.1. By comparison, the right-hand side of Figure 2.8.1 shows the convergence
achieved in Example 2.8.1, again starting with xe = 1/2.

xe=.1 xo=.1
xi=.01 x1=.01

X2 = .0001 x2 = .001

X3 = .00000001 x3 = .0001

X4 = .0000000000000001. x4 = .00001.

FIGURE 2.8.1. Left: superconvergence. Right: the convergence guaranteed by Kan-
torovitch's theorem. In both cases, numbers are written in base 2: .1 = 1/2,.01 =

1/4,.001 = 1/8,....

We will see that what goes wrong for Example 2.8.1 is that at the root a = 1,
f'(a) = 0, so the derivative of f is not invertible at the limit point: 1/f'(1)
does not exist. Whenever the derivative is invertible at the limit point, we do
have superconvergence. This occurs as soon as Equation 2.8.2 is satisfied: as
soon as the product in the Kantorovitch inequality is strictly less than 1/2.
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Theorem 2.8.3 (Newton's method superconverges). Let the condi-
tions of the Kantorovitch theorem 2.7.I1 be satisfied, but with the stronger
assumption that

f(ao)IIIDf(ao)J-h12M = k < 2. (2.8.2)

Set c = 1 - k I [Df(ao)J-' 12 . 2.8.3

z

If Ihnl 5
2c'

then Ihn+,nl <
1

(2) . 2.8.4

Equation 2.8.4 means superconvergence. Since hn = Ian+1 - anl, starting at
step n and using Newton's method for m iterations causes the distance between
an and a,+- to shrink to practically nothing before our eyes. For example, if
m = 10:

Even if k is almost 1/2, so that
c is large, the factor (1/2)2m will

1 (1110. 2.8.5soon predominate. Ian+m c /
The proof requires the following lemma, proved in Appendix A.3.

Lemma 2.8.4. If the conditions of Theorem 2.8.3 are satisfied, then for all i,

Ihi+ll 5 CIQ2 2.8.6

Proof of Theorem 2.8.3. Let x; = cIh';I. Then

x,+1 = clh;+il S c21&12 = x;. 2.8.7

Our assumption that tells us that xn < 1/2. So

xn+1 5 xn
1

(1)2'

22

xn+2 5 (xn+1)2 5 xn 5 16 = (2) 2.8.8

1
2-

X.+- 5x,"' -(2)
Since Ihn1 < , we have the result we want, Equation 2.8.4:

if Ihnl < 2c, then Ihn+mI <- 1 . (1) . O 2.8.9
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Kantorovitch's theorem: a stronger version (optional)

We have seen that Newton's method converges much faster than guaranteed
by Kantorovitch's theorem. In this subsection we show that it is possible to
state Kantorovitch's theorem in such a way that it will apply to a larger class
of functions. We do this by using a different way to measure linear mappings:
the norm IIAII of a matrix A.

Definition 2.8.5 (The norm of a matrix). The norm IIAII of a matrix A
is

11 All = sup IAI, when Ifi = 1. 2.8.10

Multiplication by the matrix A
of Example 2.8.6 can at most dou-
ble the length of a vector; it does
not always do so; the product A',

where

1

= [ 20

1 l and b =
L

11

is 1 11 , with

lengtJh

1.

L J1

There are many equations for
which convergence is guaranteed if
one uses the norm, but not if one
uses the length.

This means that IIAII is the maximum amount by which multiplication by A
will stretch a vector.

Example 2.8.6 (Norm 1of a matrixr).11 Take
11

A={ 01 and=1y1sothat Ax=(2XJ.

Since by definition 191 = x2 -+y2 = 1, we have l

IIAII = sup IAMI = sup 4z2 + y2 = 2. A 2.8.11
1x1=1

setting x=1,y=0

In Example 2.8.6, note that IIAII = 2, while JAI = %F5. It is always true that

IIAII 5 JAI; 2.8.12

this follows from Proposition 1.4.11, as you are asked to show in Exercise 2.8.2.

This is why using the norm IIAII rather than the length IAI makes Kan-
torovitch's theorem stronger: the theorem applies equally as well when we use
the norm rather than the length to measure the derivative [Df(x)] and its in-
verse, and the key inequality of that theorem, Equation 2.7.48, is easier to
satisfy using the norm.

Theorem 2.8.7 (Kantorovitch's Theorem: a stronger version). Ken-
torovitcb's theorem 2.7. 11 still holds if you replace all lengths of matrioee by
norms of matrices.

Proof. In the proof of Theorem 2.7.11 we only used the triangle inequality
and Proposition 1.4.11, and these hold for the norm IIAII of a matrix A as well
as for its length IAI, as Exercises 2.8.3 and 2.8.4 ask you to show.
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FIGURE 2.8.2.
The diagram of the trigonomet-
circle for Example 2.8.8.

Unfortunately, the norm is usually much harder to compute than the length.
In Equation 2.8.11 above, it is not difficult to see that 2 is the largest value of

4x2 + y2 compatible with the requirement that x2 + y2 = 1, obtained by
setting x = 1 and y = 0. Computing the norm is not often that easy.

Example 2.8.8 (Norm is harder to compute). The length of the matrix

A = I
1

is v/-1F+-P-+-17 = f, or about 1.732. The norm is 2 gr, or

about 1.618; arriving at that figure takes some work, as follows. A vector I x 1

r 1
lily

with length 1 can be written I sos t J ,
and the product of A and that vector is

sss

cost + sin t to find
sin t

1 so the object isl j

sup (cost + sin t)2 + sine t . 2.8.13

At its maximum and minimum, the derivative of a function is 0, so we need
to see where the derivative of (cost + sin t)2 + sine t vanishes. That derivative
is sin 2t + 2 cos 2t, which vanishes for 2t = arctan(-2). We have two possible
angles to look for, ti and t2, as shown in Figure 2.8.2; they can be computed
with a calculator or with a bit of trigonometry, and we can choose the one that
gives the biggest value for Equation 2.8.13. Since the entries of the matrix A
are all positive, we choose ti, in the first quadrant, as being the best bet.

By similar triangles, we find that

cos 2t
1 2i = -75 and sin2ti = 755. 2.8.14

Using the formula cos2ti = 2cos2ti - I = 1 -2sin2t, we find that

costs= 2I1-I, and sinti= 2I1+ I, 2.8.15

which, after some computation, gives

r cos t1 + sin ti 1 l2 = 3 + V(5-
sin ti J 2

and finally J(AIJ=II1o lJII= 1 2. 2.8.17

Remark. We could have used the following formula for computing the norm
of a 2 x 2 matrix from its length and its determinant:

IIAII=
iAt2+ IA2-4(detA)2

2.8.18



"Mat" of course stands for
"matrix"; Mat (2,2) is the space
of 2 x 2 matrices.

You might think that some-

thing like [-1 3] would be even

better, 1but squaring that gives

L-g 61. In addition, starting

with a diagonal matrix makes our
computations easier.

You may recognize the AB +
BA in Equation 2.8.22 from Equa-
tion 1.7.45, Example 1.7.15.
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In higher dimensions things are much worse. It was to avoid this kind of com-
plication that we used the length rather than the norm when we proved Kan-
torovitch's theorem in Section 2.7.

In some cases, however, the norm is easier to use than the length, as in the
following example. In particular, norms of multiples of the identity matrix are
easy to compute: such a norm is just the absolute value of the multiple.

Example 2.8.9 (Using the norm in Newton's method). Suppose we

want to find a 2 x 2 matrix A such that A2 = I -8
10

1. So we define F

Mat (2, 2) -. Mat (2, 2) by L

F(A)=A2-I-8 10], 2.8.19

and try to solve it by Newton's method. First we choose an initial point Ao. A
logical place to start would seem to be the matrix

r 1

AI = I 0 3 ] ' so that Aa =
L

0 9 ] . 2.8.20

We want to see whether the Kantorovitch inequality 2.7.48 is satisfied, i.e., that

IF(Ao)I MIIIDF(Ao)J-'112 <- 1
2

2.8.21

First, compute the derivative:

[DF(A)JB = AB + BA. 2.8.22

The following computation shows that A i (DF(A)J is Lipschitz with re-
spect to the norm. with Lipschitz ratio 2 on all of Mat (2, 2):

II[DF(Ai)J - [DF(A2)JII = sup I((DF(A1)l - (DF(Az)J) B
IBI=1

= sup JAI B + BAI - A2B - BA2J = sup l(A1- A2)B + B(A1 - A2)l
IBI=I IBI=I

sup I (AI - A2)BI + I B(AI - A2)I <- sup JAI - A2JIBI + JBIIAI - A21
1II= 1131=1

5 sup 2IBIJAI - A21 = 2IA1 - A21.
IBI=I

Now we insert AO into Equation 2.8.19, getting

F(Ao)=[0 9 9]-[-i i0]=[1
so that IF(Ao)l = v4 -- 2.

2.8.23

2.8.24
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Trying to solve Equation 2.8.19
without Newton's method would
be unpleasant. In a draft of this
book we proposed a different ex-
ample, finding a 2 x 2 matrix A
such that

r

A2+A= [1 iJ.

A friend pointed out that this
problem can be solved explicitly
(and more easily) without New-
ton's method, as Exercise 2.8.5
asks you to do.

Now we need to compute II[DF(Ao)]-1112. Using Equation 2.8.22 and the
fact that Ao is three times the identity, we get

[DF(Ao)]B = AoB + BAo = 3B + 3B = 6B. 2.8.25

So we have

[DF(Ao)]-'B = 6

The inverse and implicit func-
tion theorems are a lot harder
than the corresponding linear the-
orems, but most of the hard work
is contained in the proof of Kan-
torovitch's theorem concerning
the convergence of Newton's me-
thod.

"Implicit" means "implied."
The statement 2x - 8 = 0 implies
that x = 4; it does not say it ex-
plicitly (directly).

II[DF(Ao)]-'II = sup IBI61 = sup
IBI = 1/6, 2.8.26

JBl=1 181=1 6

II[DF(Ao)]-1112 = T6'
see thatThe left-hand side of Equation 2.8.21 is 2 2 1/36 = 1/9, and wet

the inequality is satisfied with room to spare: if we start at I 0 31 and use

Newton's method, we can compute the square root of f
8

1111

1 10

2.9 THE INVERSE AND IMPLICIT FUNCTION
THEOREMS

In Section 2.2 we completely analyzed systems of linear equations. Given
a system of nonlinear equations, what solutions do we have? What variables
depend on others? Our tools for answering these questions are the implicit
function theorem and its special case, the inverse function theorem. These two
theorems are the backbone of differential calculus, just as their linear analogs,
Theorem 2.2.4 and its special case, Theorem 2.2.5, are the backbone of linear
algebra. We will start with inverse functions, and then move to the more general
case.

Inverse functions in one dimension

An inverse function is a function that "undoes" the original function. If f (x) =
2x, clearly there is a function 9(f (x)) = x, mainly, g(y) = y/2. Usually finding
an inverse isn't so straightforward. But the basic condition for a continuous
function in one variable to have an inverse is simple: the function must be
monotone.

Definition 2.9.1 (Monotone function). A function is monotone if its
graph always goes up or always goes down: if x < y always implies f (x) <
f (y), the function is monotone increasing, if x < y always implies f (x) >
f (y), the function is monotone decreasing.
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FIGURE 2.9.1.

The function f (x) = 2x + sin x
is monotone increasing; it has an
inverse function g(2x + sin x) = x,
but finding it requires solving the

If a function f that expresses x in terms of y is monotone, then its inverse
function g exists expressing y in terms of x. In addition you can find g(y) by a
series of guesses that converge to the solution, and knowing the derivative of f
tells you how to compute the derivative of g.

More precisely:

Theorem 2.9.2 (Inverse function theorem in one dimension). Let
f : [a, b] - [c, d] be a continuous function with f (a) = c , f (b) = d and with
f increasing (or decreasing) on [a, b] . Then:

(a) There exists a unique continuous function g : [c, d] -+ [a, b] such that

f (g(y)) = y, for all y E [c, d], and 2.9.1

g(f (x)) = x, for all x E [a, b]. 2.9.2

(b) You can find g(y) by solving the equation y - f (z) = 0 for x by bisection
(described below).

(c) If f is differentiable at x E (a, b), and f(x) 54 0, then g is differentiable
at f (x), and its derivative satisfies g' (f (x)) = I/ f'(x) .

equation 2x+sin x = y, with x the You are asked to prove Theorem 2.9.2 in Exercise 2.9.1.
unknown and y known. This can
be done, but it requires an approx-

Example 2.9.3 (An inverse function in one dimension). Take f (x) _imation technique; you can't find
2x+sin x, shown in Figure 2.9.1, and choose [a, b] = [-kzr, k7r] for some positivea formula for the solution using al- integer k . Then

gebra, trigonometry or even more
advanced techniques. f(a) = f (-ka) = -2k7r + sin(-ka) and f (b) = f (kir) = 2k7r + sin(kxr); 2.9.3

Part (c) justifies the use of im-
plicit differentiation: such state-
ments as

- 1arcsin'(x) 1 - x2

is not a particularly hard equation to "solve," but you can't find a formula for
the solution using algebra, trigonometry or even more advanced techniques.
Instead you must apply some approximation technique. L

In several variables the approximation technique we will use is Newton's
method; in one dimension, we can use bisection. Suppose you want to solve
f (x) = y, and you know a and b such that f (a) < y and f (b) > y. First try the
x in the middle of [a, b], computing f(y). If the answer is too small, try the
midpoint of the right half-interval; if the answer is too big, try the midpoint of
the left half-interval. Next choose the midpoint of the quarter-interval to the

=o =0
i.e., f (a) = 2a and f (b) = 2b, and since f(x) = 2 + cos x, which is > 1, we
see that f is strictly increasing. Thus Theorem 2.9.2 says that y = 2x + sin x
expresses x implicitly as a function of y for y E [-2ktr, 2kir]: there is a function
g : [-2k7r, 2k7r] -. [-kr, kxr] such that g(f(x)) = g(2x + sin x) = x.

But if you take a hardnosed attitude and say, "Okay, so what is g(1)?", you
will see that this question is not so easy to answer. The equation I = 2x+sinx,
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right (if your answer was too small) or to the left (if your answer was too big).

The sequence of a chosen this way will converge to g(y).
Note, as shown in Figure 2.9.2, that if a function is not monotone, we cannot

expect to find a global inverse function, but there will usually be monotone

stretches of the function for which local inverse functions exist.

FIGURE 2.9.2.
The function graphed above is

not monotone and has no global
inverse; the same value of y gives
both x = B and x = C. Similarly,
the same value of y gives x = A
and x = D. But it has many local
inverses; the are AB and the arc
CD both represent x as a function
of Y.

The inverse function theorem is
really the "local" inverse function

theorem, carefully specifying the

domain and the image of the in-
verse function.

As in Section 1.7, we are using
the derivative to linearize a non-
linear problem.

Fortunately, proving this con-
structivist version of the inverse

function theorem is no harder than
proving the standard version

Inverse functions in higher dimensions

In one dimension, monotonicity of a function is a sufficient (and necessary)
criterion for an inverse function to exist, and bisection can be used to solve the
equations. The point of the inverse function theorem is to show that inverse
functions exist in higher dimensions, even though monotonicity and bisection
do not generalize. In higher dimensions, we can't speak of a mapping always
increasing or always decreasing. The requirement of monotonicity is replaced
by the requirement that the derivative of the mapping be invertible. Bisection
is replaced by Newton's method. The theorem is a great deal harder in higher
dimensions, and you should not expect to breeze through it.

The inverse function theorem deals with the case where we have as many
equations as unknowns: f maps U to W, where U and W are both subsets of
R". By definition, f is invertible if the equation f(x) = y has a unique solution
xEUfor every y E W.

But generally we must be satisfied with asking, if f(xo) = yo, in what neigh-
borhood of yo does there exist a local inverse? The name "inverse function
theorem" is somewhat misleading. We said in Definition 1.3.3 that a transfor-
mation has an inverse if it is both onto and one to one. Such an inverse is
global. Very often a mapping will not have a global inverse but it will have a
local inverse (or several local inverses): there will be a neighborhood V C W of
yo and a mapping g : V -+ U such that (f o g)(y) = y for all y E V.

The statement of Theorem 2.9.4 is involved. The key message to retain is:

If the derivative is invertible, the mapping is locally invertible.

More precisely:

If the derivative of a mapping f is invertible at some point xo, the mapping
is locally invertible in some neighborhood of the point f(xo)

All the rest is spelling out just what we mean by "locally" and "neighbor-
hood." The standard statement of the inverse function theorem doesn't spell
that out; it guarantees the existence of an inverse, in the abstract: the theorem
is shorter, but also less useful. If you ever want to use Newton's method to
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compute an inverse function, you'll need to know in what neighborhood such a
function exists.23

We saw an example of local
vs. global inverses in Figure 2.9.2;
another example is f (x) = x2.
First, any inverse function off can
only be defined on the image of
f, the positive real numbers. Sec-
ond, there are two such "inverses,"
9i(y) = +fv and 92(v) = -v',
and they both satisfy f (g(v)) _
y, but they do not satisfy

9(f(x)) =x.
However, gi is an inverse if the
domain off is restricted to x > 0,
and g2 is an inverse if the domain
of f is restricted to x G 0.

The statement "suppose that
the derivative L = IDf(xo)) is
invertible" is the key condition of
the theorem.

We could write f (g(y)) = y as
the composition

(f o g)(y) = Y.
On first reading, skip the last

sentence concerning the little ball
with radius Rr, centered at xo.
It is a minor point, and we will
discuss it later. Do notice that we
have two main balls, Wo centered
at xo and V centered at yo =
f(xo), as shown in Figure 2.9.3.

The ball V gives a lower bound
for the domain of g; the actual
domain may be bigger.

Theorem 2.9.4 (The Inverse function theorem). Let W C R'a be an
open neighborhood of xo, and f : W -. R- be a continuously differentiable
function. Set yo = f(xo), and suppose that the derivative L = [Df(xo)[ is
invertible.

Let R > 0 be a number satisfying the following hypotheses:

(1) The ball Wo of radius 2RIL-II and centered at xo is contained in W.

(2) In Wo, the derivative satisfies the Lipschitz condition
Lipsrhits ratio
I --- ^

[Df(u)[-[Df(v)]1< 2RIL -212 lu - VI. 2.9.4

There then exists a unique continuously differentiable mapping g from the
ball of radius R centered at yo (which we will denote V) to the ball WO:

g : V -+ Wo, such that 2.9.5

f (g(y)) = y and [Dg(y)) = [Df(g(y))1-1. 2.9.6

Moreover, the image of g contains the ball of radius Rl around xo, where

Rl = 2RIL-1I2 (ILI2 +
IL

11Iz - ILI) . 2.9.7

The theorem tells us that if certain conditions are satisfied, then f has a
local inverse function g. The function f maps every point in the lumpy-shaped
region g(V) to a point in V, and the inverse function g will undo that mapping,
sending every point in V to a point in g(V).

Note that not every point f(x) is in the domain of g; as shown in Figure
2.9.3, f maps some points in W to points outside of V. For this reason we had
to write f(g(y)) = y in Equation 2.9.6, rather than g(f(x)) = x. In addition,
the function f may map more than one point to the same point in V, but only
one can come from Wo (and any point from Wo must come from the subset
g(V)). But g maps a point in V to only one point. (Indeed, if g mapped the
same point in V to more than one point, then g would not be a well-defined

23But once your exams are over, you can safely forget the details of how to compute
that neighborhood, as long as you remember (1) if the derivative is invertible, the
mapping is locally invertible, and (2) that you can look up statements that spell out
what "locally" means.
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mapping, as discussed in Section 1.3.) Moreover, that point is in Wo. This may
appear obvious from Figure 2.9.3; after all, g(V) is the image of g and we can
see that g(V) is in Wl. But the picture is illustrating what we have to prove,
not what is given; the punch line of the theorem is precisely that " ... then
there exists a unique continuously differentiable mapping from ... V to the ball
Wo."

r

BRi xo)

w r

FIGURE 2.9.3. The function f : W - R- maps every point in g(V) to a point in
V; in particular, it sends xo to yo. Its inverse function g : V -. Wo sends every point
in V to a point in g(V). Note that IF can well map other points outside Wo into V.

Do you still remember the main point of the theorem? Where is the mapping

f
('Y/

- 1%Z 2

guaranteed by the inverse function theorem to be locally invertible?21

You're not being asked to spell out how big a neighborhood "locally" refers to, so
you can forget about R, V, etc. Remember, if the derivative of a mapping is invertible,
the mapping is locally invertible. The derivative is

[Df(y)] - [2x y -T2y]'
The formula for the inverse of a 2'x 2 matrix

[a b - 1 d bA-
c d

la A-' - ad - be -c a

and here ad - be = -2(x' + y2), which is 0 only if x =/ 0` and y = 0. The function

is locally invertible near every point except f \ U / = 1 0 J . To determine whether

a larger matrix is invertible, use Theorem 2.3.2. Exercise 1.4.12 shows that a 3 x 3
matrices is invertible if its determinant is not 0.
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Ro

FIGURE 2.9.4.
The graph of "best Lipschitz

constant" MR for [Df] on the ball
of radius 2RJL-'J increases with
R, and the function

1

2RIL-1 12

decreases. The inverse function
theorem only guarantees an in-
verse on a neighborhood V of ra-
dius R when

1

2RI L-112
< MR.

In emphasizing the "main point" we don't mean to suggest that the details
are unimportant. They are crucial if you want to compute an inverse function,
since they provide an effective algorithm for computing the inverse: Newton's
method. This requires knowing a lower bound for the natural domain of the
inverse: where it is defined. To come to terms with the details, it may help to
imagine different quantities as being big or little, and see how that affects the
statement. First, in an ideal situation, would we want R to be big or little?
We'd like it to be big, because then V will be big (remember R is the radius
of V) and that will mean that the inverse function g is defined in a bigger
neighborhood. What might keep R from being big? First, look at condition (1)
of the theorem. We need Wo to be in W, the domain of f. Since the radius of
Wo is 2RIL''1, if R is too big, Wo may no longer fit in W.

That constraint is pretty clear. Condition (2) of the theorem is more delicate.
Suppose that on W the derivative [Df(x)) is locally Lipschitz. It will then be
Lipschitz on each Wo C W, but with a best Lipschitz constant MR which starts
out at some probably non-zero value when Wo is just a point (i.e., when R = 0),
and gets bigger and bigger as R increases (it's harder to satisfy a Lipschitz
ratio over a large area than a small one). On the other hand, the quantity
1/(2R[L-'[2) starts at infinity when R = 0, and decreases as R increases (see
Figure 2.9.4). So Inequality 2.9.4 will be satisfied when R is small; but usually
the graphs of MR and 1/(2R[L-'[2) will cross for some Ro, and the inverse
function theorem does not guarantee the existence of an inverse in any V with
radius larger than Ro.

The conditions imposed on R may look complicated; do we need to worry
that maybe no suitable R exists? The answer is no. If f is differentiable, and
the derivative is Lipschitz (with any Lipschitz ratio) in some neighborhood of
xo, then the function MR exists, so the hypotheses on R will be satisfied as
soon as R < Re. Thus a differentiable map with Lipschitz derivative has a local
inverse near any point where the derivative is invertible: if L-' exists, we can
find an R that works.

Do we really have to check that the derivative of a function is Lipschitz?
The main difficulty in apply- The answer is no: as we will see in Corollary 2.7.8, if the second partia!

ing these principles is that MR derivatives off are continuous, then the derivative is automatically Lipschitzis usually very hard to compute, in some neighborhood of xo. Often this is enough.
and IL-' I, although usually easier,
may be unpleasant too.

Remark. The standard statement of the inverse function theorem, which
guarantees the existence of an inverse function in the abstract, doesn't require
the derivative to be Lipschitz, just continuous.25 Because we want a lower

Z"Requiring that the derivative be continuous is necessary, as you can see by looking
at Example 1.9.3, in which we described a function whose partial derivatives are not
continuous at the origin; see Exercise 2.9.2
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xt_ -- 1

bound for R (to know how big V is), we must impose some condition about how
the derivative is continuous. We chose the Lipschitz condition because we want
to use Newton's method to compute the inverse function, and Kantorovitch's
theorem requires the Lipschitz condition.

Proof of the inverse function theorem

FIGURE 2.9.5.

Newton's method applied to the
equation fy(x) = 0 starting at xo
converges to a root in Uo. Kan-
torovitch's theorem tells us this is
the unique root in Us; the inverse
function theorem tells us that it is

We show below that if the conditions of the inverse function theorem are sat-
isfied, then Kantorovitch's theorem applies, and Newton's method can be used
to find the inverse function.

Given y E V, we want to find x such that f(x) = y. Since we wish to use
Newton's method, we will restate the problem: Define

fy(W ) 4-e f(x)
- Y = 0. 2.9.8

We wish to solve the equation fy(x) = 0 for y E V, using Newton's method
with initial point x0.

We will use the notation of Theorem 2.7.11, but since the problem depends
on y, we will write ho(y), Uo(y), etc. Note that

[Dfy(xo)I = []Df(xo)I = L, and fy(xo) = f(xo) -y = yn - y,ti
=Yo

the unique root in all of W5. so that

We get the first equality in
Equation 2.9.10 by plugging in ap-
propriate values to the definition
of ho given in the statement of
Kantorovitch's theorem (Equation
2.7.46):

ho = -[Df(ao)]-'f(ao).

Recall that in Equation 2.9.10
we write ho(y) rather than ho be-
cause our problem depends on y:
we are solving f,. = 0.

ha(Y) _ - [Dff (^ ) tfY(xo) _ y).
L

2.9.9

2.9.10

This implies that Iho(y)I 5 IL-11R, since yo is the center of V, y is in V,
and the radius of V is R, giving IYo -yj < R. Now we compute xt = xo+ho(y)
(as in Equation 2.7.46, where a, = ao + ho). Since Iho(y)I is at most half the
radius of WO (i.e., half 2RIL-'I), we see that Uo(y) (the ball of radius Iho(y)I
centered at xi) is contained in Wo, as suggested by Figure 2.9.5.

Now we see that the Kantorovitch inequality (Equation 2.7.48) is satisfied:

Iff(xo)I I[Df(xo)]-' I2 M < R IL-1 12 I = I 2 9 11
-

IYO-YI<-R
I ---

IL-P
2RIL-'

12

2
. .

M'

Thus Newton's method applied to the equation fy(x) = 0 starting at xo
converges; denote the limit by g(y). Certainly on V, f o g is the identity: as
we have just shown, f(g(y)) = Y. 0

We now have our inverse function g. A complete proof requires showing that
g is continuously differentiable. This is shown in Appendix A.4.

Example 2.9.5 (Where is f invertible?). Where is the function
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.6

B

f ()=(sx2xy2)) 2.9.12

locally invertible? The derivative is

[Df (x) ] _ cos(x + y) cos(x + y) 2.9.13
Y - [ 2x -2y

which is invertible if -2ycos(x+y)-2xcos(x+y) j4 0. (Remember the formula
for the inverse of a 2 x 2 matrix.26) So f is locally invertible at all points f x0

yo )
that satisfy -y 56 x and cos(x + y) # 0 (i.e., x + y 96 a/2 + k7r). A

Remark. We strongly recommend using a computer to understand the map-
ping f : R2 --. &22 of Example 2.9.5and, more generally, any mapping from l 2 to
1182. (One thing we can say without a computer's help is that the first coordinate
of every point in the image of f cannot be bigger than 1 or less than -1, since
the sine function oscillates between -1 and 1. So if we graph the image using
x, y coordinates, it will be contained in a band between x = -1 and x = 1.)
Figures 2.9.6 and 2.9.7 show just two examples of regions of the domain of f
and the corresponding region of the image. Figure 2.9.6 shows a region of the
image that is folded over; in that region the function has no inverse.

Y

FIGURE 2.9.6.
Top: The square -.6 < x <

.6, -2.2 < y < 1. Bottom: Its im-
age under the mapping f of Ex-
ample 2.9.5. Note that the square
is folded over itself along the line
x + y = -or/2 (the line from B to
D); f is not invertible in the neigh-
borhood of the square.

C D

FIGURE 2.9.7. The function f of Example 2.9.5 maps the region at left to the region
at right. In this region, f is invertible.

Example 2.9.6. Let CI be the circle of radius 3 centered at the origin in R2,
and C2 be the circle of radius 1 centered at ('0). What is the loci of centers
of line segments drawn from a point of Cl to a point of C2?

2s a 6 '_ 1 d -b]
[c d] ad - bc [-c a
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It follows from the formula for
the inverse of a 2 x 2 matrix that
the matrix is not invertible if its
determinant is 0; Exercise 1.4.12
shows that the same is true of
3 x 3 matrices. Theorem 4.8.6
generalizes this to n x n matrices.

Does Example 2.9.6 seem arti-
ficial? It's not. Problems like this
come up all the time in robotics;
the question of knowing where a
robot arm can reach is a question
just like this.

We say "guaranteed to exist"
because the actual domain of the
inverse function may be larger
than the ball V.

The center of the segment joining

(3cos01 cc, to3sine

is the point

(cos?+10) EC2 2.9.14
ll sin p 1

F(8) = 1 (3cos9+cosp+101
<p 2 ` 3sin9+smcp ) 2.9.15

We want to find the image of F. A point (,) where is invertible

will certainly be in the interior of the image (since points in the neighborhood
of that point are also in the image), so the candidates to be in the boundary of

the image are those points F (') where [DF ( ,)] is not invertible. Since

g 1 -3sin9 -sinwp 2.9.16det[DF(p)] = 4 det I 3cos9 cosV

= -3 (sin 0 cos'p - cos 0 sin') _ 3 sin(B - p),
4 4

which vanishes when 8 = p and when 0 = p +lr, we see that the candidates for
the boundary of the image are the points

F(0) _ (2cos0+5) and F( 8 1 = (coso+5)
0 2sinB 0+tr \ sing 2.9.17

i.e., the circles of radius 2 and 1 centered at p = (10). The only regions whose
boundaries are subsets of these sets are the whole disk of radius 2 and the
annular region between the two circles. We claim that the image of F is the
annular region, since the symmetric of C2 with respect to p is the circle of
radius 1 centered at the origin, which does not intersect C1, so p is not in the
image of F. 0

Example 2.9.7 (Quantifying "locally"). Now let's return to the function
f of Example 2.9.5; let's choose a point xo where the derivative is invertible and
see in how big a neighborhood of f(xo) an inverse function is guaranteed to exist.

We know from Example 2.9.5 that the derivative is invertible at xo = (O)
.

This gives I,= [Df(0)] = I -
L

0
1

-27r
so

L_1 - I -2zr 1 and L-1 z = 4a2 + 2
2rr 1-0 -1, '

4tr2
2.9.18
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For the first inequality of Equa-
tion 2.9.19, remember that

cos a - cos bj < ja - b1,

and set a = ui+u2 and b = vi+v2.

In going from the first square
root to the second, we use

(a + 6)2 < 2(a2 + b2),

setting a = ui -vi and b = u2 -V2-

Since the domain W of f is
Tii;2, the value of R in Equation
2.9.20 clearly satisfies the require-
ment that the ball Wo with radius
2RIL-'I be in W.

Next we need to compute the Lipschitz ratio M (Equation 2.9.23). We have

I[Df(u)] - [Df(v)]I

-_ I Icos(u, + u2) - cos(vi + v2) coa(u, + u2) - coS(vi +

v2)

//

2(u1 - vi) 2(v2 - vi)

- I[u` 2( u1 -v1)
v2 ul

2(V2 - U2)

2((ul - v1) + (u2 - v2))2\+ 4l(ui - vl)2 + (u2 - v2)2)

4((ul - vi)2 + (U2 - V2)2) + 4((ul - v1)2 + (u2 - v2)2)

=V8- Iu - vi. 2.9.19

Our Lipschitz ratio M is thus f = 2V', allowing us to compute R:

2

2RIL-ILso R=4(4x2+2) 0.16825. 2.9.20

The minimum domain V of our inverse function is a ball with radius .:: 0.17.
What does this say about actually computing an inverse? For example, since

f (a) = and (-10) is within .17 of

then the inverse function theorem tells us that by using Newton's method we
can solve for x the equation f(x) = (_10 ). A

The implicit function theorem

We have seen that the inverse function theorem deals with the case where we
have n equations in n unknowns. Forgetting the detail, it says that if U C Ilt"
is open, f : U -+ R" is differentiable, f(xv) = yo and [Df(xo)] is invertible,
then there exists a neighborhood V of yo and an inverse function g : V -+ R"
with g(yo) = xo, and f o g(y) = y. Near (yo), the equation f(x) = y (or
equivalently, f(x) - y = 0) expresses x implicitly as a function of y.

Stated this way, there is no reason why the dimensions of the variables x and
y should be the same.

Example 2.9.8 (Three variables, one equation). The equation x2 + y2 +
0

z2 -1 = 0 expresses z as an implicit function of near 0 . This implicit
1

function can be made explicit: z = 1 - x2 - y2; you can solve for z as a
function of x and y. A
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Recall that C' means continu-
ously differentiable: differentiable
with continuous derivative. We
saw (Theorem 1.9.5) that this is
equivalent to requiring that all
the partial derivatives be contin-
uous. As in the case of the in-
verse function theorem, Theorem
2.9.9 would not be true if we did
not require. [DF(x)] to be contin-
uous with respect to x. Exercise
2.9.2 shows what goes wrong in
that case. But such functions are.
pathological; in practice you are
unlikely to run into any.

Theorem 2.9.9 is true as stated,
but the proof we give requires that
the derivative be Lipschitz.

More generally, if we have n equations in n + m variables, we can think of
m variables as "known," leaving n equations in the n "unknown" variables,
and try to solve them. If a solution exists, then we will have expressed the n
unknown variables in terms of the m known variables. In this case, the original
equation expresses the n unknown variables implicitly in terms of the others.

If all we want to know is that an implicit function exists on some unspecified
neighborhood, then we can streamline the statement of the implicit function
theorem; the important question to ask is,"is the derivative onto?"

Theorem 2.9.9 (Stripped-down version of the Implicit function the-
orem). Let U bean open subset of1R1+m. Let F : U R" be a Cl mapping
such that F(c) = 0, and such that its derivative, the linear transformation
[DF(c)), is onto. Then the system of linear equations [DF(c)](x) = 0 has
n pivotal variables and m non-pivotal variables, and there exists a neighbor-
hood of c for which F = 0 implicitly defines then pivotal variables in terms
of the m non-pivotal variables.

The implicit function theorem thus says that locally, the mapping behaves
like its derivative-i.e., like its linearization. Since F goes from a subset of
1R"+m to R". its derivative goes from R"+'" to R". The derivative [DF(c)]
being onto means that it spans R". Therefore [DF(c)] has n pivotal columns
and m non-pivotal columns. We are then in the case (2b) of Theorem 2.2.4;
we can choose freely the values of the m non-pivotal variables; those values will
determine the values of the n pivotal variables. The theorem says that locally,
what is true of the derivative of F is true of F.

The full statement of the implicit function theorem

In Sections 3.1 and 3.2, we will see that the stripped-down version of theimplicit
function theorem is enough to tell us when an equation defines a smooth curve,
surface or higher dimensional analog. But in these days of computations, we
often need to compute implicit functions; for those, having a precise bound on
the domain is essential. For this we need the full statement.

Note that in the long version of the theorem, we replace the condition that
the derivative be continuous by a more demanding condition, requiring that the
derivative be Lipschitz. Both conditions are ways of ensuring that the derivative
not change too quickly. In exchange for the more demanding hypothesis, we
get an explicit domain for the implicit function.

The theorem is long and involved, so we'll give some commentary.
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The assumption that we are
trying to express the first n vari-
ables in terms of the last in is a
convenience; in practice the ques-
tion of what to express in terms of
what will depend on the context.

We represent by a the first n

coordinates of c and by b the last

in coordinates. For example, if

n=2and in =1,the point cER3
// \

might be (),
0Z

with a= I 1 J E
2 \ /

ig2,andb=2E18.

If it isn't clear why L is invert-
ible, see Exercise 2.3.6.

The 0 stands for the in x n zero
matrix; I,,, is the in x in identity
matrix. So L is (n+in) x (n+m).
If it weren't square, it would not
be invertible.

Equation 2.9.25, which tells us
how to compute the derivative of
an implicit function, is important;
we will use it often. What would
we do with an implicit function if
we didn't know how to differentiate
it?

First line, through the line immediately following Equation 2.9.21: Not only is
[DF(c)] is onto, but also the first n columns of [DF(c)) are pivotal. (Since

F goes from a subset of R+- to R", so does [DF(c)]. Since the matrix of
Equation 2.9.21, formed by the first n columns of that matrix, is invertible, the
first n columns of [DF(c)] are linearly independent, i.e., pivotal, and [DF(c)]
is onto.)

The next sentence: We need the matrix L to be invertible because we will use
its inverse in the Lipschitz condition.

Definition of Wo: Here we get precise about neighborhoods.

Equation 2.9.23: This Lipschitz condition replaces the requirement in the
stripped-down version that the derivative be continuous.

Equation 2.9.24: Here we define the implicit function g.

Theorem 2.9.10 (The implicit function theorem). Let W be an open
neighborhood of c = (b) E R--, and F : W -. Ra be differentiable, with
F(c) = 0. Suppose that then x n matrix

[Dl F(c), ... , DnF(c)],

representing the first n columns of the derivative of F, is invertible.
Then the following matrix, which we denote L, is invertible also:

L = [DI F(c), .
0
.. , DnF(c)] [D0+1F(c),

I.
. , DmF(c)]

2.9.21

2.9.22

Let Wo = B2RIt-1I(c) C Rn+' be the ball of radius 2R[L-1I centered at
c. Suppose that R > 0 satisfies the following hypotheses:

(1) It is small enough so that WO C W.

(2) In Wo, the derivative satisfies the Lipschitz condition

f [DF(u)] - [DF(v)], <
2R]L-1 12 ]u - v]. 2.9.23

Then there exists a unique continuously differentiable mapping

g: BR(b) B2RIL-tI(a) such that F(r)) = 0 for all y E BR(b),
2.9.24

and the derivative of the implicit function g at b is

[Dg(b)] _ -[D1F(c),...,D,F(c))-'LDn+fF(c),...,Dn+mF(c)J. 2.9.25
partial deriv. for partial deriv. for
pivotal variablee eon-pivotal variables



Since the range of F is R",
saying that [DF(c)j is onto is the
same as saying that it has rank
n. Many authors state the implicit
function theorem in terms of the
rank.

The inverse function theorem
is the special case of the implicit
function theorem where we have
2n variables: the unknown n-
dimensional variable x and the
known n-dimensional variable y,
and where our original equation is
f(x) - y = 0; it is the case where
we can separate out the y from
F(y).

There is a sneaky way of mak-
ing the. implicit function theorem
be a special case of the inverse
function theorem; we use this in
our proof.

Equation 2.9.28: In the lower
right-hand corner of L we have the
number 1, not the identity matrix
I ; our function F goes from to
1[8, so n = m = 1, and the 1 x 1
identity matrix is the number 1.
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Summary. We assume that we have an n-dimensional (unknown) variable

x, an m-dimensional (known) variable y, an equation F : R` ` " -. 1W', and a

point (b) such that F (b) = 0. We ask whether the equation F (Y) = 0

expresses x implicitly in terms of y near (a). The implicit function theorem

asserts that this is true if the linearized equation

[DF(b)] [u] =0 2.9.26

expresses u implicitly in terms of v, which we know is true if the first n columns

of [DF (b a)] are linearly independent. A

The theorem is proved in Appendix A.5.

Example 2.9.11 (The unit circle and the implicit function theorem).
The unit circle is the set of points c = (y) such that F(c) = 0 when F is the

function F (y) = x2 + y2 - 1. The function is differentiable, with derivative

DF (b) = [2a, 2b]. 2.9.27

In this case, the matrix of Equation 2.9.21 is the 1 x I matrix [2a], so requiring
it to be invertible simply means requiring a 0.

Therefore, if a 0 0, the stripped-down version guarantees that in some neigh-

borhood of (b) , the equation x2 + y2 - 1 = 0 implicitly expresses x as a func-

tion of y. (Similarly, if b # 0, then in some neighborhood of (b) the equation

x2 + y2 - 1 = 0 expresses implicitly y as a function of x.)
Let's see what the strong version of the implicit function theorem says about

the domain of this implicit function.

The matrix L of Equation 2.9.22 is

r 2a 26 t 1 1 -2b
G= I 0 1 and L =

2a [0 2a]

So we have

2.9.28

t = 1]L [- 1+4a2 +462=f 2.9.29
2a1 21a1

The derivative off F is Lipschitz with Lipschitz ratio 2:

I [Df (u2 )l - [DF(v2 )J I = I[2ut - 2vt. 2u2 - 2v2)1

=21[ut -vj, u2-v211 <21u-v1,
2.9.30

so (by Equation 2.9.23) we can satisfy condition (2) by choosing an R such that



Equation 2.9.31: Note the way
the radius R of the interval around
b shrinks, without ever disappear-
ing, as a -. 0. At the point

(0tl , the equation

x2+y2-1=0
does not express x in terms of y,
but it does express x in terms of y
when a is arbitrarily close to 0.

Of course there are two possible
x's. One will be found by starting
Newton's method at a, the other
by starting at -a.

In Equation 2.9.33 we write
1/DiF rather than (D1F)-' be-
cause D, F is a a x 1 matrix.
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1 1 a2
2 _ 2RIL_112, i.e., R= 41L_'12 = T' 2.9.31

We then see that We is the ball of radius

2RIL-' l =
2a2 v1 - lal

; 2.9.32
5 2lal 5

since W is all of H2, condition (1) is satisfied.

Therefore, for all (b) when a 54 0, the equation x2 + y2 - 1 = 0 expresses

x (in the interval of radius lal/ / around a) as a function of y (in the interval
of radius a2/5 around b).

Of course we don't need the implicit function theorem to understand the unit
circle; we already knew that we could write x = ± 1 - y2. But let's pretend
we don't, and go further. The implicit function theorem says that if we know
that a point (b) is a root of the equation x2 +y2 -1 = 0, then for any y within

a2/5 of b, we can find the corresponding x by starting with the guess xo = a
and applying Newton's method, iterating

xnF y xn + yz - 1.
2.9.33xn+l = xn -

D1 (x
= xn -

2F x
y) n

Example 2.9.12 (An implicit function in several variables). In what
neighborhood of (00) do the equations

x2-y =a
y2-z =b
z2-x =0

2.9.34

x 0
as an implicit function g (b) , with g (0)? Here,determine

z
()1 0

n = 3, m = 2; the relevant function is F : Il85 - Rs, given by

x
y 1xz - y -a

F z = y2-z-b I ;

a z2-x /
b

x
y 2. -1 0 -1 0

the derivative of F is Df z = 0 2y -1 0 1

a L-1 0 2z 0 0
b
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The I b I of this discussion is

the y of Equation 2.9.24, and the
origin here is the b of that equa-
tion.

and M = 2 is a global Lipschitz constant for this derivative:

X, x2

y1 y2

= 2 (xl -x2)2 + (yl -y2)2 + (zl -z2)2 < 2 zl - z2 2.9.37

a1 a2

bi b2

2x1 -1 0 -1 0 r 2x2 -1 0 -1 0-
0 2y1 -1 0

-11
II 0 2y2 -1 0 -1

L

-1 0 2z1 0 0
L

-1 0 2z2 0 0

Setting x = y = z = 0 and adding the appropriate two bottom lines, we find
that

L = [-1 0 0] [ 0 01 , L`1 = 0 -1 0 -0 -1 .

0 0 0 [ 0
1

1,
0

0
0

0 0 0

0

2.9.38

Since the function F is defined on all of lRs, the first restriction on R is
vacuous. The second restriction requires that

2, i.e., R <
28.

2.9.39

Thus we can be sure that for any (b) in the ball of radius 1/28 around the

origin (i.e., satisfying a + b < 1/28), there will be a unique solution to
Equation 2.9.34 with

\z)

2f 1

28 2,r7.
2.9.40

2.10 EXERCISES FOR CHAPTER Two

Exercises for Section 2.1: 2.1.1 (a) Write the following system of linear equations as the multiplication
Row Reduction of a matrix by a vector, using the format of Exercise 1.2.2.

3x+y- 4z=0
2y+z=4
x-3y=1.

(b) Write the same system as a single matrix, using the shorthand notation
discussed in Section 2.1.
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In Exercise 2.1.9 we use the fol-
lowing rules: a single addition,
multiplication, or division has unit
cost; administration (i.e., relabel-
ing entries when switching rows,
and comparisons) is free.

(c) Write the following system of equations as a single matrix:

x1-7x2+2x3= 1

x, - 3x2 = 2

2x1 - 2x2 = -I-

2.1.2 Write each of the following systems of equations as a single matrix:

3y-z=0 2x1+3x2-x3= 1

(a) -2x + y + 2z = 0; (b) -2x2 + x3 = 2

x-5z=0 x1-2x3=-1.
2.1.3 Show that the row operation that consists of exchanging two rows is
not necessary; one can exchange rows using the other two row operations: (1)
multiplying a row by a nonzero number, and (2) adding a multiple of a row
onto another row.

2.1.4 Show that any row operation can be undone by another row operation.
Note the importance of the word "nonzero" in the algorithm for row reduction.

2.1.5 For each of the four matrices in Example 2.1.7, find (and label) row
operations that will bring them to echelon form.

2.1.6 Show that if A is square, and A is what you get after row reducing A
to echelon form, then either A is the identity, or the last row is a row of zeroes.

2.1.7 Bring the following matrices to echelon form, using row operations.

1 -1 1l
rr1 2 3 5(a) r1 2 3

4 5 6
(b) -1 0 2I (c) L2 3 0 -1

-1 1 1 0 1 2 3

1 2 1 2(d) [ 2 3 3 3(e) [3 7 1 9 1 -4 2 2

2.1.8 For Example 2.1.10, analyze precisely where the troublesome errors
occur.

2.1.9 In this exercise, we will estimate how expensive it is to solve a system
AR = b of n equations in n unknowns, assuming that there is a unique solution,
i.e., that A row reduces to the identity. In particular, we will see that partial
row reduction and back substitution (to be defined below) is roughly a third
cheaper than full row reduction.

In the first part, we will show that the number of operations required to row
reduce the augmented matrix (A(61 is

R(n) = n3 + n2/2 - n/2.
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Hint: There will be n - k +
I divisions, (n - 1)(n - k + 1)
multiplications and (n - 1)(n - k +
1) additions.

(a) Compute R(1), R(2), and show that this formula is correct when n = 1
and 2.

(b) Suppose that columns 1....,k - 1 each contain a pivotal 1, and that
all other entries in those columns are 0. Show that you will require another
(2n - 1)(n - k + 1) operations for the same to be true of k.

(c) Show that
11 2

F(2n - 1)(n - k + 1) =n3+ 2 - 2
k=1

Now we will consider an alternative approach, in which we will do all the steps
of row reduction, except that we do not make the entries above pivotal l's be
0. We end up with a matrix of the form at left, where * stands for terms which
are whatever they are, usually nonzero. Putting the variables back in, when
n = 3, our system of equations might be

x+2y-z= 2
y-3z=-1

= 5, which can be solved by back substitution as follows:

z = 5, y=-1+3z=14, x=2-2y+z=2-28+5=-21.
We will show that partial row reduction and back substitution takes

2 3 3 ZQ(n) = 5n + 2 n - s n- 1 operations.

(d) Compute Q(1), Q(2), Q(3). Show that Q(n) < R(n) when n > 3.
(e) Following the same steps as in part (b), show that the number of op-

erations needed to go from the (k - 1)th step to the kth step of partial row
reduction is (n - k + 1)(2n - 2k + 1).

(f) Show that

> (n-k+1)(2n-2k+1) ins+2n1-sn.
k=1

(g) Show that the number of operations required by back substitution is
n2-1.

(h) Compute Q(n).

Exercises for Section 2.2: 2.2.1 Rewrite the system of equations in Example 2.2.3 so that y is the first
Solving Equations variable, z the second. Now what are the pivotal unknowns?

with Row Reduction
2.2.2 Predict whether each of the following systems of equations will have
a unique solution, no solution, or infinitely many solutions. Solve, using row
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operations. If your results do not confirm your predictions, can you suggest an
explanation for the discrepancy?

(a) 2x+13y-3z=-7 (b) x-2y-12z=12 (c) x+y+z= 5
x+y= 1 2x+2y+2z= 4 x-y-z= 4

x+7z= 22 2x+3y+4z= 3 2x+6y+6z=12

(d) (e) x+2y+z-4w+v=0
x+3y+z= 4 x+2y-z+2w-v=0
-x-y+z=-1 2x+4y+z-5w+v=0

2x+4y= 0 x+2y+3z-10w+2v=0
2.2.3 Confirm the solution for 2.2.2 (e), without using row reduction.

2.2.4 Compose a system of (n - 1) equations in n unknowns, in which b
contains a pivotal 1.

2.2.5 On how many parameters does the family of solutions for Exercise
2.2.2 (e) depend?

2.2.6 Symbolically row reduce the system of linear equations

x+y+2z=1
x - y+az=b

2x - bz = 0.

(a) For what values of a, b does the system have a unique solution? Infinitely
many solutions? No solutions?

(b) Which of the possibilities above correspond to open subsets of the (a, b)-
plane? Closed subsets? Neither?

For ex l famp e, or k = 2 we are
asking about the system of equa- 2.2.7 (a) Row reduce the matrix
tions

1 -1 3 1 -1 3 0 -2

-2 2 lx _ -6 A = -2 2 -6 0 4

0 2 x2] 5 0 2 5 -1 0
2 -6 -4 2 -6 -4 2 -4

(b) Let vk, k = 1, ... 5 be the columns of A. What can you say about the
systems of equations

x
[V1,...,VkJ = Vk+t

zk

fork=1,2,3,4.
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Exercises for Section 2.3:

Inverses and

Elementary Matrices

2 1 3 a
A= 1 -1 1 b

1 1 2 c

2 1 311

B= 1 -1 1J
1 1 2

Matrices for Exercise 2.3.2

[C= 1 -2 4

0 5 -5
3 a b

2.2.8 Given the system of equations

x] - x2 - x3 - 3x4 + x5 = 1
xl + x2 - 5x3 - x4 + 7x5 = 2

-xt + 2x2 + 2x3 + 2x4 + x5 = 0

-2xt + 5x2 - 4x3 + 9x4 + 7x5 = /3,

for what values of /3 does the system have solutions? When solutions exist, give
values of the pivotal variables in terms of the non-pivotal variables.

2.3.1 (a) Derive from Theorem 2.2.4 the fact that only square matrices can
have inverses. (b) Construct an example where AB = I, but BA 0 I.

2.3.2 (a) Row reduce symbolically the matrix A at left.
(b) Compute the inverse of the matrix B at left.
(c) What is the relation between the answers in parts (a) and (b)?

2.3.3 Use A-I to solve the system of Example 2.2.10.

2.3.4 Find the inverse, or show it does not exist, for each of the following

matrices:

r. .I r. ,., I1 2 3 1 2

(d) 1101

1 1 1 l l
(e)

I
0 1 1J ; (f) L2 1 (g) 1 2 3 4

8 3 9 1 1 I
1 3 6 10

1 4 10 20

2.3.5 (a) For what values of a and b is the matrix C at left invertible?
(b) For those values, compute the inverse.

Matrix for Exercise 2.3.5
2.3.6 (a) Show that if A is an invertible n x n matrix, B is an invertible m x m
matrix, and C is any n x m matrix, then the (n + m) x (n + m) matrix

10 0 01

0 0 0
r A C 1

where 0 stands for the m x n 0 matrix, is invertible.0 B '

Example of a "0 matrix." (b) Find a formula for the inverse.

1 -6 3
A= [21 -7 3

4 -12 5

Matrix for Exercise 2.3.7

2.3.7 For the matrix A at left, (a) Compute the matrix product AA.
(b) Use the result in (a) to solve the system of equations

x -6y+3z=5
2x -7y+3z=7
4x - 12y + 5z = 11.
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In both cases, remember that
the elementary matrix goes on the
left of the matrix to be multiplied.

2.3.8 (a) Confirm that multiplying a matrix by a type 2 elementary matrix as
described in Definition 2.3.5 is equivalent to adding rows or multiples of rows.

(b) Confirm that multiplying a matrix by a type 3 elementary matrix is
equivalent to switching rows.

1 0 1

2.3.9 (a) Predict the effect of multiplying the matrix 2 1 1 by each

0 1 2
of the elementary matrices, with the elementary matrix on the left.

(1'[0 0 1) (2)[010f (3)[2
01J.

1 2 0 1

(b) Confirm your answer by carrying out the multiplicati on.

1 1 3 3
(c) Redo part (a) and part (b) placing the elementary matrix on t he right.

0 1 0 1 2.3.10 When A is the matrix at left, multiplication by what elem en tary ma-
2 1 1 3 trix corresponds to:

The matrix A of Exercise 2.3.10 (a) Exchanging the first and second rows of A?
(b) Multiplying the fourth row of A by 3?
(c) Adding 2 times the third row of A to the first row f A?

1 3 2

0 2 3
1 0 4

The matrix B of Exercise 2.3.11

Exercises for Section 2.4:

Linear Independence

2.3.11 (a) Predict the effect of multiplying the matrix B at left by each of
the matrices. (The matrices below will be on the left.)

(1)

110

0 -1J (2) [0
0 1) (3)

[0 0 0

(b) Verify your prediction by carrying out the multiplication. JJ

2.3.12 Show that column operations (Definition 2.1.11) can be achieved by
multiplication on the right by an elementary matrix of type 1,2 and 3 respec-
tively.

2.3.13 Prove Proposition 2.3.7.

2.3.14 Show that it is possible to switch rows using multiplication by only
the first two types of elementary matrices, as described in Definition 2.3.5.

2.3.15 Row reduce the matrices in Exercise 2.1.7, using elementary matrices.

2.4.1 Show that Sp ('V1, v"k) is a subspace of R' and is the smallest
subspace containing v'1...... Vk.

2.4.2 Show that the following two statements are equivalent to saying that a
set of vectors vl,... ,Vk is linearly independent:



2.10 Exercises for Chapter Two 237

(a) The only way to write the zero vector 6 as a linear combination of the
v", is to use only zero coefficients.

(b) None of the. v, is a linear combination of the others.

2.4.3 Show that the standard basis vectors are linearly indepen-

dent.

2.4.4 (a) For vectors in R', prove that the length squared of a vector is the
sum of the squares of its coordinates, with respect to any orthonormal basis:
i.e., that and w, , ... w are two orthonormal bases, and

then a2, +bn.

(b) Prove the same thing for vectors in 1183.

(c) Repeat for W'.

['I]
r1

2.4.5 Consider the following vectors: OL 2
1

I , and I a

(a) For what values of a are these three vectors linearly dependent?

(b) Show that for each such a the three vectors lie in the same plane, and
give an equation of the plane.

2.4.6 (a) Let vV,,...,vk be vectors in R°. What does it mean to say that.
they are linearly independent? That they span ]l8°? That they forma basis of
IRn?

Recall that Mat (n, m) denotes
(b) Let A = I 1 21. Are the elements I, A A2, A3 linearly independent inthe set ofnxmmatrices.

12 1

Mat (2,2)? What is the dimension of the subspace V C Mat (2,2) that they
span?

(c) Show that the set W of matrices B E Mat (2,2) that satisfy AB = BA
is a subspace of Mat (2, 2). What is its dimension?

(d) Show that V C W. Are they equal?

2.4.7 Finish the proof that the three conditions in Definition 2.4.13 are equiv-
alent: show that (2) implies (3) and (3) implies (1).

2.4.8 Let v, = f i 1 and v'2 = [3]. Let x and y be the coordinates with
respect to the standard basis {e',, 42} and let u and v be the coordinates with
respect to {v',, v'2}. Write the equations to translate from (x, y) to (u, v) and
back. Use these equations to write the vector I _51 in terms of vv, and v'2.



Hint for Exercise 2.4.10, part
(b): Work by induction on the
number in of columns. First check
that it is true if in = 1. Next, sup-
pose it is true for in - 1, and view
an n x in matrix as an augmented
matrix, designed to solve n equa-
tions in in - 1 unknowns.

After row reduction there is a

pivotal 1 in the last column ex-

actly if a',,, is not in the span of
and otherwise the

entries of the last column satisfy
Equation 2.4.10.

(When figures and equations
are numbered in the exercises,
they are given the number of the
exercise to which they pertain.)

Exercise 2.4.12 says that any
linearly independent set can be ex-
tended to form a basis. In French
treatments of linear algebra, this
is called the theorem of the incom-
plete basis; it plus induction can
be used to prove all the theorems
of linear algebra in Chapter 2.
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2.4.9 Let V,.... .v'" be vectors in 1k', and let Ikbe given by

a1

P{v) _ aivi.

an

(a) Show that v"..... ,, are linearly independent if and only if the map
P(v) is one to one.

(b) Show that vl,... V. span 1k'" if and only if P(v) is onto.
(c) Show that vl , ... , V. is a basis of Rm if and only if P(v) is one to one

and onto.

2.4.10 The object of this exercise is to show that a matrix A has a unique
row echelon form A: i.e., that all sequences of row operations that turn A into
a matrix in row echelon form produce the same matrix, A. This is the harder
part of Theorem 2.1.8.

We will do this by saying explicitly what this matrix is. Let A be an it x m
matrix with columns al, ... , i,". Make the matrix A = [a"1.... , a,,,] as follows:

Let it < < ik be the indices of the columns that are not linear combina-
tions of the earlier columns; we will refer to these as the unmarked columns.

Set a',, = e'j; this defines the marked columns of A.
If a'i is a linear combination of the earlier columns, let j(l) be the largest

unmarked index such that j(l) < 1, and write

r al

j(1)

51 = Faji,, setting it
j=1

0.7 (1)
0

2.4.10

This defines the unmarked columns of A. L 0
(a) Show that A is in row echelon form.

(b) Show that if you row reduce A, you get A.

2.4.11 Let vl...... Vk be vectors in 1R", and set V = [vl,...,'Vk
(a) Show that the set 'V1 -, is orthogonal if and only if VT V is diagonal.

(b) Show that the set is orthonormal if and only if VT V = Ik.

2.4.12 (a) Let V be a finite-dimensional vector space, and v"1i...Vk E V

linearly independent vectors. Show that there exist vk+1...... "" such that

Vi,...,VnEVisabasis ofV.
(b) Let V be a finite-dimensional vector space, and V'1,...vk E V be a

set of vectors that spans V. Show that there exists a subset i1,i2....,im of

(1.2,...,k) such that. V,,,...,v"i,,, is a basis of V.



2.10 Exercises for Chapter Two 239

Exercises for Section 2.5: 2.5.1 Prove that if T : iR" - 11km is a linear transformation, then the kernel

Kernels and Images of T is a subspace of R", and the image of T is a subspace of R'.

(a) [ 1 1 3]
2 2 6

1 2 3

(b) -1 1 1

-1 4 5

1 1 1

(e..) 1 2 3

2 3 4

Matrices for Exercise 2.5.2.

A = [1 b]
la 2

1 2 aB- a b a
b b a

Matrices for Exercise 2.5.6.

2.5.2 For each of the matrices at left, find a basis for the kernel and a basis
for the image, using Theorems 2.5.5 and 2.5.7.

2.5.3 True or false? (Justify your answer). Let f : IRm Rk and g : Uk"

Ukm be linear transformations. Then

fog=0 implies Imgg = ker f.

2.5.4 Let P2 be the space of polynomials of degree < 2, identified with P3 by
fa

identifying a + bx + cx2 to b

c

(a) Write the matrix of the linear transformation T : P2 -. P2 given by

(T(p))(x) = _P ,(X) + x2p"(x).

(b) Find a basis for the image and the kernel of T.

2.5.5 (a) Let Pk be the space of polynomials of degree < k. Suppose T : Pk -.
1Rk+1 is a linear transformation. What relation is there between the dimension
of the image of T and the dimension of the kernel of T?

P(O)

(b) Consider the mapping Tk : Pk -lRk+1 given by Tt(p) = p
1)

What

p(k)

is the matrix of T2, where P2 is identified to RI by identifying a + bx + cx2 to

(a)
b ? (c) What is the kernel of Tk?
c

(d) Show that there exist numbers c0.... , ck such that
1 1 3 6 2

A= 2 -1 0 4 1 /" k

4 1 6 16 5 J p(t)dt = c;p(i) for all polynomials p E P.
0 i=0

3 6 2
B= [2

2
-1 0 4 1,

2.5.6 Make a sketch, in the (a,b)-plane, of the sets where the kernels of

the matrices at left have kernels of dimension 0, 1, 2,.... Indicate on the same
Matrices for Exercise 2.5.7 sketch the dimensions of the images.

2.5.7 For the matrices A and B at left, find a basis for the image and the
kernel, and verify that the dimension formula is true.
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2.5.8 Let P be the space of polynomials of degree at most 2 in the two

variables x, y, which we will identify to IP6 by identifying

a1

a, + a2x + a3y + a4z2 + a&xy + asy2 with

as

(a) What are the matrices of the linear transformations S, T P -' P given
by

S(p) \ y / = xDlp (y) and T(p) ( ) = yD2p ( )?

(b) What are the kernel and the image of of the linear transformation

p H 2p - S(p) - T (p)?

2.5.9 Let a1,...,ak,b,,...,bk be any 2k numbers. Show that there exists a

unique polynomial p of degree at most 2k - 1 such

p(t)=a;, P(t)=b,
for all integers i with 1 < i < k. In other words, show that the values of p and
p' at 1, ..., k determine p. Hint: you should use the fact that a polynomial p of
degree d such that p(i) = p'(i) = 0 can be written p(x) = (x - i)2q(x) for some
polynomial q of degree d - 2.

2.5.10 Decompose the following into partial fractions, as requested, being
explicit in each case about the system of linear equations involved and showing
that its matrix is invertible:

(a) Write

x+x2 A B C
(x+i)(x+2)(x+3) x+1+x+2+2+x+3'

(b) Write

x+x3 Ax+B Cx2+Dx+F
(x + 1)2(x - 1)3

as
(x -+1) 2 + (x - 1)3

2.5.11 (a) For what value of a can you not write

x-1 _ AO BIx+Bo
(x+1)(x2+ax+5) x+1 +x2+ax+5*

(b) Why does this not contradict Proposition 2.5.15?

2.5.12 (a) Let f (x) = x+Ax2+Bx3. Find a polynomial g(x) = x+ax2+Qx2
such that g(f(x)) - x is a polynomial starting with terms of degree 4.

(b) Show that if
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The polynomial p which Ex-
ercise 2.5.16 constructs is called
the Lagrange interpolation poly-
nomial, which "interpolates" be-
tween the assigned values.

Hint for Exercise 2.5.16: Con-
sider the map from the space of
P of polynomials of degree n to
iR"+' given by

kf (X)
= x + Y_ aix' is a polynomial, then there exists a unique polynomial

-2
k

g(x) = x + Y bix' with g o f (x) = x + xk+' p(x) for some polynomial p.

2.5.13 A square n x n matrix P such that p2 = P is called a projector.
(a) Show that P is a projector if and only if I - P is a projector. Show that

if P is invertible, then P is the identity.
(b) Let V, = Img P and V2 = ker P. Show that any vector v E !R' can

be written uniquely v' = V, + v'2 with v"j E V1 and V2 E V2. Hint: V _
P(v) + (v - P(v).

(c) Show that there exists a basis v,...... ,, of Ilk" and a number k < it such
that P(vt) = v1...., P(vk) = vk, P(vk+t) = 0,..., P(v") = 0-

(d) Show that, if P1 and P2 are projectors such that P,P2 = 0, then Q =
Pl + P2 - (P2I 1) is a projector, ker Q = ker Pt fl ker P2, and the image of Q is
the space spanned by the image of Pt and the image of P2.

2.5.14 Show that if A and B are n x n matrices, and AB is invertible, then
A and B are invertible.

*2.5.15 Let T,, T2 : IR" -+ R" be linear transformations.
(a) Show that there exists S : il" - 9k" such that T, = S o T2 if and only if

ker T2 C ker Ti.

(b) Show that there exists S : Iik" Ilk" such that Tt = T2 o S if and only if
Img TI C Img T2.

p

-
P(xo)

P(x")

*2.5.16 (a) Find a polynomial p(x) = a + bx + cx2 of degree 2 such that.

p(O) = 1, p(l) = 4, and p(3) _ -2.
You need to show that this map
is onto; by Corollary 2.5.11 it is
enough to show that its kernel is

(b) Show that if if xo, ... _x" are n + 1 distinct points in R. and a0..... a" are
any numbers, there exists a unique polynomial of degree n such that p(x,) = a,

{0}. for each i=0,...,n.
(c) Let the xi and a; be as above, and let bo,...,b, be some further set of

numbers. Find a number k such that there exists a unique polynomial of degree
k with

p(x,) = ai and p'(xt) = b; for all i = 0.... , n.

*2.5.17 This exercise gives a proof of Bezout's Theorem. Let pt and p2 be
polynomials of degree ki and k2 respectively, and consider the napping

T:(4t,42)-.pt9t+p24v
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Abstract Vector Spaces

Note: To show that a space is
not a vector space, you will need
to show that it is not (0}.

242 Chapter 2. Solving Equations

where qi and q2 are polynomials of degrees k2 - I and ki - 1 respectively, so
that pigs + p2g2 is of degrees kl + k2 - 1.

Note that the space of such (qi, q2) is of dimension ki + k2, and the space of
polynomials of degree k, i- k2 - 1 is also of dimension ki + k2.

(a) Show that ker T = {0} if and only if p, and p2 are relatively prime (have
no common factors).

(b) Use Corollary 2.5.11 to show that if pt, p2 are relatively prime, then
there exist unique q, and q2 as above such that

ptgi + p2Q2 = 1. (Bezout's Theorem)

2.6.1 Show that the space C(0,1) of continuous real-valued functions f(x)
defined for 0 < x < I (Example 2.6.2) satisfies all eight requirements for a
vector space.

2.6.2 Show that the transformation T : C2(k) -C(R) given by the formula

(T(f))(x) = (x2 + 1)f (x) - xf'(x) + 2f(x)

of Example 2.6.7 is a linear transformation.

2.6.3 Show that in a vector space of dimension n, more than n vectors are

never linearly independent, and fewer than n vectors never span.

2.6.4 Denote by L (Mat (n, n), Mat (n, n)) the space of linear transformations
from Mat (n, n) to Mat. (n, n).

(a) Show that £(Mat (n, n), Mat (n, n)) is a vector space, and that it is finite
dimensional. What is its dimension?

(b) Prove that for any A E Mat (n, n), the transformations

LA, RA : Mat (n, n) -. Mat (n, n) given by

LA(B) = AB, RA(B) = BA

are linear transformations.

(c) What is the dimension of the subspace of transformations of the form
LA, RA?

(d) Show that there are linear transformations T : Mat (2,2) -. Mat (2, 2)
that cannot be written as LA + R. Can you find an explicit one?

2.6.5 (a) Let V be a vector space. When is a subset W C V a subspace of V?

(b) Let V be the vector space of CI functions on (0,1). Which of the following
are subspaces of V:

i) {f E V I f(x)= f'(x)+1};
ii) (f E V I f(x) = xf'(x) };
iii) { f E V + f (x) = (f'(x))2
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2.6.6 Let V, W C U be two subspaces.
(a) Show that V fl W is a subspace of iR".

(b) Show that if V U W is a subspace of E", then either V C W or W C V.

2.6.7 Let P2 be the space of polynomials of degree at most two, identified to
R3 via the coefficients; i.e.,

fa
p(x) = a + bx + cx2 E P2 is identified to b

c

Consider the mapping T : P2 P2 given by

T(p)(x) = (x2 + 1)p"(x) - xp'(x) + 2p(x).

(a) Verify that T is linear, i.e., that T(ap, + bp2) = aT(pl) + bT(p2).

(b) Choose the basis of P2 consisting of the polynomials p, (x) = 1,p2(x) _
x,p3(x) = x2. Denote '1y1 :ER3 -* P2 the corresponding concrete-to-abstract
linear transformation. Show that the matrix of

2 0 2
4i-r1 o T o${p) is 0 1 0

0 0 2

(c) Using the basis 1, x, x2, ... x", compute the matrices of the same differ-
ential operator T, viewed as an operator from P3 to P3, from P4 to P4, ... , P"
to P (polynomials of degree at most 3, 4, and n).

2.6.8 Suppose we use the same operator T : P2 P2 as in Exercise 2.6.7,

but choose instead to work with the basis

91(x) = x2, 92(x) = x2 + x, 93(x) = x2 + x + 1.

Now what is the matrix 0{41 o T o ${91 ?

Exercises for Section 2.7: 2.7.1 (a) What happens if you compute f by Newton's method, i.e., by
Newton's Method setting

a"+l = 2 (an + Q I , starting with ao < 0?

(b) What happens if you compute f by Newton's method, with b > 0,
starting with ap < 0?

2.7.2 Show (a) that the function Ixj is Lipschitz with Lipschitz ratio 1 and
(b) that the function fxI is not Lipschitz.

2.7.3 (a) Find the formula a"+1 = g(a") to compute the kth root of a number
by Newton's method.
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(b) Interpret this formula as a weighted average.

2.7.4 (a) Compute by hand the number 91/3 to six decimals, using Newton's

method, starting at ao = 2.

(b) Find the relevant quantities ho. a,, M of Kantorovitch's theorem in this

case.

(c) Prove that Newton's method does converge. (You are allowed to use

Kantorovitch's theorem, of course.)

2.7.5 (a) Find a global Lipschitz ratio for the derivative of the mapping F :
R2 -+ II22 given by

rx x2-y-12
Fly/ - \y2

(b) Do one step of Newton's method to solve F (y) _ (10),
starting at

(4)'

(c) Find a disk which you are sure contains a root.

2.7.6 (a) Find a global Lipschitz ratio for the derivative of the mapping F :

Q$2 -i JR2 given by

In Exercise 2.7.7 we advocate
using a program like bl ATLAB F (x) = (sin({ - y)+ y2
(Newton.m), but it is not too cum- y cos x -X).
bersome for a calculator.

(b) Do one step of Newton's method to solve

F (y) - (0) - (0) starting at (00).

(c) Can you be sure that Newton's method converges?

2.7.7 Consider the system of equations

cosx+y=1.1
x+cos(x+y) = .9

(a) Carry out four steps of Newton's method, starting at (8). How many
decimals change between the third and the fourth step?

(b) Are the conditions of Kantorovitch's theorem satisfied at the first step?
At the second step?
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For Exercise 2.7.8, note that
[2113 = [811, i.e.,

[ 0

2,.

[8 0

0 0 8]0

Hint for Exercise 2.7.14 b: This
is a bit harder than for Newton's
method. Consider the intervals

bounded by an and b/ak-', and

show that they are nested.

A drawing is recommended for
part (c), as computing cube roots
is considerably harder than com-
puting square roots.

2.7.8 Using Newton's method, solve the equation

9 0 1

A3= 0 7 0
0 2 8

2.7.9 Use the MATLAB program Newton.m (or the equivalent) to solve the
systems of equations:

(a)

(b)

x2-y + sin(x-y)=2
y2-x=3

x3-y+sin(x-y)=5
y2-x3

starting at (2), (-2)
2J 2

starting at (2)
, ( 2) .

(a) Does Newton's method appear to superconverge?

(b) In all cases, determine the numbers which appear in Kantorovitch's the-
orem, and check whether the theorem guarantees convergence.

2.7.10 Find a number e > 0 such that the set of equations

x+y2=a
y + z2 = b has a unique solution near 0 when {a(,[bi,Ic[ < e.

z +x2= c

2.7.11 Do one step of Newton's method to solve the system of equations

x+cosy -1.1=0
x2-siny+.1=0

starting at ao = (00).

2.7.12 (a) Write one step of Newton's method to solve xs -x -6 = 0, starting
at xo = 2.

(b) Prove that this Newton's method converges.

2.7.13 Does a 2 x 2 matrix of the form I + eB have a square root A near

L0
01?

2.7.14 (a) Prove that if you compute . b by Newton's method, as in Exercise
2.7.3, choosing ao > 0, then the sequence a converges to the positive nth root.

(b) Show that this would still be true if you simply applied a divide and
average algorithm:

b
an+] =

2
(an + a.`
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Superconvergence

Hint for Exercise 2.8.5: Try
a matrix all of whose entries are
equal.
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(c) Use Newton's method and "divide and average" (and a calculator or
computer, of course) to compute '(2, starting at ao = 2. What can you say
about the speeds of convergence?

2.8.1 Show (Example 2.8.1) that when solving f(x) _ (x - 1)2 = 0 by New-
ton's method, starting at ao = 0, the best Lips(chitzllratio for f' is 2, so

/_1/2
1

If(ao)I I
(f'(ao))-1I2M

= 1' 2
.2 = 2

and Theorem 2.7.11 guarantees that Newton's method will work, and will con-

verge to the unique root a = 1. Check that hn = 1/2n" so an = 1 - 1/2n+'
on the nose the rate of convergence advertised.

2.8.2 (a) Prove (Equation 2.8.12) that the norm of a matrix is at most its
length: IIAII < IAI.

(b) When are they equal?

2.8.3 Prove that Proposition 1.4.11 is true for the norm IIAII of a matrix A
as well as for its length Al:Ii.e., prove:

(a) If A is an n x m matrix, and b is a vector in R", then

IlAbll <_ IIAII IIBII.

(b) If A is an n x m matrix, and B is a m x k matrix, then

IIABII <_ IIAII IIBII

2.8.4 Prove that the triangle inequality (Theorem 1.4.9) holds for the norm
IIAII of a matrix A,i.e., that for any matrices A and B in IR",

IIA+BII <_ IIAII+IIBII

2.8.5 (a) Find a 2 x 2 matrix A such that

1

A2+A= L1 11
1 1

(b) Show that when Newton's method is used to solve the equation above,
starting at the identity, it converges.

2.8.6 For what matrices C can you be sure that the equation A2 + A = C in
Mat (2,2) has a solution which can be found starting at 0? At I?

2.8.7 There are other plausible ways to measure matrices other than the
length and the norm; for example, we could declare the size (Al of a matrix A
to be the absolute value of its largest element. In this case, IA+BI <_ (Al + (B(,
but the statement IAMI <r IAIIXI is false. Find an e. so that it is false for

0A = 10 0 100 E

J

, and x= 110 0 J .
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Starred exercises are difficult;
exercises with two stars are par-
ticularly challenging.

Exercises for Section 2.9:
Inverse and Implicit
Function Theorems

**2.8.8 If A= [a b] is a 2 x 2 real matrix, show that

-
2

where D = ad - be = det A.114II

(A12+

IAI4-4D/2

2.9.1 Prove Theorem 2.9.2 (the inverse function theorem in I dimension).

2.9.2 Consider the function

AX)
s + x2 sin ifx ¢ 0,

ifx=0,
discussed in Example 1.9.4. (a) Show that f is differentiable at 0 and that the
derivative is 1/2.

(b) Show that f does not. have an inverse on any neighborhood of 0.
(c) Why doesn't this contradict the inverse function theorem, Theorem 2.9.2?

2.9.3 (a) See by direct calculation where the equation y2 + y + 3x + 1 = 0
defines y implicitly as a function of r..

(b) Check that your answer agrees with the answer given by the implicit
function theorem.

2.9.4 Consider the mapping f : R2 - (p) JR2 given by

f (1/)
X2XY- 2 2

Does f have a local inverse at every point of 1112?

2.9.5 Let y(x) be defined implicitly by

x2+y3+ey=0.
Compute y'(x) in terms of x and V.

2.9.6 (a) True or false? The equation sin(xyz) = z expresses x implicitly as
a differentiable function of y and z near the point

=\,,12/

z(ii

(b) True or false? The equation sin(xyz) = z expresses z implicitly as a
differentiable function of x and y near the same point.

2.9.7 Does the system of equations

x + y + sin(xy) = a

sin(xy + y) = 2a
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have a solution for sufficiently small u?

2.9.8 Consider the mapping S : Mat (2, 2) Mat (2, 2) given by S(A) = A2.
Observe that S(- 1) = 1. Does there exist an inverse mapping g. i.e., a mapping
such that S(g(A)) = A, defined in a neighborhood of I. such that g(I) = -I?

2.9.9 True or false? (Explain your answer.) There exists r > 0 and a differ-
entiable /map

1

(1-
-3

0g:B,.li 0 3J)-.Mat(2,2)such that 9t[
0 -3])=[_I -1]

and(g(A))2=Afor/allAEB,-([-3 -0]) \
0 3

2.9.10 True or false? If f : 1R3 -. IE is continuously differentiable, and

(
u

D2 f b) # 0 D3f (b) 36 0, then there exists

a function h of () , defined near () , such that f = 0.

2.9.11 (a) Show that the mapping
l s y (

F 8) = (er + e. y) is locally invertible at every point (N) E R2.

(b) If F(a) = b, what is the derivative of F-I at b?

2.9.12 True or false: There exists a neighborhood U C Mat (2,2) of
[

5

110 5
and a C' mapping F : U -' Mat (2, 2) with

(1)
F([0

5J) = [2 21], and

(2) (F(A))2 = A.

You may use the fact that if S : Mat (2, 2) --. Mat (2, 2) denotes the squaring
map S(A) = A2, then (DS(A))B = AB + BA.
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Higher Partial Derivatives
Quadratic Forms, and Manifolds

Thomson (Lord Kelvin) had predicted the problems of the first /trunsat-
lanticJ cable by mathematics. On the basis of the same mathematics he

now promised the company a rate of eight or even 12 words a minute.
Half a million pounds was being staked on the correctness of a partial
differential equation.-T.W. Korner, Fourier Analysis

When a computer calculates
sines, it is not looking up the an-
swer in some mammoth table of
sines; stored in the computer is a
polynomial that very well approx-
imates sin x for x in some particu-
lar range. Specifically, it uses the
formula

sin x = x + a3x3 + asxs + a7x7

+a9x°+a,,x"+e(x),
where the coefficients are

a3 = -.1666666664

as = .0083333315

a7 = -.0001984090

a° _ .0000027526

a = -.0000000239.

When lxi < 7r/2, the error is guar-
anteed to be less than 2 x 10-9,
good enough for a calculator which
computes to eight significant dig-
its.

3.0 INTRODUCTION

This chapter is something of a grab bag. The various themes are related, but
the relationship is not immediately apparent.. We begin with two sections on
geometry. In Section 3.1 we use the implicit function theorem to define just what.
we mean by a smooth curve and a smooth surface. Section 3.2 extends these
definitions to more general k-dimensional "surfaces" in 1k", called manifolds:
surfaces in space (possibly, higher-dimensional space) that locally are graphs of
differentiable mappings.

We switch gears in Section 3.3, where we use higher partial derivatives to
construct the Taylor polynomial of a function in several variables. We saw in
Section 1.7 how to approximate a nonlinear function by its derivative; here we
will see that, as in one dimension, we can make higher-degree approximations
using a function's Taylor polynomial. This is a useful fact, since polynomials.
unlike sins, cosines, exponentials, square roots, logarithms.... can actually
be computed using arithmetic. Computing Taylor polynomials by calculating
higher partial derivatives can be quite unpleasant; in Section 3.4 we give some
rules for computing them by combining the Taylor polynomials of simpler func-
tions.

In Section 3.5 we take a brief detour, introducing quadratic forms, and seeing
how to classify them according to their "signature." In Section 3.6 we see
that if we consider the second degree terms of a function's Taylor polynomial
as a quadratic form, the signature of that form usually tells us whether at a
particular point the function is a minimum, a maximum or some kind of saddle.
In Section 3.7 we look at extrema of a function f when f is restricted to some
manifold M C id.".

Finally, in Section 3.8 we give a brief introduction to the vast and important
subject of the geometry of curves and surfaces. To define curves and surfaces in

9

249



250 Chapter 3. Higher Derivatives, Quadratic Forms, Manifolds

the beginning of the chapter, we did not need the higher-degree approximations
provided by Taylor polynomials. To discuss the geometry of curves and surfaces,
we do need Taylor polynomials: the curvature of a curve or surface depends on
the quadratic terms of the functions defining it.

As familiar as these objects are,
the mathematical definitions of
smooth curves and smooth sur-
faces exclude some objects that we
ordinarily think of as smooth: a
figure eight, for example. Nor are
these familiar objects simple: al-
ready, the theory of soap bubbles
is a difficult topic, with a compli-
cated partial differential equation
controlling the shape of the film.

Recall that the graph r(f) of a
function f : 1IB" - Ik:

r(f) c 1r+'
is the set of pairs (x, y) E 1k" x IR
such that f(x) = V.

Remember from the discussion
of set theory notation that I x J
is the set of pairs (x, y) with x E
I and y E J: e.g., the shaded
rectangle of Figure 3.1.1.

3.1 CURVES AND SURFACES

Everyone knows what a curve is, until he has studied enough mathematics
to become confused through the countless number of possible exceptions-
F. Klein

We are all familiar with smooth curves and surfaces. Curves are idealizations
of things like telephone wires or a tangled garden hose. Beautiful surfaces are
produced when you blow soap bubbles, especially big ones that wobble and
slowly vibrate as they drift through the air, almost but not quite spherical.
More prosaic surfaces can be imagined as an infinitely thin inflated inner tube
(forget the valve), or for that matter the surface of any smooth object.

In this section we will see how to define these objects mathematically, and
how to tell whether the locus defined by an equation or set of equations is a
smooth curve or smooth surface. We will cover the same material three times,
once for curves in the plane (also known as plane curves), once for surfaces in
space and once for curves in space. The entire material will be repeated once
more in Section 3.2 for more general k-dimensional "surfaces" in 111;".

Smooth curves in the plane

When is a subset X C R2 a smooth curve? There are many possible answers,
but today there seems to be a consensus that the objects defined below are the
right curves to study. Our form of the definition, which depends on the chosen
coordinates, might not achieve the same consensus: with this definition, it isn't
obvious that if you rotate a smooth curve it is still smooth. (We will see in
Theorem 3.2.8 that it is.)

Definition 3.1.1 looks more elaborate than it is. It says that a subset X E R2
is a smooth curve if X is locally the graph of a differentiable function, either of
x in terms of y or of y in terms of x; the detail below simply spells out what
the word "locally" means. Actually, this is the definition of a "C' curve"; as
discussed in the remark following the definition, for our purposes here we will
consider Ct curves to be "smooth."

Definition 3.1.1 (Smooth curve in the plane). A subset X C R2 is a
Cl curve if for every point (b) E X, there exist open neighborhoods I of a

and J of b, and either a C1 mapping f : I -+ J or a C' mapping g : J -4 I
(or both) such that X n (I x J) is the graph off or of g.
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Note that we do not require
that the same differentiable map-
ping work for every point: we can
switch horses in mid-stream, and
often we will need to, as in Figure
3.1.1.

A function is C2 ("twice con-
tinuously differentiable") if its first
and second partial derivatives ex-
ist and are continuous. It is C3 if
its first, second, and third partial
derivatives exist and are continu-
ous.

Some authors use "smooth" to
mean "infinitely many times dif-
ferentiable"; for our purposes, this
is overkill.

Exercise 3.1.4 asks you to show
that every straight line in the
plane is a smooth curve.

FIGURE 3.1.1. Above, I and 11 are intervals on the x-axis, while J and J, are
intervals on the y-axis. The darkened part of the curve in the shaded rectangle I x J
is the graph of a function expressing x E I as a function of y E J, and the darkened
part of the curve in Ii x J, is the graph of a function expressing y E J1 as a function
of x E I,. Note that the curve in Ii x Ji can also be thought of as the graph of
a function expressing x E Ii as a function of y E Ji. But we cannot think of the
darkened part of the curve in I x J as the graph of a function expressing y E J as a
function of x E I; there are values of x that would give two different values of y, so
such a "function" is not well defined.

Remark 3.1.2 (Fuzzy definition of "smooth"). For the purposes of this
section, "smooth" means "of class Cl." We don't want to give a precise defi-
nition of smooth; its meaning depends on context and means "as many times
differentiable as is relevant to the problem at hand." In this and the next sec-
tion, only the first derivatives matter, but later, in Section 3.7 on constrained
extrema, the curves, surfaces, etc. will need to be twice continuously differen-
tiable (of class C2), and the curves of Section 3.8 will need to be three times
continuously differentiable (of class C3). In the section about Taylor polyno-
mials, it will really matter exactly how many derivatives exist, and there we
won't use the word smooth at all. When objects are labeled smooth, we will
compute derivatives without worrying about whether the derivatives exist.

Example 3.1.3 (Graph of any smooth function). The graph of any
smooth function is a smooth curve: for example, the curve of equation y = x2,
which is the graph of y as a function of x, or the curve of equation x = y2,
which is the graph of x as a function of y.

For the first, for every point with y = x2, we can take I = R, J = l(P
and f(x) = x2.
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Think of I = (-1,1) as an
interval on the x-axis, and J =
(0,2) as an interval on the y-axis.

Note that for the upper half circle
we could not have taken J = R.
Of course, f does map (-1, 1) -
R, but the intersection

S f1((-1,1) x lR)

(where R is the y-axis) is the
whole circle with the two points

(0) and \ 0/
removed, and not just the graph of
f, which is just the top half of the
circle.

FIGURE 3.1.2.
The graph of f(x) = lxi is not

a smooth curve.

FIGURE 3.1.3.

The graph of f(x) = x1/3 is
a smooth curve: although f is
not differentiable at the origin, the
function g(y) = y3 is.

Example 3.1.4 (Unit circle). A more representative example is the unit
circle of equation x2 + y2 = 1, which we denote S. Here we need the graphs of
four functions to cover the entire circle: the unit circle is only locally the graph
of a function. For the upper half of the circle, made up of points (y) with
y > 0, we can take

I = (-1,1), J= (0,2) and 1:1 - J given by f (x) = 1 - x2. 3.1.1

We could also take J = (0, oo), or J = (0,1.2), but J = (0,1) will not do, as
then J will not contain 1, so the point (?), which is in the circle, will not be
in the graph. Remember that I and J are open.

Near the point (0), S is not the graph of any function f expressing y as
a function of x, but it is the graph of a function g expressing x as a function
of y, for example, the function g : (-1,1) -. (0, 2) given by x = 1 - y2. (In
this case, J = (-1,1) and I = (0, 2).) Similarly, near the point (-0), S is the

graph of the function g : (-1,1) -. (-2, 0) given by x = - 1 - y2.
For the lower half of the circle, when y < 0, we can choose I = (-1,1), J =

(0, -12), and the function f : I -. J given byf(x) 1 - x2.

Above, we expressed all but two points of the unit circle as the graph of
functions of y in terms of x; we divided the circle into top and bottom. When
we analyzed the unit circle in Example 2.9.11 we divided the circle into right-
hand and left-hand sides, expressing all but two (different) points as the graph
of functions expressing x in terms of y. In both cases we use the same four
functions and we can use the same choices of I and J.

Example 3.1.5 (Graphs that are not smooth curves). The graph of the
function f :1l - R, f (x) = lxi, shown in Figure 3.1.2, is not a smooth curve; it
is the graph of the function f expressing y as a function of x, of course, but f is
not differentiable. Nor is it the graph of a function g expressing x as a function
of y, since in a neighborhood of (00) the same value of y gives two values of x.

The set X C R2 of equation xy = 0 (i.e., the union of the two axes) is also
not a smooth curve; in any neighborhood of (0), there are infinitely many y's
corresponding to x = 0, and infinitely many x's corresponding to y = 0, so it
isn't a graph of a function either way.

In contrast, the graph of the function f (X) = x113, shown in Figure 3.1.3, is
a smooth curve; f is not differentiable at the origin, but the curve is the graph
of the function x = y3, which is differentiable.

Example 3.1.6 (A smooth curve can be disconnected). The union X of
the x and y axes, shown on the left in Figure 3.1.4, is not a smooth curve, but
X - { (00) } is a smooth curve-even though it consists of four distinct pieces.
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FIGURE 3.1.4.
Left: The graph of the x and y

axes is not a smooth curve. Right:
The graph of the axes minus the
origin is a smooth curve.

a

//

y

Tangent lines and tangent space

Definition 3.1.7 (Tangent line to a smooth plane curve). The tangent
line to a smooth plane curve C at a point is the line of equation

y - f (a) = f'(a)(x - a). The tangent fine to C at a point (gab)) is the line

of equation x - g(b) = g'(b)(y - b).

You should recognize this as saying that the slope of the graph of f is given
by f'.

At a point where the curve is neither vertical nor horizontal, it can be thought
of locally as either a graph of x as a function of y or as a graph of y as a function
of x. Will this give us two different tangent lines? No. If we have a point

(b)=(f(a))=(9 ))EC, 3.1.2

where C is a graph of f : I J and g : J -. I, then g o f(x) = x (i.e.,
g(f(x)) = x). In particular, g'(b)f'(a) = I by the chain rule, so the line of
equation y- f (a) = f'(a)(x-a) is also the line of equation x-g(b) = g'(b)(y-b),
and our definition of the tangent line is consistent.'

Very often the interesting thing to consider is not the tangent line but the
tangent vectors at a point. Imagine that the curve is a hill down which you are
skiing or sledding. At any particular moment, you would be interested in the
slope of the tangent line to the curve: how steep is the hill? But you would also
be interested in how fast you are going. Mathematically, we would represent
your speed at a point a by a velocity vector lying on the tangent line to the
curve at a. The arrow of the velocity vector would indicate what direction you
are skiing, and its length would say how fast. If you are going very fast, the
velocity vector will be long; if you have come to a halt while trying to get up
nerve to proceed, the velocity vector will be the zero vector.

The tangent space to a smooth curve at a is the collection of vectors of all
possible lengths, anchored at a and lying on the tangent line, as shown at the
middle of Figure 3.1.5.

/ imnnnion a.a.e plangent space to a smooth curve). The tangent

space to C at a, denoted TaC, is the set of vectors tangent to C at a: i.e.,
FIGURE 3.1.5. vectors from the point of tangency to a point of the tangent line.

Top: The tangent line. Middle:
the tangent space. Bottom: The

'Since g'(b)f'(a) = 1, we have f(a) = 1/g'(b), so y - f(a) = f'(a)(x - a) can be
tangent space at the tangent point written
and translated to the origin. x - a x - g(b)

i.e., x - 9(b) = 9 (b)(e - b).1l - 6 =
g1(b)

=
.916)
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FIGURE 3.1.6.
The unit circle with tangent

.spaces at I 0 I and at 1 -1)
The two ta\\\nge/nt spaces `are the
same; they consist of vectors such
that the increment in the x direc-
tion is 0. They can be denoted
i = 0, where i denotes the first
entry of the vector I

x]
; it is not

a coordinate of a point in the tan-
gent line.

The tangent space will be es-
sential in the discussion of con-
strained extrema, in Section 3.7,
and in the discussion of orienta-
tion, in Section 6.5.

Note that a function of the
form F (Y) = c is of a different
species than/ the functions f and
g used to define a smooth curve;
it is a function of two variables,
while f and g are functions of one
variable. If f is a function of one
variable, its graph is the smooth
curve of equation f (x) - y = 0.
Then the curve is also given by
the equation F [ ) = U, where

F(y) =I(x)-y

The vectors making up the tangent space represent increments to the point a;
they include the zero vector representing a zero increment. The tangent space
can be freely translated, as shown at the bottom of Figure 3.1.5: an increment
has meaning independent of its location in the plane, or in space. Often we
make use of such translations when describing a tangent space by an equation.
In Figure 3.1.6, the tangent space to the circle at the point where x = 1 is
the same as the tangent space to the circle where x = -1; this tangent space
consists of vectors with no increment in the x direction. (But the equation for
the tangent line at the point where x = I is x = 1, and the equation for the
tangent line at the point where x = -1 is x = -1; the tangent line is made
of points, not vectors, and points have a definite location.) To distinguish the
tangent space from the line x = 0, we will say that the equation for the tangent
space in Figure 3.1.6 is i = 0. (This use of a dot above a variable is consistent
with the use of dots by physicists to denote increments.)

Level sets as smooth curves

Graphs of smooth functions are the "obvious" examples of smooth curves. Very
often, the locus (set of points) we are asked to consider is not the graph of any
function we can write down explicitly. We can still determine whether such a
locus is a smooth curve.

Suppose a locus is defined by an equation of the form F (v) = c, such as
x2 - .2x4 - y2 = -2. One way to imagine this locus is to think of cutting the
graph of F (I) = x2 - .2x4 - y2 by the plane z = -2. The intersection of the
graph and the plane is called a level curve; three such intersections, for different
values of z, are shown in Figure 3.1.7. How can we tell whether such a level set
is a smooth curve? We will see that the implicit function theorem is the right
tool to handle this question.

Theorem 3.1.9 (Equations for a smooth curve in R2). (a) If U is open
in P2, F : U - R is a differentiable function with Lipechitz derivative, and
X. _ {x E U [ F(x) = c}, then X. is a smooth curve in 1R2 if [DF(a)] is onto
for all a e Xc; i.e., if

[DF(b)] #0 for all a= (b) EXe. 3.1.3

(b) If Equation 3.1.3 is satia&ed, then the tangent space to X, at a is
ker[DF(a)]:

TTX, = ker[DF(a)].



The condition that (DF(a)] be
onto is the crucial condition of the
implicit function theorem.

Because IDF(a)] is a 1 x 2 ma-
trix (a transformation from QF2 to
R), the following statements mean
the same thing:

/
for all a= \ b) E Xr,

(1) [DF(a)] is onto.
(2) [DF(a)j ¢ 0.
(3) At least one of D1 F(a) or

D2F(a) is not 0.
Note that

[DF(a)] = [D1F(a), D2F(a)];
saying that [DF(a)] is onto is say-
ing that any real number can be
expressed as a linear combination
D1F(a)a + D2F(a)f3 for some

IpI E R2.

Part (b) of Theorem 3.1.9 re-
lates the algebraic notion of
ker[DF(a)] to the geometrical no-
tion of a tangent space

Saying that ker[DF(a)) is the
tangent space to Xc at a says that
every vector v" tangent to Xc at a
satisfies the equation

[DF(a)]v" = 0.

This puzzled one student, who ar-
gued that for this equation to be
true, either IDF(a)] or v" must be
0, yet Equation 3.1.3 says that
(DF(a)] qE 0. This is forgetting
that IDF(a)] is a matrix. For ex-
ample: if [DF(a)] is the rlin7e ma-

trix [2, -21, then (2, -2J 111 = 0.
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FIGURE 3.1.7. The surface F I Y) = x2 - .2x4 - y2 sliced horizontally by setting

z equal to three different constants. The intersection of the surface and the plane
z = c used to slice it is known as a level set. (This intersection is of course the same

as the locus of equation F 1 Y (= c.) The three level sets shown above are smooth

curves. If we were to "slice"" the surface at a maximum of F, we would get a point,
not a smooth curve. If we were to slice it at a saddle point (also a point where the
derivative of F is 0), we would get a figure eight, not a smooth curve.

Example 3.1.10 (Finding the tangent space). We have no idea what the
locus Xr defined by x9 + 2x3 + y + y5 = c looks like, but the derivative of the
function F(X) =x9+2x3+y+ys is

[DF (X) J = [9xs + 6X-, 1 + 5y4 ,

D1F D2F

3.1.4

which is never 0, so X. is a smooth curve for all c. At the point (i) E X5, the

derivative [DF(y)] is [15, 61, so the equation of the tangent space to X5 at
that point is 151 + 6y = 0. A

Proof of Theorem 3.1.9. (a) Choose a = (b) E X. The hypothesis

[DF(a)] 54 0 implies that at least one of D1F (b) or DzF (b) is not 0; let

us suppose D2F (b) f 0 (i.e., the second variable, y, is the pivotal variable,
which will be expressed as a function of the non-pivotal variable z).



Note that the derivative of the
implicit function, in this case f', is

evaluated at a, not at a = I f1 1

b

If you know a curve as a graph,
this procedure will give you the
tangent space as a graph. If you
know it as an equation, it will
give you an equation for the tan-
gent space. If you know it by a
parametrization, it will give you
a parametrization for the tangent
space.

The same rule applies to sur-
faces and higher-dimensional man-

ifolds.
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This is what is needed in order to apply the short version of the implicit

function theorem (Theorem 2.9.9): F (y) - 0 then expresses y implicitly as a

function of x in a neighborhood of a.
More precisely. there exists a neighborhood U of a in R. a neighborhood V of

b, and a continuously differentiable mapping f : U V such that F (f(z)) _
0 for all x E U. The implicit function theorem also guarantees that we can
choose U and V so that when x is chosen in U, then f (x) is the only y E V
such that F (Y) = 0. In other words, X n (U x V) is exactly the graph of f,

which is our definition of a curve.
(b) Now we need to prove that the tangent space is ker[DF(a)). For

this we need the formula for the derivative of the implicit function, in Theorem

2.9.10 (the long version of the implicit function theorem). Let us suppose that
D2F(a) # 0, so that, as above, the curve has the equation y = f(x) near
a = (b a), and its tangent space has equation y = f'(a)i.

The implicit function theorem (Equation 2.9.25) says that the derivative of
the implicit function f is

f'(a) = [Df(a)] = -D2F(a)-'D1F(a).

Substituting this value for f'(a) in the equation y = f'(a)i, we get

y = -D2F'(a)-'DiF(a)i.

Multiplying through by D2F(a) gives D2F'(a)y = -DiF(a)i, so

3.1.5

3.1.6

0 = D, F(a)i + D2F(a)y = [Dl F(a) D2F(a)) I y
J

. 3.1.7

(DF(a)j

Remark. Part (b) is one instance
of

the golden rule: to find the tangent space

to a curve, do unto the increment I . J with the derivative whatever you did to
It,

points with the function to get your curve. For instance:

If the curve is the graph of f, i.e, has equation y = f (x), the tangent space
at (fra)) is the graph of f'(a), i.e. has equation pj = f'(a)i.

If the curve has equation F (y) = 0, then the tangent space at

equation [DF(yt ), I

y J =0.

x0 has
yo
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FIGURE 3.1.8.
The locus of equation i +y4 +

x2 -y2 = - 1/4 consists of the two
points at ±1/v2 on the y-axis; it
is not a smooth curve. Nor is the
figure eight, which is the locus of
equation x4+y4+x2-y2 = 0. The
other curves are smooth curves.
The arrows on the lines are an
artifact of the drawing program.

"Smooth curve" means some-
thing different in mathematics and
in common speech: a figure eight
is not a smooth curve, while the
four separate straight lines of Ex-
ample 3.1.6 form a smooth curve.
In addition, by our definition the
empty set (which arises in Exam-
ple 3.1.11 if c < -1/4) is also a
smooth curve! Allowing the empty
set to be a smooth curve makes a
number of statements simpler.

Why? The result of "do unto the increment ... " will be the best linear

approximation to the locus defined by "whatever you did to points ...." A

Example 3.1.11 (When is a level set a smooth curve?). Consider the

function F (y) = x4 + y4 + x2 - y2. We have

[DF(y)] = 4x3+2x,4y3-2y = [2x(2x2+1), 2y(2y2-1)]. 3.1.8

D,F D2F

There are no real solutions to 2x2 + 1 = 0; the only places where both partials

vanish are

(0)' (t1/v' 3.1.9

where F takes on the value 0 and -1/4. Thus for any number c 96 0 and
c # -1/4, the locus of equation c = x4 + y4 + z2 - y2 is a smooth curve.

Some examples are plotted in Figure 3.1.8. Indeed, the locus of equation

x4 + y4 + x2 - y2 = -1/4 consists of precisely two points, and is nothing you
would want to call a curve, while the locus of equation x4 + y4 + x2 - y2 = 0 is

a figure eight, and near the origin looks like two intersecting lines; to make it

a smooth curve we would have to take out the point where the lines intersect.

The others really are things one would want to call smooth curves.

Smooth surfaces in ]R3

Our definition of a smooth surface in R' is a clone of the definition of a curve.

Definition 3.1.12 (Smooth surface). A subset S c R3 is a smooth
a

surface if for every point a = b 1 E S, there are neighborhoods I of a, J
U

of b and K of c, and either a differentiable mapping

f : I x J -' K, i.e., z as a function of (x, y) or

g : I x K -s J, i.e., y as a function of (x, z) or
h : J x K -+ I, i.e., x es a,fuaction of (y, z),

such that X fl (I x J x K) is the graph of f,g, or it.
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We will see in Proposition 3.2.8
that the choice of coordinates
doesn't matter; if you rotate a
smooth surface in any way, it is
still a smooth surface.

If at a point xo the surface is
simultaneously the graph of z as a
function of x, and y, y as a function
of x and z, and x as a function
of y and z, then the corresponding
equations for the tangent planes to
the surface at xo denote the same
plane, as you are asked to show in
Exercise 3.1.9.

As before, t denotes an incre-
ment in the x direction, y an in-
crement in the y direction, and so
on. When the tangent apace is an-

x
chored at a, the vector y is an

Ii
/a

increment from the point I b I .

c

Definition 3.1.13 (Tangent plane to a smooth surface). The tangent
a

plane to a smooth surface S at ( b is the plane of the equations

l

c

z-c=[Df(b)][x
y

b]=Dif(6)(x-a)+D2f(p)(y-b)-
1

y-b= [Dg(a)} 3.1.10

x-a= [Dh(b)] (y-b)+D2h(b) (z-c)

in the three cases above.

As in the case of curves, we will distinguish between the tangent plane, given
above, and the tangent space.

Definition 3.1.14 (Tangent space to a smooth surface). The tangent
space to a smooth surface S at a is the plane composed of the vectors tangent
to the surface at a, i.e., vectors going from the point of tangency a to a point
of the tangent plane. It is denoted T.S.

The equation for the tangent space to a surface is:

i= [Dj(b)] [b] =D1f (b)x+D2f (b)1

Y=
[Dg( ac)]

[z]
3.1.11

x= [z]

Example 3.1.15 (Sphere in ilF3). Consider the unit sphere: the set

such that x2+y2+z2 = 1 I . 3.1.12

This is a smooth surface. Let

x

U.-
= y such that x2 + y2 < 1, z = 01 3.1.13

z JI ()
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Many students find it very hard
to call the sphere of equation

x2+y2+z2=1
two-dimensional. But when we
say that Chicago is "at" x latitude
and y longitude, we are treating
the surface of the earth as two-
dimensional.

In Theorem 3.1.16 we could say
"if IDF(a)] is onto, then X is a
smooth surface." Since F goes
from U C IR3 to IR, the derivative
[DF(a)] is a row matrix with three
entries, D,F,D2F, and D3F. The
only way it can fail to be onto is if
all three entries are 0.

You should be impressed by
Example 3.1.17. The implicit
function theorem is hard to prove,
but the work pays off. With-
out having any idea what the set
defined by Equation 3.1.16 might
look like, we were able to deter-
mine, with hardly any effort, that
it is a smooth surface. Figuring
out what the surface looks like-
or even whether the set is empty-
is another matter. Exercise 3.1.15
outlines what it looks like in this
case, but usually this kind of thing
can be quite hard indeed.

be the unit disk in the (x, y)-plane, and IRS the positive part of the z-axis.

Then

S2 n ((Jr x IR.) 3.1.14

is the graph of the function U,,y -. ,R given by 1 - x2 - y2.
This shows that S2 is a surface near every point where z > 0, and considering

- 1 - x2 - y2 should convince you that S2 is also a smooth surface near any
point where z < 0.

In the case where z = 0, we can consider

(1) U., and U5,;
(2) the half-axes IR2 and 1Ry ; and
(3) the mappings t 1 - x - z and t 1 - y2 - z2,

as Exercise 3.1.5 asks you to do. A

Most often, surfaces are defined by an equation like x2 + y2 + z2 = 1, which
is probably familiar, or sin (x + yz) = 0, which is surely not. That the first is a
surface won't surprise anyone, but what about the second? Again, the implicit
function theorem comes to the rescue, showing how to determine whether a
given locus is a smooth surface.

Theorem 3.1.16 (Smooth surface in R3). (a) Let U be an open subset
of R3, F : U -. IR a differentiable function with Lipschitz derivative and

ll
X

(xy)
EIR3 I F(x)=0J. 3.1.15

z

If at every a E X we have [DF(a)] 36 0, then X is a smooth surface.
(b) The tangent space T.X to the smooth surface is ker[DF(a)].

Example 3.1.17 (Smooth surface in 1R3). Consider the set X defined by
the equation

x
F y 1 = sin(x + yz) = 0.

z

The derivative is

3.1.16

fll
DF I

ba

I

J

= [cos(a + be), c cos(a + be), b cos(a + bc)]. 3.1.17
c " " -F ' '

D,F D D F55

On X, by definition, sin(a + be) = 0, so cos(a + be) 94 0, so X is a smooth
surface. A
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Proof of Theorem 3.1.16. Again, this is an application of the implicit
function theorem. If for instance DIF(a) 0 at some point a E X, then the
condition F(x) = 0 locally expresses .r as a function it of y and z (see Definition
3.1.12). This proves (a).

For part (b), recall Definition 3.1.11, which says that in this case the tangent
space T,X has equation

x = [Dh(b)J I zJ

But the implicit function theorem says that
ll

. 3.1.18

[Dh(6)] = -[DIF(a)]-'[D2F(a),D3F(a)]. 3.1.19

(Can you explain how Equation 3.1.19 follows from the implicit function
theorem? Check your answer below.2)

Substituting this value for [Dh(d)] in Equation 3.1.18 gives

- [D1 F(a)] ' [D2F(a), D3F(a)]
L

y l
, 3.1.20

and multiplying through by DIF(a), we get

t[D1F(a)]x = - [D1F(a)] [DI F(a)] -1 [D2F(a), D3F(a)]
L
yJ , so 3.1.21

r l

i

[D2F(a), D3F(a)] I zJ + [DIF(a)]i = 0; i.e.,
111 r

x 3.1.22
[DjF(a), D2F(a), D3F(a)] y = 0, or [DF(a)]

L
z

l = 0
[DF(a)I z

L J

So the tangent space is the kernel of [DF(a)].

2Recall Equation 2.9.25 for the derivative of the implicit function:

[Dg(b))=-[DIF(c),...,DnF(c)J '[Dn+1F(c),...,Dn+.nF(c)].
partial derly. for partial deriv. for
pivotal variables variables

Our assumption was that at some point a E X the equation F(x) = 0 locally expresses
x as a function of y and z. In Equation 3.1.19 DIF(a) is the partial derivative with
respect to the pivotal variable, while D2F(a) and D3F(a) are the partial derivatives
with respect to the non-pivotal variables.



For smooth curves in R2 or
smooth surfaces in R', we always
had one variable expressed as a
function of the other variable or
variables. Now we have two vari-
ables expressed as a function of the
other variable.

This means that curves in space
have two degrees of freedom, as
opposed to one for curves in the
plane and surfaces in space; they
have more freedom to wiggle and
get tangled. A sheet can get a lit-
tle tangled in a washing machine,
but if you put a ball of string in
the washing machine you will have
a fantastic mess. Think too of tan-
gled hair. That is the natural state
of curves in R3.

Note that our functions f, g,
and k are bold. The function f,
for example,(( is

ll ( lf(x)- If2(x)J \,z
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Smooth curves in R3

A subset X C R3 is a smooth curve if it is locally the graph of either

y and z as functions of x or

x and z as functions of y or

x and y as functions of z.
Let us spell out the meaning of "locally."

Definition 3.1.18 (Smooth curve in R3). A subset X C i1 is a smooth

curve if for every a = b E X, there exist neighborhoods I of a, J of b
c

and K of c, and a differentiable mapping

f : I -. J x K, i.e., y, z as a function of x or

g:J -*IxK, i.e.,x,zasafunctionofyor
k : K -+ I x J, i.e., x, y as a function of z,

such that X n (I x J x K) is the graph of f, g or k respectively.

fa
If y and z are functions of x, then the tangent line to X at b is the line

c

intersection of the two planes

y - b = fj'(a)(x - a) and z - c = ff(a)(x - a). 3.1.23

What are the equations if x and z are functions of y? If x and y are functions
of z? Check your answers below.3

The tangent space is the subspace given by the same equations, where the
increment x - a is written i and similarly y - b = y, and z - c = i. What are
the relevant equations?4

31f x and z are functions of y, the tangent line is the intersection of the planes

x - a = gl(b) (y - b) and z-c=gi(b)(y-b).
If x and y are functions of z, it is the intersection of the planes

x-a=ki(c)(z-c) and y-b=kz(c)(z-c).

4The tangent space can be written as = rf(a)(x) I or

r 1 ( 1

z r- tf2((a)(x)
)

Lz1 - Lgs(b)(y)1 or lyl lkz(c)(i)J
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Since the range of [DF(a)] is
38 2, saying that it has rank 2 is
the same as saying that it is onto:
both are. ways of saying that its
columns span R2.

In Equation 3.1.24, the partial
derivatives on the right-hand side

are evaluated at a = I b I . The

derivative of the implicit function
k is evaluated at c; it is a func-
tion of one variable, z, and is not
defined at a.

Here [DF(a)] is a 2 x 3 matrix,
so the partial derivatives are vec-
tors, not numbers; because they
are vectors we write them with ar-
rows, as in D1F(a).

Once again, we distinguish be-
tween the tangent line and the
tangent space, which is the set of
vectors from the point of tangency
to a point of the tangent line.

This should look familiar: we
did the same thing in Equations
3.1.20-3.1.22.

Proposition 3.1.19 says that another natural way to think of a smooth curve
in L3 is as the intersection of two surfaces. If the surfaces St and S2 are given
by equations fl (x) = 0 and f2(x) = 0, then C = St r1S2 is given by the equation

F(x) = 0. where F(x) _ is a mapping from 1t R2.

Below we speak of the derivative having rank 2 instead of the derivative

being onto; as the margin note explains, in this case the two mean the same
thing.

Proposition 3.1.19 (Smooth curves in R"). (a) Let U C P3 be open,
F : U -a P2 be differentiable with Llpscbitz derivative, and let C be the set
of equation F(x) = 0. If [DF(a)] has rank 2 for every a E C, then C is a
smooth curve in R3.

(b) The tangent vector space to X at a is ker[DF(a)].

Proof. Once more, this is the implicit function theorem. Let a be a point of
C. Since [DF(a)] is a 2 x 3 matrix with rank 2, it has two columns that are
linearly independent. By changing the names of the variables, we may assume
that they are the first two. Then the implicit function theorem asserts that near
a, x and y are expressed implicitly as functions of z by the relation F(x) = 0.

The implicit function theorem further tells us (Equation 2.9.25) that the
derivative of the implicit function k is

[Dk(c)] = -[D1F(a ), D2F(a)]-t[D3F(a)J. 3.1.24v
partial deriv. for for non-
pivotal variables pivotal

variable

We saw (footnote 4) that the tangent space is the suhspace of equation

x = k,(c)z = [Dk(c)]i, 3.1.25l y J k2(c)z
L 1

where once more i, y and i are increments to x, y and z. Inserting the value
of [Dk(c)] from Equation 3.1.24 and multiplying through by [D1F(a) , D2F(a)]
gives

-[D1F(a), D2F(a)][D1F(a), D2F(a)]_1

[D3F(a))i=[D1F(a),D2F(a)JLyJ

0 = [D1F(a), D2F(a), D3F(a)) y i.e., [DF(a)] = 0.
(DF(a)i

r

I'd
so

3.1.26
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In Equation 3.1.27 we parame-
trize the surface by the variables
x and y. But another part of the
surface may be the graph of a func-
tion expressing x as a function of
y and z; we would then be locally
parametrizing the surface by the
variables y and z.

FIGURE 3.1.9.
A curve in the plane, known by

the parametrization

t2 - Sin t
t 6sintcost)

Parametrizations of curves and surfaces

We can think of curves and surfaces as being defined by equations, but there
is another way to think of them (and of the higher-dimensional analogs we
will encounter in Section 3.2): parametrizations. Actually, local parametriza-
tions have been built into our definitions of curves and surfaces. Locally, as
we have defined them, smooth curves and surfaces come provided both with
equations and parametrizations. The graph off (-T) is both the locus of equa-

tion z = f (y) (expressing z as a function of x and y) and the image of the
parametrization

l
y /

((y-
)f

x

\y
3.1.27

How would you interpret Example 3.1.4 (the unit circle) in terms of local
parametrizations?5

Global parametrizations really represent a different way of thinking.

The first thing to know about parametrizations is that practically any map-
ping is a "parametrization" of something.

The second thing to know about parametrizations is that trying to find
a global parametrization for a curve or surface that you know by equations
(or even worse, by a picture on a computer monitor) is very hard, and often
impossible. There is no general rule for solving such problems.

By the first statement we mean that if you fill in the blanks of t () ,
where - represents a function of t (t3, sin t, whatever) and ask a computer
to plot it, it will draw you something that looks like a curve in the plane. If
you happen to choose t " (3ps t) , it will draw you a circle; t H (cost )

sin t
parametrizes the circle. If you choose t - (6

sin t c t) you will get the curve
shown in Figure 3.1.9.

51n Example 3.1.4, where the unit circle x2+ y2 = 1 is composed of points (01

we parametrized the top and bottom of the unit circle (y > 0 and y < 0) by x: we
expressed the pivotal variable y as a function of the non-pivotal variable x, using
the functions y = f(x) = 1 - x and y = f(x) _ - 1 - x . In the neighborhood

of the points (01 ) and (-0 ) we parametrized the circle by y: we expressed the
pivotal variable x as a function of the non-pivotal

variable y, using the functions
x = f(y) = 1 - y2 and x = f(y) = - 1 - y2.
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FIGURE 3.1.10.
A curve in space, known by the

inparametrization t .»
at

t IJII

at

If you choose three functions of t, the computer will draw something that
cost

looks like a curve in space; if you happen to choose t -' sin t l , you'll get
at J

the helix shown in Figure 3.1.10.

If you fill in the blanks of (u) l = ) , where - represents a function of

u and v (for example, sin2 u cos v, for some such thing) the computer will draw
you a surface in .'.=.3. The most famous parametrization of surfaces parametrizes
the unit sphere in R3 by latitude u and longitude v:

cosucosV
(u) -. cosusinv 3.1.28

V
sin u

FIGURE 3.1.11.

In Definition 3.1.20 we could
write "IDy(t)] is one to one" in-
stead of "y (t) j-6 0" ; -P(t) and
[Dy(t)] are the same column ma-
trix, and the linear transformation
given by the matrix ]Dy(t)j is one
to one exactly when 1'(t) 0 0.

Recall that y is pronounced
"gamma."

We could replace "one to one

and onto" by "bijective."

But virtually whatever you type in, the computer will draw you something. For
(u3cosv

example, if you type in ( ) .-+ I u2 + v2 J , you will get the surface shown in
\ v2 cos u l

Figure 3.1.11.
How does the computer do it? It plugs some numbers into the formulas to

a
find points of the curve or surface, and then it connects up the dots. Finding
points on a curve or surface that you know by a parametrization is easy.

But the curves or surfaces we get by such "parametrizations" are not nec-
essarily smooth curves or surfaces. If you typed random parametrizations into
a computer (as we hope you did), you will have noticed that often what you
get is not a smooth curve or surface; the curve or surface may intersect itself,
as shown in Figures 3.1.9 and 3.1.11. If we want to define parametrizations of
smooth curves and surfaces, we must be more demanding.

Definition 3.1.20 (Parametrization of a curve). A parametrization of
a smooth curve C E R' is a mapping y : I -. C satisfying the following
conditions:

(1) I is an open interval of R.

(2) y is CI, one to one, and onto
(3) '7(t) # 0 for every t E I.

Think of I as an interval of time; if you are traveling along the curve, the
parametrization tells you where you are on the curve at a given time, as shown
in Figure 3.1.12.
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In the case of surfaces, saying
that (Dy(u)) is one to one is the
same as saying that the two partial
derivatives Di y, D2y are linearly
independent. (Recall that the ker-
nel of a linear transformation rep-
resented by a matrix is 0 if and
only if its columns are linearly in-
dependent.; it takes two linearly in-
dependent vectors to span a plane,
in this case the tangent plane.

In the case of the parametriza-
tion of a curve (Definition 3.1.20),
the requirement that y(t) 0 0
could also he stated in these terms:
for one vector, being linearly inde-
pendent means not being 0.

The parametrization

tom. (cc's tl
sin t )

which parametrizes the circle, is
of course not one to one, but its
restriction to (0, 270 is; unfortu-
nately,//thu\s restriction misses the

point lil.

It is generally far easier to get
a picture of a curve or surface if
you know it by a parametrization
than if you know it by equations.
In the case of the curve whose
parametrization is given in Equa-
tion 3.1.29, it will take a computer
milliseconds to compute the coor-
dinates of enough points to give
you a good picture of the curve.

FIGURE 3.1.12. We imagine a parametrized curve as an ant taking a walk in the
plane or in space. The parametrization tells where the ant is at any particular time.

Definition 3.1.21 (Parametrization of a surface). A parametrization
of a surface S E R3 is a smooth mapping y : U -s S such that

(1) UCI82isopen.
(2) ry is one to one and onto.
(3) [Dy(u)] is one to one for every u E U.

It is rare to find a mapping y that meets the criteria for a parametrization
given by Definitions 3.1.20 and 3.1.21, and which parametrizes the entire curve
or surface. A circle is not like an open interval: if you bend a strip of tubing
into a circle, the two endpoints become a single point. A cylinder is not like an
open subspace of the plane: if you roll up a piece of paper into a cylinder, two
edges become a single line. Neither parametrization is one to one.

The sphere is similar. The parametrization by latitude and longitude (Equa..
tion 3.1.28) satisfies our definition only if we remove the curve going from the
North Pole to the South Pole through Greenwich (for example).

Example 3.1.22 (Parametrizations vs. equations). If you know a curve
by a global parametrization, it is easy to find points of the curve, but difficult
to check whether a given point is on the curve. The opposite is true if you
know the curve by an equation: then it may well be difficult to find points of
the curve, but checking whether a point is on the curve is straightforward. For
example, given the parametrization

y: t H cos3 t- 3 sin t cos t
t2 - is 3.1.29

you can find a point by substituting some value of t, like t = 0 or t = 1. But
checking whether some particular point (b) is on the curve would be very
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difficult. That would require showing that the set of nonlinear equations

A mathematician trying to pic-
ture a manifold is rather like a
blindfolded person who has never
met or seen a picture of an ele-
phant seeking to identify one by
patting first an ear, then the trunk
or a leg.

a=cos3t-3sintcost
3.1.30b=tz_ts

has a solution.
Now suppose you are given the equation

y + sin xy + cos(x + y) = 0, 3.1.31

which defines a different curve. It's not clear how you would go about finding a
point of the curve. But you could check whether a given point is on the curve
simply by inserting the values for x and y in the equation.6 A

Remark. It is not true that if y : I -+ C is a smooth mapping satisfying
-y'(t) -A 0 for every t, then C is necessarily a smooth curve. Nor is it true
that if y : U S is a smooth mapping such that ]D-y(u)] is one to one, then
necessarily S is a smooth surface. This is true only locally: if I and U are
small enough, then the image of the corresponding y will be a smooth curve or
smooth surface. A sketch of how to prove this is given in Exercise 3.1.20. A

3.2 MANIFOLDS

In Section 3.1 we explored smooth curves and surfaces. We saw that a subset
X E IIk2 is a smooth curve if X is locally the graph of a differentiable function,
either of x in terms of y or of y in terms of x. We saw that S C R3 is a smooth
surface if it is locally the graph of a differentiable function of one coordinate
in terms of the other two. Often, we saw, a patchwork of graphs of function is
required to express a curve or a surface.

This generalizes nicely to higher dimensions. You may not be able to visualize
a five-dimensional manifold (we can't either), but you should be able to guess
how we will determine whether some five-dimensional subset of RI is a manifold:
given a subset of I3" defined by equations, we use the implicit function theorem

6You might think, why not use Newton's method to find a point of the curve given
by Equation 3.1.31? But Newton's method requires that you know a point of the
curve to start out. What we could do is wonder whether the curve crosses the y-axis.
That means setting x = 0, which gives y + cos y = 0. This certainly has a solution by
the intermediate value theorem: y + cosy is positive when y > 1, and negative when
y < -1. So you might think that using Newton's method starting at y = 0 should
converge to a root. In fact, the inequality of Kantorovitch's theorem (Equation 2.7.48)
is not satisfied, so that convergence isn't guaranteed. But starting at y = -a/4 is
guaranteed to work: this gives

MIf(yo)2 < 0.027 < 2.

(f'(po))
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Making some kind of global
sense of such a patchwork of
graphs of functions can be quite
challenging indeed, especially in
higher dimensions. It is a sub-
ject full of open questions, some
fully as interesting and demanding
as, for example, Fermat's last the-
orem, whose solution after more
than three centuries aroused such
passionate interest. Of particular
interest are four-dimensional man-
ifolds (4-manifolds), in part be-
cause of applications in represent-
ing spacetime.

This description is remarkably
concise and remarkably uninfor-
mative. It isn't even clear how
many dimensions X2 and X3 have;
this is typical when you know a set
by equations.

FIGURE 3.2.1.
One possible position of four

linked rods, of lengths 11,12,13,
and l4, restricted to a plane.

to determine whether every point of the subset has a neighborhood in which the
subset is the graph of a function of several variables in terms of the others. If
so, the set is a smooth manifold: manifolds are loci which are locally the graphs
of functions expressing some of the standard coordinate functions in terms of
others. Again, it is rare that a manifold is the graph of a single function.

Example 3.2.1 (Linked rods). Linkages of rods are everywhere, in mechan-
ics (consider a railway bridge or the Eiffel tower), in biology (the skeleton), in
robotics, in chemistry. One of the simplest examples is formed of four rigid
rods, with assigned lengths 11, 14 > 0, connected by universal joints that
can achieve any position, to form a quadrilateral, as shown in Figure 3.2.1.

In order to guarantee that our sets are not empty, we will require that each
rod be shorter than the sum of the other three.

What is the set X2 of positions the linkage can achieve if the points are
restricted to a plane? Or the set X3 of positions the linkage can achieve if
the points are allowed to move in space? These sets are easy to describe by
equations. For X2 we have

X2 = the set (x1, x2, x3, x4) E (R2)4 such that 3.2.1

IXI - X21 = 11, 1X2 - X31 = 12, IX3 - X41 = 13, IX4 - x1I = l4.

Thus X2 is a subset of R8. Another way of saying this is that X2 is the subset
defined by the equation f(x) = 0, where f : (R2)4 _ 1l is the mapping

I/11// {/

(x2-xl)2+(yz-y1)2-li
f\\x1 (X2x3'

!x4))=

(x3-x2)2+(y3-y2)2-12
y1 y2 y3 Y4 2 z 2 3.2.2V V V V (x4 - x3) + (y4 - y3) - 13
x, x2 xa x4

(xl - x4)2 + (y, - y4)2 - 12

Similarly, the set X3 of positions in space is also described by Equation
3.2.1, if we take xi E 1R3; X3 is a subset of R'2. (Of course, to make equations
corresponding to Equation 3.2.2 we would have to add a third entry to the
xi, and instead of writing (x2 - x1)2 + (y2 - y1)2 -12 we would need to write

Can we express some of the xi as functions of the others? You should feel,
on physical grounds, that if the linkage is sitting on the floor, you can move
two opposite connectors any way you like, and that the linkage will follow in a
unique way. This is not quite to say that x2 and x4 are a function of x1 and x3
(or that x1 and x3 are a function of x2 and x4). This isn't true, as is suggested
by Figure 3.2.2.

In fact, usually knowing x1 and x3 determines either no positions of the
linkage (if the x1 and x3 are farther apart than l1 + 12 or 13 + 14) or exactly
four (if a few other conditions are met; see Exercise 3.2.3). But x2 and x4 are
locally functions of x1, x3. It is true that for a given x1 and x3, four positions



You could experiment with this
system of linked rods by cutting
straws into four pieces of differ-
ent lengths and stringing them to-
gether. For a more complex sys-
tem, try five pieces.

If you object that you cannot
visualize what this manifold looks
like, you have our sympathy; nei-
ther can we. Precisely for this rea-
son, it gives a good idea of the kind
of problem that comes up: you
have a collection of equations
defining some set but you have
no idea what the set looks like.
For example, as of this writing we
don't know precisely when X2 is
connected-that is, whether we
can move continuously from any
point in X2 to any other point in
X2. (A manifold can be discon-
nected, as we saw already in the
case of smooth curves, in Exam-
ple 3.1.6.) It would take a bit
of thought to figure out for what
lengths of bars X2 is, or isn't, con-
nected.
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are possible in all, but if you move xt and x3 a small amount from a given
position, only one position of x2 and x4 is near the old position of x2 and x4.

Locally. knowing x1 and x3 uniquely determines x2 and x4.

FIGURE 3.2.2. Two of the possible positions of a linkage with the same x1 and x3
are shown in solid and dotted lines. The other two are xl, x2, x3, 4 and xi, xa, x3, x4.

Even this isn't always true: if any three are aligned, or if one rod is folded
back against another, as shown in Figure 3.2.3, then the endpoints cannot be
used as parameters (as the variables that determine the values of the other
variables). For example, if x1,x2 and x3 are aligned, then you cannot move xI
and x3 arbitrarily, as the rods cannot be stretched. But it is still true that the
position is a locally a function of x2 and x4.

There are many other possibilities: for instance, we could choose x2 and x4
as the variables that locally determine xl and x3, again making X2 locally a
graph. Or we could use the coordinates of xl (two numbers), the polar angle
of the first rod with the horizontal line passing through xl (one number), and
the angle between the first and the second (one number): four numbers in all,
the same number we get using the coordinates of xl and x3.' We said above
that usually knowing x1 and x3 determines either no positions of the linkage or
exactly four positions. Exercise 3.2.4 asks you to determine how many positions
are possible using xl and the two angles above-again, except in a few cases.
Exercise 3.2.5 asks you to describe X2 and X3 when 11 =12 + 13 + 14. A

FIGURE 3.2.3. A manifold: locally the graph of a function
If three vertices are aligned, the

end-vertices cannot move freely: The set X2 of Example 3.2.1 is a four-dimensional manifold in li88; locally, it is
for instance, they can't moved in the graph of a function expressing four variables (two coordinates each for two
the directions of the arrows with- points) in terms of four other variables (the coordinates of the other two points
out stretching the nods.

'Such a system is said to have four degrees of freedom.
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Definition 3.2.2 is not friendly.
Unfortunately, it is difficult to be
precise about what it means to be
"locally the graph of a function"
without getting involved. But
we have seen examples of just
what this means in the case of
1-manifolds (curves) and 2-mani-
folds (surfaces), in Section 3.1.

A k-manifold in P.' is locally
the graph of a mapping expressing
n-k variables in terms of the other
k variables.

If U C 118" is open, the U is a
manifold. This corresponds to the
case where E, = 118", E2 = {0}.

Figure 3.2.4 reinterprets Figure
3.1.1 (illustrating a smooth curve)
in the language of Definition 3.2.2.

or some other choice). It doesn't have to be the same function everywhere. In
most neighborhoods, X2 is the graph of a function of x, and x3, but we saw
that this is not true when x,, x2 and x3 are aligned; near such points, X2 is the
graph of a function expressing x, and x3 in terms of x2 and x4.8

Now it's time to define a manifold more precisely.

Definition 3.2.2 (Manifold). A subset M C 1k" is a k-dimensional man-
ifold embedded in ]I2" if it is locally the graph of a C' mapping expressing
n - k variables as functions of the other k variables. More precisely, for every
x E M, we can find

(1) k standard basis vectors e'i,,...,e";, corresponding to the k variables
that, near x, will determine the values of the other variables. Denote
by E, the span of these, and by E2 the span of the remaining n - k
standard basis vectors; let x, be the projection of x onto E,, and x2
its projection onto E2;

(2) a neighborhood U of x in 1R';

(3) a neighborhood U, of x, in El;
(4) a mapping f : U, -* E2;

such that M n U is the graph of f.

FIGURE 3.2.4. In the neighborhood of x, the curve is the graph of a function ex-
pressing x in terms of y. The point x, is the projection of x onto E, (i.e., the y-axis);
the point x2 is its projection onto E2 (i.e., the x-axis). In the neighborhood of a, we
can consider the curve the graph of a function expressing y in terms of x. For this
point, E, is the x-axis, and E2 is the y-axis.

8For some lengths, X2 is no longer a manifold in a neighborhood of some positions:
if all four lengths are equal, then X2 is not a manifold near the position where it is
folded flat.
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A curve in 1R2 is a 1-manifold
in R2; a surface in R' is a 2-
manifold in R'; a curve in R is
a 1-manifold in R'.

Since f : U -» ):v"-k, saying
that (Df(x)) is onto is the same
as saying that it has n - k linearly
independent columns, which is the
same as saying that those n - k
columns span p',-k: the equation

[Df(x))v = b'

has a solution for every b E 1p.- -k
(This is the crucial hypothesis of
the stripped-down version of the
implicit function theorem, Theo-
rem 2.9.9.)

In the proof of Theorem 3.2.3

we would prefer to write

f ( gnu) 1 = 0 rather than

f(u + g(u)) = 0,

but that's not quite right because

E, may not be spanned by the
first k basis vectors. We have
u E El and g(u) E E2; since both
E1 and Ez are subspaces of R",

it makes sense to add them, and

u + g(u) is a point of the graph

of U. This is a fiddly point; if you

find it easier to think off (g(u)) ,

go ahead; just pretend that E, is

spanned by e,,...,ek, and E2 by

ek+l,...,eee".

Recall that for both curves in 1R2 and surfaces in R3, we had n-k =I variable
expressed as a function of the other k variables. For curves in R3, there are
n - k = 2 variables expressed as a function of one variable; in Example 3.2.1
we saw that for X2, we had four variables expressed as a function of four other
variables: X2 is a 4-manifold in R8.

Of course, once manifolds get a bit more complicated it is impossible to draw
them or even visualize them. So it's not obvious how to use Definition 3.2.2 to
see whether a set is a manifold. Fortunately, Theorem 3.2.3 will give us a more
useful criterion.

Manifolds known by equations

How do we know that our linkage spaces X2 and X3 of Example 3.2.1 are
manifolds? Our argument used some sort of intuition about how the linkage
would move if we moved various points on it, and although we could prove
this using a bit of trigonometry, we want to see directly that it is a manifold
from Equation 3.2.1. This is a matter of saying that f(x) = 0 expresses some
variables implicitly as functions of others, and this is exactly what the implicit
function theorem is for.

Theorem 3.2.3 (Knowing a manifold by equations). Let U C R" be
an open subset, and f : U - IR"-k be a differentiable mapping with Lipschitz
derivative (for instance a C2 mapping). Let M C U be the set of solutions
to the equation f(x) = 0.

If (Df(x)) is onto, then M is a k-dimensional manifold embedded in ]l2".

This theorem is a generalization of part (a) of Theorems 3.1.9 (for curves)
and 3.1.16 (for surfaces). Note that we cannot say-as we did for surfaces in
Theorem 3.1.16-that M is a k-manifold if [Df(x)) A 0. Here (Df(x)) is a
matrix n - k high and n wide; it could be nonzero and still fail to be onto.
Note also that k, the dimension of M, is n - (n - k), i.e., the dimension of the
domain of f minus the dimension of its range.

Proof. This is very close to the statement of the implicit function theorem,
Theorem 2.9.10. Choose n - k of the basis vectors ei such that the correspond-
ing columns of [Df(x)) are linearly independent (corresponding to pivotal vari-
ables). Denote by E2 the subspace of lR" spanned by these vectors, and by
Et the subspace spanned by the remaining k standard basis vectors. Clearly
dimE2 = n - k and dim El = k.

Let xt be the projection of x onto Et, and x2 be its projection onto E2.
The implicit function theorem then says that there exists a ball Ut around
x1, a ball U2 around x2 and a differentiable mapping g : UL -+ U2 such that
f (u + g(u)) = 0, so that the graph of g is a subset of M. Moreover, if U is
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Each partial derivative at right
is a vector with four entries: e.g.,

D1f1(x)

D,f(x) = D1f2(x)

DIf3(x)
Dlfa(x)

and so on.

Unfortunately we had to put
the matrix on two lines to make it
fit. The second line contains the
last four columns of the matrix.

the set of points with E1-coordinates in U1 and E2-coordinates in U2, then the
implicit function theorem guarantees that the graph of g is Mn U. This proves
the theorem.

Example 3.2.4 (Using Theorem 3.2.3 to check that the linkage space
X2 is a manifold). In Example 3.2.1, X2 is given by the equation

/x1 \

f

yl

X2

Y2

Y3 L(x1 - X4
)2

+ (yl
y4)2 - 12

4

X4

A

3.2.3

The derivative is composed of the eight partial derivatives (in the second line
we label the partial derivatives explicitly by the names of the variables):

[Df (x)] = [Dl f (x), D2f (x), D3f(x), D4f(x), D5f (x), Def (x), D7f(x), Dsf (x)]

_
Computing the partial derivatives gives

2(x, - x2) 2(y, - y2) -2(x, - x2) -2(y, - y2)

[Df(x)] =
0 0 2(x2 - x3) 2(y2 - y3) 3.2.4
0 0 0 0

-2(X4 - x1) -2(y4 - yi) 0 0

0 0 0 0
-2(x2 - X3) -2(112 - 113) 0 0

X3

FIGURE 3.2.5.
If the points x1, x2, and x3 are

aligned, then the first two columns
of Equation 3.2.5 cannot be lin-
early independent: y1 - y2 is nec-
essarily a multiple of xi - x2, and
112 -113 is a multiple of x2 - X3.

(x3 - x4) 2(113 - 114) -2(x3 - x4) -2(113 - 114)

0 0 2(x4 - x,) 2(y4 - yl)

Since f is a mapping from Ilts to Ilt4, so that E2 has dimension n - k = 4, four
standard basis vectors can be used to span E2 if the four corresponding column
vectors are linearly independent. For instance, here you can never use the first
four, or the last four, because in both cases there is a row of zeroes. How about
the third, fourth, seventh, and eighth, i.e., the points x2 = (X2) , x4 = (X4 )?
These work as long as the corresponding columns of the matrix

-2(x, - x2) -2(yl - 112) 0 0
2(x2 - x3) 2(312 - y3) 0 0

0 0 -2(x3 - x4) -2(113 - 114)
3.2.5

0 0 2(x4 - XI) 2(114 - yl)
D.2f(x)

(x2 - xl)2 + (y2 - yl)2 - 11

(x3 - x2)2 + (y3 - y2)2 - 12

(x4 -x3)2 + (y4 - y3)2 - 12
- 0.

D, f(x) Daaf(x) Dyaf(x)



William Thurston, arguably
the best geometer of the 20th cen-
tury, says that the right way to
know a k-dimensional manifold
embedded in n-dimensional space
is neither by equations nor by
parametrizations but from the in-
side: imagine yourself inside the
manifold, walking in the dark,
aiming a flashlight first at one
spot, then another. If you point
the flashlight straight ahead, will
you see anything? Will anything
be reflected back? Or will you see
the light to your side? ...

272 Chapter 3. Higher Derivatives, Quadratic Forms, Manifolds

are linearly independent. The first two columns are linearly independent pre-
cisely when X1, X2, and x3 are not aligned as they are in Figure 3.2.5, and the
last two are linearly independent when x:i, x4, and xl are not aligned. The same
argument holds for the first, second, fifth, and sixth columns, corresponding to
x, and x3. Thus you can use the positions of opposite points to locally param-
etrize X2, as long as the other two points are aligned with neither of the two
opposite points. The points are never all four in line, unless either one length
is the sum of the other three, or 11 + 12 = 13 + 14, or 12 + 13 = 14 + 11. In all
other cases, X2 is a manifold, and even in these last two cases, it is a manifold
except perhaps at the positions where all four rods are aligned.

Equations versus parametrizations

As in the case of curves and surfaces, there are two different ways of knowing
a manifold: equations and parametrizations. Usually we start with a set of
equations. Technically, such a set of equations gives us a complete description
of the manifold. In practice (as we saw in Example 3.1.22 and Equation 3.2.2)
such a description is not satisfying; the information is not in a form that can be
understood as a global picture of the manifold. Ideally, we also want to know
the manifold by a global parametrization; indeed, we would like to be able to
move freely between these two representations. This duality repeats a theme of
linear algebra, as suggested by Figure 3.2.6.

Algorithms Algebra Geometry

Linear
Row reduction

Inverses of matrices Subspaces
Algebra Solving linear equations Kernels and images

Differential Newton's method Inverse function theorem Manifolds
Calculus Implicit function theorem Defining manifolds

b i d iy equat ons an parametrizat ons

FIGURE 3.2.6. Correspondences: algorithms, algebra, geometry

Mappings that meet these cri-
teria, and which parametrize the
entire manifold, are rare. Choos-
ing even a local parametrization
that is well adapted to the prob-
lem at hand is a difficult and im-
portant skill, and exceedingly dif-
ficult to teach.

The definition of a parametrization of a manifold is simply a generalization
of our definitions of a parametrization of a curve and of a surface:

Definition 3.2.5 (Parametrization of a manifold). A parametrization
of a k-dimensional manifold M c RI is a mapping y : U M satisfying the
following conditions:

(1) U is an open subset of R".
(2) ry is Ct, one to one, and onto;
(3) [D'7(u)) is one to one for every u E U.
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In this sense, a manifold is a
surface in space (possibly, higher-
dimensional space) that looks flat
if you look closely at a small re-
gion.

As mentioned in Section 3.1.
the tangent space will be essential
in the discussion of constrained
extrema. in Section :3.7. and in
the discussion of orientation, in
Section 6.5.

Part (b) of Theorems 3.1.9 (for
curves) and 3.1.16 (for surfaces)
are special cases of Theorem 3.2.7.

The tangent space to a manifold

The essence of a k-dimensional differentiable manifold is that it is well approx-
imated. near every point, by a k-dimensional subspace of ..i.". Everyone has an
intuition of what this means: a curve is approximated by its tangent line at a
point, a surface by its tangent plane.

Just as in the cases of curves and surfaces, we want to distinguish the tangent
vector space Tx:1l to a manifold Al at a point x E Al from the tangent line,
plane ... to the manifold at x. The tangent space TxM is the set of vectors
tangent to :11 at x.

Definition 3.2.6 (Tangent space of a manifold). Let t l ' 1 C R be a
k-dimensional manifold and let x E M, so that

k standard basis vectors span El;

the remaining n - k standard basis vectors span E2;
U1 C El, U C R" are open sets, and
g : Ut E2 is a C' mapping,

such that x E U and M fl U is the graph of g. Then the tangent vector
space to the manifold at x, denoted TxM, is the graph of [Dg(x)]: the linear
approximation to the graph is the graph of the linear approximation.

If we know a manifold by the equation f = 0, then the tangent space to the
manifold is the kernel of the derivative of f.

Theorem 3.2.7 (Tangent space to a manifold). If f = 0 describes a
manifold, under the same conditions as in Theorem 3.2.3, then the tangent
space TTM is the kernel of [Df(x)].

Proof. Let g be the function of which M is locally the graph, as discussed in
the proof of Theorem 3.2.3. The implicit function theorem gives not only the
existence of g but also its derivative (Equation 2.9.25): the matrix

[Dg(xt)] = -[D3,f(x), ..., Dtsf(x)] 3.2.6

partial deriv. for partial deriv. for
pivotal variables non-pivotal variables

where D ... Dj,-,, are the partial derivatives with respect to the n - k pivotal
variables, and l), ... Dik are the partial derivatives with respect to the k non-
pivotal variables.

By definition. the tangent space to M at x is the graph of the derivative of
g. Thus the tangent space is the space of equation

Vv D),.-5f(x)] '[Di,f(x), ..., Di.f(x)]V, 3.2.7



One thing needs checking: if
the same manifold can he repre-
sented as a graph in two differ-
ent ways, then the tangent spaces
should he the same. This should
be clear from Theorem 3.2.7. In-
deed, if an equation f(x) expresses
some variables in terms of others
in several different ways, then in
all cases, the tangent space is the
kernel of the derivative of f and
does not depend on the choice of
pivotal variables.

In Theorem 3.2.8. T-' is not
an inverse. mapping; indeed, since
7' goes from IP" to 1R"', such an in-
verse mapping does not exist when
n 0 in. By T-'(M) we denote
the inverse image: the set of points
x E IR" such that T(x) is in M.

A graph is automatically given
by an equation. For instance, the
graph off : R1 - is the curve of
equation y - f(x) = 0.

Corollary 3.2.9 follows immedi-
ately from Theorem 3.2.8, as ap-
plied to T-':

T(M) = (T-')"-'(M).
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where v' is a variable in Et, and w is a variable in E2. This can be rewritten

[D3,f(x), .... D;,,f(x)]' =0, 3.2.8

which is simply saying [Df(v + w)J = 0.

Manifolds are independent of coordinates

We defined smooth curves, surfaces and higher-dimensional manifolds in terms
of coordinate systems, but these objects are independent of coordinates; it
doesn't matter if you translate a curve in the plane, or rotate a surface in
space. In fact Theorem 3.2.8 says a great deal more.

Theorem 3.2.8. Let T : IR" -. IR- be a linear transformation which is
onto. If M C km is a smooth k-dimensional manifold, then T-7(M) is a
smooth manifold, of dimension k + n - m.

Proof. Choose a point a E T`(M), and set b = T(a). Using the notation of
Definition 3.2.2, there exists a neighborhood U of b such that the subset M fl U
is defined by the equation F(x) l= 0, where F : U -e E2 is given by

F( t)=f(xt)-x2=0. 3.2.9

Moreover, [DF(b)] is certainly onto, since the columns corresponding to the
variables in E2 make up the identity matrix.

The set T-5(MnU) = T-tMflT-t (U) is defined by the equation FoT(y) _
0. Moreover,

[DF o T(a)] = [DF(T(a))] o [DT(a)] = [DF(b)] o T 3.2.10

is also onto, since it is a composition of two mappings which are both onto. So
T-tM is a manifold by Theorem 3.2.3.

For the dimension of the smooth manifold T-I(M), we use Theorem 3.2.3
to say that it is n (the dimension of the domain of F o T) minus m - k (the
dimension of the range of F o T), i.e., n - m + k.

Corollary 3.2.9 (Manifolds are Independent of coordinates). If
T : IR' IR' is an invertible linear transformation, and M C 1R'" is a
k-dimensional manifold, then T(M) is also a k-dimensional manifold.

Corollary 3.2.9 says in particular that if you rotate a manifold the result is
still a manifold, and our definition, which appeared to be tied to the coordinate
system, is in fact coordinate-independent.
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Almost the only functions that
can be computed are polynomi-
als, or rather piecewise polynomial
functions, also known as splines:
functions formed by stringing to-
gether bits of different polynomi-
als. Splines can be computed,
since you can put if statements in
the program that computes your
function, allowing you to com-
pute different polynomials for dif-
ferent values of the variables. (Ap-
proximation by rational functions,
which involves division, is also im-
portant in practical applications.)

One proof, sketched in Exercise
3.3.8, consists of using I'Hopital's
rule k times. The theorem is also
a special case of Taylor's theorem
in several variables.

3.3 TAYLOR POLYNOMIALS IN SEVERAL VARIABLES

In Sections 3.1 and 3.2 we used first-degree approximations (derivatives) to
discuss curves, surfaces and higher-dimensional manifolds. Now we will discuss
higher-degree approximations, using Taylor polynomials.

Approximation of functions by polynomials is a central issue in calculus
in one and several variables. It is also of great importance in such fields as
interpolation and curve fitting, computer graphics and computer aided design;
when a computer graphs a function, most often it is approximating it with cubic
piecewise polynomial functions. In Section 3.8 we will apply these notions to
the geometry of curves and surfaces. (The geometry of manifolds is quite a bit
harder.)

Taylor's theorem in one variable

In one variable, you learned that at a point x near a, a function is well ap-
proximated by its Taylor polynomial at a. Below, recall that flnl denotes the
nth derivative of f.

Theorem 3.3.1 (Taylor's theorem without remainder, one variable).
If U C lip is an open subset and f : U -. lI is k times continuously differen-
tiable on U, then the polynomial

nomial of degree < k such that

hi o
f(a+h) hpi.a(a+h) =0.

k

PA,a( = f(a)+ f'(a)h+2i f"(a)h2+...+!f(k)(a)hk
3.3.1

Taylor polynomial

is the best approximation to f at a in the sense that it is the unique poly-

3.3.2

We will see that there is a polynomial in n variables that in the same sense
best approximates functions of n variables.

Multi-exponent notation for polynomials in higher dimensions

First we must introduce some notation. In one variable, it is easy to write the
"general polynomial" of degree k as

k

ao+alx+a2x2+...+akxk=Eaix'. 3.3.3

For example,
i=o

3+2x-x2+4x4 = 3x°+2x'-1x2+0x3+4x4 3.3.4
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Polynomials in several vari-
ables really are a lot more compli-
cated than in one variable: even
the first questions involving fac-
toring, division, etc. lead rapidly
to difficult problems in algebraic
geometry.

can be written as
4

E a;x', where 0 o = 3, al = 2, a2=-I. a3=0, a4 = 4. 3.3.5

=o

But it isn't obvious how to find a "general notation" for expressions like

I+ x + yz +x 2 + xyz + y2z - x2y2. 3.3.6

One effective if cumbersome notation uses multi-exponents. A inulti-expo-
nent is a way of denoting one term of an expression like Equation 3.3.6.

Definition 3.3.2 (Multi-exponent). A multi-exponent I is an ordered
finite sequence of non-negative whole numbers, which definitely may include
0:

I = (i1.... 3.3.7

Example 3.3.3 (Multi-exponents). In the following polynomial with n = 3
variables:

1 + x + yz + x2 + xyz + y2z - x2y2, (3.3.6)

each multi-exponent I can be used to describe one term:

1 = x0y0z0 corresponds to I = (0,0,0)

X = xl y0z0 corresponds to I = (1, 0, 0) 3.3.8
yz = x0yiz1 corresponds to I = (0, 1, 1). 0

What multi-exponents describe the terms x2, xyz, y2z, and x2y2?9

The set of multi-exponents with n entries is denoted I,,:

I = ((ii.... 3.3.9

The set 13 includes the seven multi-exponents of Equation 3.3.8, but many
others as well, for example I = (0, 1, 0), which corresponds to the term y,
and I = (2,2,2), which corresponds to the term x2y2z2. (In the case of the
polynomial of Equation 3.3.6, these terms have coefficient 0.)

We can group together elements of I according to their degree:

9

x' = x'ysz' corresponds to I = (2,0,0).

xyz = x'y'z' corresponds to I = (1,1,1).

y2z = x°y'z' corresponds to I = (0,2,1).

x2y2 = x2y2z° corresponds to I = (2,2.0).
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For example, the set 13 of
multi-exponents with three entries
and total degree 2 consists of
(0,1,1), (1, 1, 0), (1, 0, 1), (2, 0, 0),
(0,2,0), and (0,0,2).

Recall that 0! = 1, not 0.

For example., if I = (2,0,3),
then I! = 2!0!3! = 12.

The monomial x2x4 is of degree
5; it can be written

x1 = x(0.2.0.3).

In Equation 3.3.12, m is just
a placeholder indicating the de-
gree. To write a polynomial with
n variables, first we consider the
single multi-exponent I of degree
m = 0, and determine its coeffi-
cient. Next we consider the set T,c,
(multi-exponents of degree m = 1)
and for each we determine its co-
efficient. Then we consider the
set Tn (multi-exponents of degree
m = 2), and so on. Note that we
could use the multi-exponent no-
tation without grouping by degree,
expressing a polynomial as

E afxl.
IET

But it is often useful to group
together terms of a polynomial
by degree: constant term, lin-
ear terms, quadratic terms, cubic
terms, etc.

Definition 3.3.4 (Degree of a multi-exponent). For any multi-exponent
I E 1;,, the total degree of I is deg l = it + + in.

The degree of xyz is 3, since 1 1 1 + 1 = 3; the degree of y2z is also 3.

Definition 3.3.5 (I!). For any multi-exponent I E T,,,

3.3.10

Definition 3.3.6 (Z,). We denote by Z,*, the set of multi-exponents with n
entries and of total degree k.

What are the elements of the set TZ? Of 173? Check your answers below.10
Using multi-exponents, we can break up a polynomial into a sum of mono-

mials (as we already did in Equation 3.3.8).

Definition 3.3.7 (Monomial). For any I E 2y the function

xl = X11 ... x;; on r will be called a monomial of degree deg I.

Here it gives the power of x1, while i2 gives the power of x2, and so on. If
I = (2,3, 1), then x1 is a monomial of degree 6:

x1 = x(2.3,1) = xix2x3. 3.3.11

We can now write the general polynomial of degree k as a sum of monomials,
each with its own coefficient al:

k

E F_ 0'1x
m=0 IE7:'

3.3.12

Example 3.3.8 (Multi-exponent notation). To apply this notation to the
polynomial

2 + x1 - x2x3 + 4x,x2x3 + 2x1x2, 3.3.13

we break it up into the terms:

2 = 2x°x.2x3 I = (0, 0, 0), degree 0, with coefficient 2

xl = lxixgx3 1 = (1,0,0), degree 1, with coefficient 1

-x2x3 = -Ixjx2x3 I = (0,1,1), degree 2, with coefficient -1
4x,x2x3 = 4xix2x3 I = (1,1,1), degree 3, with coefficient 4

2xix2 = 2xixzx3 I = (2, 2, 0), degree 4, with coefficient 2.

'oIi={(1,2),(2,1),(0,3),(3,0); 131),(2,1,0),(2,0,1),(1,2,0),
(1, 0, 2), (0, 2,1),(0,1,2),(3,0,0),(Q,3,0), (0,07 3).
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We write I E under the sec-
ond sum in Equation 3.3.14 be-
cause the multi-exponents I that
we are summing are sequences of
three numbers, .r,,x2 and x:,, and
have total degree in.

Exercise 3.3.6 provides more
practice with multi-exponent no-
tation.

Recall that different notations
for partial derivatives exist:

2

D,(D,f)(a) = OX) a
(a).

Of course D, f is only defined if
all partials up to order deg I exist,
and it is also a good idea to as-
sume that they are all continuous,
so that the order in which the par-
tials are calculated doesn't matter
(Theorem 3.3.9).

Thus we can write the polynomial as

4

E a jxl , where 3.3.14
n,=0 IEZ3

a.(o.o.0) = 2, a(t,0.0) = 1, a(o,,,,)

a(,.,.,) = 4, a(2.2,0) = 2,
3.3.15

and all other aI = 0, for I E 131, with m < 4. (There are 30 such terms.) L

What is the polynomial

3.3.16

where a(0,0) = 3, a(l,o) = -1, a(1,2) = 3, a(2,,) = 2, and all the other
coefficients aI are 0? Check your answer below."

3

F E arxl ,

m=0 IEZz

Mufti-exponent notation and equality of crossed partial
derivatives

Multi-exponent notation also provides a concise way to describe the higher par-
tial derivatives in Taylor polynomials in higher dimensions. Recall (Definition
2.7.6) that if the function Di f is differentiable, then its partial derivative with
respect to the jth variable, Dj(D,f), exists12; it is is called a second partial
derivative of f.

To apply multi-exponent notation to higher partial derivatives, let

DIf =D1'D2'...D;;f. 3.3.17

For example, for a function f in three variables,

D, (D,(D2(Dzf))) = Di(DZf) can be written Di(D2(D3J)), 3.3.18

which can be written D(2,2,0) f, i.e., DI f, where I = (i,, i2, i3) = (2, 2, 0).

What is D(,,o,2)f, written in our standard notation for higher partial deriva-
tives? What is D(o,,,) f? Check your answer below.13

"It is 3 - x, + 3x,xz + 2xix2.
"This assumes, of course, that f : U -. IR is a differentiable function, and U C IR°

is open.

"The first is D,(D3f), which can also be written D,(D3(D3f)) The second is
D2(D3f).
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We will see when we define
Taylor polynomials in higher di-
mensions (Definition 3.3.15) that
a major benefit of multi-exponent
notation is that it takes advantage
of the equality of crossed partials,
writing them only once; for in-
stance, D1(D2f) and D2(D1 f) are
written D(,,)).

Theorem 3.3.9 is a surprisingly
difficult result, proved in Appen-
dix A.6. In Exercise 4.5.11 we give
a very simple proof that uses Fu-
bini's theorem.

Don't take this example too se-
riously. The function f here is
pathological; such things do not
show up unless you go looking
for them. You should think that
crossed partials are equal.

Recall, however, that a multi-exponent I is an ordered finite sequence of
non-negative whole numbers. Using multi-exponent notation, how can we dis-
tinguish between D1(D3f) and D3(D1 f)? Both are written D(,.O,,). Similarly,
D1.1 could denote Di(D2f) or D2(D1f). Is this a problem?

No. If you compute the second partials D1(D3f) and D3(D1 f) of the func-
tion x2 + xy3 + xz, you will see that they are equal:

fxl xl
D, (Dsf) y I =D3(Dlf) 11

z z )
= 1.

Similarly, D1(D2 f) = D2 (Dl f ), and D2 (D3 f) = D3 (D2 f ).

Normally, crossed partials are equal. They can fail to be equal only if the
second partials are not continuous; you are asked in Exercise 3.3.1 to verify that
this is the case in Example 3.3.11. (Of course the second partials do not exist
unless the first partials exist and are continuous, in fact, differentiable.)

Theorem 3.3.9 (Crossed partials equal). Let f : U -. R be a function
such that all second partial derivatives exist and are continuous. Then for
every pair of variables xi, x the crossed partials are equal:

D1(Dif)(a) = D2(Dif)(a) 3.3.20

Corollary 3.3.10. If f : U -. R is a function all of whose partialderivatives
up to order k are continuous, then the partial derivatives of order up to k do
not depend on the order in which they are computed.

For example, Di(Di(Dkf))(a) = Dk(D1(Dif))(a), and so on.

The requirement that the partial derivatives be continuous is essential, as
shown by Example 3.3.11

3.3.19

Example 3.3.11 (A case where crossed partials aren't equal). Consider
the function

f(y)
0

3.3.21

Then D (x 4x2y3 + x4y - 1/5 xl _ x5 - 4x3y2 - xy4illy _ (x2+y2)2 and D2f (lyl (32 +y2)2
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when (y) 36 (().

and both partials vanish at the origin. So

For example, take the polyno-
mial x t 2rz + :3r's (i.e.. Cl =
1.112 = 2.113 3.) Then

f'(r) = I +4r+9111. so
I.f'(0) - 1: indeed. 1! a,

f"(r) = 4 + tar. so

f"(0) = 4: indeed. 2! al - 4

ff3t(x) = I8:
indeed, 3! a:i = 6.3 = 18.

Evaluating the derivatives at 0
gets rid of terms that come from
higher-degree terms. For example.
in f"(x) = 4 -. Isx, the l8x comes
from the original 3r'.

In Proposition 3.3.12 we use J
to denote the multi-exponents we
sum over to express a polynomial,
and I to denote a particular multi-
exponent.

Dtf(UU) _ 0

U

r if.r g` (1
- an

ify=0
- y z 0 0 if x= 0

giving D2(Dif) (y) = D2(-y) _ -1 and Di(D2f) (p) = D1(x) = 1,

the first for any value of y and the second for any value of x: at the origin, the
crossed partials Dz(D1 f) and D1(D2 f) are not equal.

The coefficients of polynomials as derivatives

We can express the coefficients of a polynomial in one variable in terms of
the derivatives of the polynomial at 0. If p is a polynomial of degree k with
coefficients an ... aA., i.e..

p(x) = ao + aix + a2x2 + + akxk. 3.3.23

then, denoting by p"t the ith derivative of p, we have

i!a, = plt1(0); i.e.. a, = 1 pt+l(0). 3.3.24

Evaluating the ith derivative of a polynomial at 0 isolates the coefficient of
x': the ith derivative of lower terms vanishes, and the ith derivative of higher
degree terms contains positive powers of x, and vanishes (is 0) when evaluated
at 0.

We will want to translate this to the case of several variables. You may
wonder why. Our goal is to approximate differentiable functions by polynomials.
We will see in Proposition 3.3.19 that. if, at a point a, all derivatives- up to
order k of a function vanish, then the function is small in a neighborhood of
that point (small in a sense that. depends on k). If we can manufacture a
polynomial with the same derivatives up to order k as the function we want to
approximate, then the function representing the difference between the function
being approximated and the polynomial approximating it will have vanishing
derivatives up to order k: hence it will be small.

So, how does Equation 3.3.23 translate to the case of several variables?
As in one variable, the coefficients of a polynomial in several variables can

expressed in terms of the partial derivatives of the polynomial at 0.

Proposition 3.3.12 (Coefficients expressed in terms of partial
derivatives at 0). Let p be the polynomial

k

p(x) = F- F- a,txJ. 3.3.25
m=0 Jel"

Then for any particular I E Z, we have I! 111 = Djp(0).
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Proof. First. note that it is sufficient to show that

For example, i( £2. then JDtx (0) = 1! and Dtx (O) = 0 for all .I 76 I. :3.3.26
'r (x) = 2.f

k^
DIP(0) = DI L, E aJxJ (0)

m=0 JET

if you find it hard I. focus
on this proof written in multi-
exponent notation, look at Exam-
ple 3.3.13.

Multi-exponent notation takes
some getting used to: Example
3.3.13 translates multi-exponent
notation into more standard (and
less concise) notation.

We can see that this is enough by writing:

3.3.27

k

_ F F ajDIx"(0);
nt=0 JEZ

if we prove the statements in Equation 3.3.26, then all the terms ajDIxJ(0)
for J 0 I drop out, leaving Dlp(0) = 1! al.

1b prove that Dfx'(0) = P. write

DIx1=D" ...D;,xi Dltxj
3.3.28

= I!.

To prove D/x"(0) = 0 for all J 1, write similarly
J it an 1 iDrx =D, ...Dax; D " xj ..... Dnx7,,... 3.3.29

At least one j,,, must be different from i,,,, either bigger or smaller. If it is
smaller, then we see a higher derivative than the power. and the derivative is 0.
If it is bigger, then there is a positive power of x,,, left over after the derivative,
and evaluated at 0, we get 0 again. 0

Example 3.3.13 (Coefficients of a polynomial in terms of its partial
derivatives at 0). What is D, DZp, where p = 3x?x2? We have D2p = 9x2xi,
DZp = 18x2x1, and so on, ending with DID,D2D2D2p = 36.

In multi-exponent notation, p = 3:cix2 is written 3x(2.3), i.e., alx1, where
I = (2,3) and a(2,3) = 3. The higher partial derivative D2D2p is written
D(2.3)p By definition (Equation 3.3.10), when I = (2.3), I! ='2V = 12.

Proposition 3.3.12 says

al = ji D/p(0); here, Jt D(2.3)p(0) =
36

= 3, which is indeed a(2.3)

What if the multi-exponent I for the higher partial derivatives is not the same
as the multi-exponent J for x? As mentioned in the proof of Proposition 3.3.12,
the result is 0. For example, if we take DID2 of the polynomial p = 3xixz, so
that I = (2,2) and J = (2, 3), we get 36x2; evaluated at p = 0, this becomes
0. If I > J, the result is also 0; for example, what is Dlp(0) when I = (2, 3),
p = aJxJ, aJ = 3, and J = (2, 2)?14 A

14This corresponds to D?Da(3xi.r ): already, D. (3x' 2) = 0.

P written in
molt i-exponent form



Although the polynomial in
Equation 3.3.30 is called the Tay-
lor polynomial off at a, it is eval-
uated at a + h, and its value there
depends on h. the increment to a.

In Equation 3.3.30, remember
that I is a multi-exponent; if you
want to write the polynomial out
in particular cases, it can get com-
plicated, especially if k or rt is big.

Example 3.3.Hi illu,trates no-
tation; it has no mathematical
content.

The first term -the terra of de-
gree m=0---corresponds to the 0th
derivative, i.e.. the function f it-
self.

Remember (Definition :1.3.7)
that x' = r,i ... .r : similarly,
hr = h;p For instance, if
I = (1,1) we have

W = h(i.ii = h,hz;

if 1 (2, 0. 3) we have
ht = h(2.o.ai = h2]/t3.

Since the crossed partials of f

are equal,

D(i.iif(a)hih2 =

DiD2f(a)hih2

+ 2D2Di f(a)hih2.

The term 1/I! in the formula for
the Taylor polynomial gives ap-
propriate weights to the various
terms to take into account the ex-
istence of crossed partials.

This is the big advantage of
multi-exponent notation, which is
increasingly useful as n gets big:
it takes advantage of the existence
of crossed partials.
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Taylor polynomials in higher dimensions

Now we are ready to define Taylor polynomials in higher dimensions, and to
see in what sense they can be used to approximate functions in n variables.

Definition 3.3.14 (C' function). A Ck function on U C 1R" is a function
that is k-times continuously differentiable-i.e., all of its partial derivatives
up to order k exist and are continuous on U.

Definition 3.3.15 (Taylor polynomial in higher dimensions). Let
U C R" be an open subset and f : U -s 1R be a Ck function. Then the
polynomial of degree k,

Pja(a+h)= t r jIDif(a)hl, 3.3.30
m=0 IEZn

is called the Taylor polynomial of degree k off at a.

Example 3.3.16 (Multi-exponent notation for a Taylor polynomial of
a function in two variables). Suppose f is a function in two variables. The
formula for the Taylor polynomial of degree 2 of f at a is then

2

P%.a(a+ h) _ iDlf(a)h!
m01EZZ"

= l!O!D(o.o)f(a)hihz+l0!D(1,o)f(a)hihz+Oi11D(o,t)f(a)h°hi

f(a) terms of degree 1: first derivatives

1

+ D(z,o)f(a)h1 2 +
11 1!

D(1,1)f(a)hlhz +
02t D(o,2)f(a)h°h2,

terms of degree 2: second derivatives

which we can write more simply as

PI.a(a+ = f(a) + D(1,o)f(a)hi + D(o.t)f(a)h2

+ D(z.o)f(a)hi +D(1,1)f(a)hlhz + 2D(o.2)f(a)h2. D
3.3.32

Remember that D(1.0) f corresponds to the partial derivative with respect to
the first variable, D1 f, while D(o,l) f corresponds to the partial derivative with
respect to the second variable, D2 f. Similarly, D(1,1) f corresponds to D1D2 f =
D2Di f, and D(20) f corresponds to D1 Dl f. ni
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In Example 3.4.5 we will see
how to reduce this computation to
two lines, using rules we will give
for computing Taylor polynomials.

What are the terms of degree 2 (second derivatives) of the Taylor polynomial
at a, of degree 2, of a function with three variables?','

Example 3.3.17 (Computing a Taylor polynomial). What is the Taylor
polynomial of degree 2 of the function f sin(x + y2), at (3 )? The first

term, of degree 0, is f (g) = sin 0 = 0. For the terms of degree 1 we have

D(l,o)f (y) =cos(x+y2) and D(o,1)f (y) =2ycos(x+y2), 3.3.33

so D(1,o) f (p) = 1 and D(0,,) f (9) = 0. For the terms of degree 2, we have

D(2,o)f (y) = -sin(x+y2)

D(1,1)f (y) = -2ysin(x + y2) 3.3.34

D(o,2)f yx = 2 cos(x + y2) - 4y2 sin(x + y2);

evaluated at (0), these give 0, 0, and 2 respectively. So the Taylor polynomial
of degree 2 is

P"(°)
I Lh2J 1 =0+h1+0+0+0+2h2. 3.3.35
\ LLL

What would we have to add to make this the Taylor polynomial of degree 3
of f at (p) ? The third partial derivatives are

D(3,o)f Y
= D1Dzlf xY) = Dl(-sin(x+y2)) _ -cos(x+y2)

D(0'3) f (y) = D2D21
( y) = D2 (2 cos(x + y2) - 4y2 sin(x + y2)

= 4y sin(x + y2) - 8ysin(x + y2) - 8y3 cos(x + y2)

2

"The third term of Pj"(a + h) _ 1) pr f(a)kir
-0IE23

D,D2 D, Ds D2 D3

is D(1,,,o)f(a)hih2+D(1,o.,)f(a)h,h3+D(o,,,,)f(a)h2h3

Dj D22 D3

+ 2 D(2,o,o)f (a)h1 +

2

D(o.2,o)f(a)hz + 2 D(o.0,2) f (a)hi
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= -2sin(x + y2) - 4y2 cos(x + y2).

(X) = DI D D )f (X = D, (-2ysin(x + y2)) = -2ycos(x+y2)

D11,21 f( )=D1DZf(
)=D1(2cos(x+y2)-4y2sin(x+y2))

3.3.36

At (00) all are 0 except D(3,o), which is -1. So the term of degree 3 is

(-31!)hi = -ehi, and the Taylor polynomial of degree 3 off at (0) is

P,
P3

(0) \Lhz!/ =h1+h22 - lh3.

Taylor's theorem with remain-

A 3.3.37

lor's theorem without remainder in higher dimensionsTayder is discussed in Appendix A.9.

Note that since we are dividing
by a high power of Q, the limit
being 0 means that the numerator
is very small.

Theorem 3.3.18 (Taylor's theorem without remainder in higher di-
mensions). (a) The polynomial Pj' e(a + h) is the unique polynomial of
total degree k which has the same partial derivatives up to order k at a as
f.

(b) The polynomial Pf,(a + is the unique polynomial of degree < k
that best approximates f when 0, in the sense that it is the unique
polynomial of degree < k such that

lim f (a+h') - Pfa(a+h')

We must require that the par-
tial derivatives be continuous;
if the aren't, the statement isn't
true even when k = 1, as you
will see if you go back to Equa-
tion 1.9.9, where f is the function
of Example 1.9.3, a function whose
partial derivatives are not contin-
uous.

= 0. 3.3.38

To prove Theorem 3.3.18 we need the following proposition, which says that
if all the partial derivatives of f up to some order k equal 0 at a point a, then
the function is small in a neighborhood of a.

Proposition 3.3.19 (Size of a function with many vanishing partial
derivatives). Let U be an open subset of R and f : U -+ ll be a Ck
function. If at a E U all partial derivatives up to order k vanish (including
the 0th partial derivative, i.e., f (a)), then

lim
f (a + h) = 0.

i;-.o Ihlk
3.3.39
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Proof of Theorem 3.3.18. Part (a) follows from Proposition 3.3.12. Con-
sider the polynomial Qt,. that, evaluated at h, gives the same result as the

Taylor polynomial PP,. evaluated at a + h:

k

The expression in Equation
3.3.41 is Dip(0), where p = Qkf, ,.

We get the equality of Equation
3.3.41 by the same argument as
in the proof of Proposition 3.3.12:
all partial derivatives where 1 F6 J
vanish.

PJ a(a + h') = Qkf.a(h) = E F
1i

DJf (a)hJ. 3.3.40

m=0 JETS

Now consider the Ith derivative of that polynomial, at 0:

P=Q1..

r k
D11 jDJf(a) 9j. (0)= JlDf(a)hf(0). 3.3.41

moo JE7,, +-
coefficient of p

Dip(O)

Proposition 3.3.12 says that for a polynomial p, we have I!a1 = Dip(0),
where the al are the coefficients. This gives

ith coeff, of
Qf

Gm
g(a + h) _ 0. O

6-.0 Ihik

I! If (Dif(a)) = D1Qj,a(0); i.e., Dif(a) = DjQj,a(0). 3.3.42

Pa, DIP(0)

Now, when h' = 0, then Pf a(a + h') becomes Pf a(a), so

D,Qk,s(0) = D1Pi,a(a), so DiPP,a(a) = D,f (a); 3.3.43

the partial derivatives of PP a, up to order k, are the same as the partial deriva-
tives of f, up to order k. Therefore all the partials of order at most k of the
difference f (a + h) - PPa (a + h) vanish.

Part (b) then follows from Proposition 3.3.19. To lighten the notation, denote
by g(a + 9) the difference between f (a + 9) and the Taylor polynomial of f at
a. Since all the partials of g up to order k vanish, Proposition 3.3.19 says that

3.4 RULES FOR COMPUTING TAYLOR POLYNOMIALS

3.3.44

Computing Taylor polynomials is very much like computing derivatives; in
fact, when the degree is 1, they are essentially the same. Just as we have rules for
differentiating sums, products, compositions, etc., there are rules for comput-
ing Taylor polynomials of functions obtained by combining simpler functions.
Since computing partial derivatives rapidly becomes unpleasant, we strongly
recommend making use of these rules.
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"Since the computation of suc-
cessive derivatives is always pam-
ful, we recommend (when it is pos-
sible) considering the function as
being obtained from simpler func-
tions by elementary operations
(sum, product, power, etc.). ...
Taylor polynomials are most of-
ten a theoretical, not a practi-
cal, tool." -Jean Dieudonne, Cal-
cul Infinitesimal

A famous example of an asymp-
totic development is the prime
number theorem, which states that
if tr(x) represents the number of
prime numbers smaller than x,
then, for x near no,

>r(x)
logx +0 logx) ,

(Here a has nothing to do with
tr 3.1415.) This was proved in-
dependently in 1898 by Hadamard
and de la Valle-Poussin, after be-
ing conjectured a century earlier
by Gauss.

Anyone who proves the strong-
er statement,

tr(x)
= J log u

du + o (Jxl li") ,

for all e > 0 will have proved
the Riemann hypothesis, one of
the two most famous outstand-
ing problems of mathematics, the
other being the Poincare conjec-
ture.

To write down the Taylor polynomials of some standard functions, we will
use notation invented by Landau to express the idea that one is computing "up
to terms of degree k": the notation o, or "little o." While in the equations of
Proposition 3.4.2 the "little o" term may look like a remainder, such terms do
not give a precise, computable remainder. Little o provides a way to bound
one function by another function, in an unspecified neighborhood of the point
at which you are computing the Taylor polynomial.

Definition 3.4.1 (Little o). Little o, denoted o, means "smaller than," in
the following sense: if h(x) > 0 in some neighborhood of 0, then f E o(h) if
for all e > 0, there exists 6 > 0 such that if JxJ < 6, then

l f (x)I < eh(x). 3.4.1

Alternatively, we can say that f E o(h) if

Iim f(x) = 0;x-o h(x) 3.4.2

in some unspecified neighborhood, J f J is smaller than h; as x -+ 0, I f (x) l

becomes infinitely smaller than h(x).

Very often Taylor polynomials written in terms of bounds with little o are
good enough. But in settings where you want to know the error for some
particular x, something stronger is required: Taylor's theorem with remainder,
discussed in Appendix A.9.

Remark. In the setting of functions that can be approximated by Taylor
polynomials, the only functions h(x) of interest are the functions Jxlk for k > 0.
In other settings, it is interesting to compare nastier functions (not of class Ck)
to a broader class of functions, for instance, one might be interested in bounding
functions by functions h(x) such as Jx or IxJ log Jxl ... . (An example of what
we mean by "nastier functions" is Equation 5.3.10.) The art of making such
comparisons is called the theory of asymptotic developments. But any place
that a function is Ck it has to look like an positive integer power of x. L

In Proposition 3.4.2 we list the functions whose Taylor polynomials we expect
you to know from first year calculus. We will write them only near 0, but
by translation they can be written anywhere. Note that in the equations of
Proposition 3.4.2, the Taylor polynomial is the expression on the right-hand
side excluding the little o term, which indicates how good an approximation
the Taylor polynomial is to the corresponding function, without giving any
precision.
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Proposition 3.4.2 (Taylor polynomials of some standard functions).
The following formulas give the Taylor polynomials of the corresponding
functions:

X
e= =I+ x +

2!
+

xn
+

n!
+ OW) 3.4.3

x3 xs n x2nt1
2n+1

1 + o(x )
3 4 4sin(x) = x -

3l
+

5!
- ... + (- ) (2n + 1)!

. .

( 1)n
+ o(x2n)

3 4 5COs(x) = 1 - Zi + 4i + -
(2n)!

. .

log(1+x)=x- 2 + +(-1)n+t n +o(xn+1) 3.4.6

rn( m - 1) 2 m(m - 1)(m - 2) 3
(1 + x)"` = 1 + MX +

2!
x +

3!
x + ...

+ m(m - 1)... (m - (n - 1))
xn + o(xn). 3.4.7

n!

Equation 3.4.7 is the binomial
formula.

Propositions 3.4.3 and 3.4.4 are
stated for scalar-valued functions,
largely because we only defined
Taylor polynomials for scalar-
valued functions. However, they
are true for vector-valued func-
tions, at least whenever the lat-
ter make sense. For instance, the
product should be replaced by a
dot product (or the product of a
scalar with a vector-valued func-
tion). When composing functions,
of course we can consider only
compositions where the range of
one function is the domain of the
other. The proofs of all these vari-
ants are practically identical to the
proofs given here.

The proof is left as Exercise 3.4.1. Note that the Taylor polynomial for sine

contains only odd terms, with alternating signs, while the Taylor polynomial for

cosine contains only even terms, again with alternating signs. All odd functions

(functions f such that f (-x) = -1(x)) have Taylor polynomials with only odd

terms, and all even functions (functions f such that f (-x) = f (x)) have Taylor

polynomials with only even terms. Note also that in the Taylor polynomial of

log(1 + x), there are no factorials in the denominators.

Now let us see how to combine these Taylor polynomials.

Proposition 3.4.3 (Sums and products of Taylor polynomials). Let
U C R' be open, and f, g : U -, R be Ca functions. Then f + g and f g are
also of class C'`, and their Taylor polynomials are computed as follows.

(a) The Taylor polynomial of the sum is the sum of the Taylor polynomials:

Pj+g,a(a + h) = Pj,(a + h) + P9 a(a + h). 3.4.8

(b) The Taylor polynomial of the product fg is obtained by taking the
product

3.4.9

and discarding the terms of degree > k.
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Please notice that the composi-
tion of two rwlynonlials is a poiy-
nontial.

Why does the composition in
Proposition 3.4.4 make sense'
P f ei (b - u) is a good approxima-
(loll to f(b 1 a) only when Jul is
small. But our requirement that
q(a) = b guarantees precisely that

P,L,a(a- h) = b i- something small

when h is small. So it is rea-
sonable to substitute that "some-
thing small" for the increment u
when evaluating the polynomial
Pj.t,(b - u).

Whenever you are Irving to
compute the Taylor polynoulia) of
a quotient. a good tactic is to fac-
tor out the constant tenus (here,
f(a) + f(b)), and apply Equation
3.4.7 to what remains.

Proposition 3.4.4 (Chain rule for Taylor polynomials). Let U C Rn
and V C ?y be open, and g : U V and f : V R be of class C1. Then
fog : U =- is of class Ck, and if g(a) = b, then the Taylor polynomial
Pf,t a(a + h) is obtained by considering the polynomial

Pfk A )1,L(P9,(a+h 1

and discarding the terms of degree > k.

Example 3.4.5 (Computing a Taylor polynomial: an easy example).
Let's use these rules to compute the Taylor polynomial of degree 3 of the
function f (XY ) = sin(x + y2), at (00), which we already saw in Example

3.3.17. According to Proposition 3.4.4, we simply substitute x + y2 for u in
sin u = iL - ut/6 + n(ut), and omit all the terms of degree > 3:

sin(.' + y2) _ (x +,y2) -
(x by2)4 + o ((x2 + y2)3/2)

X + y2 -
x3

+ o ((x2 + y2)3/2)

Taylor polynomial error term

3.4.10

Presto: half a page becomes two lines.

Example 3.4.6 (Computing a Taylor polynomial: a harder example).
Let U C F. be open. and f : U - 1. be of class C.2. Let V C U x U be the
subset of 22 where f(x) +f(y) 0. Compute the Taylor polynomial of degree
2 of the function F : V - . R. at a point (b) E V.

F (.c) = 1

y J f( x) + f(y)

Choose (b) e V. and set (y) _ (b+v)' Then

F.(a+u) = I
b + n

(f(a)+ f'(a)u + f"(a)u2/2 + o(u2)) + (f(b) + f'(b)v + f"(b)v2/2 + 0(v2))

nstanta co

( f(a) -+f (b)

3.4.11

(I+r)-e, where x is the fraction in the denominator

+ f'()u + f"a)u2/2 + f'(b)v + f"(b)v2/2 )+o(u2+v2).

f(a) + f(b)
3.4.12
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The fact that

(I+.r.)-'=1-x+x2
is a special case of Equation :3.4.7.
where m = - 1. We already saw
this case in Example 0.4.9. where
we had

P2
,

The point of this is that the second factor is something of the form (1+x)-' =

In this expression, we should discard the terms of degree > 2, to find

1 -x+x2 -..., leading to
F(a+u)

b + v

I _ f'(a)u + f"(a)u2/2 + f'(b)v + f"(b)v2/2
f(a) + f(b) 1 f(a) + f(b)

(f'(a)u + f"(a)u2/2 + f'(b)v + f"(b)v2/2 2

+ f(a)+f(b)
) +...

(,+U) I _ f'(a)u + f'(b)v + f"(a)u2 + f"(b)v2 + (f'(a)u + f'(b)v)2

b+t' = f(a)+f(b) (f(a)+f(b))2 2(f (a) + f(b))2 (f(a)+f(b))3
r J 3.4.14

It follows from Theorem 3.4.7
that if you write the Taylor poly-
nomial of the implicit function
with undetermined coefficients, in-
sert it into the equation specifying
the implicit function, and identify
like terms, you will be able to de-
termine the coefficients.

Taylor polynomials of implicit functions

Among the functions whose Taylor polynomials we are particularly interested
in are those furnished by the inverse and implicit function theorems. Although
these functions are only known via some limit process like Newton's method,
their Taylor polynomials can be computed algebraically.

Assume we are in the setting of the implicit function theorem (Theorem
2.9.10), where we have an implicit function g such that

F (g(y)) = 0 for all y in some neighborhood of b.

Theorem 3.4.7 (Taylor polynomials of implicit functions). If F is of
class Ck for some k > 1, then g is also of class Ck, and its Taylor polynomial
of degree k is the unique polynomial mapping p : R" -. Ilk'" of degree at
most k such that

Pk (Ps b(b + u) ) E o0uI' ).
,,\b)', b+u

1 1

a neighborhood of 1 1 , since D3F ( 1) = 3 361 0. Let compute the Taylor
1 1

zJ

3.4.13

3.4.15

Example 3.4.8 (Taylor polynomial of an implicit function. The equa-
x

tion F y ) = x2 + y3 + xyz3 - 3 = 0 determines z as a function of x and y in
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polynomial of this implicit function g to degree 2.. We will set

Cr _ 1+u a1.1 zgy) -g(1+vJ = 1+alu+a2v+2u +a1,2uv+ 2zv2+o(u2+v2)
3.4.16

Inserting this expression for z into x2 + y' + xyz' - 3 = 0 leads to

(1+u)2+(1+v)3+(1+u)(1+v) (1+alu+a2v+ a21, 1 u2 +a1,2uv+ a2,22 v2 -3 E o(u2 +v 2).

The linear terms could have
been derived from Equation
2.9.25, which gives in this case

[Dg((' ))I =
-[3]_1[3,4]

_ -[1/3][3,4]

_ [-1,-4/3].

Now it is a matter of multiplying out and identifying like terms. We get:

Constant terms: 3 - 3 = 0.
Linear terms:

4
2u + 3v + u + v + 3ai u + 3a2v = 0, i.e., a1 = -1, a2 = -j-

Quadratic terms:

u2(1+3a1+3a +2a1,1)+v2(3+3a2+3a2+2a2,2)+uv(1+3a1+3a2+6a1a2+3a1,2).

Identifying the coefficients to 0, and using a1 = -1 and a2 = -4/3 now gives

a1,1 = -2/3, a2,2 = -26/9, 01,2 = 10/9. 3.4.17

l
Finally, this gives the Taylor polynomial of g:

g y
1-(x-1)-3(y-1)-3(x-1)2- 9 (y-1)2+ 9 (x-1)(y-1)+o ((x - 1)2 + (y - 1)2)

3.4.18

3.5 QUADRATIC FORMS

A quadratic form is a polynomial all of whose terms are of degree 2. For
instance, x2+y2 and xy are quadratic forms in two variables, as is 4x2+xy-y2.
The polynomial xz is also a quadratic form (probably in three variables). But
xyz is not a quadratic form; it is a cubic form in three variables.

Exercises 3.5.1 and 3.5.2 give a
more intrinsic definition of a qua- Definition 3.5.1 (Quadratic form). A quadratic form Q : 1lYn -+ llY is a
dratic form on an abstract vector polynomial in the variables xl,...,x,,, all of whose terms are of degree 2.
space.

Although we will spend much of this section working on quadratic forms that
look like x2+y2 or 4x2+xy- y2, the following is a more realistic example. Most
often, the quadratic forms one encounters in practice are integrals of functions,
often functions in higher dimensions.

Example 3.5.2 (An integral as a quadratic form). The integral

Q(P) = f t(P(t))2dt, 3.5.1
0
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The quadratic form of Exam-
ple 3.5.2 is absolutely fundamental
in physics. The energy of an elec-
tromagnetic field is the integral of
the square of the field, so if p is
the electromagnetic field, the qua-
dratic form Q(p) gives the amount
of energy between 0 and 1.

A famous theorem due to Fer-
mat (Fermat's little theorem) as-
serts that a prime number p 54 2
can be written as a sum of two
squares if and only if the remain-
der after dividing p by 4 is 1. The
proof of this and a world of analo-
gous results (due to Fermat, Eu-
ler, Lagrange, Legendre, Gauss,
Dirichlet, Kronecker, ... ) led to
algebraic number theory and the
development of abstract algebra.

In contrast, no one knows any-
thing about cubic forms. This has
ramifications for the understand-
ing of manifolds. The abstract, al-
gebraic view of a four-dimensional
manifold is that it is a quadratic
form over the integers; because
integral quadratic forms are so
well understood, a great deal of
progress has been made in under-
standing 4-manifolds. But even
the foremost researchers don't
know how to approach six-dimen-
sional manifolds; that would re-
quire knowing something about
cubic forms.

where p is the polynomial p(t) = ao+aIt+a2t2, is a quadratic form, as we can
confirm by computing the integral:

Q(p) = I (ao + aI t + a2 t2)2 dt
0

J
(a2 + ait2 + aZt9 + 2aoait + 2a0a2t2 + 2a1a2t3) dt

0

r
2t 1 + ra,l t311

+ [2L V51

l + 12(tpalt211 + f 2a0a2t3]

Io

r2ala2t°11

- 3 l 2 0 l 3 Jo ` 4 Jo

2 aj L2 2aoa2 al a2-a0+3+ 5 +aoa1+ 3 + 2 3.5.2

Above, p is a quadratic polynomial, but Q(p) is a quadratic form if p is a
polynomial of any degree, not just quadratic. This is obvious if p is linear: if
a2 = 0, Equation 3.5.2 becomes Q(p) = as + a2/3 + a0a1. Exercise 3.5.3 asks
you to show that Q is a quadratic form if p is a cubic polynomial. A

In various guises, quadratic forms have been an important part of mathe-
matics since the ancient Greeks. The quadratic formula, always the centerpiece
of high school math, is one aspect.

A much deeper problem is the question: what whole numbers a can be
written in the form x2+y2? Of course any number a can be written V-a2+02, but

suppose you impose that x and y be whole numbers. For instance, 22 + 12 = 5,
so that 5 can be written as a sum of two squares, but 3 and 7 cannot.

The classification of quadratic forms over the integers is thus a deep and dif-
ficult problem, though now reasonably well understood. But the classification
over the reals, where we are allowed to extract square roots of positive numbers,
is relatively easy. We will be discussing quadratic forms over the reals. In par-
ticular, we will be interested in classifying such quadratic forms by associating
to each quadratic form two integers, together called its signature.

In Section 3.6 we will see that quadratic forms can be used to analyze the
behavior of a function at a critical point: the signature of a quadratic form will
enable us to determine whether the critical point is a maximum, a minimum or
some flavor of saddle, where the function goes up in some directions and down
in others, as in a mountain pass.

Quadratic forms as sums of squares

Essentially everything there is to say about real quadratic forms is summed up
by Theorem 3.5.3, which says that a quadratic form can be represented as a
sum of squares of linearly independent linear functions of the variables.
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We know that in G n. since
there can't be more than n lin-
early independent linear functions
on 2' (Exercise 2.6.3).

The term "sum of squares" is
traditional; it would perhaps he
more accurate to call it a com-
bination of squares, since sonic
squares may be subtracted rather
than added.

Of course more than one qua-
dratic form can have the same sig-
nature. The quadratic forms in
Examples 3.5.6 and 3.5.7 below
both have signature (2, 1).

The key point is that axe + Bx
can be rewritten

_r B )axe+Bx+f B)2
2f 2fa

`I

(We have written /a lower case and
B upper case because in our appli-
cations, a will he a number. but B
will he a linear function.)which

Theorem 3.5.3 (Quadratic forms as sums of squares). (a) For any
quadratic form Q(R) on '<R", there exist in linearly independent linear func-
tions al (x),... ,am(x) such that

Q(x) = (-t(i))' +... + (ak(x))2 - (ak+t(x))z (ak+t(x'))z. 3.5.3

(b) The number k of plus signs and the number I of minus signs in a
decomposition like that of Equation 3.5.3 depends only on Q and not on the
specific linear functions chosen.

Definition 3.5.4 (Signature). The signature of a quadratic form is the
pair of integers (k, 1).

The word suggests, correctly, that the signature remains unchanged regard-
less of how the quadratic form is decomposed into a sum of linearly independent
linear functions: it suggests, incorrectly, that the signature identifies a quadratic
form.

Before giving a proof, or even a precise definition of the terms involved, we
want to give some examples of the main technique used in the proof; a careful
look at these examples should make the proof almost redundant.

Completing squares to prove the quadratic formula

The proof is provided by an algorithm for finding the linearly independent
functions n,: "completing squares." This technique is used in high school to
prove the quadratic formula.

Indeed, to solve axe + bx + c = 0. write

/ b \2 2
6e
bax +bx+c=ail+bx+1 2_ 1 - (2 ) +c=0, 3.5.4

gives

)z =fx+ b bz

c2,` 4a-' .5.5

Taking square roots gives

b 2 - 4ac_fx + 27 leading to the famous formula
4a 3.5.6

-b ± Vb2 - 4ac
.T. _ 3 5 7

2a
. .
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Clearly the functions/
\

are linearly independent: no mul-
tiple of y/2 can give x + y/2. If
we like, we can be systematic and
write these functions as rows of a
matrix:

1

1 1/2

0 1/2

It is not necessary to row reduce
this matrix to see that the rows
are linearly independent.

This decomposition of Q(x) is
not the only possible one. For ex-
ample, Exercise 3.5.7 asks you to
derive two alternative decomposi-
tions.

Example 3.5.5 (Quadratic form as a sum of squares).

lx2+xy=x2+xy+4y2- 1 2 = (x+2/2- (U)2 3.5.8

In this case, the linear functions are

at(y) =x+2 and a2 (y) 2.
3.5.9

Express the quadratic form x2 + xy - y2 as a sum of squares, checking your
answer below. t6

Example 3.5.6 (Completing squares: a more complicated example).
Consider the quadratic form

Q(F() = x2 + 2xy - 4xz + 2yz - 422. 3.5.10

We take all the terms in which x appears, which gives us x2+(2y-4z)x; we see
that B = y - 2z will allow us to complete the square; adding and subtracting
(y - 2z)2 yields

Q(R) = (x + y - 2z)2 - (y2 - 4yz + 4z2) + 2yz - 422
3.5.11

Collecting all remaining terms in which y appears and completing the square
gives:

=(x+y-2z)2-y2+6yz-8z2.

Q(z) = (x + y - 2z)2 - (y - 3z)2 + (2)2. 3.5.12

In this case, the linear functions are

fx z rx
at

z

= x + y - 2z, a2 (z) =y-3z, and 02 (zJ =z. 3.5.13

If we write each function as the row of a matrix and row reduce:

1 1 2 1001
0 1 -3 row reduces to lII 0 1 0 3.5.14

0 0 1 0 0 1

we see that the functions are linearly independent. 6
The algorithm for completing squares should be pretty clear: as long as the

square of some coordinate function actually figures in the expression, every

6

2 2 2 / 2

x2+xy y2=x2{ xy+
4

4 y2= (x+2) - \ 2y)



There wasn't anything magical
about the choice of u, as Exercise
3.5.8 asks you to show; almost
anything would have done.

There is another meaning one
can imagine for linear indepen-
dence, which applies to any func-
tions ai, ... n,,,, not necessarily
linear: one can interpret the equa-
tion

clal + . + cmam = 0

as meaning that (claI + . +
c,,,a,,,) is the zero function: i.e.,
that

(c, a, + +cmam)(x')=0
for any x E IF", and say that
a,.... am are linearly indepen-
dent if ci = . = cm = 0. In
fact, these two meanings coincide:
for a matrix to represent the lin-
ear transformation 0, it must be
the 0 matrix (of whatever size is
relevant, here I x n).
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appearance of that variable can be incorporated into a perfect square; by sub-
tracting off that perfect square, you are left with a quadratic form in precisely

one fewer variable. (The "precisely one fewer variable" guarantees linear inde-
pendence.) This works when there is at least one square, but what should you
do with something like the following?

Example 3.5.7 (Quadratic form with no squares). Consider the qua-

dratic form

Q(g) = xy - xz + yz. 3.5.15

One possibility is to introduce the new variable u = x - y, so that we can trade
x for u + y, getting

(u+y)y-(u+y)z+yz=y2+uy-uz
( u 2 u2

=y+2) - 4 -uz-zz+z2
r(u

2 3.5.16(y 2

z)1+2) -\2+ +z2

lz (
z

-\2+21 -\2 2+x) +z2.

Again, to check that the functions

()=+, a2
(x2

I = 2 2 + z, as l
zx

= z 3.5.17

are linearly independent, we can write them as rows of a1matrix:

1

1/2 1/2 0 1 0 0
1/2 -1/2

1

11 row reduces to 0
1

1 0 4 3.5.18
0 0 1 0 0 1

Theorem 3.5.3 says that a quadratic form can be expressed as a sum of
linearly independent functions of its variables, but it does not say that whenever
a quadratic form is expressed as a sum of squares, those squares are necessarily
linearly independent.

Example 3.5.8 (Squares that are not linearly independent).
write

We can

2x2 +2 Y2 + 2xy = x2 + y2 + (x + y)2 3.5.19

or

\2 2
z yz y = (fx+2x2 + 2 + 2x,

3
I + (syIv) . 3.5.20
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Definition 3.5.9 is equivalent to
saying that a quadratic form is
positive definite if its signature
is (n, 0) and negative definite if
its signature is (0, n), as Exercise
3.5.14 asks you to show.

The fact that the quadratic
form of Example 3.5.10 is negative
definite means that the Laplactan
in one dimension (i.e., the trans-
formation that takes p to p") is
negative. This has important ram-
ifications; for example, it leads to
stable equilibria in elasticity.

When we write Q(p) we mean
that Q is a function of the coeffi-
cients of p. For example, if p =

x2+2x+ 1, then Q(p) = Q 2
1

Only the second decomposition reflects Theorem 3.5.3. In the first, the linear
functions x, y and x + y are not linearly independent, since x + y is a linear
combination of x and y.

Proof of Theorem 3.5.3

All the essential ideas for the proof of Theorem 3.5.3, part (a) are contained in
the examples; a formal proof is in Appendix A.10.

Before proving part (b), which says that the signature (k, 1) of a quadratic
form does not depend on the specific linear functions chosen for its decomposi-
tion, we need to introduce some new vocabulary.

Definition 3.5.9 (Positive and negative definite). A quadratic form
Q(,) is positive definite if and only if Q() > 0 when i 0 0. It is negative
definite if and only if Q(R) < 0 when :9 # 0.

The fundamental example of a positive definite quadratic form is Q(x) = Jx"J2.
The quadratic form of Example 3.5.2,

Q(p) = f (p(t))2 dt, is also positive definite. (3.5.1)
0

Here is an important example of a negative definite quadratic form.

Example 3.5.10 (Negative definite quadratic form). Let Pk be the space
of polynomials of degree < k, and V,b C PA; the space of polynomials p that
vanish at a and b for some a < b. Consider the quadratic form Q : V5,b - ll
given by

bQ(p) = f p(t)p"(t)dt. 3.5.21

Using integration by parts,

Q(p) = f
b

p(t)p,(t) dt = p(b)p(b) - p(a)p'(a) - fb(p'(t)) 2 dt < 0. 3.5.22
rt

=0 by M.

Since p E V ,b, p(a) = p(b) = 0 by definition; the integral is negative unless
p' = 0 (i.e., unless p is constant); the only constant in V, ,6 is 0. L

Proof of Theorem 3.5.3 (b)

Now to prove that the signature (k, 1) of a quadratic form Q on RI depends
only on Q and not on how Q is decomposed. This follows from Proposition
3.5.11.
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Recall that when a quadratic
form is written as a "sum" of
squares of linearly independent
functions, k is the number of
squares preceded by a plus sign,
and I is the number squares pre-
ceded by a minus sign.

"Non-trivial" kernel means the
kernel is not 0.

Proposition 3.5.11. The number k is the largest dimension of a subspace of
RI on which Q is positive definite and the number i is the largest dimension
of a subspace on which Q is negative definite.

Proof. First let its show that Q cannot he positive definite on any subspace
of dimension > k. Suppose

Q(X) = (01(X)2+...+ak(X)2) - (ak+1(X)2+...+ak+1 (X)2) 3.5.23

k terms 7 tenuF

is a decomposition of Q into squares of linearly independent linear functions.
and that W C :" is a subspace of dimension ki > k. Consider the linear
transformation 14' -t Rk given by

wti

ak(W )

3.5.24

Since the domain has dimension k,. which is greater than the dimension k of
the range, this mapping has a non-trivial kernel. Let w # 0 be an element of
this kernel. Then, since the terms a, (w)2 + + ak (w)2 vanish, we have

Q(W') = -(ak+l(N')2+...+ak+r(W)2) <0. 3.5.25

So Q cannot be positive definite on any subspace of dimension > k.
Now we need to exhibit a subspace of dimension k on which Q is positive

definite. So far we have k + I linearly independent linear functions a1,... , ak+i
Add to this set linear functions ak+i+i .... . a" such that a,, ... , a" form a
maximal family of linearly independent linear functions, i.e., a basis of the

3.5.26

The rows of the matrix corresponding to T are thus the linearly independent
row matrices ak+1. , ar,: like Q, they are defined on so the matrix T is rt
wide. It is n - k tall.

Let us see that ker T has dimension k, and is thus a subspace of dimension
k on which Q is positive definite. The rank of T is equal to the number of its
linearly independent rows (Theorem 2.5.13), i.e., dim Img T = it - k, so by the
dimension formula,

space of I x n row matrices (see Exercise 2.4.12).
Consider the linear transformation 7' : T?" -t Rn-k

ak+1 (X)

T:,7

an(X)

dim ker T + dim Img T = n, i.e., dim ker T = k. 3.5.27



The quadratic form of Example
3.5.5 has rank 2; the quadratic
form of Example 3.5.6 has rank 3.

It follows from Exercise 3.5.14
that only nondegenerate forms can
he positive definite or negative
definite.
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For any v' E ker T, the terms ak+t (v').... , ak+l(v) of Q(v) vanish, so

Q(,V) = nt nk(v)2 > 0. 3.5.28

If Q(v) = 0, this means that every term is zero, so

at(,V) _ . = nn(,') = 0, 3.5.29

which implies that v = 0. So we see that if v' 0 0, Q is strictly positive.
The argument for I is identical.

Proof of Theorem 3.5.3(b). Since the proof of Proposition 3.5.11 says
nothing about any particular choice of decomposition, we see that k and I
depend only on the quadratic form, not on the particular linearly independent
functions we use to represent it as a sum of squares.

Classification of quadratic forms

Definition 3.5.12 (Rank of a quadratic form). The rank of a quadratic
form on R° is the number of linearly independent squares that appear when
the quadratic form is represented as a sum of linearly independent squares.

Definition 3.5.13 (Degenerate and nondegenerate quadratic forms).
A quadratic form on 1R° with rank m is nondegenerate if m = n. It is
degenerate if m < n.

The examples we have seen so far in this section are all nondegenerate; a

degenerate one is shown in Example 3.5.15.
The following proposition is important; we will use it to prove Theorem 3.6.6

about using quadratic forms to classify critical points of functions.

Proposition 3.5.14. If Q : lR' -' R is a positive definite quadratic form,
then there exists a constant C > 0 such that

for all x"EIR".

Q() ? Cjff2 3.5.30

Proof. Since Q has rank n, we can write

Q(X) = (,1(:W))1 +... + (an(X))2 3.5.31
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Another proof (shorter and less
constructive) is sketched in Exer-
cise 3.5.15.

Of course Proposition 3.5.14

as a sum of squares of n linearly independent functions. The linear transfor-
mation T : IIR" -+ l8" whose rows are the a; is invertible.

Since Q is positive definite, all the squares in Equation 3.5.31 are preceded
by plus signs, and we can consider Q(x) as the length squared of the vector T.
Thus we have

applies equally well to negative
definite quadratic forms; just use

z

Q(X) = ITXI2 > T II 2' 3.5.32
-C.

I
1

so you can take C = 1/IT-112. (For the inequality in Equation 3.5.32, recall
that Jx'1 = IT-1TRI < IT-1U1TfI.) 0

Example 3.5.15 (Degenerate quadratic form). The quadratic form

Q(p) = f 1(p,(t))2dt
0

FIGURE 3.6.1.
The graph of x' - y', a typical

saddle.

By "strict maximum" we mean
f(xo) > f(x), not f(xo) ? f(x);
by "strict minimum" we mean
f(xo) < f(x), not f(xo) < f(x).

3.5.33

on the space Pk of polynomials of degree at most k is a degenerate quadratic
form, because Q vanishes on the constant polynomials. A

3.6 CLASSIFYING CRITICAL POINTS OF FUNCTIONS

In this section we see what the quadratic terms of a function's Taylor polyno-
mial tell us about the function's behavior. The quadratic terms of a function's
Taylor polynomial constitute a quadratic form. If that quadratic form is non-
degenerate (which is usually the case), its signature tells us whether a critical
point (a point where the first derivative vanishes) is a minimum of the function,
a maximum, or a saddle (illustrated by Figure 3.6.1).

Finding maxima and minima

A standard application of one-variable calculus is to find the maxima or minima
of functions by finding the places where the derivative vanishes, according to
the following theorem, which elaborates on Proposition 1.6.8.

Theorem 3.6.1. (a) Let U C IR be an open interval and f : U - R be a
differentiable function. If zo E U is a maximum or a minimum of f, then
f'(xo) = 0-

(b) ff f is twice differentiable, and if f'(xo) = 0 and f"(xo) < 0, then xo
is a strict local maximum of f, i.e., there exists a neighborhood V C U of x0
such that f(xo) > f(x) for all x E V - {xo}.

(c) if f is twice differentiable, and if f'(xo) = 0 and f"(xo) > 0, then xo
is a strict local minimum of f, i.e., there exists a neighborhood V C U of xo
such that f (xo) < f (x) for all x E V - {xo}.
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The plural of extremum is ex-
trema.

Note that the equation

[Df(x)] = 0

is really n equations in n variables,
just the kind of thing Newton's
method is suited to. Indeed, one
important use of Newton's method
is finding maxima and minima of
functions.

In Definition 3.6.3, saying that
the derivative vanishes means that
all the partial derivatives vanish.
Finding a place where all partial
derivatives vanish means solving n
equations in n unknowns. Usu-
ally there is no better approach
than applying Newton's method,
and finding critical points is an
important application of Newton's
method.

Part (a) of Theorem 3.6.1 generalizes in the most obvious way. So as not
to privilege maxima over minima, we define an extremum of a function to be
either a maximum or a minimum.

Theorem 3.6.2 (Derivative zero at an extremum). Let U C P" be
an open subset and f : U --. 1R be a differentiable function. If xo E U is an
extremum off, then [Df(xo)j = 0.

Proof. The derivative is given by the Jacobian matrix, so it is enough to show
that if xo is an extremum of f, then Dt f (xo) = 0 for all i = I..... n. But
D, f (xo) = g'(0), where g is the function of one variable g(t) = f (xo + 66j), and
our hypothesis also implies that g has an extremum at t = 0, so g'(0) = 0 by
Theorem 3.6.1.

It is not true that every point at which the derivative vanishes is an ex-
tremum. When we find such a point (called a critical point), we will have to
work harder to determine whether it is indeed a maximum or minimum.

Definition 3.6.3 (Critical point). Let U C 1R" be open, and f : U -.1R be
a differentiable function. A critical point off is a point where the derivative
vanishes.

Example 3.6.4 (Finding critical points). What are the critical points of
the function

f (v) =x+x2+xy+y3?
The partial derivatives are

3.6.1

Dtf (y) =1+2x+y, D2f (X) =x+3y2. 3.6.2

In this case we don't need Newton's method, since the system can be solved
explicitly: substitute x = -3y2 from the second equation into the first, to find

3.6.3

Substituting this into x = -(1 + y)/2 (or into x = -3y2) gives two critical
points:

1+y-6y2=0; i.e., y= if 1+24 - I or
1

12 3

al1/2) and a2=(-11/33) A 3.6.4

Remark 3.6.5 (Maxima on closed sets). Just as in the case of one variable,
a major problem in using Theorem 3.6.2 is the hypothesis that U is open.
Often we want to find an extremum of a function on a closed set, for instance
the maximum of x2 on [0, 2]. The maximum, which is 4, occurs when x = 2,
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In Section 3.7, we will see that
sometimes we can analyze the be-
havior of the function restricted to
the boundary, and use the variant
of critical point theory developed
there.

In evaluating the second de-
rivative. remember that D'If(a)
means the second partial deriva-
tive D,D,f. evaluated at a. It
does not mean D? times f (a). In
this case we have D' If = 2 and
D,D2f = 1; these are constants,
so where we evaluate the deriva-
tive doesn't matter. But Dl(f)
6y; evaluated at a this gives 3.

which is not a point where the derivative of x2 vanishes. Especially when
we have used Theorem 1.6.7 to assert that a maximum exists in a compact
subset, we need to check that this maximum occurs in the interior of the region
under consideration, not on the boundary, before we can say that it is a critical
point. 6

The second derivative criterion

Is either of the critical points given by Equation 3.6.4 an extremum? In one
variable, we would answer this question by looking at the sign of the second
derivative. The right generalization of "the second derivative" to higher di-
mensions is "the quadratic form given by the quadratic terms of the Taylor
polynomial." It seems reasonable to hope that since (like every sufficiently dif-
ferentiable function) the function is well approximated near these points by its
Taylor polynomial, the function should behave like its Taylor polynomial.

Let its apply this to the function in Example 3.6.4, f (x) = x + x2 + xy + y3.
Evaluating its Taylor polynomial at a, _ we get

e 7 1 1 2P/8 (a,+h)=-16 +'2h2i+h,h2+23h2. 3.6.5

/(a) second derivative

The second derivative is a positive definite quadratic form:

/ z

hi + h, h2 + 2 h2 = 1 ht + 22
\

I + 5h 2 with signature (2, 0). 3.6.6

What happens at the critical point a2 = (-1 3 )? Check your answer below. 17
How should we interpret these results? If we believe that the function behaves

near a critical point like its second degree Taylor polynomial, then the critical
point a, is a minimum; as the increment vector hh 0, the quadratic form
goes to 0 as well, and as 9 gets bigger (i.e., we move further from a,), the
quadratic form gets bigger. Similarly, if at a critical point the second derivative
is a negative definite quadratic form, we would expect it to be a maximum. But
what about a critical point like a2, where the second derivative is a quadratic
form with signature (1, 1)?

You may recall that even in one variable, a critical point is not necessarily an
extremum: if the second derivative vanishes also, there are other possibilities

,7

Pj.a2 (a2 + h) _ - 27 + 2h2 + h, h2 + 2 (-2)h2, with quadratic form

/ \z
h1 + h1h2 - h2 = I h, + 221 - 4h2, which has signature (1, 1).
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The quadratic form in Equa-
tion :3.6.7 is the second degree
term of the Taylor polynomial of
fata.

We state the theorem as we
do. rather than saying simply that
the quadratic form is not positive
definite, or that it is not nega-
tive definite, because if a quadratic
form on IF." is degenerate (i.e.,
k + 1 < n), then if its signature is
(k,0), it is positive, but not pos-
itive definite, and the signature
does not tell you that there is a
local minimum. Similarly, if the
signature is (0, k), it does not tell
you that there is a local maximum.

We will say that a critical point
has signature (k, 1) if the corre-
sponding quadratic form has sig-
nature (k,1). For example, x2 +
y2 - i2 has a saddle of signature
(2, 1) at the origin.

The origin is a saddle for the
function x2 - y2.

(the point of inflection of f(x) = xs, for instance). However, such points are
exceptional: zeroes of the first and second derivative do not usually coincide.
Ordinarily. for functions of one variable, critical points are extrema.

This is not the case in higher dimensions. The right generalization of "the
second derivative of f does not vanish" is "the quadratic terms of the Taylor
polynomial are a non-degenerate quadratic form." A critical point at which this
happens is called a non-degenerate critical point. This is the ordinary course of
events (degeneracy requires coincidences). But a non-degenerate critical point

need not be an extremum. Even in two variables, there are three signatures

of non-degenerate quadratic forms: (2,0), (1.1) and (0,2). The first and third

correspond to extrema, but signature (1,1) corresponds to a saddle point.

The following theorems confirm that the above idea really works.

Theorem 3.8.6 (Quadratic forms and extrema). Let U C is be an
open set, f : U -+ iR be twice continuously differentiable (i.e., of class C2),
and let a E U be a critical point off, i.e., [D f (a)] = 0.

(a) If the quadratic form

Q(h)_ F It(Drf(a))1'
1E1,2

is positive definite (i.e., has signature (n, 0)), then a is a strict local minimum
off. If the signature of the quadratic form is (k, l) with 1 > 0, then the critical
point is not a local minimum.

(b) If the quadratic form is negative definite, (i.e., has signature (0, n)),
then a is a strict local maximum off. If the signature of the quadratic form
is (k, l) with k > 0, then the critical point is not a maximum.

Definition 3.6.7 (Saddle). If the quadratic form has signature (k, 1) with
k > 0 and I > 0, then the critical point is a saddle.

Theorem 3.6.8 (Behavior of functions near saddle points). Let U C
J^ be an open set, and let f : U )18 be a C2 function. If f has a saddle at
a E U, then in every neighborhood of a there are points b with f (b) > f(a),
and points c with f (c) < f (a).

Proof of 3.6.6 (Quadratic forms and extrema). We will treat case (a)
only; case (b) can be derived from it by considering -f rather than f.

We can write

f(a+h')= f(a)+Q(h)+r(h), 3.6.8
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where the remainder r(h) satisfies

Equation 3.6.10 uses Proposi-
tion 3.5.14.

lim
r(h)

= 0.
h-.o Q2

3.6.9

The constant C depends on Q,

not on the vector on which Q is

evaluated, so Q(h') > CI9I2: i.e.,

Q(h) >
QI t

= C.

A similar argument about W
shows that there are also points
c where f(c) < f(a). Exercise
3.6.3 asks you to spell out this
argument.

Thus if Q is positive definite,

f(a + h) - f(a) = Q(h) + r(h)
> C +

r(h),
3.6.10

1h12
1h12 Ihl2 1h12

where C is the constant of Proposition 3.5.14-the constant C > 0 such that
Q(E) _> CIX12 for all X E R", when Q is a positive definite.

The right-hand side is positive for hh sufficiently small (see Equation 3.6.9),
so the left-hand side is also, i.e., f (a + h) > f (a) for h sufficiently small; i.e., a
is a strict local minimum of f.

If Q has signature (k, 1) with l > 0, then there is a subspace V C 1R" of
dimension l on which Q is negative definite. Suppose that Q is given by the
quadratic terms of the Taylor polynomial of f at a critical point a of f. Then
the same argument as above shows that if h E V and lxi is sufficiently small,
then the increment f (a+h) - f (a) will be negative, certainly preventing a from
being a minimum of f.

Proof of 3.6.8 (Behavior of functions near saddle points). Write

f(a+h)= f(a)+Q(h)+r(h) and lim
r(h) =0.

h-.e Ihl2

as in Equations 3.6.8 and 3.6.9.
By Theorem 3.5.11 there exist subspaces V and W of R" such that Q is

positive definite on V and negative definite on W.
If h E V, and t > 0, there exists C > 0 such that

r(th)f(a + h- f(a) = tQ(h)

z
r(th) > f( C

)
3 6 11

+ +a
, . .

and since

li mr(th) =0, 3.6.12

it follows that f(ati) > f (a for t > 0 sufficiently small.

Degenerate critical points

When f(x) has a critical point at a, such that the quadratic terms of the
Taylor polynomial of f at a are a nondegenerate quadratic form, the function
near a behaves just like that quadratic form. We have just proved this when the
quadratic form is positive or negative definite, and the only thing preventing
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us from proving it for any signature of a nondegenerate form is an accurate

definition of "behave just like its quadratic terms.""
But if the quadratic is degenerate. there are many possibilities; we will not

attempt to classify them (it is a big job), but simply give some examples.

FIGURE 3.6.2. The upper left-hand figure is the surface ofequation z = x2+y3, and
the upper right-hand figure is the surface of equation z = x2+y4. The lower left-hand
figure is the surface of equation z = x2 - y°. Although the three graphs look very
different, all three functions have the same degenerate quadratic form for the Taylor
polynomial of degree 2. The lower right-hand figure shows the monkey saddle; it is
the graph of z = x3 - 2xy2, whose quadratic form is 0.

Example 3.6.9 (Degenerate critical points). The three functions x2+y3,
z2+y4, x2-y4, and all have the same degenerate quadratic form for the Taylor
polynomial of degree 2: x2. But they behave very differently, as shown in Figure
3.6.2 (upper left, upper right and lower left). The second one has a minimum,
the other two do not. L

Example 3.6.10 (Monkey saddle). The function f (Y) = x3 - 2xy2 has
a critical point that goes up in three directions and down in three also (to
accommodate the tail). Its graph is shown in Figure 3.6.2, lower right. A

18A precise statement is called the Morse lemma; it can be found (Lemma 2.2) on
p. 6 of J. Milnor, Morse Theory, Princeton University Press, 1963.
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3.7 CONSTRAINED CRITICAL POINTS AND LAGRANGE

Yet another example occurs in
the optional subsection of Section
2.8: the norm of a matrix A is

sup IA, I.

What is sup]AxI when we require
that ft have length I?

Recall (Definition 3.2.6) that
T .X is the tangent space to a
manifold X at a.

Geometrically, Theorem 3.7.1
means that a critical point of p
restricted to X is a point a such
that the tangent space to the con-
straint, T.X, is a subspace of

the tangent space to
a level set of ,p.

MULTIPLIERS

The shortest path between two points is a straight line. But what is the shortest

path if you are restricted to paths that lie on a sphere (for example, because

you are flying from New York to Paris)? This example is intuitively clear but
actually quite difficult to address. In this section we will look at problems in
the same spirit, but easier. We will be interested in extrema of a function f
when f is restricted to some manifold X C IR".

In the case of the set X C ]Ra describing the position of a link of four rods in
the plane (Example 3.2.1) we might imagine that the origin is attracting, and
that each vertex xi has a "potential" Ix; I2, perhaps realized by rubber bands
connecting the origin to the joints. Then what is the equilibrium position,
where the link realizes the minimum of the potential energy? Of course, all
four vertices try to be at the origin. but they can't. Where will they go?

In this section we provide tools to answer this sort of question.

Finding constrained critical points using derivatives

A characterization of extrema in terns of derivatives should say that in some
sense the derivative vanishes at an extremum. But when we take a function
defined on 1W" and consider its restriction to a manifold of :.?", we cannot assert
that an extremumt of the restricted function is a point at which the derivative of
the function vanishes. The derivative of the function may vanish at points not
in the manifold (the shortest "unrestricted" path from New York to Paris would
require tunneling under the Atlantic Ocean). In addition, only very seldom will
a constrained maximum be an unconstrained maximum (the tallest child in
kindergarten is unlikely to be the tallest child in the entire elementary school).
So only very seldom will the derivative of the function vanish at a critical point
of the restricted function.

What we can say is that at an extremum of the function restricted to a
manifold, the derivative of the function vanishes on all tangent vectors to the
manifold: i.e., on the tangent space to the manifold.

Theorem 3.7.1. If X C Rn is a manifold, U C R' is open, W : U -+ lR is a
Cr function and a E X fl U is a local extremum of 'p restricted to X, then

T.X C ker[D'p(a)]. 3.7.1

Definition 3.7.2 (Constrained critical point). A point a such that
T.X C ker[D'(a)] is called a critical point of 'p constrained to X.
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A level set of a function p is
those points such that ' = e.
where c is some constant. We used
level sets in Section 3.1.

y

FIGURE 3.7.1.
The unit circle and several level

curves of the function xy. The
level curve zy = 1/2, which real-
izes the nu+ximmn of xy restricted
to the circle, is tangent to the cir-

cle at the point (11,12 , where

the maximum is realized.

Since w measures the square
of the distance from the origin,
we wish to find the points on the
ellipse X that are closest to the
origin.

Example 3.7.3 (Constrained critical point: a simple example). Sup-
pose we wish to maximize the function p (XY) = xy on I he first quadrant of the

circle y2.+y2 = 1. As shown in Figure 3.7.1, some level sets of that function do
not intersect the circle, and some intersect it in two points, but one..ry = 1/2.
intersects it at the point a That point is the critical point of p
constrained to the circle. The tangent space to the constraint (i.e., to the circle)

consists of the vectors [
J

where r. = -y. This tangent space is a subspace of

the tangent space to the level set xy = 1/2. In fact, the two are the same.

Example 3.7.4 (Constrained critical point in higher dimensions). Sitp-
rl

pose we wish to find the minimum of the function p

\
y

J
= X2+y2+x2. when

z
it is constrained to the ellipse (denoted X) that is the intersection of the cylinder
x2 + y2 = 1. and the plane of equation x = z. shown in Figure 3.7.2;

FIGURE 3.7.2. At the point -a = t , the distance to tlteorigitt has a minimum
0N)

on the ellipse; at this point, the tangent space to the ellipse is a euhapace of the tangent
space to the sphere.



In keeping with the notation
introduced in Section 3.1, y = 0
indicates the plane where there is
zero increment in the direction of
the y-axis; thus y = 0 denotes the
plane tangent to the sphere (and

0

to the cylinder) at a =

-10
it also denotes the plane tangent

to the sphere (and the cylinder) at

01 j . It is the plane y = 0
0

translated from the origin.

The proof of Theorem 3.7.1 is
easier to understand if you think
in terms of parametrizations. Sup-
pose we want to find a maximum

of a function p I
/

y
\

I on the unit

circle in 1R2. One approach is
to parametrize the circle by t .-.

wst and look for the Un-
constrained maximum of the new
function of one variable, p1(t) =

sinsin t We did just this in

Example 2.8.8. In this way, the
restriction is incorporated in the
parametrization.
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0 0

The points on the ellipse nearest the origin are a - 1 and -a = -1
0 0

they are the minima of <p constrained to X. In this case

ker[Dw(a)] = ker[0,2,01 and ker[0,-2,0],

i.e., at these critical points, is the space y = 0. The tangent space
to the ellipse at the points a and -a is the intersection of the planes of equa-
tion y = 0 (the tangent space to the cylinder) and x = z (which is both the
plane and the tangent space to the plane). Certainly this is a subspace of

ker [D9p (1)]. z

FIGURE 3.7.3. The composition V o g: the parametrization g takes a point in R2 to
the constraint manifold X; V takes it to R. An extremum of the composition, at a1,
corresponds to an extremum of W restricted to X, at a; the constraint is incorporated
into the parametrization.

Proof of Theorem 3.7.1. Since X is a manifold, near a, X is the graph
of a map g from some subset U1 of the space El spanned by k standard basis
vectors, to the space E2 spanned by the other n - k standard basis vectors.
Call a1 and a2 the projections of a onto Et and E2 respectively.

Then the mapping g(xl) = x1 + g(xi) is a parametrization of X near a, and
X, which is locally the graph of g, is locally the image of k. Similarly, T,X,
which is locally the graph of [Dg(at)], is also locally the image of [Dg(aI)].

Then saying that rp on X has a local extremum at a is the same as saying
that the composition V o g has an (unconstrained) extremum at a1, as sketched
in Figure 3.7.3. Thus [D(p, o k)(ai)] = 0. This means exactly that [Dco(a)]
vanishes on the image of [Dk(a1)], which is the tangent space T.X. 0

This proof provides a straightforward approach to finding constrained critical
points, provided you know the "constraint manifold" by a parametrization.
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Exercise 3.7.1 asks you to show
that g really is a parametrization.

We could have substituted v =
2u into D2 (W o g) instead.

FIGURE 3.7.4.
Left: The surface X parametrized

f sinuv+u
by (v) -+ u + v I . The

UV

J
critical point where the white tan-
gent plane is tangent to the surface
corresponds to u = -1.48.
Right: The graph of u cos 2u2 +
u + 1 = 0. The roots of that
equation, marked with black dots,
give values of the first coordinates
of critical points of 9p(x) = x+y+z
restricted to X.

Example 3.7.5 (Finding constrained critical points using a parametri-
zation). Say we want to find local critical points of the function

x sinuv + u

W (V) =x+y+z, on the surface parametrized by g : (v) I u+v
z uv

shown in Figure 3.7.4 (left). Instead of looking for constrained critical points
of W, we will look for (ordinary) critical points of W o g. We have

cpog=sinuv+u+(u+v)+uv, so
Dj(rpog)=vcosuv+2+v
D2(r og)=ucosuv+l+u;

setting these both to 0 and solving them gives 2u - v = 0. In the parameter
space, the critical points lie on this line, so the actual constrained critical points
lie on the image of that line by the parametrization. Plugging v = 2u into
D1 (,p o g) gives

ucos2u2+u+1=0,

whose graph is shown in Figure 3.7.4 (right).

3.7.2

This function has infinitely many zeroes, each one the first coordinate of a
critical point; the seven visible in Figure 3.7.4 are approximately u = -2.878,
-2.722, -2.28, -2.048, -1.48 - .822, -.548. The image of the line v = 2u is
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represented as a dark curve on the surface in Figure 3.7.4, together with the

tangent plane at the point corresponding to u = -1.48.
Solving that equation (not necessarily easy, of course) will give us the values

of the first coordinate (and because 2v = v, of the second coordinate) of the

points that are critical points of constrained to X.

Notice that the same computation works if instead of g we use

FIGURE 3.7.5.
Left: The "surface" X, is the

image of

v\ sinuv
si u+v

UV

it is a subset of the surface Y of
equation x = sin z, which resem-
bles a curved bench.
Right: The graph of u cos u2 + u +
1 = 0. The roots of that equation,
marked with black dots, give val-
ues of the parameter u such that
W(x) = x + y + z restricted to Xi

has "critical points" at gi I
U

I.

These are not true critical points,
because we have no definition of
a critical point of a function re-
stricted to an object like Xi.

sin uv
gi : (u) a + v , which gives the "surface" X, shown in Figure 3.7.5,

v
uv

but this time the mapping gi is emphatically not a parametrization.

s A

.5

n

(x
Since for any point

Y

E XI, x = sin z, we see that Xi is contained in the
z

surface Y of equation x = sin z, which is a graph of x as a function of z. But X,
covers only part of Y, since y2-4z = (u+v)2-4uv = (u-v)2 > 0; it only covers
the part where y2 - 4z > 0,19 and it covers it twice, since gi (v) _ $i (u).
The mapping gi folds the (u, v)-plane over along the diagonal, and pastes the
resulting half-plane onto the graph Y. Since gi is not one to one, it does not
qualify as parametrization (see Definition 3.1.21; it also fails to qualify because
its derivative is not one to one. Can you justify this last statement?20)

Exercise 3.7.2 asks you to show that the function V has no critical points
on Y: the plane of equation x + y + z = c is never tangent to Y. But if you
follow the same procedure as above, you will find that critical points of ip o g,
occur when u = v, and u cos u2 + u + I = 0. What has happened? The critical

'9We realized that y2 - 4z = (u + v)2 - 4uv = (u - v)2 > 0 while trying to
understand the shape of X1, which led to trying to understand the constraint imposed
by the relationship of the second and third variables.

cos uv cos uv l
20The derivative of gi is 1 1

J

; at points where u = v, the columns of
v u

this matrix are not linearly independent.
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Recall that the Greek .1 is pro-
nounced "lambda."

We call F1 , ... , F , constraint
functions because they define the
manifold to which p is restricted.

In our three examples of La-
grange multipliers, our constraint
manifold is defined by a scalar-
valued function F, not by a vector-

valued function F=

F,
But the proof of the spectral the-
orem (Theorem 3.7.12) involves a
vector-valued function.

points of,pog1 now correspond to "fold points," where the plane x+y+z = ci
is tangent not to the surface Y, nor to the "surface" X1, whatever that would
mean, but to the curve that is the image of u = v by g1. D

Lagrange multipliers

The proof of Theorem 3.7.1 relies on the parametrization g of X. What if you
know a manifold only by equations? In this case, we can restate the theorem.

Suppose we are trying to maximize a function on a manifold X. Suppose
further that we know X not by a parametrization but by a vector-valued equa-

r F1

tion, F(x) = 0, where F = IIL J goes from an open subset U of lfYn to IIgm,

F.
and [DF(x)) is onto for every x E X.

Then, as stated by Theorem 3.2.7, for any a E X, the tangent space TaX is
the kernel of [DF(a)]:

TaX = ker[DF(a)]. 3.7.3

So Theorem 3.7.1 asserts that for a mapping V : U -. R, at a critical point of
V on X, we have

ker[DF(a)] C ker[DW(a)). 3.7.4

This can be reinterpreted as follows.

Theorem 3.7.6 (Lagrange multipliers). Let X be a manifold known by
a vector-valued function F. Iftp restricted to X has a critical point at a E X,
then there exist numbers at, ... , A. such that the derivative of ip at a is a
linear combination of derivatives of the constraint functions:

[Dl,(a)] = at[DF1(a)] +... + Am[DFm(a)j. 3.7.5

The numbers A1..... A,,, are called Lagrange multipliers.

Example 3.7.7 (Lagrange multipliers: a simple example). Suppose we
want to maximize V (y) = x + y on the ellipse x2 + 2y2 = 1. We have

F(y)=x2+2y2-1, and [DF(y))-[2x,4y], 3.7.6

while [DW (y) [1, 1]. So at a maximum, there will exist A such that

[1, 1] = A[2x, 4y]; i.e., x = 2A, y =
4a.

3.7.7



Disjointly means having noth-

ing in common.

FicuRE 3.7.6.
The combined area of the two

shaded squares is 1; we wish to
find the smallest rectangle that
will contain them both.

If we use

I-V2'
we end up with

a=
I- f

<0.4-2f

310 Chapter 3. Higher Derivatives, Quadratic Forms, Manifolds

Inserting these values into the equation for the ellipse gives

42 +2T6
A2 =

1; i.e., A = $. 3.7.8

So the maximum of the function on the ellipse is

32 3
I,

A 3.7.9

Example 3.7.8 (Lagrange multipliers: a somewhat harder example).
What is the smallest number A such that any two squares Si, S2 of total area
1 can be put disjointly into a rectangle of area A?

Let us call a and b the lengths of the sides of Si and S2, and we may assume
that a > b > 0. Then the smallest rectangle that will contain the two squares
disjointly has sides a and a+b, and area a(a+b), as shown in Figure 3.7.6. The
problem is to maximize the area a2 + ab, subject to the constraints a2+b2 = 1,
and a>b>0.

The Lagrange multiplier theorem tells us that at a critical point of the con-
strained function there exists a number A such that

12a + b, a] = A (2a, 2b] . 3.7.10`mar
deny. of deny. of

area function constraint func.

So we need to solve the system of three simultaneous nonlinear equations

2a + b = 2aA, a = 2bA, a2 + b2 = 1. 3.7.11

Substituting the value of a from the second equation into the first, we find

4bA2 - 4bA - b = 0. 3.7.12

This has one solution b = 0, but then we get a = 0, which is incompatible with
a2 + b2 = 1. The other solution is

4A2 -4A-1 0 i A I 73 13= ; .e., =
2

..

Our remaining equations are now

a=2A=1±V and a2+b2=1, 3.7.14

which, if we require a, b 0, have the u

(a)
nique solution

153 7
4 +2 2

. .

This satisfies the constraint a > b > 0, a

A=a(a+b)

nd lea

=4+

ds to

3f
3.7.16

4 + 2f
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The two endpoints correspond
to the two extremes: all the area in
one square and none in the other,
or both squares with the same
area: at 10J, the larger square
has area 1, and the smaller rectan-

gle has area 0; at I /2 1, the
two squares are identical.

Note that Equation 3.7.18 is a
system of four equations in four
unknowns: x, y, z, A. This is typi-
cal of what comes out of Lagrange
multipliers except in the very sim-
plest cases: you land on a system
of nonlinear equations.

But this problem isn't quite
typical, because there are tricks
available for solving those equa-
tions. Often there are none, and
the only thing to do is to use New-
ton's method.

You are asked in Exercise 3.7.3
to show that the other critical
points are saddles.

We must check (see Remark 3.6.5) that the maximum is not achieved at the
endpoints of the constraint region, i.e., at the point with coordinates a = 1, b =
0 and the point with coordinates a = b = v/2-/2 It is easy to see that (a +
b)a = 1 at both of these endpoints, and since 4+z z > 1, this is the unique
maximum.

Example 3.7.9 (Lagrange multipliers: a third example). Find the crit-
ical points of the function xyz on the plane of equation

x
F y =x+2y+3z-1=0. 3.7.17

Z

Theorem 3.7.6 asserts that a critical point is a solution to

(1) Iyz, xz, xy] = A 11, 2, 3]
deriv. of function xyz deriv. of F

(constraint)
or 3.7.18

(2) x + 2y + 3z = 1
constraint equation

In this case, there are tricks available. It is not hard to derive xz = 2yz and
xy = 3yz, so if z 34 0 and y qE 0, then y = z/2 and z = x/3. Substituting these
values into the last equation gives x = 1/3, hence y = 1/6 and z = 1/9. At this
point, the function has the value 1/162.

Now we need to examine the cases where z = 0 or y = 0. If z = 0, then our
Lagrange multiplier equation reads

[0, 0, zy] = A[1, 2, 3] 3.7.19

which says that A = 0, so one of x or y must also vanish. Suppose y = 0, then
x = 1, and the value of the function is 0. There are two other similar points.
Let us summarize: there are four critical points,

l
1

(/1

(o
/3) , 11/9 f 3.7.200 )

(loo
f

(1

at the first three our function is 0/and at the last it is 1/162.
Is our last point a maximum? The answer is yes (at least, it is a local

maximum), and you can see it as follows. The part of the plane of equation
x+2y+3z = 1 that lies in the first octant x, y, z > 0 is compact, as 1xI, ]1l), IzI < 1
there; otherwise the equation of the plane cannot be satisfied. So our function
does have a maximum in that octant. In order to be sure that this maximum
is a critical point, we need to check that it isn't on the edge of the octant
(see Remark 3.6.5). That is straightforward, since the function vanishes on the
boundary, while it is positive at the fourth point. So this maximum is a critical
point, hence it must be our fourth point.
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A space wit It Inure constraints
is smaller than a space with fewer
constraints: more people belong to
the set of musicians than belong to
the set of red-headed. left-handed
cello players with last names be-
ginning with W. Here. Ax = 0 im-
poses to constraints. and Ix = 0
imposes only one.

This is simply saving that the
only linear consequences one can
draw from it system of linear equa-
tions are the linear combinations
of those equal ions.

We don't know anything about
the relationship of it and in. but
we know that k < n, since n + I
vectors in I'r:" cannot be linearly
independent.

Proof of Theorem 3.7.6. Since TaX = ker[DF(a)l. the theorem follows
from Theorem 3.7.1 and from the following lemma from linear algebra, using
A = (DF(a)l and 3 = 113;p(a)l.

at
Lemma 3.7.10. Let A = - - Tr." he a linear transformation (i.e.,

am
an m x tz matrix). and ;l : " -+; be a linear function (a row matrix n wide).
Then

ker A C ker0

if and only if there exist numbers Al..... Am such that

L3 = AIal +... +Amam

Proof of Lemma 3.7.10.
In one direction, if

3 = Alal + ... + A-am.

and IV E ker A, then IV E ker a; f o r i = 1, ... , m., so v E ker.l.

L

Unfortunately, this isn't the important direction, and the other is a bit
harder. Choose a maximal linearly independent subset of the a,; by order-
ing we can suppose that these are al. .... ak. Denote the set A'. 't'hen

al
ker

J

= ker
ak

A'

3.7.21

3.7.22

3.7.23

3.7.24

A

(Anything in the kernel of at, ... , ak is also in the kernel of their linear combi-
nations.)

If 0 is not a linear combination of the then it is not a linear
combination of al, ... , ak. This means that the (k + 1) x n matrix

a'l.J al,n

B=
k,1 .. ak,n

3.7.25

has k + 1 linearly independent rows, hence k + 1 linearly independent columns:
the linear transformation B : JR" j ''I is onto. Then the set of equations

eel., ... a J.u 0

1
3.7.26

ak,l ... a k.n v 0
0 1 1 3,, I



Generalizing the spectral theo-
rem to infinitely many dimensions
is one of the central problems of
functional analysis.

For example,

Ax

or t 111 x,
[X2I - I(1 1 2J

.c2x;, 1 2 9 x:,

= x i + x2 +2x, 2:3 +422x:, + 9x3 .

qundrntw form

Square matrices exist that have
no eigenvectors, or only one. Sym-
metric matrices are a very spe-
cial class of square matrices, whose
eigenvectors are guaranteed not
only to exist but also to form an
orthonormal basis.

The theory of eigenvalues and
eigenvcctors is the most exciting
chapter in linear algebra, with
close connections to differential
equations, Fourier series, ... .

"...when Werner Heisenberg
discovered 'matrix' mechanics in
1925, he didn't know what a ma-
trix was (Max Born had to tell
him), and neither Heisenberg nor
Born knew what to make of the
appearance of matrices in the con-
text of the atom. (David Hilbert
is reported to have told them to
go look for a differential equa-
tion with the same eigenvalues, if
that would make them happier.
They did not follow Hilbert's well-
meant advice and thereby may
have missed discovering the
Schriklinger wave equation.)"
-M. R. Schroeder, Mathematical
Intelligenccr. Vol. 7. No. 4
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has a nonzero solution. The first k lines say that v is in ker A', which is equal
to ker A, but the last line says that it is not in ker 13.

The spectral theorem for symmetric matrices

In this subsection we will prove what is probably the most important theorem
of linear algebra. It goes under many names: the spectral theorem, the principle
axis theorem. Sylvester's principle of inertia. The theorem is a statement about
symmetric matrices; recall (Definition 1.2.18) that a symmetric matrix is a
matrix that is equal to its transpose. For us, the importance of symmetric
matrices is that they represent quadratic forms:

Proposition 3.7.11 (Quadratic forms and symmetric matrices). For
any symmetric matrix A, the function

QA(X) = R - AX

is a quadratic form; conversely, every quadratic form

3.7.27

Q(R) = E atzt 3.7.28
'EZI

is of the form QA for a unique symmetric matrix A.

Actually. for any square matrix M the function Q,tt (x") = x- Ax" is a quadratic
form, but there is a unique symmetric matrix A for which a quadratic form can
be expressed as QA. This symmetric matrix is constructed as follows: each
entry A,,, on the main diagonal is the coefficient of the corresponding variable
squared in the quadratic form (i.e., the coefficient of x) while each entry Aij
is one-half the coefficient of the term xixi. For example, for the matrix at left,
A1,1 = 1 because in the corresponding quadratic form the coefficient of A is
1, while A2,1 = A1.2 = 0 because the coefficient of x231 - 21x2 = 0. Exercise
3.7.4 asks you to turn this into a formal proof.

Theorem 3.7.12 (Spectral theorem). Let A be a symmetric n x n
matrix with real entries. Then there exists an orthonorrnal basis
of Rn and numbers A1, ... , an such that

Av'; = ajvi. 3.7.29

Definition 3.7.13 (Eigenvector, eigenvalue). For any square matrix
A, a nonzero vector V such that AV = Ai for some number A is called an
eigenvector of A. The number A is the corresponding eigenvalue.
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We use \ to denote both Lagrange multipliers and eigenvalues; we will see
that eigenvalues are in fact Lagrange multipliers.

11

Example 3.7.14 (Eigenvectors). Let A = L 1 01. You can easily check

that

Exercise 3.7.5 asks you to jus-
tify the derivative in Equation
3.7.32, using the definition of a de-
rivative as limit and the fact that
A is symmetric.

In Equation 3.7.34 we take the
transpose of both sides, remem-
bering that

(AR)T = BT AT.

As often happens in the middle
of an important proof, the point
a at which we are evaluating the
derivative has turned into a vec-
tor, so that we can perform vector
operations on it.

1 5 r 1 rr 1- 51 1- 61 5'1
21 d A1 7 303=Aj

J
an2 lt`

`

L

1

2
. .

s are orthogonal since their dot product is 0:that the two vectorand

1
2

1=
0. 3.7.31

The matrix A is symmetric; why do the eigenvectors v1 and v2 not form the
basis referred to in the spectral theorem ?21

Proof of Theorem 3.7.12 (Spectral theorem). We will construct our
basis one vector at a time. Consider the function QA (x') : R" - IR = x' Ax.
This function has a maximum (and a minimum) on the (n - 1)-sphere S of
equation F1(x) = p, I2 = 1. We know a maximum (and a minimum) exists,
because a sphere is a compact subset of 1R"; see Theorem 1.6.7. We have

[DQA(g)]h' = A (Ah) + 1i (Aa') = 9TA1 + hTAa' = 2a"TAh, 3.7.32

whereas

(DF,(g)]h = 2gTh. 3.7.33

So 2a"T A is the derivative of the quadratic form QA, and 2gT is the derivative
of the constraint function. Theorem 3.7.6 tells us that if the restriction of QA
to the unit sphere has a maximum at -71, then there exists Al such that

2vT A=A12v'i, so ATV1=A1 1. 3.7.34

Since A is symmetric,

A,71 = A1v"1. 3.7.35

This gives us our first eigenvector. Now let us continue by considering the

maximum at v2 of QA restricted to the space S f1 (v'1)1. (where, as above, S is
the unit sphere in 1R", and (-71)1 is the space of vectors perpendicular to 91).

21 They don't have unit length; if we normalize them by dividing each vector by its
length, we find that

Vr 1 f i- a 1
v5 I ] and vs '`YI/5 - 2

J
do the job.

5
=+2

LL -f 111 1
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That is, we add a second constraint, F2, maximizing QA subject to the two
constraints

The first equality of Equation
3.7.39 uses the symmetry of A: if Fl(x')=1 and 0. 3.7.36
A is symmetric,

v (Aw) = VT (A-0) = (. TA)w

_ (VT AT) TwAV

Since [DF2(v'2)) = v1, Equations 3.7.32 and 3.7.33 and Theorem 3.7.6 tell us
that there exist numbers A2 and /12.1 such that

w = ( )

AV2 = 112 1v1 + A2v2. 7 373_(Av).w.
The second uses Equation 3.7.35,
and the third the fact that v2 E

l

,

Take dot products of both sides of this equation with v'1, to find

(AV2) . vl ='2"2 ' V1 +112 1'1 'vl

..

3.7 38Sr(v1) .

, .

If you've ever tried to find
eigenvectors, you'll be impressed
by how easily their existence
dropped out of Lagrange multi-
pliers. Of course we could not
have done this without the exis-
tence of the maximum and mini-
mum of the function QA, guaran-
teed by the non-constructive The-
orem 1.6.7. In addition, we've
only proved existence: there is
no obvious way to find these con-
strained maxima of QA.

Exercise 3.7.6 characterizes the
norm in terms of eigenvalues.

Using

3.7.39

Equation 3.7.38 becomes

0 = /12,11x1 12 + 1\2v = 112,1, 3.7.40

=0 since O2.01

so Equation 3.7.37 becomes

Av2 = J12v2.

We have found our second eigenvector.

3.7.41

It should be clear how to continue, but let us spell it out for one further step.
Suppose that the restriction of QA to S fl v'i fl v2 has a maximum at v3, i.e.,
maximize QA subject to the three constraints

F 1 (x) = 1, F 2 ( 9) = ,Z. Vi = 0, and F3(f) = i 42 = 0. 3.7.42

The same argument as above says that there then exist numbers a3,µ3.1 and
113,2 such that

AV'3 = 113,1'1 + 113,2 V2 + )13V3. 3.7.43

Dot this entire equation with vl (resp. v2); you will find 113.1 = 113,2 = 0, and
we find AV3 = A 3,V3.

The spectral theorem gives us an alternative approach to quadratic forms,
geometrically more appealing than the completing of squares used in Section
3.5.

Theorem 8.7.15. If the quadratic form QA has signature (k, 1), then A has
k positive eigenvalues and I negative eigeenvalues.
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3.8 GEOMETRY OF CURVES AND SURFACES

In which we return to curves and surfaces, applying what we have learned

about Taylor polynomials, quadratic forms, and extrema to discussing their ge-
ometry: in particular, their curvature.

Curvature in geometry mani-
fests itself as gravitation.-C. Mis-
ner, K. S. Thorne, J. Wheeler,
Gravitation

Recall (Remark 3.1.2) the fuzzy
definition of "smooth" as meaning
"as many times differentiable as is
relevant to the problem at hand."
In Sections 3.1 and 3.2, once con-
tinuously differentiable was suffi-
cient; here it is not.

A curve acquires its geometry from the space in which it is embedded. With-
out that embedding, a curve is boring: geometrically it is a straight line. A
one-dimensional worm living inside a smooth curve cannot tell whether the
curve is straight or curvy; at most (if allowed to leave a trace behind him) it
can tell whether the curve is closed or not.

This is not true of surfaces and higher-dimensional manifolds. Given a long-
enough tape measure you could prove that the earth is spherical without any
recourse to ambient space; Exercise 3.8.1 asks you to compute how long a tape
measure you would need.

The central notion used to explore these issues is curvature, which comes in
many flavors. Its importance cannot be overstated: gravitation is the curvature
of spacetime; the electromagnetic field is the curvature of the electromagnetic
potential. Indeed, the geometry of curves and surfaces is an immense field, with
many hundreds of books devoted to it; our treatment cannot be more than the
barest overview.22

We will briefly discuss curvature as it applies to curves in the plane, curves
in space and surfaces in space. Our approach is the same in all cases: we write
our curve or surface as the graph of a mapping in the coordinates best adapted
to the situation, and read the curvature (and other quantities of interest) from
quadratic terms of the Taylor polynomial for that mapping. Differential geom-
etry only exists for functions that are twice continuously differentiable; without
that hypothesis, everything becomes a million times harder. Thus the functions
we discuss all have Taylor polynomials of degree at least 2. (For curves in space,
we will need our functions to be three times continuously differentiable, with
Taylor polynomials of degree 3.)

The geometry of plane curves

For a smooth curve in the plane, the "best coordinate system" X. Y at a point
a = (b) is the system centered at a, with the X-axis in the direction of the
tangent line, and the Y axis normal to the tangent at that point, as shown in
Figure 3.8.1.

For further reading, we recommend Riemannian Geometry, A Beginner's Guide,
by Flank Morgan (A K Peters, Ltd., Wellesley, MA, second edition 1998) or Differen-
tial Geometry of Curves and Surfaces, by Manfredo P. do Carmo (Prentice-Hall, Inc.,
1976).
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ly

x of this polynomial are invariants of the curve: numbers associated to a point

of the curve that do not change if you translate or rotate the curve.

Y=g(X)= 22X2+ 63X3+..., 3.8.1

where A2 is the second derivative of g (see Equation 3.3.1). All the coefficients

In these X, Y coordinates, the curve is locally the graph of a function Y =

Y
g(X), which can be approximated by its Taylor polynomial. This Taylor poly-

nomial contains only quadratic and higher terms23:

The curvature of plane curves

The coefficient that will interest us is A2, the second derivative of g.
FIGURE 3.8.1.

To study a smooth curve at
a = (b ), we. make a the origin

of our new coordinates, and place
the X-axis in the direction of the
tangent to the curve at a. Within
the shaded region, the curve is the
graph of a function Y = g(X) that
starts with quadratic terms.

The Greek letter K is "kappa."
We could avoid the absolute value
by defining the signed curvature of
an oriented curve, but we won't do
so here, to avoid complications.

When X = 0, both g(X) and
g'(0) vanish, while g"(0) _ -1;
the quadratic term for the Taylor
polynomial is Zg'".

Definition 3.8.1 (Curvature of a curve in 1112). Let a curve in II22 be
locally the graph of a function g(X), with Taylor polynomial

g(X) = 22X2+ 62X3+....

Then the curvature a of the curve at 0 is JA21.

The curvature is normalized so that the unit circle has curvature 1. Indeed,
near the point (?), the "best coordinates" for the unit circle are X = x,Y =

y - 1, so the equation of the circle y = 1 - x becomes

g(X)=Y=y1= V1rj 3.8.2

with the Taylor polynomial24

g(x) _ -2X2 +..., 3.8.3

the dots representing higher degree terms. So the unit circle has curvature
I -11=1.

Proposition 3.8.2 tells how to compute the curvature of a smooth plane curve
that is locally the graph of the function 1(x). Note that when we use small
letters, x and y, we are using the standard coordinate system.

23The point a has coordinates X = 0, Y = 0, so the constant term is 0; the linear
term is 0 because the curve is tangent to the X-axis at a.

24 We avoided computing the derivatives for g(X) by using the formula for the
Taylor series of a binomial (Equation 3.4.7):

m(m - 1).2 m(m - 1)(m - 2)a 3(1+n)"+ma+
2!

+
3!

n +....
In this case, m is 1/2 and a = -X2.
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Proposition 3.8.2 (Computing the curvature of a plane curve known

as a graph). The curvature a of the curve y = f (x) at is

tc=

The rotation matrix of Exam-
ple 1.3.17:

[cosh -sing
sing cos0

is the inverse of the one we are

using now; there we were rotating

points, while here we are rotating
coordinates.

Recall (Definition 3.8.1) that
curvature is defined for a curve lo-
cally the graph of a function g(X)
whose Taylor polynomial starts
with quadratic terms.

If"(a)I
(1 + f'(a)2)3/2

3.8.4

Proof. We express f (x) as its Taylor polynomial, ignoring the constant term,
since we can eliminate it by translating the coordinates, without changing any

of the derivatives. This gives us

f (x) = fl(a)x + ff" 2a) 2'2 + ... .

Now rotate the coordinates by 8, using the rotation matrix

[
cos9 sing

-sing cos9

3.8.5

3.8.6

Then

X= xcos9+ysino XcosO-Ysin9=x(cos2B+sin29)=x
Y = -x sin 9 + y cos 9

giving
X sin 9 + Y cos 9 = y(cos2 9 + sin2 9) = y.

3.8.7

Substituting these into Equation 3.8.5 leads to

(Xcos9-Ysin9)2+....Xsin9+Ycos9= f'(a)(Xcos0-Ysin
9)+"a

2

3.8.8

We want to choose 9 so that this equation expresses Y as a function of X, with
derivative 0, so that its Taylor polynomial starts with the quadratic term:

A2 2Y =g(X)=
2

X +.... 3.8.9

If we subtract X sin 9 + Y cos 9 from both sides of Equation 3.8.8, we can write
the equation for the curve in terms of the X, Y coordinates:

Alternatively, we could say that
X is a function of Y if D,F is F(Y) =0= -Xsin9-Ycos9+f'(a)(Xcos0-Ysin9)+..., 3.8.10

invertible.
Here,

D2F = - f' (a) sin 6 - cos 9

with derivative

[DF(0), _ [f'(a)cos0-sing,-f'(a)sin0-cos9]. .8.11

corresponds to Equation 2.9.21 in
the implicit function theorem; it
represents the "pivotal columns"
of the derivative of F. Since that
derivative is a line matrix, D2F
is a number, being nonzero and
being invertible are the same.

D,F D2F

The implicit function theorem says that Y is a function g(X) if D2F is in-
vertible, i.e., if - f(a) sin 9 - cos9 # 0. In that case, Equation 2.9.25 for the
derivative of an implicit function tells us that in order to have g'(0) = 0 (so that
g(X) starts with quadratic terms) we must have D1 F = f'(a) cos 0 - sin g = 0,
i.e., tang = f'(a):



Setting tang = f(a) is simply
saying that f(a) is the slope of the
curve.

1

FIGURE 3.8.2.
This right triangle justifies

Equation 3.8.18.

Since g'(0) = 0, g(X) starts
with quadratic terms. Moreover,
by Theorem 3.4.7, the function g
is as differentiable as F, hence as
f. So the term Xg(X) is of degree
3, and the term g(X)2 is of degree
4.
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g'(0) = 0 = -[D2F(0)]-' [D1F(O)] 3.8.12

$0 must be 0

If we make this choice of 9, then indeed

-f'(a)sine-cos9=-1
36 O, 3.8.13

so the implicit function theorem does apply. We can replace Y in Equation
3.8.10 by g(X):

F (9X)) = 0 = -X sin 9 - g(X) cos 9 + f'(a)(X cos 9 - g(X) sin 9)

Za (XcosB-g(X)sinB)2+..., 3.8.14+ f )
additional term; see Eq.3.8.8

If we group the linear terms in g(X) on the left, and put the linear terms in X
on the right, we get

=0

(f'(a)sinO+cos9)g(X) _ (j'(a)cos9-sin9)X

"2
(cosBX-sin9g(X))2+...+ f

a
(a= f )(cosBX-sin9g(X))2+....

We divide by f'(a) sin 9 + cos 9 to obtain

1 f"(a) ( 2,9x2
g(X) - f'(a) sin 9 + cos 9 2

cos

- 2 cos 0 sin OXg(X) + sine9(g(X )2) + ... .

these are of degree 3 or higher

Now express the coefficient of X2 as A2/2, getting

_ f"(a) cos 2 9
A2 f'(a)sin0+cos9

Since f(a) = tan 9, we have the right triangle of Figure 3.8.2, and

sin 9 =
f (a)

and cos 9 = I
+ (f'(a))z 1 +

(f'(a))2.

Substituting these values in Equation 3.8.17 we have
A f" (a)2

= ] _ If"(a)]so that K = ]A2
2 `f/2' 3 2'

(1 + (f'(a))) (1 + f'(a)2)

3.8.15

3.8.16

3.8.17

3.8.18

3.8.19
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There is no reasonable gener-
alization of this approach to sur-
faces, which do have intrinsic ge-
ometry.

The vector is the velocity
vector of the parametrization y.

If the odometer says you have
traveled 50 stiles, then you have
traveled 50 miles on your curve.

Computing the integral in
Equation 3.8.22 is painful, and
computing the inverse function
i(s) is even more so, so parametri-
zation by arc length is more at-
tractive in theory than in practice.
Later we will see how to compute
the curvature of curves known by
arbitrary parastetrizations.

Proposition 3.8.4 follows from
Proposition :3.8.13.

Geometry of curves parametrized by arc length

There is an alternative approach to the geometry of curves, both in the plane
and in space: parametrization by arc length. The existence of this method
reflects the fact that curves have no interesting intrinsic geometry: if you were
a one-dimensional bug living on a curve, you could not make any measurements
that would tell whether your universe was a straight line, or all tangled up.

Recall (Definition 3.1.20) that a parametrized curve is a mapping y : I - R.",
where I is an interval in R. You can think of I as an interval of time; if you are
traveling along the curve, the parametrization tells you where you are on the
curve at a given time.

Definition 3.8.3 (Arc length). The are length of the segment '?([a, b]) of
a curve parametrized by gamma is given by the integral

a
1° ly'(t) I dt. 3.8.20

A more intuitive definition to consider is the lengths of straight line segments
("inscribed polygonal curves") joining points ry(to),y(t1)...... (t,"), where to =
a and t,, = b, as shown in Figure 3.8.3. Then take the limit as the line segments
become shorter and shorter.

In formulas, this means to consider
I m-1
Iy(t;+,) - )(ti)J, which is almost ly'(t,)I(t,+1- ti). 3.8.21

(If you have any doubts about the "which is almost," Exercise 3.8.2 should
remove them when y is twice continuously differentiable.) This last expression
is a Riemann sum for f n I'y'(t)I dt.

If you select an origin y(to), then you can define s(t) by the formula

s ="'t 1- l du; 3.8.22
u

odometer apemlumeter
reading readingat time t at time u

s(t) gives the odometer reading as a function of time: "how far have you gone
since time to"). It is a monotonically increasing function, so (Theorem 2.9.2)
it has an inverse function t(s) (at what time had you gone distance s on the
curve?) Composing this function with y : I -. R2 or y : I --. '_i23 now says
where you are in the plane, or in space, when you have gone a distance s along
the curve (or, if y : I -. 1R", where you are in 1R"). The curve

6(s) = -Y(t(s)) 3.8.23
is now parametrized by are length: distances along the curve are exactly the
same as they are in the parameter domain where s lives.



FIGURE 3.8.3.
A curve approximated by an in-

scribed polygon. While you may
be more familiar with closed poly-
gons, such as the hexagon and
pentagon, a polygon does not need
to be closed.

In Equation 3.8.25, the first in-
dex for the coefficient A refers to
X and the second to Y, so A,., is
the coefficient for XY, and so on.

FIGURE 3.8.4.
In an adapted coordinate sys-

tem, a surface is represented as
the graph of a function from the
tangent plane to the normal line.
In those coordinates, the function
starts with quadratic terms.
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Proposition 3.8.4 (Curvature of a plane curve parametrized by arc
length). The curvature a of a plane curve d(s) parametrized by are length
is given by the formula

sc(a(s)) = 3.8.24

The best coordinates for surfaces

Let S be a surface in R3, and let a be a point in S. Then an adapted coordinate
system for S at a is a system where X and Y are coordinates with respect to an
orthonormal basis of the tangent plane, and the Z-axis is the normal direction,
as shown in Figure 3.8.4. In such a coordinate system, the surface S is locally
the graph of a function

Z = f (y) = 2 (A2,0X2 + 2At,1XY + Ao,2Y2) + higher degree terms.

quadratic term of Taylor polynomial
3.8.25

Many interesting things can be read off from the numbers A2,0, At,t and
Ao.2: in particular, the mean curvature and the Gaussian curvature, both gen-
eralizations of the single curvature of smooth curves.

Definition 3.8.5 (Mean curvature of a surface). The mean curvature
H of a surface at a point a is

1

H = 2(Az,o+Ao,2)

The mean curvature measures how far a surface is from being minimal. A
minimal surface is one that locally minimizes surface area among surfaces with
the same boundary.

Definition 3.8.6 (Gaussian curvature of a surface). The Gaussian
curvature K of a surface at a point a is

K = A2,oAo,2 - Aa,f. 3.8.26

The Gaussian curvature measures how big or small a surface is compared to
a flat surface. The precise statement, which we will not prove in this book, is
that the area of the disk Dr(x) of radius r around a point x of a surface has
the 4th degree Taylor polynomial

Area(Dr(x)) - - K(x)7r r4.

area of curved disk area of
flat disk

12
3.8.27
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Sewing is something of a dying
art, but the mathematician Bill
Thurston, whose geometric vision
is legendary, maintains that it is
an excellent way to acquire some
feeling for the geometry of sur-
faces.

The Gaussian curvature is the
prototype of all the really interest-
ing things in differential geometry.
It measures to what extent pieces
of a surface can be made flat, with-
out stretching or deformation-as
is possible for a cone or cylinder
but not for a sphere.

If the curvature is positive, the curved disk is smaller than a flat disk, and
if the curvature is negative, it is larger. The disks have to be measured with
a tape measure contained in the surface: in other words, Dr(x) is the set of
points which can be connected to x by a curve contained in the surface and of
length at most r.

An obvious example of a surface with positive Gaussian curvature is the
surface of a ball. Take a basketball and wrap a napkin around it; you will have
extra fabric that won't lie smooth. This is why maps of the earth always distort
areas: the extra "fabric" won't lie smooth otherwise.

An example of a surface with negative Gaussian curvature is a mountain
pass. Another example is an armpit. If you have ever sewed a set-in sleeve on a
shirt or dress, you know that when you pin the under part of the sleeve to the
main part of the garment, you have extra fabric that doesn't lie flat; sewing the
two parts together without puckers or gathers is tricky, and involves distorting
the fabric.

FIGURE 3.8.5. Did you ever wonder why the three Billy Goats Gruff were the sizes
they were? The answer is Gaussian curvature. The first goat gets just the right
amount of grass to eat; he lives on a flat surface, with Gaussian curvature zero. The
second goat is thin. He lives on the top of a hill, with positive Gaussian curvature.
Since the chain is heavy, and lies on the surface, he can reach less grass. The third
goat is fat. His surface has negative Gaussian curvature; with the same length chain,
he can get at more grass.
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Computing curvature of surfaces

Proposition 3.8.2 tells how to compute the curvature of a plane curve known

as a graph. The analog for surfaces is a pretty frightful computation. Suppose
we have a surface 5, given as the graph of a function f (y) , of which we have
written the Taylor polynomial to degree 2:

Z = f (y) = alx + a2y
+ 1 (a2.ox2 + 2ai.Ixy + ao.2y2) + .... 3.8.28

(There is no constant term because we translate the surface so that the point

we are interested in is the origin.)

A coordinate system adapted to S at the origin is the following system, where

we set c = al V+ a2 to lighten the notation:

x X+ al Y+ al
Zc 1+ 1+

= al a2X+ Y
a2

Z
V

c
c 1+ +

l+c2 3.8.29

c 1
Z Y- Z.

That is, the new coordinates are taken with respect to the three basis vectors

al al
c T+-72 1+

a2 a2

c 1+ l+c
c -1

3.8.30

The first vector is a horizontal unit vector in the tangent plane. The second is

a unit vector orthogonal to the first, in the tangent plane. The third is a unit

vector orthogonal to the previous two. It takes a bit of geometry to find them,

but the proof of Proposition 3.8.7 will show that these coordinates are indeed

adapted to the surface.
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Remember that we set

e = ai 42'

Note that Equations 3.8.33 and
3.8.34 are somehow related to
Equation :3.8.4: in each case the
numerator contains second deriva-
tives (a2,e, au,2, etc., are coeffi-
cients for the second degree terms
of the Taylor polynomial) and the
denominator contains something
like 1 + Df 2 (the a, and a2 of
c = a' +a2 are coefficients of
the first degree term). A more
precise relation can be seen if you
consider the surface of equation
z = f(x), y arbitrary, and the
plane curve z = f (x). In that case
the mean curvature of the surface
is half the curvature of the plane
curve. Exercise 3.8.3 asks you to
check this.

We prove Proposition 3.8.7 af-
ter giving a few examples.

Proposition 3.8.7 (Computing curvature of surfaces). (a) Let S be
the surface of Equation 3.8.28, and X, Y, Z be the coordinates with respect
to the orthonormal basis given by Equation 3.8.30. With respect to these

coordinates, S is the graph of Z as a function F of X and Y:

F(Y) = 2(A2,oX2+2A1.1XY+Ao2Y2)+..., 3.8.31

which starts with quadratic terms.
the coefficients for the quadratic terms of F are(b) Setting c = at + a2,

/A2.0 = -C2
1 +

(a2,oa2 - 2at,Iala2 + ao,2a2l)

A1,l _
c2(1 +C2) (ala2(a2,o - ao,2) + a,,l(az - ai))

1 a2 2a2).A0,2 =
- C2(1 + C2)3/2

(a2,0l + 2al,lala2 + ao,

(c) The Gaussian curvature of S is

a2,oao,2 - alK _
(1 + c2)2

and the mean curvature is

11=

3.8.32

3.8.33

2(1 + c2)3/2
(a2,o(1 + a2) - 2a1a2a1,1 + a0,2(1 + a2)). 3.8.34

Example 3.8.8 (Computing the Gaussian and mean curvature of a
surface). Suppose we want to measure the Gaussian curvature at a point
(6) of the surface given by the equation z = x2 - y2 (the saddle shown in
Figure 3.6.1). We make that point our new origin; i.e., we use new translated
coordinates, u, v, trr, where

x=a+u
y=b+v
z=a2-b2+w.

3.8.35

(The u-axis replaces the original x-axis, the v-axis replaces the y-axis, and the

w-axis replaces the z-axis.) Now we rewrite the equation z = x2 - y2 as

a2-b2+w=(a + u)2-(b + v)2
= S2 2

= a2 + 2au + u 2 - b 2 - 2bv - v2,

1

3.8.36
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Remember that we set

c = 1 +4

The first two rows of the right-
hand side of Equation 3.8.40 are
the rotation matrix we already
saw in Equation 3.8.6. The map-
ping simultaneously rotates by a
in the (x, y)-plane and lowers by a
in the z direction.

FIGURE 3.8.6.

which gives

w=2au-2bv+u2-412= 2a a+--26'v+2( 2 U2+ v2). 3.8.37

a, a2 aa,,, oo,a

Now we have an equation of the form of Equation 3.8.28, and we can read off
the Gaussian curvature, using the values we have found for ai , a2, a2,0 and ao,2:

a2.oao.a-°i,i

( _ -4
K

(1 + 4a2 + 462)2 T1-+ 4a2 + 4b2)2'

(t+c2)a

3.8.38

Looking at this formula for K, what can you say about the surface away from
the origin?25

Similarly, we can compute the mean curvature:

H = 4(62 - a2)
3.8.39

(1 + 4a2 + 462)3/2

Example 3.8.9 (Computing the Gaussian and mean curvature of the
helicoid). The helicoid is the surface of equation y cos z = x sin z. You can
imagine it as swept out by a horizontal line going through the z-axis, and which
turns steadily as the z-coordinate changes, making an angle z with the parallel
to the x-axis through the same point, as shown in Figure 3.8.6.

A first thing to observe is that the mapping

I
_ (_xcosa+ysina)

xsia+ycosaa

r
a = z, this rigid motion sends any point to a point of the form 0 , and it is

0

3.8.40

is a rigid motion of R3 that sends the helicoid to itself. In particular, setting

enough to compute the Gaussian curvature K(r) at such a point.
We don't know the helicoid as a graph, but by the implicit function theorem,

r
the equation of the helicoid determines z as a function gr near 0 when

r # 0. What we need then is the Taylor polynomial of .q,. Introduce the new
coordinate u such that r + u = x, and write

The helicoid is swept out by a
horizontal line, which rotates as it 9r (y) = Z = a2y + ai,i uy + ap,2y2 + .... 3.8.41

is lifted.
2'The Gaussian curvature of this surface is always negative, but the further you

go from the origin, the smaller it is, so the flatter the surface.



In rewriting

y cos z = (r + U) Sill Z

as Equation 3.8.42, we replace
cos z by its Taylor polynomial,

z2 z'T+T!....
keeping only the first term. (The
term z2/2! is quadratic, but y
times z2/2! is cubic.). We replace
sin z by its Taylor polynomial,

23 z"
sin(z) = z - - + - ...,

3! 5!

keeping only the first term.

You should expect (Equation
3.8.43) that the coefficients a2 and
a1,1 will blow up as r -. 0, since
at the origin the helicoid does not
represent z as a function of x and
y. But the helicoid is a smooth
surface at the origin.

We were glad to see that the

linear terms in X and Y cancel,
showing that we. had indeed cho-

sen adapted coordinates. Clearly,

the linear terms in X do cancel.
For the linear terms in Y, remem-
ber that c = al + az. So the

linear terms on the right are

a2, Y a2Y _ c2Y
c l+c +c l+c c 1+c2
and on the left we have

cY

l+'
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Exercise 3.8.4 asks you to justify our omitting the terms alu and a2,eu2.

Introducing this into the equation y cos z = (r + u) sin z and keeping only
quadratic terms gives

y = (r+u) (a2y+al,1uy+ 2(2o.2y2) +...,

from Equation 3.8.41

3.8.42

Identifying linear and quadratic terms gives
1 1

al =0, a2= , a,., =-T2 , ao,2=0, a2.0 =0. 3.8.43

We can now read off the Gaussian and mean curvatures:

r4(1 + 1/r2)2 (1 + r2)2
and H(r) = 0. 3.8.44

Gaussian
curvature Curvature

We see from the first equation that the Gaussian curvature is always negative
and does not blow up as r --o 0: as r -. 0, K(r) -s -1. This is what we should
expect, since the helicoid is a smooth surface. The second equation is more
interesting yet. It says that the helicoid is a minimal surface: every patch of
the helicoid minimizes area among surfaces with the same boundary.

Proof of Proposition 3.8.7. In the coordinates X, Y, Z (i.e., using the values
for x, y and z given in Equation 3.8.29) the Equation 3.8.28 for S becomes

z from Equation 3.8.29 z from Equation 3.8.29

lc Y- Z=a,(-a2X+ at Y+ al Z)
1+c2 I+ c -al-77 1+

L 12 Y +
a2+a2 cX+c l+c 1+

Z)

2

+ 1 ago -a2X+ al
Y+ al Z

2 c c l+c 1+c2 /
L2 al a, ) a, a2 a2 l+2at,t - c X+ c 1+c2Y+ l+c Z(c X+c 1+c2Y+ 1+c Z/
/ a2 a2 \2

+a02l c1X+c +c2Y+ 1+c2Z/ 1 +.... 3.8.45

We observe that all the linear terms in X and Y cancel, showing that this is
an adapted system. The only remaining linear term is - 1 + Z and the
coefficient of Z is not 0, so D3F 34 0, so the implicit function theorem applies.
Thus in these coordinates, Equation 3.8.45 expresses Z as a function of X and
Y which starts with quadratic terms. This proves part (a).

To prove part (b), we need to multiply out the right-hand side. Remember
that the linear terms in X and Y have canceled, and that we are interested



Since the expression of Z in
terms of X and Y starts with qua-
dratic terms, a term that is linear
in Z is actually quadratic in X and
Y.

Equation 3.8.47 says

Z= 2(A2.°X2+2A1.1XY

+ Ao,2Y2) + ... .

This involves some quite mirac-
ulous cancellations. The mean
curvature computation is similar,
and left as Exercise 3.8.10; it also
involves some miraculous cancella-
tions.

Knot theory is a very active
field of research today, with re-
markable connections to physics
(especially the latest darling of
theoretical physicists: string the-
ory).
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only in terms up to degree 2; the terms in Z in the quadratic terms on the right
now contribute terms of degree at least 3, so we can ignore them. We can thus
rewrite Equation 3.8.45 as

/
1+c2Z=2 (-2,o 1-zX+c

1+

Y)2

+

2x1
ai Y)2 a2

Y
,1 -cazX +

c 1+
(cal X +c

1+c2 ) +

\ao,2(1X+c

a2
YI +... 3.8.46

If we multiply out, collect terms, and divide by 1 + c , this becomes

A2.o

z
2 (( c2 1 +

a2,oa2 2 2- 2al,lala2 +ao,2ai 1X2

fXY+2
c2(1

1

+c2) -a2,oata2-al 1a3 +a1,1a
1

+ C10,2-1-2
1

_ 1 \

( c2(1+C2)3/2a2,oa2+2allala2+ao2a2 )Y2 +... 3.8.47

This proves part (b).

To we part (c), we just compute the Gaussian curvature, K = A2,oAo 2-A2,1:

Az.oAo,2 - Ai,1 =
I (

c4(1 + c2)2 {a2,oa2 - 2a1,1a1a2 + ao 2aj) 1a2,°al + 2al,lala2 + so,2a2)

(a2,oal a2 +a1,1a2 - al,la2l - ao,2aia2) I

/- a2,040,2 - al.l
(1 + c2)2

Coordinates adapted to space curves

3.8.48

Curves in J3 have considerably simpler local geometry than do surfaces: essen-
tially everything about them is in Propositions 3.8.12 and 3.8.13 below. Their
global geometry is quite a different matter: they can tangle, knot, link, etc. in
the most fantastic ways.

Suppose C C II13 is a smooth curve, and a E C is a point. What new
coordinate system X, Y, Z is well adapted to C at a? Of course, we will take
the origin of the new system at a, and if we demand that the X-axis be tangent
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to C at a, and call the other two coordinates U and V, then near a the curve
C will have an equation of the form

U = f(X) = 2n2X2 + 6a3X3 + ...
3.8.49

1 1

V = g(X) = 2b2X2 + 6b3X3 + .....

We again use the rotation ma-
trix of Equation 3.8.6:

cos9 sing
-sing cosO

Remember that s = sing and
c = COS 9, so c2 + s2 = 1.

A2 = a2 + bz,

B3= -b2a3+a2b3
a2+ 2

where both coordinates start with quadratic terms. But it Burns out that we can
do better, at least when C is at least three times differentiable, and a2+b2 0.

Suppose we rotate the coordinate system around the X-axis by an angle 9, and
call X. Y, Z the new (final) coordinates. Let c = cos 9, s = sin 9: this means
setting

U = cY + sZ and V= - sY + eZ. 3.8.5(1

Substituting these expressions into Equation 3.8.49 leads to

cY+sZ= 1a2X2+a3X3 +...

-sY + cZ =
2
b2X2 + jb3X3 + ... .

3.8.51

We solve these equations for Y by multiplying the first through by c and the
second by -s and adding the results:

Y(c2 + s2) = Y = (ca2 - sb2)X2 + 6 (ca3 - sb3)X3. 3.8.52

A similar computation gives

Z = 2(sa2+cb2)X2+ 6(sa3+cb3)X3. 3.8.53

The point of all this is that we want to choose the angle 9 (the angle by which
we rotate the coordinate system around the X-axis) so that the Z-component
of the curve begins with cubic terms. We achieve this by setting

c = cos 9 =
a2

and s =sin 9 = - b2 so that tan 9 = - b2 ;
a +b2 a2 + b2' a2

3.8.54
this gives

1 2 22 a2a3 + ,2b3 3 A2 2 `43 3Y=2 2+b2X +6
a +b X = 2X + 6X +...

Z aabb3X3+...= 3X3
6 V. 72-+

+....
3.8.55



The word osctilatinq comes
from the Latin osculari. "to kiss."

Note that the torsion is defined
only when the curvature is not
zero. The osculating plane is the
plane that the curve is most nearly
in, and the torsion measures how
fast the curve pulls away from it.
It measures the "non-planarity' of
the curve.

A curve in R can he parame-
trized by arc length because curves
have no intrinsic geometry; you
could represent the Amazon River
as a straight line without distort-
ing its length. Surfaces and other
manifolds of higher dimension can-
not be parametrized by anything
analogous to are length; any at-
tempt to represent the surface of
the globe as a flat map necessar-
ily distorts sizes and shapes of the
continents. Gaussian curvature is
the obstruction.

Imagine that you are driving in
the dark, and that the first unit

vector is the shaft of light pro-

duced by your headlights.

We know the acceleration must

be orthogonal to the curve because
your speed is constant; there is no
component of acceleration in the

direction you are going.

Alternatively, you can derive

2b' tS' = 0

from Ib'I1 = 1.
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The Z-component measures the distance of the curve from the (X, Y)-plane;
since Z is small, then the curve stays mainly in that plane. The (X, Y)-plane
is called the osculating plane to C at a.

This is our best adapted coordinate system for the curve at a, which exists
and is unique unless a2 = b2 = 0. The number a = A2 > 0 is called the
curvature of C at a, and the number r = B3/A2 is called the torsion of C at a.

Definition 3.8.10 (Curvature of a space curve). The curvature of a
space curve C at a is

k=A2>0.

Definition 3.8.11 (Torsion of a space curve). The torsion of a space
curve C at a is

r = B3/A2.

Parametrization of space curves by arc length: the FFenet frame

Usually, the geometry of space curves is developed using parametrizations by
are length rather than by adapted coordinates. Above, we emphasized adapted
coordinates because they generalize to manifolds of higher dimension, while
parametrizations by arc length do not.

The main ingredient of the approach using parametrization by arc length
is the Frenet frame. Imagine driving at unit speed along the curve, perhaps
by turning on cruise control. Then (at least if the curve is really curvy, not
straight) at each instant you have a distinguished basis of R1. The first unit
vector is the velocity vector, pointing in the direction of the curve. The second
vector is the acceleration vector, normalized to have length 1. It is orthogonal
to the curve, and points in the direction in which the force is being applied-
i.e., in the opposite direction of the centrifugal force you feel. The third basis
vector is the binormal, orthogonal to the other two vectors.

So, if b : R -+ R3 is the parametrization by are length of the curve, the three
vectors are:

t(s) = d'(s),
n(s) = tt(s) = air(s)

'
b(s) = i(s) x n'(s). 3.8.56

itr(s) Iar (s)1
velocity vector bin

normalized
acceleration vector

The propositions below relate the Frenet frame to the adapted coordinates;
they provide another description of curvature and torsion, and show that the
two approaches coincide. The same computations prove both; they are proved
in Appendix All.
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Proposition 3.8.12 (Frenet frame). The point with coordinates X, Y, Z

(as in Equation 3.8.55) is the point

a + Xt(0) + Yn'(0) + Zb'(0). 3.8.57

Equivalently, the vectors t(0), A (O), b'(0) form the orthonormal basis (Ftenet
frame) with respect to which our adapted coordinates are computed.

Equation 3.8.58 corresponds to
the antisymmetric matrix

0 K 0

K 0 T

0 -T 0

Proposition 3.8.13 (Curvature and torsion of a space curve). The
Ftenet frame satisfies the following equations, where K is the curvature of the
curve at a and T is its torsion:

t(0) = Kn(0)

n"(0) = -Kt(0) + r (0) 3.8.58

19'(0) = - rri(0).

Exercise 3.8.9 asks you to ex-
plain where this antisymmetry Computing curvature and torsion of parametrized curves
comes from.

Propositions 3.8.14 and 3.8.15
make the computation of curva-
ture and torsion straightforward
for any parametrized curve in 1R3.

T(t) =

We now have two equations that in principle should allow us to compute curva-
ture and torsion of a space curve: Equations 3.8.55 and 3.8.58. Unfortunately,
these equations are hard to use. Equation 3.8.55 requires knowing an adapted
coordinate system, which leads to very cumbersome formulas, whereas Equa-
tion 3.8.58 requires a parametrization by are length. Such a parametrization
is only known as the inverse of a function which is itself an indefinite integral
that can rarely be computed in closed form. However, the Frenet formulas can
be adapted to any parametrized curve:

Proposition 3.8.14 (Curvature of a parametrized curve). The cur-
vature n of a curve parametrized by ry : R3 -+ R is

X 7"(t)IK(t) = I-?w
I7'(t)I3

(,P(t) X 7"(t)) .y'e'(t)
(e'(t))6

3.8.59

Proposition 3.8.15 (Torsion of a parametrized curve). The torsion r
of a parametrized curve is

(e'(t))e Ir(t) X -?(t)12

(-?(t) X -P(t)) , ,Y7u(t)

1-?(t) X'Y" (t)12

3.8.60
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Since -Y(t) = t2 , Y = X2
0

and z = Xz, so Equation 3.8.55
says that Y = X2 = 2X2, so
A2=2....

To go from the first to the sec-
ond line of Equation 3.8.66 we
use Proposition 3.8.13, which says
that t' = an.

Note in the second line of Equa-
tion 3.8.66 that we are adding vec-
tors to get a vector:

a(s(t))(s'(t))2 n'(.'(0)

Example 3.8.16 (Computing curvature and torsion of a parametrized
t

curve). Let -; (t) = ( t2 . Then
t'

0 0

y'(t) = 2t 2 . .y;,'(t) = 0 . 3.8.61

3t2 J 6t 6

So we find

K(t)
- (1 + 4t2 + 9t4)3/2

and

2t 2

2/ x \6 /3t
2 (1 + 9t2 + 9t4)1/2 3.8.62
(1 + 4t2 + 9t4)3/2

r(t) =
4(1 + 9t + 9t4) 62t J .

(o)
- 1 + 9t2 + 9t4

3.8.63

At the origin, the standard coordinates are adapted to the curve, so from Equa-
tion 3.8.55 we find A2 = 2, B3 = 6; hence r. = A2 = 2 and r = B3/A2 = 3.
This agrees with the formulas above when t = 0. A

Proof of Proposition 3.8.14 (curvature of a parametrized curve). We
will assume that we have a parametrized curve ry : lit -+ R3; you should imag-
ine that you are driving along some winding mountain road, and that y(t) is
the position of your car at time t. Since our computation will use Equation
3.8.58, we will also use parametrization by are length; we will denote by 6(s)
the position of the car when the odometer is s, while ry denotes an arbitrary
parametrization. These are related by the formula

y(t) = (5(s(t)), where s(t) = 1,P(u) I du, 3.8.64t
to

and to is the time when the odometer was set to 0. The function s(t) gives you
the odometer reading as a function of time. The unit vectors tt, n and b will
be considered as functions of s, as will the curvature K and the torsion r.

We now use the chain rule to compute three successive derivatives of y. In
Equation 3.8.65, recall (Equation 3.8.56) that 6'' = t'; in the second line of
Equation 3.8.66, recall (Equation 3.8.58) that t'(0) = ari(0):

+ s" (t) t(s(t))
(1) y''(t) = (m (s(t))s'(t) = s'(t)t(s(t)), 3.8.65

(2)
_)7'(t)

=
j1(' (t)) (8,(t))2 + t(s(t))s'(t)

= K(s(t))(s'(t))2n'(s(t)) +s°(t)t'(.s(t)), 3.8.66

I



Equation 3.8.69: by Equations
3.8.65 and 3.8.66,

y'(t) x ry''(t)
= s (t)t(s(t))

x [a(s(t))(s (t))2d(s(t))

Since for any vector t, t x t = 0,
and since (Equation 3.8.56)

! x ii = b, this gives

ti'(t) x ti"(t)
= s'(t)t'(s(t))

x [ (R(t))GS (t))'n(s(t))
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(3) y"'(t) = rc'(s(t))ii(s(t))(s'(t))3 + 2rc(s(t))ni'(s(t))(s'(t))3+

ic(s(t))ri(s(t))(s'(t))(s"(t))£'(s(t))(s (t))( '(t))

t(s(t))(5(t))

(K'(s(t)(s'(t))3 +3n (s(t))(s'(t))(s''(t)))ii(s(t))+

(K(s(t))T(s(t)))6.

Since t has length 1, Equation 3.8.65 gives us

3.8.67

s'(t) = lT(t)I, 3.8.68

which we already knew from the definition of s. Equations 3.8.65 and 3.8.66
give

''(t) x')"(t) = c(s(t))(s'(t))3b(s(t)), 3.8.69

since t x d = b. Since 1 has length 1,

I-) (t) x y"(t)I = x(s(t)) (s (t))3, 3.8.70

Using Equation 3.8.68, this gives the formula for the curvature of Proposition
3.8.14.

Proof of Proposition 3.8.15 (Torsion of a parametrized curve). Since
y'' x,)7' points in the direction of b, dotting it with -j7" will pick out the coefficient
of b for y"'. This leads to

(7'(t) x ,7(t)) . ,y;,,(t) = T(S(t)) (K(s(t)))2(s (t))6 , 3.8.71

square of Equation 3.8.70

Exercises for Section 3.1:

Curves and Surfaces

which gives us the formula for torsion found in Proposition 3.8.15.

3.9 EXERCISES FOR CHAPTER THREE

3.1.1 (a) For what values of the constant c is the locus of equation sin(x+y) _
c a smooth curve?

(b) What is the equation for the tangent line to such a curve at a point (v ) ?

3.1.2 (a) For what values of c is the set of equation X. = x2 + y3 = c a
smooth curve?

(b) Give the equation of the tangent line at a point (v) of such a curve Xe.



3.9 Exercises for Chapter Three 333

(c) Sketch this curve for a representative sample of values of e.

3.1.3 (a) For what values of c is the set of equation y = x2 + y3 + z4 = c a

smooth surface?
We strongly advocate using u

Matlab or similar software.

Hint for Exercise 3.1.7 (a): This
does not require the implicit func-
tion theorem.

(b) Give the equation of the tangent plane at a point I ) of the surface
w

Yr.

(c) Sketch this surface for a representative sample of values of c.

3.1.4 Show that every straight line in the plane is a smooth curve.

3.1.5 In Example 3.1.15, show that S2 is a smooth surface, using D,,, Dr.
and DN,x; the half-axes R+, 118 and L2y ; and the mappings

±/2+y2_1, f x2+z2-1 and f y2+z2-1.

3.1.6 (a) Show that the set I(y) E 1R2 I x + x2 + y2 = 2} is a smooth
curve.

(b) What is an equation for the tangent line to this curve at a point ((s)?

3.1.7 (a) Show that for all a and b, the sets X. and Yb of equation

x2+y3+z=a and x+y+z=b
respectively are smooth surfaces in 1[83.

(b) For what values of a and b is the intersection X. fl Yb a smooth curve?
What geometric relation is there between X. and Yb for the other values of a

and b?

3.1.8 (a) For what values of a and b are the sets X. and Yb of equation

x-y2=a and x2+y2+z2=b
respectively smooth surfaces in tk3?

(b) For what values of a and b is the intersection X. n Yb a smooth curve?
What geometric relation is there between X, and Yb for the other values of a
and b?

3.1.9 Show that if at a particular point xo a surface is simultaneously the
graph of z as a function of x and y, and y as a function of x and z, and x as
a function of y and z (see Definition 3.1.13), then the corresponding equations
for the tangent planes to the surface at xe denote the same plane.
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You are encouraged to use a

computer, although it is not ab-
solutely necessary.

3.1.10 For each of the following functions f (y) and points (b): (a) State

whether there is a tangent plane to the graph of f at the point

(f&) -

(b) If there is, find its equation, and compute the intersection of the tangent
plane with the graph.

(a) f((y)=x2-y2

(b) f
(((1/) = x2

-+y2

(c) f ( ) x2
-+y

2

(d) fly) =cos(x2+y)

at the point (i )

at the point (01)
at the point (_ 11)

at the point (00)

3.1.11 Find quadratic polynomials p and q for which the function

F (yx) = x4 + y4 + x2 - y2 of Example 3.1.11 can be written

F(y) =p(x)2+q(y)2- 2.

Hint for Exercise 3.1.12,
part (b): write that x - y(t) is
a multiple of y'(t), which leads to
two equations in x, y, z and t. Now
eliminate t among these equations;
it takes a bit of fiddling with the
algebra.

Hint for part (c): show that
the only common zeroes of f and
[Df) are the points of C; again this
requires a bit of fiddling with the
algebra.

Part (b): A parametrization of
this curve is not too hard to find,
but a computer will certainly help
in describing the curve.

Sketch the graphs of p, q, p2 and q2, and describe the connection between your
graph and Figure 3.1.8.

t
3.1.12 Let C c H3 be the curve parametrized by y(t)= t2 . Let X be

t3
the union of all the lines tangent to C.

(a) Find a parametrization of X.

(b) Find an equation f (x) = 0 for X.

(c) Show that X - C is a smooth surface.

(d) Find the equation of the curve which is the intersection of X withthe
plane x = 0.

cost
3.1.13 Let C be a helicoid parametrized by y(t) = sin t) .

t

(a) Find a parametrization for the union X of all the tangent lines to C. Use
a computer program to visualize this surface.

(b) What is the intersection of X with the (x, z)-plane?

(c) Show that X contains infinitely many curves of double points, where X
intersects itself; these curves are helicoids on cylinders x2 + y2 = r?. Find an
equation for the numbers ri, and use Newton's method to compute ri, r2, r3.
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3.1.14 (a) What is the equation of the plane containing the point a perpen-
dicular to the vector v?

(b) Let -r(t) _ (0 ; and Pt be the plane through the point -f(t) and

t

perpendicular to y"(t). What is the equation of Pt?
(c) Show that if tt # t2, the planes Pt, and PL2 always intersect in a line.

What are the equations of the line PL fl Pt?
(d) What is the limiting position of the line Pl fl Pi+n as h tends to 0?

3.1.15 In Example 3.1.17, what does the surface of equation
Hint: Think that sin a = 0

if and only if a = ktr for some
= sin(x + yz) = 0 look like?

integer k.
f y

(T)
3.1.16 (a) Show that the set X C R3 of equation

.y y

r1
(b) What is the equation of the tangent plane to X at the point 1 ?

1

3.1.17 Let f (x) = 0 be the equation of a curve X C 1R2, and suppose

[Df(--)] 00 for all (y) EX.
(a) Find an equation for the cone CX C R3 over X, i.e., the union of all the

x
lines through the origin and a point y with (y) E X.

1

(b) If X has the equation y = x3, what is the equation of CX?
(c) Show that CX - {0} is a smooth surface.
(d) What is the equation of the tangent plane to CX at any x E CX?

3.1.18 (a) Find a parametrization for the union X of the lines through thetl
origin and a point of the parametrized curve t t2

t3

(b) Find an equation for the closure X of X. Is exactly X?
(c) Show that {0} is a smooth surface.
(d) Show that

z2 + z3 = 4 is a smooth surface2 +x3 + x

fr(1+sin9)
(B) + rcos0

r(1 - sin B)



xl
equation f( y l= 0 at the point b E S?

z1 C
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is another parametrization of X. In this form you should have no trouble giving

a name to the surface X.

(e) Relate X to the set of non-invertible 2 x 2 matrices.

3.1.19 (a) What is the equation of the tangent plane to the surface S of

(b) Write the equations of the tangent planes P1, P2, P3 to the surface of

equation z = Axe + By2 at the points pi, p2, p3 with x. y-coordinates (00)
'

(Q) , (0) , and find the point q = P1 fl P2 fl P3.
0 b

(c) What is the volume of the tetrahedron with vertices at pt, p2, P3 and q?

*3.1.20 Suppose U C R2 is open, xu E U is a point and f : U 923 is a

differentiable mapping with Lipschitz derivative. Suppose that [Df(xo)j is 1-1.
(a) Show that there are two basis vectors of R3 spanning a plane E1 such

that if P : 923 -. Et denotes the projection onto the plane spanned by these
vectors, then [D(P o f)(xo)) is invertible.

(b) Show that there exists a neighborhood V C El of P o f)(xo) and a
mapping g : V -. R2 such that (P o f o g)(y) = y for all y E V.

(c) Let W = g(V). Show that f(W) is the graph of f og : V -. E2, where E2
is the line spanned by the third basis vector. Conclude that f(W) is a smooth
surface.

Exercises for Section 3.2: 3.2.1 Consider the space Xi of positions of a rod of length I in R3, where one
Manifolds endpoint is constrained to be on the x-axis, and the other is constrained to be

The "unit sphere" has radius on the unit sphere centered at the origin.

1; unless otherwise stated. it is
(a) Give equations for X, as a subset of R4, where the coordinates in 84 are

always centered at the origin. the x-coordinate of the end of the rod on the x-axis (call it t), and the three

coordinates of the other end of the rod.

1+I
(b) Show that near the point , the set Xt is a manifold, and give

0
the equation of its tangent space.

(c) Show that for 10 1, X, is a manifold.

3.2.2 Consider the space X of positions of a rod of length 2 in 1783, where one
endpoint is constrained to be on the sphere of equation (x - 1)2 + y2 + z2 = 1,
and the other on the sphere of equation (x + 1)2 + y2 + z2 = 1.
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Point for Exercise 3.2.2, part
(b).

When we say "parametrize" by
9i, 02, and the coordinates of xi.
we mean consider the positions of
the linkage as being determined by
those variables.

Hint for Exercise 3.2.6, part
(a): This is the space of matri-
ces A $ 0 such that det A _ 0
Hint for Exercise 3.2.6, part (b):
If A E M2(3, 3), then det A - 0.

Recall (Definition 1.2.18) that
a symmetric matrix is a matrix
that is equal to its transpose. An
antisymmetric matrix A is a ma-
trix A such that A = -AT .

(a) Give equations for X as a subset of Pa, where the coordinates in Ls are
(xt

the coordinates ,y' ) of the end of the rod on the first sphere, and the three

/X2
coordinates ( yl of the other end of the rod.

Z3

(b) Show that near the point in 1Es shown in the margin,
the set X is a manifold, and give the equation of its tangent space. What is

the dimension of X near this point?
(c) Find the two points of X near which X is not a manifold.

3.2.3 In Example 3.2.1. show that knowing xt and x3 determines exactly four
positions of the linkage if the distance from xt to x3 is smaller than both 11 +12
and l3 + 14 and greater than 11t - 131 and 112 - 141-

3.2.4 (a) Parametrize the positions of the linkage of Example 3.2.1 by the
coordinates of xt, the polar angle Bt of the first rod with the horizontal line
passing through xt, and the angle e2 between the first and the second: four
numbers in all. For each value of 02 such that

how many positions of the linkage are there?

(b) What happens if either of the inequalities in Equation 3.2.4 above is an
equality?

3.2.5 In Example 3.2.1, describe X2 and X3 when 1t = 12 + 13 + 14-

3.2.6 In Example 3.2.1, let Mk(n, m) be the space of n x m matrices of rank
k.

(a) Show that the space Mt(2.2) of 2 x 2 matrices of rank 1 is a manifold
embedded in Mat (2, 2).

(b) Show that the space M2(3, 3) of 3 x 3 matrices of rank 2 is a manifold
embedded in Mat (3.3). Show (by explicit computation) that (D det(A)) = 0 if
and only if A has rank < 2.

*3.2.7 If 11 + 12 = 13 + 14, show that X2 is not a manifold near the position
where all four points are aligned with x2 and X4 between xt and x3.

*3.2.8 Let O(n) C Mat (n, n) be the set of orthogonal matrices, i.e., matrices
whose columns form an orthonormal basis of R". Let S(n, n) be the space of
symmetric n x n matrices, and A(n, n) be the space of antisymmetric n x n
matrices.
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(a) Show that A E O(n) if and only if ATA = I.

(b) Show that if A, B E O(n), then AB E O(n) and A-1 E O(n).

(c) Show that ATA - I E S(n,n).
(d) Define F : Mat (n, n) -. S(n, n) to be F(A) = AAT - I, so that O(n) _

F-'(0). Show that if A is invertible, then [DF(A)] : Mat (n, n) -. S(n, n) is

onto.
(e) Show that O(n) is a manifold embedded in Mat (n, n) and that TJO(n) _

A(n, n).

*3.2.9 Let Afl, (n, m) be the space of n x m matrices of rank k.
(a) Show that M, (n, m) is a manifold embedded in Mat (n, m) for all n, m >

1. Hint: It is rather difficult to write equations for Ml (n, m), but it isn't too

hard to show that M, (n, m) is locally the graph of a mapping representing some
variables as functions of others. For instance, suppose

A = [an..., a-) E Mt(n,m),

and that a1,1 3& 0. Show that all the entries of

a2.2 ... a2,m

an 2 ... an,m

are functions of the others, for instance a2,2 = a1,2a2,1/a,,,.

(b) What is the dimension of M, (n, m)?

*3.2.10 (a) Show that the mapping cpl : (RI - {0}) x lgn'1 given by

2

fP1 (a,
[X1

A: ]' H [a, A2a, ... , Ana]

is a parametrization of the subset U, C M, (m, n) of those matrices whose first
column is not 0.

(b) Show that M, (m, n) - Ul is a manifold embedded in M, (m, n). What is
its dimension?

(c) How many parametrizations like o1 do you need to cover every point of
M, (m, n)?

Exercises for Section 3.3: 3.3.1 For the function f of Example 3.3.11, show that all first and second
Taylor Polynomials partial derivatives exist everywhere, that the first partial derivatives are con-

tinuous, and that the second partial derivatives are not.
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3.3.2 Compute

D1(D2f), D2(D3f), D3(Dlf),

x
for the function f y j = x2y + xy2 + yz2.

z

and D1(D2(D3f))

3.3.3 Consider the function
2 0

x Z if (y) # \0/
0 if (y/ = W.

(a) Compute Dl f and D2 f. Is f of class C'?
(b) Show that all second partial derivatives off exist everywhere.

(c) Show that

Dl(D2f(8))91 D2(Dlf(8))

(d) Why doesn't this contradict Proposition 3.3.11?

3.3.4 True or false? Suppose f is a function on R2 that satisfies Laplace's

equation Di f + D2 f = 0. Then the function
z 2

9 (y)
=

j y/(x2 + y2)) also satisfies Laplace's equation.

3.3.5 If f (y) _ V (x - y) for some twice continuously differentiable function

p : R lB, show that Di f - D22f = 0.

3.3.6 (a) Write out the polynomial

5

E E alxl, where

m=0IE7P

a(o,0,o) = 4, x(0,1,0) = 3, x(1,0,2) = 4, a

x(2,2.0) = 1, a(3,o.2) = 2, a(5,0,0) = 3,

and all other aI = 0, for I E I for m < 5.
(b) Use multi-exponent notation to write the polynomial

2x2 + x 1x2 - xl x2x3 + x i + 5x2x3.

(c) Use multi-exponent notation to write the polynomial

3x,x2 - x2x3x4 + 2x2x3 + x2x,°1 + xz.
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The object of this exercise is
to illustrate how long successive
derivatives become.

Exercise 3.3.13 uses Taylor's
theorem with remainder in one di-
mension. Theorem A9.1, stated
and proved in Appendix A9.

3.3.7 (a) Compute the derivatives of (1 + f(x))up to and including the

fourth derivative.
(b) Guess how many terms the fifth derivative will have.

(c) Guess how many terms the n derivative will have.

3.3.8 Prove Theorem 3.3.1. Hint: Compute

f (a + h) - (f (a) + f'(a)h + + L; pi" hk)

l0 hkh

by differentiating, k times, the top and bottom with respect to h, and checking
each time that the hypotheses of l'Hbpital's rule are satisfied.

3.3.9 (a) Redo Example 3.3.16, finding the Taylor polynomial of degree 3.
(b) Repeat, for degree 4.

3.3.10 Following the format of Example 3.3.16, write the terms of the Taylor
polynomial of degree 2, of a function f with three variables, at a.

3.3.11 Find the Taylor polynomial of degree 3 of the function

x fa/6
f y = sin(x + y + z) at the point a/4

z) 7r/3

3.3.12 Find the Taylor polynomial of degree 2 of the function

x+y+xy at the point (-2).
_3

3.3.13 Let f(x) = e=, so that f(0) = e. Use Corollary A9.3 (a bound for the
remainder of a Taylor polynomial in one dimension) to show that

+e = 4 + rk+1, where Irk+ll <
(k + l)T

(b) Prove that e is irrational: if e = a/b for some integers a and b, deduce from
part (a) that

i i !

Ik!a - bmI <
k + 1 0! 1!

3b
, where m is the integer T! + 1! +

2!
+ + Ti.k1Conclude

that if k is large enough, then Ma -bin is an integer that is arbitrarily
small, and therefore 0.

(c) Finally, observe that k does not divide m evenly, since it does divide

every summand but the last one. Since k may be freely chosen, provided only

that it is sufficiently large, take k to be a prime number larger than b. Then
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Note: Part (a) is almost obvi-
ous except when y = 0, x > 0,
where y changes sign. It may help
to show that this mapping can be
written (r, 9) -. i sin(0/2) in po-
lar coordinates.

A homogeneous polynomial is a
polynomial in which all terms have
the same degree.

Exercises for Section 3.4:
Rules for Computing
Taylor Polynomials

Hint for Exercise 3.4.2, part
(a): It is easier to substitute x +
y2 in the Taylor polynomial for
sin u than to compute the par-
tial derivatives. Hint for part (b):
Same as above, except that you
should use the Taylor polynomial
of 1/(1 + u).

in k!a = bin we have that k divides the left side, but does not divide m. What
conclusion do you reach?

3.3.14 Let f be the function

f \11/ =sgn(y)
-x+ 2x2+y2

where sgn(y) is the sign of y, i.e., +1 when y > 0, 0 when y = 0 and -1 when
y<0.

(a) Show that f is continuously differentiable on the complement of the half-
line y = 0, x < 0.

r 1

(b) Show that if a = (_E) and h' =
L

2e
then although both a and a +

are in the domain of definition off, Taylor's theorem with remainder (Theorem
A9.5) is not true.

(c) What part of the statement is violated? Where does the proof fail?

3.3.15 Show that if I E Zn , then (xh)f = x-JR'.

*3.3.16 A homogeneous polynomial in two variables of degree four is an
expression of the form

p(x,y) = ax4 + bx3y + cx2y2 + dxy3 + eya.

Consider the function

iff(x) =
y

x +f (y) \0
0 if (y) (0),

where p is a homogeneous polynomial of degree 4. What condition must the co-
efficients off satisfy in order for the crossed partials D, (D2 (f)) and D2 (DI (f))
to be equal at the origin?

3.4.1 Prove the formulas of Proposition 3.4.2.

3.4.2 (a) What is the Taylor polynomial of degree 3 of sin(x + y2) at the
origin?

(b) What is the Taylor polynomial of degree 4 of 1/(1+x2+y2) at the origin?

3.4.3 Write, to degree 2, the Taylor polynomial of

x
f

y
= 71 + sin(x + y) at the origin.



Hint for Exercise 3.4.5, part
(a): this is easier if you use sin(a+
3) = sin a cos 1 + cos a sin 3.
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3.4.4 Write, to degree 3, the Taylor polynomial P1.e of

f (Y) = cos(1 + sin(x2 + y)) at the origin.

3.4.5 (a) What is the Taylor polynomial of degree 2 of the function f (y) _

sin(2x + y) at the point (7r/3 )?

(b) Show that

(x 1 2ir !)2
fy)+2(2x+y

3
-(x-6

Exercises for Section 3.5:

Quadratic Forms

Exercise 3.5.4: by "represents

has a critical point at (7r/3 What kind of critical point is it?

3.5.1 Let V be a vector space. A symmetric bilinear function on V is a
mapping B : V x V JR such that

(1) B(av1 + bv2, w) = aB(v_l, w) + bB(v_2, w) for all vvl, v-2, w E V and
a,bEER:

(2) B(v_, E) = B(w, v_) for all -v, w E V.

(a) Show that if A is a symmetric n x n matrix, the mapping BA (y, w)
-

_
TAw is a symmetric bilinear function.

(b) Show that every symmetric bilinear function on JR" is of the form BA for
a unique symmetric matrix A.

(c) Let Pk be the space of polynomials of degree at most k. Show that the
function B : Pk x Pk --s JR given by B(p,q) = fo p(t)q(t) dt is a symmetric
bilinear function.

(d) Denote by pi (t) = 1, p2(t) = t,... , pk+1(t) = tk the usual basis of Pk, and
by 4,, the corresponding "concrete to abstract" linear transformation. Show
that B(' 5(a, b) is a symmetric bilinear function on IR", and find its matrix.

3.5.2 If B is a symmetric bilinear function, denote by QB : V -. IIR the
function Q(y) = ft, 1). Show that every quadratic form on IR" is of the form
QB for some bilinear function B.

3.5.3 Show that

Q(p) =1l (p(t))2 dt
0

(see Example 3.5.2) is a quadratic form if p is a cubic polynomial, i.e., if p(t) _
ao + alt + a2 t2 + a3t3.

the quadratic form" we mean that
1 0 1/2

Q can be written as x" Ail (see 3.5.4 Confirm that the symmetric matrix A = 0 0 -1/2 repre-
Proposition 3.7.11).

1/2 -1/2 -1
sents the quadratic form Q = x2 + xz - yz - z2.
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3.5.5 (a) Let Pk be the space of polynomials of degree at most k. Show that
the function

Q(p) = I1(p(t))2 - (p'(t))2 is a quadratic form on PA...
0

(b) What is the signature of Q when k = 2?

3.5.6 Let Pk be the space of polynomials of degree at most k.
(a) Show that the function 6a : Pk Ill given by 6a(p) = p(a) is a linear

function.

(b) Show that &._6A: are linearly independent. First say what it means,
being careful with the quantifiers. It may help to think of the polynomial

x(x - 1)...(x - j - 1)(x - j + 1)...(x - k),

which vanishes at 0, 1_ ... , j - 1, j + 1, k but not at j.
(c) Show that the function

Q(p) = (p(0))2 - (p(l))2 + ... + (-1)k(p(k))2

is a quadratic form on Pk. When k = 3, write it in terms of the coefficients of
p(x) = ax3 + bx2 + cx + d.

(d) What is the signature of Q when k = 3? There is the smart way, and
then there is the plodding way ...

3.5.7 For the quadratic form of Example 3.5.6,

Q(x) = x2 + 2xy - 4xz + 2yz - 4z2,
(a) What decomposition into a sum of squares do you find if you start by

eliminating the z terms, then the y terms, and finally the x terms?
(b) Complete the square starting with the x terms, then the y terms, and

finally the z terms.

3.5.8 Consider the quadratic form of Example 3.5.7:

Q(R) = xy - xz + yz.

(a) Verify that the decomposition

(x/2 + y/2)2 - (x/2 - y/2 + z)2 + z2

is indeed composed of linearly independent functions.

(b) Decompose Q(Ft) with a different choice of u, to support the statement
that u = x - y was not a magical choice.

3.5.9 Are the following quadratic forms degenerate or nondegenerate?
(a) x2 + 4xy + 4y22 on R2.

(b) x2 + 2xy + 2y2 + 2yz + z2 on 1R3.



Hint. for Exercise :3.5.14: The
main point is to prove that if the
quadratic form Q has signature
(k,0) with k < u, there is a vec-
tor 3 # 6 such that Q(v) = 0.
You can find such it vector using
the transformation T of Equation
3.5.26.

Exercise 3.5.16: Sec margin
note for Exercise 3.5.4.
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- 't.(c) 2x2 + 2y2 + z2 + u'2 + 4xy + 2rz - 2ruw - 2,yuw on

3.5.10 Decompose each of the following quadratic forms by completing
squares. and determine its signature.

(a) x2 + xy - 3y2 (b) x2 + 2xy - y2 (c) x2 + xy + yz (d) xy + yz

3.5.11 What is the signature of the following quadratic forms?
(a) r2 + xy on R2 (b) xy + yz on p3

ra bl
(c) det l J (>Il9 #(d) 21x2 + 22x3 + ... + xn-1 rn Otl

c d

r

3.5.12 On C4 as described by Al = I a d], consider the quadratic form

Q(M) = det M. What is its signature? L

3.5.13 Consider again Q(M) = tr(M2), operating on the space of tipper

triangular matrices described by M = 1a
a

0 d '

(a) What kind of surface in R3 do you get by setting Q(M2) = 1?
(b) What kind of surface in R3 do you get by setting Q(MAlt) = 1?

3.5.14 Show that a quadratic form on R' is positive definite if and only if its
signature is (m()).

3.5.15 Here is an alternative proof of Proposition 3.5.14. Let Q : p:" . IF
be a positive definite quadratic form. Show that there exists a constant C > 0
such that

Q(x) CIXI2 3.5.30

for all x E p;", as follows.
(a) Let S"-t = {x E P"I Iii = 1). Show that S"-t is compact, so there

exists x"o E S"-t with Q(go) < Q(g) for all x E S"-t.
(h) Show that Q(rro) > 0.

(c) Use the formula Q(z) = II2Q(x'/fiI) to prove Proposition 3.5.14.

3.5.16 Show that. a 2 x 2 syrnntetric matrix G = [as d] represents a positive

definite quadratic form if and only if det G > 0, a + d > 0.

3.5.17 Consider the vector space of Hermitian 2 x 2 matrices:

H= [a aic
b d'(-].

What is the signature of the quadratic form Q(H)=det H?

3.5.18 Identify and sketch the conic sections and quadratic surfaces repre-
sented by the quadratic forms defined by the following matrices:
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r2 1 1
2 1 0 2 0 3

(a)

1
3

(h) 1 2 1 (c) 0 0 0

0 1 2 3 0 -1

2 4 3

(d)
1

4]

(e) 4 1 3 (f) [2 4]
-3 3 -1

X

Exercises for Section 3.6: 3.6.1 (a) Show that the function f y = x2 + xy + z2 - cos y has a critical
zlassifying Critical PointsC

3.5.19 Determine the signature of each of the following quadratic forms.
Where possible, sketch the curve or surface represented by the equation.

(a) x2 + xy - y2 = 1 (b) x2 + 2xy - y2 = 1

(c) x2+xy+yz=1 (d)xy+yz=1

point at the origin.

(b) What kind of critical point does it have?

3.6.2 Find all the critical points of the following functions:

(a) sinxcosy (b) 2x3 - 24xy + 16y3

(c) xy + + *(d) sin x + sin y + sin(x + y)

For each function, find the second degree approximation at the critical points.
and classify the critical point.

3.6.3 Complete the proof of Theorem 3.6.8 (behavior of functions near saddle
points), showing that if f has a saddle at a E U, then in every neighborhood of
a there are points c with f(c) < f(a).

3.6.4 (a) Find the critical points of the function f x3 - 12xy + 8y3.

(b) Determine the nature of each of the critical points.

3.6.5 Use Newton's method (preferably by computer) to find the critical
points of -x3 + y3 + xy + 4x - 5y. Classify them, still using the computer.

3.6.6 (a) Find the critical points of the function f y = xy+yz -xz+xyz.
zX

(b) Determine the nature of each of the critical points.

3.6.7 (a) Find the critical points of the function f
(y`

I = 3x2 - Gxy + 2y3.

(b) What kind of critical points are these?



Exercises for Section 3.7:

Constrained Extrema
and Lagrange Multipliers

Hint for Exercise 3.7.2, part
(b): The tangent plane to Y at
any point is always parallel to the
y-axis.
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3.7.1 Show that the mapping

sin uv + u
a+vg' v
UV

is a parametrization of a smooth surface.
(a) Show that the image of g is contained in the locus S of equation

z = (x - sin z)(sin z - x + y).

(b) Show that S is a smooth surface.

(c) Show that g maps 182 onto S.

(d) Show that g is one to one, and that [Dg(v )) is one to one for every

(v) E1 2.
x

3.7.2 (a) Show that the function W y
J

= x + y + z constrained to the

z
surface Y of equation x = sin z has no critical point.

(b) Explain geometrically why this is so.

3.7.3 (a) Show that the function xyz has four critical points on the plane of
equation

fx
y =ax+cy+dz-1=0
z

when a, b, c > 0. (Use the equation of the plane to write z in terms of x and
y;i.e., parametrize the plane by x and y.)

(b) Show that of these four critical points, three are saddles and one is a

maximum.

3.7.4 Let Q(x) be a quadratic form. Construct a symmetric matrix A as
follows: each entry A;,; on the diagonal is the coefficient of x?, while each entry
Ai, is one-half the coefficient of the term x;xj.

a) Show that Q(x) = x Ax.
b) Show that A is the unique symmetric matrix with this property. Hint:

consider Q(e;), and Q(ae; +be1).

3.7.5 Justify Equation 3.7.32, using the definition of the derivative and the

fact that A is symmetric.

3.7.6 Let A be any matrix (not necessarily square).
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Part (c) of Exercise 3.7.6 uses (a) Show that AAT is symmetric.
the norm ((AEI of a matrix A. The (b) Show that all eigenvalues A of AAT are non-negative, and that they are
norm is defined (Definition 2.8.5) all positive if and only if the kernel of A is {0}.
in an optional subsection of Sec-
tion 2.8. (c) Show that

IIAII = sup f.
a eigenvalue of AAT

3.7.7 Find the minimum of the function x3 + y3 + z3 on the intersection of
the planes of equation x + y + z =2 and x + y - z = 3.

3.7.8 Find all the critical points of the function

j f
z

J = 2xy + 2yz - 2x2 -2 Y2 - 2z2 on the unit sphere of lR3.

3.7.9 What is the volume of the largest rectangular parallelepiped contained
in the ellipsoid

x2 + 4y2+9Z2 < 9?

3.7.10 Let A, B, C, D he a convex quadrilateral in the plane, with the vertices
free to move but with a the length of AB, b the length of BC, c the length of
CD and d the length of DA all assigned. Let p be the angle at A and 0 be the
angle at C.

(a) Show that the angles ,p and aP satisfy the constraint

a2 + d2 - 2d cos cp = b2 + c2 - 2bc cos b.

(b) Find a formula for the area of the quadrilateral in terms of 0, 0 and
a, b, c, d.

(c) Show that the area is maximum if the quadrilateral can be inscribed in
a circle. You may use the fact that a quadrilateral can be inscribed in a circle
if the opposite angles add to ir.

3.7.11 Find the minimum of the function x3 + y3 + z3 on the intersection of
the planes of equation

x+y+z=2 and x+y-z=3.
3.7.12 What is the maximum volume of a box of surface area 10, for which
one side is exactly twice as long as another?

3.7.13 What is the maximum of xyz, if x, y, z belong to the surface of equa-
tion x + y + z2 = 16?

3.7.14 (a) If f (b) =a+bx+cy, what are

f 1 f 2f (y) Idxdyl and
11

j2 (
(x))2Id.

dyI?



FIGURE 3.7.16.

Exercises for Section 3.8:

Geometry of Curves
and Surfaces

Useful fact for Exercise 3.8.1
The arctic circle is those points

that are 2607.5 kilometers south
of the north pole.
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2

(b) Let f be as above. What is the minimum of ff f, (f (y)) Idxdyl
among all functions f such that

1 2

1 f f (x)[dady[=1?0 o y

3.7.15 (a) Show that the set X C Mat (2, 2) of matrices with determinant 1
is a smooth submanifold. What is its dimension?

(b) Find a matrix in X which is closest to the matrix
0

I

1 0,'

**3.7.16 Let D be the closed domain bounded by the line of equation x+y =
0 and the circle of equation x2 + y2 = 1, whose points satisfy x > -y, as shaded
in Figure 3.7.16.

(a) Find the maximum and minimum of the function f (y) = xy on D.

(b) Try it again with f (y) = x + 5xy.

3.8.1 (a) How long is the arctic circle? How long would a circle of that radius
be if the earth were flat?

(b) How big a circle around the pole would you need to measure in order
for the difference of its length and the corresponding length in a plane to be
one kilometer?

71 (t)

3.8.2 Suppose y(t) = is twice continuously differentiable on a

7n (t)
neighborhood of [a, b).

(a) Use Taylor's theorem with remainder (or argue directly from the mean
value theorem) to show that for any s1 < s2 in [a, b], we have

17(82) _ 7(81) - 7(31)(52 - 801 < C182 - 8112, where

C = Vn SUP SUPtEla.b)I7j (t)I.
(b) Use this to show that

=1...n

--1 b

lim F- I7(t;+l - y(tt)[ = I 1-1'(t) I dt,
;=o a

where a = to < t j - - - < tm = b, and we take the limit as the distances t;+I - t;
tend to 0.

3.8.3 Check that if you consider the surface of equation z = f (x), y arbitrary,
and the plane curve z = f(x), the mean curvature of the surface is half the
curvature of the plane curve.
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Hint for Exercise *3.8.9. The
curve

F : t - [t(t), fi(t), b'(t)J = T(t)

is a mapping I - SO(3), so t -
T-'(to)T(t) is a curve in SO(3)
passing through the identity at to.

3.8.4 (a) Show that the equation y cos z = x sin z expresses z implicitly as a

function z = g, (y) near the point (x0°) _ (r) when r 36 0.

(b) Show that Dlgr. = Digr = 0. (Hint: The x-axis is contained in the
surface)

3.8.5 Compute the curvature of the surface of equation z = x2 -+y2 at

x a

y b . Explain your result.
(z) a +b

3.8.6 (a) Draw the cycloid, given parametrically by

(x) = a(t - sin t)
y) a(l - cost)

(b) Can you relate the name "cycloid" to "bicycle"?
(c) Find the length of one arc of the cycloid.

3.8.7 Do the same for the hypocycloid
ac 3

(y) - ( a sin' t

3.8.8 (a) Let f : [a, b) - ]lt be a smooth function satisfying f (x) > 0, and
consider the surface obtained by rotating its graph around the x-axis. Show
that the Gaussian curvature K and the mean curvature H of this surface depend
only on the x-coordinate.

(b) Show that

-Mx)K(x)
f(x)(1 + f,(x))2'

(c) Find a formula for the mean curvature in terms of f and its derivatives.

*3.8.9 Use Exercise *3.2.8 to explain why the Frenet formulas give an anti-
symmetric matrix.

*3.8.10 Using the notation and the computations in the proof of Proposition
3.8.7, show that the mean curvature is given by the formula

_ 1

H 2(1 + a2)3/2
(a2,o(l + az) - 2a1a2a1,1 + ao,2(1 + a2)). 3.8.34





4
Integration

When you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot measure
it, when you cannot express it in numbers, your knowledge is of a mea-
ger and unsatisfactory kind: it may be the beginning of knowledge, but
you have scarcely, in your thoughts, advanced to the stage of science.-
William Thomson, Lord Kelvin

An actuary deciding what pre-
mium to charge for a life insurance
policy needs integrals. So does
a bank deciding what to charge
for stock options. Black and Sc-
holes received a Nobel prize for
this work, which involves a very
fancy stochastic integral.

4.0 INTRODUCTION

Chapters 1 and 2 began with algebra, then moved on to calculus. Here, as in
Chapter 3, we dive right into calculus. We introduce the relevant linear algebra
(determinants) later in the chapter, where we need it.

When students first meet integrals, integrals come in two very different fla-
vors: Riemann sums (the idea) and anti-derivatives (the recipe), rather as
derivatives arise as limits, and as something to be computed using Leibnitz's
rule, the chain rule, etc.

Since integrals can be systematically computed (by hand) only as anti-
derivatives, students often take this to be the definition. This is misleading:
the definition of an integral is given by a Riemann sum (or by "area under the
graph"; Riemann sums are just a way of making the notion of "area" precise).
Section 4.1 is devoted to generalizing Riemann sums to functions of several
variables. Rather than slice up the domain of a function f :1R -.R into little
intervals and computing the "area under the graph" corresponding to each in-
terval, we will slice up the "n-dimensional domain" of a function in f :1R" -. lR
into little n-dimensional cubes.

Computing n-dimensional volume is an important application of multiple
integrals. Another is probability theory; in fact probability has become such
an important part of integration that integration has almost become a part of
probability. Even such a mundane problem as quantifying how heavy a child
is for his or her height requires multiple integrals. Fancier yet are the uses of
probability that arise when physicists study turbulent flows, or engineers try
to improve the internal combustion engine. They cannot hope to deal with one
molecule at a time; any picture they get of reality at a macroscopic level is
necessarily based on a probabilistic picture of what is going on at a microscopic
level. We give a brief introduction to this important field in Section 4.2.

351
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Section 4.3 discusses what functions are integrable; in the optional Section
4.4, we use the notion of measure to give a sharper criterion for integrability (a
criterion that applies to more functions than the criteria of Section 4.3).

In Section 4.5 we discuss Fubini's theorem, which reduces computing the
integral of a function of n variables to computing n ordinary integrals. This is an
important theoretical tool. Moreover, whenever an integral can he computed in
elementary terms. Fubini's theorem is the key tool. Unfortunately, it is usually
impossible to compute anti-derivatives in elementary terms even for functions
of one variable, and this tends to be truer yet of functions of several variables.

In practice, multiple integrals are most often computed using numerical
methods, which we discuss in Section 4.6. We will see that although the theory
is much the same in I or 1R10", the computational issues are quite different.
We will encounter some entertaining uses of Newton's method when looking for
optimal points at which to evaluate a function, and some fairly deep probability
in understanding why the Monte Carlo methods work in higher dimensions.

Defining volume using dyadic pavings, as we do in Section 4.1, makes most
theorems easiest to prove, but such pavings are rigid; often we will want to
have more "paving stones" where the function varies rapidly, and bigger ones
elsewhere. Having some flexibility in choosing pavings is also important for the
proof of the change of variables formula. Section 4.7 discusses more general
pavings.

In Section 4.8 we return to linear algebra to discuss higher-dimensional de-
terminants. In Section 4.9 we show that in all dimensions the determinant
measures volumes: we use this fact in Section 4.10, where we discuss the change
of variables formula.

Many of the most interesting integrals, such as those in Laplace and Fourier
transforms, are not integrals of bounded functions over bounded domains. We
will discuss these improper integrals in Section 4.11. Such integrals cannot be
defined as Riemattn sums, and require understanding the behavior of integrals
under limits. The dominated convergence theorem is the key tool for this.

4.1 DEFINING THE INTEGRAL

Integration is a summation procedure; it answers the question: how much is
there in all'.' In one dimension, p (x) might be the density at point x of a bar
parametrized by (a, bJ; in that case

The Greek letter p, or "rho," is
pronounced "row." b

I P (x) dx 4.1.1
0

is the total mass of the bar.
If instead we have a rectangular plate parametrized by a < x < b. c < y < d,

and with density p (y), then the total mass will be given by the double integral

f f
p (x) dx dy, 4.1.2

ln.bl x (call
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We will see in Section 4.5 that
the double integral of Equation
4.1.2 can be written

1"(I°p(y) dx)di/.
We are not presupposing this
equivalence in this section. One
difference worth noting is that f"

6

specifies a direction: from a to
b. (You will recall that direction
makes a difference:
Equation 4.1.2 specifies a domain,
but says nothing about direction.

III I
I

llllllli IIII I II
I Illllllillll
Illlllllli
Illllliiii i 11111 llll

,III

Sea Britain

FIGURE 4.1.1.
The function that is rainfall

over Britain and 0 elsewhere is dis-
continuous at the coast.

that function only over Britain, by setting

f(x)
g(x) if x E Britain

S` 0 otherwise.

where [a, b] x [c, d], i.e., the plate, is the domain of the entire double integral

ff.
We will define such multiple integrals in this chapter. But you should always
remember that the example above is too simple. One might want to understand
the total rainfall in Britain, whose coastline is a very complicated boundary. (A
celebrated article analyzes that coastline as a fractal, with infinite length.) Or
one might want to understand the total potential energy stored in the surface
tension of a foam; physics tells us that a foam assumes the shape that minimizes
this energy.

Thus we want to define integration for rather bizarre domains and functions.
Our approach will not work for truly bizarre functions, such as the function
that equals I at all rational numbers and 0 at all irrational numbers; for that
one needs Lebesgue integration, not treated in this book. But we still have to
specify carefully what domains and functions we want to allow.

Our task will be somewhat easier if we keep the domain of integration simple,
putting all the complication into the function to be integrated. If we wanted
to sum rainfall over Britain, we would use 1182, not Britain (with its fractal
coastline!) as the domain of integration; we would then define our function to
be rainfall over Britain, and 0 elsewhere.

Thus, for a function f : 1R" -. 8, we will define the multiple integral

f ^ f (x) Id"xl, 4.1.3
a

with Il8" the domain of integration.
We emphatically do not want to assume that f is continuous, because most

often it is not: if for example f is defined to be total rainfall for October over
Britain, and 0 elsewhere, it will be discontinuous over most of the border of
Britain, as shown in Figure 4.1.1. What we actually have is a function g (e.g.,
rainfall) defined on some subset of R" larger than Britain. We then consider

4.1.4

We can express this another way, using the characteristic function X.

Definition 4.1.1 (Characteristic function).
A C IR", the characteristic function XA is:

For any bounded subset

The characteristic function XA (1 if xEA
is pronounced "kye sub A," the XA(x) t 4.1.5
symbol X being the Greek letter
chi.

0 if x 0 A.

Equation 4.1.4 can then be rewritten

f(x) = g(x)XBritain(x) 4.1.6
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We tried several notations be-
fore choosing jd"xI. First we used
dxi .. dx,. That seemed clumsy,
so we switched to dV. But it failed
to distinguish between Id'xl and
Id'xI, and when changing vari-
ables we had to tack on subscripts
to keep the variables straight.

But dV had the advantage of
suggesting, correctly, that we are
not concerned with direction (un-
like integration in first yearear calcu-
lus, where fa dx # fb dx). We
hesitated at first to convey the
same message with absolute value
signs, for fear the notation would
seem forbidding, but decided that
the distinction between oriented
and unoriented domains is so im-
portant (it is a central theme of
Chapter 6) that our notation
should reflect that distinction.

The notation Supp (support)
should not be confused with sup
(least upper bound).

Recall that "least upper bound"
and "supremum" are synonymous,
as are "greatest lower bound" and
"infimum" (Definitions 1.6.4 and
1.6.6).

This doesn't get rid of difficulties like the coastline of Britain-indeed, such
a function f will usually have discontinuities on the coastline- --but putting all
the difficulties on the side of the function will make our definitions easier (or at
least shorter).

So while we really want to integrate g (i.e., rainfall) over Britain, we define
that integral in terms of/ the integral of f over IR", setting

lBritain = f fId"xI. 4.1.7
nritain ^

More generally, when integrating over a subset A C 114",

fA g(x) Id"xI - f
" 9(x)XA(x) Id"xI. 4.1.8

Some preliminary definitions and notation

Before defining the Riemann integral, we need a few definitions.

Definition 4.1.2 (Support of a function: Supp(f)). The support of a
function f : IR" - JR is

SuPp(f) = {x E IR" I f (X) # 0 } . 4.1.9

Definition 4.1.3 (MA(f) and MA(f)). If A C lR" is an arbitrary subset,
we will denote by

MA(f) = supxEA f(x), the supremum of f(x) for x E A
-A(f) = infxEA f (X), the infimum of f (x) for x E A. 4.1.10

Definition 4.1.4 (Oscillation). The oscillation of f over A, denoted
oscA (f ), is the difference between its least upper bound and greatest lower
bound:

-A(f) = MA (f) - -A(f) 4.1.11

Definition of the R.iemann integral: dyadic pairings

In Sections 4.1-4.9 we will discuss only integrals of functions f satisfying

(1) IfI is bounded, and
(2) f has bounded support, i.e., there exits R such that f (x) = 0 when

IxI > R.

With these restrictions on f, and for any subset A C JR", each quantity
MMMA(f ), mA(f ), and oscA(f ), is a well-defined finite number. This is not true
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In Section 4.7 we will see that
much more general pavings can he
used.

We call our pavings dyadic be-
cause each time we divide by a
factor of 2; "dyadic" comes from
the Greek dyers, meaning two. We
could tisc decimal pavings instead.
cutting each side into ten parts
each time, lintdyadic pavings are
easier nil draw.

for a function like f(r) = 1/r. defined on the open interval (0. 1). In that case
IfI is not bounded. and snPf(.r) = x.

There is quite a bit of choice as to how to define the integral; we will first
use the most restrictive definition: dyadic pauanys of :F:".

To compute an integral in one dimension. we decompose the domain into
little intervals, and construct off each the tallest rectangle which fits under the
graph and the shortest rectangle which contains it, as shown in Figure 4.1.2.

a h ,a b

FIGURE 4.1.2. Left: Lower Rieniann sum for f. h f(x) dr. Right: Upper Riemann
sum. If the two sums converge to a common limit, that limit is the integral of the
function.

t

FIGURE 4.1.3.

other way, for example by using the value of the function at the middle of each
l h hco umn as t e eight of the rectangle. The choice of the point at which to

t measure the height doesn't matter since the areas of the lower rectangles and
the upper rectangles can be made arbitrarily close.

To use dyadic pavings in R" we do essentially the same thing. We cut up
A dyadic decomposition in l42. R" into cubes with sides 1 long, like the big square of Figure 4.1.3. (By "cube"

The entire figure is a "cube" in ?F' we mean an interval in P. a square in V. a cube in R', and analogs of cubes in
at level N = 0, with side length higher

dimensions) Next we cut each side of a cube in half, cutting an interval1/2° = 1. At level I (upper left in half, a square into four equal squares, a cube into eight equal cubes .... Atquadrant), cubes have side length
the next level we cut each side of those in half, and so on.1/2' = 1/2; at level 2 (upper right

To define dyadic pavings in R" precisely, we must first say what we mean byquadrant), they have side length
an n-dimensional "cube." For every1/22 = 1/4; and so on.

The dyadic upper and lower sums correspond to decomposing the domain
first at the integers, then at the half-integers, then at the quarter-integers, etc.

If, as we make the rectangles skinnier and skinnier, the sum of the area of
the upper rectangles approaches that of the lower rectangles, the function is
integrable. We can then compute the integral by adding areas of rectangles-
either the lower rectangles the u er recta le t l d, pp ng s, or rec ang es constructe some

Ik

ku l
k = :

J

E D.". where 7 represents the integers, 4.1.12
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we define the cube

Ck.NxER"I 2N <xi<k2Ni forI<i<n}. 4.1.13

l------T-------,- Each cube C has two indices. The first index, k, locates each cube: it gives
.i off. the numerators of the coordinates of the cube's lower left-hand corner, when the

denominator is The second index, N, tells which "level" we are considering,p
starting with 0; you may think of N as the "fineness" of the cube. The length
of a side of a cube is 1/2N, so when N = 0, each side of a cube is length 1;

I

nL _

FicuRE 4.1.3.

In Equation 4.1.13, we chose
the inequalities < to the left of x,
and < to the right so that at ev-
ery level, every point of Ls'" is in
exactly one cube. We could just
as easily put them in the opposite
order; allowing the edges to over-
lap wouldn't be a problem either.

We use vol" to denote n-dimen-
sional volume.

You are asked to prove Equa-
tion 4.1.17 in Exercise 4.1.5.

when N = 1, each side is length 1/2; when N = 2, each side is length 1/4. The
bigger N is, the finer the decomposition and the smaller the cubes.

Example 4.1.5 (Dyadic cubes). The small shaded cube in the lower right-
hand quadrant of Figure 4.1.3 (repeated at left) is

C l = {XER2
[61.3

9 10 7<x<16 6<y< 6 4.1.14

width of cube height of cube

For a three-dimensional cube, k has three entries, and each cube Ck,N con-
xl

lists of the x =-

(Y 1
E R3 such that

z

ki ki + 1 k2 k2 + 1 k3 k3 + 1
2N

<x< _TN_ I 2N <y<
21v

;
2N

<x<
2N

.

width of cube length of cube height of cube

The collection of all these cubes paves l!":

A 4.1.15

Definition 4.1.6 (Dyadic pavings). The collection of cubes Ck,N at a
single level N, denoted DN(1R"), is the Nth dyadic paving of W'.

The n-dimensional volume of a cube C is the product of the lengths of its
sides. Since the length of one side is 1/2N, the n-dimensional volume is

vol" C = 121 l i.e., vol, C = ZN" 4.1.16

Note that all C E DN (all cubes at a given resolution) have the same n-
dimensional volume.

The distance between two points x, y in a cube C E DN is

Ix
- Y, 2 4.1.17
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As in Definition 4.1.3, Mc(f)
denotes the least upper bound,

and mc(f) denotes the greatest

lower bound.

Since we are assuming that f
has bounded support, these sums
have only finitely many terms.
Each term is finite, since f itself
is bounded.

We invite you to turn this ar-

gument into a formal proof.

Thus two points in the same cube C are close if N is large.

Upper and lower sums using dyadic pavings

With a Riemann sum in one dimension we sum the areas of the upper rectangles
and the areas of the lower rectangles, and say that a function is integrable if the
upper and lower sums approach a common limit as the decomposition becomes
finer and finer. The common limit is the integral.

We will do the same thing here. We define the Nth upper and lower sums

UN(f) = E MC(f)vol0C, LN(f) = F_ mC(f)vo1nC. 4.1.18
upper sum CEDN lower sum CED,v

For the Nth upper sum we compute, for each cube C at level N, the product
of the least upper bound of the function over the cube and the volume of the
cube, and we add the products together. For the lower sum we do the same
thing, using the greatest lower bound. Since for these pavings all the cubes
have the same volume, it can be factored out:

UN(f) = 21 F Mc(f), LN(f) = 2nN i mc(f). 4.1.19nN1. CEDN CEDN
vol. of cube vol. of cube

Proposition 4.1.7. As N increases, the sequence UN(f) decreases, and the
sequence LN(f) increases.

Think of a two-dimensional function, whose graph is a surface with moun-
tains and valleys. At a coarse level, where each cube (i.e., square) covers a lot
of area, a square containing both a mountain peak and a valley will contribute
a lot to the upper sum; the mountain peak will be the least upper bound for
the entire large square. As N increases, the peak is the least upper bound for
a much smaller square; other small squares that were part of the original big
square will have a much smaller least upper bound.

The same argument holds, in reverse, for the lower sum; if a large square
contains a deep valley, the entire square will have a low greatest lower bound,
contributing to a small lower sum. As N increases and the squares get smaller,
the valley will have less of an impact, and the lower sum will increase.

We are now ready to define the multiple integral. First we will define upper
and lower integrals.

Definition 4.1.8 (Upper and lower integrals). We call

U(f) = Jim UN(f) and L(f) = t LN(f) 4.1.20
N-oo

the upper and lower integrals of f.
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Of course, we are simply com-
puting

Itf(x)jdxIL
11I

Jo=2

The point of this example is to
show that this integral, almost the
easiest that calculus provides, can
be evaluated by dyadic sums.

Since we are in dimension 1,
our cubes are intervals:

Ck,N = (k/2N,k/2N+').

Definition 4.1.9 (Integrable function). A function f : 1k" - R is inte-
grable if its upper and lower integrals are equal; its multiple integral is then
denoted

ffdrXI = U(f) = L(f). 4.1.21

It is rather hard to find integrals that can be computed directly from the

definition; here is one.

Example 4.1.10 (Computing an integral). Let

f(x)
x if0<x<1

4.1.22
- l 0 otherwise,

which we could express (using the characteristic function) as the product

f(x) = xxlo,ll(x) 4.1.23

First, note that f is bounded with bounded support. Unless 0 < k/2N < 1,
we have

If 0 < k/2N < 1, then

inc, (f) = MCk. N (f) = 0. 4.1.24

mck,N(f) = ZN
greatest lower bound of f over Ck.N

is the beginning of the interval

Thus

1 + 2 + + m = m(m + 1)/2. Using this formula, we find

and M0,1 M =
k +

II 4.1.25

lowest upper bound of f over Ck,N
is the beginning of the next interval

1 2N-1 k 1 2N k
LN(f) - 2N N and UN(f) = ZN N'

k=0 k=1

4.1.26

In particular, UN(f) - LN(f) = 2N/22N = 1/2N, which tends to 0 as N
tends to no, so jr is integrable. Evaluating the integral requires the formula

and

N

LN(f) = 2N
2 N2 -2N1)2'v = 21 1

I)UN(f)=2N. 2 2N =2(1+2N
Clearly both sums converge to 1/2 as N tends to no. A

4.1.27
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Warning! Before doing this
you must know that your function
is integrable: that the upper and
lower sums converge to a common
limit. It is perfectly possible for
a Riemann sum to converge with-
out the function being integrable
(see Exercise 4.1.6). In that case,
the limit doesn't mean much, and
should be viewed with distrust.

In computing a Riemann sum,
any point will do, but some are
better than others. The sum will
converge faster if you use the cen-
ter point rather than a corner.

When the dimension gets re-
ally large, like 1024, as happens in
quantum field theory and statisti-
cal mechanics, even in straightfor-
ward cases no one knows how to
evaluate such integrals, and their
behavior is a central problem in
the mathematics of the field. We
give an introduction to Riemann
sums as they are used in practice
in Section 4.6.

Riemann sums

Computing the upper integral U(f) and the lower integral L(f) may be difficult.
Suppose we know that f is integrable. Then, just as for Riemann sums in one
dimension, we can choose any point Xk,N E Ck.N we like, such as the center of
each cube, or the lower left-hand corner, and consider the Riemann sum

"width" "height"

R(f,N) _ vol( C ,N)f(xN).
keZ^

4.1.28

Then since the value of the function at some arbitrary point xk,N is bounded
above by the least upper bound, and below by the greatest lower bound,

-Ck.Nf f (xk,N): MCk,Nf,

the Riemann sums R(f, N) will converge to the integral.

4.1.29

Computing multiple integrals by Riemann sums is conceptually no harder
than computing one-dimensional integrals; it simply takes longer. Even when
the dimension is only moderately large (for instance 3 or 4) this is a serious
problem. It becomes much more serious when the dimension is 9 or 10; even in
those dimensions, getting a numerical integral correct to six significant digits
may be unrealistic.

Some rules for computing multiple integrals

A certain number of results are more or less obvious:

Proposition 4.1.11 (Rules for computing multiple integrals).
(a) If two functions f, g : IlY" -, 1R are both integrable, then f + g is also

integrable, and the integral off + g equals the sum of the integral off and
the integral of g:

J (f+9)Id"xI=I^fIdxI+J 9Id"xI. 4.1.30t [ i^
(b) If f is an integrable function, and a E Ilt, then the integral of a f equals

a times the integral off:

f^ fin
fId"xI. 4.1.31

Y

(c) If f, g are integrable functions with f < g (i.e., f (x) < g(x) for all x),
then the integral off is leas than or equal to the integral of g:

^ f Id"xI <_ J ^9Id"xI 4.1.32
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An example of Equation 4.1.33:
if f and g are functions of cen-
sus tracts, f assigning to each per
capita income for April through
September, and 9 per capita in-
come for October through March,
then the sum of the maximum
value for f and the maximum val-
ue for g must he at least the maxi-
mum value off +g, and very likely
more: a community dependent on
the construction industry might
have the highest per capita income
in the summer months, while a ski
resort might have the highest per
capita income in the winter.

You can read Equation 4.1.37
to mean "the integral of the prod-
uct fI (x) f2(y) equals the product
of the integrals," but please note

Proof. (a) For any subset A C is", we have

MA(f) +AIA(9) ? AIA(f +9) and mA(f)+mA(9) 5 ttlA(f +9). 4.1.33

Applying this to each cube C E D,v(2.") we get

UN(f)+UN(9) ? UN(f+9) ? LN(f+.9) ? LN(f)+LN(9). 4.1.34

Since the outer terms have a common limit as N -. oo, the inner ones have the
same limit, giving

UN (f)+UN(9) = UN(f+g) = LN(f+g) = LN(f)+LN(9).
fe" (1) Id"xl+f, , (9)Id"xl !o" (1+9) Id"xl

4.1.35

(b) If a > 0, then UN(af) = aUN(f) and LN(af) = aLN(f) for any N, so
the integral of a f is a times the integral of f.

If a < 0, then UN (a f) = aLN(f) and LN (a f) = aUN (f ). so the result is also
true: multiplying by a negative number turns the upper limit into a lower limit
and vice versa.

(c) This is clear: UN(f) < UN(q) for every N.

The following statement follows immediately from F1lbini's theorem, which
is discussed in Section 4.5. but it fits in nicely here.

Proposition 4.1.12. If fl(x) is integrable on lR' and f2(y) is integrable on
fit'", then the function

on fib"+" is integrable, and

I
.L+m g Id"xlld'YI = (l ft Id"xI J (f.- f2 IdmyJ

\ R" / 4.1.37

that we are not saying, and it is Proof. For any AI C 18", and A2 C Vim, we have
not true, that for two functions
with the same variable, the inte-
gral of the product is the product
of the integrals. There is no for-
mula for f fj (X)f2 (x). The two
functions of Proposition 4.1.37
have different variables.

MA'XA2(9) = AIA,(fl)A'1A2(f2) and mA,xA2(9) = mA,(f1)mA,(f2)
4.1.38

Since any C E DN(R"+'") is of the form CI x C2 with CI E DN(li") and
C2 E DN(R-), applying Equation 4.1.38 to each cube separatelygives

UN(9) = UN(fl)UN(f2) and LN(9) = LN(fI)LN(f2).

The result follows immediately.

4.1.39
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Some texts refer to payable sets
as "contented" sets: sets with con-
tent.

The volume of a cube is 2,
but here n = 1.

Recall from Section 0.3 that

P=I, x...x/"CIR".
means

P = Ix EiirIx,EI,};
thus P is a rectangle if n = 2. a
box if n = 3, and an interval if
n=1.

Volume defined more generally

The computation of volumes, historically the main motivation for integrals,

remains an important application. We used the volume of cubes to define the

integral; we now use integrals to define volume more generally.

Definition 4.1.13 (n-dimensional volume). When XA is integrable, the
n-dimensional volume of A is

vole A XA Id-x1. 4.1.40
n"

Thus vol I is length of subsets of P3, vol2 is area of subsets of R2, and so on.
We already defined the volume of dyadic cubes in Equation 4.1.16. In Propo-

sition 4.1.16 we will see that these definitions are consistent.

Definition 4.1.14 (Payable set: a set with well-defined volume). A
set is payable if it has a well-defined volume, i.e., if its characteristic function
is integrable.

Lemma 4.1.15 (Length of interval). An interval I = [a, bJ has volume (i.e.,
length) lb - al.

Proof. Of the cubes (i.e., intervals) C E DN(ili:), at most two contain one of
the endpoints a or b. All the others are either entirely in I or entirely outside,

so on those

Mc(X,)=mc(Xt)
1 if C C I

4.1.41= l0 if Cn =o,
where 0 denotes the empty set. Therefore the difference between upper and

lower sums is at most two times the volume of a single cube:

4.1.42UN(X1) - LN(XI) 5 2 1
FN_ I

which tends to 0 as N -. oo, so the upper and lower sums converge to the same
limit: Xj is integrable, and I has volume. We leave its computation as Exercise
4.1.13.

Similarly, parallelepipeds with sides parallel to the axes have the volume one
expects, namely, the product of the lengths of the sides. Consider

P= I, x ... x I c Rn. 4.1.43
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Proposition 4.1.16 (Volume of parallelepiped). The parallelepiped

P=I1 x...xInCilPn 4.1.44

formed by the product of intervals I, = [a,, b,] has volume

vol n (P) = lb, -all lb2 - a2l ... lb. - a 1. 4.1.45

In particular, the n-dimensional volume of a cube C E DN(]l8n) is

voi n C = 2^N 4.1.46

Proof. This follows immediately from Proposition 4.1.12, applied to

4.1.47

The following elementary result has powerful consequences (though these
will only become clear later).

Disjoint means having no Theorem 4.1.17 (Sum of volumes). If two disjoint sets A, B in Rn are
points in common. payable, then so is their union, and the volume of the union is the sum of

the volumes:

You are asked to prove Propo-
sition 4.1.18 in Exercise 4.1.4.

voln(A U B) = voln A + vol B. 4.1.48

Proof. Since XAUB = XA + XB, this follows from Proposition 4.1.11, (a).

Proposition 4.1.18 (Set with volume 0). A set X C ll8n has volume 0
if and only if for every e > 0 there exists N such that

E voln(C) < e. 4.1.49

C E DN(Rn)
CnX 34(b

Unfortunately, at the moment there are very few functions we can integrate;
we will have to wait until Section 4.5 before we can compute any really inter-
esting examples.

4.2 PROBABILITY AND INTEGRALS

Computing areas and volumes is one important application of multiple in-
tegrals. There are many others, coming from a wide range of different fields:
geometry, mechanics, probability, .... Here we touch on a couple: computing
centers of gravity and computing probabilities. They sound quite different, but
the formulas are so similar that we think each helps in understanding the other.
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Integrating density gives mass.

Here u (mu) is a function
from A to R; to a point of A it as-
sociates a number giving the den-
sity of A at that point.

In physical situations µ will be
non-negative.

Definition 4.2.1 (Center of gravity of a body). (a) If a body A C 1t"
(i.e., a payable set) is made of some homogeneous material, then the center
of gravity of A is the point x whose ith coordinate is

zi = A

1 Id"xI
A

4.2.1

(b) More generally, if a body A (not necessarily made of a homogeneous
material) has density µ, then the mass M of such a body is

M = J µ(x)jd"xj, 4.2.2
A

and the center of gravity x is the point whose ith coordinate is

_ fAxil{(x)Id"xlM 4.2.3

We will see that in many problems in probability there is a similar function
lt, giving the "density of probability."

A brief introduction to probability theory

In probability there is at the outset an experiment, which has a sample space
S and a probability measure Prob. The sample space consists of all possible
outcomes of the experiment. For example, if the experiment consists of throwing
a six-sided die, then S = 11,{1,2,3,4,5,6}. The probability measure Prob takes
a subset A C S, called an event, and returns a number Prob(A) E 10, 1], which
corresponds to the probability of an outcome of the experiment being in A.
Thus the probability can range from 0 (it is certain that the outcome will not
be in A) to 1 (it is certain that it will be in A). We could restate the latter
statement as Prob(S) = 1.

When the probability space S consists of a finite number of outcomes, then
Prob is completely determined by knowing the probabilities of the individual
outcomes. When the outcomes are all equally likely, the probability assigned
any one outcome is 1 divided by the number of outcomes; 1/6 in the case of the
die. But often the outcomes are not equally likely. If the die is loaded so that
it lands on 4 half the time, while the other outcomes are equally likely, then
the Prob{4} = 1/2, while the probability of each of the other five outcomes is
1/10.

When an event A consists of several outcomes, Prob(A) is computed by
adding together the weights corresponding to the elements of A. If the experi-
ment consists of throwing the loaded die described above, and A = {3, 4), then
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If you have a ten-sided die, with
the sides marked 0...9 you could
write your number in base 10 in-
stead.

Prob(A) = 1/10 + 1/2 = 3/5. Since Prob(S) = 1. the sum of all the weights for
a given experiment always equals 1.

Integrals come into play when a probability space is infinite. We might
consider the experiment of measuring how late (or early) a train is; the sample
space is then some interval of time. Or we might play "spin the wheel," in
which case the sample space is the circle, and if the gauze is fair, the wheel has
an equal probability of pointing in any direction.

A third example, of enormous theoretical interest, consists of choosing a
number x E [0.1] by choosing its successive digits at random. For instance, you
might write x in base 2, and choose the successive digits by tossing a fair coin,
writing 1 if the toss comes up heads, and 0 if it comes up tails.

In these cases, the probability measure cannot be understood in terms of
the probabilities of the individual outcomes, because each individual outcome
has probability 0. Any particular infinite sequence of coin tosses is infinitely
unlikely. Some other scheme is needed. Let us see how to understand probabil-
ities in the last example above. It is true that the probability of any particular
number, like {1/3} or {f/2), is 0. But there are some subsets whose proba-
bilities are easy to compute. For instance Prob([0,1/2)) = 1/2. Why? Because
x E [0,1/2). which in base 2 is written x E [0,.1), means exactly that the first
digit of r. is 0. More generally, any dyadic interval I E Dn.(W) has probability
1/2N, since it corresponds to x starting with a particular sequence of N digits,
and then makes no further requirement about the others. (Again, remember
that our numbers are in base 2.)

So for every dyadic interval, its probability is exactly its length. In fact,
since length (i.e., vole) is defined in terms of dyadic intervals, we see that the
probability of any payable subset of A C [0,1] is precisely

Prob(A) = 1. Xa[dxP 4.2.4

A similar description is probably possible in the case of late trains: there
is likely a function g(t) such that the probability of a train arriving in some
time interval [a, b] is given by fla 61 g(t) dt. One might imagine that the function
looks like a bell curve, perhaps centered at the scheduled time to, but perhaps
several minutes later if the train is systematically late. It might also happen
that the curve is not bell-shaped, but camel-backed, reflecting the fact that if
the train misses a certain light then it will be set back by some definite amount
of time.

In many cases where the sample space is ak, something of the same sort is
true: there is a function µ(x) such that

Prob(A) = r 1L(x)ldkxj. 4.2.5
a
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Of course some heights are im-
possible. Clearly, the height of
such a girl will not fall in the range
10-12 inches, or 15-20 feet. In-
cluding such impossible outcomes
in a sample space is standard prac-
tice. As William Feller points out
in An Introduction to Probability
Theory and Its Applications, vol.
1 (pp. 7.-8), "According to for-
mulas on which modern mortal-
ity tables are based, the propor-
tion of men surviving 1000 years
is of the order of magnitude of
one in

10103e ... . This statement
does not make sense from a biolog-
ical or sociological point of view,
but considered exclusively from a
statistical standpoint it certainly
does not contradict any experience

Moreover, if we were seri-
ously to discard the possibility of
living 1000 years, we should have
to accept the existence of a maxi-
mum age, and the assumption that
it should be possible to live x years
and impossible to live x years and
two seconds is as unappealing as
the idea of unlimited life."

In this case, P is called a probability density; to be a probability density the

function it must satisfy
r

µ(x) > 0 and
J

µ(x)Idkxl = 1. 4.2.6
k

We will first look at an example in one variable; later we will build on this
example to explore a use of multiple integrals (which are, after all, the reason
we have written this section).

Example 4.2.2 (Height of 10-year-old girls). Consider the experiment
consisting of choosing a 10-year-old girl at random in the U.S., and measuring
her height. Our sample space is R. As in the case of choosing a real number
from 0 to 10, it makes no sense to talk about the probability of landing on any
one particular point in R. (No theoretical sense, at least; in practice, we are
limited in our measurements, so this could be treated as a finite probability
space.) What we can do is determine a "density of probability" function that
will enable us to compute the probability of landing in some region of lR, for
example, height between 54 and 55 inches.

Every pediatrician has growth charts furnished by the Department of Health,
Education, and Welfare, which graph height and weight as a function of age, for
girls from 2 to 18 years old; each consists of seven curves, representing the 5th,
10th, 25th, 50th, 75th, 90th, and 95th percentiles, as shown in Figure 4.2.1.

Age (years) Age (years)

FIGURE 4.2.1. Charts graphing height and weight as a function ofage, for girls from
2 to 18 years old.

Looking at the height chart and extrapolating (connecting the dots) we can
construct the bell-shaped curve shown in Figure 4.2.2, with a maximum at x =
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58

90 100

FIGURE 4.2.2.

54.5, since a 10-year-old girl who is 54.5 inches tall falls in the 50th percentile
for height. This curve is the graph of a function that we will call µh; it gives
the "density of probability" for height for 10-year-old girls. For each particular

60 range of heights, it gives the probability that a 10-year-old girl chosen at random
will be that tall:

h2

Prob{hl < h < h2} = Ph(h)Jdhl. 4.2.7

n,

110 Similarly, we can construct a "density of probability" function P. for weight,
such that the probability of a child having weight w satisfying wt < w < w2 is

Top: graph of µh, giving the
"density of probability" for height Prob{wl < w < w2} = J W µ,,,(w) Idw1. 4.2.8
for 10-year-old girls. w,

Bottom: graph of µw, giving The integrals f%ph(h)ldhl and fa p, (w)ldwl must of course equal 1.
the "density of probability" for

weight.

It is not always possible to find
a function y that fits the available
data; in that case there is still
a probability measure, but it is
not given by a density probability
function.

The name random function is
more accurate, but nonstandard.

The same experiment (i.e.,
same sample space and probabil-
ity measure) can have more than
one random variable.

The words expectation, expected
value, mean, and average are all
synonymous.

Since an expectation E corre-
sponds not just to a random vari-
able f but also to an experiment
with density of probability p, it
would be more precise to denote
it by something like E,.(f).

Remark. Sometimes, as in the case of unloaded dice, we can figure out the
appropriate probability measure on the basis of pure thought. More often, as in
the "height experiment," it is constructed from real data. A major part of the
work of statisticians is finding probability density functions that fit available
data. A

Once we know an experiment's probability measure, we can compute the
expectation of a random variable associated with the experiment.

Definition 4.2.3 (Random variable). Let S be the sample space of
outcomes of an experiment. A random variable is a function f : S -+ R.

If the experiment consists of throwing two dice, we might choose as our
random variable the function that gives the total obtained. For the height
experiment, we might choose the function fH that gives the height; in that
case, fH(x) = x.

For each random variable, we can compute its expectation.

Definition 4.2.4 (Expectation). The expectation E(f) of a random vari-
able f is the value one would expect to get if one did the experiment a great
many times and took the average of the results. If the sample space S is
finite, E(f) is computed by adding up all the outcomes s (elements of S),
each weighted by its probability of occurrence. If S is continuous, and µ is
the density of probability function, then

E(f) = I f(8) s(s) Idsl
s

Example 4.2.5 (Expectation). The experiment consisting of throwing two
unloaded dice has 36 outcomes, each equally likely: for any s E S, Prob(s) = ss
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In the dice example, the weight
for the total 3 is 2/36, since there
are two ways of achieving the total
3: (2,1) and (1,2).

If you throw two dice 500 times
and figure the average total, it
should be close to 7; if not, you
would be justified in suspecting
that the dice are loaded.

Equation 4.2.9: As in the finite
case, we compute the expectation
by "adding up" the various possi-
ble outcomes, each weighted by its
probability.

Since Var (f) is defined in terms
of the expectation of f, and com-
puting the expectation requires
knowing a probability measure,
Var (f) is associated to a particu-
lar probability measure. The same
is true of the definitions of stan-
dard deviation, covariance, and
correlation coefficient.

Let f be the random variable that gives the total obtained (i.e., the integers 2

through 12). To determine the expectation, we add up the possible totals, each
weighted by its probability:

1 2 3 4 5 6 5 4 3 2 1
236+336+436+53fi+636+736+83fi+936+1036+113fi+1236 =7.

For the "height experiment" and "weight experiment" the expectations are

E(fH) = r hµn(h) Idhi and E(fw) = f wu.(w) Idwl. L 4.2.9

Note that an expectation does not need to be a realizable number; if our
experiment consists of rolling a single die, and f consists of seeing what number
we get, then E(f) = c + s + s + s + c + s = 3.5. Similarly, the average family
may be said to have 2.2 children ... .

Variance and standard deviation

The expectation of a random variable is useful, but it can be misleading.
Suppose the random variable f assigns income to an element of the sample
space S, and S consists of 1000 supermarket cashiers and Bill Gates (or, indeed,
1000 school teachers or university professors and Bill Gates); if all you knew
was the average income, you might draw very erroneous conclusions. For a less
extreme example, if a child's weight is different from average, her parents may
well want to know whether it falls within "normal" limits. The variance and
the standard deviation address the question of how spread out a function is
from its mean.

Definition 4.2.6 (Variance). The variance of a random variable f, de-
noted Var (f), is given by the formula

Var(f)=E((f-E(f))2)= f (f(x)-E(f))Sidkxl. 4.2.10
S

Why the squared term in this formula? What we want to compute is how
far f is, on average, from its average. But of course f will be less than the
average just as much as it will be more than the average, so E(f - E(f)) is
0. We could solve this problem by computing the mean absolute deviation,
Elf - E(f)3. But this quantity is difficult to compute. In addition, squaring
f - E(f) emphasizes the deviations that are far from the mean (the income
of Bill Gates, for example), so in some sense it gives a better picture of the
"spread" than does the absolute mean deviation.

But of course squaring f - E(f) results in the variance having different units
than f. The standard deviation corrects for this:
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The name for the Greek letter
o is "sigma."

Definition 4.2.7 (Standard deviation). The standard deviation of a
random variable f, denoted o(f),is given by

o(f ) = v V (f) 4.2.11

The mean absolute deviation
for the "total obtained" random
variable is approximately 1.94. sig-
nificantly less than the standard
deviation. Because of the square
in the formula for the variance, the
standard deviation weights more
heavily values that are far from
the expectation than those that
are close, whereas the mean abso-
lute deviation treats all deviations
equally.

Indeed, a very important ap-
plication of probability theory is
to determine whether phenomena
are related or not. Is a person
subjected to second-hand smoke
more likely to get lung cancer than
someone who is not? Is total fat
consumption related to the inci-
dence of heart disease? Does par-
ticipating in Head Start increase
the chances that a child from a
poor family will graduate from
high school?

Example 4.2.8 (Variance and standard deviation). If the experiment is
throwing two dice, and the random variable gives the total obtained, then the
variance is

1 (2_7)2+? (3_7)2+...+ r-' (7_7)2+...+? (11-7)2+1 (12-7)2=5.833.....
336 36 30 36

and the standard deviation is 5.833... 2.415.

4.2.12

Probabilities and multiple integrals

Earlier we discussed the functions ph and µw, the first giving probabilities for
height of a 10-year-old girl chosen at random, the second giving probabilities
for weight. Can these functions answer the question: what is the probability
that a 10-year-old girl chosen at random will have height between 54 and 55
inches, and weight between 70 and 71 pounds? The answer is no. Computing a
"joint" probability as the product of "single" probabilities only works when the
probabilities under study are independent. We certainly can't expect weight to
be independent of height.

To construct a probability density function µ in two variables, height and
weight, one needs more information than the information needed to construct
µh and pv, separately. One can imagine collecting thousands of file cards, each
one giving the height and weight of a 10-year-old girl, and distributing them
over a big grid; the region of the grid corresponding to 54-55 inches tall, 74-75
pounds, would have a very tall stack of cards, while the region corresponding
to 50-51 inches and 100-101 pounds would have a much smaller stack; the
region corresponding to 50-51 inches and 10-11 pounds would have none. The
distribution of these cards corresponds to the density probability function 1L.

Its graph will probably look like a mountain, but with a ridge along some curve
of the form w = chi, since roughly you would expect the weight to scale like
the volume, which should be roughly proportional to the cube of the height.

We can compute µh and p. from p:

Ah(h) f Pu, Id.1

Pa(W) = f li (u,) IdhI.
R

4.2.13
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You might expect that

1 hp 1 h I
o-t=

ff hµh(h) Idh!.

This is true, and a form of Fubini's
theorem to be developed in Sec-

tion 4.5. If we have thrown away

information about height-weight

distribution, we can still figure out
height expectation from the cards
on the height-axis (and weight ex-

pectation from the cards on the

weight-axis). We've just. lost all
information about the correlation
of height and weight.

If two random variables are in-
dependent, their covariance is 0, as
is their correlation coefficient. The
converse is not true.

By "independent," we mean
that the corresponding probability
measures are independent: if f is
associated with µh and g is asso-
ciated with µ., then f and g are
independent, and µh and µ,,, are
independent, if

Ph(x)µw(Y) = tt (N) ,

where µ is the density probability
function corresponding to the vari-

able I x).
Y

But the converse is not true. If we have our file cards neatly distributed over
the height-weight grid, we could cut each file card in half and put the half giving
height on the corresponding interval of the h-axis and the half giving weight
on the corresponding interval of the w-axis, which results in µh and is.. (This
corresponds to Equation 4.2.13). In the process we throw away information:
from our stacks on the h and w axes we would not know how to distribute the
cards on the height-weight grid.'

Computing the expectation for a random variable associated to the height-
weight experiment requires a double integral. If you were interested in the
average weight for 10-year-old girls whose height, is close to average; you might

4.2.14

E(f)=J f (h)A(h) ldhdtwI. 4.2.15
e

A double integral would also be necessary to compute the covariance of the
random variables f q and fµ'.

compute the expectation of the random variable f satisfying

1(lt)= rw if (h-1)<h<(11+E )
tt' Sl

0 otherwise.

The expectation of this function would he

Definition 4.2.9 (Covariance). Let S, be the sample space of one experi-
ment, and S2 be the sample space for another. If f : Si -. R and g : S2 -+ R
are random variables, their covariance, denoted Cov (f, g), is:

Cov(f,9)=E((f -E(f))(9-E(g))) 4.2.16

The product (f - E(f))(g - E(g)) is positive when both f and g are on the
same side of their mean (both less than average, or both more than average),
and negative when they are on opposite sides, so the covariance is positive when
f and g vary "together," and negative when they vary "opposite."

Finally, we have the correlation coefficient of f and g:

Definition 4.2.10 (Correlation coefficient). The correlation coefficient
of two random variables f and g, denoted corr (f, g), is given by the formula

,g
con (f,9) = 4.2.17

The correlation is always a number between -1 and 1, and has no units.

' If µh and µ,,, were independent, then we could compute µ from µh and µ.; in
that case, we would have p =µhµ..

Coy(f )



Exercise 4.2.2 explores these

analogies.

In particular, "correlation 0"
corresponds to "orthogonal."

The graph of the normal distri-
bution is a bell curve.

As n grows, all the detail of the
original experiment gets ironed
out, leaving only the normal dis-
tribution.

The standard deviation of the
new experiment (the "repeat the
experiment n times and take the
average" experiment) is the stan-
dard deviation of the initial exper-
iment divided by f.

Equation 4.2.20 puts the com-
plication in the exponent; Equa-
tion 4.2.21 puts it in the domain
of integration.

The exponent for e in Equation
4.2.20 is hard to read; it is

-2 (x eE)2
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You should notice the similarities between these definitions and

the length squared of vectors, analogous to the variance;

the length of vectors, analogous to the standard deviation;

the dot product, analogous to the covariance;

the cosine of the angle
between two vectors, analogous to the correlation.

Central limit theorem
One probability density is ubiquitous in probability theory: the normal distri-
bution given by

4.2.18

The theorem that makes the normal distribution important is the central
limit theorem. Suppose you have an experiment and a random variable, with
expected value E and standard deviation o. Suppose that you repeat the exper-
iment n times, with results x1 , ... , x,,. Then the central limit theorem asserts
that the average

A(x) =
27r

et2'2.

The object of this subsection is to explain why.

a= n
4.2.19

is approximately distributed according to the normal distribution with mean E
and standard deviation o/ f, the approximation getting better and better as
n - oo. Whatever experiment you perform, if you repeat it and average, the
normal distribution will describe the results.

Below we will justify this statement in the case of coin tosses. First let us
see how to translate the statement above into formulas. There are two ways
of doing it. One is to say that the probability that z is between A and B is
approximately

e
e- dx. 4.2.20

2rr7Jn
We will use the other in our formal statement of the theorem. For this we make
the change of variables A = E + ca//, B = E + ab/ f .

Theorem 4.2.11 (The central limit theorem). If an experiment and a
random variable have expectation value E and standard deviation a, then
if the experiment is repeated n times, with average result T, the probability

There are a great many im- that a is between E+'a and E+'b is apprcrdmately
provements on and extensions of

6the central limit theorem; we can- l e-52/2 dg.not hope to touch upon them here. 21r a
4.2.21
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Recall the binomial coefficient:

n _ ni
k k!(n - k)!

We prove a special case of the central limit theorem in Appendix A.12. The
proof uses Stirling's formula, a very useful result showing how the factorial n!
behaves as n becomes large. We recommend reading it if time permits, as it
makes interesting use of some of the notions we have studied so far (Taylor
polynomials and Riemann sums) as well as some you should remember from
high school (logarithms and exponentials).

Example 4.2.12 (Coin toss). As a fast example, let us see how the central
limit theorem answers the question: what is the probability that a fair coin
tossed 1000 times will come up heads between 510 and 520 times?

In principle, this is straightforward: just compute the sum
520

Y (10001
23000 k /

k=510

4.2.22

One way to get the answer in
Equation 4.2.24 is to look up a ta-
ble giving values for the "standard
normal distribution function."

Another is to use some soft-
ware. With MATLAB, we use .5
erf to get:
EDU> a= .5'erf(20/sgrt(2000))
EDU> a = 0.236455371567231
EDU> b= .5*erf(40/sqrt(2000))
EDU> b = 0.397048394633966
EDU> b-a
ans = 0.160593023066735

The "error function" erf is re-
lated to the "standard normal dis-
tribution function" as follows:

/r
z

).2nJ a dt=2erf( a
0

Computations like this are used
everywhere: when drug companies
figure out how large a population

to try out a new drug on, when

industries figure out how long a

product can be expected to last,

etc.

In practice, computing these numbers would be extremely cumbersome; it is
much easier to use the central limit theorem. Our individual experiment consists
of throwing a coin, and our random variable returns 1 for "heads" and 0 for
"tails." This random variable has expectation E = .5 and standard deviation
o = .5 also, and we are interested in the probability of the average being between
.51 and .52. Using the version of the central limit theorem in Equation 4.2.20,
we see that the probability is approximately

2 0 - O W ( . 5 2 1 5 V') dz.
2vr 2 51

Now we set

4.2.23

/x-.5 2
1000 I 5 1 = t2, so that 2 1000dx = dt.

Substituting t2 and dt in Equation 4.2.23 we get

40/ 1000

e-1'/2 dt ,:t; 0.1606. 4.2.241.62a 20/

Does this seem large to you? It does to most people. A

Example 4.2.13 (Political poll). How many people need to be polled to call
an election, with a probability of 95% of being within 1% of the "true value"?
A mathematical model of this is tossing a biased coin, which falls heads with
unknown probability p and tails with probability I - p. If we toss this coin
n times (i.e., sample n people) and return 1 for heads and 0 for tails (1 for
candidate A and 0 for candidate B), the question is: how large does n need to
be in order to achieve 95% probability that the average we get is within 1% of
p?



Figure 4.2.3 gives three typical

values for the area under the bell
curve; these values are useful to

know. For other values, you need
to use a table or software, as de-

scribed in Example 4.2.12.
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You need to know something about the bell curve to answer this, namely

that 95% of the mass is within one standard deviation of the mean (and it is

a good idea to memorize Figure 4.2.3). That means that we want 1% to be
the standard deviation of the experiment of asking n people. The experiment
of asking one person has standard deviation or = JL'P(l - p). Of course, p is

what we don't know, but the maximum of p(1 -p) is 1/2 (which occurs for
p = 1/2). So we will be safe if we choose n so that the standard deviation v/f
is

1 _ 1
i.e. n = 2500.

2 n 100'
4.2.25

How many would you need to ask if you wanted to be 95% sure to be within
2% of the true value? Check below.2 0

.501

FIGURE, 4.2.3. For the normal distribution, 68 percent of the probability is within
one standard deviation; 95 percent is within two standard deviations; 99 percent is
within 2.5 standard deviations.

4.3 WHAT FUNCTIONS CAN BE INTEGRATED?

What functions are integrable? It would be fairly easy to build up a fair
collection by ad hoc arguments, but instead we prove in this section three the-
orems answering that question. They will tell us what functions are integrable,
and in particular will guarantee that all usual functions are.

The first is based on our notion of dyadic pavings. The second states that
any continuous function on lli:" with bounded support is integrable. The third
is stronger than the second; it tells us that a function with bounded support
does not have to be continuous everywhere to be integrable; it is enough to
require that it be continuous except on a set of volume 0.

This third criterion is adequate for most functions that you will meet. How-
ever, it is not the strongest possible statement. In the optional Section 4.4 we
prove a harder result: a function f : R" -* R, bounded and with bounded
support, is integrable if and only if it is continuous except on a set of measure
0. The notion of measure 0 is rather subtle and surprising; with this notion,

2The number is 625. Note that gaining 1% quadrupled the price of the poll.
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This follows the rule that there
is no free lunch: we don't work
very hard, so we don't get much
for our work.

Recall that DN denotes the col-
lection of all cubes at a single
level N, and that oscc(f) denotes
the oscillation of f over C: the
difference between its least upper
bound and greatest lower bound,
over C.

Epsilon has the units of vol,,. If
n = 2, epsilon is measured in cen-
timeters (or meters ... ) squared;
if n = 3 it is measured in centime-
ters (or whatever) cubed.

FIGURE 4.3.1.
The graph of the characteristic

function of the unit disk, XD.

we see that some very strange functions are integrable. Such functions actually
arise in statistical mechanics.

First, the theorem based on dyadic pavings. Although the index under the
sum sign may look unfriendly, the proof is reasonably easy, which doesn't mean
that the criterion for integrability that it gives is easy to verify in practice. We
don't want to suggest that this theorem is not useful; on the contrary, it is the
foundation of the whole subject. But if you want to use it directly, proving
that your function satisfies the hypotheses is usually a difficult theorem in its
own right. The other theorems state that entire classes of functions satisfy the
hypotheses, so that verifying integrability becomes a matter of seeing whether
a function belongs to a particular class.

Theorem 4.3.1 (Criterion for Integrability). A function f : I2" )!P,

bounded and with bounded support, is integrable if and only if for all e > 0,
there exists N such that

volume of all cubes for which
the oscillation of f over the cube Is >e

E volnC <e.
ICEDNI oecc(f)>e)

4.3.1

In Equation 4.3.1 we sum the volume of only those cubes for which the oscil-
lation of the function is more than epsilon. If, by making the cubes very small
(choosing N sufficiently large) the sum of their volumes is less than epsilon,
then the function is integrable: we can make the difference between the upper
sum and the lower sum arbitrarily small; the two have a common limit. (The
other cubes, with small oscillation, contribute arbitrarily little to the difference
between the upper and the lower sum.)

You may object that there will be a whole lot of cubes, so how can their
volume be less than epsilon? The point is that as N gets bigger, there are more
and more cubes, but they are smaller and smaller, and (if f is integrable) the
total volume of those where osec > e tends to 0.

Example 4.3.2 (Integrable functions). Consider the characteristic func-
tion XD that is 1 on a disk and 0 outside, shown in Figure 4.3.1. Cubes C
that are completely inside or completely outside the disk have oscC(XD) = 0.
Cubes straddling the border have oscillation equal to 1. (Actually, these cubes
are squares, since n = 2.) By choosing N sufficiently large (i.e., by making
the squares small enough), you can make the area of those that straddle the
boundary arbitrarily small. Therefore XD is integrable.

Of course, when we make the squares small, we need more of them to cover
the border, so that the sum of areas won't necessarily be less than e. But
as we divide the original border squares into smaller ones, some of them no



FIG URF. 4.3.2.

The function sin i is integrable
over any bounded interval. The
dyadic intervals sufficiently near 0
will always have oscillation 2, but
they have small length when the
dyadic paving is fine.

UN(f) -

The center region of Figure
4.3.2 is black because there are in-
finitely many oscillations in that
region.

Note again the surprising but
absolutely standard way in which
we prove that something (here, the
difference between upper and low-
er sums) is zero: we prove that it
is smaller than an arbitrary e > 0.
(Or equivalently, that it is smaller
than u(c), when u is a function
such that ti(e) 0 as a -. 0.
Theorem 1.5.10 states that these
conditions are equivalent.)
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longer straddle the border. This is not quite a proof; it is intended to help you

understand the meaning of the statement of Theorem 4.3.1.
Figure 4.3.2 shows another integrable function, sin 1. Near 0, we see that a

small change in x produces a big change in f (x), leading to a large oscillation.

But we can still make the difference between upper and lower sums arbitrarily
small by choosing N sufficiently large, and thus the intervals sufficiently small.

Theorem 4.3.10 justifies our statement that this function is integrable.

Example 4.3.3 (A nonintegrable function). The function that is 1 at
rational numbers in [0, 1] and 0 elsewhere is not integrable. No matter how
small you make the cubes (intervals in this case), choosing N larger and larger,
each cube will still contain both rational and irrational numbers, and will have
osc = 1. A

Proof of Theorem 4.3.1. First we will prove that the existence of such an N
implies integrability: i.e., that the lower sum UN(f) and the upper sum LN(f)
converge to a common limit. Choose any e > 0, and let N satisfy Equation
4.3.1. Then

contribution from cubes with osc>e contribution from cubes with oec<c

LN(f) <
{CED,vIooscc(f)>e} (CEDNl. cU)a.

and CfSupp(f)# 0)

< e(2 sup If I + vol, Csupp)
4.3.2

where sup if) is the supremum of Ill , and Csapp is a cube that contains the
support off (see Definition 4.1.2).

The first sum on the right-hand side of Equation 4.3.2 concerns only those
cubes for which osc > e. Each such cube contributes at most 2 sup Ill voln C to
the maximum difference between upper and lower sums. (It is 2 sup I f I rather
than sup I f I because the value of f over a single cube might swing from a
positive number to a negative one. We could also express this difference as
sup f - inf f.)

The second sum concerns the cubes for which ose < e. We must specify that
we count only those cubes for which f has, at least somewhere in the cube, a
nonzero value; that is why we say {C I C f1 Supp(f) 14 0 }. Since by definition
the oscillation for each of those cubes is at most e, each contributes at most
e vol, C to the difference between upper and lower sums.

We have assumed that it is possible to choose N such that the cubes for
which osc > e have total volume less than e, so we replace the first sum by
2e sup Ifl. Factoring out e, we see that by choosing N sufficiently large, the
upper and lower sums can be made arbitrarily close. Therefore, the function is
integrable. This takes care of the "if" part of Theorem 4.3.1.
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To review how to negate state-
ments, see Section 0.2.

You might object that in Equa-
tion 4.3.2 we argued that by mak-
ing the a in the last line small,
we could get the upper and lower
sums to converge to a common
limit. Now in Equation 4.3.4 we
argue that the ep in the last line
means the sums don't converge;
yet the square of a small number
is smaller yet. The crucial differ-
ence is that Equation 4.3.4 con-
cerns one particular Co > 0, which
is fixed and won't get any smaller,
while Equation 4.3.2 concerns any
e > 0, which we can choose arbi-
trarily small.

For the "only if" part we must prove that if the function is integrable, then
there exists an appropriate N. Suppose not. Then there exists one epsilon,
eo > 0, such that for all N we have

Voln C ! Co.
(CEDNI oscc(f)>co}

4.3.3

Now for any N we will have

UN(f) - LN(f) = Y_ OSCC(f) Voln C
CEVN

(CEDNI o c(f)>co}

>(o !e0

oscC(f) vol n C

4.3.4

The sum of vol n C is at least eo, by Equation 4.3.3, so the upper and the
lower integrals will differ by at least co', and will not tend to a common limit.
But we started with the assumption that the function is integrable. D

Theorem 4.3.1 has several important corollaries. Sometimes it is easier to
deal with non-negative functions than with functions that can take on both
positive and negative values; Corollary 4.3.5 shows how to deal with this.

Definition 4.3.4 (f+ and f'). If f : R" -s R is any function, then set
f+(x) = f (x) if f (x) >- 0

and f - (x) = f (x) if f (x) < 0

10 if f (X) < 0 { 0 if f (X) > 0.

Clearly both f+ and f- are non-negative functions, and f = f+ - f'.

Corollary 4.3.5. A bounded function with bounded support f is integrable
if and only if both f+ and f- are integrable.

Proof. If f+ and f- are both integrable, then so is f by Proposition 4.1.11.
For the converse, suppose that f is integrable. Consider a dyadic cube C E
DN(a"). If f is non-negative on C, then oscc(f) = oscc(f+) and oscc(f-) =
0. Similarly, if f is non-positive on C, then oscc(f) = oscc(f -) and oscc (f+) =
0. Finally, if f takes both positive and negative values, then oscc(f+) <
-o(f), oscc(f-) < oscc(f). Then Theorem 4.3.1 says that both f+ and f-
are integrable.

Proposition 4.3.6 tells us why the characteristic function of the disk discussed
in Example 4.3.2 is integrable. We argued in that example that we can make
the area of cubes straddling the boundary arbitrarily small. Now we justify that
argument. The boundary of the disk is the union of two graphs of functions;



The graph of a function f :

3." -. 1: is n-dimensional but it
lives in $"+', just as the graph
of a function f : ?: - ?. is a
curve drawn in the (a.y)-plaue.
The graph r(f) can't intersect the
cube Cu because P (f) is in =:""
and Co is in !1:". We have to add
a dimension by using C..'o x ia:.

Al

FIGURE 4.3.3.
The graph of a function from

lit -. R. Over the interval A.
the function has osc < e; over
the interval B, it has osc > e.
Above A, we keep the two cubes
that intersect the graph: above B,
we keep the entire tower of cubes,
including the basement.
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Proposition 4.3.6 says that any bounded part of the graph of an integrable

function has volume 0.3

Proposition 4.3.6 (Bounded part of graph has volume 0). Let f :
RI - It be an integrable function with graph r(f), and let Co C Ilt" be any

dyadic cube. Then

vol"+t ( r(f)r(f) n _ 0 4.3.5

bounded part of graph

Proof. The proof is not so very hard, but we have two types of dyadic cubes
that we need to keep straight: the (n + 1)-dimensional cubes that intersect the
graph of the function, and the n-dimensional cubes over which the function itself
is evaluated. Figure 4.3.3 illustrates the proof with the graph of a function from
18 -+ IR; in that figure, the x-axis plays the role of 118" in the theorem, and the
(x, y)-plane plays the role of R"+t In this case we have squares that intersect
the graph, and intervals over which the function is evaluated. In keeping with
that figure. let us denote the cubes in R"+' by S (for squares) and the cubes
in IR" by I (for intervals).

We need to show that the total volume of the cubes S E DN(IIt"+t) that
intersect r(f) fl (CO x !R) is small when N is large. Let us choose e, and N
satisfying the requirement of Equation 4.3.1 for that e: we decompose CO into
n-dimensional cubes I small enough so that the total n-dimensional volume of
the cubes over which osc(f) > e is less than e.

Now we count the (n + 1)-dimensional cubes S that intersect the graph.

There are two kinds of these: those whose projection on iP." are cubes I with
osc(f) > e, and the others. In Figure 4.3.3, B is an example of an interval with

osc(f) > e. while A is an example of an interval with osc(f) < e.

For the first sort (large oscillation), think of each n-dimensional cube I over
which osc(f) > e as the ground floor of a tower of (n + 1)-dimensional cubes S
that is at most sup If I high and goes down (into the basement) at most - sup Ill.
To be sure we have enough, we add an extra cube S at top and bottom. Each

31t would be simpler if we could just write vol"+i (1'(f)) = 0. The problem is
that our definition for integrability requires that an integrable function have bounded
support. Although the function is bounded with bounded support, it is defined on
all of IR". So even though it has value 0 outside of some fixed big cube, its graph
still exists outside the fixed cube, and the characteristic function of its graph does
not have bounded support. We fix this problem by speaking of the volume of the
intersection of the graph with the (n + 1)-dimensional bounded region CO x R. You
should imagine that Co is big enough to contain the support of f, though the proof
works in any case. In Section 4.11, where we define integrability of functions that are
not bounded with bounded support, we will be able to say (Corollary 4.11.8) that a
graph has volume 0.



In Equation 4.3.7 we are count-
ing more cubes than necessary: we
are using the entire n-dimensional
volume of Cn, rather than sub-
tracting the parts over which
osc(f) > E.

In Section 4.11 (Proposition
4.11.7) we will be able to drop the
requirement that Al be compact.
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tower then contains 2(sup I f I + 1) 2^ such cubes. (We multiply by 2N because
that is the inverse of the height of a cube S. At N = 0, the height of a cube
is 1: at N = 2, the height is 1/2. so we need twice as many cubes to make the
same height tower.) You will see from Figure 4.3.3 that the are counting more
squares than we actually need.

How many such towers of cubes will we need? We chose N large enough so
that the total it-dimensional volume of all cubes I with osc > E is less than E.
The inverse of the volume of a cube I is 2"N, so there are

2"N' c intervals for
which we need towers. So to cover the region of large oscillation, we need in all

E2N
no. of cubes I

with osc>,

2(sup III + 1)2N
no of cube. S-----------------

for one I with osc(f )>,

4.3.6

(it + 1)-dimensional cubes S.

For the second sort (small oscillation), for each cube I we require at most
2'vE + 2 cubes S , giving in all

2nN Voln(CO) (2NE + 2) 4.3.7

no. of cubes I no. of cubes S
to cover Cn for one I with one(f)<,

Adding these numbers, we find that the bounded part of the graph is covered
by

2(n+1),V (2f(sup If I + 1) + (E + TN) voln(Co)e I cubes S. 4.3.8

This is of course an enormous number, but recall that each cube has (n + 1)-
dimensional volume 1/2(n+I)N, so the total volume is

2E(sup If I+1)+(' +2N) voln(CO),

which can be made arbitrarily small.

4.3.9

As you would expect, a curve in the plane has area 0, a surface in 1.43 has
volume 0, and so on. Below we must stipulate that such manifolds be compact,
since we have defined volume only for bounded subsets of R1.

Proposition 4.3.7. If M C R" is a manifold embedded in R", of dimension
k < n, then any compact subset X C M satisfies voln(X) = 0. In particular,
any bounded part of a subspace of dimension k < n has n-dimensional volume
0.

Proof. We can choose for each x E X a neighborhood U C LRn of x such
that M n U is a graph of a function expressing n - k coordinates in terms of
the other k. Since X is compact, a finite number of these neighborhoods cover
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The equation g(x) = 0 that de-
fines M n U is n - k equations in
n unknowns. Any point x satisfy-
ing g(x) 0 necessarily satisfies
g,(x)=0,so AfnUcMi.

The second part of the proof is
just spelling out the obvious fact
that since (for example) It surface
in R3 has three-dimensional vol-
ume. 0, so does a curve on that sur-
face.

The terms compact support and
bounded support mean the same
thing.

Our proof of Theorem 4.3.8 ac-
tually proves a famous and much
stronger theorem: every continu-
ous function with hounded sup-
port is uniformly continuous (see
Section 0.2 for a discussion of uni-
form continuity).

This is stronger than Theorem
4.3.8 because it shows that the os-
cillation of a continuous function
is small everywhere, whereas inte-
grability requires only that it be
small except on a small set. (For
example, the characteristic func-
tion of the disk in Example 4.3.2
is integrable, although the oscilla-
tion is not small on the cubes that
straddle the boundary.)

X, so it is enough to prove vol"(M fl U) = 0 for such a neighborhood. In the
case k = n - 1, this follows from Proposition 4.3.6. Otherwise, there exists a

91

mapping g U -+ R -k such that M fl U is defined by the equation

9n-k
g(x) = 0, and such that IDg(x)] is onto R"-k for every x E M n U. Then the
locus Ml given by just the first of these equations, gt(x) = 0, is a manifold of
dimension n - 1 embedded in U, so it has n-dimensional volume 0, and since
MnUcMl,wealso have

What functions satisfy the hypothesis of Theorem 4.3.1? One important
class is the class of continuous functions with bounded support. To prove that
such functions are integrable we will need a result from topology-Theorem
1.6.2 about convergent subsequences.

Theorem 4.3.8. Any continuous function on R" with bounded support is
integrable.

Our previous criterion for integrability, Theorem 4.3.1, defines integrability in
terms of dyadic decompositions. It might appear that whether or not a function
is integrable could depend on where the function fits on the grid of dyadic cubes;
if you nudge the function a bit, might you get different results? Theorem 4.3.8
says nothing about dyadic decompositions, so we see that integrability does not
depend on how the function is nudged; in mathematical language, integrability
is translation invariant.

Proof. Suppose the theorem is false; then there certainly exists an co > 0 such
that for every N, the total volume of all cubes CN E DN with osc > eo is at
least co. In particular, a cube CN E DN must exist such that oscc(f) > co. We
can restate this in terms of distance between points: CN contains two points
XN,YN such that

If(xN) - f(YN)I > CO- 4.3.10

These points are in the support of f, so they form two bounded sequences:
the infinite sequence composed of the points xN for all N, and the infinite
sequence composed of the points YN for all N. By Theorem 1.6.2 we can extract
a convergent subsequence xNi that converges to some point a. By Equation
4.1.17,

n
4.3.11

so we see that yN also converges to a.
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am,!' 1 " ck f n-rm

FIGURE 4.3.4.
The black curve represents A;

the darkly shaded region consists
of the cubes at some level that
intersect A. The lightly shaded
region consists of the cubes at the
same depth that border at least
one of the previous cubes.

FIGURE 4.3.5.
In 112, 32 - 1 = 8 cubes are

enough to completely surround a
cube C,. In R3,33 - I = 26 cubes
are enough to completely surround
a cube C;. If we include the cube
C;, then 32 cubes are enough in
p'2, and 33 in R3.

Since f is continuous at a, then for any a there exists 6 such that, if Ix-at < 6

then If(x) - f (a)I < e; in particular we can choose c = eu/4, so 11(x) - f(a)I <
eo/4.

For N sufficiently large, IxN, - al < 6 and IYN, - at < 6. Thus (using the
triangle inequality, Theorem 1.4.9),

distance as crow flies crow take. scenic route

4.3.12eo f(YN{)I ! If(xN.)- f(a)I +If(a)- f(YN,)I < l
Equation 4.3.10

But co < eo/2 is false, so our hypothesis is faulty: f is integrable.

Corollary 4.3.9. Any bounded part of the graph of a continuous function
has volume 0.

A function need not be continuous everywhere to be integrable. as our third
theorem shows. This theorem is much harder to prove than the first two, but
the criterion for integrability is much more useful.

Theorem 4.3.10. A function f : IR" -. lR, bounded with bounded support,
is integrable if it is continuous except on a set of volume 0.

Note that Theorem 4.3.10, like Theorem 4.3.8 but unlike Theorem 4.3.1, is
not an "if and only if" statement. As will be seen in the optional Section 4.4, it
is possible to find functions that are discontinuous at all the rationals. yet still
are integrable.

Proof. Denote by A ("delta") the set of points where j is discontinuous:

A = {X E IR" I f is not continuous at, x 1. 4.3.13

Choose some e > 0. Since f is continuous except on a set of volume 0, we
have vol,, A = 0. So (by Definition 4.1.18) there exists N and some finite union
of cubes C1, ... , Ck E VN (lR") such that

k

and Lvol"C,< t-.
i=1

4.3.14

Now we create a "buffer zone" around the discontinuities: let L be the union
of the C; and all the surrounding cubes at level N. as shown in Figure 4.3.4. As
illustrated by Figure 4.3.5, we can completely surround each C,, using 3" - I
cubes (3" including itself). Since the total volume of all the C, is less thaii
e/3",

vol"(L) < e. 4.3.15
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Moreover, since the length of a side of a cube is 112N, every point of L

is at least 112N away from A.
All that remains is to show that there exists M > N such that if C E Dm

and C ¢ L, then oscc(f) < e. If we can do that, we will have shown that a
decomposition exists at which the total volume of all cubes over which osc(f) >
e is less than e, which is the criterion for integrability given by Theorem 4.3.1.

Suppose no such M exists. Then for every M > N, there is a cube C E DM
and points xM,yj E C with If(xM) - f(yM)I > e.

The xM are a bounded sequence in 1R", so we can extract a subsequence xM,
that converges to some point a. Since (again using the triangle inequality)

If(xM,)-f(a)I+If(a)-f(YM,)I?If(xM,)-f(yMjI>e, 4.3.16

we see that at least one of If(xMi) - f (a) l and If (yM,) - f (a) I does not converge
to 0, so f is not continuous at a, i.e., a E A. But this contradicts the fact that
a is a limit of points outside of L. Since all xM, are at least 112N away from
points of A, a is also at least 1/2N away from points of A.

Corollary 4.3.11. If f is an integrable function on IR", and g is another
bounded function such that f = g except on a set of volume 0, then g is
integrable, and

f Id"xI = J " g Id"xI 4.3.17

Corollary 4.3.12 says that vir-
tually all examples that occur in
"vector calculus" examples are in-
tegrable.

Exercise 4.3.1 asks you to give
an explicit bound for the num-
ber of cubes of DN(IR') needed to
cover the unit circle.

Corollary 4.3.12. Let A C R' be a region bounded by a finite union of
graphs of continuous functions, and let f : A -. IR be continuous. Then the
function f : IR" -. JR that is f (x) for x E A and 0 outside A is integrable.

In particular, the characteristic function of the disk is integrable, since the
disk is bounded by the graphs of the two functions

y=+ a2-1 and y -- x2-1. 4.3.18

4.4 INTEGRATION AND MEASURE ZERO (OPTIONAL)

There is measure in all things.-Horace

We mentioned in Section 4.3 that the criterion for integrability given by
Theorem 4.3.10 is not sharp. It is not necessary that a function (bounded
and with bounded support) be continuous except on a set of volume 0 to be
integrable: it is sufficient that it be continuous except on a set of measure 0.



The nawsure theory approach
to inlegrid ion. Lebesyuc irrlnyrrr-
faotr, is superior to Ricinann in-
tegration front several points of
view. It makes it possible to itile-
grate otherwise unintegra.ble fnnc-
tions. and it is better behaved
Ihati itientnnn integration with re-
spect to limits f = lint f,,. How-
ever. the I usire takes touch longer
to develop and is poorly adapted
to computation. For the kinds
of problems treated in this book.
Riemanu integration is adequate.

Our boxes B, are open rubes.
Hut the theory applies to boxes
B, that have other shapes: Defini-
tion 4.4. 1 works with the B, as ar-
bitrarv sets with well-defined vol-
ume. Exercise 4.4.2 asks you to
show that von ran use balls. and
Exercise 4.4.3 asks you to show
that you cau use arbitrary payable
sets.

Flcuna 4.4.1.
The set X, shown as a heavy

line, is covered by boxes that over-
lap.

We say that the surn of the
lengths is less titan r because some
of the intervals overlap.

The set fi, is interesting in its
own right; Exercise Ala.I explores
sonic of its bizarre properties.
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?Measure theory is a big topic, beyond the scope of this book. Fortunately.
the not ion of measure 0 is touch more aecexsible. ":Measure I)" is a subtle notion
with some bizarre consequences: it gives its a way. for example, of saying that the
rational numbers "don't count." Thus it. allows us to use Riemarm integration to
integrate sonic quite interesting functions, including one we explore in Example

4.4.3 as a reasonable model for space averages in statistical mechanics.
In the definition below, a box B in P:" of side it > 0 will be a cube of the.

form

I x E : P " 1 ( 1 , < X , < o , + b , i = 1 ... ,n}. 4.4.1

There is no requirement that the a, or it be dyadic.

Definition 4.4.1 (Measure 0). A set X E R" has measure 0 if and only
if for every f > 0, there exists an infinite sequence of open boxes Bi such that

X E uBi and vol,, (Bi) < c. 4.4.2

That is, the set. can be contained in a possibly infinite sequence of boxes
(intervals in =., squares in P:2.... ) whose total volume is < epsilon. The crucial
difference between measure and volume is the word infinite in Definition 4.4.1.
A set with volume 0 can be contained in a finite sequence of cubes whose total
volume is arbitrary small. A set with volume 0 necessarily has measure 0, but
it is possible for a set to have measure 0 but not to have a defined volume, as
shown in Example 4.4.2.

We speak of boxes rather than cubes to avoid confusion with the cubes of our
dyadic pavings. In dyadic pavings. we considered "families" of cubes all of the
same size: the cubes at, a particular resolution N. and fitting the dyadic grid.
The boxes B; of Definition 4.4.1 get small as i increases, since their total volume
is less than E. but, it. is not necessarily the case that any particular box is smaller
than the one immediately preceding it. The boxes can overlap, as illustrated in
Figure 4.4.1. and they are not required to square with any particular grid.

Finally, you may have noticed that the boxes in Definition 4.4.2 are open,
while the dyadic cubes of our paving are semi-open. In both cases, this is just
for convenience: the theory could be built just as well with closed cubes and
boxes (see Exercise 4.4.1).

Example 4.4.2 (A set with measure 0, undefined volume). The set
of rational uumbers in the interval 10,1] has measure 0. You can list, them
in order 1.1/2.1/3.2/3. 1/4.2/4.3/4.1/5.... (The list is infinite and includes
some numbers more than once.) Center an open interval of length e/2 at 1, an
open interval of length E/4 at 1/2. an open interval of length f/8 at 1/3, and
so on. Call U, the union of these intervals. The sum of the lengths of these
intervals (i.e.. F volt) will be less than E(1/2+ 1/4 + 1/8 + ...) = e.
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The set of Example 4.4.2 is a
good one to keep in mind while
trying to picture the boxes B
because it helps us to see that
while the sequence B, is made of
B1, B2,..., in order, these boxes
may skip around. The "boxes"
here are the intervals: if B, is cen-
tered at 1/2, then B2 is centered
at 1/3, B3 at 2/3, Ba at 1/4, and
so on. We also see that some boxes
may be contained in others: for
example, depending on the choice
of c, the interval centered at 17/32
may be contained in the interval
centered at 1/2.

Statistical mechanics is an at-
tempt to apply probability theory
to large systems of particles, to
estimate average quantities, like
temperature, pressure, etc., from
the laws of mechanics. Thermo-
dynamics, on the other hand, is
a completely macroscopic theory,
trying to relate the same macro-
scopic quantities (temperature,
pressure, etc.) on a phenomeno-
logical level. Clearly, one hopes to
explain thermodynamics by statis-
tical mechanics.

You can place all the rationals in [0, 1[ in intervals that are infinite in number
but whose total length is arbitrarily small! The set thus has measure 0. However
it does not have a defined volume: if you were to try to measure the volume,
you would fail because you could never divide the interval [0, 1) into intervals
so small that they contain only rational numbers.

We already ran across this set in Example 4.3.3, when we found that we could
not integrate the function that is I at rational numbers in the interval [0, 1[ and
0 elsewhere. This function is discontinuous everywhere; in every interval, no
matter how small, it jumps from 0 to 1 and from 1 to 0. A

In Example 4.4.3 we see a function that looks similar but is very different.
This function is continuous except over a set of measure 0, and thus is inte-
grable. It arises in real life (statistical mechanics, at least).

Example 4.4.3 (An integrable function with discontinuities on a set
of measure 0). The function

if x = 2 is rational, Jxi < 1 and written in lowest terms
f(x) 9 q 4.4.3

0 if x is irrational, or JxJ > 1

is integrable. The function is discontinuous at values of x for which f (x) 34 0.
For instance, f(3/4) = 1/4, while arbitrarily close to 3/4 we have irrational
numbers such that f (x) = 0. But such values form a set of measure 0. The
function is continuous at the irrationals: arbitrarily close to any irrational num-
ber x you will find rational numbers p/q, but you can choose a neighborhood
of x that includes only rational numbers with arbitrarily large denominators q,
so that f (y) will be arbitrarily small. A

The function of Example 4.4.3 is important because it is a model for functions
that show up in an essential way in statistical mechanics (unlike the function
of Example 4.4.2, which, as far as we know, is only a pathological example,
devised to test the limits of mathematical statements).

In statistical mechanics, one tries to describe a system, typically a gas en-
closed in a box, made up of perhaps 102" molecules. Quantities of interest might
be temperature, pressure, concentrations of various chemical compounds, etc.

A state of the system is a specification of the position and velocity of each

molecule (and rotational velocity, vibrational energy, etc., if the molecules have
inner structure); to encode this information one might use a point in some

gadzillion dimensional space.
Mechanics tells us that at the beginning of our experiment, the system is in

some state that evolves according to the laws of physics, "exploring" as time
proceeds some part of the total state space (and exploring it quite fast relative to
our time scale: particles in a gas at room temperature typically travel at several
hundred meters per second, and undergo millions of collisions per second.)
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We discussed Example 4.4.3 to
show that such bizarre functions
can have physical meaning. How-
ever, we do not mean to suggest
that because the rational numbers
have measure 0, trajectories with
rational slopes are never impor-
tant for understanding the evolu-
tion of dynamical systems. On the
contrary: questions of rational vs.
irrational numbers are central to
understanding the intricate inter-
play of chaotic and stable behav-
ior exhibited, for example, by the
lakes of Wade. (For more on this
topic, see J.H. Hubbard, What it
Means to Understand a Differen-
tial Equation, The College Mathe-
matics Journal, Vol. 25, (Nov. 5.
1994), 372-384.)

The guess underlying thermodynamics is that the quantity one measures,
which is really a time average of the quantity as measured along the trajectory
of the system, should be nearly equal in the long run to the average over all

possible states, called the space average. (Of course the "long run" is quite a
short run by our clocks.)

This equality of time averages and space averages is called Boltzmann's er-
godic hypothesis. There aren't many mechanical systems where it is mathemat-
ically proved to be true, but physicists believe that it holds in great generality,
and it is the key hypothesis that connects statistical mechanics to thermody-
namics.

Now what does this have to do with our function f above? Even ifyou believe
that a generic time evolution will explore state space fairly evenly, there will
always be some trajectories that don't. Consider the (considerably simplified)
model of a single particle, moving without friction on a square billiard table,
with ordinary bouncing when it hits an edge (the angle of incidence equal to the
angle of reflection). Then most trajectories will evenly fill up the table, in fact
precisely those that start with irrational slope. But those with rational slopes
emphatically will not: they will form closed trajectories, which will go over and
over the same closed path. Still, as shown in Figure 4.4.2. these closed paths
will visit more and more of the table as the denominator of the slope becomes
large.

FIGURE 4.4.2. The trajectory with slope 2/5, at center, visits more of the square
than the trajectory with slope 1/2, at left. The slope of the trajectory at right closely
approximates an irrational number; if allowed to continue, this trajectory would visit
every part of the square.

Suppose further that the quantity to be observed is some function f on the
table with average 0, which is positive near the center and very negative near
the corners. Moreover, suppose we start our particle at the center of the table
but don't specify its direction. This is some caricature of reality, where in the
laboratory we set up the system in some macroscopic configuration, like having
one gas in half a box and another in another half, and remove the partition.
This corresponds to knowing something about the initial state, but is a very
long way from knowing it exactly.
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Trajectories through the center of the table, and with slope 0, will have
positive time averages, as will trajectories with slope oc. Similarly, we believe

that the average. over time, of each trajectory with rational slope will also be
positive: the trajectory will miss the corners. But trajectories with irrational
slope will have 0 time averages: given enough time these trajectories will visit

each part. of the table equally. And trajectories with rational slopes with large
denominators will have time averages close to 0.

Because the rational numbers have measure 0, their contribution to the av-
erage does not matter; in this case, at least, Boltzmann's ergodic hypothesis
seems correct. L

Theorem 4.4.4 is stronger than
Theorem 4.3.10, since any set of
volume 0 also has measure 0, and
not conversely. It is also stronger
than Theorem 4.3.8.

But it is not stronger than The-
orem 4.3.1. Theorems 4.4.4 and
4.3.1 both give an "if and only if"
condition for integrability; they
are exactly equivalent. But it is of-
ten easier to verify that a function
is integrable using Theorem 4.4.4.
It also makes it clear that whether
or not a function is integrable does
not depend on where a function is
placed on some arbitrary grid.

We prune the list of boxes by
throwing away any box that is con-
tained in an earlier one. We could
prove our result without pruning
the list, but it would make the ar-
gument more cumbersome.

Recall (Definition 4.1.4) that
osca, (f) is the oscillation off over
B,: the difference between the
least upper hound off over B; and
the greatest lower bound of f over
B;.

Integrability of "almost" continuous functions

We are now ready to prove Theorem 4.4.4:

Theorem 4.4.4. A function f : lJP" -* R, bounded and with bounded sup-
port, is integrable if and only if it is continuous except on a set of measure
0.

Proof. Since this is an "if and only if" statement, we must prove both direc-
tions. We will start with the harder one: if a function f : ]i8" -e R, bounded
and with bounded support, is continuous except on a set of measure 0, then it
is integrable. We will use the criterion for integrability given by Theorem 4.3.1;
thus we want to prove that for all e > 0 there exists N such that the cubes
C E VN over which osc(f) > e have a combined volume less than e.

We will denote by A the set of points where f is not continuous, and we will
choose some e > 0 (which will remain fixed for the duration of the proof). By
Definition 4.4.1 of measure 0, there exists a sequence of boxes B, such that

AEUB; and rvol"B;<e, 4.4.4

and no box is contained in any other.

The proof is fairly involved. First, we want to get rid of infinity.

Lemma 4.4.5. There are only finitely many boxes B, on which oscoi (f) > e.

We will denote such boxes B;, and denote by L the union of the B,,.

Proof of Lemma 4.4.5. We will prove Lemma 4.4.5 by contradiction. Assume
it is false. Then there exist an infinite subsequence of boxes B;,, and two infinite
sequences of points, xj,y3 E B,, such that If(xj) - f(yj)I > f.

The sequence x, is bounded, since the support of f is bounded and xj is
in the support of f. So (by Theorem 1.6.2) it has a convergent subsequence
x3£ converging to some point p. Since If(xi) - f(yj)l - 0 as j - no, the
subsequence yj,, also converges to p.
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FIGURE 4.4.3.
The collection of boxes cover-

ing A is lightly shaded; those with
osc > e are shaded slightly darker.
A convergent subsequence of those
is shaded darker yet: the point p
to which they converge must be-
long to some box.

You may ask, how do we know
they converge to the same point?
Because XN,,YN,, and zN, are all
in the same cube, which is shrink-
ing to a point as N -+ co.

The boxes B; making up L are
in R", so the complement of L is
1B" - L. Recall (Definition 1.5.4)
that a closed set C c III" is a set
whose complement R"-C is open.

The point p has to be in a particular box, which we will call B. (Since the
boxes can overlap, it could be in more than one, but we just need one.) Since
xjk and yj,, converge to p, and since the B,, get small as j gets big (their total
volume being less than e), then all B;., after a certain point will be contained
in Bp. But this contradicts our assumption that we had pruned our list of
B, so that no one box was contained in any other. Therefore Lemma 4.4.5 is
correct: there are only finitely many Bi on which osc8, f > e. (Our indices
have proliferated in an unpleasant fashion. As illustrated in Figure 4.4.3, B;
are the sequences of boxes that cover 0, i.e., the set of discontinuities; B;,
are those B,'s where osc > e; and B,,, are those B;,'s that form a convergent
subsequence.)

Now we assert that if we use dyadic pavings to pave the support of our
function f, then:

Lemma 4.4.6. There exists N such that if C E VN(W') and osco f > e, then
Cc L.

That is, we assert that f can have osc > e only over C's that are in L.
If we prove this, we will be finished, because by Theorem 4.3.1, a bounded
function with bounded support is integrable if there exists an N at which the
total volume of cubes with osc > e is less than e. We know that L is a finite
set of B,, and (Equation 4.4.4) that the B, have total volume :5E.

To prove Lemma 4.4.6, we will again argue by contradiction. Suppose the
lemma is false. Then for every N, there exists a CN nota subset of L such that
oscCN f > e. In other words,

3 points XN,YN,ZN in CN, with zN if L, and If(xN) - f(YN)I > e. 4.4.5

Since xN, yN, and ZN are infinite sequences (for N = 1, 2, ... ), then there
exist convergent subsequences xN,,yN, and zNi, all converging to the same
point, which we will call q.

What do we know about q?

q E 0: i.e., it is a discontinuity of f. (No matter how close xN, and yN,
get to q, If(xN,) - f (YN,)I > e.) Therefore (since all the discontinuities of the
function are contained in the B,.), it is in some box B,, which we'll call Bq.

q V L. (The set L is open, so its complement is closed; since no point of
the sequence zN, is in L, its limit, q, is not in L either.)

Since q E B., and q f L, we know that B. is not one of the boxes with
osc > e. But that isn't true, because xN, and lN, are in B. for Ni large
enough, so that oscB, f < e contradicts If (xN,) - f(yN,)I > E.

Therefore, we have proved Lemma 4.4.6, which, as we mentioned above,
means that we have proved Theorem 4.4.4 in one direction: if a bounded func-
tion with bounded support is continuous except on a set of measure 0, then it
is integrable.
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Now we need to prove the other direction: if a function f : lR" -+ Ill', bounded
and with bounded support, is integrable, then it is continuous except on a set of
measure 0. This is easier, but the fact that we chose our dyadic cubes half-open,
and our boxes open, introduces a little complication.

Since f is integrable, we know (Theorem 4.3.1) that for any e > 0, there

---- r exists N such that the finite union of cubes

t Iip ,

FtcuRE 4.4.4.
The function that is identically

1 on the indicated dyadic cube and
0 elsewhere is discontinuous on
the boundary of the dyadic cube.
For instance, the function is 0 on
one of the indicated sequences of
points, but its value at the limit
is 1. This point is in the interior
of the shaded cube of the dotted
grid.

Definition 4.4.1 specifies that
the boxes B, are open. Equa-
tion 4.1.13 defining dyadic cubes
shows that they are half-open: x,
is greater than or equal to one
amount, but strictly less than an-
other:

2 <x,<k2Nl

{CEDN(IR")Ioscc(f)>t} 4.4.6

has total volume less than e.
Apply Equation 4.4.6, setting e1 = 6/4, with b > 0. Let Civ, be the finite

collection of cubes C E DN,(R") with oscc f > 6/4. These cubes have total
volume less than 6/4. Now we set e2 = 6/8, and let CN5 be the finite collection
of cubes C E DN2 (IR") with oscc f > 6/8; these cubes have total volume less
than 6/8. Continue with e3 = 3/16, ... .

Finally, consider the infinite sequence of open boxes Bt, B2, ... obtained by
listing first the interiors of the elements of CN then those of the elements of
CN2, etc.

This almost solves our problem: the total volume of our sequence of boxes
is at most 3/4 + 3/8 + . = 3/2. The problem is that discontinuities on the
boundary of dyadic cubes may go undetected by oscillation on dyadic cubes:
as shown in Figure 4.4.4, the value of the function over one cube could be 0,
and the value over an adjacent cube could be 1; in each case the oscillation over
the cube would be 0, but the function would be discontinuous at points on the
border between the two cubes.

To deal with this, we simply shift our cubes by an irrational amount, as
shown to the right of Figure 4.4.4, and repeat the above process.

To do this, we set

f (x) = f (x - a), where a = 4.4.7

(We could translate x by any number with irrational entries, or indeed by a
rational like 1/3.) Repeat the argument, to find a sequence B1, B2,....

Now translate these back: set

B;=Ix -aaxEBi}- 4.4.8

Now we claim that the sequence B1, Bi, B2, B2, ... solves our problem. We
have

6 6 6vol"(Bi)+vol"(B2)+... < 4+8+-.. = Z, 4.4.9

so the total of volume of the sequence B1, Bi, B2, B2, .. , is less than 3.
Now we need to show that f is continuous on the complement of

BI UBiUB2UB2,U..., 4.4.10
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The expression on the left-hand
side of Equation 4.5.1 doesn't
specify the order in which the vari-
ables are taken, so the iterated in-
tegral on the right could be writ-
ten in any order: we could inte-
grate first with respect to x", or
any other variable, rather than x1.
This is important for both theo-
retical and computational uses of
Fubini's theorem.

i.e., on 1F" minus the union of the B, and B. Indeed, if x is a point where f
is not continuous, then at least one of x and x' = x + a is in the interior of a
dyadic cube.

Suppose that the first is the case. Then there exists Nk and a sequence x,
converging to x so that l f (x;) - f (x) I > 6/21+NN for all i; in particular, that
cube will be in the set CNN, and x will be in one of the B,.

If x is not in the interior of a dyadic cube, then i is a point of discontinuity
of f , and the same argument applies.

4.5 FUBINI'S THEOREM AND ITERATED INTEGRALS

We now know-in principle, at least-how to determine whether a function is
integrable. Assuming it is, how do we go about integrating it? FLbini's theorem
allows us to compute multiple integrals by hand, or at least reduce them to the
computation of one-dimensional integrals. It asserts that if f : IF" -. R is
integrable, then

L f I d"x,

xl
1f dxl I...) dx". 4.5.1

x" /
That is, first we hold the variables x2 ... x" constant and integrate with

respect to x1; then we integrate the resulting (no doubt complicated) function
with respect to z2, and so on.

Remark. The above statement is not quite correct, because some of the func-
tions in parentheses on the right-hand side of Equation 4.5.1 may not be inte-
grable; this problem is discussed (Example A13.1) in Appendix. A13. We state
Fllbini's theorem correctly at the end of this section. For now, just assume that
we are in the (common) situation where the above statement works. A

In practice, the main difficulty in setting up a multiple integral as an iterated
one-dimensional integral is dealing with the "boundary" of the region over which
we wish to integrate the function. We tried to sweep difficulties like the fractal
coastline of Britain under the rug by choosing to integrate over all of R", but of
course those difficulties are still there. This is where we have to come to terms
with them: we have to figure out the upper and lower limits of the integrals.

If the domain of integration looks like the coastline of Britain, it is not
at all obvious how to go about this. For domains of integration bounded by
smooth curves and surfaces, formulas exist in many cases that are of interest
(particularly during calculus exams), but this is still the part that gives students
the most trouble.

Before computing any multiple integrals, let's see how to set them up. While
a multiple integral is computed from inside out- first with respect to the vari-
able in the inner parentheses-we recommend setting up the problem from
outside in, as shown in Examples 4.5.1 and 4.5.2.
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By "integrate over the triangle"
we mean that we imagine that the
function f is defined by some for-
mula inside the triangle, and out-
side the triangle f = 0.

2

FIGURE 4.5.1.

Example 4.5.1 (Setting up multiple integrals: an easy example). Sup-
pose we want to integrate a function f (y) over the triangle

T_{(y)EEk210<2x<y<2} 4.5.2

shown in Figure 4.5.1. This triangle is the intersection of the three regions (in
this case, half-planes) defined by the three inequalities 0 < x, 2x <_ y, and y 5
2.

Say we want to integrate first with respect to y. We set up the integral as
follows, temporarily omitting the limits of integration:

JJf (y)dxdy=f
(J

fdyldx. 4.5.3

R2
i

(We just write f for the function, as we don't want to complicate issues by
specifying a particular function.) Starting with the outer integral-thinking
first about x-we hold a pencil parallel to the y-axis and roll it over the triangle
from left to right. We see that the triangle (the domain of integration) starts
at x = 0 and ends at x = 1, so we write in those limits:

f1( fdy) dx. 4.5.4

The triangle defined by Equa- Once more we roll the pencil from x = 0 to x = 1, this time asking ourselves
tion 4.5.2. what are the upper and lower values of y for each value of x? The upper value

is always y = 2. The lower value is given by the intersection of the pencil with
the hypotenuse of the triangle, which lies on the line y = 2x. Therefore the
lower value is y = 2x, and we have

t z

1(1 f dy) dx.
o z

If we want to start by integrating f with respect to x, we write

B) d. dy = c
J

(f f dx/ 1 dv,JJ f (y

4.5.5

4.5.6

and, again starting with the outer integral, we hold our pencil parallel to the
x-axis and roll it from the bottom of the triangle to the top, from y = 0 to
y = 2. As we roll the pencil, we ask what are the lower and upper values of x
for each value of y. The lower value is always x = 0, and the upper value is set
by the hypotenuse, but we express it now in terms ofx, getting x = y/2. This
gives us

f2 (Z'
\J

fdx)dy. 4.5.7
o o
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Now suppose we are integrating over only part of the triangle, as shown in
Figure 4.5.2. What limits do we put in the expression f (f f dy) dx? 'IYy it
yourself before checking the answer in the footnote.4 ILN

Example 4.5.2 (Setting up multiple integrals: a somewhat harder

example). Now let's integrate an unspecified function f (N) over the area

bordered on the top by the parabolas y = x2 and y = (x - 2)2 and on the
bottom by the straight lines y = -x and y = x - 2, as shown in Figure 4.5.3.

Let's start again by sweeping our pencil from left to right, which corresponds
to the outer integral being with respect to x. The limits for the outer integral

ngare clearly x = 0 and x = 2, givi
/ // / \

FIGURE 4.5.2. J21J fdyldx. 4.5.8

The shaded area represents a
truncated part of the triangle of As we sweep our pencil from left to right, we see that the lower limit for y
Figure 4.5.1 is set by the straight line y = -x, and the upper limit by the parabola y = x2

so we are tempted to write

FIGURE 4.5.3.
The region of integration for

Example 4.5.2.

f.2( xZ f \j dyldx. 4.5.9
x

But once our pencil arrives at x = 1, we have a problem. The lower limit
is now set by the straight line y = x - 2, and the upper limit by the parabola
y = (x - 2)2. How can we express this? Try it yourself before looking at the
answer in the footnote below.' A

Exercise 4.5.2 asks you to set up the multiple integral for Example 4.5.2 when
the outer integral is with respect to y. Exercise 4.5.3 asks you to set up the
multiple integral f (f f dx) dy for the truncated triangle shown in Figure 4.5.2.
In both cases the answer will be a sum of integrals.

Example 4.5.3 (A multiple integral in IR3). As you might imagine, already
in IR3 this kind of visualization becomes much harder. Here is an unrealistically

4When the domain of integration is the truncated triangle in Figure 4.5.2, the
integral is written

Jos ( 2 f ) dx.

In the other direction writing the integral is harder; we will return to it in Exercise
4.5.3.

'We need to break up this integral into a sum of integrals:

r:2 2 (:-2)
f (j= fdy dx+ J j_2 fdy dx.

Exercise 4.5.1 asks you to justify our ignoring that we have counted the line x = 1
twice.
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X

x+y=1-z

FIGURE 4.5.4.
Tbp: The pyramid over which we
are integrating in Example 4.5.3.
Middle: The same pyramid, trun-
cated at height z. Bottom: The
plane at height z shown in the
middle figure, put flat.
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simple example. Suppose we want to integrate a function over the pyramid P
shown in the top of Figure 4.5.4, and given by the formula

Is
P=

l
y EIIi31 0<x;0<y;0<z;x+y+z<1 4.5.10
zl 1J

We want to figure out the limits of integration for the multiple integral

11])dxdydz=1(1(1 fdx)dy)dz. 4.5.11
1f\I z

There are six ways of applying Fubini's theorem, which in this case because of
the symmetries will result in the same expressions with the variables permuted.

Let us think of varying z first, for instance by lifting a piece of paper and
seeing how it intersects the pyramid at various heights. Clearly the paper will
only intersect the pyramid when its height is between 0 and 1. This leads to
writing

1'a )dz 4.5.12

where the space needs be filled in by the double integral of f over the part of
the pyramid P at height z, pictured in the middle of Figure 4.5.4, and again at
the bottom, this time drawn flat.

This time we are integrating over a triangle (which depends on z), just as in
Example 4.5.1. Let us think of varying y next (it could just as well have been
x), (rolling a horizontal pencil up); clearly the relevant y-values are between 0
and 1 - z, which leads us to write

11(.1'0 0
) dy) dz 4.5.13

where now the space represents the integral over part of the horizontal line
segment at height z and "depth" y (if depth is the name of the y coordinate).
These x-values are those between 0 and I - z - y, so finally the integral is

1 1-x I-y-z r(' xf (f fI Lz]1 dx+dy)dz 4.5.14

Now let's actually compute a few multiple integrals.

Example 4.5.4 (Computing a multiple integral). Suppose we have a
function f (y) = xy defined on the unit square, as shown in Figure 4.5.5.
Then



In Equation 4.5.15, recall that
to compute

ffx2yx=1

L2Jx=o

we evaluate x'y/2 at both x = 1

and x = 0, subtracting the second

from the first.

I

FIGURE 4.5.5.
The integral in Equation 4.5.15

is 1/4: the volume under the sur-

face defined by f \ U I = xy, and

above the unit square, is 1/4.

FIGURE 4.5.6.
The triangle of Example 4.5.5.
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1f1

xydxldyrJff (x) dxdy=J I/
y o o

32
4.5.15

I z 1lx=1 I

= f (= yJ dy= f ydy= IA
2 x=o 0 2

In Example 4.5.4 it is clear that we could have taken the integral in the
opposite order and found the same result, since our function is f (1y) = xy,
and xy = yx. Fubini's theorem says that this is always true as long as the
functions involved are integrable. This fact can be useful; sometimes a multiple
integral can be computed in elementary terms when written in one direction,
but not in the other, as you will see in Example 4.5.5. It may also be easier
to determine the limits of integration if the problem is set up in one direction
rather than another, as we already saw in the case of the truncated triangle
shown in Figure 4.5.2.

Example 4.5.5 (Choose the easy direction). Let us integrate the function
e-v' over the triangle shown in Figure 4.5.6:

T={(y) EIR2I0<x<y<1}. 4.5.16

Fubini's theorem gives us two ways of writing this integral as an iterated one-
dimensional integral:

I \ I/ ve-v2dx\
(1)

f' (f%_.2
dy I dx and (2) f i f dy. 4.5.17!

The first cannot be computed in elementary terms, since e -Y' does not have
an elementary anti-derivative.

But the second can:

ft( Y xdx)\dy I sdy
[e-\f e-v = f ye-d = -2 d to = 2 (1- eJ. E 4.5.18

Older textbooks contain many examples of this sort of computational mira-
cle. We are not sure the phenomenon was ever very important, but today it is
sounder to take a serious interest in the numerical theory, and go lightly over
computational tricks, which do not work in any great generality in any case.

Example 4.5.6 (Volume of a ball I. R"). Let BR(0) be the ball of radius
R in Rn, centered at 0, and let b"(R) be its volume. Clearly b"(R) = R"b"(1).
We will denote b,(1) = Q" the volume of the unit ball.



You should learn how to han-
dle simple examples using Fubini's
theorem, and you should learn
some of the standard tricks that
work in some more complicated
situations; these will be handy on
exams, particularly in physics and
engineering classes. But in real life
you are likely to come across nas-
tier problems, which even a profes-
sional mathematician would have
trouble solving "by hand"; most
often you will want to use a com-
puter to compute integrals for you.
We discuss numerical methods of
computing integrals in Section 4.6.

The ball Bl (0) is the ball of
radius 1 in 11£", centered at the

origin;

Bn-' (0)
2

is the ball of radius 1 - xn in
R"'t still centered at the origin.

In the first line of Equation
4.5.19 we imagine slicing the n-
dimensional ball horizontally and
computing the n - 1)-dimensional
volume of each slice.
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By Fubini's theorem,
(,, ._ I)-dimensinnal vol.
of one slice of B,"(n)

!3n = J Id"xl _ f I Idn-Ixl dx,,r B (e) 1 B ((1)

ol of
unit ball in $"

,-t
= J bn_l (VI dxn = I (1 xj) 3n_] dxn

-------- J t r
vol. ball of radius

r"- t vola lids lof

-1V,11 _-2 in P, m

1 _t

Qn_1 I (1-x2) dxn.

vol. of unit
ball in .l$" -

4.5.19

This reduces the computation of bn to computing the integral

cn=
1

" -7- 4.5.20
J

(1-t2) 1

This is a standard tricky problem from one-variable calculus: Exercise 4.5.4,
(a) asks you to show that

Cn = nnII
Cn-2, for n > 2. 4.5.21

n
So if we can compute co and el, we can compute all the other cn. Exercise
4.5.4, (b) asks you to show that co = >r and cl = 2 (the second is pretty easy).

7b C
>t=1 ,

n n n-2
Volume off07 il
On = c. 1

0 7r

1 2 2

2 2 it

3 ° "'r
3 3

4 3x x
8 2

5 16 W
15 1s

FIGURE 4.5.7. Computing the volume of a ball in IF' through R'.



FIGURE 4.5.8.
Choosing a random parallelo-

gram: one dart lands at I x' J ,
/ \ \y1

the other at Yz

Remember that in R2, the de-
terminant is

1det [x' x21 = xly2 - x2y,.
Ly1 y2

We have d2x and d2y because
x and y have two coordinates:

d2x = dx,dxz and d2y = dyldyz.

Saying that we are choosing our
points at random in the square

means that our density of proba-

bility for each dart is the charac-

teristic function of the square.

An integrand is what comes af-
ter an integral sign: for f xdx,
the integrand is x dx. In Equation
4.5.24, the integrand for the inner-
most integral is 1x1 y2 -xzyiIdyz;
the integrand for the integral im-
mediately to the left of the inner-
most integral is

J
Ix1y2 -x2yiIdy2) dx2.

0
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This allows us to make the table of Figure 4.5.7. It is easy to continue the
table (what is 86? Check below.') If you enjoy inductive proofs, you might try
Exercise 4.5.5, which asks you to show that

7rk irk k! 22k+1
02k = V and #2k+1 =

(2k + 1)!
. 0 4.5.22

Computing probabilities using integrals

As we mentioned in Section 4.1, an important use of integrals is in computing
probabilities.

Example 4.5.7 (Using Fubini to compute a probability). Choose at
random two pairs of positive numbers between 0 and 1 and use those numbers
as the coordinates (x1,yl), (X2, Y2) of two vectors anchored at the origin, as
shown in Figure 4.5.8. (You might imagine throwing a dart at the unit square.)
What is the expected (average) area of the parallelogram spanned by those
vectors? In other words, what is the expected value of the absolute value of the
determinant?

This average is

f Ixiy- ylx2 IId2xIId2y6
det

4.5.23

where C is the unit cube in ]124. (Each possible parallelogram corresponds
to two points in the unit square, each with two coordinates, so each point in
C E ]R corresponds to one parallelogram.) Our computation will be simpler if
we consider only the cases x1 > y1; i.e., we assume that our first dart lands below
the diagonal of the square. Since the diagonal divides the square symmetrically,
the cases where the first dart lands below the diagonal and the cases where it
lands above contribute the same amount to the integral. Thus we want to
compute twice the quadruple integral

1JxiJo Jo

1X1 Y2 -x2y1 I dye dx2 dyl dx1. 4.5.24

(Note that the integral fo' goes with dyi: the innermost integral goes with the
innermost integrand, and so on. The second integral is fo' because yi 5 x1.)

Now we would like to get rid of the absolute values, by considering separately
the case where det = xly2 - x2y1 is negative, and the case where it is positive.
Observe that when y2 < ylx2/xl, the determinant is negative, whereas when
y2 > ylx2/x1 it is positive. Another way to say this is that on one side of the

a C4 So #6 = C,6166 = W3
48 1 .
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FIGURE 4.5.9.
The arrow represents the first

dart. If the second dart (with
coordinates x2, 112) lands in the
shaded area, the determinant will
be negative. Otherwise it will be
positive.

X2 x2

FIGURE 4.5.10.

If we had not restricted the first
dart to below the diagonal, then
for values of x2 to the left of the
vertical dotted line, the sign of the
determinant would depend on the
value of 112. For values of x2 to the
right of the vertical dotted line,
the determinant would be negative
for all values of y2.

line yz = =;x2 (the shaded side in Figure 4.5.9) the determinant is negative,

and on the other side it is positive.
Since we have assumed that the first dart lands below the diagonal of the

square, then whatever the value of x2, when we integrate with respect to 112,
we will have two choices: if 112 is in the shaded part, the determinant will be
negative; otherwise it will be positive. So we break up the innermost integral
into two parts:

(Yix2)/x1 1f (x2111-x1112)d112+f (x1112-x2y1)d112
0

dx2 dy1 dxl.

4.5.25
(If we had not restricted the first dart to below the diagonal, we would have

the situation of Figure 4.5.10, and our integral would be a bit more compli-
cated.')

The rest of the computation is a matter of carefully computing four ordinary
integrals, keeping straight what is constant and what is the variable of integra-
tion at each step. First we compute the inner integral, with respect to 112. The
first term gives

eval. at
Ill=YI x2 /x1

z V1 -2/21
x2 x2 1 11IX2

evil. at Y2=0
1 11i?2

1x2111112 - xl2
XI

- 2x1 x2 + 0 - 2 x10 1

The second gives

evil. at Y2=1 evil. at Y2=Y1x2/xI

rx1112 1

_ (x xl?/2 2 _ xzyixzI 2 - x21111121v1::/x1 = l 2 -x2111) -
""( 2x1

xl ) 4.5.26

L = 2 -x2111+ 2x
1

Continuing with Equation 4.5.25, we get

71n that case we would write

/v / (vix2)/x1 1)/'

I`

/p r
J J 1 (12111-xIy2)dY2+/ (x1112-x2y1)dy2 dx2

01 01 0=i

0 (v1-2)/s1

+ f 1 f 1(x2yI - x1112) dy2J dx2) dyldxl.
I/vi

The first integral with respect to x2 corresponds to values of x2 to the left of the

vertical dotted line in Figure 4.5.10; the second corresponds to values of x2 to the

right of that line. Exercise 4.5.7 asks you to compute the integral this way.
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What if we choose at random
three vectors in the unit cube?
Then we would be integrating over
a nine-dimensional cube. Daunted
by such an integral, we might be
tempted to use a Riemann sum.
But even if we used a rather coarse
decomposition the computation is
forbidding. Say we divide each
side into 10, choosing (for exam-
ple) the midpoint of each mini-
cube. We turn the nine coordi-
nates of that point into a 3 x 3
matrix and compute its determi-
nant. That gives 10s determi-
nants to compute-a billion deter-
minants, each requiring 18 multi-
plications and five additions.

Go up one more dimension and
the computation is really out of
hand. Yet physicists like Nobel
laureate Kenneth Wilson routinely
work with integrals in dimensions
of thousands or more. Actually
carrying out the computations is
clearly impossible. The technique
most often used is a sophisticated
version of throwing dice, known as
Monte Carlo integration. It is dis-
cussed in Section 4.6.

1 x, 1 (Yt Ta)/T, 1

f0 f f
J

(xzyi-xlyz)dyz+J (xlyz-x2Y1)dY22dYtdxl,
0 0 0 ('y112)/x,

J 1 f f I x1 - x2 1 + x2 Y1 dxz dyl dxt= '
0 0 0\ 2 x1 J

,moo

1 xl
x1 _ Y1 + yi d 1 dxl = 1 x1 _ x1 + x1 dx1

2 2 3x1) y Jp (2 4 9)
1f

3 7Y1°il
L -yj9+j

y,=o

_13 z _13 13
4.5.2736 x1 36[3] 108

So the expected area is twice 13/108, i.e., 13/54, or slightly less than 1/4.

Stating Fubini's theorem more precisely

We will now give a precise statement of Fubini's theorem. The statement is
not as strong as what we prove in Appendix A.13, but it keeps the statement
simpler.

Theorem 4.5.8 (Fubini's theorem). Let f be an integrable function on
R' x R'n, and suppose that for each x E R' , the function y s-' f (x, y) is
integrable. Then the function

XI-4,(- f(x,y)Jd"`yJ

is integrable, and

r
Jl +m

f(x,y)Jd`xud"y) = i* (I (x,y)IdnyI) Idnx,.

4.6 NUMERICAL METHODS OF INTEGRATION

In a great many cases, Fubini's theorem does not lead to expressions that can
be calculated in closed form, and integrals must be computed numerically.
In one dimension, this subject has been extensively investigated, and there is
an enormous literature on the subject. In higher dimensions, the literature is
still extensive but the field is not nearly so well known. We will begin with a
reminder about the one-dimensional case.
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Our late colleague Milton
Abramowitz used to say-some-
what in jest-that 95 percent of all
practical work in numerical analy-
sis boiled down to applications of
Simpson's rule and linear interpo-
lation.

-Philip J. Davis and Philip Ra-
binowitz, Methods of Numerical
Integration, p. 45

Here in speaking of weights
starting and ending with 1, and so
forth, we are omitting the factor
of (b - a)/6n.

Why do we multiply by (b -
a)/6n? Think of the integral as

the sum of the area of n "rectan-

gles," each with width (b - a)/n-

i.e., the total length divided by the
number of "rectangles". Multiply-
ing by (b - a)/n gives the width

of each rectangle. The height of
each "rectangle" should be some
sort of average of the value of the

function over the interval, but in

fact we have weighted that value

by 6. Dividing by 6 corrects for

that weight.

One-dimensional integrals

In first year calculus you probably heard of the trapezoidal rule and of Simpson's
rule for computing ordinary integrals (and quite likely you've forgotten them
too). The trapezoidal rule is not of much practical interest, but Simpson's
rule is probably good enough for anything you will need unless you become an
engineer or physicist. In it, the function is sampled at regular intervals and
different "weights" are assigned the samples.

Definition 4.6.1 (Simpson's rule). Let f be a function on [a, b], choose an
integer n, and sample fat 2n + 1 equally distributed points, x0, x1, , x2n,
where xo = a and x2n = b. Then Simpson's approximation to

b

f (x) dx inn steps is
a

b-a
a,bl(f) = -6n-( f(xo)+4f(x1)+2f(x2)+4f(x3)+...+4f(x2n-l)+.f(x2n)).

For example, if n = 3, a = -1 and b = 1, then we divide the interval [-1, 1]
into six equal parts and compute

9 (f(-1)+4f(-2/3)+2f(-1/3)+4f(0)+2f(1/3)+4f(2/3) +f(1)). 4.6.1

Why do the weights start and end with 1, and alternate between 4 and 2 for
the intermediate samples? As shown in Figure 4.6.1, the pattern of weights is
not 1, 4,2,._4, 1 but 1, 4,1: each 1 that is not an endpoint is counted twice,
so it becomes the number 2. We are actually breaking up the interval into n
subintervals, and integrating the function overr each subpiece

J b f (x) dx = 1=1 f(x) dx +
f

a f (x) dx + .... 4.6.2
a 2

Each of these n sub-integrals is computed by sampling the function at the
beginning point and endpoint of the subpiece (with weight 1) and at the center
of the subpiece (with weight 4), giving a total of 6.

Theorem 4.6.2 (Simpson's rule). (a) If f is a piecewise cubic function,
exactly equal to a cubic polynomial on the intervals [x2,, x2i+21, then Simp-
son's rule computes the integral exactly.

(b) If a function f is four times continuously differentiable, then there
exists c E (a, b) such that

5

Slo.bl(f) - f f(x)dx = 2880n4 f(4) (C). 4.6.3
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Theorem 4.6.2 tells when Simp-
son's rule computes the integral
exactly, and when it gives an ap-
proximation.

Simpson's rule is a fourth-order
method; the error (if f is suffi-
ciently differentiable) is of order
h4, where h is the step size.

By cubic polynomial we mean
polynomials of degree up to and
including 3: constant functions,
linear functions, quadratic polyno-
mials and cubic polynomials.

If we can split the domain of
integration into smaller intervals
such that a function f is exactly
equivalent to a cubic polynomial
over each interval, then Simpson's
rule will compute the integral of f
exactly.

2nd piece

a 1 4 I

l 4 I

Ist piece

1 4 1

nth piece

FIGURE 4.6.1. To compute the integral of a function f over [a, b), Simpson's rule
breaks the interval into n pieces. Within each piece, the function is evaluated at
the beginning, the midpoint, and the endpoint, with weight 1 for the beginning and
endpoint, and weight 4 for the midpoint. The endpoint of one interval is the beginning
point of the next, so it is counted twice and gets weight 2. At the end, the result is
multiplied by (b - a)/6n.

Proof. Figure 4.6.2 proves part (a); in it, we compute the integral for constant,
linear, quadratic, and cubic functions, over the interval [-1, 1J, with n = 1.
Simpson's rule gives the same result as computing the integral directly.

Simpson's rule Integration

Function 1/3(f(-1)+4(f(0))+f(1)) f 'I f(x)dx

f(x)=1 1/3(1+4+1)=2 2

AX) = x 0 0

f(x)=x2 1/3(1+0+1)=2/3 flIx2dx=2/3

f (X) = x3 0 0

FIGURE 4.6.2. Using Simpson's rule to integrate a cubic function gives the exact

answer.

A proof of part (b) is sketched in Exercise 4.6.8.
Of course, you don't often encounter in real life a piecewise cubic polynomial

(the exception being computer graphics). Usually, Simpson's method is used
to approximate integrals, not to compute them exactly.

Example 4.6.3 (Approximating integrals with Simpson's rule). Use
'Simpson s rule with n = 100 to compute

l dx = log4 = 21og 2,
t xI' 4.6.4
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In the world of computer
graphics, piecewise cubic polyno-
mials are everywhere. When you
construct a smooth curve using a
drawing program, what the com-
puter is actually making is a piece-
wise cubic curve, usually using the
Bezier algorithm for cubic interpo-
lation. The curves drawn this way
are known as cubic splines.

When first drawing curves with
such a program it comes as a sur-
prise how few control points are
needed.

which is infinitely differentiable. Since
f(4) = 24/x5, which is largest at x = 1,

Theorem 4.6.2 asserts that the result will be correct to within

24.35 = 2.025. 10-8
2880. 1004

so at least seven decimals will be correct. A

4.6.5

By "normalize" we mean that
we choose a definite domain of in-
tegration rather than an interval
[a, b]; the domain [-1,1] allows us
to take advantage of even and odd
properties.

In Equation 4.6.7 we are inte-
grating f ' l x' dx for n from 0 to
3, using

I1 X.
dx

(0 ifnisoddSl t
1 ,i+1 if n is even.

The integral of Example 4.6.3 can be approximated to the same precision
with far fewer evaluations, using Gaussian rules.

Gaussian rules

Simpson's rule integrates cubic polynomials exactly. Gaussian rules are de-
signed to integrate higher degree polynomials exactly with the smallest number
of function evaluations possible. Let us normalize the problem as follows,
integrating from -1 to 1:

Find points x l, ... , xm and weights w1..... w,,, with m as small as possible
so that, for all polynomials p of degree < d,

f 1P(x)dx=Fwip(xi) 4.6.6
1 i=1

We will require that the points x, satisfy -1 < xi < 1 and that wi > 0 for all i.
Think first of how many unknowns we have, and how many equations: the

requirement of Equation 4.6.6 for each of the polynomials 1 , x, ... , xd give d+ 1
equations for the 2m unknowns x 1, ... xm, wl , ... , wm, so we can reasonably
hope that the equations might have a solution when 2m > d + 1.

Example 4.6.4 (Gaussian rules). The simplest case (already interesting) is
when d = 3 and m = 2. Showing that this integral is exact for polynomials of
degree < 3 amounts to the four equations

for f=1 wl + w2=2
for f(x) = x wlx1 + w2x2 = 0

for f(x) = x2 wlx1 + w2x2 =
3

4.6.7

for f(x) = x3 wlx + w2xz = 0

This is a system of four nonlinear equations in four unknowns, and it looks
intractable, but in this case it is fairly easy to solve by hand: first, observe that
if we set xl = -x2 = x > 0 and w1 = w2 = w, making the formula symmet-
ric around the origin, then the second and fourth equations are automatically
satisfied, and the other two become

2w = 2 and 2wx2 = 2/3,

i.e.,w=1and x=1/f. A

4.6.8
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Exercises 4.6.4 and 4.6.5 invite
you to explore how Gaussian in-

tegration can be adapted to such

integrals.

We say that Newton's method
works "reasonably" well because
you need to start with a fairly
good initial guess in order for the
procedure to converge; some ex-
periments are suggested in Exer-
cise 4.6.2.

Remark. This means that whenever we have a piecewise cubic polynomial
function, we can integrate it exactly by sampling it at two points per piece.
For a piece corresponding to the interval [-1, 11, the samples should be taken
at -1/f and I/1, with equal weights. Exercise 4.6.3 asks you to say where
the samples should be taken for a piece corresponding to an arbitrary interval
[a, 6J. o

If m = 2k is even, we can do something similar, making the formula symmet-
ric about the origin and considering only the integral from 0 to 1. This allows
us to cut the number of variables in half; instead of 4k variables (2k w's and
2k x's), we have 2k variables. We then consider the system of 2k equations

wlx1 +w2x2+ +wkxk =
3

4.6.9

4k-2 4k-2 4k-2 = Iwlx1 +"x 2 + +wkxk
4k - 1If

this system has a solution, then the corresponding integration rule gives

the approximation

J-1f(x)dx^. E w+(f(xi)+f(-xa)), 4.6.10
i=-k

and this formula will be exact for all polynomials of degree < 2k - 1.
A lot is known about solving the system of Equation 4.6.9. The principal

theorem states that there is a unique solution to the equations with 0 < xl <
< xk < 1, and that then all the wi are positive. The main tool is the theory

of orthogonal polynomials, which we don't discuss in this volume. Another
approach is to use Newton's method, which works reasonably well fork < 6 (as
far as we have looked).

Gaussian rules are well adapted to problems where we need to integrate
functions with a particular weight, such as

1
(x)f(x)e-z dx or

f
dx. 4.6.11

o _t 1-x
Exercises 4.6.4 and 4.6.5 explore how to choose the sampling points and the
weights in such settings.

Product rules

Every one-dimensional integration rule has a higher-dimensional counterpart,
called a product rule. If the rule in one dimension is

6 k

f f(x)dx.'zz%>wif(pi), 4.6.12
i=1
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f f id"xI E .. . wi^

then the corresponding rule in n dimensions is

/rb l (/'b l
///((''

f(x) Id"xI = J f1(xI)dxi I ... I
J fn(xn)dxnlfa.b]" a

=

The following proposition shows why product rules are a useful way of adapt-

ing one-dimensional integration rules to several variables.

Proposition 4.6.5 (Product rules). If fl, ... , f" are functions that are
integrated exactly by an integration rule:

b

1 ff(x)dx=F_tuifj(xi) forj=l,...,n, 4.6.14
a

then the product

f(x)
d

rf1(x1)f2(x2)...fn(xn) 4.6.15e

1 4 2 4 ... 4 1 is integrated exactly by the corresponding product rule over [a, b]".
4 16 8 16 ... 16 4
2 8 4 8 8 2
4 16 8 16

...
... 16 4

4 16 8 16 ... 16 4

Proof. This follows immediately from Proposition 4.1.12. Indeed,

1 4 2 4 ... 4 1

FIGURE 4.6.3.
Weights for approximating the

integral over a square, using the
two-dimensional Simpson's rule.
Each weight is multiplied by

(b - a)2/(36n2).

wi,-..wl^f
pi )

4.6.13

4.6.16

Example 4.6.6 (Simpson's rule in two dimensions). The two-dimen-
sional form of Simpson's rule will approximate the integral over a square, using
the weights shown in Figure 4.6.3 (each multiplied by (b - a)2/(36n2)).

In the very simple case where we divide the square into only four subsquares,
and sample the function at each vertex, we have nine samples in all, as shown
in Figure 4.6.4. If we do this with the square of side length 2 centered at 0,
Equation 4.6.13 then becomes
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Here b - a = 2 (since we are
integrating from -1 to 1), and
n = 1 (this square corresponds,
in the one-dimensional case, to the
first piece out of n pieces, as shown
in Figure 4.6.1). So

(66na)2 (3)2
Each two-dimensional weight is

the product of two of the one-
dimensional Simpson weights, wl,
w2, and w3, where w1 = w2 = 1/3.
1 = 1/3, and w2 = 1/3 . .4 = 4/3.

1119 - 4/9 1/9

'16/9 4/9

I4/8 1/9j

FIGURE 4.6.4.
If we divide a square into only

four subsquares, Simpson's me-
thod in two dimensions gives the
weights above.

fif(x)Jd"xl= u., wi f(-11)+ IV] f( o)+v f( i)
1/9 4/9

1/9

af(?) 4.6.17

4/9 16/9 4/9

+w`swif (-1) +ww3w2f (j) + wswtf (1);
1/9 4/9 1/9

Theorem 4.6.2 and Proposition 4.6.5 tell us that this two-dimensional Simp-
son's method will integrate exactly the polynomials

1, x, y, x2, xy, y2,x3, x2y, xy2, y3, 4.6.18

and many others (for instance, x2y3), but not x4. They will also integrate
functions which are piecewise polynomials of degree at most three on each of
the unit squares, as in Figure 4.6.4. A

Gaussian rules also lead to product rules for integrating functions in several
variables, which will very effectively integrate polynomials in several variables
of high degree.

Problems with higher dimensional Riemann sums

Both Simpson's rule and Gaussian rules are versions of Riemann sums. There
are at least two serious difficulties with Riemann sums in higher dimensions.
One is that the fancier the method, the smoother the function to be integrated
needs to be in order for the method to work according to specs. In one dimension
this usually isn't serious; if there are discontinuities, you break up the interval
into several intervals at the points where the function has singularities. But
in several dimensions, especially if you are trying to evaluate a volume by
integrating a characteristic function, you will only be able to maneuver around
the discontinuity if you already know the answer. For integrals of this sort, it
isn't clear that delicate, high-order methods like Gaussians with many points
are better than plain midpoint Riemann sums.

The other problem has to do with the magnitude of the computation. In one
dimension, there is nothing unusual in using 100 or 1000 points for Simpson's
method or Gaussian rules, in order to gain the desired accuracy (which might be
10 significant digits). As the dimension goes up, this sort of thing becomes first
alarmingly expensive, and then utterly impossible. In dimension 4, a Simpson
approximation using 100 points to a side involves 100000000 function evalu-
ations, within reason for today's computers if you are willing to wait a while;
with 1 000 points to a side it involves 1012 function evaluations, which would
tie up the biggest computers for several days. By the time you get to dimen-
sion 9, this sort of thing becomes totally unreasonable unless you decrease your



A random number generator
can be used to construct a code:
you can add a random sequence
of bits to your message, hit by hit
(with no carries, so that. I + I = 0):
to decode, subtract it again. If
your message (encoded as hits) is
the first line below, and the sec-
ond line is generated by a random
number generator, then the sum
of the two will appear random as
well, and thus undecipherable:

10 11 10 10 1111 01 01

01 01 10 10 0000 11 01

11 10 00 00 1111 10 0(1

The. points in A referred to in
Definition 4.6.7 will no doubt be
chosen using some pseudo-randorn
number generator. If this is bi-
ased, the bias will affect both the
expected value and the expected
variance, so the entire scheme be-
comes unreliable. On the other
hand, off-the-shelf random num-
ber generators come with the
guarantee that if you can detect
a bias, you can use that informa-
tion to factor large numbers and,
in particular, crack most commer-
cial encoding schemes. This could
he a quick way of getting rich (or
landing in jail).

The Monte Carlo program is
found in Appendix B.2, and at the
website given in the preface.
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desired accuracy: 1009 = 1018 function evaluations would take more than a

billion seconds (about 32 years) even on the very fastest computers, but 109 is
within reason, and should give a couple of significant digits.

When the dimension gets higher than 10. Simpson's method and all similar
methods become totally impossible, even if you are satisfied with one significant
digit, just to give an order of magnitude. These situations call for the proba-
bilistic methods described below. They very quickly give a couple of significant
digits (with high probability: you are never sure), but we will see that it is next
to impossible to get really good accuracy (say six significant digits).

Monte Carlo methods

Suppose that we want to to find the average of I det Al for all n x n matrices with
all entries chosen at random in the unit interval. We computed this integral
in Example 4.5.7 when n = 2, and found 13/54. The thought of computing
the integral exactly for 3 x 3 matrices is awe-inspiring. How about numerical
integration? If we want to use Simpson's rule, even with just 10 points on
the side of the cube, we will need to evaluate 109 determinants, each a sum
of six products of three numbers. This is not out of the question with today's
computers. but a pretty massive computation. Even then, we still will probably
know only two significant digits, because the integrand isn't differentiable.

In this situation, there is a much better approach. Simply pick numbers at
random in the nine-dimensional cube, evaluate the determinant of the 3 x 3 ma-
trix that you make from these numbers, and take the average. A similar method
will allow you to evaluate (with some precision) integrals even of domains of
dimension 20, or 100, or perhaps more.

The theorem that describes Monte Carlo methods is the central limit theorem
from probability, stated (as Theorem 4.2.11) in Section 4.2 on probability.

When trying to approximate f A f (x)1dnx1, the individual experiment is to
choose a point in A at random, and evaluate f there. This experiment has a
certain expected value E, which is what we are trying to discover, and a certain
standard deviation a.

Unfortunately, both are unknown, but running the Monte Carlo algorithm
gives you an approximation of both. It is wiser to compute both at once, as the
approximation you get for the standard deviation gives an idea of how accurate
the approximation to the expected value is.

Definition 4.6.7 (Monte Carlo method). The Monte Carlo algorithm
for computing integrals consists of

(1) Choosing points x;, i = 1, ... , N in A at random, equidistributed in
A.

(2) Evaluating ai = f (x;) and b, = (f (x;))2.
(3) Computing a = 1 EN 1 at and 12 = F'N1 a, - a2.



Probabilistic methods of inte.
gration are like political polls. You
don't pay much (if anything) for
going to higher dimensions, just as
you don't need to poll more people
about a Presidential race than for
a Senate race.

The real difficulty with Monte
Carlo methods is making a good
random number generator, just as
in polling the real problem is mak-
ing sure your sample is not bi-
ased. In the 1936 presidential
election, the Literary Digest pre-
dicted that Alf Landon would beat
ftankliu D. Roosevelt, on the ba-
sis of two million mock ballots re-
turned from a mass mailing. The
mailing list was composed of peo-
ple who owned cars or telephones,
which during the Depression was
hardly a random sampling.

Pollsters then began polling far
fewer people (typically, about 10
thousand), paying more attention
to getting representative samples.
Still, in 1948 the Tribune in Chica-
go went to press with the head-
line, "Dewey Defeats Truman";
polls had unanimously predicted a
crushing defeat for Truman. One
problem was that some interview-
ers avoided low-income neighbor-
hoods. Another was calling the
election too early: Gallup stopped
polling two weeks before the elec-
tion.

Why Jd9xJ in Equation 4.6.23?
To each point x re R9, with coordi-
nates x1...., x9, we can associate
the determinant of the 3 x 3 matrix

r2 xa
xaJA= x xs xs

xs xe xs
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The number a is our approximation to the integral, and the numbers is our
approximation to the standard deviation a.

The central limit theorem asserts that the probability that a is between

and E+ba/vW 4.6.19

is approximately

1 f e# dt. 4.6.20
J.

In principle, everything can be derived from this formula: let us see how this
allows us to see how many times the experiment needs to be repeated in order
to know an integral with a certain precision and a certain confidence.

For instance, suppose we want to compute an integral to within one part in a
thousand. We can't do that by Monte Carlo: we can never be sure of anything.
But we can say that with probability 98%, the estimate a is correct to one part
in a thousand, i.e., that

E-a <.001.
E 4.6.21

This requires knowing something about the bell curve: with probability 98%
the result is within 2.36 standard deviations of the mean. So to arrange our

desired relative error, we need

2.40 5.56.106.02
VNE El

4.6.22

Example 4.6.8 (Monte Carlo). In Example 4.5.7 we computed the expected
value for the determinant of a 2 x 2 matrix. Now let us run the program Monte
Carlo to approximate

f, I det Af ld9xJ, 4.6.23

i.e., to evaluate the average absolute value of the determinant of a 3 x 3 matrix
with entries chosen at random in f0, 1].

Several runs of length 10000 (essentially instantaneous)' gave values of.127,
.129, .129, .128 as values for s (guesses for the standard deviation a). For these
same runs, the computer the following estimates of the integral:

.13625, .133150, .135197,.13473. 4.6.24

It seems safe to guess that a < .13, and also E ,::.13; this last guess is not
as precise as we would like, neither do we have the confidence in it that is

On a 1998 computer, a run of 5000000 repetitions of the experiment took about
16 seconds. This involves about 3.5 billion arithmetic operations (additions, multipli-
cations, divisions), about 3/4 of which are the calls to the random number generator.

< .001, i.e., N >
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Note that when estimating how
many times we need to repeat an
experiment, we don't need several
digits of o; only the order of mag-
nitude matters.

To measure the standard de-
viation of the income of Ameri-
cans, you would want to subdivide
the U.S. by census tracts, not by
closely spaced latitudes and lon-
gitudes, because that is how the
data is provided.

The set of all P E P com-
pletely paves IR", and two "tiles"
can overlap only in a set of volume
0.

required. Using these numbers to estimate how many times the experiment
should be repeated so that with probability 98%, the result has a relative error
at most .001, we use Equation 4.6.22 which says that we need about 5 000 000
repetitions to achieve this precision and confidence. This time the computation
is not instantaneous, and yields E = 0.134712, with probability 98% that the
absolute error is at most 0.000130. This is good enough: surely the digits 134
are right, but the fourth digit, 7, might be off by 1. A

4.7 OTHER PAVINGS

The dyadic paving is the most rigid and restrictive we can think of, making
most theorems easiest to prove. But in many settings the rigidity of the dyadic
paving DN is not necessary or best. Often we will want to have more "paving
tiles" where the function varies rapidly, and bigger ones elsewhere, shaped to
fit our domain of integration. In some situations, a particular paving is more
or less imposed.

Example 4.7.1 (Measuring rainfall). Imagine that you wish to measure
rainfall in liters per square kilometer that fell over South America during Octo-
ber, 1996. One possibility would be to use dyadic cubes (squares in this case),
measuring the rainfall at the center of each cube and seeing what happens as
the decomposition gets finer and finer. One problem with this approach, which
we discuss in Chapter 5, is that the dyadic squares lie in a plane, and the surface
of South America does not.

Another problem is that using dyadic cubes would complicate the collection
of data. In practice, you might break South America up into countries, and
assign to each the product of its area and the rainfall that fell at a particular
point in the country, perhaps its capital; you would then add these products
together. To get a more accurate estimate of the integral you would use a finer
decomposition, like provinces or counties. A

Here we will show that very general pavings can be used to compute integrals.

Definition 4.7.2 (A paving of X C R"). A paving of a subset X C R" is
a collection P of subsets P C X such that

UpEpP = X, and vol"(Pt f1P2) = 0 (when Pt, P2 EP and Pi # P2). 4.7.1

Definition 4.7.3 (The boundary of a paving of X C iR'). The bound-
ary 8P of P is the set of x E R" such that every neighborhood of x intersects
at least two elements P E P. It includes of course the overlaps of pairs of
tiles.
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In contrast to the upper and
lower sums of the dyadic decom-
positions (Equation 4.1.18), where
vol,, C is the same for any cube C
at a given resolution N, in Equa-
tion 4.7.3, vol P is not necessar-
ily the same for all "paving tiles"
PEP.,.

Recall that Mp(f) is the maxi-
mum value of f (x) for x E P; sim-
ilarly, mp(f) is the minimum.

What we called UN(f) in Sec-
tion 4.1 would be called UnN(f)
using this notation. We will often
omit the subscript DN (which you
will recall denotes the collection of
cubes C at a single level N) when
referring to the dyadic decomposi-
tions, both to lighten the notation
and to avoid confusion between V
and P, which, set in small sub-
script type, can look similar.

If you think of the P E P as tiles, then the boundary OP is like the grout
lines between the tiles-exceedingly thin grout lines, since we will usually be
interested in pavings such that volOP = 0.

Definition 4.7.4 (Nested partition). A sequence PN of pavings of X C
Rn is called a nested partition of X if

(1) PN+1 refines PN: every piece of PN+1 is contained in a piece of PN.

(2) All the boundaries have volume 0: voln(OPN) = 0 for every N.

(3) The pieces of PN shrink to points as N -. oo:

lim sup diam P = 0.
N-.oo PEPN

For example, paving the United States by counties refines the paving by
states: no county lies partly in one state and partly in another. A further
refinement is provided by census tracts. (But this is not a nested partition,
because the third requirement isn't met.)

We can define an upper sum Up, (f) and a lower sum LpM (f) with respect
to any paving:

UpN(f)= F Mp(f)volnP and LpN(f)= > 4.7.3
PEPN PEPN

4.7.2

Theorem 4.7.5. Let X C Rn be a bounded subset, and PN be a nested
partition of X. If the boundary OX satisfies voln(8X) = 0, and f : ]R" -s 1R
is integrable, then the limits

lim Up (f) and
N

lim L-PN (f) 4.7.4
N-.oo N-+oo

both exist, and are equal to

4.8 DETERMINANTS

1. f (x)
Id"x].

The theorem is proved in Appendix A.14.

4.7.5

In higher dimensions the deter- The determinant is a function of square matrices. In Section 1.4 we introduced
minant is important because it has determinants of 2 x 2 and 3 x 3 matrices, and saw that they have a geometric
a geometric interpretation, as a interpretation: the first gives the area of the parallelogram spanned by two vec-
signed volume. tors; the second gives the volume of the parallelepiped spanned by three vectors.

In higher dimensions the determinant also has a geometric interpretation, as a

signed volume; it is this that makes the determinant important.
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We will use determinants heav-
ily throughout the remainder of
the book: forms, to be discussed
in Chapter 6, are built on the de-
terminant.

As we did for the determinant
of a 2 x 2 or 3 x 3 matrix, we
will think of the determinant as a
function of n vectors rather than
as a function of a matrix. This
is a minor point, since whenever
you have n vectors in 11k", you can
always place them side by side to
make an n x n matrix.

Once matrices are bigger than 3 x 3, the formulas for computing the de-
terminant are far too messy for hand computation-too time-consuming even
for computers, once a matrix is even moderately large. We will see (Equation
4.8.21) that the determinant can be computed much more reasonably by row
(or column) reduction.

In order to obtain the volume interpretation most readily, we shall define the

determinant by the three properties that characterize it.

Definition 4.8.1 (The determinant). The determinant

det A = det a ' 1 , a " 2 , ... , an = det(l, 'z, ... , an) 4.8.1

is the unique real-valued function of it vectors in R n with the following prop.
erties:

(1) Multilinearity: det A is linear with respect to each of its arguments.
That is, if one of the arguments (one of the vectors) can be written

a'; = ad + Qw, 4.8.2

then

The properties of multilinearity
and antisymmetry will come up
often in Chapter 6.

More generally, normalization
means "setting the scale." For
example, physicists may normal-
ize units to make the speed of
light 1. Normalizing the determi-
nant means setting the scale for n-
dimensional volume: deciding that
the unit "n-cube" has volume 1.

det(a1,... ,si-1,(aU+Qw),a:+1,... ,an)

= a det(91, ...

+ )3 det(al, , si-1, w, a;tl, , an)-

4.8.3

(2) Antisymmetry: det A is antisymmetric. Exchanging any two argu-
ments changes its sign:

det(al,... ,a.... ,a,,... ,an) _ -det(a11.... ,a'j,... ,a{,... ,an). 4.8.4

(3) Normalization: the determinant of the identity matrix is 1, i.e.,

4.8.5

where el ... in are the standard basis vectors.

Example 4.8.2 (Properties of the determinant). (1) Multilinearity: if
a=-1,Q=2,and

u=
I[2]

OJ,w= 2,sothatad+Qw=
[-1]

-0

+[4]

4 =
5

[1]
4
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Remark 4.8.3. Exercise 4.8.4 ex-
plores some immediate conse-
quences of Definition 4.8.1: if a
matrix has a column of zeroes. or
if it has two identical columns, its
determinant is 0.

then

2 4

5 1]
-1det I2 0

1] +2det [0 3 1J
4.8.6

det [2

23 -1x3=-3 2x13=26

as you can check using Definition 1.4.15.

(2) Antisymmetry:- -
23 -23

(3) Normalization:

det
[1 3

5 1, - det
[0

1 5]
4.8.7

1 0 0
det 0 1 0 = 1((1 x 1) - 0) = I. 4.8.8

0 0 1

Our examples are limited to 3 x 3 matrices because we haven't shown yet
how to compute larger ones. A

In order to see that Definition 4.8.1 is reasonable, we will want the following
theorem:

Theorem 4.8.4 (Existence and uniqueneea of the determinant).
There exists a function det A satisfying the three properties of the deter-

minant, and it is unique.

The proofs of existence and uniqueness are quite different, with a somewhat
lengthy but necessary construction for each. The outline for the proof is as
follows:

First we shall use a computer program to construct a function D(A)
by a process called "development according to the first column." Of
course this could be developed differently, e.g., according to the first
row, but you can show in Exercise 4.8.13 that the result is equivalent
to this definition. Then (in Appendix A.15) we shall prove that D(A)
satisfies the properties of det A, thus establishing existence of a function
that satisfies the definition of determinant.

Finally we shall proceed by "column operations" to evaluate this func-
tion D(A) and show that it is unique, which will prove uniqueness of the
determinant. This will simultaneously give an effective algorithm for
computing determinants.
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Development according to the first column. Consider the function

D(A) = F(-1)1+,ai.1D(A;.1). 4.8.9

-1

where A is an n x n matrix and A1, is the (n - 1) x (n - 1) matrix obtained
from A by erasing the ith row and the jth column, as illustrated by Example
4.8.5. The formula may look unfriendly. but it's not really complicated. As
shown in Equation 4.8.10, each term of the sum is the product of the entry a1,l
and D of the new. smaller matrix obtained from A by erasing the ith row and
the first column: the (-l)1}i simply assigns a sign to the terns.

D(A) _ (_1)1+i a; iD(A;.t) . 4.8.10

i-1 tells whether product of and
+or - Dof smaller matrix

For this to work we must say
that the D of a I x I -matrix.-
i.e., a number, is the number itself.
For example. rlct[71 = 7.

Our candidate determinant D is thus recursive: D of an n x n matrix is the
sum of n terms, each involving D's of (n - 1) x (n - 1) matrices; in turn, the
D of each (n - 1) x (rt - 1) matrix is the sum of (n - 1) tents, each involving
D's of (n - 2) x (n - 2) matrices .... (Of course, when one deletes the first
column of the (n - 1) x (n - 1) matrix, it is the second column of the original
matrix. and so on.)

Example 4.8.5 (The function D(A)). If

1 3 4 -
A= 0 1 1 , then A2.1 =

1 2 0) t

and Equation 4.8.9 corresponds to

3 4
r ll

2 0 [2
01

D(A)=1D1 11 11) -OD ( [3 4] I+1D

4.8.11

4.8.12

=z ;=3

The first term is positive because when i = 1, then 1 + i = 2 and we have
(-1)2 = 1; the second is negative, because (-1)3 = -1. and so on.

Applying Equation 4.8.9 to each of these 2 x 2 matrices gives:

D/(r(2 OJ) =1D(0)-2D(1)=0-2=-2;

D ([2 4J I = 3D(0) - 2D(4) = -8; 4.8.13

D ([1 1])/ =3D(1) - ID(4) = -1,

so that D of our original 3 x 3 matrix is 1(-2) - 0 + 1(-1) = -3. 0

([ 1

14

J/
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This program embodies the re-
cursive nature of the determinant
as defined above: the key point is
that the function D calls itself. It
would be quite a bit more difficult
to write this program in Fortran
or Basic, which do not allow that
sort of thing.

The number of operations that
would be needed to compute the
determinant of a 40 x 40 matrix
using development by the first col-
umn is bigger than the number of
seconds that have elapsed .since the
beginning of the universe. In fact,
bigger than the number of bil-
lionths of seconds that have
elapsed: if you had set a computer
computing the determinant back
in the days of the dinosaurs, it
would have barely begun

The effective way to compute
determinants is by column opera-
tions.

The Pascal program Determinant, in Appendix B.3, implements the devel-
opment of the determinant according to the first column. It will compute D(A)
for any square matrix of side at most 10; it will run on a personal computer and
in 1998 would compute the determinant of a 10 x 10 matrix in half a second.v

Please note that this program is very time consuming.Suppose that the func-
tion D takes time T(k) to compute the determinant of a k x k matrix. Then,
since it makes k "calls" of D for a (k - 1) x (k - I) matrix, as well ask multi-
plications, k - 1 additions, and k calls of the subroutine "erase," we see that

T(k) > kT(k - 1), 4.8.14

so that T(k) > k! T(i). In 1998, on a fast personal computer, one floating point
operation took about 2 x 10-9 second. The time to compute determinants by
this method is at least the factorial of the size of the matrix. For a 15 x 15 matrix,
this means 15! 1.3 x 1012 calls or operations, which translates into roughly
45 minutes. And 15 x 15 is not a big matrix; engineers modeling bridges or
airplanes and economists modeling a large company routinely use matrices that
are more than 1000 x 1000. So if this program were the only way to compute
determinants, they would be of theoretical interest only. But as we shall soon
show, determinants can also be computed by row or column reduction, which
is immensely more efficient when the matrix is even moderately large.

However, the construction of the function D(A) is most convenient in proving
existence in Theorem 4.8.4.

Proving the existence and uniqueness of the determinant

We prove existence by verifying that the function D(A) does indeed satisfy
properties (1), (2), and (3) for the determinant det A. This is a messy and
uninspiring exercise in the use of induction, and we have relegated it to Appen-
dix A.15.

Of course, there might be other functions satisfying those properties, but we
will now show that in the course of row reducing (or rather column reducing)
a matrix, we simultaneously compute the determinant. Column reduction of
an n x n matrix takes about n3 operations. For a 40 x 40 matrix, this means
64000 operations, which would take a reasonably fast computer much less than
one second.

At the same time this algorithm proves uniqueness, since, by Theorem 2.1.8,
given any matrix A, there exists a unique matrix A in echelon form that can
be obtained from A by row operations. Our discussion will use only properties
(1), (2), and (3), without the function D (A).

We saw in Section 2.1 that a column operation is equivalent to multiplying
a matrix on the right by an elementary matrix.

In about 1990, the same computation took about an hour; in 1996, about a minute.
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As mentioned earlier, we will
use column operations (Definition
2.1.11) rather than row operations
in our construction, because we
defined the determinant as a func-
tion of the n column vectors. This
convention makes the interpreta-
tion in terms of volumes simpler,
and in any case you will be able to
show in Exercise 4.8.13 that row
operations could have been used
just as well.

det An-2 = 1 det An;
/fin-I An

1

Let us check how each of the three column operations affect the determinant.
It turns out that each multiplies the determinant by an appropriate factor p:

(1) Multiply a column through by a number m i6 0 (multiplying by a type
1 elementary matrix). Clearly, by multilinearity (property (1) above),
this has the effect of multiplying the determinant by the same number,
so

u=m. 4.8.15

(2) Add a multiple of one column onto another (multiplying by a type 2 ele-
mentary matrix). By property (1), this does not change the determinant,
because

det (a"I, ,., , (Ai + L3 :), , an) 4.8.16

+i3det(aa1,...,iii, ..., ,...,an)
=0 because 2 identical terms a;

The second term on the right is zero: two columns are equal (Exercise
4.8.4 b). Therefore

p = 1. 4.8.17

(3) Exchange two columns (multiplying by a type 3 elementary matrix). By
antisymmetry, this changes the sign of the determinant, so

µ = -1 4.8.18

Any square matrix can be column reduced until at the end, you either get the
identity, or you get a matrix with a column of zeroes. A sequence of matrices
resulting from column operations can be denoted as follows, with the multipliers
pi of the corresponding determinants on top of arrows for each operation:

t A2 An-t - An, 4.8.19

with A. in column echelon form. Then, working backwards,

det A 1n-t = - det An.
Pn

det A det An.
111/2 ... 14n-I Mn 4.8.20



Equation 4.8.21 is the formula
that is really used to compute de-
terminants.

You may object that a differ-
ent sequence of column operations
might lead to a different sequence
of p'a, with a different product. If
that were the case, it would show
that the axioms for the determi-
nant were inconsistent; we know
they are consistent because of the
existence part of Theorem 4.8.4,
proved in Appendix A.15.

A definition that defines an ob-
ject or operation by its properties
is called an axiomatic definition.
The proof of Theorem 4.8.7 should
convince you that this can be a
fruitful approach. Imagine trying
to prove

D(A)D(B) = D(AB)

from the recursive definition.
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Therefore:

(1) If An = I, then by property (3) we have det An = 1, so by Equation
4.8.20,

1 4.8.21det A =

(2) If An 54 1, then by property (1) we have det An = 0 (see Exercise 4.8.4),
so

det A = 0. 4.8.22

Proof of uniqueness of determinant. Suppose we have another function,
D1(A), which obeys properties (1), (2), and (3). Then for any matrix A,

DI(A) = 1 detA. = D(A); 4.8.23
1i112...µ,.

i.e., D1 = D.

Theorems relating matrices and determinants

In this subsection we group several useful theorems that relate matrices and
their determinants.

Theorem 4.8.6. A matrix A is invertible if and only if its determinant is
not zero.

Proof. This follows immediately from the column-reduction algorithm and
the uniqueness proof, since along the way we showed, in Equations 4.8.21 and
4.8.22, that a square matrix has a nonzero determinant if and only if it can be
column-reduced to the identity. We know from Theorem 2.3.2 that a matrix is
invertible if and only if it can be row reduced to the identity; the same argument
applies to column reduction.

Now we come to a key property of the determinant, for which we will see a
geometric interpretation later. It was in order to prove this theorem that we
defined the determinant by its properties.

Theorem 4.8.7. If A and B are n x n matrices, then

det A det B = det(AB). 4.8.24

Proof. (a) The serious case is the one in which A is invertible. If A is invertible,
consider the function

f(B) = det (AB)
det A 4.8.25
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1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 1

The determinant of this type 1
elementary matrix is 2.

1 0 311

0 1 0J
0 0 1

The determinant of all type 2 ele-
mentary matrices is 1.

(0 1 01
1 0 0

0 0 1

The determinant of all type 3 ele-
mentary matrices is -1.

As you can readily check (Exercise 4.8.5), it has the properties (1), (2), and (3),
which characterize the determinant function. Since the determinant is uniquely
characterized by those properties, then f(B) = det B.

(b) The case where A is not invertible is easy, using what we know about
images and dimensions of linear transformations. If A is not invertible, det A
is zero (Theorem 4.8.6), so the left-hand side of the theorem is zero. The right-
hand side must be zero also: since A is not invertible, rank A < n. Since
Img(AB) c ImgA, then rank (AB) < rank A < n, so AB is not invertible
either, and det AB = 0.

Theorem 4.8.7, combined with Equations 4.8.15, 4.8.18, and 4.8.17, give the
following determinants for elementary matrices.

Theorem 4.8.8. The determinant of an elementary matrix equals the de-
terminant of its transpose:

det E = det ET. 4.8.26

Corollary 4.8.9 (Determinants of elementary matrices). The deter-
minant of a type I elementary matrix is m, where m # 0 is the entry on
the diagonal not required to be 1. The determinant of a type 2 elementary
matrix is 1, and that of a type 3 elementary matrix is -1:

det Et (i, m) = m
det E2(i, j, x) = 1

det E3(i, j) = -1.

Proof. The three types of elementary matrices are described in Definition
2.3.5. For the first type and the third types, E = ET, so there is nothing to
prove. For the second type, all the entries on the main diagonal are 1, and all
other entries are 0 except for one, which is nonzero. Call that nonzero entry,
in the ith row and jth column, a. We can get rid of a by multiplying the ith
column by -a and adding the result to the jth column, creating a new matrix
E' = I, as shown in the example below, where i = 2 and j = 3.

1 0 0 0

If E= 0 1 a 0
0 0 1 0

0 0 0 1

-a x

then 4.8.27

a
a0

_ 0
00

_'a0 = 0 ;and +
_0

1

0 0 0 0 0

column
n jth

column

4.8.28
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We know (Equation 4.8.16) that adding a multiple of one column onto another
does not change the determinant, so det E = det I. By property (3) of the
determinant (Equation 4.8.5), det I = 1, so det E = det I. The transpose ET is
identical to E except that instead of aij we have ai; by the argument above,
det ET = det I.

We are finally in a position to prove the following result.
One easy consequence of Theo-

rem 4.8.10 is that a matrix with a
row of zeroes has determinant 0.

Theorem 4.8.10. For any n x n matrix A,

det A = det AT. .8.29

Proof. Column reducing a matrix A to echelon form A is the same as multi-
plying it on the right by a succession of elementary matrices El ... Ek:

A=A(E1...Ek). 4.8.30

By Theorem 1.2.17, (AB)T = BT AT , so

AT =(EI...Ek)TAT.

The fact that determinants are
numbers, and that therefore mul-
tiplication of determinants is com-
mutative, is much of the point
of determinants; essentially every-
thing having to do with matri-
ces that does not involve non-
commuta-
tivity can be done using determi-
nants.

Recall Corollary 2.5.13: A ma-
trix A and its transpose AT have
the same rank.

4.8.31

We need to consider two cases.
First, suppose A = I, the identity. Then AT = I, and

A = Ek 1... Ei 1 and AT = (Ek 1 ... E1 1)T = (E 1)T ... (Ek 1) T, 4.8.32

so

det A = det (Ek 1 ... El 1) = det Ek 1 ... det El 1;

det AT = det ((Ej 1)r (Ek 1)T)

)T T...det(E-1)k = detEj 1...detEk1.
Theorem

4.8.8

4.8.33

A determinant is a number, not a matrix, so multiplication of determinants is
commutative: det El 1... det Ek 1 = det E;'... det El 1. This gives us det A =
(let AT.

If A 54 1, then rank A < n, so rank AT < n, so det A = det AT=O.

One important consequence of Theorem 4.8.10 is that throughout this text,
whenever we spoke of column operations, we could just as well have spoken of
row operations.

Some matrices have a determinant that is easy to compute: the triangular
matrices (See Definition 1.2.19).

Theorem 4.8.11. If a matrix is triangular, then its determinant is the prod-
uct of the entries along the diagonal.
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An alternative proof is sketched
in Exercise 4.8.6.

Proof. We will prove the result for upper triangular matrices; the result for
lower triangular matrices then follows from Theorem 4.8.10. The proof is by
induction. Theorem 4.8.11 is clearly true for a I x 1 triangular matrix (note
that any 1 x I matrix is triangular). If A is triangular of size n x n with
n > 1, the submatrix Al 1 (A with its first row and first column removed) is
also triangular, of size (n - 1) x (n - 1), so we may assume by induction that

det Ai,t = a2,2 a,,,,,. 4.8.34

Since a,,I is the only nonzero entry in the first column, development according
to the first column gives:

detA=(-1)2a1,1detA1,1 =a1,la2.2...a,,,,,. 4.8.35

Theorem 4.8.12. If a matrix A is invertible, then
Here are some more character-

izations A-'of invertible matrices. det A

The proof of Theorem 4.8.14 is
left to the reader as Exercise 4.8.7.

4.8.36

Proof. This is a simple consequence of Theorem 4.8.7:

det A det A-1 = det (AA-') = det I = 1. 4.8.37

The following theorem acquires its real significance in the context of abstract
vector spaces, but we will find it useful in proving Corollary 4.8.22.

Theorem 4.8.13. The determinant function is basis independent: if P is the
change-of-basis matrix, then

det A = det(P'1AP). 4.8.38

Proof. This follows immediately from Theorems 4.8.7 and 4.8.12.

Theorem 4.8.14. If A is an n x n matrix and B is an m x m matrix, then
for the (n + m) x (n + m) matrix formed with these as diagonal elements,

det l 0 B 1= det A det B. 4.8.39

The signature of a permutation

Some treatments of the determinant start out with the signature of a permuta-
tion, and proceed to define the determinant by Equation 4.8.46. We approached
the problem differently because we wanted to emphasize the effect of row oper-
ations on the determinant, which is easier using our approach.
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Recall that a permutation of
{1, ... , n} is a one to one map
a : {l,...,n} --. {1,...,n}. One
permutation of (1, 2,3) is (2,1, 3);
another is {2,3,1}. There are sev-
eral ways of denoting a permuta-
tion; the permutation that maps
l to 2, 2 to 3, and 3 to l can be
denoted

3

]_ [12

v:[1 1 or

v= r1 2 31
2 3 1

Permutations can be composed: if

o :
[2]

and

[1] _ [2]
2 3

then we have

To or : [2] 3[21 3and

vor:[2
3

1-[2

We see that a permutation ma-
trix acts on any element of ' by
permuting its coordinates.

In the language of group the-
ory, the transformation that asso-
ciates to a permutation its matrix
is called a group hornomorphism.

There are a great many possible definitions of the signature of a permutation,
all a bit unsatisfactory.

One definition is to write the permutation as a product of transpositions, a
transposition being a permutation in which exactly two elements are exchanged.
Then the signature is +1 if the number of transpositions is even, and - I if it is
odd. The problem with this definition is that there are a great many different
ways to write a permutation as a product of transpositions, and it isn't clear
that they all give the same signature.

Indeed, showing that different ways of writing a permutation as a product of
transpositions all give the same signature involves something like the existence
part of Theorem 4.8.4; that proof, in Appendix A.15, is distinctly unpleasant.
But armed with this result, we can get the signature almost for free.

First, observe that we can associate to any permutation a of {1.....n} its
permutation matrix Me, by the rule

(Me)ei = ee,(i). 4.8.40

Example 4.8.15 (Permutation matrix). Suppose we have a permutation
a such that a(1) = 2,0(2) = 3, and a(3) = 1, which we may write

[11

2

[2]

3 ,
or simply (2,3, 1).

This permutation puts the first coordinate in second place, the second in third
place, and the third in first place, not the first coordinate in third place, the
second in first place, and the third in second place.

The first column of the permutation matrix is M,61 = 9,(1) = eel. Similarly,

4.8.41

You can easily confirm that this matrix puts the first coordinate of a vector
in I into second position, the second coordinate into third position, and the
third coordinate into first position:

the second column is e3 and the third column is e'1:

0 0 1

M,= 10 0 .

0 1 0

M,
[

b] = LbJ .
c

4.8.42

Exercise 4.8.9 asks you to check that the transformation a i-+ MM that asso-
ciates to a permutation its matrix satisfies M,o, = MeM,.

The determinant of such a permutation matrix is obviously ±1, since by
exchanging rows repeatedly it can be turned into the identity matrix; each time
two rows are exchanged, the sign of the determinant changes.
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Some authors denote the signa-
ture (-1)".

Remember that by

o;c = (3, 1.2)

we mean then permutation such

that l 2
1 -

121

1 it 0 f I 01
det 0

rr

1 0 =1 dMrll
II 73 J

-Odtl0 01+OdetI1 (IJ=1.

Definition 4.8.16 (Signature of a permutation). The signature of a

permutation a, denoted sgn((7), is defined by

sgn(a) = det M,,. 4.8.43

Permutations of signature +1 are called even permutations, and permuta-
tions of signature -1 are called odd permutations. Almost all properties of the
signature follow immediately froth the properties of the determinant; we will
explore them at sonic length in the exercises.

Example 4.8.17 (Signatures of permutations). There are six permuta-
tions of the numbers 1, 2, 3:

4.8.44

The first three permutations are even; the last three are odd. We gave the
permutation matrix for 02 in Example 4.8.15; its determinant is +1. Here are
three more:

ac = (1. 2. 3), 02 = (2.3.1), a3 = (3,1.2)

at = (1.3,2), as = (2.1.3), os = (3,2.1).

1 0 0 0 1 0

detMoc=det 0 1 0=+1. 0 0 1=+1,
0 0 1 1 0 0

4.8.45

1 0 0

det. M,, = det 00 1 = -1.
0 1 0

Exercise 4.8.10 asks you to verify the signature of as and as. A

Remark. In practice signatures aren't computed by computing the permu-
tation matrix. If a signature is a composition of k transpositions, then the
signature is positive if k is even and negative if k is odd, since each trans-
position corresponds to exchanging two columns of the permutation matrix.
and hence changes the sign of the determinant. The second permutation of
Example 4.8.17 has positive signature because two transpositions are required:
exchanging I and 3. then exchanging 3 and 2 (or first exchanging 3 and 2, and
then exchanging I and 3). L

We can now state one more formula for the determinant.

Theorem 4.8.18. Let A be an n x n matrix with entries denoted (aij). Then

det A = 4.8.46
eEP=mtI....n)



Each term of the sum in Equa-
tion 4.8.46 is the product of n en-
tries of the matrix A, chosen so
that there is exactly one from each
row and one from each column; no
two are from the same column or
the same row. These products are
then added together, with an ap-
propriate sign.
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In Equation 4.8.46 we are summing over each permutation o of the numbers
1, ... , n. If n = 3, there will be six such permutations, as shown in Example
4.8.17. F o r each permutation o, w e see what o does to the numbers 1, ... , n,
and use the result as the second index of the matrix entries. For instance, if
a(1) = 2, then at,,(,) is the entry a1,2 of the matrix A.

Example 4.8.19 (Computing the determinant by permutations). Let
n = 3, and let A be the matrix

1 2 3
A= 4 5 6

7 8 9

Then we have

of = (123)

a2 = (231)

a3 = (312)

04 = (132)

v5 = (213)

o6 = 321)

+
a1,1a2,2a3,3 = 1 - 5.9 = 45
a1,2a2,3a3,1 = 2 . 6 7 = 84

a1,3a2,1a3,2 =3.4.8= 96
a1,1a2,3a3,2 = 1 .6.8 = 48
a1,2a2,1a3,3=2.4.9= 72
a1,3a2,2a3,1 = 3.5.7 = 105

4.8.47

So det A = 45+84+96-42-72-105 = 0. Can you see why this determinant
had to be 0?10 .c

In Example 4.8.19 it would be quicker to compute the determinant directly,
using Definition 1.4.15. Theorem 4.8.18 does not provide an effective algorithm
for computing determinants; for 2 x 2 and 3 x 3 matrices, which are standard in
the classroom (but not anywhere else), we have explicit and manageable formu-
las. When they are large, column reduction (Equation 4.8.21) is immeasurably
faster: for a 30 x 30 matrix, roughly the difference between one second and the
age of the universe.

Proof of Theorem 4.8.18. So as not to prejudice the issue, let us temporarily
call the function of Theorem 4.8.18 D(A):

D(A) _ sgn(o)a.t,,(1) ... a,,.o(.). 4.8.48
eePerm(1....,n)

We will show that the function D has the three properties that characterize the
determinant. Normalization is satisfied: D(I) = 1, since if o is not the iden-
tity, the corresponding product is 0, so the sum above amounts to multiplying

10Denote by g1, 92, e3 the columns of A. Then a3 - 92 = 1

J
and 92 - al =

L

1 I .

1 1So al -'lag+a3 = 0; the columns are linearly dependent, so the matrix is not invertible,
and its determinant is 0.
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applied to the matrix A', gives

D(A') _ sgn(a)aj,,,(1) ...
oEPer,n(1...., n)

together the entries on the diagonal, which are all 1, and assigning the product
the signature of the identity, which is +1. Multilinearity is straightforward:
each term a function of the columns, so any
linear combination of such terms is also rultilinear.

Now let's discuss antisymmetry. Let i j4 j be the indices of two columns of
an n x is matrix A, and let r be the permutation of { 1, .... n} that exchanges
them and leaves all the others where they are. Further, denote by A' the matrix
formed by exchanging the ith and jth columns of A. Then Equation 4.8.46,

4.8.49

since the entry of A' in position (k,1) is the same as the entry of A in position
(k,r(1)).

As o runs through all permutations, a' = T o or does too, so we might as well
write

F- sgn(a)al.roo(1) an,+oo(n),

D(A') _ sgn(r-1 4.8.50
o' E Perm(l ,...,n )

and the result follows from sgn(r-1 oc') = sgn(r-1)(sgn(a)) _ -sgn(a), since
The trace of sgn(r) = sgn(r-1) = -1.

1 0 3

1 2 1

0 1 -1
is1+2+(-1)=2.

Using sum notation, Equation
4.8.51 is

trA

The trace and the derivative of the determinant

Another interesting function of a square matrix is its trace, denoted tr.

Definition 4.8.20 (The trace of a matrix). The trace of a is x n matrix
A is the sum of its diagonal elements:

trA = a1,t + a2,2 + + an,n. 4.8.51

The trace is easy to compute, much easier than the determinant, and it is a
linear function of A:

tr(aA + bB) = a tr A + b tr B. 4.8.52

The trace doesn't look as if it has anything to do with the determinant, but
Theorem 4.8.21 shows that they are closely related.
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Note that in Equation 4.8.53,
[Ddet(I)[ is the derivative of the
determinant function evaluated at
1. (It should not be read as the
derivative of det(I), which is 0,
since det(1) = 1).) In other words,
(Ddet(I)] is a linear transforma-
tion from Mat (n, n) to R.

Part (b) is a special case of part
(c), but it is interesting in its own
right. We will prove it first, so we
state it separately. Computing the
derivative when A is not invertible
is a bit trickier, and is explored in
Exercise 4.8.14.

'fly the 2 x 2 case of Equation
4.8.55:

det(I+h[c d])
= [1+ha hb

L he 1+hd
= (1 + ha) (I + hd) - h2bc

= 1 + h(a + d) + h2(ad - bc).

Theorem 4.8.21 (Derivative of the determinant). (a) The determinant
function det : Mat (n, n) - lR is differentiable.
(b) The derivative of the determinant at the identity is given by

[D det(I)JB = tr B.

(c) If det A 960, then [D det(A)JB = det A tr(A-1 B).

4.8.53

Proof. (a) By Theorem 4.8.18, the determinant is a polynomial in the entries
of the matrix, hence certainly differentiable. (For instance, the formula ad - be
is a polynomial in the variables a, b, c, d.)

(b) It is enough to compute directional derivatives, i.e., to evaluate the limit

lim
det(I + hB) - det I

4.8.54
h-.o h

or put another way, to find the terms of

1 + hb1,1 hb1,2 ... hb1,n

det(I + hB) = det
hb2,1 1 + hb2,2 ... hb2,n

4.8.55

hbn,1 hba,2 ... 1 + hbn,n

which are linear in h. Equation 4.8.46 shows that if a term has one factor off
the diagonal, then it must have at least two (as illustrated for the 2 x 2 case in
the margin): a permutation that permutes all symbols but one to themselves
must take the last symbol to itself also, as it has no other place to go. But all
terms off the diagonal contain a factor of h, so only the term corresponding to
the identity permutation can contribute any linear terms in h.

The term corresponding to the identity permutation, which has signature

+1, is

(1 + hb1,1)(1 + hb2,2) ... (1 + hbn,n)

= 1 + h(b1,1 + b2,2 + + bn,n) + ... + hnb1,1b2,2 ... bn,n,

and we see that the linear term is exactly b1,1 + b2,2 + + bn,n = tr B.
(c) Again, take directional derivatives:

lim
det(A + hB) - det A - lim det(A(I + hA-1B)) - det A

h-0 h h-.o h

lim
det Adet(I + hA-1B) - det A

h-0 h

= det A Jim det(I + hA-1B) - I
h-.o h

=detA tr(A-1B).

4.8.56

4.8.57
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Equation 4.8.58 looks like
Equation 4.8.38 from Theorem
4.8.13, but it is not true for the
same reason. Theorem 4.8.13 fol-
lows immediately from Theorem
4.8.7:

det(AB) = det A det B.

This is not true for the trace:
the trace of a product is not the
product of the traces. Corollary
4.8.22 is usually proved by show-
ing first that tr AB = trBA. Ex-
ercise 4.8.11 asks you to prove
trAB = trBA algebraically; Ex-
ercise 4.8.12 asks you to prove it
using 4.8.22.

tr(P-1AP) =
hi u

det(I + hP I AP) - det l

=
det(P-I(I+hA)P)-detI

lint
h

- lien det(P-1) det(I + hA) det P) - det I
h-.o h

- lim det(I + hA) - det I
= tr A.h-o h

4.9 VOLUMES AND DETERMINANTS
Recall that "payable" means

"having a well-defined volume," as
stated in Definition 4.1.14.

2-

1

A

1 2

FIGURE 4.9.1.

The transformation given by

2
0 2

0
1 turns the square with side[

length 1 into the square with side
length 2. The area of the first is 1;
the area of the second is I det[T] I

times 1; i.e., 4.

Theorem 4.8.21 allows easy proofs of many properties of the trace which are
not at all obvious from the definition.

Corollary 4.8.22. If P is invertible, then for any matrix A we have

tr(P-' AP) = tr A. 4.8.58

Proof. This follows from the corresponding result for the determinant (The-
orem 4.8.13):

4.8.59

In this section, we will show that in all dimensions the determinant measures
volumes. This generalizes Propositions 1.4.14 and 1.4.20, which concern the
determinant in Tt2 and II83.

Theorem 4.9.1 (The determinant measures volume). Let T : Il8" -»
IR^ be a linear transformation given by the matrix (TJ. Then for any payable
set A C I8°, its image T(A) is payable, and

vole T(A) = [ det[T] [ vol, A. 4.9.1

The determinant I det[T][ scales the volume of A up or down to get the
volume of T(A); it measures the ratio of the volume of T(A) to the volume of
A.

T(A)

Remark. A linear transformation T corresponds to multiplication by the
matrix [T]. If A is a payable set, then what does T(A) correspond to in terms
of matrix multiplication? It can't be [T]A; a matrix can only multiply a matrix
or a vector. Applying T to A corresponds to multiplying each point of A by
[TJ. (To do this of course we write points as vectors.) If for example A is the
unit square with lower left-hand corner at the origin and T(A) is the square
with same left-hand corner but side length 2, as shown in Figure 4.9.1, then f TJ



In Definition 4.9.2, the business
with t, is a precise way of saying
that a k-parallelogram is the ob-
ject spanned by v,,...v"k, includ-
ing its boundary and its inside.

A k-dimensional parallelo-
gram, or k-parallelogram, is an in-
terval when k = 1, a parallelogram
when k = 2, a parallelepiped when
k = 3, and higher dimensional
analogs when k > 3. (We first
used the term k-parallelepiped; we
dropped it when one of our daugh-
ters said "piped" made her think
of a creature with 3.1415 ... legs.)

Anchoring Q at the origin is
just a convenience; if we cut it
from its moorings and let it float
freely in n-dimensional space, it
will still have n-dimensional vol-
ume 1, which is what we are inter-
ested in.

Note that for T(DN) to be a
paving of R" (Definition 4.7.2),
T must be invertible. The first
requirement for a paving, that

Uce T(C+) = llP",

is satisfied because T is onto, and
the second, that no two tiles over-
lap, is satisfied because T is one to
one.
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2
is the matrix([ 10 2

0
J ;

multiplying L Q
J

by [TJ gives
12],

multiplying
11/2
1/21

by [T] gives and so on. A
111

For this section and for Chapter 5 we need to define what we mean by a
k-dimensional parallelogram, also called a k-parallelogram.

Definition 4.9.2 (k-parallelogram). The k-parallelogram spanned by
v'1,...3kis the set of all 0<ti<lforifrom Itok.
It is denoted P(81, ... Vk).

In the proof of Theorem 4.9.1 we will make use of a special case of the k-
parallelogram: the n-dimensional unit cube. While the unit disk is traditionally
centered at the origin, our unit cube has one corner anchored at the origin:

Definition 4.9.3 (Unit n -dimensional cube). The unit n-dimensional
cube is the n-dimensional parallelogram spanned by el, ... a,,. We will denote
it Q,,, or, when there is no ambiguity, Q.

Note that if we apply a linear transformation T to Q, the resulting T(Q) is
the n-dimensional parallelogram spanned by the columns of [TJ. This is nothing
more than the fact, illustrated in Example 1.2.5, that the ith column of a matrix
[TJ is [T]e'i; if the vectors making up [T] are this gives Vi = [T]e';,
and we can write T(Q) =

Proof of Theorem 4.9.1 (The determinant measures volume). If [TJ is
not invertible, the theorem is true because both sides of Equation 4.9.1 vanish:

vol, T (A) = I det[T) I vol" A. (4.9.1)

The right side vanishes because det(TJ = 0 when [TJ is not invertible (Theorem
4.8.6). The left side vanishes because if [T] is not invertible, then T(JW) is a
subspace of RI of dimension less than n, and T(A) is a bounded subset of this
subspace, so (by Proposition 4.3.7) it has n-dimensional volume 0.

This leaves the case where [T] is invertible. This proof is much more involved.
We will start by denoting by T(DN) the paving of 18" whose blocks are all the
T(C) for C E DN(11F"). We will need to prove the following statements:

(1) The sequence of pavings T(DN) is a nested partition.
(2) If C E DN(R"), then

vola T(C) = vol" T(Q) vol" C.

(3) If A is payable, then its image T(A) is payable, and

vol" T(A) = vol" T(Q) vol" A.
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(4) vol T(Q) = Idet[T] l.

We will take them in order.

Lemma 4.9.4. The sequence of pavings T(VN) is a nested partition.

Proof of Lemma 4.9.4. We must check the three conditions of Definition
-1.7.4 of a nested partil ion. The first condition is that small paving pieces must
fit inside big paving pieces: if we pave r:" with blocks T(C), then if

CI E D,N, (l-r'). C2 E DN1(Il&'1), and C1 C C2. 4.9.2

FIGURE 1.9.2.
The potato-shaped area at top

is the set A; it is trapped by T to
its image T(A), at bottom. If C is
the small black square in the top
figure, T(C) is the small black par-
allelogram in the bottom figure.
The enseultle of all the T(C) for
C in DN(iR") is denoted T(Dv).
The volume of T(.4) is the limit
of the sum of the volumes of the

we have

T(C1) C T(C2). 4.9.3

This is clearly met: for example. if you divide the square A of Figure 4.9.1 into
four smaller squares. the image of each small square will fit inside T(A).

We use the linearity of T in meeting the second and third conditions. The
second condition is that the boundary of the sequence of pavings must have
o-dimensional volume 0. The boundary i)DN(IR") is a union of subspaces of
dimension it - 1. hence dT(DN(2")) is also. Moreover. only finitely many
intersect any bounded subset of R:", so (by Corollary 4.3.7) the second condition
is satisfied.

The third condition is that the pieces T(C) shrink to points as N - xr.
This is also met: since

diam(C) when CE DN(;R"). we have diam(T(C.')) < ITI . 4.9.42N 2N

So dianl(T(C)) 0 as N - oo.tt

Proof of Theorem 4.9.1: second statement.
Now for the second statement. Recall that Q is the unit (rt-dimensional)

cube, with n-dimensional volume 1. We will now show that T(Q) is payable,
as are all T(C) for C E DN. Since C is Q scaled up or clown by 2N in all
directions, and T(C) is T(Q) scaled by the same factor, we have

T(C), where C E Dlv(tr:") and
C C A. Each of these has the

vol T(C) _ vol" C _ vol" C
4.9.5

same volume

vol. T(C) = vol, Cvol,, T(Q).
which we can write

vol" T(Q) vol" Q 1

ol,, T(C) = vol" T(Q) vol,,(C). .9.6

"If this is not clear. consider that for any points a and b in C' (which we can think

I(T)IItI.

So the dianlet:er of T((') can he at most IIT)I times the length of the longest vector
joining two points of C: i.e. n/2'.

of as joined by the vector 3),

IT(a) - T(b)i = IT(a - b) = I[T],11 <

N.P. 1.4.11
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In reading Equation 4.9.7, it's
important to pay attention to
which C's one is summing over:

Cf1A# q = C's inAor
straddling A

C C A = C's entirely
in A

Subtracting the second from the
first gives C's straddling A.

You may recall that in R2 and
especially 1R3 the proof that the
determinant measures volume was
a difficult computation. In R",
such a computational proof is out
of the question.

Exercise 4.9.1 suggests a differ-
ent proof: showing that vol.T(Q)
satisfies the axiomatic definition of
the absolute value of determinant,
Definition 4.8.1.

What does E(A) mean when
the set A is defined in geomet-
ric terms, as above? If you find
this puzzling, look again at Figure
4.9.1. We think of E as a transfor-
mation; applying that transforma-
tion to A means multiplying each
point of A by E to obtain the cor-
responding point of E(A).

Proof of Theorem 4.9.1: third statement. We know that A is payable;
as illustrated in Figure 4.9.2, we can compute its volume by taking the limit of
the lower sum (the cubes C E D that are entirely inside A) or the limit of the
upper sum (the cubes either entirely inside A or straddling A).

Since T(DN) is a nested partition, we can use it as a paving to measure the
volume of T(A), with upper and lower sums:

upper sum for XT(A) = vol., T(C) by Eq. 4.9.6

vol.T(C) _ vol.(C)vol.T(Q) =vol0T(Q) F vol, C;
T(C)rT(A)# 0 CnA# m CnA# m

limit is vol. T(A) limit is vol"(A)

lower sum for XT(A) limit is vol"(A)

vol. T(C) _y vol.(C) vol. T(Q) =vol. T(Q) > vol. C . 4.9.7
T(C)CT(A) CCA CCA

Subtracting the lower sum from the upper sum, we get

UN(XT(A)) - LN(XT(A)) = F vol.T(C)
C straddles

boundary of A

= vol. T(Q) vol. C.
C straddles

boundary of A

Since A is payable, the right-hand side can be made arbitrarily small, so T(A)
is also payable, and

vole T(A) = vol. T(Q) vole A. 4.9.8

Proof of Theorem 4.9.1: fourth statement. This leaves (4): why is
vol. T(Q) the same as I det[T) I? There is no obvious relation between volumes
and the immensely complicated formula for the determinant. Our strategy will
be to reduce the theorem to the case where T is given by an elementary matrix,
since the determinant of elementary matrices is straightforward.

The following lemma is the key to reducing the problem to the case of ele-
mentary matrices.

Lemma 4.9.5. If S, T : R" -. R" are linear transformations, then

-1. (S o T)(Q) = vol. S(Q) vol. T(Q). 4.9.9

Proof of Lemma 4.9.5. This follows from Equation 4.9.8, substituting $ for
T and T(Q) for A:

vol.(S o T)(Q) = vole S(T(Q)) = vol. S(Q) vol. T(Q). 4.9.10
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Q

FIGURE 4.9.3.
The second type of elementary

matrix, in f82, simply takes the
unit square Q to a parallelogram
with base 1 and height 1.

FIGURE 4.9.4.
Here n = 7; from the 7 x 7

matrix E we created the 2 x 2
matrix E1 =

l
1] and the 5 x 5

identity matrix E2.

Any invertible linear transformation T, identified to its matrix, can be writ-
ten as the product of elementary matrices,

(T] = EkEk_1 ... El, 4.9.11

since [T] row reduces to the identity. So by Lemma 4.9.5, it is enough to prove
(4) for elementary matrices: i.e., to prove

vol,, E(Q) = IdetEI. 4.9.12

Elementary matrices come in three kinds, as described in Definition 2.3.5.
(Here we discuss them in terms of columns, as we did in Section 4.8, not in
terms of rows.)

(1) If E is a type 1 elementary matrix, multiplying a column by a nonzero
number in, then (let E = m (Corollary 4.8.9), and Equation 4.9.12 be-
comes vol,, E(Q) = Im(. This result was proved in Proposition 4.1.16,
because E(Q) is then a parallelepiped all of whose sides are 1 except one
side, whose length is Iml.

(2) The case where E is type 2, adding a multiple of one column onto an-
other, is a bit more complicated. Without loss of generality, we may
assume that a multiple of the first is being added to the second.

First let us verify it for the case n = 2 , where E is the matrix

E = IO 1] , with detE= 1. 4.9.13

As shown in Figure 4.9.3, the image of the unit cube, E(Q), is then a
parallelogram still with base 1 and height 1, so vol(E(Q)) = I det El =
1.12

If n > 2, write R" = R2 x R-2. Correspondingly, we can write
Q = Ql X Q2, and E = El x E2, where E2 is the identity, as shown in
Figure 4.9.4.

Then by Proposition 4.1.12,

vo12(El(Q,)) voles-2(Q2) = 1 1 = 1. 4.9.14

(3) If E is type 3, then I detEl = 1, so that Equation 4.9.12 becomes
vol E(Q) = 1. Indeed, since E(Q) is just Q with vertices relabeled,
its volume is 1.

12But is this a proof? Are we using our definition of volume (area in this case)
using pavings, or some "geometric intuition," which is right but difficult to justify
precisely? One rigorous justification uses Fubini's theorem:

yI +l \
E(Q) = f

I"f dx l dy = 1.
o .

Another possibility is suggested in Exercise 4.9.2.
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FIGURE 4.9.5.
The linear transformation

_ a 0T
0 b]

Note that after knowing vol" T(Q) = I det[T]I, Equation 4.9.9 becomes

I det[S]I I det[T]I = I det[ST]I. 4.9.15

Of course, this was clear from Theorem 4.8.7. But that result did not have a
very transparent proof, whereas Equation 4.9.9 has a clear geometric meaning.
Thus this interpretation of the determinant as a volume gives a reason why
Theorem 4.8.7 should be true.

Linear change of variables

It is always more or less equivalent to speak about volumes or to speak about
integrals; translating Theorem 4.9.1 ("the determinant measures volume") into
the language of integrals gives the following theorem.

Theorem 4.9.6 (Linear change of variables). Let T : IR" -+ ll be
an invertible linear transformation, and f : W' -+ ]R an integrable function.
Then f oT is integrable, and

r

R
f "f(y)Idtyl,= IdetTI J^ f(T(x))Id"xl 4.9.16

corrects for AY)stretching by T

where x is the variable of the first I2" and y is the variable of the second Rn.

In Equation 4.9.16, I det T J corrects for the distortion induced by T.

takes the unit circle to the ellipse
shown above. Example 4.9.7 (Linear change of variables). The linear transformation

given by T = [U 61 transforms the unit circle into an ellipse, as shown in

Figure 4.9.5. T e area of the ellipse is then given by

Area of ellipse = f Id2yl = Idet [0
b ]I f Id2xl = Iablfr. 4.9.17

ellipse ,- eircl

at, -arse of circle

If we had integrated some function f : P2 -+ R over the unit circle and
wanted to know what the same function would give when integrated over the
ellipse, we would use the formula

f f(y)Id2yi = lab[ f. f (a
J

Id2xl 0 4.9.18
ellipse circle

T(x)



FIGURE 4.9.6.

The vectors a, b' span a paral-
lelogram of positive area; the vec-
tors b' and a' span a parallelogram
of negative area.

Alternatively, we can say that
just as the volume of T(Q) is
I detTI, the signed volume of T(Q)
is det T.

Of course, "counterclockwise"
is not a mathematical term; find-
ing that the determinant of some
2 x 2 matrix is positive cannot tell
you in which direction the arms of
your clock move. What this re-
ally means is that the smallest an-
gle from Vi to 32 should be in the
same direction as the smallest an-
gle from e1 to e2.
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Proof of Theorem 4.9.6.

1 f (T(x)) I det TIId"xI = limo E MC ((f o T)I det TI) vol"(C)
CEDN (t")

= lim E Mc(f oT) vol,,(T(C)) 4.9.19

=I det Tl vol (C)

lim
N-m

PET (DN(t" ))

Signed volumes

The fact that the absolute value of the determinant is the volume of the image
of the unit cube allows us to define the notion of signed volume.

Definition 4.9.8 (Signed volume). The signed k-dimensional volume of
the parallelepiped spanned by V1......... , . Vk E Itk is the determinant

CM vl ... _Vs 4.9.20

I II `

Thus the determinant not only measures volume; it also attributes a sign to
the volume. In JR2, two vectors v'1 and v"2, in that order, span a parallelogram of
positive area if and only if the smallest angle from vl to v2 is counterclockwise,
as shown in Figure 4.9.6.

In R3, three vectors, v'1,v2i and 13, in that order, span a parallelepiped of
positive signed volume if and only if they form a right-handed coordinate sys-
tem. Again, what we really mean is that the same hand that fits v'1,,V2i and v3
will fit 41 i e'2, and e3; it is by convention that they are drawn counterclockwise,
to accommodate the right hand.

4.10 THE CHANGE OF VARIABLES FORMULA

We discussed linear changes of variables in higher dimensions in Section
4.9. This section is devoted to nonlinear changes of variables in higher dimen-
sions. You will no doubt have run into changes of variables in one-dimensional
integrals, perhaps under the name of the substitution method in methods of
integration theory.

E MP(f)voln(P) = J
f(Y)Id"yI.

t"



The meaning of expressions like
du is explored in Chapter 6. We
will see that we can use the change
of variables formula in higher di-
mensions without requiring exact
correspondence of domains, but
for this we will have to develop the
language of forms. You will then
find that this is what you were us-
ing (more or less blindly) in one
dimension.
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Example 4.10.1 (Change of variables in one dimension: substitution
method). To compute

sin xecos = dx.f 4.10.1

Traditionally, one says: set

u = cos x,

n

so that du = - sin x dx. 4.10.2

Then when x = 0, we have u = cos 0 = 1, and when x = lr, we have u = cos 7r =
-1, so

f " sin xe`°sxdx =
J

e"du = J I e"du = e - 1. ln 4.10.3
o i i e

In this section we want to generalize this sort of computation to several vari-
ables. There are two parts to this: transforming the integrand, and transform-
ing the domain of integration. In Example 4.10.1 we transformed the integrand
by setting u = coo x, so that du = - sin x dx (whatever du means), and we
transformed the domain of integration by noting that x = 0 corresponds to
u = cos 0 = 1, and x = a corresponds to u = cos rr = -1.

Both parts are harder in several variables, especially the second. In one
dimension, the domain of integration is usually an interval, and it is not too
hard to see how intervals correspond. Domains of integration in IiY", even in the
traditional cases of disks, sectors, balls, cylinders, etc., are quite a bit harder
to handle. Much of our treatment will be concerned with making precise the
"correspondences of domains" under change of variables.

There is another difference between the way you probably learned the change
of variables formula in one dimension, and the way we will present it now in
higher dimensions. The way it is typically presented in one dimension makes the
conceptual basis harder but the computations easier. In particular, you didn't
have to make the domains correspond exactly; it was enough if the endpoints
matched. Now we will have to make sure our domains correspond precisely,
which will complicate our computations.

Three important changes of variables

Before stating the change of variables formula in general, we will first explore
what it says for polar coordinates in the plane, and spherical and cylindrical
coordinates in space. This will help you understand the general case. In ad-
dition, many real systems (encountered for instance in physics courses) have a
central symmetry in the plane or in space, or an axis of symmetry in apace,
and in all those cases, these particular changes of variables are the useful-ones.
Finally, a great many of the standard multiple integrals are computed using
these changes of variables.
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In Equation 4.10.5, the r in
r dr dB plays the role of I det Ti in
the linear change of variables for-
mula (Theorem 4.9.6): it corrects
for the distortion induced by the
polar coordinate map P. We could
put I det TI in front of the integral
in the linear formula because it is
a constant. Here, we cannot put
r in front of the integral: since P
is nonlinear, the amount of distor-
tion is not constant but depends
on the point at which P is applied.

In Equation 4.10.5, we could
replace

by

f frrcosin

0

9l
e lrs

Iaf\P((

)llll

\
which is the format we used in
Theorem 4.9.6 concerning the lin-

ear case.

Polar coordinates

Definition 4.10.2 (Polar coordinates map). The polar coordinate map
P maps a point in the (r, 8)-plane to a point in the (x, y)-plane:

4.10.4

where r measures distance from the origin along the spokes, and the polar
angle 8 measures the angle (in radians) formed by a spoke and the positive

x axis.

P: \B) -. (X =

Thus, as shown in Figure 4.10.1, a rectangle in the domain of P becomes a
curvilinear "rectangle" in the image of P.

FIGURE 4.10.1. The polar coordinate map P maps the rectangle at left, with di-
mensions Ar and A8, to the curvilinear box at right, with two straight sides of length
Ar and two curved sides measuring ra8 (for different values of r).

Proposition 4.10.3 (Change of variables for polar coordinates).
Suppose f is an integrable function defined on 1R2, and suppose that the
polar coordinate map P maps a region B C (0, oo) x [0,2,r) of the (r, 8)-
plane to a region A in the (x, y)-plane. Then

I f `y) Idxdyl =JBf (rn8)r[drd9[. 4.10.5

Note that the mapping P : B -. A is necessarily bijective (one to one and
onto), since we required 8 E [0,27r). Moreover, to every A there corresponds
such a B, except that 0 should not belong to A (since there is no well-defined
polar angle at the origin). This restriction does not matter: the behavior of
an integrable function on a set of volume 0 does not affect integrals (Theorem
4.3.10). Requiring that 8 belong to [0, 2n) is essentially arbitrary; the interval
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This was originally computed by
Archimedes, who invented a lot of
the integral calculus in the pro-
cess. No one understood what he
was doing for about 2000 years.

[-a, ir) would have done just as well. Moreover, there is no need to worry about
what happens when 9 = 0 or 9 = 27r, since those are also sets of volume 0.

We will postpone the discussion of where Equation 4.10.5 comes from, and

proceed to some examples.

Example 4.10.4 (Volume beneath a paraboloid of revolution).
sider the paraboloid of Figure 4.10.2, given by

Con-

z=f
((-{2+y2 ifx2+y2<R2x

Ox ifx2+y2>R2.
Usually one would write the integral

4.10.6

f.af \Y/ Idxdy[
as f (x2+y2)dxdy,a

4.10.7

where

DR =
J() E R2 1 x2 + y2 < R2 } 4.10.8

is the disk of radius R centered at the origin.

FIGURE 4.10.2. This integral is fairly complicated to compute using Fubini's theorem; Exer-
In Example 4.10.4 we are mea- vise 4.10.1 asks you to do this. Using the change of variables formula 4.10.5, it

suring the region inside the cylin- is straightforward:
der and outside the paraboloid.

1
r2u rR

laf (
(Y) dxdy=J J j(rs8)rdrde

=
12ir fR

(r2)(cos2 0 + sin2 0) r dr de

r2s R rr4R
= J f (r2)rdrde=2rrl j = 7rR4.

0 0 4 0 2

4.10.9

Most often, polar coordinates are used when the domain of integration is a
disk or a sector of a disk, but they are also useful in many cases where the

FIGURE 4.10.3. equation of the boundary is well suited to polar coordinates, as in Example
The lemniscate of equation 4.10.5.

r2 = cos20.

Example 4.10.5 (Area of a lemniscate). The lemniscate looks like a figure
eight; the name comes from the Latin word for ribbon. We will compute the area
of the right-hand lobe A of the lemniscate given by the equation r2 = cos 20,
i.e., the area bounded by the right loop of the figure eight shown in Figure
4.10.3. (Exercise 4.10.2 asks you to write the equation of the lemniscate in
complex notation.)
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The formula for change of vari-
ables for polar coordinates, Equa-
tion 4.10.5, has a function f on
both sides of the equation. Since
we are computing area here, the
function is simply 1.

FIGURE 4.10.4.
In spherical coordinates, a

point is specified by its distance
from the origin (r), its longtitude
(0), and its longitude (pp); longi-
tude and latitude are measured in
radians, not in degrees.

The r2 cos W corrects for distor-
tion induced by the mapping.

Of course this area can be written fA dxdy, which could be computed by
Riemann sums, but the expressions you get applying Fubini's theorem are dis-
mayingly complicated. Using polar coordinates simplifies the computations.

The region A (the right lobe) corresponds to the region B in the (r, 8)-plane
where

B= <8<4, 0<r<}. 4.10.10

Thus in polar coordinates, the integral becomes

a/4 / r
Vcos 20

"/4 2 _ 20

1 ! J r dr) dB = r f T 1 dB
"/a \ o ! "/a 2 0

_ r /4 cos 20
d8

J-A/4 2

-
[sin2B] "/4

4 /4 2
A

4.10.11

Spherical coordinates

Spherical coordinates are important whenever you have a center of symmetry
in R3.

Definition 4.10.6 (Spherical coordinates map). The spherical coordi-
nate map S maps a point in space (e.g., a point inside the earth) known by
its distance r from the center, its longitude 0, and its latitude W. to a point
in (z, y, z)-space:

Or

z=roeOoos
S: 0 r+ 4.10.12

ip ` z=rsinip

This is illustrated by Figure 4.10.4.

Proposition 4.10.7 (Change of variables for spherical coordinates).
Suppose f is an integrable function defined on llf3, and suppose that the
spherical coordinate map S maps a region B of the (r, 8, gyp)-space to a re-
gion A in the (z, y, z)-space. Further, suppose that B c (0, oo) x f0, 21r) x
(-7r/2, 7r/2). Then

rcosecosw\f f v
zdzdydz

= / rsinBcasrp
jJ 4.10.13e z s rsinSO

Again, we will postpone the justification for this formula.
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For spherical coordinates, many
authors use the angle from the
North Pole rather than latitude.
Mainly because most people are
comfortable with the standard lat-
itude, we prefer this form. The
formulas using the North Pole are
given in Exercise 4.10.10.

As shown in Figure 4.10.4, r
goes from 0 to 1, p from 0 to n/2
(from the Equator to the North
Pole), and 0 from 0 to 21r.

At 9 = -ir/4 and 0 = 7r/4,
r=0.

21r

1r3 2
`

R/2
dr= 0 rsm-j

o l 2 10

Example 4.10.8 (Spherical coordinates). Integrate the function z over

the upper half of the unit ball:

Ja
z dx dy dz, 4.10.14

where A is the upper half of the unit ball, i.e., the region

I rxA=(f y)E113Ix2+y2+z2<_1,z>0 4.10.15

The region B corresponding to this region under S is

Ifr
B = 9 E (0, oo) x [0, 2a) x (-a/2, it/2) r < 1, W > 0 4.10.16

Thus our integral becomes

f.1 x/2 2x

l (r sincp)(r2cosgyp)drd9dip= 1 / (f r3sincpcosVdB)dip///ldr
a 0 0

= 27r f 2 dr = 4. 0 4.10.17

x

Cylindrical coordinates

Cylindrical coordinates are important whenever you have an axis of symme-
try. They correspond to describing a point in space by its altitude (i.e., its
z-coordinate), and the polar coordinates r, 9 of the projection in the (x, y)-
plane, as shown in Figure 4.10.5.

Definition 4.10.9 (Cylindrical coordinates map). The cylindrical co-
ordinates map C maps a point In space known by its altitude z and by and
the polar coordinates r, 9 of the projection in the (z, y)-plane, to a point In
(z,y,z)-space:

FIGURE 4.10.5.
In cylindrical coordinates, a

point is specified by its distance
r from the z-axis, the polar angle
9 shown above, and the z coordi-
nate. C: I1(9 H (rsin9 .

z
4.10.18
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In Equation 4.10.19, the r in
r dr d8 dz corrects for distortion
induced by the cylindrical coordi-
nate map C.

Exercise 4.10.3 asks you to de-
rive the change of variable for-
mula for cylindrical coordinates
from the polar formula and Fu-
bini's theorem.

Proposition 4.10.10 (Change of variables for cylindrical coordi-
nates). Suppose f is an integrable function defined on R3, and suppose that
the cylindrical coordinate map C maps a region B C (0, oo) x [0, 21r) x ]R of
the (r, 8, z)-space to a region A in the (x, y, z)-space. Then

JA

f l y) y - f f rrcos0\
J I` dx d dz - I` r sin 9 J r dr dd dz. 4.10.19

A z a z

(x2 + y2)z over the region A C JR3 that is the part of the inverted cone z2 >
x2 + y2 where 0 < z < 1, as shown in Figure 4.10.6. This corresponds under C
to the region B where r < z < 1. Thus our integral becomes

r/ Example 4.10.11 (Integrating a function over a cone). Let us integrate

=1

fA(x2 +Y 2 )zdx dy dz = rB r2z(cos2 B + sine 6) r dr d6 dz = j (r2z) r dr d9 dz
l is

Y
2 1/ 1 1

f f tf r3z dz) dr) d6 = 21r r r3 f z
2

dr
U o` r / 0 2

FICURE 4.10.6.
The region we are integrating

over is bounded by this cone, with
a flat top on it.

Since the integrand rsz doesn't
depend on 8, the integral with re-
spect to 8 just multiplies the re-
sult by 2s, which we did at the
end of the second line of Equation
4.10.20.

"Injective" and "one to one"
are synonyms.

We denote by u a point in U
and by v a point in V.

\
21r Jr3(2 - 2 )dr=2rr[8

12]o /

2'r(8 12) 12' 4.10.20

Note that it would have been unpleasant to express the flat top of the cone in
spherical coordinates. A

General change of variables formula

Now let's consider the general change of variables formula.

Theorem 4.10.12 (General change of variables formula). Let X be
a compact subset of lR", with boundary of volume 0, and U an open neigh-
borhood of X. Let It : U -r JR" be a C1 mapping with Lipschitz derivative,
that is in jective on (X - OX), and such that [D4'(x)J is invertible at every
x E (X - OX). Set Y = 4'(X).

Then if f : Y -* ]R is integrable, (f o 4i) Idet[D4s] I is integrable on X, and

f(v) Id"v1 = fj(f o 4)(u) Idet[D4s(u)JI Id"uI 4.10.21



Once we have introduced im-
proper integrals, in Section 4.11,
we will be able to give a cleaner
version (Theorem 4.11.16) of the
change of variables theorem.
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Let us see how our examples are special cases of this formula. Let us consider
polar coordinates

p(0 =
(rsin0), 4.10.22

and let f : iR2 -. l be an integrable function. Suppose that the support of f is
contained in the disk of radius R. Then set

X={(r)10<r<R, 0<0<21r}. 4.10.23

and take U to be any bounded neighborhood of X, for instance the disk centered
at the origin in the (r, 0)-plane of radius R + 27r. We claim all the requirements
are satisfied: here P, which plays the role of 4i, is of class C1 in U with Lipschitz
derivative, and it is injective (one to one) on X -8X (but not on the boundary).
Moreover, [DP] is invertible in X - 8X, since det[D4I = r which is only zero
on the boundary of X.

The case of spherical coordinates

fr (rcosrpcosB
S: 8 = I I 4.10.24

J
is very similar. If as before the function f to be integrated has its support in
the ball of radius R around the origin, take

T}}
X= (8110<T<R, -2 <p< z p<B<2,r}, 4.10.25

J

and U any bounded open neighborhood of X. Then indeed S is C1 on U with
Lipschitz derivative; it is injective on X - OX, and its derivative is invertible

there, since the determinant of the derivative is which only vanishes
on the boundary.

Remark 4.10.13. The requirement that 4i be injective (one to one) of-
ten creates great difficulties. In first year calculus, you didn't have to worry
about the mapping being injective. This was because the integrand dx of one-
dimensional calculus is actually a form field, integrated over an oriented domain:
afdx= - faf dx.

For instance, consider f 4 dx. If we set x = u2, so that dx = 2u du, then
x = 4 corresponds to u = ±2, while x = 1 corresponds to u = ±1. If we choose
u = -2 for the first and u = I for the second, then the change of variable
formula gives

4 23dx= r 2u du=[u2] 2=4-1=3, 4.10.26
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FicuRe 4.10.7.

even though the change of variables was not injective. We will discuss forms in
Chapter 6. The best statement of the change of variables formula makes use of
forms, but it is beyond the scope of this book. A

Theorem 4.10.12 is proved in Appendix A.16; below we give an argument
that is reasonably convincing without being rigorous.

A heuristic derivation of the change of variables formulas

It is not hard to see why the change of variables formulas above are correct,
and even the general formula. For each of the coordinate systems above, the
standard paving DN in the new space induces a paving in the original space.

Actually, when using polar, spherical, or cylindrical coordinates, you will
be better off if you use paving blocks with side length 7r/2N in the angular
directions, rather than the 1/2N of standard dyadic cubes. (Since iris irrational,
dyadic fractions of radians do not fill up the circle exactly, but dyadic pieces of
turns do.) We will call this paving D°N w, partly to specify these dimensions,
but mainly to remember what space is being paved.

The paving of lit2 corresponding to polar coordinates is shown in Figure
4.10.7; the paving of P3 corresponding to spherical coordinates is shown in
Figure 4.10.8.

In the case of polar, spherical, and cylindrical coordinates, the paving DN w
clearly forms a nested partition. (When we make more general changes of
variables 4', we will need to impose requirements that will make this true.)
Thus given a change of variables mapping 0 with respect to the paving Mew
we have

f /d"vI Nioo E Mon(f)YOIn,P(t )
CEP f'

= lim E Mc(f o 4') vol" 0(C)
vol" C.N--CEDNW vol,C

4.10.27

This looks like the integral over U of the product of f o 4' and the limit of the
ratio

The paving P(DN'°) of lit2 cor- vol,, 4i(C)
responding to polar coordinates; vol" C
the dimension of each block in the as N oo so that C becomes small. This would give
angular direction (the direction of /
the spokes) is 7r/2N.

J
f 1d"-1 1 ((f o $) lim vol 4'(C) \ Id"ul.

V u ' N-.oo vol" C J

4.10.28

4.10.29

This isn't meaningful because the product of f o 4i and the ratio of Equation
4.10.28 isn't a function, so it can't be integrated.

But recall (Equation 4.9.1) that the determinant is precisely designed to
measure ratios of volumes under linear transformations. Of course our change



X

FIGURE 4.10.8.
Under the spherical coordinate

map S, a box with dimensions
Or, AB, and A(P, and anchored at
fr

0 (top) is mapped to a curvi.
V

linear "box" with dimensions

Or, r cos V.AB, and r& p.
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of variable map 4S isn't linear, but if it is differentiable, then it is almost linear
on small cubes, so we would expect

vol" 4'(C) - Idet[Db(u))I 4.10.30
vole C

when C E DN w(R) is small (i.e., N is large), and u E C. So we might expect
our integral fA f to be equal to

I fId"vl=I (fo4')(x)IId"uI. 4.10.31
I" v

We find the above argument completely convincing; however, it is not a
proof. Turning it into proof is an unpleasant but basically straightforward
exercise, found in Appendix A.16.

Example 4.10.14 (Ratio of areas for polar coordinates). Consider the
ratio of Equation 4.10.30 in the case of polar coordinates, when 41 = P, the
polar coordinates map. If a rectangle C in the (r, 0) plane, containing the point
((ro , has sides of length Ar and M, then the corresponding piece P(C) ofl00
the (x, y) plane is approximately a rectangle with sides rOA0, Ar. Thus its area
is approximately roArhO, and the ratio of areas is approximately rs. Thus we
would expect that

f,
fId"vI =J (f oP)rdrde, 4.10.32

v u

where the r on the right is the ratio of the volumes of infinitesimal paving
blocks.

Indeed, for polar coordinates we find

[DP(r)] coso -rsinB
0

=
sin0 rcoso,' so that Idet[DP(e)JI=r, 4.10.33

explaining the r in the change of variables formula, Equation 4.10.5. A

Example 4.10.15 (Ratio of volumes for spherical coordinates). In
the case of spherical coordinates, where 4S = S, the image S(C) of a box
C E DN (R3) with sides Ar, AB, AV is approximately a box with sides Or,
rAV, and r cos V.9, so the ratio of the volumes is approximately r2 cos V.

Indeed, for spherical coordinates, we have

r11 0cosrp -rsin0coscp -rcos0sin,p
DS 0 IJ =

[cos
sin0 -rsin0sinp 4.10.34

So sin W 0 r cos s
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FIGURE 4.10.9.
The region T resembles a cylin-

der flattened at the ends. Horizon-
tal sections of T are ellipses, which

so that

Example 4.10.16 (A less standard change of variables). The region T

\1xz 12+\l+z/2< 1, -1<z<1 4.10.36

looks like the curvy-sided tetrahedron /pictured in Figure 4.10.9. We will com-
pute its volume. The map y : [0, 21r] x [0,1] x [-1,1] -+ lR3 given by

B (t(1-z)cosB
ry (t = I t(1+z)sin0 4.10.37

`` ` zz

det [DS ( I

J

= r2 cosW. 4.10.35

degenerate to lines when z = ±1. parametrizes T. The determinant of [Dy] is

t(1 - z)sine (1 - z)cosO -tcose
det t(l+z)cos9 (1+z)sinO tsinO =-t(1-z2). 4.10.38

0 0 1

Thus the volume is given by the integral
Exercise 4.5.18 asks you to 2x ft I

solve a problem of the same sort. o f f I-t(1 - z2) I dz dt d9 = 3 . A 4.10.39
Jo o J I

4.11 IMPROPER INTEGRALS

So far all our work has involved the integrals of bounded functions with bounded
support. In this section we will relax both of these conditions, studying improper

There are many reasons to integrals: integrals of functions that are not bounded or do not have bounded
study improper integrals. An es- support, or both.
sential one is the Fourier trans-

form, the fundamental tool of en-
gineering and signal processing Improper integrals in one dimension
(not to mention harmonic analy-
sis). Improper integrals are also In one variable, you probably already encountered improper integrals: integrals
ubiquitous in probability theory. like

d = [ tan ]° a = 4 11 1f x arc x ,j+ x2 . .

ZOO x"e zdx=rtl10
4.11.2

rl

4.11.3
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In the cases above, even though the domain is unbounded, or the function is
unbounded (or both), the function can be integrated, although you have to work
a bit to define the integral: upper and lower sums do not exist. For the first two
examples above, one can imagine writing upper and lower sums with respect to
a dyadic partition; instead of being finite, these sums are infinite series whose
convergence needs to be checked. For the third example, any upper sum will
be infinite, since the maximum of the function over the cube containing 0 is
infinity.

We will see below how to define such integrals, and will see that there are
analogous multiple integrals, like

Id"Xl

a., l + jxjn+1
4.11.4

There are other improper integrals, like

IO0 sin x
dx, 4.11.5

o x
which are much more troublesome. You can define this integral as

q mo
/A smx

dx 4.11.6
a

and show that the limit exists, for instance, by saying that the series

(k+ Ow Binx
4.11.7

kw X

is an decreasing alternating series whose terms go to 0 as k - on. But this
works only because positive and negative terms cancel: the area between the
graph of sin x/x and the x axis is infinite, and the limit

A oo f I

Sin x l
dx 4.11.8

does not exist. Improper integrals like this, whose existence depends on can-
cellations, do not generalize at all well to the framework of multiple integrals.
In particular, no version of Fubini's theorem or the change of variables formula
is true for such integrals, and we will carefully avoid them.

Defining improper integrals

It is harder to define improper integrals-integrals of functions that are un-
bounded, or have unbounded support, or both-than to define "proper" inte-
grals. It is not enough to come up with a coherent definition: without Fubini's
theorem and the change of variables formula, integrals aren't of much inter-
est, so we need a definition for which these theorems are true, in appropriately
modified form.
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Using 'J8 = f8 U {too,-oo}
rather than R is purely a matter
of convenience: it avoids speaking
of functions defined except on a set
of volume 0. Allowing infinite val-
ues does not affect our results in
any substantial way; if a function
were ever going to be infinite on
a set that didn't have volume 0,
none of our theorems would apply
in any case.

For example, if we truncate by
R = 1, then

f(x)if 1x1!5 1, f(x) < 1(f)rW=1

1 if IxI <1,f(x) >1
0 if 1xI > 1.

We will use the term I-integral
to mean "improper integral," and
I-integrable to mean "improperly
integrable."

In Equation 4.11.13 we could
write limR_ rather than sups.
The condition for I-integrability
says that the integral in Equa-
tion 4.11.13 must be finite, for any
choice of R.

We will proceed in two steps: first we will define improper integrals of non-
negative functions; then we will deal with the general case. Our basic approach
will be to cut off a function so that it is bounded with bounded support, in-
tegrate the truncated function, and then let the cut-off go to infinity, and see
what happens in the limit.

Let f : R' -. i U {oo) be a function satisfying f(x) > 0 everywhere. We
allow the value f no, because we

AX)

to integrate functions like

J (X) 4.11.9

setting this function equal to +oo at the origin avoids having to say that the
function is undefined at the origin. We will denote by IlF the real numbers
extended to include +oo and -oo:

! =RU{+oo,-oo}. 4.11.10

In order to define the improper integral, or I-integral, of a function f that is
riot bounded with bounded support, we will use truncated versions of f, which
are bounded with bounded support, as shown in Figure 4.11.1.

Definition 4.11.1 (R-truncation). The R -truncation [f]R is given the for-
mula

f (x) if IX[ < R and f (x) < R;

lf]R(X) = R if ix[ < R and Ax) > R; 4.11.11
0 ifIXI>R.

Note that if R1 < R2, then (AR, < [f]R,. In particular, if all [f]R are
integrable, then

LIAR.
(x)Id"xI 5

f. (fjR,(X)jdnXj- 4.11.12

Definition 4.11.2 (Improper Integral). If the function f : lRn -+ 1R is
non-negative (i.e., satisfies f(x) > 0), it is improperly integrable if all [f]itare integrable, and

suupJj" [1JR(X)Id"XI < 00. 4.11.13

The supremum is then called the improper integral, or 1-integral, of f.
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If f has both positive and negative values, write f = f+ - f -, where both
f+ and f- are non-negative (Definition 4.3.4). Then f is I-integrable if and
only if both f+ and f - are I-integrable, and

r
I^ f(x)Id"xl = J ^

f+(x)Id"xI - J ^ f (x)Id"x[. 4.11.14
a s a

Note that since f+ and f- are both I-integrable, the I-integrability off does
not depend on positive and negative terms canceling each other.

A function that is not I-integrable may qualify for a weaker form of integra-
bility, local integrability:

FIGURE 4.11.1. Definition 4.11.3 (Local integrability). A function f : R" -+ JEF is locally
Graph of a function f, trun- integrable if all the functions [fIR are integrable.

cated at R to form [flit; unlike f,
the function [IIa is bounded with For example, the function I is locally integrable but not 1-integrable.

bounded support. Of course a function that is 1-integrable is also locally integrable, but im-
proper integrability and local integrability address two very different concerns.
Local integrability, as its name suggests, concerns local behavior; the only way
a bounded function with bounded support, like [f]R, can fail to be integrable
is if it has "local nonsense," like the function which is 1 on the rationals and
0 on the irrationals. This is usually not the question of interest when we are
discussing improper integrals; there the real issue is how the function grows at
infinity: knowing whether the integral is finite.

Generalities about improper integrals

Remember that Ft denotes the
real numbers extended to include

+oo and -oo.

Proposition 4.11.4 (Linearity of improper integrals). If f, g : R n -+ Ilt
are I-integrable, and a, b E R, then of +bg Iir Ilintegfrable, and

f^ (af(x)+bg(x))Id"xl=a f f(x)Idxl+bJ g(x)Id"xl. 4.11.15t s^ x^

that case, the proposition follows from the computation:

.f f (x)Id"xI + b f 9(x)Id`xIt t
r

f /'= asuupf tfIR(W)Id'xlr+l SUP J "Ig)R(x)Id"xI

=auPf^
R =

=f"(af+bg)(x)Id"xI.

Proof. It is enough to prove the result when f and g are non-negative. In

4.11.16
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Proposition 4.11.5 gives a crite-
rion for integrability.

When we spoke of the volume
of graphs in Section 4.3, the best
we could do (Corollary 4.3.6) was
to say that any bounded part of the
graph of an integrable function has
volume 0. Now we can drop that
annoying qualification.

A curve has length but no area
(its two-dimensional volume is 0).
A plane has area, but its three-
dimensional volume is 0 ... .

Proposition 4.11.5 (Criterion for improper integrals). A function
f : 1R" -+ R is I-integrable if and only if it is locally integrable and IfI is
I-integrable.

Proof. If f is locally integrable, so are f+ and f-, and since

f [f]R(x)Id"xl <_ I. llfl]R(x)Id"xl < f If(x)I Id"xI 4.11.17

is bounded, we see that f+ (and analogously f') are both I-integrable. Con-
versely, if f is I-integrable, then IfI = f + + f - is also. 0

Volume of unbounded sets

In Section 4.1 we defined the n-dimensional volume of a bounded subset A C R".
Now we can define the volume of any subset.

Definition 4.11.6 (Volume of a subset of R"). The volume of any subset
A c W' is

vol" A = f Id"xI = f XA() Id"xI = BUPf.- [XA]R(x) Id"XI
A an R

Thus a subset A has volume 0 if its characteristic function XA is I-integrable,
with I-integral 0.

With this definition, several earlier statements where we had to insert "any
bounded part of" become true without that restriction:

Proposition 4.11.7 (Manifold has volume 0). (a) Any closed manifold
M E IR" of dimension less than n has n-dimensional volume 0.

(b) In particular, any subspace E C R" with dim E < n has n-dimensional
volume 0.

Corollary 4.11.8 (Graph has volume 0). If f : R" -+ R is an integrable
function, then its graph r(f) C R"+t has (n + 1)-dimensional volume 0.

Integrals and limits

The presence of sup in Definition 4.11.2 tells us that we are going to need to
know something about how integrals of limits of functions behave if we are
going to prove anything about improper integrals.

What we would like to be able to say is that if fk is a convergent sequence
of functions, then, as k -+ oo, the integral of the limit of the fk is the same
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The key condition is that given
e, the same N works for all x.

Exercise 4.11.1 asks you to ver-

ify these statements.

Instead of writing "the se-
quence PkXA" we could write "pk
restricted to A." We use PkXA be-
cause we will use such restrictions
in integration, and we use X to de-
fine the integral over a subset A:

1 P(x) = I P(x)XA(x)
A Y^

(see Equation 4.1.5 concerning the
coastline of Britain).

Equation 4.11.20: if you pic-
ture this as Riemann sums in one
variable, a is the difference be-
tween the height of the lower rect-
angles for f, and the height of the
lower rectangles for fk, while the
total width of all the rectangles is
vol"(BR), since BR is the support
for fk.

The behavior of integrals under
limits is a big topic: the main rai-
son d'etre for the Lebesgue inte-
gral is that it is better behaved
under limits than the Riemann in-
tegral. We will not introduce the
Lebesgue integral in this book, but
in this subsection we will give the
strongest statement that is possi-
ble using the Riemann integral.

as the limit of the integral of fk. There is one setting where this is true and

straightforward: uniformly convergent sequences of integrable functions, all
with support in the same bounded set.

Definition 4.11.9 (Uniform convergence). A sequence of functions fk :
Rk -+ R converges uniformly to a function f if for every e > 0, there exists
K such that when k > K, then Ifk(x) - f(x) I < e.

The three sequences of functions in Example 4.11.11 below provide typical ex-
amples of non-uniform convergence. Uniform convergence on all of 1R" isn't a
very common phenomenon, unless something is done to cut down the domain.
For instance, suppose that

pk(x) = ao.k + al.kx + ... + a,,,,kxr" 4.11.18

is a sequence of polynomials all of degree < m, and that this sequence "con-
verges" in the "obvious" sense that for each degree i, the sequence of coefficients
ai,o, ai,1, ai,2, ... converges. Then pk does not converge uniformly on R. But
for any bounded set A, the sequence PkXA does converge uniformly.

Theorem 4.11.10 (When the limit of an integral equals the integral
of the limit). If fk is a sequence of bounded integrable functions, all with
support in a fixed ball BR C R", and converging uniformly to a function f,
then f is integrable, and

/ r
fk(x) Id"xI

J
= ^ f(x) Id"xI. 4.11.19k-- Y Y

Proof.Proof. Choose e > 0 and K so large that supxEY^ 1f(x) - fk(x)I < e when
k > K. Then

LN(f) > LN(fk) - evoln(BR) and UN(f) < UN(fk) + evol"(BR) 4.11.20

when k > K. Now choose N so large that U,v(fk) - LN(fk) < e; we get

UN(f) - LN(f) <- UN(fk) - LN(fk)+2fvol,,(BR), 4.11.21

yielding U(f) - L(f) < f(1+2vo1"(BR)). Since a is arbitrary, this gives the
result.

In many cases Theorem 4.11.10 is good enough, but it cannot deal with
unbounded functions, or functions with unbounded support. Example 4.11.11
shows some of the things that can go wrong.

Example 4.11.11 (Cases where the mass of an integral gets lost). Here
are three sequences of functions where the limit of the integral is not the integral
of the limit.
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(1) When fk is defined by

fk(x)
4.11.22

the mass of the integral is contained in a square 1 high and 1 wide; as k -, oo

this mass rdrifts off to infinity and gets lost:

lim f fk(x) dx = 1 , but f iirn fk(x) dx = f Ode = 0. 4.11.23
k-.ao 0

(2) For the function

The dominated convergence
theorem avoids the problem of
non-integrability illustrated by
Equation 4.11.26, by making the
local integrability of f part of the
hypothesis.

The dominated convergence
theorem is one of the fundamen-
tal results of Lebesgue integra-
tion theory. The difference be-
tween our presentation, which uses
Riemann integration, and the Le-
besgue version is that we have to
assume that f is locally integrable,
whereas this is part of the conclu-
sion in the Lebesgue theory. It is
hard to overstate the importance
of this difference.

The "dominated" in the title
refers to the Jfkl being dominated
by g.

4.11.24

the mass is contained in a rectangle k high and 1/k wide; as k --. on, the height
of the box approaches on and its width approaches 0:

fk(x) = {
k if 0<x<k
0 otherwise,

1 1 1

ktmf fk (x) dx = 1, but J
k
llmfk(x)dx= f Odx = 0. 4.11.25

0 0 0

(3) The third example is less serious, but still a nasty irritant. Let us make
a list a1, a2.... of the rational numbers between 0 and 1. Now define

fk(x) =

(1 if k<x<k+1
0 otherwise,

if x E {al,1

{ 0 otherwise.
4.11.26

f1
Then J fk(x) dx = 0 for all k, 4.11.27

0

but limk_., fk is the function which is 1 on the rationals and 0 on the irrationals
between 0 and 1, and hence not integrable. 0

Our treatment of integrals and limits will be based on the dominated con-
vergence theorem, which avoids the pitfalls of disappearing mass. This theorem
is the strongest statement that can be made concerning integrals and limits if
one is restricted to the Riemann integral.

Theorem 4.11.12 (Dominated convergence theorem for Riemann
integrals). Let fk : R" -. i be a sequence of 1-integrable functions, let
f : II2" - R be a locally integrable function, and let g : R" -e' be I-
integrable. Suppose that all fk satisfy Ifkf 5 9, and

fk(x) = f(x)

except perhaps for x in a set B of volume 0. Then

k f fk(x) f lirn fk(x) Id"xl = f f(x) Ld"xj. 4.11.28
A; 00Z E^ 0^

...,ak)
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The crucial condition above is that all the I fk I are bounded by the I-integrable

function g; this prevents the mass of the integral of the fk from escaping to
infinity, as in the first two functions of Example 4.11.22. The requirement that
f be locally integrable prevents the kind of "local nonsense" we saw in the third

function of Example 4.11.22.
The proof, in Appendix A.18, is quite difficult and very tricky.
Before rolling out the consequences, let us state another result, which is often

easier to use.

Theorem 4.11.13 (Monotone convergence theorem). Let fk :1R" - R
be a sequence of I-integrable functions, and f : R" - 9 be a locally integrable
function, such that

Saying f f < f 2 means that f o r 0 < f n < f 2 < ... , and sup fk(x) = f (X) 4.11.29
any x, fl(X) <_ f2(X). k-co

The conclusions of the dom-
inated convergence theorem and
the monotone convergence theo-
rem are not identical; the integrals
in Equation 4.11.28 are finite while
those in Equation 4.11.29 may be
infinite.

Unlike limits, sups can always
be exchanged, so in Equation
4.11.32 we can rewrite supR supk
as SUPk sUJR.

Equation 4.11.33 is the defini-
tion of I-integrability, applied to f ;
Equation 4.11.34 is the same defi-
nition, applied to kk.

except perhaps for x inn a set B of volume 0. Then

sup J fk() I f(x) IdnxI, 4.11.30
k 1^ t^

sup. f. (x)

in the sense that they are either both infinite, or they are both finite and

equal.

Note that the requirement in the dominated convergence theorem that I fk I c
g is replaced in the monotone convergence theorem by the requirement that the
fk be monotone increasing: 0 < f1 < f2 < ....

Proof. By the dominated convergence theorem,

sup f Ifk)R(x)Id"xl = f [f)R(x)Id"xI, 4.11.31
t^k in.

since all the [fk]R are bounded by [f]R, which is I-integrable (i.e., [f]R plays the
role of g in the dominated convergence theorem). Taking the sup as R oo of
both sides gives

[fk]R(x)Idnxl,sup f [f)R(x)ld"xl= supsupfl. [fk]R(x)ld"xl= sup sup f.-
4.11.32

R t^ R k n k R

and either both sides are infinite, or they are both finite and equal. But

supf [flR(x)Id"xl = f f(x) Id"xj 4.11.33R g
and skpsupj [fk)R(x) Id"xI =supf fk(x)[d"xj. 0 4.11.34



There is one function

Y'-' IIf]R(x,Y)
for each value of x.

Here, x represents n entries of
a point in ]k2"+', and y represents
the remaining m entries.
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Fubini's theorem and improper integrals

We will now show that if you state it carefully, Fhbini's theorem is true for

improper integrals.

Theorem 4.11.14 (Fubini's theorem for improper integrals). Let

f : IR" x lRm -. H be a function such that

(1) The functions y'-' [f]R(x,y) are integrable;
(2) The function h(x) = fl", f (x, y) I dmyl is locally integrable as a func-

tion of x;
(3) The function f is locally integrable.

Then f is I-integrable if and only if h is I integrable, and if both are
I-integrable, then

f f(x,Y)Id"xlld"Y[ = f (fm f(x,Y)Id"YI) Id"x]. 4.11.35
t xt'" = R

Proof. To lighten notation, let us denote by hR the function

hR(x) = J [f]R(x,y)Idmyl; note that
R

mohR(x) = h(x). 4.11.36
am

Applying Fubini's theorem (Theorem 4.5.8) gives

[f)R(x,y)Id"xIId"YI=.

(J
[f1R(x,Y)Id"YI)

id"xI
Q^xQm e^ H'^

= f
n

hR(x) Id-.1.
a

4.11.37

Taking the sup of both sides as R oo and (for the second equality) applying

the monotone convergence theorem to hR, which we can do because h is locally

integrable and the hR are increasing as R increases, gives

suupJ
xRm

[f]R(x, Y) Id"xI
IdtYI

= SUP j hR(x) Id"xI

=f SuphR(x) Id"xI.
a

Thus we have

4.11.38



The terms connected by 1 are
equal. On the left-hand side of
Equation 4.11.39, the first line is
simply the definition of the im-
proper integral of f on the third
line. On the right-hand side, to
go from the first to the second line
we use the monotone convergence
theorem, applied to (f)R.

It's not immediately apparent
that 1/(1 + x2 + y2) is not inte-
grable; it looks very similar to the
function in one variable, 1/(1+z2)
of Equation 4.11.1, which is inte-
grable.
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hR(x)

supf If)R(x,Y) Id"xl Idyl = f supf Ifla(x,y)ld"`YI Id"xI

II^xE^ E^ Em

1 1

sup[f)R(x,Y)ld-YI) Id"xI
E^ E^'

1 1

L̂ x E'^
f(x,y) Id"xl ldmyl = f

^
(f T f(x,y)frrYJ) Id"xI.

E E E
4.11.39

Example 4.11.15 (Using Fubini to discover that a function is not I-
integrable). Let us try to compute

1 dxd .

Ex 1+x2+y21 11I 4.11.40

According to Theorem 4.11.14, this integral will be finite (i.e., the function

1+.T+--y7
is I-integrable) if

J= L 1 + z2 + y2 IdyI da

is finite, and in that case they are equal. In this case the function

h(x) =
1

I+ x2 + y2 Idyl
E

can be computed by setting y2 = (1 + X2)U2, leading to

h(x)-J=l+x2+y2Idyl
l+XT

But h(x) is not integrable, since l/ 1 +x > 1/2x when x > 1, and

jA x
dx log A,

which tends to infinity as A -. oo. 0

4.11.41

4.11.42

4.11.43

4.11.44



Note how much cleaner this
statement is than our previous
change of variables theorem, The-
orem 4.10.12. In particular, it
makes no reference to any particu-
lar behavior of 4' on the boundary
of U. This will be a key to set
ting up surface integrals and simi-
lar things in Chapters 5 and 6.

Recall that a C' mapping is
once continuously differentiable:
its first derivatives exist and are
continuous. A diffeomorphism is a
differentiable mapping 4' : U -. V
that is bijective (one to one and
onto), and such that 4,-' : V -. U
is also differentiable.

Recall (Definition 1.5.17) that
C is the closure of C: the subset of
IR" made up of the set of all limits
of sequences in C which converge
in R".
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The change of variables formula for improper integrals

Theorem 4.11.16 (Change of variables for improper integrals). Let
U and V be open subsets of IR" whose boundaries have volume 0, and 0 :
U V a C' diffeomorphism, with locally Lipschitz derivative. D f : V - IlF
is an integrable function, then (f o w)I det[D4')I is also integrable, and

Jv
f (v)Id"vI = ff(f o 4')(u)I Id"uI. 4.11.45

Proof. As usual, by considering f = f+ - f-, it is enough to prove the result
if f is non-negative. Choose R > 0, and let UR be the points x E U such that
Ix[ < R. Choose N so that i 1

CE,,. (!Q"),
UneUa#(b

which is possible since the boundary of U has volume 0. Set

XR= U C.
CEDN(E"),

CCu

4.11.46

4.11.47

and finally YR = OD(XR)-
Note that XR is compact, and has boundary of volume 0, since it is a union

of finitely many cubes. The set YR is also compact, and its boundary also has
volume 0. Moreover, if f is an 1-integrable function on V, then in particular
[f]R is integrable on YR. Thus Theorem 4.10.12 applies, and gives

[f]R o 4'(x)I det[D4'(x)]Ild"xl = f [f]R(Y)I d"y . 4.11.48
xR YR

Now take the supremum of both sides as R --. oo. By the monotone convergence
theorem (Theorem 4.11.13), the left side and right side converge respectively to

(u f o 4;(x)I det[D4i(x)]IId"xj and fv f (Y)td"yl, 4.11.49

in the sense that they are either both infinite, or both finite and equal. Since
fv f(Y)Id"yl < -,they are finite and equal. 0

The Gaussian integral

The integral of the Gaussian bell curve is one of the most important integrals
in all of mathematics. The central limit theorem (see Section 4.6) asserts that
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if you repeat the same experiment over and over, independently each time, and
make some measurement each time, then the probability that the average of
the measurements will lie in an interval [a, b] is

e dx, 4.11.50
2iroa16 1

where 'x is the expected value of x, and v represents the standard deviation.
Since most of probability is concerned with repeating experiments, the Gaussian
integral is of the greatest importance.

Example 4.11.17 (Gaussian Integral). An integral of immense importance,
which underlies all of probability theory, is

fl e-=' dx = Ai. 4.11.51

But the function a-x' doesn't have an anti-derivative that can be computed in
elementary terms.'3

One way to compute the integral is to use improper integrals in two dimen-
sions. Indeed, let us set

00

J-
Then

'e-s da = A.

A2 = (f
e-r2 dx) \J-7 a-v' d) = r e-(='+v2) Id2xI.

00 . J f3.

4.11.52

4.11.53

Note that we have used F ubini, and we now use the change of variables formula,
passing to polar coordinates:

The polar coordinates map
(Equation 4.10.4): r -(x +y') 2

r2a
O0 re ' d x = J r e' 'rdrdB. 4.11.54

p: r F rcoe9 Ja' o 0

(9 ( r sin 8 ' The factor of r which comes from the change of variables makes this straight-
Here, forward to evaluate:

xz + y2 = r2 (cost B + sing B) = r2.

1 I
2x oo

a
r2

re r- dr dO = 2rr -2.. F. 4.11.55
0

13This is a fairly difficult result; see Integration in Finite Terms by R. Ritt,
Columbia University Press, New York, 1948. Of course, it depends on your defi-
nition of elementary; the anti-derivative f =_ a `'dt is a tabulated function, called
the error function.
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This theorem is a major result
with far-reaching consequences.

Recall (Equation 0.6.7) that
the length, or absolute value, of a
complex number a+ib is a + b2.
Since e" = cost + i sin t, we have
je'tf = cost t +sin2t = 1.

When does the integral of a derivative equal the derivative of an
integral?

Very often we will need to differentiate a function which is itself an integral.
This is particularly the case for Laplace transforms and Fourier transforms,
as we. will see below. Given a function that we will integrate with respect to
one variable, and differentiate with respect to a different integral, under what
circumstances does first integrating and then differentiating give the same result
as first differentiating, then integrating? Using the dominated convergence
theorem, we get the following very general result.

Theorem 4.11.18 (Exchanging derivatives and integrals). Let
f (t, x) : Ilfit1 -. R be a function such that for each fixed t, the integral

F(t) = rn f (t, x) Id"xl 4.11.56

exists. Suppose moreover that Dtf exists for all x except perhaps a set of x
of volume 0, and that there exists an integrable function g(x) such that

f (s, x) - f (t, x) I

gx) 4.11.57st
for all s 34 t. Then F(t) is differentiable, and its derivative is

DF(t) = rn Dt f (t, x) Id"xl. 4.11.58
a

Proof. Just compute:

DF(t) = Iim F(t + h) - F(t)
= lim

o

f(t+h,x) - f(t,x)Id"xf
fot., h

-J$ l
of(t+h, x) hf(t,x)ld"xl = f Dif(t.x)Id"xl;

>Sn

4.11.59

moving the limit inside the integral sign is justified by the dominated conver-
gence theorem.

Applications to the Fourier and Laplace transforms

Fourier transforms and Laplace transforms give important example of differen-
tiation under the integral sign. If f is an integrable function on IR, then so is
f (x)e'4' for each C E R, since

1f(x)elf=1 = If(x)I
So we can consider the function

4.11.60

fw = I f(x)e't dx.is 4.11.61
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Passing from f to j is one of the central constructions of mathematical
analysis; many entire books are written about it. We want to use it as an
example of differentiation under the integral sign.

According to Theorem 4.11.18, we will have

DJ(f) = J D, (ei:ef(x)) dx = 2x J e"tf(x)dx 4.11.62
s

provided that the di

s
fference quotients

ei(t+h)x - eitx eihx-1

( I If( )I = I 14 63h f x) h x ..

are all bounded by a single integrable function. Since le'a - 11 = 21 sin(a/2)l <
dal for any real number a, we see that this will be satisfied if Ix f (x) is an
integrable function.

Thus the Fourier transform turns differentiation into multiplication, and cor-
respondingly integration into division. This is a central idea in the theory of
partial differential equations.

4.12 EXERCISES FOR CHAPTER FOUR

Exercises for Section 4.1:

Defining the Integral
4.1.1 (a) What is the two-dimensional volume (i.e., area) of a dyadic cube
C E D3(R2)? of C E D4(R2)? of C E D5()R2)?

(b) What is the volume of a dyadic cube C E D3(R3)? of C E D4(1R3)? of
C E D5(R3)?

4.1.2 In each group of dyadic cubes below, which has the smallest volume?
the largest?

(a) C1114; 01112; 0111
a

(b) C E D2(1R3); C E D1(1R3); C E D8(R3)

(a) C121,3

4.1.3 What is the volume of each of the following dyadic cubes? What
dimension is the volume (i.e., are the cubes two-dimensional, three-dimensional
or what)? What information is given below that you don't need to answer those
two questions?

(b) C
01

(c) C 0 (d) Cr01lI

3,

.2 i
3

I11 .3
4

1

4.1.4 Prove Proposition 4.1.18.

4.1.5 Prove that the distance between two points x, y in the same cube C E
DN(R") is

Ix
- Y, 5

n2N



a

FIGURE 4.1.8.

ine navy line is the graph of
the function xXio,o)(x)

In Exercises 4.1.8 and 4.1.9,
you need to distinguish between
the cases where a and b are
"dyadic," i.e., endpoints of dyadic
intervals, and the cases where they
are not.
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4.1.6 Consider the function

f(x) =
(0 if lxl > 1, or x is rational

Sl 1 if Ixl < 1, and x is irrational.

(a) What value do you get for the "left-hand Riemann sum," where for the
interval

Ck.N=Ix ITN Sx<k2

you choose the left endpoint k/2N? The right-hand Riemann sum? The mid-
point Riemann sum?

(b) What value do you get for the "geometric mean" Riemann sum, where
the point you choose in each Ck,N is the geometric mean of the two endpoints,

\2 /
(k2N1/ 2N+1)?

4.1.7 (a) Calculate F,'
O

i.

(b) Calculate directly from the definition the integrals

1 xXlo,f)(x)Idxl, f, xXlo,fl(x)Idxl, I xX(o,fl(x)ldxl, f XX(o,f)(x)Idxl

In particular show that they all exist, and that they are equal.

4.1.8 (a) Calculate E0 i.
(b) Choose a > 0, and calculate directly from the definition the integrals

f, xxlo,a)(x)Idxl, f xxlo,al(x)Idxl, f, xx(o,al(x)Idxl, f. xx(o,a)(x)ldxl

(The first is shown in Figure 4.1.8.) In particular show that they all exist, and
that they are equal.

(c) If a < b, show that xX[e,bl, xXla,b), xX(a,bl, xX(a,b) are all integrable and
compute their integrals, which are all equal.

4.1.9 (a) Calculate E a i2.

(b) Choose a > 0, and calculate directly from the definition the integrals

fa x2Xlo,a)(x)ldxl, h X2Xlo,al(x)Idxl, fe
x2X(o,al(x)Idxl, hX2X(O,a)(x)

In particular show that they all exist, and that they are equal.
(c) If a < b, show that x2Xla,bl, x2Xla,b), X2X(a,bl, x2X(a,b) are all integrable

and compute their integrals, which are all equal.
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4.1.10 Let Q C R1 be the unit square 0 < x, y( < 1. Show that the function

f
((ly) = sin(x - y)XQ (y )

is integrable by providing an explicit bound for UN (f) - LN (f) which tends to
0asN-oo.
4.1.11 (a) Let A = [a1i bl] x . . . x [a", b"] be a box in 1R", of constant density
µ = 1. Show that the center of gravity is the center of the box, i.e., the point
c with coordinates c; = (a; + b;)/2.

(b) Let A and B be two disjoint bodies, with densities µl and µ2, and set
C = A U B. Show that

X(C) = M(A)z(A) + M(B)z(B)
(A) + M(B)

4.1.12 Define the dilation of a function by a of a function f : R" - R by the
formula

D, f(x) = f (X) . Show that if f is integrable, then so is D2N f, anda

f D2ef(x)Id"xI =2"f f(x)Id"xI.

(b) Recall that the canonical cubes are half open, half closed. (You should
have used this in part (a)). Show that the closed cubes also have the same
volume. (This is remarkably harder to carry out than you might expect.)

4.1.13 Complete the proof of Lemma 4.1.15.

4.1.14 Evaluate the limit
1 N[ 2N

N-.o N2 F, L.e
k=1 1=1

FIGURE 4.1.15.

4.1.15 (a) What are the upper and lower sums Ui(f) and L1(f) for the
function

f(x)
-
_r x2+y2 if0<x,y<1

Y ` 0 otherwise

i.e., the upper and lower sums for the partition D1(1R2), shown in Figure 4.1.15?
(b) Compute the integral of the function f and show that it is between the

upper and lower sum.

4.1.18 (a) Does a set with volume 0 have volume?

(b) Show that if X and Y have volume 0, then X n Y, X x Y, and X U Y
have volume 0.



Exercise 4.1.17 shows that the
behavior of an integrable function
f : it" - TR on the boundaries of
the cubes of DN does not affect the
integral.

Starred exercises are difficult;
exercises with two stars are more
difficult yet.

Hint: You may assume that
the support of f is contained in
Q, and that I f j < 1. Choose
e > 0, then choose N, to make
UN(f)-LN(f) < f/2, then choose
N2 > N, to make vol(XovN2 <
e/2. Now show that for N > N2,

UN(f)-LN(f)<e and
17N(f) - LN(f) < f.

Exercises for Section 4.2:

Probability
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(c) Show that { (0) E R2 10 < x, < 1 } has volume 0 (i.e., V012 = 0).

( (:)l(d) Show that (z E 1 183
0

0 < x1, a2 <- 11 has volume 0 (i.e., vo13 = 0).

*4.1.17 (a) Let S be the unit cube in R', and choose a E [0,1). Show that
the subset {x E S I x; = a) has n-dimensional volume 0.

(b) Let 8DN be the set made up of the boundaries of all the cubes C E DN.
Show that voln(XN i S) = 0-

(c)r(For each
l

C=(xER4 2N <Xi<k2N1}, set

I
k k +1 ( k; k;+1

2N
<x;<

ZN
andC={xER' 2N <x<< 2N

These are called the interior and the closure of C respectively.
Show that if f : R" -. E is integrable, then

UN(f) = alt >2 M. (f) -1.(C)
CEDN(5')

LN(f) = N1-mo >2 m,(f)voln(C)
CEDe 5")

UN(f) = Nym >2 MC(f)voln(Ci)
CM, W)

LN(f) = Nlmn >2 mC(f)voln(C)
CEDN(1B")

all exist, and are all equal to ft" f(x)Id"xI.
(d) Suppose f : I " I1 is integrable, and that f (-x) = -f (x). Show that

fa" f[d"xI = 0.

4.2.1 (a) Suppose an experiment consists of throwing two dice, each of which
is loaded so that it lands on 4 half the time, while the other outcomes are
equally likely. The random variable f gives the total obtained on each throw.
What are the probability weights for each outcome?

(b) Repeat part (a), but this time one die is loaded as above, and the other
falls on 3 half the time, with the other outcomes equally likely.

4.2.2 Suppose a probability space X consists of n outcomes, {1, 2, ... , n},
each with probability 1/n. Then a random function f on X can be identified
with an element f E 18".
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11

Exercises for Section 4.3:
What Functions

Can Be Integrated

Hint for Exercise 4.3.1 (a); im-
itate the proof of Theorem 4.3.6,
writing the unit circle as the union
of four graphs of functions: y =

x - 1 for jxj < v/25/2, and the
three other curves obtained by ro-
tating this curve around the origin
by multiples of ,r/2.

1

(a) Show that E(f) = 1/n(f 1), where 1'=

(b) Show that

(c) Show that

Var(f) = n If- E(f) f12'

OU) = If-E(f)lI.

Cov (f, g) = s (f - E(f)i) . (9 - E(g)i)+

a)= cos B,corr (f,
where B is the angle between the vectors f - E(f)1 and ff - E(g)1.

4.3.1 (a) Give an explicit upper bound for the number of squares C E Dx(1R2)
needed to cover the unit circle in 182.

(b) Now try the same exercise for the unit sphere S2 C 1R3.

4.3.2 For any real numbers a < b, let

Qab={xErIa<xi<bfor all 1<i<n},
and let Pa b C Qab be the subset where a < xl < x2 < xn < b.

Let f : R" -, R be an integrable function that is symmetric in the sense that

f C xl
f

xo(1)

= for any permutation o of the symbols 1, 2, ... , n.

xn xo(n)

(a) Show that

f Idnxl = n! r Jd"xl.

Q,e :b
(b) Let f : [a, b] -+ R be an integrable function. Show that

fb \ nWe will give further applica-

f'...4
tions.17 of this result in Exercise f(XI)f(X2) ... f (xn)Id nxl = - (J f(x)Idxl I

a /
4.3.3 Prove Corollary 4.3.11.

4.3.4 Let P be the region x2 <!y < 1. Prove that the integral

f, siny2ldxdyl

exists. You may either apply theorems or prove the result directly. If you use
theorems, you must show that they actually apply.



Exercises for Section 4.4:

Integration and Measure Zero

Exercises for Section 4.5:

Fubini's Theorem
and Iterated Integrals
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4.4.1 Show that the same sets have measure 0 regardless of whether you define

measure 0 using open or closed boxes. Use Definition 4.1.13 of n-dimensional

volume to prove this equivalence.

4.4.2 Show that X E 1' has measure 0 if and only if there exists an infinite

sequence of balls

B,={xER"I Ix-a,I<ri} with <
i=1

such that X C u °,B,.

4.4.3 Show that if X is a subset of R" such that for any e > 0, there exists
a sequence of payable sets Bi, i = 1,2,... satisfying

X C U B, and vol"(B,) < e,

then X has measure 0.

4.4.4 (a) Show that Q C IR has measure 0. More generally, show that any
countable subset of I8 has measure 0.

(b) Show that a countable union of sets of measure 0 has measure 0.

**4.4.5 Consider the subset U C 10, 11 which is the union of the open inter-
vals

\q 4 'q+ q3
for all rational numbers p/q E 10,1]. Show that for C > 0 sufficiently small,
U is not payable. What would happen if the 3 were replaced by a 2? (This is
really hard.)

4.5.1 In Example 4.5.2, why can you ignore the fact that the line x = 1 is
counted twice?

4.5.2 (a) Set up the multiple integral for Example 4.5.2, where the outer
integral is with respect to y rather than x. Be careful about which square root
you are using.

(b) If in (a) you replace +,,(y- by - f and vice versa, what would be the
corresponding region of integration?

4.5.3 Set up the multiple integral f(f f dx)dy for the truncated triangle

shown in Figure 4.5.2.
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4.5.4 (a) Show that if

2 (n-1)/2 dt,
t

n-1
then c _ for n > 2.

n

(b) Show that co = 7r and cl = 2.

4.5.5 Again for Example 4.5.6, show that
k lrkk! 22k+1

Qzk =
k1

and Qsk+t =
(2k + 1)!

4.5.6 Write each of the following double integrals as iterated integrals in two
ways, and compute them:

(a) The integral of sin(x + y) over the region x2 <,y < 2.

(b) The integral of x2 + y2 over the region 1 <- Ixl.iyI 5 2.

4.5.7 In Example 4.5.7, compute the integral without assuming that the first
dart falls below the diagonal (see the footnote after Equation 4.5.25).

4.5.8 Write as an iterated integral, and in three different ways, the triple

integral of xyz over the region x, y, z > 0, x + 2y + 3z < 1.

4.5.9 (a) Use Fubini's theorem to express

f" (y. sinx )
dy as a double integral.

a x J
(b) Write the integral as an iterated integral in the other order.
(c) Compute the integral.

4.5.10 (a) Represent the iterated integral

f 0 fe
-s2dU (L:2

as the integral of fe-y' over a region of the plane which you should sketch.

(b) Use Fubini's theorem to make this integral into an iterated integral, first
with respect to x and then with respect to y.

(c) Evaluate the integral.

4.5.11 You may recall that the proof of Theorem 3.3.9, that

D1(Dz(f)) = D2 (Di (f))

was surprisingly difficult, and only true if the second partials are continuous.
There is an easier proof that uses Fubini's theorem.
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(a) Show that if U C R2 is an open set, and f : U 18 is a function such

that

D2(Dt(f)) and D1(D2(f))

both exist and are continuous, and if D1(D2(f)) (b) $ D2(Dt(f)) a6 for

some point (a b), then there exists a square S C U such that either

D2(Di(f)) > D1(D2(f)) on S or Di(D2(f)) > D2(D1(f)) on S.

(b) Apply Fubini's theorem to the double integral

f f (D2(Di(f)) - D1(D2(f))) dxdy
s

to derive a contradiction.

(c) The function

( l ( l,2 2

fy)
xy if (y/ \0/

0 otherwise,

is the standard example of a function where D1(D2f)) D2(D1(f)). What
happens to the proof above?

4.5.12 (a) Set up in two different ways the integral of sin y over the region
0 <- x < cosy, 0 < y < 7r/6 as an iterated integral.

(b) Write the integral

f2 3y3 1

- dx dy
a3 x

as an integral, first integrating with respect to y, then with respect to x.

4.5.13 Set up the iterated integral to find the volume of the slice of cylinder
x2 + y2 < 1 between the planes

1 1z = 0, z=2, y=2, y=-2
4.5.14 Compute the integral of the function z over the region R described
by the inequalities x > 0, y > 0, z > 0, x + 2y + 3z < 1.

4.5.15 Compute the integral of the function ly - x2l over the unit square
0<x,y<1.

4.5.16 Find the volume of the region bounded by the surfaces

z=x2+,y2 and z=10-x2-y2.



FIGURE 4.5.18.
The region

x2 y2

(23-1)2+ (z3 + 1)2-1'
-1<z<1,

which looks like a peculiar pillow.

Exercises for Section 4.6:

Numerical Methods
of Integration
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4.5.17 Recall from Exercise 4.3.2 the definitions of P. .b C Q; 6. Apply the
result of Exercise 4.3.2 to compute the following integtals.14

(a) Let M,.(x) be the rth largest of the coordinates x l, ... , x of x. Then
"

Mr(x)Id"xl =
f00.,

(b) Let n > 2 and O < b < 1. Then

f" l b I

"tb - b"
min Id-,j,...,x d"x = n-1Q. , 1 n

4.5.18 What is the volume of the region
x2 2

+
y

(z3 _ 1)2 (z3 + 1)2
<_ 1,

shown in Figure 4.5.18?

-1<z<1,

4.5.19 What is the z-coordinate of the center of gravity of the region
x2 y2

(z3 - 1)2 + (z3 + 1)2
< 1, 0 < <

4.6.1 (a) Write out the sum given by Simpson's method with 1 step, for the
integral

j f(x)Id"xl

when Q is the unit square in R2 and the unit cube in R3. There should be 9
and 27 terms respectively.

(b) Evaluate these sums when

rx 1

f \3I! __ 1+x+y'
and compare to the exact value of the integral.

4.6.2 Find the weights and control points for the Gaussian integration scheme
by solving the system of equations 4.6.9, for k = 2,3,4,5. Hint: Entering the
equations is fairly easy. The hard part is finding good initial conditions. The
following work:

k=1 wr=17 x3=.57 k=2 w1=.6 x1=.3
w2=.4 x2=.8

'4This exercise is borrowed from Tiberiu Trf, "Multiple integrals of symmetric
functions," American Mathematical Monthly, Vol. 104, No. 7 (1997), pp. 605-608).
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wl =.5 x, =.2
k=3 w2=.3 X2 =.7 k=4

w3=.2 X3 = .9

w1 = .35 x1 = .2

W2=.3 x2=.5
w3=.2 x3=.8
W4 = .1 x4 = .95

The pattern should be fairly clear; experiment to find initial conditions when
k = 5.

4.6.3 Find the formula relating the weights W1 and the sampling points Xi
needed to compute fa f (x) dx to the weights wi and the points xi appropriate
for f'1 f(x)dx.

4.6.4 (a) Find the equations that must be satisfied by points x1 < < xp

and weights w1 < ... < w, so that the equation

f °°p(x)e-=dx = >wkf(xk)
k=1

is true for all polynomials p of degree < d.

(b) For what number d does this lead to as many equations as unknowns?

(c) Solve the system of equations when p = 1.

(d) Use Newton's method to solve the system for p = 2..... 5.
(e) For each of the degrees above, approximate

f e-4 sin x dx and f
oo

a-4 log .T dx.
0 0

and compare the approximations with the exact values.

4.6.5 Repeat the problem above, but this time for the weight a-z2, i.e., find
points xi and wi such that

loo 2 k
P(x)e-,

_ F- wiP(xi)
i=o

is true for all polynomials of degree < 2k - 1.

4.6.6 (a) Show that if
b b

I f(x) _ cif(xi) and J9(x)dx =

n

Eci9(xi),
a i=1 a i=1

then

fl. f(x)g(y)Idxdyl Y- CiCjf(x'i)9(xj)-
(a bj x ja hi i=1 j=1
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Exercise 4.6.8 was largely in-
spired by a corresponding exer-
cises in Michael Spivak's Calculus.

Hint for Exercise 4.6.8(c):
Show that the function g(t) =
4(x)(f(t-p(t)) -Q(t)(f(x) -p(x))
vanishes n + 2 times; and recall
that the n + let derivative of a
polynomial of degree n is zero.

(b) What is the Simpson approximation with one step of the integral

(0.l)x(o, 1)

4.6.7 Show that there exist c and u such that

f
/'lJ l f(x>

=c(f(M)+f(-u))

when f is a polynomial of degree d < 3.

*4.6.8 In this exercise we will sketch a proof of Equation 4.6.3. There are
many parts to the proof, and many of the intermediate steps are of independent
interest.
(a) Show that if the function f is continuous on [ao, an] and n times differen-
tiable on (ao, an), and f vanishes at the n+1 distinct points ao < al < < an,
then there exists c E (ao,an) such that f(n)(c) = 0.

(b) Now prove the same thing if the function vanishes with multiplicities.
The function f vanishes with multiplicity k + 1 at a if f (a) = f(a) = . _
f(k)(a) = 0. Then if f vanishes with multiplicity ki + I at ai, and if f is
N = n + E 0 ki times differentiable, then there exists c E (ao, an) such that
f(N)(c) = 0.

(c) Let f be n times differentiable on [ao, an], and let p be a polynomial of
degree n (in fact the unique one, by Exercise 2.5.16) such that f (a;) = p(ai),
and let

n

q(x) _ fl(x - ai).

i=0

Show that there exists c E (as, an) such that

f(n+l) (C)
AX) - p(x) = (n + 1)! q(x).

(d) Let f be 4 times continuously differentiable on [a, b], and p be the poly-
nomial of degree 3 such that/

f(a)=P(a), f (a2b) =p1 a2b) , f, (a2 b) =P (a2 6), f(b)=p(6)
\Show that

f b f (x) dx =
b

a (f (a) + 4f (a bb ( (4)5
s J + f ( )) - 2880

/
(c)f

for some c E (a, b].

(e) Prove Formula 4.6.3: If f is four times continuously differentiable, then
there exists c E (a, b) such that

,b)(f)- f bf(x)dx= f4 (c).

2880n
(4)



Exercises for Section 4.7:
Other Pavings

Hint for Exercise 4.7.1: This
is a fairly obvious Riemann sum.
You are allowed (and encouraged)
to use all the theorems of Section
4.3.

Exercises for Section 4.8:

Determinants

Hint: think of multiplying the
column through by 2, or by -4.
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4.7.1 (a) Show that the limit

lim n/3 L me exists.
O<n.m<N

(h) Compute the limit above.

4.7.2 (a) Let A(R) be the number of points with integer entries in the disk
x2 + y2 < R2. Show that the limit

R'
xARR)

exists, and evaluate it.
(b) Now do the same for the function B(R) which counts how many points

of the triangular grid

(-Q)+-( '2) I n, m E Z) are in the disc.

4.8.1 Compute the determinants of the following matrices, using development
by the first row:

1 -2 3 0 1 1 2 1 1 2 3 4

4 0 1 2 0 3 4 1 0 1 -1 3

(a) 5 -1 2 1 (b) 1 2 3 1 (c) 3 0 1 1

3 2 1 0 2 1 0 4 1 2 -2 0

4.8.2 (a) What is the determinant of the matrix

b a 0 0
0 b a 0 ?

0 0 b a

a 0 0 b

(b) What is the determinant of the corresponding n x n matrix, with b's on
the diagonal and a's on the slanted line above the diagonal and in the lower
left-hand corner?

(c) For each n, what are the values of a and b for which the matrix in (b) is

not invertible? Hint: remember complex numbers.

4.8.3 Spell out exactly what the three conditions defining the determinant
(Definition 4.8.1) mean for 2 x 2 matrices, and prove them.

4.8.4 (a) Show that if a square matrix has a column of zeroes, its determinant
must be zero, using the multilinearity property (property (1)).

(b) Show that if two columns of a square matrix are equal, the determinant
roust be zero.
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4.8.5 If A and B are n x n matrices, and A is invertible, show that the
function

f(B) - det (AB)
det A

has properties (1), (2), and (3) (multilinearity, antisymmetry, normalization)
and that therefore f(B) = det B.

4.8.6 Give an alternative proof of Theorem 4.8.11, by showing that
(a) If all the entries on the diagonal are nonzero, you can use column opera-

tions (of type 2) to make the matrix diagonal, without changing the entries on
the main diagonal.

(b) If some entry on the main diagonal is zero, row operations can be used
to get a column of zeroes.

4.8.7 Prove Theorem 4.8.14: If A is an n x n matrix and B is an m x m
matrix, then for the (n + m) x (n + m) matrix formed with these as diagonal
elements,

det L 0 B ] =
det A det B.

4.8.8 What elementary matrices are permutation matrices? Describe the
corresponding permutation.

4.8.9 Given two permutations, o and r, show that the transformation that
associates to each its matrix (Ma and M, respectively) is a group homomor-
phism: it satisfies Mo = M,M,..

4.8.10 In Example 4.8.17, verify that the signature of as and aG is -1.

4.8.11 Show by direct computation that if A and B are 2 x 2 matrices, then
tr(AB) = tr(BA).

4.8.12 Show that if A and B are n x n matrices, then tr(AB) = tr(BA).
Start with Corollary 4.8.22, and set C = P, D = AP-1. This proves the
formula when C is invertible; complete the proof by showing that if C is a
sequence of matrices converging to C, and for all n, then
tr(CD) = tr(DC).

*4.8.13 For a matrix A, we defined the determinant D(A) recursively by
development according to the first column. Show that it could have equally
well been defined, with the same result, as development according to the first
row. Think of using Theorem 4.8.10. It can also be proved, with more work,
by induction on the size of the matrix.
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Exercises for Section 4.9:

Volumes and Determinants

FIGURE 4.9.2.

Exercise 4.9.3, part (a): Yes, do
use Fubini

*4.8.14 (a) Show that if A is an n x n matrix of rank n -1, then [D det(A)] :
Mat (n, n) -. ]R is not the zero transformation.

(b) Show that if A is an n x n matrix with rank(A) < n - 2, then (D det(A)]
Mat (n, n) -, R is the zero transformation.

4.9.1 Prove Theorem 4.9.1 by showing that vole T(Q) satisfies the axiomatic
definition of the absolute value of determinant (see Definition 4.8.1).

4.9.2 Prove Equation 4.9.13 by "dissection," as suggested in Figure 4.9.2.

4.9.3 (a) What is the volume of the tetrahedron T1 with vertices

[0 [0 M [1'I , , , 'l ?

(b) What is the volume of the tetrahedron T2 with vertices

Exercise 4.9.3, part (b): No,
do not use Fubini. Find a lin-
ear transformation S such that 4.9.4
S(Ti) = Ts.

4.9.5

n n n

[0J'

[2] [-311 ' [-2]
?

=What is the n-dimensional volume of the region

{xEli2"Ixj>Ofor all

Let T: Rn -.112" be given by the matrix

f 1 0 0 ... 01
2 2 0 ... 0
3 3 3 ... 0

and let A C 1R" be given by the region given by

Ix1I+Ix2I2+Ix3I3+...+IxnIn <_ 1.

What is

4.9.6 What is the n-dimensional volume of the region

4.9.7
Let q(x) be a continuous function on R, and suppose that f (x) and g(x)

satisfy the differential equation

f"(x) = q(x)f(x), g"(x) = q(x)g(x).
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Express the area A(x) of the parallelogram spanned by

[f(x)J [9(x)]
in terms of A(O). Hint: you may want to differentiate A(x).

4.9.8 (a) Find an expression for the area of the parallelogram spanned by

11 and v'2i in terms of X311, WW21, and IV I - v21.

(b) Prove Heron's formula: the area of a triangle with sides of length a, b,
and c, is

p (p - a)(p - b)(p - c) , where p = a + b + c

2

Exercises for Section 4.10:

Change of Variables

Hint for Exercise 4.10.4 (a): use
the variables u = x/a, v = y/b.

4.9.9 Compute the area of the parallelograms spanned by the two vectors in
(a) and (b), and the volume of the parallelepipeds spanned by the three vectors
in (c) and (d).

[_]
{:]

[3]

(b) [4] , [2]
J

[1]
(d)

[2]

4 3 2

4.10.1 Using Fubini, compute the integral of Example 4.10.4:

fR
(x2 + y2) dx dy, where

D

1/
\1

DR =
(r( ) E R21 x2 + y2 < R21.

4.10.2 Show that in complex notation, with z = x + iy, the equation of the
lemniscate can be written Iz2 + 1 = 1.

4.10.3 Derive the change of variables formula for cylindrical coordinates from
the polar formula and Fabini's theorem.

4.10.4 (a) What is the area of the ellipse

x2
+

y2
5a2 1?

(b) What is the volume of the ellipsoid

x2 y2 z2
a2+ +j <1?

4.10.5 (a) Sketch the curve in the plane given in polar coordinates by the

equation

r=l+sin9, 0<0<21r.
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(b) Find the area that it encloses.

4.10.6 A serni-circle of radius R has density p (y) = m(x2+y2) proportional
to the square of the distance to the center. What is its mass?

Hint for Exercise 4.10.7: You 4.10.7 Let A he an n x n symmetric matrix, such that the quadratic form
may want to use Theorem 3.7.12. QA(x) = x Ax" is positive definite. What is the volume of the region Q(R) < 1?

4.10.8 Let

Hint: First transform it into
a multiple integral, then pass to
spherical coordinates.

Compute

x
3

x2 y2 22
ll

V= Y ER x>0, y>0, z>O,Q2+ +C2 <11.
Z

Jv
xyzldxdydzl.

4.10.9 (a) What is the analog of spherical coordinates in four dimensions.

What does the change of variables formula say in that case.

(b) What is the integral of jxi over the ball of radius R in R4.

4.10.10 Show that the mapping

fr
S: .-

(rsiwcosO)
rsincp B

rcos
with 0 < r < oc, 0 < 0 < 2a, and 0 < <p < it, parametrizes space by the
distance from the origin r, the polar angle 0, and the angle from the north pole,

4.10.11 Justify that the volume of the sphere of radius R is 3rrR3.

4.10.12 Evaluate the iterated integral

f
2 4- 4-z2-y2

2 1 I(x2 + y2 + 22)312 dz dy dx.

4.10.13 Find the volume of the region between the cone of equation z2 =
x2 + y2 and the paraboloid of equation z = z2 + y2.

4.10.14 (a) Let Q be the part of the unit ball x2+y2+z2 < 1 where x, y, z > 0.
Using spherical coordinates, set up the integral

J4

(x + y + z) 1d3xI as an iterated integral.
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Hint for Exercise 4.10.15: You
may wish to use the trigonometric
formulas

4cos30=cos3O+3cosO

2 cos V cos 0 = cos(O + ,p)

+ cos(O - gyp).

(b) Compute the integral.

4.10.15 (a) Sketch the curve given in polar coordinates by r = cos 20, 101 <

7r/4.

(b) Where is the center of gravity of the region 0 < r < cos 20, [0[ < 1r/4.

4.10.16 What is the center of gravity of the region A defined by the inequal-
ities x2+y2<z<1,x>0,y?0?

4.10.17 Let Qa = [0, a] x [0, al C ,12 be the square of side a in the first
quadrant, with two sides on the axes, 4i : R2 -. 82 be given by

and A =

(a) Sketch A, by computing the image of each of the sides of Q. (it might help
to begin by drawing carefully the curves of equation y = es+1 and y = e-"+ 1).

(b) Show that 4) : Q. - A is one to one.
(c) What is fAyldxdyl?

4.10.18 What is the volume of the part of the ball r2 + y2 + z2 < 4 where
z2>z2+y2, z>0?

4.10.19 Let Q = [0,1] x [0,1] be the unit square in 7:2, and let 4) : 1R2 - R2
be given by

(v)
- (2+71 and A = 4'(Q).

(a) Sketch A, by computing the image of each of the sides of Q (they are all
arcs of parabolas).

(b) Show that 4' : Q -. A is 1-1.
(c) What is fA x[dxdy[?

4.10.20 The moment of inertia of a body X C 1[83 around an axis is the
integral

I (r(x))2[d3xj,

where r(x) is the distance from x to the axis.

(b) Let f be a positive continuous function of x E [a, b]. What is the moment
of inertia around the x-axis of the body obtained by rotating the region 0 <
y< f(x), a _< x< b around the x-axis.

(c) What number does this give when

f(x)=cosx, a=-2,b=2?
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Exercises for Section 4.11:

Improper Integrals
4.11.1 (a) Show that the three sequences of functions in Example 4.11.11 do
not converge uniformly.

*(b) Show that the sequence of polynomials of degree < m

Pk(x) = ao,k + al.kx + ... + am kxm

does not converge uniformly on R, unless the sequence a;,k is eventually constant
for all i > 0 and the sequence ao,k converges.

(c) Show that if the sequences a;,k converge for each i < m, and A is a
bounded set, then the sequence PkXA converges uniformly.

4.11.2 Let a

(a) Show that the series a is convergent.
`(b) Show that E°°_1 a = log2.
(c) Explain how to rearrange the terms of the series so that it converges to

5.

(d) Explain how to rearrange the terms of the series so that it diverges.

4.11.3 For the first two sequences of functions in Example 4.11.11, show that

lim lim f lfk(x)IRdx34 lim lim J(fk(x)]Rdx.k-- R-- R R-w k-w R

4.11.4 In this exercise we will show that

sinx = 2.
4.11.4

0

This function is not integrable in the sense of Section 4.11, and the integral

should be understood as
/'OD sinxdx = lim 0a sinxdx.

X x

(a) Show that

Jab I f e_" sin xdx I dp = J - (f'ePsinxdP) dx.

for all0<a<b<oo.
(b) Use (a) to show

6 (e-62 - e_1)sinx
arctan b - arctan a = . dx.

a

(c) Why does Theorem 4.11.12 not imply that

lim lim
-((e_az-e-6e)sinx fsinx

a-0 6-wfo x 0
dx = J dx

0 x
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(d) As it turns out, the equation in part (c) is true anyway; prove it. The
following lemma is the key: If cn(t) > 0 are monotone increasing functions of
t, with limt.,,, cn(t) = C,,, and decreasing as a function of n for each fixed t.
tending to 0, then

0r0 00

(_I)nCn.

n=1 n=1

Hint for Exercise 4.11.6: you
will need the dominated conver-
gence theorem (Theorem 4.11.12)
to prove this.

Remember that the next omitted term is a bound for the error for each partial
sum.

(e) Write

J//x'00 ((e-ax _ e-bx)sinx `--. I//'(k+1)*(-1)k ((e-nx _ e-bx)Jsinxl dx
X

nF_ k x

and use (d) to prove Equation 4.11.4.

4.11.5 (a) Show that the integral fo Bix dx of Equation 4.11.5 is equal to
the sum of the series

(f(rn+I)rsinx)
n

x d2

4.11.6 Let Pk be the space of polynomials of degree at most k. Consider the
function F : Pk - IR given by p fo Jp(x)J dx.

(a) Show that F is differentiable except at 0, and compute the derivative.
'(b) Show that if p has only simple roots between 0 and 1, then F is twice

differentiable at p.
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Lengths of Curves, Areas of Surfaces, ...

5.0 INTRODUCTION

In Chapter 4 we saw how to integrate over subsets of R°, first using dyadic
pavings, and then more general pavings. But these subsets are flat. What
if we want to integrate over a (curvy) surface in R3, or more generally, a k-
manifold in R"? There are many situations of obvious interest, like the area
of a surface, or the total energy stored in the surface tension of a soap bubble,
or the amount of fluid flowing through a pipe, which clearly are some sort of
surface integral. In a physics course, for example, you may have learned that
the electric flux through a closed surface is proportional to the electric charge
inside that surface.

A first thing to realize is that you can't just consider a surface S as a subset of
R3 and integrate a function in R3 over S. The surface S has three-dimensional
volume 0, so such an integral will certainly vanish. Instead, we need to rethink
the whole process of integration.

At heart, integration is always the same:

Break up the domain into little pieces, assign a little number to each little
piece, and finally add together all the numbers. Then break the domain
into littler pieces and repeat, taking the limit as the decomposition be-
comes infinitely fine. The integrand is the thing that assigns the number
to the little piece of the domain.

In this chapter we will show how to compute things like arc length (already
discussed in Section 3.8), surface area and higher dimensional analogs, including
fractals. We will be integrating expressions like f(x)Idkxi over k-dimensional
manifolds, where Jdaxi assigns to a k-dimensional manifold its area. Later, in
Chapter 6, we will study a different kind of integrand, which assigns numbers
to oriented manifolds.

What does "little piece" mean?

The words "little piece" in the heuristic description above needs to be pinned
down to something more precise before we can do anything useful. There is quite
a bit of leeway here; choosing a decomposition of a surface into little pieces is

469
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It follows from Definition 5.1.1
that the order in which we take the
vectors doesn't matter:

P(1,2) = P(V2, VI),
P(V1, V2, Va) = P(V7,v"a, Vz),

and so on.

Notice that if the 3-parallelo-
gram in (3) is in 182, it must be
squashed flat, and it can perfectly
well be squashed flat even if n > 2:
this will happen if v"1, v2, V3 are
linearly dependent.

analogous to choosing a paving, and as we saw in Section 4.7, there were many
possible choices besides the dyadic paving. We will choose to approximate
curves, surfaces, and more general k-manifolds by k-parallelograms. These are
described, and their volumes computed, in the next section.

We can only integrate over parametrized domains, and if we stick with the
definition of parametrizations introduced in Chapter 3, we will not be able to
parametrize even such simple objects as the circle and the sphere. Fortunately,
for the purposes of integration, a looser definition of parametrization will suffice;
we discuss this in Section 5.2.

5.1 PARALLELOGRAMS AND THEIR VOLUMES

We specify a k-parallelogram in l8" by the point x where it is anchored, and
the k vectors which span it. More precisely:

Definition 5.1.1 (k-parallelogram in llt"). A k-parallelogram in R" is
the subset of R"

Px(31,...,Vk) = {x+W71 +...+tkVk10 <tl,...,tk < 1},
w h e r e x E lP" is a point and ril...... k are k vectors. The corner x is part
of the data, but the order in which the vectors are listed is not.

For example,

(1) Pa(V) is the line segment joining x to x+ V.

(2) Px(v'1i V2) is the (ordinary) parallelogram with its four vertices at x, x +
V1,X+V2iX+V1+V2.

(3) P. (Vi, v'2, V3) is the (ordinary) parallelepiped with its eight vertices at

x, x+V'1, x+V2, x+' 3i x+V1+V2,
X+v'1+V3, X+V2+. 3, X+V'1+V2+v'3.

The volume of k-parallelograms

Clearly the k-dimensional volume of a k-parallelogram P(vl...... lk) does not
depend on the position of x in lR". But it isn't obvious how to compute this
volume. Already the area of a parallelogram in R3 is the length of the cross
product of the two vectors spanning it (Proposition 1.4.19), and the formula is
quite messy. How will we compute the area of a parallelogram in 184, where the
cross product does not exist, never mind a 3-parallelogram in 1R5?

It comes as a nice surprise that there is a very pretty formula that covers all
cases. The following proposition, which seems so innocent, is the key.



In the proof of Proposition 5.1.2
we use Theorems 4.8.7 and 4.8.10:

det A det B = det(AB)

and (for square matrices)

det A = det AT

We follow the common conven-
tion according to which the square
root symbol of a positive number
denotes the positive square root:
f = +a, not ±a.

Note that one consequence of
the proof of Theorem 5.1.2 is that
if T is any matrix, TTT always has
a non-negative determinant:

det(TTT) > 0.

Recall (Proposition (1.4.3) that

' 3 =1x1131 coo a,

where a is the angle between # and
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Proposition 5.1.2 (Volume of a k-parallelogram in Rk). Let V1. ... ..7k

be k vectors in IRk, so that T = [V'1.... ON is a square k x k matrix. Then

VolkP(V1,... Vk) = det(TTT). 5.1.1

Proof. We have

det(TT T) _ (det T) (det T) _ (det T)2 = I det TI. 5.1.2

Proposition 5.1.2 is obviously true, but why is it interesting? The product

TTT works out to be
T

V'1 V2 ... Vk

1,V112 V1 'V2 ...
11 12 IV2I2 ... V2Vk

V1 Vk V1 Vk ... IVnI2

TTT

5.1.3

(We follow the format for matrix multiplication introduced in Example 1.2.3.)
The point of this is that the entries of TTT are all dot products of the vectors
V;. In particular, they are computable from the lengths of the vectors V1......Vk
and angles between these vectors; no further information about the vectors is
needed.

3 Example 5.1.3 (Computing the volume of parallelograms in 1R2 and
R3). When k = 2, we have

det(TTT) = det

I

LVIv1IVz 1V2I22

J = Iv1121v212 - (v1 .,V2)2. 5.1.4

i 1Iv2I coS 0, this becomesIf you write v'1 ' V2 = IV

det(TTT) = IV1I2Iv2I2(1 - cos2 9) = IV, I2Iv212 sin2 B, 5.1.5

so that the area of the parallelogram spanned by fl, V2 is

vo12 P(V1, V2) = det(TTT) = Iv1IIV2I I sin BI. 5.1.6

Of course, this should come as no surprise; we got the same thing in Equation
1.4.35. But exactly the same computation in the case n = 3 leads to a much less
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familiar formula. Suppose T = jd, , V2. v'3], and let us call gi the angle between

V2 and v3, 02 the angle between Vi and v3, and 93 the angle between v91 and

v"2. Then

This would not be easy to corn-
pute directly from detT. since we
don't actually know the vectors.

Exercise 5.1.3 asks you to show
that if v1,vvk are linearly depen-
dent, volk(P(VI,...,v'k)) = 0. In
particular, this shows that if k >
n. volt (P(v, ..... v"k)) = 0

IVi!2 VI . V2 V] ' V3
TTT = Vl V2 IV212 "2' V3

V I '
V3

V'2 . V3 1 V3I2

5.1.7

and det TTT is given by

IV1121V2121-7312 + 2(V't ' V2)(V2' V3)(V1 ' V3) 5.1.8

- IV,12(V2 ' V3)2 - 1V'212(VVt ' V3)2 - IV312(V l ' v2)2

= I V I I2I V212I V 312 (1 + 2 Cos 01 Cos 02 Cos 03 - (COS2 01 + cos2 82 + COS2 83)).

For instance, the volume of a parallelepiped spanned by three unit vectors,
each making an angle of 7r/4 with the others, is

+2cos34-3co y(2-2
1

5.1.9

Thus we have a formula for the volume of a parallelogram that depends only
on the lengths and angles of the vectors that span it; we do not need to know
what or where the vectors actually are. In particular, this formula is just as
good for a k-parallelogram in any Il8, even (and especially) if n > k.

This leads to the following theorem.

Theorem 5.1.4 (Volume of a k-parallelogram in R"). Let V i , ... , V'k be
k vectors in 118", and T be the n x k matrix with these vectors as its columns:
T = [,71, ... , Vk1. Then the k-dimensional volume of Px(V l ..... V'k) is

volt Px(vi...... k) = det (TTT). 5.1.10

Proof. If we compute TTT, we find

Iv112 V1 ' V2 V I'V5

'V1 ' V2 IV212 1 2 Vn
TTT = 5.1. 11

V5Ve 1,V. 12

which is precisely our formula for the k-dimensional volume of a k-parallelogram
in terms of lengths and angles.

Example 5.1.5 (Volume of a 3-parallelogram in 1R4). What is the volume
11 rol rol

of the 3-parallelogram in IR4 spanned by Vi = 0 + ,v2 10 I , V. [0] ?

I 1 1
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Set T = [vi.v2,v'3); then

lTT = 1 2 1 and det(TrT) = 4.
1 1 2L1 2 1J

so the volume is 2.

5.2 PARAMETRIZATIONS

In this section we are going to relax our definition of a parametrization. In
Chapter 3 (Definition 3.2.5) we said that a parametrization of a manifold M is
a C' mapping :p from an open subset U C 118" to M, which is one to one and
onto, and whose derivative is also one to one.

The problem with this definition is that most manifolds do not admit a
parametrization. Even the circle does not; neither does the sphere, nor the
torus. On the other hand, our entire theory of integration over manifolds is
going to depend on parametrizations, and we cannot simply give up on most
examples.

Let us examine what goes wrong for the circle and the sphere. The most
obvious arametrization of the circle is : t cost The roblem isp ry lint p
choosing a domain: If we choose (0, 27r), then ry is not onto. If we choose [0, 27r),
the domain is not open, and ry is not one to one. If we choose 10, 21r), the domain
is not open.

For the sphere, spherical coordinates

l
(,P)9

5.2.1ry. ,- I1I\\cosipsinB

aincp

present the same sort of problem. If we use as domain (-ar/2, ar/2) x (0, 27r),
then -y is not onto; if we use [-7r/2, 7r/2) x [0, 21r), then the map is not one to
one, and the derivative is not one to one at points where W = f7r/2, ... .

The key point for both these examples is that the trouble occurs on sets
of volume 0, and therefore it should not matter when we integrate. Our new
definition of a parametrization will be exactly the old one, except that we allow
things to go wrong on sets of k-dimensional volume 0 when parametrizing k-
dimensional manifolds.

Sets of k-dimensional volume 0 in R n

Let X be a subset of R n. We need to know when X is negligible as far as
k-dimensional integrals are concerned. Intuitively it should be fairly clear what
this means: points are negligible for 1-dimensional integrals or higher, points
and curves are negligible for 2-dimensional integrals, etc.
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The cubes in Equation 5.2.2
have side length 1/2N. We are
summing over cubes that intersect
X.

Proposition A19.1 in the Ap-
pendix explains why this is a rea-
sonable definition: if X has k-
dimensional volume 0, then its
projection onto k coordinates has
k-dimensional volume 0.

Typically, U will be closed, and
X will be its boundary. But there
are many cases where this isn't
quite the case, including many
which come up in practice like
5.2.3 below, where it is desirable
to allow X to be larger.

The mapping ry is a strict pa-
rametrization on U - X, i.e., on U
minus the boundary and any other
trouble spots of k-dimensional vol-
ume 0.

It is possible to define the k-dimensional volume of an arbitrary subset X C
IR", and we will touch on this in Section 5.6 on fractals. That definition is quite
elaborate; it is considerably simpler to say when such a subset has k-dimensional
volume 0.

Definition 5.2.1 (k-dimensional volume 0 of a subset of R").
A bounded subset of IR" has k-dimensional volume 0 if

k

i lim 22N
(l. 5.2.2

cEDN(Y")
CnX#<6

An arbitrary subset X has k-dimensional volume 0 if for all R, the bounded
set X n BR(0) has k-dimensional volume 0.

New definition of parametrization

From now on when we use the word "parametrization" we will mean the fol-
lowing; if we wish to refer to the more demanding definition of Chapter 3, we
will call it a "strict parametrization."

Definition 5.2.2 (Parametrization of a manifold). Let M C R" be
a k-dimensional manifold and U be a subset of Rk with boundary of k-
dimensional volume 0; let X C U have k-dimensional volume 0, and let
U - X be open. Then a continuous mapping 7 : U -. R" parametrizes M if

(1) y(U) D M;

(2) y(U - X) c M;
(3) y(U - X) -a M is one to one, of class C1, with locally Lipschitz

derivative;

(4) the derivative [D-t(u)] is one to one for all u in U - X;
(5) 7(X) has k-dimensional volume 0.Y

Often condition (1) will be an equality; for example, if M is a sphere and U
a closed rectangle mapped to M by spherical coordinates, then 7(U) = M. In
that case, X is the boundary of U, and '7(X) consists of the poles and half a
great circle (the international date line, for example), giving y(U - X) C M for
condition (2).

Example 5.2.3 (Parametrization ofa cone). The subset of R1 of equation
z2 + y2 - z2, shown in Figure 5.2.1, is not a manifold in the neighborhood of
the vertex, which is at the origin. However, the subset

FIGURE 5.2.1.
The subset of JR3 of equation

x2 + y2 - z2 is not a manifold at
the vertex.

M

l \z/
IX 2+y2-z2=0, 0 <z<1J 5.2.3



5.2 Parametrizations 475

is a manifold. Consider the map 7 : 10, 11 x [0, 27r) -.1k given by

Cos0

7' l rsinB 5.2.4/ -
(T

T
T B

If we let U = [0,1] x [0, 27r], and X = OU, then y is a parametrization of M.
Indeed, 7([0,11 x [0, 2ir]) D M (it contains the vertex and the circle of radius 1
in the plane z = 1, in addition to M), and 7 does map (0,1) x (0, 2n) into M
(this time, it omits the line segment x = z, y = 0). The map is one to one on
(0,1) x (0, 2+r), and so is its derivative. 0

A small catalog of parametrizations

As we will see below, essentially all manifolds admit parametrizations with the
new definition. But it is one thing to construct such a parametrization using the
implicit function theorem, and another to write down a parametrization explic-
itly. Below we give a few examples, which frequently show up in applications
and exam problems.

Graphs. If U is an open subset of IRk with boundary all of k-dimensional
volume 0, and f : U --, RI-1 is a C1 mapping, then the graph off is a manifold
in R1, and the map

x
If (X-)

5.2.5

FIGURE 5.2.2.
The surface of equation x2 +

y3 + z5 = 1. Top: The surface
seen as a graph of x as a function
of y and z (i.e., parametrized by y
and z). The graph consists of two
pieces: the positive square root
and the negative square root.
Middle: Parametrizing by x and
z. Bottom: Parametrizing by x
and V. Note in the bottom two
graphs that the lines are drawn
differently: different parametriza-
tions give different resolutions to
different areas.

is a parametrization.
There are many cases where the idea of parametrizing as a graph still works,

even though the conditions above are not satisfied: those where you can "solve"
the defining equation for n - k of the variables in terms of the other k.

Example 5.2.4 (Parametrizing as a graph). Consider the surface in R3
of equation x2 + y3 + z5 = 1. In this case you can "solve" for x as a function
of y and z:

x=f 1-y3-Z5. 5.2.6

You could also solve for y or for z, as a function of the other variables, and
the three approaches give different views of the surface, as shown in Figure
5.2.2. Of course, before you can call any of these a parametrization, you have
to specify exactly what the domain is. When the equation is solved for x, the
domain is the subset of the (y, z)-plane where 1 - y3 - z5 >- 0. When solving
for y, remember that every number has a unique cube root, so the function
y = (1 - x2 - z5)113

is defined at every point, but it is not differentiable when
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x2 + z5 = 1, so this curve must be included in the set X of trouble points that
can be ignored (using the notation of Definition 5.2.2.) D

Surfaces of revolution. The graph of a function f (x) is the curve C of
equation y = f (x). Let us suppose that f takes only positive values, and rotate

FIGURE 5.2.3.
The surface obtained by rotat-

ing the curve of equation
(1-x)3=z2

around the z-axis. The surface
drawn corresponds to the region

where Izj < 1, rotated only three

quarters of a full turn.

C around the x-axis, to get the surface of revolution of equation

p2 + z2 = (f(z))2.

This surface can be parametrized by

5.2.7

ry: (x).. f(x)cos0 5.2.8X
f (x) sin B

Again, to be precise one must specify the domain of y. Suppose that f
(a, b) R is defined and continuously differentiable on (a, b). Then the domain
of -y is (a, b) x (0, 2a), and -y is one to one, with derivative also one to one on
(a,b) x (0,2a).

If C is a parametrized curve, (not necessarily a graph), say parametrized by

t (vt1), the surface obtained by rotating C can still be parametrized by

. v(t)(cos0 5.2.9(to) (v(t)sin0

Spherical coordinates on the sphere of radius R are a special case of this
construction: If C is the semi-circle of radius R in the (x, z)-plane, parametrized
by

_r/2G¢<rr/2, 5.2.10z=Rsinw
then the surface obtained by rotating this circle is precisely the sphere of radius
R centered at the origin in R3, parametrized by

R cos

w-
( sin o
I,\

Rcoso

sinB 5.2.11
RsinO

the parametrization of the sphere by latitude and longitude.

Example 5.2.5 (Surface obtained by rotating a curve). Consider the
surface obtained by rotating the curve of equation (1 - x)3 = z2 in the (x, z)-

plane around the z-axis. This surface has the equation (1 - x2 +
p2)3

= z2.
The curve can be parametrized by

t. (x)I_t2z=t3, 5.2.12

so the surface can be parametrized by
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The exercises contain further
examples of parametrizations.

Exercise 5.2.6 explores a mani-
fold that cannot be parametrized.
But such manifolds are patholog-
ical; you won't run into them un-
less you go out of your way to look
for them. We do not believe that
there is a reasonable way to in-
tegrate over such manifolds using
Riemann integrals.

(1-t2)cos0
(B). C(1-t2)sin0 5.2.13

t3

Figure 5.2.3 represents the image of the parametrization Itj < 1, 0 5 0 <
31r/2. It can be guessed from the picture (and proved from the formula) that the

subset of 1-1, 1] x 10, 37r/2] where t = ±1 are trouble points (they correspond to

the top and bottom "cone points"), and so is the subset {0} x [0, 31r/2], which

corresponds to a "curve of cusps." L

The existence of parametrizations

Since our entire theory of integrals will be based on parametrizations, it would
be nice to know that manifolds, or at least some fairly large class of manifolds,
actually can be parametrized.

Remark. There is here some ambiguity as to what "actually" means. In the
above examples, we came up with a formula for the parametrizing map, and
that is what you would always like, especially if you want to evaluate an integral.
Unfortunately, when a manifold is given by equations (the usual situation), it
is usually impossible to find formulas for parametrizations; the parametrizing
mappings only exist in the sense that the implicit function theorem guarantees
their existence. If you really want to know the value of the mapping at a
point, you will need to solve a system of nonlinear equations, presumably using
Newton's method; you will not be able to find a formula. A

Theorem 5.2.6 (What manifolds can be parametrized). Let M C
1R" be a manifold, such that there are finitely many open subsets UU C
M covering M, corresponding subsets V C flik all with boundaries of k-
dimensicnal volume 0, and continuous mappings yi : C, - V which are one
to one on V,, with derivatives which are also one to one. Then M can be
parametrized.

It is rather hard to think of any manifold that does not satisfy the hypotheses
of the theorem, hence be parametrized. Any compact manifold satisfies the
hypotheses, as does any open subset of a manifold with compact closure. We
will assume that our manifolds can all be parametrized. The proof of this
theorem is technical and not very interesting; we do not give it in this book.

Change of parametrization

Our theory of integration over manifolds will be set up in terms of parametriza-
tions, but of course we want the quantities computed (arc length, surface area,
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Recall that Theorem 4.11.16,
the change of variables for im-
proper integrals, says nothing
about the behavior of the change
of variables map on the bound-
ary of its domain. This is impor-
tant since often, as shown in Ex-
ample 5.2.7, the mapping is not
defined on the boundary. If we
had only our earlier version of the
change of variables formula (Theo-
rem 4.10.12), we would not be able
to use it to justify our claim that
integration does not depend on the
choice of parametrization.

FIGURE 5.2.4.
The black dot in the left rec-

tangle is mapped by y1 to a point
in the hemisphere that is a pole
for the parametrization y2; the in-
verse mapping y 1 then maps that
point to an entire line segment.
To avoid this kind of problem, we

fluxes of vector fields, etc.), to depend only on the manifold and the integrand,
not the chosen parametrization. In the next three sections we show that the
length of a curve, the area of a surface and, more generally, the volume of a
manifold, are independent of the parametrization used in computing the length,
area or volume. In all three cases, the tool we use is the change of variables for-
mula for improper integrals, Theorem 4.11.16: we set up a change of variables
mapping and apply the change of variables formula to it. We need to justify
this procedure, by showing that our change of variables mapping is something
to which the change of variables formula can be applied: i.e., that satisfies the
hypotheses of Theorem 4.11.16.

Suppose we have a k-dimensional manifold M and two parametrizations

'fI : U1 -+ M and y2 : U2 -. M, 5.2.14

where U1 and U2 are subsets of Rk. Our candidate for the change of variables
mapping is 45 = y2 1 o -r1, i.e.,

5.2.15

But this mapping can have serious difficulties, as shown by the following exam-
ple.

U1 -+ M -+ U2.
71 7z1

Example 5.2.7 (Problems when changing parametrizations). Let -fl
and rye be two parametrizations of S2 by spherical coordinates, but with differ-
ent poles. Call Pi, P( the poles for yt and P2, Pa the poles for y2. Then yZ r o-yl
is not defined at yi 1({P2, F}). Indeed, some one point in the domain of y1
maps to P2.' But as shown in Figure 5.2.4, y2 maps a whole segment to P2, so
that -r 1 o 71 maps a point to a line segment, which is nonsense. The only way
to deal with this is to remove 7j 1({P2i PZ}) from the domain of 0, and hope
that the boundary still has k-volume 0. In this case this is no problem: we just
removed two points from the domain, and two points certainly have area 0.

Definition 5.2.2 of a parametrization was carefully calculated to make the
analogous statement true in general.

Let us set up our change of variables with a bit more precision. Let U1 and
U2 be subsets of 1Rk. Following the notation of Definition 5.2.2, denote by X1
the negligible "trouble spots" of y1, and by X2 the trouble spots of 72. In
Example 5.2.7, X1 and X2 consist of the points that are mapped to the poles
(i.e., the lines marked in bold in Figure 5.2.4).

must define our change of vari- 'If P2 happens
ables to be on the date line with respect to yl, two points map to

P2: in Figure 5.2.4, a point on the right-hand boundary of the rectangle, and the
corresponding point on the left-hand boundary.
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Theorem 4.11.16 (change of
variables for improper integrals):
Let U and V be open subsets of
1R" whose boundaries have volume
0, and 0: U- V a C' diffeo-
morphism, with locally Lipschitz
derivative. If f : V - IR is
an integrable function, then (f o
p) I det[D')I is also integrable, and

fv f(v)Id"vI =

I (f o 4')(u)I det[D4,(u)] Id"ul.
v

Call

Yi=(721o71)(X1), and Y2=(7>''o72)(X2) 5.2.16

In Figure 5.2.4, the dark dot in the rectangle at left is Y2, which is mapped by
71 to a pole of 72 and then by 7;1 to the dark line at right; Y1 is the (unmarked)
dot in the right rectangle that maps to the pole of 71.

Set

U1k=U1-(X1UY2) and U20k=U2-(X2UYi); 5.2.17

i.e., we use the superscript "ok" to denote the domain or range of a change of
mapping with any trouble spots of volume 0 removed.

Theorem 5.2.8. Both U1 k and U2 0k are open subsets of Rk with boundaries
of k-dimensional volume 0, and

4': Uk- U2k=721 o71
is a C' diffeomorphism with locally Lipschitz inverse.

Theorem 5.2.8 says that fi is something to which the change of variables

formula applies. It is proved in Appendix A.19.

5.3 ARC LENGTH
Sometimes the element of arc

length is denoted dl or ds.

Note that

ICI = det(3Te),

so that Equation 5.3.1 is a special
case of Equation 5.1.10.

Archimedes (287-212 BC) used
this process to prove that

223/71 < n < 22/7.

In his famous paper The Measure-
ment of the Circle, he approxi-
mated the circle by an inscribed
and a circumscribed 96-sided reg-
ular polygon. That was the begin-
ning of integral calculus.

The integrand Id1xI, called the element of arc length, is an integrand to be
integrated over curves. As such, it should take a 1-parallelogram P5(V) in R"
(i.e., a line segment) and return a number, and that is what it does:

Id'xI(PP(()) = If[. 5.3.1

More generally, if f is a function on IR", then the integrand f [d'xl is defined
by the formula

fI d'x[(P:(c) = f(x)I-;I
If C C 1R" is a smooth curve, the integral

5.3.2

fc Id1xI 5.3.3

is the number obtained by the following process: approximate C by little line
segments as in Figure 5.3.1, apply Id1xI to each to get its length, and add.
Then let the approximation become infinitely fine; the limit is by definition the
length of C.

In Section 3.8, we carried out this computation when I is the interval [a, b),
and C C 1R' is a smooth curve parametrized by 7 : I -+ IR3, and showed that
the limit is given by

Jl Id'xlP-,(t) (7'(t))[ dt = f I7'(t)I Idt[. 5.3.4
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FicURE 5.3.1.
A curve approximated by an

inscribed polygon, shown already
in Section :3.8.

In particular, the integral

Jj hy'(t)1Idtl 5.3.5

depends only on C and not on the parametrization.

Example 5.3.1 (Graph of function). The graph of a C1 function f(x), for
a < x < b, is parametrized by

xH (f(x)), 5.3.6

and hence its arc lengthf is given by the integral

1+
(f'(x))2

dx. 5.3.7
I.61 I L f'(x) J

I Idxl =
f b

Because of the square root, these integrals tend to be unpleasant or impossible
to calculate in elementary terms. The following example, already pretty hard,
is still one of the simplest. The length of the arc of parabola y = ax2 for
0<x15 A is given by

0fa

1+4a2x2dx. 5.3.8

A table of integrals will tell you that

f I+Odu= "V.2 + 1 + logj.+ 1+u21. 5.3.9

Setting 2ax = u, this leads to
A Af 1 + 442x2 dx = a 12ax I + 4a2x2 + logl2ax + 1 + 4a2x2 ]

o0

= 4a (2aA 1 + 4a2A2 + logl2aA + 1 + 4a2A21).

5.3.10
Moral: if you want to compute are length, brush up on your techniques of

integration and dust off the table of integrals. A

Curves in R' have lengths even when n > 3, as the following example illus-
trates.

Example 5.3.2 (Length of a curve in R4). Let p, q be two integers, and
consider the curve in R parametrized by

cospt
sinpty(t)=qt 0<t<2n. 5.3.11cos
sin qt

Its length is given by
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The curve of Example 5.3.2 is
important in mechanics, as well as
in geometry. It is contained in the
unit sphere S' C iR°, and in this
sphere is knotted when p and q are
coprime and both are greater than

f2.

(-p sin pt)2 + (p cos pt)2 + (-9 sin gt)2 + (g cos qt)2 dt
0 5.3.12

1.

Integrating the length of the ve-
locity vector, Iy'(t)I, gives us dis-
tance along the curve. Proposition
5.3.3 says that if you take the same
route (the same curve) from New
York to Boston two times, making
good time the first, and caught in
a traffic jam the second, you will
go the same distance both times.

In Equation 5.3.16 we write
fl- tl rather than f, because we
are not concerned with orienta-
tion: it doesn't matter whether we
go from -1 to 1, or from 1 to -1.
Fbr the same reason we write Idxl
not dx.

= 2ir p2 + q2. 6

We can also measure data other than pure arc length, using the integral

fc 1(x) Jd'xJ
ref f

f ('Y(t)) J'Y'(t)J Idtl, 5.3.13

for instance if f (x) gives the density of a wire of variable density, the integral
above would give the mass of the wire.

In other contexts (particularly surface area), it will be much harder to define
the analogs of "arc length" independently of a parametrization. So here we give
a direct proof that the are length given by Equation 5.3.5 does not depend on
the chosen parametrization; later we will adapt this proof to harder problems.

Proposition 5.3.3 (Arc length independent of parametrization).
Suppose Yt : It - R3 and rye : I2 -. 1R3 are two parametrizations of the
same curve C E 1R3. Then

f J'1(t1)J Jdt1J = f I4 (t2)J Jdt2J.t r
5.3.14

Example 5.3.4 (Parametrizing a half-circle). We can parametrize the
upper half of the unit circle by

xx1-x J,-1<x<1, or by t,- c9st),O<t<7r. 5.3.15

In both cases we get length ir. With the first parametrization we get

f i IL
JdxJ= f 1+12x2 JdxJ 5.3.16

IdXJ=faresinx]11='-r-( n x.

The second gives

f - sin t 1 I Idtl = f sine t + cost t Idtl
[,*] L Cost J [o,,.]

[0

Jdtl = a. A
.*1

5.3.17
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This map D goes from an open
subset of I1 to an open subset of
I2, with both boundaries of one-
dimensional volume 0. In fact, the
boundaries consist, of finitely many
points. This is an easy case of the
harder general case discussed in
Section 5.2: defining 4' so that the
change of variables formula applies
to it.

Recall the change of variables
formula:

Z, f(v)Id"vl =

f (f o $)(u)I det[D$(u)J Id"u[.
u

In Equation 5.3.23, Iy2I plays
the role of f. Since [D4>(t1)1 is a
number,

det(DO(t1)) = [DO(t1))

The second equality is Equation
5.3.22, and the third is Equation
5.3.21.

Exercise 5.4.1 asks you to show
that Equation 5.4.1 is another way
of stating Equation 5.4.2.

The "element of area," which
we denote Id2xI, is often denoted

dA.

Proof of Proposition 5.3.3. Denote by 4i = 7y1 o 71 :
11k Ilk the

"change of parameters map" such that $(t1) = t2. This map 4i goes from an
open subset of 11 to an open subset of 12 by way of the curve; 71 takes a point
of I1 to the curve, and then 72 1 takes it "backwards" from the curve to 12.

Substituting 72 for f, 4i for g and T1 for a in Equation 1.8.12 of the chain
rule gives

(D(72 o fl(t1)] = [D72(4'(t1))] 0 [D$(t1)]. 5.3.18

Since

we can substitute 71 for (72 o in Equation 5.3.18 to get

0 [Dr[D71(t1)] = [D72

7j(t1) 2(t2) ('r, 1071)'

72 0 = 72 0 72 1 0 71 = 7i, 5.3.19

Note that the matrices

[D71(tl)] = 7i(t1) and [D7z($(t1))] = 72(t(tl)) = 72'(t2)

5.3.20

5.3.21

are really column vectors (they go from IR to R3) and that [D41(t1)], which goes
from ll8 to R, is a 1 x 1 matrix, i.e., really a number. So when we take absolute
values, Proposition 1.4.11 gives an equality, not an inequality:

J[D71(t1)]j = j[]D$(t1)](. 5.3.22

We now apply the change of variables formula (Theorem 4.10.12), to get

detlDa(t1)j

f [72(t2)I Idt2I = f I[D(72 0 4?)(t1)]I I [D(I Idti I

= f I[D71(t1)1I Idt1I = f I7i(t1)I Idt1I
11 1l

5.4 SURFACE AREA

0
5.3.23

The integrand [d2xl takes a parallelogram PX(v"1,v"2) and returns its area. In

1k3, this means

Id2x1(Px(i7t,ii2)) = IV1 x "2I; 5.4.1

the general formula, which works in all dimensions, and which is a special case
of Theorem 5.1.4, is

Id2xI(P=(,V1,i2)) = dell VZ]) . 5.4.2



We speak of triangles rather
than parallelograms for the same
reason that you would want a
three-legged stool rather than a
chair if your floor were uneven.
You can make all three vertices of
a triangle touch a curved surface,
which you can't do for the four
vertices of a parallelogram.

FIGURE 5.4.1.
A surface approximated by par-

allelograms. The point xo corre-
sponds to y(u), and the vectors v'1
and v2 correspond to the vectors

2Di7(u) and 2NDzry(u)
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To integrate Id2x] over a surface, we wish to break up the surface into little
parallelograms, add their areas, and take the limit as the decomposition be-
comes fine. Similarly, to integrate f Id2xI over a surface, we go through the same
process, except that instead of adding areas we add f (x) x area of parallelogram.

But while it is quite easy to define arc length as the limit of the length of
inscribed polygons, and not much harder to prove that Equation 5.3.5 computes
it, it is much harder to define surface area. In particular, the obvious idea of
taking the limit of the area of inscribed triangles as the triangles become smaller
and smaller only works if we are careful to prevent the triangles from becoming
skinny as they get small, and then it isn't obvious that such inscribed polyhedra
exist at all (see Exercise 5.4.13). The difficulties are not insurmountable, but
they are daunting.

Instead, we will use Equation 5.4.3 as our definition of surface area. Since
this depends on a parametrization, Proposition 5.4.4, the analog of Proposition
5.3.3, becomes not a luxury but an essential step in making surface area well
defined.

Definition 5.4.1 (Surface area). Let S C 1183 be a smooth surface
parametrized by ry : U -* S, where U is an open subset of R2. Then the
area of S is

L I dzxl (P.,(-) (5-1'(u), Dz'Y(u))) I dzul= fU det([DY(u)]T[D7(u)] Idzul
5.4.3

Let us see why this ought to be right. The area should be

lim Area of y(C n U). 5.4.4
CEV N (R2)

That is, we make a dyadic decomposition of R2 and see how y maps to S
the dyadic squares C that are in U or straddle it. We then sum the areas of
y(C fl U), which, for C C U, is the same as y(C); for C that straddle U, we
add to the sum the area of the part of C that is in U.

The side length of a square C is 1/21, so at least when C C U, the set
y(C n U) is, as shown in Figure 5.4.1, approximately the parallelogram

1

P'r(u>\2NDty(u), 2^'Dz'Y(u)), 5.4.5

where u is the lower left hand corner of C.
That parallelogram has area

2N det[Dy(u)]T[DV(u)] 5.4.6

So it seems reasonable to expect that the error we make by replacing

Area of y(C n U) by vol2(C) det[D7(u)]T[Dy(u)] 5.4.7
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FIGURE 5.4.2.
The torus with the u and v co-

ordinates drawn. You should ima-
gine the straight lines as curved.
By "torus" we mean the surface
of the object. The solid object is
called a solid torus.

We write Idudvl in Equation
5.4.10 to avoid having to put sub-
scripts on our variables; we could
have used ul and u2 rather than u
and v, and then used the integrand
Id2ul.

In the final, double integral, we
are integrating over an oriented
interval, from 0 to 27r, so we write
du dv rather than Idudvl.

Note that the answer has the
right units: r and R have units of
length so 47r2rR has units length
squared.

In Example 5.4.2 the square
root that inevitably shows up
(since we are computing the length
of a vector) was simply f. It is
exceptional that the square root of
any function can be integrated in
elementary terms. Example 5.4.3
is more typical.

will disappear in the limit as N - oc. And the area given by Equation 5.4.7 is
precisely a Riemann sum for the integral giving surface area:

Him Y- vol2C det(D7(u)JT(D7(u)} = J Id2u
N-w CED.(a2) U

are. of surface by Eq. 5.4.3
5.4.8

Unfortunately, this argument isn't entirely convincing. The parallelograms
above can be imagined as some sort of tiling of the surface, gluing small flat
tiles at the corners of a grid drawn on the surface, a bit like using ceramic
tiles to cover a curved counter. It is true that we get a better and better fit
by choosing smaller and smaller tiles, but is it good enough? Our definition
involves a parametrization ry; only when we have shown that surface area is
independent of parametrization can we be sure that Definition 5.4.1 is correct.
We will verify this after computing a couple of examples of surface integrals.

Example 5.4.2 (Area of a torus). Choose R > r > 0. We obtain the torus
shown in Figure 5.4.2 by taking the circle of radius r in the (x, z)-plane that is

centered at x = R, z = 0, and rotating it around the z-axis.

This surface is parametrized by

\v)
= cosv

ry (R+rcosu)
sinsinv

5.4.9
rsinu )

as Exercise 5.4.2 asks you to verify.

Then the surface area of the torus is given by the integral

D,ry D2y

[0,2x1 x i0,2a1

-rsinucosv-(R+rcosu)sinv
-rsinusinv x (R+rcosu)cosv

rcosu 0

=1

ldu dvj

r(R+rcosu) (sinu)2+(cosusinv)2+(cosucosv)2 Idudvl
[o,2al x (0,2,rl

2x r2x
= r j J (R + r cos u) du dv = 4a2rR. A

0 0
5.4.10

Example 5.4.3 (Surface area: a harder problem). What is the area of
the graph of the function x2 + y3 above the unit square Q C R27

Applying Equation 5.2.5, we parametrize the surface by

x
7 y) ,--r y , and apply Equation 5.4.3:

x2 + y3



Again, on the right-hand side of
Equation 5.4.11 we drop the ab-
solute value signs, writing dx dy,
because we now have an oriented
interval, from 0 to 1: f0'.

Even Example 5.4.3 is compu-
tationally nicer than is standard:
we were able to integrate with re-
spect to x. If we had asked for
the area of the graph of x3 + y4,
we couldn't have integrated in el-
ementary terms with respect to
either variable, and would have
needed the computer to evaluate
the double integral.

And what's wrong with that?
Integrals exist whether or not they
can be computed in elementary
terms, and a fear of numerical in-
tegrals is inappropriate in this age
of computers. If you restrict your-
self to surfaces whose areas can
be computed in elementary terms,
you are restricting yourself to a
minute class of surfaces.
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D1Y DsY

1 r 0 1 i 3
j 0 x I31 IIdxdYI=Jo Jo 1+4xz+9y4dxdy. 5.4.11

The integral with respectpect to x is one we can calculate (just barely in our case,
checking our result with a table of integrals). First we get

u u+ a a2log(u + u+ a)

J u2+a2 du 2 + 2

This leads to the integral
i

fl J 1 + 4xz + 9y4 dx dy
0 0

5.4.12

1

/'3 x 4x2
2

1 + 9y4 + 1 + 9y4 log(2x +4 4a.2 + 1 + 9y41 dy

o Jo

=13 ( 5 2 + 1 49y4 log
2 +

1

+

dy. 5.4.13

It is hopeless to try to integrate this mess in elementary terms: the first
term requires elliptic functions, and we don't know of any class of special
functions in which the second term could be expressed. But numerically, this
is no big problem; Simpson's method with 20 steps gives the approximation
1.93224957.... A

Surface area is independent of the choice of parametrization

As shown by Exercise 5.4.13, it is quite difficult to give a rigorous definition
of surface area that does not rely on a parametrization. In Definition 5.4.1
we defined surface area using a parametrization; now we need to show that
two different parametrizations of the same surface give the same area. Like
Proposition 5.3.3 (the analogous statement for curves), this is an application of
the change of variables formula.

Proposition 5.4.4 (Surface area independent of parametrization).
Let S be a smooth surface in IR3 and y1 : U -s 1R3, rye : V -. R3 be two
parametri.zations. Then

/ 77
y r TL

V ((D yi(u)JTED,yt(u)J) Id2u1 = IV d lD 7'z(v)) d2VI
5.4.14

Proof. We begin as we did with the proof of Proposition 5.3.3. Define 0 =
rye 3 Uok Vvk to be the "change of parameters" map such that v = 0(u).
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Notice that the chain rule applied to the equation 7i = y2 o y2 t 0 yi = 12 0 4t

gives

To go from line one to line
two of Equation 5.4.16 we use the
change of variables formula. To go
from line two to line three we use
the fact that is a square
matrix, and that for a square ma-
trix A, det A = det A7. To go
from line three to four first replace
det AB by det B det A and then re-
member that each of these dets is a
number, so they can be multiplied
in any order. To go from line four
to line five we use the chain rule.

[D(y2 o 4')(u)] _ [Dyi(u)j = [Dy2(4)(u)][D' (u)] 5.4.15

if we apply the change of variables formula, we find

J
det[Dy2(v)])T[Dy2(v)]) Id2vI

V

= 1, det (D(y2 0 4')(u)]T[D(72 o ,D)(u)]) Idet(DP(u)]I Id2uI

= r let ((D-P(u)1T[DI(u)]) Id2uI
u

= r Vd
u

= Jv
det ([D(72 o 4,)(u)]T[D(72 o 4')(u)]) Id2uI

r
= det[Dyi(u)])T[Dyt(u)J) Id2uI. 0 5.4.16

Areas of surfaces in 1Rn, n > 3

A surface (i.e., a two-dimensional manifold) embedded in 1R" should have an
area for any n, not just for is = 3.

A first difficulty is that it is hard to imagine such surfaces, and perhaps
impossible to visualize them. But it isn't particularly hard to describe them
mathematically.

For instance, the subset of R4 given by the two equations x2 +x2 = rl, x3 +2 2

X4 = rZ, is a surface; it corresponds to two equations in four unknowns. This
surface is discussed in Example 5.4.5. More generally, we saw in Section 3.2
that the set X C 1R" defined by the n - k equations in n variables

fxil fxl
f l : I = 0, ..., f,,

) =0
5.4.17

xn, / x
defines a k-dimensional manifold if [Df(x)] : 1R" -+ lR" is onto for each x E X.

Example 5.4.5 (Area of a surface in 1R4). The surface described above,
the subset of R4 given by the two equations

x1 + x2 = r1 and x3 + x4 = r2, 5.4.18
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is parametrized by

and since

r, cos u
r, sin u 0 < u, v < 21r, 5.4.197(vu)

= r2cos'U
r1 sin v

`D7VU

/JJr[Dy((u))J
-r1 sin u 0

_ rl sinu r1cosu 0 0 r1 cosu 0

- [ 0 0 -r2sinv r2cosv 0 -r2sinv
0 r2 cos v

_ rl 0
0 r2

5.4.20

Equation 5.4.3 tells us that its area is given by

f \
J det ([D7(

r
v)J [Dy(v)]I Idudvl

[0,2w) x [0,2a) / 5.4.21

2 2 `dudvl = 47r2rlr2. L
x [0,2r)

Another class of surfaces in iR4 which is important in many applications, and
which leads to remarkably simpler computations that one might expect, uses
complex variables. Consider for instance the graph of the function f (z) = z2,
where z is complex. This graph has the equation z2 = zi in C2, or

x2 = X21 - Y12, Y2 = 2x1Yt, in R4. 5.4.22

Equation 5.4.3 tells us how to compute the areas of such surfaces, if we manage
to parametrize them. If S C 1R" is a surface, U C J2 is an open subset, and
y : U -» JR" is is alparametrization of S, then the area of S is given by

f, Id2xI =J det([ y(u)Ir[Dy(u)]) Id2uj. 5.4.23
s u

Example 5.4.6 (Area of a surface in C2). Let us tackle the surface in C2
of Equation 5.4.22. More precisely, let us compute the area of the part of the
surface of equation z2 = z?, where 1zl1 < 1. Polar coordinates for z1 give a nice
way to parametrize the surface:

r cos o

y(g) r2rsino
,

0<r<1, 0<0<27r. 5.4.24

r2 sin 20
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Again we need to compute the area of the parallelogram spanned by the two

partial derivatives. Since

Notice (last line of Equation
5.4.26) that the determinant ends
up being a perfect square; the
square root that created such trou-
ble in Example 5.3.1, which deals
with the real curve of equation
g = z2 causes none for the com-
plex surface with the same equa-
tion Z2 = zj .

This "miracle" happens for all
manifolds in C" given by "com-
plex equations," such as polyno-
mials in complex variables. Sev-
eral examples are presented in the
exercises.

The argument why this should
correspond to the heuristic de-
scription is exactly the same as the
one in Section 5.4, and we won't
repeat it.

[D7(r)]T[D-y

(0)]

cost' -rsmu
sine r cos e

2r cos 2e -2r2 sin 29
2r sin 0 2r2 cos 2e

_ cos 0 sin 0 2r cos 2e 2r sin 2e
[-rsine rcosa -2r2sin20 2r2cos2e

1 + 4r2 0

= [ 0 r2(1 + 4r2)

Equation 5.4.3 says that the area is

5.4.25

ft.,
det([D7(r)]T[DT(B)] IIdrdo, 5.4.26

1] x 10,2x1 /
r 1

= r r2(1 +4r2)2 Idudvl =2t'Ir +r4J =31r.
10,1]x10,2e] `2 0

square root
of a perfect square

5.5 VOLUME OF MANIFOLDS

Everything we have done so far in this chapter works for a manifold M of
any dimension k, embedded in any R". The k-dimensional volume of such a
manifold is written

IdkxI,if
where jdkxL is the integrand that takes a k-parallelogram and returns its k-
dimensional volume. Heuristically, this integral is defined by cutting up the
manifold into little k-parallelograms, adding their k-dimensional volumes and
taking the limits of the sums as the decomposition becomes infinitely fine.

The way to do this precisely is to parametrize M. That is, we find a subset.
U C RI and a mapping -y : U -+ M which is differentiable, one to one and onto,
with a derivative which is also one to one.

Then the k-dimensional volume is defined to be

J det([D7(u))T[D7(u)J) IdkuI. 5.5.1
u

The independence of this integral from the chosen parametrization also goes
through without any change at all.
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The proof of Proposition 5.5.1
is identical to the case of surfaces.
given in Equation 5.4.16. The dif-
ference is the width of the matrix
(Dy2(v)]. In the case of surfaces,
(Dy2(v)] is it x 2; here it is it x k.
(Of course the transpose is also
different: now it is k x n.)

Proposition 5.5.1 (Volume of manifold independent of parametriza-
tion). If Ul, U2 are subsets of 1Rk and yt : U - M, y2 : V - M are two
parametrizations of M, then

f detQDyi(n)1T[Dyi(n)1) Idkul = Jv
detQDy2(-,)1T(0'Y2(,,)1) Idkvl

Example 5.5.2 (Volume of a three-dimensional manifold in R4). Let
U c I.' be an open set, and f : U -, 1R be a C' function. Then the graph
of f is a three-dimensional manifold in 1R4, and it comes with the natural
parametrization

x
-Y (X) Y.

Z
f i

Z()
W th he en

5.5.2

ave

([DY(;)]T
det {D(;)])

f rl 0 0 D,f
1 0 0

=det I 0 1 0 D2f I 0
0

1 0
00 0 1 D2f

Dif

1

D2f D3f
5.5.3

1 + ( D, f )2 (D i f)(Dsf) Dtf)(D3f)
=det (Dlf )(D2 f) I +(D2f)2 D2f)(D3f)

L Dtf) (D3 f) (D 2f)(D3f) 1 + (D3f)2

= 1 + (D,f)2 + (D2f)2 + (Daf)t.

So the three-dimensional volume of the graph of f is

I 1 + (Dtf)2 + (D2f)2 + (D2f)2Id3xl 5.5.4
u

It is a challenge to find any function for which this can be integrated in elemen-
tary terms. Let us try to find the area of the graph of

x
f b = 2 (x2 + l/2 + z2)

z

above the ball BR(O) of radius R centered at the origin.

5.5.5



Again, this is an integral which
will stretch you ability with tech-
niques of integration. You are
asked in Exercise 5.5.5 to justify
the last step of this computation.

490 Chapter 5. Lengths of Curves, Areas of Surfaces, ...

Using spherical coordinates, this leads to

1 + x2-+y2 + z2 d3x =
I2x

I
xx/2

J
R

1 +r2r2 cos cp dr dip dB
IBo(R) 0 /2 0

R
= 41r 1 + r2r2 dr 5.5.6

0

a(R(1+R2)312_2log(R+ 1+R2)-2R 1+R2). A

Example 5.5.3 (Volume of an n-dimensional sphere in R"+1). For a final
example, let us compute vol" S", Where S" C Rnt1 is the unit sphere. It would
be possible to do this using some generalization of spherical coordinates, and
you are asked to do so for the 3-sphere in Exercise 5.5.7. These computations
become quite cumbersome, and there is an easier method. It relates vol" Sn to
the (n + 1)-dimensional volume of an(n + 1)-dimensional sphere, vole+1 Bn+1.

First, how might we relate the area of a disk (i.e., a two-dimensional ball,
B2) to the length of circles (i.e., one-dimensional spheres, 51)? We could
fill up the disk with concentric rings, and add together their areas, each ap-
proximately the length of the corresponding circle times some br represent-
ing the spacing of the circles. The length of the circle of radius r is r x
the length of the circle of radius 1. More generally, this approach gives

vol"+1 Bn+1 = Il voln S" (r) dr = I1 r" vol" S" dr =
n

1
1 vol"(S"). 5.5.7

0 0

The part of B"+I between r and r+Or should have volume Or(vol"(S"(r)));
This allows us to add one more column to Table 4.5.7:

n = nn=1 -2
n gqVoluma

/ten = CnO.-1
sn = (ry + 1),Qn+1

0 a 2

1 2 2 27r

2 z n 4tr

3 9 4x 2x2
3 3

4 Ox x2 Bx
8 2 3

5 16 8xi 73
15 15
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5.6 FRACTALS AND FRACTIONAL DIMENSION

In 1919, Felix Hausdorff showed that dimensions are not limited to length,
area, volume, . . . : we can also speak of fractional dimension. This discovery
acquired much greater significance with the work of Benoit Mandelbrot showing
that many objects in nature (the lining of the lungs, the patterns of frost on
windows, the patterns formed by a film of gasoline on water, for example) are
fractais, with fractional dimension.

Example 5.6.1 (Koch snowflake). We construct the Koch snowflake curve
K as follows. Start with a line segment, say 0 < x < 1, y = 0 in R2. Replace
its middle third by the top of an equilateral triangle, as shown in Figure 5.6.1._ ..... n. This gives four segments, each one-third the length of the original segment.
Now replace the middle third of each by the top of an equilateral triangle, and

1, so on.
What is the length of this "curve"? At resolution N = 0, we get length 1.

FIGURE 5.6.1.

'-'- becomes infinitely fine, the length becomes infinitely long!

At resolution N = 1, when the curve consists of four segments, we get length
4 1/3. At the next resolution, the length is 16 1/9. As our decomposition

"Length" is the wrong word to apply to the Koch snowflake, which is neither
a curve nor a surface. It is a fractal, with fractional dimension: the Koch
snowflake has dimension log 4/ log 3 1.26.

Let us see why this might be the case. Call A the part of the curve con-
structed on (0,1/3), and B the whole curve, as in Figure 5.6.2. Then B consists

The first five steps in construct- of four copies of A. (This is true at any level, but it is easiest to see at the first
ing the Koch snowflake. Its length level, the top graph in Figure 5.6.1.). Therefore, in any dimension d, it should
is infinite, but length is the wrong be true that vold(B) = 4vold(A).
way to measure this fractal object. However, if you expand A by a factor of 3, you get B. (This is true in

FIGURE 5.6.2.

the limit, after the construction has been carried out infinitely many times.)
According to the principle that area goes as the square of the length, volume
goes as the cube of the length, etc., we would expect d-dimensional volume to
go as the dth power of the length, which leads to

vold(B) = 3d vold(A). 5.6.1

If you put this equation together with vold(B) = 4 vold(A), you will see that
the only dimension in which the volume of the Koch curve can be different from
0 or oc is the one for which 4 = 3d, i.e., d = logo/log3.

If we break up the Koch curve into the pieces built on the sides constructed
at the nth level (of which there are 4', each of length 1/3"), and raise their
side-lengths to the dth power, we find

n log 4/ log 94" (I) =4nenlog4/log3(logl/3) =One-nlog4 = 4n
1. 5.6.2/ 4
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FIGURE 5.6.3.

(In Equation 5.6.2 we use the fact that a` = esl05 .) Although the terms have
not been defined precisely, you might expect the computation above to mean

f IdXIog4/log3I = 1. A
K

5.6.3

Example 5.6.2 (Sierpinski gasket). While the Koch snowflake looks like
a thick curve, the Sierpinski gasket looks more like a thin surface. This is the
subset of the plane obtained by taking a filled triangle of side length 1, removing
the central inscribed subtriangle, then removing the central subtriangles from
the three triangles that are left, then removing the central subtriangles from
the nine triangles that are left, and so on; the process is sketched in Figure
5.6.3. We claim that this is a set of dimension log 3/log 2: at the nth stage of
the construction, sum, over all the little pieces, the side-length to the power p:

/ \D
3n ( 2n 1 . 5.6.4

(If measuring length, p = 1; if measuring area, p = 2.) If the set really had a
length, then the sum would converge when p = 1, as n - oo; in fact, the sum
is infinite. If it really had an area, then the power p = 2 would lead to a finite
limit; in fact, the sum is 0. But when p = log 3/ log 2, the sum converges to
1log3/log2 ,;;11.58. This is the only dimension in which the Sierpinski gasket has
finite, nonzero measure; in dimensions greater than log 3/ log 2, the measure is
0, and in dimensions less than log 3/ log 2 it is infinite. A

5.7 EXERCISES FOR CHAPTER FIVE
The second, fourth, fifth and

sixth steps of the Sierpinski gasket
5.1.1 What is vo13 of the 3-parallelogram in R4 spanned by

Exercises for Section 5.1:

Parallelograms

Hint for Exercise 5.1.3: Show
that rank(TTT) < rankT < k.

Exercises for Section 5.2:

Parametrizations

1 0 1

V 1 = O , v2 =
1

, V3 = O ?

1 1 2

5.1.2 What is the volume of a parallelepiped with three sides emanating
from the same vertex having lengths 1,2, and 3, and with angles between them
a/3, ir/4, and 7r/6?

5.1.3 Show that if v"l, Vk are linearly dependent, volk(P(v"1,... ,. 7k)) = 0.

5.2.1 (a) Show that the segment of diagonal { (x) E RR2I lxi < 1 } does not
have one-dimensional volume 0.
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Exercises for Section 5.3:
Arc Length

(cost

(b) Show that the curve in 13 parametrized by t '-+ cost does have
sin t

two-dimensional volume 0, but does not have one-dimensional volume 0.

5.2.2 Show that Proposition A19.1 is not true if X is unbounded. For in-
stance, produce an unbounded subset of R2 of length 0, whose projection onto
the x-axis does not have length 0.

5.2.3 Choose numbers 0 < r < R, and consider the circle in the (x, z)-plane
of radius r centered at (Z = p ). Let S be the surface obtained by rotating
this circle.

(a) Write an equation for S, and check that it is a smooth surface.

(b) Write a parametrization for S, paying close attention to the sets U and

X used.

(c) Now parametrize the part of S where
i)z>0;
ii)x>O,y>0;
iii) z > x + y. This is much harder, and even after finding an equation

for the curve bounding the parametrizing region, you may need a computer to
visualize it.

5.2.4 Let f : [a, b] .-. 1l be a smooth positive function. Find a parametrization
for the surface of equation

A2 + B2 = if (z))2.

5.2.5 Show that if M C D8' has dimension less than k, then volk(M) = 0.

*5.2.6 Consider the open subset of IR constructed in Example 4.4.2: list the
rationals between 0 and 1, say al, a2, a3.... and take the union

- 1 1U - U 1 a, 2i+k' at + 2i }k /J
i=10

for some integer k > 1. Show that U is a one-dimensional manifold, and that
it cannot be parametrized according to Definition 5.2.2.

5.3.1 (a) Let be a parametrization of a curve in polar coordinates.
Show that the length of the piece of curve between t = a and t = b is given by
the integral

f
b

(r'(t))2 + (r(t))2(0'(t))2 dt.
a

5.3.1



Exercises for Section 5.4:
Surface Area

In Exercise 5.4.5, part (b), a
computer and appropriate soft-
ware will help.
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(b) What is the length of the spiral given in polar coordinates by

(otj)_(et"),a>0
between t = 0 and t = a? What is the limit of this length as a - 0?

(c) Show that the spiral turns infinitely many times around the origin as
t - oo. Does the length tend to 0o as t -+ oo?

5.3.2 Use Equation 5.3.1 of Exercise 5.3.1 to give the length of the curve

etj)
between t = 1 and t = a. Is the limit of the length finite as a -+ oo?

5.3.3 For what values of a does the spiral

(1

t t = oo have finite length?

5.3.4 (a) Suppose now that (V(O ) is a parametrization of a curve in R3,

written in spherical coordinates. Find the formula analogous to Equation 5.3.1
of Exercise 5.3.1 for the length of the arc between t = a and t = b.

(b) What is the length of the curve parametrized by r(t) = cost,,p(t)
t, 8(t) = tan t between t = 0 and t = a, where 0 < a < x/2?

5.4.1 Show that Equation 5.4.1 is another way of stating Equation 5.4.2, i.e.,
show that

(-7i X v2I = det([v'i,V2]T(s11,i12I)

5.4.2 Verify that Equation 5.4.9 does indeed parametrize the torus obtained
by taking the circle of radius r in the (x, z)-plane that is centered at x = R, z =
0, and rotating it around the z-axis.

5.4.3 Compute f (x2 + y2 +3z2) Id2xI, where S is the part of the paraboloid
of revolution z = x2 + y2 where z < 9.

5.4.4 What is the surface area of the part of the paraboloid of revolution

z = x2 + y2 where z < 1?

5.4.5 (a) Set up an integral to compute the integral fs(x+y+z) Id2xI, where
S is the part of the graph of x3 +Y 4 above the unit circle.

(b) Can you evaluate it numerically?



For Exercise 5.4.6, part (b) :

the earth's diameter is 40 000 kilo-
meters, and the earth's axis is

tilted by 23°.

5.7 Exercises for Chapter Five 495

5.4.6 (a) Let S1 be the part of the cylinder of equation x2 + y2 = I with
-1 < z < 1, and let S2 be the unit sphere. Show that the horizontal radial
projection S, -. S2 is area-preserving.

(b) What is the area of the polar cap on earth? The tropics?

(c) Find a formula for the area AR(r) of a disk of radius r on a sphere of
radius R (the radius is measured on the sphere, not inside the ball). What is
the Taylor polynomial of A(r) to degree 4?

5.4.7 Compute the area of the graph of the function f (X) = 3 (x3/2 + y3/z)

above the region 0 < x, y < 1.

5.4.8 (a) Give a parametrization of the surface of the ellipsoid
2.2 2 2

a2
+ P +

c2
= 1 analogous to spherical coordinates.

(h) Set up an integral to compute the surface area of the ellipsoid.

5.4.9 (a) Set up an integral to compute the surface area of the unit sphere.

(b) Compute the surface area (if you know the formula, as we certainly hope
you do, simply giving it is not good enough).

5.4.10 Let f (x) be a positive Cl function of x E [a, b].
(a) Find a parametrization of the surface in 1lP3 obtained by rotating the

graph of f around the x-axis.

(b) What is the area of this surface? (The answer should be in the form of
a one-dimensional integral.)

5.4.11 Let X C C2 be the graph of the function w = z', where both z =
x + iy = reie and w = u + iv are complex variables.

(a) Parametrize X in terms of the polar coordinates r, 9 for z.

(b) What is the area of the part of X where Izl < R?

5.4.12 The total curvature K(S) of a surface S C II83 is given by

K(S) = Jis
(a) What is the total curvature of the sphere S2R C 123 of radius R?

(b) What is the total curvature of the graph of the function f (X) = x2 _ y2?
(See Example 3.8.8.)

(c) What is the total curvature of the part of the helicoid of equation y cos z =
x sin z (see Example 3.8.9) with 0 < z < a?
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*5.4.13 Let f (v)
=

(u2) be a parametrization of a parabolic cylinder.
v

If T is a triangle with vertices a, b. c E R2, the image triangle will be by
definition the triangle in R3 with vertices f(a), f(b), f(c). Show that there
exists a triangulation of the unit square in the (u, v)-plane such that the sum
of the areas of the image triangles is arbitrarily large.

Exercises for Section 5.5: 5.5.1 Let M, (n, m) be the space of n x in matrices of rank 1. What is the
Volume of Manifolds three-dimensional volume of the part of Ml (2,2) made up of matrices A with

JAI<1?

5.5.2 A gas has density C/r, where r = x2 + y2 + z2. If 0 < a < b, what
is the mass of the gas between the concentric spheres r = a and r = b?

5.5.3 What is the center of gravity of a uniform wire, whose position is the
parabola of equation y = x2, where 0 < x < a?

5.5.4 Let X C C2 be the graph of the function w = e- + e'r, where both
z = x + iy and w = u + iv are complex variables. What is the area of the part
of X where -1 < x, y < 1?

5.5.5 Justify the result in Equation 5.5.6 by computing the integral.

5.5.6 The function cos z of the complex variable z is by definition

e" + e-'z
Cos z = 2 .

(a) If z = x + iy, write the real and imaginary parts of cos z in terms of x
and y.

(b) What is the area of the part of the graph of cost where -7r < x <ir,-l< y<1?
5.5.7 (a) Show that the mapping

7

/ \ cos cos's
I/` J1 cos tG cas p sin

0

in B
cos r(i sin p

sin 0

parametrizes the unit sphere S3 in II when -7r/2 < W, 0 < a/2, 0 < 0 < 2a.
(b) Use this parametrization to compute vol3(S3).

5.5.8 What is the area of the surface in C3 parametrized by

zr

zP

7(z) = z9 z E C, jzI < 1 ?
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Exercises for Section 5.6: 5.6.1 Consider the set C obtained by by taking [0, 11, and removing first the

Fractals open middle third (1/3,2/3), then the open middle third of each of the segments
left, then the open middle third of each of the segments left, etc., as shown in
Figure 5.6.1.

(a) Show that an alternative description of C is that it is the set of points
that can be written in base 3 without using the digit 1. Use this to show that
C is an uncountable set. (Hint: For instance, the number written in base 3 as

FIGURE 5.6.1. .02220000022202002222... is in it.)

(b) Show that C is a payable set, with one-dimensional volume 0.

(c) Show that the only dimension in which C could have volume different
from 0 or infinity is log 2/ log 3.

5.6.2 Now let the set C be obtained from the unit interval by omitting the
middle 1/5th, then the middle fifth of each of the remaining intervals, then the
middle fifth of the remaining intervals, etc.

(a) Show that an alternative description of C is that it is the set of points
which can be written in base 5 without using the digit 2. Use this to show that
C is an uncountable set.

(b) Show that C is a payable set, with one-dimensional volume 0.

(c) What is the only dimension in which C could have volume different from
0 or infinity?

5.6.3 This time let the set C be obtained from the unit interval by omitting
the middle 1/nth, then the middle 1/n of each of the remaining intervals, then
the middle fifth of the remaining intervals, etc.

(a) Show that C is a payable set, with one-dimensional volume 0.

(b) What is the only dimension in which C could have volume different from
0 or infinity? What is this dimension when n = 2?
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Forms and Vector Calculus

Gradient a 1-form? How so? Hasn't one always known the gradient
as a vector? Yes, indeed, but only because one was not familiar with the
more appropriate 1 -form concept.-C. Misner, K. S. Thorne, J. Wheeler,
Gravitation

You have in fact been using
forms without realizing it. When
you write d(t2) = 2tdt you are
saying something about forms, 1-
forms to be precise.

6.0 INTRODUCTION

What really makes calculus work is the fundamental theorem of calculus:
that differentiation, having to do with speeds, and integration, having to do
with areas, are somehow inverse operations.

Obviously, we will want to generalize the fundamental theorem of calculus
to higher dimensions. Unfortunately, we cannot do so using the techniques
of Chapter 4 and Chapter 5, where we integrated using Jd"xI. The reason is
that Id"xj always returns a positive number; it does not concern itself with
the orientation of the subset over which it is integrating, unlike the dx of one-
dimensional calculus, which does:

fbf(x)dx=- f°f(x)dx.
n b

To get a fundamental theorem of calculus in higher dimensions, we need to
introduce new tools. If we were willing to restrict ourselves to R2 and R3 we
could use the techniques of vector calculus. We will use a different approach,
forms, which work in any R". Forms are integrands over oriented domains;
they provide the theory of expressions containing dx or dx dy ... .

Because forms work in any dimension, they are the natural way to approach
two towering subjects that are inherently four-dimensional: electromagnetism
and the theory of relativity. They also provide a unified treatment of differen-
tiation and of the fundamental theorem of calculus: one operator (the exterior
derivative) works in all dimensions, and one short, elegant statement (the gen-
eralized Stokes's theorem) generalizes the fundamental theorem of calculus to
all dimensions. In contrast, vector calculus requires special formulas, operators,
and theorems for each dimension where it works.

On the other hand, the language of vector calculus is used in many science
courses, particularly at the undergraduate level. So while in theory we could
provide a unified treatment of higher dimensional calculus using only forms,
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this would probably not mesh well with other courses. If you are studying
physics, for example, you definitely need to know vector calculus. In addition,
the functions and vector fields of vector calculus are more intuitive than forms.
A vector field is an object that one can picture, as in Figure 6.0.1. Coming to
terms with forms requires more effort. We can't draw you a picture of a form.
A k-form is, as we shall see, something like the determinant: it takes k vectors,
fiddles with them until it has a square matrix, and then takes its determinant.

We said at the beginning of this book that the object of linear algebra "is at
least in part to extend to higher dimensions the geometric language and intu-
ition we have concerning the plane and space, familiar to us all from everyday
experience." Here too we want to extend to higher dimensions the geometric
language and intuition we have concerning the plane and space. We hope that
translating forms into the language of vector calculus will help you do that.

Section 6.1 gives a brief discussion of integrands over oriented domains. In

Section 6.2 we introduce k-forms: integrands that take a little piece of oriented
FIGURE 6.0.1. domain and return a number. In Section 6.3 we define oriented k-parallelograms

The radial vector field and show how to integrate form fields-functions that assign a form at each
point-over parametrized domains. Section 6.4 translates the language of forms
on 1R3 into the language of vector calculus. Section 6.5 gives the definitions
of orientation necessary to integrate form fields over oriented domains, while
Section 6.6 discusses boundary orientation. Section 6.7 introduces the exteraor
derivative, which Section 6.8 relates to vector calculus via the grad, div, and
curl. Sections 6.9 and 6.10 discuss the generalized Stokes's theorem and its four
different embodiments in the language of vector calculus. Section 6.11 addresses
the question, important in both physics and geometry, of when a vector field is
the gradient of a function.

6.1 FORMS AS INTEGRANDS OVER ORIENTED DOMAINS.

FIGURE 6.1.1.
The Moebius strip was discov-

ered in 1858 by August Moebius,
a German mathematician and as-
tronomer. Game for a rainy day:
Make a big Moebius strip out of
paper. Give one young child a yel-
low crayon, another a blue crayon,
and start them coloring on oppo-
site sides of the strip.

In Chapter 4 we studied the integrand Jd"xl, which takes a subset A C IR"
and returns its n-dimensional volume, vol, A. In Chapter 5 we showed how
to integrate the integrand IdlxJ (the element of arc length) over a curve, to
determine its length, and how to integrate the integrand fd2xI over a surface,
to determine its area. More generally, we saw how to integrate Jdkxl over a
k-dimensional manifold in R", to determine its k-dimensional volume.

Such integrands take a little piece (of curve, surface, or higher-dimensional
manifold) and return a number. They require no mention of the orientation of
the piece; non-orientable surfaces like the Moebius strip shown in Figure 6.1.1
have a perfectly well-defined area, obtained by integrating Jd2xI over them.

The integrands above are thus fundamentally different from the integrand
dx of one variable calculus, which requires oriented

intervals. In one variable

calculus, the standard integrand f (x) dx takes a piece [xi, xj+I ] of the domain,
and returns the number f(xi)(xi+I - xi): the area of a rectangle with height
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While it is easy to show that
a Moebius strip has only one side
and therefore can't be oriented, it
is less easy to define orientation
with precision. How might a flat
worm living inside a Moebius strip
be able to tell that it was in a
surface with only one side? We
will discuss orientation further in
Section 6.5.

Analogs to the Moebius strip
exist in all higher dimensions, but
all curves are orientable.

f(xi) and width xi}1 -xi. Note that dz returns xi+1 -x,, not Jxi+I -xiI; that

is why

f1 t

f(x)dxJ f(x)dz. 6.1.1
1 I

In order to generalize the fundamental theorem of calculus to higher dimen-
sions, we need integrands over oriented objects. Forms are such integrands.

Example 6.1.1 (Flux form of a vector field: 0f). Suppose we are given a
vector field F on some open subset U of R3. It may help to imagine this vector
field as the velocity vector field of some fluid with a steady flow (not changing
with time). Then the integrand il5p associates to a little piece of surface the
flux of f through that piece; if you imagine the vector field as the flow of a
fluid, then 4ip associates to a little piece of surface the amount of fluid that
flows through it in unit time.

But there's a catch: to define the flux of a vector field through a surface, you
must orient the surface, for instance by coloring the sides yellow and blue, and
counting how much flows from the blue side to the yellow side (counting the
flow negative if the fluid flows in the opposite direction). It obviously does not
make sense to calculate the flow of a vector field through a Moeblus strip. A

6.2 FORMS ON ur
The important difference be-

tween determinants and k-forms is
that a k-form on 1k" is a function
of k vectors, while the determinant
on Ilk" is a function of n vectors;
determinants are only defined for
square matrices.

The words antisymmetric and
alternating are synonymous.

Antisymmetry
If you exchange any two of the

arguments of ,p, you change the
sign of ,p:

9 (VI...... ,...... V...... k)

Multilinearity
If ,p is a k-form and Vi = add +

bw, then

,p( v'......(or.+bw).. .,. Vk)

You should think of this section as a continuation of Section 4.8. There we
saw that there is a unique antisymmetric and multilinear function of n vectors
in Ilk" that gives 1 if evaluated on the standard basis vectors: the determinant.
Because of the connection between the determinants and volumes described in
Section 4.9, the determinant is fundamental to multiple integrals, as we saw in
Section 4.10.

Here we will study the multilinear antisymmetric functions of k vectors in
Ilk", where k > 0 may be any integer, though we will soon see that the only
interesting case is when k < n. Again there is a close relation to volumes, and
in fact these objects, called forms, are the right integrands for integrating over
oriented domains.

Definition 6.2.1 (k-form on R"). A k-form on Ilk" is a function io that
takes k vectors in Ilk" and returns a number, such that Vk) is mul-
tilinear and antisymmetric.

That is, a k-form W is linear with respect to each of its arguments, and
changes sign if two of the arguments are exchanged.

It is rather hard to imagine forms, so we start with an example, which will
turn out to be the fundamental example.
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Example 6.2.2 (k-form). Let il,...,ik be any k integers between 1 and n.

Then dxi, n A dxi,, is that function of k vectors V1...... Vk in En that puts
these vectors side by side, making the n x k matrix

The entire expression

dx,, n ... A dx.,

is just the name for this k-form;
for now think of it as a single
item without worrying about the
component parts. The reason for
the wedge n will be explained at
the end of this section, where we
discuss the wedge product; we will
see that the use of n in the wedge
product is consistent with its use
here. In Section 6.8 we will see
that the use of d in our notation
here is consistent with its use to
denote the exterior derivative.

Note (Equation 6.2.4) that to
give an example of a 3-form we had
to add a third vector. You cannot
evaluate a 3-form on two vectors
(or on four); a k-form is a func-
tion of k vectors. If you have more
than k vectors, or fewer, then you
will end up with a matrix that is
not square, which will not have a
determinant. But you can evalu-
ate a 2-form on two vectors in lR4,
as we did above, or in R'a. This is
not the case for the determinant,
which is a function of n vectors in
Rn

In the top line of Equation 6.2.5
we could write

6.2.1

Ivn,l ... Vn,kJ

and selects first the ilth row, then the i2 row, etc, and finally the ikth row,
making the square k x k matrix

vi,,l ... vi,,k

vik,k

and finally takes its determinant. For instance,

6.2.2

2 2
=det [2 -2, = 8. 6.2.3

1

1-fl)
2-form 1

let and 2nd rows
of original matrix

1 3 0
1 3 01

2 1 = -7 0 6.2.4dxl n dx2 n dx4
1 1 2

= det ll 2 -
2 1

`'Y
3-form 1 2 1

l

Remark. The integrand Idkxl of Chapter 5 also takes k vectors in R' and
gives a number:

Id'xl(V) = IVI = VTV,

Id2xI(w1, V2) = det([V1, V2]T[VI, V211

Idkxl(V....... k) = 1dtll\\lVl...,Vk1IT1V1...,Vk1).

6.2.5

Idtxl(3) = det(v'TV), Unlike forms, these are not multilinear and not antisymmetric. D

in keeping with the other formu-
las, since det of a number equals Geometric meaning of k-forms
that number.

Evaluating the 2-form dxl A dx2 on the vectors a and b, we have:

([all
dxl n dx2 a2

b

b detl
ra1 bl1

J = a 26 6b - a b,

a3 b

..l 2 2 1,

111

a2

111



Rather than imagining project-
ing a' and b onto the plane to get
the vectors of Equation 6.2.7, we
could imagine projecting the par-
allelogram spanned by e' and b
onto the plane to get the parallel-
ogram spanned by the vectors of
Equation 6.2.7.
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which can be understood geometrically. If we project as and b onto the (x1, x2)-

plane, we get the vectors

L
a2 J and I b2 J;

6.2.7

the determinant in Equation 6.2.6 gives the signed area of the parallelogram
that they span, as described in Proposition 1.4.14.

Thus dxl n dz2 deserves to be called the (x1,x2) component of signed
area. Similarly, dx2 A dx3 and dxl A dx3 deserve to be called the (x2, x3)
and the (x1,x3) components of signed area.

We can now interpret Equations 6.2.3 and 6.2.4 geometrically. The 2-form
form dx1 A dx2 tells us that the (XI, X2) component of signed area of the par-
allelogram spanned by the two vectors in Equation 6.2.3 is -8. The 3-form
dx1 A dx2 A dx4 tells us that the (dxl, dx2, dx4) component of signed volume of
the parallelepiped spanned by the three vectors in Equation 6.2.4 is -7.

Similarly, the 1-form dx gives the x component of signed length of a vector,
while dy gives its y component:

d. I-iJ) =det2=2 and dy([ 3}) =det(-3)=3.

More generally (and an advantage of k-forms is that they generalize so easily
to higher dimensions), we see that

vrydx, I I

J 1
= det[v4 = vi 6.2.8

is the ith component of the signed length of V, and that dxi, n A dxi,,, eval-
uated on (,V1.... v"k), gives the (xi,, ... xi5) component of signed k-dimensional
volume of the k-parallelogram spanned by aft, ... vk.

Elementary forms

There is a great deal of redundancy in the expressions dxi,, n ndxik. Consider
for instance dxI n dx3 n dxl. This 3-form takes three vectors in lk^, stacks them
side by side to make an n x 3 matrix, selects the first row, then the third, then
the first again, to make a 3 x 3 and takes its determinant. So far, so good; but
observe that the determinant in question is always 0, independent of what the
vectors were; we have taken the determinant of a 3 x 3 matrix for which the
third row is the same as the first; such a determinant is always 0. (Do you see



Recall (Definition 4.8.16) that
the signature of a permutation
a, denoted sgn(a), is sgn(a) =
det M,,, where M,, is the permuta-
tion matrix of a. Theorem 4.8.18
gives a formula for the determi-
nant using the signature.
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dxl A dx3 A dx, = 0; 6.2.9

why?') So

it takes three vectors and returns 0.

But that is of course not the only way to write the form that takes three
vectors and returns the number 0; both dx, A dxl A dx3 and dx2 A dx3 A dx3

do so as well, and there are others. More generally, if any two of the indices

ii, ... , ik are equal, we have dxi, A A dxi, = 0: the k-form dxi, A A dxi,,,

where two indices are equal, is the k-form which takes k vectors and returns 0.
Next, consider dx1 A dx3 and dx3 A dx1. Evaluated on

all
b=

i

J, we finda
r

dxi A dx3(a',b) = det
a, bl

I.es
b3 I

= a163 - a36,

dx3 A dT1(9,b) = det Lal bal = a3b, - atb3.

6.2.10

Clearly dxl Adx3 = -dx3 Adxl; these two 2-forms, evaluated on the same two
vectors, always return opposite numbers.

More generally, if the integers il,... , ik and j,.... , jk are the same integers,
just taken in a different order, so that j, = io(1),32 = io(k) for
some permutation a of (1, ... , k}, then

dx A ... A dx,,, = sgn(a)dxi, A . . A dxi, . 6.2.11

Indeed, dxj, A ... A dx,, computes the determinant of the same matrix as
=dxi, A ... A dxi,,, only with the rows permuted by a. For instance, dx, A dx2

-dx2 Adxl, and

dxl A dx2 A dx3 = dx2 A dx3 A dxl = dx3 A dxl A dx2. 6.2.12

To eliminate this redundancy, we make the following definition: an elemen-
tary k-form is of the form

with 15 6.2.13

putting the indices in increasing order selects one particular permutation for
any set of distinct integers j,....,jk.

'The determinant of a square matrix containing two identical columns is always
0, since exchanging them reverses the sign of the determinant, while keeping it the
same. Since (Theorem 4.8.10), det A = det AT, the determinant of a matrix is also 0
if two of its rows are identical.
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That there are no elementary
k-forms when k > n is an example
of the "pigeon hole" principle: if
you have more than n pigeons in
n holes one hole must contain at
least two pigeons. Here we would
need to select more than n distinct
integers between 1 and n.

Definition 6.2.3 (Elementary k-forms on Ilk"). A elementary k-form on
Ilk" is an expression of the form

dxi A... A dx,,, 6.2.14

where 1 < ii < . < ik < it (and 0 < k < n). Evaluated on the vectors
V'1, ... , vk, it gives the determinant of the k x k matrix obtained by selecting
the i1..... ik rows of the matrix whose columns are the vectors v1..... v"k.
The only elementary 0-form is the form, denoted 1, which evaluated on zero
vectors returns 1.

Note that there are no elementary k forms on Ilk" when k > n; indeed, there
are no nonzero forms at all when k > n: there is no function p that takes k > n
vectors in Ilk" and returns a number, such that w(v'1...... k) is multilinear and
antisymmetric. If v"t..... v"k are vectors in Ik" and k > it, then the vectors are
not linearly independent, and at least one of them is a linear combination of
the others, say

k-1
Vk = > aiVi.

i=1

6.2.15

Then if ,p is a k-form on Ilk", evaluation on the vectors v"1...... Vk gives

k-1
p(Vl,..., Vk) _ '(V1,...,F- aiVi)

i=1
6.2.16

Each term in this last sum will compute the determinant of a matrix, two
columns of which coincide, and will give 0.

In terms of the geometric description, this should come as no surprise: you
would expect any kind of three-dimensional volume in IP to be zero, and more
generally any k-dimensional volume in ilk" to be 0 when k > n.

What elementary k-forms exist on Ilk4?2

k-1

_ ail(1(V'...... i..... Vi).
i=1

'On IIk4 there exist

(1) one elementary 0-form, the number 1.
(2) four elementary 1-forma: dxl,dxz,dx3 and dx4.
(3) six elementary 2-forms: dxi A dxz, dxi A dx3, dxi A dx4, dX2 A dx3, dX2 A dx4,

and dx3 A dx4.
(4) four elementary 3-forms: dxi A dx3 A dx3, dxi A dX2 A dx4, dxi A dx3 A dx4,

dxa A dx3 Adx4.
(5) one elementary 4-form: dxi A dX2 A dx3 A dx4.
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The Greek letter r(i is pro-
nounced "psi."

Adding k-forms
3dxAdy+2dxAdy = 5dxAdy.

Multiplying k-forms by scalars

5(dxAdy+2dxAdz)
=SdxAdy+lOdxAdz.

All forms are linear combinations of elementary forms

We said above that dxi, A . A dxik is the fundamental example of a k-form.
Now we will justify this statement, by showing that any k-form is a linear
combination of elementary k-forms.

The following definitions say that speaking of such linear combinations makes
sense: we can add k-forms and multiply them by scalars in the obvious way.

Definition 6.2.4 (Addition of k-forms). Let w and 0 be two k-forms.
Then

1(V 1, ... , Vk) + 0071..... Vk) = (P + +G)(71, ...

DefinItion 6.2.5 (Multiplication of k-forms by scalars). If p is a
k-form and a is a scalar, then

1.... , Vk) = Vk))

Using these definitions of addition and multiplication by scalars, the space of
k-forms in 1Rn is a vector space. We will now show that the elementary k-forms
form a basis of this space.

Definition 6.2.6 (Ak(lR")). The space of k-forms in RI is denoted Ak(1k' ).

Theorem 6.2.7. The elementary k-forms form a basis for Ak(1R").

In other words, every multilinear and antisymmetric function W of k vectors
in R' can be uniquely written

r- ail..ikdxi,A...Adxik, 6.2.17
1<i,< <ik<n

and in fact the coefficients are given by

ail...ik = W(e;,,...,eik) 6.2.18

Proof. Most of the work is already done, in the proof of Theorem 4.8.4, showing
that the determinant exists and is uniquely characterized by its properties of
multilinearity, antisymmetry, and normalization. (In fact, Theorem 6.2.7 is
Theorem 4.8.4 when k = n.) We will illustrate it for the particular case of
2-forms on 1R3; this contains the idea of the proof while avoiding hopelessly
complicated notation. Let ,p be such a 2-form. Then, using multilinearity,
we get the following computation. Forget about the coefficients, and notice
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that this equation says that ep is completely determined by what it does to the
standard basis vectors:

Ir"`:i 's Iwi
1

(p ( I

J

, 7ll2 I = V262 + w3e3. wt et + 1('2462 + U%349:; )
1L Iw3 v

v w

When reading Theorem 6.2.8,
remember that 0! = 1.

Note that

( ( l\k) - - k/
since

(nn- k}

(n - k)! (n -(n - k))!

n!- k!(n-k)!.

In particular, for a given n,
there are equal numbers of elemen-
tary k-forms and elementary (n -
k)-forms: .4 k (R') and A"-(R')
have the same dimension. Thus, in
_R3, there is one elementary 0-form
and one elementary 3-form, so the
spaces A°(1!R3) and A3(R3) can be
identified with numbers. There
are three elementary 1-forms and
three elementary 2-forms, so the
spaces A'(R') and A'(?') can be
identified with vectors.

= W(vjet, wt46i + w2e2 + u,363 + W(v2e2, -146) + w2e'2 + tt'3e3)

W

+ W(v3e3, W1e1 +11!2462 + w3e3)

w

6.2.19

= W(v1461, wiel) + W(viet, "w2e2) + W(vi et w3e3) + .. .

_ (v11112 -2;21111)W(91, 462) + (viw3-v3w't)W(e1, e3) + t'ju'2)1 (462, 463)

An analogous but messier computation will show the same for any A' and in
W is determined by its values on sequences e';,,...,e',k, with ascending indices.
(The coefficients will be complicated expressions that give determinants, as in
the case above, but you don't need to know that.) So any k-form that gives
the same result when evaluated on every sequence e , ... , eik with ascending

n!

indices coincides with W. Thus it is enough to check that

Y- aal... ikdx;, A... A dx,k(eli,...,@ ) =aJl....ik'
1:5L1 <...<ik <R

6.2.2(1

This is fairly easy to see. If i1.... ,i5 # it....,jk, then there is at least one
i that does not appear among the j's, so the corresponding d.Tj, acting on the.
matrix ei, , ... , eik , selects a row of zeroes. Thus

dxal....,tk(eil.... ,eik) 6.2.21

is the determinant of a matrix with a row of zeroes, so it vanishes. But

dxil..... ik(ei l,...,eik) = 1,

since it is the determinant of the identity matrix.

6.2.22

Theorem 6.2.8 (Dimension of Ak(ll.' )). The space Ak(i ) has diuleu-
sion equal to the binomial coefficient

n nt

k k!(n - k)!' 6.2.23

Proof. This is just a matter of counting the elements of the basis: i.e.. the
number of elementary k-forms on IR". Not for nothing is the binomial coefficient
called "n choose k".



508 Chapter 6. Forms and Vector Calculus

Example 6.2.9 (Dimension of Ak(R3)). The dimension of A°(1R3) and of

A3(P3) is 1, and the dimension of A'(R3) and of A2(R3) is 3, because on R3

we have

(03)= 3!
p!(3)! = 1 elementary 0-form; 1 =

3 elementary 1-forms;

Remember that although an el-
ement of an (abstract) vector
space is called a vector, it need not
be a column vector. But we will
concentrate on subspaces E C IR",
whose elements are column vec-
tors.

Some texts use the notation
f1k(E) rather than Ak(E); yet oth-
ers use Ak(E').

In Definition 6.2.10 we do not
require that E be a subset of 1R":
a vector in E need not be some-
thing we can write as a column
vector. But until we assign E a
basis we don't know how to write
down such a k-form.

Just as when E = IR", the
space Ak(E) is a vector space us-
ing the obvious addition and mul-
tiplication by scalars.

i

( 2) =
3 elementary 2-forms; 3 = 3!(0)! = 1 elementary 3 -form.

Forms on vector spaces

So far we have been studying k forms on P". When defining orientation, we
will make vital use of k-forms on a subspace E C IR". It is no harder to write
the definition when E is an abstract vector space.

Definition 6.2.10 (The space A"(E)). Let E be a vector space. Then
Ak(E) is the set of functions that take k vectors in E and return a number,
and which are multilinear and anti-symmetric.

The main result we will need is the following:

Proposition 6.2.11 (Dimension of Ak(E)). ME has dimension m, then
Ak(E) has dimension (k ).

Proof. We already know the result when E = R'", and we will use a basis
to translate from the concrete world of RI to the abstract world of E. Let
bt,... , bm be a basis of E.

Then the transformation '(h) : R' E given by

6.2.24

is an invertible linear transformation, which performs the translation "concrete
abstract." (See Definition 2.6.12.) We will use the inverse dictionary 44{}
We claim that the forms 1 < i1, < < ik < m, defined by

'Gi,,....:k(_1,...,v_k)=dxi,A...Adxik(t{b}(MI),....'
{b}(Yk)) 6.2.25

form a basis of A"(E). There is not much to prove: all the properties follow
immediately from the corresponding properties in 1R1. One needs to check that
the rpi,..... ik are multilinear and antisymmetric, that they are linearly indepen-
dent, and that they span Ak(E).

r dll
IIIL J Q1b1+...+Qmb

a,"
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Checking the other properties

is similar. and left as Exercise
6.2.1.

The last equality of Equation
6.2.28 is Equation 6.2.20.

Corollary 6.2.12 follows imme-
diately from Proposition 6.2.11.

Regarding Corollary 6.2.12,
there is one "trivial case" when the
argument above doesn't quite ap-
ply: when E = {6}. But it is easy
to see the result directly: an ele-
ment of Ae({6}) is simply a real
number: it takes zero vectors and
returns a number. So A"(16)) is
not just one-dimensional: it is in
fact =..

The wedge product is a messy
thing: a complicated summation,
over various shuffles of vectors, of
the product of two k-forms, each
given the sign - or - according to
the rule for permutations.

Figure 6.2.1 explains the use of
the word "shuffle" to describe the
e over which we are summing.

Let us see for instance that the ; ;,,....,k. are linearly independent. Suppose
that

a,,..... ik Y'+, .....ik = 0.
I

Then applied to the particular vectors

hi...... hi, = 4) {h}(ej:)... , 41{t,}(eik)

we will still get 0. But

all.....lk ll.....lk (e.71 ).... 4) (p) (eik ))
i<it.C---<ik Gn!

ai,.....1kdx;1 n ... A dx;k (ej...... ejk
1 <ik <rn

'7i,..,ik. = 0.

So all the coefficients are 0, and the forms are linearly independent.

The case of greatest interest to us is the case when in = k:

6.2.26

6.2.27

6.2.28

Corollary 6.2.12. If E is a k-dimensional vector space, then At(E) is a
vector space of dimension 1.

The wedge product

We have used the wedge A to write down forms; now we will see what it means:
it denotes the wedge product, also known as the exterior product.

Definition 6.2.13 (Wedge product). Let cp be a k-form and V' be a
l-form, both on la". Then their wedge product !p A ;b is a (k + 1)-form
that acts on k + l vectors. It is defined by the following sum, where the
summation is over all permutations or of the numbers 1, 2, 3, ... , k + 1 such
that a(1) < a(2) < - < a(k) and a(k + 1) < ... < a(k + 1):

wedge product evaluated
on k+l vectors

A O(Vl,v2, ..., Vk+l)

E sgn(a)p (vote),...,Ve(k)) W (Ve(k+l)...... VR(k+l)

shuffles % ------- `_
k vectors I vectors

We start on the left with a (k + l)-form evaluated on k + 1 vectors. Oil the
right we have a somewhat complicated expression involving a k-form p acting



k+I

FIGURE 6.2.1.
Take a pack of k + 1 cards, cut

it to produce subpacks of k cards
and I cards, and shuffle them.
The permutation you obtain is one
where the order of the cards in the
subpacks remains unchanged.

More simply, we note that the
first permutation involves an even
number (0) of exchanges, or trans-
positions, so the signature is posi-
tive, while the second involves an
odd number (1), so the signature
is negative.

The wedge product of a 0-form
a with a k-form r/i is a k-form,
a n +/) = arf. In this case, the
wedge product coincides with mul-
tiplication by numbers.
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on k vectors, and a 1-form ip acting on 1 vectors. To understand the right-hand
side, first consider all possible permutations of the k+I vectors v1, v2, ... , Vk+1,
dividing each permutation with a bar line I so that there are k vectors to the
left and 1 vectors to the right, since cp acts on k vectors and ' acts on I vectors.
(For example, if k = 2 and I = 1, one permutation would be written Viv2Iv3,
another would be written v"2v31v"1, and a third v3V2IV1.)

Next, chose only those permutations where the indices for the k-form (to the
left of the dividing bar) and the indices for the 1-form (to the right of the bar)
are each, separately and independently, in ascending order, as illustrated by
Figure 6.2.1. (For k = 2 and I = 1, the only allowable choice is v1_'72Ivv3.) We
assign each chosen permutation its sign, according to the rule given in Definition
4.8.16, and finally, take the sum.

Example 6.2.14 (The wedge product of two 1-forms). If W and 0 are
both 1-forms, we have two permutations, V1IV2 and v'2Iv1, both allowable under
our "ascending order" rule. The sign for the first is positive, since?

I -+
rV2l gives the permutation matrix L0 11,rvl

z L 2J l
with determinant +1. The sign for the second is negative, since

1

[ V2 J -+
[72 gives the permutation matrix I 0

1
p

2J 1J 111l

with determinant -1. So in this case the equation of Definition 6.2.13 becomes

(SD A 0)(V1, V2) = V NO 0 (72) - '(V2) 1G(Vl). 6.2.29

We see that the 2-form dx1 Adx2

dxl n dx2 (a, b) = det al
a2

bl

bz
= alb2 - a261, 6.2.30

is indeed equal to the wedge product of the 1-forms dxi and dx2, which, eval-
uated on the same two vectors, gives

dx1 A &2(9, 9) = dx1(g)dx2(6) - drI(6)dz2(6) = a1b2 - a2b1. 6.2.31

So our use of the wedge in naming the elementary forms is coherent with its
use to denote this special kind of multiplication.

Example 6.2.15 (The wedge product of a 2-form and a 1-form). If ,p
is a 2-form and ' is a 1-form, then we have the six permutations

V1V2IV3, v1Q3Iv2, V2V3IV1, VsViIv2, v2v"iIva, and v"avv2Ivv1. 6.2.32

The first three are in ascending order, so we have three permutations to sum,

+(v1V2Iv3), -('1'3I2), +(v2v3W1), 6.2.33



The wedge product So A :G sat-
isfies a) and b) of Definition 6.2.1
for a form (multilinearity and an-
tisymmetry). Multilinearity is not
hard to see; antisymmetry is hard-
er (as was the proof of antisymme-
try for the determinant).

You are asked to prove Proposi-
tion 6.2.16 in Exercise 6.2.4. Part
(2) is quite a bit harder than the
other two. Exercise 6.2.5 asks you
to verify that Example 6.2.14 does
not commute, and that Example
6.2.15 does.

Part (2) justifies the omission
of parentheses in the k-form

dx;, Adx;2 A ... Adx;k;

all the ways of putting parentheses
in the expression give the same
result.
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giving the wedge product

pA (V1,V2,V3)=w("1,V2)?P(V3)-IP (VI -,V3) v(V2)+Ip(V2,V:0 t '(VI). 6.2.34

Again, let's compare this result with what we get using Definition 6.2.3.
setting W = dxl Adx2 and t(, = dx3 ; to avoid double indices we will rename the
vectors v'1, -72,V3, calling them u', v', and w. Using Definition 6.2.3 we get

1u1 V1 wl
(dxi A dX2) A d x3 (u', v', w) = det u2 v2 w2

U3 t'3 w3
6.2.35

= U1 V2w3 - U1 V3W2 - U2V1W3 + u2V3u11 + 2131'1112 - 7130241'1 .

If instead we use Equation 6.2.34 for the wedge product, we get.

(dx1 hdx2) A dx3(u, v, *) = (dx1 A dx2)(u, V) dx3(*)

- (dx1 n dx2)(u, d2`3 N)

+ (dx1 A dx2)(v, dx3(9)

u1 vl ul wl l v1 w1= det w3 - det J v3 + dot u;{ 6.2.3(1
U2 v2 u2 7n2 v2 u'2

= U1V2w3 - u1V3W2 - U2VIW3 +u2'V3w1 + u3vlw2 - IL31'2u'1. Ini

Properties of the wedge product

The wedge product behaves much like ordinary multiplication, except that one
needs to be careful about the sign, because of skew commutativity:

Proposition 6.2.16 (Properties of the wedge product). The wedge
product has the following properties:

(1) distributivity: p A ( 0 1 + t(,2) = IP A +i 1 + Ip A 7P2. 6.2.37

(2) associativity. (Vi A I P2) A Ws = IP1 A (IP 2 A IP3) 6.2.38

(3) skew commutativity: If (p i s a k-for m and V I is an 1-for m, then

IPA ' =(-1)k lV,A W . 6.2.39

Note that in Equation 6.2.39 the cP and c/ change positions. For example, if
Ip = dxl A dx2 and Vi = dx3, skew commutativity says that

(dxl A dX2) Adx3 = (-1)2dx3 A (dxl Adx2), i.e.,

U1 V V3 W,3

I wl [ u,det I
u3

V3 W3J =det u2 v2 W3
6.2.40
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When k = 2, a direct basis
vl,v2 is one where v2 lies coun-
terclockwise from vl, if dl and e2
are drawn in the standard way. In
1R3, a basis v, , v2, V3 is direct if it
is right-handed, again if 61, e'2 and
e3 are drawn in the standard right-
handed way. (The right-hand rule
is described in Section 1.4.)

In P,°(v'1...... k), the little o
is there to remind you that this
is an oriented parallelogram: an
oriented subset of ll8".

which you can confirm either by observing that the two matrices differ by two
exchanges of rows (changing the sign twice) or by carrying out the computation.

6.3 INTEGRATING FORM FIELDS OVER PARAMETRIZED
DOMAINS

The objective of this chapter is to define integration and differentiation over
oriented domains. We now make our first stab at defining integration of forms;
we will translate these results into the language of vector calculus in Section
6.4 and will return to orientation and integration of form fields in Section 6.5.

We say that k linearly independent vectors v'1. ... , vk in 1Rk form a direct
basis of 118k if det[vi...... Vk] > 0, otherwise an indirect basis. Of course, this
depends on the order in which the vectors vi. ... . vk are taken. We want to
think of things like the k-parallelogram Px(v"1,...,v"k) in 118k (which is simply
a subset of II8k) plus the information that the spanning vectors form a direct or
an indirect basis.

The situation when there are k vectors in ll8" and k n is a little different.
Consider a parallelogram in 1183 spanned by two vectors, for instance

Hl
1and v'2 . 6.3.1

This parallelogram has two orientations, but neither is more "direct" than the
other. Below we define orientation for such objects.

An oriented k- parallelogram in 118", denoted ±PX (v'1. ... , v'k ), is a k-parallel-
ogram as defined in Definition 5.1.1, except that this time all the symbols
written are part of the data: the anchor point, the vectors i,, and the sign. As
usual, the sign is usually omitted when it is positive.

Definition 6.3.1 (Oriented k-parallelogram). An oriented k-parallelo-
gram ± P x (vl, ... , vk) Is a k-parallelogram in which the sign and the order
of the vectors are part of the data. The oriented k-parallelograms

and -P.0(471 ....,Sk)

have opposite orientations, as do two oriented k-parallelograms

P'(' i. ... , vk) if two of the vectors are exchanged.

Two oriented k-parallelograms are opposite if the data for the two is the
same, except that either (1) the sign is changed, or (2) two of the vectors are
exchanged (or, more generally, there is an odd number of transpositions of
vectors). They are equal if the data is the same except that (1) the order of
the vectors differs by an even number of transpositions, or (2) the order differs
by an odd number of transpositions, and the sign is changed. For example,



Another way of saying this is
that if a permutation a is applied
to the vectors, the parallelogram is
multiplied by the signature of a:

sgn(a) P,' (vl...... "k).

The word "field" means data
that varies from point to point.
The number a form field gives de-
pends on the point at which it
is evaluated. A k-form field is
also called a "differential form."
\Ve find "differential" a mystify-
ing word: it is almost impossible to
make sense of the word "differen-
tial" as it is used in first year cal-
culus. We know a professor who
claims that he has been teaching
"differentials' for 20 years and still
doesn't know what they are.
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P,'(v1.v2) and P.(v2.vt)
P,°l(V'1.V'2) and -Px(v2.v1)
PX(v'1.v2,v3) and P,°k(V2.V1,V3)

Px (vt, "2 , v3) and -P,('2. v3, 91)
P1.2,3) and P, (v2. v"3, v1)

Are Px(v1,v3,v2)>Px (v9, -PX(v2,v'1,v3) equal or opposite?t1

Form fields

Most often, rather than integrate a. k-form, we will integrate a k-form field. A
k-form field V on an open subset U of 1k'l assigns a k-form fp(x) to every point
x in U. While the number returned by a k-form depends only on k vectors.
the number returned by a k-form field depends also on the point at which is
evaluated: a k-form is a function of k vectors, but a k-form field is a function
of an oriented k-parallelogram Px (vt, ... , v'k ), which is anchored at x.

Definition 6.3.2 (k-form field). A k-form field on an open subset U C 11s"
is a function that takes k vectors v1, ... , v'k anchored at a point x E I8", and
which returns a number. It is multilinear and antisymmetric as a function
of the Vs.

We already know how to write k-form fields: it is any expression of the form

= E all....jk(x)dxj,A...Adxk, 6.3.2
1 <il <... <jk <>,

where the a,, are real-valued functions of x E U.

Example 6.3.3 (A 2-form field on 1k3). The form field cos(x-) da A dy is a
2-form field on 11&3. Below it is evaluated twice, each time on the same vectors,
but at different points:

11 2

cos(xz) dx A dy (P(l)
{]))

= (cos(1 )) det I] _ -2.
1 3 LL

cos(xz)dxAdy P(1/2\
([i]

2
1

'P. '('V3, V 1, V2) = -Px (v2, vl, v3). Both are opposite to P,<(vl . va, V-2).

are opposite;
are equal:
are opposite:
are opposite:
are equal.
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A singularity is a point where a
subset fails to meet the criteria for
a smooth manifold; for a curve, for
example, it could be a point where
the curve intersects itself. But
a singularity can be much worse
than that; for example, the curve
could go through itself infinitely
many times at such a point.

The k-parallelogram in Equa-
tion 6.3.3 is oriented: it comes
with the spanning vectors in a par-
ticular order, which depends on
the order in which we took our
variables in Rk.

We hope that this discussion
convinces you that Definition
6.3.4 corresponds to the heuristic
description of how the integral of
a form should work.

Integrating form fields over parametrized domains

Before we can integrate form fields over oriented domains, we must define the
orientation of domains; we will do this in Section 6.5. Here, as an introduction,
we will show how to integrate form fields over domains that come naturally
equipped with orientation-preserving parametrizations: parametrized domains.

A parametrized k-dimensional domain in Q8" is the image y(A) of a Ct
mapping -y that goes from a payable subset A of 1Rk to 1W'. Such a domain
-y(A) may well not be a smooth manifold; a mapping 'y always parametrizes
something or other in 1R", but y(A) may have horrible singularities (although
it is more likely to be mainly a k-dimensional manifold with some bad points).
If we had to assign orientation to y(A) this would be a problem; we will see in
Section 6.5 how to assign orientation to a manifold, but we don't know how to
assign orientation to something that is "mainly a k-dimensional manifold with
some bad points."

Fortunately, for our purposes here it doesn't matter how nasty the image is.
We don't need to know what 'y(A) looks like, and we don't have to determine
its orientation. We are not thinking of -y(A) in its own right, but as "the result
of y acting on A." A parametrization by a mapping ry automatically carries an
orientation: y maps an oriented k-parallelogram PX (v"t, ... , v"k) to a curvilinear

parallelogram that can be approximated by P,y(x)(Dty(x),... Dky(x)); the or-
der of the vectors in this k-parallelogram depends on the order of the variables
in iRk. To the extent that y(A) has an orientation, it is oriented by this order
of vectors.

The image 'y(A) comes with a natural decomposition into little pieces: take
some N, and decompose y(A) into the little pieces y(CnA), where C E DN(1R")
Such a piece y(C n A) is naturally well approximated by a k-parallelogram: if
u E 11 is the lower left-hand corner of C, the parallelogram

1

t'7(")
/

2N Dty(u), ... , 2N Dky(n)\1 6.3.3

is the image of C by the linear approximation

w' -r y(u) + (D-y(u))(w u) to y at u. 6.3.4
So if w is a k-form field on ' (or at least on a neighborhood of y(A)), an

approximation to

should be

i p(P7(u) (2N Dt y(u), ... , 2^' Dky(u))
.4flCC
AnCtm

6.3.5

=volk(C)
CE D, (a-)
An C*(b

6.3.6



Since k = 1, in the first line of
Equation 6.3.9, we have the single

vector I
-R sin u 1 rather than the

LLL
R cos u

D1y(u), ... , Dky(u) of Definition
6.3.4.

In the second line of Equation
6.3.9, the first Rcosu is x, while
the second is the number given
by dy evaluated on the parallelo-
gram. Similarly, Rsinu is y, and
(-R sin u) is the number given by
dx evaluated on the parallelogram.

Remember that p is the inte-
grand on the left side of Equation
6.3.8, just as ldkul is the integrand
on the right. We use ,p to avoid
writing

a,,.....,k (x)dx,1A...ndx,k.
1<f,<...<ikG

Why must we choose the pos-
itive orientation? The interval
[a, O] is a subset of IR, so the ori-
entation is determined by the ori-
entation of R. The standard ori-
entation of IR is from negative to
positive.

Similarly, IR' and lR' also have
a standard orientation: that in
which the standard basis vectors
are written in the normal way,
giving det(e41,e2] = 1 > 0 and
detfel,e2,e3] = 1 > 0. For IR3,
this is equivalent to the right-hand
rule (see Proposition 1.4.20). This
will be discussed further in Section
6.5.
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But this last sum is a Riemann sum for the integral

1 w(1 (u) (Diy(u), ... , Dky(u))) Idkul. 6.3.7
A

To be rigorous, we define f,(A) ' to he the above integral:

Definition 6.3.4 (Integrating a k-form field over a parametrized
domain). Let A c Rk be a payable set and 7 : A Rn be a C1 mapping.
Then the integral of the k-form field V over y(A) is

J
`P=J P( (n)(Dlry(u),...,Da'y(u))) Idku[. 6.3.8

I(A) A

This I. a function of u.

Example 6.3.5 (Integrating a 1-form field over a parametrized curve).
(R cos u) and willConsider a case where k = 1, n = 2. We will use y(u) R sin u

take A to be the interval [0, a], for some a > 0. If we integrate the 1-form field
x dy - y dx over y(A) using the above definition, we find

4A)
(xdy-ydx)=loQl(xdy-ydx) fRwaul

l
-Rsinul Idul

J RcosuJ

rr

Reinu

fl-'al
I (R cos uR cos u - (R sin u) (-R sin u)) IduI = R2 IduI

= J a R2 du = R2a.

6.3.9

What would we have gotten if a < 0? Until the bottom line, everything is the
same. But then we have to decide how to interpret [0, a]. Should we write

r0
1 R2du or f. R2 du ? 6.3.10

0 a
We have to choose the second, because we are now integrating over an oriented
interval, and we must choose the positive orientation. So the answer is still
R2a, which is now negative. 6

Example 6.3.6 (Another parametrized curve). In Example 6.3.5, you
probably saw that y was parametrizing an arc of circle. To carry out the sort
of computation we are discussing, the image need not be a smooth curve. For
that matter, we don't need to have any idea what y(A) looks like.
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Take for instance y(t) arctan
z

t) +

set A = [0, a[ for some a > 0 and

(p = x dy. Then

In Equation 6.3.13, 0 < s, t < 1
means

0<s<1 and 0<t<1.

2t dt
(A) = to a)

x dy P
1+12 [ 1/(i + t2) I

( arctan 6.3.11

/'a 1+t2
Jo 1 _ Idtl = a. A

Example 6.3.7 (Integrating a 2-form field over a parametrized surface
in R3). Let us compute

LC
dxAdy+ydxndz 6.3.12

over the parametrized domain -y(C) where

1(C1

ry(s)= s zt),

t2

Applying Definition 6.3.4, we find

dandy+ydxAdz

=I1 f `(-2s+sz(2t))IdsdtI

\
J

1 [sz + 2t] Idtl =
J

1 -1 + it) Idtl
t 3 n=o o 3

=
[_ t t2

=-3.
o

C={($)I0<s,t<1}. 6.3.13

1 /111
= f I (dandy+ydxAdz) (P((120 ) Idsdtl

f2 `L o 2t J

6.4 FORMS AND VECTOR CALCULUS

6.3.14

The real difficulty with forms is imagining what they are. What "is" dxl n
dx2 + dx3 A dx4? We have seen that it is the function that takes two vectors
in R4, projects them first onto the (xl,x2)-plane and takes the signed area of
the resulting parallelogram, then projects them onto the (x3, x4)-plane, takes
the signed area of that parallelogram, and finally adds the two signed volumes.



6.4 Forms and Vector Calculus 517

Acquiring an intuitive under-
standing of what sort of informa-
tion a k-form encodes really is dif-
ficult. In some sense, a first course
in electromagnetism is largely a
matter of understanding what sort
of beast the electromagnetic field
is, namely a 2-form field on 1k4.

The 1-form field x dx, +ydy +
z dz is the work form field of the

fx x
vector field f y

=
y , the

z z
radial vector field shown (in 1k2)
in Figure 1.1.6:

(xdx+ydy+zdz)(Pa(v)) _

y V2

Z V3

But that description is extremely convoluted, and although it isn't too hard to
use it in computations, it hardly expresses understanding.

However, in R3, it really is possible to visualize all forms and form fields,
because they can be described in terms of functions and vector fields. There
are four kinds of forms on 1k3: 0-forms, 1-forms, 2-forms, and 3-forms. Each

has its own personality.

0-form fields. In 1183 and in any 1k", a 0-form is simply a number, and a 0-form
field is simply a function. If f is a function on an open subset U C 1k" and
f : U - Il8 is a function, then the rule f (P.*) = f (x) makes f into a 0-form
field. The requirement of antisymmetry then says that f(-P.) = -f(x).

1-form fields. Let P be a vector field on an open subset U C 1k". We can
then associate to F a 1-form field Wp, which we call the work form field:

Definition 6.4.1 (Work form field). The work form field Wp of a vector
F1 l

field

J

is the 1-form field defined by

F.
Wp(PP(v')) = F(x) -.7. 6.4.1

This can also be written in coordinates: the work form field Wp of a vector

F1

field F = I
J

is the 1-form field Fldx, + + Fnda". Indeed,
Fn

V.

(Ftdxi + ... + Fndxn) F'n(x)dxn)
vn

= F1(x)vl + ... + Fn (x)vn = F(x) v.

In this form, it is clear from Theorem 6.2.7 that every 1-form on U is the work
of some vector field.

What have we gained by saying that that a 1-form field is the work form field
of a vector field? Mainly that it is quite easy to visualize WW and to understand
what it measures: if F is a force field, its work form field associates to a little
line segment the work that the force field does along the line segment. To really
understand this you need a little bit of physics, but even without it you can see
what it means. Suppose for instance that F is the force field of gravity. In the
absence of friction, it requires no work to push a wagon of mass m horizontally

from a to b; the vector b - a and the constant vector field representing gravity



In Equation 6.4.2, g represents
the acceleration of gravity at the
surface of the earth, and m is
mass; -grn is weight, a force; it is
negative because it points down.

The unit of a force field such as
the gravitation field is energy per
length. It's the per length that
tells us that the integrand to as-
sociate to a force field should be
something to be integrated over
curves. Since direction makes a
difference-it takes work to push
a wagon uphill but the wagon rolls
down by itself-the appropriate
integrand is a 1-form field, which
is integrated over oriented curves.

The 4Y in the flux form field
4?p is of course unrelated to the
$ of the "concrete to abstract"
function introduced in Sec-
tion 2.6.

It may be easier to remember
the coordinate definition of $p if
it is written

4Pp =

FidyAdz + F2dzAdx + F3dxAdy

(changing the order and sign of

the middle term). Then (for x =
1,y = 2,z = 3) you can think

that the first term goes (1,2,3),
the second (2,3,1), and the third

(3,1,2). For instance,

z/
zdyAdz+ydzAdx+zdzAdy.
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are orthogonal to each other, with dot product zero:

0 bi - al
b2 a2

-
= 0.

gm 0

6.4.2

But if the wagon rolls down an inclined plane, the force field of gravity does

"work" on the wagon equal to the dot product of gravity and the displacement
vector of the wagon:

o bt - ai
0 b2 - a2 = -gm(b3 - a3), 6.4.3

gm] b3-a3
which is positive, since b3 - a3 is negative. If you want to push the wagon back
up the inclined plane, you will need to furnish the work, and the force field of

gravity will do negative work.
For what vector field F can the 1-form field x2 dxt + x2x4 dx2 + X1 dx4 be

written as W"?"

2-forms. If P is a vector field on an open subset U CR3, then we can associate
to it a 2-form field on U called its flux form field gyp, which we first saw in
Example 6.1.1.

Definition 6.4.2 (Flux form field). The flux form field Dp is the 2-form
field defined by

det[F(x), a, W). 6.4.4

dx A dz + F3 dx A dy:In coordinates, this becomes 4iO = F1 dy A dz - F2

r l
(F1dyAdz-F2dxAdz+F3dxAdy)P,' (IV21

I)
W3W2

V3

- v3w2) - F2(X)(viw3 - v3w1) + F3(x)(vlw2 - v2w1)FI(X)(V2W3

= det[.P(x), -7, w].

6.4.5

In this form, it is clear, again from Theorem 6.2.7, that all 2-form fields on IlY3
are flux form fields of a vector field: the flux form field is a linear combination of
all the elementary 2-forms on R3, so it is just a question of using the coefficients
of the elementary forms to make a vector field.

x1 x2

"It is the work form field of the vector field f x2 = x2x4
1xa 0

X4 xi



If a vector field represents the
flow of a fluid, what units will
it have? Clearly the vector field
measures how much fluid flows
through a unit surface perpendic-
ular to the direction of flow in
unit time: the units should he
mass/ (length'). The length' in
the denominator tips us off that
the appropriate integrand to as-
sociate to this vector held is a 2-
form, or at least an integrand to
be integrated over a surface. You
might go one step further, and
say it is a 3-form on space-time:
the result of integrating it over a
surface in space and an interval
in time is the total mass flowing
through that region of apacetime.
In general, any n - 1-form field in
IR" can be considered a flux form
field.

Recall that p is the Greek letter
"rho."

The 3-form dx n dy n dz is an-
other name for the determinant:

dxndy n dz(Vi, 32, V3)

= det[V,, V2, V3).

The characteristic of functions
which really should be considered
as densities is that they have units
something/cubic length, such as
ordinary density (kg/m3) or
charge density (coulombs/m).
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Once more, what we have gained is an ability to visualize, as suggested by

Figure 6.4.1: the flux form field of a vector field associates to a parallelogram
the flow of the vector field through the parallelogram.

FIGURE 6.4.1. The flow of F through a surface depends on the angle between F
and the surface. Left:.0 is orthogonal to the surface, providing maximum flow. This
corresponds to P(x) being perpendicular to the parallelogram spanned by J, w. (The
volume of the parallelepiped is det)F, v', w) = F (v' x w), which is greatest when
the angle 0 between P and v x w is 0, since rZ $ = I9III3I cos8.) Middle: F is not
orthogonal to the surface, allowing less flow. Right: P is parallel to the surface; the
flow is 0. In this case P, (F(x), v, w) is flat. This corresponds to P (v x w) = 0, i.e.,
F is perpendicular to V" x w and therefore parallel to the parallelogram spanned by v'
and w.

If ? is the velocity vector field of a fluid, the integral of its flux form field
over a surface measures the amount of fluid flowing through the surface. Indeed,
the fluid which flows through the parallelogram P%(v, w) in unit time will fill
the parallelepiped PX(F(x),,V,w): the particle which at time 0 was at the
corner x is now at x + P(x). The sign is positive if f is on the same side of
the parallelogram as v x w, otherwise negative (and 0 if P is parallel to the
parallelogram; indeed, nothing flows through it then).

3-forms. Any 3-form on an open subset of R3 is the 3-form dx A dy n dz (alias
the determinant) multiplied by a function: we will denote by pf the 3-form
fdx A dy A dz, and call it the density of f.

Definition 6.4.3 (Density form of a function). Let U C lR3 be open.
The density form p f of a function f : U -. R is the 3-form defined by

Pf P.0(471,-72,,V3)) = f (:K) det[vl, v2, v3] 6.4.6

density signed volume of P
r01 f



To keep straight the order of
the elementary 2-forms in Equa-
tion 6.4.8, think that the first one
omits dx, the second omits dy and
the third omits dz.

Recall that the work form field
W,p of a vector field i is the 1-
form field

W,(P,°(v)) = F(x) v.

Note that the vectors v',,Vj,,V2,
and 3s of the definitions for the
work form, flux form, and den-
sity form, are replaced in the in.
tegration formulas by derivatives
of the parametrizations: i.e., by

Dxy, and [Dy(u)).
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Summary: work, flux, and density forms on II83

F1
Let f be a function on R3 and F' = F2 be a vector field. Then

F3

Wp=Fldx+F2dy+F3dz 6.4.7

Fi dy A dz - F2dx A dz + F3dx A dy 6.4.8

p f = fdx n dy n dz. 6.4.9

Integrating work, flux and density form fields over parametrized
domains

Now let us translate Definition 6.3.4 (integrating a k-form field over a parame-
trized domain) into the language of vector calculus.

Example 6.4.4 (Integrating a work form field over a parametrized
curve). When integrating the work form field over a parametrized curve
y(A) = C, the equation of Definition 6.3.4:

4A) ,= f w(Py(ol(DiY(u),...,Dky(u))) Idkul

becomes

J,(A) v = fA µp(R(u)(n;: (U) )Idol = f F(y(u)) - ti'(u){dul

5'(u)

(6.3.8)

6.4.10

This integral measures the work of the force field P along the curve. 6

Example 6.4.5 (Integrating a work form field over a helix). What is
the work of the vector field

z y

F y = x over the helix parametrized by 6.4.11
Z 0

st'
y(t) = L sin t J 0 < t < 47r? 6.4.12

t

By Equation 6.4.10 this is

4 I sintl [-sint l
Cos t = f (-sin2t -cos2t)dt = -47r. Z1 6.4.13

1
f -O tJ cost) d



6.4 Forms and Vector Calculus 521

The flux form field 4'p of a
vector field F is the 2-form field

p(Px (v'", , v2) 1 = det]F(x), v, w].

If f is the velocity vector field of
a fluid, the integral of a flux form
field measures the amount of fluid
flowing through a surface.

Example 6.4.6 (Integrating a flux form field over a parametrized sur-
face). Let U be a subset of I82, 7 : U - I3 be a parametrized domain, and F
a vector field defined on a neighborhood of S. Then

f (U14iF = f/U 4i(P7tul (Dt7(u),D27(u)))Id2ul

= J det[F(7(u)),Di7,D27] Id2u].
U

6.4.14

If F is the velocity vector field of a fluid, this integral measures the amount of
fluid flowing through the surface S. A

fx
Example 6.4.7. The flux of the vector field F y =

X LzJ

through the

parametrized domain (:;)( ) is

The density form field Pf is the
3-form

Pf(P.(v,,v2,v3))

= f (x) det[v'i, V2, v3].

In coordinates, pf is written

f(x)dx n dy n dz.

/t i u2 2u 0l
f.'

t

J f det u2v2 v u

J

du dv = fo (2u2v2 - 4u3v3 + 2u2v2) du dv
0 o v2 0 2v 0

= f 1 1
t13v2 - 214V3]'=. d,, = rt (4v2 - v3) dv A 6.4.15

0 uJO 3 4

Example 6.4.8 (Integrating a density form field over a parametrized
piece of R3). Let U, V C 1R3 be open sets, and -Y : U - V be a Cr mapping.
If f : V -. I8 is a function then

6.4.16

There is a particularly important special case of such a mapping y : U - V:
the case where V = U and y(x) = x is the identity. In that case, the formula
for integrating a density form field becomes

1(U)
Pf = f Pf (Py(ul (Dty(u),-),,62'Y(u),,b3-f (u))) Id 3U1

= f f (7(u)) det[D7(u)] Id3ul

f
(U)

Pf = I f(u) Jd3ul, 6.4.17

i.e., the integral of p f is simply what we had called the integral off in Section
4.2. If f is the density of some object, then this integral measures its mass.
ln



FIGURE 6.4.2.
This torus was discussed in Ex-

ample 5.4.2. This time we are in-
terested in the solid torus.

When computing integrals by
hand, the choice of parametriza-
tion can make a big difference in
how hard it is. It's always a good
idea to choose a parametrization
that reflects the symmetries of the
problem. Here the torus is sym-
metrical around the z-axis; Equa-
tion 6.4.19 reflects that symmetry.

522 Chapter 6. Forms and Vector Calculus

Example 6.4.9 (Integrating a density form). Let f be the function

fxf y =x2+y2, 6.4.18

Y z

and for r < R, let Tr,R be the torus obtained by rotating the circle of radius r

centered at ( R ) in the (x, z)-plane around the z-axis, shown in Figure 6.4.2.

Compute the integral of pf over the region bounded by Tr,R (i.e., the inside
of the torus). Here, using the identity parametrization would lead to quite a
clumsy integral. The following parametrization, with 0 < u < r, 0 < v, w < 27r,
is better adapted:

(V = ((R+ ucsoso snw Ic
w

The integral becomes
Zn fa2.

fo

6.4.19

r2
=

27r

J (R3U + 3R2u2 cos v + 3Ru3 cos' +u4 cos3 v) du dv 6.4.20
0

_ -2a J
Zx

I R2 2 + R2r3 cos v +
3Rr4 cost v + r5 c5 3 v)

dv
o \ J

4
_ -,r2 1 2R3r2 + 3 2r

You might wonder whether this has anything to do with the integral we would
have obtained if we had used the identity parametrization. A priori, it doesn't,
but actually if you look carefully, you will see that there is a computation
of det[D'y], and therefore that the change of variables formula might well say
that the integrals are equal, and this is true. But the absolute value that
appears in the change of variables formula isn't present here (or needed, since
the determinant is positive). Really figuring out whether the absolute value is
needed will be a lengthy story, involving a precise definition of orientation.

Work, flux and density in R"

In all dimensions,

(1) 0-form fields are functions.
(2) Every 1-form field is the work form field of a vector field.
(3) Every (n - 1)-form field is the flux form field of a vector field
(4) Every n-form is the density form field of a function.

-(R+ucosv)ZU(R+ucosv)dudvdw
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Exercise 6.4.8 asks you to verify
that is an
(n - 1)-form field.

In the first term, where i = 1,
we omit dxi; in the second term,
where i = 2, we omit dx2, and so
on.

In dimensions higher than t',
some form fields cannot be ex-
pressed in terms of vector fields
and functions: in particular, 2-
forms on 1R4, which are of great in-
terest in physics, since the electro-
magnetic field is such a 2-form on
spacetime. The language of vector
calculus is not suited to describing
integrands over surfaces in higher
dimensions, while the language of
forms is.

We've already seen this for 0-form fields and 1-form fields. In 1k3, the flux

form field is of course a 2 = (n - 1)-form field; its definition can be generalized:

Definition 6.4.10 (Flux form field on iR"). If U C 1R" is an open subset

and F is a vector field on U, then the flux form field 41p is the (n - 1)-form
field defined by the formula

= det [F'(x), Vl, .... vn-1] 6.4.21

In coordinates, this becomes

n
=E(-1)'-1Fidx1A...AdxiA...Adxn

i=1

= F1 dx2 A ... A dxn - F2dxi A dx3 A ... A dxn + .. .

+ (-1)"-'F dxl n dx2 n A dxn-1,

where the term under the hat is omitted.

For instance, the flux of the radial vector field F

X1 x1l
" is

1

is

6.4.22

4'F = (x1dx2 A... Adxn) - (xzdxl Adx3 A... Adxn) +... f xndxl A... ndn-1,
6.4.23

where the last term is positive if n is odd, and negative if it is even.
In any dimension n, n-form fields are multiples of the determinant, so all

n-form fields are densities of functions:

Definition 6.4.11 (Density form field on R"). Let U C an be open.
The density form field p f of a function f : U -+ R is given by

Pf = f dxl A ... A dxn.

The correspondences between form fields, functions and vectors, summarized
in Table 6.4.3, explain why vector calculus works in 1k3-and why it doesn't
work in higher dimensions than 3. For k-forms on Ik", when k is anything
other than 0, 1, n - 1, or n, there is no interpretation of form fields in terms of
functions or vector fields.

A particularly important example is the electromagnetic field, which is a
6-component object, and thus cannot be represented either as a function (a
1-component object) or a vector field (in 1l8°, a 4-component object).

The standard way of dealing with the problem is to choose coordinates
x, y, z, t, in particular choosing a specific space-like subspace and a specific
time-like subspace, quite likely those of your laboratory. Experiment indicates
the following force law: there are two vector fields, f (the electric field) and
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The "c" in Equations 6.4.25
and 6.4.25 represents the speed of
light. It is necessary to put it in
so that Wg n cdt and 'I' have
the same units: force/(charge x
length'). We are using the cgs
system of units (centimeter, gram,
second). In this system the unit of
charge is the statcoulornb, which is
designed to remove constants from
Coulomb's law. (The mks system,
based on meters, kilograms and
seconds, uses a different unit of
charge, the coulomb, which results
in constants p(j and en that clutter
up the equations). We could go
one step further and use the math-
ematicians' privilege of choosing
units arbitrarily, setting c = 1, but
that offends intuition.

Exercise 6.8.8 asks you to use
form fields to write Maxwell's
laws.

,6 (the magnetic field), with the property that a charge q at (x, t) and with

velocity v (in the laboratory coordinates) is subject to the force

q(E(x) + x . (x)). 6.4.24
c

But E and B are not really vector fields. A true vector field keeps its individ-
uality when you change coordinates. In particular, if a vector field is 6 in one
coordinate system, it will be 6 in every coordinate system. This is not true of
the electric and magnetic fields. If in one coordinate system the charge is at
rest and the electric field is 6, then the particle will not be accelerated in those
coordinates. In another system moving at constant velocity with respect to the
first (on a train rolling through the laboratory, for instance) it will still not be
accelerated. But it now feels a force from the magnetic field, which must be
compensated for by an electric field, which cannot now be zero.

Is there something natural that the electric field and the magnetic field to-
gether represent? The answer is yes: there is a 2-form field on R4, namely

Erdx A cdt + Eydy A cdt+E3dz A rdt + Body A dz + Bydz n dx + B,dx A dy

=W-Acdt+4'B. 6.4.25

This 2-form field, which the distinguished physicists Charles Misner, Kip
Thorne, and J. Archibald Wheeler call the Faraday (in their book Gravita-
tion, the bible of general relativity), is really a natural object, the same in
every inertial frame. Thus form fields are really the natural language in which
to write Maxwell's equations.

Form Fields Vector Calculus
R3 R.

0-form field Function Function
1-form field Vector field (via work form field) Vector field
(n - 2)-form field Same as 1-form No Equivalent
(n - 1)-form field Vector field (via flux form field) Vector field
n-form field Function (via density form field) Function

FIGURE 6.4.3. Correspondence between forms and vector calculus. In all dimensions,
0-form fields, 1-form fields, (n - 1)-form fields, and n-form fields can be identified to
a vector field or a function. Other form fields have no equivalence in vector calculus.
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6.5 ORIENTATION AND INTEGRATION OF FORM FIELDS

.. the great thing in this world is not so much where we stand, as
in what direction we are moving. "--Oliver Wendell Holmes

We found this argument by work-
ing through the proof of the state.
ment that integrals of manifolds
with respect to Idkxl are indepen-
dent of parametrization (Proposi-
tion 5.5.1, proved for surfaces in
Equation 5.4.16) and noting the
differences. You may find it in-
structive to compare the two ar-
guments. Superficially, the equa-
tions may seem very different, but
note the similarities. The first line
of Equation 5.4.16 corresponds to
the right-hand side of the first line
of Equations 6.5.1; in both we have

Jv (--)IdkVI.

In the second lines of both equa-

tions, we have

f (--) I det[D b(u))I

Compatible orientations of parametrized manifolds

We have discussed how to integrate k-form fields over k-dimensional parame-
trized domains. We have seen that where integrands like Idkxl are concerned,
the integral does not depend on the parametrization. Is this still true for form
fields? The answer is "not quite": for two parametrizations to give the same
result, they have to induce the same orientation on the image.

Let us see this by trying to prove the (false) statement that the integral does
not depend on the parametrization, and discovering where we go wrong. Let
lv! C R" be a k-dimensional manifold, U, V be subsets of 2k, and 7i : U -
M, 72 : V M be two parametrizations, each inducing its own orientation.
Let W be a k-form on a neighborhood of M.

Define as in Theorem 5.2.8 the "change of parameters" map 40 = 721 o Y,
Uok y Vok.

Then Definition 6.3.4 (integrating a k-form field over a parametrized domain)
and the change of variables formula, give

f `P = f 'P(PY2(v) Dt72(v).... , Dk72( ))) IdkVI
72(V) V

6.5.1

= U Idet[D4r(u)]+Idkul.

We want to express everything in terms of 'y . There is no trouble with the
point (72 04')(u) = 7i (u) where the parallelogram is anchored, but the vectors
which span it are more troublesome, and will require the following lemma.

Lemma 6.5.1. If wl, ... , wk are any k vectors in Rk, then

'P(Py2(v)(D172(v),...,Dk72(v))) det[wl,...,wk]

= w(P72(v) ([D72(v)]wl, ... , [D72(v)]ak))
6.5.2

Proof. Since the vectors [D72(v)]wl,...,[D72(v)]wk in the second line of
Equation 6.5.2 depend on wl , ... , wk, we can consider the entire right-hand side
of that line as a function of v and wt,... , Wk, multilinear and antisymmetric
with respect to the w. The latter are k vectors in Ek, so the right-hand side
can be written as a multiple of the determinant: a(v) det[wt, ... , wk] for some
function a(v).



526 Chapter 6. Forms and Vector Calculus

T o find a(v), w e set wt, ... , wk = el, ... , ek. Since [Dry2(v)]e'i = 11502(v),
substituting ek for w711, ... , wk in the second line of Equation 6.5.2 gives

...,12(v)]ek)) = P(P.2(v)(D1Y2(v),...,Dk'y2(')))co(P7,(v)([D'y2v))el, (D

= a(v) det[61,...e"k) = a(v). 6.5.3

The first line of Equation 6.5.5
is the function being integrated on
the second line of Equation 6.5.1:
everything between the fu and the
Idkul, with the important differ-
ence that here the det[D4t(u)) is
not between absolute value signs.

The second line is identical to
the first, except that det[DI(u)]
has been rewritten in terms of the
partial derivatives.

So

6.5.4

Now we write down the function being integrated on the second line of Equa-
tion 6.5.1, except that we take det[DO(u)] out of absolute value signs, so that
we will be able to apply Lemma 6.5.1 to go from the second to the third line:

(D172(0(u)), ... , Dk72(`,(u))) ) det[D4i(u)]

cP(P72(v)([D72(v))w1,..., [D-y2(v))wk)) = a(v)det[wl,...,wk)

=W(Pti:(v)(Dl Y2(v),..., Dk Y2(v)))det[wi....,wk).

(u)J

'(P72o.(u)([D72(`u)))(.L5 ( )),...,[Dy2(4(u)))(Ds4( ))))
V v3, Ok

`P(P71(u)(D171(u), ... , Dk71(u))) 6.5.5

To pass from the second to the third line of Equation 6.5.5 we use Lemma
6.5.1, setting w? = D1'D(u) and v = 0(u). (We have marked some of these
correspondences with underbraces.) We use the chain rule to go from the third
to the fourth line.

Now we come to the key point. The second line of Equation 6.5.1 has
I det[DO(u))[, while the first line of Equation 6.5.5 has det[D4i(u)). Therefore
the integral

J ofP71(a)(Dl?1(u),...,Dk-y1(u))Idkul
U

obtained using -yl and the integral

6.5.6

6.5.7

obtained using 72 will be the same only if I det[D$(u))) = det(Dc(u)). That
is, they will be identical if det[DI) > 0 for all u E U, and otherwise probably
not. If det[DO] < 0 for all u E U then

f W
(P7,(v)(Dl Y2(v), ... , Dk72(v)) Id` .'I

W. 6.5.8f (U)
= - J

(v)
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If det[D4(u)] is positive in some regions of U and negative in others, then the

integrals are probably unrelated.
If det[DF] > 0, we say that the two parametrizations of M induce compatible

orientations of M.
In Definition 6.5.2, recall that

when y, goes from U to M, and Definition 6.5.2 (Compatible orientation). Let yi and -f2 be two
y2 from V to M, o = yZ ' o y, is parametrizations, with the "change of parameters" map 0 = y2 1 o ryt. The
only defined on U" k. two parametrizations yt and ye are compatible if det[DO] > 0.

This leads to the following theorem.

Theorem 6.5.3 (Integral independent of compatible parametriza-
tions). Let M C lR" be a k-dimensional oriented manifold, U, V open
subsets of 1R5, and y, : U -+ R' and -y2: V -+ 1R" be two parametrizations of
M that induce compatible orientations of M. Then for any k-form (p defined
on a neighborhood of M,

I(U) -y. e=f(V)

V.
7i

Orientation of manifolds

6.5.9

When using a parametrization to integrate a k-form field over an oriented
domain, clearly we must take into account the orientation induced by the
parametrization. We would like to be able to relate this to some character-
istic of the domain of integration itself. What kind of structure can we bestow
on an oriented curve, surface, or higher-dimensional manifold that would enable
us to decide how to check whether a parametrization is appropriate?

There are two ways to approach the somewhat challenging topic of orien-
tation. One is the ad hoc approach: to limit the discussion to points, curves,
surfaces, and three-dimensional objects. This has the advantage of being more
concrete, and the disadvantage that the various definitions appear to have noth-
ing to do with each other. The other is the unified approach: to discuss orien-
tation of k-dimensional manifolds, showing how orientation of points, curves,
surfaces, etc., are embodiments of a general definition. This has the disadvan-
tage of being abstract. We will present the ad hoc approach first, followed by
the unified theory.

The ad hoc world: orienting the objects

We will treat orientations of the objects first, followed by orientation-preserving
parametrizations.
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FIGURE 6.5.1.
A curve is oriented by the

choice of a unit tangent vector
field that depends continuously on
x. We could give this curve the op-
posite orientation by choosing tan-
gent vectors pointing in the oppo-
site direction.

FIGURE 6.5.2.
To orient a surface, we choose

a normal vector field that depends
continuously on x. (Recall that
"normal" means "orthogonal.")

Definition 6.5.4 (Orientation of a point). An orientation of a point is
a choice of ±: an oriented point is "plus the point" or "minus the point."

It is easy to understand orientations of curves (in any R"): give a direction
to go along the curve. The following definition is a more formal way of saying
the same thing; it is illustrated in Figure 6.5.1. By "unit tangent vector field"
we mean a field of vectors tangent to the curve and of length 1.

Definition 6.5.5 (Orientation of a curve in R'). An orientation of a
curve C C R3 is the choice of a unit tangent vector field f that depends
continuously on x.

We orient a surface S C 1l by choosing a normal vector at every point, as
shown in Figure 6.5.2 and defined more formally below.

Definition 6.5.6 (Orientation of a surface in ]R3). To orient a surface
in IR3, choose a unit vector field N orthogonal to the surface. At each point
x there are two vectors N(x); choose one at each point, so that the vector
field N depends continuously on the point.

This is possible for an orientable surface like a sphere or a torus: choose either
the outer-pointing normal or the inward-pointing normal. But it is impossible
on a Moebius strip. This definition does not extend at all easily to a surface in
R4: at every point there is a whole normal plane, and choosing a normal vector
field does not provide an orientation.

Definition 6.5.7 (Orientation of open subsets of R3). One orientation
of an open subset X of 1R3 is given by det; the opposite orientation is given
by - dot. The standard orientation is by dot.

We will use orientations to say whether three vectors V1, -72,,V3 form a direct
basis of R3; with the standard orientation, Vl, V2, V3 being direct means that
det(v'1,,V2iV3] > 0. If we have drawn e'1ie"2,es in the standard way, so that
they fit the right hand, then Vl, V2, v"3 will be direct precisely if those vectors
also satisfy the right-hand rule.

The unified approach: orienting the objects

All three notions of orientation are reasonably intuitive, but they do not appear
to have anything in common. Signs of points, directions on curves, normals
to surfaces, right hands: how can we make all four be examples of a single
construction?
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Recall (part (b) of Proposition
1.4.20) that the determinant of
three vectors is positive if they sat-
isfy the right-hand rule, and neg-
ative otherwise.

Unlike the ad hoc definition of
orientation, which does not work
for a surface in R4, the unified def-
inition applies in all dimensions.

We will see that orienting manifolds means orienting their tangent spaces, so
before orienting manifolds we need to see how to orient vector spaces. We saw
in Section 6.2 (Corollary 6.2.12) that for any k-dimensional vector space E, the
space At(E) of k-forms in h' has dimension one. Now we will use this space
to show that the different definitions of orientation we gave at the beginning of
this section are all special cases of a general definition.

Definition 6.5.8 (Orienting the space Ak(E)). The one-dimensional
space Ak(E) is oriented by choosing a nonzero element w of A"(E). An
element aw, with a > 0, gives the same orientation as w, while bw, with
b < 0, gives the opposite orientation.

Definition 6.5.9 (Orienting a finite-dimensional vector space). An
orientation of a k-dimensional vector space E is specified by a nonzero ele-
ment of A"(E). Two nonzero elements specify the same orientation if one is
a multiple of the other by a positive number.

Definition 6.5.9 makes it clear that every finite-dimensional vector space (in
particular every subspace of R") has two orientations.

Equivalence of the ad hoc and the unified approaches for sub-
spaces of R3

Let E C R* be a line, oriented in the ad hoc sense by a nonzero vector v' E E,
and oriented in the unified sense by a nonzero element w E A'(E). Then these
two orientations coincide precisely if w(V) > 0.

r
For instance, if E C R2 is the line of equation x + y = 0, then the vector

I _ 1 defines an ad hoc orientation, whereas dx provides a unified orientation.
111

1111

They do coincide: dx I _il = I > 0. The element of A'(E) corresponding to

dy also defines an orientation of E, in fact the opposite orientation. Why does
dx + dy not define an orientation of this line?5

Now suppose that E C R3 is a plane, oriented "ad hoc" by a normal iiand
oriented "unified" by w E A2(E). Then the orientations coincide if for any two
vectors vl, v'2 E E, the number w(v",, v'2) is a positive multiple of det[ni, v',, v'2].

For instance, suppose E is the plane of equation x + y + z = 0, oriented "ad

hoc" by I , and oriented "unified" by dx n dy. Any two vectors in E can be

SBecause any vector in E can be written [_a], and (dx+dy)
I _ a l = 0, so dx+dy

a l aJ
corresponds to 0 C .4'(E).
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written
Ia

b ja d- c-a-bj I
6.5.10

so we have

a

J_unified approach : dx A dy b = ad - be. 6.5.11a- bd
r1 a c

ad hoc approach : det I 1 b d - 3(ad - be). 6.5.12

1 -a-b -c-d
'These orientations coincide, since 3 > 0. What if we had chosen dy A dz or
dx A dz as our nonzero element of A2(E)?6

We see that in most cases the choice of orientation is arbitrary: the choice
of one nonzero element of Ak(E) will give one orientation, while the choice of
another may well give the opposite orientation. But P" itself and {0} (the
zero subspace of R."), are exceptions; these two trivial subspaces of P." do have
a standard orientation. For {6}, we have A°({06}) = IF, so one orientation is
specified by +1, the other by -1; the positive orientation is standard. The
trivial subspace 71' is oriented by w = det; and det > 0 is standard.

Orienting manifolds

Most often we will be integrating a form over a curve, surface, or higher-
dimensional manifold, not simply over a line, plane, or IRS. A k-manifold is
oriented by orienting Tx11M, the tangent space to the manifold at x, for each
x E M: we orient the manifold M by choosing a nonzero element of Ak(TTM).

Definition 6.5.10 (Orientation of a k-dimensional manifold). Art

orientation of a k-dimensional manifold M C R' is an orientation of the
tangent space TTM at every point x E M, so that the orientation varies con-
tinuously with x. To orient the tangent space, we choose a nonzero element
of A5(TXM).

'The first gives the same orientation as dx Ady, and the second gives the opposite
orientation: evaluated on the vectors of Equation 6.5.10, which we'll call v, and v2.
they give

rdyAdz(v,,v2)-deth
b -c- dJ=-bc-bd+ad+bd=ad-bc.

dx A dz(v,. v2) = det L
a
a

b
-cc-

d
-(ad - be).--



6.5 Orientation and Integration 531

Recall (Section 3.1) that the
tangent space to a smooth curve,
surface or manifold is the set of
vectors tangent to the curve, sur-
face or manifold, at the point of
tangency. The tangent space to
a curve C at x is denoted T .C
and is one-dimensional; the tan-
gent space to a surface Sat x is de-
noted T S and is two-dimensional,
and so on.

T(xi))

Y(t)

FIGURE 6.5.3.
Top: '?(t) (the velocity vector

of the parametrization) points in
the same direction as the vector
orienting the curve; the parame-
trization y preserves orientation.
Below: P(t) points in the opposite
direction of the orientation; y is
orientation reversing.

Once again, we use a linearization (the tangent space) in order to deal with
nonlinear objects (curves, surfaces, and higher-dimensional manifolds).

What does it mean to say that the "orientation varies continuously with x"?
This is best understood by considering a case where you cannot choose such an
orientation, a Moebius strip. If you imagine yourself walking along the surface
of a Moebius strip, planting a forest of normal vectors, one at each point, all
pointing "up" (in the direction of your head), then when you get back to where
you started there will be vectors arbitrarily close to each other, pointing in
opposite directions.

The ad hoc world: when does a parametrization preserve
orientation?

We can now define what it means for a parametrization to preserve orientation.
For a curve, this means that the parameter increases in the specified direction:
a parametrization y : [a, b] i-, C preserves orientation if C is oriented from y(a)
to y(b). The following definition spells this out; it is illustrated by Figure 6.5.3.

Definition 6.5.11 (Orientation-preserving parametrization of a
curve). Let C C R be a curve oriented by the choice of unit tangent
vector field T. Then the parametrization y : (a, b) - C is orientation pre-
serving if at every t E (a, b), we have

y"(t) - T(y(t)) > 0. 6.5.13

Equation 6.5.13 says that the velocity vector of the parametrization points
in the same direction as the vector orienting the curve. Remember that

Vt '2 = (cos9)[v71[ [v21, 6.5.14

where 9 is the angle between the two vectors. So the angle between -?(t) and
T(y(t)) is less than 90°. Since the angle must be either 0 or 180°, it is 0.

It is harder to understand what it means for a parametrization of an oriented

surface to preserve orientation. In Definition 6.5.12, Dly(u) and D2y(u) are
two vectors tangent to the surface at y(u).

Definition 6.5.12 (Orientation-preserving parametrization of a sur-
face). Let S C R3 be a surface oriented by a choice of normal vector field
R. Let U C IR2 be open and y : U -. S be a parametrization. Then -t is
orientation preserving If at every u E U,

det[13(y(u)), D1y(u),Ytiy(u)] > 0. 6.5.15
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Definition 6.5.13 (Orientation-preserving parametrization of an
open subset of R3). An open subset U of R carries a standard orien-
tation, defined by the determinant. If V is another open subset of R3, and

-y : V U is a parametrization (i.e., a change of variables), then y is orien-
tation preserving if det[D'y(v)] > 0 for all v E V.

The unified approach: when does a parametrization
preserve orientation?

First let us define what it means for a linear transformation to be orientation
preserving.

Definition 6.5.14 (Orientation-preserving linear transformation). If
V C P'° is a k-dimensional subspace oriented by w E Ak(V), and T : pk -. V
is a linear transformation, T is orientation-preserving if

In Definition 6.5.14, lkk is ori- T(e'k)) > 0.w(T(e't) ... 6.5.16
ented in the standard way, by det,
and

det(e,...e,,) = 1 > 0.

, ,

It is orientation reversing if

w(T(e't),...,T(e"k)) <0. .5.17
If the orientation of V by w also
gives a positive number when ap-
plied to T(41)...T(ek), then T is
orientation preserving.

Exercise 6.5.2 asks you to prove
that if a linear transformation T is
not one to one, then it is not ori-
entation preserving or reversing.

In Definition 6.5.15, the deriv-
ative (D-y(u)( is of course a lin-
ear transformation; we use Defini-
tion 6.5.14 to determine whether it
preserves orientation. Since U C
Pk is open, it is necessarily k-
dimensional.

Note that for a linear transformation to preserve orientation, the domain and
the range must have the same dimension, and they must be oriented.

As usual, faced with a nonlinear problem, we linearize it: a (nonlinear)
parametrization of a manifold is orientation preserving if the derivative of the
parametrization is orientation preserving.

Definition 6.5.15 (Orientation-preserving parametrization of a
manifold). Let M be an oriented k-dimensional manifold, U C P' be
an open set, and y : U -* M be a parametrization. Then y is orienta-
tion preserving if [Dy(u)] : pk Ttii IM is orientation preserving for every
u E U, i.e., if

w ([137(u)](41), ... , (D-t(u)](ek)) = w(Di'y(u),... , Dt-y(u)) > 0.

Example 6.5.16 (Orientation-preserving parametrization). Consider
the surface S in C3 parametrized by

fz
z -. f z2 , IzI < 1, 6.5.18

z3
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z1 l
We will denote points in C3 by ( z2 I = x2 + iy2

z3 x3 + iy3
Orient S, using w = dx, n dy1.
If we parametrize the surface by

In this parametrization we are xi = rcos0
writing the complex number z in 91 = rsino
terms of polar coordinates: / r) (x2 = r2 cos 20

z=r(cos0+isin6). 7 y2=r2sin28
X3 = r3 Cos 38

(See Equation 0.6.10). y3 = r3 sin 30

does that parametrization preserve orientation? It does, since

cos8 -rsinB
sin 0 r cos 0

dxj n dyi (D17(u), D27(u)) = dxj n dyl

=det cosO -rsinB rcos2B+rsin2B=r>0.[sing rcosB

6.5.19

6.5.20

Exercise 6.5.4 asks you to show that our three ad hoc definitions of orienta-
tion-preserving parametrizations are special cases of Definition 6.5.15.

Compatibility of orientation-preserving parametrizations

Theorem 6.5.3 said the result of integrating a k-form over an oriented manifold
does not depend on the choice of parametrization, as long as the parametriza-
tions induce compatible orientations. Now we show that the integral is in-
dependent of parametrization if the parametrization is orientation preserving.
Most of the work was done in proving Theorem 6.5.3. The only thing we need
to show is that two orientation-preserving parametrizations define compatible
orientations.

Recall (Definition 6.5.2) that
two parametrizations -f, and 72 Theorem 6.5.17 (Orientation-preserving parametrizations define
with the "change of parameters"
map 9i = ryz 1 o 1Y are compatible compatible orientations). If M is an oriented k-manifold, Ut and U2
if det)D$) > 0. are open subsets of Ill!, and 7t : U1 - M, 72 : U2 -» M are orientation-

preserving parametrizations, then they define compatible orientations.

Proof. Consider two points ul E U1,u2 E U2 such that 71(u1) = 72(u2) _
x E M. The derivatives then give us maps

1kk ID7,(u,)I T. M 113-y2(.2)] Rk
6.5.21
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Remember that

where both derivatives are one to one linear transformations. Moreover, we
have w(x) 34 0 in the one-dimensional vector space AR(TXM). What we must
show is that if

w(x)(Di'Yi(ui),..., Dk7l(ul)) > 0 and w(x)(D172(u2),..., Dki2(u2)) > 0,

then det([D72(u2)1)-'[D71(ui)1 > 0.
Note that

[D71(u1)]('Vk)) = adet(v"l. ... . . 7k)

w(x)([D72(u2)](wl),...,[E I'2(u2)1(wk)) = Qdet[W1,...,Wk].
6.5.22'Yt(u)) = 72(u2) = x;

in the first line of Equation 6.5.22,
x ry= ,(u,); in the second line,

x=72(u2).
for some positive numbers a and P. Indeed, both left-hand sides are nonzero
elements of the one-dimensional vector space Ak(]Rk), hence nonzero multiples
of the determinant, and they return positive values if evaluated on the standard
basis vectors. Now write

Tf rya = w(x)(D171(ul ), ... , Dk71(ul) = w(x)([D ti (u1)]e1, ..., [D-tj (u1)Iek)

= w(x)([D72(u2)] (ID72(u2)I)-' [D-11 (111)1-91, ... ,

[D72(u2)] ([D72(u2)1)-' [D71(ul)]ek)

=,3det[([D72(u2)1)-' [D71 ( 1 1 1 ) 1 6 1 , ... , ([D72(u2)1)-' [D7l (ul )1ek)

= f3det (([D 2(u2)])-' ID7i(ui)]) det[.61,...,e"k] 6.5.23

= /3det (([]D72(u2)])-' [D7i(u1)]) .

Corollary 8.5.18 (Integral independent of orientation-preserving
parametrizations). Let M be an oriented k-manifold, U and V be open
subsets of R*, and 7i : U -+ M,-t2 : V -4 M be orientation-preserving
parametrizations of M. Then for any k-form (p defined on a neighborhood
of M, we have

4(u)co-4(v) (P. 6.5.24

Integrating form fields over oriented manifolds

Now we know everything we need to know in order to integrate form fields over
oriented manifolds. We saw in Section 5.4 how to integrate form fields over
parametrized domains. Corollary 6.5.18 says that we can use the same formula
to integrate over oriented manifolds, as long as we use an orientation-preserving
parametrizations. This gives the following:
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Definition 6.5.19 (Integral of a form field over an oriented man-
ifold). Let M be a k-dimensional oriented manifold, ,p be a k-form field

on a neighborhood of M, and y : U - M be any orientation-preserving
parametrization of M. Then

Inr - Jrylo) V f Dk7(u))) Idkul

Example 6.5.20 (Integrating a flux form over an oriented surface).

What is the flux of the vector field f y

=
-x through the piece of the

X

y

z z

plane P defined by x + y + z = 1 where x, y. z > 0, and which is oriented by
r

the normal
L

J ?

This surface is the graph of z = 1 - x - y, so that
This is an example of the first

class of parametrizations listed in
6.5.25y

/ \ x
Section 5.2, parametrizations w l )
graphs; see Equation 5.2.5. (I-X - y

At right we check that -y pre-

serves orientation.

Now we compute the integral.

Note that the formula for inte-
grating a flux form over a surface
in IR3 enables us to transform an

integral over a surface in lR into

a integral over a piece of JR2, as

studied in Chapter 4.

is a parametrization, if x and y are in the triangle T C I22 given by x, y > 0, x+
y < 1. Moreover, this parametrization preserves orientation (see Definition

6.5.12), since det[R(ry(u)),, Dl1rry(u), Dllzry(ru)] is

l
1detII11

J

-I L-OJJ-1>0. 6.5.26

By Definition 6.4.6, the flux is

F(7id)) 5;; I5

f=J dell
L1 x yJ L-1 1

Idxdyl

r 11=f1 `x-x2lo dy=
f'(y-y2)dy= [ Y ! - 3]'

0= I.
20

= rT(1 - 2x) Idx dyl =
rt(ry(i

- 2x) dxl dy 6.5.27

A

Example 6.5.21 (Integrating a 2-form field over a parametrized sur-
face in C3 = 1k6). Consider again the surface S in C3 of Example 6.5.16.
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What is

which we know from that example preserves orientation. Then

rcos9
rsin9

r r2 cos 29
ry' 9 r2sin20

r3 Cos 39
r3 sin 367

dx I A dy, + dx2 A dye + dx3 A dy3 ? 6.5.28
s

As in Example 6.5.16, parametrize the surface by

(dxIAdy,+dx2Ady2+dx3Ady3) Py(
/1

\ I D1Y(B),D2Y(B)
e

\

cos9 -rsin0 f2rcos29 -2r2sin29 3r2cos39 -3r3sin39
det

sin 9 r cos 9 ]
+ dot I 2r sin 29 2r2 cos 20 ] + det [ 3r2 sin 39 3r3 cos 30

= r + 4r3 + 9r5.

Note that in both cases in Ex-
ample 6.5.23 we are integrating
over the same oriented point, x =
+2. We use curly brackets to
avoid confusion between integrat-
ing over the point +2 with neg-
ative orientation, and integrating
over the point -2.

We need orientation of domains
and their boundaries so that we
can integrate and differentiate

6.5.29

Finally, we find for our integral:
r1

21r / (r + 4r3 + 9r5) dr = 7a. 6.5.30

0

For completeness, we show the case where is a 0-form field:

Example 6.5.22 (Integrating a 0-form over an oriented point). Let

x be an oriented point, and f a function (i.e., a 0-form field) defined in some
neighborhood of x. Then

1+x
f = +f (x)

forms, but orientation is impor- Example 6.5.23 (Integrating over an oriented point).
taut for other reasons. Homology
theory, one of the big branches of
algebraic topology, is an enormous
abstraction of the constructions in
our discussion of the unified ap-

J
x2 = 4 and

J
x2 = -4. o

+{+2l (+2)

and I f = -f(x).
x

6.5.31

(6.5.19)

6.5.32

proach to orientation. 6.6 BOUNDARY ORIENTATION

Stokes's theorem, the generalization of the fundamental theorem of calculus, is
all about comparing integrals over manifolds and integrals over their boundaries.
Here we will define exactly what a "manifold with boundary" is; we will see
moreover that if a "manifold with boundary" is oriented, its boundary carries
a natural orientation, called, naturally enough, the boundary orientation.



6.6 Boundary Orientation 537

You may think of a "piece-with-boundar" of a k-dimensional manifold as a
piece one can carve out of the manifold, such that the boundary of the piece
is part of it (the piece is thus closed). However, the boundary can't have
any arbitrary shape. In many treatments the boundaries are restricted to being
smooth. In such a treatment, if the manifold is three-dimensional. the boundary
of a piece of the manifold must be a smooth surface; if it is two-dimensional.
the boundary must be a smooth curve.

We will be less restrictive, and will allow our boundaries to have corners.
There are two reasons for this. First, in many cases, we wish to apply Stokes:
theorem to things like the region in the sphere where in spherical coordinates.
0 < 0 < x/2, and such a region has corners (at the poles). Second. we would like
k-parallelograms to be manifolds with boundary, and they most definitely have
corners. Fortunately, allowing our boundaries to have corners doesn't make any
of the proofs more difficult.

However, we won't allow the boundaries to be just anything: the boundary
can't be fractal, like the Koch snowflake we saw in Section 5.6; neither can it
contain cusps. (F actals would really cause problems: cusps would he accept-
able, but would make our definitions too involved.) You should think that a
region of the boundary either is smooth or contains a corner. Being smooth
means being a manifold: locally the graph of a function of some variables in
terms of others. What do we mean by corner? Roughly (we will be painfully
rigorous below) if you should think of the kind of curvilinear "angles" you can
get if you drew the (x, y)-plane on a piece of rubber and stretched it, or if your
squashed a cube made of foam rubber.

Definition 6.6.1 is illustrated by Figure 6.6.1.

FIGURE 6.6.1.
This figure illustrates our defi-

nition of a piece-with-boundary of
a manifold; above. M is a manifold
and X a piece-with-boundary of
that manifold. Locally, the man-
ifold At is a graph; every point
x E M has a neighborhood where
Al n U is the graph of a map-
ping. The part of that neighbor-
hood within X lies above the re-
gion G, > 0 in the domain.

In Definition 6.6.1, part (1)
deals with the parts of the "piece-
with-boundary" that are inside
the piece; part (2) deals with the
boundary.

A diffeomorphism is a differen-
tiable mapping with differentiable
inverse.

Definition 6.6.1 (Piece-with-boundary of a manifold). Let Al C i"
be a k-dimensional manifold. A subset X C M will be called a piece-with-
boundary if for every, x E X, there exist

(1) Opeii subsets Ut C En and U C R" with x E U and f : Uu E2 a
Cl mapping such that m n u is the graph of f. (This is Definition
3.2.2 of a manifold.)

/G)\

Gk

such that x n u is f(X1), where Xn C Ut is the subset where Gu >
0...,Gk>0.

Example 6.6.2 (A k-parallelogram seen as a piece-with-boundary ofa
manifold). A k-parallelogram P.(-71 .....vk) in P" is a piece-wit.h-boundary

(2) A diffeomorphism G Ui _ IRk,
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of an oriented k-dimensional submanifold of f8" when the vectors V1..... Vk are
linearly independent. Indeed, if M C IR" is the set parametrized by

Definition 6.6.3 distinguishes
between the smooth boundary and
the rest (with corners).

The G; should be thought of
as coordinate functions. Think of
(x, y, z)-space, i.e., k = 3. The
(x, z)-plane is the set where y van-
ishes, the (y, z)-plane is the set
where x vanishes, and the (x, y)-
plane is the set where z vanishes.
This corresponds to the m = 2 di-
mensional stratum, where k - m
(i.e., 3 - 2 = 1) of the G, van-
ish. Similarly, the x axis is the set
where the y and z vanish; this cor-
responds to part of the m = 1 di-
mensional stratum, where k - m
(i.e., 3 - 1 = 2) of the G, vanish.

We will be interested only in
the inside (the k-dimensional stra-
tum) and the smooth boundary
(the (k -1)-dimensional stratum),
since Stokes's theorem relates the
integrals of k-forms and k - 1
forms.

H 6.6.1

then M is a k-dimensional manifold in 1k". It is the translation by x of the
subspace spanned by Vi...... "k (it is not itself a subspace because it doesn't
contain the origin). For every a E M, the tangent space TaM is the space
spanned by V1...... Vk. The manifold M is oriented by the choice of a nonzero
element w E Ak(T,M), and w gives the standard orientation if

w(Vl...... k) > 0. 6.6.2

The k-parallelogram Px (v'1, ... , Vk) is a piece-with-boundary of M, and thus it
carries the orientation of M. 0

t

tk

Definition 6.6.3 (Boundary of a piece-with-boundary of a manifold).
If X is a piece-with-boundary of a manifold M, its boundary 8X is the set
of points where at least one of the G; = 0; the smooth boundary is the set
where exactly one of the G, vanishes.

Remark. We can think of a piece-with-boundary of a k-dimensional mani-
fold as composed of strata of various dimensions: the interior of the piece and
the various strata of the boundary, just as a cube is stratified into its interior
and its two-dimensional faces, one-dimensional edges, and 0-dimensional ver-
tices. When integrating a k-form over a piece-with-boundary of a k-dimensional
manifold, we can disregard the boundary; similarly, when integrating a (k -1)-
form over the boundary, we can ignore strata of dimension less than k - 1. More
precisely, the ?n-dimensional stratum of the boundary is the set where exactly
k - m of the G; of Definitions 6.6.1 and 6.6.3 vanish, so the inside of the piece
is the k-dimensional stratum, the smooth boundary is the (k - 1)-dimensional
stratum, etc. The m-dimensional stratum is an rrrdimensional manifold in 1",
hence has m'-dimensional volume 0 for any m' > m (see Exercise 5.2.5); it can
be ignored when integrating m'-forms. A

Boundary orientation: the ad hoc world

The faces of a cube are oriented by the outward-pointing normal, but the other
strata of the boundary carry no distinguished orientation at all: there is no
particularly natural way to draw an arrow on the edges. More generally, we
will only be able to orient the smooth boundary of a piece-with-boundary.

The oriented boundary of a piece-with-boundary of an oriented curve is sim-
ply its endpoint minus its beginning point:
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FIGURE 6.6.2.
The boundary of the shaded re-

gion of R2 consists of the three
curves drawn, with the indicated
orientations. If you walk along
those curves, the region will al-
ways be to your left.

In Definition 6.6.6, the question
whether N should be put first or
last, or whether one should use
vectors that point inward or out-
ward, is entirely a matter of con-
vention. The order we use is stan-
dard, but not universal.

Definition 6.6.4 (Oriented boundary of a piece-with-boundary of
an oriented curve). Let C be a curve oriented by the unit tangent vector
field f, and let P C C be a piece-with-boundary of C. Then the oriented
boundary of P consists of the two endpoints of P, taken with sign +1 if the
tangent vector points out of P at that point, and with sign -1 if it points in.

If the piece-with-boundary consists of several such P;, its oriented boundary
is the sum of all the endpoints, each taken with the appropriate sign.

Definition 6.6.5 (Oriented boundary of a piece-with-boundary of
p2). If U C R2 is a two-dimensional piece-with-boundary, then its boundary
is a union of smooth curves C;. We orient all the C; so that if you walk along
them in that direction, U will be to your left, as shown in Figure 6.6.2.

When Il 2 is given its standard orientation by +det, Definition 6.6.5 says
that when you walk on the curves, your head is pointing in the direction of the
z-axis. With this definition, the boundary of the unit disk {x2 +y2 < 1) is the
unit circle oriented counterclockwise.

For a surface in lR3 oriented by a unit normal, the normal vector field tells
you on which side of the surface to walk. Let S C lR3 be a surface oriented by
a normal vector field N, and let U be a piece-with-boundary of S, bounded by
some union of curves C;. An obvious example is the upper hemisphere bounded
by the equator. If you walk along the boundary so that your head points in
the direction of N, and U is to your left, you are walking in the direction
of the boundary orientation. Translating this into mathematically meaningful
language gives the following, illustrated by Figure 6.6.3.

Definition 6.6.6 (Oriented boundary of a piece-with-boundary of an
oriented surface). Let S C R3 be a surface oriented by a normal vector
field N, and let S1 be a piece-with-boundary of S, bounded by some union
of closed curves C. At a point x E C;, let 7,,,t be a vector tangent to S
and pointing out of S. Then the boundary orientation is defined by the unit
vector 'l tangent to CI, chosen so that

det [N(x), go.,, V ] > 0. 6.6.3

Since the system composed of your head, your right arm, and your left arm
also satisfies the right-hand rule, this means that to walk in the direction of
aS1, you should walk with your head in the direction of N, and the surface to
your left.

Finally let's consider the three-dimensional case:
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FIGURE 6.6.3.
The shaded area is the piece-

with-boundary S, of the surface
S. The vector 47°°t is tangent to
S at a point in the boundary C. of
S, and points out of S1. The unit
vector v' is tangent to C,. Since

det [13(x), i oat, VI > 0,

the boundary orientation is de-
fined by V. If we rotated -7 by
180°, then the vectors would obey
the left-hand rule instead of the
right-hand rule, and the orienta-
tion would be reversed.

For a 2-manifold, i.e., a surface,
the "outward-pointing vector tan-
gent to M" is illustrated by Figure
6.6.3.

In Definition 6.6.9, w is a k-
form and we is a (k - 1)-form, so
the two can't be equal; Equation
6.6.5 says not that the forms are
equal, but that evaluated on the
appropriate vectors, they return
the same number.

Definition 6.6.7 (Oriented boundary of a piece-with-boundary of
1183). Let U C iR3 be piece-with-boundary of ]R3, whose smooth boundary
is a union of surfaces S. We will suppose that U is given the standard
orientation of Il83. Then the orientation of the boundary of U (i.e., the
orientation of the surfaces) is specified by the outward-pointing normal.

Boundary orientation: the unified approach

Now we will see that our ad hoc definitions of oriented boundaries of curves,
surfaces, and open subsets of Il83 are all special cases of a general definition.

We need first to define outward-pointing vectors.
Let M C R" be a manifold, X C M a piece-with-boundary, and x r= 8X

a point of the smooth boundary of X. At x, the tangent space Tx(8X) is a
subspace of TX whose dimension is one less than the dimension of and
which subdivides the tangent space into the outward-pointing vectors and the
inward-pointing vectors.

Definition 6.6.8 (Outward-pointing and inward-pointing vectors).
Let t'f E Tx(8X1) and write

'=Lw2J with V1EE1,N72EE2.

Then v" is

outward pointing if [Dg(xl)]vl > 0, and
inward pointing if [Dg(xl )[V1 < 0.

If v is outward pointing, we denote it von,

6.6.4

Definition 6.6.9 (Oriented boundary of piece-with-boundary of an
oriented manifold). Let M be a k-dimensional manifold oriented by w,
and P be a piece-with-boundary of M. Let x be in 8P, and lout E TxM be
an outward-pointing vector tangent to M. Then, at x, the boundary 8P of
P is oriented by wa, where

orienting boundary orienting manifold

6.6.5

Example 6.6.10 (Oriented boundary of a piece-with-boundary of an
oriented curve). If C is a curve oriented by w, and Pisa piece-with-boundary
of C, then at an endpoint x of P (i.e., a point in 8P), with an outward-pointing
vector veu, anchored at x, the boundary point x is oriented by the nonzero
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If we think of R2 as the hori-
zontal plane in iR3, then a piece-
with-boundary of R2 is a special
case of a piece-with-boundary of
an oriented surface. Our defini-
tions in the two cases coincide; in
the ad hoc language, this means
that the orientation of R2 by det
is the orientation defined by the
normal pointing upward.

number we = w(Vout). Thus it has the sign +1 if we is positive, and the sign
- 1 if wa is negative. (In this case, w takes only one vector.)

This is consistent with the ad hoc definition (Definition 6.6.4). If w(i) =
then the condition we > 0 means exactly that t(x) points out of P. A

Example 6.6.11 (Oriented boundary of a piece-with-boundary of 1R2).
Let the smooth curve C be the smooth boundary of a piece-with-boundary S of
1l z. If II82 is oriented in the standard way (i.e., by det), then at a point x E C,
the boundary C is oriented by

wa(v') = det(Vout, V). 6.6.6

Suppose we have drawn the standard basis vectors in the plane in the standard
way, with 42 counterclockwise from et. Then

v') > 0 6.6.7

if, when you look in the direction of V, the vector Vout is on your right. In this
case S is on your left, as was already shown in Figure 6.6.2. 0

Example 6.6.12 (Oriented boundary of a piece-with-boundary of an
oriented surface in IR3). Let St C S be a piece-with-boundary of an oriented
surface S. Suppose that at x E 8Si, S is oriented by w E A2(T,t(S)), and that
Vout E T,,S is tangent to S at x but points out of St. Then the curve 8S1 is
oriented by

we N) = wNout, V) - 6.6.8

Equation 6.6.9 is justified in the This is consistent with the ad hoc definition, illustrated by Figure 6.6.3. In
subsection, "Equivalence of the ad the ad hoc definition, where S is oriented by a normal vector field N', the
hoc and the unified approaches for

corresponding w issubspaces of R3."

w( i, V2) = det(N(x),v'1i V2)), 6.6.9

so that

wa(V) = det(N(x), v'out,,V)). 6.6.10

Thus if the vectors 61,462, e3 are drawn in the standard way, satisfying the
right-hand rule, then V defines the orientation of 8S1 if N(x),,V,,t, V satisfy the
right-hand rule also. A

Example 6.6.13 (Oriented boundary of a piece-with-boundary of R3).
Suppose U is a piece-with-boundary of JI with boundary 8U = S, and U is
oriented in the standard way, by det. Then S is oriented by

w8(V1, V2) = det(Vout, V1, V2) 6.6.11
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If we wish to think of orientating S in the ad hoc language, i.e., by a field
of normals 9, this means exactly that for any x E S and any two vectors

v1,v2 E T .S, the two numbers

det(N(x),VI,v2) and 6.6.12

should have the sable sign, i.e., N(x) should point out of U. L

FIGURE 6.6.4.
The cube spanned by the vec-

tors v1,v2, and v"s, anchored at
X. To lighten notation we set
a = x+vi,b = x+v"2, and
c = x + v3. The original three
vectors are drawn in dark lines;
the translates in lighter or dotted
lines. The cube's boundary is its
six faces:

PV VI, 72) the bottom

Px (v2, 'V3) the left side

P,(1,3) the front

P : ( 2 , 3 ) the right side

Py°(v1,v3) the back

F' (VI, V'2) the top

If i is odd, the expression

(Px+J,(VI,...,V......Vk)

\- Vi..... Vk))

is preceded by a plus sign; if i is
even, it is preceded by a minus
sign.

Did you expect the right-hand
side of Equation 6.6.14 to be

P.4.700 - P:(v)?
Remember that v' is precisely the
v, that is being omitted.

The oriented boundary of an oriented k-parallelogram

W e saw a b o v e that an oriented k-parallelogram P , ° , ( v i 1 ...... k ) is a piece-with-
boundary of an oriented manifold if the vectors v'1, ... , v'k are linearly indepen-
dent (i.e., the parallelogram is not squished flat). As such its boundary carries
an orientation.

Proposition 6.6.14 (Oriented boundary of an oriented k-paraUelo-
gram).

The oriented boundary of an oriented k-parallelogram Px(v1...... k) is

given by

OP.(it,..., Vk)

rk 6.6.13

k)-Px (V1,..., V;,...,vk))>
1L-.r1

where a bat over a term indicates that it is being omitted.

This business of hats indicating an omitted term may seem complicated.
Recall that the boundary of an object always has one dimension less than the
object itself: the boundary of a disk is a curve, the boundary of a box con-
sists of the six rectangles making up its sides, and so on. The boundary of
a k-dimensional parallelogram is made up of (k - 1)-parallelograms, so omit-
ting a vector gives the right number of vectors. For the faces of the form
Px(v""t,....v";...... i,), each of the k vectors has a turn at being omitted. (In
Figure 6.6.4, these faces are the three faces that include the point x.) For
the faces of the type PX+a, Vk), the omitted vector is the vector
added to the point x.

Before the proof, let us give some examples, which should make the formula
easier to read.

Example 6.6.15 (The boundary of an oriented 1-parallelogram). The
boundary of P%(v) is

8PX(V) = PX+s - F. 6.6.14

So the boundary of an oriented line segment is its end minus its beginning, as
you probably expect.



FIGURE 6.6.5.
If you start at x in the direction

of V'1 and keep going around the
boundary of the parallelogram,
you will find the sum in Equation
6.6.15. The last two edges of that
sum are negative because you are
traveling against the direction of
the vectors in question.

The important consequence of
preceding each term by (-1)`-1 is
that the boundary of the bound-
ary is 0. The boundary of the
boundary of a cube consists of the
edges of each face, each edge ap-
pearing twice, once positively and
once negatively, so that the two
cancel.
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Example 6.6.16 (The boundary of an oriented 2-parallelogram). A
look at Figure 6.6.5 will probably lead you to guess that the boundary of an

oriented parallelogram is

8Px(v1,vz) = P:(vl) + Px+.,(v2) - PX+,;z(V1) -
Px(v"2),

6.6.15

boundary let side 2nd side 3rd side 4th side

which agrees with Proposition 6.6.14.

Example 6.6.17 (Boundary of a cube). For the faces of a cube shown in
Figure 6.6.4 we have:

+(P,oz+o (V2, P.'072, V3))

right side left side

(VI, %N 4(fl, IN
back front

+(Px}J3(v1,v2) - Px(v1, V2)).

top bottom

6.6.16

D

How many "faces" make up the boundary of a 4-parallelogram? What is each
face? How would you describe the boundary following the format used for the
cube in Figure 6.6.4? Check your answer below.?

Proof of Proposition 6.6.14. As in Example 6.6.2, denote by M the
manifold of which P.(v"1...... k) is a piece-with-boundary. The boundary
i9Px (v'l.... , v"k) is composed of its 2k faces (four for a parallelogram, six for a
cube ... ), each of the form

PX+v,(VI...... i...... ,,), or .F (v1,...,vi,...IVk), 6.6.17

where a hat over a term indicates that it is being omitted. The problem is to
show that the orientation of this boundary is consistent with Definition 6.6.9
of the oriented boundary of a piece-with-boundary.

'A 4-parallelogram has eight "faces," each of which is a 3-parallelogram (i.e., a par-
allelepiped, for example a cube). A 4-parallelogram spanned by the vectors V'1, V2, v"3,
and v'4, anchored at x, is denoted Px (v"1, v"2i v3, v"4). The eight "faces" of its boundary
are

Px(Vl,V2,'73), P. (V2, V3, Vq), Px (V1, 33, v4), P vz, v4),
Px+O,(V2,'73,V4), Px+J,(Vl,v3,94),
Px+33(Vl, V2, V4), P.+,7, (VI, V2, V3).
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+v,

V,

FIGURE 6.6.6.
The vector 9, anchored at x

is identical to P,*(ii1,v2). On
this segment of the boundary of
the parallelogram P,,'(v1,v2). the
outward-pointing vector is -v2.
The top edge of the parallelogram
is P.O"" (v"j, v2); on this edge, the
outward-pointing vector is +v2.
(We have shortened the outward
and inward pointing vectors for
the purpose of the drawing.)

Equations 6.7.1 and 6.7.2 say
the same thing in different words.
In the first we are evaluating f at
the two points x + h and x. In
the second we are integrating f
over the boundary of the segment

Let a E Ak(AI) define the orientation of M, so that w(vt...... Vk) > 0. At a
point of PX+,7 v' ... , iiik), the vector ii, is outward pointing, whereas at

a point of Px (v"t ..... vi.... . vk), the vector -v; is outward pointing, as shown
in Figure 6.6.6. Thus the standard orientation of PX+a, (VI, ... , vi, ... , v'k) is
consistent with the boundary orientation of PX(vt,...,v;...... Vk) precisely if

W(vt vi

i.e.. precisely if the permutation a; on k symbols which consists of taking the
ith element and putting it in first position is a positive permutation. But the
signature of a; is because you can obtain aj by switching the ith
symbol first with the (i - 1)th, then the (i - 2)th, etc., and finally the first,
doing i - I transpositions. This explains why PX+s, (v't , ... , ...... , vk) occurs
with sign

A similar argument holds for PX (,V,__ , vi,... Vk). This oriented parallel-
ogram has orientation compatible with the boundary orientation precisely if
w(-v"i, v't, ... , vi.... , v'k) > 0, which occurs if the permutation ai is odd. This
explains why P.(v1...... Vi...... Vk) occurs in the sum with sign (-1)'. 0

6.7 THE EXTERIOR DERIVATIVE

In which we differentiate forms.

Now we come to the construction that gives the theory of forms its power,
making possible a fundamental theorem of calculus in higher dimensions. We
have already discussed integrals for forms. A derivative for forms also exists.
This derivative, often called the exterior derivative, generalizes the derivative
of ordinary functions. We will first discuss the exterior derivative in general;
later we will see that the three differential operators of vector calculus (div,
curl, and grad) are embodiments of the exterior derivative.

Reinterpreting the derivative

What is the ordinary derivative? Of course, you know that

f'(x) = l o h (f (x + h) - f(x)), 6.7.1

but we will reinterpret this formula as

f'(x) = limo h f f. 6.7.2
8P. (h)

What does this mean? We are just using different words and different nota-
tion to describe the same operation. Instead of saying that we are evaluating
f at the two points x + h and x, we say that we are integrating the 0-form f
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Compare the definition of the
exterior derivative and Equation
6.7.2 for the ordinary derivative:

f'(x) = urn 1 f.A_o h as(r,)

One thing that makes Equation
6.7.3 hard to read is that the ex-
pression for the boundary is so
long that one aright almost miss
the W at the end. We are integrat-
ing the k-form yo over the bound-
ary, just as in Equation 6.7.2 we
are integrating f over the bound-
ary.

over the boundary of the oriented segment [x, x + h] = Pr (h). This boundary
consists of the two oriented points +Pz+A and -Ps. The first point is the
endpoint of P,'(h), and the second its beginning point; the beginning point is
taken with a minus sign, to indicate the orientation of the segment. Integrating
the 0-form f over these two oriented points means evaluating f on those points
(Definition 6.5.22). So Equations 6.7.1 and 6.7.2 say exactly the same thing.

It may seem absurd to take Equation 6.7.1, which everyone understands
perfectly well, and turn it into Equation 6.7.2, which is apparently just a more
complicated way of saying exactly the same thing. But the language generalizes
nicely to forms.

Defining the exterior derivative

The exterior derivative d is an operator that takes a k-form and gives a
(k + 1)-form, do. Since a (k + 1)-form takes an oriented (k + 1)-dimensional
parallelogram and gives a number, to define the exterior derivative of a k-form
:p, we must say what number it gives when evaluated on an oriented (k + I)-
parallelogram.

Definition 6.7.1 (Exterior derivative). The exterior derivative d of a
k-form io, denoted drp, takes a k + 1-parallelogram and returns a number, as
follows:

(k+l)-parallelogram integrating w over boundary

U oyt+ll 6.7.3
8Px(hv"1,...,hv"k+1)(ktl)-

form bound of k+l-arr pier as h--.O
emaaer and smaller as A0

This isn't a formula that you just look at and say-"got it." We will work
quite hard to see what the exterior derivative gives in particular cases, and to see
how to compute it. That the limit exists at all isn't obvious. Nor is it. obvious
that the exterior derivative is a (k + 1)-form: we can see that drp is a function
of k + 1 vectors, but it's not obvious that it is multilinear and alternating. Two
of Maxwell's equations say that a certain 2-form on 1R1 has exterior derivative
zero; a course in electromagnetism might well spend six months trying to really
understand what this means. But observe that the definition makes sense;
PX ('V1, , vk+1) is (k + 1)-dimensional, its boundary is k-dimensional, so it is
something over which we can integrate the k-form W.

Notice also that when k = 0, this boils down to Equation 6.7.1, as restated
in Equation 6.7.2.

Remark 6.7.2. Here we see why we had to define the boundary of a piece-with-
boundary as we did in Definition 6.6.9. The faces of the (k + 1)-parallelogram
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We said earlier that to gener-
alize the fundamental theorem of
calculus to higher dimensions we
needed a theory of integration over
oriented domains. This is why.

PX (v'1, ... , .Vk+i) are k-dimensional. Multiplying the edges of these faces by h

should multiply the integral over each face by ha. So it may seem that the limit

above should not exist, because the individual terms behave like hk/hk+l =

1/h. But the limit does exist, because the faces come in pairs with opposite
orientation, according to Equation 6.6.13, and the terms in hk from each pair

cancel, leaving something of order hk+1.

This cancellation is absolutely essential for a derivative to exist-, that is why

we have put so much emphasis on orientation.

Computing the exterior derivative

Theorem 6.7.3 shows how to take the exterior derivative of any k-form. This

is a big theorem, one of the major results of the subject.

Theorem 6.7.3 (Computing the exterior derivative of a k-form).
(a) If the coefficients a of the k-form

(P = E ai...... A ... A dxi,, 6.7.4

are C2 functions on U C an, then the limit in Equation 6.7.3 exists, and
defines a (k + 1)-form.

(b) The exterior derivative is linear over R: if W and 4Ji are k-forms on
U C Rn, and a and b are numbers (not functions), then

d(acp+bt/J)=ad,P+bds/r. 6.7.5

(c) The exterior derivative of a constant form is 0.

(d) The exterior derivative of the 0-form (i.e., function) f is given by the
formula

6.7.6df = [Df] = >(Dif) dxi.
i=1

(e) If f is a function, then

d(fdxi, A...Adx.)=if Adxi, A...Adxi,,. 6.7.7

Theorem 6.7.3 is proved in Appendix A.20.

These rules allow you to compute the exterior derivative of any k-form, as
shown below for any k-form and as illustrated in the margin:
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The first line of Equation 6.7.8
just says that d,p = do; for exam-
ple, if ,p = f (dx A dy) + g(dy A dz ),
then

dp = d(f (dx A dy) + g(dy A dz)) .

The second line says that the ex-
terior derivative of the sum is the
sum of the exterior derivatives.
For example:

_d(f(dx A dy) + g(dy A dz))

d(f(ds A dy)) + d(g(dy A dz)).

The third line says that

d(f(dx A dy)) = df A dx A dy

d(g(dyAdz)) =dgAdyAdz.

The first term in the second line
of Equation 6.7.11 is 0 because it
contains two dx's; the second be-
cause it contains two dy's. Since
exchanging two terms changes the
sign of the wedge product, ex-
changing two identical terms
changes the sign while leaving it
unchanged, so the product must
be 0. With a bit of practice com-
puting exterior derivatives you will
learn to ignore wedge products
that contain two identical terms.

You will usually want to put
the dx, in ascending order, which
may change the sign, as in the
third line of Equation 6.7.12. The
sign is not changed in the last line
of Equation 6.7.11, because two
exchanges are required.

writing y in full

dip = d ai...... ikdxi, A- A dxik
1 <i, < <ik<n

d((ai...... ik)(dxi, A ... A dxik ))

(b) 1<i,<''<ik<n 6.7.8

exterior derivative of sum equals sum of exterior derivatives;

(d ai......ik) A dxi, A ... A dxik

problem reduced to computing ext. deriv. of function

Going from the first to the second line reduces the computation to computing
exterior derivatives of elementary forms; going from the second to the third
line reduces the computation to computing exterior derivatives of functions. In
applying (e) we think of the coefficients a1,..... tk as the function f.

We compute the exterior derivative of the function f = a1,,,,,,ik from part
(d):

n

4 ,..... rk = JD1at,,...,1kdxj.
j=1

6.7.9

For example, if f and g are functions in the three variables x, y and z, then

df=D1fdx+D2fdy+D3fdz, 6.7.10

so

dfAdxAdy=(Difdx+D2fdy+D3fdz)AdxAdy
=D1f dzAdxAdy+D2fdyAdxAdy+D3f dzAdxAdy

0 0

= D3 f dz A dX A dy = D3 J` dx A dy A dz. 6.7.11

Example 6.7.4 (Computing the exterior derivative of an elementary
2-form on ]R4). Computing the exterior derivative of xjx3(dx2 A dx4) gives

d(x2x3) A dx2 A dx4

0 0

= (Di(2x3) dx1 + D2(x2x3) dx2 + D3(x2x3) dxi + D4(x2x3) dx4) A dx2 A dx4

d(z2x3)

_ (x3 dx2 + x2 dx3) A dx2 A dx4 = (x3 dx2 A dx2 A dx4) + (x2 dx3 A dx2 A dx4)

= x2 (dxa A dx2 A dx4) = -x2 (dx2 A dxi A dx4) . IL 6.7.12
dz's out of order sign changes as

order is corrected
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FIGURE 6.7.1.
The origin is your eye; the

"solid angle" with which you see
the surface S is the cone shown
above. The intersection of the
cone and the sphere of radius 1

around your eye is the region P.

What is the exterior derivative of the 2-form on R3 xlxsdxl n d2? Check
your answer below.'

Example 8.7.5 (Computing the exterior derivative of a 2-form). Com-
pute the exterior derivative of the 2-form on Ilt4,

+P =zIx2dx2Ads4-s2dx3Adx4, 6.7.13

which is the sum of two elementary 2-forms. We have

dp = d(xis2 dx2 n dx4) - d(x2 ds3 A dx4)

_ (D1(51x2) dx1 +D2 (x152)dx2+D3(5152) d53+D4(51x2)d54) ndx2 ndx4

- (DI (x2) dx1 + D2(x2) dx2 + D3(22) dx3 + D4(s2) dx4) A ds3 A dx4

_ (x2 dx1 + 51 dx2) A dx2 A dx4 - (252 dx2 A dx3 A ds4)

= x2 dx1 n dx2 n dx4 + x1 dx2X4 -2x2 dx2 n dx3 n dx4

0

= 52 d5I A dx2 A dx4 - 2x2 dx2 A ds3 A d54. 1

The integral of the 2-form 'X Example 6.7.6 (Element of angle).
over S is the same as its integral
over P, as you are asked to prove
in Exercise 6.9.8, in the case where
S is a parallelogram.

The vector fields

F2 =
1 y

52 + y2 xJ and F3 =
1

(x2 + y2 + 22)3/2

[z]

6.7.14

6.7.15

satisfy the property that dWp2 = 0 and d'I = 0. The forms WF2 and 4ip3 can
be called respectively the "element of polar angle" and the "element of solid

angle"; the latter is depicted in Figure 6.7.1.

We will now find the analogs in any dimension. Using again a hat to denote
a term that is omitted in the product, our candidate is the (n-1)-form on It":

n
G!n (xl.F...+x2)n/2E(-1)'_1xids1A...Adxin...Adxn, 6.7.16

i=1
FIGURE 6.7.2. which can also be thought of as the flux of the vector field

The vector field A of Example
6.7.6 points straight out from the
origin. The flux of this through
the unit circle is positive.

1

Fn =

xl

(xl+...±xn)n/2
[Xn

which can be written IIn . 6.7.17x

d(xis,2,dx1 A ds2) = d(xjx3) A dsi A dx2

= D1(xjx3) dri n dx1 A dx2 + D2(x1x3) dx2n dx1 n dx2 + D3(x152) dxa n dx1 A dx2
= 25153 dx3 n dxl n dx2 = 251x3 dx1 Adx2 A dx3.



In going from the first to the
second line we omitted the par-
tial derivatives with respect to the
variables that appear among the
dx's to the right; i.e., we compute
only the partial derivative with re-
spect to xi, since dx, is the only dx
that doesn't appear on the right.

Going from the second to the
third line is just putting the dxi in
its proper position, which also gets
rid of the (-1)' -1; moving dx, into
its proper position requires i - 1
transpositions.

The fourth equal sign is merely
calculating the partial derivative
and the fifth involves factoring out

)"12-1 from the nu-(x? + + x2

merator and canceling with the
same factor in the denominator.

In the double sum in Equation
6.7.19, the terms corresponding to
i = j vanish, since they are fol-
lowed by dx, A dx,. If i 54 j, the
pair of terms

D,Difdx, Adx,
and D,DJdx, A dx,i

cancel, since the crossed partials
are equal, and dx, A dx, = -dxi A
dx, .

The second equality in the sec-
ond line of Equation 6.7.19 is part
(d) of Theorem 6.7.3. Here D, f
plays the role off in part (d), giv-
ing

D,D,fdx,;
j=,

we have j in the subscript rather

than i, since i is already taken.
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It is clear from the second description that the integral of the flux of this vector
field over the unit sphere S"-1 is positive; at every point, this vector field points
outwards, as shown for n = 2 in Figure 6.7.2. In fact, the flux is equal to the
(n - 1)-dimensional volume of S"'t

The computation in Equation 6.7.18 below shows that dwn = 0:

wn=d Y(-1)i-ixidxiA...A dxiA...Adxn/

((X1
+....

1
+

n)n/z i=1
n+ xi

= Y_(-1)'-1Di z 2
n12dX'AdT1A...AdxiA...Adxn

x;
D ) / dxlA...ndxn

((x1+...+x2)"12 nxi(x1+...+xn)n/z-1

dart A... Adxn(x1 { ... +xn)n
i=1

" x1 + ... + xn - nxi=E1 /2+1 6.7.18
i=1 (x1 +...+xn)n

We get the last equality because the sum of the numerators cancel. For
instance, when n = 2 we have i1 + x2 - 2x1 + x1 + x2 - 2x2 = 0.2 2

Taking the exterior derivative twice

The exterior derivative of a k-form is a (k + 1)-form; the exterior derivative of
that (k + 1)-forth is a (k + 2)-form. One remarkable property of the exterior
derivative is that if you take it twice, you always get 0. (To be precise, we must
specify that Sp be twice continuously differentiable.)

Theorem 6.7.7. For any k-form on U C R" of class C2, we have d(d,p) = 0.

Proof. This can just be computed out. Let us see it first for 0-forms:

ddf = d(> Difdx) = F d(Difdx,)
i=1 i=1

n n n

_YdDif Adxi = ryD,D,fdx, Adxi =0.
i=1 ,=1 j=1

If k > 0, it is enough to make the following computation:

d(d(f dx,, A ... A dx,,, )) = d(df A dx,, A A dx,,, )

_ (ddf) A dxi, A ... A dx,,, = 0.
-o

6.7.19

6.7.20
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d
There is also a conceptual proof of Theorem 6.7.7. Suppose , is a k-form

and you want to evaluate d (dip) on k + 2 vectors. We get d (dip) by integrating
dip over the boundary of the oriented (k + 2)-parallelogram spanned by the
vectors, i.e., by integrating W over the boundary of the boundary. But what
is the boundary of the boundary? It is empty! One way of saying this is that
each face of the (k + 2)-parallelogram is a (k + 1)-dimensional parallelogram,
and each edge of the (k + 1)-parallelogram is also the edge of another (k + 1)-
parallelogram, but with opposite orientation, as Figure 6.7.3 suggests for k = 1,
and as Exercise 6.7.8 asks you to prove.

6.8 THE EXTERIOR DERIVATIVE IN THE LANGUAGE OF
FIGURE 6.7.3. VECTOR CALCULUS

Each edge of the cube is an
edge of two faces of the cube, and The operators grad, div, and curl are the workhorses of vector calculus. We
is taken twice, with opposite ori- will see that they are three different incarnations of the exterior derivative.
entations.

Definition 6.8.1 (Grad, curl and div). Let f : U -. R be a C' function
on an open set U C R", and let F be a C1 vector field on U. Then the grad
of a function, the curl of a vector field, and the div of a vector field, are given
by the formulas below:

The gradient associates a vec-

tor field to a function. The curl

associates a vector field to a vec-

tor field, and the divergence asso-

ciates a function to a vector field.

We denote by the symbol 0
("nabla ") the operator

a=
[D,]

D3

Some authors call 0 "del."

Note that both the grad of a

function, and the curl of a vector

field, are vector fields, while the

div of a vector field is a function.

Mnemonic: Both "curl" and
"cross product" start with "c":

both "divergence' and "dot prod-

uct" start with "d".

Dtf
gradf= Daf =Vf

Daf

curlF=curlFZ =V xF= DZJ
[1]

ID2JF3 D3

F2 [D2
divF=divLFJ D2

F3 D3

Fr D2F3-D3Fa
x Fs = D3Fr - D,F3

F3 D1F2 -D3F,

crow product ofd and 1'

I F1 IF2 = D,Fi + D2F2 + D3F3 .
F3

dot product of d and J`

These operators all look kind of similar, some combination of partial deriva-
tives. (Thus they are called differential operators.) We use the symbol V to
make it easier to remember the above formulas, which we can summarize:

grad f = of
curl F = 0 x F 6.8.1

div F'=0F'.
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We will use the words "grad,"
"curl," and "div" and the cor-
responding formulas of Equation
6.8.1 interchangeably, both in text
and in equations. This may seem
confusing at first, but it is impor-
tant to learn both to see the name
and think the formula, and to see
the formula and think the name.

To compute the exterior deriv-
ative of a function f one can com-
pute grad f. To compute the ex-
terior derivative of the work form
field of P one can compute curl F.
To compute the exterior derivative
of the flux form field of F one can
compute div F.

Example 6.8.2 (Curl and div). Let P be the vector field

x -z
p' y l = xzz i.e., Ft = -z , F2 = xzz, F3 = x + y.

z//J x+y
The partial derivative D2F3 is the derivative with respect to the second variable

of the function F3, i.e., D2(x + y) = 1. Continuing in this fashion we get

-z D2(x + y) - D3(xz2) 1 - 2xz
xzz lcurl

]([ =
D3(-z) - Dt(x + y) -2 6.8.2

/X+y Dt(xzz)-D2(-z) zz

The divergence of the vector field f (
(x

y I =
x+y
xzzy is 1 + xzz + Y. A

zJ yz

What is the grad of the function f = x2y + z? What are the curl and div of
y

the vector field P = x ? Check your answers below.9
xz

The following theorem relates the exterior derivative to the work, flux and
density form fields.

Theorem 6.8.3 (Exterior derivative of form fields on 1R3). Let f be a
function on 1R3 and let P be a vector field. Then we have the following three
formulas:

(a) df = W# f; i.e., df is the work form field of grad f ,

(b) dW p = 4bOx p; i.e., dWp is the Bux form field of curl F ,

(c) Op = pd. p; i.e., d$ p is the density form field of div F.

Example 6.8.4 (Equivalence of df and Wgr d i.). In the language of forms,
to compute the exterior derivative of a function in lie3, we can use part (d) of
Theorem 6.7.3 to compute d of the 0-form f:

df = Dl f dxi + D2fdx2 + D3 f dx3. 6.8.3

gradf=[2x ;curlP=IDD2Jxl X =L-Z1;divF=LDD21. iJ=x.
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Note that writing

df = D, f dx i + D2 f dx2 + D3 f dx3

is exactly the same as writing

df = [Df) = [Dtf, D2f, D3f)
Both are linear transformations
from It3 - It, and evaluated on
a vector v they give the same re-
sult:

(Dt fdxt+D2fdx2+D3fdx3)(v7)
= Difvl + D2fv2 + D3fv3,

and

vi l
[Dtf,D2f,Dsf) v2J

V3

= Dlfvl + D2fv2 + D3fv3

Here we write Pd to avoid con-

fusion with our vector field

xy
F = 1 z

yz

Exercise 6.8.3 asks you to work
out a similar example showing the
equivalence of day and pd.t.

v1

Evaluated on the vector v = I v2 , this 1-form gives
V:1

df(v")=D1fui1+D2fv2+D3fv3. 6.8.4

In the language of vector calculus, we can compute Wgraa f = 1-VO Of = W D ,f

D2f
ID,fJ

which evaluated on v' gives

rDfl (vtl
Waf(v)=

D2f
v2 =Dtfvt+D2fvz+Dav3.

D3f V3

6.8.5

Example 6.8.5 (Equivalence of dWp and 4boxp). Let us compute the
exterior derivative of the 1-form in it

xy
xy dx + z dy + yz dz, i.e., W p, when P= z

yz

In the language of forms,

d(xy dx + z dy + yz dz) = d(xy) n dx + d(z) n dy + d(yz) n dz

= (Dtxy dx + D2xy dy + D3xy dz) n dx + (DI z dx + D2z dy + D3z dz) n dy

+ (DI yz dx + D2yz dy + D3yz dz) n dz

_ -x(dx A dy) + (z - i)(dy n dz). 6.8.6

Since any 2-form in I3 can be written 4rd = G, dyndz-G2 dxndz+G3 dxAdy,
z-1

the last line of Equation 6.8.6 can be written 4'0 for G = 1 0
-x

This vector field is precisely the curl of F:

[D' l xy D2yz - D3z z 1

V x F' = D2 I x z -Dl yz + D3xy = 0
-xD3J yz Dlz - D2--Y

A

Proof of Theorem 6.8.3. The proof simply consists of using symbolic entries
rather than the specific ones of Examples 6.8.4 and 6.8.5 and Exercise 6.8.3.

For part (a), we find

d(f =D,fdxt-D2fdy+D3fdz=W[D f Wof.
1 D2f
D3f

6.8.7
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The work form field Wp of a
vector field F is the 1-form field

we(P.(v')) =F(x) V.

So Theorem 6.8.3 part (a) says

df(P,'(i)) _ W f(P.(v))

The flue form field dip of a
vector field F is the 2-form field

dip (P.,(v,, v2))

= " V - 2 ) .(let

So part (b) says

dWp(P,(v,-V'))

detl(t x F)(x),v,,v'2j.

The density form field pf of a
function f is the 3-form field

pfV3))
= f(x)detjv,,v"2.v3].

So part (c) of Theorem 6.8.3
says

V3))

F)(x)det(v,,v'2,'V3d-

The diagram of Figure 6.8.1
commutes: if you start anywhere
on the left, and go down and right,
you will get the same answer as
you get going first right and then
down.

For part (b), a similar computation gives

dbl'F = d(F,dx + F2dy + F3dz) = dF1 A dx + dF2 A dy + dF3 A dz

= (DI F, dx + D2F, dy + D3F,dz) n dx

+ (Dl F2dx + D2F2dy + D3F2dz) A dy

+ (DI F3dx + D2F3dy + D3F3dz) A dz

= (D,F2 - D2F1)dxAdy+(D1F3 -D3F,)dxAdz

=4)

+ (D2F3 - D3F2)dy A dz

D2t1-D3F2 4)1 xF'
D3F1 - D, Fs
D, F2 -D2 Fi

6.8.8

For part (c), the computation gives

d4'F = d(Fi dy A dz + F2dz A dx + F3dx A dy)

= (D1 F,dx + D2F, dy + D3F, dz) A dy A dz

+ (DiF2dx + D2F2dy + D3F2dz) A dz n dx 6.8.9

+ (D,F3dx + D2F3dy + D3F3dz) A dx A dy

_ (Di F1 + D2 F2 + D3 F3 )dx A dy A dz = p. p.

Theorem 6.8.3 says that the three incarnations of the exterior derivative in
1[83 are precisely grad, curl, and div. Grad goes from 0-form fields to 1-form
fields, curl goes from 1-form fields to 2-form fields, and div goes from 2-form
fields to 3-form fields. This is summarized by the diagram in Figure 6.8.1, which
you should learn.

Vector Calculus in R3 J-Form fields in R3

functions = 0-form fields
j gradient j d

vector fields w,rkW 1-form fields
j curl j d
vector fields fl°ulb 2-form fields
j div j d
functions density p 3-form fields

FIGURE 6.8.1. In R3, 0-form fields and 3-form fields can be identified with functions,
and 1-form fields and 2-form fields can be identified with vector fields. The operators
grad, curl, and div are three incarnations of the exterior derivative d, which takes a
k-form field and gives a (k + 1)-form field.
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Geometric interpretation of the exterior derivative in 13

We already knew how to compute the exterior derivative of any k-form, and

we had an interpretation of the exterior derivative of a k-form w as integrating

W over the oriented boundary of a (k + 1)-parallelogram. Why did we bring in
grad, curl and div?

One reason is that being familiar with grad, curl, and div is essential in

many physics and engineering courses. Another is that they give a different
perspective on the exterior derivative in R3, with which many people are more
comfortable.

Geometric interpretation of the gradient

The gradient of a function, abbreviated grad, looks a lot like the Jacobian
matrix. Clearly grad f (x) = [D f (x)] 1; the gradient is gotten simply by putting
the entries of the line matrix [D f (x)] in a column instead of a row. In particular,

grad f (x) . v = [Df (x)]-I; 6.8.10

the dot product of v with the gradient is the directional derivative in the di-

rection V.
If 0 is the angle between grad f (x) and v, we can write

grad f(x)-V= Igrad f(x)I IVIcos0, 6.8.11

which becomes I grad f (x) I cos B if v is constrained to have length 1. This is
maximal when 8 = 0, giving grad f (x) v' = I grad f (x) I. So we see that

The gradient of a function f at x points in the direction in which f
increases the fastest, and has a length equal to its rate of increase in that
direction.

Remark. Some people find it easier to think of the gradient, which is a vector,
and thus an element of Rn, than to think of the derivative, which is a line
matrix, and thus a linear function R' R. They also find it easier to think
that the gradient is orthogonal to the curve (or surface, or higher-dimensional
manifold) of equation f (x) - c = 0 than to think that ker[D f (x)] is the tangent
space to the curve (or surface or manifold).

Since the derivative is the transpose of the gradient, and vice versa, it may
not seem to make any difference which perspective one chooses. But the deriv-
ative has an advantage that the gradient lacks: as Equation 6.8.10 makes clear,
the derivative needs no extra geometric structure on 1k", whereas the gradient
requires the dot product. Sometimes (in fact usually) there is no natural dot
product available. Thus the derivative of a function is the natural thing to
consider.

But there is a place where gradients of functions really matter: in physics,

gradients of potential energy functions are force fields, and we really want to



By conservative we mean that
the integral on a closed path is
zero: i.e., the total energy ex-
pended is zero. The gravity force
field is conservative, but any force
field involving friction is not: the
potential energy you lose going
down a hill on a bicycle is never
quite recouped when you roll up
the other side.

In French the curl is known as
the rotationnel, and originally in
English it was called the rotation
of the vector field. It was to avoid
the abbreviation rot that the word
curl was substituted.

Curl probe: put the paddle
wheels at some spot of the fluid;
the speed at which it rotates will
he proportional to the component
of the curl in the direction of the
axle.

The flow is out if the box has
the standard orientation. If not,
the flow is in.
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think of force fields as vectors. For example, the gravitational force field is the
0

vector (I , which we saw in Equation 6.4.2: this is the gradient of the
-gm

height function (or rather, minus the gradient of the height function).

As it turns out, force fields are conservative exactly when they are gradi-
ents of functions, called potentials (discussed in Section 6.11). However, the
potential is not observable, and discovering whether it exists from examining
the force field is it big chapter in mathematical physics. A

Geometric interpretation of the curl

The peculiar mixture of partials that go into the curl seems impenetrable. We
aim to justify the following description.

The curl probe. Consider an axis, free to rotate in a bearing that you hold,
and having paddles attached, as in Figure 6.8.2.

We will assume that the bearing is packed with a viscous fluid, so that its
angular speed (not acceleration) is proportional to the torque exerted by the
paddles. If a fluid is in constant motion with velocity vector field F, then the
curl of the velocity vector field at x, (V x F)(x), is measured as follows:

The curl of a vector field at a point x points in the direction such that
if You insert the paddle of the curl probe with its axis in that direction,
it will spin the fastest. The speed at which it spins is proportional to the
magnitude of the curl.

Why should this be the case? Using Theorem 6.8.3 (b) and Definition 6.7.1
of the exterior derivative, we see that

= n ohz.l WF 6.8.12
8P:(h't,l )

IW,

measures the work of P around the parallelogram spanned by v, and v2 (i.e.,
over its oriented boundary). If vt and V2 are unit vectors orthogonal to the
axis of the probe and to each other. this work is approximately proportional to
the torque to which the probe will be subjected.

Theorems 6.7.7 and 6.8.3 have the following important consequence in 1R:3:

If f is a C2 function on an open subset U C 1P3, then curl grad f = 0.

Therefore, in order for a vector field to be the gradient of a function, its curl
must be zero. This may seem obvious in terms of a falling apple; gravity does
not exert any torque and cause the apple to spin. In more complicated settings,
it is less obvious; if you observed the motions of stars in a galaxy, you might be
tempted to think, there was some curl, but there isn't. (We will see in Section
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6.11 that having curl zero does not quite guarantee that a vector field is the

gradient of a function.)

The Laplacian is arguably the
most important differential opera-
tor in existence. In R3 it is

D2+Dz+D3;
it measures to what extent a graph
is "tight." It shows up in elec-
tromagnetism, relativity, elastic-
ity, complex analysis ... .

This theorem is also known as
the generalized Stokes's theorem,

to distinguish it from the special
case (surfaces in +3) discussed in

Section 6.10.

Names associated with the gen-
eralized Stokes's theorem include
Poincare (1895), Volterra (1889),
Brower (1906), and Elie Cartan,
who formalized the theory of dif-
ferential forms in the early 20th
century.

Geometric interpretation of the divergence

The divergence is easier to interpret than the curl. If you put together the
formula of Theorem 6.8.3 (c) and Definition 6.7.1 of the exterior derivative,
we see that the divergence of F at a point x is proportional to the flux of F
through the boundary of a small box around x, i.e., the net flow out of the box.
In particular, if the fluid is incompressible, the divergence of its velocity vector
field is 0: exactly as much must flow in as out. Thus, the divergence measures
the extent to which flow along the vector field changes the density.

Again, Theorems 6.7.7 and 6.8.3 have the following consequence:

If F is a C1 vector field on an open subset U C 1R3, then div curl F = 0.

Remark. Theorem 6.7.7 says nothing about

div grad f, grad div F, or curl curl

which are also of interest (and which are not 0); they are three incarnations of

the Laplacian. A

6.9 THE GENERALIZED STOKES'S THEOREM

We worked pretty hard to define the exterior derivative, and now we are going
to reap some rewards for our labor: we are going to see that there is a higher-
dimensional analog of the fundamental theorem of calculus, Stokes's theorem.
It covers in one statement the four integral theorems of vector calculus, which
are explored in detail in Section 6.10.

Recall the fundamental theorem of calculus:

Theorem 6.9.1 (Flrndamental theorem of calculus). If f is a Ct
function on a neighborhood of [a, b], then

f bf'(t)dt=f(b)-f(a) 6.9.1
a

Restate this as

l
f df=f f,

a.bl la,bi
6.9.2

i.e., the integral of df over an oriented interval is equal to the integral off over
the oriented boundary of the interval. In this form, the statement generalizes
to higher dimensions:
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Note that the dimensions in
Equation 6.9.3 make sense: if X
is (k + 1)-dimensional. 8X is k-
dimensional, and if Ip is a k form,
dcp is a (k + 1)-form, so dip can be
integrated over X, and p can be
integrated over i7X.

This is a wonderful theorem; it
is probably the best tool mathe-
maticians have for deducing global
properties from local properties.

The square S has side length 2,
so its area is 4.

Theorem 6.9.2 (Generalized Stokes's theorem). Let X be a compact
piece-with-boundary of a (k + 1)-dimensional oriented manifold M C l..".
Give the boundary tIX of X the boundary orientation, and let P be a k-form
defined on a neighborhood of X. Then

f = f dp.
8 X

6.9.3

This beautiful, short statement is the main result of the theory of forms.

Example 6.9.3 (Integrating over the boundary of a square). You apply
Stokes's theorem every time you use anti-derivatives to compute an integral: to
compute the integral of the 1-form f (x) dx over the oriented line segment [a, b],
you begin by finding a function g(x) such that dg(x) = f (x) dx, and then say

f
b

f (x) dx = f d9 = f 9 = 9(b) - 9(a) 6.9.4
a la.b) 8la,b)

This isn't quite the way it is usually used in higher dimensions, where "look-
ing for anti-derivatives" has a different flavor.

For instance, to compute the integral fo x dy-y dx, where C is the boundary
of the square S described by the inequalities ]x], ]y[ < 1, with the boundary
orientation, one possibility is to parametrize the four sides of the square (being
careful to get the orientations right), then to integrate x dy - y dx over all four
sides and add. Another possibility is to apply Stokes's theorem:

I xdy - ydx=f, (dxndy-dyAdx)=f 2dxndy=8. L 6.9.5
S

What is the integral over C of x dy + y dx? Check below.10

Example 6.9.4 (Integrating over the boundary of a cube). Let us
integrate the 2-form

P = (x-y2+z3)(dyAdz+dxndz+dxAdy) 6.9.6

over the boundary of the cube C. given by 0 < x, y, z < a. It is quite possible
to do this directly, parametrizing all six faces of the cube, but Stokes's theorem
simplifies things substantially.

Computing the exterior derivative of <p gives

4 =dxAdyAdz-2ydyAdxAds+3z2dzAdxAdy
= (1 + 2y + 3z2) dx n dy n dz,

10d(x dy +ydx = dx n dy + dy n dx = 0, so the integral is 0.

6.9.7
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Computing this exterior deriva-
tive is less daunting if you are alert
for terms that can be discarded.
Denote (x, - x2 + x3 - - - - ± xn )
by f. Then D, f = &x1, D2f =
-2x2 dx2, D3f = 3x3 dx3 and so
on, ending with ±nxn-' dx,,. For
the first, the only term of

Edxin...ndx;n...Adz

that survives is that in which i =
1, giving

For D2f, the only term of the sum
that survives is dx 1 Adx3 A... Ads",
giving -2x2 n dx2 ndx 1 n dx3 n n
dx"; when the order is corrected
this gives

2x2Adx, Adx2A...Adx".

In the end, all the terms are fol-
lowed simply by dx, A . A dx",
and any minus signs have become
plus.

This parametrization is "obvi-
ous" because x and y parametrize
the top of the cube, and at the top,
z=1.

so

I 10=1 (1+2y+3z2)dxndyndz
,C. o

J
¢ 6

f (1+2y+3z2)dxdydz
0 0 0

= a2([s]0 + [y21a +
[z310)

= a2(a + a2 -4- a3). A

6.9.8

Example 6.9.5 (Stokes's theorem: a harder example). Now let's try
something similar to Example 6.9.4, but harder, integrating

p=(x,-x2+x3-...txn) IFdxin...ndx;A ndx 6.9.9

over the boundary of the cube C. given by 0 < x3 < a,3 = 1,...,n.

This time, the idea of computing the integral directly is pretty awesome:
parametrizing all 2n faces of the cube, etc. Doing it using Stokes's theorem is
also pretty awesome, but much more manageable.
We know how to compute dp, and it comes out to

dw= 6.9.10

The integral of jx,'-1 dx1 A . . A dx" over C. is

fa... r jx 1 jd X(= al+n-1 6.9.11
0 0

so the whole integral is a" (l + a + + a -1). A
The examples above bring out one unpleasant feature of Stokes's theorem: it

only relates the integral of a k -1 form to the integral of a k-form if the former
is integrated over a boundary. It is often possible to skirt this difficulty, as in
the example below.

Example 6.9.6 (Integrating over faces of a cube). Let S be the union of
the faces of the cube C given by -1 < x, y, z < 1 except the top face, oriented

by the outward pointing normal. What is f s 4i p, where P _

[y]?z
The integral of 4ip over the whole boundary 8C is by Stokes's theorem the

integral over C of d' p = div F dx n dy n dz f= 3 dx A dy n dz, so

Jx4bp= fCdivPdxndyAdz=3 f dxndyndz=24. 6.9.12

Now we must subtract from that the integral over the top. Using the obvious

(3)parametrization (t) .- gives
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The matrix in Equation 6.9.13
is

[,P(-Y( t

You could also argue that all
faces must contribute the same
amount to the flux, so the top
must contribute 24/6 = 4.

FIGURE 6.9.1.
Computing the derivative of F.

I I .s 1 0

det t 0 1 Idsdtj = 4. 6.9.13
-I If I 1 0 0

So the whole integral is 24 - 4 = 20. A

Proof of the generalized Stokes's theorem.

Before starting the proof of the generalized Stokes's theorem, we want to sketch
two proofs of the fundamental theorem of calculus, Theorem 6.9.1. You proba-
bly saw the first in first-year calculus, but it is the other that will generalize to
prove Stokes's theorem.

First proof of the fundamental theorem of calculus

Set F(x) = fu f (t) dt. We will show that

F'(x) = f(x),
as Figure 6.9.1 suggests. Indeed,

1
rx+h rx

F'(x)=nIoh j f(t)dt - J f (t)dtl

1 =+h

= hi m h f f(t)dt = f(x).

6.9.14

6.9.15

hf(_)

(The last integral is approximately hf(x); the error disappears in the limit.)
Now consider the function

f(x) - f
x
f'(t)dt . 6.9.16

a

O 31 I2 I3

with deny. f'(x)

The argument above shows that its derivative is zero, so it is constant; evalu-
ating the function at x = a, we see that the constant is f (a). Thus

f(b) - f f'(t)dt=f(a). C1 6.9.17b
n

'.=b

FIGURE 6.9.2.
A Riemann sum as an approxi-

mation to the integral in Equation
6.9.18.

Second proof of the fundamental theorem of calculus.

Here the appropriate drawing is the Riemann sum drawing of Figure 6.9.2.
By the very definition of the integral,



You may take your pick as to
which proof you prefer in the one-
dimensional case but only the sec-
ond proof generalizes well to a
proof of the generalized Stokes's
theorem. In fact, the proofs are
almost identical.

FIGURE 6.9.3.
Although the staircase is very

close to the curve, its length is not
close to the length of the curve,
i.e., the curve does not fit well with
a dyadic decomposition. In this
case the informal proof of Stokes's
theorem is not enough.

We get the last equality in
Equation 6.9.22 because the

length of a little interval x,+I - x;
is precisely the original interval

b - a divided into m pieces.
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b

f(x) dx f(xi)(x,+I - xi), 6.9.18

where xo < xI < . . < x,,, decompose (a, b] into m little pieces, with a = xo
and b = x,,,.

By Taylor's theorem,

f(xi+I) ^ f(xi) + f'(xi)(xi+i - x,). 6.9.19

These two statements together give
b

f'(x) dx Y_ f'(xi)(xi+I - xi) f(xi+I) - f(xi). 6.9.20

In the far right-hand term all the interior xi's cancel:

m-I

Y_ f(xi+I)-f(x,) = f(xl)-f(xo)+f(x2)-f(XI)+...+f(x,,,)-f(xm-1),

i=o
6.9.21

leaving f(xm) - f(xo). i.e., f(b) - f(a).
Let us analyze a little more closely the errors we are making at each step;

we are adding more and more terms together as the partition becomes finer, so
the errors had better be getting smaller faster, or they will not disappear in the
limit. Suppose we have decomposed the interval into m pieces. Then when we
replace the integral in Equation 6.9.20 by the first sum, we are making m errors,
each bounded as follows. The first equality uses the fact that A(b - a) = fa A.

A b A

I J , f '(x) dx- f x;+I xi I = I - f (x) dxl

x +<_

sup If"I(x-xi)dx

x.+

=suplf"I f (x-xi)dx
x

6.9.22

sup if"I
(xi+1 - x,)2

" I (b - a)22 = sup If 2m2

We also need to remember the error term from Taylor's theorem, Equation
6.9.19, which turns out to be about the same. So all in all. we made m errors,
each of which is < CI /m2, where Cr is a constant that does not depend on m.
Multiplying that maximal error for each piece by the number m of pieces leaves
an m in the denominator, and a constant in the numerator, so the error tends
to 0 as the decompositions becomes finer and finer. 0



We find this argument convinc-
ing, but it is not quite rigorous.
For a rigorous proof, see Appendix
A.22. The problem with this infor-
mal argument is that the bound-
ary of X does not necessarily fit
well with the boundaries of the lit-
tle cubes, as illustrated by Figure
6.9.3.

Itt

support

of p

FIGURE 6.9.4.
The integral of dap over U_

equals the integral of sp over the
boundary of U_; we will see in
Equation 6.9.34 that this is equal
to the integral of p over E.

In this case, the easy proof
works because the boundary of X
fits perfectly with the boundary of
the dyadic cubes.
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An informal proof of Stokes's theorem

Suppose you decompose X into little pieces that are approximated by oriented
(k + 1)-parallelograms P°:

P° _,(Vl.i. V2.{,... . Vk+I,i)

Then

f dv rd'P(P°) - Ff L 'PX i i 8P° 8X

6.9.23

6.9.24

The first approximate sign is just the definition of the integral; the tt becomes
an equality in the limit as the decomposition becomes infinitely fine. The second
approximate sign comes from our definition of the exterior derivative

When we add over all the P,°, all the internal boundaries cancel, leaving

fax W.
As in the case of Riemann sums, we need to understand the errors that are

signaled by our signs. If our parallelograms P, have side c, then there are
approximately a-(k+I) such parallelograms. The errors in the first and second
replacements are of order Ek+2. For the first, it is our definition of the integral,
and the error becomes small as the decomposition becomes infinitely fine. For
the second, from the definition of the exterior derivative

d cp(P,°) = fo :P + terms of order (k + 2), 6.9.25
8

so indeed the errors disappear in the limit. 0

A situation where the easy proof works

We will now describe a situation where the proof in Section 6.9 really does work.
In this simple case, we have a (k - 1)-form in 1Rk, and the boundary of the piece
we will integrate over is simply the subspace E C JRk of equation xt = 0. There
are no manifolds; nothing curvy. Figure 6.9.4 illustrates Proposition 6.9.7.

Proposition 6.9.7. Let U be a bounded open subset of R', and let U_ be
the subset of U where the first coordinate is non-positive (i.e., xt < 0). Give
U the standard orientation of 1l' (by det), and give the boundary orientation
to 8U_ = U n E. Let V be a (k - 1)-form on fl of class C2, which vanishes
identically outside U. Then

f +o = f d;2. 6.9.26
aU_ U_

Proof. We will repeat the informal proof above, being a bit more careful about
the bounds. Choose e > 0, and denote by 1Rk the subset of RA, where xt > 0.



When we evaluate do on C
in Equation 6.9.28, we are think-
ing of C as an oriented parallel-
ogram, anchored at its lower left-
hand corner.

One important advantage of al-
lowing boundaries to have corners,
rather than requiring that they be
smooth, is that cubes have cor-
ners. Thus they are assumed un-
der the general theory, and do not
require separate treatment.
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Recall from the proof of Theorem 6.7.3 (Equation A20.15) that there exists"
a constant K and b > 0 such that when jhj < b,

d,G(P. (he', , ...
he"k))

- f ,p I < Khk+'. 6.9.27
aP (hR,,...,hbk)

That is why we required <p to be of class C2, so that the second derivatives
of the coefficients of W are bounded. Take the dyadic decomposition DN(lRk),
where h = 2'N. By taking N sufficiently large, we can guarantee that the
difference between the integral of d(p over U_ and the Riemann sum is less than
e/2:

<c/2

Now we replace the k-parallelograms of Equation 6.9.27 by dyadic cubes,
and evaluate the total difference between the exterior derivative of V over the
cubes C, and ,p over the boundaries of the C. The number of cubes of DN (IRS )
that intersect the support of rp is at most L2kN for some constant L, and since
h = 2-N, the bound for each error is now K2-r'(k+t) so

dcp(C) - f I ,'k < `kN LK2-N.
CEDN(itk) CE DN(tk) No. of cubes bound for

each error

I&p E d,p(C)I <
U- CEDN(2k)

6.9.29
This can also be made < e/2 by taking N sufficiently large-to be precise,

by taking

N> log2LK-loge
log 2

Putting these inequalities together, we get

dp E dw(C) I+ do(C) - I I pI
CEDN(Hk) CEDN(Rk) CEDNRk) C

so in particular, when N is sufficiently large we have

If fipIU= CEDN(tk)

Finally, all the internal boundaries in the sum

6.9.28

6.9.30

5 E,

6.9.31

5 e, 6.9.32

6.9.33

"The constant in Equation A20.15 (there called C, not K), comes from Taylor's
theorem with remainder, and involves the suprema of the second derivatives.

p
CEDN(it DC



6.10 The Integral Theorems of Vector Calculus 563

Of course forms can be inte-
grated only over oriented domains,
so the E in the third term of Equa-
tion 6.9.34 must be oriented. But
E is really L&k-', with coordinates
x2.... x.,, and the boundary orien-
tation of IIBk is the standard orien-
tation of 1Rk-'. In Figure 6.9.4, it
is shown as the line oriented from
bottom to top.

Using a parametrization, The-
orem 6.10.1 can easily be reduced
to the ordinary fundamental the-
orem of calculus, Theorem 6.9.1,
which it is if n = 1.

We could also call this the fun-
damental theorem for integrals
over curves; "line integrals" is
more traditional.

Yes, we do need both bounded's
in Theorem 6.10.2. The exterior
of the unit disk is bounded by the
unit circle, but is not bounded.

cancel, since each appears twice with opposite orientations. The only bound-
aries that count are those in 1k'1. So (using C' to denote cubes of the dyadic
composition of;gk_1)

f E f
CEDN(Q") 8C C'EDN(E) c' E 8U_

6.9.34

(We get the last equality because W vanishes identically outside U, and therefore
outside U1.) So

< E. 6.9.35

Since a is arbitrary, the proposition follows.
If

4-f P
8U_

6.10 THE INTEGRAL THEOREMS OF VECTOR CALCULUS

The four forms of the generalized Stokes's theorem that make sense in ig2
and R3 don't say anything that is not contained in that theorem, but each is
of great importance in many applications; these theorems should all become
personal friends, or at least acquaintances. They are used everywhere in elec-
tromagnetism, fluid mechanics, and many other fields.

Theorem 6.10.1 (Fundamental theorem for line integrals). Let C
be an oriented curve in 1R2 or R3 (or for that matter any R"), with oriented
boundary (P b* - 4), and let f be a function defined on a neighborhood of
C. Then

fcdi=f(b)-f(a)- 6.10.1

Green's theorem and Stokes's theorem

Green's theorem is the special case of Stokes's theorem for surface integrals
when the surface is flat.

Theorem 6.10.2 (Green's theorem). Let S be a bounded region of
1R2, bounded by a curve C (or several curves C), carrying the boundary
orientation as described in Definition 6.6.12. Let P bea vector field defined
on a neighborhood of S. Then

f dW,, =
fo

WP, or f dWi _ 2 fc, Wi,. 6.10.2



There is a good deal of conten-
tion as to who should get credit for
these important results. The Rus-
sians attribute them to Michael
Ostrogradski, who presented them
to the St. Petersburg Academy of
Sciences in 1828. Green published
his paper, privately, in 1828, but
his result was largely overlooked
until Lord Kelvin rediscovered it
in 1846. Stokes proved Stokes's
theorem, which he asked on an ex-
amination in Cambridge in 1854.
Gauss proved the divergence the-
orem, also known as Gauss's the-
orem.

The curve C in Theorem 6.10.4
may well consist of several pieces
C;.
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This is traditionally written

J (Dig-D2f)dxdy=J fdx+gdy. 6.10.3
s

To see that the two versions are the same, write Wp =f (y) dx + g (y) dy
and use Theorem 6.7.3 to compute its exterior derivative:

dWp = d(fdx + gdy) = df A dx + dg A dy
=(D,fdx+D2fdy)Adx+(Digdx+D2gdy)Ady. 6.10.4

= D2f dyAdx+DlgdxAdy = (Dig-D2f)dxAdy.

Example 6.10.3 (Green's theorem). What is the integral

ID
2xy dy + x2 dx, 6.10.5

where U is the part of the disk of radius R centered at the origin where y ? 0,
with the standard orientation?

This corresponds to Green's theorem, with f (y) = x2 and g (y) = 2xy,
so that Dig = 2y and D2f = 0. Green's theorem says

flu
2xydy+x2dx= ru(Dig -D2f)dxdy=Ju2ydxdy 6.10.6

r rR(2rsin0)rdrdO= 2R3 sin8dO= 4R3
-Joxf. 3 f 3

What happens if we integrate over the boundary of the entire disk?12

Theorem 6.10.4 (Stokes's theorem). Let S be an oriented surface in
R3, bounded by a curve C that is given the boundary orientation. Letup be
a 1-form field defined on a neighborhood of S. Then

f dp= f ' 6.10.7
S

Again, let's translate this into classical notation. First, and without loss of
generality, we can write w = Wp, so that Theorem 6.10.4 becomes

ZdWF'_ f curlP'_Ef W. 6.10.8

12It is 0, by symmetry: the integral of 2y over the top semi-disk cancels the integral
over the bottom semi-disk.
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This still isn't the classical notation. Let N be the normal unit vector field
on S defining the orientation, and f be the unit vector field on the Ci defining
the orientation there. Then

fJJ (curl F(x)) N(x) Jd2xl _ J F(x) T(x) [d'xl. 6.10.9
C

S

The NId2xI in the left-hand
side of Equation 6.10.9 takes the
parallelogram P (v,w) and re-
turns the vector

N(x)[v x w1,

since the integrand Jd2xI is the
element of area; given a paral-
lelogram, it returns its area. i.e.,
the length of the cross-product
of its sides. When integrating
over S, the only parallelograms
P. (v, w) we will evaluate the in-
tegrand on are tangent to S at x,
and with compatible orientation,
so that 7x* is a multiple of N(x),
in fact

v"xw=IV xw[N(x),

since N(x) is a vector of unit
length and perpendicular to the
surface. So

curlF(x) N(x) Id2x[
= curl F(x)) (vl x 92)
= det[curl F(x), VI,'72[,

i.e., the flux of a vector field P
acting on 91 and V2.

Exercise 6.5.1 shows that for
appropriate curves, orienting by
decreasing polar angle means that
the curve is oriented clockwise.

The left-hand side of Equation 6.10.9 is discussed in the margin. Here let's
compare the right-hand sides of Equations 6.10.8 and 6.10.9. Let us set F =

F2 An the right-hand side of Equation 6.10.8, the integrand is Wp = F1 dx+
F3[Fl]

F2 dy + F3 dz; given a vector 9, it returns the number F1v1 + F2V2 + F3v3.
In Equation 6.10.9, T(x) Jd'xI is a complicated way of expressing the identity:

given a vector v", it returns T(x) times the length of v. Since T(x) is a unit
vector, the result is a vector with length J'9 , tangent to the curve. When
integrating, we are only going to evaluate the integrand on vectors tangent to
the curve and pointing in the direction of T, so this process just takes such a
vector and returns precisely the same vector. So F(x) T(x) Id'xl takes a vector
v and returns the number

F1 vl

[d'x[)('9) = F2 V2 = F1v1+F2v2+F3v3 = WF(v). 6.10.10
F3 v3

Example 6.10.5 (Stokes's theorem). Let C be the intersection of the
cylinder of equation x2 + y2 = 1 with the surface of equation z = sin xy + 2.
Orient C so that the polar angle decreases along C. What is the work over C
of the vector field

Flyl=Lxxl? 6.10.11

It's not so obvious how to visualize C, much less integrate over it. Stokes's the-
orem says there is an easier approach: compute the integral over the subsurface
S consisting of the cylinder x2 + 92 = I bounded at the top by C and at the
bottom by the unit circle C1 in the (x, y)-plane, oriented counterclockwise.

By Stokes's theorem, the integral over C plus the integral over C1 equals
the integral over S, so rather than integrate over the irregular curve C, we will
integrate over S and then subtract the integral over C1. First we integrate over
S:

IC W., + k WF' - f <ur1, = J o 1

1

0

1-3&2

_-0. 6.10.12
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Since C is oriented clockwise,
and C, is oriented counterclock-
wise, C + C1 form the oriented
boundary of S. If you walk on
S along C, in the clockwise di-
rection, with your head pointing
away from the z-axis, the surface
is to your left; if you do the same
along C,, counterclockwise, the
surface is still to your left.

What if both curves were ori-
ented clockwise? Denote by these
curves by C+ and C,', and denote
by C- and C the curves oriented
counterclockwise. Then (leaving
out the integrands to simplify no-
tation) we would have

41
but

so fc+Wp remains unchanged.
If both were oriented counter-

clockwise, so that C did not have
the boundary orientation of S, we
would have

instead of

W" WP - ?

we have

7
W, = fc -

Wi = 41r.

This last equality comes from the fact that the vector field is vertical, and has
no flow through the vertical cylinder. Finally parametrize Ct in the obvious
way:

[cost
'

6.10.13
sin t

which is compatible with the counterclockwise orientation of C1, and compute

f 11,- = r [(sin t)31 r-sintl
dt

C, F J/0 Cos t ` Cost J

= )v(-sint)4+costtdt=4rr+a=4rr.
0

So the work over C is

6.10.14

J
WF 6.10.15

C

The divergence theorem

The divergence theorem is also known as Gauss's theorem.

Theorem 6.10.6 (The divergence theorem). Let M be a bounded
domain in IlY3 with the standard orientation of space, and let its boundary
OM be a union of surfaces S;, each oriented by the outward normal. Let
be a 2-form field defined on a neighborhood of M. Then

fM41, 0 6.10.16

Again, let's make this look a bit more classical. Write p = $p, so that
dip = d4s = pdj, p, and let N be the unit outward-pointing vector field on the
Si; then Equation 6.10.16 can be rewritten

If divPdxdydz => f f i . I Id2x1. 6.10.17
M S;

When we discussed Stoker's theorem, we saw that F F V, evaluated on a
parallelogram tangent to the surface, is the same thing as the flux of F' evaluated
on the same parallelogram. So indeed Equation 6.10.17 is the same as

f gyp. 6.10.18

Remark. We think Equations 6.10.9 and 6.10.17 are a good reason to avoid
the classical notation. For one thing, they bring in N, which will usually involve
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dividing by the square root of the length; this is messy, and also unnecessary,
since the id2xl term will cancel with the denominator. More seriously, the
classical notation hides the resemblance of this special Stokes's theorem and
the divergence theorem to the general one, Theorem 6.9.2. On the other hand,
the classical notation has a geometric immediacy that really speaks to people
who are used to it. A

Example 6.10.7 (Divergence theorem). Let Q be the unit cube. What is
x2yl

the flux of the vector field 23
2 J

through the boundary of Q if Q carries
y

the standard orientation of lit3 and the boundary has the boundary orientation?
The divergence theorem asserts that

y P Z,y (2xy - 2z)Jd3xj. 6.10.19
Q I-2y:J Q dlvl _2ys1 - "'`

x'y' s'ya

This can readily be computed by Fubini's theorem:
i r1 i

I Jo f (2xy-2z)dxdydz 6.10.20

Example 6.10.8 (The principle of Archimedes). Archimedes is said to
have been asked by Creon, the tyrant of Syracuse, to determine whether his
crown was really made of gold. Archimedes discovered that by weighing the
crown when suspended in water, he could determine whether or not it was coun-
terfeit. According to legend, he made the discovery in the bath, and proceeded
to run naked through the streets, crying "Eureka" ("I have found it").

The principle he claimed is the following: A body immersed in a fluid receives
a buoyant force equal to the weight of the displaced fluid.

We do not understand how he came to this conclusion, and the derivation
we will give of the result uses mathematics that was certainly not available to
Archimedes.

The force the fluid exerts on the immersed body is due to pressure. Suppose
that the body is M, with boundary 8M made up of little oriented parallelograms
P,°. The fluid exerts a force approximately

p(x;)Area (P? )iii, 6.10.21

where n' is an inner pointing unit vector perpendicular to P° and x; is a point
of P°; this becomes a better and better approximation as P° becomes small
so that the pressure on it becomes approximately constant. The total force
exerted by the fluid is the sum of the forces exerted on all the little pieces of
the boundary.

Thus the force is naturally a surface integral, and in fact is really an integral
of a 2-form field, since the orientation of

8M matters. But we can't think of it



568 Chapter 6. Forms and Vector Calculus

as a single 2-form field: the force has three components, and we have to think

How did Archimedes find this
result without the divergence the-
orem? He may have thought of
the body as made up of little
cubes, perhaps separated by little
sheets of water. Then the force ex-
erted on the body is the sum of
the forces exerted on all the little
rubes. Archimedes's law is easy to
see for one cube of side s, where
the vertical component of top of
the cube is z. which is a negative
number (z = 0 is the surface of the
water).

The lateral forces obviously
cancel, and force on the top is ver-
tical, of magnitude s2gµz, and the
force on the bottom is also verti-
cal, of magnitude -s2g s(z - s), so
the total force is s'µg, which is
precisely the weight of a cube of
the fluid of side s.

If a body is made of lots of little
cubes separated by sheets of wa-
ter, all the forces on the interior
walls cancel, so it doesn't matter
whether the sheets of water are
there or not, and the total force
on the body is buoyant, of magni-
tude equal to the weight of the dis-
placed fluid. Note how similar this
ad hoc argument is to the proof of
Stokes's theorem.

of each of them as a 2-form field. In fact, the force is

r 10.41 P'e,
f m /.'

aIL f gM P4ea

since

l det(et,vt,'V2]

J

(P,'(a1, v2)) = P(x) det[e2, Vi, V21
P4% det[e3, -71, v21

=P(x)(it X 'V2) =P(x)Area(Px(Vt,'2))ii.

6.10.22

6.10.23

In an incompressible fluid on the surface of the earth, the pressure is of the form
p(x) = -µgz, where s is the density, and g is the gravitational constant. Thus
the divergence theorem tells us that if 8M is oriented in the standard way, i.e.,
by the outward normal, then

+ f M pyz , l rfM P3 (µ9=e )I

Total force = z$ = T 10 246
I M µg ej

J

I . p3.1µ9=ex)
J

.
..

L f" Ftgz4e', L fM P .(, 9=es)

Th die vergences are:

V (ugzet) = V (Agze2) = 0 and O (sgz,63) = µg. 6.10.25

Thus the total force is

0
0 6.10.26

fm pµ 9

and the third component is the weight of the displaced fluid; the force is oriented
upwards.

This proves the Archimedes principle. A

6.11 POTENTIALS

A very important question that constantly comes up in physics is: when is a
vector field conservative? The gravitational vector field is conservative: if you
climb from sea level to an altitude of 500 meters by bicycle and then return to
your starting point, the total work against gravity is zero, whatever your actual
path. Friction is not conservative, which is why you actually get tired during
such a trip.

A very important question that constantly comes up in geometry is: when
does a space have a "hole" in it?

We will see in this section that these two questions are closely related.



6.11 Potentials 569

Another way of stating inde-
pendence of path is to require that
the work around any closed path
be zero; if -yr and y2 are two paths
from x toy, then yr --y2 is a closed
loop. Requiring that the integral
around it he zero is the same as
requiring that the works along yr
and rye he equal. It should be clear
why under these conditions the
vector field is called conservative.

Why obvious? We are trying to
undo a gradient. i.e., a derivative,
so it is natural to integrate.

Remember, if f is a function on
R3 and f is a vector field, then
df = W.e f. So if we show that
df = WW,, we will have shown
that F = Of, i.e., that F is the
gradient of the function f.

Conservative vector fields and their potentials

Asking whether a vector field is conservative is equivalent to asking whether it
is the gradient of a function.

Theorem 8.11.1. A vector field is the gradient of a function if and only if
it is conservative: i.e., if and only if the work of the vector field along any
path depends only on the endpoints, and not on the oriented path joining
them.

Proof. Suppose f is the gradient of a function f: F' = of. Then by Theorem
6.9.2, for any parametrized path

ry[a,b]-+' 6.11.1

we have (Theorem 6.10.1)

410,b]) Wo f = f (7(b)) - f (y(a)) 6.11.2

Clearly, the work of a vector field that is the gradient of a function depends

only on the endpoints: the path taken between those points doesn't matter.

It is a bit harder to show that path independence implies that the vector
field is the gradient of a function. First we need to find a candidate for the
function f, and there is an obvious choice: choose any point xo in the domain
of F, and define

f(x)=J WF, 6.11.3
Y(=)

where y (x) is an arbitrary path from xo to x: our independence of path con-
dition guarantees that the choice does not matter.

Now we have to see that F = Of, or alternatively that WF = df. We know
that

df ( (V)) = (f (x + by") - f (x)), 6.11.4

and (remembering the definition of f in Equation 6.11.3) f (x + hv') - f (x) is
the work of F first from x back to xo, then from xo to x+h' W. By independence
of path, we may replace this by the work from x to x + by along the straight
line. Parametrize the segment in the obvious way (by y : t - x + tv, with
0 < t < h) to get

h

dj(Px(v")) = lim ( dtl = f(X) v', 6.11.5

F(7(t)) Y M

i.e., df = 41F.
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Theorem 6.11.1 provides one
answer, but it isn't clear how to
use it; it would mean checking the
integral along all closed paths. (Of
course you definitely can use it to
show that a vector field is not a
gradient: if you can find one closed
path along which the work of a
vector field is not 0, then the vec-
tor field is definitely not a gradi-
ent.

Definition 6.11.2 (Potential). A function f such that grad f = F' is called

a potential of P.

A vector field has more than one potential, but pretty clearly, two such
potentials f and g differ by a constant, since

grad(f - g)=gradf - grad g0; 6.11.6

the only functions with gradient 0 are the constants.

So when does a vector field have a potential, and how do we find it? The
first question turns out to be less straightforward than might appear. There
is a necessary condition: in order for a vector field f to be the gradient of a
function, it must satisfy

curlP=0. 6.11.7

This follows immediately from Theorem 6.7.7: ddf = 0. Since df = Wo f, then

ifF=Of,
dWps=' curlF=ddf = 0; 6.11.8

the flux of the curl of f can be 0 only if the curl is 0.
Some textbooks declare this condition to be sufficient also, but this is not

true, as the following example shows.

Example 6.11.3 (Necessary but not sufficient). Consider the vector field

-y
1

on t3 with the z-axis removed. Then

6.11.9

6.11.10

6.11.11

But f cannot be written tf for any function f : (1R3 - z-axis) -' R. Indeed,
using the standard parametrization

F= x2+yz
1

x
0

1

0
yD1 PTY-7 -D2-.2+yl

and the third entry gives

(x2 + y2) - 2x2
(x2 + y2) - 2y2

(x2 + y2)2 + (x2 yy2)2 = 0*

cost-Y(t) sin t
0

6.11.12



Recall (Equation 5.6.1) that
the formula for integrating a work
form over an oriented surface is

LWr=IbF(y(t)).y'(t)dt.
c
The unit circle is often denoted

S2.

A pond is convex if you can
swim in a straight line from any
point of the pond to any other.
A pond with an island is never
convex.
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the work of f around the unit circle oriented counterclockwise gives

!2x sin t 1 [-sint
W -F

o
= J 1 I cos t I cost dt = 27r. 6.11.13

coszt+sin2t 0 0

7'(=)

This cannot occur for work of a conservative vector field: we started at one

point and returned to the same point, so if the vector field were conservative,
the work would be zero.

We will now play devil's advocate. We claim

F' = 0 (arctan y) 6.11.14
2

and will leave the checking to you as Exercise 6.11.1. Why doesn't this con-

tradict the statement above, that f cannot be written If? The answer is
that

arctan
y

6.11.15
x

is not a function, or at least, it cannot be defined as a continuous function on
iR3 minus the z-axis. Indeed, it really is the polar angle 0, and the polar angle
cannot be defined on R minus the z-axis; if you take a walk counterclockwise
on a closed path around the origin, taking your polar angle with you, when you
get back where you started your angle will have increased by 2a. 6

Example 6.11.3 shows exactly what is going wrong. There isn't any problem
with F, the problem is with the domain. We can expect trouble any time we
have a domain with holes in it (the hole in this case being the z-axis, since F
is not defined there). The function f such that If = F is determined only up
to an additive constant, and if you go around the hole, there is no reason to
think that you will not add on a constant in the process. So to get a converse
to Equation 6.11.7, we need to restrict our domains to domains without holes.
This is a bit complicated to define, so instead we will restrict them to convex
domains.

Definition 6.11.4 (Convex domain). A domain U c 1R° is convex if for
any two points x and y of U, the straight line segment Ix, yJ joining x to y
lies entirely in U.

Theorem 6.11.5. If U C R3 is convex, and if is a vector field on U, then
f is the gradient of a function f defined on U if and only if curl f = 0.
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Proof. The proof is very similar to the proof of Theorem 6.11.1. First we need

to find a candidate for a function f, and there is again an "obvious" choice.

Choose a point xo E U, and set

f(x)=J WW, 6.11.16
y(x)

We have been considering the
question, when is a 1-form (vector
field) the exterior derivative (gra-
dient) of a 0-form (function)? The
Poincar6 lemma addresses the
general question, when is a k-form
the exterior derivative of a (k -1)-
form? In the case of a 2-form on
1R4, this question is of central im-
portance for understanding elec-
tromagnetism. The 2-form

WEAcdt+Oy,

where E is the electric field and B
is the magnetic field, is the force
field of electromagnetism, known
as the Faraday.

The statement that the Fara-
day is the exterior derivative of
a 1-form ensures that the electro-
magnetic potential exists; it is the
1-form whose exterior derivative is
the Faraday.

Unlike the gravitational poten-
tial, the electromagnetic potential
is not unique up to an additive
constant. Different 1-forms exist
such that their exterior derivative
is the Faraday. The choice of 1-
form is called the choice of gauge;
gauge theory is one of the domi-
nant ideas of modern physics.

where this time -i(x) is specifically the straight line joining xn to x. Note that
this is possible because U is convex; if U were a pond with an island, the straight
line might go through the island (where the vector field is undefined).

Now we need to show that Vf = F. Again,

mI(f(x+ hv')-f(x)), 6.11.17

and f (x + hv) - f (x) is the work of f along the path that goes straight from
x to xo and then straight on to x + W. We wish to replace this by the path
that goes straight from x to x+hv'. We don't have path independence to allow
this, but we can do it by Stokes's theorem. Indeed, the three oriented segments
[jr, xo], (x0, x + hv], and [x + hv", x] together bound a triangle T, so the work of
F around the triangle is equal to zero:

We can now rewrite Equation 6.11.17:

6.11.18

V f (x) v" = lim - WF + W,. = lim
h-.0 h h-s h JJx,x+hO]

-1(x) f(x+h8)
6.11.19

The proof finishes as above (Equation 6.11.5).

Example 6.11.6 (Finding the potential of a vector field). Let us carry
out the computation in the proof above in one specific case. Consider the vector
field

Fly yI= x('ry )J 6.11.20

whose curl is indeed 0:
Di y2/2+yz r x-x

I

rr0llpxF= D2 x x(y+z) =[ -y+y =I0J. 6.11.21
D3 xy y+z-(y+z) 0

Since f is defined on all of R3, which is certainly convex, Theorem 6.11.5 asserts
that F = Vf, where

f(a)=f W1, for rya(t) = ta, 0 < t < 1, 6.11.22

a
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Exercises for Section 6.1:

Forms as Integrands
Over Oriented Domains

In Exercise 6.1.1, parts (f), (g),
(h), f is a C' function on a neigh-
borhood of (0, 1].

this leads to

b ,i.e., -y, is a parametrization of the segment joining 0 to a. If we set a =
(a)

c

f (a) [tb)112+t2bC
(b/II = f

tb+tc)to

[b'] dt
c ° t2ab c 6.11.23

r 3
= 31 (362/2 + 3ab) = ab2/2 + abc.

0

This means that
fx x2f y = 2 + xyz, 6.11.24

z

and it is easy to check that t f = F.

6.12 EXERCISES FOR CHAPTER SIX

6.1.1 An integrand should take a piece of the domain, and return a number,
in such a way that if we decompose a domain into little pieces, evaluate the
integrand on the pieces and add, the sums should have a limit as the decom-
position becomes infinitely fine. What will happen if we break up (0, 1] into
intervals [x x;+1], for i = 0,1, ... , n - 1, with 0 = x° < xl < < x = 1,
and assign one of the numbers below to each of the [x;, xi+i]?

(a) xi+i - xil2 (b) sin lx, - xi+Il (c) Ix; - xi+il

(d) (xi+1)2 - (x)21 (e) I(x;+t)3 - (x031 (f) If(x;+i) - f(x;)I
(g)

f((x;+1)2)

- f(x2)I (h)

I(f(xi+1))2

- (f(x;))2I (i) x;+I - xiI log xi+I - xiI

6.1.2 Same exercise as 6.1.1 but in E2, the integrand to be integrated over
[0,112; the integrand takes a rectangle a < x < 6,/c < y < d and returns the
number

Exercises for Section 6.2: (a) lb - ale Ic --dl (b) Iac - bell (c) (ad - be)2

Forms on R"
6.2.1 Complete the proof of Proposition 6.2.11.

6.2.2 Compute the following numbers:

1 0

(a) dx3 n dxz Pp
3 (b) exdy\ (2l (U)

1
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1 0 1

2 1 -1( 1Ado. P°2d Adx(c) xl x3 2 (0 3 -1 -1

0

4 1 0 J

6.2.3 Compute the following functions:

(a) sin(x4) dx3 A dx2

01

-p°
3

1 1) (b) e=dy

a/

(2)(.2

) 4 1 \
S.

1 0 1

(c)xlelldx3Adx2Adxl 1p0r 2 1 -1

=31 4 1 0

I4

6.2.4 Prove Proposition 6.2.16.

6.2.5 Verify that Example 6.2.14 does not commute, and that Example 6.2.15
does.

Exercises for Section 6.3: 6.3.1 Set up each of the following integrals of form fields over parametrized
Integration Over domains as an ordinary multiple integral, and compute it.

Parametrized Domains sin t l
(a) fy(r) xdy + ydz, where I = [-1,1), and -t(t) = cost)

u2

(b) fy(U) xdy Adz, where U = [-1,1) x [-1,1), and y \ v / = u(+).
3

(c) fy(U)11dx2Adx3+x2dx3Adx4,where U={(v1Iuv
ll\ /

0<u,v; u+v<2

/ \
111111

And -y I
V

I
u2 + v2

\ / u-v
log(u +V + 1)

{()
(d) fy(U) x2 dxl Adx3 Adx4, where U = I0 < u, v, w; u + v + w < 3

W
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uv
u (U2 UVwz

andry \v =
U

w w

domains as an ordinary multiple integral.
6.3.2 Set up each of the following integrals of form fields over parametrized

t3

(a) f,(,) y2dy + x2dz, where I = [0, a] and -f (t) = I t2 + 1
t2-1

u2 v

(b) sin y2 dx A dz, where U = [0, a] x [0, b], and -y (v) uv
v

(c) f. (U) (x1 + x4) dx2 A dx3, where U = { (v) I Iv, < -:5 '1'
eu

(u a-Dand -Y \ v) cos u
sin v

(d) f7(U) x2x4 dx1 A dx3 A dx4, where

+v
( \

}and

lU=Cv
I I(w-1)2>u2+v2, 0w<1 ,ry (v I = wU-V

t wll wl w-v

Exercises for Section 6.4: 6.4.1 (a) Write in coordinate form the work form field and the flux form field
Form Fields and Vector Calculus x2 x2

of the vector fields F = f xy 1 and F = xy l .

(b) For what vector field P is each of the following 1-form fields in 1183 the

work form field W1?
(i) xydx-y2dz; (ii) ydx+2dy-3xdz.

(c) For what vector field P is each of the following 2-form fields in II83 the
flux form field 4'p?

(i) 2z4dx Ady+3ydy Adz-x2zdx Adz; (ii) x2x3dx Adz-xjx3dyAdz.

6.4.2 What is the work form field W,(P,(H)) of the vector field
x X2,,

z
= x-zy , at a =

(0),
I evaluated on the vector u' _

-1

11 ?

12
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x1 x
6.4.3 What is the flux form field F. of the vector field F (YO = y2

zI/ xy
0

evaluated on P° 0 . 1 at the point x = 2 ?

( 0

6.4.4 Evaluate the work of each the following vector fields F' on the given
1-parallelograms:

r 1
(a) F = [x] on Pjtl [32]

(h) [sinxy] on [:1
J (\tJ

2 sin yyJ
(c) F=

z

on P°t
_3J

(d) F= I cos(e + z)
J

on PI°
OjJ oJ

x 0

6.4.5 What is the density form of the function f y = xy + z2, evaluated
zX

[11 0
at the point x =

1

on the vectors 0 ,

[2]
1 , and [1]?

X

y2 fx
6.4.6 Given the vector field F

z

Y I = I xx+ zJ , the function f I y) = xz+
1 L `z

1zy, the point x = 1 and the vectors v'1 =

L

10J , v2 _

L

O 1 ' ",I=

-1 LJ LJ L Jhw at is

(1) the work form Wp(P;(i 1))?

(2) the flux form 4ig(Px(vl, V2))?

(3) the density form pf(Px(VI,'V2iv"3))?

6.4.7 Evaluate the flux of each the following vector fields P on the given

2-parallelograms:

(a) P = [Y] on P 1 0X ) (['] , [_ -0])
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sin y 1 0 l 1

(b)F= I cos(x+z) on P" e I I 1J , 2

J
L e \ L0 0

Exercises for Section 6.5:

Orientation

a)

b)

c)

d)

FIGURE 6.5.7.
Surfaces for Exercise 6.5.7:

which are orientable?

6.4.8 Verify that det[F'(x), v, , ... , v _ 1 ] is an (n. - 1)-form field, so that
Definition 6.4.10 of the flux form on 1" makes sense.

6.5.1 (a) Let C C R2 be the circle of equation x2 + y2 = 1. Find the unit

vector field f describing the orientation "increasing polar angle."

(b) Now do the same for the circle of equation (x - 1)2 + y2 = 4.

(c) Explain carefully why the phrase "increasing polar angle" does not de-

scribe an orientation of the circle of equation (x - 2)2 + y2 = 1.

6.5.2 Prove that if a linear transformation T is not one to one, then it is not
orientation preserving or reversing.

6.5.3 In Example 6.5.16, does dx1 A dye define an orientation of S? Is it the
same as the orientation given by dxl n dyi?

6.5.4 Show that the ad hoc definitions of orientation-preserving parametriza-
tions (Definitions 6.5.11 and 6.5.12) are special cases of Definition 6.5.15.

6.5.5 Let z, = x, + iy1, z2 = x2 + iy2 be coordinates in C2. Consider the
surface S in C2 parametrized by

7 : z (e z
) ,

z = x + iy,IzI < 1,Iy[ < 1

which we will orient by requiring that C be given the standard orientation, and
that ry be orientation preserving. What is

1 dx1 n dy, + dy, n dx2 + dx2 n dye ?
Js

6.5.6 Let z, = x1 + iy1, z2 = x2 + iy2 be coordinates in C2.

Compute the integral of dxl n dy, + dy, A dx2 over the part of the locus of
equation z2 = zi where Iz,I < 1.

6.5.7 Which of the surfaces in Figure 6.5.7 are orientable?

6.5.8 (a) Let X C R" be a manifold of the form X = f-1(0) where f : H2"
R is a C' function and [D f (x)] 0 for all x E X. Let be elements
of T. (X). Show that

/ \1Im(v1i ... det(Of(x), vi, ... v"-1 1

defines an orientation of X.
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(b) What is the relation of this definition and the definition of the boundary
orientation?

(c) Let X C 1R' be an (n - in)-dimensional manifold of the form X = f-1(0)
where f : IR" 1R- is a C' function and [Df(x)] is onto for all x E X. Let
v'1,... Vn_1 be elements of T5(X). Show that

w(Vi.... Vn_m) = det
/l t fl(x).... , )"V1' .V"_m

defines an orientation of X.

6.5.9 Consider the map lR -. JR3 given by spherical coordinates

sin0

sink(
The image of this mapping is the unit sphere, which we will orient by the
outward-pointing normal. In what part of JR2 is this mapping orientation pre-
serving? In what part is it orientation reversing?

6.5.10 (a) Find a 2-form w on the plane of equation x + y + z = 0 so that

is oriented by cp, the projection is orientation-if the projection y -, (Y.)(
z

preserving.

(b) Repeat, but this time find a 2-form a so that if the projection is oriented
by a, it is orientation reversing.

6.5.11 Let S be the part of the surface of equation z = sinxy + 2 where
x2 + y2 < 1 and x > 0, oriented by the upward-pointing normal. What is the

r 0 l
flux of the vector field I 0

J

through S?
x +y

6.5.12 Is the map

1 1 cos 9P cos 011

cos'psin0 0<B,p<a
B Jsink

an orientation preserving parametrization of the unit sphere oriented by the

outward-pointing normal? the inward-pointing normal?

6.5.13 What is the integrals

f,
x3 dx1 A dx2 A dx4

s
where S is the part of the three-dimensional manifold of equation x4 =x,x2x3
where 0 < x1, x2, x3 < I, oriented by dx, A dx2 A dx3. Hint: this surface is a
graph, so it is easy to parametrize it.
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6.5.14 Find the work of the vector field f (Y) _ around the bound-

ary of the rectangle with vertices (0) , (Q) , (Q) (p) , oriented so that these

vertices appear in that order.

6.5.15 Find the work of the vector field

x rx2 cost
F ( y

/
= I yz over the arc of helix parametrized by t sin t

zJ z2 at

with 0 < t < a, and oriented by increasing t.
In Exercises 6.5.16 and 6.5.17,

part of the problem is finding fx

(0,parametrizations of S that pre- 6.5.16 Find the flux of the vector field F y = ° where r
serve orientation. z

/x2 + z + z2, and a is a number, through the surface S, where S is the sphere
of radius R oriented by the outward-pointing normal. The answer should be
some function of a and R.

(x y

6.5.17 Find the flux of the vector field F I y I = ( -z , through S, where
z yz

S is the part of the cone z = x2 + y2 where x, y > 0, x2 + y2 < R, and it
is oriented by the upward pointing normal (i.e., the flux measures the amount
flowing into the cone).

6.5.18 What is the flux of the vector field

Hint for Exercise 6.5.19, part
(b): Show that you cannot choose
an orientation for M1 (2, 3) so that
both pi and c02, as defined in Ex-
ercise 3.2.10, are both orientation
preserving.

Hint for Exercise 6.5.19, part
(c): Use the same method as in
(b); this time you can find an ori-
entation of M1(3,3) such that all
three of Cpl, ,p2, and W3 are orien-
tation preserving.

xl x
F (y

J
= -y through the surface z = x2 + y2, x2 + y2 5 1,l z xy

oriented by the outward normal?

6.5.19 This exercise has Exercise 3.2.10 as a prerequisite. Let Ml(n,m) be
the space of n x m matrices of rank 1. (a) Show that M, (2, 2) is orientable.
(This follows from Exercise 3.2.6 (a) and 6.5.8(a).)

(*b) Show that MI (2,3) is not orientable.

(*c) Show that M1(3,3) is orientable.

6.5.20 Consider the surface S in C3 parametrized by

za
7:z- z9 , I:I<1

z
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Boundary Orientation

C 1 , and the sphere x2 + y2 + z2 = 1 by the outward-pointing normal.
1
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which we will orient by requiring that C be given the standard orientation, and

that ry be orientation-preserving. What is

fs
dxl Ady, +dx2 n dye+dx3 Ady3?

6.6.1 Consider the curve S of equation x2 + y2 = 1, oriented by the tangent

vector [ 1 J
at the point

(a) Show that the subset X where x > 0 is a piece-with-boundary of S.
What is its oriented boundary?

(b) Show that the subset Y where jxl < 1/2 is a piece-with-boundary of S.
What is its oriented boundary?

(c) Is the subset Z where x > 0 a piece-with-boundary? If so, what is its
boundary?

6.6.2 Consider the region X = P n B C I83, where P is the plane of equation
x+y+z = 0, and B is the ball x2+y2+z2 < 1. We will orient P by the normal

of P?
(b) Show that X is a piece-with-boundary of P, and that the mapping

cost _ sin t

tom. cost-sint 0<t<2a

2sf

(a) Which of the forms dx A dy, dxAdz, dy A dz define the given orientation

is a parametrization of U.
(c) Is the parametrization compatible with the boundary orientation of 8X.
(d) Do any of the 1-forms dx, dy, dz define its orientation at every point?

(e) Do any of the 1-forms x dy - y dx, x dz - z dx, y dz - z dy define its
orientation at every point?

Exercises for Section 6.7: 6.7.1 What is the exterior derivative of
The Exterior Derivative (a) sin(xyz) dx in I1 ; (b) xix3 dx2 A dx4 in l ;

(c)E

6.7.2 (a) Is there a function f on R3 such that

(1) df=cos(x+yz)dx+ycos(x+yz)dy+zcos(x+yz)dz?
(2) d(f = cos(x + yz) dx + z cos(x + yz) dy + y cos(x + yz) dz ?
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(b) Find the function when it exists.

6.7.3 Find all the 1-forms w = p(y, z) dx + q(x, z) dy such that

dw = x dy A dz + y dx A dz.

6.7.4 (a) Let p = xyz dy. Compute from the definition the number

d,p P 1 \ (e2, e3)
2

(b) What is d,p? Use your result to check the computation in (a).

6.7.5 (a) Let W = xlx3 dx2 A dx4. Compute from the definition the number

d,p (Pe, (e2, e3, e4)) .

(b) What is dp? Use your result to check the computation in (a).

6.7.6 (a) Let W = x2 dx3. Compute from the definition the number

&p (P°ey(62, e3))

(b) What is dip? Use your result to check the computation in (b).

6.7.7 (a) There is an exponent m such that

x
(x2 + y2 + z2)"' y = 0; find it.

z

Exercises for Section

G.S. 3Th

(b*) More generally, there is an exponent m (depending on n) such that the
x

(n - 1)-form Irm,: has exterior derivative 0, when r' is the vector field

xn
and r = Ir9. Can you find it? (Start with n = 1, 2.)

6.7.8 Show that each face of a (k + 2)-parallelogram is a (k + 1)-dimensional
parallelogram, and that each edge of the (k + 1)-parallelogram is also the edge
of another (k + 1)-parallelogram, but with opposite orientation.

e Exterior Derrvative in 1R 6.8.1 Compute the gradients of the following functions:

(a) f ( y
) = x

(b) f ((( )) - y2 (c) f
r(

) = x2 + y2

(d) f \yl) =x2-y2 (e) f ( ) =sin(x+y) (f) f (y) =log(x2+y2)
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x
(

x

X

(g) f y =xyz (k) f y = logy+y+zI
(1) f y = x + y3+z`z z

Z

6.8.2 (a) For what vector field F' is the 1-form on 1k3

x2dx+y2zdy+xydz
the work form field Wp?

(b) Compute the exterior derivative of x2dx+y2zdy+xydz using Theorem
6.7.3 (computing the exterior derivative of a k-form), and show that it is the
same as O V x F'

6.8.3 (a) For what vector field f is the 2-form on IlF3
(xy) dx A dy + (x) dy n dz + (xy) dx A dz the flux form field $p?

(b) Compute the exterior derivative of (xy) dxndy+(x) dyndz+(xy) dx A dz
using Theorem 6.7.3, and show that it is the same as the density form field of
div F.

6.8.4 (a) Show that if F =
L

F,
J = grad f is a vector field in the plane which

is the gradient of a C2 function, then D2F1 = D1F2.
(b) Show that this is not true if f is only of class C'.

6.8.5 Which of the vector fields of Exercise 1.1.5 are gradients of functions?

6.8.6 Prove the equations

curl (grad f) = 0 and div(curl F) = 0

for any function f and any vector field f (at least of class C2) using the formulas
of Theorem 6.8.3.

6.8.7 (a) What is dWr0 ? What is dW[00 (P%] (61,63))?
Io 0

0

(b) Compute dWro1 (P°Q1 ('1,ee3)) directly from the definition.
1

10
6.8.8 (a) Find a book on electromagnetism (or a tee-shirt) and write Max-
well's laws.

Let E and B be two vector fields on 1k', parametrized by x, y, z, t.
(b) Compute d(Wg A cdt + $g).
(c) Compute d(W$ A cdt - tg).
(d) Show that two of Maxwell's equations can be condensed into

d(WEAedt+og)=0.
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(e) How can you write the other two Maxwell's equations using forms?

6.8.9 (a) What is the exterior derivative of W. 1 ? (b) 01,11[.1 ?
v v

6.8.10 Compute the divergence and curl of the vector fields

x2y sinxz]
(a) -2yz and (b) cosyzx3

y2 xyz

Exercises for Section 6.9:

Stokes's Theorem in R'

x [.2]
6.8.11 (a) What is the divergence of P y = y2

z yz

(b) Use part (a) to compute

d4F°1 (i1,e2,g3)
1

2

(c) Compute it again, directly from the definition.

6.9.1 Let U be a compact piece-with-boundary of R3. Show that the volume
of U is given by

JU 5(zdxAdy+ydzndx+xdyAdz).

6.9.2 (a) Find the unique polynomial p such that p(l) = I and such that if

w = x dy A dz - 2zp(y) dx A dy + yp(y) dz A dx,

then dw = dx A dy A dz.

(b) For this polynomial p, find the integral fs w, where S is that part of the
sphere x2 + y2 + z2 = 1 where z > f/2, oriented by the outward-pointing
normal.

6.9.3 What is the integral

Jc
xdyAdz+pdzAdx+zdxAdy

over the part of the cone of equation z = a- x2 -+y2 where z > 0, oriented by
the upwards-pointing normal. (The volume of a cone is 1 height area of base.)

6.9.4 Compute the integral of x1 dx2 A dx3 A dx4 over the part of the three-
dimensional manifold of equation

x1 + x2 + x3 + x4 = a, x1, x2, x3, x4 > 0,
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oriented so that the projection to the (..r1, x2, x3)-coordinate 3-space is orienta-
tion preserving.

6.9.5 (a) Compute the exterior derivative of the 2-form

xdyndz+ydzAdx+zdxAdy
(x2 + y2 + z2)3/2

(b) Compute the integral of p over the unit sphere x2+y2+z2 = 1, oriented
by the outward-pointing normal.

(c) Compute the integral of W over the boundary of the cube of side 4,
centered at the origin, and oriented by the outward-pointing normal.

(d) Can cp be written do for some 1-form V) on ;(83 - {0}.

6.9.6 What is the integral of

xdyndz+ydzAdx+zdxndy
over the part S of the ellipsoid

x2 y2 z2
a2+b2+c2-1,

where x, y, z > 0. oriented by the outward-pointing normal? (You may use
Stokes's theorem, or parametrize the surface.)

6.9.7 (a) Parametrize the surface in 4-space given by the equations

x2+x2 = a2, x2+x2=b2.
1 2 3 4

(b) Integrate the 2-form xlx2 dx2 A dx3 over this surface.

(c) Compute d(xlx2 dx2 A dx3).

(d) Represent the surface as the boundary of a three-dimensional manifold
in 1124, and verify that Stokes's theorem is true in this case.

6.9.8 Use Stokes's theorem to prove the statement in the caption of Figure
6.7.1, in the special case where the surface S is a parallelogram: i.e., prove that
the integral of the "element of solid angle" 4p9 over a parallelogram S is the
same as its integral over the corresponding P.

Exercises for Section 6.10: 6.10.1 Suppose U C i183 is open, F' is a vector field on U, and a is a point of
The Integral Theorems U. Let Sr(a) be the sphere of radius r centered at a, oriented by the outward

of Vector Calculus pointing normal. Compute

lint 3 f gyp,
o r3 S.(a)



Hint for Exercise 6.10.2: use

cylindrical coordinates.

In Exercise. 6.9.6, S is a box
without a top.

This is a "shaggy dog" exercise,
with lots of irrelevant detail!
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6.10.2 (a) Let X be a bounded region in the (x,z)-plane where x > 0. and
call Zn the part of R3 swept out by rotating X around the z-axis by an angle
a. Find a formula for the volume of Zn. in terms of an integral over X.

(b) Let X be the circle of radius 1 in the (x, z)-plane, centered at the point
x = 2, z = 0. What is the volume of the torus obtained by rotating it around
the z-axis by a full circle?

rx
(c) What is the flux of the vector field

L

y through the part of the boundary
z

of this tones where y > 0, oriented by the normal pointing out of the torus?

6.10.3 Let fi be the vector field P = 0 (8! yam). What is the work of F
along the parametrized curve

tcosrrt
y(t) = t 0 < t < 1, oriented so that y is orientation preserving?

t

6.10.4 What is the integral of

W(-x/(xi
2 +y2)))

around the boundary of the 11-sided regular polygon inscribed in the unit circle,
with a vertex at (0) , oriented as the boundary of the polygon?

6.10.5 Let S be the surface of equation z = 9 - y2, oriented by the upward-
pointing normal.

(a) Sketch the piece X C S where x > 0, z > 0 and y > x, indicating
carefully the boundary orientation.

(b) Give a parametrization of X, being careful about the domain of the
parametrizing map, and whether it is orientation preserving.

x 0

(c) Find the work of the vector field F C y ) = xz l around the boundary
z 0

of X.

6.10.6 Let 1C be a closed curve in the plane. Show that the two vector fields

I Y
1

and
L J

do opposite work around C.

6.10.7 Suppose U C lRs is open, P is a vector field on U, a is a point of U,
and i yl 0 is a vector in R3. Let UR be the disk of radius R in the plane of
equation (x - a) . v = 0, centered at a, oriented by the normal vector field v',
and let OUR be its boundary, with the boundary orientation.
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Compute

R o R2 JOUR
Wp.

6.10.8 Let U C R3 be a subset bounded by a surface S, which we will give

the boundary orientation. What relation is there between the volume of U and

the flux

Y

6.10.9 Compute the integral fc Wp, where f (x) = I -y I, and C is
y lil y+l + x

Hint for Exercise 6.10.9: the the upper Half-circle x2 + y2 = 1, y > 0, oriented clockwise.
first step is to find a closed curve
of which C is a piece. x2

Hint: think of integrating xdy
around the triangle.

Oil
o[..

6.10.10 Find the flux of the vector field [y2J through the surface of the
Z2

unit sphere, oriented by the outward-pointing normal.

6.10.11 Use Green's theorem to calculate the area of the triangle with vertices

61
llJI

'
[112b21

'
f l
Lb3J

3y
6.10.12 What is the work of the vector field 3x around the circle x2 +

1

y2 = 1, z = 3 oriented by the tangent vector

at 0 L1?

6.10.13 What is the flux of the vector field

fx x+yz
F y = y + xz through the boundary of the region in the first octant

z z+xy

x, y, z > 0 where z < 4 and x2 + y2 < 4, oriented by the outward-pointing
normal?

Exercises for Section 6.11: 6.11.1 For the vector field of Example 6.11.3, show (Equation 6.11.14) that
Potentials

F = V I arctan y)X
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6.11.2 A charge of c coulombs per meter on a vertical wire x = a, y = b
creates an electric potential

x

V y = clog ((.T - a)2 + (y - b)2).

z

Several such wires produce a potential which is the sum of the potentials due
to the individual wires.

(a) What is the electric field due to a single wire going through the point

(0 ), with charge per length r = 1 coul/m, where coul is the unit for charge.0

(b) Sketch the potential due to two wires, both charged with 1 coul/m, one

going through the point (i), and the other through (!).

(c) Do the same if the first wire is charged with 1 coul/m and the other with
-1 coul/m.

X6.11.3 (a) Is the vector field x y y the gradient of a function on R2 -
xx2+`y2

{0}?

x
(b) Is the vector field Yon R3 the curl of another vector field?

z

6.11.4 Find a 1-form w such that dip = y dx n dz - x dy n dz.

6.11.5 Let f be the vector field on JR3

fx rFi(x,y)l
F yJ=IF2(o,y)J

Suppose D2F1 = D1F2. Show that there exists a function f : R3 -+ 1R such
that F=Vf.

6.11.8 (a) Show that a 1-form p on JR2 - 0 can be written df exactly when
dp = 0 and fS, o = 0, where 51 is the unit circle, oriented counterclockwise.

(b) Show that a 1-form W on R2 - { (0) , (0) } can be written df exactly
when d<p = 0 and both fs, w = 0, fs 0 where S1 is the circle of radius 1/2

centered at the origin, and S2 is the circle of radius 1/2 centered at (' ), both
oriented counterclockwise,





Appendix A: Some Harder Proofs

... a beginner will do well
to accept plausible results without
taxing his mind with subtle proofs,
so that he can concentrate on as-
similating new notions, which are
not "evident".-Jean Dieudonne,
Calcul Infinitesimal

A.0 INTRODUCTION

When this book was first used in manuscript form as a textbook for the
standard first course in multivariate calculus at Cornell University, all proofs
were included in the main text and some students became anxious, feeling,
despite assurances to the contrary, that because a proof was in the text, they
were expected to understand it. We have thus moved to this appendix certain
more difficult proofs. They are intended for students using this book for a
class in analysis, and for the occasional student in a beginning course who has
mastered the statement of the theorem and wishes to delve further.

In addition to proofs of theorems stated in the main text, the appendix
includes material not covered in the main text, in particular rules for arithmetic
involving o and 0 (Appendix A.8), Taylor's theorem with remainder (Appendix
A.9), two theorems concerning compact sets (Appendix A.17), and a discussion
of the pullback (Appendix A.21).

A.1 PROOF OF THE CHAIN RULE

Theorem 1.8.2 (Chain rule). Let U C R", V C R"' be open sets, let
g : U -+ V and f : V -. R' be mappings, and let a be a point of U. If g is
differentiable at a and f is differentiable at g(a), then the composition f o g
is differentiable at a, and its derivative is given by

[D(f o g)(a)] = [Df(g(a))] o [Dg(a)]. 1.8.12

Proof. To prove the chain rule, you must set about it the right way; this
is already the case in one-variable calculus. The right approach at least, one
that works), is to define two "remainder" functions, r(h) and s(k). The func-
tion r(h) gives the difference between the increment to the function g and its
linear approximation at a. The function s(k) gives the difference between the
increment to f and its linear approximation at g(a):

g(a +(a) - [Dg ( )]hi = r(h') Al.l
increment to function linear approx.

f(g(a) + k - f(g(a)) - [Df (g(a ))]k = s(k). A1.2

increment to f linear approx.

589
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In the first line, we are just
evaluating f at g(a+h), plugging
in the value for g(a + h) given
by the right-hand side of Equation
A1.4. We then see that [Djg(a)jh+
r(h) plays the role of k in the
left side of Equation A1.5. In the
second line we plug this value for
k into the right side of Equation
A1.5.

To go from the second to the
third line we use the linearity of
[Df(g(a))J:

[Df(g(a))J ([Dg(a)]h + r(h)/

[Df(g(a))J[Dg(a)]1

+ ]Df(g(a))Jr(h').

The hypotheses that g is differentiable at a and that f is differentiable at g(a)
say exactly that

A1.3

Now we rewrite Equations A1.1 and A1.2 in a form that will be more convenient:

g(a + h) = g(a) + [Dg(a)]h' + r(h) A1.4

f(g(a) + k') = f(g(a)) + [Df(g(a))]k' + s(l ), A1.5

lim
r(h) =0 and lim

s(k)
= 0.

n-o Ih'I k-o Jk]

and then write:

from Equation A1.4

f(g(a+h'))=f(g(a)+ [Dg(a)J9 +r(g) )

k,left-hand aide F.'t. A1.5

= f(g(a)) + [Df(g(a))] ([Dg(a)]h + r(h)) +s ([Dg(a)Jh + r(h))

k 1W

= f (g(a)) + [Df (g(a))] ([Dg(a)]h)+ [Df(g(a))] (r(h)) + s([Dg(a)]h + r(h')).

remainder

We can subtract f(g(a)) from both sides of Equation A 1.6, to get

linear approx. linear approx.
to f at g(a) to g at e

f(g(a+h)) - f(g(a)) = g(~ h) + remainder. A1.7
increment to composition composition of linear approximations

The "composition of linear approximations" is the linear approximation of the
increment to f at g(a) as evaluated on the linear approximation of the increment
to g at R.

What we want to prove is that the linear approximation above is in fact the
derivative of fog as evaluated on the increment R. To do this we need to prove
that the limit of the remainder divided by ]h[ is 0 ash 0:

line
(Df(g(a))J(r(h))+s([Dg(a)Jh+r(h')) =

- 0. A1.8n-o [h']

Let us look at the two terms in this limit separately. The first is straightfor-
ward. Since (Proposition 1.4.11)

A1.6

I[Df(g(a))Jr(h)I <_ I[Df(g(a))]I Ir(h)I, A1.9
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we have

I[Df(g(a)))r(h)I < I[Df(g(a))]I lim Ir(h)I = 0. A1.10lim
IhI h-0 IhI

=O by Eq. A 1.3

The second term is harder. We want to show that

s Dg(a h+r()) = 0. A1.11

First note that there exists 6 > 0 such that Ir(h)I < I61 when 1l1 < 6 (by

Equation A1.3).'
Thus, when IhI < 6, we have

I[Dg(a)]h + rtih)j < I[Dg(a)1 I + IhI = (I[Dg(a)]I + 1)Ihi. A1.12

< IhI

Now Equation A1.3 also tells us that for any c > 0, there exists 0 < 6' < 6
such that when Ik'f < 6', then [s(k)) < e[kI. If you don't see this right away,
consider that for Ikl sufficiently small,

Is(k) II < e; i.e., Is(k)I A1.13

Otherwise the limit as k -. 0 would not be 0. We specify "I1I sufficiently small"
by Ik1 < 6'.

Now, when

IhI <
I[Dg(a)61

])I + 1;
i.e., (I[Dg(a)]I + 1)IhI < 6', A1.14

then Equation A1.12 gives

I [Dg(a)] h + r(h') I < 6',

so we can substitute the expression I[Dg(a)]h + r(h)I for Ik1 in the equation
Is(k)I < EQkl, which is true when Ikl < 6'. This gives

IBQDg(a)]h+r(h))I s E[[Dg(a)j+r(h)I < e(Dg(a)]I+I)Ihi.
)I =,191

Eq. A1.12

A1.15
Dividing by IhI gives

Is([Dg(a)]h + r(h)) I < e(1[Dg(a)1I
+ 1), A1.16

IhI

'In fact, by choosing a smaller 6, we could make Ir(h)I as small as we like, getting
Ir(h)I < clhl for any c > 0, but this will not be necessary; taking c = I is good enough
(see Theorem 1.5.10).
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and since this is true for every f > 0, we have proved that the limit in Equation
A1.11 is 0:

lim
s([Dg(a)]h + r(h)) = 0. (A1.11)

ii-0 phi

Facts (1), (2) and (3) guaran-

tee that the hypotheses about ao

of our theorem are also true of

a1. We need (1) in order to de-

fine hhi and a2 and U1. State-
ment (2) guarantees that. III C U0,
hence [Df(x)] satisfies the same
Lipschitz condition on U1 as on

Uo. Statement (3) is needed to

show that Inequality A2.3 is sat-
isfied at ai. (Remember that the
ratio M has not changed.)

A.2 PROOF OF KANTOROVITCH'S THEOREM

Theorem 2.7.11 (Kantorovitch's theorem). Let ao be a point in R1, U
an open neighborhood of ao in Ile" and f : U -. IlF" a differentiable mapping,
with its derivative [Df(ao)] invertible. Define

ho=-[Df(ao)]-'f(ao)

, ar=ao+ho , Uo={xl Ix-arl<Ihol}
A2.1

If the derivative [Df(x)] satisfies the Lipschitz condition

I[Df(ul)] - [Df(u2)]I <- M[ur - u21 for all points ul, u2 E Uo, A2.2

and if the inequality

A2.3

is satisfied, the equation f(x) = 0 has a unique solution in Uo, and Newton's
method with initial guests ao converges to it.

Proof. The proof is fairly involved, so we will first outline our approach. We
will show the following four facts:

If(ao)I I[Df(a0)]-'I2M <

(1)

(2)

(3)

(4)

[Df(ar)] is invertible, allowing us to define hl = -[Df (&I)] -'f (a,);

Ihi I <
Ihol.

f(ai)I I[Df(ai)]-'I2 < If(ao)I I[Df(ao)]-'I2;

If(ar)I < 21ho12. A2.4

If (1), (2), (3) are true we can define sequences hiIai,Ui:

hi=-[Df(a;)]-'f(a,), at=ai-1+h',_1, andUi={xl Ix -ai+rl<Ihi1
and at each stage all the hypotheses of Theorem 2.7.11 are true.

Statement (2), together with Proposition 1.5.30, also proves that the ai con-
verge; let us call the limit a. Statement (4) will then say that a satisfies f(a) = 0.
Indeed, by (2),

Ihil < lhol
A2.5
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In Example A2.2 we have no
guarantee that the difference be-

tween the increment to f and its
approximation by f'(x)h behaves

like h',

so by part (4).

if(ai)I 5 2IIl _il2 < 21;ho12.

and in the limit as i - oo, we have lf(a)I = 0.

First we need to prove Proposition A2.1 and Lemma A2.3.

A2.6

Proposition A2.1. If U C Ilk." is a ball and f : U -- RI is a differentiable
mapping whose derivative satisfies the Lipschitz condition

I[Df(x)] - [Df(y)II 5 Mix - yI. A2.7

then

i f(x +i (x) - [Df(x ]h 15 M Q2. A2.8

increment to t linear approx.
of increment to f

Before. embarking on the proof, let us see why this statement is reasonable.
The term [Df(x)]h is the linear approximation of the increment to the function
in terms of the increment h to the variable. You would expect the error term
to be of second degree, i.e., some multiple of 1h12, which thus gets very small
as h -. 0. That is what Proposition A2.1 says, and it identifies the Lipschitz
ratio M as the main ingredient of the coefficient of 1h12.

The coefficient M/2 on the right is the smallest coefficient that will work
for all functions f : U -. l.'°, although it is possible to find functions where
an inequality with a smaller coefficient is satisfied. Equality is achieved for the
function f(x) = x2: we have

[Df (x)) = fi(x) = 2x, so I [Df(x)] - [Df(y))I = 21x - yI, A2.9

and the best Lipschitz ratio is M = 2:

I f (x + h) - f (x) - 2xhJ = I (x + h)2 - x2 - 2xhJ = h2 = 2 h2 = Zf h2. A2.10

If the derivative of f is not Lipschitz (as in Example A2.2) then it may be
the case that there exists no C such that

If(x + h) - f(x) - [Df(x)]hl < CIhl2. A2.11

Example A2.2 (A derivative that is not Lipschitz). Let f (x) = x°/3, so
[Df (x)) = f'(x) = 7x`/3. In particular f'(0) = 0, so

If(0+ h) - f(0) - f'(0)hJ = h4/.'. A2.12

But h413 is not < CIh12 for any C. since h4/3/h2 = 1/h2t3 c as h -. 0.
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Proof of Proposition A2.1. Consider the function g(t) = f(x + Q. Each
coordinate of g is a differentiable function of the single variable t, so the fun-

To go from the first to the sec-
ond line of Equation A2.17 we use
Equation A2.7.

Proving Lemma A2.3 is the
hardest part of proving Theorem
2.7.11. At the level of this book,
we don't know much about in-
verses of matrices, so we have to
use "bare hands" techniques in-
volving geometric series of matri-
ces.

damental theorem of calculus says
r

f(x + h') - f(x) = g(1) - g(O) = J 1 g'(t) dt. A2.13
0

Using the chain rule, we see that

g'(t) = [Df(x + ti )]h, A2.14

which we will write as

g'(t) _ [Df(x)]h+ ([Df(x+th)]li- [Df(x)]h). A2.15

This leads to
r

f 1((Df(x+ti)]'-[Df(x)]h)dt. A2.16

The first term is the integral from 0 to I of a constant, so it is simply that
constant, so we can rewrite Equation A2.16 as

lf(x + h) - f(x) - (Df(x)]hl = I f' ([Df(x + ti)]h- [Df(x)]i) dtl

t

< f MIx + t' - xI IhI dt A2.17
0

<f MtIh$1dt= 2IhI2.

0

Lemma A2.3. The matrix [Df(a1)) is invertible, and

IIDf(a1)]-'I <
2I[Df(ao)]-'I. A2.18

Proof. We have required (Equation A2.2) that the derivative matrix not vary
too fast, so it is reasonable to hope that

[Df (ao))-' [Df(a1)]

is not too far from the identity. Indeed, set

A = I - ((Df(ao))-'[Df(ai)]) = IDf(ao)]`[Df(ao)] -([Df(ao))-1(Df(a1)))

= IDf(ao)]`([Df(ao)] - [Df(at)]). A2.19

By Equation A2.2 we know that JLDf(ao)) - fDf(a1)]l < M]a0 - a1), and by
definition we know Ihol =jai - aol. So

JAI 5 I[Df(ao)]-'I IhOIM. A2.20
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By definition,

ho = -[Df(ao)I-'f(ao), so Ihol 5 I[Df (ao)J-' Ilf(ao)I

(Proposition 1.4.11, once more). This gives us

JAI 5 I(Df(ao)]-' I I[Df(ao)]-' I lf(ao)!M.
left-hand side of Inequality A2.3

Now Inequality A2.3 guarantees

A2.23

Note that in Equation A2.27 we
use the number 1, not the identity
matrix: I + JAI + I All ... , not
I + A + A2 .... This is crucial
because since JAI < 1/2, we have

JAI+JAJ2+1A13+... < 1.

When we first wrote this proof,
adapting a proof using the norm
of a matrix rather than the length,
we factored before using the trian-
gle inequality, and ended up with
I+AtA2.... This was disastrous,
because III = f, not 1. The dis-
covery that this could be fixed by
factoring after using the triangle
inequality was most welcome.

which we can use to show that [Df(a, )) is invertible, as follows. We know from
Proposition 1.5.31 that if JAI < 1, then the geometric series

I+A+A2+A3+... = B

A2.21

A2.22

A2.24

converges, and that B(I - A) = I; i.e., that B and (I - A) are inverses of each
other. This tells us that [Df(a,)] is invertible: from Equation A2.19 we know
that I - A = [Df(ao)}-I[Df(a,)]; and if the product of two square matrices is
invertible, then they both are invertible. (See Exercise 2.5.14.)

In fact, (by Proposition 1.2.15: (AB)-' = B-I A-') we have

B = (I - A)-' _ [Df(a1)]-'[Df(ao)], so A2.25

[Df(al)]-' = B[Df(ao)]-1

=(I+A+A2+ )[Df(ao)J-'
= [Df(ao)]-' + A[Df(ao)J-' + ...

hence (by the triangle inequality and Proposition 1.4.11)

I[Df(a1)]-' 15 I[Df (ao)]-' I + JAI I[Df(ao)]-' I + ...

= I[Df(ao)J-'I(1+JAI +IAI2+...)

< I[Df(ao)]-' I (1 + 1/2 + 1/4 + .. ) = 2I[Df(ao)]-' I.

since IAI<1/2, Eq. A2.23

A2.26

A2.27

Lemma A2.3

So far we have proved (1). This enables us to define the next step of Newton's
method:

h1 = -[Df(a3)] a2=a1+0, and U1 = {x l Ix - a21 5 1h11 } .
A2.28

Now we will prove (4), which we will call Lemma A2.4:

Lemma A2.4. We have the inequality

lf(al)l 5
Mlhol2.

A2.29



f(a1)

a

ao

FIGURE A2.1.
The terms that cancel are ex-

actly the value of the linearization
to fat ao, evaluated at a3.

The first inequality in Equa-
tion A2.33 uses the definition of
h1 (Equation A2.28) and Proposi-
tion 1.4.11. The second inequality
uses Lemmas A2.3 and A2.4.

Note that the middle term of
Equation A2.33 has al, while the
right-hand term has ao.
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Proposition A2.1 gives

If(al) - f(ao) - [Df(ao)]ltoJ < 2 Iholz. A2.30

Proof. This is a straightforward application of Proposition A2.1; but a miracle
happens during the computation. Remembering that h0 = -IDf(ao))'lf(ao),
we see that the third term in the sum on the left,

-IDf(ao))ho = IDf(ao)]IDf(ao)]-lf(ao) = f(ao), A2.31

cancels with the second term (that is the miracle). So we get

If (al )I <- M Ih0I2 as required. Lemma A2.4 A2.32

Figure A2.1 explains the miracle: why the cancellation occurred.

Proof of Theorem 2.7.11 (Kantorovitch theorem) continued. Now we
just string together the inequalities. We have proved (1) and (4). To prove
statement (2), i.e., Ihil 5 ll'o]/2, we consider

2

IhII If(al)IIIDf(al))-'I < MI2oI 2I[Df(ao)]_'I.

A2.33

Now cancel the 2's and write 1hol2 as two factors:

Ih1I S IhoJMIIDf(ao)]-'11Q A2.34

Next, replace one of the IlRol, using the definition ho = -[Df(ao)]-tf(ao),
to get

?Ihol

I' II 5 If(ao)I IIDf(ao)]-'I) < Iltol A2.35
2

<1/2 by Inequality A2.3

Now to prove part (3), i.e.:

If(a1)IIIDf(al)]-'I2 < If(ao)I I(Df(ao)]_'I2 A2.36

Using Lemma A2.4 to get a bound for If(ai)I, and Equation A2.18 to get a
bound for IIDf(ai)]-1I, we write

If(a1I IIDf(a1)]-112 < Mh(41[Df(ao)]-'I2)

>lhola

2IIDf(ao)]-'I2M (IIDf(ao)1-'IIf(ao)I)2

I(Df(ao)]-'I2 If(ao)I2If(ao)IIIDf(ao)]-1I2M

A2.37

at most I/2 by A2.3

5 IIDf(ao)]-'121f(ao)I. Theorem 2.7.11
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A.3 PROOF OF LEMMA 2.8.4 (SUPERCONVERGENCE)

Here we prove Lemma 2.8.4, used in proving that Newton's method supercon-
verges. Recall that

-k M
c ' I T (2.8.3)

If we have such a bound, sooner
or later superconvergence will oc-
cur.

Lemma 2.8.4. If the conditions of Theorem 2.8.3 are satisfied, then for all i,

Ib,+II 5 cJb,I2 A3.1

Proof. Look back at Lemma A2.4 (rewritten for a,):

If(a,)I < 2 Ib,_1I2. A3.2

The definition

h, = -(Df(a,)]-1f(ai) A3.3

gives

19,j 5 I]Df(ai)]-'I If(a,)I <-
2

I(Df(a:)]-'IIi,-iI2. A3.4

This is an equation almost of the form Ih,I < clh,_1I2:

19j1:5 2 I(Df(a;)]-'I Ib,-1I2. A3.5

Kantorovitch inequality is strictly less than 1/2, we have such a bound.

Lemma A3.1 (A bound on I(Df(a;)]I-1). If

If(aoII[Df(ao)]-'I2M = k, where k < 1/2,

then all [Df(a,)]-' exist and satisfy

A3.6

I[Df(ai)I_1I

5 I(Df(ao)]-'I
1 - k

*

A3.71-2k

The difference is that G is not a constant but depends on a,. So the h', will
superconverge if we can find a bound on I(Df(a;)]I-1 valid for all i. (The
term M/2 is not a problem because it is a constant.) We cannot find such
a bound if the derivative [Df(a)] is not invertible at the limit point a. (We
saw this in one dimension in Example 2.8.1, where f'(1) = 0.) In such a case
I[Df(a,)]-'I -- oo as a, a. But Lemma A3.1 says that if the product of the

Proof of Lemma A3.1. Note that the a1 in Lemma A2.3 is replaced here
by a,,. Note also that Equation A2.35 now reads Ih1I < k]hol (and therefore
Ihnl <_ so that
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The proof of this lemma is a
rerun of proof of Lemma A2.3; you
may find it helpful to refer to that
proof, as we are more concise here.

Ian - aol =

n-L

E hi
i=0

nt
1

The An in Equation A3.9
(where we have a,.) corresponds to
the A in Lemma A2.3 (where we
had a,).

The second inequality of Equa-
tion A3.10 uses Equation A3.8.
The third uses the inequality

Ilhal <- I[Df(ao)] 'IIf(ao)I:

see Equation A2.21.

Next write

triangle
inequality

i=0

A. = I - [Df(ao)]-'[Df(an)] _ [Df(ao)]-' QDf(ao)] - [Df(an)]),
<Mlao-a.l by
Lipschitz cond.

so that

A3.8

A3.9

A3.10

We are assuming k < 1/2, so I - An is invertible (by Proposition 1.5.31),
and the same argument that led to Equation A2.27 here gives

IAnI 5 I[Df (ao)]-' IMIao - an 15 I[Df(ao)]-' IM lhok1

< I[Df(ao)]-'I2MIf(ao)I <
k

1-k - 1-k

I[Df(an)]-'I I[Df(ao)] 'I (1+IAnI+IAnI2+...)
I-k

2k I[Df(ao)]-

1

1- IAnI

In Section 2.9 we proved the ex-
istence of an inverse function g.
As we mentioned there, a com-
plete proof requires showing that g
is continuously differentiable, and
that g really is an inverse, not just
a right inverse. We do this here.

A.4 PROOF OF DIFFERENTIABILITY OF THE
INVERSE FUNCTION

A3.11

Theorem 2.9.4 (The inverse function theorem). Let W C 1Rm be an
open neighborhood of x0, and f : W ]R' be a continuously differentiable
function. Set yo = f(xo), and suppose that the derivative L = [Df(xo)] is
invertible.

Let R > 0 be a number satisfying the followhW hypotheses:

(1) The ball Wo of radius 2RIL-1 I and centered at xo is contained in W.
(2) In Wo, the derivative satisfies the Lipecbits condition

_ I [zIu - vI. 2.9.4I[Df(u)]-[Df(v)]I:! IL
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There then exists a unique continuously differentiable mapping g from the
ball of radius R centered at yo (which we will denote V) to the ball Wo:

g : V -. Wo, 2.9.5

such that

f(g(y)) = y and [Dg(Y)] = [Df (g(Y))1-1. 2.9.6

Moreover, the image of g contains the ball of radius R1 around x0, where

R1 = 2RIL-112 (,/LI2 IL 1112 - ILI) . 2.9.7

Recall (Equation 2.9.8) that

fy(x)d=f(x)-Y=0.

The first inequality on the sec-
ond line of Equation A4.2 comes
from the triangle inequality. We
get the second inequality because
at each step of Newton's method,
hhi is at most half of the previ-
ous. The last inequality comes
from the fact (Equation 2.9.10 and
Proposition 1.4.11) that ho(y) <
IL-'IIYo - yl.

(1) Proving that g is continuous at yo
Let us show first that g is continuous at yo: that for all e > 0, there exists

6 > 0 such that when IY - YoI < 6, then g(Y) - g(Yo)I < e. Since g(y) is the
limit of Newton's method for the equation fy(x) = 0, starting at xo, it can be
expressed as xo plus the sum of all the steps (ho(y), h1(y), ... ):

g(y) = x0+>hi(y) A4.1
i=0

So

Ig(Y) - B)1= Ixo + f hi(Y) - xo
i=oxo

00

If we set

<- F_ Ihi(Y)I <- Iho(Y)I (1 + 2 + ...) < 21L-111y - YoI.
i=o

00

E i:(Y)
=o

A4.2

=2

a = 2IL A4.3

then when ly - yol < 6, we have jg(y) - g(yo)I < e.

(2) Proving that g is differentiable at yo
Next we must show that g is differentiable at yo, with derivative [Dg(yo)) _

L-1; i.e., that

lim (g(Yo + g(yo)) - L-'k = 0
ii-.o Ikl

A4.4

When In + k1 _E V, define F(k) to be the increment to xo that under f gives
the increment k to yo:

f(xo+F(k')) =Yo+k', A4.5



To get the second line we just

factor out L_'.

Z
XO

I Uo

X.

Wo

FIGURE A4.1.
Top: The Kantorovitch theo-

rem guarantees that if we start at
x0, there is a unique solution in
Uo; it does not guarantee a unique
solution in any neighborhood of
xo. (In Section 2.7 we use au and
a, rather than xo and x,.) Bot-
tom: The inverse function theo-
rem guarantees a unique solution
in the neighborhood We of xo.

600 Appendix A: Some Harder Proofs

or, equivalently,
g(yo + k) = xo + r:(k), A4.6

Substituting the right-hand side of Equation A4.6 for g(yo+k) in the left-hand
side of Equation A4.4, remembering that g(yo) = xo, we find

xn+i(k)-xo-L-'k _ F(k)L-kli(k)I
lim

k' o Ikl , o Iki If(k)I

/
k by Eq. A4.5

L ' f Lf(k) - f(xo + e"(k')) - f(xo)) r(k)l
\= king

IF(k)I Ikl

We know that f is differentiable at xo, so the term

LF(k) - f(xo + F(k)) + If (x,)

IF(k)l

A4.7

A4.8

has limit 0 as F(k) -. 0. So we need to show that F(k) -+ 0 when k -+ 0. Using
Equations A4.6 for the equality and A4.2 for the inequality, we have

F(k) = g(yo + g(yo) 21L-l I(yo + k - yo),

i.e., F(k) < 2IL"tik.

So the limit is 0 as k -. 0. In addition, the term IF(k)I/Ikl is bounded:

Irl _< 2IL-1I,

A
so Theorem 1.5.21, part (e) says that A4.4 is true.

(3) Proving that g is an inverse, not a just right inverse

A4.9

A4.10

A4.11

We have already proved that f is onto the neighborhood V of yo; we want to
show that it is injective (one to one), in the sense that g(y) is the only solution
x of fy(x) = 0 with x E Wo. As illustrated by Figure A4.1, this is a stronger
result than the one we already have from Kantorovitch's theorem, which tells
us that fy(x) = 0 has a unique solution in U0. Of course there is no free lunch;
what did we pay to get the stronger statement?2

We will suppose that z is a solution, and show that x = g(y). First, we will
express fy(z) as the sum of (1) fy(xo), (2) a linear function L of the increment
to xo, and (3) a remainder F.

0=fy(z)=fy(xo)+L(z-xo)+F, A4.12

2We are requiring the Lipschitz condition to be satisfied on all of Wo, not just on
Uo.
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The smaller the set in which
one can guarantee. existence, the
better: it is a stronger statement
to say that there exists a William
Ardvark in the town of Nowhere,
NY, population 523, than to say
there exists a William Ardvark
in New York State. The larger
the set in which one can guaran-
tee uniqueness, the better: it is
a stronger statement to say there
exists a unique John W. Smith
in the state of California than to
say there exists a unique John W.
Smith in Tinytown, CA.

Here, to complete our proof of
Theorem 2.9.4, we show that g
really is an inverse, not just a
right inverse: i.e., that g(f(x)) =
x. Thus our situation is not like
f(x) = x1 and g(y) = r,Iry-
In that case f(g(y)) = y, but
g(f(x)) # x when x < 0. The
function f(x) = x2 is neither in-
jective in any neighborhood of 0
in the domain, or surjective (onto)
in any neighborhood of 0 in the
range.

Equation A4.20: the first is
from Equation 2.9.4, and the sec-
ond because z is in Wu, a ball cen-
tered at xo with radius 2RIL-'I.

This shows in particular that
g o f(x) = x on the image of g,
and the image of g contains those
points in x c Wu such that f(x) E

where r' is the remainder necessary to make the equality true. If we think of x`
as xu plus an increment s:

we can express F as

A4.13

r" = fy (xo + ss) - fy (xo) - L9. A4.14

We will use Proposition A2. 1, which says that if the derivative of a differentiable
mapping is Lipschitz, with Lipschitz ratio M, then

i f (x + h') - f(x) - [Df(x)]li1 <
2lhIz. A4.15

We know that L satisfies the Lipschitz condition of Equation 2.9.4, so we have

In < 2 [s[Z, i.e., IFI S 2 Ix - xol2.

Multiplying Equation A4.12 by L-1, we find

A4.16

if - xo = -L-'fy(xo) - L-'F. A4.17

Remembering from the Kantorovitch theorem (Theorem 2.7.11) that ae =
a1 +[Df(ao)]-tf(ao), which, with our present notation, is xo = xt +L-1fy(xo),
and substituting this value for xo in Equation A4.17, we see that

x - x1 = -L-'F.

We use the value for i in Equation A4.16 to get

A4.18

Ix-x11:5 MIL-'IIg-xoI2. A4.19

Remember that

M= 1 and Ix-xolz<4R2IL-'I2. A4.202RIL-t Iz

Substituting these values in Equation A4.19, we get

Ix-xtI 2 2RIL-t12 IL-tI4R2IL-'I2 IL-'(R,. A4.21

i.e., Ix - xl l 5 IL-'IR. A4.22

So 5c is in a ball of radius 21L-' IR around xo, and in a ball of radius IL-t IR

around x1, and (continuing the argument) in a ball of radius IL-'IR/2 around
x2, .... Thus it is the limit of the x,,, i.e., z = g(y).

V.
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A.5 PROOF OF THE IMPLICIT FUNCTION THEOREM

It would be possible, and in
some sense more natural, to prove
the theorem directly, using the
Kantorovitch theorem. But this
approach will avoid our having to
go through all the work of proving
that the implicit function is con-
tinuously differentiable.

When we add a tilde to F, cre-
ating the function F\ of Equation

A5.6, we use F 1 y 1 as the first

n coordinates of F and stick on y
(m coordinates) at the bottom; y
just goes along for the ride. We
do this to fix the dimensions: F
1R"} " 8"+` can have an in-
verse function, while F can't.

Theorem 2.9.10 (The implicit function theorem). Let W be an open
neighborhood of c = (b) E R-1-, and F : W -s Rn be differentiable, with

F(c) = 0. Suppose that the n x n matrix

[D1F(c),... , DnF(c)), A5.1

representing the first n columns of the derivative of F, is invertible.
Then the following matrix, which we denote L, is invertible also:

L ([Dl F(c), . .. .. , DmF(e)] ]
.

, [Dn+1F(c), A5.2
L 0 Im J

Let Wo = B2RIL-1l(c) C ]R"+" be the ball of radius 2R[L-11 centered at
c. Suppose that R > 0 satisfies the following hypotheses:

(1) It is small enough so that Wo C W.
(2) In Wo, the derivative satisfies the Lipschitz condition

][DF(u)] - [DF(v)j] < 2RIL_112 ]u - v1. A5.3

Let BR(b) E R' be the ball of radius R centered at b.
There then exists a unique continuously differentiable mapping

)) = 0 for ally E BR(b),g : BR(b) - B2R1L_,I(a) such that F (g(Y
A5.4

and the derivative of the implicit function g at b is

[Dg(b)] _ - [D1 F(c), ... , D,F(c)]-1 [Dn+,F(c), ... , Dn+mF(C)]. A5.5

Proof. The inverse function theorem is obviously a special case of the implicit
function theorem: the special case where F (Y) = f(x)-y; i.e., we can separate

out the y from F (Y). There is a sneaky way of making the implicit function
theorem be a special case of the Inverse function theorem. We will create a new
function F to which we can apply the inverse function theorem. Then we will

A5.6

where x are n variables, which we have put as the first variables, and y the
remaining m variables, which we have put last. Whereas F goes from the high-
dimensional space, W C IR"+'", to the lower-dimensional space, R", and thus

show how the inverse of F will give us our implicit function g.
Consider the function F : W -+ 1R" x It", defined by

F(x)=(F(y)
J,
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had no hope of having an inverse, the domain and range of F have the same
dimension: n + m, as illustrated by Figure A5.1.

Exercise 2.3.6 addresses the
question why L is invertible if
[D1F(c),..., is invertible.

The derivative

11[DF(u)] =
L

[D
O F( ] J

is an (n + m) x (n + m) matrix;
the entry [DF(u)] is a matrix n
tall and n + m wide ; the 0 matrix
is m high and n wide; the identity
matrix is m x in.

\
We denote by BR

/
I b) the ball

of radius R centered at bI/ 0

While G is defined on all of
BR l b I, we will only be inter-

ested` in points G (YO)"

FIGURE A5. 1. The mapping F is designed to add dimensions to the image of F so
that the image has the same dimension as the domain.

So now we will find an inverse of F, and we will show that the first coordinates
of that inverse are precisely the implicit function g.

The derivative of F at c is

[DF(c)] = I [DlF(c), . 0
.. , DnF(c)] [Dn+1F(c), ... , Dn+,nF(c)] 1 = L, A5.7

L I J

showing that it is invertible at c precisely when [D1F(c),... , is invert-
ible, i.e., the hypothesis of the inverse function theorem (Theorem 2.9.4).

Note that the conditions (1) and (2) above look the same as the conditions
(1) and (2) of the inverse function theorem applied to F (modulo a change of
notation). Condition (1) is obviously met: F is defined wherever F is. There
is though a slight problem with condition (2): our hypothesis of Equation A5.3
refers to the derivative of F being Lipschitz; now we need the derivative of F to
be Lipschitz in order to show that it has an inverse. Since the derivative of F

is [DF(u)] = I [DF( j] when we compute I[DF(u)] - [DF(v)J[, the identity

matrices cancel, giving J

I[DF(u)] - [DF(v)]I = I[DF(u)] - [DF(v)]I A5.8

Thus F is locally invertible; there exists a unique inverse G : BR (b) -. W.-
In particular, when ]y - b[ < R,

F(G(y))-'y)' A5.9



_ Equation A5.10: The function
C has exactly the same relation-
ship to G as F does to F; to go
from G to G we stick on y at the
bottom. Since F does not change
the second coordinate, its inverse
cannot change it either.

Exercise A5.1 asks you to show
that the implicit function found
this way is unique.

In Equation A5.13 Dg(b) is an
n x m matrix, I is mxm, and
0 is the n x m zero matrix. In
this equation we are using the fact
that g is differentiable; otherwise
we could not apply the chain rule.

Remember that c = (gcb) I .

604 Appendix A: Some Harder Proofs

Now let's denote by G the first n coordinates of C:

GlYto,(GlY)) so FrG

(

lY) (
\Y/

Since F is the inverse of G,

1\

F(G(Y))=( ).
By the definition of G we have

l / (GlY))=F(GlY) I, so FI G(Y) )=1Y/'

A5.10

A5.11

A5.12

Now set g(y) = G (y). This gives

/ \
F

/g(y)\ = (F(By'))'
=(O), i.e., FI gyy) =0;

(\ Y J Y Y

g is the required "implicit function": F (Y) implicitly defines x in terms of y,
and g makes this relationship explicit.

Now we need to prove Equation A5.5 for the derivative of the implicit func-

tion g. This follows from the chain rule. Since F (g(y)) = 0, the derivative
of the left side with respect to y is also 0, which gives (by the chain rule),

(
LDF((gbb))J [Dg(b)] =0.

So

A5.13

D1F(c)... DIF(c), De+mF(c) Dg(b) 0, A5.14
I I I I I

I

I J

IDF(gb ))J

If A denotes the first n columns of [DF(c)] and B the last m columns, we have

A[Dg(b)] + B = 0, so A[Dg(b)] = -B, so [Dg(b)] = -A-1B. A5.15

Substituting back, this is exactly what we wanted to prove:

[Dg(b)]=-[D1F(c),...,DnF(c)]-'[Dn+1F(c),...,Dn+mF(c)].
-A-1



A.6 Proof of Theorem 3.3.9: Equality of Crossed Partials 605

A.6 PROOF OF THEOREM 3.3.9: EQUALITY OF CROSSED
PARTIALS

Of course the second partials
do not exist unless the first par-
tials exist and are continuous, in
fact, differentiable.

As we saw in Equation 1.7.5,
the partial derivative can be writ-
ten in terms of the standard basis
vectors:

D,f(a)
= ei

o f(a + h,) - f(a)

h

Theorem 3.3.9. Let f : U - R be a function such that all second partial
derivatives exist and are continuous. Then for every pair of variables xi, 2,,
the crossed partials are equal:

D,(Dif)(a) = D:(D,f)(a). 3.3.20

Proof. First, let us expand the definition of the second partial derivative. In
the first line of Equation A6.1 we express the first partial derivative Di as a
limit, treating D, f as nothing more than the function to which Di applies. In
the second line we rewrite D, f as a limit:

D1(Dif)(a) = li m h (Dif(a + he"";) - Dif (a))

=lim1 lim1(f(a+hi+kei,)-f(a+h6j))-limk 1(f(a+kei,)-f(a))h-Oh look k-0

Please observe that the part
in parentheses in the last line of
Equation A6.1 is completely sym-
metric with respect to e, and aid;
after all, f(a+hei.+keid) = f(a +
key + he,). So it may seem that
the result is simply obvious. The
problem is the order of the limits:
you have to take them in the or-
der in which they are written. For
instance,

but

lim lim-o v-0 x2 + y2
x2-V

1,

x2 -
2

lim "M
y

v-.0 x-.o x2 + y2

Di f(a+he,) D; f(a)

ni
oh(imk(f(a+heii+kei,)- f(a+hit)) -(f(a+kiid)- f(\a))I

=li h11 L(f(a+hiii+k",)-f(a+hei)-f(a+keii)+f(a)I./

We now define the function

A6.1

u(t) = f(a+tei+kei,) - f(a+ti,), so that A6.2

u(h)=f(a+he"i+ke,)-f(a+hii)and u(0)=f(a+kei,)-f(a). A6.3

This allows us to rewrite Equation A6.1 as

D,(Dif)(a) = htmkim hk (u(h) - u(0)). A6.4

Since u is a differentiable function, the mean value theorem (Theorem 1.6.9)
asserts that for every h > 0, there exists h1 between 0 and It satisfying

u(h) - u(0)

h
= u'(hi), so that u(h) - u(0) = hu'(hi). A6.5

This allows us to rewrite Equation A6.4 as

D,(D.if)(a) = h mkliyrn -
hu'(hi)

A6.6

Since



This is a surprisingly difficult
result. In Exercise 4.5.11 we give
a very simple (hut less obvious)
proof using Fubini's theorem.
Here, with fewer tools, we must
work harder: we apply the mean
value theorem twice, to carefully
chosen functions. Even having
said this, the proof isn't obvious.

Once more we use the mean
value theorem.

= Jim lim (D3(D,(f))(a+htei+kt'i)).
limolim

Now we use the hypothesis that the second partial derivatives are continuous.
Ash and k tend to 0, so do hi and kt, so

Di(D, f)(a) = Jim lim(Di(Dif(a+h1 ,+kte'i))
h-Ok-O

= D3(D1f)(a). 0

A.7 PROOF OF PROPOSITION 3.3.19

partial derivative, i.e., f (a)), then

JIM f (a
+ h) = 0.

h-.0 Ih1k

A6.14

Proposition 3.3.19 (Size of a function with many vanishing partial
derivatives). Let U be an open subset of P' and f : U -4 R be a Ck
function. If at a E U all partials up to order k vanish (including the 0th
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u(hi) = f(a+hje'; +ke"i) - f(a+htee,), A6.7

the derivative of u(hl) is the sum of the derivatives of its two terms:

u'(hi) = D,f(a+hte"i+kgg,)-D;f(a+hte";), so A6.8

D;(Dif)(a)=himkim k (Dif(a+hi"i+ki)-D,f(a+ht"i)) A6.9

u' (h,)

Now we create a new function so we can apply the mean value theorem again.
We replace the part in brackets on the right-hand side of Equation A6.9 by the
difference v(k) - v(0), where v is the function defined by

v(k) = Dif(a+hteei + keei).

This allows us to rewrite Equation A6.9 as

A6.10

Di(Di f)(a) = eto kt o k (v(k) - v(0)).

Again v is differentiable, so there exists kt between 0 and k such that

A6.11

v(k) - v(0) = kv'(kt) = k(D, (D;(f )) (a + htee, + klei)).

Substituting this in Equation A6.11 gives

Di(D)f)(a) = li m lo kv'(ki)

A6.12

A6.13

3.3.39



A.7 Proof of Proposition 3.3.19 607

The case k = 1 is the case
where f is a C' function, once
continuously differentiable.

Proof. The proof is by induction on k, starting with k = 1. The case k =
1 follows from Theorem 1.9.5: if f vanishes at a, and its first partials are
continuous and vanish at a, then f is differentiable at a, with derivative 0. So

0 0

0 = lim
f (a + h) - f() - [D f(a) h = lim f(a + h)

A7.1
6-.0 Ihi 6--o phi

= 0 since f is differentiable

This equation is simpler than
it looks. At each step, we allow
just one entry of the variable h to
vary. We first subtract, then add,
identical terms, which cancel.

This proves the case k = 1.

Now we write f (a + h) in a form that separates out the entries of the incre-
ment vector h, so that we can apply the mean value theorem.

Write f(. + h) = f(. + h) - f (a) =

changing only h, changing only h3

a] +h, a1 a1 a1

a2 + h2 a2 + h2 a2 + h2 a2

a3 + h3 a3 + h3 a3 + h3 a3 + h3
I f +f -f

an-l+hn-1 an-1+hn_1 an_,+hna,_1+hn_1
an + hn an + hn an + hn an + hn

minus plus minus

changing only h3 changing only h

+f

a1 a1

a2 a2

a3 - f a3

an-1 an-1

an + hn an

plus

al + h , a1

a2 + h2 a2

a3 + h3 a3
= I - f A7.2

an-l+hn_1 an-1
an + hn an



Proposition 3.3.19 is a useful
tool. but it does not provide an
explicit bound on how much the
function can change. given a spe-
cific change to the variable: a
statement that allows its to say.
for example, "All partial deriva-
tives off up to order k = 3 vanish,
therefore. if we increase the vari-
able by It = 1/4, the increment
to f will he < 1/64, or < e 1/64,
where a is a constant which we
can evaluate." Taylor's theorem
with remainder (Theorem A9.5)
will provide such a statement.

The mean value theorem: If
f : (a, a + h) -» IP is continuous,
and f is differentiable on (a. a+h),
then there exists b E (a, a+h) such
that

f(b)=f(a+h)-f(ee).

f(a+It)- f(a) = hf'(b).

In Equation A7.8 we are sub-
stituting D,f for f and c, for h in
Equation 3.3.39. You may object
that in the denominator we now
have k - 1 instead of k. But Equa-
tion 3.3.39 is true when f is a C,k
function, and if f is a Ck function,
then D, f is a CA.-, function.
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By the mean value theorem, the ith term in Equation A7.2 is

f

at

ai-1

a, + h,
ai+1 + h,+1

-f

al

ai_l
at

ai+1 + hi+1

b,

/ at

ai-1

bi

ai+1 + hi+1

A7.3

a,,+ h,, / \ k

f(u+h)-f(.)

Dif (a +,6i
lim
h-.o Ih(k-1

for some It, E (a,. a, + h,). Then the ith term of f (a + h) is h,D, f (bi ). This
allows us to rewrite Equation A7.2 as

f(a+h) = f(a+h) - f(a) =Eh,Dif(bi). A7.4
i=1

Now we can restate our problem; we want to prove that

f(a + h) f(a + h) hi Dif(bi)
lim = lim lim - = 0.
h-.o Ihlk h-.o Ihllhlk-1 1=1 h-.o IhI Ihlk-l

Since Ihil/IhI < 1, this collies down to proving that

lim Dif(bi) = 0.
h.o Ihlk-l

A7.5

A7.6

Now set bi = a + 16,; i.e., EE, is the increment to a that produces bi. If we

substitute this value for bi in Equation A7.6, we now need to prove

lim
Dif(a+EE,) =0.

h_o Ihlk-l A7.7

By definition, all partial derivatives of f to order k exist, are continuous on U
and vanish at a. By induction we may assume that Proposition 3.3.19 is true
for Dif, so that

lim
D;f(a+ci)

=0;
cT, -O ICrIk-I

Thus we can assert that

=hiDiftir

hf'(b,)

= 0.

A7.8

A7.9
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You may object to switching the c, to h. But we know that 16;j < JQ:

00

e, C,

hj+1

, and c, is between 0 and hi. A7.10

L hn .1

So Equation A7.8 is a stronger statement than Equation A7.9. Equation A7.9
tells us that for any e, there exists a 6 such that if 191 < b, then

Ihlk-1 < C. Ar.11

If Ihl < b, then JcaI < 6. And putting the bigger number 191k'' in the denomi-
nator just makes that quantity smaller. So we're done:

f(a+h') hi Dif(a+c";)
lim = lim = 0. 0 A7.12
6_0 Ihlk i.1 h_o Ihl Ihik-1

A.8 PROOF OF RULES FOR TAYLOR POLYNOMIALS

Proposition 3.4.3 (Sums and products of Taylor polynomials). Let
U C II." be open, and f, g : U - 118 be Ck functions. Then f + g and f g are
also of class Ck, and their Taylor polynomials are computed as follows.

(a) The Taylor polynomial of the sum is the sum of the Taylor polynomials:

Pf+s,a(a+h) = Pfa(a+h)+Pg a(a+h). 3.4.8

(b) The Taylor polynomial of the product fg is obtained by taking the
product

Pf a(a + h) Pka(a + 3.4.9

and discarding the terms of degree > k.

Proposition 3.4.4 (Chain rule for Taylor polynomials). Let U C 118°
1 7 - . V -. II8 be of class Ck. Then

fog : U -. 118 is of class Ck, and if g(a) = b, then the Taylor polynomial
Pfo9 a(a + h) is obtained by considering the polynomial

Pfb(P9a(a+h))
and discarding the terms of degree > k.

Di f (a + h)



610 Appendix A: Some Harder Proofs

Big 0 has an implied constant,
while little o does not: big 0 pro-
vides more information.

Notation with big 0 "signfi-
cantly simplifies calculations be-
cause it allows us to be sloppy-
but in a satisfactorily controlled
way."-Donald Knuth, Stanford
University (Notices of the AMS,
Vol. 45, No. 6, p. 688).

For example, if f E O(Ixl2)
and g E O(1x13), then f + g is
in O(lxl2) (the least restrictive of
the 0, since big 0 is defined in
a neighborhood of zero). How-
ever, the constants C for the two
O(IxI2) may differ.

Similarly, if f E o(IxI2) and g E
o(Ix13), then f+g is in o(lx12), but
for a given e, the d for f E o(Ix12)
may not be the same as the & for
f +9 E o(Ix12).

In Equation A8.2, note that the
terms to the left and right of the
second inequality are identical ex-
cept that the C2Ixl' on the left be-
comes C2IxIk on the right.

All these proofs are essentially
identical; they are exercises in fine
shades of meaning.

These results follow from some rules for doing arithmetic with little o and
big O. Little o was defined in Definition 3.4.1.

Definition A8.1 (Big 0). If h(x) > 0 in some neighborhood of 0, then
a function f is in O(h) if there exist a constant C and d > 0 such that
If (x) I < Ch(x) when 0 < IxI < b; this should be read "f is at most of order
h(x)."

Below, to lighten the notation, we write O(Ixlk)+O(Ixl') = O(Ixlk) to mean
that if f E O(Ixlk) and g E O(Ix('), then f + g E O(Ixlk); we use similar
notation for products and compositions.

Proposition A8.2 (Addition and multiplication rules for o and 0).
Suppose that 0< k < I are two integers. Then

1.O(Ixlk) + O(IXII) = O(IxIk)
2. o(Ixlk) + o(lxl') = o(Ixlk) formulas for addition

3. o(Ixlk) + O(IXII) = o(Ixlk) if k < 1

4.O(IXIk) O(IXII) = O(Ixlk+l) formulas for multiplication

5. o(Ixlk) O(IXII) = o(lxlk+l)

Proof. The formulas for addition and multiplication are more or less obvious;
half the work is figuring out exactly what they mean.

Addition formulas. For the first of the addition formulas, the hypothesis is
that we have functions f (x) and g(x), and that there exist 6 > 0 and constants
C1 and C2 such that when 0 < lxI < 5,

lf(x)I <Cilxlk and

If dl = inf{6,1}, and C = C, + C2, then
I9(x)I < Czlxit. A8.1

AX) + g(x) < C1 IXI" + C2IXit < C1 IXI" + C2IxIk = CIXik. A8.2

For the second, the hypothesis is that

lim L W = 0 and lim 9W = 0.
IxI_o Ixlk Ixho Ixl'

Since I > k, we have limlxl.o I-, = 0 also, so

lim Ax) + 9(X) = 0.
1xI-.o Ixlk

A8.3

A8.4
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For the statements concerning
composition, recall that f goes
from U, a subset of IR", to V, a
subset of 08, while g goes from V
to P, so g o f goes from a subset
of 1R" to R. Since g goes from a
subset of P to IR, the variable for
the first term is x, not x.

To prove the first and third
statements about composition, the
requirement that I > 0 is essen-
tial. When I = 0, saying that
f E 00x1') = 0(1) is just saying
that f is hounded in a neighbor-
hood of 0; that does not guaran-
tee that its values can be the input
for g, or be in the region where we
know anything about g.

In the second statement about
composition, saying f E o(1) pre-
cisely says that for all c, there ex-
ists 6 such that when x < 6, then
f (x) < e; i.e.

iim f (x) = 0.

So the values of f are in the do-
main of g for Ixl sufficiently small.

The third follows from the second, since g E O(Ixl') implies that g E o(lxlk)
when 1 > k. (Can you justify that statement?3)

Multiplication formulas. The multiplication formulas are similar. For the
first, the hypothesis is again that we have functions f (x) and g(x), and that
there exist 6 > 0 and constants C1 and C2 such that when 1x1 < 6,

If (X) 15 C, lXlk, 19(X)1 < C21xlt. A8.5

Then f(x)g(x) < CjC2lxlk+r,

For the second, the hypothesis is the same for f, and for g we know that for
every e, there exists n such that if lxl < rl, then Ig(x)l < clxll. When lxi < ri,

so

1f(X)g(X)1 <- Cielxlk+! A8.6

litn lf(x)g(x)l = 0.
Ixho lxlk+f A8.7

To speak of Taylor polynomials of compositions , we need to be sure that
the compositions are defined. Let U be a neighborhood of 0 in 1R", and V be
a neighborhood of 0 in R. We will write Taylor polynomials for compositions
gof,where f:U-(0)--.IRandg: V-.1R:

U-{0} _1 .
A8.8

We must insist that g be defined at 0, since no reasonable condition will prevent
0 from being a value of f. In particular, when we require g E O(xk), we need
to specify k > 0. Moreover, f (x) must be in V when lxI is sufficiently small; so
if f E O(lxlt) we must have 1 > 0, and if f E o(lxl') we must have I > 0. This
explains the restrictions on the exponents in Proposition A8.3.

Proposition A8.3 (Composition rules for o and 0). Let f : U-{0}
P and 9 : V -s P be functions, where U is a neighborhood of 0 in IR", and
V C P is a neighborhood of 0. We will assume throughout that Is > 0.

1. Mg E O(Ixlk) and f E O(lxlt), then g o f E O(Ixlk1), if I > 0.

2. If g E O(lxlk) and f E o(Ixlt), then g o f E o(lxlk1), if 1> 0.
3. Mg E o(lxlk) and f E O(Ixlt), then g o f E o(Ixlkl) if I> 0.

Proof. For the formula 1, the hypothesis is that we have functions f (x) and
g(x), and that there exist 61 > 0, 62 > 0, and constants C, and C2 such that
when lxl < 61 and lxl < 62,

19(X)15 C11xlk, If(x)I 5 C21xl'. A8.9

3Let's set 1 = 3 and k = 2. Then in an appropriate neighborhood, g(x) < ClxJ3 =
Clxllxl2; by taking lxl sufficiently small, we can make Clxl < e.



We may have f (x) = 0, but we
have required that g(0) = 0 and

that k > 0, so the composition is
defined even at such values of x.

This is where we are using the
fact that ! > 0. If ! = 0, then
making 62 small would not make
CI62I1 small.
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Since l > 0, f(x) is small when IxI is small, so the composition g(f(x)) is
defined for IxI sufficiently small: i.e., we may suppose that r! > 0 is chosen so
that q < 62, and that l f (x)l < 61 when Ixi < ii. Then

Ig(f(X))I <C,If(x)I, <C1(C2IxIt)k =CiC2IXIW. A8.10

For formula 2, we know as above that there exist C and 61 > 0 such that
Ig(x)l < C.Ixlk when IxI < 61. Choose c > 0; for f we know that there exists
62 > 0 such that I f (x)I < EIxi' when Ixi < 62. Taking 62 smaller if necessary,
we may also suppose E162l1 < 61. Then when IxI < 62, we have

Ig(f(X))I <- Clf(x)lk < C (EIxII)k = Cc k Ixlkl. A8.11

an arbitrarily
small t

For formula 3, our hypothesis g c o(Ixlk) asserts that for any c > 0 there
exists 61 > 0 such that Ig(x)I < elalk when xl < 61.

Now our hypothesis on f says that there exist C and 62 > 0 such that If(x) I <
Clxli when Ixl < 62; taking 62 smaller if necessary, we may further assume that
CI62II < 61. Then if IxI < 62,

Ig(f (X))I EIf(X)Ik < EICIXI'Ik = ECklxllk. A8.12

Proving Propositions 3.4.3 and 3.4.4

We are ready now to use Propositions A8.2 and A8.3 to prove Propositions
3.4.3 and 3.4.4. There are two parts to each of these propositions: one asserts
that sums, products and compositions of Ck functions are of class Ck; the other
tells how to compute their Taylor polynomials.

The first part is proved by induction on k, using the second part. The rules
for computing Taylor polynomials say that the (k - 1)-partial derivatives of a
slim, product, or composition are themselves complicated sums of products and
compositions of derivatives, of order at most k -1, of the given Ck functions.
As such, they are themselves continuously differentiable, by Theorems 1.8.1 and
1.8.2. So the sums, products and compositions are of class Ck.

Computing sums and products of Taylor polynomials. The case of sums
follows immediately from the second statement of Proposition A8.2. For prod-
ucts, suppose

f(x) = pk(x) + rk(x) and g(x) = qk(x) + sk(x), A8.13

with rk+sk E O(IXIk). Multiply

f(X)g(X) = (pk(x) + rk(X))(gk(X) + sk(X)) = Pk(x) + Rk(X), A8.14

where Pk(x) is obtained by multiplying pk(x)gk(x) and keeping the terms of
degree between I and k. The remainder Rk(x) contains the higher-degree terms
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of the product ph(x)gk(x), which of course are in o(jxlk). It also contains the

products rk(x)sk(x),rk(x)gk(x), and pk(x)sk(x), which are of the following

forms:

O(1)sk(x) E O(jXlk);

rk(X)O(1) E o(jXjk); A8.15

rk(X)sk(x) E O(IXI2k).

Computing compositions of Taylor polynomials. Finally we come to the
compositions. Let us denote

+ rf,a(h) A8.16

term polynomial terms remainder
1< degree <k

separating out the constant term; the polynomial terms of degree between 1 and
k, so that lQ a(h)I E O(IhD); and the remainder satisfying rt a(h) E o(lhh1k).

Then

9of(a+h) = Psb(b+ Q1,a(h)+rr,.(h))+r9 ,(b+Qk,a(h)+rk,a(h')). A8.17

Among the terms in the sum above, there are the terms of Py 6(b+Qk,a(h)) of
degree at most k in h; we must show that all the others are in oflh'jk).

Most prominent of these is

rq b(b +Qk,a(h) +rj,a(h)) E 0(10(Q) +o(1hjklk) = o(j0(IhI)lk) =
A8.18

Note that m is an integer, not
a multi-index, since g is a function
of a single variable.

using part (3) of Proposition A8.3.

The other terms are of the form

ml Dm9(b) (b + Q k (h) + r a(h))
m

8.19

In Landau's notation, Equation
A9.1 says that if f is of class Ck+1
near a, then not only is

f(a+h)-Pf,a(a+h)
in o(Ih1k); it is in fact in O(1hjk+');
Theorem A9.7 gives a formula for

If we multiply out the power, we find some terms of degree at most k in the
coordinates h; of h, and no factors rlfa(h): these are precisely the terms we are
keeping in our candidate Taylor polynomial for the composition. Then there are
those of degree greater than k in the h; and still have no factors rf%(h), which
are evidently in o(111"), and those which contain at least one factor rf a(h).
These last are in O(1)o(1hjk) = o(ph1k). 0

the constant implicit in the 0. A.9 TAYLOR'S THEOREM WITH REMAINDER

It is all very well to claim (Theorem 3.3.18, part (b)) that

lira
f(a+h)-Pja(a+h)

_0;
n-o jh'jk

A9.1
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that doesn't tell you how small the difference f (a + P) a(a + h) is for any

particular Is 36 0.
Taylor's theorem with remainder gives such a bound, in the form of a multiple

of JhIk+1 You cannot get such a result without requiring a bit more about the
function f; we will assume that all derivatives up to order k + 1 exist and are
continuous.

Recall Taylor's theorem with remainder in one dimension:

When k = 0, Equation A9.2 is
the fundamental theorem of calcu-
lus:

r
9(a + h) = 9(a) + J h g '(a + t) dt.

remainder

Theorem A9.1 (Taylor's theorem with remainder in one dimen-
sion). If g is (k + 1)-times continuously differentiable on (a - R, a + R),
then, for Jhi < R,

PP.. (a+h)
(Taylor polynomial of g at a, of degree k)

9(a + h) = 9(a) + 9r(a)h + ... + k!9(k)(a)hk

rh
+ ki J (h - t)kg(k+')(a + t) dt.

0

remainder

A9.2

Proof. The standard proof is by repeated integration by parts; you are asked
to use that approach in Exercise A9.3. Here is an alternative proof (slicker and

We made the change of vari-
ables s = a + t, so that as t goes
from 0 to h, a goes from a to x

less natural). First, rewrite Equation A9.2 setting x = a + h:

g(x) = 9(a) + g'(a)(x - a) + ... + k19(k)(a)(x - a)k
9.3

+ (x - s)kg(k+l)(s) dt.
a

Now think of both sides as functions of a, with x held constant. The two
sides are equal when a = x: all the terms on the right-hand side vanish except
the first, giving g(x) = g(x). If we can show that as a varies and x stays fixed,
the right-hand side stays constant, then we will know that the two sides are
always equal. So we compute the derivative of the right-hand side:

=0 =e

9 (a)+(-9'(a) + (x - a)g"(a)) + (-(x - a)9 r(a) + (x - a2i 9n,(a)) + .. .

=0

x- a k 1 (k) a x -a) k (k+1) a (x a k (k+1) a
(k - 1)! k! I k!

derivative of the remainder
A9.4

where the last term is the derivative of the integral, computed by the fundamen-
tal theorem of calculus. A careful look shows that everything drops out.
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Another approach to Corollary
A9.3 is to say that there exists c
between a and x such that

rs(x _ dtfk!

= 1 (x _ a)(x _
C)k9(k+l)(c)

A calculator that computes to
eight places can store Equation
A9.5, and spit it out when you
evaluate sines; even hand calcula-
tion isn't out of the question. This
is how the original trigonometric
tables were computed.

Computing large factorials is
quicker if you know that 6! = 620.

It isn't often that high deriva-
tives of functions can be so easily
bounded; usually using the Tay-
lor's theorem with remainder is
much messier.

Evaluating the remainder: in one dimension

To use Taylor's theorem with remainder, you must "evaluate" the remainder.

It is not useful to compute the integral; if you do this, by repeated integrals by

parts, you get exactly the other terms in the formula.

Theorem A9.2. There exists c between a and x such that
k+1

f(a + h) = PPa(a + h) + (k
+

1),hk+1

Corollary A9.3. If I f(k+1)(a + t)I < C for t between 0 and It, then

If(a+h)-P',(a+h)I5 (k+1)!h' 'C

Example A9.4 (Finding a bound for the remainder in one dimension).
A standard example of this sort of thing is to compute in 9 to eight decimals
when 191 < ir/6. Since the successive derivatives of sin 8 are all sines and cosines,
they are all bounded by 1, so the remainder after taking k terms of the Taylor
polynomial is at most

1 rx k+1

(k+1)! 6/ A9.5

for 191 < a/6. Take k = 8 (found by trial and error); 1/9! = 3.2002048 x 10-1
and (ir/6)9 2.76349 x 10-1; the error is then at most 8.8438 x 10-9. Thus we
can be sure that

T 9

to eight decimals when 101 < x/6. A

Taylor's theorem with remainder in higher dimensions

A9.6

Theorem A9.5 (Taylor's theorem with remainder in higher dimen-
sions). Let U C ll be open, let f : U )R a function of class Ck+1,
and suppose that the interval [a, a + h] is contained in U. Then there exists
c E [a,a + hl such that

f(a+h)=Pja(a+li)+ DIf(c)l . A9.7
IEZ`+1
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Proof. Define p(t) = a + t1 , and consider the scalar-valued function of one
variable g(t) = f (,p(t)). Theorem A9.2 applied to g when h = 1 and a = 0 says
that there exists c with 0 < c < 1 such that

(k)

g(l) = g(0) + ... +
g k'0) + klg(k+l)(c A9.8

Taylor polynomial remainder

We need to show that the various terms of Equation A9.8 are the same as the
corresponding terms of Equation A9.7. That the two left-hand sides are equal
is obvious; by definition, g(1) = f(a -t h). That the Taylor polynomials and the
remainders are the same follows from the chain rule for Taylor polynomials.

We call Lemma A9.6 the poly-
nomial formula because it general-
izes the binomial formula to poly-
nomials. This result is rather nice
in its own right, and shows how
multi-index notation can simplify
complicated formulas.

To show that the Taylor polynomials are the same, we write
k

Py.u(t) = f j,a(Pw,o(t)) _
IlDlf(a)(th)r

m=0

k.

_ 1,DIf(a)(h)I trn.

(i'EZ ,
This shows thatThis

A9.9

(t) 0
9(0) + + 9 k'

)) = Pf a(a + A9.10

For the remainder, set c = o(c). Again the chain rule for Taylor polynomials
gives

A9.11

Looking at the terms of degree k + 1 on both sides gives the desired result:

klg(k+l)(c) _ IjDlf(e)(h)1. A9.12

There are many different ways of turning this into a bound on the remainder;
they yield somewhat different results. We will use the following lemma.

k+1

P9 `(t) = Pj ' (P c' (t)) = j1 Dif (c)(th)t
m=0 IEZ

k+l

_
I

lDlf(e)(h)1 t=
m=0 (,,EZ [

Lemma A9.6 (Polynomial formula).

F Il h1 =
kl

(hl + ... + hn)k. A9.13
IEZk

Proof. We will prove this by induction on n. When n = 1, there is nothing
to prove: the lemma simply asserts h"' = h'n.
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Suppose the formula is true for n, and let us prove it for n + 1. Now h =
h, hit

J

, and we will denote h-' = I
J

. Let us simply compute:

hn+l L hn

^
lihr = F L l(h)J (1 )!hn+1n . k -7rL.=o JEil

_ (h1 +...+hn)»' (k lm)! hn+1

by induction on n

I

k
k!

= k!
(k-nz)!rrc!(hi+...+hn)mhn+i'

The last step is the binomial
theorem. =

kl
(hi + + hn + hn+l )'n. 0

A9.14

This, together with Theorem A9.5, immediately give the following result.

Theorem A9.7 (An explicit formula for the Taylor remainder). Let
U C 1Rn be open, f : U -. 1R a function of class Ck+1 and suppose that the
interval [a, a + h] is contained in U. If

sup sup SDI f (c)I < C, A9.15
JEI;,`+t cEla,a+t 1

then

(EIhI)
n k+1

If(a+)-P.(a+I)I <C. A9.16

A.10 PROOF OF THEOREM 3.5.3 (PROCEDURE FOR COM-
PLETING SQUARES)

Theorem 3.5.3 (Quadratic forms as sums of squares). (a) For any
quadratic form Q(x) on R°, there exist linearly independent linear fractions
ai( a.(:E) such that

Q(X)_ +...+(qk(X))2-(ak+r(f))2-...-(ak+,(f))2. 3.5.3

(b) The number k of plus signs and the number l of minus signs in such
a decomposition depends only on Q and not on the specific linear functions
chosen.
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Proof. Part (b) is proved in Section 3.5. To prove part (a) we need to formalize
the completion of squares procedure; we will argue by induction on the number
of variables appearing in Q.

Let Q : Il8" -' R be a quadratic form. Clearly, if only one variable xi appears,
then Q(W) = fax? with a > 0, so Q(i) = ±(./x,)2, and the theorem is true.
So suppose it is true for all quadratic forms in which at most k - 1 variables
appear, and suppose k variables appear in the expression of Q. Let xi be such a
variable; there are then two possibilities: either (1), a term fax2 appears with
a > 0, or (2), it doesn't.

(1) If a/term tax? appears with` a > 0, we can then write

Q(X) = f 1 ax; + 3(9)x, + !!4a)) 2 1 + Q i (X) = t (xj + 2()) 2 + Ql (X)

A10.1
where /i is a linear function of the k - 1 variables appearing in Q other than xi,
and Q, is a quadratic form in the same variables. By induction, we can write

Qt(X) = f(al(X))2 f ... f am(x))2 A10.2

for some linearly independent linear functions a,(z) of the k - 1 variables ap-
pearing in Q other than xi.

We must check the linear independence of the linear functions ao, ai,... , am,
where by definition

Recall that /i is a function of
the variables other than x,; thus
when those variables are 0, so is
,0(,Z) (as are a1( 9 0----, a,,, (e'; )).

(() = A10 3.ao ax,+

2

.

Suppose

A10.4

then

A10.5

for every , in particular, R = di, when xi = 1 and all the other variables are
0. This leads to

so co=0, A10.6

so Equation A10.4 and the linear independence of al, ... , am imply cl _ _
Cm=0.

(2) If no term tax; appears, then there must be a term of the form ±axix,
with a > 0. Make the substitution xj = x; + u; we can now write

Q(X) = ax? +,6(:Z, u)xi +
(a( ))2

+ Qi(,,u)

A10.7
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where /3 and Qi are functions (linear and quadratic respectively) of u and of
the variables that appear in Q other than x; and x.. Now argue exactly as

above; the only subtle point is that in order to prove co = 0 you need to set

u=0,i.e.,tosetx;=xj =1. 0

A.11 PROOF OF PROPOSITIONS 3.8.12 AND 3.8.13
(FRENET FORMULAS)

Proposition 3.8.12 (Prenet frame). The point with coordinates X, Y, Z
(as in Equation 3.8.55) is the point

a + Xt'(0) + Yfi(0) + Z1 (0).

Equivalently, the vectors t(0), d(0), b(0) form the orthonormal basis (Frenet
frame) with respect to which our adapted coordinates are computed.

Proposition 3.8.13 (Ftenet frame related to curvature and torsion).
The P enet frame satisfies the following equations, where e is the curvature
of the curve at a and r is its torsion:

i'(0) = rcn(0)

d'(0) _ -ic40) + rb'(0)

19'(0) _ - rd(0).

Proof. We may assume that C is written in its adapted coordinates, i.e., as
in Equation 3.8.55, which we repeat here:

When Equation 3.8.55 first ap-
peared we used dots (...) to de- Y = 1 a2 +62X2 + a2a3 + X3 = A2 X2

+ A3 -X3 + O(X 3)
note the terms that can be ig- 2 6Va2 + 2 6

A11.1nored; here we are more specific, -b2a3 + a2b3 3 B3 3 3denoting these terms by 0(X3). Z = X3 + =
6

X3 + o(X ).
6V4 +b2

This means that we know (locally) the parametrization as a graph

Irb: X 2X2+ B
X

,3 +0(X3) A11.2

IL c
-B X3+ O(X3)

whose derivative at X is

1

b'(X)= A2X+4+...
2

A11.3
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Parametrizing C by arc length means calculating X as a function of are

length s, or rather calculating the Taylor polynomial of X(s) to degree 3. Equa-

tion 3.8.22 tells us how to compute s(X); we will then need to invert this to

find X(s).

Lemma A11.1. (a) The function

rx \z
s(X)=J 1+(A2t+

23t2)z+(B3t21
+0(t2)dt A11.4

o

length of 5'(t)

has the Taylor polynomial

s(X) = X + 6A2X3+o(X3). A11.5

(b) The inverse function X(s) has the Taylor polynomial

X (s) =.9 - 1 A2S3+0(S3) to degree 3. A11.6

Proof of Lemma A11.1. (a) Using the binomial formula (Equation 3.4.7),
we have

r+l
\12 / \2

A2t+ 23t21 +I B3t21 +o(t2)=1+ZAZt2+o(t2A11.7

to degree 2,and integrating this gives

/
s(X)= Ix (1+1A2t2+o(t2))dt=X+-A2X3+o(X3) A11.8

0

to degree 3. This proves part (a).

(b) The inverse function X(s) has a Taylor polynomial; write it as X(s)
as + /3s2 + ry33 + o(83), and use the equation s (X (s)) = s and Equation A11.8
to write

s(X(s)) = X(s) + 6A22X(s)3 + o(s3)

= (as+}382+'733 + O(s3))+ 1A2(as+)3 2+'7s'f+o(33))3+o(s3)

= s. A11.9

Develop the cube and identify the coefficients of like powers to find

A2a=1 , 3=0 , -Y=-.6 2, A11.10

which is the desired result, proving part (b) of Lemma A11.1.
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Proof of Propositions 3.8.12 and 3.8.13, continued. Inserting the value
of X(s) given in Equation A11.6 into Equation A11.2 for the curve, we see that
up to degree 3, the parametrization of our curve by are length is given by

X (S) = S -
6

A2283+0(S3)

/ 2

Y(s)=2A21s-6A2s'il +6A3S3+o(s3) =
1A2s1+6A3s3+o(s3)

Z(s) =
6

B38\\3 +

o(s3). / A11.11

Differentiating these functions gives us the velocity vector

1 -
2232 +0(8 2)

1

t(s) = A2s + A3S2 +o(s2) to degree 2, hence f(O) = [O] . Al1.12

+
0(S2)

Now we want to compute n(s). We have:

t s -A2s+o(s) ll

A2+A3s+o(s)J , A11.13It'(s)I It'(s)I Bas + 0(s)

We need to evaluate It'(s)I:

It (s)I = A2s2+A2+A3s2+2A2A3s+B3s2+o(s2)
A11.14

= A2 + 2A2A3s + o(s).

Therefore,

1 1/2

v=;,

(A2+2A2A3s+o(s))-'12=(A2(1+A2s)+°(s)/

1 2A3S ``-1/2_ (1 + -J + o(s).
A2 A2

A11.15

Again using the binomial theorem,

t'(s)I A2
I 1 1 q2 s) +o,(. )) = A2 -A2s +0(3)' A11.16

2

So

/
(; - As I (-A2s) + o(s))

I \ - A s) (A2 + A3s) + o(s))

- (I - As) (B3s) + o(s))

-A2s + 0(s)

1+0(3)

2
8+0(s)

A11.17
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FIGURE A12.1.
The sum log l+log 2+- +log n

is a midpoint Riemann sum for the
integral

1
+1/2

logxdx.
/2

The kth rectangle has the same
area as the trapezoid whose top
edge is tangent to the graph of
log z at log n, as illustrated when
k = 2.
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Hence

r0[01
degree 1, and 9(0) = i(0) x n"(0) = I 0 . A11.18ii(0) = 1 to

0 1

Moreover,

-A2
n"(0) = B I = -rcf(0) + rb(0), and t''(0) A11.19

X2

0
Now all that remains is to prove that b'(0) = -rd(0), i.e., 9'(0)=- 1

z
0

Ignoring higher degree terms,

{A2sJ
1

1

b(s) = x it(s) x

1

. A11.20
L 12

0 12
So

r
0

b'(0) = f - . 0 A11.21
L z

0

A.12 PROOF OF THE CENTRAL LIMIT THEOREM

FIGURE A12.2.
The difference between the ar-

eas of the trapezoids and the area
under the graph of the logarithm
is the shaded region. It has finite
total area, as shown in Fquation
A12.2.

To explain why the central limit theorem is true, we will need to understand
how the factorial n! behaves as n becomes large. How big is 100! ? How many
digits does it have? Stirling's formula gives a very useful approximation.

Proposition A12.1 (Stirling's formula). The number n! is approxi-
mately

n! 2a
(n)n f,

e

in the sense that the ratio of the two sides tends to 1 as n tends to oo.

For instance,

(100/e)100 100 N 9.3248. 10157 and 100!--9.3326-10'57, A12.1

for a ratio of about 1.0008.

Proof. Define the number R by the formula
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The second equality in Equa-
tion A12.3 comes from setting x =
n + t and writing

so

x=n+t=n
``
11+ /1,

n

logx = log(n(1 + t/n))

= log n + log(1 + t/n)

and

f
1/2

log n dt = log n.
-1/2

The next is justified by
1/2 t dt=0.
1/2 n

The last is Taylor's theorem with
remainder:

log(1+h) = h+2 (
(1

+c)2) h2

for some c with lei < lh]; in our
case, h = t/n with t E [-1/2,1/2]
and c = -1/2 is the worst value.

Equation A12.5 comes from:

log(n + 2) = log(n(1 + 2n

=logn+log(1+2n)

=logn+2n+O(- ).

log1+log2+ +logn= J
111/2

midpoint Riemnnn sum

log"! = logxdx+R,,. A12.2

(As illustrated by Figures 12.1 and 12.2, the left-hand side is a midpoint Rie-
mann sum.) This formula is justified by the following computation, which shows
that the Rn form a convergent sequence:

Rn_ 1I= log n - logxdx
n-1/2T-

+1/2

/1/2 / \
I dt/ log I 1 + t )

JJJ 1/2 \ I//'1\
J-1/z

(log (I + t) - n) dt

<12f 1/2

(n)2dt
6n2'

A12.3

so the series formed by the Rn-Rn_1 is convergent, and the sequence converges
to some limit R. Thus we can rewrite Equation A12.2 as follows:

+1/2
logn! =

/ logxdx+R+e1(n) _ [xlogx-xjn+1/2+R+e1(n)1/21/2

= I (r1+2)log(n+2) - (n+2)) - (2log2 - 2l+R+E1(n),
\ \ / A12.4

where e1(n) tends to \0 as n tends to on.. Now notice that

(n+2 Ilog (n + I `In+2 Ilogn+2+e2(n), A12.5

where f2(n) includes all the terms that tend to 0 as n no. Putting all this
together, we see that there is a constant

1 1 1c=R- Ilog2 A12.6G
such that

logn!=nlogn+logn-n+c+e(n), A12.7

where e(n) --' 0 as n -. no. Exponentiating this gives exactly Stirling's formula,
except for the determination of the constant C:

The epsilons Ei(n) and e2(n)

are unrelated, but both go to 0 as n! = Cnne-n f ee(s) A12.8
n -+ oc, as does e(n) = 61(n) +
E (n) -+1 ae n-.oo
2 .

where C = e`. There isn't any obvious reason why it should be possible to
evaluate C exactly, but it turns out that C = 27r; we will derive this at the
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end of this subsection, using a result from Section 4.11 and a result developed
below. Another way of deriving this is presented in Exercise 12.1.

Proving the central limit theorem

We now prove the following version of the central limit theorem.

Theorem A12.2. If a fair coin is tossed 2n times, the probability that the
number of heads is between n + a f and n + b vin- tends to

b

In J
e-" dt A12.9

as n tends to no.

Proof. The probability of having between n + a f and n + b f heads is
exactly

1 E ( 2n ` - 1
b V-.

(2n)!
J A12.10

2zn n + k - 2zn (n } k)! (n -k)!k=n
n k=af

The idea is to rewrite the sum on the right, using Stirling's formula, cancel
everything we can, and see that what is left is a Riemann sum for the integral
in Equation A12.9 (more precisely, 1/ f times that Riemann sum).

Let us begin by writing k = tv/n-, so that the sum is over those values of t
between a and b such that t f is an integer; we will denote this set by T!o,bl.
These points are regularly spaced, 1/ f apart, between a and b, and hence are
good candidates for the points at which to evaluate a function when forming a
Riemann sum. With this notation, our sum becomes

1 (2n)!
12.1122n (n + t f)!(n -

tETI,,.6i

1 C(2n)2ne-2n v

22n l (
t f)(nity )e-(n+t,/n) n +tf) (C('t - t f)("-tJn)e-(n-t.r> n - t n)

.

Now for some of the cancellations: (2n)2n = 22"n2", and the powers of 2
cancel with the fraction in front of the sum. Also, all the exponential terms
cancel, since e-2n. Also, one power of C cancels. This
leaves

1 v, n2n vr2n-

C L' n -t n (n+tv/i)(n+tv')(n_t /n-)(n-tv')tETI.. I V '/
A12.12

Next, write (n + t n(n+t /n)(1 + t/ f)("+tv'), and similarly
for the term in n - t/i, note that the powers of it cancel with the n2n in the
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1 2n 1

C n2-t2n(1+t/f)(r'+t n) (1-tlf)hr-tf)
tETlo.t) .----

base

We denote by At the spacing of The term under the square root converges to 21n = f At, so it is the
the points t, i.e., I/ f. length of the base of the rectangles we need for our Riemann sum. For the

other, remember that

numerator, to find

height of rectangles for Riemann sure

A 12.13

Jun
ii+a)x

=e°. A12.14x-ac ,Z

We use Equation A12.14 repeatedly in the following calculation:

1

In the third line of Equation
A12.15, the denominator of the
first term tends to

e='t

as n -+
oo, by Equation A12.14. By the
same equation, the numerator of
the second term tends to a-t2

and the denominator of the second
term tends to vt2.

(1 + t/f)n(1 + t/f)tv(1- t//)"(1 - t/f)-tom
1

(1 _ t2 )t,/
-t,?.

I - t2/n), (1 + 1t n )t.--

1 e, t
2

-t2

A12.15

e

Putting this together, we see that

I

2n 1

C tET ;n2- ten (1 + t/ f )(n+t,ln)(1 - t1,-n)('-'A)
I. b)

converges to

A 12.16

A 12.17

1 n+bvn
12-

rb
22'n ( k) --+ C J e-t2 dt. A12.18

k=n+a f a

We finally need to invoke a fact justified in Section 4.11 (Equation 4.11.51):

V2 1 -t2
7 e-C yr`

tETla.s)

which is the desired Riemann sum. Thus as n -+ oo,

Joe-t2dt=f. A12.19
ao

Now since when a = -oo and b = +oo we must have

VLme _ v2 / t2
G
n C J e dt = 1, A12.20x
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By "rough statement" we mean
Equation 4.5.1:

Jt" f Id"xl =

(..(I:f
I

y"Jdx)..)dx".

we see that C = 2x, and finally

b

2z" F- (k) - f
e dt. A12.21

ak="oaf

A.13 PROOF OF FUBINI'S THEOREM

Theorem 4.5.8 (Fubini's theorem). Let f be an integrable function on
R" x la", and suppose that for each x E R", the function y ,-+ f(x,y) is
integrable. Then the function

x JT f(x,y)Idmyl

is integrable, and

J" m

f(x,y)Id"xlldmyl

= L. (J- f(x,y)ldmyI) Id"x,.

In fact, we will prove a stronger theorem: it turns out that the assumption
"that for each x E ]l8", the function y '-' f (x, y) is integrable" is not really
necessary. But we need to be careful; it is not quite true that just because f is
integrable, the function y i-s f (x, y) is integrable, and we can't simply remove
that hypothesis. The following example illustrates the difficulty.

Example A13.1 (A case where the rough statement of Fubini's theo-
rem does not work). Consider the function f (b) that equals 0 outside the
unit square, and 1 both inside the square and on its boundary, except for the
boundary where x = 1. On that boundary, f = 1 when y is rational, and f = 0
when y is irrational:

1 if 0<x<Iand 0<y<1
f () = 1 if x = 1 and y is rational A13.1

0 otherwise.

Following the procedure we used in Section 4.5, we write the double integral

JJf (x) dx dy =

J1 (J1

f l x) dy) dx
X2

o c
A13.2

However, the inner integral fo f (Y, ) dy does not make sense. Our function f

is integrable on IR2, but f (N) is not an integrable function of V. A



A.13 Fubini's Theorem 627

In fact, the function F could be
undefined on a much more compli-
cated set than a single point, but
this set will necessarily have vol-
ume 0, so it doesn't affect the in-
tegral fit F(x) dx.

For example, if we have an in-
s,

tegrable function f x2 , we can

think of it as a function on ?2 x L,
where we consider x, and x2 as the
horizontal variables and y as the
vertical variable.

FIGURE A13.1.
Here we imagine that the x

and y variables are horizontal and
the z variable is vertical. Fixing
a value of the horizontal variable
picks out a French fry, and choos-
ing a value of the vertical variable
chooses a flat potato chip.

Fortunately, the fact that F(1) is not defined is not a serious problem: since
a point has one-dimensional volume 0, you could define F(1) to be anything
you want, without affecting the integral fo F(x) dx. This always happens: if
f : R"+m i is integrable, then y '-, f (x, y) is always integrable except for
a set of x of volume 0, which doesn't matter. We deal with this problem by
using upper integrals and lower integrals for the inner integral.

Suppose we have a function f : IR"+' -. Ill and that x E Il8" denotes the
first n variables of the domain and y E IR'" denotes the last m variables. We
will think of the x variables as "horizontal" and the y variables as "vertical."
We denote by fx the restriction of f to the vertical subset where the horizontal
coordinate is fixed to be x, and by fy the restriction of the function to horizontal
subset where the vertical coordinate is fixed at y. With fx(y) we hold the
"horizontal" variables constant and look at the values of the vertical variables.
You may imagine a bin filled with infinitely thin vertical sticks. At each point
x there is a stick representing all the values of y.

With fy we hold the "vertical" variables constant, and look at the values
of the horizontal variables. Here we imagine the bin filled with infinitely thin
sheets of paper; for each value of y there is a single sheet, representing the
values of x. Either way, the entire bin is filled:

fx(y) = Jy(x) = f(x, y). A13.3

Alternatively, as shown in Figure A13.1, we can imagine slicing a potato
vertically into French fries, or horizontally into potato chips.

As we saw in Example A13.1, it is unfortunately not true that if f is inte-
grable, then fx and fy are also integrable for every x and y. But the following
is true:

Theorem A13.2 (Fubini's theorem). Let f be an integrable function on
1R" x R. Then the four functions

U(fx), L(f:), U(fy), L(f')
are all integrable, and

adding upper sums for all columns adding lower sums for all columns

fn
U(fx) id"xl = ls" L(fx) Id"xl

adding upper soma for all rows adding lower sums for all rows

fm U(P) Id"yl =t
Integral of f

= f f Id"xl Idyl

f L(P) Idyls-

A13.4

A13.5
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Of course, the same idea holds
in 1R2: integrating over all the
French fries and adding them up
gives the same result as integrat-
ing over all the potato chips and
adding them.

Equation A13.7: The first line
is just the definition of an upper
sum.

To go from the first to the sec-
ond line, note that the decomposi-
tion of IR" x llk" into C1 x C2 with
Ci E DN(IR") and C2 E DN'(W"')
is finer than DN(lR"+"')

For the third line, consider
what we are doing: for each C, E
DN (IR") we choose a point x E C, ,
and for each C2 E DN, (R-) we
find the y E C2 such that f(x, y)
is maximal, and add these max-
ima. These maxima are restricted
to all have the same x-coordinate,
so they are at most Mc, xc, f, and
even if we now maximize over all
x E C1, we will still find less than
if we had added the maxima inde-
pendently; equality will occur only
if all the maxima are above each
other (i.e., all have the same x-
coordinate).

Corollary A13.3. The set of x such that U(fx) j4 L(fx) has volume 0.
The set of y such that U(f2) 0 L(f3) has volume 0.

In particular, the set of x such that f. is not integrable has n-dimensional
volume 0, and similarly, the set of y where fY is not integrable has m-
dimensional volume 0.

Proof of Corollary A13.3. If these volumes were not 0, the first and third
equalities of Equation A13.5 would not be true.

Proof of Theorem A 13.2. The underlying idea is straightforward. Consider
a double integral over some bounded domain in IR2. For every N, we have to sum
over all the squares of some dyadic decomposition of the plane. These squares
can be taken in any order, since only finitely many contribute a nonzero term
(because the domain is bounded). Adding together the entries of each column
and then adding the totals is like integrating fx; adding together the entries of
each row and then adding the totals together is like integrating f", as illustrated
in Figure A13.2.

1 5 1+5= 6
2 6 2+6= 8
3 7 gives the same result as 3+7= 10

+4 +8 4+8= 12
10 + 26 = 36 36

FIGURE A13.2. To the left, we sum entries of each column and add the totals;
this is like integrating f.. To the right, we sum entries of each row and add the
totals; this is like integrating fy.

Putting this in practice requires a little attention to limits. The inequality
that makes things work is that for any N' > N, we have (Lemma 4.1.7)

UN(f) ? UN(UN'(fx)) A13.6

Indeed,

UN(f) MC(f)vol.+mC
CEDN (R" x R" )

>_ F_ F_ MC,xC2(f)VOl.C.iV0lmC2
C, E DN (R") C2 EDN, (Rm ) A13.7

E Mc, I Mc2 (fx) volm C2 vol. Cl .
C,EDN(R") c2ev, (a'") J
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In Equations A13.8 and A13.9,
expressions like UN(UN,(f )) and
LN(L(fx)) may seem strange, but
note that UN,(f) and L(f) are
just functions of x, bounded with
bounded support, so we can take
Nth upper or lower sums of them.

We don't know which is big-
ger, UN(L(fx)) or LN(U(f,)), but
that doesn't matter. We know
they are between the first and last
terms of Equation A13.9, which
themselves have a common limit
asN -.oo.

An analogous argument about lower sums gives

UN(f) UN(UN'(fx)) > LN(LN'(fx)) > LN(f) A13.8

Since f is integrable, we can make UN(f) and LN(f) arbitrarily close, by
choosing N sufficiently large; we can squeeze the two ends of Equation A13.8
together, squeezing everything inside in the process. This is what we are going
to do.

The limits as N' - oo of UN'(fx) and LN'(fx) are the upper and lower
integrals U(fx) and L(fx) (by Definition 4.1.9), so we can rewrite Equation
A 13.8:

UN(f) UN(U(fx)) _> LN(L(fx)) LN(f) A13.9

Given a function f, U(f) > L(f); in addition, if f > g, then UN(f) > UN(g).
So we see that UN(L(fx)) and LN (U(fx)) are between the inner values of
Equation A13.9:

UN(U(fx)) > UN(L(fx)) LN(L(fx))

UN(U(fx)) ? LN(U(fx)) LN(L(fx))
A13.10

So UN(L(fx)) and LN(L(fx)) have a common limit, as do UN(U(fx)) and
LN(U(fx)), showing that both L(fx) and U(fx) are integrable, and their inte-
grals are equal, since they are both equal to

f f.

The argument about the functions fy is similar.

A13.11

A. 14 JUSTIFYING THE USE OF OTHER PAVINGS

Here we prove Theorem, which says that we are not restricted to dyadic pavings
when computing integrals.

is integrable, then the limits

n °_,, Usx(f) and Ii- LrN(f)N-w
both exist, and are equal to

Theorem 4.7.5. Let X C It" be a bounded subset, and PN be a nested
partition of X. If the boundary 8X satisfies 0, and f : IIt" -+ IIt

4.7.4

fx f(x) 1X'X1 4.7.5
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Why the 8 in the denomina-
tor? Because it will give us the re-
sult we want: the ends justify the
means.

This is where we use the fact
that the diameters of the tiles go
to 0.

Proof. Since the boundary of X has volume 0, the characteristic function XX
is integrable, and we may replace f by Xxf, and suppose that the support of
f is in X. We need to prove that for any e, we can find lvi such that

UpM(f)-LpM(f)<c. A14.1

Since we know that the analogous statement for dyadic pavings is true, the idea
of the proof is to use "other pavings" small enough so that each paving piece
P will either be entirely inside a dyadic cube, or (if it touches or intersects
a boundary between dyadic cubes) will contribute a negligible amount to the
upper and lower sums.

First, using the fact that f is integrable, find N such that the difference
between upper and lower sums of dyadic decompositions is less than a/2:

UN(f) - LN(.f) < 2. A14.2

Next, find N' > N such that if L is the union of the cubes C E DN, whose
closures intersect ODN, then the contribution of vol L to the integral of f is
negligible. We do this by finding N' such that

vol L < C
Ai4.3

8 sup If]'

Now, find N" such that every P E PN"" either is entirely contained in L, or is
entirely contained in some C E VN, or both.

We claim that this N" works, in the sense that

Upx,, (f) - L2 ,, (f) < e,
but it takes a bit of doing to prove it.

A14.4

Every x is contained in some dyadic cube C. Let CN(x) be the cube at
level N that contains x. Now define the function f that assigns to each x the
maximum of the function over its cube:

7(x) = MC"(x)(f) A14.5

Similarly, every x is in some paving tile P. Let PM(x) be the paving tile at
level M that contains x, and define the function g that assigns to each x the
maximum of the function over its paving tile P if P is entirely within a dyadic
cube at level N, and minus the sup off if P intersects the boundary of a dyadic
cube:

( )x Mp,,(xl(f) if

P 5 7 h

l- sup I f I otherwise.
.6

: ; ence

f.- 9Id"xI < f" fldxl = UN(f) A14.7

Now we compute the upper sum Up" (f), as follows:
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On the far right of the sec-
ond line of Equation A14.8 we add
- suP lfl + sup l11= 0 to MP(f)

MP(f)volnP
PEPN

A 14.8

Since Mp(f) is the least upper
bound just over P while sup I f I
is least upper bound over all of
R', we have Mp(f) + suplfl :5
2suplfl.

cancels outMp(f)Vol.

P+ (Mp(f)sUPlfl+suplfl vol,, P.
PEPN,,, PEPN",

Pn8DN= (b PnODN# tb

contribution from b contribution from P that intersect
entirely in dyadic cubes the boundary of dyadic cubes

Now we make two sums out of the single sum on the far right:

(-suplfl)vol.P+ r (Mp(f)+suplfl)volnP, A14.9
PEPN,,, PEPN,,,

Pn&DN# m PnODN#

and add the first sum to the sum giving the contribution from P entirely in
dyadic cubes, to get the integral of g:

E MP(f)vo1.P+ F_ (-suplf1)Vol. P=J gId"xI. A14.10
PEPN,,, PEPN,,, E°

Pn87)N= , Pn&PN# 0

We can rewrite Equation A14.8 as:

<2 sup IfI (see note in margin)

UPN,, (f)=J gld"xI+ (MP(f)+supIfI)
PEPN,,,

PnSDN# 0

voln P. A14.11

Using Equation A14.3 to give an upper bound on the volume of the paving
pieces P that intersect the boundary, we get

UPN,,,(f)- fngId"xI 2suplflvolnL<2supIfIBsuplfI A14.12

Equation A14.7 then gives us

:5 UN (f )

f.- gld"xl1:5 j so 14.13

An exactly analogous argument leads to

LPN"(f) ? LN(f) - 4, i.e., -LPN.,(f) 5 -L,,(f)+4. A14.14

Adding these together and using Equation A14.2, we get

UPN,, (f)-LPN,, (f)5UN(f)-LN(f)+2 <E. A14.15
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A. 15 EXISTENCE AND UNIQUENESS OF THE DETERMINANT

This is a messy and uninspir-
ing exercise in the use of induc-
tion; students willing to accept the
theorem on faith may wish to skip
the proof, or save it for a rainy day.

The three n x n matrices of
Equation A15.1 are identical ex-
cept for the kth column, which are
respectively ak, b and c.

We can see from Equation 4.8.9
that exchanging the columns of a
2 x 2 matrix changes the sign of D.

We can restrict ourselves to k =
2 because if k > 2, say, k = 5.
then we could switch j = I and
k with a total of three exchanges:
one to exchange the kth and the
second position, one to exchange
positions 1 and 2, and a third
to exchange position 2 and the
fifth position again. By our argu-
ment above we know that the first
and third exchanges would each
change the sign of the determi-
nant, resulting in no net change;
the only exchange that "counts" is
the change of the first and second
positions.

In the next-to-last line of Equa-
tion A15.4, A,,1 = B,,, = C,., be-
cause the matrices A, B, and C are
identical except for the first col-
umn, which is erased to produce
A,,,, B,,,, and C,.,.

,=1

Theorem 4.8.4 (Existence and uniqueness of determinants). There
exists a function det A satisfying the three properties of the determinant,
and it is unique.

Uniqueness is proved in Section 4.8; here we prove existence. We will verify
that the function D(A), the development along the first column, does indeed
satisfy properties (1), (2), and (3) for the determinant det A.
(1) Multilinearity
Let b, c E IR", and suppose at; = O b + ryc. Set

A=Iat,...,ak....,an],
B=(a1,....b,.. ,an], A15.1

The object is to show that

C- ]al.... c,... ,an].

D(A) = f3D(B) + 'D(C), A15.2

We need to distinguish two cases: k = 1 (i.e., k is the first column) and k > 1.
The case k > 1 is proved by induction. Clearly multilinearity is true for D's

of 1 x 1 matrices, which are just numbers. We will suppose multilinearity is
true for D's of (n - 1) x (n - 1) matrices, such as A;,,. Just write:

D (A) _ (-1)1}t a;,1D (A;,1) (Equation 4.8.9)
i=1

n

_ (-1)1+l a;,1(1W (B;,1) + yD (C;,1)) (Inductive assumption)

=/3 (-1)1+.a11D(B;.1)+7 (-1)1+i a,,D(C,.l)
i=1 i=1

= QD (B) + yD (C).

This proves the case k > 1. Now for the case k = 1:
A15.3

(Obi.1 +7ci,1) D(Ai,l)
i=1

= a;,, by definition

n

D (A) = E(-1)1+i a..1 D (Ai,l) _

n n

=Or(-1)'+i bi,1 D (Ai,1) + 'y ( 1 ) ' ' c,, D (Ana)

=(B,,,) =(C;.,)
_ /3D (B) + -YD (C). A15.4
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The Matrix A is the same as
A with the jtIi and kilt columns
exchanged.

A 15.1.

The black square is in the jth
row of the matrix (in this case the
6th). But after removing the first
column and itlt row, it is in the 5th
row of the new matrix. So when
we exchange the first and sec-
ond columns, the determinant of
the unshaded matrix will multiply
a,.ia 2 in both cases, but will con-
tribute to the determinant with
opposite sign.

This proves multilinearity of our function D.

(2) Anlisyntmetr;ii

We want to prove D(A) = -D(A), where A is formed by exchanging the jilt
and firth colluuns of A.

Again, we have two cases to consider. The first, where both j and k are
greater than 1. is proved by induction: we assume the function D is antisym-
metric for (it - 1) x (n - 1) matrices. so that in particular D(A1,,) = -D(Al,,)
for each i, and we will show that if so. it is true for it x n matrices.

D(A)1)'+tai.ID(A,.1) = -F(-1)'+tn,.tD(A1.1)
by i=1

induction
A15.5

= -D (A'),

The case where either j or k equals 1 is more unpleasant. Let's assume
j = 1. A! = 2. Our approach will be to go one level deeper into our recursive
formula, expressing D(A) not just in terms of (n - 1) x (n - 1) matrices. but in
terms of (n - 2) x (n - 2) matrices: the matrix (A,_,,,,1,2). formed by removing
the first and second columns and the ith and m.th rows of A.

In the second line of Equation A15.6 below, the entire expression within big
parentheses gives D(A,,1), in terms of D(A,,,n;l.z):

D(A) = F(-1)i+tai,tD(Ai.t) A15.6

n

r m=1 m-itl
terms wherem<i Wr,....,,.. ;

=D (A,,, ), in terms of D of (A,, n.,,.o), r.,nsidemd in two pmts

There are two stmt within the term in parentheses, because in going from the
matrix A to the matrix A1,,. the ith row was removed, as shown in Figure A15.1.
Then, in creating A,,,,,;,,2 from A,,1. we remove the ntth row (and the second
column) of A. When we write D(Ai.1), we must thus remember that the ill row
is missing, and hence a,n,2 is in the (in. -1) row of A,,1 when in > i. We do that
by summing separately, for each value of it the terms with in from 1 to i - 1
and those with in from i + 1 to n, carefully using the sign (-1)m-t+l = (-1)m
for the second batch. (For i = 4, how many terms are there with in from I to
i- 1? With m from i + I to n?4)

4As shown in Figure AtS.I, there are three. terms in the first slim. m = 1,2,3, and
n - 4 terms in the second.
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Exactly the same computation for A leads to
_ n

D(A) = A15.7
j=1

n j-1 n

=E(-1)j+1aj.l( (-1)P+lap,2D(Aj,p;1,2)+ F_(-l)Pap,2D(Aj,p;1,2)
.

j=1 p-1 p=j+1

Let us look at one particular term of the double sum of Equation A15.7,
corresponding to some j and p:

f (-1)3+p aj,l ap,2 D(Aj,p;1,2)

(l (-1)J+p+1 aj, ap,2 D(Aj,p;1,2)

ifp<j
ifp> j.

A15.8

Remember that aj.1 = aj,2, ap,2 = ap,1, and Aj,p;1,2 = Ap,j;1,2. Thus we can
rewrite Equation A15.8 as

J (-1)ji'p aj,2 apa D(A_p,j;1,2) ifp < j
l (-1)J+p+1 ap,1 D(Ap.j;1,2) ifp >

A15.9

This is the term corresponding to i = p and m = j in Equation A15.6, but with
the opposite sign. F]

Let us illustrate this in a particular example. Focus on the 2 and the 8:

1 5 - 6 - - 5 -2 6D13 7 - 1=1D}7 - -1 -2D (7 - -
4 8 - -J

A

2
5 1 - -

D
6 j=5DI3a - -

14
8 4 -

15 -
+3D 6 -

8 -

A

5 - -- -4D 6 - -
7 - -
1 - -

-6D 3 - -
- 4 - -

A15.10

A15.11

+7D 14
4

- - -$D 3
Expanding the second term on the right-hand side of Equation A15.10 gives
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What about the other terms
in Equations A15.12 and A15.13?
Each term from the expansion of
A corresponds to a term of the ex-
pansion of A, identical but with
opposite sign. For example, the

term -2(5 D I _ -1 ) of Equa-
tion A15.12 corresponds to the
first term gotten by expanding the
first term on the right-hand side of
Equation A15.11.

-2 \\\\15DL- -]-7DL_ -]+8DL- -11; A15.12

expanding the fourth term on the right-hand side of of Equation A15.11 gives

-5(IDL_
J

-12D(_ J+3DL_

]).

A15.13

The first givers` -16 D
r
I , the second +16D I

].

The two blank

matrices here are identical, so the terms are identical, with opposite signs.
Why does this happen? In the matrix A, the 8 in the second column is below

the 2 in the first column, so when the second row (with the 2) is removed, the 8

is in the third row, not the fourth. Therefore, 8 D I _ _ ] comes with positive

sign: (-I)'+' = (-1)4 = +1. In the matrix A, the 2 in the second column is
above the 8 in the first column, so when the fourth row (with the 8) is removed,

the 2 is still in the second row. Therefore, 2 D
L

_ _ J comes with negative
Sign: (-1)i+1 = (-1)3 = -1. LL 1

We chose our 2 and 8 arbitrarily, so the same argument is true for any pair
consisting of one entry from the first column and one from the second. (What
would happen if we chose two entries from the same row, e.g., the 2 and 6
above?' What happens if the first two columns are identical?e)

(3) Normalization
The normalization condition is much simpler. If A = ....... 4, 1, then in

the first column, only the first entry a1 1 = 1 is nonzero, and A1,1 is the identity
matrix one size smaller, so that D of it is 1 by induction. So

D(A) = ai,1D(A1,1) = 1, A15.14

and we have also proved property (3). This completes the proof of existence;
uniqueness is proved in Section 4.8.

A.16 RIGOROUS PROOF OF THE CHANGE OF VARIABLES
FORMULA

Here we prove the change of variables formula, Theorem 4.10.12. The proof is
just a (lengthy) matter of dotting the i's of the sketch in Section 4.10.

"This is impossible, since when we go one level deeper, that row is erased.
"The determinant is 0, since each term has a term that is identical to it but with

opposite sign.
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The second line of Equation
A16.1 is a Riemann sum; xc is the
point in C where 4' is evaluated:
midpoint, lower left-hand corner,
or some other choice.

A cube C E DN(1P") has side-
length 1/2N, and (see Exercise
4.1.5) the distance between two
points x, y in the same cube C is

Ix-yl5 2N
So the maximum distance between
two points of W(C) is !, i.e.,
V(C) is contained in the box C'
centered at W(zc) with side-length
K f/2N.

Theorem 4.10.12 (Change of variables formula). Let X be a compact
subset of R" with boundary 8X of volume 0, and U an open neighborhood of

X. Let' : U -.11i:" be a C1 mapping with Lipschitz derivative, that is one to

one on (X - 8X ), and such that [D4'(x)] is invertible at every x E (X - OX),

Set Y = 4'(X).
Then if f : Y -. R is integrable, then (f o 4') I det(D4'] I is integrable onX,

f f(v)Id"vl = JX(f o4')(u)Idet[D4'(u)IIId"uI

and

Proof. As shown in Figure A16.1, we will use the dyadic decomposition of X,
and the image decomposition for Y, whose paving blocks are the 4'(Cfl X ), C E
DN(R"). We will call this partition 4'(DN(X)). The outline of the proof is as

follows:

A16.1

where the xc in the second line is some x in C. The become equalities in

the limit.

sup f over curvy cube
times vol. of curvy cube

J fid"xl F Mm(C)f vol" 4'(C)
Y CEDN(R")

E Mc(f o 4')(vol" CI det[D4)(xc)JI)
CEDN(n")

(f o 4')xl det[D4'(x)Ib Id"xl,

(1) To justify the first , we need to show that the image decomposition of
Y, 4'(DN(X)), is a nested partition.

(2) To justify the second (this is the hard part) we need to show that
as N -. oo, the volume of a curvy cube of the image decomposition
equals the volume of a cube of the original dyadic decomposition times
I det[D4'(xc)]I.

(3) The third is simply the definition of the integral as the limit of a Riemann
sum.

We need Proposition A16.1 (which is of interest in its own right) for (1): to
show that cp(DN(X)) is a nested partition. It will also be used at the end of
the proof of the Change of Variables Formula.
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4)

kI

Proposition A16.1 (Volume of the image by a C' map ). Let Z C R"
be a compact payable subset of R", U an open neighborhood of Z and 'F :

U - 4Y" a C' mapping with bounded derivative. Set K = sup,,, 1[D'F(x)]I

Then

vole 4'(Z) < (K,/n-)" vol. Z.

In particular, if vol, Z = 0, then vole 'F(Z) = 0.

Proof. Choose e > 0 and N > 0 so large that

A U C C U and vol. A< vol, Z + e. A16.2

CEDN(E"),
CnZ0 Q5

(Recall that C denotes the closure of C.) Let zc be the center of one of the
cubes C above. Then by Corollary 1.9.2, when z E C we have

I4'(zc) - 4'(z)I < Klzc - zI. A16.3

(The distance between the two points in the image is at most K times the
distance between the corresponding points of the domain.) Therefore $(C) is
contained in the box C' centered at'F(zc) with side-length Kf/2'.

Finally,

so

ib(Z) c U C', A16.4
CEDN(En),
cr'z

2 " 1 CFIGURE A16.1. vole W(Z) < vol, C' _
The C' mapping b maps X to C

Y. We will use in the proof the
fact that 0 is defined on U, not
just on X.

(t )n Z yon
CEDN(E^) ,

ratio vol C' to vol C Cnz,,v

= (Kv/n)" vole A < (Kv)"(V01n Z + (). A16.5

Corollary A16.2. The partition p(DN(X)) is a nested partition of Y.

Proof. The three conditions to be verified are that the pieces are nested, that
the diameters tend to 0 as N tends to infinity, and that the boundaries of the
pieces have volume 0. The first is clear: if C, C C2, then W(CI) C rp(C2). The
second is the same as Equation A16.3, and the third follows from the second
part of Proposition A16.1.

Our next proposition contains the real substance of the change of variables
theorem. It says exactly why we can replace the volume of the little curvy
parallelogram qk(C) by its approximate volume I det[D'F(x))I vole C.
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Proposition A16.4 is the main
tool for proving Theorem 4.10.12.
It says that for a change of vari-
ables mapping 4', the image $(C)
of a cube C centered at 0 is arbi-
trarily close to the image of C by
the derivative of 4' at 0, as shown
in Figures A16.2 and A16.3.

Recall that "bijective" means
one to one and onto.

Why does Equation A16.9
prove the right-hand inclusion?
We want to know that if x E C,
then

4'(x) E (I +e)[D$(0)J(C),

or equivalently,

[D$(0)l-1di(x) E (1 + e)C.

Since

[D4'(0)J-'4'(x) = x+

[D$(0))-' (4'(x) - [D4'(0))(x)),

ID4(0)l-'4'(x) is distance

I[D'(0))-' (4'(x) - [D-P(0))(x))

from x. But the ball of radius
around any point x E C is

completely contained in (1 + e)C,
by Lemma A16.3

Every time you want to compare balls and cubes in R", there is a pesky f
which complicates the formulas. We will need to do this several times in the
proof of A 16.4, and the following lemma isolates what we need.

Lemma A16.3. Choose 0 < a < b, and let C, and Cb be the cubes centered
at the origin of side length 2a and 2b respectively, i.e., the cubes defined by
Ix, I < a (respectively I x; l < b), i = 1..... n. Then the ball of radius

(b - a)lxl
of

around any point of C, is contained in Cb.

A16.6

Proof. First note that if x E C then Ixi < ate. Let x + h' be a point of the
ball. Then

llti [ < JI < (b - a)lxl < (b - a)a f
= b- a.of of

Thuslx,+h,I<Ix,J+lh,l <a+b-a=b. 0

A16.7

Proposition A16.4. Let U, V be open subsets in R" with 0 E U and 0 E V.
Let 0 : U -. V be a differentiable mapping with 0(0) = 0. Suppose that O is
bijective, [D4'] is Lipschitz, and that 4'-1 : V -. U is also differentiable with
Lipschitz derivative. Let M be a Lipschitz constant for [D'] and [D4']-'.
Then

(a) For any e > 0, there exists b > 0 such that if C is a cube centered at
0 of side < 26, then

(1 - e) [D4'(0)JC C `C) C (1 + e) [D4'(0))C. A16.8
squeezed between
right and left sides-0

(b) We can choose b to depend only one, J[DO(0)1, 1[D$(0))-1I, and the
Lipschitz constant M, but no other information about 0.

Proof. The right-hand and the left-hand inclusions of Equation A16.8 require
slightly different treatments. They are both consequences of Proposition A2.1,
and you should remember that the largest n-dimensional cube contained in a
ball of radius r has side-length 2r/ f.

The right-hand inclusion, illustrated by Figure A16.2, is gotten by finding a
b such that if the side-length of C is less than 26, and x E C, then

I[D4'(0)]-' (0(x) - [D4(0))(x))f < f A16.9
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C

Again, it isn't immediately ob-
vious why the left-hand inclusion
of Proposition A16.8 follows from
the inequality A16.13. We need to
show that if x E (1 - E)C, then
[M(0)]x E 4'(C).

Apply t-' to both sides to get
4t-'([D$(0)]x) E C. Inequality
A16.13 asserts that

'([D'(0)]x) is within
f

f(1 - E)
IXI of X,

but the ball of that radius around
any point of (1 - f)C is contained
in C, again by Lemma A16.3.

FIGURE A16.2. The cube C is mapped to O(C), which is almost [D-D(0)](C), and
definitely inside (1 + f)(D$(0)](C). As e -+ 0, the image '6(C) becomes more and
more exactly the parallelepiped [D4'(0)]C.

According to Proposition A2.1,

I[D' (0)]-' (41(x) - (D4'(o)](x))I s
1[DIP(o)1-'IMIxl2

2

so it is enough to require that when x E C,

I[D4}(0)]-11MIx12 < clx]
i.e.

I

2e
2 f, xl - n1[DID(0)1-1M1

4o-1([D4,(0)]x) - x' = I41-1y - [DV1(0)]yl

< M
Iy12 <_

2
1[Dt(o)1x12 <

a
I[D-D(0)[121x12.

A16.14

Since x E C and C has side-length 28, we have Ix] < 6f, so the right-hand
inclusion will be satisfied if

2E
6 =

A16.10

A16.11

A16.12
MnI(D4,(0))-11.

For the left-hand inclusion, illustrated by Figure A16.3, we need to find b
such that when C has side-length < 26, then

I4'-1([D4'(0)]x) - xl <
n

E
1x1 A16.13f(1-E)

when x E (1 - e)C. Again this follows from A2.1. Set y = [DO(O)Ix. Then we
find

Our inequality will be satisfied if

E
]x1 ie ]x] < 2EI(DIt(0)]12

2 - A16.15f(1-E) (1-E)f '
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Remember that x E (1 - e)C, so IxI < (1 - e)6f, and the left-hand inclusion
is satisfied if we take

6-
2e

(1- )2.1 I'

4o (nm(o))(

m-1

(( e)(pm(e)1(C)r

_i 1D4-(O)I(C)

r l L..-
U+c)lomro)l(C)

FIGURE A16.3.
The parallelepiped

(I - e)(DO(0))(C)

is mapped by 0-' almost to
(1 - e)C, and definitely inside C.
Therefore, the image of C covers
(I - e)[DD(0)](C).

Choose the smaller of the two deltas.

A16.16

Proof of the change of variables formula, continued

Proposition A16.4 goes a long way to towards proving the change of variables
formula; still, the integral is defined in terms of upper and lower sums, and we
must translate the statement into that language.

Proposition A16.5. Let U and V be bounded subsets in llt" and let
4i : U -+ V be a differentiable mapping with Lipschitz derivative, that is
bijective, and such that 4i-1 : V -+ U is also differentiable with Lipechitz
derivative.

Then for any 0 > 0, there exists N such that if C E DN(R") and C C U,
then,

(1 - r)) Mc (I det(D4i] () vol C < vol4i(C)

< (1 + q) -c (I det[Ds]I) vol C.
A16.17

Proof of Proposition A16.5. Choose p > 0, and find e > 0 so that

(1+E)"+1 < 1+n and (I -e)n+l > 1 -17

For this e, find N, such that Proposition A16.4 is true for every cube C E
VN, (Ilk") such that C C U.

Next find N2 such that for every cube C E DN, (Ilk") with C C U, we have
Mcldet[D4']I mc[det[D$]I
mci det[D4,JI <1 + e and

Mcl det[D4+JI > 1 - c. A16.18

Actually the second inequality follows from the first, since 1/(1 + e) > I - e.
If N is the larger of N, and N2, together these give

voln'(C) < (1+e)"Idet[D4>(0)JI, A16.19

and we get

vol. 4i(C) < (1 + e)n+1T,1C(I det(D$J). A16.20

An exactly similar argument leads to

voln 4?(C) > (1 - e)"+1McI A16.21
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Recall that if M is the Lipschitz
constant of then

I[DO(x)] - [D' (y)[I < Mix - yl
for allx,yEU.

Since K' = it
is also supl[D4(y)1I-1, account-
ing for the K2 in the second line
of Equation A16.23.

We can now prove the change of variables theorem. First, we may assume
that the function f to be integrated is positive. Call M the Lipschitz constant
of [D4'], and set

K = sup 1(D4P(x)]I and L = sup If(x)I. A16.22
xEX xEX

Choose rl > 0. First choose N1 sufficiently large that the union of the cubes
C E DN, (X) whose closures intersect the boundary of X have total volume
< rl. We will denote by Z the union of these cubes; it is a thickening of OX,
the boundary of X.

Lemma A16.6. The closure of X - Z is compact, and contains no point of
Ox.

Proof. For the first part, X is bounded, so X - Z is bounded, so its closure is
closed and bounded. For the second, notice that for every point a E Il8", there
is an r > 0 such that the ball Br(a) is contained in the union of the cubes of
DN, (R") with a in their closure. So no sequence in X - Z can converge to a
point a E 8X.

In particular, [D4i]-' is bounded on X-Z, say by K', and it is also Lipschitz.
This is seen by writing

<_ M ly-xl

[[D4,(-)J-1 ([D45(y)] - [D4'(x)J)[Dk(y)J-1I
< (K')2Mlx - yl. A16.23

So we can choose N2 > N1 so that Proposition A16.5 is true for all cubes in
DN, contained in X - Z. We will call the cubes of DN, in Z boundary cubes,
and the others interior cubes.

Then we have

UN,((f 0 i)Idct[D4?J[) _ Me((f o4')Idet(D4'JI) volnC
CEDx2 (a" )

Mc((f o P) Idet[D4i]I)volnC
interior cubes C

+ E MC((f o I det[D411 I) vole C
boundary cubes C

MC((fo4i)Idet[D4i]I)vol. C+rIL(Kf)"
interior cubes C

< M4,(c)(f) voln 4}(C) + nL(Ki)"1- v
CE DN (a")

1 r7UE.(DN(a"))(f)+r7L(Kv4)°.

A16.24
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A similar argument about lower sums leads to

-)".(f)-17(Kv'-D' >d I A16.25et[ (DN(R"))LN((fo4')I ] 1)
1+77

Proposition A16.1 explains the
(K f )" in Equation A16-25.

Putting these together leads to

(f) - r)L(Kvn)" < LN ((f o 4')I det[D4'11)L(vN(R^))+ g
A16.26

< UN ((f o 4)I det[D4'11) < 1 gU,(DN(R"))(f) + jL(Kvr)".

We can choose N2 larger yet so that the difference between upper and lower

sums

Ua(DN,(R"))(f) - L,(DN,(a"))(f) < ti, A16.27

since f is integrable and $(D(R")) is a nested paving.
If a, b, c are positive numbers such that ja - bI < ri, then

q +?lc)-I b -1)C) _ (1+rf)-X21-rl)b+2rlc<p(1+a+b+2c),
+ 17

1

I\ /1 A16.28

which will be arbitrarily small when n is arbitrarily small, so

UN2 ((f o 40! det(D4']1) - LN2 ((f o 4)] det(D4']]) A16.29

can be made arbitrarily small by choosing p sufficiently small (and the corre-
sponding N2 sufficiently large). This proves that (f o4')]det(D4']I is integrable,
and that the integral is equal to the integral of f.

A. 17 A FEW EXTRA RESULTS IN TOPOLOGY

In this section, we will give two more properties of compact subsets of la", which
we will need for proofs in Appendices A.18 and A.22. They are not particularly
harder than the ones in Section 1.6, but it seemed a bad idea to load down that
section with results which we did not need immediately.

Theorem A17.1 (Decreasing intersection of nested compact sets). If
Xk C R" is a sequence of non-empty compact sets, such that X, J X2 J ... ,
then

I Xa .
nI

k=t

A17.1

Note that the hypothesis that the Xk are compact is essential. For instance,
the intervals (0,1/n) form a decreasing intersection of non-empty sets, but their
intersection is empty; similarly, the sequence of unbounded intervals (k, oo) is
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a decreasing sequence of non-empty closed subsets, but its intersection is also

empty.

Proof. For each k, choose xk E Xk (using the hypothesis that Xk 00). Since
this is in particular a sequence in X1, choose a convergent subsequence xk;. The
limit of this sequence is a point of the intersection lk 1Xk, since the sequence
beyond xk, k > m is contained in X,,,, hence the limit also since each X,,, is
closed. 0

The next proposition constitutes the definition of "compact" in general topol-
ogy; all other properties of compact sets can be derived from it. It will not play
such a central role for us, but we will need it in the proof of the general Stokes's
theorem in Appendix A.22.

Theorem A17.2 (Heine-Borel theorem). H X C IR" is compact, and
U. C IR" is a family of open subsets such that X C UU1, then there exist
finitely many of the open sets, say U1,..., UN, such that

XCU1U...UUN A17.2

Proof. This is very similar to Theorem 1.6.2. We argue by contradiction:
suppose it requires infinitely many of the U; to cover X.

The set X is contained in a box -10N < x, < 10N for some N. Decompose
this box into finitely many closed boxes of side 1 in the obvious way. If each
of these boxes is covered by finitely many of the U;, then all of X is also, so at
least one of the boxes Bo requires infinitely many of the U; to cover it.

Now cut up Bo into 10" closed boxes of side 1/10 (in the plane, 100 boxes;
in 1R3, 1,000 boxes). At least one of these smaller boxes must again require
infinitely many of the U; to cover it. Call such a box B1, and keep going: cut
up B1 into 10" boxes of side 1/102; again, at least one of these boxes must
require infinitely many U; to cover it; call one such box B3, etc.

The boxes B; form a decreasing sequence of compact sets, so there exists a
point x E fB1. This point is in X, so it is in one of the U;. That U1 contains
the ball of radius r around x for some r > 0, and hence around all the boxes
B. for j sufficiently large (to be precise, as soon as //lOi < r).

This is a contradiction. 0

A.18 PROOF OF THE DOMINATED CONVERGENCE
THEOREM

The Italian mathematician Arzela proved the dominated convergence theo-
rem in 1885.
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Many famous mathematicians
(Banach, Riesz, Landau, Haus-
dorff) have contributed proofs of
their own. But the main con-
tribution is certainly Lebesgue's;
the result (in fact, a stronger re-
sult) is quite straightforward when
Lebesgue integrals are used. The
usual attitude of mathematicians
today is that it is perverse to prove
this result for the Riemann in-
tegral, as we do here; they feel
that one should put it off un-
til the Lebesgue integral is avail-
able, where it is easy and natu-
ral. We will follow the proof of a
closely related result due to Eber-
lein, Comm. Pure App. Math., 10
(1957), pp. 357-360; the trick of
using the parallelogram law is due
to Marcel Riesz.

Theorem 4.11.12 (The dominated convergence theorem). Let fk :
Il8" 9 be a sequence of I-integrable functions, and let f, g : R' -. IlF be
two I-integrable functions, such that

(1) Ifkl 5 9 for all k;

(2) the set of x where limk, fk(x) 34 f (x) has volume 0.

Then

kim f fkld"XI = f f Id"xl.

Remember that fk < 1, and Ak
is a subset of the unit cube, so the
first term on the right-hand side of
Equation A18.1 can be at most K.

Note that the term I-integrable refers to a form of the Riemann integral; see
Definition 4.11.2.

Monotone convergence

We will first prove an innocent-looking result about interchanging limits and
integrals. Actually, much of the difficulty is concentrated in this proposition,
which could be used as the basis of the entire theory.

Proposition A18.1 (Monotone convergence). Let fk be a sequence of
integrable functions, all with support in the unit cube Q C R", and satisfying
1> _f , > f2 > - > 0. Let B C Q be a payable subset with vol"(B) = 0,
and suppose that

Then

kim fk(x)=O ifxVB.

kymo J fkld"XI=O.

Proof. The sequence fs fk Jd"xJ is non-increasing and non-negative, so it
has a limit, which we call 2K. We will suppose that K > 0, and derive a
contradiction.

Let Ak C Q be the set Ak = {x E Q J fk(x) > K), so that since the sequence
fk is non-increasing, the sets Ak are nested: Al D A2 D ... The object is to find
a point x E nkAk that is not in B; then limk. fk(x) > K, which contradicts
the hypothesis.

It is tempting to say that the intersection of the Ak's is non-empty because
they are nested, and vol"(Ak) > K for allrk,since otherwise

f fkld"XI = f fkld"xi +
f

fkld"XI < K + K, A18.1
Q Ak Q-Ak



A.18 Dominated Convergence. Theorem 645

Recall (Definition 4.1.8) that
we denote by L(f) the lower in-
tegral of f:

L(f) = slim` LN(f).

The last inequality of Equation
A18.2 isn't quite obvious. It is

enough to show that

LN(sup(fk(x), K)) <K+LN(XA,)

for any N. Take any cube C E
DN(R"). Then either mc(fk) <
K,in which case,

mc(fk) vol" C < K vol. C,

or me (fk) > K. In the latter case,
since fk < 1,

me (fk) vol" C < vol" C.

The first case contributes at most
K vol" Q = K to the lower in-
tegral, and the second case con-
tributes at most LN(XA,).

This is why the possible non-
pavability of Ak is just an irritant.
For typical non-payable sets, like
the rationale or the irrationals, the
lower volume is 0. The set At,
is not like that: there definitely
are whole dyadic cubes completely
contained in Ak.

which contradicts the assumption that fQ fkJd"xI > 2K. Thus the intersection

should have volume at least K, and since B has volume 0. there should be

points in the intersection that are not in B.
The problem with this argument is that Ak might fail to be payable (see

Exercise A18.1), so we cannot blithely speak of its volume. In addition, even if

the Ak are payable, their intersection might not be payable (see Exercise A 18.2).

In this particular case this is just an irritant, not a fatal flaw; we need to doctor
the Ak's a bit. We can replace the volume by the lower volume, vol"(Ak), which
can be thought of as the lower integral: vol"(Ak) = L(XA, ), or as the sum of the

volumes of all the disjoint dyadic cubes of all sizes contained in Ak. Even this
lower volume is larger than K since fk(x) = inf(fkk(x). K) + sup(fk(x), K) - K:

2K < r fkld"xl = IQ inf(fk(x), K)ldxI + I4 sup(fk(x), K)Jd"xJ - K
Q

< f sup(fk(x), K)ld"xl = L(sup(fk(x), K)) < K + vol"(Ak). A18.2
Q

Now let us adjust our Ak's. First, choose a number N such that the union of
all the dyadic cubes in DN(Il8") whose closures intersect B have total volume
< K/3. Let B' be the union of all these cubes, and let A'k = Ak - B'. Note
that the A' are still nested, and vol"(A,) > 2K/3. Next choose a so small that
e/(1- e) < 2K/3, and for each k let Ak C Ak be a finite union of closed dyadic
cubes, such that vol"(A, - A") < ek. Unfortunately, now the Ak are no longer
nested, so define

Al"=A" A18.3

We need to show that the AT are non-empty; this is true, since

lA 2+ +lAk'> -( k)>2 >0f
A18 4vo vo e+e ek

.3 e
.

Now the punchline: The Ak' form a decreasing intersection of compact sets, so
their intersection is non-empty (see Theorem A17.1). Let X E nkAk', then all
fk(x) >- K, but x B. This is the contradiction we were after.

We use Proposition A18.1 below.

Lemma A18.2. Let hk be a sequence of integrable non-negative functions on
Q, and It an integrable function on Q, satisfying 0 < h(x) < 1. If B C Q is a
payable set of volume 0, and if Fk 1 hk(x) > h(x) when x 0 B, then

J
hk(x)Id"xl > f h(x)Id"xl. A18.5

k=1 Q
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Since f is the limit of the fk,
and we have assumed f = 0 (and
therefore f f = 0), we need to
show that L, the limit of the in-
tegrals, is also 0.

The point of this argument
about "if L # 0" is to show that
if there is a counterexample to
Theorem 4.11.12, there is a roun-
terexample when the functions are
bounded by a single constant and
have support in a single bounded
set. So it is sufficient to prove the
statement for such functions.

Proof. Set gk = Ek 1 hk, which is a non-decreasing sequence of non-negative
integrable functions, and g'k = inf(gk,h), which is still a non-decreasing se-
quence of non-negative integrable functions. Finally, set fk = h - g,',; these
functions satisfy the hypotheses of Proposition A18.1. So

0 klin f fkld"XI hld"xI - klim- J 9kld"xI > rhld"xl - iirn f 9kld"xI

= f hId"xl - > f hk ld"xI. 0
k=1

A18.6

Simplifications to the dominated convergence theorem

Let us simplify the statement of Theorem 4.11.12. First, by subtracting f from
all the fk, and replacing g by g + If 1, we may assume f = 0.

Second, by writing the fk = fk - fk , we see that it is enough to prove the
result when all fk satisfy fk > 0.
Third, since when fk > 0,

0 < f " fkld"XI 5 f 9Id"xh, A18.7

by passing to a subsequence we may assume that limk, fg" fk(x)Idnxl exists.
Call that limit L.

If L 34 0, there such that
f

IJa"
9Id"xI - f " [9]RId"xII < L/2. A18.8

It is then also true that
limit of this is L

L fkld"xl - f [fk]RId"XI <L/2. A18.9

Thus passing to a further subsequence if necessary, we may assume that

klim [fk]RId°xl > L/2. A18.10

Thus if the theorem is false, it will also be false for the functions [fk]R, so it is
enough to prove the theorem for fk satisfying 0 < fk < R, with support in the
ball of radius R. By replacing fk by fk/R, we may assume that our functions
are bounded by 1, and by covering the ball of radius R by dyadic cubes of side 1
and making the argument for each separately, we may assume that all functions
have support in one such cube.

To lighten notation, let us restate our theorem after all these simplifications.
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The main simplification is that
the functions fk all have their sup-
port in a single bounded set, the
unit cube.

When we call Proposition A18.3
a "simplified" version of the dom-
inated convergence theorem, we
don't mean that its proof is sim-
ple. It is among the harder proofs
in this book, and certainly it is the
trickiest.

Proposition A18.3 (Simplified dominated convergence theorem).
Suppose fk is a sequence of integrable functions all satisfying 0 < fk < 1,

and all having their support in the unit cube Q. If there exists a payable
subset B C Q with vol"(B) = 0 such that fk(x) - 0 when x B, then

lim f fkld"xl = f hm fkId"xl = 0.
k oo t-o `n k--

Proof of the dominated convergence theorem

We will prove the dominated convergence theorem by proving Proposition
A18.3. By passing to a subsequence, we may assume that limk-oo f= fkjd"xj _
C; we will assume that C > 0 and derive a contradiction. Let us consider the
set K. of linear combinations

ao

am fm
m=p

with all am > 0, all but finitely many zero (so that the sum is actually finite),
and BOO=p a,,, = 1. Note that the functions in Kp are all integrable (since they
are ,finite linear combinations of integrable functions, all bounded by 1, and all
have support in Q).

We will need two properties of the functions g E Kp. First, for any x E Q- B,
and any sequence gp E Kp, we will have limp.. gp(x) = 0. Indeed, for any
e > 0 we can find N such that all fm(x) satisfy 0:5 fm(x) < e when m > N,
so that when p > N we have

A18.11

00 00

gp(x) _ am.fm(X) < (ame) = e. A18.12
m=p m=p

Second, again if gp E Kp, we have limp_se fQgpjd"xI = C. Indeed, choose
e > 0, and N so large that I fQ fmJd"xj - C1 < e when m > N. Then, when
p > N we have

fQ gp(x),d"x, - C1 =

am I f fm(X)Id"XJ) - C

(tam fQ fm(x)ld"XI/ - C A18.13

< (ame) = c.
=p

Let dp = infgex, fQg2(x)jd"xI. Clearly the dp form a non-decreasing se-
quence bounded by 1, hence convergent. Choose gp E Kp so that fQ gi2, <
dp + 1/p.



The appearance of integrals of
squares of functions in this argu-
ment appears to be quite unnat-
ural. The reason they are used
is that it is possible to express
(gp -9q)2 algebraically in terms of
(g, + gq)2, gP, and gy. We could
write

199 - 99 I = 2 sup(9p, 9q) - 9p - 9,

but we don't know much about

sup(9p,9q).

The second inequality follows
from Schwarz's lemma for inte-
grallsr(Exercise A18.3). Write

(f IIhm - h,,.+1I lld"xl) 2

<_ (fo II hm - hm+.121d"xl)

(fQ i21d"x1)

(f Ihm - h,"+11'ld"xl) .
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Lemma A18.4. For all e > 0, there exists N such that when p, q > N.

f4 (9" - 9q)2ldnxl < c. A18.14

Proof of Lemma A18.4. Algebra says that
z 2

fQ(2(9p -9q)) ld"xl+ fQ (2(9p+gq)) Id"xl = 2 fQ9pld x1+2 f" A1xl.A188.15

But'(gp +gq) is itself in KN, so fR z (gp +9q)Id"xI ? dN, so
fQ((9p-9q)2<2dp+-I)+(dq+9)-dN.

A18.16

Since the dp converge, we see that this can be made arbitrarily small.

Using this lemma, we can choose a further subsequence hq of the gp so that

/s

q=1 (f (hq - hq+i)21d°xl)
i

A18.17
R

converges. Notice that

hq(x) = (hq - hq+1)(x) + (hq+l - hq+2)(x) + ... when x B, A18.18

since

hq(x) - E(hi+1 - h+)(x) = hm+i(x), A18.19
+=q

which tends to 0 when in co and x 0 B by Equation A18.12.

In particular, hq < E '=q Ih, }1 - hml, and we can apply Lemma A18.2
to get the first inequality below; the second follows from Schwarz's lemma for
integrals:

IQ hgld"xl _< f Ih", - hm+I lld"xl s (f (hm - hm+1)2Id"xI)1
z .

Q m=q
f

m=q Q

A18.20
The sum on the right can be made arbitrarily small by taking q sufficiently

large. This contradicts Equation A18.13, and the assumption C > 0. This
proves Proposition A18.3, hence also Theorem 4.11.12.

A.19 JUSTIFYING THE CHANGE OF PARAMETRIZATION

Before restating and proving Theorem 5.2.8, we will prove the following propo-
sition, which we will need in our proof. The proposition also explains why
Definition 5.2.1 of k-dimensional volume 0 of a subset of iTs" is reasonable.
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We could state Proposition
19.1 projecting onto any k coor-

dinates.

Proposition A19.1. If X C R" is a bounded subset of k-dimensional vol-

ume 0, then its projection onto the first k coordinates also has k-dimensional

volume 0.

Proof. Let zr : 18" lkk denote the projection of 1k" onto the first k coordi-

nates. Choose e > 0, and N so large that
k

F 2

1 <6. A19.1

CEDN(n")
CnX 96

FIGURE A19.1.
Here X, consists of the dark

line at the top of the rectangle at
left, which is mapped by yl to a
pole and then by -yZ ' to a point in
the rectangle at right. The dark
box in the rectangle at left is Y2,
which is mapped to a pole of rye
and then to the dark line at right.
Excluding X, from the domain of
0 ensures that it is injective (one
to one); excluding Y2 ensures that
it is well defined. Excluding X2
and Yi from the range ensures that
it is surjective (onto).

Then

1 k 1 k
E > L (tk)

CE

") 1 ) CtEE r
2N 21

CnX#(b \ C,n,r(X)#O

A19.2

since for every C1 E DN(Rk) such that C1 n tr(X) # i, there is at least one
C E DN(W') with C E a-1(C,) such that C n X 14 (b. Thus volk(lr(X)) < e
for any e > 0.

Remark. The sum to the far right of Equation A19.2 is precisely our old
definition of volume, vol,, in this case; we are summing over cubes C1 that are
in 1k. In the sum to its left, we have the side length to the kth power for cubes
in 1k"; it's less clear what that is measuring. A

Justifying the change of parametrization

Now we will restate and prove Theorem 5.2.8, which explains why we can apply
the change of variables formula to 'F, the function giving change of parametriza-
tion.

Let U1 and U2 be subsets of RI, and let -fl and y2 be two parametrizations
of a k-dimensional manifold M:

yl : Ui -+ M and -12 : U2 -+ M. A19.3

Following the notation of Definition 5.2.2, denote by X, the negligible "trouble
spots" of -fl, and by X2 the trouble spots of 12 (illustrated by Figure A19.1,
which we already saw in Section 5.2). Call

Y, = (yz 1 o-y1)(XI), and Y2 = (yl' oy2)(X2) A19.4
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Theorem 5.2.8. Both Ul k = UI - (XI UY2) and U2k = U2 - (X2 U YI) are
open subsets of Rk with boundaries of k-dimensional volume 0, and

'I': Ujk- U2*k=7zlo71

is a C' diffeomorphism with locally Lipschitz inverse.

Proof. The mapping -D is well defined and injective on U, k. It is well defined
because its domain excludes Yzi it is injective because its domain excludes X2.

We need to check two different kinds of things: that t : Uik -. U2k is a
diffeomorphism with locally Lipschitz derivative, and that the boundaries of
UI k and U2k have volume 0.

For the first part, it is enough to show that ' is of class C' with locally
Lipschitz derivative, since the same proof applied to

'I'=7j'o72:U2k-.Ujk A19.5

will show that the inverse is also of class CI with locally Lipschitz derivative.

Everything about the differentiability stems from the following lemma.

Lemma A19.2. Let M C R" be a k-dimensional manifold, U,, U2 C 1k" , and
yi : U1 -- M, 72 : U2 - M be two maps of class C' with Lipschitz derivative,
with derivatives that are injective. Suppose that 7i(x,) = 72(x2) = x. Then
there exist neighborhoods V1 of x1 and V2 of x2 such that y2 I o 71 is defined
on VI and is a diffeomorphism of V, onto V2.

This looks quite a lot like the chain rule, which asserts that a composition of
C' mappings is C', and that the derivative of the composition is the composi-
tion of the derivatives. The difficulty in simply applying the chain rule is that
we have not defined what it means for y2' to be differentiable, since it is only
defined on a subset of M, not on an open subset of 1k". It is quite possible (and
quite important) to define what it means for a function defined on a manifold
(or on a subset of a manifold) to be differentiable, and to state an appropriate
chain rule, etc., but we decided not to do it in this book, and here we pay for
that decision.

Proof. By our definition of a manifold, there exist subspaces El, E2 of 1R", an
open subset W C El, and a mapping f : W -. E2 such that near x, M is the
graph of f. Let nl : 1k" -. El denote the projection of 11t" onto El, and denote
by F : W -.1f1;" the mapping

F(y) = y + f(y) A19.6

so that irl(F(y)) = y.
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Why not four? Because rye' of
should be viewed as a single map-
ping, which we just saw is differen-
tiable. We don't have a definition
of what it would mean for rye' by
itself to be differentiable.

Consider the mapping in 0 72 defined on some neighborhood of x2, and with
values in some neighborhood of 7r, (x). Both domain and range are open subsets
of W', and nl o yz is of class C'. Moreover, [D(al o 72)(x2)] is invertible, for
the following reason. The derivative

[D7z(x2)]

is injective, and its image is contained in (in fact is exactly) the tangent space
T5M. The mapping rr1 has as its kernel E2, which intersects TXM only at the
origin. Thus the kernel of [D(7r, o ry2)(x2)] is {0}, which means that [D(ai o
72)(x2)] is injective. But the domain and range are of the same dimension k,
so [D(irl o72)(xz)] is invertible.

We can thus apply the inverse function theorem, to assert that there exists
a neighborhood W, of rr,(x) in which al o y2 has a C' inverse. In fact, the
inverse is precisely yl ' o F, which is therefore of class C' on W1. Furthermore,
on the graph, i.e., on M, F o r, is the identity.

Now write

ry2'ory1=ry2'oFo7rioyl. A19.7

This represents rye' o ry, as a composition of three (not four) C' mappings,
defined on the neighborhood 'yj '(F( W,)) of x1, so the composition is of class
Cl by the chain rule. We leave it to you to check that the derivative is locally
Lipschitz. To see that rye ' o yl is locally invertible, with invertible derivative,
notice that we could make the argument exchanging 7, and rye, which would
construct the inverse map. Lemma A19.2

We now know that ob: Ul k -. UZk is a diffeomorphism.
The only thing left to prove is that the boundaries of U1k and UZk have

volume 0. It is enough to show it for Ui k. The boundary of Ui k is contained
in the union of

(1) the boundary of Ul, which has volume 0 by hypothesis;
(2) X,, which has volume 0 by hypothesis; and
(3) Yzi which also has volume 0, although this is not obvious.

First, it is clearly enough to show that Y2 - X, has volume 0; the part of
Y2 contained in X, (if any) is taken care of since X, has volume 0. Next, it
is enough to prove that every point y E Y2 - X, has a neighborhood W, such
that Y2 Cl W, has volume 0; we will choose a neighborhood on which -/I-' o F is
a diffeomorphism. We can write

Y2 ='Yi'(y2(Xz)) ='yi' oFotry oyz(X,) A19.8

By hypothesis, y2(X2) has k-dimensional volume 0, so by Proposition A19.1,
al o ry2(X2) also has volume 0. Therefore, the result follows from Proposition
A16.1, as applied to ryj ' o F.
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A.20 COMPUTING THE EXTERIOR DERIVATIVE

Theorem 6.7.3 (Computing the exterior derivative of a k-form).
(a) If the coefficients a of the k-form

E ai,.....ikdxt, A ... A dxik 6.7.4

1<ii< <ik<n

are C2 functions on U C la", then the limit in Equation 6.7.3 exists, and
defines a (k + 1)-form.

(b) The exterior derivative is linear over R: if W and 0 are k-forms on
U C Rn, and a and b are numbers (not functions), then

d(aV +bip) = adip+bdo. 6.7.5

(c) The exterior derivative of a constant form is 0.

(d) The exterior derivative of the 0-form (i.e., function) f is given by the
formula

df = IDf] = F(Dif)dxi
i=1

6.7.6

(e) If f is a function, then

d (f dxi, A ... A dxik) = df A dxi, A ... A dx,k. 6.7.7

Proof. First, let us prove Part (d): the exterior derivative of a 0-form field,
i.e., of a function. is just its derivative. This is a restatement of Theorem 1.7.12:

df(P:(;y)) Dd. 6.7.1 limo hf(x+h'') - f(x) = [Df(x)],V
A20.1

= [Df (x)]T 4.
Now let us prove part (e), that

d(fdxi, A ... A dxik) = df A dxi, A ... A dxik. A20.2

It is enough to prove the result at the origin; this amounts to translating cp,
and it simplifies the notation. The idea is to write f =T°(f)+TI(f)+R(f)
as a Taylor polynomial with remainder at the origin, where

the constant term is T°(f)(xx) = f (O),
the linear term is TI (f)(x) = Di f (0)xi + + Dn f (0)xn = [D f (0)]x',
the remainder is JR(x")I < Clx']2, for some constant C.

We will then see that only the linear terms contribute to the limit.
Since p is a k-form, the exterior derivative dip is a (k + 1)-form; evaluating

it on k + 1 vectors involves integrating :p over the boundary (i.e., the faces) of
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We need to parametrize the
faces of

Po (hv'1,... hVk+l)

because we only know how to inte-
grate over parametrized domains.
There are k + I mappings yl,,(t),
one for each i from I to k + 1:
for each snapping, a different V,
is omitted. The same is true for
7o.,(t).

t

tlV1+ + ti_1V'i_1 + tiVi+l + + tkVk+l,

for i from 1 to k+1, and where 0 < tj < h for each j = 1..... k. We will denote
by Qh the domain of this parametrization.

Notice that yi,i and 7o,i have the same partial derivatives, the k vectors
V1,..., vk}1, excluding the vector Vi; we will write the integrals over these
faces under the same integral sign. So we can write the exterior derivative as
the limit as h -' 0 of the sum

partial derivatives

of 71 and yo..
k+1

(-1)`-I ltk+l+l 1 (f (- i.i(t)) - f (7o,i(t))) dxi, A... Adx,k (VI..... V...... Vk+l) Idktl,
=t 4n

..............

coefficient (function of t) k-form k vectors

where each term

constant term:

linear term:

remainder:

In Equation A20.6 the deriva-
tives are evaluated at 0 because
that is where the Taylor polyno-
mial is being computed.

The second equality in Equa-
tion A20.6 comes from linearity.

A20.3

fQA(f (71,i (t)) -f (7o,,(t})) dxi, A .. A dxik (vl, ... , V,, Vk+l )Idktj A20.4

is the sum of three terms, of which the second is the only one that counts (most
of the work is in proving that the third one doesn't count):

coefficient of k-form k-form

fqk(To(f)(71,i(t))-T0(f)(7o,i(t)))dxi, A.. ^(Vl,.Vj...... k+l)Idktl+

fQ5(Tl(f)(71,i(t)) -TI (f)(7o,i(t)))dxil A...A dxik (V1,... vi,... ,Vk+l)Idktl+

fQ,,(R(f)(71.i(t)) - R(f)(7o,i(t)))dxil A... A dxik(V,,...,Vi...... Vk+l)Idktl

The constant term cancels, since

T°(f)(anything) - TO (f) (anything) = 0. A20.5

constant same constant

For the second term, note that

Yl.:lt)

T'(f)('vi,,(t))-T'(f)(7o,i(t)) = [Df(0)] hV'i+7o,i(t) -[Df(0)](7o,i(t))
= h[D f (0)]vi, A20.6

which is a constant with respect to t, so the entire sum for the linear terms
becomes

Po (hv'1, ... , hvk+l ). We can parametrize those faces by the 2(k + 1) mappings

71,i (
=71,i(t) =hV'i + tlV1 +... + t;-1v,_1 + tiVi+l + +tkVk+l,

G,

1\ tk

tl

= Y0,i (t) _70,i

k

)



In the third line of Equation
A20.7, where does the hk+' in
the numerator come from? One
h comes from the htDf(0)Iv", in
Equation A20.6. The other hk
come from the fact that we are in-
tegrating over Qh, a cube of side
length h in W'.

The last equality in Equation
A20.7 explains why we defined the
oriented boundary as we did, each
part of the boundary being given
the sign it was to make it
compatible with the wedge prod-
uct. Exercise A20.1 asks you to
elaborate on our statement that
this equality is "by the definition
of the wedge product."

The 1-norm IIVII1 is not to be
confused with the norm IIAII of a
matrix A, discussed in Section 2.8
(Definition 2.8.5).

We see that the E° 1 lh,l in
Equation A20.8 can be written
IIhII_
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(-1)i '
k+1 J (T'(f)(71,,(t)) -T'(f)(7o.i(t)))dx,, A...Adx,k

{_ 4

(VI, - - -
, Vi,

...Vktl)Id ktI

krr+l hk+l

=
1

hk+l+
(IDf (0))V,)dx , A ... A dxik (V L ... , Vs, ... , Vk+l)

i=1

_ (df A dx,, A ... A dx{k) (PD (V' 1. .... Vk+l )) A20.7

by the definition of the wedge product.

Now for the remainder. Since we have taken into account the constant and
linear terms, we can expect that the remainder will be at most of order h2, and
Theorem A9.7, the version of Taylor's theorem that gives an explicit bound for
the remainder, is the tool we need. We will use the following version of that
theorem, for Taylor polynomials of degree 1:

2I f (a+h) - P1 a (a+fi) I< C (i='l F Ih; ll A20.8
/

where sup sup I DI f (c)I = C.
IEZ,k,+2 cE la,a+iij

This more or less obviously gives

A20.9

IR(f)(7o,,(t))I 5 Kh2 and IR(f)(71,;(t))) <Kh2, A20.10

where K is some number concocted out of the second derivatives of f and the
lengths of the v'1. The following lemma gives a proof and a formula for K.

Lemma A20.1. Suppose that all second partials off are bounded by C at
all points 7o,i(t) and 71,i(t) when t E Qh. Then

IR(f)(7o.;(t))I < Kh2 and IR(f)(71,;(t))I < Kh2, A20.11

where K = Cn(k + 1)2(supi 1,V; I)2.

Proof. Let us denote IW,Vlli = Ivu (+ + Ivnl (this actually is the correct

mathematical name). An easy computation shows that IIv"II1 <_ v/nIVI for any
vector v'.

A bit of fiddling should convince you that

117o,i(t)II1 <- IhI(JIV,111 +... + 11,'k+1111)

- IhI(k+1)supIIV,II1 5 Ihl(k+1)f supIV,I.
1

Now Taylor's theorem, Theorem A9.7, says that

A20.12

IR(f)(7o,i(t)I 5 CII7o.i(t)IIi S h2Cn(k+ 1)2(supbVi1)2 = h2K. A20.13
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The same calculation applies to 71,;(t).

Using Lemma A20.1, we can see that the remainder disappears in the limit,

using

IR(f)(71.i(t)) - R(f)(7o.i(t))I < IR(f)(71.i(t)I + IR(f)(7o.i(t))I < 2h2K.
A20.14

Inserting this into the integral leads to

IJ
R(f)(71,:(t))

-R(f)(7o,1(t))dxj,A... A dx.k(VI,..., Vi,...,Vk+1)jdktl
Qh-

<2Kh2

f (2h2KJdxi, A... Adxik (V1,...,V'i,...,vk+l)I Idktj)
Qh

< hk+2K(sup 1Vi1)k,
i

which still disappears in the limit after dividing by hk+1
This proves part (e). Now let us prove part (a):

d(>at,...ikdxi, A ... A dxik P:(vi, ... '7k+l)

A20.15

= hi u hk+l1 f (E d;,...sk dx A ... A dx;k) A20.16
aP, (J, ,...'k+, )

Exercise 20.2 asks you to prove
this. It is an application of Theo-
rem 6.7.3

lim ('r J a,,...,kdxi, A, A dxik
h-.o aPpart

e

(da. Adx k+1)).
1 <ilG"'<ik R

This proves part (a); in particular, the limit in the second line exists because
the limit in the third line exists, by part (e). Part (b) is now clear, and (c)
follows immediately from (e) and (a).

The following result is one more basic building stone in the theory of the exterior
derivative. Saying that the exterior derivative with respect to wedge products

satisfies an analog of Leibnitz's rule for differentiating products. There is a sign

that comes in to complicate matters.

Theorem A20.2 (Derivative of wedge product). IfW is a k-form and
* is an i-form, then

d('PA0) =d<0A0+(-1)kVArG.
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A.21 THE PULLBACK

To prove Stokes's theorem, we will to need a new notion: the pullback of form

fields.

T'cp is pronounced "T upper
star phi."

Pullbacks and the Exterior Derivative

The pullback describes how integraiids transform under changes of variables. It
has been used implicitly throughout Chapter 6, and indeed underlies the change
of variables formula for integrals both in elementary calculus, and as developed
in Section 4.10. When you write: "let x = f(u), so that dx = f(u)du," you
are computing a pullback, f' dx = f(u) du. Forms were largely invented to
keep track of such changes of variables in multiple integrals, so the pullback
plays a central role in the subject. In this appendix we will give a bare bones
treatment of the pullback; the central result is Theorem A21.8.

The pullback by a linear transformation

We will begin by the simplest case, pullbacks of forms by linear transformations.

Definition A21.1 (Pullback by a linear transformation). Let V, W
be vector spaces, and T : V -. W be a linear transformation. Then T' is a
linear transformation A'(W) -. Ac(V), defined as follows: if V is a k-form
on lltm, then

T'(G(,Vr....,. 7k) _ p(T(Vi),...,T(Vk)). A21.1

The pullback of gyp, T'V, acting on k vectors v'r...... 'k in the domain of T,
gives the same result as gyp, acting on the vectors T ( 1 ) . . . . . T(v'k) in the range.
Note that the domain and range can be of different dimensions: To is a k-form
on V, while ap is on W. But both forms must have the same degree: they both
act on the same number of vectors.

It is an immediate consequence of Definition A21.1 that T' : Ak(W) -.
Ak(V) is linear:

T'(Wi +V2) +T'cp2 and T'(ap) = aT'V, A21.2

as you are asked to show in Exercise A21.3.

The following proposition and the linearity of T' give a cumbersome but
straightforward way of computing the pullback of any form by a linear trans-
formation T : R' --. ]lk'"
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Proposition A21.2 (Computing the pullback by a linear transfor-
mation). Let T : P" 1k" be a linear transformation, and denote by
xr,... , x" the coordinates in 118" and by y1, ... , y,,, the coordinates in 1k"`.

Then

Determinants of minors, i.e., T'dyi, A .. A dy;k = b,,,...,ikdxi, A Adx ,,, A21.3

of square submatrices of matri-
ces, occur in many settings. The where bi,,...,ik is the number obtained by taking the matrix of T, selecting
real meaning of this construction
is given by Proposition A21.2.

its r o w s ii, ... , ik in that o r d e r , and its c o l u m ns ji, ... , jk, and taking the
determinant of the resulting matrix.

Example A21.3 (Computing the pullback). Let T : 1kq -' R3 be the
linear transformation given by the matrix

1 0 111

(T] = 10 1 0 1 . A21.4
0 0 1 1

then
T'dy2 A dy3 = bi,2dxi A dx2 + bi,3dxi A dx3 + bi,gdx1 A dxq + bz,3dx2 A dx3

where

+ b2,gdx2 A dxq + b3,gdx3 A dxq,
A21.5

0 0
1

b1 2 = det I 0 = 0 b1 3 = det I 1 = 0 4 = det, b1 [ 1 = 0,,
0 J

, ,

p
. 0 1

1?
=b2.3 = det [0

]
1, b2.4 = det

[ O
1111

1 ] = 1 , b2.q = det l
(

0
l 1 ] = -1.

A21.6
So

T'dy A dy3 = dx2 A dx3 + dx2 A dxq - dx3 A dxq. A21.7

Proo

2

f. Since any k fo rm on 1" is of the

E bi,,...,ikd

form

xi, A . .. A dxik, A21.8
1<f,<...<7k<n

the only problem is to compute the coefficients. This is very analogous to
Equation 6.2.20 in the proof of Theorem 6.2.7:

= (T`dy A... Adyik)(ei,,...,eik)
= (dy,, A...Adyik)(T(ei,),...,T(Qik)) A21.9

This is what we needed: dyi, A A dyik selects the corresponding lines from
the matrix [(T (ei, ), ... , T(gik )], but this is precisely the matrix made up of the
columns j i, ... , jk of [T]. 0
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Note that if U were a bounded
subset of Il82, then Equation 6.3.7
says exactly, and by the same com-
putation, that

f".)
y2 dyi A dy3

= J 44x2ldx, dx2I.
U

Pullback of a k-form field by a C' mapping

If U C lR", V C IR- are open subsets, and f : U -* Visa C' mapping, then we
can use f to pull back k-form fields on V to k-form fields on U. The definition
is similar to Definition A21.1, except that we must replace f by its derivative.

Definition A21.4 (Pullback by a C' mapping). If W is a k-form field
on V, and f : U -. V is a C1 mapping, then f'rp is the k-form field on U
defined by

(f',p)(PP(,V1...... 'k)) = A21.10

If k = n, so that f(U) can be viewed as a parametrized domain, then our
definition of the integral over a parametrized domain, Equation 6.3.7, is

W = J f. 1P.
If (U) V

Thus we have been using pullbacks throughout Chapter 6.

b( X2)=f`(yzdylAdys) P(

J 0
L101))a2

2x1 o
= (y2 dyi Adys) P

0) ,
12X21)(am)

2

=xlx2det 1
2x' 0 2 2
0 2x2, = 4x'x2.

Example A21.5 (Pullback by a C' mapping). Let f : IR2 -.1R3 be given
by

A21.11

A21.12

f' (Y2 dyl Ady3) = b dx, Adx2 A21.13

for some function b, and the object is to compute that function:

x2
f (x2) = x1x2

22

We will compute f' (y2 dyl A dy3). Certainly

So

A21.14

f'(y2dy' Ady3) = 4xix2 dx, A dx2 A A21.15
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The pullback behaves nicely
under composition: (S o T)' _
T'S'.

The first, third, and fourth
equalities in Equation A21.18 are
the definition of the pullback for
gof, g and f respectively; the sec-
ond equality is the chain rule.

Pullbacks and compositions

To prove Stokes's theorem, we will need to compute with pullbacks. One thing
we will need to know is how pullbacks behave under composition. First let us
see what we find for pullbacks by compositions of linear transformations:

(S o T)" p(vl, ... ,.Vk) _ :p((S o T) (,V. ), ... , (S o T)(' t))

= S%p(T(vi),...,T(v"k)) A21.16

T" S" to(v l ..... "k ).

Thus (S oT)" = T'S'. The same formula holds for pullbacks of form fields by
Cr mappings, which should not be surprising in view of the chain rule.

Proposition A21.6 (Compositions and pullbacks by nonlinear
maps). IfUClR",VCRr, and WC RP are open, f: U- V, g:V -+W
are C1 mappings, and p is a k-form on W, then

(g o f)''2 = f'g',p. A21.17

Proof. This follows from the chain rule:

(gof)"w(P,°(vl...... k))=w(Pis(r(=)) QD(gof)(x)]' ,...,[D(gof)(x)]' k))

= c(P(s(r(x))([Dg(f(x)))[Df(x))vl,.. , [Dg(f(x)))[Df(x))vk))

g w (Pr(=)([Df(x)]V,,...,[Df(x)],Vk))

= g'f* P(Px (v'1, .....Vk)). 0 A21.18

The pullback and wedge products

We will need to know how pullbacks are related to wedge products, and the
formula one might hope for is true.

Proposition A21.7 (Pullback and wedge products).If U C R" and
V C 1R'" are open subsets, f : U --, V is a Cl mapping, and rp and 0 are a
k-form and an 1-form on V respectively, then

f'ipAf',k=f (W Asi). A21.19

Proof. This is one of those proofs where you write down the definitions and
follow your nose. Let us spell it out when f = T is linear; we will leave the
general case as Exercise 21.4. Recall that the wedge product is a certain sum
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over all permutations a of (1,...,k + 1} such that the a(1) < < a(k) and
a(k+1) < < a(k+1); as in Definition 6.2.13, these permutations are denoted

Perm(k,1). We find

T`('p A*)(VI>... ,Vk+1) = ((p A1V)(T(Vj),...,TNk+1))

_ sgn(a)G(T(v'v(1)),...,T(vo(k))) '(T(VO(k+1)),...,T(VO(k+t)))
of Perm(k,t)

= sgn(o)T' Vo(k)) T'''(Vo(k+1)...... o(k+1))
aE Perm(k,l)

_ A21.20

This proof is thoroughly un-
satisfactory: it doesn't explain at
all why the result is true. It is
quite possible to give a concep-
tual proof, but this proof is as
hard as (and largely a repetition
of) the proof of Theorem 6.7.3.
That proof is quite difficult, and
the present proof really builds on
the work we did there.

In Equation A21.22 we are us-
ing Theorem A20.2.

The exterior derivative is intrinsic.

The next theorem has the innocent appearance df' = f'd. But this formula
says something quite deep, and although we could have written the proof of
Stokes's theorem without mentioning the pullback, the step which uses this
result was very awkward.

Let us try say why this result matters. To define the exterior derivative,
we used the parallelograms Px (v'1, ... , vk). For these parallelograms to exist
requires the linear structure of Ilk": we have to know how to draw straight lines
from one point to another.

It turns out that this isn't necessary, and if we had used "curved parallel-
ograms" it would have worked as well. This is the real content of Theorem
A21.8.

Theorem A21.8 (Exterior derivative is intrinsic). Let U C Ilk", V C
RI be open sets, and f : U -. V be a C1 mapping. If w is a k-form field
on V, then the exterior derivative of rp pulled back by IF is the same as the
pullback by f of the exterior derivative of cp:

df'1p = f'ddp.

Proof. We will prove this theorem by induction on k. The case k = 0, where
W = g is a function, is an application of the chain rule:

f'dg(P,'(v')) = dg(Pf(x)[Df(x)]v") = [Dg(f(x))][Dg(x)]v"

= [Dg o f(x)]v' = d(g o f)(Px (v)) A21.21

= d(f"9)(P:(V)).
If k > 0, it is enough to prove the result when we can write v _ 1 A day,

where 7P is a (k - 1)-form. Then
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The d(f'dx,) in the first line
of Equation A21.23 becomes the
ddf'x, in the second line. This
substitution is allowed by induc-
tion (it is the case k - 0) because
xi is a function. In fact f'x, = f,,
the ith component of f. Of course
ddf'x, = 0 since it is the exterior
derivative taken twice.

f'd(,O A dxi) = f" (dpi Adxi + (-1)k-'O Addxi)

= f'(d ,) A f"dxi = d(f"aP) A f'dxi,

whereas

df"(V) A dxi) = d(f',P A f'dxi) = (d(f'&,)) A f"dxi + f'r(, A d(f"dxi) A21.23

= (d(f'rp)) A f'dxi + f'ii A ddf'xi = (d(f"VP)) A f'dxi.

A21.22

A.22 PROOF OF STOKES'S THEOREM

The proof of this theorem uses
virtually every major theorem

contained in this book. Exercise
22.1 asks you to find as many as

you can, and explain where they

are used.

Proposition A22.1 is a general-
ization of Proposition 6.9.7; here
we allow for corners.

We repeat some of the discus-
sion from Section 6.9, to make this
proof self-contained.

It was in order to get Equation
A22.2 that we required W to be
of class C2, so that the second
derivatives of the coefficients of ,p
have finite maxima.

The constant in Equation
A20.15 (there called C, not K),
comes from Theorem A9.7 (Tay-
lor's theorem with remainder with
explicit bound), and involves the
suprema of the second derivatives.

In Equation A20.15 we have <
hk+2K because there we are com-
puting the exterior derivative of
a k-form; here we are computing
the exterior derivative of a (k -1)-
form.

Theorem 6.9.2 (Generalized Stokes's theorem). Let X be a compact
piece-with-boundary of a (k + 1)-dimensional oriented manifold M C R.
Give the boundary 8X of X the boundary orientation, and let w be a k-form
defined on a neighborhood of X. Then

f p = f dp
eX X

6.9.3

A situation where the easy proof works

We will now describe a situation where the "proof" in Section 6.9 really does
work. In this simple case, we have a (k - 1)-form in lRk, and the piece we will
integrate over is the first "quadrant." There are no manifolds; nothing curvy.

Proposition A22.1. Let U be a bounded open subset of Pk, and let U+
be the part of U in the first quadrant, where xr > 0,. .. , xk >_ 0. Orient U
by det on Rk; OU+ carries the boundary orientation. Let ip be a (k -1)-form
on Rk of Class C2, which vanishes identioa outside U. Then

f co=f d
8U+ U+

A22.1

Proof. Choose e > 0. Recall from Equation A20.15 (in the proof of Theorem
6.7.3 on computing the exterior derivative of a k-form (Equation A20.15) that
there exists a constant K and 6 > 0 such that when JhJ < 6,

Idw(P.(hel,...,hek)) - f ip1 < Khk+1. A22.2

Denote by !T+ the "first quadrant," i.e., the subset where all xi > 0. Take
the dyadic decomposition DN(R"), where h = 2-N. By taking N sufficiently
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The constant L depends on the
size of the support of gyp. More
precisely, it is the side-length of
the support, to the kth power.

large, we can guarantee that the difference between the integral of dhp over U1

and the Riemann sum is less than e/2:

dp - >2 dw(C)I < 2. A22.3f
U+ CEDN([+)

Now we replace the k-parallelograms of Equation A22.2 by dyadic cubes,
and evaluate the total difference between the exterior derivative of w over the
cubes C, and w over the boundaries of the C. The number of cubes Of VN (RI)
that intersect the support of cp is at most L2kN for some constant L, and since
h = 2-N, the bound for each error is now K2-N(k+i) so

I >2 d`p(C) E f w I< L2k
CEDN([k) CEDN([k) 8C No. of cubes

K2-N(k+i) = LK2-N.
bound for
each error

A22.4
This can also be made < e/2 by taking N sufficiently large-to be precise,

by taking

N> log 2LK - loge
log 2

Finally, all the internal boundaries in the sum

A22.5

V A22.6
CEi [+) 8C

cancel, since each appears twice with opposite orientations. So (using C' to
denote cubes of the dyadic composition of OR .) we have

1 C' f A22.7
CEDN([+) C'EDN(8$,) C' 8[+

Putting these inequalities together, we get

GE/2 GE/2

I f Elw - >2 dw(C)I + I >2 d'(C) - >2 f wl S,,U, CEDN([+) CEDN([+) CEDN([k) 8C

i.e.,

f dip - f w l < E.
u+ eu+

Since E is arbitrary, the proposition follows.

A22.8

A22.9
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The sum EN1 at(x) = 1 of
Equation A22.10 is called a parti-
tion of unity, because it breaks up
1 into a sum of functions. These
functions have the interesting
property that they have small sup-
port, which makes it possible to
piece together global functions,
forms, etc., from local ones. As far
as we know, they are exclusively of
theoretical use, never used in prac-
tice.

The power 4 is used in Equa-
tion A22.14 to make sure that fR
is of class C2; in Exercise A22.2
you are asked to show that it is
of class C3 on all of Illk. It evi-
dently vanishes off the ball of ra-
dius R and, since 4((1/2)2 -1)4 =
324/256 > 1, we have OR(x) > 1
when jxl < R/2. It is not hard to
manufacture something analogous
of class C"' for any m, and rather
harder but still possible to man-
ufacture something analogous of
class C-. But it is absolutely im-
possible to make anything of the
sort with functions that are sums
of their Taylor series.

Partitions of unity

To prove Stokes's theorem, our tactic will be to reduce it to Proposition A22.1,
by covering X with parametrizations that satisfy the requirements. Of course,
this will mean cutting up X into pieces that are separately parametrized. This
can be done as suggested above, but it is difficult. Rather than hacking X
apart, we will use a softer technique: fading one parametrization out as we
bring another in. The following lemma allows us to do this.

Lemma A22.2 (Partitions of unity). If ai, for i = 1, ... , N, are smooth
functions on X such that

N

ai(x) = 1 then

:=1

N

dcp = d(oiiG) A22.10

Proof. This is an easy but non-obvious computation. The thing not to do is
to write E d(amp) = E dai A w + F, ai d(p; this leads to an awful mess. Instead
take advantage of Equation A22.10 to write

N N

E d ( dip. A22.11

This means that if we can prove Stokes's theorem for the forms ai<p, then it
will be proved, since if

JX
d(ai',) =

J
aico A22.12

8X

for each i = 1, ... , N, then

rr ( `r N

Jx -Ix( r d(aW)) =L,f aiG°J W.
i=1 i=1 ex ax i=1 8x

A22.13

We will choose our ai so that in addition to the conditions of Equation A22.10,
they have their supports in subsets Ui in which M has the standard form of
Definition 6.6.1. It will be fairly easy to put these individual pieces into a form
where Proposition A22.1 can be applied.

Choosing good parametrizations

Below we will need the "bump" function /3R : Rk -+ Ill given by

13R(x)
4(1-1)4 if)X12<R2

0 if Ix12 > R2,
A22.14
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FIGuRF A22.1.
Graph of the bump function Oil

of Equation A22.14:

AR (x =

4
/
)

1 - 1 l4 if x12 < R2

0 / if 1x12 > R2,

and shown in Figure A22.1.

Go back to the Definition 6.6.1 of a piece-with-boundary X of a manifold
M C R".

For every x E X, there exists a ball U. around x in R" such that:

U. fl M is the graph of a mapping f : U1 -. E2, where U1 C El is an open
subset of the subspace spanned by k of the standard basis vectors, and E2 is
the subspace spanned by the other n - k.

There is a diffeomorphism G : U1 -. V C Ra such that

XnU={lf(°)J IGi(u)>0, i=1,...,k A22.15

where u denotes a point of U1.

J

Since X is compact, we can cover it by finitely many Ux, , ... , U,,,V satisfying
the properties above, by Theorem A17.2. (This is where the assumption that
X is compact is used, and it is absolutely essential.) In fact, we can require
that the balls with half the radius of the Ux_ cover X. We will label Um =
U ,,,, Um, f, G' the corresponding sets and functions

Call Rm that half-radius, and let /jm : Ill" -. R be the function

fl- (x) = /OR,,, (X - x+"), A22.16

so that /im is a C2 function on lit" with support in the ball of radius Rm around
X.

Set /i(x) _ m=1 Qm; this corresponds to a finite set of overlapping bump
functions, so that we have /i(x) > 0 on a neighborhood of X. Then the functions

A22.17

are C2 on some neighborhood of X; clearly Em=, am(x) = 1 for all x E X, so
that if we set ,m = amcp, we can write

am(X) _ (Xx)

N N

m=1 m=1

Let us define

A22.18

hm=fma(Gm)-1 :V"'-.M.

We have now cut up our manifold into adequate pieces: the forms h;,(amip)
satisfy the conditions of Proposition A22.1.
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Completing the proof of Stokes's theorem

The first equality E am = 1. The proof of Stokes's theorem now consists of the following sequence of equali-

The. second is Equation A22.10. ties:
The third says that amp has its
support in U"`,
the fourth that hm parametrizes
Um.

The fifth is the first crucial step,
using dh' = h'd, i.e., Theorem
A21.8.
The sixth, which is also a crucial
step, is Proposition A22.1.
Like the fourth, the seventh is that
h", parametrizes U'". and for the
eight we once more use E a,,, = 1.

N N

dW
X

a,dp=f dPm
m=1

m=1 UmnX m=1 V+

_ f d(h*tpm)
m=I V+ m=1 av

N f
m=1 aX 8X

A.23 EXERCISES FOR THE APPENDIX

A22.19

A5.1 Using the notation of Theorem 2.9.10, show that the implicit function

found by setting g(y) = G (Y) is the unique continuous function defined on
BR(b) satisfying

F (g(y)) = 0 and g(b) = a.

A7.1 In the proof of Proposition 3.3.19, we start the induction at k = 1.
Show that you could start the induction at k = 0 and that, in that case,
Proposition 3.3.19 contains Theorem 1.9.5 as a special case.

A8.1 (a) Show that Proposition 3.4.4 (chain rule for Taylor polynomials)
contains the chain rule as a special case.

(b) Go back to Appendix Al (proof of the chain rule) and show how o and
0 notation can be used to shorten the proof.

A9.1 Let f (X) = e8in(.+v2). Use Maple, Mathematica, or similar software.

(a) Calculate the Taylor polynomial PfIa of degree k = 1, 2 and 4 at as

(b) Estimate the maximum error IPA,, - f on the region Ix - 11 < .5 and
ly - 11 <.5, for k = 1,2.

(c) Similarly estimate the maximum error in the region Ix - 11 < .25 and
Iy-11<.25,fork=1,2.
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*A9.2 (a) Write the integral form of the remainder when sin(xy) is approxi-
mated by its Taylor polynomial of degree 2 at the origin.

(b) Give an upper bound for the remainder when x2 + y2 < 1/4.

A9.3 Prove Equation 9.2 by induction, by first checking that when k = 0, it
is the fundamental theorem of calculus, and using integration by parts to prove

k' l (h _ t)kg(k+1)(t) dt 9(k+1)(a)hk+1+
0

1

1)!
(h - t)k+1g(k+2)(t) dt.

(k+1)f
A12.1 This exercise sketches another way to find the constant in Stirling's
formula. We will show that if there is a constant C such that

n!=Cf (e)(1+o(1)),

as is proved in Theorem A12.1, then C = 2rr. The argument is fairly elemen-
tary, but not at all obvious. Let cn = fo sin" zdx.

(a) Show that c > cn_1 for all n = 1,2.....

(b) Show that c = "n 1 C,,_2. Hint: write sin" x = sin x sinn-1 x and inte-
grate by parts.

(c) Show that co = 1r and c1 = 2, and use this and part b) to show that

2n - 1 2n-3 1 (2n)!a
c2" = 2n 2n - 2 ... 2 a =

22-(n!)2

2n 2n - 2 2 22"(n!)22
c2n+1 = 2n+1 2n- 1 32

_
(2n+1)!'

(d) Use Stirling's formula with constant C to show that

1

c2" = C n
all + 0(1))

c2n+1 = 2n+ 1(1
+0(1)).

Now use part a) to show that C2 < 2a+o(1) and C2 > 21r+o(1).

A18.1 Show that there exists a continuous function f : R -+ R, bounded
with bounded support (and in particular integrable), such that the set

{x E RIf(x) > 0}

is not payable. For instance, follow the following steps.
(a) Show that if X C RI is any non-empty subset, then the function

fx(x) = inf Ix - yI
,VCX
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is continuous. Show that fx(x) = 0 if and only if x E X.
(b) Take any non-payable closed subset X C [0, 1], such as the complement

of the set U - e that is constructed in Example 4.4.2, and let X' = X U {0, 1}.
Set

f(x) = -X(o.li(x)fx'(x)
Show that this function f satisfies our requirements.

A18.2 Make a list a,, a2.... of the rationale in 10, 11. Consider the function
fk such that

fk(x)=0 ifx [0, 1], or ifxE {a,,..., ak};

fk and that f(x) = limk - fk(x) exists for
every x, but that f is not integrable.

A18.3 Show that if f and g are any integrable functions on JR", the
r

f(x)g(x)Id"xl
2

) S \f (f(x))Zld"xl) (f (g(x))2Id"x[)
.

Hint: follow the proof of Schwarz's inequality (Theorem 1.4.6). Consider the
quadratic polynomial

f ^ ((f + tg)(x))2Id"x) = f^ (f (x))2Id"xl + t f" f (x)g(x)Id"x[ + t2 f (g(x))21d"x).t e a x

Since the polynomial is ? 0, its discriminant is non-positive.

A20.1 Show that the last equality of Equation A20.7 is "by the definition
of the wedge product."

A20.2 Prove Theorem A20.2 concerning the derivative of wedge product:
(a) Show it for 0-forms, i.e.,

d(fg)=fdg+gdf
(b) Show that it is enough to prove the theorem when

p = a(x) dxj, A ... A dx1,,;

10 = b(x) dxj, A ... A dxj

(c) Prove the case in (b), using that

'p A ' = a(x)b(x) dxj, A ... A dx,,, A dx A ... A dx3,.

A21.3 (a) Show that the pullback T' : Ak(W) .. A"(V) is linear.
(b) Now show that the pullback by a C' mapping is linear.

A21.4 Prove Proposition A21.7 when the mapping f is only assumed to be
of class C1.
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A22.1 Identify the theorems used to prove Theorem 6.9.2, and show how
they are used.

A22.2 Show (proof of Lemma A22.2) that QR is of class C3 on all of Rk.



Appendix B: Programs

This program can he typed into
the MATLAB window, and saved as
an m-file called "Newton.m". It
was created by a Cornell under-
graduate, Jon Rosenberger. For
explanations as to how to use it,
see below.

The program evaluates the Ja-
cobian matrix (derivative of the
function) symbolically, using the
link Of MATLAB to MAPLE.

The semicolons separating the
entries in the first square brackets
means that they are column vec-
tors; this is MATLAB's convention
for writing column vectors.

Use * to indicate multiplica-
tion, and - for power ; if f' =
xixz - 1, and f2 = X2 - cosx1,
the first entry would be
(xl * x2-2 -1; x2-coe(xl)].

The programs given in this appendix can also be found at the web page
http://math.cornell.edu/- hubbard/vectorcalculus.

B.1 MATLAB NEWTON PROGRAM

function[x] = newton(F, x0, iterations)

ears = '[';

for i = 1:length(F)

iS num2str(i);

vars = [vars 'x' IS

eval(['x' IS ' - sym("x' IS "'
end
vars = (vacs ']'];

eval(['vars = ' vars

J = jacobian(F, vars);

x x0;

for i 1:iterations

JJ double(subs(J, vars, x.'));

FF - double(subs(F, vars, x.'));

x - x - inv(JJ) * FF

and

% declare xn to be symbolic

The following two lines give an example of how to use this program.

EDU>syms x1 x2
EDU>neaton([cos(xl)-x1; sin(x2)3, [.1; 3.03, 3)

The first lists the variables; they must be called xl, x2, ... , xn; n may be
whatever you like. Do not separate by commas; if n = 3 write xl x2 x3.

The second line contains the word newton and then various terms within
parentheses. These are the arguments of the function Newton. The first argu-
ment, within the first square brackets, is the list of the functions ft up to fn
that you are trying to set to 0. Of necessity this n is the same is as for line one.
Each f is a function of the n variables, or some subset of the is variables. The
second entry, in the second square brackets, is the point at which to start New-
ton's method; in this example, (3 ). The third entry is the number of times
to iterate. It is not in brackets. The three entries are separated by commas.

669
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B.2 MONTE CARLO PROGRAM

Like the determinant program program montecarlo;
in Appendix B.3, this program re-
quires a Pascal compiler.

The nine lines beginning func-
tion Rand and ending and are a
random number generator.

The six lines beginning func-
tion randomfunction and ending
and define a random function that
gives the absolute value of the
determinant of a 2 x 2 matrix
[a b].

For an n x n matrix you
c d

would enter n2 "seeds." You can
name them what you like; if n = 3,
you could call them x1, x2,... , x9,
instead of a,b,...,i. In that case
you would write xl:-rand(seed);
x2:-rand(seed) and so on. To
define the random function you
would use the formula

al b1 cl
det a2 b2 C2

a3 b3 C3

al(b2c3-b3c2) - a2(b.c3-b3cj)

+a3(bic2 - b2cj).

const lengthofrun = 100000;

var S,V,x,intguess,varguess,stddev,squarerootlerun,

errfifty,errninety,errninetyfive:longreal; i,seed,answer:longint;

function Rand(var Seed: longint): real;

{Generate pseudo random number between 0 and 1)

const Modulus = 65536;

Multiplier - 25173;

Increment = 13849;

begin
Seed ((Multiplier * Seed) + Increment) mod Modulus;

Rand Seed / Modulus

end;

function randomfunction: real;

var a,b,c,d:real;

begin
a:-rand(seed);b:-rand(seed);c:-rand(seed);d:-rand(seed);

randomfunction:-abs(a*d-b*c);

end;

begin
Seed := 21877;
repeat

S:=O;V:=O;
for is=1 to lengthofrun do
begin

x:=randomfunction;
S:=S+x;V:=V+sqr(x);

end;
intguess:=S/lengthofrun; varguess:= V/lengthofrun-sgr(intguess);
stddev:= sqrt(varguess);
squarerootlerun: =sgrt(lengthofrun);
errfifty:= 0.6745*stddev/squarerootlerun;

errninety:= 1.645*stddev/squarerootlerun;

errninetyfive:= 1.960*stddev/squarerootlerun;
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writeln('average for this run = ',intguess);
writeln('estimated standard deviation = ',stddev);
writeln('with probability 50',errfifty);
writeln('with probability 90',errninety);
writeln('with probability 95',errninetyfive);
writeln('another run? 1 with new seed, 2 without');
readln(answer);
if (answer=l) then
begin

writeln('enter a new seed, which should be an integer');

readln(seed);

end;
until (answer=0);

end.

Another example of using the Monte Carlo program:

In Pascal, x' is written egr(x). To compute the area inside the unit square and above the parabola y = x', you
would type

function randomfunction:real;

var x,y:real;

begin
x:-rand(seed);y:-rand(seed);

if (y-sqr(x) <0 ) then randomfunction:-Q

else randomfunction:.1;

end
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B.3 DETERMINANT PROGRAM

Program determinant;

Const maxsize = 10;

Type matrix = record
size:integer;
coeffs: array[1..maxsize, l..maxsize] of real;

end;
submatrix =record

size:integer;
rows,cols:array[i..maxsize] of integer;

end;
Var M: Matrix;

S: submatrix;
d: real;

Function det(S:submatrix):real;
Var tempdet: real;

i,sign: integer;
Si: submatrix;

Procedure erase(S:submatrix; ij: integer; var S1:submatrix);
Var k:integer;
begin (erase)

S1.size:=S.size-1;
for k:=S.size-1 downto i do Sl.cols[k]:=S.cols[k+1];
for k:=i-1 downto 1 do S1.cols[k]:=S.cols[k];
for k:=S.size-1 downto j do S1.rows[k]:=S.rows[k+1];
for k:=j-1 downto I do S1.rows[k]:=S.rows[k];

end;
begin{function det}

If S.size = 1 then det := M.coeffs[S.rows[1],S.col[1]]
else begin

tempdet := 0; sign := 1;
for i := I to S.size do
begin

erase(S,i,1,S1);
tempdet := tempdet + sign'*M.coeffs[S.rows[l],S.cols[i]]*det(Sl);
sign := -sign;

end;
det := tempdet;

end;
end;
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begin{function det)
If S.size = 1 then det := M.coeffs(S.rows[1],S.col[1]]
else begin

tempdet := 0; sign := 1;
for i := 1 to S.size do
begin

erase(S,i,1,S1);
tempdet := tempdet + sign*M.coeffs[S.rows[1],S.cols[i]]*det(S1);
sign :_ -sign;

end;
det := tempdet;

end;
end;
Procedure InitSubmatrix (Var S:submatrix);

Var k:integer;
begin

S.size := M.size;
for k := I to S.size do begin S.rows[k] := k; S.cols[k] := k end;

end;
Procedure InitMatrix;

begin {define M.size and M.coeffs any way you like) end;

Begin {main program)
InitMatrix;
InitSubmatrix(S);
d := det(S);
writeln('determinant = ',d);

end.
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0-form field, 517
integrating, 536

1-form field, 517
1-norm, 654
AT, 413
Ak(E), 508

alternative notation, 508

Ak(R"), 506
dimension of, 507
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absolute convergence , 87
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adjacency matrix, 44
algebraic number, 23
algebraic number theory, 291
algebraic topology, 536
alternating , 501
anti-derivative, 351, 391
anti-diagonal, 40
antisymmetry, 406
approximation, 201

by Taylor polynomial, 275
higher degree, 275

arc length, definition, 320
independent of parametrization, 481

Archimedes principle, 568
Archimedes, 72, 429, 479, 567
argument, 16
Arzela, 643
asymptotic developments, 286

Babylonians, 96
back substitution, 198, 232, 233
Banach, 644
Basic, 409

677

basis, 172, 175
equivalence of three conditions for, 175
for the image, 179
for the kernel, 182
orthogonal, 174
orthonormal, 174

best coordinate system, 316
Bezier algorithm, 398
Bezout's theorem, 241
big 0, 610
bijective, 49
bilinear function, 342
binomial coefficient, 507
binomial formula, 287
binormal, 329
bisection, 211, 218, 219
Boltzmann's ergodic hypothesis, 383, 384
Born, Max, 36, 100, 313
boundary, 404

of manifold, 536
of oriented k-parallelogram, 543

orientation, 536
bounded set, 78
bounded support, 378
Bowditch, 117
Brower, 556
Bunyakovski, 63

C (complex numbers), 6
C' function, 124
Ck function, 282
calculus, history of, 72, 85, 95, 96, 479, 564
Cantor, Georg, 12, 13, 14, 89
Cardano's formula, 18-20
Cardano, 96
cardinality, 13
Cartan, Elie, 556
Cartesian plane, 34
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Cauchy, 63
Cauchy sequences of rational numbers, 7
Cayley, Arthur, 28, 36, 391 87, 211
central limit theorem, 370, 371, 402, 446
cgs units, 524
chain rule, 118; proof of, 589-591

change of variables, 426 436
cylindrical coordinates, 431, 432
formula, 352, 437
general formula, 432
how domains correspond, 427
and improper integrals, 446
linear, 425
polar coordinates, 428, 429
rigorous proof of, 635-642
spherical coordinates, 430, 431
substitution method, 427

characteristic function (X) , 353
charge distributions, 34
closed set, 73, 74

notation for, 74
closure, 80

Cohen, 13
column operations, 150

equivalent to row operations, 413
compact, 92
compact set, definition, 89
compact support, 378
compatible orientations, 527
complement, 5
completing squares, 292

algorithm for, 293
proof, 618-619

complex number, 14-17
absolute value of, 16
addition of, 14
and fundamental theorem of algebra, 95
length of, 16
multiplication of, 15
and vector spaces. 189

composition, 50
and chain rule, 118
diagram for, 195
and matrix multiplication, 57

computer graphics, 275
computer, 201
concrete to abstract function, 193

connected, 268

conservative, 555, 569
conservative vector field, 569, 571
constrained critical point, 304
constrained extrema, 304

finding using derivatives, 304
contented set, see payable set, 361
continuity, 4, 72, 85

rules for, 86
continuously differentiable function, 122, 124

criterion for, 124
continuum hypothesis, 13
convergence, 11, 76, 87

uniform, 441
convergent sequence, 10, 76

of vectors, 76
convergent series, 11

of vectors, 87
convergent subsequence, 89

existence in compact set 89
convex domain, 571
correlation coefficient, 369
cosine law, 60
coulomb, 524
countable infinite sets, 13
covariance , 369
Cramer, Gabriel, 185
critical point, 291, 299

constrained, 304
cross product, 68, 69

geometric interpretation of, 69
cubic equation, 19
cubic polynomial, 20
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cubic splines, 398
curl, 550, 553, 555, 556

geometric interpretation of, 555

probe, 555

curvature, 316, 317, 329, 330
computing, 330
Gaussian, 321
mean, 321
of curve in R2, 321; in 1R3, 328
of surfaces, 323

curve, 89, 250, 252 (see also smooth curve)
defined by equations, 254
in R2, 250, 254; in 1R3, 262

cylindrical coordinates, 431-432

d'Alembert, 17, 96
de la Valle-Poussin, 286
de Moivre's formula, 16
Dedekind cuts, 7
degenerate critical point, 302
degenerate, nondegenerate, 297
degrees of freedom, 261, 268
del, 550
density, 551
density form, 519

integrating, 521
derivative, 100, 101, 108

and Jacobian matrix, 108, 121
in one dimension, 101
in closed sets, 73

in several variables, 105

of composition, 119
reinterpreted, 544

rules for computing, 115
determinant, 66, 185, 405, 406, 407, 505

effective formula for computing, 411
how affected by column operations, 409
of 2 x 2 matrix, 66
of 3 x 3 matrix, 67
of elementary matrix, 412
of product of matrices, 411

of transpose, 412, 413
of triangular matrix, 414
in R3, geometric interpretation of, 71
in 1k", defined by properties, 406
independent of basis, 414
measures volume, 420, 426
proof of existence of, 632-635
and right-hand rule, 71

Determinant (Pascal program), 672-673
diagonal matrix, 43
diagonal, 40

Jean, 58, 286, 589
diffeomorphism , 446
differential equation, 313
differential operators, 550
dimension, 33, 195

of subspace, 175
dimension formula, 183, 184, 188
direct basis, 512
directional derivative, 104, 121, 554

and Jacobian matrix, 109
Dirichlet, 291
discriminant, 19, 62
div see divergence

divergence, 550, 553, 556

geometric interpretation of, 556
divergence theorem, 566-567
divide and average, 198

domain, 47
dominated convergence theorem, 352, 442

proof, 643-648
Dorier, Jean-Luc, 185
dot product, 58, 59, 554

geometric interpretation of, 60
not always available, 554
and projections, 61

double integral, 352
dyadic cube, definition, 356

volume of, 356
dyadic paving, 356, 404

and Riemann sums, 355
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dynamical systems, 197
chaotic behavior of, 383

Eberlein, 644
echelon form, 151, 154
eigenvalue, 313
eigenvector, 173, 313

finding using Lagrange multipliers, 314
Einstein, 100
electric flux, 469
electromagnetic field, 34, 291, 316, 523
electromagnetic potential, 572
electromagnetism, 203, 499, 517, 572
element of (E), 5
element of angle, 548
element of are length, 479
elementary form, measures signed volume, 502
elementary matrices, 163

invertible, 164
multiplication by, 164

empty set (0), 5
epsilon-delta proofs, 77, 78
equations versus parametrizations, 272
error function, 447
Euclid, 5
Euclidean norm, 59
Euler, Leonhard, 29, 165, 166, 185, 291
even function, 287
even permutations, 416 event, 363
existence of solutions, 49, 177, 168, 183, 184
expectation, 366

can be misleading, 367
exterior derivative, 499, 500, 544, 545, 553, 660

commuting diagram illustrating, 553
computing, 551, 546-547
proof of rules for computing, 652-655
taken twice is 0, 549

exterior product, 509
extremum, definition, 299

Faraday, 572
feedback, 52,1 00
Fermat's little theorem, 291

Fermat, 291
field of general relativity, 34

fields, 34
finite dimensional, 196
fluid dynamics, 204
flux, 501, 551, 556
flux form field, 518

integrating, 521

force fields, 554 forms, 427, 499, 557
form fields, 34, 500
Fortran, 409
Fourier. Joseph, xi
Fourier transform, 436
fractal, 491
fractional dimension, 491
Frenet formulas, 330
Frenet frame, 329, 330
Fubini's theorem, 279, 387, 395, 437, 606

and computing probabilities, example, 393
and improper integrals, 444
proof, 627-629

function, 47
fundamental theorem of algebra, 17, 95

proof of, 96
fundamental theorem of calculus, 499, 501, 544,

556
proof of, 559

Galois, Evariste, 96
gauge theory, 572
Gauss, 3, 17, 96, 291, 564
Gauss's theorem (divergence theorem), 566
Gaussian bell curve, 446
Gaussian curvature, 321, 322, 324
Gaussian elimination, 185
Gaussian integral, 446
Gaussian integration, 399
Gaussian rules, 398
general relativity, 203
generalized Stokes's theorem, 556-563
geometric series, 11, 88

of matrices, 87
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geometry of curves
in Ri3 parametrized by arc length, 329
parametrized by are length. 320

global Lipschitz ratio. 202
Godel, 13
grad, see gradient

gradient, 500. 550, 553-555. 569
dependent on dot product, 554
geometric interpretation of, 550
transpose of derivative, 554

graph theory, 43
gravitation, 316, 568
gravitation field, 34, 518
gravitational force field, 555
greatest lower bound, 92, 93, 354
Greek alphabet, 2
Greeks, 96
Green, 564
Green's theorem, 563-564
gravitation, 316, 568
gravitation field, 34, 518
group homomorphism, 415

Hadamard, 286
Hamilton's quaternions, 15
Hausdorff, Felix, 491, 644
Ileine-Borel theorem, 643
Heisenherg, 36, 313
Hermite, 120
higher partial derivatives, 203

Hilbert, David, 313

holes, in domain, 568, 571
homogeneous, 181
homology theory, 536
l'HSpital's rule, 275, 340

i (standard basis vector), 33
I-integrahle see improper integrals
identically, 121
identity, 156
identity matrix, 40
image, 177, 178, 183, 184

basis for, 179

imaginary part, 14
implicit function, derivative of, 228
implicit function theorem, 217, 259, 266, 270

proof of, 603
improper integrals, 436-440

and change of variables, 446
and Fhbini's theorem, 444

independence of path, 569
inequalities, 203
inf, see infimum
infimum, 93
infinite sets, 12
infinite-dimensional vector spaces, 191
infinity, 13

countable and uncountable, 13
initial guess, 198, 207, 592
injective (one to one), 49, 178
integers, 6, 49, , 178
integrability, criteria for, 372, 373, 378-380

of continuous function on J1 with
bounded support, 378

of function continuous except on set
of volume 0, 379

of functions continuous except on set
of measure 0, 380, 384

integrable function, definition, 358
integrable, locally, 439
integrals, numerical computation of, 395
integrand, 393, 469
integration, 469

in two variables, Simpson's rule, 400, 401
in several variables, probabilistic

methods, 402
in several variables, product rules, 400
of 0-form, 536
of density form, 521
of flux form, 521
of work form, 520
over oriented domains, 512

interpolation, 275 intersection (n), 5
intuitionists, 92
invariants, 317
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inverse of a matrix, 40, 41, 161
computing, 161
in solving linear equations, 161
of product, 42
of 2 x 2 matrix, 42
only of square matrices, 161

inverse function, 217
global vs. local, 219, 220

inverse function theorem, 156, 217, 219, 220, 226
completed proof of, 598-601
in higher dimensions, 219
in one dimension, 218
statement of, 220

invertibility of matrices, 595 (see also inverse)

invertible matrix, 41 (see also inverse of matrix)

inward-pointing vector, 540

j (standard basis vector), 33

Jacobi, 3
Jacobian matrix, 105, 107, 121
Jordan product, 133

k, 33
k-close, 9
k-form, 501
k-form field, 513
k-forms and (n - k)-forms, duality, 507
k-parallelogram in R", 470

volume of, 470, 471
Kantorovitch theorem, 201, 206-209, 211, 214, 217

proof of, 592-596
stronger version of, 214

Kelvin, Lord, 564
kernel, 177, 178, 183

basis for, 180, 181
Klein, Felix, 250
Koch snowflake, 491, 492
Kronecker, 291

Lagrange, 291
Lagrange multipliers, 309
lakes of Wada, 383
Landau, 644
Laplace, 96, 117

Laplacian, 295, 556
latitude, 430
least upper bound, 7, 92, 354
Lebesguc, 644
Lebesgue integration, 353 381, 441, 644
Legendre, 291
lemniscate, 429
length

of matrix, 64
of vector, 59

level curve, 254
level set, 254, 255, 257

as smooth curve, 257
limit, 72

of composition, 84
of function, 81
of mapping with values in 1kt, 81
rules for computing, 79, 82, 84
well defined, 78

line integrals, fundamental theorem for, 563
linear algebra, history of, 36, 39, 53, 66, 87,

165, 174, 185, 291
linear combination, 166, 192
linear differential operator, 192
linear equations, 154

several systems solved simultaneously, 160
solutions to, 155, 160

linear independence, 166, 168, 170
alternative definition of, 170-171
geometrical interpretation of, 170

linear transformation, 46, 51, 53, 190
and abstract vector spaces, 190

linearity, 52, 53
and lack of feedback, 52

linearization, 100
linearly independent set, 173
Lipschitz condition, 201-203, 593
Lipschitz constant, see Lipschitz ratio
Lipschitz ratio, 202, 203

difficulty of finding, 203
using higher partial derivatives, 203, 206

little o, 286, 610



Index 683

local integrability, 439
loci see locus
locus, 5
longitude, 430
lower integral, definition, 357

main diagonal, 40, 163
Mandelbrot, Benoit, 491
manifold, 266, 268; definition, 269

known by equations, 270
orientation of, 530

map, 47, 51; 100; well defined, 48
mapping see map
Markov chain, 44
matrices

addition of, 35
and graphs, 44
importance of, 35, 43, 44, 46
and linear transformations, 53
multiplication of by scalars, 35
and probabilities, 43

matrix, 35, 313
adjacency, 44
diagonal, 43
elementary, 163, 164
invertible see matrix, invertible
length of, 64
norm of, 214
permutation, 415
size of, 35
symmetric, 43; and quadratic form, 313
transition, 44
triangular, 43

matrix, invertible, 41
formula for inverse of 2 x 2, 42
if determinant not zero, 411
if row reduces to the identity, 161

matrix inverse, 161 (see also inverse of matrix)

matrix multiplication, 36-38, 52
associativity of, 39, 57

by a standard basis vector, 38
not commutative, 40

maximal linearly independent set, 172

maximum, 92
existence of, 93

Maxwell's equations, 203, 524
mean absolute deviation, 367
mean curvature, 321
mean value theorem, 89. 94, 606

for functions of several variables, 120-121
measure, 372, 380
measure 0, definition, 381; example, 381
measure theory, 381
minimal spanning set, 173, 175
minimal surface, 321, 326
minimum, 92, 93

existence of, 93
Minkowski norm, 64
minors, 657
Misner, Charles, 524
mks units, 524
modulus, 16
Moebius, August, 174, 500
Moebius strip, 500, 501
Moliere, 47
monomial, 86, 277
monotone convergence theorem, 443, 644
monotone function, definition, 217
monotonicity, 219
Monte Carlo methods of integration, 402, 403
Monte Carlo program, 670
Morse lemma, 303
multi-exponent, 276, 277
multilinearity, 406
multiple integral, 353, 387

rules for computing, 359

N (natural numbers), 6
nabla (V), 550
natural domain, 74, 75
Navier-Stokes equation, 204
negation in mathematical statements, 4

quantifiers in, 4-5
negative definite quadratic form, 295
nested partition, 405
Newton program, 669
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Newton's method, 58, 148, 197-201, 206-208,
216, 217, 223. 399, 592

chaotic behavior of, 211
initial guess, 198, 201, 212

superconvergence of, 212
non-constructive, 92

non-decreasing sequence, I1
non-uniform convergence, 441
nondegenerate critical point, 302
nondegenerate quadratic form, 297
nonintegrable function, example of, 374
nonlinear equations, 100, 148, 197, 201
nonlinear mappings, 100
nonlinearity, 100
nontrivial, 175
norm of matrix, definition, 214

difficulty of computing, 215, 216
of multiples of the identity, 216

normal distribution, 370
normal number, 92
normal (perpendicular), 63
normalization, 398, 406
notation, 29, 31, 33, 47, 354

for partial derivatives, 102
in Stokes's theorem, 567
of set theory, 5. 6

nullity, 183

o see little o
O see big 0
odd function, 287
odd permutations, 416
one to one, 49, 178
one variable calculus, 100
one-sided inverse, 161
onto, 49, 183
open ball, 73
open set, 72, 115

importance of, 73
notation for, 74

orientation, 501
compatible, 527
importance of, 546

of curve in ll8", 528
of k-dimensional manifold, 530
of open subset of 1R3, 528
of point, 528
of surface in R3, 528

orientation-preserving parametrizations, 532

nonlinear, 532
of a curve, 531

oriented boundary, 540
of curve, 538
of k-parallelogram, 542
of piece-with-boundary of Q82, 539
of piece-with-boundary of manifold, 537
of piece-with-boundary of surface, 539

oriented domains, 512
oriented parallelogram, 512
orthogonal, 63

polynomials, 173
orthogonality, 63
orthonormal basis, 174
oscillation (osc), 354, 373
osculating plane, 329
Ostrogradski, Michael, 564
outward-pointing vector, 540

parallelepiped, 71
parallelogram, area of, 66
parameters, 268
parametrization, 263, 473, 481

by arc length, 320
existence of, 477
global, 263; (difficulty of finding), 263
justifying change of, 648
relaxed definition of, 474

parametrizations, catalog of, 475-477
parametrizations vs. equations, 265
parametrized domains, 514
partial derivative, 101, 103, 105

notation for, 102
for vector-valued function, 103

and standard basis vectors, 101, 102
partial differential equations, 203
partial fractions, 186-189
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partial row reduction, 152, 198, 232-233
partition of unity, 663
Pascal, 409
pathological functions, 108, 123
payable set, 361
paving in la", definition, 404

boundary of, definition, 404
Peano, 89
Peano curves, 196
permutation, 415, 416

matrix, 415
signature of, 414, 415, 416

piece-with-boundary, 537

piecewise polynomial, 275
Pincherle, Salvatore, 53

pivot, 152
pivotal 1, 151
pivotal column, 154, 179
pivotal unknown, 155
plane curves, 250
Poincare, Henri, 556
Poincar4 conjecture, 286
Poincare lemma, 572
point, 29
points vs. vectors, 29-31, 211

polar angle, 16, 428
polar coordinates, 428
political polls, 403
polynomial formula, 616
positive definite quadratic form, 295
potential, 570
prime number theorem, 286
prime, relatively, 242
principle axis theorem, 313
probability density, 365
probability measure, 363
probability theory, 43, 447
product rule, 399
projection, 55, 61, 71
proofs, when to read, 3, 589
pullback, 656

by nonlinear maps, and compositions, 659
purely imaginary, 14
Pythagorean theorem, 60

quadratic form, 290, 292, 617
degenerate, 297
negative definite, 295
nondegenerate, 297
positive definite, 295
rank of, 297

quadratic formula, 62, 95, 291
quantum mechanics, 204
quartic, 20, 24, 25

I see real numbers
1 , 438
II m-valued mapping, 81 (see also

vector-valued function)
random function, 366
random number generator, 402, 403

and code, 402
random variable see random function
range, 47, 178

ambiguity concerning definition, 178
rank, 183, 297

of matrix equals rank of transpose, 185
of quadratic form, 297

rational function, 86
real numbers, 6-12;

arithmetic of, 9
and round-off errors, 8

real part (Re), 14
relatively prime, 242
resolvent cubic, 25, 26
Riemann hypothesis, 286
Riemann integration, 381
Riemannian dominated convergence

theorem, 644
Riesz, 644
right-hand rule, 69, 70, 529, 539-541
round-off errors, 8, 50, 153, 201
row operations, 150

row reduction, 148, 150, 151, 161
algorithm for, 152
by computers, 153
cost of, 232
partial, 198, 233
and round-off errors, 153
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row space, 185
Russell, Bertrand, 13
Russell's paradox, 14
saddle point, 255, 291, 301
sample space, 363
scalar, 32, 35

Schrodinger wave equation, 204, 313

Schwarz, 62
Schwarz's inequality, 62, 63
second partial derivative, 204, 278, 606
second-order effects, 100
sequence, 10, 87

convergent, 10, 76

series, 10

convergent, 11
set theory, 5, 12
sewing (and curvature), 322

Sierpinski gasket, 492

signature

classifying extrema, 301
of permutation, 414-416
of quadratic form, 291, 292, 301

signed volume, 405, 426
Simpson's method, 396, 397, 400, 402, 485
singularity, 514
skew commutativity, 511
slope, 101
smooth (fuzzy definition of) 251
smooth curve

in 1(82, 250-251, 254
in 1183, 262

smooth surface, 257 (see also surface)
soap bubbles, 250
space average, 383
spacetime, 316
span, 166, 168

row reducing to check, 167
spectral theorem, 313
spherical coordinates, 430
splines, 275
standard basis, 173, 174
standard basis vectors, 33

and choice of axes, 33 standard deviation (o), 367
standard inner product, 58

-andard normal distribution function, 371
statcoulomb, 524
state of system, 382
statistical mechanics, 373, 382
statistics, 366
Stirling's formula, 371, 622
Stokes's theorem, 564-566
Stokes's theorem, generalized, 536, 556-563

informal proof of, 561
proof of, 661-665
importance of, 557

strict parametrization, 474
structure, preservation of, 51
subsequence, 80

existence of convergent, in compact set, 89
subset of (C), 5
subspace, 33 , 167; of IlV', 32
substitution method, 427
sum notation (E), 2
sums of squares, 291
sup see supremum
superconvergence, 212, proof of, 597-598

support (Supp), 354
supremum, 92
surface area, 483

independent of parametrization, 485
surface defined by equations, 259
surface, 257 (see also smooth surface)
surjective (onto) 49, 183
Sylvester's principle of inertia, 313
symmetric bilinear function, 342
symmetric matrix, 43

and orthonormal bases of eigenvectors, 313
and quadratic form, 313

tangent line, to curve in R2, 253
tangent plane to a smooth surface, 258
tangent space

to curve, 253-254, 261
to manifold, 273
to surface, 258

tangent vector space, 273

Taylor polynomial, 275, 282, 316
painful to compute, 286
Wiles for computing, 285
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Taylor's theorem, 201
Taylor's theorem with remainder

in higher dimensions, 615
in one dimension, 614

theorem of the incomplete basis, 238
theory of relativity, 499
thermodynamics, 382, 383
Thorne, Kip, 524
Thurston, William, 17, 322
topology, 89
torsion, 329, 330; computing, 330
total curvature, 495
total degree, 277
trace, 418
transcendental, 23
transformation, 51
transition matrix, 44
translation invariant, 378
transpose, 42; of product, 43
transposition, 415
triangle inequality, 63
triangular matrix, 43

determinant of, 414
trivial subspaces, 33
Truman, Harry (and political polls), 403

uncountable infinite sets, 13
uniform continuity, 4, 5, 86, 378, 441
union (U), 5
uniqueness of solutions, 49, 168, 177, 183, 184
unit n-dimensional cube, 421
units, 208, 524
upper bound, 7
upper integral, definition, 357

vanish, 121
variance, 367
vector calculus, 499
vector field, 34, 500, 551

when gradient of function, 569, 571
vector space, 189

examples, 190
vector, 29 (see also vectors)

length of, 59

vector-valued function, 103
vectors

angle between, 61, 63
convergent sequence of, 76
multiplication of by scalars, 32
vs. points, 29-32

Volterra, 556
volume 0, 377, 379
volume, n-dimensional, 356, 361
volume, of dyadic cube, 356
volume, signed, 426

wedge, 502

wedge product, 509, 511
Weierstrass, 89
well defined, 48
Wheeler, J. Archibald, 524
Whitney, Hassler, 73
work, 551, 555, 569
work form field, 517

integrating, 520
Zola, 44
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