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Preface to the Second Edition

In the quarter century since the first edition of the Principles appeared, many branches of
electron optics have been developed considerably, often driven by the success of aberration
correction in the 1990s. At the end of the 1980s, we echoed the general opinion that
quadrupole—octopole correctors had been given their chance, notably in Darmstadt and
Chicago, but had failed to reach their goal. But the germs of the revolution in aberration
studies that began in the next decade were already present: the degree of correction attained
in Scherzer’s project was impressive and Harald Rose had outlined a promising corrector
based on sextupoles in 1981. What was missing were the indispensable diagnostic tools and
fast feedback control circuitry that would turn these complicated systems into working
correctors. These became available in the 1990s and the various correctors that have
emerged are now examined in detail here. A different type of aberration corrector based on
electron mirrors has also gained importance, especially in the low-energy-electron
microscope (LEEM) and the photoemission electron microscope (PEEM). The chapters on
the optics of electron mirrors have therefore been expanded to include the work of Dirk
Preikszas and the parallel studies of the Russian school.

The third-order geometrical aberrations of round lenses were very fully covered in the first
edition but aberration integrals for the fifth-order aberrations were not included. Such
formulae had been published by one of us but a much improved set of aberration integrals
has subsequently been derived by Zhixiong Liu. These are reproduced in Chapter 24, The
Geometrical Aberrations of Round Lenses. The chapter on parasitic aberration too has
needed much revision. We have preferred to retain the simple explanations in the first
edition and then add new material covering recent work on the subject.

Another topic that has been extensively studied is electron emission, especially in the hands
of Kevin Jensen, Christopher Edgcombe and Richard Forbes. We have incorporated some
of their work and included many references covering aspects not discussed here. In
particular, we describe the recommendations of Forbes and Deane for reformulating the
Fowler—Nordheim theory.

Xv



xvi Preface to the Second Edition

In some cases, we have felt justified in removing material. Thus computer algebra, which
was not very familiar in 1989, is now in routine use and several packages are available to
perform it.

In the wake of aberration correction, monochromators have gained in importance. With the
correction of spherical aberration, some way of reducing the effect of chromatic aberration
was needed in order to benefit fully from the potential improvement in resolution.
Certainly, correctors of chromatic aberration were known and have been implemented in
practice but they introduce a further degree of complexity into microscope design. The
alternative, much preferred by commercial microscope manufacturers, is to reduce the
energy spread of the beam emerging from the source. Monochromator optics has therefore
been perfected and we give some account of this in Part X. The optics of Wien filters was
covered very superficially in the first edition. A new Chapter (38, The Wien Filter) now
provides a much fuller treatment. In the case of topics still in rapid development, we have
included only short accounts and many references. Ultrafast electron microscopy and
multiple-beam systems for high-throughput electron lithography and scanning electron
microscopy are the main examples of these.

Some material is admittedly of antiquarian interest only! This is particularly true of the
many field models examined at length in Chapters 35 and 36, Electrostatic Lenses and
Magnetic Lenses. We have nevertheless decided to retain them for they were a valuable
feature of electron optics in the precomputer years when the mathematical skills that
produced them were essential and they are thus part of the history of our subject.

There are innumerable minor changes and additions, not worth mentioning here
individually. Many new references have been added and titles are now included in the lists
of references.

In the Preface to the first edition, we claimed that Principles was the first attempt to cover
the whole subject since Glaser’s Grundlagen der Elektronenoptik appeared in 1952. A few
substantial books on the subject have appeared since 1989, notably Geometrical Charged-
particle Optics by Harald Rose and Modern Map Methods in Particle Beam Physics by
Martin Berz as well the later volume by Berz, Kyoko Makino and Weishi Wan, An
Introduction to Beam Physics, but none of these attempts the broad coverage of the present
volumes. Nevertheless, they are essential complements to our text in that they deal with
some subjects in greater detail or from a very different standpoint. Thus Rose, in a virtuoso
performance, uses the eikonal theory systematically throughout and brings out clearly the
importance of system symmetries, while Berz relies on the differential algebra that he has
developed for charged-particle optics in several areas, notably accelerator optics as well as
microscope optics. An introduction to this is included in Chapter 34, Numerical Calculation
of Trajectories, Paraxial Properties and Aberrations.



Preface to the First Edition (Extracts)

The last attempt to cover systematically the whole of electron optics was made by the late
Walter Glaser, whose Grundlagen der Elektronenoptik appeared in 1952; although a revised
abridgement was published in the Handbuch der Physik 4 years later, we cannot but
recognize that those volumes are closer to the birth of the subject, if we place this around
1930, than to the present day.

Furthermore, electron optics has been altered dramatically during these intervening decades
by the proliferation of large fast computers. Analytic expressions for the aberration
coefficients of superimposed deflection and round magnetic lens fields, for example, have
been derived only recently, partly because the latest generation of microlithography devices
required them but also because they could only be evaluated by numerical methods: the
earlier practice of seeking models permitting hand calculation could never have served here.
Again, computer calculations have shed considerable light on electron gun behaviour, as the
length of Part IX testifies convincingly; in 1952, Glaser was able to condense his account of
gun theory into four pages!

The growth of electron optics is not, however, solely due to the computer. Many systems
that had not been thoroughly explored have now been analysed in detail and, in many cases,
we have had to renounce the attempt to reproduce in detail new results, however interesting,
to keep the number of pages within reasonable limits. This work should therefore be
regarded as both a textbook and a source-book: the fundamentals of the subject are set out
in detail, and there the student should find everything needed to master the basic ideas or to
begin the analysis of some class of systems not yet explored; the principal electron optical
components are likewise dealt with in great detail. Where optical elements that are not quite
so common are concerned, however, we have felt at liberty to direct the reader to original
articles and reviews, or specialist texts, to leave space for topics of wider interest.

The following chapters are, moreover, limited to geometric optics: wave optics is to be
covered in a companion volume. With the Schrodinger equation as starting point, we shall
examine the propagation of electron waves in electrostatic and magnetic fields and study
image formation and resolution in the principal electron optical instruments. This demands
some discussion of electron—specimen interactions. A chapter will be devoted to the four
broad themes of image processing: discretization and coding; enhancement; restoration; and
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xviii  Preface to the First Edition (Extracts)

analysis, description and pattern recognition. In another, we shall give an account of the
steadily growing field of electron holography. Finally, we shall return to the optics of
electron sources in order to understand the concept of coherence and we shall show how the
notions of brightness, partial coherence and various associated spectral functions are
interconnected.

Students of electron optics have been fortunate in that many excellent textbooks on the
subject have appeared over the years, the first when the subject was still young (Briiche and
Scherzer, 1934; Myers, 1939; Klemperer, 1939; Picht, 1939); these were followed in the
1940s by the encyclopaedic Zworykin et al. (1945), Cosslett (1946) and Gabor (1945).
Many books on the subject appeared in the 1950s, of which the texts by Glaser already
mentioned, Sturrock (1955) Grivet et al. (1955, 1958) and Kel’man and Yavor (1959) are
the most important for our present purposes. Subsequently, however, the flow has shrunk to
a trickle, new editions and short introductory texts dominating, with the exception of the
multi-author volumes edited by Septier (1967, 1980, 1983); conversely, monographs on
limited topics have become more common. Although certainly ‘standing on the shoulders of
giants’, the present volumes do differ considerably from their many predecessors in that the
developments of the past 20 years are accorded ample space.

For whom is this work intended? A knowledge of physics and mathematics to first degree
level is assumed, though many reminders and brief recapitulations are included. It would be
a suitable background text for a postgraduate or final year course in electron optics, and
much of the material has indeed been taught for some years in the University of Tiibingen;
a course in the University of Cambridge likewise covered many of the principles. Its real
purpose is, however, to provide a self-contained, detailed and above all modern account of
electron optics for anyone involved with particle beams of modest current density in the
energy range up to a few mega-electronvolts. Such a reader will find all the basic equations
with their derivations, recent ideas concerning aberration studies, extensive discussion of
the numerical methods needed to calculate the properties of specific systems and guidance
to the literature of all the topics covered.

Composition of volumes such as these puts us in debt to a host of colleagues: many have
permitted us to reproduce their results; the librarians of our institutes and the Librarian and
Staff of the Cambridge Scientific Periodicals Library have been unflagging in their pursuit
of recondite and elusive early papers; Mrs. Stroer has uncomplainingly word-processed
hundreds of pages of mathematical and technical prose; Mrs. Maczkiewicz and Mr. Inial
have taken great pains with the artwork as have Mrs. Bret and her colleagues with the
references; Academic Press and Prof. Dr K.-H. Herrmann, Director of the Institut fiir
Angewandte Physik der Universitat Tiibingen, have generously supported this work; the
Zentrum fiir Datenverarbeitung has provided the text-editing facilities needed for TEX. To
all of these we are extremely grateful.
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Introduction

1.1 Organization of the Subject

The properties of beams of free electrons, released from a material source and propagating
through a vacuum region in some device, are of interest in many diverse fields of
instrumentation and technology. The study of such electron beams forms the subject of
electron optics, which divides naturally into geometrical optics, when the wavelength is
negligible, and wave optics, in which effects due to the finite wavelength are considered.
This first volume is concerned with geometrical optics, a knowledge of which is needed to
analyse an extremely wide range of instruments: cathode-ray tubes; the family of electron
microscopes, which now includes the fixed-beam and scanning transmission instruments,
the scanning electron microscope and the emission microscopes; electron spectrometers and
mass spectrographs if we include charged particles other than electrons; image converters;
electron interferometers and diffraction devices; electron welding machines; and
electron-beam lithography devices. We could indeed include electron accelerators, such as
betatrons and electron synchrotrons, but a rather different approach is often more useful in
those machines. This list is by no means complete but it already demonstrates the great
diversity of the possible applications of electron optics.

Over the years, a vast amount of knowledge about the many branches of electron optics has
been accumulated and we have therefore had to be selective. The main emphasis is on the
principles of electron optics, and technical details are only included to bridge the gap to the
practical application of these principles. This seems justified, for the principles remain
unaffected by the passage of time whereas instrumental development is so rapid that
surveys and review articles are the best means of charting its progress.

The physical properties of electrons in a free beam may be classified as follows:

1. corpuscular properties;

2. wave properties;

3. macroscopic interactions;

4. microscopic or atomic interactions;
5. radiative properties.

A

similar classification is given by Sturrock (1955).
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2 Chapter 1

The corpuscular properties are described by classical (relativistic) mechanics, the electron
being regarded as a charged particle acted on by electromagnetic forces. For almost all
electron optical devices, extensive studies must be made on the assumption that these
corpuscular properties alone are important and the present volume is almost wholly
confined to the corresponding geometrical optics. Geometrical particle optics is very similar
for all charged particles, ions in particular, and Parts I and X are written in such a way that
many of the relations derived are valid for ions and electrons, or can be converted
straightforwardly.

The rest-mass of the electron is extremely small, a characteristic that has important
consequences for the technology associated with electron beams. Only quite modest voltages
are needed to accelerate electrons to a very high velocity, and the time of flight between the
departure of an electron from the cathode and its arrival at its destination in a typical device
is so small that it can almost invariably be ignored completely. It is therefore quite sufficient
to study the purely geometrical shape of the electron motion within the beam, although a
time-like curve parameter may prove to be advantageous in numerical calculations.

A further consequence of the extremely small inertia of the beam electrons is that deflection
by suitably placed magnetic or electrostatic fields occurs virtually instantaneously, in
synchronism with the applied voltages or currents, unless the frequency involved is very
high indeed. The performance of many devices relies upon this property. We shall almost
always consider electron motion only in static, that is, time-independent fields. This is
justified even when studying the deflector in a scanning device, the time of flight being so
short that the applied field is quasistatic; the time dependence is then merely a common
amplitude factor.

A knowledge of the wave properties of the electron is essential to understand the concept of
resolution in electron microscopes, to analyse the interactions between electron beams and
targets of all kinds, and to analyse the behaviour of electron interferometers and diffraction
devices and of course to comprehend electron holography. These topics will occupy much
of Volume 3.

The macroscopic interactions in an electron beam are a consequence of the fact that the
latter may be regarded as a cloud of negative charges, which creates an electric field; this is
superimposed on the external applied field and can thus alter the focusing properties of the
device. In principle, of course, this occurs for every electron beam, but in reality such space
charge effects are of importance only when the local beam intensity is very high. The space
charge density can be treated as a macroscopic observable and the associated field
calculation remains within the framework of classical electrostatics; we therefore call these
interactions macroscopic. Such effects occur mainly in electron guns where the beam
intensity can be high, and are therefore dealt with in Part IX, devoted to guns. Such effects
are also extremely important in accelerators, but these are not within the scope of this book.
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The microscopic or atomic interactions are the various scattering processes that occur
within the beam on the atomic scale. Such processes arise when an electron-beam
encounters a specimen or target and electron—electron collisions may also occur within the
beam. The latter give rise to the Boersch effect, an anomalous broadening of the electron
spectrum at beam waists, which are themselves enlarged. Classical collision theory is
capable of providing an approximate explanation of this effect, which is examined briefly in
Section 46.4 of Volume 2. Collisions between beam electrons and the atoms in a target can
only be properly understood in terms of quantum mechanics; some space is devoted to this
topic in Volume 3.

Finally, we come to the radiative properties of the electron, essentially the emission of
bremsstrahlung when the acceleration is very high. This occurs mainly in high-voltage
electron microscopes where particles with an energy of 1 MeV or more collide with the
specimen placed in the path of the beam. Although the staff around the microscope must be
protected from this radiation, the damage to the specimen is negligible in comparison with
that inflicted by the mechanical bombardment. The bremsstrahlung caused by the
acceleration of the electrons in vacuo becomes important only at the energies encountered
in high-energy physics, which are beyond the scope of these volumes; we therefore ignore
bremsstrahlung throughout.

Our theme is thus the study of the motion of electrons, regarded as classical charged
particles of negligible extent, through static electric or magnetic fields. We begin with the
derivation of the conservation laws for the electron motion and cast these into a form
particularly well suited to electron optics. Various forms of the trajectory equations are
established but these are not at all satisfactory for our purpose, which is the study not of
single trajectories but of whole families of electron paths: not ballistics but optics. It is
Hamiltonian theory that enables us to make the transition. As early as 1827, Hamilton drew
his famous analogy between geometrical optics and classical mechanics; this tells us that,
just as in optics, there must exist a mechanical characteristic function, or eikonal, with the
property that the trajectories are always locally orthogonal to the surfaces of constant value
of this function. This is true only in the absence of magnetic vector potentials; in the
general case, when magnetic fields are present, the correct form of this orthogonality
relation emerges from the Hamilton—Jacobi theory presented in Chapter 5. This theory is
very important, for it forms the cornerstone of geometrical electron optics.

Most instrumental research is concerned with the design of new or improved electron
optical systems, for which an accurate knowledge of the properties of families of rays
traced through such systems is indispensable. This proceeds in two stages: first, the field
distribution must be established, after which rays can be traced and quantities characteristic
of the system calculated. A knowledge of the field distribution is usually needed only in the
immediate vicinity of a curve in space, frequently a symmetry axis, known as the optic
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axis; the beam is required to remain close to this axis to prevent the aberrations from
degrading the performance of the device. Unfortunately, the required information about the
field can rarely be obtained without solving a boundary-value problem, since the field will
be generated by electrodes and magnetic materials, such as polepieces, at some distance
from this axis.

In practice, field calculation is the most complicated part of numerical design and the
principal methods are presented in considerable detail in Part II. Series expansions for
electrostatic potentials and hence fields and for magnetic scalar and vector potentials are
also listed since these are repeatedly needed in later chapters where the trajectory equations
and aberration coefficients of various types of system are derived.

This thorough presentation of the physical and mathematical fundamentals leads naturally
to the systematic investigation of electron optical components: how are these to be
characterized, how can we code complex behaviour in terms of a few easily calculated
parameters? Parts III and IV provide the traditional answers in terms of the paraxial
approximation and the aberrations that measure departures from it. In the paraxial
approximation, it is assumed that the electron trajectories remain so close to the optic axis
that equations of motion linear in the off-axis coordinates describe them satisfactorily.
Although this is an excellent first-order approximation, it is clearly an idealization, a
consequence of which is that some electron optical systems appear to be free of any image
defects and hence capable of producing a stigmatic, unblurred image or a sharp focus.

In reality, no system is free of aberrations. One of the major tasks of electron optics is to
establish what types of aberrations can occur in any given system and then to reduce the
most deleterious as far as possible. A long Part is therefore devoted to the theory of
aberrations. Since all wave optical considerations are excluded from this volume, only
geometrical and chromatic aberrations are investigated. The former are those that measure
the discrepancy between the true point of arrival of an electron at its destination and the
point predicted by the paraxial approximation, resulting from the inadequacies of the latter
and any small imperfections in the system; the chromatic aberrations are those caused by
the presence of electrons with different energies in the beam, arising from the small spread
of the initial energies at the cathode surface or from the loss of various amounts of energy
when traversing a thin specimen.

A separate Part is devoted to a similar analysis of deflection systems, of great practical
importance for microlithography in the current quest for miniaturization. Such systems may
be very complex, magnetic and electric deflection fields occupying the same region as a
magnetic round lens field, and the number of degrees of freedom becomes very large. Both
the theory and the experimental adjustment of such combinations reflect this complexity but
it has proved necessary to resort to such intricate arrangements in modern electron-beam
lithography machines, which are used to produce the semiconducting integrated circuits
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required in computers. In Part VI the numerical techniques needed for tracing trajectories
and computing aberrations in any system are presented, together with a short introduction to
computer algebra, a tool that is very useful for establishing aberration integrals and
evaluating these for the few models that permit a result to be obtained in closed form. In
the next three Parts, VII-IX, the principles set out in the first volume are applied to the
many different types of electron optical components—round lenses, quadrupoles, mirrors,
cathode lenses, Wien filters—for each of which the general theory takes a special form. We
have preferred to organize this material by component rather than by instrument, since the
latter must inevitably be understood as an assembly of individual modules.

Part VII indicates what practical information is available in the literature concerning the
optical properties of the various elements analysed in theory in earlier chapters, while in
Part VIII we examine two special topics of sufficient importance to warrant separate
treatment: aberration correction, essentially for systems of round lenses, and the theory
of caustics.

Another topic of great complexity is the study of electron sources, usually known as
electron guns. An entire Part (IX) is devoted to these, for although the degrees of freedom
are not unduly large in number, the theoretical description requires concepts that are of
little importance elsewhere and depend essentially on the purpose to which the gun is to be
put. Thus the gun of an electron interferometer is very different from that of an electron
welding machine. We have tried to impose a pattern on this complex and many-faceted
topic by following the flight of the electron through the gun. First we examine the principal
emission processes and the focusing effects in the neighbourhood of the cathode. This is
followed by the theory of space charge, which may of course be important elsewhere than
in the cathode region. We next introduce a number of quantities that are employed to
characterize the beam farther from the cathode, and, in particular, brightness, emittance and
the energy spectrum, which are very important when considering the suitability of the gun
for specific tasks. The Part ends with a few remarks about the design of complete guns and
such new subjects as multibeam systems and carbon nanotube emitters.

The final Part is devoted to systems in which the optic axis is curved, though in practice
almost always a plane curve, a situation that arises in the electric or magnetic prisms of
electron spectrometers. Monochromators are also examined here, though they do not
necessarily have curved axes; they have become of great importance for microscopes the
geometrical aberrations of which have been corrected. With this, most aspects of
geometrical electron optics have been covered. The reader will notice that the emphasis
throughout is on physical principles and on their theoretical formulation. Technical details
are included only when they seem necessary to render the practical applications of these
principles comprehensible. Inclusion of technological details would have made the book
impossibly large and rapidly obsolete, for there are few branches of the subject that are not
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in continual development. The lifetime of the underlying principles is, however,
substantially longer.

The subject has acquired a very voluminous literature over the decades, so that a full
bibliography would fill far too many pages. We have adopted a compromise towards these
many publications: papers of especial relevance are mentioned in the body of the text but,
in order not to interrupt the flow, the majority is grouped in annotated bibliographic
appendices at the end of each book. In this way, the reader is directed to the literature of
each topic but is not continually distracted by notes and references. Even so, we have made
no systematic attempt to trace the history of the subject in these appendices and we
therefore complete this introduction with a succinct account of the principal stages through
which the subject has passed.

1.2 History

Electron optics was born in the 1920s. In 1925, Louis de Broglie argued convincingly that
a wavelength should be associated with moving particles, electrons in particular; and in
1927, Hans Busch demonstrated that the action of an axially symmetric coil on electrons
can be described in the language of geometrical optics, in terms of a focal length: “Eine
kurze Spule hat also die Eigenschaft, die Kathodenstrahlen nach der Achse zu um einen
Winkel ~ abzulenken, der proportional der Achsenentfernung ... des Strahles ist. Genau
die gleiche Eigenschaft besitzt aber fiir Lichtstrahlen eine Sammellinse”;' this was an
explicit statement of his conclusions adumbrated a year earlier (Busch, 1926). De Broglie’s
paper soon led to the experiments on electron diffraction of Davisson and Germer
(1927a,b) and of Thomson and Reid (1927). Busch’s idea of associating a lens-like
character with a short magnetic field was tested by Max Knoll and his young student,
Ernst Ruska (Ruska and Knoll, 1931), who went on to combine such lenses into the first
electron microscope, built in the Electrotechnical Institute of the Berlin Technological
University (Knoll and Ruska, 1932a,b).

An electron microscope has much in common with its light optical ancestor. It consists of a
source of illumination, condenser lenses to direct the illuminating beam onto a suitably sized
region of the specimen with an appropriate angular spread, an objective lens to provide a
first magnification and projector lenses to magnify the intermediate images still further. In
appearance and nature, however, each of these optical elements is very different from those
of the familiar compound microscope. The source of illumination is now an electron gun, of
which the simplest type is the thermionic triode. A filament is heated, thus releasing

! A short coil thus has the property of deflecting the cathode rays toward the axis through an angle ~, which is
proportional to the distance of the ray from the axis. Exactly the same property obtains for light rays in a
converging lens.
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electrons which are accelerated to the desired energy by a suitably polarized anode. A third
electrode, the wehnelt, placed between filament and anode, improves the performance of
such sources considerably. These guns have now been superseded by cold field-emission
guns or Schottky emission guns, in which electrons are extracted from the cathode by a high
electric field. For the former, a much better vacuum is essential, typically 10~ '* Torr

(~ 107 ® Pa). Very recently, instruments for imaging rapid changes in specimen structure
have been developed, in which the object is illuminated with a rapid sequence of very short
electron pulses; here, the electrons are ejected from the cathode by bombardment.

The lenses are short stretches of rotationally symmetric magnetic field, created by a current-
carrying coil enclosed in an iron yoke. The interior of the microscope must be evacuated to
a pressure typically of the order of 10~ ° Torr (~10~* Pa) since electrons are scattered or
halted by a very small amount of matter in their path. For the same reason, the specimen
must be exceedingly thin (at most a few nanometres thick for a 100 kV instrument). In
these conditions, the electrons are deflected or ‘scattered’ within the specimen but almost
no electrons fail to emerge from the far side. The specimen is thus a ‘phase object’ and
contrast is created at the image by various mechanisms analogous to those encountered in
the phase-contrast microscope. This image is rendered visible by allowing the electrons to
fall on a fluorescent screen or a recording medium, such as a photographic emulsion or
CCD (charge-coupled device) detector. One aspect of electron lenses deserves special
mention: their optical quality is astonishingly poor! They suffer from two lens defects that
have been virtually eliminated from glass lenses: spherical aberration, a defect that severely
limits the numerical aperture at which they can be operated and hence the resolution
attainable; and chromatic aberration, by which we mean that their focusing power varies
rapidly with the velocity of the incoming electrons. The high spherical aberration has the
practical consequence of deteriorating the resolution of an electron microscope by some two
orders of magnitude: with perfect lenses, the resolution limit might be expected to be of the
order of picometres, whereas it is in reality of the order of hundreds of picometres (that is,
of the order of angstroms). The harmful effects of chromatic aberration are avoided by
using nearly monoenergetic electrons and stabilizing the lens currents to a very high degree,
typically to one part in a million. Today, it is common to include a monochromator, a
device that eliminates electrons with energies outside a chosen narrow range.

The first tentative studies of Ruska and Knoll, with which Bodo von Borries was soon
associated, were sufficiently encouraging to initiate a decade of theoretical and empirical
electron optics, during which the foundations of the theory were laid, largely by Walter Glaser
and Otto Scherzer, and the magnetic electron microscope was perfected to such a point that a
commercial model was put on the market by the German company Siemens in 1938. The
British Metropolitan-Vickers company can, however, claim to have been the first commercial
firm to supply a microscope, the custom-built EM1 instrument ordered by L.C. Martin for



8 Chapter 1

Imperial College, London, where it was installed in 1936 (Martin et al., 1937); the resolution
of the EM1 was not, however, superior to that of a light microscope (Mulvey, 1985).

Meanwhile, comparable work on an electrostatic instrument was being actively pursued in
the research department of the Allgemeine Elektrizititswerke-Gesellschaft (AEG). For full
details of these activities, see Ruska’s historical volume (1979, 1980) and the ‘Selfportrait’
of the AEG Research Institute prepared by Ramsauer (1941) with further editions in 1942
and 1943. The early development of the theory is fully chronicled in Glaser’s Grundlagen
der Elektronenoptik (1952).

Outside Germany, many electron microscope projects were launched in the 1930s, though it
was not until the end of the Second World War that commercial production began on any
scale. The prototypes built in England, the USA and Canada are described in various
historical articles, especially Gabor (1957), Ruska (1957) and Mulvey (1962, 1967, 1973),
and many references and reminiscences are to be found in Hawkes (1985) and Mulvey
(1996). We must, however, make particular mention of the work of Ladislaus Marton, who
constructed a series of simple instruments in Brussels, with which he obtained the earliest
osmium-stained biological micrographs, the specimens being the long-leafed sundew and
the root of the bird’s-nest orchid (Marton, 1934a—c, 1935a,b, 1937). Soon after, first Driest
and Miiller (1935) and then Krause (1936) obtained biological electron micrographs with
one of Ruska’s microscopes that foreshadowed, albeit faintly, modern biological electron
microscopy; Driest and Miiller’s images of the wing and leg of the common housefly were
the first micrographs of unprepared biological specimens. A key role in the steps that led
to the first commercial electron microscopes marketed by Siemens was played by Ernst
Ruska’s brother Helmut, a doctor convinced of the value of this new tool in medicine
(Gelderblom and Kriiger, 2014). He in turn persuaded his former clinical teacher Richard
Siebeck, Director of the First Medical Clinic of the Berlin Charité, to assess its potential
and his conclusions were highly influential in Siemens’ decision. Siebeck’s report is
reproduced in Ruska’s memoir (1979, 1980). Thirty-eight models of the first Siemens
instrument were put into service, their fates are described by Wolpers (1991). The troubled
history of the patenting of the first microscope is recapitulated in detail by Ruska (1984,
1986); Riidenberg’s account was published posthumously in 2010.

It was during the 1930s too that the field-emission microscope was developed by

E.W. Miiller, in one of the Siemens research laboratories in Berlin. In this instrument, a
strong electric field is maintained at a tip and highly magnified details of the surface are
visible in the image as a result of the differences in emission from point to point. Miiller’s
first papers appeared in 1936 and 1937 and a historical account is to be found in Good and
Miiller (1956). More details of the development of this family of instruments are to be
found in Miiller and Tsong (1969, 1974), Miiller (1960, 1975), Drechsler (1978) and
Melmed (1996).
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By the 1950s, electron microscopes were being produced in West Germany, England,
France, Holland, Switzerland, Czechoslovakia and the Soviet Union, with more modest
activity in other European countries, particularly Sweden. In the United States, RCA began
manufacturing electron microscopes during the war years, and in Japan commercial
production commenced in the late 1940s, though many prototypes were built during the
first half of the decade; the Hitachi HU-4 was put on the market in 1947, for example, and
the JEOL JEM-1 in 1949 (Sugata, 1968; Fujita, 1986).

Although our subject is not electron microscopy but electron optics, we must digress here to
mention an important development in the years 1948—1952, which had a major effect on
electron microscope design (Gettner and Ornstein, 1956). The accelerating voltages of the
early microscopes were then of the order of 50—80 kV, which was too low to form a sharp
image of a biological specimen if the latter was one or more micrometres in thickness. An
increase in voltage therefore seemed imperative until in 1948, Pease and Baker succeeded
in cutting sections only 0.3—0.5 pm thick with a modified Spencer 820 microtome, and by
1950 the figure had fallen to 0.2 pm. In 1949, Newman et al. introduced methacrylate as an
embedding medium, the mechanical properties of which greatly facilitated section cutting.
In 1952, Sjostrand designed a new ultramicrotome (Sjostrand, 1953) with which sections

20 nm in thickness could be cut reproducibly and “the problem of high resolution electron
microscopy of sectioned material had been solved” (Sjostrand, 1967); the immediate need
for high-voltage microscopes in biology vanished and the first megavolt instruments were
not built for about another decade. The first of these was a 1.5 MV instrument constructed
in Toulouse (Dupouy et al., 1960; Dupouy, 1968, 1985) and this was rapidly followed by a
750 kV machine in Cambridge (Smith et al., 1966; Cosslett, 1981) and the commercial
high-voltage microscopes of AEI, GESPA, Hitachi and JEOL. These were all giant versions
of the familiar 100 kV instruments, however, and essentially represented only technological
progress; their optics was distinctly conservative. Their great bulk and the need for special
buildings to house them did, however, furnish one of the reasons for the interest in
superconducting lenses that sprang up in the mid-1960s, another being the perfect stability
of the magnetic field generated by a coil in the persistent-current mode (Laberrigue and
Levinson, 1964; Fernandez-Moran, 1965; Boersch et al., 1966; Siegel et al., 1966; Ozasa

et al., 1966). Of the various designs, the shielding lens introduced by Dietrich et al. (1969)
was clearly superior when it was important that both the specimen and its immediate
environment be at very low temperature (see Weyl et al., 1972; Hardy, 1973; Dietrich,
1976; Hawkes and Valdre, 1977; Riecke, 1982; Lefranc et al., 1982). Students of
superconducting lenses were not, however, alone in enquiring whether the focusing power
of the monster lenses in traditional high-voltage electron microscopes could not be obtained
in some other way. We draw attention to the numerous ‘unconventional’ designs introduced
by Mulvey and colleagues, compared and contrasted in Mulvey (1982, 1984), and to the
laminated lenses of Murillo (Balladore and Murillo, 1977), in which the yoke is made of
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highly inhomogeneous material in order to maintain the flux density constant over its
cross-section.

The idea of forming an image not by irradiating a comparatively large specimen area and
focusing this onto the image plane after suitable magnification but by scanning the
specimen with a small probe, collecting a signal from the resulting interaction and using
this signal to modulate the intensity of the spot of a cathode-ray tube scanned in
synchronism goes back to the late 1930s. In 1938, von Ardenne described a primitive
ancestor of the modern scanning (transmission) electron microscope, in which a probe size
of some 10 nm was achieved but at the cost of a very small current indeed (~ 1 pA); the
beam traversed the specimen and struck a photographic film attached to a drum which
rotated and advanced appropriately (see von Ardenne, 1940, 1978, 1985). In 1942, an
instrument in which secondary electrons from a thick target provided the image signal was
developed by Zworykin et al. but it was not until 1953 that McMullan described the first of
the series of scanning electron microscopes to be built under Charles Oatley’s direction in
Cambridge, which culminated in the commercial ‘Stereoscan’, marketed by the Cambridge
Instrument Company in 1965 (Oatley et al., 1965, 1985; Oatley, 1982; Breton et al., 2004,
Smith, 2013). A home-made instrument was constructed by André Léauté in 1944—6
(Léauté, 1946; Hawkes and McMullan, 2004). More recent versions of these instruments
combine the properties of the X-ray microanalyser introduced by Castaing (1951) and
perfected by Cosslett and Duncumb (1956) and Duncumb (1958), who added beam
scanning, with the host of signals available in a scanning electron microscope with the
result that analytical electron microscopy (AEM) has become a discipline in its own right
(see for example, Botton and Prabhudev, 2018).

The next major instrumental development occurred in the early 1960s. A celebrated set of
curves (Oatley et al., 1965) relating probe size, number of lines in the image and the time
needed to record an image of acceptable quality had shown vividly that the resolution of the
scanning microscope could never rival that of the transmission microscope owing to the
inadequate performance of the thermionic gun. It was known that a field-emission gun
would change this situation dramatically, making it possible to compress a useful current
into a probe only a few angstroms in diameter, and it was in 1965 that Crewe first
described a scanning transmission electron microscope (STEM) with a field-emission gun
(Crewe et al., 1968; Crewe, 1970, 1973). Instrumental development began in three
companies, AEI, Vacuum Generators (VG) and Siemens, of which only VG continued to
market STEMs, finally ceasing production in 1996; their first commercial instrument was
installed in 1974 (Wardell and Bovey, 2009; von Harrach, 2009). Those of Siemens and
AEI were not pursued (Hawkes, 2009) and the present tendency is to offer a field-emission
gun and a STEM mode as options with conventional transmission microscopes. A
redesigned aberration-corrected STEM was developed by the Nion company; the first
commercial model was delivered in 2007 (Krivanek et al., 2008).
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The foregoing account evokes the main steps in electron optical instrumentation for image
formation. Many other innovations might have been listed: the development of new types of
gun (lanthanum and cerium hexaboride cathodes, carbon nanotube and other field emitters)
and the introduction of various types of energy filter and analyser, in particular the focusing
device of Castaing and Henry (1962), and monochromators. We now turn to the theory of
the subject and single out the principal contributions. We have already mentioned the role
of Busch in the founding of geometrical electron optics. The ideas of Hamiltonian
mechanics were applied to electron motion by Walter Glaser, who derived expressions for
the aberration coefficients with the aid of a characteristic function or eikonal, while Otto
Scherzer obtained similar formulae by the ‘trajectory method’, in which equations of
motion including aberration terms are derived and solved by the method of variation of
parameters. In 1936, Scherzer published formulae for the coefficients of spherical and
chromatic aberration that showed that these can never be made to change sign by skilful
lens design; this result and the reactions to it are discussed in detail in Part IV. Eleven years
later, it was again Scherzer (1947) who described several types of aberration correctors,
capable in principle of cancelling these troublesome coefficients. The history of the 1950s
is the history of early attempts to use such correctors. These continued with limited success
and no commercial exploitation until the 1990s, which saw the major breakthroughs: first, a
quadrupole—octopole corrector of spherical and chromatic aberration for the scanning
electron microscope (Zach and Haider, 1995), then a sextupole corrector for the spherical
aberration of the transmission electron microscope (Haider et al., 1998) and a
quadrupole—octopole corrector for that of the scanning transmission electron microscope
(Krivanek et al., 1997). Commercial models soon became available. Scherzer’s were not the
only suggestions for aberration correction, however; in 1948, Gabor described a method of
correcting spherical aberration by an optical reconstruction technique, which he called
holography. For technical reasons, this was unsuccessful at that time (the laser was yet to
be invented) but with the development of bright electron sources and coherent light sources,
both in-line and off-axis holography have subsequently been extensively developed, as we
shall see in Volume 3.

We must return to the 1940s and 1950s to draw attention to some other landmarks in
electron optics. In 1943, Grinberg published a very general form of the equations of motion
of electrons in electric and magnetic fields and this was later extended to include
aberrations by Vandakurov (1955, 1956a,b, 1957). Similar general equations were derived
by Sturrock (1952), who developed and perfected Glaser’s Hamiltonian approach to
electron optics in many ways (Sturrock, 1955), and by Rose (1968), who analysed a more
limited class of systems. The labour of transforming aberration integrals was reduced by
Seman (1951, 1954, 1955, 1958a,b), who introduced a very ingenious method that replaces
partial integration by differentiation. At about the same period, Lenz (1956, 1957) clarified
the distinction between real and asymptotic aberration coefficients, already examined
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briefly by Sturrock (1955). It was not until a decade later that the possibility of writing
these asymptotic coefficients as polynomials of at worst fourth order in reciprocal
magnification was noticed (Hawkes, 1968), an observation that renders computer-aided
design of complex systems less arduous. The 1970s and 1980s saw the arrival of
increasingly powerful computing techniques in electron optics, and these are now capable
of solving almost all the problems that arise, including those branches of electron optics
that had perforce been almost completely neglected by earlier theoreticians: electron guns
are the most striking example. Parts II, VI and IX bear witness to the progress that has been
made, much of it in the theoretical electron optics group of the University of Tiibingen
(Lenz, 1973; Kasper and Lenz, 1980; Kasper, 1982, 1984, 2001). Program suites for
charged-particle optics have been developed by Eric Munro (MEBS, Munro’s Electron
Beam Systems) and Bohumila Lencova (SPOC, Software for Particle Optics Computations),
notably EOD (Electron Optical Design). Other such programs in widespread use are
SIMION, Frank Read’s CPO and COSY INFINITY (Martin Berz, Kyoko Makino). Several
special-purpose programs have also been written, such as MOPS, created by Dirk Preikszas
to establish formulae for the aberration coefficients of electron mirrors, computer-aided
design software developed by the Delft school and Anjam Khursheed’s KEOS. References
to all these are to be found in the appropriate chapters.

This short account of the history of electron optics and electron microscopes cannot but be
invidious: we could have included all the other electron optical instruments and we could
have charted the progress of the theory, equation by equation. This would, however, have
left all too little space for the Principles of Electron Optics, to which we now turn.
References to many other accounts of the history of the subject are to be found in

The Beginnings of Electron Microscopy (Hawkes, 1985) and The Growth of Electron
Microscopy (Mulvey, 1996). Among the historical articles not cited above are Reisner
(1989), Rasmussen (1997), Miiller (2009), Rose (2008) and Hawkes (2009, 2015).
Biographies of several of the pioneers have been published: Lambert and Mulvey (1996,
Ernst Ruska), Griimm and Schiske (1996, Walter Glaser), Mulvey and van de Laak-Tijssen
(2001, Jan Le Poole), von Borries (1991, Bodo von Borries), Gelderblom and Kriiger (2014,
Helmut Ruska), Mulvey (1995, Dennis Gabor), Hawkes (1995, Tom Mulvey), Rose (1983)
and Marko and Rose (2010, Otto Scherzer).
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Relativistic Kinematics

In the following sections we shall examine the motion of a charged particle of rest mass mg
and charge Q in an electromagnetic field characterized by the electric and magnetic field
vectors E(r, t) and B(r, 1), respectively. Whenever the specialization Q = —e <0 for
electrons is not made explicitly, the analysis is valid for the motion of any charged particle.

The derivation of useful trajectory equations for the motion of charged particles — and of
all conservation laws satisfied by them — can be performed in a very general and elegant
manner by means of variational calculus, as we shall show in Chapter 4, Variational
Principles. First, however, we give a short introduction to relativistic kinematics, because
this offers a better understanding of many of the optical aspects of the variational
calculations.

2.1 The Lorentz Equation and General Considerations

The trajectory equation for the motion of charged particles is most simply represented in its
Newtonian form

d d

;“j = = (mv) = Q{E(r,1) + v X B 1)} 2.1)
v = dr/dt being the velocity and g = mwv the kinetic momentum, which must be clearly
distinguished from the canonical momentum, defined in Chapter 4, Variational Principles.
The Lorentz force, given by the right-hand side of Eq. (2.1), is expressed in SI units, which
will be used consistently throughout this volume. It is convenient to introduce the familiar
abbreviations

>
c V1-3
whereupon Eq. (2.1) has the correct relativistic form if we represent the relativistic mass m
by the well-known expression

v o 1
c

m= $=7m0 2.3)

N
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The trajectory equation does not depend on the values of Q and m separately but only on
the ratio O/my as can be seen by rewriting Eq. (2.1) thus:

d v 0
dt<—1 _52> = m—O(E—I—vXB)

In the special case of electron motion, we have

0=-e=-1602x10""° C, £ =1759%x10" C kg™ 2.4)
my

The absolute value of the electron charge will always be denoted by e.

The practical evaluation of Eq. (2.1) requires the calculation of the field vectors E(r, f) and
B(r, 1) for arbitrary values of the position vector r and of the time z. The corresponding
computer programs have to be written and executed before embarking on trajectory
calculations. In practice, field calculation is the most complicated part of theoretical
electron and ion optics. We shall deal with this subject in detail in Part II. In the present
chapter we shall assume the fields to be known.

In the most general case of arbitrary electron optical devices, Eq. (2.1) can only be solved
numerically, from given initial conditions. In order to derive more detailed laws, it is
necessary to introduce simplifying symmetry conditions, which are assumed to be exactly
valid. The inevitable departures from exact symmetry in practical devices will be discussed
in later chapters.

2.2 Conservation of Energy

In most electron and ion optical devices, the applied fields are static, independent of time:
E =E(r), B=B(r). It is then possible to derive a law for the conservation of particle
energy. This is most easily done by scalar multiplication of both sides of Eq. (2.1) with v.
We shall denote derivatives with respect to time by dots. Using Eqs. (2.2) and (2.3) we
obtain first

d mov .
'U‘E (ﬁ) =Qu-E(r), (v=F)

Using the identity v-© = vv, the left-hand side can be transformed to a total derivative:

v %(Wmov) = movi = % (’ymocz)

In order to transform the right-hand side, we introduce the electrostatic potential ¢(r) and
write
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E(r) = —grad &(r) (2.5)

The right-hand side then becomes a total derivative too:

Qv E(r) =~ 0F grad () = ~ % (09(0)

Integration with respect to time and substitution for the factor ~y results in:

1
Ey = moc? <7 — 1] + Q%(r) = const (2.6)
V-3 )

The first term is the kinetic energy

T(v) = moc? (1;_52 _ 1) 2.7)

A power series expansion in v gives
Tw)y= =1+ +=8"+ -
(®) 21)( B+ 28 )

the first term being the familiar nonrelativistic approximation. The second term in Eq. (2.6)
is the usual potential energy of classical mechanics,

V(r) = QP(r) (2.8)

The functions @(r) and hence V(r) are unique apart from the choice of an arbitrary additive
constant. The total energy E, depends on the choice of this constant and on the initial
conditions of the trajectory in question, a trivial point in theory but important in many
practical situations.

2.3 The Acceleration Potential

For practical calculations, it is of great importance that virtually all scalar kinetic quantities
can be represented as unique functions in space, the constant E, being a free parameter. The
electrostatic potential () is uniquely defined by its boundary values at the surfaces of the
electrodes. In electron optics, the cathode surface in the electron gun is usually chosen to be
the equipotential surface @(r) = 0. In this volume we shall adopt this most convenient
gauge. The constant E, then has a very concrete physical meaning: it is the initial kinetic
energy of the corresponding electron trajectory at the cathode surface. This is a small
positive quantity of the order of an electronvolt. The simplification Ey = 0, common in the
literature on electron optics, is too strong a restriction, since this excludes the treatment of
energy distributions in electron beams. Here, therefore, the convention Ey = 0 will be
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adopted in all practical calculations in which the electron energy distribution is not in
question. In the remainder of the present chapter, however, the analysis will be completely
general.

Once the function @(r) and the constant Ey have been specified, all the other scalar
functions are uniquely defined. The kinetic energy is given by

T(r,Eo) = Eo — QP(r) (2.9)
Since T can be rewritten as 7= mocz(w—l), the dilatation factor -y is a function of position:

1 _1+E0—Q¢(")

V1-732 - noc?
Eq. (2.9) also determines the absolute value of the kinetic momentum, Igl = g(r). In order to
find the corresponding function, we first solve g = mov(l—ﬂz)f 12 for v = v(g) and then
substitute the resulting expression in Eq. (2.7), which yields the well-known formula

Y(r, Eo) = (2.10)

1/2
moc® + T = c{(moc)2+g2} = mc? 2.11)

This expression will prove to be of great importance in the Hamiltonian theory. Here we
solve Eq. (2.11) for g and obtain

T
g=lg|= \/2m0T<l + 2moc2> 2.12)

Substituting for T from Eq. (2.9), we find

(2.13)

8(r, Eo) = \/ 2mo(Eg — QP(r)) (1 + EO_—Q@(’)>

2myc?

By means of Eqs. (2.10) and (2.13), the absolute value of the velocity can also be
determined as a function, v(r, Ey) = g/mgyy. In the nonrelativistic approximation,
Egs. (2.10), (2.13) and the expression for v simplify to the well-known formulae

2
yr 1, g~ \2my(Eo—Q09), v~ \/m—O(Eo — 09) (2.14)

Since the kinematic functions will be required very often in electron optical calculations,
we introduce certain quantities to simplify the notation:

@0 = Eo/e (215)

=0.9785 MV ! (2.16)

£ =
2myc?
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1/2
n = (2%()) =2965x10° C'/2 kg '/2 2.17)

Eq. (2.13) now becomes

o(r, Eg) = \/ 2mpe(Po + @){1 + (o + gzs)}

Since the radicand will be required very frequently, it is convenient to introduce a new
function

B(r, Do) = (Py + D) {1 + &(Py + (r)} =0 (2.18)

called the acceleration potential. The circumflex will be added to all functions and
constants defined in terms of @ rather than &. It is now possible to express all the other
kinematic functions in terms of @. Obviously,

g =1/ 2moed (2.19)

On substituting this in Eq. (2.11), we find

- 2ed
T=m0c2(\/1 +4cd— 1) = = (2.20)
1+V1+4ed

Since T'= myc*(y — 1), the dilatation factor ~ can be expressed as a function of @ or &:

~

v=V1+4ed=1 +25{d5(r)+d50} 2.21)

Using Eqgs. (2.19), (2.21) and (2.17), the velocity becomes

@
v=-t =g/ (2.22)
mo7y 1+ 4

Even the electric field strength E can be expressed in terms of & and its gradient:
differentiation of Eq. (2.18) results first in

VP =1+ 2e(Py + D)VP

From Eq. (2.21), we see that the factor multiplying V@ is equal to -, so that finally

A

1. RV
E= —-Vd=— (1+45@) vé =2 vg (2.23)
v 0

the last form being always valid in static fields. Thus no independent kinematic function
other than @(r, @) is needed. The gain obtained by this simplification will be obvious later.
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In order to lighten the notation, we shall omit the argument ¢, whenever we are not
concerned with energy distributions and chromatic effects.

2.4 Definition of Coordinate Systems

Many of the subsequent calculations are most favourably carried out by explicit
representation in some suitably chosen coordinate system. In order to avoid repetition, we
introduce general definitions and standard notations here, which we shall use consistently
provided there is no risk of confusion. Any necessary changes of the notation will be
mentioned explicitly.

Cartesian coordinates are denoted by (x, y, z) or by subscripts (x;, X, x3); the Cartesian
components of any vector and the unit vectors i in the three Cartesian directions will always
be indicated by the corresponding subscripts. Even when using orthogonal curvilinear
coordinates, the unit vector indicating the direction of the gradient of the coordinate in
question will be denoted by i and the corresponding subscript. Examples are given below.
In sums of Cartesian products, the familiar summation convention will be used wherever
this does not cause confusion.

Any vector a is thus represented by the equivalent notations
3
a=ai,+ayj,+ai,= Zajij = aji; (2.24)
j=1
and scalar products are written
3
ab=)_ ab;=apb, (2.25)
=1

As well as Cartesian coordinates, we shall need cylindrical coordinates (z, r, ) and
spherical coordinates (R, 0, ). All these coordinate systems are related by the familiar
transformations

X =R sin ¥ cos o =rcos ¢
y=Rsin ¢ sin ¢ =rsin ¢
z=Rcos¥, r=Rsind
0=r=R, 0=9<m 0=¢p<27

(2.26)

The choice of notation for the spherical coordinate R is unusual but spherical coordinates
are very rarely used in electron optics. The only important case is the treatment of cathode
tips (Chapter 45 of Volume 2). Cylindrical coordinates are very frequently used and the
corresponding notation is as simple as possible.
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The element of length, ds, is given by

ds® = dx* + dy* + d*
=d? +dr* + r2d<,02
= dR? + R*d9* + R*sin*9 dp*
The position vector in particular is given by
r=xi, +yi, +z, =2z, +ri, =Rig (2.27a)
and the velocity by
U =F = Xi, + Yi, + 2i, = 2i, + Fi, + rgi,
N coTE e (2.27b)
= Rig + Rviy + Rsin Vi,

The components of arbitrary vectors, characterized by the corresponding subscripts,
have the value of the corresponding projections; for example, if @ = azig + agiy +
agi,, then ag =a - ig. This is clearly different from the familiar, but less convenient,
covariant formalism, which we do not need here. A simple consequence of our
definitions is that

lal* = ajaj=a’ +a; +d’, = ay +aj + a, (2.28)

No metric tensor is needed in this context. To facilitate the evaluation of vector products,
it is useful to remember that the basic vectors, i, i,, i, and ig, iy, i, respectively, form
positively orientated orthonormalized bases.

In order to avoid giving explicit Cartesian representations of vector differentiations in
different vector spaces, we introduce the familiar abbreviation

0,0 0 0,0

for differentiation in the space in question. Ordinary vector differentiation is denoted by
V = 0/0r. Some common representations in cylindrical coordinates are as follows:
o .10

0
Ve=i— +i,— +

o—— 2.2
0z or l*gr@np (2.292)

, & & 1o 18

T T AT 2.29b
02 orr  ror  r2og? ( )
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These are extensively used in Part II. Partial derivatives are denoted in various different
ways, as shown in the following examples:

oV

PRl RV = Vi
vV

—— =3 V=V,
Ox0y 4 by

Expressions of this kind will appear intermittently in later chapters.

2.5 Conservation of Axial Angular Momentum

This conservation law may be obtained very elegantly by use of the Lagrange formalism
but the following elementary presentation brings out its physical meaning clearly.

We now assume that the electron optical device is rotationally symmetric about an optic
axis. This assumption is valid in all perfect round lenses and mirrors. The fields in these
devices are usually also static, but this additional assumption is not necessary. The
following considerations remain valid in time-dependent systems and in ion optics. As
everywhere in physics, the conservation of axial angular momentum is a direct consequence
of the assumption of rotational symmetry.

On forming the vector product of r with Eq. (2.1), we see that the expression on the left-
hand side is the derivative of the familiar mechanical angular momentum vector:

%(WH‘X’U):QI'X(E‘F’UXB) (2.30)

On the right-hand side, only the component parallel to the axis can be represented as a total
derivative, and we therefore confine our attention to the evaluation of this component.

In view of the assumed symmetry, we may anticipate that cylindrical coordinates (z, r, ©)
will be most appropriate, the z-axis coinciding with the optic axis. The axial component of
Eq. (2.30) then becomes

% (mr*¢) = Qr{E, + (v X B),} = Qr(E, + B, — i‘B) (2.31)
In order to transform the expression on the right-hand side into a total derivative with
respect to time, it is necessary to introduce the magnetic flux function W(z, r, t). This is
defined as the magnetic flux through a coaxial circular disc C, located in a plane z = const
and of radius r. The coordinates (z, r, ) specify the instantaneous position of the charged
particle on its trajectory. This is illustrated in Fig. 2.1.
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Trajectory

\/

Z—»

Figure 2.1
Trajectory of a charged particle; a coaxial circular disc C is associated with an arbitrary point P
with coordinates (z, r, ¢; t). This circle travels along the axis and its radius varies as the point P
moves along the trajectory.

This function ¥(z, r, 1) is easily evaluated by expressing the surface element
da = da i, = 27r'dr'i, in cylindrical coordinates, giving
r

U(z,r,t)= J B-da = 27TJ ¥'B,(z, ¥, 0)dr (2.32)
c 0

Differentiation with respect to r gives immediately

1 ov
B.z,r,)= 5 == (2.33)
Using the condition div B = 0, the second representation
1 ov
B.(z,r,t)= — —— 2.34
@r.1) 27r 07 (2.34)

can be derived (see Section 6.4). Finally the integral induction law ¢ E-dr = — oW /o,
applied to the circumference of the disc C, results in

1 ov

E, = ——— 2.35
pGr) =5 (2.35)
Introducing Egs. (2.33), (2.34) and (2.35) into (2.31) we obtain:

d 2. Q (v ow ov Qdv

dt(’"“p> 277(81‘ “or r6r> 27 di (2.36)
Integration with respect to time leads to the conservation law for the axial angular
momentum:

2 .
Nz M Q oy ) = const (2.37)
V1-3 2w



24  Chapter 2

This expression differs from that familiar in classical mechanics by the presence of the
important second term, which contains the electromagnetic interaction in integral form. Its
physical origin and meaning appear very clearly on comparing Eq. (2.31) with (2.36). The
electric torque, QrE, is an induction effect in a fixed loop (specified by z and r). The
magnetic part of the torque, Qr(v X B),, is the corresponding induction effect in a loop
moving with the particle and is hence a consequence of the implicit variation of ¥ with
time: —Quv - V¥/27. This latter part remains nonzero even in static magnetic round lenses
where it forces the particle beam to rotate about the optic axis, a fact of great importance in
the physics of magnetic lenses.

In the vicinity of the optic axis, this rotation is of most interest and can be easily calculated.
In a sufficiently small paraxial domain, the magnetic field can be considered as radially
homogeneous; the magnetic flux is then ¥ = wrzB(z, 1), the function B(z, t) being the

axial flux density. Furthermore, we have 7> + r2¢? « z2. From Eq. (2.37), with m(z, 1) =
mo(1 — 22/¢?) "2, we then obtain

N = rz{m(z, N+ %QB(Z, t)}

We now confine our considerations to trajectories that intersect the optic axis at some point.
For such trajectories, N vanishes and we obtain

__0B(z,1)

O 2mlz0) (2-38)

This is the local and instantaneous value of the familiar Larmor frequency.

In the important case of electron trajectories in static round lenses, it is convenient to
represent the azimuth as a function of z. On the optic axis the relation

mz = \/ 2moedy(2)

is satisfied, ¢,(z) being the axial acceleration potential. Using d¢/dz = ¢/7 and integrating
with respect to z we find

so(z)=nj 30 A(BEYE + olz0) (2.39)

In Part IIT we shall show that the trajectory equations simplify considerably in a coordinate
system that is twisted round the optic axis by this local angle of rotation.
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The Lorentz equation (2.1) is generally valid but not always convenient. In very many
practical applications, expressions for the trajectories of the form r = r(¢) are of no interest;
it is their geometrical shape that is required. In devices in which the fields E and B depend
explicitly on the time, it is rarely possible to eliminate the latter from the trajectory
equation. We therefore confine the following discussion to systems with static fields. In
order to avoid repetition, we shall give here only those forms of the trajectory equations
that cannot (or at least, only with greater difficulty) be derived from variational principles
but are yet of practical importance.

3.1 Parametric Representation in Terms of the Arc-Length

The differential arc-length is given by ds = |drl = vdt. The transformation of the
differential operator is hence given by d/dt = vd/ds. Introducing this into Eq. (2.1) and
noting that v/v = dr/ds, we obtain

dg OQFE

% _Y° 109 «B

ds v Q ds
It is now of great importance that v and g = mv are unique functions of r, as explained in
Chapter 2, Relativistic Kinematics. Thus the time is already eliminated. By means of
Eq. (2.23), the electric field vector can also be eliminated, giving

d dr dar
T {g(r)a} = grad g(r) + Qa X B(r) 3.1

In the absence of the magnetic term, this trajectory equation is even valid for the
propagation of light in matter provided that the geometric approximation is adequate (see
Born and Wolf, 1959 (3.2.2); Kasper, 1972). In this case the kinetic momentum is given by
g = hkon(r, ky), ko being the mean wave number (27/wavelength) in the vacuum and n(r, kg)
the corresponding index of refraction in the material; # = h/2w where h is Planck’s constant.
Hence Eq. (3.1) is a very general trajectory equation.

Principles of Electron Optics: Basic Geometrical Optics.
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Some useful relations can be derived from Eq. (3.1) by calculating its components with
respect to the orthonormal basis vectors

dr dt
= — = — = X
t 7 n=R R b=tXn (3.2)

the local tangent, principal normal and binormal respectively, R being the (positive) radius
of curvature. Scalar multiplication of Eq. (3.1) with each of these unit vectors in turn, using
dg/ds =t - grad g and some elementary vector operations, yields:

I%=n'grad g—0b-B=Q(mnE/v—>b'B) (3.3)

O=b-grad g+0OnB=Qb-E/v+n-B) (3.4

In a purely magnetic field (E = 0), Eq. (3.4) shows that the vector n is always orthogonal
to B. From Eq. (3.3) the (absolute) curvature is found to be

L2y p-liorxp (3.5)
R 8 8

For electrons the curvature can be rewritten with the aid of the formulae of Section 2.3 as

Ui

A

|t X B| (3.6)

x|~

=

where U := & is now a constant acceleration potential. Eq. (3.1) then simplifies to:

2
L (3.7)

ds? \/E ds

For the circular motion of charged particles in a homogeneous magnetic field, the familiar
relation

BR=g|0| ! (3.72)

is a simple consequence of Eq. (3.5). This ‘BR-product’ is of importance in the design of
spectrometers and analysers (see Part X).

In a purely electrostatic field the binormal b is always orthogonal to E, and Eq. (3.3) can
then be rewritten in the familiar self-evident form

m’U2

T =|QE,| = QIt X E| (3.8)
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The dependence of the left-hand side on the acceleration potential can be obtained by use
of the kinematic functions, given in Section 2.3.

3.2 Relativistic Proper-Time Representation

The arc-length is a highly unsuitable trajectory parameter for numerical trajectory
computations in electron guns and mirrors, since the radius of curvature varies over an
extremely wide range of values. This implies that the integration step length As must also
vary considerably. The time would be a much better parameter but has the disadvantage
that the range of values is now too small. Other parameterizations such as that of Kel’man
et al. (1972, 1973a,b) are of specific interest for mirrors. These will be dealt with in
Chapter 18, Electron Mirrors.

A favourable parameter, which exhibits none of the disadvantages mentioned above and is
very advantageous, particularly in the numerical investigation of electron guns, is defined
by (Kasper, 1985):

dr=u\/1 — (*dt = udt/y=udt (u= const) (3.9)

dt' being the relativistic proper-time element, observable in the frame of reference of the
electron. The observable nature of the proper-time element is, of course, purely abstract, but
the trajectory equation can be slightly simplified by introducing Eq. (3.9). A particularly
suitable choice of the constant factor u is

%e .
uz,/m—eU=2nﬁ (3.10)
0

the second constant U being the relativistic acceleration potential at some suitably chosen
fixed point of reference. From Eqs. (3.9) and (3.10), it is obvious that # has the dimensions
of a speed and thus dr that of a length, though dr is proportional in magnitude to dr'.

Eq. (3.1) can now be straightforwardly transformed by means of the operator relation
1 d d
- = _,=
V1 —prde ar

The kinematic momentum is given by
d A/ di
g=mou—r =(2m0eU)1/2—r 3.11)
dr dr

which is already a simplification, since the factor before the derivative is now a constant,
rather than a complicated function. Multiplying by the factor v = (1 — 5%~ "? and using the
relations given above, the Lorentz equation (2.1) for electrons (Q = —e) now transforms into
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d*r dr
2

Cr ey E+eBX
ot dar? €T ¢ dr

The electric term is eliminated by means of Eq. (2.23). Using Eq. (3.10) we obtain finally

dPr 1 7 d
r = Egrad<%> + LAB(r) x & (3.12)

dr? \/E dr

The normalization constant U can be set arbitrarily to any positive value. In devices having
an asymptotically field-free domain, we may choose any reference point R located in this
domain: U = @(RO). This implies that d7 = ds in that domain. In an electron microscope a
good choice for the reference point R is the centre of the recording screen. Then QA5(R0) is
usually the maximum of @. Without loss of generality, the starting point of each electron
trajectory at the cathode surface may be the point with 7 = 0. The final value of 7 is then
slightly longer than the length L of the device, roughly 7,.x ~1.5L. There is thus no need
for any special precautions to avoid inconvenient scales.

The conservation laws for energy and axial angular momentum can also be represented in a
very convenient form. By scalar multiplication of Eq. (3.12) with dr/dt and integration with
respect to 7 we find

dr

> B(r)
dr 7

3.13
O (3.13)

With the conventions adopted in Section 2.3, the constant of integration must be zero.

For motion in static fields, Eq. (2.37) can be simplified with the aid of kinematic functions,
the result being

—_— = x _— =
dr ar Ydr VO
These conservation laws are useful as additional checks of the accuracy in numerical

computations. In practice, the evaluation of Eq. (3.12) has proved to be the most successful
method of calculating Lorentz trajectories.

(3.14)

= e 27

ade _ v dv <g+wz,r>>

3.3 The Cartesian Representation

The various representations of the trajectory equation derived hitherto are suitable for
calculating individual trajectories from given initial conditions but they are not at all
suitable for developing a systematic theory of focusing and aberrations. For this, a Cartesian
representation x = x(z), y = y(z) is preferable. Such a formalism is possible if the electron
optical device in question has a straight optic axis, if @ >20 eV and if the slopes x'(z), ¥'(z)
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of all trajectories remain finite. The last two conditions are not satisfied in electron guns
and mirrors and any entirely satisfactory theory of the aberrations in these devices must
take this into account.

In what follows, we shall use the explicit Cartesian representation Eq. (2.27) with x = x(2),
y = ¥(2). Differentiation with respect to z will be denoted by a prime, thus

pH(z) = r'(2) = X (2ix + Y (2)iy +i; (3.15)

Since lt| = 1, the absolute value of r’ is:

p=1Ir)=\1+x2+y? (3.16)

1

This function has a very simple geometric meaning: p~ =t-i, = cos a, « being the angle

between the local tangent and the optic axis. This holds even for skew trajectories.

The required Cartesian representation of the trajectory equation is most easily obtained by
substituting
d dzd 1d

ds dsdz pdz
in Eq. (3.1), giving

1d d
—— (gr) =grad g + Qr’ X B
pdz \ pdz P

Expanding the derivative on the left-hand side yields

" d
%W+i—(§>=gwg+9/x3 (3.17)
p pdz \ p P
These are three scalar differential equations for the two functions x(z), y(z); the third

equation

1
_£(§>=%+Qévy3) (3.18)
pdz \ p oz p

is therefore dependent on the first two and may be omitted. In fact, it is possible to derive
the x- and y-components of Eq. (3.17) directly from a two-dimensional variational principle
but not Eq. (3.18). Here we shall use Eq. (3.18) to simplify Eq. (3.17) by eliminating the
second term. Multiplying Eq. (3.18) by r" and subtracting the result from Eq. (3.17), we find
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0
gr”—gradg—r g+g{r’><B—iZ-(r/><B)r’}
p 0z 1%

The third component of this is a trivial identity. The two components of interest are given

explicitly by
2
x’/=p—<a—g—x ) Qp{ '(B, +x'B,) — By(1+x/2)}
8

g \ Ox 0z

,_ P[0 Q ‘

¥ :P<g_y ) '0{ —/'(B, +yBy)+Bx(l+y2)}
g \ Oy 0z

The magnetic terms can be rewritten in a more compact form by introducing the tangential
component of B:

1
B, =t'B= —(B, +xX'B, +y'B,)) (3.19)
P
and we finally obtain
2
x'= p_ % —x’a—g + or (y'B; — pBy)
g ox 0z g
3.20
y_ P ag_ 08\ _ 00 20
y'== (x'B, — pBy)
s\ & g

These trajectory equations are valid for all charged particles, provided that the conditions
mentioned above are satisfied. With Q = 0 and g = fikgn(r), they are even valid for light
rays, n(r) being the optical index of refraction. The vacuum momentum 7k, cancels out and
we obtain the ray equations

2 2
L_ P an\ ., _p (o on

— — , = — 3.21
YT <8x ¥ 6z> Y n (8)7 = ©-21)

For electron trajectories, Eqgs. (2.19) and (2.17) may be used, whereupon Eq. (3.20) become

x//:_<543 545) np? '5)
Ox 0z Vé IR
. (3.22)
) (5515_ /@> " B, - x'B,)
P\ T Vo o

These trajectory equations are equally well suited for the numerical computation of
individual trajectories and for the development of a systematic theory of focusing and
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aberrations. It must be emphasized that only the existence of a straight optic axis is
required, not rotational symmetry about this axis. Thus not only can round lenses be
considered here, but also stigmators, systems of multipole lenses and deflection units such
as saddle coils.

3.4 Scaling Rules

A number of simple scaling rules can be derived for trajectories in static fields. Since the
time-dependent form of the trajectories is now of no interest, we confine the discussion to
the time-independent form. Scale changes are most easily performed on Eq. (3.1). We shall
consider only two very important special cases.

For purely electrostatic fields, Eq. (3.1) becomes linear in g(r), which means that Eq. (3.1)
is unaffected by a scale transform g(r) = gog*(r) of the kinematic momentum. Any
experimental change of scales, however, is made by alteration of the electrode potentials
and this affects the kinematic momentum only indirectly. From Eq. (2.13), it is obvious that
a simple rule can only be expected in the nonrelativistic case |[Ey, — QP(r)l « mocz. Since
the initial energy E, is not constant in a particle beam, a unique change of scale common to
all the particles is only possible if £y « 1Q®I. For electrons and negatively charged ions,
Eq. (2.13) then simplifies to:

g(r)=+/2my|Q|D(r), =0 (3.23)

which is only valid sufficiently far from the cathode. In these circumstances, a linear scale
transform @(r) = Uy®*(r) of the potential is equivalent to such a transform of the kinematic
momentum, the relation between the scaling factors being given by go = U,"*. Introducing
Eq. (3.23) into (3.1), the factor (2m0IQI)” 2 is seen to cancel; the trajectory equation then
simplifies to

% (\ /D(r) % > = grady/®(r) (3.24)

which can be rewritten as

2
2¢(r)ZT; = {g X V@(r)} X % (3.25)
Here the relation d®/ds = (dr/ds) - V® has been used. This trajectory equation is linear

in @(r). A linear scale change ¢ = Uy®* can be performed most easily by alteration of

all the electrode potentials by the same factor, the cathode being ¢* = 0. From Eq. (3.25)

it is obvious that the geometric shape of the trajectories depends neither on Q and m nor
on the scale factor U,. These constants affect only the time of propagation, which is of
little interest.
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These conclusions are together known as the electrostatic principle, which also holds for
positively charged particles, provided that @(r) is replaced by |9(r)l and @(r) = 0 is now the
emitting anode surface. In practice, a consequence of this principle is that an electrostatic
microscope can be operated with different kinds of particles and fixed ratios of the voltage
differences between the acceleration electrodes and the source.

The consequences of a geometric scale change can also be derived from Eq. (3.25). A
transform

r=ar*, s=as*, O*r")=2>(r)/U (3.26)

does not affect the geometric shape of the trajectories, since Eq. (3.25) is invariant with
respect to Eq. (3.26). The magnitude of the trajectories is proportional to the distances
between the electrodes if the shape of the field is unaltered.

In purely magnetostatic devices the solutions of the trajectory equations depend on Q/my,.
We shall confine our considerations to electron motion; we must then investigate the effect
of scale changes on Eq. (3.7). The constant U will now be the relativistic acceleration
potential. Introducing the scale transforms

r=ar*, s=as*, U=U,U", B(r)=BoB* " (3.27)

into Eq. (3.7) we find that this trajectory equation remains invariant if the condition

aBy =1/ Uy (3.28)

is satisfied. This can be put into a more practical form by introducing scales for the field-
producing currents. The magnetic field strength B is related to the electric current / by an
expression of the form B = ul/l, [ being some typical length and i a permeability. An
appropriate scale transform is now given by

B= BoB*, 1= I()I*, = al*, aB() = I() (329)
which must be compatible with Eq. (3.27). Eq. (3.28) now simplifies to
13 =U, (3.30)

This simple scaling rule is of great help in the practical design of magnetic lenses.
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All our analysis has so far been based on the Lorentz equation (2.1). This equation is,
however, identical with the Euler—Lagrange equations of Hamilton’s variational principle
which may hence be regarded as more fundamental. This principle may be stated thus:

1
W = J L(r, v, t)dt = extr. 4.1)
To

where ‘extr.” denotes an extremum or at least a stationary value. The necessary constraints
are that g, t;, r(#p) and r(¢;) remain fixed and that the variable of integration must not be
varied: 6t = 0.

4.1 The Lagrange Formalism

In charged particle dynamics the integrand L, the Lagrangian, takes the form

L=m0c2(l—\/l—ﬁz> +Q(v-A — D) 4.2)

D(r, 1) and A(r, t) being the electromagnetic potentials (e.g., Goldstein, 1959; Goldstein
et al., 2001). These are related to the field vectors E and B by

B(r,t) = curl A(r,t) 4.3)
E(r,t)= — grad &(r,t) — %A(r, 1) “4.4)

These relations do not provide a unique definition of the potentials; in other words, the
same field vectors E and B may be obtained from different sets of potentials. The
consequences of adopting different gauges for ¢ and A are discussed in Section 5.5. Since
only E and B have physical significance, but not ¢ and A, the results of all calculations
should be presented in a gauge-invariant form.

It is convenient to rewrite the Lagrangian, L (Eq. 4.2), as L = T* — V* with
T*(v) = moc*(1 — /1 — 5°) (4.5)
Principles of Electron Optics: Basic Geometrical Optics.
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V*(r,v,1) = QP(r,t) — Qu-A(r, 1) (4.6)

since this closely resembles the familiar classical form L =T — V. The function T*(v),
known as the kinetic potential, is closely related to the kinetic energy T, by T* = T(1 — %)'2
(see Eq. 2.7). The function V* is a generalization of the familiar potential energy V Eq. (2.8),
since it is now velocity-dependent.

Since there are no geometric constraints in charged particle dynamics, we adopt Cartesian
coordinates. The Euler—Lagrange equations

d ([ OL oL
— = )]—-—==0 (=1,2,3
7 ( ax,) o (G=123) (4.72)
are obviously equivalent to
d [oT* d (ov* ov*
— = — — (4.7b)
dt a’Uj dt an 6)Cj

Performing the differentiations on the left-hand side, we first obtain

art _ _mov  _ (V) (4.8)

dv 1/1_52
But 0v/0v; = v;/v and so
@_dT*@v_ mov; .
ovi  dvoy  \J1-32 & J

This result is obviously the Cartesian representation of the well-known expression for the
kinematic momentum. By using Eq. (2.29) with # = v, the kinematic momentum can be
rewritten as
oT* myv
gW)=——= ——x (4.9)

ov w/l—ﬂz

and (4.7b) as

d [oVF\ oV*
g‘E(av>_ a —F (+-10)

We now evaluate the expression F on the right-hand side:

ov* ov*
= —0A. 2
ov A, dr

0
=QVe -0 (v-A)
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and thus
dA 0
F = —— —Vo+ —(v-A
Q( dt o )>
The total derivative dA/dt is given by

A i 2a=% 1 vn

d
—A(r(t),1) = — + X% —
a0 =Fr T4 A=

We now make use of the vector identity
v X curl A(r) =grad v-A(r) — (v-V)A(r)

valid for any constant v and any vector function A(r). (This may easily be verified by
writing the terms out in Cartesian coordinates or, more simply still, by introducing tensor
notation.) Recalling that v is to be treated as a constant in differentiations with respect to r,
we find

A
F=Q<—V¢—(z—t + v X curl A>

Substituting for E and B from Eqs. (4.4) and (4.3), we obtain finally

F = d(@V*)_@V* = O(E + v X B) (4.11)

~dt\ ov or

which means that the Lorentz force is the functional derivative of the generalized potential
V* given by Eq. (4.6). Eq. (4.10) in combination with Eq. (4.11) is identical with Eq. (2.1).

This calculation is only slightly longer than the usual derivation of the Lorentz equation by
direct evaluation of Eq. (4.7a) without making the separation L = 7" — V*, but it brings out
clearly the physical meaning of the various expressions since it uses as few gauge-
dependent quantities as possible. The direct evaluation of Eq. (4.7a) leads, as a first step, to
the definition of the canonical momentum

oL
=—, j=1,2,3
or, in vector notation and using Eq. (4.2)

p= 6_L =g+ QA(r,1) (4.12)
ov

Though familiar and frequently used in theoretical physics, this quantity has no physical
meaning as an observable, since it is gauge-dependent.

A great advantage of the variational calculus is the fact that the value of the integral
appearing in Eq. (4.1) is invariant with respect to transformations of the coordinates and of
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the variable of integration. Since it is usually easier to perform these transformations on the
Lagrangian than on the corresponding Lorentz equation, new forms of trajectory equations
can be derived straightforwardly. Not every useful form can be obtained in this way,
however. For instance, it is impossible to derive Eq. (3.1) as Euler—Lagrange equations,
since the arc-length does not satisfy the necessary constraints and is thus not a permissible
variable of integration in the action integral W. An excellent example of the beneficial use
of coordinate transformations is given below.

4.2 General Rotationally Symmetric Systems

We assume that the system in question is rotationally symmetric about an optic axis and we
introduce the corresponding cylindrical coordinates. The components of E and B must not
depend on the azimuth ¢, and it may be assumed that the same is true of A, A,, A, and .
In cylindrical coordinates, the Lagrangian Eq. (4.2) is given explicitly by

1/2
L= myc? [1 - {1—(z'z+f2+r2(p2)6‘2} ] + O0CGA, +7A, +rpA, — D) (4.13)

A, A, A, and @ being functions of z, r and 7 only. Hence L does not depend explicitly on
, which means that ¢ is a cyclic variable. The corresponding canonical momentum is
therefore a constant of motion

Py =0L/0p = const
or
7m0r2§0 + QrA,(z,r,t) = const
p = TA, Z, r’ =
P /1 — /62 ¥
Integrating Eq. (4.3) over the circular disk C introduced in Section 2.5 and using Stokes’s
theorem we find

%A-dr=27rrAO=J B-da=¥(z,r,1)
C

Thus the constant p, is identical with the axial angular momentum N of Eq. (2.37). More
suggestively, we can use Eq. (4.12) to represent the axial angular momentum as

N =(rXp), (4.14)

but this does not mean that p has become an observable quantity, even though we can
measure N. We note that although the rotationally symmetric gauge adopted for the
potentials is most convenient, it is not absolutely necessary. If some other (unsymmetric)
gauge were used, Eq. (4.14) would not hold, whereas Eq. (2.37) always remains valid.
Moreover, the derivation of the conservation law given in Section 2.5 gives more physical
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insight than does the formalism presented here. The evaluation of the remaining two

Lagrange equations
d (oL oL d (oL oL
E(a#>_ar_0’ E(az'>_az (415)

is straightforward. Expressing Eqs. (4.3) and (4.4) in cylindrical coordinates, we find

%(mf) —mipt = Q(E, + rpB. = 2By)
J (4.16)
” (mz) = Q(E, — r¢B, + iB,)

-1/2

m= e = mo{ 1=+ P22 4.17)
V1-5

The remaining calculations are left to the reader. The same results can, of course, be

obtained by transforming the Lorentz equation in the appropriate fashion.

The conservation law p, = N = const may be used to eliminate ¢ from Eq. (4.16). Better
still, ¢ may be eliminated from Eq. (4.13) before evaluating Eq. (4.15). Owing to the
dependence of the mass on ¢ in Eq. (4.17), the resulting formulae are highly complicated.
It is thus advantageous to eliminate ¢ from Eq. (4.13) only in the nonrelativistic
approximation m = mg,. Moreover, we make the simplifying assumption that all the terms in
B, can be neglected, since this field component is only produced by the particle beam itself
and is always very weak in comparison with the external magnetic field. B, = 0 is most
easily satisfied by the gauge A, = A, = 0, which will henceforward be adopted. From

Eq. (4.4), we see that E, and E, are now represented by a quasistationary approximation:

oP oP
EZ=__ Er=_5 Wlth qszé(znrvt)

a simplification that is justified even in technical applications involving high-frequency
devices. The essential induction effect is incorporated in the components £, and A, and
thus in the dependence of & on time.

With all these simplifications the Lagrangian now becomes
1
- Emo(z'z + 7+ 7Y + Q(rpA, — D) (4.18)

Solving Eq. (2.37) for ¢ in the nonrelativistic limit, we obtain

. N—=0Q¥(zr,121
Y= 5
moyr

(4.19)
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On inserting this in Eq. (4.18) we obtain a Lagrangian that is a function of z, r, ¢, Z and 7
only but is a very cumbersome expression. We can get a more compact form by making the
Legendre transform

L*=L—¢p,=L—¢N (4.20)

before substituting for ¢. This transform does not change the final equations of motion
since the corresponding action integrals differ from each other only by a fixed constant and
have thus the same extremal trajectories:

1 1

Ip Ip

Substitution of Eq. (4.19) in L* now results in
L= %(z2 +i%) = X(z, 1, 1) 4.21)
with the effective potential energy

(N-QU(z,r,0/27)"

2mgr?

X(z,r, 1) = QD(z,r,1) + (4.22)
The latter contains two contributions, the familiar electric term Q@ and a centrifugal
potential. The latter contains the terms involving ¢ and has the value mqr*@%/2. It differs
from the familiar classical form in possessing a contribution from the magnetic flux ¥. The
final form of the trajectory equations is now obtained by writing down the Euler—Lagrange
equation of Eq. (4.21) (Stormer, 1904, 1906a—d, 1933):
oX oX
F=——, i=—— 4.23

moi RO e (4.23)
The third equation is Eq. (4.19), which can be rewritten in compact form if the quantity N,
though constant with respect to time, is regarded as a free parameter. It is readily seen that

o _ X
oN  ON

p= (4.24)

In this sense L* is a Routhian function.

In static fields, for which X is a function of z and r only, the law of conservation of energy
can be simplified to

E, = ?(Z-z + %) + X(z, r) = const (4.25)

as can be easily verified.
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This example demonstrates that the use of the Lagrange formalism in electron optics can be
quite advantageous, since the elementary derivation of Eq. (4.23) turns out to be more
complicated if the electromagnetic fields are time-dependent. These equations are very
useful in studies of particle motion in high-frequency devices, for which alternative simple
forms of the trajectory equations are not available.

4.3 The Canonical Formalism

As well as the Lagrangian, the Hamiltonian function is of great importance. The latter is
needed in Hamilton—Jacobi theory, which is outlined in Chapter 5, Hamiltonian Optics; the
Hamiltonian itself and the associated canonical equations of motion are needed in the
theory of electron emission from cathodes (see Chapter 44 of Volume 2).

In vector notation, the Legendre transform between the Lagrange function L(r, v, ¢) and the
Hamilton function H(r, p, t) has the form

H(r,p,t) =p-v—L(r,u,t) (4.26)
in which the velocity v has to be expressed in terms of the canonical momentum p. This
expression is obtained by solving Eq. (4.12) for v, the first step being

1 1
v=—g=—(p—QA)
m m

The relativistic mass can be expressed as a function of p with the aid of Eq. (2.11) and we
finally obtain

S Y (4.27)
\ (mocy + (p—QAY

Introducing this into Eq. (4.26), we obtain the Hamilton function

H= C\/ (mocY + (p— QAY — moc® + QP (4.28)

This expression is always valid, even in systems with time-dependent electromagnetic
potentials. The canonical equations of motion are given by

v=i=2 (4.29)
ap
H

p=— 0 (4.30)

or
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Egs. (4.29) and (4.30) can easily be verified by performing the necessary differentiations.
Eq. (4.29) proves to be identical with (4.27), while (4.30) is equivalent to the Lagrange
equation p = 0L/dr. More generally, the canonical equations can be derived from a
variational principle of least action in phase space (defined as the union of the vector
spaces of r and p). This variational principle will not be investigated here.

An important law can be established concerning the variation of the Hamiltonian with time.
Taking the total derivative with respect to time of both sides of Eq. (4.26) we have first

dH _0H . 0H _. OH _ . oL . oL . oL

=" 4 + . . e et
a o o Py a o v
Using the canonical equations (4.29) and (4.30), the first part of this equation reduces to
dH/dt = OH/0t. Definition (4.12) together with the Lagrange equation shows that the
expression on the far right-hand side reduces to —0L/0¢, thus
dH _O0H _ 0oL

o ot @30

The most important consequence of this relation is that the value of H is conserved in all
systems with static electromagnetic fields, since the only explicit dependence of H and L on
time occurs in the potentials &(r, 1) and A(r, t). By comparison of Eq. (4.28) with

Egs. (2.6), (2.7), (2.8) and (2.11), it can be seen that the first two terms on the right-hand
side represent the kinetic energy 7 as a function of p and r, while the last term Q@ is the
potential energy V(r), so that H is the same as the total energy E, of the motion. According
to the conventions adopted in Section 2.3, this quantity H = E is the kinetic starting energy
of the electron at the cathode surface; it thus has a very concrete and important meaning,
since this quantity will be used in the statistical analysis of the emission process.

4.4 The Time-Independent Form of the Variational Principle

Since the value of H is conserved in all static systems, we can cast the variational principle
Eq. (4.1) into a very attractive form by eliminating L. Solving Eq. (4.26) for L and
introducing the resulting expression into Eq. (4.1), we find

1

W= J (p-v — H)dt = extr.
)

In all static systems, the contribution

1
J H dt :E()(ll — l’o)

fo
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is a fixed constant, which does not affect the equation of motion and may hence be omitted.
We thus obtain the (reduced) principle of least action:

4l
S = J p-udt=W + Ey(t; — tp) = extr. (4.32)

To

Elimination of the time and the introduction of any other legitimate variable of integration
u is now straightforward:

_ uo Tl
S= J p-d—:du= J p-dr = extr. (4.33)

1Z0) ro

The second representation shows that S is invariant with respect to the choice of the
parameter.

In systems with a straight optic axis, apart from mirrors, the axial coordinate z is always
the most convenient choice of variable of integration. Using Eqs. (4.12) and (3.15) we
obtain

S= J 1(g + QA)r(z)dz (4.33a)

20

Since the direction of the kinematic momentum vector g must be the same as that of the
local tangent ¢, we may use

g r =grtr = pgr)

where p is given by Eq. (3.16). Bringing all this together and writing out the expression for
S explicitly, we obtain finally

21
S= J M(x,y,z,%,y) dz (4.34)

<0

with
M(x,y,z,x,y) = /1 +x2+y%g(r) + QXA + YAy + A,) (4.35)

For electron motion, Eq. (2.19) may be used. The corresponding Euler equations

d (Y _an 4 (oo
dz \ ox' ox 7 odz\oy) oy (4.36)

are the x- and y-components of Eq. (3.17) and will not be discussed here. An important way
of developing a theory of aberrations consists in expanding Eq. (4.35) as a Taylor series

before evaluating Eq. (4.36) and then developing an appropriate perturbation calculus.
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4.5 Static Rotationally Symmetric Systems

A good example of the simplification achieved by eliminating the time as a trajectory
parameter is the static rotationally symmetric system. Moreover, the Stormer equation of
motion thus obtained is of some importance. It is advantageous to transform Eq. (4.35)
into cylindrical coordinates. In static systems, the only surviving component of A is

A, =W(z, n/2nr, ¥ being the magnetic flux. Thus we immediately obtain

M(z,r, 1, @) =gz, W1+ 1% +r¢? + 0W(z,r) /27

Since ¢ is cyclic, the conservation of axial angular momentum is now expressed by

oM 2y 4
N=py=—-—= 8@y 72 + vz, 1) = const (4.37)
(1+7r2+7r2p?) 2w

On comparison with Eq. (2.37), it is clear that the value of N is invariant with respect to
the parametric transform. Every canonical momentum can be shown to be invariant with
respect to every parametric transform in variational theory.

Even for relativistic motion, it is easy to eliminate ¢’ by solving Eq. (4.37) for ¢/, the result
being

iTE,
= m{N QU(z,r)/2m} (4.38)

with
5 5 1/2
Wz r) = {g (r)—r (N—Q¢/27r)2} (4.39)
Elementary calculations show that

p=+\1+r2+r2p? =g, r);flvl + 72

The integrand of Eq. (4.34) can be simplified by means of the Legendre transform
M* =M — ¢'N (cf. 4.20), the result being

M*(z,r,r)=~1+r?u(z,r)

Evaluation of the Euler equation

i oM*\  oM*
or

yields

d Y i J—au
| —L )| = 1+ 2 17
dZ(«/—1+r’2> " or
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which can be further simplified to the Stormer equation

1+ r7?
r//(z) — r (6_M _ ’,,/a_'u> (440)

w(z,r) \ or 0z

This trajectory equation is similar in structure to Eq. (3.21) and to the electric terms of
Eq. (3.20). The function pu(z, r) is the length of the meridional projection of g, since

Eq. (4.39) can be rewritten as u = li_g. + i,g,|. When considering the motion of electrons,
it is helpful to introduce the acceleration potential by means of Eq. (2.19). We find

1+ (0D @
pr= ! <a_ —r/a—> (4.41)
2&(z,r) \ Or 0z
with the effective potential
2
i ) N+eW(z,r)/2
8o, ) = (e, r) - N1/ 27) (4.42)

2mper?
the second term being again a centrifugal contribution.

On comparing these equations with the corresponding formulae in Section 4.2, the reader
will notice that no approximations have been necessary here and the exact calculation has
not become at all complicated. The essential simplification is a consequence of the fact
that, in the time-independent representation, the relativistic mass is a simple function
m(z, r); the need to use Eq. (4.17) in the time-dependent situation highly complicates the
calculations.
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In Chapter 4, Variational Principles, we investigated the various types of variational
principles and showed how they can be made to yield suitable forms of trajectory equations.
These trajectory equations are to be solved by methods that are explained in later chapters
and the solutions will provide us with a certain measure of physical understanding. Though
this is a possible way of investigating electron optical devices, it is not entirely satisfactory.
In geometric light optics, Hamilton’s theory of characteristic functions, in which the rays

of light are treated as trajectories orthogonal to eikonal or characteristic functions, was a
major advance, making it possible to investigate whole bundles of trajectories instead of
individual ones. This is the main difference between optical and purely mechanical or
ballistic treatments.

In charged particle optics, the analogue of the eikonal theory is well-known under the
name of Hamilton—Jacobi theory, which we shall now consider in detail. In the standard
textbooks on classical mechanics, this theory is derived by means of canonical
transformations, which is a very general but undeniably elaborate method (see e.g.,
Goldstein, 1959, Chapter 8; Goldstein et al. 2011). We shall not follow their example. The
presentation that follows is considerably simpler. The scholarly text of Radlicka (2008)
compares and contrasts the Hamiltonian, Lie and eikonal theories together with discussion
of differential algebra.

5.1 Introduction of the Characteristic Function

We again set out from Eq. (4.1). For given boundary values, ¢, and #;, of ¢ and hence of

the vectors ry := r(tp) and r; := r(t;), a function W(ry, to; ry, t;) can be defined to be the
stationary value of Eq. (4.1), obtained by integration over a physical trajectory, a solution
of the corresponding Euler equations. This definition may be complicated by the presence
of singularities and ambiguities, which will be investigated later. For the moment, we shall
assume that the value of the integral expression is a unique and differentiable function of its
arguments. We shall see that it is appropriate to regard this function W as a characteristic of
the system and we shall indeed refer to it as a characteristic function.

We now consider differential variations of the endpoint, the starting point being
unaltered. In order to distinguish these variations from the notation used for integration,
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we denote them by Af; and Ary rather than df and dr. Since the curves connecting the
fixed starting point and shifted endpoint must correspond to physical trajectories, the
condition

Ar; = ’U(l])Al‘] =v;Af

must be satisfied. The corresponding variation of W is then given by
AW = L At; = L(ry, vy, t;)At. The Lagrangian L, can be expressed in terms of the
Hamiltonian H, at the terminal point 1, the result being

AW =(p,-v1 —H)AH =p,-Ar; — H{ A (5.1)
On the other hand we can expand the difference
AW =W (ro, to; r1 + Ary, 1y + Aty) — W (ro, to; r1,1)
as a Taylor series. Retaining only the first order terms, we obtain

AW = Ary- ZTV[: + A (ji—tvf 5.2)
The two expressions for AW must be identical for all increments A¢; and Ar; that
represent a physical motion. Certainly we can choose arbitrary values of Af; provided
that a continuous range of values leads from ¢, to #; + At,. It is now of importance that
Eq. (5.1) must be identical with Eq. (5.2) in every respect, that is, for all
acceptable configurations of rg, ty, r; and ¢;. This implies that Ar; must be regarded as
independent of Aty, even though r; = v;At;; the velocity v; may be an arbitrary vector
only subject to lv;l < c. From Eqs (5.1) and (5.2), we then obtain the necessary and
sufficient conditions

oW ow

=—, H = 5.3
6r]’ ! ( )

D _6—t1

By considering variations of the starting point, we likewise find

oW _ow

hlad = 5.4
e 0= 3 (5.4)

Po =

Thus the variation AW due to alterations of both sets of arguments is given by Hamilton’s
central equation:

1

AW = [p- Ar—HAI| = py- Ari —py-Aro — Hidiy + HoAto (5.5)
Since W is a continuously differentiable function of its arguments, Eq. (5.5) must hold even
for completely arbitrary differential increments.
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5.2 The Hamilton—Jacobi Equation

In the following discussion, we shall assume that the starting coordinates rg, ty are uniquely
specified and remain unaltered, while the terminal coordinates r{, f; may vary within
physically allowed domains. In order to simplify the notation, we shall omit the arguments
ro and ¢, whenever they are not explicitly needed. Furthermore, we shall omit the subscript
1 of the terminal coordinates, and the ordinary vector notation for the gradient will refer to
differentiation with respect to r;.

Introducing Eq. (5.3) into the Hamiltonian H(r, p, t), we immediately obtain the
Hamilton—Jacobi equation
ow

H(r, grad W, 1) = — 2 (5.6)

W now being a function of r and ¢. Recalling Eq. (4.28), (5.6) is given explicitly by

c{(mocf +(grad W— QAP }'* — moc® + 0@ + 86—‘:/ =0 (5.7)
@ and A being functions of r and ¢, like W. This is a partial differential equation of first
order for the function W(r, ). Since only the derivatives of W appear in Eq. (5.7) and
not the function itself, the solution of Eq. (5.7) may contain an arbitrary additive
constant. A reasonable and simple normalization is W(ry, ty; ro, o) =0, since the
solution then fits the original definition of W, namely as the integral representation of
the action. From among the many solutions of (5.7), we shall select all those that satisfy
this condition. They correspond to the paths of all trajectories that start at the point rg
at the time f,.

Even after imposing this restriction on the set of solutions, the practical solution of

Eq. (5.7) will be extremely complicated in the general case; further simplification is
therefore necessary. In all systems with static potentials @(r), A(r), the separation (in full
notation)

W(ro, 2,7, 1) = S(ro,r) — Eo(t — to) (5.8)
is possible and advantageous, Eq. (5.7) then simplifying to
c{(moc)2 +(grad E—QA(;*))Z}I/2 — myc? + QP(r) = E, 5.9

The point characteristic function S(ro,r) introduced by this separation is exactly the same
as the function S appearing in the integral representations Eqs (4.32) and (4.33) if the
normalization condition for W is satisfied. Thus, instead of solving Eq. (5.9) directly with
S(ro,ro) =0, S may in practice be obtained by evaluating Eq. (4.33).
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Familiar though it is in theoretical physics, Eq. (5.9) is an inconvenient form of the reduced
Hamilton—Jacobi equation. By means of Eq. (2.13) we can simplify it to

{grad S(r)— 0A("}* = ¢*(r) (5.10)

which is still exact. In the case of electron propagation, we can rewrite it as
{grad S(r)+ eA(r)}2 = 2moed(r) (5.11)

In all practical calculations we shall use this form. Despite this simplification, the practical
solution may still be very arduous.

5.3 The Analogy With Light Optics

Having formally introduced the characteristic function, we now discuss its physical
meaning. For simplicity, we first assume that the vector potential A(r) vanishes. In the static
case, the first equation in Eq. (5.3) then reduces to

pr) =g(r)= grad S(r) (5.12)

and Eq. (5.11) to

{grad 3'(r)}2 = {g(r)}2 =g’(r) = 2moeé5(r) (5.13)

the last term of this equation being valid for electrons. The physical meaning of Eqs (5.12)
and (5.13) is quite clear: Eq. (5.12) expresses the vector g = mv as a function of r, while
Eq. (5.13) is the condition that the length of this vector is in agreement with relativistic
kinematics. The truly new result, going beyond relativistic kinematics, is that the local
direction of the vector g is always orthogonal to the corresponding surface S(r) = const
(5.12). Since the vector g = g(r)t(r) always points in the same direction as the local tangent
t(r) of the trajectory in question, we can draw the following conclusion: the particle
trajectories are orthogonal to the set of surfaces S(r) = const.

This statement is illustrated in Fig. 5.1. The analogy with geometric light optics is now
complete. We may use the relation g = hikgn(r)t(r), t(r) being the local tangent vector of a
ray passing through the point r. The vacuum momentum 7k, cancels out if we introduce an
eikonal function L(r) by writing S(r) =: hikoL(r), and we obtain

n(r)t(r) = grad L(r) (5.14)
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S(fy,F) = const

Figure 5.1
Simplified representation of the point characteristic function S(ro,r) in an isotropic medium. The
point Py, with position vector ry, may be regarded as a point source, from which the various rays
emanate. A number of surfaces S = const are shown in a two-dimensional section. The value of S

at any arbitrary point P is equal to the variational integral along the trajectory from Py to P. The
local tangent t at P is orthogonal to the corresponding surface S = const.

{grad L(r)}2 =n*(r) (5.15)

Eq. (5.14) expresses Hamilton’s statement that light rays are the normals to a family of
surfaces L(r) = const known as wavefronts or eikonal surfaces (see e.g., Born and Wolf
(1959) Eq. (3.1.15b), where Eq. (5.15) is referred to as the eikonal equation, recalling the
work of Bruns (1895) on ‘Das Eikonal’). The eikonal itself is an optical length. Explicitly,
the point eikonal

Py
L(rg, 1) = J n(r)ds (5.16)

Py
is the optical length between the points Py and P, with position vectors ry and ry,
respectively. The integration is to be performed along a physical trajectory. According to
Fermat’s principle, this function takes the same value along all trajectories connecting Py
and P; that are continuously deformable into one another, and is stationary when evaluated
along a trajectory. For rotationally symmetric dioptric systems, this stationary value is a
true minimum (Sturrock, 1955, p. 60). This result is exactly analogous to Eq. (4.32).

It is possible and of potential interest to introduce an electron optical index of refraction
in such a way that Eqs (5.12) and (5.13) are in formal agreement with (5.14) and (5.15),
respectively. Since the index of refraction may be defined in light optics as the ratio of the
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momentum in the medium in question and in vacuo, we may similarly define the electron
optical index of refraction to be

_ g _ @Er)

ng(r) G 0

(5.17)

G= (Zmoelj)” 2 being some suitable constant momentum. We now have complete formal
agreement if we write S = GL instead of S = fikyL. There is, however, an important
difference between light optics and electron optics. With respect to the propagation of
light, the vacuum is the privileged medium of reference as it is the only medium free of
dispersion and absorption. In electron optics there is no privileged medium of reference, the
choice of the positive constant G being arbitrary; different choices are to be found in the
literature. A definition of an electron optical index of refraction such as Eq. (5.17) thus
offers no particular advantage and it seems more sensible to use Eqs (5.12) and (5.13) in
their original form, since the kinematic momentum has a direct experimental significance.

A more serious difference between light optics and electron optics is that, in the
nonrelativistic approximation, the condition Vz(an) = 0 is satisfied in all source-free
domains, whereas no such condition obtains in light optics. Although the index n(r) for
the refraction of light is a piecewise constant function in all the principal optical devices,
the free choice of the lens surfaces makes aberration correction possible. The fact that
Laplace’s equation must be satisfied is, however, such a strong restriction that some of the
aberrations in electron optical devices are rigorously incapable of correction (see Part IV).
The relativistic terms in Eq. (5.17) do not alter this situation.

5.4 The Influence of Vector Potentials

The analogy between light optics and electron optics breaks down completely when vector
potentials have to be considered. We then have

p(r) =g(r) + QA(r) = grad S(r) (5.18)

Since the vectors g and A are in general not parallel to each other and g has the direction of
the local tangent, p does not always point in this tangential direction. The rays of particles
are hence no longer orthogonal trajectories of surfaces S(r) = const. This is shown in

Fig. 5.2.

The principle of least action Eq. (4.33) can be rewritten as S = 0 or

T P,
S(ro,r1) = J p-dr= J u(r, t)ds = extr. (5.19)

o Py
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Surfaces
S = const

gondl —~
Oﬂ@,\,gr/a]éctow

eA

Particle ray
L S s s I

Figure 5.2
Influence of the vector potential A on the characteristic function S.

with

wr,t) =tp=g(r)+ Ot-A(r) (5.20)

w(r, ) = \/ 2moed(r) — et A(r) (5.21)

The meaning of this quantity is shown in Fig. 5.2. The generalization of Eq. (5.17) is now

and for electrons:

A

or) 1
ng(r,t) = 7 — 01/2

t-A(r) (5.22)

Expressions of this form or proportional to it are commonly encountered in the literature.
The square-root term is regarded as an isotropic contribution to the index of refraction,
while the vector potential term—owing to its dependence on £—is an anisotropic
contribution. It must be emphasized that all these considerations are of a purely formal
character and have no experimental significance, as will soon be obvious. Nevertheless, the
point characteristic function S(ro, r;), defined by Eq. (5.19), does retain—disregarding any
constant normalization factor—the character of the optical distance between the points r
and r;. Various choices of the normalization factor (essentially U in Eq. 5.22) are to be
found in the literature (see Picht, 1939, 1957, Eqgs (3.10—11) or Picht, 1963, Section 3.8;
Glaser, 1952 Sections 9—10; Grivet, 1965, Chapter 6; Kel’man and Yavor, 1959, 1968,
Section 4 of Chapter 1). A system of units—not adopted here (but see Section 24.8)—has
been devised by Sturrock (1955, Section 1.2) to eliminate e, mg and ¢ from the equations.
We emphasize that the choice of any particular normalization is only a question of
convenience and has no physical meaning.

It is possible and obviously sensible to choose a gauge for A(r) such that A(r) vanishes in
all domains in which B is zero. Thus at least in the field-free domains in front of and
behind magnetic devices, we can make use of the orthogonality between trajectories and
eikonal surfaces. The Aharonov—Bohm effect, for which this gauge breaks down, is
described in Sections 59.6 and especially 62.4 of Volume 3.
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5.5 Gauge Transformations

In the previous chapters we have frequently used electromagnetic potentials but, apart from
the purely electrostatic potential, never specified their gauge. We now discuss the influence
of different gauges on various physical quantities.

Eqgs (4.3) and (4.4) can be satisfied by different pairs of potentials ¢, A and &', A’, say,
provided that these pairs are related by

0
=9 — EF(r, 1), A=A"+grad F(r,1) (5.23)

This is called a gauge transformation. The function F(r, f) is arbitrary so long as it is
sufficiently differentiable. The other Maxwell equations impose further restrictions but do
not completely eliminate the freedom of choice of F. Since only the field vectors have
experimental significance and not the potentials, all quantities that depend in any way on
F(r, t) have no experimental significance.

The kinematic functions, introduced in Chapter 2, Relativistic Kinematics, are gauge-
invariant since they are essentially related to the kinetic energy and not to the potential. In
the variational formalism, the gauge-dependent quantities are the generalized potential V*,
the canonical momentum p, the Lagrangian L and the Hamiltonian H, the corresponding
transforms being given by

oF dF
xR i = V¥ — 02 )

vi=v Q( v gradF) V-0 (5.24)
dF

L=0'+0% 5.25

th (5.25)

p=p +Qgrad F (5.26)
oF

H=H -0L 5.27

0 o (5.27)

The transform of the variational integral Eq. (4.1) involves integration of a total derivative,
the result being

W=w + [QF(r, t)] (5.28)

1
0
If the endpoints are kept fixed, W and W' differ only by a constant and thus have
the same extremals as solutions of the corresponding Euler—Lagrange equations. If,
however, the endpoints are regarded as variables, Eq. (5.28) shows that the action
W is essentially gauge-dependent. The characteristic functions are therefore gauge-
dependent and are not observable quantities. Only for the propagation of particles in
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purely electrostatic fields can Eqs (5.12) and (5.13) be regarded as having a
physical meaning, as they have a gauge-invariant form. In Eq. (5.20), however, the
gauge-dependence is now obvious and so definition Eq. (5.22) has no particular
advantage.

5.6 Poincaré’s Integral Invariant

We now return to Eq. (5.5). In time-independent systems, variations of the time are of no
interest and we thus choose Ar; = Atg= 0. Since spatial variations involve only the static
point characteristic function S(ro,r;), Eq. (5.5) then simplifies to

AS=p,-Ar; —p,-Ar (5.29)

We now consider a one-parameter family of nonintersecting rays, each ray being uniquely
characterized by a well-defined value of some parameter u, as shown in Fig. 5.3. This
means that the points with vectors ry(u) and r;(u) are located on the same ray. It is useful to
introduce derivatives with respect to u, for instance Arg = Au - dro/du, with similar
expressions for Ar; and AS. The quantity Au then cancels out from Eq. (5.29), so that

L —pw- I~ pyy (5.30)

is exactly valid.

In the next step we consider a tube of nonintersecting rays, its mantle surface now being a
one-parameter family, as shown in Fig. 5.4. On this surface we choose two closed loops I'y
and I'y with parametric representations ro(«) and ry(u) for u, = u = ug, respectively.
Integration of (5.30) over the whole interval of u results in

0

Figure 5.3
A one-parameter family of rays, each ray being uniquely characterized by a specific value of the
parameter u. Two paths of integration, I'g and I, are also shown.
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Figure 5.4
Tube of nonintersecting rays and three closed paths of integration, I'g, I'y and I" round
its surface.

“s dS “p dr s dr
[ —du= J pl(u)'d—uldu— [ po(u)'d—:du

Ua du Uc Ua

Since riug) =ri(u,), (j=0, 1), and S is a unique function of its arguments, the expression
on the left-hand side vanishes. Thus

s dr g dr
r= | pw Prau= | o o

Ua Ua

U

is invariant. The parametric representation facilitates the evaluation of these integrals but is
not absolutely necessary; the value of / is invariant with respect to parametric transforms.
Since I’y and I'; are arbitrary loops, the expression

I=7§p-dr (5.31)
I

has the same value for any closed loop I' on the surface of the tube. This is Poincare’s
integral invariance theorem. This quantity is even invariant with respect to gauge
transformations, since it can be rewritten as

1= fg'dr + QUr (5.32)
r
where U is the magnetic flux through I™:

2% Z%A-drzj B-da
r @)

The flux term in Eq. (5.32) gives rise to a phase shift of magnitude Q¥ /A in the wave-
optical interference patterns produced by electron optical biprism devices. This phase shift,
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known as the Aharonov—Bohm effect (Ehrenberg and Siday, 1949; Aharonov and Bohm,
1959), is discussed in detail in Section 62.4 of Volume 3.

Another interesting consequence of Eq. (5.31), is the existence of the point characteristic
function. The invariance of the integral expression given by Eq. (5.31) can be derived by
following an alternative route, using canonical transforms (Goldstein, 1959), and may thus
be regarded as fundamental. Let us now assume that the whole bundle of rays shown in

Fig. 5.4 and also all rays propagating laminarly in the interior of the tube intersect at some
point ry. Then any closed loop I' may be contracted to this point ry, and hence the integral 1
vanishes. From f p-dr =0 (even in the interior), we can deduce that curl p = 0. Hence
there must be a function U(r) # 0 such that p = grad U. With the reasonable assumption
U(rp) = 0 we recover the point characteristic function

T

U = Strv.r) = | -
1o
Since the value of this integral is independent of the path of integration between r( and ry,
it must be identical with that of Eq. (5.19).

It is often preferable to use the invariance theorem in its differential form. This can

be obtained easily by considering congruences of rays. These are two-parameter manifolds
or families of rays, represented by functions r(u, v; s), u and v being the parameters in
question and s the arc-length. For instance, all monoenergetic rays emerging from a ‘point
source’ at ro form a congruence, the parameters u and v then being angles characterizing
the starting direction. The definition is, however, more general. It is easily seen that the
generalization of Eq. (5.30) for a congruence is given by

8§ N 6"1 ar()
2 —P1'E —Po’ ou
oS _ or org (5.33)
0 =D N —Po’ 0

since all vector quantities are now functions of # and v (neglecting the irrelevant
dependence on s). From the condition that 6*S/dudv, calculated in different ways, must be
the same continuous function, we obtain

dp, Ori _0py Oro _ 0py Ori _ dpy Oro

ov du ov Ou Ou Ov ou Ov

or rearranging

or, opy _opy Ori _ Oro Opo _ o Oro
ou Ov ou Ov ou Ov ou Ov
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Since the points ry and r; may be chosen arbitrarily so long as both are located on the same
trajectory specified by the values of u and v, the expressions on each side do not depend on
position but only on u and v, and are thus constant along each ray. This constant is the
familiar Lagrange bracket

{u,v}: = % . % - % : 2—2 = const (5.34)
A congruence is said to be normal if {u, v} = 0. This is equivalent to / = 0, since the
Poincaré invariant can be obtained from Eq. (5.34) by integration (Sturrock, 1955,
Section 2.3). In every normal congruence, there is thus a family of surfaces U(r) = const
such that p = grad U, U usually being the point characteristic function S. As is illustrated in
Fig. 5.2, this does not automatically imply orthogonality with respect to the trajectories
themselves.

5.7 The Problem of Uniqueness

In the preceding considerations we have tacitly assumed that the solutions of the
Hamilton—Jacobi equation are unique and regular. This is very often not the case. A simple
example is shown in Fig. 5.5. In a beam, there may exist an envelope surface, formed by a
one-parameter family of rays. This surface, which is known as a caustic, usually has sharp
edges, and its extension depends on the positions and the shapes of any apertures confining
the beam. The caustic represents a singularity of the point characteristic function, since it
separates the domain of no solution from that with two solutions, where the rays intersect.
The example illustrated is highly simplified; in realistic electron optical devices, caustics
may have a very complicated structure. We shall therefore not investigate them here in a
general manner; instead we shall treat some concrete examples later, see Chapter 42 of

Figure 5.5
Particle trajectories (full lines) forming a caustic and wavefronts S(r) = const (broken lines) in a
two-dimensional section through a beam in an isotropic medium. The domain beyond the caustic

is inaccessible to the particles; within the caustic, the trajectories may intersect. At the caustic, the
lines S = const form cusps.
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Volume 2. The foregoing theory remains valid in domains accessible to the beam, the
vicinity of caustics being excluded.

In domains in which different functional branches of the point characteristic function
overlap, each branch is to be treated separately.

5.8 Lie Algebra

A method of analysing the behaviour of charged particles in electric and magnetic fields
based on Lie algebra has been found valuable in accelerator optics, where it was introduced
by Dragt and further developed by him and Forest (Dragt, 1982, 1987, 1990; Dragt et al.,
1986; Forest, 1998). They subsequently extended it to the domain of electron optics (Dragt
and Forest, 1986; Dragt et al., 1986; Dragt, 1987), where Ximen (1995), Hu and Tang
(1998, 1999), Hu et al. (1999) and Matsuya et al. (1995) have employed it. Here, we cannot
give more than an introduction; a very readable account is to be found in the article of
Dragt and Forest (1986). Moreover, another full presentation has been published by
Radlicka (2008), in which it is compared closely with other approaches, notably the
trajectory and eikonal methods.

The basic element of the Lie algebraic approach is the Poisson bracket [ f, g] of two
functions f and g (Poisson, 1809):

(5.35)

in which ¢ here denotes the position vector (x y)* and p is the canonical momentum

Eq. (4.12). (We follow Dragt and Radli¢ka in denoting the position vector by ¢ for the
benefit of readers who wish to go more deeply into their publications.) A linear operator,
the Lie operator, generates such a Poisson bracket:

f—:f: where :f:g=1If, gl (5.36)
Powers of :f: are defined in terms of imbricated Poisson brackets,
Gf)’e=Lf, [f.gl]

and (;f2)° is the identity operator, (:f:)°¢ = g. The exponential function exp(:f:) plays a
central role and exp(:f:)g is known as the Lie transformation of g. We have

exp(:f:) = E(Zf:) (5.37)
0

n!
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and so

AV I

exp(:f:)g =g +[f. 8l + >

The relation between w := (g, p) in two planes z; and z, is represented by a transfer map
M,
Wy = Mw, (5.38a)

and provided that w = 0 corresponds to a trajectory (the optic axis), the map has the form
M= ﬁz exp(:f:) (5.38b)
=

in which each function f; is a homogeneous polynomial of degree j in w;. We shall find that

if>: corresponds to paraxial properties and the next terms to aberrations. We now specialize

to monochromatic beams in a system with a straight optic axis. It is convenient to write
Px:Px/POa Py:Py/Po, O, =1, Qy:y

in which pq is the momentum on the axis. For the Poisson brackets, we define

[Qx: Q)] = [Px,Py] =0, [Qi= Pj] = 617

Dragt and Forest consider three simple forms of M = exp(:f>:) to illustrate the use of this
algebra: = —L(P1)’, fi=—5%Q)) and f =@ X P1i:= o(Qr1Py1 — Oy1Px1).
The first represents a translation and the second, the action of a thin lens. The third
represents rotation through an angle ¢ as we now show. For the four Lie operations,

we find

J2:001 = 00y1 2:0y1 = — 001 (5.39)
J2:Pr1 = pPy1 2Py = — Py '

We now evaluate the corresponding quantities in the plane z,:
Qu2 = MQ.1 = exp(2)Qu1 = {1+ 121 + ()2 + () /6 + -1 Qs

:(1 - 902/2 + "')Qx,l + (QO_ 903/6_’_ "’)Qy,l
= Q108 p + O, 1sin ¢

and similarly
Qy,2 = Qy,lcoS 2 Qx,lsin ®
Px’z = Px,lcos e+ Py,lsin )
Py, =Py cosp — P, sinp
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This map therefore does indeed represent a rotation ¢ about the optic axis and the map
M = exp(:f>:) contains enough information to characterize the paraxial optics of a system
with a straight axis.

It is convenient to discuss the effect of aberrations here but some familiarity with

Chapter 24, The Geometrical Aberrations of Round Lenses, is assumed. We limit the
discussion to systems with rotational symmetry, which implies that P and Q occur only as
the combinations P*, Q% P - Q and Q X P. Since this excludes homogeneous polynomials of
odd order, M must take the form

M = exp(f2:)exp(ifa:)exp(ife:) - (5.40)
For the third-order aberrations w®, we have

1
w =exp(:fi ) =w+ [fwD] + 2 [fo. [fowV]] + (5.41)
and only the second term need be retained. The function f; will have the following form, in
which we have anticipated the standard notation for the aberration coefficients introduced in

Chapter 24:

C(P?)* + KP*(P-Q) + kP*{(Q X P)-i.} + A(P-Q)* + a(P-Q){(Q X P)-i.)

542
+FPQ" + DO’(P-0) + dQ((Q X P)-ic) + MO 042
Consider, for example, the term C,(P*)*. In the image plane, we have
o P2 2
00 =+ [P, V1= .20  — ucpp, (5.43)

OP,

which clearly has the same nature as spherical aberration. The other terms can be identified
with coma (K, k), astigmatism (A, a), field curvature (¥) and distortion (D, d).

We shall not go further into this approach, which is thoroughly explored by Dragt and
Forest; the design of aberration correctors is particularly interesting. We shall however, say
a few words about the presentation of Radlicka, which sheds a slightly different light on the
steps leading to the aberration coefficients. The equation of motion for a Hamiltonian H is
written

w' = [w, H]
with w = (g p)". In the case of round magnetic lenses, the Hamiltonian can be written as

H=H2+H4+...
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where H,, for example, has the easily recognizable form

P2 77232 )
) 1/2 8¢

in the rotating coordinate system, where Q, P replace ¢, p. H, likewise has a familiar
appearance:

1 1 1 1 C
Hy= ~Li(QY + — L, QPP + — Ly(P2) + (—TRLZ + CpQ* + Tsz)LZ
4 26 49 ¢ ¢ (5.45)
_ p22 2
L2=PQ°—(QP)
in which L, L,, L3 and R are defined in Eq. (24.3); the functions P and Q of Eq. (24.3) are

here written Cp and Cy to prevent confusion.

The aberrations are obtained with the aid of the interaction Hamiltonian, which here takes
the form

H™ = Hy(Q(Q,P), P(Q. P)) (5.46)

in which Q, P are obtained from
2 Aol A -
0 8(@)1 ¢, " h(2)1 0
5 1/2
~1/2 , ~ , ~
¢ @1 || K@ |\ .
) P

o

P

where 1 denotes the identity matrix. From the interaction Hamiltonian we can calculate

Z .

g4 =~ } H'(Q, PP, )dz
20

The exponent [2] indicates the second perturbation beyond the paraxial approximation; in

the case of axially symmetric systems, this brings us to the third-order aberrations, as there

are no second-order aberrations, which would correspond to exponent [1]). In the image

plane

084(QyPo)

Q(3) =M(Q,) — P,

(5.47)
which leads to the expressions for the aberration coefficients given by the eikonal method.
Other special cases are examined in great detail by Radlicka, a valuable feature of his full
account of a relatively little-known branch of aberration theory.
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5.9 Summary

In this part we have dealt with the general theoretical fundamentals of electron optics. We
have derived various forms of trajectory equations, kinematic functions and conservation
laws. We have investigated various kinds of variational principles and these have permitted
us to derive the general theory of Hamiltonian optics. All the relations obtained are
essential tools in the investigation of particular aspects of electron optical devices. Since a
knowledge of the applied electromagnetic fields is needed before the trajectory equations
can be solved, we must now interrupt the purely electron optical discussions and deal with
field calculations. In Part III, we shall return to the theory of electron propagation.
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6.1 General Considerations

In this Part we shall deal with the calculation of electrostatic or magnetostatic fields, that is
to say, time-independent fields. This major simplification is justified, since in the vast
majority of practical electron optical devices the applied fields are static. Even in electric
and magnetic deflection units, the frequencies of the time-dependent fields are so low that a
quasistatic approximation is entirely justified. By this, we mean that all field functions can
be separated in the form F(r, t) = f,(r)f>(t), where f,(r) is practically independent of the
frequency and may be calculated as a static field. Special high-frequency devices for which
these assumptions do not hold are not treated in this book.

Charged particles usually propagate in vacuo in a very narrow domain far distant from any
material walls. The only exceptions are the immediate vicinity of emitting surfaces in
electron guns, the surfaces of mirrors, specimens, apertures and recording devices.
Specimens, apertures and recording media are of little interest in the present context,
because they are usually located in field-free domains or are assumed to have no effect on
the field distribution. The vicinities of cathodes and reflecting surfaces will be excluded
from the following discussion. With these exceptions, the space through which particles
travel will be referred to as the extended paraxial domain. Usually this is a narrow but long
tube around the optic axis of the system in question, see Fig. 6.1. One of the aims of this
Part is to derive suitable series expansions for the field in this paraxial domain, since these
are fundamental for the investigation of trajectories, focusing properties and aberration
effects in practical devices.

Although a concrete knowledge of the field in the appropriate extended paraxial domain
would be quite sufficient for all further electron optical considerations (always excluding
cathodes and mirrors), this knowledge cannot be obtained without making a complete
calculation of the field within the whole device. The reason for this is that a static field
within a given domain can only be calculated as the solution of a boundary-value problem,
as is further outlined in Chapter 8, Boundary-Value Problems. In electron optics, the
boundaries are the surfaces of electrodes or polepieces, which are of great importance
though they are usually far from the paraxial domain. Thus the second major aim of this
Part is to present techniques for solving boundary-value problems.

Principles of Electron Optics: Basic Geometrical Optics.
DOI: http://dx.doi.org/10.1016/B978-0-08-102256-6.00006-7 65
© 2018 Elsevier Ltd. All rights reserved.
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b2 8 NI\

Figure 6.1
Axial section through part of some electron optical device; the paraxial region
is indicated by dashed lines.

Throughout this Part we shall assume that electrodes and magnetic polepieces have
isotropic material properties. The corresponding material coefficients may be functions of
position. This is mainly the case when saturation effects arise in ferromagnetic polepieces.
We shall adopt the following standard electrodynamic notation:

E: electric field strength; D: displacement vector;
H: magnetic field strength; B: magnetic flux density;
€, €0t permittivity; 1, Ho: permeability;

v =1/pu: magnetic reluctance; | A: vector potential;

p: space charge density; J: electric current density;
o: surface charge density; w: surface current density.

Scalar potential functions are denoted in different ways, as they will appear frequently in
different contexts; very often they have only a formal mathematical meaning.

6.2 Field Equations

In the case of stationary fields, Maxwell’s equations reduce to

curl E=0, curl H=j 6.1)
divD=p, divB=0, (divj=0) '

These are to be complemented by the material equations
D=cE, B=uH, (or H=vB) (6.2)
In ferromagnetic materials, the reluctance v is a function of B = |BI, hence

H=v(B)B (6.3)
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In Eq. (6.1) the space charge density p(r) and the current density j(r) are regarded as given
functions of position. The determination of space charge distributions will be treated in
Chapter 46 of Volume 2. Electric fields in the interior of conducting materials are not
considered here. The source-free Maxwell equations permit us to introduce electromagnetic
potentials,

E = —grad #(r), B =curl A(r) (6.4)

these equations being special cases of Egs. (4.3) and (4.4). Combining Eq. (6.4) with (6.1)
and (6.2), we obtain partial differential equations of Poisson’s type. For the electrostatic
potential we have

div {5(r)grad @(r)} = — p(r) (6.5)
In homogeneous dielectric media, where ¢ is constant, Eq. (6.5) reduces to
V2(r) = — p(r) /e (6.6)
and in domains free of space charge, to Laplace’s equation
V2P(r) =0 (6.7)

The derivation of Poisson’s equation for the vector potential proceeds as follows. In the
general case, combination of VX H =j, H = vB with v = v(B) and B =V X A results in

curl{y(’curlAl) -curl A(r)} =j(r) (6.8)

This complicated nonlinear vector Poisson equation has to be solved in ferromagnetic
domains with saturation effects. When the permeability ="' is constant, this differential
equation can be simplified considerably. Using the vector differential identity

curl curl A = grad divA — V?A
valid only in Cartesian representations, we obtain first
—grad div A + V?A = —j(r)

A further important simplification can be achieved by choosing a gauge for A that
satisfies

divA(r) =0 (6.9)
We then finally obtain the vector Poisson equation

V2A(r) = — pj(r) (6.10)
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Yet another simplification is possible in current-free domains. We then have V X H =0 and
it is always permissible to write

H(r) = — grad x(r) (6.11)

x(r) being the scalar magnetic potential. Since y is constant, we have div H =0 and x
satisfies the Laplace equation

V2x(r) =0 (6.12)

The simplification thus achieved lies in the fact that only one scalar differential equation is
to be solved instead of three coupled by Eq. (6.9). The representation (6.11), (6.12) is of
course less general than that in terms of the vector potential, since the condition j(r) =0
cannot be true throughout the whole space. The domain of solution of Eq. (6.12) is thus to
be confined in such a way that j = 0 and that the solution for y remains unique. Important
examples are given in Chapter 8, Boundary-Value Problems and Chapter 9, Integral
Equations.

Although Eq. (6.11) is the correct form of the gradient representation of H, it is rather
inconvenient, since it is the flux density B, and not H, that figures in the trajectory
equations. After solving the boundary-value problem for the magnetic field, we are only
interested in the source-free vacuum field. We may therefore introduce a new potential
W(r), writing

B=—grad W, V2W=0, W=,y (6.12a)

We shall use this representation whenever this is possible and causes no confusion.

6.3 Variational Principles

In connection with the finite-element method, the subject of Chapter 12, it is of importance
that the partial differential equations given above can also be derived from a variational
principle, the integrand being the stored field energy. This principle takes different forms
for scalar and vector potentials.

The general form of variational principle for m coupled functions of position y(r) ... y,,(r)
in a three-dimensional domain § is given by

6W=6J A, y1. . Yo V1. . Vy) d°r=0 (6.13)
S
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The boundary S and the boundary values y; ... y,, on it must not vary. The corresponding
Euler equations are

on_go
Oyi 4= Oxi

The Cartesian components of the gradients are now treated as independent variables.

oA
0(0yi/ Ox)

y. A (6.14)

o(Vy;)

In applications involving electrostatic fields, we have m = 1, y,(r) = &(r) being the
electrostatic potential. The corresponding Lagrange density A is given by

A= %Ez — 0B, (E=—V) (6.15)

Applying Eq. (6.14), we obtain Eq. (6.5).

When source-free magnetic field domains are to be studied, we may choose scalar potential
representations; as before m = 1 and now y(r) = x(r). The Lagrange density A is now the
familiar energy density:

A= %HZ, (H=—Vy) (6.16)

The corresponding Euler equation is (6.12).

In the case of general magnetostatic fields, we have to choose m = 3, and y,(r) = A{(r),
i=1, 2,3, are then the three Cartesian components of the vector potential A. We shall need
the absolute flux density

B=|B|=|curlA| (6.17)

The source-free term of the Lagrange density A is then a function of the form

B
U(B)= J H(B')dB' (6.18)
0
provided that any magnetic media are isotropic, that is, their permeability may vary with B
but not with the direction of B; i is now a scalar, not a tensor. For a nonlinear medium
with saturation effects, but without hysteresis effects, a graph of such a function is shown in
Fig. 6.2. Differentiation of Eq. (6.18) with respect to B gives

HB) = oU _BduB _ v(B)B (6.19a)
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U (B)
B
A >

Figure 6.2
A branch of the magnetization curve, in which U(B) denotes the area under the curve.
As B— o0, the gradient tends asymptotically to a constant value.

in accordance with Eq. (6.3) and hence

1dU
B = = (6.19b)

The complete Lagrange density is now given by
A=UB)—j-A (6.20)

Evaluation of Eq. (6.14) for the three Cartesian components of A and expression of the
result in vector notation leads to Eq. (6.8). These tedious but elementary calculations are
not reproduced here.

In the case of linear (unsaturated) media, Eq. (6.18) simplifies to the familiar energy density
1, 1
UB)= —B>= —(VXAY (6.21)
21 2

1= 1/v now being a constant. With the additional constraint (6.9), the Euler equations
reduce to (6.10).

In all the cases considered here, the Lagrange density /A has the physical meaning of an
energy density, which generally contains an additional interaction term. The functional
F=[A d’r is thus an energy. Since this has no upper bound, the concrete evaluation of the
variational principle always results in a minimum of F. This is of importance for the finite-
element method. If the boundary OS is extended to infinity, the functional F must remain
finite. This implies that any electrodynamic quantities must satisfy the ‘natural’ boundary
conditions, which means that as |rl— oo they must converge to zero in such a way that all
the integrals involved remain finite.
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6.4 Rotationally Symmetric Fields

Rotationally symmetric fields are of particular interest in electron optics, as the most
common electron lenses are round, by which we mean they are built up from rotationally
symmetric fields. Rotationally symmetric electrostatic fields are a simple special case of the
Fourier series expansion treated in Chapter 7, Series Expansions, and will therefore not be
considered here. Magnetic fields, however, require special attention, as we now explain.

For rotational symmetry it is advantageous to introduce cylindrical coordinates (z, 7, ©), as
defined in Section 2.4. It is necessary to assume that the current density j(r) is circular and
it is further convenient, though not necessary, to assume that the vector potential A(r) is
likewise circular. This means that both vector functions have only azimuthal components:

Jr) =z, ri, (6.22)
A(r) = A(z, M, (6.23)
This already implies that divj = 0 and div A = 0. The cylindrical components of B = curl A

are given by

CA

10
B(z,r) = ;5(#\), B, = — 2 B,=0 (6.24)

which represent a magnetic field, the direction of which always lies in a meridional plane.
The opposite case of a circular magnetic field produced by a meridional current distribution
is of little interest in electron optics but is of importance in plasma physics. This case will
not be treated here.

It is advantageous to introduce the magnetic flux function ¥(z, r), as in Section 2.5:
U(z,r) =27 J r'B,(z, r)dr (6.25)
0

This is the static special case of Eq. (2.32). An immediate consequence is that B.(r, z) =
(211r)_18!P/5r is the static special case of Eq. (2.33). The condition div B = 0, expressed in
cylindrical coordinates, now becomes

oB, 1

divB= 22 + (rB,) =0 (6.26)
Z

0
19) r or
in which we have used B, = 0 (6.24).

Introducing the expression obtained above for B, into (6.26), we find

0 1 v & 1 0w
—(B)= 5= == ———
or 2w 0z0r  Or 21 07
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Integration with respect to r yields first

1 ov
rB,=——— +C(z
" 27 0z @
C(z) being an arbitrary differentiable function of z. At the optic axis (r =0), B, must remain
finite. Since ¥ and dW/oz are proportional to 7> in the vicinity of the optic axis, we can
conclude that C(z) = 0. Since the restriction to static fields is irrelevant in this context, we

thus obtain Eq. (2.34).

By applying Stokes’s integral theorem to the circle z = const, » = const, ¥ = r shown in
Fig. 2.1 we find immediately

U(z,r) = 27rA(z, 1) (6.27)

A corresponding relation has already been used in Section 4.2. In connection with the
paraxial properties of magnetic round lenses, it is helpful to introduce an auxiliary potential
function

H(z, r)= %A(z, r) (6.28)

We can now write the different representations of B, and B, as follows:

;

z 1) 0 r 2 or 2mr Or (6.29)
OA r oIl 1 oo

Bz rN=——=—"—=——"— 6.30

@ ) 0z 2 0z 2wr 0z ( )

Comparing the different representations and noting that I7(z, r) must remain finite as »r— 0,
we see that

B(z,0) = I1(z,0) (6.31)

Furthermore, we see that, in the immediate vicinity of the optic axis, B, and A are
proportional to r. These facts are of great importance in the physics of magnetic lenses.

When we come to discuss the boundary conditions, it will be useful to write Egs. (6.29) and
(6.30) in vector form:

1
B(r)= —i, X grad ¥(z,r) (6.32)
27r

This is easily verified by writing out Eq. (6.32) in cylindrical components.
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The partial differential equation to be satisfied by A(z, r) is most easily obtained by
substituting Eq. (6.24) into Eq. (6.8). In cylindrical coordinates, only the azimuthal
component fails to vanish:

0 0A 0 0A A
— — | + = — trv—|=—j .
07 (V 0z > or (V or v r ) Jzr) (6.33)

In unsaturated materials ="' is a constant and Eq. (6.33) then simplifies to

CA FA_10A A _

9242 — uj 34
oz2  orr r or r? H (6.34)

Introducing Egs. (6.27) and (6.28) into this equation, more convenient partial differential
equations, having no term in r~ 2, are obtained:
FI &I 3ol 21f
—_— =t ——=—— 6.35
07> or:  ror r (6.35)
ocv SV 1w

P a2 ror = —2murj (6.36)

In Chapter 7, Series Expansions and Chapter 8, Boundary-Value Problems, these equations
will be encountered again as formal special cases of a more general differential equation.

6.5 Planar Fields

Planar fields are such that the field components are independent of one of the three
Cartesian coordinates. In practice, they are idealizations of three-dimensional fields,
obtained by neglecting the fringe-field domains in one direction. Fields of this type are
approximately realized in such devices as electrostatic deflection units, slit lenses,
secondary emission multipliers and deflection magnets with plane surfaces.

Without loss of generality, we may choose the Cartesian coordinate system in such a
manner that the field does not depend on the coordinate y. In the z—x plane, we introduce
the complex variable

w=z+ix=re? (6.37)
Any analytic function

JSw) =u(z, x) +iv(z, x) (6.38)
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is a solution of Laplace’s equation. This is a consequence of differentiability in the complex
plane. As is well-known from the theory of analytic functions, u and v satisfy the
Cauchy—Riemann equations

Juen) = 2o, on) =~ (e (6.39)
From these, the orthogonality relation
oudv  Ouodv
—_——t ——= . = .
520 arox grad u-grad v =0, (6.40)
the conformity relation
|grad u| = ‘grad U‘ = V/(w)} (6.41)

(with f'(w) = df/dw) and the Laplace equations

2 2 2 az 62

can be derived. Eqs (6.40) and (6.41) are characteristic of a conformal mapping, as shown
in Fig. 6.3. The function f{w) defined by Eq. (6.38) can be interpreted as a transform from
the square-shaped map in the z—x-plane (Fig. 6.3A) to a curvilinear map in the u—wv-plane
(Fig. 6.3B). As the size of the curved cells is decreased, these cells collapse to squares.

A standard method of calculating planar fields consists in finding the inverse function
[fiw)] " that transforms the given boundary in the z—x-plane into a pair of lines u = const.
All lines u(z, x) = const are then equipotentials of the field and all lines v(z, x) = const are
orthogonal flux lines. Such a transform is again a conformal mapping. This method of field
calculation, commonplace in the mathematical literature, will not be outlined here since it is

(A) (B)

v 4
X &

Figure 6.3
(A) Square grid in the (z, x)-plane. (B) Conformal map in the (u, v)-plane; the mapping is such
that angles are conserved.
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more complicated than the standard numerical techniques described later. It was regularly
employed in the analysis of mass spectrometers (Boerboom and Chen, 1984; Wallington,
1970, 1971). An extremely detailed account is given by Durand (1966).

Some interesting analytical functions and the corresponding potential fields are the
following:

1. Arbitrary convergent power series expansions:

f) =" anw" = anr"e"? (6.43)

Nonnegative integral exponents m lead to regular Taylor series expansions, while
negative integers generate singular Laurent series expansions. The potential functions
obtained from Taylor series expansions are approximately realized in the central zones
of multipole devices, see Chapter 7, Series Expansions. Nonintegral values of m give
rise to potential fields in the vicinity of sharp edges. The potential of the sharp edge
shown in Fig. 6.4, for example, is given by

T

u(r, ¢) = ugy + ZA,,r”“ sinnup, p= (6.44)

n=1

2T — 7y

Here n is a positive integer. It is easy to verify that u = uy = const on the lines ¢ =0
and ¢ = 2m— for all sets of coefficients Ay, A,, ...
2. Complex Fourier integral expansions:

fw)= J A(k)exp(ikw) dk (k real, =0) (6.45)
0
A r
X
P —>
Y
U=U,
Figure 6.4

Coordinate system adapted to a sharp edge.
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With A(k) = A’'(k)—iB’'(k) and A(0) = 0 we obtain a potential distribution that satisfies
u(z, x)—0as x— oo:

o]

u(z, x) = J ‘e_kx{A/(k)cos kz + B'(k)sin kz} dk (6.46)

0

This has been found useful in some investigations on electron mirrors.
3. Logarithmic singularity

fw)y=log Cw, u=logCr, v=¢ (6.47)

(C is a positive constant.) This is of great importance in the practical application of the
integral equation method, see Chapter 10, The Boundary-Element Method. The inverse
function

1
w=z+ix=rexp(ip) = Eexp(u +iv) (6.48a)

1
r= Eexp(u), p=v (6.48Db)

describes the transform from quadratic to polar grids, see also Section 11.4.2.



Series Expansions

As has been mentioned in Section 6.1, the electromagnetic field in the extended paraxial
domain is of paramount interest in electron optics. In this domain, the field will be
represented by series expansions, the general structures of which can already be derived
without explicit solution of the corresponding boundary-value problem. As will be obvious
later, the field in the vicinity of the optic axis can be obtained by analytic continuation of
the axial distribution.

In this chapter we shall assume that the optic axis is straight. Series expansions adapted to
curvilinear axes are required in the treatment of devices with sector fields and will be
derived in that context (see Part X). We shall further assume that the paraxial domain is
usually source-free. This is certainly true for all current distributions, since the windings of
coils are always far from the optic axis. Electric space charge may accumulate in the
extended paraxial domain. Its distribution is, however, so inhomogeneous that the
corresponding series expansions are of little practical value. Here, therefore, we shall
mostly exclude them; they will be considered in more detail when we come to treat electron
guns (see Part IX).

7.1 Azimuthal Fourier Series Expansions

The aim of the following considerations is to decompose a three-dimensional field into a
sequence of uncoupled two-dimensional fields. This is advantageous, since two-dimensional
fields are far more easily calculated than three-dimensional ones. The required decoupling
is obtained by expanding the field as a series of complete orthogonal functions, most
favourably as a Fourier series (Glaser, 1952, Section 35). Since the present discussion is
quite general, source distributions are not excluded.

7.1.1 Scalar Potentials

Let us now consider a general Poisson equation

V2V(r) = — S(r) (7.1)

Principles of Electron Optics: Basic Geometrical Optics.
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regardless of the special meanings of the functions V(r) and S(r). In cylindrical coordinates
(z, r, ) this Poisson equation takes the form

Fv oV 1 ov 1 &V

— t+t—=+t - —+ =" =—=—S8(,r, 7.2

o2 orr r or r: op? @) 7.2
Both functions V and S are periodic with respect to the azimuth ¢, the period being 2,
which suggests that we should introduce their Fourier series expansions. These can be
represented in different equivalent forms. One essential requirement is that it should be easy
to transform these series expansions and the corresponding ones for the gradient into
regular power series expansions with respect to x and y. With these transforms in mind, we
introduce the variables

w=x+1iy = rexp(iy) (7.3)
s=x>+ y2 =r=ww (7.4)

the asterisk denoting complex conjugation. The series expansions in question then have the form

o0

Viz,r )= Z rmiﬁ{ Un(z, s)eim"g} (7.5)
m=0
S(z,r o) = Z r’"iR{gm(z, s)ei’""’} (7.6)
m=0
and in the Cartesian representation
V(r) = E R { U,(z, s)w™ } 7.7)
m=0

with a corresponding expression for S(r). Differentiation of Eq. (7.7) with respect to z
immediately results in:

; iR{ aU’”(Z’ 9 } (1.8)

The remaining derivatives are most favourably expressed in complex form:
ov oV & oy, . ou, '
— +i ML w ) s =2+ mU 7.9
ax oy mz_;){w Os o) os | m (7.9)

For m = 0 this series expansion contains no singularity, since (w*) ' s = w. Recalling that
Uy must be a real function, we obtain the expression 2woUy/0s for the zero-order term of
this series expansion.
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Introducing Eqs (7.5) and (7.6) into (7.2), we first find a sequence of uncoupled differential
equations

ﬁ%+ﬁ%+m+M%
072 or? r or

=—gu(z,r) m=0,1,2,... (7.10)

It is possible to introduce the variable s = P (Glaser, 1952, Section 35); this is, however,
unfavourable with respect to the numerical solution, see Chapter 11, The Finite-Difference
Method (FDM).

In practice, in order to evaluate infinite series expansions numerically, we have to truncate
them in a suitable manner. From Eq. (7.5) we can get an idea of how this is to be done.
Since U,, and g,, may be regarded as slowly varying functions within the extended paraxial
domain, the factor r" is of greatest importance. Let R be some characteristic bore radius of
the device in question. Then the exponent m = M at which the series is truncated should be
chosen in such a way that all terms (+/R)" with m > M can be neglected. In practice M = 5
is usually sufficient, since 7/R=<10"". In order to avoid any misunderstanding, we
emphasize that in concrete calculations, Eq. (7.10) (with 0 <m < M) are to be solved as a
sequence of boundary-value problems, which implies that » may extend far beyond the
paraxial domain. Only the values of the solutions obtained inside the extended paraxial
domain are to be retained.

In Eq. (7.10), the coefficients of the partial derivatives are simple real factors. A further
simplification is therefore possible by considering only real source terms g,,(z, s) and real
solutions U,,(z, s). Complex solutions can easily be obtained by forming linear
combinations with appropriate complex factors. In Section 7.2, we shall thus assume that
the functions U,,(z, s) are real.

7.1.2 Vector Potentials

In Chapter 4, Variational Principles and Chapter 5, Hamiltonian Optics, we have seen that
the vector potential contributes to the canonical momentum and to the characteristic
function. Though the vector potential itself is not an observable quantity, it still plays an
important role in theoretical considerations. We now derive appropriate series expansions
for it. Egs (6.9) and (6.10) must be satisfied and furthermore we impose the natural
boundary condition A(r) =0 for Irl - co. Then A(r) is uniquely defined. For technical
reasons we have j, = j, = 0 on the optic axis, which implies that A, = A, =0 for x =y = 0.

The desired series expansions will be similar in form to Eq. (7.7). Here it is more
convenient to consider the imaginary parts instead of the real ones, which is only a minor
difference. Furthermore it is convenient to introduce complex transverse components, thus
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. 00
Ar = A +iA, = % > Culzsyw" (7.11)
m=1

A, = =S (Z:Dm(z, s)w’") (7.12)
m=0

In a similar way the current density j(r) is represented by

Pe)

. . .. 1 m

Jr=ge iy =5 > Tz w (7.13)
m=1

jo=—3 (ZLm(z, s)wm> (7.14)
m=0

In the functions introduced on the right-hand side the variable s is again defined by
Eq. (7.4).

A straightforward differentiation in Cartesian coordinates results in

diva = S{ > (Dt + 3G + mcm)w'"“} =0

m=1

Here the subscripts behind vertical bars denote partial differentiations with respect to the
corresponding variable (see Section 2.4). Since different powers w" of w must be linearly
independent, this condition div A = 0 can be satisfied only if

Dy, +5Cps+mCp, =0 (m=1) (7.15)
is valid for all integers m. Similarly the condition div j = 0 leads to

Ly—1;+8hys+mly,=0 (m=1) (7.16)
The determination of V> A in Cartesian coordinates is also straightforward; we obtain

. o
1 m
V2Ar = 3 E (Cijzz T 45C 55 +4(m + 1)Cpys)w

m=1

0
V2A.=-3 {Z(DM + 48D 55 + 4(m + 1)Dm)wm}

m=0

These series expansions are to be matched to Eqs (7.13) and (7.14). Using the linear
independence of different powers of w and the vector Poisson equation V?A = —p j we
obtain

Chjzz T45Cy 55 +4m + 1)Cyys = —pdy, (7.17)
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Dmlzz + 4Sl)mlss + 4(m + 1)Dmls = _,UJLm (7.18)
With the transformations

o 10 o 1 & 1 6

& 2 a2 Aad  dsér
we obtain the more suitable differential equations

2m+1
Cm‘ZZ + lerr +

Cojr = — (2, 5) (7.19)

2m+1
Doz + Dyypyr + TDmlr = —uLu(z,s) (7.20)

which have the same mathematical structure as Eq. (7.10). Here, however, their solutions
are additionally coupled by Eq. (7.15).

The magnetic flux density is obtained by differentiation, B = V X A. After some elementary
calculations we find:

Br =B, +1iB,
- * . - /1 m (7.21)
= —Z(stls-FmDm)(w) ! _Z<§Cm+l|Z_Dm|S>W o
m=0 m=0

In source-free domains, where j = 0, this expression can be further simplified. In order to
show this, we differentiate Eq. (7.15) with respect to s and make use of Eq. (7.17) with
J,, =0, obtaining

1
_Dm—l Isz = Scm\sx + (m + 1)Cm|s = - Z Cm|zz

This can be integrated with respect to z. Since A has to vanish asymptotically, no additive
constant can appear, and so

4Dy s = Cint1 (7.22)
Introducing this into Eq. (7.21) and eliminating C,,+ ., we find now
Br=-Y" { <sD:“ + men> W'+ Dy ™! }
m=0

This equation has the same structure as Eq. (7.9). Therefore with u = g in vacuo we can
introduce a scalar potential W(r) by writing

W) =R (Duz,s)w") (7.23)
m=0
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Calculation of the axial component B, confirms this result. A straightforward differentiation
yields

©
BZ =Ay Ix _Ax|y =R Z(sth + mCm)wm_l
m=1

On the right-hand side the expression D,,, can be introduced by means of Eq. (7.15) and
we then find

0 = m
B, = —a—zil{<mz;)Dm(z,s)w ) = —W,

since the permeability p is constant. The results obtained are in agreement with Eqs. (6.11)
and (6.12), as they should be.

Comparison of Eqs (7.12) and (7.23) shows that W and A, are interrelated as the real and
imaginary parts of a complex function:

[oe]
W—id.= > Dz, w" (7.24)
m=0

This relation holds, of course, only in source-free domains.

The representation of the vector potential given above is a generalization of Sturrock’s
(1951) formula. Other gauges, which do not satisfy div A = 0, have been introduced by
Glaser (1952, Section 36) and by Schwertfeger and Kasper (1974). The present procedure is
convenient, since we always arrive at the same class of partial differential equations.

7.2 Radial Series Expansions
7.2.1 Scalar Potentials

In accordance with the assumption that the paraxial domain is source-free, we shall now
investigate solutions of (7.10) with source terms vanishing for sufficiently small values of r.
From Eqs (7.5) and (7.7), it can be seen that a power series expansion with respect to s = r*

will be the most suitable. We therefore introduce

Un(z,8) = Z ((;’3' cn(z, m)s" (7.25)
n=0 :
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into Eq. (7.10), the factor (—1)"/(2n)! being included for reasons of convenience. The
coefficients c,, unknown at the moment, are related by recurrence formulae:

2m+ 1
<”m>cnﬂ<z,m>=c:(z,m>, n=0,1,2,...

where primes denote differentiation with respect to z. The coefficient cy(z, m) can be chosen
arbitrarily provided that all its derivatives remain finite for all values of z (Izl— oo
included). This function is the axial value of U,,:

co(z,m) = U,(z,0) = u,(z) (7.26)

the subscript 0 being omitted to lighten the notation. In terms of 7> the required power
series expansion is now given by

—_— N —_— n
UML")-Zm( 4> iy, (2)

n=0

_ () \? uP(z) 6
= tn(2) dm+ 1) (Z) 2m+ Dm+2) o)

(7.27)

Apart from the notation, this radial series expansion is identical with that given by Glaser
(1952); it is equivalent to that given by Kasper (1982) if « is identified with 2m + 1.

Eq. (7.27) shows that each function U,,(z, s) is already uniquely determined by its axial
distribution u,,(z) (called the axial harmonic), provided that the series expansion converges.
This property of the solution is very similar to that of analytic functions in the complex plane
and by analogy we shall refer to Eq. (7.27) as an analytic continuation of the axial values.

In the most general case, the convergence of Eq. (7.27) cannot be proven but must be
assumed, at least in the extended paraxial domain. In this context there may arise problems
since in fact Eq. (7.27) does not converge for all values of r. Unfortunately even reliable
estimates for the radius of convergence are not known (apart from some special examples).

In principle, it should be possible to compute the field in an entire device by analytic
continuation of the appropriate axial harmonics u,,(z), since the solution as a boundary-
value problem shows clearly that the singularities must be located outside or at the
boundaries. But in practice this is impossible for various reasons. A first problem is that the
analytical continuation is numerically unstable. Even if one starts with the correct functions
u,,(z), one will not obtain the correct boundary values of U,,(z, rz), since rounding and
truncation errors, initially very small, may increase dramatically. Another serious difficulty
is that it will be impossible to obtain reasonable shapes of electrodes or polepieces if the
functions u,,(z) are only slightly different from those corresponding to a realistic field.
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This problem is further discussed in Chapter 34, Numerical Calculation of Trajectories,
Paraxial Properties and Aberrations.

In a realistic field computation, the first step is the solution of a boundary-value problem. In
this way the axial harmonics u,,(z) can be determined uniquely. These have then to be
differentiated numerically. Finally Eq. (7.27) can be evaluated for arbitrary values of z and
sufficiently small values of r (/R < 107", see Section 7.1).

A very important practical application of the radial series expansion arises in general
theoretical calculations, where no concrete numerical evaluations are required. The purpose
of such calculations is the derivation of general rules for focusing properties and aberration
coefficients in classes of devices. In this context, it is often helpful to use simple analytic
models of the axial field distributions. These models must contain some free parameters
with which a fit to a correct numerical solution for the u,,(z) is possible.

7.2.2 Vector Potentials

Since the functions C,,(z, s) and D,,(z, s), introduced in Section 7.1.2, satisfy differential
equations of the same basic type as Eq. (7.10), their radial series expansions must be similar
to Eq. (7.27), always assuming that the domain of solution is source-free. Here we have to
consider two series expansions, one for each of the two functions C,,(z, s) and D,,(z, s), but
Egs. (7.15) and (7.22) show that these are linearly dependent. The consequence is that,
though the three components of A(r) are different functions of position, only one axial
harmonic /1,,(z) can be introduced independently for each Fourier component. Since the
scalar potential W itself, given by Eq. (7.23), has little significance, we define the axial
harmonics by means of the relations

I1,,(z) = — Dp;(z,0), (m=0) (7.28)

and hence
Z
Dy(z,0) = — J II,,(Z)dZ (7.29)
—
Applying Eq. (7.20) (with L,(z, s) = 0), the radial series expansion of D,,(z, s) is then given by

< m! r " 2n—1
Duer) ==Yt () 1

_ _ (7 / ’ rznin(z) 2 H;;;/(Z) 6
= = Lo @) + e <T> 2!(m+l)(m+2)+0(r)

The axial values of the function C,,(z, *) can be determined from Eq. (7.15). On the optic
axis, the term sC,,|; vanishes and using Eq. (7.28), we find

(7.30)
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Cn(z,0)=1II,,—1(z)/m (m=1) (7.31)

The series expansion for C,,(z, 7°) is given by

o0

C N m‘ _r2 nC(Zn) O
m(Z,”)—;m 7 ) On (z,0)

which must be similar to Eq. (7.27), since in the homogeneous case the corresponding
differential equations (7.10) and (7.17) have the same formal structure. With the aid of
Eq. (7.31), we find

(m—1)! 2n)
Cm(Z: Zn'(m T l’l)' ( ) H 1( )
7.32
_ @) P Q) (_)2 mhe () 7
m dm(m + 1) ) 2lm(m+ 1)(m+2)

It is straightforward to prove, by carrying out the necessary differentiations, that Eqs (7.15)
and (7.22) are satisfied.

In order to obtain the complete series expansions of the vector potential A, the expansions,
derived above, have to be substituted in Eqs (7.11) and (7.12). Practical expressions will be
given in the next sections. Apart from the different notation, our results are identical with
those given by Sturrock (1951). They differ from the formulae of Schwertfeger and Kasper
(1974), which do not satisfy div A =0, and also from those of Glaser (1952), in which

A, =0 is assumed and which do not necessarily satisfy A —0 for z— oo. The particular
gauge that does satisfy the natural boundary conditions is most convenient in practical
applications.

7.2.3 Explicit Representations

In many practical applications, it is quite sufficient to truncate the power series expansions
of the potentials after the terms of fourth order in x and y, and consequently those of the
field strength after the third order. These series expansions play an important role in the
theory of electron optical aberrations; in instruments in which the primary aberrations have
been corrected, the next higher order terms are required

In order to introduce a comparatively simple and easily remembered real representation of the
series expansions, we define real axial harmonics p(z), ¢,.(2), P,.(z) and O (z) as follows:

& )

Un(z,0) = (z) —igm(z)) m=0,1,2,... (7.33)
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"

m!

D, (z,0) = (Pn(z) —10m(z)) m=0,1,2,... (7.34)
Eq. (7.33) will be used exclusively for the expansion of the electrostatic potential &(r),
while Eq. (7.34) will refer exclusively to the vector potential A(r) and the flux density B(r).
The Fourier coefficients with m =0 and m = 1 have a special meaning which will be
encountered frequently. We therefore introduce a special notation for these coefficients
apart from ¢qg, which is identically zero:

po(2) = ¢(2), pi1(2) = Fi1(2), qi(2) = Fa(2) (7.35)
Here ¢(z) = &(z, 0, 0) is the familiar axial potential, F(z) = —®,(z, 0, 0) and
F>(z) = —P,(z, 0, 0) are the transverse components of the field strength E on the optic axis.

The electric potential is then given by

B(0) =6 ~ (2 ) + (2P — 2 (476
1

T (x2 +y2)2(xF§4) + yFéA'))

1 /! 74
—xF1(2) = yP() + o 0 + Y )F + yFy) =
1 1 7/ 1/
508 =20+ 02(0) = 57 (0 D] (8 g + 2004 |
1
+ (o +y2)2{(x2 =5 + 2xygt? }
768
| 1 1 , /
- gps(Z)X(x2 —3y")+ 6613(Z)y0/2 —3x%) + o6 (o erz){X(x2 =3P +y3x — ), }
1 1
+ ﬁm(z)(x4 —6x%y? +yh) + 5q4(Z)X(x2y -y
- Ly yz){(x4 — 6’y + yhpy + dxy(x® — yz)q”}
480 4 4

1
— 20 {x(x4 — 10)c2y2 + 5y4)p5 + y(5x4 - 10)62)72 + y4)q5}

1
" 720 {(x2 =)t = 14x%y? + yh)pe + 2xy(3x% — Y — 3y2)q6}

(7.36)
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The corresponding series expansion in cylindrical coordinates reveals the structure better:

2o 46
P(r)=¢ — 207 afﬁm — 279

2304
r P )
—r(Fy cos ¢ + F, sin @) + g(F/{ cos ¢ + F5 sin ) — @(F1 cos ¢ + F,”sin )
r rt @ “)
+ ?(pz cos 2¢ + g sin 2¢) 4 5 cos 2 + ¢ sin 2¢p) + i) cos 2¢ + g, ’sin 2¢)
3 S
—g(p3 cos 3¢ + g3 sin 3¢p) + . 5 cos 3 ¢+ q; sin 3¢p)
4 /6
+ ﬁ(l"‘ cos 4o + g4 sin 4p) — m(pﬁ{ cos 4o + ¢ sin 4¢p)
= /6
- Eo(p5 cos Sp+ g5 sin S5¢) + %(m cos 6 + g sin 6¢)
(7.37)
For magnetic fields, we introduce the following special notation for the coefficients:
2
IIy(z) = B(z), Po(z)=— J B(z)dz, Qo=0 (7.38)
— 0
Pi(2) = Bi(z), Q1(2) = B2(2) (7.39)

Again Py is essentially a scalar axial potential, but here this has little physical meaning.
The functions B(z), Bi(z) and B,(z) are, however, very important, since they represent the
axial value of B(r):

B(0,0,z) =i,B(z) +i,B>(z) +i.B(z) (7.40)

The scalar magnetic potential is then given by:
1 1 1
1% =— |Bds+— 2+2B/ _ 2+ZZB/// + 2+23B(5)
0= [ Bzt 462 42O~y 0B @+ (P
1 1
—XB1(2) ~yBa(2) F g7 B + B — s (P (B + By

1 1 1
+ E(xz —y)P2(2) +xy02(2) —ﬁ(x“ —yHP} —E(x3y +xy°)05

1 1 1
o ({7 )P + 2008 | —x( =3P + 507 -3 ()
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1 // // 1 1
o@D =3P +3Bx 0 0 6 P (0 )0s()
96 24 6
@) (-6 4P+ —y)0) )
480 N !

1
— 120 {x(x4 — lezy2 + 5y4)P5 -I-y(Sx4 — leZy2 +y4)Q5}

1
+ m {(xz —yZ)(x“- _ 14x2y2 +y4)P6 + zxy(3x2 _yz)(XZ . 3y2)Q6}

(7.41)

or

r2 I"4 I"6 )
W=— |Bdz+—B(z)——B"(z) + —B
J et ZBQ GB35

3 5
— r(B; cos ¢ + B, sin ) + %(B’l’ cos ¢+ BJ sin ) — &(3(14) cos o + B(24) sin )

2 4

6
+ %(Pz cos 2¢ + 0y sin2¢p) — ;—4(P’2/ cos 2¢ + 0 sin 2¢) + 7’”@(13(24) cos 2¢ + Q(24) sin 2¢)

3 5

—%(P3 cos 3+ Q3 sin 3p) + ;—6(P§’ cos 3¢ + Qf sin3¢)

4 6

+ %(PA; cos 4 + Q4 sin4p) — ;E(PZ cos 4y + Q) sindyp)
5 e

- E(PS cos S5+ Qs sin5¢p) + m(% c0s 6 + Qg sin 6)

(7.42)
The vector potential is given by

y L 5 o L 20n
=—~(B—=-(x*+ + —(*+
Ay 2(3 8(x y)B 192(96 y)'B™)

xy 1 1 25,5
— ?B’l + ﬁxy(x2 +y*)B" — 768xy(x2+y2) B )

1
1536

1 1
+ Z(x2 — yz)B’2 - — (@t y4)B’2” +

5 (& + ) = By

1 / 1 / 1 /1! /1!
— 5307 =3P, — —x( = 3005 + 7508+ {07~ 3P + a0 - 3705 }
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(X2 +y2)2
{3 ) - (o -3yl )

1 1
- Exy(x2 — )P, + T (' = 6x*y* +yH 0,

1 /1! /1!
+ %(xz + yz){4xy(x2 —yV)PY — (x* —6x%y* + "0 }

| (7.43)
+ 220 {y(Sx4 — 10x3y* + y4)P;f —x(x* — 1062y + 5y4)QﬁL}

242
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1
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1 1
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1
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768
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1
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960
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1 o
+ m(ﬁ — ) — 14x%y? + y4)P5 + m(3x4 10y + 3y4)Q’5

(7.44)
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1
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1 1 Xy
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(7.45)

Differentiation using B = —VW =V X A and truncation of the resulting expressions beyond
the fifth-order terms results in

X X X
sz__B/ + = 2+ 2 B — 2+ 2 ZB(S)
CB QT (P B ()

1

1 ,
+Bl(z)—§(3x2+y2)Bl’+ T

1, 1
(2 +3)(5 +3)BY = xyBy + (0 4y )yBy

1 o, Y X 4 y 4
—XPy=y Qo+ X Py (3 4y)) 0 — 2 (P )3 = )RS o (PR (5 )05

1 1 , X
+ E(x2 —y?)P3 +xy0; —%(5164 —6x°y* = 3y")P} —ﬁ@xz +y%)04

X2 a2 Y 2 4.2 X a4 1022 e dpr oy Y e A A\
6(x 3y)P4+6(y 3x)Q4+240(3x 10x“y Sy)P4+120(5x y)0,

1 X
o =67y 3P+ )05
X
—m(x4 — 1O)c2y2 + 5y4)P6 —lz—o(Sx4 — lezy2 +y4)Q6
(7.46)
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y y / y
By = _EB/(Z) + E(X2 +y*)B" —ﬁ(x2+y2)2B(5)

1 , 1 1 xy
+ Ba(2) — g B3y +31)By — B+ 15 (8 )0 + 5B + (8 + By

1 X y
—3Qa+yPy =gV Py + (7 + 3510 e (8 4y =3Py

X
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o2+ (5 + )05
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In these formulae, general Cartesian components B,, By, and B, are clearly distinguished
from their axial values B, B,, B by the notation of the subscripts. The expressions for the
electric field strength are obtained by interchanging the symbols as follows:

/
Bip—>Fip, B— —¢, Byy:—Ex,,

7.49
Pi—pj, Qj—g; (7.49)

The resulting formulae are not given explicitly here.

7.3 Rotationally Symmetric Fields

In Sections 7.3—7.5, we give the paraxial series expansions for the most important
applications to be studied in later chapters in the notation that will be used there.

7.3.1 Electrostatic Fields

Since it describes round lenses, the rotationally symmetric scalar potential field is the most
important special case. For electrostatic fields, the following identifications are necessary in
Sections 7.1.1 and 7.2.1:

m=0, Up(z,s)=Pr) = D(,r), uo(z)==>(z0) = ¢(2)

With this notation and setting P = d"¢ /dz", we obtain

_ ol r’ ' 2n)
@(Za”)—;w _Z ¢(2)

(7.50)
— 60~ 80+ = 090 — o 49 + o)
DTy g Y T 04 W THY
The Cartesian components of E = —grad @ are most rapidly obtained by direct
differentiation of (7.50)
E(on= - 0@+ 690 - L 690 + 55 6 o) (751)
A, 7 Z 4 Z o4 z 2304 Z r .
r X y
E,=—-Rg, E,=—=Rp, E,=—ZR 52
5 E > E y 3 E (7.52a)

with

2y ey @) e @ 8
Re(z,77) = ¢"(2) 8<b (2) + 192¢ (2) 9216¢ (2) +00°) (7.52b)
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It is possible to express Eq. (7.50) in closed form as a complex integral (Glaser, 1952)

1 27 )
D(z,r) = —J P(z + ir cosa)da
2 0
This has, however, little practical value and does not circumvent the difficulties described
above associated with the analytic continuation.

In some electron optical devices, the space charge of the beam is important. We therefore
present here the corresponding series expansions. It is convenient to expand the space
charge density p(z, r) as in Eq. (7.50):

<1 r? !
=3 (——) a2
gy Pz ;(n!)z 1 Z

2 4
= ap(2) — %al(z) + éaz(z) —

(7.53)

The coefficients a,, are here independent functions of z. Substituting Eq. (7.53) into the
axisymmetric form of Poisson’s equation,

o’ 02¢+ lod  p

o2 o2 ror &
and introducing for @ a series expansion similar to Eq. (7.50) but with unknown
coefficients still to be determined, we find after some elementary calculations

2 4
2ar) =@~ {¢ ra@} + {6V +ay+a)

6
= —2;"04 {69 +d+a] + @)} + - (7.54)

The coefficient ay(z), representing the most important space charge term, is related to the
axial space charge density by p(z, 0) = €pag(2).

7.3.2 Magpnetic Fields

The series expansions for round magnetic fields are obtained by recognizing that the
formulae of Section 6.4 are a special case of those given in Sections 7.1.2 and 7.2.2. We
need to consider here only fields in source-free vacuum domains, where a scalar potential
W can be employed.
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Eqgs (6.23), (6.28) and (7.11), (7.12) describe the same field in different ways if
I(z,r) = Ci(z,5), S(Do(z,5)=0
so that recalling Eq. (6.31) and setting m =1 in (7.31), we have
II(z,0) = Ci(z,0) = I1y(z) = B(z)

B(z) being the axial flux density. From Eq. (7.32) we now have the series expansion

0 2 "
1) = Zﬁ( )B@")(z)

(7.55a)
=B r B// + B@ BOG) + 08
()~ 5B'@ ()~ 537 BO@ + 00
Using this, we obtain series expansions for the various components of A and related
quantities:
A =A= %H(z, P U=rR21I(z, r) (7.55b)
- _7 _ —
A =— EH(Z’ r, Ay= EH(Z’ r), A;=0 (7.55¢)

The components of B can be obtained in two different but equivalent ways, from
B =V XA and from B = —VW. In the latter case we have to start from Eq. (7.30) with
W = Dy(z, rz). In both cases, we arrive at

" pr + B@ BOG) + 03 .
B(z,r)=B(z) — B (2) BY(2) = 5354 B7@ +0() (7.56a)
B, = — %RM, B, =— )—ZCRM, B, =— %RM (7.56b)
with Ry, = 011/0z7 given by
Ru(z.r*) = B'(2) — B”’( )+ 5 B“)(z) 9216B<7>(z)+0(r8) (7.56¢)

These expressions are of particular interest in connection with the physics of round lenses.

For completeness, we state the series expansions of the scalar potential:

r2 1’4
1% =— |Bdz+ —B ——B"+ B<5> - o8 7.57
@r) J TP T e 2304 ) (7.57)

On comparing all these series expansions, there are seen to be only two sets of
denominators, which appear frequently in different contexts.
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7.4 Multipole Fields

In electron optics the meaning of this term is slightly different from that familiar in
electrodynamics. In the present context, we do not consider series expansions of fields in
terms of spherical harmonics but only those in terms of the azimuth in cylindrical
coordinates, as given by Egs. (7.5) and (7.9). Multipole fields are then those that have
well-defined symmetry properties with respect to the azimuth ¢, as is illustrated
schematically in Fig. 7.1.

In practice, such fields are often created by a suitable configuration of electrodes and
polepieces, their major axes being parallel to the optic axis, see Fig. 7.2. Since the extent of
these elements must be finite, fringe fields are inevitable. It is thus impossible to create
‘pure’ multipole fields in the sense that their dependence on the azimuth ¢ corresponds to a
single harmonic (or finite number of them). In practice this is of no consequence; the only
essential requirement is that a well-defined symmetry exists. Consequently each physical
multipole field consists of a superposition of different harmonics having the same symmetry

@ \@ N\
9 @\ ‘o AR @/8
O ‘o Yo &P

From left to right, multipoles of order m =1 (dipole), m = 2 (quadrupole), m = 3 (sextupole)
and m =4 (octopole). The optic axis is always perpendicular to the plane of the diagram.

Figure 7.2
Simplified diagram of a real quadrupole (see also Fig. 19.1).
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properties. The field is then classified by its lowest order harmonic component. Here we
state explicitly the electrostatic multipole potentials of the lowest orders m =1 and m = 2.

The dipole field (m = 1) is characterized by having only one plane of even symmetry and a
perpendicular one of odd symmetry. Commonly, two such fields, rotated at 90° with respect
to each other, are superimposed; the potential is then given up to terms in r° by

2

— dp =rcos @{Fl(Z) —F”( ) + @F(‘”(Z)} 6r cos 3¢{pz(Z) 16P3(Z)}
1 2
+ mr cos 5¢ ps(z) + O(r") + r sin @{Fz(z) —F/z/( ) + @F(4)(Z)} (7.58)

2

1 1
+ 8’_3 sin 390{q3(z) — ;—6q3(Z)} + EOV sin 590 qS(Z) + 0(7'7)

Such fields are employed in deflection units, see Chapter 32, Paraxial Properties of
Deflection Systems and Chapter 40 of Volume 2.

The quadrupole field (m = 2) is characterized by two perpendicular planes of even
symmetry and two planes of odd symmetry, inclined at 45° relative to the former. More
generally, two such fields, inclined at 45° with respect to each other, may be superimposed.
The electrostatic potential is then given up to terms in 7° by

2

)(z)}+ rsin 2¢{qz(z)——q2(Z) —612(4)(Z)}

1, 7
By =~1*cos 2 { -
0= 2r cos 2¢14 p2(2) p H(z)+ 384”2 28d

1
+ ﬁr {p (z) cos 6+ gg(z) sin 690} + O(rg)

(7.59)

Fields of this type occur in multiplets of quadrupole lenses (Chapter 29, The Aberrations of
Quadrupole Lenses and Octopoles) and in stigmators (Chapter 32, Paraxial Properties of
Deflection Systems).

The radial series expansions of the multipole fields of higher multiplicity (m > 2) can be
terminated after the nonvanishing term of lowest order. The reason for this is that, within
the paraxial domain, these fields represent only weak perturbations or corrections. The
potential is then given by

D,(r)= (_n:‘) {pm(z) cos my + q,,(z) sin m<p} (7.60)
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The most important of these in practice are the sextupole and octopole fields. So far we
have given explicit expressions only for the electrostatic potential . The corresponding
magnetostatic potential W is obtained by replacing the symbols as follows:

¢—-W, Fi—»B), F,—»B,, pi—P, q—0 (7.61)

for each subscript j.

7.5 Planar Fields

In Section 6.5 we introduced planar solutions of Laplace’s equation as analytic functions of
a complex variable z + ix. This slightly unorthodox choice was adopted for the purposes of
electron optics, where the z-axis is almost always made to coincide with the optic axis. We
now reconsider planar fields in the (z, x)-plane, confining the discussion to fields with well-
defined symmetry properties.

The power series expansion of potentials with odd mirror symmetry with respect to the
plane x =0 is given by

_ @(Z,x) z (2( j_)])' 2n+lF(2n)(Z)

(7.62)

~x{FO - S P + 2P0 + 06

It is easily verified that this is a solution of Laplace’s equation. The function
F(z) = —0®/0x, (x = 0), has the meaning of an axial field strength.

Fields of this type are approximately realized in the electric deflection units of
oscillographs (Chapter 32, Paraxial Properties of Deflection Systems) and (as the analogous
magnetic potential) in the fringe-field domains of sector magnets with plane fronts (see
Chapter 52 of Volume 2). Eq. (7.62) can be transformed into a special case of (7.58), the
nonzero axial harmonics then being

PO =F@, p@= '@, p@ =1 F0) (.69

This shows that the planar deflection field is a special type of dipole field.

The paraxial series expansion of potentials with even mirror symmetry with respect to the
plane x =0 is given by

P(z,x) = Pp(z) — = <z5”( )+ 54 ¢(4)(Z) qﬁ“’)(Z) +0(*) (7.64)
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©(z) being the potential in the symmetry plane. These planar fields are a special case of
multipole fields with p, = —¢"/2, py = »V/8. They occur in electrostatic slit lenses.

7.6 Fourier—Bessel Series Expansions

In Section 7.1 we introduced azimuthal Fourier series expansions with coefficient functions
depending on z and r. The evaluation of the paraxial series expansions, derived in the
subsequent sections, is not the only way of calculating the coefficient functions. An
alternative procedure is to separate the general scalar potential V(r) into two functions, one
in z only, the other in r only:

Viu(z,7) = " Upl(z,1*) = Zu(2)Ryu(r) (7.65)

When this is introduced—together with a factor exp(imy)—into Laplace’s equation,
ordinary differential equations are obtained:

Z0(2) + kK Zu(z2) =0 (7.662)
/7 1 / 2 m2
R,(2) + ;Rm(z) — (k" + 7)Rm(r) =0 (7.66b)

The separation constant here has an arbitrary positive value k>. The general solution of
(7.66a) is
Zn(2) = Cpu(k)e™, (=0 <k< w0) (7.67a)

C,.(k) being any regular function of k. Eq. (7.66b) is the differential equation for modified
Bessel functions, its regular solution being given by

R,.(r) = L,(kr) (7.67b)

Putting all this together, we obtain a solution of Laplace’s equation in the form of a
Fourier-Bessel series expansion:

V(z,r, ) = XT: %{eim’*’ J
m=0

The paraxial series expansion can now be obtained by introducing the well-known Taylor
series expansion

: Cm(k)eikzlm(kr)dk} (7.68)

0

() = (f)m i e/ m=0,1,2,..) (7.69)

! 1’
2/ = nl(m+n)!
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with x = kr into Eq. (7.68). The resulting expression will not be given here. The main
difference between it and (7.27) is that repeated differentiations are replaced by Fourier
integrals.

The most important special case is that of rotational symmetry, m = 0, Eq. (7.68) then
simplifying to

o0

Viz,r) = J Co(k)e'XIy(kr)dk (7.70)

The reality of this expression is guaranteed by requiring that
Co(— k) = Co(k) (7.71)

This Fourier coefficient Cy(k) is the Fourier transform of the axial potential uo(z). The
relation between differentiations and Fourier transforms is very simple here:

ul(z) = Jx (ik)” Co(k)e™ dk (71.72)

Furthermore, it is easy to determine Cy(k) from the boundary values V(z, a) of the potential
on the surface r = a of an infinitely long cylinder. Applying the inverse Fourier transform
to Eq. (7.70) with r = a, we obtain rapidly

o0

Colk) = {27710(ka)}_1 J V(z, a)e *dz (1.73)

This expression satisfies (7.71).

Historically, Eqgs (7.70) and (7.73) have played an important role in the development of
simple analytic field models for round electron lenses. A few details are given in Chapters
35 and 36 of Volume 2. Nowadays, interest in these models has dwindled, for it is as easy
to calculate field distributions exactly as to match parameters to a model. One or two
models remain useful for teaching purposes and to gain a rapid qualitative understanding of
the dependence of the properties of some device on various parameters. Nevertheless, the
Fourier—Bessel series expansion is still of some interest. For instance, van der Merwe
(1978a—c, 1979, 1980) used it to calculate rotationally symmetric lenses and Franzen
(1984) applied it to quadrupole lenses in cathode-ray tubes.



Boundary-Value Problems

Hitherto we have concentrated on fields in the extended paraxial domain. We are in a
position to carry out the field calculation once a sequence of axial harmonics u,,(z), m =0,
1, 2, ... is known, but these functions are so far unspecified. The potential inside a domain
of solution is specified by its boundary values at the surfaces of this domain and by its
source distribution. We elaborate on this in the following sections.

8.1 Boundary-Value Problems in Electrostatics

In electron optics, the electric fields inside insulators and in current-carrying metal
conductors are of very little interest and will not be considered here. The domain of
solution is the vacuum part of the device in question. This may be multiply connected but it
always contains the optic axis. Its boundary is formed by the surfaces of all surrounding
metallic electrodes or at least by relevant parts of these. It may prove to be convenient to
assume that parts of the boundary are located in the vacuum and even to extend these to
infinity, though this is clearly an idealization.

In almost all cases of practical interest, the electric field exhibits simplifying symmetry
properties, since a completely unsymmetric field serves no practical purpose. Imperfections
in the machining of the electrodes will not be considered here; this topic is treated in
Section 9.4.6 and Chapter 31, Parasitic Aberrations. Any symmetry properties of the field
can be exploited to reduce the relevant domain I" of solution; the field obtained is
subsequently completed by means of symmetry operations.

These remarks are illustrated in the example shown in Fig. 8.1. The appropriate choice of
the domain I" and its boundary oI does, of course, depend strongly on the particular
properties of the device in question.

Whenever it is sufficient to consider the field in a planar axial section through the device,
we shall adopt the notation presented in Fig. 8.2. The vectors n and ¢ are unit vectors. The
surface normal #n is directed outwards from medium 1, even in the general three-
dimensional case. The contour of the boundary in the axial section will always be oriented
positively in the sense shown in Figs 8.1 and 8.2. This choice will be adopted throughout
this Part. In the case of electrostatic fields, the medium 1 will be identical with the domain
I" of the desired solution.

Principles of Electron Optics: Basic Geometrical Optics.
DOI: http://dx.doi.org/10.1016/B978-0-08-102256-6.00008-0 101
© 2018 Elsevier Ltd. All rights reserved.
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Figure 8.1
Round symmetric electrostatic lens. The domain I' within which the solution is sought can be
confined to the vacuum region for which z=0, r= 0. Whether the domain I' must be closed or
can be extended to infinity depends on the method of calculation.

Medium 2
roA
Medium 1
P
C :
|-
»
Figure 8.2

Unit vectors normal to the surface (n) and tangent to it in the meridional section (t) at an
arbitrary point P of the boundary. The unit vector i, is perpendicular to the meridional section
shown and satisfies i, =t X n.

The boundary-value problem for the electrostatic field is now defined in the following
manner:

1. At all electrode surfaces the electrostatic potentials @(r) must have a constant value
equal to the known potential of the corresponding electrode.
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2. If the boundary consists of several separate parts located in the vacuum, the
corresponding surface potential is generally not constant and is to be defined
reasonably, for instance by means of linear, quadratic or logarithmic interpolations.
This situation often arises in narrow gaps between electrodes.

3. If a plane of negative mirror symmetry of the potential forms a part of the boundary,
the potential over this plane is constant, usually zero.

4. At all infinite parts of the boundary, the potential is constant. These constant values
must be chosen consistently.

5. At all planes or at an axis of positive mirror symmetry, the normal component of the
field strength (normal derivative of the potential) vanishes. The optic axis in every
rotationally symmetric device is certainly such an axis.

The boundary-value problem, specified in this manner, has a unique solution, and later we
shall describe computational methods for obtaining this solution. In this context, the
following relations are very useful. Since all electrode surfaces must be equipotentials, the
field strength on their vacuum side is given by

1
E(r)= ——o(r)n(r) 8.1
€0
Its magnitude is then
0P
—E-n= " a(r)/eo (8.2)

Throughout this Part the symbol 6/0n = n - V denotes the familiar normal derivative. The
function o(r), defined for all metallic surfaces, is the surface charge density. Initially, this
function is unknown, but once the boundary-value problem has been solved it may be used
with advantage in the ensuing field computations, see Chapter 9, Integral Equations.

8.2 Boundary Conditions in Magnetostatics

Whereas the material properties of the metallic electrodes are unimportant in electrostatics,
since the electrostatic field vanishes inside any conductor, the situation in magnetostatics is
far more complicated. Apart from the case of perfect superconductors, the magnetic field
inside polepieces does not vanish. In consequence, it is not always possible to confine the
domain of solution to the vacuum part of the field. It is of course this region that is of
greatest interest for calculating the optical properties, but a knowledge of the field
distribution in the yoke is often needed when the shape of the latter is being designed. In
the most general case, the field computation will become extremely complicated; instead of
treating this, therefore, we shall consider some classes of important field configurations
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with simplifying properties. First, however, we shall formulate the general boundary
conditions, which must always be satisfied.

We shall use the notation explained in Fig. 8.2; here medium 1 is the vacuum while
medium 2 is any ferromagnetic or superconducting material. In the general case, at all
surfaces of materials, the interface conditions

n-(B,—B;)=0 (8.3)
n><(H2—H1)=w(r) (84)

must be satisfied, the subscript referring to the material in which the field vectors are
defined. The function w(r) is the surface current density. This is a vector function

defined only on surfaces. It must always have the same direction as the local tangent:

w(r) = w(r)t(r), t.(r) being a normalized tangential vector which may differ from the vector
t introduced earlier. The physical meaning is as follows: dI = w(r)ds is the electric current
flowing through a surface line-element ds oriented perpendicularly to w(r), see Fig. 8.3.
The whole distribution of surface currents must, of course, satisfy the requirements for the
conservation of electric current.

Such surface current distributions arise in superconducting devices. They are caused by
induction effects, when the field in the vacuum domain is switched on. Furthermore,
surface current distributions offer a convenient way of describing flat layers of current-
conducting windings located in the vicinity of the surfaces of magnetic shielding tubes.
Further examples are given below.

In very many cases, the function w(r) vanishes identically, Eq. (8.4) then simplifying to
nX(H,—H)=0 (8.5)

Eq. (8.3) expresses the continuity of the normal component of B, while Eq. (8.5) implies
that the tangential component of H is continuous. Even when saturation effects occur, we

Figuer 8.3
Representation of a surface current distribution; the direction of the vector w is the same as that
of the tangent. The current increment d/ = w - ds is constant along the stripe indicated.
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A
n
az ‘§;
M2
r 3
Hq
By ay
Figure 8.4

Refraction of lines of magnetic flux for uy/pq = 50.

may introduce material coefficients (Eq. 6.3 or 6.19). Writing B; = p;H;, ji; = 1/v; for j=1,

2, we can now derive the familiar law for the refraction of flux lines (Fig. 8.4):
tan ay _ Ha (8.6)
tan op

The continuity laws break down at sharp edges, where no local surface normal n can be

defined. We shall therefore assume that such edges are slightly rounded off, as is the case

in all practical devices.

These interface conditions are very simple but refer to vector fields. The computation of
vector fields is possible in principle but is usually complicated. It is therefore advantageous
to use scalar potentials from which the field can be determined by differentiation.
Unfortunately, the scalar potentials x(r) and II(r), introduced in Eqs (6.11 and 6.12) and
(6.28) respectively, are of only very limited applicability. In order to circumvent this
difficulty, it is usual to separate the magnetic field strength H(r) into the contribution H(r)
of the isolated coils in vacuum and the contribution H,,(r) of the ferromagnetic parts,

H(r)=Ho(r) + Hy(r) (8.7)
By definition the following conditions are to be satisfied in the whole space:
div Hy(r) =0, curl Hy(r) =j(r) (8.8)

Together with the natural boundary conditions at infinity, this is already sufficient to
calculate Hy(r) uniquely by means of Biot—Savart’s law:

(=D X)() 5,

8.9
4rlr —r|? 9

Ho("):J
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This function can be obtained by differentiation of potentials. In the general case, the vector
potential is appropriate:
)

1 Ho
Hy=— 1A A ==
0= curl Ag,  Ao(r) 47TJ =1l

(8.10)

In simply connected domains excluding any sources, we may also use Eqs (6.11 and 6.12).
For a single closed winding carrying an electric current /, this representation takes the
familiar form

I J(r—r’)-da’ @.11)

H, = —grad xo, xo(r) = e r—rp

s
The two-dimensional surface integral is to be evaluated over any surface S enclosed
by the windings. An example of this is shown in Fig. 8.5. Since the integral in
Eq. (8.11) is equal to the solid angle {2 under which the winding would be seen from
the point r (see Fig. 8.5), xo(r) is known as the ‘solid angle potential’. As the point r
passes through the surface S, xo(r) varies discontinously, the jump being = [. In the
case of several closed windings the contributions of all the windings are to be

summed up appropriately. Important practical applications of this integral are given in
Chapter 40 of Volume 2.

The representation (8.11) is most convenient in the extended paraxial domain, since it is
always possible to define the surfaces § of integration in such a way that Eq. (8.11) is
unique in this domain. Apart from some special cases, Eq. (8.10) is less convenient.

The evaluation of Eq. (8.9) is always possible. In the case of surface current distributions,

h_
F 3

Figure 8.5
Pair of saddle coils. The arrows indicate the local direction of the electric current. The solid angle
subtended by the upper surface at some arbitrary point P is denoted by 2. The solid angle
subtended at P by the lower surface can likewise be found and is to be subtracted from {2.
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the three-dimensional integration collapses to a surface integration, which means that
Jj)d’r is to be replaced by w(r')dd’. In every case, the resulting function Hy(r) is unique in
the whole space. In the following considerations we shall assume that these integrations can
be carried out for all points of reference r that are to be considered.

Let us now focus our attention on the second term Hy,(r) in Eq. (8.7). Since the whole
current density j is already associated with H, the field H,; must satisfy curl Hy; = 0,
and hence

Hy(r) = —grad x(r) (8.12)

xm(r) being a unique scalar potential in the whole space and defined as the reduced
magnetic scalar potential. In every unsaturated medium (x = const) it can be concluded
from div B =0, div Hy =0 and div H = 0 that div H,; = 0 so that

Vixy(r)=0 for = const (8.13)

This is invalid at the material surfaces, where formal scalar surface charge distributions
must be introduced; these are the analogue of electrostatic surface charges. Magnetic
surface charges, however, have no physical meaning, but are only a convenience in
calculating, as will become obvious in Section 9.2.

The interface conditions (8.3), (8.4) and (8.5) are considerably simplified by the separation
in Eq. (8.7) combined with (8.12). Since x,,(r) must be a unique function in the whole
space, this potential itself and the tangential components of its gradient must be continuous
at all material surfaces, while the normal component will be discontinuous. The field
contribution Hy has the opposite behaviour: its normal component is continuous at
interfaces, while the tangential components are discontinuous, the corresponding jump
being obtained from Eq. (8.4):

n X (Ho), — (Ho), = w (8.14)

This jump is already considered in the Biot—Savart integration over the surface currents
and hence Eqs (8.4) and (8.5) contain no further information.

Introducing Eqs (8.7) and (8.12) into (8.13) and using the fact that
Bj=pH; = p(Hy—Vxy) (=12)

on both sides of the corresponding interface, we obtain the fundamental interface condition

OXm OXm
— = — H .1
,u2< on )2 . ( on /, (Mz Ml) o (8.15)

The implementation of this condition will be examined in Section 9.2.
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8.3 Examples of Boundary-Value Problems in Magnetostatics

In this section we shall confine our considerations to important classes of boundary-value
problems in the proper sense, by which we mean cases in which it is possible to confine the
necessary field calculation entirely to one medium (1). The subscript 1 will then be omitted
when this does not cause confusion, and we set j1; = po when medium (1) is the vacuum.

8.3.1 Devices with Superconducting Yokes

Owing to the Meissner—Ochsenfeld effect, the magnetic field is completely expelled from
the interior of any superconductor. On the vacuum side of its surface the magnetic field
must have a locally tangential direction, see Fig. 8.6. This condition can be satisfied only
by the presence of appropriate surface current distributions w(r), which are unknown prior
to the solution of the corresponding boundary-value problem. Since w(r) must be known in
order to calculate H(r), the separation (8.7) is unhelpful in this context.

In rotationally symmetric devices, the necessary boundary conditions are most simply
satisfied by use of the flux potential ¥. From Eq. (6.32) it is obvious that B is tangential if
the boundary contour C is a line ¥ = const. The Dirichlet problem for ¥(z, r) is then very
simple:

U(z,r)=Wg=const, (z,r)eC

¥(z,0) =0, —op <z< 0 (8.162)

For the field in the paraxial domain, the potential I/(z, r) is more suitable. From Eqs (6.27),
(6.28) and from the regularity requirements at the optic axis, the boundary conditions

(z,r)= !PB/m’z (z,r)eC

oIl /or=0 for r=0 (8.160)

Figure 8.6
Magnetic flux lines in a superconducting device; the upper half of an axial section is shown.
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can be derived. The solution of the corresponding boundary-value problem for I7 is not
unduly complicated. The constant Wz has the physical meaning of the total flux through the
bore of the superconducting polepiece.

An analogous Dirichlet problem can be formulated for planar fields but this will not be
treated here since the simplification to planar field structures is generally not satisfactory in
superconducting devices.

8.3.2 Conventional Round Magnetic Lenses

Fig. 8.7 shows an axial section through a typical magnetic lens, and Fig. 8.8 the relevant
vacuum domain of the magnetic field. The contours of the casing are schematically
simplified. It is only approximately possible to confine the field calculation to the
domain I'; for this the following assumptions must be made:

1. The permeability of the casing material must be extremely high, i, = 10%/, and
saturation effects must nowhere occur.

2. The cross-section of the casing must be large enough to ensure that practically all the
magnetic flux flows through the gap.

3. The gap has to be long (in the radial direction) and narrow, so that the field between
the pole faces may be regarded as practically homogeneous.

These assumptions cannot, of course, be satisfied precisely in a mathematical sense. The
following considerations represent a technical simplification.

Figure 8.7
Highly simplified axial section through a conventional magnetic lens.
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Figure 8.8
Enlarged view of the region of Fig. 8.7 enclosed in dashed lines; the scalar potential x(r) is
defined within the domain I'.

Since the currents in the coils are located completely outside the domain I', we may use the
total scalar potential x(r). From Eq. (8.6) we can conclude that the angle «; on the vacuum
side of the casing surfaces must be extremely small. Thus the flux lines intersect these
surfaces practically orthogonally. This implies that the surfaces may be regarded as
equipotentials x(r) = const. One surface potential y; may be chosen arbitrarily, for instance
X1 = 0. The other is determined by Ampere’s law

j{H-a’erI=X1—X2 (8.17)

In this relation NI is the total number of ampere-turns of the coil; the integration loop must
enclose all the windings and must pass through the gap.

The boundary-value problem to be solved now takes the following form:

1. Inside I the potential x(z, r) is to be calculated by solving V*y = 0.
At the surfaces of the polepieces and in asymptotic regions of the bores the potential is
constant, x; or Y, respectively.

3. At the upper part of the boundary, inside the gap, the potential is to be interpolated
linearly.

4. On the optic axis, Ox/0r = 0 must be satisfied.

The simplifying assumptions reduce this boundary-value problem to the analogue of
an electrostatic problem and it can be solved by means of corresponding techniques.
As in Egs (8.1) and (8.2), it will be convenient to introduce formal magnetic surface
charge densities, satisfying

H(r) = —oy(r)n(r) (8.18)
—H n=0x/0n=oy(r) (8.19)

Another problem that can be solved by employing the potential x(r) is the fringe field of
sector magnets with screening plates (Part X of Volume 2).
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8.3.3 Unconventional Round Magnetic Lenses

The approximations described above are of limited application and may break down even
when comparatively simple configurations are considered. A typical example is shown in
Fig. 8.9. The ‘gap’ in the shield of this lens is so wide that a simple linear interpolation is
unreasonable and the distribution of the electric current in the coil is now of importance.
This is clearly a case for the flux potential ¥(z, r), since the interface conditions are then
strongly simplified.

The continuity of the magnetic flux requires that ¥(z, r) be continuous at any material
surface not conducting surface currents. Consequently the tangential component of V¥ is
also continuous. Hence Eq. (8.3) is already satisfied: introducing Eq. (6.32) into (8.3) and
recalling that n X i, =t for the tangential vector # (Fig. 8.2), we do indeed obtain

(t-VT), = (t- VD),

The second interface condition is obtained by introducing Eq. (6.32) into (8.5). After some

elementary calculations, we find
ov o
=) = - 8.20
V2<a”>2 V1<a” )1 (620

In the case of an unsaturated casing with extremely high permeability, p, > pq, v, <y, it is
reasonable to make the approximation v, — 0, Eq. (8.20) then simplifying to

ov
<%>1 =0 (8.21)

We now have to solve the following boundary-value problem: the domain I" of solution is
the whole of space excluding all ferromagnetic parts. Inside this domain Eq. (6.36) is to be
solved. At the optic axis and at infinity, ¥ must vanish, while at the iron surfaces the
Neumann condition (8.21) must be satisfied.

r A

Figure 8.9
Axial section through a very simple unconventional magnetic lens.
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The simplifications introduced above are invalid if parts of the iron become seriously
saturated. In cases where this is liable to occur, another approximate field calculation is to
be used, which is described in Chapter 12, The Finite-Element Method (FEM).

8.3.4 Toroidal Magnetic Deflection Systems

Such systems are frequently employed as scanning units, for instance in old television tubes
and scanning electron microscopes. A simplified diagram is given in Fig. 8.10. Two pairs of
coils, rotated at 90° with respect to each other, are wound round a rotationally symmetric
ferrite shield in such a way that each winding remains in a meridional plane.

It is convenient to regard the coils as surface current distributions. Following Schwertfeger
and Kasper (1974), the H-field inside the yoke may be neglected, since the permeability is
very high. The deflection currents are never strong enough to cause saturation effects and
we can therefore confine the following discussion to the vacuum domain I' of the device.
We now omit the subscript 1. In view of these assumptions, Eq. (8.4) simplifies to

H(r)Xn(r)=w(r) (@(reol) (8.22)

Ol' denoting the surfaces of the coils on their vacuum side. Since any integration contour
which remains completely in the vacuum never encloses any current lines, ¢ H-dr =0 is
always valid and hence the scalar potential x is unique in the whole vacuum domain.
Forming the vector product of Eq. (8.22) with n and introducing H = —Vy we obtain

grad y —(n-grad Y)n =wXn on oI (8.23)

Windings

Figure 8.10
Simplified representation of a toroidal deflection system. (A) Axial section, (B) cross-section.
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The expression on the left-hand side is the rangential component of Vy; this now has a
given value for all surface points.

So far these considerations are quite general and are also applicable to deflection systems
with saddle coils. The characteristic feature of toroidal systems is that the direction of the
vector function w is meridional. This implies that w(r) may be written

w(r)=J(p)t(r)/r (8.24)

i being the azimuth with respect to the optic axis and #(r) the local tangential vector in
the meridional direction; J(y) is the azimuthal current distribution function, which means
J(p)dp is the total electric current flowing through the windings located between ¢ and

p+dp.

It is now possible to integrate Eq. (8.23), since Eq. (8.23) is consistent with the assumption
that the boundary values of  are only dependent on ¢. Introducing Vy =r "' X' ()i, and
Eq. (8.24) into (8.23), and recalling that ¢ X n =i, we obtain X'(¢) = J(¢) and hence

X(p) = xo + r J(a)daw on T (8.25)
0

This is essentially the same as the formula of Schwertfeger and Kasper (1974); here the
derivation is more general, since Eq. (8.23) may also be applied to more general types of
deflection systems, see Section 9.4.4.

The boundary-value problem to be solved is now comparatively simple: at the surface oI of
a rotationally symmetric shield the potential y(r) has uniquely determined boundary values
which are nof rotationally symmetric. At infinity the potential must vanish, and in the
vacuum domain I, Laplace’s equation is satisfied.

This presentation of the important classes of boundary-value problems is by no means
complete. We cannot devote more space to them here but we hope that the reader has some
impression of the complexity of the problems to be considered.



Integral Equations

As is well-known in classical electrodynamics, it is possible to reduce the problem of
solving a boundary-value problem to that of solving an integral equation. This is very
advantageous since methods of field calculation based upon integral equations have gained
great importance. In this chapter we shall present the general theory; details of numerical
procedures are given in Chapter 10, The Boundary-Element Method.

9.1 Integral Equations for Scalar Potentials

In the following account, we consider a domain I' in three-dimensional space and its
boundary OI'. Inside the domain I' we attempt to solve a uniquely specified boundary-value
problem for Poisson’s equation (7.1)

V2V(r)= —S(r) 9.1)

9.1.1 General Theory

In order to obtain an integral equation, we start from Green’s theorem for a modified
domain I'" with boundary oI and for a variable of integration r’
ov oG
J (GV?*V —VV?G)d*F = J G— —V— |dd 9.2)
I or on’' on'
valid for any differentiable functions G(r’) and V(r'), regardless of their special meanings.
The operator 6/0n’ =n’ - V' is the so-called normal derivative, the derivative in the
direction of the outward oriented surface normal n’ on 6I". The boundary JI" itself may
consist of several distinct closed surfaces and the integral on the right-hand side of Eq. (9.2)

is then the sum of the contributions arising from the different surfaces; this summation is
implicit in the notation.

The function G in Eq. (9.2) can be chosen arbitrarily; the most suitable choice is the
free-space Green’s function, defined by

Principles of Electron Optics: Basic Geometrical Optics.
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G(r,r') = (4rlr—r|)"! (9.3)
and satisfying the differential equation
VG =V?G = —60r—r)

where 6(r — r’) denotes Dirac’s distribution. The use of the latter is familiar but not always
favourable. Difficulties arise if the reference point r is located on the boundary. In order to
circumvent these difficulties, we do not employ the d-function formalism but instead, we
modify the given domain I" as sketched in Fig. 9.1. An internal point r is completely
enclosed by a small sphere of solid angle €2; = 47. Around a regular boundary point, a
small hemisphere with solid angle €2, = 27 is excluded; at a sharp line-edge of intersection
angle «, a spherical segment with solid angle {23 =2« is removed; finally, an external point
r needs no exclusion surface and hence €24 = 0. In the domain I", obtained after excluding
the immediate neighbourhood of the reference point, Eq. (9.2) is valid.

In order to simplify the notation, we introduce the abbreviation
1 forr e T,

1
e(r) = 4—Q(r) = a/2r forre dT, 9.4)
T 0 forr ¢ T,

which implies that a = 7, € = 1/2 for regular boundary points. We also write
ov
oty = —=n"-VV({F) 9.5)
on’

. G_G_n’- r—r)

P(r,r): B (9.6)

o' Axlr—r

At the boundary these normal derivatives will be discontinuous; they are then defined as the
limits obtained on approaching from the interior of I".

Q=n Q,=2n

Figure 9.1
Two-dimensional section through a three-dimensional domain I', showing various positions of
reference points and the associated solid angles.
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Introducing all this into Eq. (9.2), we soon notice that only the terms involving P are
critical so far as the limit of vanishing radius p of the sphere or sector of exclusion is
concerned. We may then approximate the slowly varying function V(r') by V(r). Recalling
that Ir —rl=p=n" - (r —r’) on the spherical surfaces S, we obtain

j v(r) 2 aw = $V()P(r.r")da’ +limV (
o om 4p’
The final surface integral is just the expression £(r) defined by Eq. (9.4). The symbol £
denotes the principal value of the corresponding integral, defined as the value obtained by
proceeding to the limit p— 0 in the integration over the not-excluded parts of oI'. For
reference points r outside O this is straightforward; for re ol this limit exists, since in this
case we have n’- (r —r’)— 0 because of the orthogonality between tangents and surface
normals. In the subsequent presentation we shall not indicate the principal value explicitly
since all improper surface integrals are to be evaluated in this way.

Putting all this together, we arrive finally at

e(r)V(r) = LG(r, )Sr)d*r

9.7)

+ J {G(r,r)o(r) — P(r,r)V(r)}dd
ar

The expressions on the right-hand side can be interpreted in the following way: the first is a
space-source term, the second a surface-source term and the last is a surface-polarization
term. Since the boundary functions V(') and o(r') are still independent, Eq. (9.7) alone does
not suffice to determine the potential distribution uniquely. We may prescribe an additional
boundary condition

a@ V(') + b)o()=c(r), reol (9.8)

the surface functions a(r’), b(r’) and ¢(r') being known with a*+ b*>0. It is then possible
to solve Eq. (9.7). We now discuss the two most familiar special cases.

9.1.2 Dirichlet Problems

Here the boundary values V(r') are specified uniquely, while o(r’) is unknown. In Eq. (9.8)
we may choose a = 1, b = 0; ¢(r') = V(r) are then the given boundary values. Eq. (9.7) is

now a two-dimensional integral equation of Fredholm’s first kind for the unknown o. After
solving it, the same Eq. (9.7) can be used to evaluate the potential at any point r in I'.

Although this procedure is perfectly correct, it is rather inconvenient for numerical
solutions since the factor e(r) is discontinuous and the polarization term requires careful
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handling in order to obtain the appropriate principal value. It is therefore highly desirable to
find alternative forms of the integral equation that do not contain these terms.

If the boundary OI" consists of a number of closed surfaces with constant boundary values
V on them, the difficult terms can be eliminated completely. For simplicity, we consider
only one such surface oI', the domain I being its exterior. The second boundary is an
infinite sphere; since the field is required to satisfy the natural boundary condition, this
sphere need not be considered here. We now have to evaluate the integral term

I = J P(r,r)\V(r)dd = VJ P(r,r')dd
ar ar

Since Eq. (9.7) is quite generally valid, we are at liberty to set V equal to a constant; for the
moment, therefore, we introduce

V=1, o=0, §=0

and recalling that I" is now the exterior, we obtain the mathematical identity

J P(r,r)dd =1 — &(r) (9.9)
or

The integral expression / now simplifies to

I={1—-em}Vv
Introducing this into Eq. (9.7) we find

V(r)= JFG(r, S + JaFG(r, ¥)o(r)dad (9.10)

This Fredholm equation for o is now quite generally applicable without exception. When
the solution is still unknown, the reference point r must be located at the boundary and V(r)
on the left-hand side is then the corresponding boundary value. After obtaining the solution
for o, the same equation (9.10) may be employed to compute the potential at any point r in
the space, even on OI" or outside I'. The potential itself is continuous if the reference point
crosses the boundary.

We can generalize Eq. (9.10) to include configurations with a boundary consisting of
several closed surfaces and even boundary values of V that are not constant on these
surfaces. The basic form of Eq. (9.10) remains unaltered, but now the surface charge
density o is the difference between the normal derivatives of V on each side of the
corresponding surface. Physically, Eq. (9.10) can be interpreted as a Coulomb integral over
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space charges and over surface charges as a degenerate case of the former. When it comes
to numerical evaluation, Eq. (9.10) is far more convenient than Eq. (9.7).

9.1.3 Neumann Problems

It is now the boundary values of 0V/0n that are uniquely specified while those of V(r) are
unknown. This boundary value problem has a solution only if §o(r')da’ vanishes on oI

In Eq. (9.8) we may specify a =0, b = 1, so that ¢(r') = o (1) are given boundary values.
Eq. (9.7) is now an integral equation of Fredholm’s second kind for the boundary values of
V(r). Apart from an unimportant additive constant, this integral equation has a unique
solution. After this has been found, Eq. (9.7) can be used to compute the potential V(r) at
arbitrary points inside IT".

The polarization term cannot be eliminated from Eq. (9.7). Since this term contains a strong
singularity and is discontinuous at the boundary oI', great care must be taken in numerical
computations. Thus the concrete evaluation of such expressions should be avoided
whenever possible by appropriate transformation of the boundary-value problem.

9.2 Problems with Interface Conditions

The theory outlined in Section 9.1.1 is quite standard in classical electrodynamics and can
be applied to boundary-value problems in electrostatics and magnetostatics. The integral
equation given below is less familiar. In connection with electron optical applications it has
been mentioned by Kasper (1982) and explicitly derived by Scherle (1983), who also
demonstrated that it can be applied in practical numerical computations. Alternative
formulations will be given at the end of this section.

Since interface conditions are most important in magnetostatic problems, we shall confine
the discussion to these, although it would be no problem to establish an integral equation
for electric fields. It is necessary to assume unsaturated (linear) media. For simplicity, we
consider here only two different domains, the vacuum domain I'; and a ferromagnetic
shield I',, I'; U I'; being the whole space. The convention concerning the choice of the
surface normal, represented in Fig. 8.2, then holds. Generalizations to more than two
different domains have been worked out (Scherle, 1983); apart from the introduction of an
iterative solution technique, they contain nothing essentially new; some results will be
given in Chapter 10, The Boundary-Element Method.

We start from Eq. (9.7). The appropriate potential is here x,,(r), introduced in Egs (8.7) and
(8.12). From Eq. (8.13), we see that there is no space-source term. On the boundary
oI'=T'1 n I', we have € = 1/2 and hence Eq. (9.7) specializes to



120 Chapter 9

XMTm = (_l)iér{ Xu(r)P(r,r') — G(r,r’)q,-(r’)}da’ (G=1,2, readl) (9.11)

The index j indicates the domain from which the surface JI' is approached; we recall that in
the polarization term the principal value of the integral is to be taken. Since neither the
potential itself nor its normal derivatives o; are known, a second relation is needed, namely
Eq. (8.15). This enables us to eliminate the normal derivative from Eq. (9.11) by forming
appropriate linear combinations. In this context we need to use Eq. (9.5) with x,, = V.

The result of these elementary calculations is as follows:

= A1) +7§ P(r,r')x,,(rdd 27{ G@r,r')n'-Hy(r')dd' (9.12)
ar ar
with reol" and
1 +
A= 2 TR (9.13)
2 py =y

This is an integral equation of Fredholm’s second kind for the surface values of the
potential. Once it has been solved, the problem reduces to an ordinary Dirichlet problem.
We can hence introduce the calculated surface values of ,, in the left-hand side of

Eq. (9.10) and solve this equation (with vanishing space-source S) for o. It can be shown
that o = 0,—0>,, but this is of little use, since the solution of Eq. (9.10) gives o directly.

The derivation presented here differs from Scherle’s method but is equivalent to it. In the
literature on magnetic field computation, many other forms of integral equation are derived,
which are essentially equivalent to Eq. (9.12), but not always so suitable for numerical
evaluation. Many technical points were elucidated in the proceedings of COMPUMAG
(1976) and the subject has been reviewed by Iselin (1981). Besides Scherle’s thesis, the
publications of Lucas (1976) and Kuroda (1983) are particularly concerned with field
calculation for electron optical designs by means of integral equations. Scherle’s method
has the advantage that only one scalar integral equation for a potential is needed instead of
three coupled ones for a vector field and that the singularity of the integral kernel P(r, r') is
the weakest possible. The field can be evaluated everywhere in space.

9.3 Reduction of the Dimensions

The derivation of a two-dimensional integral equation means that three-dimensional
unknown functions have already been reduced to two dimensions. Very often the integral
equations obtained are soluble only numerically. In electron optics, however, there is an
important class of configurations that can be treated by means of one-dimensional integral
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equations. This is the class of all devices the electrodes or polepieces of which have
rotationally symmetric surfaces. It is not necessary to assume that the boundary values are
also rotationally symmetric. In Chapter 7, Series Expansions, we have shown that the three-
dimensional Poisson equation can be reduced to a sequence of uncoupled two-dimensional
equations by means of Fourier series expansions. Here we shall show that integral equations
can also be simplified in an analogous manner. For Dirichlet problems, an approximate
theory has been developed by Kasper and Scherle (1982) and by Kasper (1984a,b); the
theory of a method of evaluating Eq. (9.12) has been developed by Scherle, who has also
demonstrated that it can be applied in practice.

9.3.1 Dirichlet Problems

The space-source term in Eq. (9.10) can now be omitted without loss of generality. This
term alone produces a particular solution V(r). If V 2 0, then the subsequent reasoning is
valid for V — V; instead of V. Since this adds nothing new, we assume that S(r) = 0,
Eq. (9.10) then simplifying to a pure surface integral

1 J o(r)dd

V)= —
"= ) =]

9.14)

There is no advantage to be gained by separating the factor " in Eq. (7.5) and we thus
introduce the notation

V)= R{Valz, r)e™) (9.15)
m=0

The boundary O is suitably represented in parametric form in terms of the azimuth ¢ and
the arc-length s along the meridional line C passing through the reference point r (see
Fig. 9.2). Since 01" is assumed to be rotationally symmetric, this line C can be represented

zZ
0 z(s) C ¢

Figure 9.2
Meridional section through a rotationally symmetric boundary with contour C, along which the
arc-length s is adopted as parameter.
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by z = z(s), r = r(s). Whenever this causes no confusion, we shall omit the argument s and
introduce the simplifying notation z' = z(s"), ¥ = r(s’). When z, z’ and r, ¥’ appear as
arguments of functions, the vectors u = (z, r), u’ = (z/, ') will be used.

The values of the functions V,,, occurring in Eq. (9.15), on the boundary are given by the
inverse Fourier transform of V(u(s), ¢) and hence depend on s:

2T
0n(0) = Vi) = 3% | Ve e ©.16)

with

1 form=0

mmzz—am,():{z form £ 0 (9.16a)

It is helpful to expand the surface charge density o as a Fourier series with respect to ¢:

o(r) = i iR{am(s)eim“’} 9.17)
m=0

Introducing Eqs (9.17) and (9.15) with the coefficients v,,(s) into (9.14), we obtain

- imy — - O—m(s/)eimd ’
ZiR{Um(s)e *P} = ijarmda

m=0 m=0
The distance D = Ir—r'| is explicitly given by

1/2
D(u,u', o) = {(z—z’)+r2+r/2—2rr’cos a} (9.18)

a = ¢'— being the difference of azimuth. The element of surface area can be written as
da' =7 ds' do. Eliminating ¢, we find

o0 o0
Z ‘R{Um(s)ei'"’*’} = Z ‘J’{{eim*ﬂj Gm(u,u’)r’am(s’)ds’}
m=0 m=0 C
where the abbreviation
1 (> emoda
G Ne - | =2 ==
(@, ) 47TJO D(u,u', o)

has been introduced. This expression is a real function of its arguments, since it can be
rewritten as

1 J’T cos(ma)da 9.19)

G N= | e
m(ae,w) 27 Jo D(u,w', )
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From Eq. (9.18) the symmetry relation
Gn(u,u') = G, (u', u) (9.20)

is obvious. These functions are essentially the Fourier coefficients of the free-space Green’s
function G(r, r').

From the uniqueness of Fourier series expansions, we now obtain a sequence of uncoupled
one-dimensional Fredholm equations, given in explicit notation by

onls) = JCGm(um u(s VA Yon(s)ds'
for m=0,1,2,...

(9.21)

These have the formal structure

Un(s) = [ K, (s, 5" )0, (s")ds' (9.22)
c

In Chapter 10, The Boundary-Element Method, we shall show that the kernel functions G,,
of Eq. (9.19) can be evaluated analytically and that the resulting expressions contain
complete elliptic integrals. We shall further show that there are convenient techniques for
numerical solution of (9.22). Thus the solution of Dirichlet problems with rotationally
symmetric boundaries can be regarded as a standard technique.

9.3.2 Interface Conditions

In the case of rotationally symmetric boundaries, Scherle’s integral equation (9.12) can
again be decomposed into a sequence of uncoupled integral equations for the Fourier
potentials V,,(z, r). As before, we start from Eq. (9.15), with V = y,,. It is now necessary to
introduce a Fourier series expansion for the component n - H, appearing on the right-hand
side of Eq. (9.12):

n(r)-Hy(r) =R Z N,(z, r)e™? (9.23)

m=0

Then, by arguments similar to those described above, we obtain first

ngG(r, Py’ -Ho(r)dd = mZ:O m{qm(s)eimcﬁ} (9.24)
with
gm(s) = %Gm(u,u/)r/Nm(u/)ds/ (9.25)
C

This is a known function of s which can be evaluated by numerical integration over s'.
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In order to evaluate the integral expression on the left-hand side of Eq. (9.12), we need the
Fourier coefficients of the function P(r, ') defined by Eq. (9.6). Since the normal derivative
involves only the coordinates 7z’ and 7/, the operator ¢/0n’ can be applied after the
integration over " has been carried out. We thus obtain

2m

a M . Al
P,(u,u) = J FG("’ r)ee?) dy
0 n

0
= % Gm(u’ u/)

(9.26)

Like the integral expressions (9.19), these functions take only real values but the symmetry
properties do not hold.

Introducing the Fourier series expansions of V(r) into the left-hand side of Eq. (9.12) and
considering Eq. (9.26), we finally obtain a sequence of uncoupled Fredholm equations of
the second kind:

— AUp(s) + ?{: Pou(u(s), u(s")r(s Yun(s)ds" = qu(s) (9.27)
m=0,1,2,...

Since G,,, P,, and X are real, it is sufficient to investigate solution techniques for real
integral equations. Complex solutions can easily be obtained by forming linear
combinations of real solutions with constant complex factors. We have thus achieved a
major simplification of the original boundary value problem.

9.3.3 Planar Fields

In this case the integral equations are already familiar. We shall only examine briefly the
Dirichlet problem in the (z, x) plane. Let C be a boundary line represented parametrically in
terms of the arc-length s: z = z(s), x = x(s). This line may consist of several distinct curves.
Let v(s) = V(z(s), x(s)) be given boundary values. Then the integral equation takes the form

v(s) = Lq(s’) In {a{(z — 7)Y+ (x—x)? } B 1/2] ds' (9.28)

where 7' = z(s"), x = x(s’) has been introduced; «a is an arbitrary positive normalization
constant and ¢g(s") the source distribution function on C. Since the logarithmic kernel
function is singular at infinity, either | g(s') ds’= 0 or the entire field must be enclosed
within a closed loop on which V is zero.
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9.4 Important Special Cases

In this section, we shall examine some field calculation problems that can be solved by
numerical evaluation of the integral equations derived above. Technical details are
discussed in Chapter 10, The Boundary-Element Method.

9.4.1 Rotationally Symmetric Scalar Potentials

Here it is not necessary to carry out the Fourier series expansions; the required results are
obtained directly for m = 0. The function Gy(u, u’) is the scalar potential of a uniformly
charged ring of radius r’ or r and is treated in detail in Chapter 10, The Boundary-Element
Method. Eq. (9.21) with m = 0 was the starting point for the development of the boundary-
element method (BEM) of field calculation, first introduced by Cruise (1963) and
extensively studied by Harrington (Harrington, 1967, 1968; Harrington et al., 1969; Mautz
and Harrington, 1970; Kuno and Uchikawa, 1985; Kuno et al., 1988; Tsuboi et al., 1990a,b,
1992, 1998, 1999; Watanabe et al., 1990; Binns et al., 1992; Tanaka et al., 1992; Read and
Bowring, 2011). This version of the BEM can be directly applied to electrostatic round
lenses of various shapes (Lewis, 1966; Singer and Braun, 1970; Read et al., 1971; Adams
and Read, 1972a,b; Harting and Read, 1976; Read, 2015b), electron guns with arbitrary
rotationally symmetric cathodes (Rauh, 1971; Kuroda and Suzuki, 1972), round electron
mirrors and conventional magnetic lenses.

9.4.2 Rotationally Symmetric Vector Potentials

Though the general theory was developed for scalar potentials, it can easily be modified to
make it applicable to vector potentials. Since each Cartesian component of A separately
satisfies a Poisson equation like Eq. (9.1) with S — pgji (kK =1, 2, 3), the general conclusions
leading to Eq. (9.10) must hold for each component of A separately. Collecting the three
integral equations into a single vector expression, we now find

A(r) = uOJFG(r, r)j)dr + ,LLOLFG(r, rw()dd (9.29)

The condition div A = 0 is satisfied if the surface currents are conserved, as must be the
case for physical reasons.

In rotationally symmetric devices, the vectors A, j and w have only azimuthal components
(see also Section 6.4). In the case of superconducting round lenses, the space currents j are
absent, Eq. (9.29) then simplifying to

Alw) = j{r” w iy iyrds'da
o clo ArD(u,u’, )
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ipllo

Figure 9.3
The relation between vectors and angles in rotationally symmetric vector-potential fields. M is a
fixed point and [ is the integration point.

where the notation introduced in Section 9.3 (u = (z, r) etc.) has been used. The factor

cos a =i, -i, arises from the projection of w on the direction of A, see Fig. 9.3. Using
Eq. (9.19) with m = 1, Eq. (6.27) and the boundary conditions Eq. (8.16), we finally obtain
the integral equation:

27r j{ Gi(u,u' ) w(u')ds' = Wp = const (9.30)

which may formally be considered as a special case of Eq. (9.21) with v(s) = /2w gr(s).

It is also of some interest that the azimuthal vector potential of a rotationally symmetric
coil in the absence of magnetic materials can be represented by

Ao(u) = 1 J JFGl(u,u’)r’ Jjwhdr'd? (9.31)

F being the domain ' > 0 of the axial section through the coil. This is a special case of
Eq. (8.10).

9.4.3 Unconventional Magnetic Lenses

In Section 8.3.3 we have indicated that such lenses can be treated by obtaining the solution
of a Neumann problem for the rotationally symmetric flux potential ¥. Alternatively, they
can be calculated as a special case of Eqs (9.25) and (9.27) with m = 0. In this case, no
Fourier series expansions are necessary, the quantities of interest being the zero-order
Fourier coefficients themselves. In this way really complicated devices with very open
structures like those investigated by Mulvey (1982) can be calculated, provided that
saturation effects need not be considered.
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9.4.4 Magnetic Deflection Coils

The following considerations (Kasper, 1984a) are valid for both toroidal coils and saddle
coils. If the windings are so close to the shield surface that the surface current distribution
approximation is reasonable, the total scalar potential x(r) may be used. The boundary
conditions on (r) are given by Eq. (8.23). In the case of toroidal systems, we could
integrate this equation, but in more complicated cases the corresponding integration
becomes very complicated. The application of Fourier series expansions, however, makes
this integration unnecessary, as we now show.

We again represent each surface function as a function of the azimuth ¢ and the arc-length
s along the axial contour C. The meridional tangent vector is ¢ = 0r/0Os. The surface
potential and its gradient are then given by

10x. ox ox
= VY= N, + S+ = 32
X =x(p,5), Vx ;. asol*’ 2t " (9.32)

The surface current distribution may be written
W(p,5) = wl@, iy + wsl @, ) (9.33)

Introducing Eqs (9.33) and (9.32) into (8.23) and recalling that ¢ X n =i, and i, X n = —{,
we obtain

— T, LT W, (9.34)

The condition obtained by evaluating &*x/0wds from each of these,

62x = ﬁ(rw )= —iw
O0pds  Os op *

is identical with the continuity equation for surface currents and thus imposes a restriction

(9.35)

on the choice of surface current distributions, which is automatically satisfied by any real
distribution of wires.

For a single pair of deflection coils, we can choose the origin of ¢ in such a way that the
appropriate Fourier series expansions can be written as

w(.8) = D Ma(s) cos (mep) (9:36)
wel(p,s) = — ZAm(s) sin (mp) 9.37)

X(@.8) =D un(s) sin (m) (9.38)
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m always being an odd integer. Introduction of these series expansions into (9.34) and
(9.35) results in

1
Un(s) = —r(s)M,,(s), m=1,3,5,... (9.39)
m
and
, d[(r
v, (8) = — (Mm> =A,(s), m=1,3,5,... (9.40)
ds \ m

This is an important simplification. The boundary values v,,(s) of the Fourier potentials are
already uniquely determined by the Fourier coefficients of the meridional component, while
the azimuthal components A,, can be obtained by mere differentiation and are not needed
explicitly for the solution of the boundary-value problem: the only major computations
needed are the Fourier transformation of w(y, s) and the subsequent numerical solution of
Eq. (9.21). Thereafter the integral expression in Eq. (9.21) can be evaluated to give V,,(z, r)
at any point (z, r) outside the surface.

In the case of a purely toroidal system of coils the surface current density is given by

w, =0, w;=IW(p)/r(s) (9.41)

I being the electric current through the windings and W(y) the winding density, by which
we mean that W(p)dy is the number of windings between ¢ and ¢ + dp. In this case
Eq. (9.39) simplifies to

41 (72
Um = _J W(QO)COS(m(P)dQD, m= 1’ 3’ 53 te (942)
™m Jo

(Schwertfeger and Kasper, 1974). We cannot expect any further simplification, as we now
have to solve Dirichlet problems with constant boundary values.

If the windings are not close to the shield surface, as is frequently the case in systems of
saddle coils, the one-dimensional integral equations arising from Scherle’s equation, namely
Egs (9.25) and (9.27), must be evaluated. Then, of course, the necessary computation is
considerably greater but the results will be very accurate. The details are discussed in
Chapter 40 of Volume 2.

9.4.5 Multipole Systems

Electric or magnetic multipole systems are commonly used as stigmators or as elements of
aberration correctors, where quadrupoles, sextupoles, octopoles and dodecapoles are needed.
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Nowadays such systems are also used as deflectors in scanning devices. Since these systems
are in no sense rotationally symmetric, the theory of one-dimensional integral equations
cannot be properly applied to them. If, however, parts of the surfaces form a rotationally
symmetric face and the gaps between adjacent poles are comparatively narrow, as shown in
Figs 9.4 and 9.5, the theory is approximately applicable. Magnetic systems like the one
shown in Fig. 9.4 were in use in the devices developed by the Darmstadt group (see Rose,
1971; Rose and Plies, 1973) to compensate the third-order spherical aberration and the axial
chromatic aberration in an electron microscope of very high resolution. Electric systems of
the kind shown in Fig. 9.5 have been investigated by Munro and Chu (1982a,b) and Chu
and Munro (1982a,b) and are used as deflection units in electron lithography devices.

The approximation underlying the treatment of these systems is that in the gaps, it must be
possible to make a reasonable interpolation for the potential with respect to the azimuth ¢,
usually by a linear expression. Then, on a rotationally symmetrical surface — consisting of
the cylindrical bore, the gaps, the ring-shaped parts of the end-planes and sometimes parts

Windings

Figure 9.4
Simplified representation of a magnetic multipole system. (A) Cross-section, (B) meridional
section. Only parts of the coils and the outer screening ring are shown.

Insulator
- Electrode
S Screening
(B)

Figure 9.5
Simplified view of an electric multipole device. (A) Cross-section, (B) perspective view of a single
electrode.
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of the outer surfaces of the poles and a screening surface enclosing the whole systems as
well — reasonable values of the potential can be defined. These are then to be introduced
into Eq. (9.16) after which the uncoupled one-dimensional integral equations (9.21) can be
solved. The errors caused by the incorrect boundary values do not seriously influence the
field in the paraxial domain. This approximation is therefore often satisfactory.

9.4.6 Small Perturbations of the Rotational Symmetry

Since it is impossible to build rotationally symmetric devices perfectly, the effects of small
perturbations such as shifts, tilts or ellipticity of the polepieces or electrodes on the field in
the paraxial domain are of interest. Such effects determine the tolerance limits for the
machining of electron optical devices, and they have attracted considerable attention (see
Chapter 31, Parasitic Aberrations). The first successful attempts to calculate them
numerically were made by Janse (1971). Here, we describe how his method can be used to
calculate the field in an imperfect round magnetic lens.

Janse’s method is a perturbation calculus. First, as a zero-order approximation, the ideal
round system is calculated; along the contour C in the axial section through the system the
boundary values H(s) of the field strength are then determined (s being the arc-length
along C). This is illustrated in Fig. 9.6. Owing to the rotational symmetry of the perfect
system, the field strength H(r) = H(¢p, s) at any surface point r with coordinates ¢ and s is
then known.

In the next step a deviation function d(r) is defined as the local shift from the ideal surface
to the real one. In the parametrization adopted here, this is a function d =d(¢, s). The shift
may be in any direction but must be very small as shown in Fig. 9.6.

Since the real distorted pole surface coincides with the equipotentials x(r + d) = const, the
potential at the ideal round surface is perturbed by a quantity

ox(r)=x(r)— x(r+d)~ —d-grad x =d(r)-H(r) (9.43a)
or

ox(p,s) =d(p,s) H(p,s) (9.43b)

This function represents the boundary values of a perturbation potential and is to be
introduced into Eq. (9.16). The integral equations derived above can then be applied to this
problem.

Janse did not in fact use integral equation techniques but solved the Dirichlet problems
corresponding to Eq. (7.10) with vanishing source terms by means of the finite-difference
method. By solving Eq. (9.12) with V = yx, however, the required normal derivative
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Equipolential
surface

Rotationally symmetric
surface

Figure 9.6
Simplified cross-section through an imperfect lens, showing the real and the ideal contour of a
polepiece. The vectors ¥, d and H' are the projections of the position vector r, the shift d(r) and
the field strength H(r), respectively.

H = —no at the equipotential surfaces is obtained directly, thus saving subsequent
differentiation. These simplifications are, of course, not possible if o # 0x/0n.

After solution of the corresponding boundary-value problems, the rotationally symmetric
field and the perturbation field are to be superimposed. It is sufficient to limit this to the
paraxial domain, whereupon the influence of various kinds of perturbations on the electron
trajectories can be studied. The publications of Greenfield and Monastyrskii (2004), Ivanov
(2015), Ivanov and Brezhnev (2004), Lencova (2002¢), Munro (1988), Murata et al. (1996,
1997, 2001, 2004a,b), Ozaki et al. (1981), Read (1996, 2000, 2004, 2015a), Read and
Bowring (1996, 2011), Uchikawa et al. (1981), Watcharotone et al., (2008), Yavor (1993,
1996) and Yavor and Berdnikov (1995) are relevant here.

9.5 Résumé

Without entering into the details of concrete numerical calculations, we have developed a
general theory of field calculation in systems having a straight optic axis. Two basic ideas,
the introduction of azimuthal Fourier series expansions and the formulation of integral
equations, have been worked out in some detail, since these are particularly well adapted to
the needs of electron optical field calculations. The use of Fourier series expansions results
in a sequence of uncoupled mathematical structures of lower dimensions. Since we shall
finally be interested in the field in the paraxial domain, we may terminate the calculation of
the Fourier coefficients (axial harmonics) after the first few orders, which are of most
importance. This is thus a very economic technique. The use of integral equations rather
than partial differential equations further reduces the number of dimensions, since parts of
the necessary integrations have already been carried out. In all cases in which the material
properties of the polepieces or electrodes are constant, integral equation methods have
proved to be very powerful and efficient. There are, of course, problems that cannot be
solved in this way. These will be treated in the context in which they arise.
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In Chapter 9, Integral Equations, we derived various types of such equations. We now turn
to their concrete numerical solution. The corresponding procedure, called the integral-
equation method (IEM) or the boundary-element method (BEM), has proved to be very
powerful. Since the early investigations (Cruise, 1963; Lewis, 1966; Harrington, 1967,
1968; Singer and Braun, 1970), many presentations have been published, which often differ
only in minor details. It was introduced into electron optics by Read et al. (1978) and a
short survey by Read (2016) summarizes the progress that has been made. We draw
attention to some key publications: Kuno and Uchikawa (1985), Costabel (1987), Stréer
(1987, 1988), Kuno et al. (1988), Kasper and Stréer (1990), Tsuboi et al. (1990a, b, 1992,
1998, 1999), Watanabe et al. (1990), Binns et al. (1992), Tanaka et al. (1992), Read and
Bowring (2011). The list of references given in the bibliography makes no pretence at
completeness. We recall that the physical idea behind this method is to calculate the charge
density distribution (in the electrostatic case) corresponding to the voltages applied to the
electrodes and then calculate the potential distribution in space created by this charge
distribution. The magnetic counterpart of this has been fully explored by Murata et al.
(1996, 1997, 2001, 2004a,b) and extended to cover saturation by Murata et al. (2016) and
Murata and Shimoyama (2017). The complexity of the method in some practical situations
is a consequence of the complicated nature of the boundary conditions (Desbruslais and
Munro, 1987). We first consider one-dimensional integral equations.

10.1 Evaluation of the Fourier Integral Kernels

The numerical solution of Eqs (9.21) and (9.27) requires the evaluation of the Fourier
integral kernels G,,, defined by Eqgs (9.18) and (9.19), and of their partial derivatives. The
special case m = 0 is already familiar in classical electrodynamics, since Gy(z, r; 7/, ') is
the potential at (z, r) when a uniformly charged ring is located at (z, #'). Cases for which
m # 0 have been investigated by Kasper and Scherle (1982).

Principles of Electron Optics: Basic Geometrical Optics.
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Figure 10.1
In an axial section through an axisymmetric configuration, a single ring is seen as the circles R,
and R,. P is an arbitrary reference point.

10.1.1 Introduction of Moduli

The meaning of some of the geometric variables appearing in the subsequent theory is
presented in Fig. 10.1. We assume that a ring of radius 7’ is located in the plane 7' = const.
The coordinates (z, r) define an arbitrary point in the axial section through the field. It is
convenient to introduce the distances

dip = \/(Z—z/)2 + (r¥r)? (10.1)
and the quantities
pi= didr = [{(z—2ZF + 2+ 17— 47222 (10.2)
and
S=dy +dr=2{p+z—7)Y+r*+r*}/? (10.3)

These quantities have a very simple geometric meaning: d; and d, are the minimal and the
maximal distance from the ring, respectively, as shown in Fig. 10.1, and S is the sum of
these distances. The surfaces S = const are oblate spheroids with the ring as their common
focal line. It is helpful to introduce dimensionless moduli:

277 d
k= d”, K=Vi-le=" (10.4)
2 2

41"1”/ _ dg—dl _ l—k/
S2 dr +d, 1+k

p= (10.5)
These moduli are defined only in the interval [0,1]. It is of great importance that the
relation between k and p is a Landen transformation of the arguments of elliptic integrals
(Whittaker and Watson, 1927; Section 22.42), see Section 10.1.3.
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10.1.2 Radial Series Expansions

Again using the abbreviations u = (z, r), u' = (Z/, r'), we obtain from Egs (9.18) and (9.21)
the explicit integral representation

1 (> cos ma do
G,(u;u) = —J (10.6)
mlat; ) 21 )o {(z—2)*+r2+r2=2rr cos a}'/?
Introducing the variables S and p, defined by Eqs (10.3) and (10.5), we soon find the
simpler representation
1 d
Golu;u') = —J e (10.7)
7S )o (1—2p cos a+p?)/

The required radial series expansion is now most easily obtained by expanding the
denominator in terms of Legendre polynomials P, (cos «):

0
(1-2 pcos oz-i-,oz)_l/2 = Z p'Py(cos o)
=0

(Whitaker and Watson, 1927, Chapter XV). Integration of each term of the resulting sum yields
1 - m+2j
Gulu;u') = E; anjp" (10.8)

the coefficients being given by

_@)em+2))!
GG+ m)Y

Since p is proportional to r as long as r< ', (10.8) essentially represents a series expansion

with respect to r. This agrees with our former results that the m™ Fourier coefficient of the
potential must be proportional to # if r is very small (see Section 7.1).

(10.9)

mj

The series expansion Eq. (10.8) converges for all values of p in the interval 0 = p<<1. In
practice it can be evaluated from a reasonable number of terms in the interval 0 = p = 0.5.
The number of terms necessary depends on the acceptable error limit and on the actual
value of p. With j,.. = 20, excellent accuracy is obtained. Since p = 0.5 usually covers the
domain occupied by the electron trajectories, Eq. (10.8) is very useful in practical field
computations.

10.1.3 Recurrence Relations

The solution of the integral equation derived in Chapter 9, Integral Equations, requires the
Fourier kernels G,, to be evaluated in the interval 0 = p <1. In the interval 0.5 < p <1 this
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can be performed by means of appropriate recurrence relations. The latter can take different
forms, which have been investigated by Kasper and Scherle (1982). For the sake of brevity,
we shall treat here only one of these forms.

Introducing the more familiar modulus k£ Eq. (10.4) into Eq. (10.6) and substituting 8 = o/2,
we find the representation

1 Jﬂ/z cos 2m3 d

G, (uu)= —
;2 mdy Jo  (1—k2 cos? )/

which is clearly a generalization of the familiar complete elliptic integral of the first kind.
In fact, the special case m = 0 is the well-known formula for the potential of a uniformly
charged ring.

For the subsequent discussion, we introduce the complete elliptic integrals

/2
Kk)y=| (@Q—k sin’8) ?d3
0
/2
Ek)=| (1—-k*sin®B)/*dB (10.10)
JO
/2
D(k) = sin® 3 (1—k*sin B) > dB = (K — E)k 2
JO

For all values 0 <k <1, these can be computed very accurately by means of the algorithm
of repeated algebraic and geometric means (see Abramowitz and Stegun, 1965, p. 598). In
terms of Eq. (10.10), the lowest order Fourier kernels may be written

2D(k) — K (k)
T dz
As it is necessary to introduce the modulus p for the evaluation of the radial series

expansion, it is convenient to introduce p into the integral expression as well; this implies
that we have to establish the functions 7,,(p):

Gou;u) = S"'I(p), 0=p<lI (10.11)

1
Go=—K(k), G =
7Td2

As far as Gy and G, are concerned, this is easily done by means of the Landen transformation

KWO=(1+ K. 0= 1)~ (1= pK(p)

After some elementary calculations, it is easy to confirm that Eq. (10.11) is satisfied for
m=0and m=1 by

2 2
lo(p) = ;K(p), Li(p) = ;pD(p) (10.12)
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The higher order integral expressions are given by the linear recurrence relation (m=1)

(2m + Dly+1(p) =2m (P + %)Ln(ﬂ) — @2m = Dly-1(p) (10.13)

This differs from the expressions given by Kasper and Scherle: here the more convenient
normalization /5(0) = 1 has been chosen. Eq. (10.13) can be easily evaluated in ascending
sequence. This recursive procedure is slightly unstable. For practical purposes it is

stable enough if p=0.5 and m = 12. There are ways of extending the region of allowable
orders m, but these will not be treated here since m = 12 is quite sufficient. Combined with
the paraxial series expansion Eq. (10.8) for p = 0.5, the recursive procedure defined by

Eq. (10.12) and (10.13) provides a convenient way of computing generalized elliptic
integrals.

An interesting complete integral representation of the function /,,(p) is the expression
25" /2 B
)= 2 | sin (1= prsint 5y 12 d
T Jo

Obviously Eq. (10.12) are satisfied. By expanding the integrand as a power series and
performing the integrations before the summation, it is possible to verify Eqs (10.8) and
(10.9). Finally, Eq. (10.13) can be proved by induction.

10.1.4 Analytic Differentiation

It is of great importance in connection with field computation that the derivatives with
respect to z and r can also be calculated quite easily. Differentiation of the expressions for S
and p gives

Z_i __ S_f = S—7)/p (10.14)
g—g = —2—5 = =2pz=2)/p (10.15)
g - pLS(sz — 4 (10.16)

% _ 45_2' (1 _ 27”2 + 8;2’;) (10.17)

The derivatives with respect to r" are obtained by interchanging r and . On the optic axis
(r=0 or ¥ =0) all these derivatives remain regular. The differentiation of Eq. (10.8) is
now a straightforward procedure. For p <0.5 the derivatives of Eqs (10.12) and (10.13)
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are to be used. From the standard formulae for the derivatives of complete elliptic
integrals we have

lo(p) — 1
Io(p) = %ﬂzl(p) Ii(p) =Iy(p)/p (10.18)

The differentiation of Eq. (10.13) results immediately in
1Y, , 1
@i+ DI, (p) = 2m (p n ;)Imm —@m = I () - 2m<; - 1)1,n<p> (10.19)
For m =1 this is an inhomogeneous linear recurrence relation, which can easily be solved

after evaluating Eq. (10.13).

The derivatives of G,,(u, u") can now be put into a very convenient form. From Eqs (10.14)
and (10.15) we find easily

oG, oGy, '

_ _ Z —Z n ,
22 or  ps 20 Culp) =1t 200, (p) (10.20a)

After some elementary calculations we obtain from Eqs (10.16) and (10.17) the result

oG 1

S =~ {210 + (0 = 10ulp) | (10.200)
or pS\r

As r— 0 this formula gives a finite result since p/r remains finite.

Altogether we obtain a comparatively simple numerical procedure for the computation of
the kernel functions G,,(u, u’) and their derivatives. This procedure can be carried out for
arbitrary values of the arguments with the exception of singular combinations, the latter
being defined by d; =0or k=p=1.

Computer programs embodying this procedure have been tested and its practical applicability
is now well established. In the literature it is usually the special case of rotationally
symmetric fields (m = 0) that is investigated. Apart from the fact that there is no need to
evaluate the recurrence formulae, this specialization brings no major simplification.

10.2 Numerical Solution of One-Dimensional Integral Equations

We now discuss the solution of integral equations such as Eqs (9.21) and (9.27). These are
special cases of a Fredholm equation of the second kind:

J K(s,s)Y(s")ds' = U(s) + \Y(s) (10.21)
c
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Depending on the particular application, the variables appearing in Eq. (10.21) have
different physical meanings. In applications to Dirichlet problems (9.21), Y is a surface
charge density, U is a surface potential, while A vanishes. In applications to problems with
interface conditions (9.27), Y is a surface potential, U arises from the boundary values of an
external field (9.23) and (9.25), while A is given by (9.14). The variables s and s are
usually arc-lengths in an axial section through the device, but may also be other parameters,
such as angles, if these are more favourable. In most applications the contour line C of the
boundary consists of two or more separated loops. As a result of using any symmetry
properties of the device, these loops may be open or closed, as is shown in Fig. 10.2. In the
transformation to a linear scale for s and s/, the contours are mapped onto a sequence of
disjoint intervals, as is shown in Fig. 10.3. On closed loops the functions appearing in

Eq. (10.21) must satisfy cyclic conditions, since they must be unique.

Py=Pye_ Fo

Figure 10.2
Upper-right quadrant of an axial section through a device with axial and mirror symmetry. The
contour C now consists of three separate curves, one closed, the other open. The orientation has
been chosen in such a way that the field domain is always on the right as one follows the
contour; this makes it easy to distinguish between interior and exterior domains.

Yis) o
M 35* 36* s 7* -
* * »

s; S5

Figure 10.3
The intervals of s and the surface charge distribution corresponding to Fig. 10.2. The three
branches of C now correspond to three separated intervals. The surface charge density Y(s) must
satisfy Y(s3) = Y(s}) (cyclicity) and Y'(s7) = Y'(s5) = Y'(s) = 0 (even or mirror symmetry).
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10.2.1 Conventional Solution Techniques

The structure of the kernel function K(s, s'), is so complicated that Eq. (10.21) can only be
solved numerically. In every case, this requires a suitable discretization of the boundary, as
is shown in Figs 10.3 and 10.4. The solution technique is generally analogous to that used
in quantum mechanics: the unknown function Y(s) is expanded in terms of so-called trial
functions Ty(s), (k=1... M):

M
Y(s)= > OTils) (10.22)
k=1
with initially unknown coefficients Q; ... Oy This number M must not be smaller than the

number N of boundary elements.

The simplest and generally preferred technique is known as collocation. Eq. (10.22) is
required to satisfy the integral equation (10.21) at the endpoints s; ... sy of the boundary
elements. This leads to a system of linear equations for the coefficients Q; ... Qy with
M =N:

N
ZAkak =U; = U(s)) (1=j=N) (10.23a)
k=1

Ajk = JK(S/': SVTi(s')ds' — ATi(s)) (10.23b)

The integration is to be carried out over the whole boundary C. Usually the trial functions
are nonvanishing only in a smaller set of intervals in C. The integration is then limited to
these intervals.

ra

(2

VYN

Figure 10.4
Part of a boundary and the appropriate discretization. The line elements must be short in the
vicinity of edges and in regions where the boundary curvature is large. Abrupt large changes in the
length of the elements should be avoided.
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A more advanced approximation is the Galerkin method. Now the integral equation is to be
satisfied not at the nodes but for the projections to the trial functions. Hence Eq. (10.21) is
now multiplied in turn by the functions 7; (s) and also integrated over the variable s. In this
context it is useful to introduce the notation

Ky = <T|K|T; > :=//Ti(s)K(s, ST (s ds ds' (10.24a)
U=<T|U> = JTi(s)U(s)ds (10.24b)
T =<Ti|T, > = JT,-(S)Tk(s) ds (10.24¢)

We then arrive at the following system of linear equations:

M
Y (Ki =M =U;  (1=j=M) (10.25)
k=1

This method has some advantages. The most important is that it satisfies the integral
equation not at the nodes but on average, which implies that the error is minimized.
Evidently the matrix in Eq. (10.23a) is asymmetric, while the matrix in Eq. (10.24a) is
symmetric if this holds for the kernel function K(s, s'). This is true for the kernels G,, in
Eq. (10.6). Moreover the matrix Eq. (10.24a) is then positive definite, at least for A = 0, so
that the system Eq. (10.25) can be solved by means of the well-known Cholesky algorithm.
The solution comes close to that of the minimization of a corresponding functional.

Another advantage is the possibility of using more than the minimum number N of trial
functions and variables Q;. A favourable choice is, for instance, the use of function values
Y(s,) and derivatives Y’(s,) at the nodes, hence M =2 N. In each boundary element the
function Y(s) can then be approximated by a cubic Hermite polynomial, which is fairly
accurate. Each node has two degrees of freedom, which gives a better result than the simple
one-degree approximation.

The main disadvantage of the Galerkin method is the need to carry out double integrations
over logarithmic singularities, while single integrations are already difficult enough. This
problem was solved by Stroer (1987) and reported by Kasper (2001, Section 6.3.3). For
reasons of conciseness we cannot deal with this topic here and refer to these publications.

Analogous techniques exist for the boundary-element method in three dimensions. All the
variables then become functions of two surface coordinates and hence all the integrals are
double. Full flexibility is possible only if the surface elements are general triangles. This is
beyond the scope of the volume.
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10.2.2 The Charge Simulation Method

In order to circumvent the complicated evaluation of the improper integrations in the diagonal
elements H;;, Hoch et al. (1978) have replaced the surface charge distribution by a sequence of
charged rings located inside the electrodes, as shown in Fig. 10.5. In addition, they introduced
charged thin planar apertures. We postpone consideration of these to Section 10.3. The rings
are characterized by coordinates 7'=: 22, = r,? and charges Q; (k=1 ... N). At the boundary
C an equal number of control points with coordinates z =: z;, r = r; and boundary potentials
U; are introduced. Apart from an unimportant constant factor, the conditions that the
rotationally symmetric potential V(z, r) has the prescribed boundary values are of the form

N
> 0Gowiu)=U;, i=1...N (10.26)
k=1

(we again use u = (z, 1), u; = (g;, 1y), Uy, = (zg, r,?)). Once the solution of this linear system of
equations is known, the potential and its gradient are simply given by

N

V)= OiGou;u)) (10.27a)
k=1
N

VV() = > OVGou;uy) (10.27b)
k=1

This is certainly the simplest version of the boundary element method. Kasper and Scherle
(1982) have generalized it for Fourier series expansions like Eq. (9.15). In many practical
applications to conventional round lenses and to deflection units this method has worked
quite satisfactorily, the relative error in the field in its paraxial domain being roughly

1073 to 5 X 10~ . Difficulties may arise in the vicinity of sharp edges and especially at the

Figure 10.5
Part of an electrode, showing the boundary curve C and a possible configuration of control points
(z«, r) and ring positions (z, r?). A and A" are the upper halves of meridional sections through
thin charged plane apertures.
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surfaces of cathode tips in electron guns. Depending on the shape of the boundaries and on
the prescribed boundary values, the equipotential over which the expression Eq. (10.27a)
assumes a constant electrode potential U has a wavy structure, as shown in Fig. 10.6. This
causes a deviation of the local field strength from its correct direction parallel to the local
surface normal of the electrode. In order to avoid this weakness, the charge can be
distributed over an inner surface, as shown in Fig. 10.7.

It is sufficient to assume constant charge density on each surface element. Replacing the
summation in Eq. (10.26) by the appropriate integration, one obtains quite an accurate
solution. WeyBer (1983) has applied this method to electron guns and found that it works
reasonably well.

In spite of its wide field of applications, the refined method of Hoch et al. is not quite
satisfactory in every respect because it cannot be employed to solve problems with interface
conditions, since the singularities must then be located at the interfaces themselves. In this
case, the corresponding integration over the singularities cannot be circumvented. In the
next section we shall present a better solution.

Figure 10.6
Wavy structure of equipotential lines produced by disjoint rings. This effect, exaggerated here for
clarity, decreases rapidly with increasing distance from the surface.

Figure 10.7
Simplified perspective drawing of the discretization adopted for the cathode in an electron gun.
Each control point at the physical surface S is associated with an interior conical mantle over which

the corresponding part of the surface charge is to be distributed uniformly or, better, continuously.
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The cases of simplified field calculation given here are examples of a more general method,
the charge simulation method. Any distribution of charges or currents, the field of which
can be calculated analytically, can be considered if the singularities are located far enough
outside the domain of particle trajectories. Hence not only charged rings but also point
charges, charged rods, plates or discs can be used to simulate the field in the particle
domain. The method can also be improved by a least-squares fit, which minimizes the
approximation error (see e.g., Kasper (2001, Ch. 7.3)). Such a method is necessary in the
treatment of electron guns, as it is practically impossible to start electron trajectories
accurately close to singularities, if the cathode surface is a part of the charge distribution
determined by the BEM.

10.2.3 Combination with Interpolation Kernels

Apart from the special case of electron guns, it is favourable to locate the singularities on the
material surfaces, and for the calculation of magnetic fields this is usually essential. In order
to obtain sufficient accuracys, it is then necessary to use a better than piecewise linear
approximation for the surface sources, which can be expressed only by piecewise polynomial
surface functions. Since the physical source distribution is continuous at the boundary nodes,
the same should hold also for the simulated function and its derivative. This renders the
calculation more complicated. There are different ways of achieving this. One method has
already been mentioned in Section 10.2.1: the use of piecewise cubic Hermite polynomials.
The rank of the system matrix is then 2 N. An alternative is to eliminate the derivatives by
means of finite-difference formulae, so that the system has the lowest possible rank N. This
approach was chosen by Kasper (2001, Section 3.3) who used so-called modified
interpolation kernels. These are a sequence of polynomials, defined over four or more
intervals and joined smoothly together at the nodes. We shall present here only the third
order, the lowest nontrivial one. The method can be extended to higher orders.

10.2.3.1 General formalism

Consider four successive pairs (x,, y,), (1 =n=4) of sampling data of a function y(x) to be
interpolated, as is sketched in Fig. 10.8. The reference abscissa x should be located in the
central interval, x, =x = x3. We define the interval lengths

hy = Xpe1 — Xn n=1,2,3) (10.28a)
and the relative abscissa
t=(x—x)/h, O0=t=1).
We now start from the well-known cubic Hermite polynomial

Y(x) = yap1(1) + y3pa(t) + haysqi(t) — hay3qa(2) (10.28b)
with the four normalized cubic polynomials



The Boundary-Element Method 145
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4
V1Yo y2!|Y, V3| Yo V4| Youo

Vx

X1 Xo X3 X4

Figure 10.8
Configuration of the variables for the Hermite interpolation (10.28). The bold line indicates the interval
of interpolation. The notations on the function values indicate their local and global numbering.

p@=00+200 =12, p)=r3—20)=1-pi1),
q1() =t(1 — 1), a0 =21 =0 =11-1) - q() (10.29)

It is straightforward to verify that this is correct for any boundary values y,, y3 y> and yj.
These functions are to be used also in other contexts in which Hermite interpolations are
required, for instance in the case mentioned in Section 10.2.1.

The unknown derivatives y5> and y5 are now approximated by the central three-point
differences, valid for a locally parabolic function:

y; = {h%—l(ynfl - yn) + hi())n - ynfl)}/{hnfl(hnfl + hn)hn}a (n = 2, 3)

After introducing this into Eqs (10.28) and collecting all terms which refer to the same
sampling point, we obtain

4
Y®) =D w0 (10.30)
n=1
with the kernel functions
_ hgﬁh(f)
fild) = hi(hy + ho)
A0,
fa) = h3(hs + hy)
(10.31)

q2(Hh3
hy + h3

q1(Hhy
h + hy

() =pi(0) +q1(r>(2—j _ 1) .

£ = palt) + qz(»(Z—j _ 1) ;
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The resulting function y(x) has continuous derivatives of first order, as is evident from its
construction. It is exact for any quadratic polynomial and fairly accurate for cubic ones, as near
the midpoint the error changes its sign, so that it largely cancels out in integrals over the interval.

This algorithm can be executed for all inner intervals, when the local labels, used here, are
adjusted to the global ones, moving from A to B. In order to avoid confusion, we denote
local data by x and y, as above, while global ones are denoted by X and Y, hence

Xp = Xitn—2s Yn = Yian_o, (n =1...4) for the application to the interval (X;, Xi+1),

(A <k<B-—1) (see Fig. 10.8). However, special formulae are necessary for positions near
the global endpoints X, and Xp.

10.2.3.2 Marginal positions

If all functions are periodic (also with a possible leap), then values that would be out of
range can be removed by setting

Yark =Yg+ Ya—Yp, Ypim=Yarmt+Yp—Ya (10.32a)
and analogously for X and any other periodic function.

If the function has a local extremum at the lower endpoint A, the value Y,_; is missing
from the global representation and y; =0 in Eq. (10.28b). This leads to

aq=/1=0 (10.32b)

in all functions in Eq. (10.31). Likewise an extremum on the other margin leads to
v3 = ¢» = f4 = 0. If neither of these conditions arises, then a linear approximation
is reasonable. On the lower margin we then set y5 = (y3 — y,)/h, in Eq. (10.28b),
whereupon we find

fi=0
q2h3
=pi—q +
hL=pi—q Iy + I3
q2(hy — h3) (10.32¢)
=prt+q+—>
h=p2t+q n
h —
fa=—q 2 3 asin (10.31)

Similar relations hold for a linear function on the upper end. With a suitable combination of
these conditions quite general interpolation problems can be solved. We have thus obtained
a general way to discretize functions, and this gives us the possibility of reducing the
determination of an unknown function to the solution of a system of equations for its
sampling values.
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10.2.3.3 General properties

This interpolation simplifies considerably in the case of equidistant intervals, of length 4. The
kernels then become symmetric functions, F(—u) = F(u). Moreover they are identical in
shape apart from the necessary shift. The interpolation then takes the form X,, = X, + nh and

x—X,
y(X)=2n:F< p > (10.33)

With u .= | (x — X,,)/h | this kernel function is then given by

Fu)=1-252+157 (0=u=<1)
Fluy=2—4u+25°—-05° (1=u=2) (10.34)
Fu)=0 foru=2.

Obviously the interpolation condition F(k) = 6, (k an integer) is satisfied, as it must be. It
is of importance that the function F(u) has the following integral properties

JOC F(wu'du= 06,0 (n=3) Jm Fuwutdu= —03 (10.35a)

— 0 — 0

Hence for any cubic polynomial P(x) we obtain exactly

Jw P()F ( a _th ) dx = hP(X}) (10.35b)

— 0
This shows that for decreasing length 4 the function 4™ F(u) approaches Dirac’s delta function.

Integration over piecewise cubic polynomials as given by Eq. (10.33) or (10.30) with constant
h and the cyclic condition Yz = Y, leads to the well-known Maclaurin integral formula

B B
J Y(X)dX=h» Y, (10.35¢)
A A+1

the accuracy of which is better than fourth order for a periodic function. This concept can
be extended to polynomials of higher orders. With 2M intervals of definition for F(u) (here
M = 2) interpolation kernels of order 2 M — 1 are obtained which are (M — 1) times
continuously differentiable. The first nonvanishing term in (10.35b) is then of order 2 M
instead of 4. This means that Eq. (10.35¢) becomes more accurate, and the approximation
to Dirac’s function becomes better. The price for this gain is stronger oscillations in the
outer intervals, as can be seen in Fig. 10.9. In order to define the kernel of next higher
order M = 3 it is favourable to introduce the function

G(w) =w*(7 — 12w + 5w?) /24
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Modified interpolation kernels up to order M = 4 (after Kasper (2001, p. 89)).

The kernel, a system of polynomials of fifth power, is then given by

F(u) =w(4 + 4w — w? — w’)/6 + 10 G(w), O=lu=l,w=1—uw

F(u)= — w2 +w —2w?> —w?®)/24 — 5 G(w), (I1=u=2,w=2—u) (10.36)
F(u) = G(w), R=u=3,w=3—u

Fu)=0 (Jul = 3).

(By explicit differentiations and evaluations for the arguments u =0, 1,2, 3 and w =0, 1 it
is straightforward to verify that all continuity conditions are satisfied and the coefficients of
five-point finite differences are assumed at u =0, 1, 2.)

The use of this function will certainly provide more accurate results but its application
requires the introduction of a parameter transform to a grid with equal interval lengths,
which can become awkward. The use of asymmetric five-point finite differences for the
derivatives is possible in principle but so very complicated that this is not recommended.

10.2.3.4 Solution of integral equations

We now return to the solution of the integral equation (10.21). The functions 7} (s) in
Eq. (10.22) are now to be identified with the functions F(u) with u = s — s,,. The unknown
variables Oy are here the sampling values Y} of the function Y(s) at the nodes, as is obvious.
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For reasons of conciseness we shall present the method, as we did earlier, for only one
coherent boundary, the labels being A =1, B=N, 1 =k=N — 1. A generalization to more
disjunct parts, as is usually necessary, provides no problem. The method, outlined below is
a collocation technique. Formulation as a Galerkin method is possible.

Let us consider a boundary interval s; =s=us;4; (1 <k<<N — 1). Then, in order to apply
the formulae derived above, the interval lengths

hy = Sktn—1 — Sktn— (n=1,2,3)

(see Eq. 10.28a) are required. The function Y(s) is then interpolated by

4
Y(sk + h2t) = Z Yn+k7 n(t)
n=1

(see Eq. 10.30). Introduction into Eq (10.21) with Eqs (10.29) and (10.31) and evaluation at
s = s; leads to

JK(si,s/)Y(s’)ds/ =U(s;) + \Y; i=1,... ,N)
N=1¢ (l 4
Z{ J {K(si,sk + hzl)hzzyn+k_2fn(t)dl} = U(Si) + \Y; (l =1, ... ,N)
k=1 LJO n=1

with /iy = sg+1 — sx. Each local variable depends on the integration interval with label £ and
must hence be recalculated for each such interval. The same is true for the sequence below.
At the endpoints k=1 or k=N — 1, some terms are out of range; these terms are to be
eliminated by use of the special boundary conditions Eq. (10.32). This is implicit also in the
scheme outlined further below.

From the upper relation it turns out that a linear system of equations of the form

Eq. (10.23) is obtained. The matrix elements are most favourably determined by successive
summation, as is common in numerical calculation. In this presentation := means, as usual,
replacement by the right hand side of a statement. The method proceeds as follows:

for (i=1 to N)
{ for (j=11to N) {Aij= — A} (initialization)

for (k=1 to N—1)
{ for n=1,2,3) {hy=St+n—1 — Sk+n—2} (Eq. 10.28a)

for (n=1,2,3,4) (10.37)

1
(jmk+n—2 Ay = Ay+h J Ksivsi + hat) £(0) di)
0

} (end of loop over k)

} (end of loop over i)



150 Chapter 10

In the loops over the label n it must be remembered that, on endpoints, the terms with n =1
or n =4 are missing and the functions f, (f) must then be modified according to the
corresponding boundary conditions.

Thereafter the system Eq. (10.22) of linear equations is to be solved for Y; ... Y. We must
assume here that ) is not an eigenvalue of the matrix, though the integration technique
would still be valid. The interpolation technique explained above can then be applied to
obtain a smooth function Y(s).

This is the most general case, as it allows unequal lengths of the subintervals without a
parameter transform of the variable s. Generally the necessary integrations are to be carried
out numerically. Only in the case when the positions corresponding to the labels i and k are
widely separated may simplifications be possible. The integration over an interval adjacent
to a singularity has to be performed by asymmetric special Gauss-quadrature-like sum
formulae. Their positions and weights are derived by Stroer (1987) and reprinted in Kasper
(2001, p. 432) (see next section). The method furnishes acceptable results, provided that the
discretization of the integration intervals is chosen reasonably. For reasons of conciseness
we have tacitly assumed only one domain of integration. The generalization to several
disjunct domains, as is sketched in Fig. 10.2, creates no problem.

10.2.3.5 Application to field calculations

Only the case of a rotationally symmetric electric potential V(uy) with uy = (z¢, ro) is dealt
with here. We have then to consider the kernel function K (s, s') .= G, (1, u(s’)), and
Y(s’) has the physical meaning of a surface charge density o(s’). The integral to be
evaluated then becomes

V(o) = JCGo(uo, u(s'))o(s')ds (10.38)

with a corresponding formula for the gradient. The procedure is analogous to the scheme in
Eq. (10.37) with the modifications that the loop over i has to be omitted and that the sampling
values of the surface charge density have to be considered. The scheme becomes then

V(up) =0 (initialization)

for (k=1 to N—1)

{ fOl" (Vl = 1: 27 3) {hn = Sk+n—1 — Sk+n—2} (Eq (1028@))

for (n=1,2,3,4)
1

{V(uo) = V(uo) + hy L Go (wo,u (sx + hat) ) fult) Ok+n—2dt}

} (end of loop over k) (10.39)
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In the same manner the components of grad V() can also be calculated, even together in the
same loop. This method can be applied for the determination of the field at any position in
space, even on the surfaces. In the latter case the necessary integration over singularities may
become tedious but is always possible. Sufficiently far from all singularities the integration
can approximately be reduced to mere summations, as in Eq. (10.27a), but now the points u;,
are located at the surfaces. The method, outlined briefly here, can be improved in very many
respects. These cannot be dealt with here for reasons of space. For more details we refer to
Kasper (2001, pp. 86—96 and Chapter VI) where references to other work can be found.

10.2.4 Evaluation of Improper Integrals

A careful inspection of the kernel functions to be evaluated shows that these contain
logarithmic singularities; the derivatives of the kernels may have singularities of first order.
For the sake of brevity, we assume the abscissa of the singularity in question to be x = 0.

A singular function of the type
fik) =Inlp;(x)] with  ¢,(0)=0, ¢(0)#0
can be reduced to the form
f1(x) = In|x| + In|p, (x)/x]|

where the second term on the right is a regular function, which can be expanded as a
Taylor series about x = 0. Likewise, a function of the type

L) =1/py(x) with ¢,(0)=0, ¢5(0)#0
can be reduced to

L x9(0) — pp(x)
x05(0)  x@y(0)py(x)
where again the second term is regular, since both numerator and denominator have a

common zero of second order, which cancels out. It is therefore sufficient to consider
functions of the form

Hlx)=

F(x) = fi()In|x| + f2(x) /x + f3(x) (10.40)
f1(x), fo(x), and f3(x) being arbitrary regular functions.

Kasper (1983) has developed a simple method for integration over such functions. The
corresponding formula is similar to a Gauss quadrature and takes the basic form

h N
J F(x)dx="h Z w,{F(p,h) + F(—p,h)} + O™ (10.41)
—h

pn=1
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with positive abscissae p,, and weight factors w,,. Thanks to the symmetric arrangement of
these, the contributions from the singularity in f>(x)/x and from all antisymmetric terms
cancel out, and Eq. (10.41) automatically furnishes the principal value of the integral. The
parameters p,, and w,, are obtained by numerical solution of the nonlinear equations

1 N
1
2v — 2v
ubdu= w,p? =
JO ;“H 2v+1

v=0,1...N—1
1

1 N
1 1
2v 2v
u’In—du = g wp'ln— = —
Jo u " py 1y

The results for N = 4, which are adequate in most cases, are as follows:

p1 = 0.0399 4596 2203 wy = 0.1270 7679 2574
p2 = 0.2801 7249 6204 wy = 0.3267 4417 6078
p3 =0.6361 2394 4954 wz =0.3523 4912 8452
pa =0.9223 6045 1138 wq = 0.1938 3290 3896

It is now easy to integrate all kernel functions K(s, s") and their normal derivatives over
arbitrary smooth boundary contours C. It is necessary neither to approximate the contour by
a polygon, nor to choose the arc-length as the variable of integration. As Eq. (10.41) makes
clear, there is no need to express the integrand explicitly in the form Eq. (10.40), which
would be extremely tedious. The only knowledge required is the implicit singular character
of the integrand. The user of this method need only set up a program that supplies correctly
the value of the integrand for arbitrary arguments.

The symmetric quadrature formulae are favourable because antisymmetric terms cancel out
automatically. But they are not useful in every case, for instance, not for the calculation of
the integrals appearing in Eq. (10.37) or (10.39). In order to evaluate such integrals, Stroer
(1987) has compiled quadrature formulae for asymmetric integrals. Here we shall reproduce
them only in the lowest order. For functions of the general form

Fx)=A(x)+Bx)In(x) (0<x=1)

with regular coefficients A(x) and B(x) we have

6
j; F@ds= 3 guF ()
n=1
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The abscissae x,, and weights g, appearing in this formula are given in the following table:

AN N B W =3

Xn
0.003025 80213 75463
0.040978 25415 59506
0.170863 29552 68773
0.413255 70884 47932
0.709095 14679 06286
0.938239 59037 71671

8n
0.011351 33881 72726

0.075241 06995 49165
0.188790 04161 54163
0.285820 72182 72273
0.284486 42789 14088
0.154310 39989 37584

Analogous formulae for 9 and 15 points have also been compiled by Stroer and are
reproduced in Kasper (2001, p. 432). After a suitable transformation of the variables, these
data can also be used for calculation of improper integrals with a singularity at x = 1.

In conclusion, it emerges that the BEM, at least in its one-dimensional version, is a highly
attractive procedure. Practical examples demonstrating this are given in Section 10.5.

10.3 Superposition of Aperture Fields

Though the general method described above can be applied to any axisymmetric Dirichlet
problem, this is not always the best way of obtaining the solution. Problems may arise in
systems with very narrow apertures in electrodes with plane fronts, as shown in the
example presented in Fig. 10.10. Here many integration subintervals are necessary in order
to obtain the electric field correctly in its asymptotic domains. The computation of surface
charge distributions can, however, be confined to the principal inhomogeneous domains of
the field if the asymptotic field is represented correctly by appropriate superpositions of the
fields of thin plane circular apertures. A combination of the BEM with such fields has been
proposed by Hoch et al. (1978). Pure superposition of aperture fields had been investigated
earlier by Regenstreif (1951), Lenz (1956) and Dommaschk (1965). In the following

NY

Figure 10.10
Upper half of the axial section through an accelerator.
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analysis, we shall first study the field of one single aperture and then superpositions of such
fields. For a detailed study, see Becker et al. (2004).

10.3.1 Electric Field of a Single Aperture

We consider now a thin plane circular aperture with radius ' = R. Without loss of
generality, we can choose the coordinate system in such a manner that the aperture plane is
given by z' = 0. It is appropriate to introduce oblate spheroidal coordinates (u, v, ¢,),
 being the usual azimuth and u, v defined by the transformation

z=Ruv, r=R{(1+u>)( —1)2)}1/2

10.42
(—o<u<w, O0=v=l) ( )

These are shown in Fig. 10.11. The surfaces # = const are confocal oblate spheroids, the
surfaces v = const confocal orthogonal hyperboloids. Among the latter, the optic axis
(v =1) and the surface of the aperture itself (v = 0) are degenerate special cases.

In these new coordinates, Laplace’s equation takes the form

0 od 0 0P
R+ —+ (1= =
6u{( ”)au Gv( U)(?U} 0

A a
N
v = const'
u = const
L z
U ;
N
A/
Figure 10.11

Coordinate lines u = const and v = const’ in a system of oblate spheroidal coordinates (u, v, ¢).
The azimuth ¢ is constant in this axial section. A and A" denote the closed parts of the aperture
plane; these are singularities of the coordinate system.
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This can be solved by separation of variables,
P(u, v) = F(u)P(v)

Writing the separation constant in the familiar form /(/ + 1), we obtain

égﬂ—ﬁWhm=—m+nmm (10.43)

0+ )P W) = 10+ DFW) (10.44)

Eq. (10.43) is Legendre’s differential equation, its regular solutions being the well-known
Legendre polynomials P,(v) for integral values of the subscript [. Eq. (10.44) reduces to
Eq. (10.43) if we write ' = iu and is hence solved by general Legendre functions with
imaginary argument. For physical reasons the resulting solution for ¢ must correspond
asymptotically to a homogeneous field, which means that & ~z = Ruv for lul> 1. With this
constraint, the general solution is

&(u,v) = Auv + Bu(l + v arctan u) + C

The coefficients A, B and C are uniquely specified by the conditions @(u, 0) = D,
09/0z = —E, for z— —oo and 09/0z = —E, for z— +o0, the result being

d Tu+ =

E,
D(u,v) =Py + R’U{ - (1 + u arctan u)} (10.45)
The constants @, E; and E, have the physical meaning of the aperture potential and the
asymptotic field strengths, respectively. Examples of such solutions, differing in the choice
of the constants, are shown in Fig. 10.12A and B.

In order to represent the potential and the asymptotic field strength in cylindrical
coordinates, we need the inverse transformation corresponding to Eq. (10.42). This can be
expressed in terms of the distances d, and d,, defined by Eq. (10.1) and shown in

Fig. 10.1; in this context, the singular ring is the edge of the aperture, 7’ =0, ¥ = R. We
then have

p o ditd)’
4R?

(dy—d;)?

I, v*=1-
Y 4R

(10.46)

For the later computations, it is more convenient to express the transform in relative
coordinates Z = z/R, 7 = r/R; we find

=2 +P-1=u> 1" (10.47a)
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(A)

U

i

Figure 10.12

NV

Equipotentials in the upper half of an axial section through the field of a thin charged aperture.
(A) Symmetric field, E; = —E,; (B) E; =0, the field vanishes asymptotically as z— —0.

n= \/f + 472 =1+
{ VIE+m/2  foré<o
Zl/ /(& +n)/2 foré=0

u=7z/v

The matrix of the partial derivatives can then be computed very easily:

w=(Rn) ' = {RW*+1%)}!

(10.47b)

(10.47¢)

(10.47d)

(10.48a)
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G
M o+, L =wur (10.48b)
0z or
8 o
g wu(l — %), g WuF (10.48¢)
0z or

By means of these relations it is easy to compute D(z, r) and its derivatives 09/0z, 0D/0r or
even derivatives of higher orders. The corresponding expressions are not given here.

10.3.2 Superposition Procedure

We now consider configurations of coaxial thin apertures and their fields. Any such
configuration of N apertures is uniquely specified by the aperture positions z; the radii R;
and the physical surface potentials U;, i =1, 2, ... N, and also by the asymptotic field
strengths E; for z— —oo0 and E, for z—o0. The linear superposition of the corresponding
single-aperture fields can be represented in many different but equivalent ways. Here we
choose a superposition of N symmetric single-aperture potentials and the potential @,, of one
homogeneous field:

N
Bp(z,r) =Y Croi(1 + u; arctan u;) + A + Bz (10.49)
i=1
the quantities u; and v; being spheroidal coordinates referring to the aperture with subscript i.
This representation is the most simple. The coefficients C, ... C, are to be determined from
the asymptotic field for large values of r:

Civi(1 + u; arctan u;) - 72TRI lz—2z| for r>>R; (10.50)

1

Since the asymptotic field strength must be

U= U

F;: for 7 <z<zi+1, K=1...N—1 (10.51a)
Zitl T
Fy=E, for z7—» — o0, Fy=E, for z— w0 (10.51b)
at large off-axis distances r, we find
Cy=(Fy—1 — F)Ry/m, K=1...N (10.52)

The total contribution of the homogeneous field can be represented as
1
A+ Bz= §{U1 —Ef(z—z)+ Uy —E(z— )} (10.53)

The algorithm corresponding to these formulae is very easy to program.
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10.3.3 Combination with the BEM

In earlier investigations, prior to the publication of Hoch et al. (1978), mere superposition
of aperture fields was used to approximate the electric field in devices with plane electrodes
containing circular bores. This is entirely reasonable for very thin electrodes separated by
large distances, Iz;+1 — 1> R; + R;+1. Generally speaking, this method fails when applied
to devices with thick electrodes although Regenstreif modelled the latter by two thin
electrodes at the same potential. A typical example is shown in Fig. 10.13A, which
represents equipotentials in an axial section through an electron gun with a thick wehnelt
electrode.

In such a situation we suggest the following procedure. As a first step the appropriate
aperture parameters are determined, so that the potentials @4, given by Eq. (10.49), can be
computed for any point in space. The chosen apertures may be located in the front planes of
the electrodes, or inside the electrodes as suggested by Hoch et al. (1978). In the latter case
the appropriate aperture potentials are to be obtained by linear extrapolation.

The contribution @4 alone, of course, will not give the full result. We therefore consider
additional surface charge distributions. These can be confined to the vicinity of the bores,
where the surface values of @, differ strongly from the prescribed boundary values. Thus,
as a second step, we introduce a reasonable discretization of those parts B of the boundaries
where such surface charges are to be applied. We can then solve numerically the integral
equation

1
J —Go(z, 1,7, )o(s)ds' = U(s) — Pz, 1) (10.54)
BE€0

where z = z(s), 7 = z(s'), . . ., are parametric representations of surface points and U(s) is the
given boundary value function.

After solving Eq. (10.54), the potential ¢(z, r) and the field strength E = —V & at any point
of reference can be computed by numerically superposing @, and —V @4 and the
corresponding terms arising from the surface Coulomb integrals. The construction of this
field is such that it satisfies the boundary conditions with a high degree of accuracy. The
results for the chosen example are presented in Fig. 10.13B.

The consideration of aperture fields is only one of many possible ways of extending the
BEM. Another possibility is the superposition of the fields produced by axial charge
distributions. This can be helpful for field calculation in systems with pointed cathodes and
will therefore be dealt with in Chapter 45 of Volume 2.
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Figure 10.13
Equipotentials &(z, r) = const in the upper half of an axial section through an electron gun with a
plane cathode, a thick wehnelt and a thin anode. (A) Attempt to solve the Dirichlet problem by
mere superposition of aperture potentials. The equipotential ¢(z, r) = —900 V does not fit the
cylindrical bore of radius 1 cm of the wehnelt at all well. This example makes it very clear that the
potentials of additional surface charge distributions are indispensable. (B) Equipotentials
d(z, r) = const in the upper half of an axial section through an electron gun with a plane cathode,
a thick wehnelt and a thin anode. The improvement achieved by the introduction of a
suitable surface charge distribution.
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10.3.4 Extrapolation of the Number of Segments

The accuracy of the results obtained is inevitably affected by the number of subdivisions of
the boundary. A procedure for extrapolating from a number N of subdivisions towards an
infinite number has been proposed by Read (2000), who observed that the asymptotic
dependence of the discretization error of the boundary-element method is not well
understood (see Sloan, 1992, which contains an excellent list of related publications). Read
found that, for electrostatic lenses at least, it is preferable to choose the segments in such a way
that the charge carried by each is approximately the same. Suppose that some quantity x, such
as the focal length of a lens, is calculated for several values of N. A linear fit of these values to
1/N? can be obtained for some value of p, which has to be determined. Read finds empirically
that p is typically equal to 2 but its value depends on the quantity x being calculated. Once p is
known, the quantity in question can be extrapolated to ‘infinity’ from

X2 X
N Ny
Koy = 11 12
NN

in which x; denoted the value of x obtained with N; segments.

10.4 Three-Dimensional Dirichlet Problems

There are three-dimensional Dirichlet problems that cannot be reduced to a sequence of
two-dimensional ones. Such problems arise in most situations with nonrotationally
symmetric boundaries. A typical example is the field in the vicinity of the hairpin of a
thermionic electron gun, see Figs 10.19 and 10.20A and B. This case has been investigated
by Eupper (1985) in order to estimate the influence of the electric field perturbation on the
astigmatism in the electron beam.

The extreme complexity of general three-dimensional boundary-value problems renders
their concrete numerical solution much more complicated than that of two-dimensional
problems. Here we can deal only with one family of problems, the three-dimensional
Dirichlet problem for Laplace’s equation V2V(r) = 0.

The general method of solving such problems may appear to be straightforward. The boundary
ol is dissected into a set of N sufficiently small finite surface elements 4\, the centroids of
which are located at r;, (k=1 ... N). In each such element, the surface charge density oy is
assumed to be constant. Then Eq. (9.14) is approximated by a linear system of equations:

| dd
V(r]) = O’k[ 7/ . j: 1 “ e N (10.55)
AN A
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This system can be solved for oy ... oy, after which the surface Coulomb integral can be
evaluated for any position r of reference.

This is, in fact, the usual way of solving such problems. For instance, Munro and Chu
(1982a,b) have applied this method to an electrostatic deflection unit. Such devices are still
very simple, since all the surface elements A, can be chosen to be rectangles. In more
general cases, when triangular surface elements cannot be avoided, the method may become
very tedious. It is certainly possible to calculate the potential of any triangular surface
element with a uniform or even a linear charge distribution in a completely analytical
manner (Durand, 1966; Eupper, 1985), but this is very laborious. Although the
corresponding expression for V(r) can be built up entirely from elementary functions, its
evaluation is very slow. Since the number of surface elements must be large in order to
achieve good accuracy, the whole procedure is extremely inefficient. The problem of saving
unnecessary operations is far more important than in the case of two-dimensional field
calculations.

With a view to improving the efficiency, Eupper (1982, 1985) has made an unconventional
proposal. In order to avoid the evaluation of improper integrals, the charges are assumed to
be located on surfaces 01" chosen close to the corresponding electrode surfaces oI, but in
the interior of the corresponding electrode as is shown in Fig. 10.14A and B. These
surfaces are to be chosen reasonably, in the sense that the distance between parallel parts of
Ol must be larger than the distance to the corresponding material surface OI'. Difficulties
thus arise with this method for very thin electrodes and in the vicinity of sharp edges.

Figure 10.14
(A) Dissection of a curved surface into surface elements by means of two families of surface
curves. In at least one of these families, neighbouring curves are locally parallel (provided we
consider small enough regions). (B) Perspective view of a single surface element and the

associated trapezoid. The lines in the latter indicate the charged bars from which the surface
charge element is built up. P and Oy, ... Q4 are control points for the potential.
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The interior surfaces 0" are now dissected into general trapezoidal elements (with
parallelograms and triangles as special cases). Each such element A, is associated with one
control point r; located on the true electrode surface 0I'. The conditions that the potentials
V(ry), V(r,)...V(r,) assume their prescribed values are now set up; this is straightforward.
The new idea here is that one part of the necessary integrations, that in the longitudinal
direction of each trapezium, can be carried out analytically, resulting in the potential of a
charged bar; the corresponding expression will be given below. The remaining integration
in the transverse direction is then carried out numerically. This procedure is comparatively
simple and yet much faster than entirely analytic integration. The discretization by trapezia
is so flexible that even complicated problems like those shown in Figs 10.19 and 10.20 can
be solved satisfactorily.

Let us now consider a charged bar of length 24, the direction of which is indicated by a
unit vector £. Let the charge per length unit be g(s) for —a = s =a. The origin of the
coordinate system may be chosen to coincide with the centroid of the bar. The potential is
then given by

1
V)= ——
(r) 47 €0

J “ q(s)ds

—alr —ts]

(10.56)

There are two ways of carrying out the integration, direct analytic integration and
integration after an appropriate series expansion. In the most important case of a linear
charge distribution g(s) = go + ¢1s, direct integration results in

dy +dy, +2a
dmeoV(r) = (o + qlfs)ln(djTi_za> +qi(d — o) (10.57)
with
dia=rFatl, &=tr=(d—d})/da (10.57a)s

The quantities d; and d, are the distances of the point r from the endpoints of the bar, as
shown in Fig. 10.15.

Alternatively, we may use asymptotic multipole series expansion. After introducing
spherical coordinates R, ¥}, defined by

R=|r|, p=cosd=¢/R (10.58)

we first write down the series expansion

0 [
Ir—ts| ! =(R2—2Rus+s2)71/2=Rflz l Pi(p), s<R
= \R
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Notation employed to characterize the position of an arbitrary point P relative to a bar of length 2a.

where the P,(11) are Legendre polynomials. Introducing this into Eq. (10.56) and defining
moments of the charge distribution by

M, =qa ) J q(s)s'ds (10.59)
we obtain
o0 a +1
dreoV(r) = ; (1—?> MP/(11) (10.60)

Using the relation pPy(pr) + (I + 1)P(p) = P, (1), the gradient of this potential can be
written

1 0 a 1+2 r
4regVV = — <—> M tP(p) — =P (1) (10.61)
a lz:; R { R }

In the case of a linear charge distribution the moments M, are given by

qo/(l+1/2), leven
N\ qia/(1 +1/2), lodd

The series expansions (10.60) and (10.61) have a very simple structure and are hence
attractive if they can be terminated after a very few terms. This is the case when R/a =5. In
conclusion, the calculation of such a potential field can be made fast enough to be useful as
a basic routine in the numerical solution of three-dimensional Dirichlet problems.

Practical tests have shown that it is quite sufficient to assume constant surface charge
density in each trapezoidal element if the field is needed only in domains far from all
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boundaries, as is the case in deflection units. When the method is applied to asymmetric
electron guns, higher accuracy—especially of the field strength—can be achieved by
choosing the charge distribution in each surface element as a bilinear function of the
corresponding coordinates, so that the whole distribution becomes continuous (in the
vicinity of the cathode). The structure of the linear system of equations for the surface
charges does, of course, become more complicated. Another was of extending the BEM to
three dimensions was suggested by Tsuboi et al. (1999).

Alternative techniques for the solution of three-dimensional Dirichlet problems are the
three-dimensional versions of the finite-difference and finite-element methods. These are
generally so dependent on the problem in question that they will not be treated in any detail
here. For an example, see the detailed description of the use of the three-dimensional FDM
to calculate electrostatic focusing fields in cathode ray tubes given by Franzen (1984) and
the review of Rouse (1994).

10.5 Examples of Applications of the Boundary-Element Method

The rotationally symmetric solution of (9.11), corresponding to the order m = 0 in (9.27),
is useful for calculating the magnetic field of a round lens with a very wide gap (Scherle,
1983) as is shown in Fig. 10.16. For clarity, only the equipotentials of the reduced scalar
potential y,,(r) are presented. A typical example of field calculation in deflection systems
(Scherle, 1983) is shown in Fig. 10.17A—C. Again, only the equipotentials of x,(r) in one
section through the field are shown. The case in which there are three different domains

AR

v

D)

Figure 10.16
Equipotentials of the reduced magnetic scalar potential xa(r) of a magnetic lens with a very wide
gap. Courtesy of W. Scherle (1983).
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Equipotentials of the reduced magnetic scalar potential Xx,(r) in an axial section through a system
of saddle coils, a ferromagnetic yoke and a pierced shielding plate. (A) The position of the saddle
coils (B) Ferromagnetic shielding plate (C) Superconducting shielding plate. (Note: the coils and

their field Hp(r) are omitted from (B) and (C) to prevent confusion.). Courtesy of W. Scherle (1983).
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(A)—(C) Equipotentials in different sections through a field-electron emission source consisting of
a cathode with a hipped roof and an anode with a rectangular bore. Courtesy of M. Eupper (1982).
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Figure 10.19
Perspective view of a pointed cathode welded on a hairpin support; Only parts of the surface
discretization are shown for reasons of clarity. Courtesy of M. Eupper (1983).

J

Figure 10.20
(A and B) Equipotentials of the electrostatic potential in two perpendicular sections through the
system shown in Fig. 10.19. The position of the anode is indicated. The total width is 10 mm and
the anode—cathode distance is 2 mm.

of solution can be analysed by iterative solution of two coupled integral equations of the
form (9.11) (Scherle, 1983). The magnetic form of the method has been used to compute
magnetic fields in the presence of saturated magnetic materials in a very impressive
publication by Murata et al. (2016).

The three-dimensional BEM becomes a very powerful tool when problems with very large
differences in the geometrical dimensions are to be solved. Some typical examples are
field-electron emission sources with a hipped-roof cathode (Fig. 10.18A—C; Eupper, 1982)
and with a rotationally symmetric tip welded on a hairpin-shaped support (Figs 10.19 and
10.20A and B). More details of field calculations in electron sources are given in

Chapter 45 of Volume 2.



The Finite-Difference Method (FDM )

The finite-difference method (FDM), usually combined with an iterative technique to solve
the corresponding linear system of equations, is a standard procedure for field computation.
It was introduced by H. Liebmann as early as 1918 and is thus often called ‘Liebmann’s
method’. The associated mathematical theory is exhaustively studied in the literature, for
instance by Varga (1962), Forsythe and Wasow (1960), Ames (1969) and Jacobs (1977).
Survey articles on the application of the FDM to electron optical problems have been
published by Weber (1967), Bonjour (1980) and Kasper (1982), who has devoted an entire
volume to this method and those treated in Chapter 12, The Finite-Element Method (FEM)
and Chapter 13, Field-Interpolation Techniques (Kasper, 2001); see also Munro (1988,
1997). In recent years, however, more powerful techniques have been developed for solving
boundary-value problems, and the original form of the FDM has lost some of its earlier
importance; we shall therefore discuss it only briefly. Nevertheless, it is used in the popular
program suite SIMION, which is continually being improved (Dahl et al., 1990 and for a
good account of the history of SIMION, Dahl, 2000; www.simion.com). A paper by
Dowsett (2015) shows how devices in which very different length scales are present can be
modelled by using several overlapping potential arrays with different mesh densities (see
also Dowsett, 2011). Multiregion FDM has also been studied by Edwards (2011). For three-
dimensional elements such as quadrupoles, the FDM is easier to programme than the finite-
element method (Rouse, 1994).

11.1 The Choice of Grid

The basic idea of the FDM is to cover the entire domain of solution of a boundary-value
problem by a finite rectangular grid. In order to obtain the greatest possible simplification,
it is usual to specialize to square-shaped grids. We have to distinguish between regular
internal points (A), irregular internal points (B), regular axial points (C, D), irregular axial
points (E) and boundary points (F), as shown in Fig. 11.1. In the practical organization of a
FDM program, each point has to be assigned to one of the classes and handled accordingly,
which complicates the actual application of the FDM. Since the boundary of the domain is
in general curved, these complications cannot be avoided.

Principles of Electron Optics: Basic Geometrical Optics.
DOI: http://dx.doi.org/10.1016/B978-0-08-102256-6.00011-0 1 67
© 2018 Elsevier Ltd. All rights reserved.
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Figure 11.1
Grid with square meshes and distinction between different types of node.

In the subsequent presentation we shall consider a two-dimensional Dirichlet problem
associated with a general elliptic differential equation:

A(u, V)V + B(u, v)Viy, + alu, v)Vy, + b(u, v)V, (1L1)
= C(u, v)V(u,v) + G(u,v) '
(For an explanation of the notation, see Section 2.4.) The coordinate system (u#, v) may be

curvilinear, but is almost invariably chosen to be orthogonal. A term with V,,,, cannot then
appear and is hence omitted from Eq. (11.1).

There are essentially two different ways of deriving discrete formulae, the Taylor series
method and the integral method. Both are in very widespread use and equivalent in the
sense that they differ only in higher order terms of the discretization errors.

11.2 The Taylor Series Method

Since irregular configurations are to be treated in the vicinity of the boundary at least, we
now consider a general five-point configuration, as shown in Fig. 11.2A. In order to
establish a discrete form of Eq. (11.1), we expand V(u, v) as a Taylor series with respect to
the coordinate differences u—uq and v—wvy. In applications to five-point configurations, we
have to truncate this after the second-order terms. This implies that, along the lines

u = uy = const and v = vy = const, we can approximate the potential by Lagrange
interpolation parabolae. For instance, the parabola that fits the potential at the points P3, Py
and P; (see Fig. 11.2A) is given by

1
V(u,vo) = Vo + (u — ug)Vy, + E(M—MO)ZVW
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Figure 11.2
(A) Five-point configuration for internal nodes 0. (B) Four-point configuration to be used when
the node 0 lies on the axis.

The derivatives V,, and V,,, refer to the central point Py and are given by

1
Vie =———dBV,—KBVi+ (B* =KV,
| h]h3(l’l1+h3){ 3V1 1v3 ( 1 3) 0}
2
Vi {hsVi + V3 — (hy + h3)Vo }

 ihs(hy + h3)

Similar expressions are obtained for the derivatives V|, and V|,,,. Introducing all these into
Eq. (11.1), we obtain a finite-difference approximation for the latter. This is to be solved
for the value Vj, at the grid point Py in question. The resulting linear relation has the general
form

Vo=00+B,Vi+ 5,Va+ 53V + 6,V (11.2a)

the coefficients 0 ... 34 depending on the position of the grid point in question and being
given by

By = Go/N
ﬁ o 2A0 +a0h3 ﬂ o 2Bo +b()h4
Vol )N (g + haN
8, 2A0 — aphy 3, 2By — bohy (11.2b)

" Ia(h + h3)N’ " ha(hs + ha)N

2A0 + ag(hz — hy) n 2By + bo(hy — hy)
hihs hohy

N:C0+
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A relation of this kind holds for all regular and irregular internal grid points. On the axis of
symmetry, however, only four-point configurations can be evaluated, as is shown in
Fig. 11.2B. In such a case the symmetry condition V(—u, v) = V(u, v) leads to

Vy
V|U =0, lim |: b(u’ U):| = Vlvv(”a 0)
v—0 v
The second-order derivative is then given by
Vo =V,
Vieo(u,0) = 222 = 0
2

Introducing these approximations into Eq. (11.1) we obtain the four-point formula. It is
necessary to assume that b(u, v) = b(u, v)/v, where b(u, v) is an even function with respect
to v and may also vanish. The coefficients are then given by

Bs=0, [y=2By+ 150)/Nh§
240 + ao(hs — hy) N 2(By + by) (11.2¢)
hyhs h’

N:C0+

while 3y, 8, and 3 remain the same as in Eq. (11.2b), apart from the different
normalization factor N.

As a comparatively simple example, we shall now consider the differential equation
o
V|ZZ + V‘rr‘F 7V|r: —g(Z, }") (113)

which includes Eq. (7.10) as a special case with « =2 m + 1. We limit the discussion to
regular grid points, for which the finite-difference approximations can be given easily in
explicit notation. With

Vik = V(ih,kh) (i,k integers) (11.4)

and a similar notation for g(z, r) we obtain

1
Vik= Z(Vi+l,k + Vicix + Vigrr + Vi + 1Pgin)

N (11.52)
+ —(V; —Vir=1), k>1
Sk( k1 — Vik—1)

for internal mesh points and

1

Vip= ————
27 2(a+2)

{VM,O + Vicio+2(a+ D)V + hzg,-,o} (11.5b)
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for axial mesh points (if o 7 —2). The resulting discretization error is of fourth order in the
mesh-length 4. The set of relations Eq. (11.5a,b) forms a linear system of equations
specified by two subscripts i and k.

11.3 The Integration Method

In the subsequent presentation, we assume that the differential equation to be solved is self-
adjoint:

E(PV|u) + E(PV\U) =QV+S§ (11.6)
ou ov

the coefficients P, Q and S being regular functions of u and v. Applying Gauss’s integral
theorem to any domain R and its closed boundary C we obtain

%Pa—vdsz ﬂ(QV+S) du dv (11.7)
C an

R

0V/on denoting the normal derivative of V in the outward direction. This integral relation is
exact. Its practical evaluation, however, requires several simplifying assumptions. For
instance, when applying Eq. (11.7) to the configuration shown in Fig. 11.3A, we can make
the approximation 0V/on = (V,—Vy)/h; (i = 1...4) on the corresponding side of the
rectangular contour. Furthermore we make the simplification V& V|, under the double
integral; we then obtain the finite-difference equation

LV — Vo
Z J Pds= ﬂ(Qv0 +5) dudv (11.8a)
l
A (8)
0\2 0\2
4N 4N
/ N / N
/ \ / \
ANTATAIR LN AN
R 27 BN NN A N
< 2 > 2 BN
s\ Yo S 3 0 1
N2 ANZZLY,
N\ T
N v/
N
0y
Figure 11.3

Rectangular loops and areas of integration (A) for internal nodes and (B) for axial nodes. In the
latter case, both the loop and the area can be doubled by exploiting the mirror symmetry.
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Provided that the integrands are sufficiently simple analytic functions, it is possible to
perform the remaining integrations analytically, but this brings no essential gain in
accuracy, since the approximation made for 0V/on is then too inaccurate. Thus, in order to
obtain a practical form of the discretization, we assume Q — Qy = Q(ug, vg), S— So = S(ug, Vo)
on the right-hand side of Eq. (11.8a). On the left-hand side, we assume that the integrand P is
piecewise constant, for instance P(u, v)— P(ug + hi/2, vo) = P on the right-hand side of the
rectangular integration path shown in Fig. 11.3A, the other parts of this path being treated
analogously. We then find immediately

h2+/’l4 1+h3

(Vi — Vo) P+ (Vo= Vy)

P,

hy + ha — +h
2 APy (V- vo)1 P

+ (V3 = Vo) Py (11.8b)

%(Vo + Q0So0)(hi + h3)(hy + hy)

Solving this for V,, we obtain a linear relation which differs from Eq. (11.2) only in
the values of the coefficients 3 ... 84. The two discretizations are equivalent in the
sense that they differ only in discretization errors of third or fourth order in the
mesh-length. These error terms are to be neglected in any case. For axial nodes O
some special considerations are necessary, which are not given here. For the most
important special case mentioned below, the reader will find them in Janse (1971)
and Kasper (1976).

The above considerations can be applied to Eq. (11.3), since this differential equation can
be rewritten as

0 )
— (Vi) + (V) = — gz, 1) (11.9)
0z or

so that in Eq. (11.6) we have P =r", Q =0, S = —r“g. The corresponding discretization
formulae have been published by Janse (1971) and Kasper (1976, 1982) and will not be
repeated here. The discretization differs from Eq. (11.5a) essentially in the fact that here the
integrations in Eq. (11.8a) are carried out analytically and all the coefficients remain strictly
positive, whereas in Eq. (11.5a), the coefficient of V;;_; becomes negative for a > 2k.
Positive coefficients mean increased stability of the entire system of equations when these
are solved by iterative techniques (see Section 11.5), but the final accuracy of the solution
obtained is not better than that given by Eq. (11.5a). It is interesting to note that the
discretization formula obtained by integration over the configuration shown in Fig. 11.3B is
identical with Eq. (11.5b).
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The integral method may be further generalized to discretization in general triangular grids.
The corresponding algorithms have been derived by Colonias (1974) and Winslow (1967).
These will not be treated here, since they seem to be less favourable than the finite-element
method presented in Chapter 12, The Finite-Element Method (FEM). Some other
refinements of the FDM are possible; see, e.g., Lenz (1973) and Kasper (1982) for

further details.

11.4 Nine-Point Formulae

The accuracy of the FDM can be improved considerably by the use of nine-point formulae
(Durand, 1966; Kasper, 1976, 1984a,b, 2001). These are advantageous in the case of a
regular grid; the solution of the problem that arises for irregular grid points is given below.

We reconsider the differential equation of the general form Eq. (11.6). More particularly we
assume that the coefficient functions have a common factor v with v =0, o= —1, so that

0 0 .
a(pzuavw) + %(p%avh,) +p*(GV +5)=0 (11.10)

p(u, v), ¢ (u, v) and s(u, v) being finite analytical functions of their variables and p > 0.
There is a wide class of differential equations that fit Eq. (11.10). One practical example is
Eq. (11.9) withp=1, §=0, v=r, s = g; we shall meet others below. The same type of
discretization can be applied to all these equations, as will be obvious from the following
considerations.

We first note that by writing
U, v)

V(u,v) = e (11.11)

Eq. (11.10) collapses to the simpler form

AU = — g(u,v) = — (q(u,v)U + ps) (11.12)
with
¥ & ad
and

(16, 0) = (i, ) — % (11.14)
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(A) (B)

Aik
Bk Bk
v.k 2
Bok Bok
Ag
B_1k B_1k
A—qk

Figure 11.4
Notation employed for the points and coefficients in nine-point configurations,
(A) General case and (B) on-axis node.

If we consider cylindrical coordinates, u = z and v = r, all the differential equations derived
in Chapter 7, Series Expansions, are seen to be special cases of Eq. (11.12). There are,
however, important examples of representations in other coordinate systems, as we shall see
later.

Just as for the five-point discretization, we have to distinguish between on-axis formulae
(v =0) and off-axis formulae (v >0), and again these can take different forms. Here we
shall present only the results derived by Kasper (1984a), since these seem to be most
favourable for practical applications. For reasons of space we cannot reproduce here their
lengthy derivation, to be found in the corresponding publication.

We again use a notation with two subscripts i = u/h, k = v/h; the notation for

the coefficients is explained in Figs 11.4A and B. The discretization formulae are
most conveniently given by an implicit representation in terms of a new array W,
defined by

h? h?
Wir =Up + T8k = pi,k{Vi,k + E(Qi,kvi,k + si,k)} (11.15)

The off-axis discretization (k £ 0) is found to be

Wi =A_1 3 Wikt + AuWigsr + Aoxhgix

I
(11.16)
+ ZBj,k(Wi—l,k+j + Wit144)) + O(h°)

j=1
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The coefficients are given by

_ aa—2) _ 1
T k=3 N T 20+ 87,

— 11.17
Ac1x=4B+ 14 Brl,k:Nk(l‘F%iazkﬁ) ( )

Aok = 6Ny, Box = Ni(4 — 27;)
(Kasper, 2001, Section 4.4.1). This set of coefficients is obviously independent of the mesh-

length A. It is sensible to compute it at the beginning of the program and leave it in store.

On the optic axis (v =0, kK =0) a slightly different discretization is necessary. Equation
(11.15) remains valid but in the discretization not only are the coefficients different but
some other terms appear:

1
Wi,o =A1,0W,-,1 + ZBj,O(Wi*I,j + Wi+1,j)
Jj=0 (11.18)

+ {AO,Ogi,O + C(gio — gi,l)} +O(h°)

the set of coefficients being given by

(1+ )6+ a) 1
B=—r——— Y= 55
6(3 + ) 2 +a—0)
AI,O - 2’}/0(1 +a— ﬁ)
(11.19)
Boo = (1 =), Bio =0
a(l + )
Ang = C=ryo
00 =% 063G +a)
For a <0 (o = —1 for flux fields), the axial discretization fails, but then we have simply

Wio=U;o=gio=s5i0=0, so that Eq. (11.18) is no longer needed.
In order to reduce the necessary amount of calculations and storage locations, we rewrite
Eq. (11.15) in the form

Wt 4 Di s
hgiy = Gus Wi + Piscsive) = CiWix + Six (11.20a)

(5 + 34)

127

from which the field V has been eliminated. The sets of coefficients C;; and S;; are
calculated once in the beginning and stored. Next, the boundary values of W are determined
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from Eq. (11.15) and stored. The boundary-value problem for the array W can now be
solved using Eqs (11.16) and (11.18) and with Eq. (11.20a) as source terms. In this major
calculation only three arrays, C, S and W, are needed simultaneously. Finally the required
function V is obtained by solving Eq. (11.15) for V;, or equivalently from

_ 1
Vik = P,-,kl { Wik — - (CixWix + Si,k)} (11.20b)

There is no iteration and the coefficients C, S and W are no longer needed once the
expressions on the right-hand side have been evaluated.

11.5 The Finite-Difference Method in Three Dimensions

The three-dimensional form of the method has been studied in great detail by Rouse (1994);
here we simply give the basic structure, referring to Rouse’s article for details. We now
consider six points in the neighbourhood of a central node (Fig. 11.5A). Laplace’s equation
leads to

alVi+aVo +a3V3; +ayVy + as5Vs + agVe = agVy

(cf. 11.2a), in which

2 2

N h) M ol + o)
2 2

B sy +hy) M (ks + ha)
B 2 B 2

“ 7 hsths +he)” " holhs + he)

ap=0a1tayt+az+ a4+ a5+ ag

If an electrode intersects a mesh line away from a node, a small modification usually gives
a satisfactory solution and requires very little modification of the set of linear equations to
be solved. Suppose that the electrode (potential V,) intersects the mesh between node zero
and node 1 (Fig. 11.5B) The length /, is now replaced by the distance from the node zero
to the electrode and the potential is set equal to V,.

Rouse extends this basic theory in two important ways: the theory is modified to
permit dielectric material (notably, insulators) to be included and a simple way of
adapting it to calculate the magnetic fields of magnetic materials and coils is
described.
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Figure 11.5
(A) The six nearest neighbours of a central node (0) at distances hy, h,. . .he from the central
node. (B) An electrode at potential V, intersects the arm joining the central node and node 1 at a
distance h4, from the central node.

For solution of the finite-difference equations, Rouse prefers successive over-relaxation
(Section 11.7). Gaussian elimination is extremely slow; the incomplete Cholesky conjugate

gradient method is faster but cumbersome.

11.6 Other Aspects of the Method
11.6.1 Expanding Spherical-Mesh Grid

The formalism developed above fits very many different forms of the equations of Laplace,
Poisson and Helmholtz. In electron optics, they are most frequently expressed in cylindrical
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coordinates but this is not always advantageous. In order to calculate the field in field-
emission electron guns (see Part IX), Kang et al. (1981, 1983) introduced an expanding
spherical grid which they called SCWIM (spherical coordinates with increasing mesh-
width). This can be regarded as a conformal mapping of an originally cylindrical grid with
square-shaped meshes:

z+ir =Ry exp(u + i1) = R(cos ¥ + i sin ©})
with an arbitrary positive constant Ry, and hence
R=Rpexpu, J=v (11.21)
If the mesh-length £ in the coordinates (u, v) is constant, the corresponding grid in the real

space expands exponentially, as shown in Fig. 11.6. (This interpretation is not mentioned by
Kang et al.).

Introducing Eq. (11.21) into the rotationally symmetric Poisson equation in spherical
coordinates (R, 1):

FV 20V 18V cotddV _ p(R,Y)

+t-——t =+ —— = 11.22
OR> ROR R*39* R* OV €0 ( )
we find after some elementary calculations
0 ov 0 ov R2e3si
—(e*sinv— | + — | e¥sinv— | = — wp(Roe”, V) (11.23)
ou ou ov ov €0

Figure 11.6
An expanding spherical-mesh grid and part of a curved boundary that does not fit this
grid (h =7/20).
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This can be brought into the form Eq. (11.10) with

L SIMv

a=1, p*=e — Gg=0, 0=v<mn) (11.24a)
R2 2u R2

5= 0% (Rye", v) = - p(R, V) (11.24b)
€0 €0

The evaluation of Eq. (11.14) results in

1/ 1 1 1 02
= (—-=\|=—(1+—=)+00* 11.24
=3 (5 w) (1 5) rouh (11.240)

The derivation of the corresponding nine-point discretization is now a straightforward
matter. It has been proposed by Kasper (1984a) and worked out by Killes (1985). In
comparison with a five-point discretization with equal meshes, the gain in accuracy is
considerable, so that it is certainly worthwhile to use the nine-point discretization whenever
this is possible. All that is required is the determination of the coefficients in Eq. (11.20)
from Eq. (11.24), the result being

YR
Uk= D=4\ G2 hk ~ n2K2

124y
Cig=Cr=—""7—
P R g+ 12h72
o 12pj,k5j,k
P g+ 12h72

where j and k are integers. Equations (11.16) and (11.18) with (11.20a) and finally (11.20b)
can then be solved.

As Killes (1985) pointed out, this method is useful for 0 =¥ = hk = 7/2. For larger values
of 4, it is better to discretize the variable ¥ := m— and to join the fields in the two
domains together smoothly at ¥} = ¢’ = /2. The concept of conformal mapping can be
generalized further but we shall not pursue this here.

11.6.2 Extrapolation on Multiple Grids

In Chapter 10, The Boundary-Element Method, we have seen that extrapolation can be
beneficial by reducing the size of the matrix to be inverted. Here, the extrapolation is
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designed to improve the accuracy of results obtained with the five-point FDM without
increasing the number of nodes. A potential problem is first solved using a small number of
nodes (N X N), then again after doubling the number of nodes in both directions (2 N X 2 N)
and yet again after doubling the number a last time (4 N X 4 N). Three values are thus
obtained at each node of the coarse mesh and these are extrapolated to give an improved
estimate. The resulting values at the N X N nodes are then interpolated to furnish an
improved 4 N X 4 N mesh. In the example examined by Becker (2008), where N = 32, an
improvement of more than an order of magnitude was obtained, which would have required
a 407 X 407 grid without interpolation. However, no such improvement was found when
Kasper’s nine-point discretization was employed.

11.6.3 Combination with the BEM

It frequently happens that a boundary-value problem is to be solved in which the boundary
contours do not fit the grid. For every irregular internal node the general five-point
formulae then have to be applied. This complicates the FDM very considerably and
diminishes its accuracy. This disadvantage can be circumvented in different ways. In the
case treated above and for the solution of other Dirichlet problems for Poisson’s equation
ViV =— p(r)/eg, combination with the boundary-element method (BEM) is effective
(Kasper, 1984a,b; Killes, 1985). First, the regular grid is extended beyond the boundaries so
that only regular points are obtained, as is demonstrated in Figs 11.6 and 11.7. In this grid,
Poisson’s equation is solved with arbitrary reasonable boundary values. The values at the
true curved boundary are then determined by interpolation. This can be done very
accurately since interpolation in regular grids raises no problems (Killes, 1985). The values
obtained are now subtracted from the prescribed boundary values, and with these
differences the Dirichlet problem V>V’ =0 is solved using the BEM. The required total
solution is then obtained by superposition. The advantage lies in the fact that the solution of

Figure 11.7
Extension of a regular grid beyond the curved boundary 0G of a given domain G.
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Poisson’s equation by means of the FDM is much faster than the evaluation of Coulomb
integrals, while the BEM can be applied easily to configurations with curved boundaries.

11.7 Iterative Solution Techniques

These will be briefly treated here; the same techniques are also used to solve the equations
resulting from finite-element approximations. In order to obtain a highly accurate final
solution, the mesh-length must be sufficiently small. Then, of course, the rank N of the
system of equations for the potential at the internal nodes becomes very large, typically
N~ 10*. The solution can be obtained directly but a solution can also be found iteratively,
since the coefficient matrix of the system is sparse.

Numerous iterative techniques for solving large linear systems of equations have been
developed. The corresponding mathematical literature is very extensive; some of the major
works are cited in the bibliographic listing.

The first step in the application of any of these methods is the choice of an appropriate
numbering of the grid points. All the internal grid points must be counted exactly once in a
one-dimensional sequence and no boundary point must be counted as the whole domain of
solution is scanned. For instance, an appropriate numbering of the internal points with
indices [y =i=1,, K, =k =K, is given by

p=i—L+1+k—-—K)L—-1;+1)
1S/LSNI=(K2_K1+1)(12—11+1)

but permutations of this sequence are also allowed. With this linear sequence of numbering,
the whole system of finite-difference equations can be brought into the general form

N
V=Y CuVy+Q, p=1...N (11.25)
v=1

the prime indicating that the case 1 = v is to be excluded. The matrix on the right-hand side
is large but sparse, its nonzero elements can be easily calculated and it is therefore not
necessary to store them. The inhomogeneous terms Q, arise from the boundary values of
the potential and from the source terms.

The standard iterative technique for solving linear systems of equations like Eq. (11.25) is
the successive over-relaxation method (SOR). The corresponding procedure is defined by

pn—1 N
S(JH) = Z C/JI/VZ(/n+1) + Z C/u/Vz(/n) + Ql/ (1]‘263)
v=1 v=p+1

V;(IHH) _ VLn) + w(Sg’“) _ V;(Ln))» u=1...N (11.26b)
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Here the superscript in parentheses denotes the iteration number. The starting values
Vfo). .. ,(\? ) can be chosen arbitrarily; a sensible guess for these is quite sufficient. The
constant w, the over-relaxation parameter, must satisfy 1 <w <?2. It is very important for
the convergence of the iteration procedure to choose it suitably, as will be discussed below.
The practical meaning of Eq. (11.26a,b) is as follows. The quantity /""" is an
approximation for the expression on the right-hand side of Eq. (11.25). This Gauss—Seidel
value is calculated from the newest values V, (v =1 ... N); it is, however, not accepted as
the next approximation, but instead the difference between it and the preceding value is

magnified by a factor w, as is obvious from Eq. (11.26b).

In the practical setup of a SOR program, each successive approximation Vg), [=0,1,2,...
for the same variable V, is stored in a single location assigned to V,,, and for S only one
storage location is necessary. Since the array {Q,, v =1 ... N} is usually sparse, the
necessary number of storage locations is in practice not much greater than N.

The theory of the convergence of the SOR is investigated exhaustively in the mathematical
literature; see Ames (1969), Varga (1962) and Weber (1967), for example. A sufficient and
often necessary criterion for the convergence of SOR is that

N
>
v=1

Cul=1, p=1...N (11.27)

At least one of these sums must be less than 1. For o > 1, criterion Eq. (11.27) is violated
by Eq. (11.5a), so that SOR cannot be applied to Eq. (11.5a). When the process does
converge, its rate depends essentially on the choice of w, as is shown in Fig. 11.8. The
number of iterations N;, needed to reduce the iteration error A below a given error limit €

does of course depend on the definition of A, the choice of ¢ and the initialization VLO) ,

w
>

N —— — — — — — — — — — — —

|
|
|
|
|
|
|
|
|
|
]
2

1 Wopt 1 Wopt

Figure 11.8
Asymptotic behaviour of the damping factor p and relative iteration number N, as functions of the
relaxation parameter w.
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=1 ... N. But the value of w,p, where N;, has its sharp minimum, and the relative
iteration number, N, = N;;/Npi,, do not depend on these quantities.

According to the general theory of SOR, the optimum value of w is given by
2
Wopt = ——— F—>
1+V1-N

) being the largest (real) eigenvalue of the matrix C in Eq. (11.25). For any value of w this
quantity A is related to the asymptotic damping factor p, (p <1) by

_ (p+w—1)

wrp

N <1 (11.28)

A (11.29)

Since A and p are very difficult to calculate exactly, Carré (1961) has proposed a method of
estimating these quantities, and hence w,y, from the actual rates of convergence during the

computations. Winslow (1967) has modified this method. Both versions work adequately in
many applications but not in every case. For further information the reader is referred to the
original papers and Eiermann and Varga (1993).

A further refinement of the SOR is the familiar successive line over-relaxation (SLOR)
method. Here SOR is combined with Gaussian elimination for tridiagonal subsystems. For
instance, in applications to Eq. (11.5a,b), these equations are first solved directly along each
radial row of the grid, the values in the neighbouring rows being regarded as known for the
moment; thereafter the values obtained are modified by over-relaxation and the algorithm
proceeds to the next row. The whole grid is scanned repeatedly in this way until sufficient
convergence has been achieved.

The main advantage of the SLOR method is that it removes the instabilities of the simple
SOR when Eq. (11.27) is not satisfied. This has been reported by Kasper and Lenz (1980),
who applied the SLOR to Eq. (11.5a,b).

Still more refined techniques for solving large but sparse systems of linear equations are the
alternating direction implicit methods (ADI: Peaceman and Rachford, 1955; Varga, 1962;
Jacobs, 1977), the strongly implicit methods (Stone, 1968) and the cyclic reduction methods
(Buneman, 1971, 1973a,b). With the vast increase of memory capacity since those methods
were introduced, direct solution techniques have become attractive. Special procedures that
order the corresponding matrix in such a way that only its nonzero part is stored then
become desirable. Munro (1971, 1973) has applied such methods to systems of equations
arising in electron optical field computations.



The Finite-Element Method (FEM)

Though the basic ideas and equations of the finite-difference method (FDM) are very
simple, the practical application of this method to boundary-value problems can become
extremely tedious if the boundaries are of an irregular shape. In the finite-element method
(FEM), this difficulty is removed by the use of general triangular grids, as is shown in
Fig. 12.1. Such grids can be fitted to any shape of boundary, once the latter has been
represented approximately by a polygon. Since the numerical differentiation now becomes
very complicated, partial differential equations are not considered here. Instead, the
equations governing the values of the potential at the nodes of the grid are derived directly
from an appropriate variational principle (see Section 6.3).

The FEM was proposed by Courant (1943). It came into practical use with the
development of modern computers and has found widespread application in mechanical
and electrical engineering. Typical examples are problems in fluid dynamics and
aerodynamics, elasticity, heat conduction and magnetic field computations for electric
machines (Chari and Silvester, 1980). For further details we refer to the books of
Zienkiewicz (1967, 1971, 2013). Some mathematical problems associated with the FEM
were treated in detail by Norrie and de Vries (1973). In electron optics, the FEM was first
used by Munro (1971, 1973), who applied it to the computation of magnetic fields in
round lenses. Since this is of especial interest in electron optics, we concentrate on this
application without neglecting electrostatic fields, including those in electron guns. A
section is devoted to deflection units and multipoles. The presentation of the FEM given
below differs from Munro’s version in the introduction of form functions and in the
unification of the methods for saturated and unsaturated lenses. For further background
information, see Munro (1980, 1987a,b), Kasper (1987a,b,c), Morton (1987) and Reid
(1987). Many aspects of the method are developed in more detail in a book by Kasper
(2001); a monograph on The Finite-Element Method in Charged Particle Optics has been
written by Khursheed (1999).

12.1 Formulation for Round Magnetic Lenses

The appropriate variational principle for magnetic field calculation is Eq. (6.13) in
combination with Eqs (6.17), (6.18) and (6.29). Though magnetization curves are usually
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-G

Figure 12.1
Finite-element discretization; this example concerns the vacuum part of a meridional section
through a round magnetic lens.

presented in the form B = B(H) and thus Eq. (6.18) is quite familiar, it is more convenient
for the FEM to write

B=Bzr), V(B)=UB) (12.1)
Then Eq. (6.19) is in agreement with

=v(B)=2V'(B) (12.2)

==

We now introduce cylindrical coordinates (z, r, ¢) and perform the integration over ¢. The
variational principle Eq. (6.13) then takes the form

W=2r H {V(ﬂ) —j(z,NA(z, r)}r dr dz = minimum (12.3)
s

S being the domain of integration in the axial section and

AN (oA AV
B=(VXAY = <8—Z> + (5+7> (12.4)

In order to solve this variational equation, some simplifying assumptions are necessary.

The expression (12.3) must be minimized with respect to any permitted variations of the
vector potential A(z, r). In the FEM these are variations of the values A; = A(z;, 1)),
j=1...N, assumed at the internal nodes of a triangular grid, N being the total number of
such nodes. In this context it is convenient to introduce dimensionless form functions f;(z, r)
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associated with the node with the corresponding subscript; a detailed definition will be
given below.

We start now from a series expansion

N
A@r) =Y A1) (12.5)
k=1

and with Eq. (12.4) in mind, we introduce the abbreviation

Fiu(z, ) = Fii(z,r) = ficfi: + G + 7 )i + 77 o)
= %% +(@ +f_l> <% +JE) (12.6)

= 0z 0z or r or r

T o0z 0z

The function 3 may now be written as the quadratic form

N N
Bz, r)= Z Z Fi(z, r)AAx (12.7)

=1 k=1

Introducing Eqs (12.5) and (12.7) into (12.3) we obtain a discretization of this functional.
The minimization condition now takes the form

ZXZZWﬂ{V/(ﬂ)gfi —f,-(z,r»(z,r)}rdrdz:& (=1...N) (12.8)
S

Evaluating this expression and recalling Eq. (12.2), we soon notice that it is favourable to
introduce the matrix elements

L= 2wﬂu(ﬁ)Fi,k(z, ») rdrdz =L, (12.9)
S
M; =27 ﬂj(z, Nfi(z,r) rdrdz (12.10)
S

Eq. (12.8) then takes the concise form

N
> L BA=M;, i=1.N (12.11)
k=1

which represents a nonlinear system of equations in the general case, since in saturated

media v is a function of 3 and hence depends implicitly on A; ... Ax.

So far, the discussion has been quite general. The choice of the form functions f;(z, r) is
quite arbitrary, except that these must remain linearly independent so that the matrix L in
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Eq. (12.9) is invertible for fixed values of v. In order to perform the necessary numerical
integrations in Eqgs (12.9) and (12.10), however, a reasonably simple choice for the form
functions is necessary. In the simplest choice, equivalent to Munro’s original version of the
FEM, they are piecewise linear functions which are joined together continuously at the
nodes. Even the first-order derivatives are then discontinuous on the grid lines, however.
With an alteration of the numbering, the form function corresponding to an arbitrary
internal node O is sketched in Fig. 12.2A and B. It is nonzero only in the configuration
shown, consisting of n = 6 triangles with the common node 0, and there it is a pyramid of
unit height. It is defined in one particular subdomain (i = 1), see Fig. 12.3, by

ur —zor tz(rp — )+ r(za —z1)
2 — 201 + 20(r — 1) + ro(22 — 21)

Vv

(1) @

fora(z, 1) = (12.12a)

r

v
v

(A) (B) z

Figure 12.2
(A) Hexagonal configuration (n = 6) of nearest neighbours of an arbitrary internal node 0.
(B) Perspective view of the corresponding linear form function; outside the hexagonal domain,
this function vanishes.

4r (i+1)
i1
¢ C
I
: N (N
N 0) '
oy X
rc/ |
I
' >
0 Zej z
Figure 12.3

Notation for one of the triangular elements of which the hexagonal configuration of Fig. 12.2
is composed; d;=r; — ry (j=1i, i + 1) denote the side vectors and C; the centroid. In the text,
the area is denoted by a;.
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which assumes the nodal values

foiz(zo, r0) =1, fora(z1, r1) = for2(z2,12) =0 (12.12b)

Linear functions of this type are said to be barycentric.

The remaining calculation is elementary but very lengthy. We have to differentiate the
linear form functions, substitute these into Eqs (12.9) and (12.10) and then integrate. In
this context some simplifying assumptions are necessary, essentially concerning the
factors () and j(z, r). In order to facilitate the integration, these factors are assumed to
be piecewise linear or even piecewise constant functions. The results of these
considerations will be given at the end of Section 12.2, since we need the notation
introduced there.

12.2 Formulation for Self-adjoint Elliptic Equations

A variational principle is certainly a very common starting point but is not the only possible
one. The following method is equivalent to it but can be made more general so that it
remains applicable in cases where no variational principle is known.

We now regard (z, r) as quasi-Cartesian coordinates in a meridional plane and consider a
self-adjoint elliptic differential equation of the form

;(P%f> + g(P%f) +0(z ) =0 (12.13)

P = P(z, r) being a positive coefficient function. As in Eq. (12.5), we expand the potential
¥ in terms of form functions:

M
V()= > Uifiz.r) (12.14)
k=1

Here M is the total number of nodes; the numbering can always be chosen so thati=1... N
refer to internal nodes, while j =N + 1 ... M refer to boundary nodes. In Dirichlet
problems, the boundary values ¥y ... ¥y, are kept fixed. Substituting this in Eq. (12.13),
multiplying throughout by fi(z, r), i=1 ... N, and integrating over the whole domain § of
solution, we find

N

5 8
> E!'/kfi{a—z (Pfuz) + 5(Pfk|r)} + Qf,-] dzdr =0
k
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With the necessary continuity conditions, integration by parts now leads to

H { - ZPkpk(ﬁWCkk +ﬁ|rfk|r) + Qﬂ}dz dr + f%asplpkﬁ(njklz + nrfk‘,) ds = 0, i=1...N
k

S

n,, n, denoting the cylindrical components of the outward-directed boundary normal.
The contour integral vanishes, since the form functions referring to inner nodes must vanish
at the boundary in the case of a Dirichlet problem. Introducing the arrays

Gix(z, 1) = fudfuz + farfiir = Vi Vify (12.15a)
Py = [ P(z,7)Gixlz, 7) dzdr (12.15b)

S
QZJQ@M@ﬂ&m (12.16)

S

we obtain the finite-element equations
N —_— J—
S Puvi=0, i=1..N (12.17)
k=1

which are identical with those obtained by evaluating the corresponding variational
principle. From the latter, it might be concluded that Eq. (12.17) with (12.15b) remains
valid even when the normal derivatives of the form functions are discontinuous at the
grid lines, but this is not always true. In Eq. (12.17) the contributions of the boundary
values to the inhomogeneity are incorporated on the left-hand side, as the summation
covers all the nodes.

The matrix elements (12.15a) are considerably simpler than (12.6), as they are scalar
products. Consequently, the results of the discretization using linear form functions can be
cast into a fairly simple explicit form. Assuming that P(z, r) and Q(z, r) are constant and
refer to the centroid C; in each triangular element, we find, after some lengthy elementary
calculations, for a configuration of n triangular elements with common node O like that
shown in Fig. 12.2:

n

v, Z P.i(di1 _di)z/ai = Zal
i=1

i=1 "

4 n
Pci{dlzwﬁl +d W —ddi (9 + Wi+1)} + 3 § achi]
=1

(12.18)
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Here the notation of Figs 12.2 and 12.3 has been adopted; it is cyclic in the sense that
diy,=d;, V., =W; a;is the area of the element with the side vectors d; and d;;.

This theory can be applied to the field in round magnetic lenses. The potential ¥ is then to

be identified with the flux function ¥ = 27rA, introduced in Section 6.4, and (12.13) must

be identified with the flux equation arising from Eq. (6.33):

0 (vov 0 (vov
Ga) &l

Il ~Z(Z = — 27i 12.1
0z or \r or ) () ( %)

r 0z

The coefficients are hence

P(z,r)=v(z,r)/r, O(z,r)=2mj(z,r) (12.20)
The differential equation and the corresponding finite-element discretization remain
applicable even in the nonlinear case; we then have v = v(3) with

1 1
— 2 _ 2 2\ —
B=1B =5 (22 +w2) = ) §k VG (12.21)

In the vicinity of the optic axis at least, quadratic form functions are necessary, since we
know that ¥ o % in the paraxial domain. Recalling that ¥ must vanish at the outer
boundary and at the axis, we perceive that all the summations run only over the internal
nodes (i=1 ... N), as in Section 12.1.

We now state briefly the corresponding formulae for the vector potential, which result from
the considerations in Section 12.1. Although not identical with Munro’s formulae, they are
equivalent to them.

Again adopting the notation introduced in Fig. 12.3, we find for the value of 3 at the centroid' C;
1 2
Bei = el {di11(A0—A)+di(Ais1 —Ao) +s:i(Ao+Ai +Ai1) }

with an additional shift
2a;
S =

3r,

Then with v, = v(8,;) and j.; = j(z.;, ), both referring to the centroid C; of the element
with label i, we obtain

!The centroid, also known as the centre-of-mass, is the point of intersection of the lines joining a vertex to the
mid-point of the side facing the vertex.
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n n

. TeilVei 4 . Teilei
Ao P (di+l_di+si)2_§zrciai]cizz p {Ai(di+1—Si)—Ai+1(di+Si)}'(di+1—di+si)

=1 M i=1 =1 !
(12.22)

Apart from different material coefficients, the essential difference between Eqs (12.22) and
(12.18) lies in the appearance of the shift s; which results from the term A/r in Eq. (12.4).

Another interesting application of the FEM to magnetic lenses is the calculation of
magnetic circuits made of anisotropic material. In this case the reluctance v(() is to be
replaced by a symmetric tensor. Its components depend directly on the position r as a
consequence of the variable crystallographic orientation in the material and indirectly due
to saturation effects. Such calculations are extremely complicated; nevertheless, magnetic
circuits with anisotropic material can be advantageous. Balladore et al. (1981, 1984) have
shown that the size and weight of the yoke can be appreciably reduced in this way. Other
formulations of the FEM that are used to study electron lenses, deflection units and
multipoles are described in Section 12.4. Determination of the field functions for both
electron lenses and deflectors is described by Zhu et al. (1996).

12.3 Solution of the Finite-Element Equations

In the case of linear (unsaturated) media, the matrix elements L;; in Eq. (12.11) and Py
in Eq. (12.17) are constants; the corresponding systems of equations are therefore linear
and can be solved by means of standard techniques. It is usual to employ direct solution
techniques, in which case it is desirable to make use of an ordering that minimizes the
bandwidth of the corresponding sparse matrix. These techniques cannot be outlined here;
the reader is referred to the corresponding literature (Cuthill and McKee, 1969; Gibbs

et al., 1976; Duff, 1977). A very fast iterative procedure using the preconditioned or
incomplete Cholesky conjugate-gradient (ICCG) method (Meijerink and van der Vorst,
1977) has been developed by Lencova and Lenc (1984, 1986) and this is now the
standard technique.

Eq. (12.18) has already been cast into a form which is suitable for iterative techniques such
as SOR and SLOR. These are efficient if the coefficients in Eq. (12.18), referring to each
internal node (0), are computed once and for all at the beginning and then stored. In the
absence of source terms Q.; and with n = 6, the total memory requirement is 7 N.

When saturation or other nonlinear effects are present, the situation becomes more
complicated, as Eqs (12.11) and (12.17) are now nonlinear systems of equations:
iterative procedures are unavoidable. Direct techniques must be combined with
Newton’s iterative procedure (Munro, 1973). When the SOR is employed, a quasi-
linearization is necessary; Eqs (12.11) and (12.17) already have the appropriate form if
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v(f) is first treated as a linear coefficient during each iteration over the field and then
recalculated before the next cycle according to Eq. (12.2) together with (12.7) or
(12.21). A mesh designed for highly saturated lenses has been devised by Podbrdsky
and Krivanek (1988). The use of the FEM to study permanent-magnet lenses is
discussed by Kamminga (1975).

12.4 Improvement of the Finite-Element Method
12.4.1 Introduction

The form of the FEM presented above is only the very simplest version. We have chosen it
in order to display the basic ideas clearly. The FEM can, of course, be improved in many
ways. The corresponding theory has been developed in so much detail that it is impossible
to treat it adequately here. It is even impossible to present a complete list of references.
We must confine our considerations to some essential points.

The linear form functions given by Eq. (12.12) are those of the lowest permissible order.
For the azimuthal component of the vector potential A(z, r) such a choice is reasonable,
since in the most important, paraxial domain the function A(z, r) is proportional to r. There
are also presentations of the FEM in which a linear approximation is made for scalar
potentials (Munro, 1973) and flux functions (Bonjour, 1980). This was clearly a locally
very inaccurate approximation, criticized by Kasper and Lenz (1980), who showed that the
FEM is then less accurate than the FDM, at least in the paraxial domain. This weakness is
avoided by modifying the finite-element equations for elements close to the axis or by
using higher order approximations for the potential. The corresponding theory has been
presented by Konrad and Silvester (1973). It is then necessary to introduce additional points
of reference along the mesh lines of the grid and also in the interior of the elements (see
Fig. 12.4). The values of the potentials at these additional points are unknown. The rank of
the system of finite-element equations and, of course, the complexity of its structure

\N

Figure 12.4
Configuration of finite elements and reference points to be used in a third-order approximation.
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increase accordingly but a gain in accuracy may be achieved. The second-order finite-
element method is presented in Section 12.4.3.

A second important aspect is the appropriate choice of the grid. In practice it is
unreasonable to require the user of a program to choose every node individually.

Suitable algorithms for the automatic generation of the grid have been proposed by
Winslow (1967) and Munro (1973). Whether these algorithms work efficiently or not
depends essentially on the shape of the boundary in question. More recently, Hermeline
(1982) proposed a new method, which works well but is highly sophisticated. The user of a
commercial finite-element program is supplied with a method for generating the grid, but
setting up one’s own program will generally be very laborious. The benefits of graded
meshes are emphasized by Lencova (1995b). Khursheed has shown that ‘conformal’, nearly
square meshes are superior to nearly rectangular meshes when very different dimensions are
involved, in electron guns for example (1997a,b). This choice of mesh is incorporated in
Khursheed’s KEOS package. Adaptive mesh generation for gun studies is explained at
length by Xia and Broers (1995).

A third aspect of the FEM — and indeed of the FDM — is the need to confine the spatial
extension of the grid. Very often the fringe-fields of a particular configuration spread out
over a much larger region than can be covered by the grid. In order to keep the error
introduced by cutting off the field at the boundary of the grid sufficiently small, the size of
the grid must often be very large. This drawback of the FEM can be removed by the
introduction of additional infinite elements. The trial functions for the potential, to be
evaluated in such elements, must be consistent with the asymptotic form of the real
potential. Such infinite elements have been proposed by Bettess (1977) and their use in
electron optics has been investigated by Lencova and Lenc (1982, 1984). However, it is
now possible to use such a large number of meshes that such special precautions are often
no longer necessary.

The problem of computing field strengths, which requires sophisticated interpolation
routines, will be discussed in Chapter 13, Field-Interpolation Techniques; it also arises in
connection with the use of differential algebra in Section 34.8.

12.4.2 Alternative Formulations

The foregoing general presentation is indispensable when a novel configuration is to be
studied. We now examine in more detail its application to the common elements of electron
optics: round lenses, multipoles and deflection units. We first reconsider the first-order
finite-element method (FOFEM) for magnetic lenses. In Munro’s original work, the value
of the integrand Eq. (6.13 or 12.3) was taken at the centroid of each triangular element.
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Figure 12.5
Midpoints of sides for a finite-element calculation.

However, other choices have been examined by Lencova and Lenc (1986), who found that
the accuracy is improved by taking the average of the values at the midpoints of the sides of
the triangle (Fig. 12.5). Related versions of the FOFEM also have advantages. Use of P :=

2 A/r instead of A in the energy functional (12.3) has the attraction that, close to the optic

1
axis, P(r) ~ B(z) — grzB”(z) + ... The functional can then be evaluated in terms of (r, z) or

of (%, z). Another formulation was proposed by Lencova and Lenc (1992), designed to treat
correctly the boundary between materials of different permeability, such as the yoke and
polepieces of a magnetic lens. For the components of the magnetic flux B, they use

D A Y leilA;
i i
- Zciri " E|Ci|”i
i i
ZbiAi Zb,-Al-

- Zbizi - Zciri
; -
Zbizl' = Zcﬂ’i =D

B,

B, =

1

A further possibility is to replace A by the flux ¥ = 27rA, which we met at the end of
Section 12.2.

For all these slightly different approaches, the energy stored in an element of the mesh can
be written as

Tk + 1)< Fr <
AW = (=IFpi+ S > a5Vy) Vi

where J denotes the current density in any triangle.
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Table 12.1: Values of the coefficients of p; and g;; appearing in the expression for the
stored energy

Method pi 9ij

A (centroid) ra1/3 bib;+ (c;+d)(¢;+ d)

B (midpoints of sides) (ra +r)/4 bib;j+ (¢ +d)(¢+d) — d + 0’2”51{(1 = Oy)ry + O(ra + ryn)}

¢ (ra +1)/4 bibj+ (i +e;)(c; +e;)

Py (r, 2) fi/20 3r53(§b,-bj +cig)/ra + 2d(c,-ﬁ + cjﬁ) +2dD+(1 + (50-)(r,~ +ritrg)

P, (rz, z) r/6 [Usrdid; + 2ugocici + {(us1 + uj)¢; + (usq + uj)c}Doy + (1 + 6,]~)D22]/‘l 2
v 1/67r; {(u12 + vz3 + uy3)did;/6 + c,-cj}/7r2

When (r, z) is used, k = 1; for (r2, 2), k=2. Fy=ryDy F,=D;. The geometrical
quantities p; and g;; are listed in Table 12.1 for the various choices. The other quantities
appearing in this Table are as follows:

g =r +r+r;

_ 2 2 2
Fo=r{ T r, +r5+rrt+rrtnn
rs3=rf+rg+r§+r%r2+rfr3+r1r§+r1r§+r§r3+r2r§+r1r2r3

_ 2
l/t,'—}"i
u51=u1+u2+u3

_ .2 2 2
Ugp = uj +uy +uz + uguy + uguz + uou3
bi=rn—r3s by=rs—r bi=r—n
Cl=3 22 =413 C3=22—1
d1=u2—u3 d2=u3—u1 d3=u1—u2
Dy =bic; —byxcy Dy=dicy—drcr d=D/rg

Dy|ci
rilei| + ralea| + r3les)

ﬁ:r32+ri(ri+rsl)

e =

1 . .
rij = if r;+r; #0, otherwise r; =0
r; + }"]
1 ) .
u; = if w; +u; #0, otherwise u; =0
u; + Mj

anY
Il

5/8 if two vertices of the triangle are on the axis, otherwise £ =0

The errors associated with each of these formulations are analysed by Lencova and Lenc
(1996a,b) and Lencova (1999), who conclude that B (midpoints of sides) and P; give good
results when B(z) is required, especially when a fine graded mesh is adopted. For exact ray
tracing, however, C or P, is better.
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12.4.3 First- and Second-Order Finite-Element Methods (FOFEM and SOFEM)

The advantages of using second-order “isoparametric” finite elements with nine nodes
instead the triangular elements with linear variation of potential have been assessed by Zhu
and Munro (1989, 1995) and the second-order version is routinely used in some of the
commercial program suites of Munro’s Electron Beam Software (MEBS).

First, the region enclosed by electrodes or magnetic material is divided into large
quadrilateral regions, which may have curved sides; some of the latter will coincide with the
physical boundaries. These quadrilateral regions are regarded as Coons’ patches (Fig. 12.6)

r(p,q) = (1 — @)R,(p) + qR3(p) + (1 — p)R1(q) + pR4(q)
— (1 =p)1 = g)R(0) = (1 — p)gR3(0) — p(1 — g)R (1) — pgR3(1)

where r(p, ) is the position vector at a point (p, ¢) inside or on the perimeter of the patch.
A finer quadrilateral mesh is then generated by plotting lines of constant p and ¢, as shown
in Fig. 12.7. The resulting quadrilaterals are now the finite elements, which have nine nodes
and still have curved boundaries. This is not convenient for the subsequent calculations and
the quadrilaterals are therefore mapped to rectangles (Fig. 12.8A)

2 2
20, 0) =D Y “zyai(u)ay(v)

i=0 j=0
2 2
r(u,v) = ZZrl-jozi(u)aj(v)
i=0 j=0
2 ]2
D(u,v) = ZZ@,jai(u)aj(v)
i=0 j=0

R4 (p)

Figure 12.6
Notation for a linear Coons’ patch.
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Figure 12.7

Fine quadrilateral mesh covering an electrostatic lens. Courtesy J. Rouse.
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Figure 12.8
(A) Mapping of a curvilinear element into a square element. (B) The Lagrange functions. After
Munro (1997), Courtesy: Taylor & Francis.

in which z; and r;; denote the coordinates at the nine nodes and ®;; denotes the potential in
the electrostatic case. The functions a, ap, oy are the quadratic Lagrange functions

x(x—1)
2 b

x(x+1)

a)=—@=Drx+1), @m=—7

ap(x) =

in which x may represent u or v (Fig. 12.8B).

Minimization of the functional proceeds as before, yielding a set of linear equations for the
values of the potential. These are then solved by Gaussian elimination or preferably by the
incomplete Cholesky conjugate-gradient ICCG) method. These equations are more
complicated than in the first-order case, as nodes on the boundaries between two finite
elements and those at the point of intersection of four finite elements require special attention.

We note that the relative merits of the first- and second-order finite-element methods have
excited considerable discussion, Munro and colleagues arguing in favour of the SOFEM
while Lencova prefers the first-order method. With the large storage capacity and greatly
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increased speed of modern computers, the accuracy of the SOFEM can now be rivalled by
increasing the number of elements employed in the FOFEM without any unacceptable
increase in computing time.

12.5 Comparison and Combination of Different Methods

In Chapters 10—12, we have dealt with three major methods of calculating potentials, the
BEM, the FDM and the FEM. The question that now arises is, which one should be
preferred in a given case. The answer depends on the details of the particular problem to be
solved.

In all cases in which a one-dimensional linear integral equation can be derived, the BEM is
the most advantageous means of obtaining a solution. The necessary discretization can be
easily fitted to arbitrary boundaries, regardless of whether these are curved or piecewise
straight with sharp edges. Even extreme differences in the dimensions of boundaries, as in
field-emission electron guns, for example, are no obstacle to this method. There is no need
to cut off fringe-fields, as theoretically the domain of solution is the whole space. With a
comparatively modest memory capacity, high accuracy can be achieved. The linear system
of equations to be solved is well-conditioned and can hence be solved directly by means of
a simple Gaussian elimination without any pivoting. After determining the appropriate
surface-source distributions, the analytic expressions for the field strength can be evaluated
at any point of reference. In principle, there is no need for additional interpolation and
numerical differentiation techniques, though these may be helpful in some cases.

The same conclusions hold when the two-dimensional BEM is applied to three-dimensional
boundary-value problems (Section 10.4). Of course, this method is then more complicated
than the one-dimensional BEM, but this is an inevitable consequence of the greater
complexity of the problem to be solved; alternative methods such as the FDM and the FEM
will also become more complicated.

The FDM is suitable only when a regular grid fits the boundary, since the inclusion of
irregularities, though quite elementary, is very tedious. Since highly regular domains of
solution are very rare, the FDM is not advantageous, in electron optics at least, unless the
improvements outlined in Sections 11.5.2 and 11.5.3 are incorporated. It is, as we have
already noted, used in the program SIMION, where the use of multiple grids is current.

The FEM is theoretically applicable to any kind of boundary-value problem, even in three
dimensions. This method is certainly very effective if a highly perfected and tested program
package is available but if this is not the case, we should prefer the BEM, since the latter
can be easily programmed by a single scientist, at least in the one-dimensional version.
When saturation effects become important in ferromagnetic materials, however, the FEM is
definitely the best choice.
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Systematic comparisons of the FDM, FEM and BEM were made several years ago by
Cubric et al. (1997, 2D problems; 1999, 3D problems). At that time, the BEM outperformed
the other two methods but with later hardware developments, the FEM may well have
narrowed or even closed the gap. Furthermore, the measures of performance used at that
date would not necessarily be adopted today. The commercial software proposed by MEBS
and SPOC rely largely on the finite-element method, with occasional use of the finite-
difference method. The CPO programs (Read), on the other hand, use the boundary-element
method. In the light of all this, no clear-cut preference emerges — the differences between
the methods are insignificant with the performance of modern computers.

Several combinations of the different methods of field calculation have been investigated,
and one has already been outlined in Section 11.4.3. In electron optics this possibility has
been found valuable for field computation in field-emission electron guns (see Part IX).
More generally, the combination of different methods for the solution of Dirichlet problems
in electrostatics has been investigated by Schaefer (1982, 1983), who has proved quite
generally that iterative solutions of Dirichlet problems in two and more overlapping
domains converge. He has developed a suitable technique for the solution of such problems,
which he calls Schwarz’s alternating method. Though this method can be very powerful, we
cannot devote space to it here. Unfortunately, this method does not work for problems with
interface conditions or for nonlinear problems, where a suitable coupling of different
methods is particularly interesting. In these cases a combination of the FEM with the BEM
is possible, as has been proposed by McDonald and Wexler (1972) and McDonald et al.
(1973) and by Lencova and Lenc (1982, 1984). This last paper gives very full details of the
theory and programming of the procedure for a Mulvey lens similar to that shown in

Fig. 12.9. A similar method has been proposed by Kasper (1984a,b); we now outline

this briefly.

A typical example of the application of a hybrid method is presented in Fig. 12.9, which
shows a half-axial section through an open magnetic lens. Owing to this open structure the
magnetic fringe-field extends so far that it becomes somewhat impractical to apply the
FEM in the vacuum domain V. On the other hand, the saturation effects in the polepieces
make the application of Scherle’s method impossible. We hence apply the FEM only to the
polepieces and use the BEM in the outer domain.

The finite-element equations can be solved if the boundary values of A(z, r) at the surface
contour C are known. Then by means of suitable interpolation techniques the normal
derivative (0A/0n); on the inner side can be determined. When this has been done, we also
know the normal derivative (0A/0n),, on the vacuum side from

(G (), A=
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Figure 12.9
(A) Upper half of a meridional section through an open, round, magnetic lens with a
ferromagnetic core and a rectangular distribution of windings. Only the interior of the yoke is
discretized by a triangular-mesh grid. (B) Axial field strength for an excitation of 18000 A-turns.
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We can now solve the integral equation

| oG oA
_A(u)=+ Aw) ! —Gl(u,u’)(—> rds + MOJ Gi(w,u)ju) rdrd?  (12.24)
2 C 611/ al’l/ v Vv

in which we have written u = (z, r), ' = (¢, ') and G is defined by (9.21) with m = 1.

When the whole system of coupled equations has been solved iteratively, we have the
appropriate solution in the partly saturated iron together with an unbounded and smooth
vacuum field. Thus the drawbacks of using each of the individual methods separately have
been circumvented.

We repeat that the need for such a hybrid method has almost vanished, given the
capabilities of modern computers. Nevertheless, Kubo et al. (2017) have used at once the
finite-element method (EOD) and the finite-difference method (SIMION) to model the
optics of the entire column of a transmission electron microscope, a Hitachi In-situ
Interferometry TEM (I2TEM), which includes a biprism and a CEOS aberration corrector
(See Chapter 41, Aberration Correction). EOD was needed to model the magnetic lens
properties, where SIMION could not compete. An example of the results is illustrated in
Fig. 12.10. The splitting convergent-beam mode (Houdellier et al., 2015), in which a
biprism is employed, was also simulated as an example of the flexibility of the procedure.

12.6 Deflection Units and Multipoles

The finite-element method can be used to study these nonrotationally symmetric elements;
some familiarity with the contents of Chapters 32 and 33, Paraxial Properties of Deflection
Systems and The Aberrations of Deflection Systems, is assumed.

The finite-element method was first used to calculate the properties of deflectors by Munro
and Chu (1982), who considered toroidal deflectors and saddle-coil deflectors on a
cylindrical former. This work was extended by Lencova et al. (1989) who included the
possibility of using a conical former and introduced a modified form of the energy
functional. We seek a solution of the form

H=Vxy+F J=culF (12.25)

where y is the magnetostatic potential, y = —W/u (7.41, 7.42) and J is the current density
in the coil windings. We shall need to compute several harmonics of the field, which makes
it preferable to replace x by a new function W:

X(rz @)= > Xu(r,2)cos me
m odd

= g r"W,,cos my
m odd

(12.26)



The Finite-Element Method (FEM) 203

( 300um 5  300um o W V5=300 kv
X Ty — — =34 KV
—| — /1Y, = 7.5

N

1.\

e | Accelerating
® | tube

Condenser
f— Aperture

C1(2.1A)

C2(3.0A)

C3(0.9A)

Objective
lens(12.3A)

2300 mm
11(3.3A)

12(3.1.A)

I3(1.9A)

P1(2.0A)

P2(5.1.A)

Scintillator

w2

8 mm

Figure 12.10
Electron trajectories in the I2TEM. The trajectories have been considerably expanded laterally. The
aberration corrector, situated between the objective lens and the first intermediate lens (11) is not
included in this simulation. I: intermediate lens; P: projector lens.
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The boundary condition on the optic axis, x(0, z, ¢) =0, is replaced by the Neumann
boundary condition 0¥, /or = 0.

The vector function F is zero everywhere outside the windings and can be chosen to be
directed along the normal to the surface of the zone enclosed by the conducting wires.

It has a slightly different form for the two coil configurations but a unified expression can
be generated (Lencova et al., 1989). For toroidal coils, only the component F, is needed.
This is first rewritten as

_ w (12.27)

Fw(r, Z: SO) -
after which the loading function f(y) is expanded as a Fourier series:

@)=Y fasinme

m odd

47NI . .
= Z sin (p_sin mep
modd T

(12.28)

The function g(r, z) characterizes the location of the windings:

,2) =1 inside the windings
802 8 (12.29)
g(r,z) =0 elsewhere

The angle between the planes containing the windings is denoted by ..

For saddle coils, the loading function is expanded as

f(@) =" fucos me

m odd
AZNT (12.30)

= g sin mp,.cos my
Tmt
m odd

where the current is assumed to flow through a small zone of thickness ¢. The angle . is
now defined by the shape of the coil (Fig. 12.11A). The components of J are given by

_10F, 10F, OF, OF,

gy =2 Tz
rop’ °° rop’ Y oz or

(12.31)

r

We find

Fr=g(r,g)f(p)cos o Fr = —g(r, 2)f (p)sin a (12.32)
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(B)

Figure 12.11
Geometry of toroidal (a) and tapered saddle (b) coils used in electron beam deflection.

in which o = 0 for cylindrical coils and o = 7/2 for flat coils. (The case in which o varies
with z can also be included but is not considered here.)

Before replacement of y by WU, the components of the energy functional (here denoted by U
to prevent confusion with the magnetic scalar potential) take the form

2 2
U, = ﬂ{ (a"m lgfm> (ax'" +azgfm) (—% +a3gfm> }rdrdz (12.33)
2 %) 19) r

0Odd m, saddle coils: f,, = 4NIsin mep,/mTmt

Odd m, toroidal coils: f,, = 4NIsin mep, /7

(For even values of m, the values of f,, are twice these.)
For saddle coils, a; =cosa, ap = —sina, a3=0
For toroidal coils, a; =0, a, =0, az=1

On replacing x by ¥, U,, becomes
L—R+A) (12.34)

in which

L:Hrzm{ (B 1 (LY i, 2L 22 e }drdz

ov,, oy,
R=—2gfu || an (r— +m¢m> + ayr—— —aym¥,, pdrdz
or 0z

(A has no effect on the subsequent theory). The integration is taken over the triangular
elements (Fig. 12.11A and B).

(12.35)



206 Chapter 12

The calculation now follows the same lines as that for round lenses. We give the essential
steps without comment. Linear shape functions, ¥(r, z) =f + gz + hr, are employed, with

_ Zdi% _ Zbi¢i _ Zcﬂﬁi
f_T’ 8==p h_T (12.36)

where 1; denote the values of U, at the vertices of each triangle, the area of which is D/2.

di=z2r3—23r, bi=rn—r, c¢=23—2, etc (12.37)

In order to evaluate L and R (Eq. 12.35), the following formulae, derived by Lencova et al,
are required:

N _ D
ﬂr drdz = mR(ﬂ)

D
"pdrdz = T:(n)y:
ﬂr"@bzdrd = D Ti(n)yab
T Dmr2)m+ 3)nray VY
in which the integration is again taken over each triangle and

n n—k
R(n) = ZZr’frérg k=l

=0 /=0
Ti(n) = ZZ(H DAd = ptis q#ip, T(0)=1

ok (12.39)

Ty(n) = ZZ(kH)(lH)r“"“, JFE b pFEij
n n—k

Ti(m) =Y > (k+ 2+ Vi ™ p#i, q#ip

k=0 1=0
Minimization of U, leads to the following expression for each triangle:
fi= g(bibj + cic)R@m + 1) + ,uzm%cﬂ"j@m) +¢Ti(2m) + DTy2m— 1) (12.40)

and these enable us to build the matrix characterizing the set of linear equations for . On
the right-hand side, we have

2m+3
—(m 3 [al {(m + e R(m + 1) + mDT,-(m)} (12.41)

+ ay(m + 1)b;R(m + 1) — a3D(m + 3)T:(m — 1)]

& = — 2ufgm
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R(n), T(n) and T;(n) can be easily evaluated with the aid of the following recursion rules:

R(n) =rR(n— 1)+ S(n), R(1)=r +r+r;
Ti(n)=rTi(n — 1) + R(n), Ti()=ri+r +r+r

Ti(n)= r;Ta(n — 1)+ 2Ti(n), Ta(1)=4r; +2(r1 + 1y + 13) (12.42a)
T,'j(l’l): }"jTij(l’l_ 1)+Tl-(n), le(l): r,-+rj+r1 +r2 +I’3
where
Sn)=nrSn—-1)+r;, S(1)=r+r; (12.42b)

The fact that the expansion of ¥,, has no linear term renders the linear shape function
unsuitable. For triangles with two vertices on the axis, f;; should be replaced by

- u 2m+1
=fi—=— bb.RQm+1 12.43
=Ty D4m+1) " (2m +1) ( )

(Lencova et al, 1989; Lencova and Lenc, 1996b).

We shall not devote a separate section to multipoles. The essential point to remember is
that the appropriate power of r should be removed before calculating the harmonics.

The imperfections of construction or alignment that give rise to parasitic aberrations have
also been studied in depth. Since more than one method has been employed, we postpone
discussion of this to Section 31.3.

12.7 Related Work

We have cited only a small selection of the many papers on the finite-element method.
The following are also of direct relevance: Aiming and Khursheed (1999), Barth et al.
(1990), Edgcombe (1997, 1999), Elster et al. (2008), Hodkinson and Tahir (1995),

Horak and Zlamal (2015), Jansky et al. (2008, 2009), Khursheed (1994, 1996, 1997a,b),
Khursheed and Dinnis (1989), Khursheed and Pei (1996), Lenc and Lencova (1997),
Lencova (1975, 1980, 1988a,b, 1994, 1995a,b, 1996, 1998, 2002a,b. 2003, 2004a,b),
Lencova and Lenc (2004), Lencova et al. (1996), Mulvey and Nasr (1981), Munro (1993),
Park et al. (2008), Radlicka (2008), Tahir (1985), Tahir and Mulvey (1990) and Tabhir et al.
(1993).



Field-Interpolation Techniques

The finite-difference and the finite-element methods yield the values of a potential at the
nodes of a discrete grid. This is only the first step in a full field calculation, since the
computation of electron trajectories requires a knowledge of the field strength at arbitrary
points in the field. This implies that suitable techniques for interpolation and numerical
differentiation will be required.

The application of predictor-corrector methods to the computation of trajectories requires
that the field strength be a smooth function, especially on the grid lines separating two
adjacent meshes. With respect to the FDM, this problem has been solved satisfactorily.
Calculation of field strengths with the accuracy needed for ray tracing requires an elaborate
interpolation procedure. An example of a particularly difficult case is described by Kang

et al. (2007, 2009, 2010) in their work on differential algebra.

The boundary-element method has the advantage that the field strength can be computed as
a continuous superposition of analytic functions once the surface-source distributions have
been determined.

13.1 One-Dimensional Differentiation and Interpolation

Numerical differentiation and interpolation in one dimension are the basis for all the
corresponding procedures in two and three dimensions. Moreover they are of immediate
importance in electron optics, since a knowledge of the axial potential and of its derivatives
is sufficient for the determination of most electron optical properties.

We consider here an arbitrary analytical function Y(z), which may be an axial potential, an
axial deflection field strength or any other function of interest. Let us assume now that only
the discrete values

Yi=Y), i=0...N, (z>z-1) (13.1)

are known. They may, for instance, result from a field calculation program using the FDM
or the FEM. We now wish to calculate Y(z) and some of its derivatives for arbitrary values
of z with zg =z =zy.
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This is a standard problem in numerical analysis and a wide variety of methods has been
devised to solve it but not all of these are suitable. If problems are not to arise in ray-
tracing programs (see Chapter 34: Numerical Calculation of Trajectories, Paraxial
Properties and Aberrations), all the required derivatives of Y(z) must be continuous at z . . .
Zy- Most of the familiar interpolation techniques do not satisfy this requirement, and the
best technique proves to be Hermite interpolation, which will now be outlined.

13.1.1 Hermite Interpolation

We assume for the moment that the derivatives Y’ and Y” at z; ... zn are known; their
determination will be discussed further below. We can then apply cubic or quintic Hermite
interpolation. In each interval z;_y =z=z; (i=1 ... N), cubic interpolation is described by

hi=z—z-1, t=Qz—z—2z-1)/h, ‘1’51 (13.2)
1 1

fia(t) = Z(z:yi ), g = g(ﬁ:zz —t=*1) (13.3)

Y(2) = Yi1fi(0) + Yifa(t) + Y, g1(1) + Yiga(?) (13.4)

while guintic interpolation is given by Eqs (13.2) and (13.3) in combination with

1 t
Fio() = 5(1::): E(7 — 1072 + 3r%)

t s . (13.5)
Gia(t) = —3—2(7—10z +3r") + 3_2(5_6, + 14
1 o
Hip(n)= (1=t Y(151)
Y(z) = Y1 Fi(1) + YiFo(2) + h,-{ Y, Gi(0) + y;Gz(t)} (13.6)

2 { YO+ Y 0 |

The form functions f1 (1), g12(t) or Fy (1), Gy 2(t), H; 5(1), respectively, are defined in such
a way that Y(z) and certain of its derivatives assume the prescribed values at z; and z;_;.
Since each internal endpoint z; is common to the intervals [z;_1, z;] and [z;, z;+1], Y(z) and
Y'(z) are continuous in the cubic Hermite procedure, while the quintic procedure also
ensures the continuity of Y”(2).

13.1.2 Cubic Splines

The formulae given above require that the derivatives at z; . .. zy have been calculated and
stored prior to the actual interpolation. We now discuss the determination of these
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derivatives. The cubic spline technique (13.3—13.4) is very convenient and is in widespread
use. Cubic spline functions are Hermite interpolation functions (13.4) that remain
continuous after two differentiations. This requirement imposes conditions on Y’y ... Yy,
which can be cast into the form of a tridiagonal system of equations. With the abbreviation
k;=h;"", this is given by

kY| +2(ki + ki)Y + ki Yoy
=3k} (Y; = Yir1) + 3k (Yir1 — Y)) (13.7)
i=1...N—1

The terminal values Y’y and Y’y can be chosen independently, provided that they are not

determined uniquely by such constraints as symmetries or periodicity. If there is apparently
no reasonable way of determining Y’y and Yy, the linear equations

ky
kY, + (ky + k)Y, =2D; + ———(D; + D
14 (2 1)1 1 k1+k2(1 2)

k
(k-1 — kn)Yy_, + kyYly =2Dy + ——(Dy + Dy—)) (13.8)
kn + ky—

D,=Y,—Y,_Dk’, v=12...N—1,N

can be combined with Eq. (13.7); these equations are obtained if Y”(z) is assumed to be
continuous at z = z; and z = zy_;. The complete tridiagonal system of equations can be
solved directly by means of the Gauss algorithm without pivoting.

In cubic splines, the second derivative is only a piecewise linear function and hence not
very accurate; one should thus not use cubic splines if Y”(z) is needed explicitly. In order to
obtain high accuracy in such cases, an improved differentiation technique is necessary and
quintic Hermite interpolation should then be used.

13.1.3 Differentiation Using Difference Schemes

Among the many ways of performing numerical differentiations, the technique outlined
below has proved very effective. The explicit use of the unequal spacing of the abscissae
Zo - - . Zy makes the formulae cumbersome and should be avoided. This can be achieved in
the following way.

We choose a parametric representation of the function in question, the parameter being
denoted by x:

z=z2x), Y=Y (13.9a)
x=ih, z=2z(h), Y;=Y(h), i=0,1,...N (13.9b)
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Without loss of generality we can choose i = 1, as we do below. Since the two functions
z(x) and Y(x) are to be treated in the same manner, it is sufficient to deal only with the
differentiation of Y(x); the corresponding derivatives will be denoted by dots.

We now introduce finite differences

AY; =Y — Y (13.10a)
8%Y; =Y —2Y; +Yiiy =AY, — AYi_, (13.10b)
82y = 82Yy — 287Y; + 87Yiy, n=1 (13.10c)

Derivatives with respect to x are then given by

1 1

1
=Y, — — 8% + —54 — 87 + —58
S 2 12" 7 60 2807 VT 1260
Y-zs,-+1—s,- | (13.11)
2 2 6 8 10
= Y—— Y+— Yi— — 8% + —— 80, —.
=0 d 0 560‘S 3150‘5

If the highest order is chosen reasonably, these formulae give accurate results, since they
are highly symmetric. In the vicinity of the margins they are not directly applicable. In
order to avoid special asymmetric formulae, it is preferable to extrapolate the function ¥(x)
a certain distance beyond the interval in which the derivatives are actually needed. This can
be done with the aid of symmetries, periodicities or well-known asymptotic properties. If
none of these is applicable, a polynomial extrapolation can be made. For a polynomial of
degree n, this extrapolation takes the simple form

n
n+1 k
Yiur = k; (e )ED (13.12)
Analogous formulae with correspondingly lower degree hold for the differences AY;, and

Sometimes the first-order increments AY; ... AY; are given directly, for instance in the
procedure outlined in Section 10.2.3. It is then possible to set up the differentiation
procedure directly in terms of these increments. This provides additional numerical
stability, as the subtraction of large Y-values is avoided. The corresponding elementary
manipulations are not given here.

Finally the required derivatives with respect to the coordinate z are given by

Y:ZYI/Z“ Y;/Z (Y,Z,—Y,Z,)/Z?, (ZZON) (1313)
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Derivatives of higher orders can be computed easily by applying this procedure to these sets
of derivatives instead of to the function itself. If the abscissae zj ... zy are equidistant, the
differentiations of z(x) can be omitted since we have simply

Zi=ziy1 —zi=h=const, =0
The procedure is thus very economic.

For the interpolation of derivatives ¥, the following procedure is efficient: Eqs (13.2),
(13.5) and (13.6) are completed by

Y(ﬂ)(Z) — Yz‘(ﬁ)l F (Z‘) + Yi(n)Fz(l) + hi{Yi(f-lH)Gl(t) + Yi(n+l)G2(f)}
(13.14)
+ hf{YfﬁTz)H (1) + Yl.("+2)H2(t)}, n=1

This has the advantage that only the form functions themselves need to be computed and not
their derivatives. Furthermore, even the derivatives of higher orders remain twice continuously
differentiable, and hence are very smooth. A very high accuracy can be achieved.

13.1.4 Evaluation of Radial Series Expansions

In Chapter 7, Series Expansions, we have derived a variety of radial series expansions,
which are of particular interest in electron optics. These are all determined uniquely by
certain axial functions, the axial harmonics. With the technique outlined above, their higher
order derivatives can be computed numerically for a sequence of abscissae zg ... zy and
then stored. Using the interpolation formula (13.14), it is now easy to evaluate the radial
series expansions for the potential, the field strengths and even for derivatives of second
order at any point (z, ) of reference within the domain of convergence. This is
straightforward and is undoubtedly the fastest method of field computation.

The analytical character of the solution obtained with the BEM allows analytical
differentiation of the axial potential, which is clearly preferable if the corresponding
procedure remains reasonably simple. For the functions involved in the calculation of
rotationally symmetric fields, this is certainly the case.

For a single charged ring, specified by its position (Z/, r') and the normalized charge 2, the
axial potential, here denoted by -, can be easily calculated from Eq. (10.6):

Yz —2,7)=Go(z,0; Z,r)=Q2R)" (13.15a)

with

R=1\/(z—2) +r? (13.15b)
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Figure 13.1
Notation used in the extended paraxial series expansion. Q is an arbitrary reference point and O’
is the trace of a ring in this meridional section.

These geometric quantities are sketched in Fig. 13.1. The derivatives of v with respect to z
can be brought into a very convenient form:

_ G

’Y(n)(Z —7,r) St (n=0) (13.16a)
P, (1) being Legendre polynomials with argument
w=(z—27)/R = cost (13.16b)

where the angle 9 is shown in Fig. 13.1. These formulae can be evaluated efficiently.

The order in which the differentiation with respect to z and the integration over the
boundary C are performed in the integral equation can be exchanged. Once the source
distribution o(s) is known, the axial potential ¢(z) and its derivatives can hence be
calculated from

¢Wm=§w@—mwmw®mm
C
(i=0,1,2...N, n=0)

(13.17)

After these values have been computed and stored, Eq. (13.14) can be employed for the
calculation of ¢™(z) for arbitrary z, after which the evaluation of the radial series
expansions is straightforward.

This concept can be generalized to include the superposition of aperture fields
(Section 10.3) and of various multipole fields, but this will not be dealt with here.

13.2 Two-Dimensional Interpolation

Here we consider two-dimensional functions P(u«, v), known at the nodes of a rectangular
grid. The coordinates u# and v will usually be the cylindrical coordinates z and r in a
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meridional section through an axisymmetric system, though this special meaning is not
absolutely necessary. We now describe algorithms for calculating P(u, v) and its partial
derivatives at an arbitrary point Q with coordinates (u, v).

This problem is of importance for the computation of equipotentials and Lorentz trajectories at
large off-axis distances. The accurate tracing of a Lorentz trajectory through an electron optical
system may require as many as 2000 calls of the field program, this number rapidly increasing
with worsening smoothness of the field strength at the grid lines. When the analytic fields
supplied by the boundary-element method are used, this problem does not arise, but each single
call of the field program may then take so much time that it is preferable to store the values of
the potential and the components of the field strength at the nodes of a suitably chosen square-
shaped grid. The frequent evaluations at arbitrary points can subsequently be performed very
rapidly by means of interpolation. This is particularly important when several Lorentz
trajectories are to be computed, for instance in electron guns or to calculate spot patterns.

This interpolation problem has been solved in many different ways. In electron optics,
different proposals have been made by Weber (1967), Lenz (1973), Kern (1978) and Kasper
(1982). Two- and three-dimensional Hermite interpolation has been used, for instance by
Eupper (1985). In the subsequent presentation we shall first examine simple two-
dimensional Hermite interpolation, after which we consider possible improvements.

13.2.1 Hermite Interpolation

Our object is to calculate a function P(u, v) at some point Q, located arbitrarily in the grid,
as shown in Fig. 13.2. It is convenient to denote the partial derivatives by

OP oP
U =P,=— Vi=P,=— 13.18
|u ou 5 |v v ( )
tv (i-1.6)
,,,,,,,,, . i K
Vie & (1,2) 1(22) 0
,,,,,,,, Q:,,,,,,,,
I
b
\ (1,1) (2,1)
Vit (i-1,k-1) (k1)
hu u
—e
Uiq Ui
Figure 13.2

Values of the subscripts used in two-dimensional interpolation. Outside the rectangle, the
subscripts / and L are those of the potential; inside the rectangle, the subscripts j and / are those
of the coefficients. The lengths a and b are given by a = h,(1 +5)/2 and b= h,(1 +1)/2.
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We assume that the nodal values of P, U and V have been computed prior to the
interpolation stage and stored in two-dimensional arrays having two subscripts. The array
elements P;,, U;; and V;, refer to the node with coordinates (u;, uy).

With this information, bivariate cubic Hermite interpolation, which is based on the form
factors (13.3), can be applied. The interpolation formulae can be written explicitly in terms
of these functions:

2
P =Y > {H6iPs

=1 (13.19a)
+m%mmWﬁWﬂmme

MN

~.
Il

with the auxiliary quantities
hy=u; — uj—y S:(Zu_ui_uifl)/hu
hy=vr —vg—1 1= QU — v — Ug—1)/hy (13.19b)
J=i+j—2 L=k+I1-2

The values of U and V at the point Q are obtained by the appropriate differentiations; the
corresponding elementary expressions will not be given here. The derivatives U and V are
still continuously differentiable on the grid lines if the arrays [U; ], [V;] are calculated by
applying the cubic spline technique to the potentials in the corresponding rows and columns
of the grid. This method can easily be generalized to three-dimensional problems.

13.2.2 The Use of Derivatives of Higher Order

As in the one-dimensional case, the accuracy and smoothness can be improved by the use
of derivatives of higher orders at the nodes of the grid. Such a proposal has been made by
Kasper (1982) but this requires a particular partial differential equation to be satisfied,
which is not always the case. Here we treat the most general case.

The necessary procedure is reasonably simple only if the grid is square-shaped: u; = ih,
v = kh with i and k integers. We assume again that the arrays [P; ], [U;,] and [V, ] are
known beforehand. Owing to the higher accuracy required, the cubic spline technique is
inadequate and a more accurate differentiation technique must be employed.

It is now of great importance that the derivatives of higher orders can be calculated in the

form of local finite differences, so that there is no need to store them all. For conciseness,

we temporarily introduce the notation presented in Fig. 13.3. The appropriate Taylor series
expansions about the central node 0 yield the formulae
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Simplified provisional numbering of the nodes in nine-point formulae for higher derivatives at the
central node.

Py =2(Py — 2Py + Ps)/h* — 0.5(U, — Us)/h

Py = 2(P3 — 2Py + P7)/l* — 0.5(V5 — V3) /h

Py = —025(Py — Py + P — Pg) /1
+0.5(Vy — Vs + Us — Uy) /h

(13.20)

These derivatives refer to the central node, and their remainder is of fourth order in the mesh-length.

This method can be extended to the determination of derivatives of still higher orders. Even
some of the derivatives of fifth order can be calculated in this way, but the finite
differences involved then become quite numerous. For reasons of space we must confine
this account to the simplest nontrivial case, which is sufficient in very many practical
applications. The mixed derivatives of third order are given by fairly simple expressions:

Pluuv = 025(U2 — Uy +Us— US)/h2 + O(hz)

) ) (13.21)
P‘um, =0.25(V, = V4 + Vg — Vg)/h + O(h?)

On an axis of symmetry, typically the optic axis (v = 0), some of the neighbours of the node
0 are missing. We can either extend the arrays beyond this axis and fill them up according
to the symmetry or make explicit use of the symmetry. In the case of positive symmetry,
P(u,—v) = P(u, v), the finite differences for an axial point (vy = 0) take the simple form

p WP Vs
lov — T 7
P|m} = P|um; =0 (1322)
Vo = V.
Pl = 0.5

while P, remains unaltered.
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All these finite differences are simple enough to be recalculated in every new call of the
field-calculation program. We have to identify the central node O of Fig. 13.3 with each of
the four corners in Fig. 13.2 in turn and then calculate the corresponding derivatives. This
results in a 16-point configuration and the evaluation of 20 simple finite differences.

The necessary interpolations are written most concisely in the form

2 2
X, 0)=> " {ms)g,(r)xJ,L + hg(S)Yi(X) 11

j=11=1
5 (13.23)
8 (OX s + g,-(s)gxr)xjm}

(J=i+j—2, L=k+1-2)

where the symbol X denotes P, U or V, and the subscripts J and L refer to the four corners
of the mesh cell in question. Only the arrays for the potential and the first-order derivatives
are stored; the rest are recalculated, but the time spent on the latter is compensated for by
the saving in the computation of differentiated form functions. Eq. (13.23) implies that the
same procedure is to be carried out three times, but with different coefficients. The design
of this interpolation scheme is such that the field strengths — that is, the derivatives U and
V — are continuously differentiable. Even the second-order derivatives, needed in a
procedure to be outlined in Chapter 34, Numerical Calculation of Trajectories, Paraxial
Properties and Aberrations, are fairly smooth.

In practice, many operations can be saved if the calculations are performed with a mesh-
length 42 =1, to which all stored derivatives and calculated finite differences must refer.
Each computed result is finally multiplied only once by the appropriate power of the actual
mesh-length. We have not presented this version here for pedagogic reasons but we
recommend it for any real program. Moreover, some computation time can be saved by
calculating the finite differences referring to the four corners of the same mesh cell only
once even though these quantities are needed several times. This situation can arise if
several subsequent points Q of reference in a very accurate ray-tracing program are located
in the same cell. Such points can easily be identified by comparing the subscripts (i, k) with
those of the previous call and by skipping the corresponding parts of the procedure when
they are the same.

13.3 Interpolation and the Finite-Element Method

In the finite-element method, the results are obtained at the nodes of a mesh that is not
rectangular. A method of interpolation for this situation was devised by Chmelik and Barth
(1993). This is based on a set of polynomials in two variables that satisfy Laplace’s
equation. These polynomials are peculiar to each FEM quadrilateral; their coefficients are
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established by fitting to the values at the corners of the quadrilateral and to eight
neighbouring points (or four, near the axis or a boundary). Although the values and their
derivatives are not continuous from one quadrilateral to the next, the resulting discontinuity
still allows accurate ray tracing as the mesh can be made very dense.

For simplicity, we consider the electrostatic potential &(r, z) of a rotationally symmetric
lens. We introduce a local coordinate system, in which distances are measured from a point
(ra,za) inside the quadrilateral in question:

(=z—24a p=r—ra (13.24)

The potential is then interpolated as P(p, ¢),

M
P(p, )= Cigi(p, ©) (13.25)
i=1

The basis functions g;(p, ) are chosen to satisfy Laplace’s equation and must of course be
linearly independent. A suitable set is

g1 =1

22 =C

g3 = —2rap+(2¢ —p?)

g4=—6raCp+((2¢C° =3p%)

gs = — 12r3(C* — pP) + 12rap(p® — 4C) + (3p* — 2407 + 8¢Y)

g6 = — 203 C(C* — 3p%) + 2014 pC(3p> — 4¢%) + C(15p* — 4002 + 8¢H
g7 = —40r p(p* — 3¢%) —20r2(3p* — 2172 + 4¢H

(13.26)

—30rap(p* — 120°C* + 8¢Y) — (5p° — 90p* ¢* + 120p°¢* — 16¢°%)

These must be rendered dimensionless and scaled so as to be of the order of unity at the
boundaries of the quadrilateral. The values of @ at the four corners of the quadrilateral are
not sufficient to determine the multipliers C; for M = 7. By adding the values at the next
nearest points (Fig. 13.4), the system becomes over-determined and the multipliers can then
be obtained by least-square fitting. Chmelik and Barth include a weight factor to render the
transition from one quadrilateral to the next as smooth as possible; they find that the weight
should be inversely proportional to the square of the distance between the point in question
and the point (74, z4).

This interpolation method is used by Oral and Lencova (2009, 2013) and Oral (2010) to
calculate aberration coefficients by ray tracing. By using a much denser mesh than was
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Figure 13.4
Points used to determine the multipliers in the interpolation formula
+ point of reference; e corners of the quadrilateral; o next nearest neighbours.

possible for Chmelik and Barth, the accuracy was extremely high. The method is used in
the EOD program (Lencova and Zlamal, 2008; Zlamal and Lencova, 2010) as well as
bicubic interpolation.

In conclusion, the field interpolation can be made sufficiently accurate and fast for the
purposes of ray tracing. A still more accurate but also more sophisticated method of
interpolation has been worked out by Killes (1985), to which we refer for the details.
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Introduction to Paraxial Equations

The general form of the trajectory equations in electromagnetic fields has been derived in
Part I (3.22) but in many practical situations these equations are unnecessarily complicated.
In a very large class of electron optical instruments, the electrons remain in the vicinity of a
curve, frequently a straight line, which we call the optic axis. The behaviour of the various
optical elements can then be characterized by simpler equations, obtained by expanding the
fields and potentials about this axis and retaining only the terms of lowest order. We shall
see that these equations are often second-order, linear, homogeneous differential equations
and their solutions describe the linear imaging properties of lenses of various kinds. With a
little care, mirrors can also be included and some aspects of electron guns and cathode
lenses can even be characterized in this way.

We shall give two derivations of the paraxial equations for systems with an axis of
rotational symmetry, since these are of such importance. First, we simply insert the series
expansions for the components of the magnetic flux B and the electrostatic potential @ into
the general equations (3.22) and neglect all but the terms of lowest order. In the alternative
derivation, we expand the characteristic function M (4.25) as a power series in the off-axis
coordinates and their derivatives; the Euler equations (4.26) of the variational relation
(4.33) then yield the paraxial trajectory equation if we retain only quadratic terms in the
expansion. For systems of lower symmetry, we employ only one of these methods, usually

the latter. The function M will almost invariably be scaled with respect to (2mge)'’?, as in

Eq. (15.23). The momentum then scales to qg '/2 and we shall often refer to this quantity as

, ~1/2 ~1/2 )
the momentum, with components ¢ / x and ¢ / y' though it of course does not have the
proper dimensions.

The presence of a magnetic field leads us to introduce a new coordinate system, twisted
about the z-axis with respect to the Cartesian system in terms of which the field expansions
are given in Part II. In this Part therefore, we denote the ‘fixed’ Cartesian system by

(X, Y, 2), reserving the lower-case (x, y, z) for the twisted or ‘rotating’ coordinate system, in
terms of which all later calculations will be performed. Only static fields will be considered
here. Dynamic fields are more conveniently treated separately.
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Systems with an Axis of Rotational
Symmetry

Round lenses are by far the most common in electron optical instruments and we now
examine their paraxial properties in detail. A typical electrostatic lens consists of two, three
or more electrodes, in the form of plates in which round holes have been cut, their centres
lying on a common axis (Fig. 15.1A), or of cylinders, again with the same axis

(Fig. 15.1B). Although in theory the field extends indefinitely, in practice it rapidly
becomes negligibly small and we speak of the field region and the field-free space outside
it. Electrostatic lenses may have an overall accelerating or retarding effect, in which case
the constant potential in front of the lens is not the same as that behind it (Fig. 15.1C); they
are then often known as immersion lenses even though a real object is rarely immersed in
the electrode field. An exception is the cathode lens, which is terminated by an
unperforated electrode, the properties of which are to be studied, or which acts as a source.
If the lens has no overall accelerating effect, in practice it very often has three electrodes
(Fig. 15.1D) and is then known as an einzel lens or unipotential lens. The three-electrode
design illustrated in Fig. 15.1D is typical of einzel lenses. A special case of the electrostatic
lens is the electron gun (Fig. 15.1E), in which electrons are generated by a filament or
cathode, in the form of a point or hairpin, and rapidly accelerated to the operating voltage
of the instrument in which they are employed. Guns need special treatment, however, and
are discussed in detail in Part IX.

Round magnetic lenses are devices that generate a rotationally symmetric magnetic field,
effectively confined to a narrow region. The traditional design, which has changed little
since its introduction by Ruska in the early 1930s (Knoll and Ruska, 1932a,b; Ruska,
1934a,b), consists of a large number of windings enclosed in an iron casing; a slot in the
latter, finished with circular polepieces, concentrates the field as shown schematically in
Fig. 15.2A. In some designs, the windings are in the superconducting state and carry
persistent currents. In others, the entire lens is in the superconducting state and the field is
confined by a diamagnetic shield (Fig. 15.2B). More radical departures from this geometry
are employed for special purposes; two extreme shapes are illustrated in Figs 15.2C and D.
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Figure 15.1

Forms of electrostatic lenses. (A) Plates with circular openings. (B) Cylinders along a common
axis. (C) Lens with an overall accelerating (V4 <V;) or retarding (V, > V;) effect. (D) Einzel or
unipotential lens. (E) Gun nomenclature.

All these types of magnetic lens rely on current-carrying conductors to provide the
magnetomotive force. Permanent magnets may be used instead, and have been incorporated
into commercial electron microscopes, but their inflexibility is a severe handicap.

Fig. 15.2E and F show permanent-magnet lenses and the axial fields within them. There has
been a revival of interest in permanent-magnet lenses with the development of miniature
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Figure 15.2
Forms of magnetic lenses. (A) Conventional lens. (B) Superconducting shielding lens. (C) Single-
pole lens (with bore). (D) Laminated lens: c, polepiece; e, stigmator. (E)—(F) Permanent-magnet
lenses.

scanning electron microscopes. Most of these employ electrostatic lenses but there are also
some magnetic designs (Section 36.6.3 of Volume 2).

Real objects are regularly immersed deeply within the field of magnetic lenses. When
discussing the properties of electron lenses, we need distinguish only two types, those in
which a real object or image is situated within the field and those in which the lens
transfers an intermediate image from one plane to another. Nevertheless it is usual to
describe lenses in terms of the role they play. Thus we speak of condenser lenses if the
‘intermediate image’ being transferred is the image of the source of a microscope but of
intermediates or projectors if a genuine image is in question. Geometrically, these might be
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(Continued.)

very similar. Likewise, the same lens may be an objective, if the specimen is immersed in
it, or a probe-forming lens, if it forms a fine probe within (or indeed outside) the field.
These distinctions will become more clear in Part VII.

15.1 Derivation of the Paraxial Ray Equations
from the General Ray Equations

We now derive the paraxial trajectory equations for electrostatic and magnetic lenses. Into
the general trajectory equations (3.22), we substitute the expansions for @(X, Y, z) and
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B(X, Y, z) given in Part II. We now set @, equal to zero, thereby disregarding chromatic
effects. From Eq. (7.14), we find

od 1

=~ - 5(1 +2ep)X¢" = —

1
_ X//
X X ¢

2
(15.1)

oo
P ~ (1 +2e¢)d =~¢/
Z

where as usual v =m/my= (1 — V)T =1+ 2ed (2.2, 2.21). Neglecting quadratic and
higher order terms in X, Y and their derivatives, the electrostatic terms on the right-hand
side of Eq. (3.22a) become

1+X2+Y2 (6 od
- - | =-x=
2 19).4 0z

2 7 7 1/
~—-—=02X¢ +X 15.2
4¢( ¢ +X¢") (15.2)

with a similar expression for (3.22b).
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For the magnetic term, we substitute the appropriate expansions (7.18 and 7.19); noting that
B, can be replaced by B, since we are neglecting quadratic terms, we find

2

—YB)~ — —_(YB +2Y'B) (15.3a)

np
\/5 2<,3

and
77,0

Va "

The pair of trajectory equations (3.22) thus collapse to the following in the paraxial
approximation:

(—pBx + X'B,) ~ —'—(XB' + 2X'B) (15.3b)

/! B/
x4 1Y QLA Y, n
(15.4)
/ // B B/
an w aﬁ y_ X o
This pair of coupled linear differential equations can be cast into a simpler form by
replacing the coordinate system (X, Y, z) by a new system, rotated with respect to the
former by a variable angle 6(z). In order to see this, we introduce the complex
coordinate (7.3)
w=X+iY (15.5)
so that Eq. (15.4) become
/ // B B/
20 2 B B (15.6)

2¢ 4¢W \/g 21 /4

The final two terms containing i explicitly can be removed by introducing a new complex
coordinate, u, such that

w = uexp if(z) (15.7)
Eq. (15.6) becomes

’Y¢> _ inB

A

v¢'  inB v¢"  inB’

0 2 s
+ug i0" — 0~ +i60 . 2\/5 40 2\/2

W +u| 210 +

(15.8)



Systems with an Axis of Rotational Symmetry 231

and the terms explicitly involving i vanish if we choose

nB

0 = (15.9)
~1/2
2¢
~1/2 ~3/2 )
so that " =nB'/2¢ '~ —nBy¢' /4¢ " and we obtain
’ /4 232
o 10 2B (15.10)
29 49
We note that Eq. (15.9) is essentially the same as Eq. (2.39). Explicitly, writing
u=x-+iy (15.11)
we have
/ /o ZBZ
X"+ Ex’-# uxzo
29 49
(15.12)
- ’Y_Qf)/ oy ,y¢//+77232 —0
y ~y T )
29 49
or again
d - /4 2B2
¢ "2 + Y A172 —0
) 0 (15.13)
g 2B2 .
g(¢1/2y/)+7¢ B )
dz ~1/2

15.1.1 Physical Significance of the Coordinate Rotation

This transformation to the rotating coordinate system (x, y, z) is of great importance. We
therefore consider it in more detail before proceeding. The complex transformation (15.7)
may be written

X=xcosf—ysinf

Y=xsinf+ycosf (15.14)

so that in any plane z = const, the axes X—Y are inclined at an angle 6(z) to x—y (Fig. 15.3).
This angle increases monotonically provided that the sign of B(z) does not change and the
x—y-axes therefore twist round the z-axis like the blades of a propeller or the ridge of a
screw of variable pitch. Fig. 15.3A gives a perspective view of this and Fig. 15.3B shows a
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Fixed coordinates (X, Y, Z) and rotating coordinates (x, y, z). (A) Perspective view. (B) View along
the optic axis.

view along the z-axis. We shall see in Part VII that f_oom B(z) dz =0 in any permanent-
magnet lens and the total rotation in such a lens is hence zero.

Unlike a conventional cartesian coordinate system, the coordinate surfaces are not planes:
the surfaces x = 0 and y =0 are curved, though everywhere normal to each other,
intersecting along the z-axis. The element of length ds in (x, y, z) is not equal to

(dx* + dy* + dz%)"? but is given by
ds* = dX* + dY* + d7* (15.15)
= d® + dy? + d2{1 + (& + )0 + 2(xdy — ydx)0'dz '

This rotation about the axis is closely related to the phenomenon of Larmor precession; if
we express the rate of change of # as a function of time rather than axial distance,
using db/dt = 0'dz/dt and dz/dt = 2n¢ /-, we find, in agreement with Eq. (2.38)

- ¢5_ns 15.16
i 2moy 7 (15162
or using Eq. (3.9)
a0 _ B (15.16b)
dr

which is indeed the Larmor precession frequency. Plies (1994) notes that this is half the
cyclotron frequency and explains that these are different because the centre of rotation for
the Larmor rotation is the optic axis, while for the cyclotron rotation, it is the centre of
curvature. Rose (2009, 2012, Section 4.1) also comments on this factor of two.

The fact that the paraxial equations separate in the rotating coordinates implies that an
electron initially travelling on one of the coordinate surfaces, or on any surface

ax + By =0, remains on this surface; this leads us to ask what becomes of the angular
momentum, and in particular of its axial component N (4.14). We have

N =(rxp) (15.17)
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in which we recall that p is the canonical momentum (4.12), p =g — eA and g is the kinetic
momentum (2.12, 2.19). In the paraxial approximation,

g = Qmoed) ’t = 2moed )i, + ri, + rgli,)

for &5 =0 and
U
—eA = —eAi, ~ — EerBlv
so that
_ _ N2 s N .
p=g—eA=2moed) (i, +ri,)+ < 2moed) "o — EeB riy, (15.18)
Hence
A 1
N= {(Zmoeqb)l/ch/ —EeB}rz (15.19)
or writing XY'—X'Y = r*¢’
A 1
N = (2mged ) > (XY — X'Y) — 5eBr2 (15.20)

From Eq. (15.14) we have

! V'V — 1y — 4/ 2 2N — 1 — o 7’]BI”2
XY =XV =xy' —xy+ @ +y)0 =x'—xy+ =5
2

and hence

A

N =1\/2mgpeq (xy' — x'y) (15.21)

so that in the rotating coordinate system, the magnetic field does not appear explicitly in N.
If N vanishes, the azimuthal angle ¢ remains at a constant angular distance from 6,

=0 + const and the corresponding trajectories are said to be meridional. They lie in the
curved surfaces defined by ax + By = 0, which intersect along the z-axis and are inclined at
some fixed angle to the coordinate surfaces x = 0 and y = 0. Clearly any trajectory that
intersects the axis at some point is a meridional trajectory, and vice versa. Rays that are not
meridional are said to be skew.

Note: we have used Cartesian coordinates (X, Y, z) and rotating pseudo-Cartesian
coordinates (x, y, z) above in preference to polar coordinates, since the calculation becomes
complicated when skew rays are considered in the latter system. Extensive discussion of the
correct way of handling skew rays when polars are used is to be found in most of the
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earlier texts on electron optics (e.g., de Broglie, 1950; Rusterholz, 1950; Picht, 1963); the
problem vanishes when Cartesians are employed (Glaser, 1952, Section 42).

15.2 Variational Derivation of the Paraxial Equations

We now take as our starting point (4.34—4.36), expanding the function M that plays the
role of refractive index as a power series in x and y and retaining only quadratic terms.
From Eqgs (4.35) and (2.13), we have

M(X,Y,X,Y,2) = {2moed(1 +e®)(1+X*+ Y} /2 —e(X'Ax + YAy +A)  (15.22)
Substituting for Ay, Ay and A, from Eqs (7.43—7.45) and for @ from (7.36) into
M
T 2mge)'? (15.23)
= {D(1+X*+Y) ' —n(X'Ax + YAy + A,)

we obtain a power series in X, Y and their derivatives, the quadratic terms of which, M2,
are given by
/ygi)//

1. 1
MO = - 25 V) + 26 Vx4 oy - SUBXY = X'Y) (15.24)
8¢

It is already clear that the Euler equations of § | M® dz =0 will be coupled and we
therefore attempt to transform the coordinates in such a way that the mixed term in
XY —X'Y, the source of the coupling, is eliminated. From Eq. (15.14) we obtain

X2 +Yr=x+)*
X2+ Y?=x2+y?2+20(xy —xy)+ 0%(x* +y?) (15.25)
XY —XY=xy —xXy+ 0>+

Substituting into M® we find

” ~1/2
_e 9

Q) — (2.2
MY =x"+y%) ngl/z 5

0% —1/2nB0

(15.26)
~1/2

(2 1yl + o =) (081~ 1/208)
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and the term in xy'—x'y vanishes if we select

g— "B
~1/2
2¢
(as in Eq. (15.9)). The function M@ becomes
Q) _ 1 b a2 o, Va2 0 p
MY = - gzgI/Q(W T B +y7) + 59 (" +y9)
8
Hence
omM® :¢§1/2x/ oM® :q;l/zy/
ox' ’ ay/
oM 1
ax 46" (9" + 7B
oM 1
R (9" +17B)y

and the paraxial equations are thus

d ~12, ¢ +n*B?
(@ DT ——;—x=0
v4 4¢

with an identical equation for y(z), as already found (15.13).

15.3 Forms of the Paraxial Equations and General Properties
of their Solutions

15.3.1 Reduced Coordinates

In the absence of an electrostatic field, the paraxial equations take the form

W'+ F@Qu=0
(u=x +iy) with
ZBZ
F(z) =17
40

When ¢(z) is not constant, they can again be reduced to this form by a simple
transformation of the off-axis coordinates. We write

u(z) = v(z)a(z)

(15.27)

(15.28)

(15.29)

(15.30)

(15.31)

(15.32)

(15.33)

(15.34)
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in which v is a new reduced complex coordinate and a(z) is a real function, chosen so that
all terms involving dv/dz disappear. Substituting Eq. (15.34) into (15.10), we obtain

/ / " / ’ /4 232
v”+<20’—+Wf)q/+<a—+ﬁwf5 +M>U=O (15.35)
a 26 a a2 46

and the coefficient of v/ vanishes if

@“__10__ 9 (15.36)
a 4¢ 4¢
or
ax=¢ " (15.37)
giving
V'(z) + G(z)v(z) =0 (15.38)
with
_ 3 ¢/ 2 4 772B2
and
u@) =1/ ""* (15.40)

The substitution (15.40) was introduced into electron optics by Picht (1932), and is widely
known as Picht’s transformation; see too Glaser (1933a—d) and Cotte (1938). This result is
of interest for two reasons. First, it is simpler to perform numerical calculations with

Eq. (15.38) than (15.10). Secondly, the function G(z) is essentially non-negative, and we
shall see that this imposes an interesting restriction on electron lenses: they always exert a
converging action. We shall also find that it is better to introduce the Picht transformation
before proceeding to thin-lens approximations.

15.3.2 Stigmatic Image Formation

The paraxial equations are linear, homogeneous and of second order and their most general
solution is therefore of the form

u(z) = Aui(z) + Bua(z) (15.41)

in which u;(z) and u,(z) are any pair of linearly independent solutions of Eq. (15.10). We
shall find it necessary to introduce several such pairs of solutions and we shall adopt a



Systems with an Axis of Rotational Symmetry 237

consistent notation for each in subsequent chapters, but many paraxial properties are quite
general and in no way depend on any particular choice. The most important result concerns
the existence of stigmatic image formation. The form of Eq. (15.10) or (15.12 and 15.13)
alone is sufficient to predict that pairs of planes can always be found having the properties
associated with point-to-point image formation.

Consider a particular solution A(z) of the paraxial equation for the complex coordinate u
(15.10) that intersects the axis at z = zo and z = z;: h(z,) = h(z;) =0 (Fig. 15.4). A pencil of
rays intersecting the plane z = z, at some point P, (1, = x, + iy,) may be described by

u(z) = u,g(z) + Mi(z) (15.42)

in which g(z) is a solution of Eq. (15.10) that is linearly independent of A(z); for
convenience, we have set g(z,) = 1; A is a (complex) parameter characterizing the various
members of the pencil. In the plane z = z;, we have

u(z;) = u,8(z;) (15.43)

for all A and hence for every ray passing through P,. Since this is true of all points in the plane
Z = z,, the latter will be stigmatically imaged in z = z;. Moreover the ratio u(z;)/u, is constant
and so the distribution of points P;, will be identical with the distribution of P, apart from a
change of scale: the image is a linearly magnified (or reduced) representation of the object.

If we return to the fixed Cartesian system (w = X +iY, z), we find

w(z) = u(z)exp {10(z) } = g(z)expli{0(z:) — 0(zo) }Iw(z,)

or
w(z;) = M(2i20)W(2,) (15.44)
where
M(zi,2,) = g(z)exp[i{0(z;) — 0(z0) }] (15.45)
1
Zi
» Z
%o M h(z)
9(2)
Figure 15.4

The paraxial solutions g(z) and h(z).
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For single-stage image formation, in which a meridional ray from P, intersects the axis
only once between P, and P;, g(z;) is negative and we may write

M(zi, 20) = —g(zi)lexpli{f(zi) — 0(z0)}] = |g(zi)lexpli{f(z;) — 0(z,) + m}] (15.46)

The modulus of g(z;) and hence IM(z;, z,)l, is referred to as the transverse magnification and
the image rotation is clearly equal to arg(M) — 7. The complex magnification M(z;, z,) is
rarely used and in the remainder of this book we shall reserve the symbol M for the
transverse magnification, regarded as an algebraic quantity:

M = g(z;) (15.47)

The notion of complex magnification is valuable when we need to consider the reversal of
an imaging system. A pencil of rays from P; to P, will not retrace the paths of those from
P, to P; since the direction of rotation will be opposite. This is readily seen from

Eq. (15.45) which tells us that

M) =M (z,2,) (15.48)
in which the asterisk denotes the complex conjugate.

A number of useful general relations can be deduced from the form of Eq. (15.32) or
(15.38) alone. Thus the fact that F(z) and G(z) are never negative tells us that all electron
lenses have a net converging action although this need not be true of local zones of
electrostatic lenses. To see this, we note that the curvature p of any solution of Eq. (15.32)
or (15.38), given by p=u"/(1 +u?)*? or p=1"/(1 +u2)32 s always opposite in sign to u
or v respectively. Thus a solution of the appropriate paraxial equation that approaches the
field parallel to the axis will be bent towards the latter. If the ray crosses the axis in the
field, it will again be bent back towards it and if the field is long enough, the ray will
oscillate about the axis. Thus the effect of the field is that of a converging lens.
Nevertheless, care is needed here since rays can intersect the axis more than once in a
strong lens and, as we shall see in the next section, the sign of the focal length will then be
that associated with a divergent lens.

We have been basing our argument on the positivity of F(z) or G(z) and it is safe to
conclude that a ray incident from field-free space parallel to the axis will intersect the
axis at least once before emerging into image space. It is not, however, necessarily true
that actual electron trajectories in electrostatic (or mixed electrostatic and magnetic)
fields always bend towards the axis: the term in (¢,/ qg)l/ * may be large enough to
reverse the curvature locally. Provided the electron is not driven beyond the paraxial
region, however, the convergent action will always dominate, as our reasoning based
on G(z) shows.
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15.3.3 The Wronskian

Another property of the paraxial equations is the existence of an invariant, the Wronskian,
from which a number of interesting optical relations can be derived. Let u;(z) and u,(z) be a
pair of linearly independent solutions of Eq. (15.10), so that

d ~1)2, " +n*B?
d—(¢ M1)+ %ulzo
Z 4

(15.49)

d -

5@ 1/2u,2) t g w=0
74 4¢

Multiplying the first equation by u, and the second by u; and subtracting, it is easy to show
that

d(~1p2,  ,
d_z{¢ / (uluz_u1u2)} =0 (15.50)
or

él/z(ulu’z — ujup) = const (15.51)

The same is of course true of any pair of solutions of the separate equations for x(z) and
¥(2) (15.13).

Suppose we choose u;(z) = h(z) and u,(z) = g(z), where as before g(zo) = 1, g(z;) = M and
h(z,) = h(z;) =0 (15.42); we find

3% =3 nm (15.52)
But hj/h, is the angular magnification, M, and we have thus shown that
MM, =(9,/9 ) (15.53)

or, if ¢, = ¢; as in the case of magnetic and electrostatic einzel lenses:

M= (when 3,=3,) (15.54)

We may rewrite Eq. (15.52) as

gz (z))¢ 1 = 2z (20) f,/ ? (15.55)

which is known in light optics as the Smith—Helmholtz formula (Born and Wolf,
Eq. 4.4.49); it is also associated with the names of Clausius and Lagrange and was known
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in a more primitive form to Cotes and Huygens (see Rayleigh, 1886 and Czapski and
Eppenstein, 1924, p. 116).

A final related quantity is the longitudinal magnification: this tells us how far the image
plane moves when the object plane is shifted a small distance. Consider again the pair of
rays g(z) and h(z), which we now specify completely as the rays that satisfy the boundary
conditions

8(z0) =H(z,) =1
g(z,) =h(z,) =0 (15.56)

in the original object plane. In the image plane h(z;) = 0 and g(z;) = M. For a neighbouring
object plane, distant Az, from z = z,, (Fig. 15.5), the corresponding ‘h-ray’ satisfying

Mz, + Az,) =0

e A =1 (15.57)

may be written as a linear combination of g(z) and A(z) since there can be only two linearly
independent solutions:

h(z) = Ah(z) + Bg(z) (15.58)
Clearly
h(ZO + AZo) ~ AZO, g(Zo + AZ()) ~ 1
so that
A=1, B=-Agz
giving
h=h—gAz, (15.59)
AZO'PI
[
f— AZ,- —|
L o< T T T T T |
g S |
Lg | pZ
%o ~~h)
h(z)
T
Figure 15.5

The notion of longitudinal magnification.
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In the shifted image plane, z = z; + Agz;, h(z) vanishes and so
Wz + Az) — g(z; + Az))Az, =0
but 4'(z;) = M, and g(z;) = M and hence

M, Azi —MAz,=0

or
A l M N . 1/2
< =:M,=—=<‘?’) M? (15.60)
AZO MO‘ ¢0

The quantity M, is known as the longitudinal magnification and we have

MM, =M (15.61)
If ¢, = ¢y, M., = 1/M (15.54) and
1
M=M= (6,= @) (15.62)

«

15.4 The Abbe Sine Condition and Herschel’s Condition

These two conditions do not strictly belong to paraxial optics, for they are conditions under
which particular sets of points are imaged stigmatically irrespective of the ray gradient.
They are, however, of interest in electron optics mainly in connection with the foregoing
results and we therefore make a short digression to establish them here. They are most
easily derived from the invariance of the Lagrange bracket (5.34), as shown by Sturrock
(1955) following the example of Herzberger (1931).

The invariance of the Lagrange bracket {u, v} may be translated into concrete terms by
considering three neighbouring rays, which we label 0, 1 and 2. The ray zero connects two
points A, B as shown in Fig. 15.6; at these points, r =r,,p =p, and r =rp, p =pp
respectively. The ray 1 is shifted by a small amount from ray 0, so that to its endpoints
correspond the values r, + Ar,, po + A, and ry, + Ajry, pp + Aypy; the same is true for
the ray 2 except that the increments are now Ayr,, Asp,, Asry, and Aspy,.

If these rays belong to a congruence, such that ray zero corresponds to the parameters (i, v),
ray 1 to (u + Aju, v) and ray 2 to (u, v + A,v), the invariance of {u, v} is equivalent to that
of Ap - Ayr—Asp - Ayr, which is known as the Lagrange differential invariant. We now
apply this invariance to two special cases.
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— —
Pa+A1P,

— —
TN, Pu*A2Pp

Tyt Ay
— —
PotA1Pp

— —
PatAgP,
— —

r, a+A2r a

Figure 15.6
The rays employed in connection with the Lagrange invariant.
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The rays employed in the derivation of (A, B) Herschel’s condition and (C) the sine condition.

Suppose that the points A and B are conjugate and that to every point A" in a plane through
A we can find a conjugate point B’ in a plane through B. The shift from A to A" and B to B’
is chosen to be the displacement A;, while A, corresponds to the transition to another ray
connecting A and B (Fig. 15.7A).
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Thus Ayr, = Ayry, =0 and A x, = Ax;, =0, where the x-axes are taken perpendicular to
the planes containing AA" and BB'. The invariance of Ap - A,r — Asp - Ayr shows that

Pa(Datya Avya + Aotry Aza) = pp(Datyp Aryp + Doty Ayzp) (15.63)
where we have written p = pt and ¢ is a unit vector, the components of which are the

. . . Al .
direction cosines of p. The scalar p reduces to ¢ ° near the axis.

We now choose the axes Oz,, Oz, to coincide with the axes of a rotationally symmetric
system and consider points in the planes x,—z,, x,—z25. Setting Ay, = Ay, =0,
t,o = cos 0, t; = cos 0, (Fig. 15.7B), we find

Do Az sin 0,- Ar0, = pp,- Az -sin 0, As0), (15.64)
Writing Az, = M;Az,, and integrating with respect to 6, we obtain Herschel’s condition
pa(cos O, — 1) = Mpy(cos 6, — 1) (15.65)
or
pasin®(0,/2) = Myppsin’(6,/2) (15.66)

If this condition is satisfied, an element of the axis close to A will be imaged sharply, even
if the ray gradient is not small. If 6, and 6, are small, Eq. (15.66) becomes

pab = Mipyb;, (15.67)
or

Pa/Py = MM, (15.68)
which is equivalent to (15.61) using p = (251/2 and (15.53).

We may use the Lagrange differential invariant to derive the sine condition; the three rays
are now chosen as shown in Fig. 15.7C. From Eq. (15.63), we have

Pa A1ya €08 0, Aoly = pp Aryp-cos O Az
note that f,, = sin ¢, and likewise for 1,,. Hence
pa'Sin eu'Alya :Pb’Sin eb’Alyb (1569)

which is known as the sine condition, the importance of which was first recognized by
Ernst Abbe. When the sine condition is satisfied, a small region around the axis will be
imaged sharply irrespective of the ray gradient. Looking ahead to Part IV, this implies that
coma must vanish.
For small angles, Eq. (15.69) reduces to

Pala A1Ya = pply A1yp (15.70)

which is equivalent to (15.55).
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15.5 Some Other Transformations

We have seen that the paraxial equations for electrostatic lenses and mixed lenses can be
cast into a more convenient form by means of Picht’s transformation Eq. (15.40). We
briefly mention some of the other transformations that have been proposed; we shall meet
still others in connection with electron mirrors and with specific field models.

We first enquire whether the term in du/dz in (15.10) can be removed, not by a change of
the transverse (dependent) variable as in the Picht transformation but by introducing a
different axial (independent) variable. We write

(=¢@, u=u((), ¢=a¢) (15.71)
so that
du  dudC Pu  du (dCN dud’C

The paraxial equation (for electrostatic fields only) thus becomes

(%)2 wif ] <d_<>2 LS Lo G/ dzF + /) _

dz 2¢ \dz a2 4¢ (15.73)
in which dots denote differentiation with respect to (. The term in #« vanishes if
d (~12d¢
- >)=0
dz <¢ dz)
or, apart from an unimportant multiplicative constant,
fa12,0
@=|¢ " (dz (15.74)
giving
-1 b \2
u+{z¢——<ﬁ> }u=0 (15.75)
49 8\ ¢

An incorrect nonrelativistic form of this equation is given by Picht (1963, p. 166). Another
transformation, also introduced by Picht (1932, 1963, p. 167), provides a means of
designing lenses for a specific purpose, by generating the potential distribution that will
create desired trajectories. We merely indicate the procedure: several examples are worked
out in detail by Picht. From Eq. (15.10), in which we again set B = 0 and consider the
nonrelativistic approximation, we see that the paraxial equation can be written

3%@@) + (ug) =0 (15.76)
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Setting
up = T(z) (15.77a)
and
3%/ = 1(z) (15.77b)
Eq. (15.76) becomes
T"(z) +1(z)T(zx) =0 (15.78)

Thus, given u(z) we can calculate #(z), solve (15.78) for T(z) and finally extract ¢(z) from
Eq. (15.77a). Picht gives another method of solving this problem, which we shall not
describe here. For a recent attempt to solve the analogous problem in light optics, see
Borghero and Demontis (2016)."

Hitherto, we have discussed the motion of electrons in terms of coordinates of position,
deriving the ray gradients by differentiation. Position and canonical momentum are,
however, conjugate variables, as explained in Part I, and we should therefore expect to be
able to work in terms of either at will. Returning to the equations

d (oM@ oM™
d_z< ox’' > Ox

and writing p = oM@/ox’, we see from Eq. (15.13) that

~1/2

4¢ /
o ’Y(ﬁ” + UZBZP

- , - ~1/2 .
so that substituting for x" in p = x'¢ / , we obtain

~1/2
~1/2 d 4p' ¢

p= dz 7@5// + 77232
or writing
,WZ)// + 232
G(2) = 7172 (15.79)
4¢

! “In the framework of geometrical optics, [Borghero and Demontis] consider the following inverse problem:
given a two-parameter family of curves (congruence) (i.e., f(x,y,z) = c1, g(x.,y,2) = ¢3), construct the refractive-
index distribution function n = n(x,y,z) of a 3D continuous transparent inhomogeneous isotropic medium,
allowing for the creation of the given congruence as a family of monochromatic light rays.”
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4

, G, G
P =P +Fp=0 (15.80)

All the rules of Gaussian optics that we shall establish in Chapter 16, Gaussian Optics of
Rotationally Symmetric Systems: Asymptotic Image Formation, could equally well be
derived from this equation; this duality is noted in Hawkes (1966).



Gaussian Optics of Rotationally Symmetric
Systems: Asymptotic Image Formation

16.1 Real and Asymptotic Image Formation

The fact that the paraxial trajectory equations are linear, second order and homogeneous is
itself sufficient for us to anticipate that the imaging properties of the corresponding fields
can be characterized by a small number of quantities. We discuss this in detail in the
following paragraphs but we must first explain the notions of real and asymptotic image
formation; the distinction between these is not quite the same as that between real and
virtual in light optics, despite some similarities.

Since electron lenses consist of regions containing magnetic or electrostatic fields, it is
possible, and in practice common, to immerse the specimen of which a magnified image is
required within the field itself, particularly in the case of magnetic lenses. The lens field is
thus divided into two regions playing different roles (Fig. 16.1). In a light microscope, any
lenses preceding the specimen, region I in Fig. 16.1, belong to the condenser system, while
the lens immediately after the specimen, region II, is the objective proper. In an electron
microscope, different parts of the same lens may thus play different roles. The properties of
region I will provide information about the illumination, those of region II about the image
formation. In such a situation, it is clearly necessary to study the regions separated by the
real object independently and the corresponding characteristics will be referred to as ‘real’.

In a multi-lens system, most of the lenses will simply transfer an intermediate image from
one plane to another, with the appropriate magnification, and the entire lens field
contributes to this transfer. Here we must study the coordination between incoming and
outgoing asymptotes, as shown in Fig. 16.2. If the intermediate image that acts as object for
a lens is well outside the lens field, on the object side, the situation is exactly as in light
optics. If it falls within the lens field or beyond it, then the asymptotic object is analogous
to the familiar ‘virtual object’; similar remarks apply to the image. In this context, we note
that when discussing asymptotic imagery, the notions of object space and image space are
used to refer not to regions of physical space — the object may lie anywhere as may the
image — but to the space to which the corresponding asymptotes belong. This will become
clearer when we discuss asymptotic image formation below.

Principles of Electron Optics: Basic Geometrical Optics.
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Figure 16.1
The various parts of a magnetic objective lens.
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Figure 16.2
(A) The paraxial solutions G(z) and H(z). (B) Asymptotic image formation.
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Finally, we note that both possible hybrid situations may occur: real object—asymptotic image
and asymptotic object—real image (formation of a small probe within a field, for example).

16.2 Asymptotic Cardinal Elements and Transfer Matrices

We first discuss these matters in terms of specific solutions of the paraxial equations, after
which we show that the same results may be obtained from the more abstract notion of
bilinear transformations. In this first discussion, we use the form (15.12) of the paraxial
equations and for ease of understanding we use the real x-coordinate. The reasoning for y is
of course identical and we could naturally have used the complex u.

Consider a field region characterized by ¢(z) and B(z) (Fig. 16.3) and two solutions of the
paraxial equation, G(z) and G(z), satisfying the boundary conditions

lim G(z) =1, lim G(z) = 1 (16.1)
Z— —00 Z—> 0

A general solution thus has the form
x(z) =AG(z) + BG(2) (16.2)
The rays G(z) and G(z) tend to the following asymptotes:

lim G(z) = (z — {;)G;
o _ (16.3)
im G(2) = (2= ()G

Any ray incident parallel to the axis can be written as NG(z), where X is a constant, and will
have as its emergent asymptote A(z—(;)G’;. Thus rays incident parallel to the axis generate
emergent asymptotes that all intersect the axis at z = (; and we denote this point by z = zp;
and refer to it as the asymptotic image focus. By exactly analogous reasoning, we see that
all rays that emerge parallel to the axis correspond to incident asymptotes that intersect the
axis at z = (,; we write (, = zr, and refer to this as the asymptotic object focus.

l«—— Fieldregion — i
| |

G(2)

Figure 16.3
The paraxial solutions G(z) and G(z).
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The incident asymptote to the ray G(z) and its emergent asymptote intersect at a point in
the plane z = zp;, such that

1 = (zpi — zr)G;
or
Zpi = ZFi T 5; (16.4)
Likewise the asymptotes to G(z) intersect in a plane z = zp,,
1 =(zpo — ZFO)E;
giving
ho = 2r0 = (16.5)

G/

The planes zp; and zp, are known as the asymptotic principal planes. The distances — 1/G’;
and 1/G, are known as the asymptotic focal lengths (Fig. 16.4). The reciprocal of a focal
length is sometimes called the convergence. We write

==, fo== (16.6)

so that (16.4 and 16.5) become
i =2Fi —Jfi» 2P0 = k0 T fo (16.7)

This apparent inconsistency in the choice of sign is explained by considering the relation
between f, and f;. Since (15.51)

3"*(GG - G'G) = const (16.8)
we see that
$,°C,= -4, (16.9)
or using (16.6),
A—1/2 A—1/2
Job, =it (16.10)

In magnetic lenses, therefore, with the sign convention of (16.6), we have f, = f; and shall
frequently drop the suffix. In the class of electrostatic lenses that provide no overall
acceleration, so that ¢ ¢l, we again have f, = f;. Furthermore, f, and f; will both be
positive if the rays G(z) and G(z) intersect the axis only once, since electron lenses always
have a convergent focusing action. As the lens is made stronger, however, there comes a
point at which the emergent asymptotes are parallel to the optic axis as well as the incident
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Figure 16.4
The asymptotic cardinal elements. (A) Image focus and principal plane. (B) Object focus and
principal plane. (C) Image focus and principal plane for a strong lens; the image focal length has
become negative.
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asymptotes and the lens then behaves like a telescope (f, and f;— c0). Beyond this point,
the rays return towards the axis but now G'; is positive and G, negative (Fig. 16.4C).
Formally, therefore, lenses operating in these conditions belong to the class of divergent
lenses but since they have this character because they are so strongly convergent, this
terminology is never used.

Returning to the general solution (16.2), we can express the incident and emergent
asymptotes in the following way:

Z 7 ZFo

lim x(z)=A+B (16.11a)
o> fa
lim x(z) = —A~—_F1 4 p (16.11b)
Z— 0 i
Eliminating A and B, we find, with Q> = (21—2r,)(22—2Fi)
R} —(2—z)/fi fot On/fi X1 >
)= ; 16.12
<x2> ( —1/f; (z1 — zro) [fi X ( )
in which x, denotes x(z) in some plane z = z, on the emergent asymptote and x, the gradient
of the latter (x, = —A/fi); x; denotes x(z) in some plane z; on the incident asymptote and x|
the gradient (x] = B/f,). Writing
x
= <x’> (16.13)
and
—(2—zm)/fi  fot On/fi >
T= 16.14
< “Ufe G- zolf (1614
Eq. (16.12) reduces to
x> =Tx (1615)

The matrix 7T is known as the transfer matrix, and we shall see that it encapsulates in a
convenient way all the paraxial behaviour of the lens. From it, all the familiar imaging
relations may be derived straightforwardly. Suppose that the planes P, (z; = z,) and P;
(zp = z;) are conjugate, that is, that all rays from any point in P, converge to a point in P;.
For this, the expression for x; must be independent of x/, and hence

fo+ 2o — zro)zi — zr)[fi =0 (16.16)

or

(2o = 2Fo) (@i — 2Fi) = —fifo (16.17)
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This is Newton’s lens equation. Introducing the expression for zp, and zp; (16.7), (16.17)
becomes

(2o = 2Po)(zi — zPi) — fizo — 2Po) F folzi —zpi) =0

or
fo o, Sy (16.18)
ZPo — 2o Zi — Zpi
Writing
N 2 N\1/4 5o\ 1/4
f:ﬂ<ﬁ) =ﬁC&> = (f.f:)/? (16.192)
¢o ¢i
so that f is the geometric mean of the focal lengths, and
¢ =(3,6)" (16.19b)
this becomes
~1/2 ~1/2 ~1/2
%o O 2 (16.19¢)
ZPo T Z0 % T Zpi f

This is the thick-lens counterpart of the familiar thin-lens equation.

From (16.19a) we see that, irrespective of z; and z,, the determinant of the transfer matrix 7'
(16.14) has the value

det T=Ff,/fi = (6,/ 0"

For conjugate planes, the matrix equation simplifies to

()= w2 (3) 620
and denoting the transverse magnification by M, we have
(@ —zm)/fi=M (16.21)
If x, = 0 the ratio of x’; to X', is the angular magnification M, (15.52),
M., = (2o — zro) [f; (16.22)

so that using (16.17),
M, = _fo/(zi - ZFi) :fo/fiM (16.23)
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Hence
MMo, = f,/f; = 6,/ $) (16.24)
as already shown (15.53).
Thus
zi=zri —fiM, 2o =2k T fo/M (16.25)

From (16.20), we see immediately that the principal planes are the pair of conjugate planes

with unit magnification:
Xpi 1 0 Xpo
/ = / 1626
()= ) () (1626

A third pair of axial points, the nodal points, is occasionally of interest. These are points
having the property that a ray whose object asymptote intersects the axis at the object
nodal point has an emergent asymptote intersecting the axis at the image nodal point,
these asymptotes being parallel (Fig. 16.5). If these points are denoted by z = zn,, Z = zni»
then

(zvo — zR0) [fi =1 (16.27)

so that if gAbo = gAZ)I-, the nodal points and principal planes coincide. We shall see in
Chapter 41 of Volume 2, that this is of interest in the design of aberration correctors. In
general,

ZNo = ZFo +ﬁ =Z2Po _fo +ﬁ
16.28
i =2ri —Jo=2pi —fo T fi ( )

Once the foci and principal points are known, a simple construction enables us to obtain the
point P; conjugate to any object point P,. First, a line is drawn through P, parallel to the
optic axis, intersecting the plane z = zp; at Q; a line is then drawn through Q and the image
focus, F; (Fig. 16.6). Next, a line is drawn through P, and the object focus F,, intersecting
the plane z = zp, at Q'; a line through Q' parallel to the optic axis intersects the line through
Q and F; at the image point P;.

\» Zno

Zp; ~ s

v

—
~
S

Figure 16.5
Nodal points.
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P, Q

Fo Zpg

Figure 16.6
Asymptotic image construction. The image of an object P, is obtained by first drawing a line
through P, and the object focus F,, which intersects the object principal plane at Q'. A second line
is drawn through the point O in the image principal plane at the same height as P, and the image
focus F,. The point of intersection of this second line and a line through Q' parallel to the optic
axis is the image P; of P,

The various quantities that characterize the imaging properties of a lens — the foci,
principal points, nodal points and focal lengths — are known as its cardinal elements. In
electron optics, only the focal lengths and the positions of the foci are routinely tabulated.

The matrix expression (16.12) is very convenient when we wish to calculate the cardinal
elements of a doublet of two lenses, separated by a field-free region. Instead of using the
general form of the matrix elements given in (16.12), however, we use the simple form that
connects principal planes (16.26). We have

(2) 1 0 2
<xfj{£3)) = < L1 e /fi(z)) <x§g§)> (16.29)
(2 (1)
(x)(fé‘i ) = (é lf) (x)(fﬁ’j)> (16.30)
(1 1 0 (1)
(x)(j(Pll) > = < _1/fi(1) fo(l)/fi(l)> (xi/zl(plo))> (16.31)

in which the superscripts (1) and (2) characterize the first and second lenses and
D=78 - (16.32)

is the distance between the object principal plane of the second lens and the image principal
plane of the first. Multiplying the matrices, we obtain

(2) (1
x(zp) ) _ x(zp,)
< 0 )—Tu( 0 > (16.33)
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where

—1/f,-” “> cm/ "
L= D/f" D/ Hew
B <(D — 0 =) O =D — () O )

in which (,, and (; denote the object and image foci of the doublet and f! its image focal
length; we have written Q,; .= (zgo) —C Fo)(z(%) — (r;) We see that

1) .2 1) (2
f()f() fi()fi()

[l __
= Y+ 52— Dp (1639
With
= +fP-p=7) - (16.36)
Q) _ D)
Cri— 2pi (f; )/Dr (16.37)

1
Cro— zgg =f5“(fé2’ —D)/Dr

We have not exhausted the forms of the transfer matrix that are occasionally useful. Thus
we shall encounter the focal transfer matrix between the (nonconjugate) foci, and the Dusek
matrix, in which z, = z;. We shall discuss these as the need arises.

16.3 Gaussian Optics as a Projective Transformation (Collineation)

The reasoning in Section 16.2 has been based on the physical notion of rays and their
asymptotes but the characteristic quantities of Gaussian optics, the cardinal elements, also
emerge from a more abstract approach. The linearity of the equations of motion is sufficient
for us to assert that the object space and image space of a field region are connected by a
projective transformation or collineation. By this we mean that if (x,, y,, z,) are the
Cartesian coordinates of a point P, in object space and (x;, y;, z;) those of a point P; in
image space, then

xi=F/Fy, yi=F)/Fy, zi=F3/F,4 (16.38a)
where
Fi=ajx,+ by, +cjz, +d; (j=1,2,3,4) (16.38b)
and solving for x,, y,, 2,
Xo=F\[F), y,=F,/F,, z,=F}/F}

- , (16.39)
Fi=ax; + by +cizi +d;



Gaussian Optics of Rotationally Symmetric Systems: Asymptotic Image Formation 257

From (16.38b), it is immediately obvious that the images of all points lying in the plane
F, =0 are at infinity: F; =0 is thus the object focal plane and similarly, the plane F, =0 is
the image focal plane.

Suppose now that the system has rotational symmetry about the z-axis and suppose too that
the coordinates in image space are rotated with respect to those in object space by the
appropriate angle 6 (15.9 or 15.27). An object point (0, y,, z,) will be transformed into

(0, y;, z;) but z; will be unaltered if y, is replaced by — y, whereas y; will become — y,.
From the relations

byy, + ¢z, + d b3y, + 32, T+ d
= 2Yo T €22 2 , .= 3Yo T €32 3 (16.40)
bay, + cazo +dy bay, + cazo +dy
we deduce that by = b3 = ¢, =d, =0, giving
byy, €32, T d3
= —, = —— 16.41
cazo t dy “ €420+ dy ( )
or
cady —c3dy Y, _ dszi— ds
o = s o7 T T
by C4Z; — C3 C4Z; — C3
The focal planes are thus given by the solution of
€420 tds=0 : zp,= —ds/c
4<0 4 Fo 4/ 4 (1642)
cazi—c3=0 : zp=c3/c4
On measuring distances from these planes, by writing
Z, =27, tdsfc
0= %0t dafey (16.43)
Z,- =Zi— C3/C4
and introducing f,,, f; thus:
fo = bz/C4, f, = _(C4d3 - C3d4)/b2€4 (1644)
we obtain
i o Z;
Yi_fo_ 4 (16.45)
Yo o Zo fi
This yields Newton’s lens equation (16.17)
ZoZ; = — fof: (16.46)

Furthermore, the magnification M = dy/dy, for constant z, is given by

M =y1/y,=fo]Zo = —Zi/f; (16.47)
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so that for M =1 we have Z, =f,, Z; = — f;. The planes thus defined are the principal
planes, situated at distances f,, and f; from the foci as already shown (16.7).

We shall not pursue this further but clearly all the remaining results of Gaussian optics can
be derived straightforwardly. For lengthy discussion of the use of projective transformations
in this context, see Ollendorff (1955), Born and Wolf (1959), Czapski and Eppenstein
(1924) and Carathéodory (1937).

16.4 Use of the Angle Characteristic to Establish the Gaussian Optical
Quantities

Finally, we offer a third method of establishing the relations of Gaussian optics, setting out
from the angle characteristic. This function is obtained from the point characteristic
function by a Legendre transformation, which effectively changes the arguments from point
coordinates to momenta. We define a function 7 as follows:

T =S+ paXa + qaYa = PoXp — qbYb (16.48)
in which (p, g) are the transverse components of p. From (5.29) we know that
AS = ppAxp + gpAyp — (Palxa + GaAya) (16.49)
when the integral in § is taken along a ray so that
AT = = (xpApp + Yo Aqp) + XaApa + yaAqa (16.50)

and 7 must be a function of p,, q,, p» and g;; the function 7 is known as the angle
characteristic. Provided that p, is not proportional to p, and g, to g,, we see that

or or
T T,

T or (16.51)
Yo = — 6_611;, Ya = 8qa

Consider now pairs of points A, A’ in object space and B, B’ in image space. We assume
that the angle characteristic between A and B, T,p, is known and we calculate the new
value between A’, B’, assuming asymptotic image formation. We write

Tap =Taa + Typ + Tpp (16.52)
From (16.48), we know that

Taya = Saa T paxa +qayas — paXa — qaya

)1/2 (16.53)

= (24 — ZA’)(¢A _Pi _qux
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in which we have used py = pa ga = qa’ Saa = (};/QAW and
Xa =xa +(za —2a)xy, ya=ya+ (@ — 24V,
with
Xy = — Pa ’ Y, = — qa
(@a—Pi—a})" (Ga—Pi—a})"
A similar expression is obtained for Tpp. To the paraxial approximation therefore

2+ g2\ ~1)2
Tap =Tap — (za — ZA)<1 - pAZ&) 9 ) ®a

A
2 2
Pg 1t q5 \1/2
+(ZB’ _ZB)<1 - f>¢3
2¢p

(16.54)

Since the system has rotational symmetry, the quantities p and ¢ can only appear in the
combinations pf1 + qﬁ,p% + qé,pApB + gagp and we write

Tap = a(py +43)/2+ B + 43)/2 = (paps + ) (16.55)
By applying (16.51) to (16.54), with x, = x4, p, = pa’ = pa €tc., we see that
Xp = {a + (24 — ZA)/QAbj‘/Z}pA —fre
ya = {Oé + (2 — ZA)/G;ﬁ/la/Z}CIA —fas
Xg == {5 —(zp — ZB)/%/z}PB +fpa
Yp =~ {ﬁ —(zp — ZB)/(%;/Z}QB +fqa

(16.56)

If py = 0, then x4 = 0 in the plane 24 — 24 = ady - for all p, while if p, = 0, then xy

. . ~1/2 . . ~1/2
vanishes in zp — 23 = B¢ . These are the foci: we write zp; — 23 = Bdg

Alj2 . .
ZFo — A = Q1 A/ . Eliminating p4 or pp between the equations for x4 and xp, we find

= B —Z
fxs= (5‘%)%

- A T X
fXA: <a+ %)xlg

A

or
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provided that

(Oéa&l;/z +z4 — ZA)(ﬂ?b;/z —zp +28) ZJ_CZ(%ACA@@)]/2 (16.57)

Thus xg = x4 if 25 — 25 = %;/2(6 —f) and zy —za= &5/:/2(}_” — ). These are therefore
the principal planes,

~1/2 - ~1/2=
pi —IB T ¢B (B—f) or zpi—zp= _¢B f (16.58)

~1/2 — ~1/2—
ZPo_ZA:¢A (f —a) or ZPo_ZFo:¢Af

With the sign convention of (16.7), we recognize that the focal lengths are given by

A1/2- ~1/2—

Jfo=ox f  fi=op f (16.59)

Condition (16.57) may then be written in the form of Newton’s lens equation.

16.5 The Existence of Asymptotes

In the foregoing sections, we have assumed that the curved trajectories within the field
region tend to asymptotes in object and image space, ‘outside’ the field. In theory, however,
the fields continue indefinitely, though they of course become vanishingly small, and we
need to be sure that it is legitimate to use the concept of asymptotes. In particular, we need
to establish conditions concerning the rate at which the field functions tend to zero for large
values of Izl. These questions have been explored in detail by Glaser and Bergmann (1950),
whom we follow closely.

If a general solution x(z) of the paraxial equation tends to an asymptote, the gradient x'(z)
and the intercept of the tangent to x(z) with an arbitrary plane perpendicular to the axis
must both tend to constant values:

lim X' (z) = a, linolo {x(z) -z X2} =b (16.60)

Z—> 0

and similarly for z— —o0. In reduced coordinates (15.40), these conditions become

Tim &~ 4{5’@ - %%M(Z)} =a (16.61a)
Jim 37 4{£(z)<1 + ﬁqﬁz) —z&/(z)} =b (16.61b)

with £ = ngbl/4. Since (ES is always finite in real fields, £ and & must be finite. The condition
(16.61a) may therefore be replaced by

lim €(z) = A, lim &0/ =A (16.62)
Z— 0 Z— 0
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¢’ must vanish at infinity, and we assume that it falls to zero faster than 1/z, which is easily

justified. The second condition (16.61b) thus becomes

lim (€~ €)=

(16.63)

which is immediately recognizable as the condition that solutions of the reduced equation
(15.38) tend to asymptotes as z— co. Multiplying (15.38) by z and integrating, we obtain

(with £ in place of v)
€~ €2= | Gt

so that for any upper bounds « or @
o ,

Z1_1}1101C (E—€&2)=B= lim JGézdz =

a— o0 a— 0

—_———p

Gézdz+ lim Jszdz

(e}

J Gézdz + lim
o — 00

Gz(§ — {)dz + lim

O —— 2
O —— 2

Choosing @ very large, we find

«Q

Gzdz—A lim

a— 0

B= JG&zdz +B lim

a— 00

O — 2
Q| —— 2

For the existence of asymptotes in general, therefore, the integrals
o
J 2G(2)dz
o

and

]C 2G(2)dz

must converge; the existence of asymptotes parallel to the axis (A = 0) is, however,

o]

guaranteed by the convergence of [ zG(z)dz alone.
— 0

The conditions are necessary; we now show that they are also sufficient. We can in

G dz

(16.64)

(16.65)

(16.66)

(16.67)

principle solve (15.38) by an iterative procedure, taking as first approximation a linear

expression of the form &, = az + 3 so that writing £ =¢§, + &+ - + ¢, + -+,
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§ri1 T G()E, =0 (16.68)
or
€ =— J d¢ J GE,dX = J(z + X)G¢,dX (16.69)
z ¢ ¢

Given the convergence of (16.66) and (16.67), we see that for z>a and « large,
z z e
Jde< JGX dx < JGX2 dX= () <1 (16.70)
a @ a

and clearly as @— o0, e(@) — 0. From (16.69), we have

&= J(@ + X)G(AX + B)dX

and since X > @,

[oe] o0
JaXGdX< JX2GdX=s(a) (16.71)
and so
€1 = A] JaXGdXJr JGX%ZX + |B| J J GdX J(;de

From (16.70) and (16.71), we may conclude that
1§11 =2(|A] + |B])e(@)

Iterating, we find
2e()

—2¢()
As @ is made larger and hence as z— o0, (@) —0 (16.70) and ¢ tends to the linear solution
&o. The convergence of (16.66) and (16.67), which we have used in this derivation, is
therefore not only a necessary but also a sufficient condition. In practice, the integrals
(16.66) and (16.67) always do converge: since a total system must be electrically or
magnetically neutral, G(z) must fall off at least as fast as z~© and any integral of the form
| G(2)7" dz will then converge for n < 4.

€= &l =161+ 18|+ = (Al +B) - —



Gaussian Optics of Rotationally
Symmetric Systems:
Real Cardinal Elements

Hitherto we have considered only the coordination between asymptotes. When this is not
appropriate, in microscope objective lenses for example, a different set of cardinal elements
must be used. After discussing these, we enquire whether fields exist for which fixed real
cardinal elements can be defined for a range of object positions. This leads us to the
concept of Newtonian imaging fields, to which Glaser attached considerable importance
(Glaser and Bergmann, 1950, 1951; also Glaser and Lammel, 1941, 1943); we shall follow
his discussion closely. Further contributions were made by Funk (1950) and by Hutter
(1945), who wrongly included several non-Newtonian distributions in the family of
Newtonian fields. With the decline in the use of model fields, pedagogic purposes excepted,
this class of field distributions has fallen into desuetude.

We shall use the rotating coordinate frame (x, y, z) without comment, and it must be
remembered that in magnetic lenses, the surfaces x =0 and y = 0 are not plane though we
shall still speak of ‘parallel’ rays.

17.1 Real Cardinal Elements for High Magnification
and High Demagnification

Objective lenses are conventionally operated at high magnification, and to a good
approximation we may assume that the image is formed at infinity (Fig. 17.1). The family
of rays that emerge parallel to the axis intersect the latter at some point F,, which we call
the real object focus; a family of rays emerging from the lens parallel to one another but
not parallel to the axis intersect in the focal plane, the plane through F, perpendicular to the
axis. This can be seen by introducing the solutions G(z) and G(z) of the paraxial equations
already used in Section 16.2 (Eq. 16.1). A family of rays parallel in image space may be
written

x(2) = aG(z) + c;G(z) (17.1)

Principles of Electron Optics: Basic Geometrical Optics.
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Figure 17.1
Above: The real object focus F). Rays that intersect in a point in the real object focal plane
emerge into image space as a parallel beam, parallel to the axis if the point lies on the axis.
Below: Definition of the ray g(z), which crosses the optic axis at the real image focus (z=2zy). The
corresponding asymptotic focus (here denoted by F*) is in practice more useful.

in which the ¢, are constants corresponding to the different rays; since
. (6%
lim x(z) = aGi(z — zr) + ¢k = —]7(2 —zr) t ek (17.2)
>0 i

where z; and f; are the asymptotic focus and focal length, we see that Eq. (17.1) represents
a family of rays all with image gradient —a/f;. In the real object focal plane, z = 7}, G(z)
vanishes and hence

x(zp,) = aG(zp,) forall ¢ (17.3)

The real image focus is defined to be the point at which rays, parallel to the axis in the
plane z = zj,, intersect the axis. It is now convenient to use a different ray pair: instead of
G(z) and G(z), we employ g(z) and G(z), where

8(zr,) =1, §(z)=0 (17.4)
(Fig. 17.1). In the real image focal plane z = zj,, g(z) vanishes:
8(&:) =0 (17.5)

It is easy to show that a family of rays, parallel to one another in z = zj;,, but not parallel to
the axis, intersect in the real image focal plane z = zj;. Such a family may be written

x(z) = aG(z) + crg(2)
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and in the plane z = zj,
x(Z;vi) = O[E(Z;'?i) (17.6)

We shall see in Volume 3 that the diffraction pattern of an object placed in the real object
focal plane and illuminated with a beam of electrons parallel to the axis in this plane is
formed in the real image focal plane; Eq. (17.6) expresses a fundamental property of
diffraction patterns, that is, that rays that are parallel in the specimen plane intersect in the
‘diffraction plane’, forming diffraction spots if only isolated directions occur.

In practice, it is more useful to know the location of the asymptotic image focus
corresponding to the real object focus. This is the point at which the emergent asymptote to
g(z) intersects the axis (Fig. 17.1).

Focal lengths are associated with each of these foci. In the case of the real object focus, we
define the real object principal plane, z = zj,, to be the plane perpendicular to the axis
through the point of intersection of the emergent asymptote to G(z) and the tangent to G(z)
at z =z, (Fig. 17.2). The real focal length f is then given by

1= 2py — Zpp (17.7)
and since lim, _, ., G =1, we find
1
GG

For the real image focal length f?, we have

f, (17.8)

1
/= 17.9
T (175

The Wronskian tells us that for magnetic fields

Gg' — G'g = const

e 6

v

Figure 17.2
The real object principal plane and the real (objective) focal length.
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and by considering the focal planes, that

1 Gz

fo
For the hybrid focal length obtained by considering the emergent asymptote to g(z), which
we denote f;’, we have

(17.10)

1

K== g'(0)

(17.11)

and the Wronskian tells us that
i =f (17.12)

Finally, we consider the practical situation in which a specimen is placed close to but not
exactly at z = Zj,, so that the magnification is high but not infinite. From Fig. 17.3A, we
see that the magnification is given by

M|=—=_"—~2 (17.13)

in which («f; and Z; is the distance to the image from zj,,. From Fig. 17.3B, however, we
can express the magnification as

(17.14)

Figure 17.3
High but not infinite magnification in an objective lens.
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(by similar triangles). Thus (Z; = ff, in which we once again recognize Newton’s lens

equation (now valid only for small values of ().

17.2 Osculating Cardinal Elements

The concept of osculating cardinal elements was introduced by Glaser (Glaser and Lammel,
1941, 1943; Glaser and Bergmann, 1950, 1951) in an attempt to establish whether
generalized cardinal elements can be defined that collapse to the asymptotic cardinal
elements when both object and image lie outside the field and which also allow us to use
the lens equation in Newton’s form,

M=_Jo % (17.15)
Zo ~ ZFo fi

even when the object or the image is located in the field. These new cardinal elements,
ZFo» ZFirf, and f; will in general vary with object position z, and hence with magnification
M. From Eq. (17.15), we have

1 d (1 1 dMdz,

7, ( ) i dmdy (17.16)
ZFo =20 —fo/M, Zri =2z + Mf;

and we regard these as definitions of new osculating cardinal elements, so called from their

geometrical interpretation. From the relation between longitudinal and lateral magnification
(Eq. 15.60), we note that

fl"/z = Aff’/z (17.17)
¢, ¢,

The osculating focal lengths and the positions of the osculating foci may be calculated by
considering an arbitrary pair of solutions of the paraxial equation, s(z) and #(z), such that the
general solution is

1(z)

H(zo) o

x(@) = as() + bie) = "D, + a{s@ _3(z) t(z)} (17.18)

I(Zr))
with #(z,) # 0, x, = x(z,) and b = {x, — as(z,) }/1(z,). The image plane conjugate to an
object plane z = z,, is the plane in which the term multiplied by a vanishes:

5(20)

s(zi) — 1(2,)

Hz;) =0 (17.19)
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whereupon
1(zi)
= 17.20
(zi) 1(z,) Xo ( )
The magnification is thus
1z; i
(@) _ s) (17.21)

Differentiating, we find
dM 1 di(z H(z;) dit(z,) dz,
am (z) 2(Z) (z0) dzo (17.22)
dz;  t(z,) dz t*(z,) dz, dz;

Eq. (17.19) gives
de 1))~ 5z @)
dz; 1'(20)5(zi) = 8'(20)1(zi)
1) 1))~ 5@ @) (1729

1(z1) 1'(20)8(z0) — 5'(20)1(25)

where primes denote differentiation with respect to the argument z,, or z;. From Eqs (17.16)

and (17.22—17.23), we see that
1 (z0)8'(z) = 1(2)8'(20)

o 1(z0)s'(z0) — 1(20)8(z0)

(17.24)
1 )@ — @5 )
fo 1(z)s'(zi) — 1'(2i)s(z)
Likewise from Eqs (17.16) and (17.24), we obtain (17.25)
g = Ha)s(@) = 1(zo)s(z)
T @) (@) ~ ()5 (@)
) ) (17.25)
oz = — MRS (@) = £ (z)s(2)
C 1)@ — 1@)s (@)
The geometrical meanings of these expressions can be extracted by considering the
particular ray
(17.26)

£(z) = 1(2)s'(zi) — s(2)f (z3)
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In the plane z =z;, £'(z;) = 0 and so the tangent to £(z) is parallel to the axis in this plane.
The osculating focal length £, is simply given by

z &(zi)
fo= g (17.27)
€'(z0)
and the position of the focus by
= _ Ezo)
%20~ 0= (17.28)
)

An osculating object principal plane may be defined to be the point of intersection of the
tangent to £(z) in the object plane and the tangent in the image plane. It is easy to show that

Zro — Zr0 =T, (17.29)

Similar relations may be established straightforwardly for the image osculating cardinal
elements. These geometrical relations are illustrated in Fig. 17.4A.

These osculating cardinal elements can be used to study image formation in the
neighbourhood of a given pair of conjugate points. Consider an object placed in a plane
distant Az, from z,; the magnification will change from M to M + AM. We see that

Az i+ Az — 7R
M+AM=M-25 = ST 247 (17.30)
fi fi
Also
1 1 1 Az,
— A=) == + =25 (17.31)
M M M fa
Hence
i+ Az —Zp f
M+ AM=— 28T fo (17.32)
fi Z0+AZ0_ZF0

and so Newton’s lens equation is satisfied for the new object position, for small
displacements Az,,.

An example of the variation of the osculating focal length as a function of magnification for
the magnetic lens field B(z) = By exp(— z2/a2) is shown in Fig. 17.4B for various values of
the lens strength.

From Fig. 17.1, it is immediately clear that the osculating object focus corresponding to an
image at infinity is identical with the real object focus discussed in Section 17.1 and the
osculating object