




ANALYSIS AND DESIGN
OF ANALOG INTEGRATED
CIRCUITS





ANALYSIS AND DESIGN
OF ANALOG INTEGRATED
CIRCUITS
Sixth Edition

PAUL R. GRAY
University of California, Berkeley

PAUL J. HURST
University of California, Davis

STEPHEN H. LEWIS
University of California, Davis

ROBERT G. MEYER
University of California, Berkeley



Copyright © 2024 by John Wiley & Sons Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright
.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates in the United States and other countries and may not be used without written permission. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or
vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of
this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No
warranty may be created or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional where appropriate.
Further, readers should be aware that websites listed in this work may have changed or disappeared between when
this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or
any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax
(317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data applied for

ISBN: HB: 9781394220069, ePDF: 9781394220076, epub: 9781394220083

Cover image(s): Wiley
Cover design: Courtesy of Nick Chang

Set in 10/12pt TimesLTStd by Straive, Chennai, India

http://www.copyright.com
http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com


To Liz, Barbara, Robin, and Judy





Contents

CHAPTER 1
Models for Integrated-Circuit Active
Devices 1

1.1 Introduction 1

1.2 Depletion Region of a pn Junction 1

1.2.1 Depletion-Region Capacitance 5

1.2.2 Junction Breakdown 7

1.3 Large-Signal Behavior of Bipolar
Transistors 9

1.3.1 Large-Signal Models in the
Forward-Active Region 9

1.3.2 Effects of Collector Voltage on
Large-Signal Characteristics in the
Forward-Active Region 14

1.3.3 Saturation and Inverse-Active
Regions 16

1.3.4 Transistor Breakdown Voltages 21

1.3.5 Dependence of Transistor Current
Gain 𝛽F on Operating
Conditions 24

1.4 Small-Signal Models of Bipolar
Transistors 26

1.4.1 Transconductance 26

1.4.2 Base-Charging Capacitance 28

1.4.3 Input Resistance 29

1.4.4 Output Resistance 30

1.4.5 Basic Small-Signal Model of the
Bipolar Transistor 30

1.4.6 Collector-Base Resistance 31

1.4.7 Parasitic Elements in the
Small-Signal Model 31

1.4.8 Specification of Transistor
Frequency Response 35

1.5 Large-Signal Behavior of
Metal-Oxide-Semiconductor
Field-Effect Transistors 39

1.5.1 Transfer Characteristics of MOS
Devices 39

1.5.2 Comparison of Operating Regions of
Bipolar and MOS Transistors 46

1.5.3 Decomposition of Gate-Source
Voltage 48

1.5.4 Threshold Temperature
Dependence 48

1.5.5 MOS Device Voltage
Limitations 49

1.6 Small-Signal Models of MOS
Transistors 50

1.6.1 Transconductance 51

1.6.2 Intrinsic Gate-Source and
Gate-Drain Capacitance 52

1.6.3 Input Resistance 53

1.6.4 Output Resistance 53

1.6.5 Basic Small-Signal Model of the
MOS Transistor 53

1.6.6 Body Transconductance 54

1.6.7 Parasitic Elements in the
Small-Signal Model 55

1.6.8 MOS Transistor Frequency
Response 57

1.7 Short-Channel Effects in MOS
Transistors 60

1.7.1 Velocity Saturation from the
Horizontal Field 60

1.7.2 Transconductance and Transition
Frequency 64

1.7.3 Mobility Degradation from the
Vertical Field 66

1.8 Weak Inversion in MOS Transistors 67

1.8.1 Drain Current in Weak
Inversion 67

1.8.2 Transconductance and Transition
Frequency in Weak Inversion 70

1.9 Substrate Current Flow in MOS
Transistors 73

A.1.1 Summary of Active-Device
Parameters 74

Problems 76

References 78

General References 79



viii Contents

CHAPTER 2
Bipolar, MOS, and BiCMOS
Integrated-Circuit Technology 81

2.1 Introduction 81

2.2 Basic Processes in Integrated-Circuit
Fabrication 82

2.2.1 Electrical Resistivity of Silicon 82

2.2.2 Solid-State Diffusion 83

2.2.3 Electrical Properties of Diffused
Layers 85

2.2.4 Photolithography 87

2.2.5 Epitaxial Growth 89

2.2.6 Ion Implantation 90

2.2.7 Local Oxidation 90

2.2.8 Polysilicon Deposition 90

2.3 High-Voltage Bipolar Integrated-Circuit
Fabrication 91

2.4 Advanced Bipolar Integrated-Circuit
Fabrication 95

2.5 Active Devices in Bipolar Analog
Integrated Circuits 98

2.5.1 Integrated-Circuit npn
Transistors 99

2.5.2 Integrated-Circuit pnp
Transistors 111

2.6 Passive Components in Bipolar
Integrated Circuits 118

2.6.1 Diffused Resistors 119

2.6.2 Epitaxial and Epitaxial-Pinch
Resistors 122

2.6.3 Integrated-Circuit Capacitors 124

2.6.4 Zener Diodes 124

2.6.5 Junction Diodes 125

2.7 Modifications to the Basic Bipolar
Process 127

2.7.1 Dielectric Isolation 127

2.7.2 Compatible Processing for
High-Performance Active
Devices 128

2.7.3 High-Performance Passive
Components 131

2.8 MOS Integrated-Circuit
Fabrication 131

2.9 Active Devices in MOS Integrated
Circuits 135

2.9.1 n-Channel Transistors 135

2.9.2 p-Channel Transistors 148

2.9.3 Depletion Devices 148

2.9.4 Bipolar Transistors 149

2.10 Passive Components in MOS
Technology 150

2.10.1 Resistors 150

2.10.2 Capacitors in MOS
Technology 152

2.10.3 Latchup in CMOS Technology 155

2.11 BiCMOS Technology 156

2.12 Heterojunction Bipolar Transistors 157

2.13 Interconnect Delay 160

2.14 Economics of Integrated-Circuit
Fabrication 160

2.14.1 Yield Considerations in
Integrated-Circuit Fabrication 161

2.14.2 Cost Considerations in
Integrated-Circuit Fabrication 163

A.2.1 Spice Model-Parameter Files 166

Problems 167

References 170

CHAPTER 3
Single-Transistor and
Multiple-Transistor Amplifiers 173

3.1 Device Model Selection for
Approximate Analysis of Analog
Circuits 174

3.2 Two-Port Modeling of Amplifiers 175

3.3 Basic Single-Transistor Amplifier
Stages 177

3.3.1 Common-Emitter
Configuration 178

3.3.2 Common-Source
Configuration 182

3.3.3 Common-Base Configuration 186

3.3.4 Common-Gate Configuration 189

3.3.5 Common-Base and Common-Gate
Configurations with Finite ro 191

3.3.6 Common-Collector Configuration
(Emitter Follower) 195

3.3.7 Common-Drain Configuration
(Source Follower) 198

3.3.8 Common-Emitter Amplifier with
Emitter Degeneration 201

3.3.9 Common-Source Amplifier with
Source Degeneration 204



Contents ix

3.4 Multiple-Transistor Amplifier
Stages 206

3.4.1 The CC-CE, CC-CC, and Darlington
Configurations 206

3.4.2 The Cascode Configuration 210

3.4.3 The Active Cascode 214

3.4.4 The Super Source Follower 216

3.5 Differential Pairs 219

3.5.1 The dc Transfer Characteristic of an
Emitter-Coupled Pair 219

3.5.2 The dc Transfer Characteristic with
Emitter Degeneration 221

3.5.3 The dc Transfer Characteristic of a
Source-Coupled Pair 222

3.5.4 Introduction to the Small-Signal
Analysis of Differential
Amplifiers 225

3.5.5 Small-Signal Characteristics of
Balanced Differential
Amplifiers 228

3.5.6 Device Mismatch Effects in
Differential Amplifiers 235

A.3.1 Elementary Statistics and the Gaussian
Distribution 250

Problems 253

References 257

CHAPTER 4
Current Mirrors, Active Loads, and
References 259

4.1 Introduction 259

4.2 Replica Biasing 259

4.3 Current Mirrors 261

4.3.1 General Properties 261

4.3.2 Simple Current Mirror 263

4.3.3 Simple Current Mirror with Beta
Helper 269

4.3.4 Simple Current Mirror with
Degeneration 270

4.3.5 Cascode Current Mirror 272

4.3.6 Wilson Current Mirror 283

4.4 Active Loads 287

4.4.1 Motivation 287

4.4.2 Common-Emitter–Common-Source
Amplifier with Complementary
Load 288

4.4.3 Common-Emitter–Common-Source
Amplifier with Depletion
Load 291

4.4.4 Common-Emitter–Common-Source
Amplifier with Diode-Connected
Load 293

4.4.5 Differential Pair with Current-Mirror
Load 296

4.5 Voltage and Current References 309

4.5.1 Low-Current Biasing 309

4.5.2 Supply-Insensitive Biasing 315

4.5.3 Temperature-Insensitive
Biasing 327

A.4.1 Matching Considerations in Current
Mirrors 338

A.4.1.1 Bipolar 338

A.4.1.2 MOS 340

A.4.2 Input Offset Voltage of a Differential
Pair with Active Load 343

A.4.2.1 Bipolar 343

A.4.2.2 MOS 345

Problems 348

References 353

CHAPTER 5
Output Stages 355

5.1 Introduction 355

5.2 The Emitter Follower as an Output
Stage 355

5.2.1 Transfer Characteristics of the
Emitter-Follower 356

5.2.2 Power Output and Efficiency 359

5.2.3 Emitter-Follower Drive
Requirements 366

5.2.4 Small-Signal Properties of the
Emitter Follower 366

5.3 The Source Follower as an Output
Stage 368

5.3.1 Transfer Characteristics of the
Source Follower 368

5.3.2 Distortion in the Source
Follower 370

5.3.3 Transfer Characteristics of the Super
Source Follower 374

5.4 Class B Push–Pull Output Stage 378

5.4.1 Transfer Characteristic of the Class
B Stage 378



x Contents

5.4.2 Power Output and Efficiency of the
Class B Stage 381

5.4.3 Practical Realizations of Class B
Complementary Output Stages 385

5.4.4 All-npn Class B Output Stage 392

5.4.5 Quasi-Complementary Output
Stages 394

5.4.6 Overload Protection 397

5.5 CMOS Class AB Output Stages 399

5.5.1 Common-Drain Configuration 399

5.5.2 Common-Source Configuration with
Error Amplifiers 401

5.5.3 Alternative Configurations 408

Problems 415

References 420

CHAPTER 6
Operational Amplifiers with
Single-Ended Outputs 421

6.1 Applications of Operational
Amplifiers 422

6.1.1 Basic Feedback Concepts 422

6.1.2 Inverting Amplifier 423

6.1.3 Noninverting Amplifier 425

6.1.4 Differential Amplifier 425

6.1.5 Nonlinear Analog Operations 426

6.1.6 Integrator, Differentiator 427

6.1.7 Internal Amplifiers 428

6.2 Deviations from Ideality in Real
Operational Amplifiers 436

6.2.1 Input Bias Current 437

6.2.2 Input Offset Current 437

6.2.3 Input Offset Voltage 438

6.2.4 Common-Mode Input Range 438

6.2.5 Common-Mode Rejection Ratio
(CMRR) 439

6.2.6 Power-Supply Rejection Ratio
(PSRR) 440

6.2.7 Input Resistance 441

6.2.8 Output Resistance 442

6.2.9 Frequency Response 442

6.2.10 Operational-Amplifier Equivalent
Circuit 442

6.3 Basic Two-Stage MOS Operational
Amplifiers 443

6.3.1 Input Resistance, Output Resistance,
and Open-Circuit Voltage
Gain 444

6.3.2 Output Swing 446

6.3.3 Input Offset Voltage 446

6.3.4 Common-Mode Rejection
Ratio 450

6.3.5 Common-Mode Input Range 451

6.3.6 Power-Supply Rejection Ratio
(PSRR) 453

6.3.7 Effect of Overdrive Voltages 458

6.3.8 Layout Considerations 459

6.3.9 Amplifier with Level Shifting in the
Input Stage 462

6.4 Two-Stage MOS Operational Amplifiers
with Cascodes 465

6.5 MOS Folded-Cascode Operational
Amplifiers 467

6.6 MOS Telescopic-Cascode Operational
Amplifiers 471

6.7 Replica Biasing of the Tail Current
Source 475

6.8 MOS Active-Cascode Operational
Amplifiers 489

Problems 492

References 498

CHAPTER 7
Frequency Response of Integrated Cir-
cuits 499

7.1 Introduction 499

7.2 Single-Stage Amplifiers 499

7.2.1 Single-Stage Voltage Amplifiers and
the Miller Effect 499

7.2.2 Frequency Response of the
Common-Mode Gain for a
Differential Amplifier 511

7.2.3 Frequency Response of Voltage
Buffers 513

7.2.4 Frequency Response of Current
Buffers 527

7.3 Multistage Amplifier Frequency
Response 531

7.3.1 Dominant-Pole
Approximation 531



Contents xi

7.3.2 Zero-Value Time Constant
Analysis 532

7.3.3 Cascade Voltage-Amplifier
Frequency Response 537

7.3.4 Cascode Frequency Response 541

7.3.5 Frequency Response of a Current
Mirror Loading a Differential
Pair 548

7.3.6 Short-Circuit Time Constants 549

7.3.7 Weighted Zero-Value Time
Constants 554

7.4 Relation Between Frequency Response
and Time Response 563

7.5 Pole-Zero Doublets 565

7.5.1 Effect of a Pole-Zero Doublet on
Settling Time 565

7.5.2 Frequency Dependence of a Cascode
Current-Source Load 570

7.5.3 Frequency Dependence of an
Active-Cascode Current-Source
Load 572

7.5.4 Doublet in a Differential Amplifier
with Mismatch 574

Problems 575

References 584

CHAPTER 8
Feedback 585

8.1 Ideal Feedback Equation 585

8.2 Gain Sensitivity 587

8.3 Effect of Negative Feedback on
Distortion 587

8.4 Feedback Configurations 589

8.4.1 Series-Shunt Feedback 589

8.4.2 Shunt-Shunt Feedback 592

8.4.3 Shunt-Series Feedback 594

8.4.4 Series-Series Feedback 595

8.5 Practical Configurations and the Effect
of Loading 595

8.5.1 Shunt-Shunt Feedback 596

8.5.2 Series-Series Feedback 602

8.5.3 Series-Shunt Feedback 611

8.5.4 Shunt-Series Feedback 617

8.5.5 Summary 620

8.6 Single-Stage Feedback 620

8.6.1 Local Series-Series Feedback 622

8.6.2 Local Series-Shunt Feedback 624

8.7 The Voltage Regulator as a Feedback
Circuit 626

8.8 Feedback Circuit Analysis Using the
Return Ratio 632

8.8.1 Closed-Loop Gain Using the Return
Ratio 634

8.8.2 Closed-Loop Impedance Formula
Using the Return Ratio 640

8.8.3 Summary—Return-Ratio
Analysis 646

8.9 Modeling Input and Output Ports in
Feedback Circuits 646

Problems 649

References 656

CHAPTER 9
Frequency Response and Stability of
Feedback Amplifiers 657

9.1 Introduction 657

9.2 Relation Between Gain and Bandwidth
in Feedback Amplifiers 657

9.3 Instability 659

9.3.1 The Nyquist Criterion 659

9.3.2 Phase Margin and Gain
Margin 661

9.3.3 Stability of the Super Source
Follower 666

9.4 Compensation 671

9.4.1 Theory of Compensation 671

9.4.2 Methods of Compensation 676

9.4.3 Two-Stage MOS Amplifier
Compensation 681

9.4.4 Compensation of
Single-Stage CMOS Op Amps 693

9.4.5 Nested Miller Compensation 696

9.5 Root-Locus Techniques 705

9.5.1 Root Locus for a Three-Pole
Transfer Function 705

9.5.2 Rules for Root-Locus
Construction 708

9.5.3 Root Locus for Dominant-Pole
Compensation 718



xii Contents

9.5.4 Root Locus for Feedback-Zero
Compensation 719

9.6 Slew Rate 723

9.6.1 Origin of Slew-Rate
Limitations 723

9.6.2 Methods of Improving Slew Rate in
Two-Stage Op Amps 725

9.6.3 Improving Slew Rate in Bipolar Op
Amps 728

9.6.4 Improving Slew Rate in MOS Op
Amps 729

9.6.5 Effect of Slew-Rate Limitations on
Large-Signal Sinusoidal
Performance 733

9.7 Effect of Feedback on a Pole-Zero
Doublet 734

A.9.1 Analysis in Terms of Return-Ratio
Parameters 736

A.9.2 Roots of a Quadratic Equation 737

Problems 739

References 746

CHAPTER 10
Nonlinear Analog Circuits 747

10.1 Introduction 747

10.2 Analog Multipliers Employing the
Bipolar Transistor 747

10.2.1 The Emitter-Coupled Pair as a
Simple Multiplier 748

10.2.2 The dc Analysis of the Gilbert
Multiplier Cell 750

10.2.3 The Gilbert Cell as an Analog
Multiplier 752

10.2.4 A Complete Analog Multiplier 755

10.2.5 The Gilbert Multiplier Cell as a
Balanced Modulator and Phase
Detector 756

10.3 Phase-Locked Loops 760

10.3.1 Phase-Locked Loop Concepts 760

10.3.2 The Phase-Locked Loop in the
Locked Condition 762

10.3.3 Integrated-Circuit Phase-Locked
Loops 771

10.4 Nonlinear Function Synthesis 775

Problems 777

References 779

CHAPTER 11
Noise in Integrated Circuits 781

11.1 Introduction 781

11.2 Sources of Noise 781

11.2.1 Shot Noise 781

11.2.2 Thermal Noise 785

11.2.3 Flicker Noise (1/f Noise) 786

11.2.4 Burst Noise (Popcorn Noise) 787

11.2.5 Avalanche Noise 787

11.3 Noise Models of Integrated-Circuit
Components 789

11.3.1 Junction Diode 789

11.3.2 Bipolar Transistor 790

11.3.3 MOS Transistor 791

11.3.4 Resistors 798

11.3.5 Capacitors and Inductors 799

11.4 Circuit Noise Calculations 799

11.4.1 Bipolar Transistor Noise
Performance 802

11.4.2 Equivalent Input Noise and the
Minimum Detectable Signal 805

11.4.3 MOS Transistor Noise
Performance 807

11.5 Equivalent Input Noise Generators 812

11.5.1 Bipolar Transistor Noise
Generators 813

11.5.2 MOS Transistor Noise
Generators 818

11.6 Effect of Feedback on Noise
Performance 820

11.6.1 Effect of Ideal Feedback on Noise
Performance 821

11.6.2 Effect of Practical Feedback on
Noise Performance 821

11.7 Noise Performance of Other Transistor
Configurations 828

11.7.1 Common-Base-Stage Noise
Performance 828

11.7.2 Emitter-Follower Noise
Performance 829

11.7.3 Differential-Pair Noise
Performance 830

11.7.4 Super-Source-Follower Noise
Performance 833

11.8 Noise in Operational Amplifiers 836



Contents xiii

11.9 Noise Bandwidth 840

11.10 Noise Figure and Noise
Temperature 845

11.10.1 Noise Figure 845

11.10.2 Noise Temperature 849

Problems 849

References 854

CHAPTER 12
Fully Differential Operational
Amplifiers 857

12.1 Introduction 857

12.2 Properties of Fully Differential
Amplifiers 857

12.3 Small-Signal Models for Balanced
Differential Amplifiers 860

12.4 Common-Mode Feedback 865

12.4.1 Common-Mode Feedback at Low
Frequencies 867

12.4.2 Stability and Compensation
Considerations in a CMFB
Loop 871

12.5 CMFB Circuits 873

12.5.1 CMFB Using Resistive Divider and
Amplifier 873

12.5.2 CMFB Using Two Differential
Pairs 878

12.5.3 CMFB Using Transistors in the
Triode Region 880

12.5.4 Switched-Capacitor CMFB 882

12.6 Fully Differential Op Amps 885

12.6.1 A Fully Differential Two-Stage Op
Amp 885

12.6.2 Fully Differential
Telescopic-Cascode Op Amp 896

12.6.3 Fully Differential Folded-Cascode
Op Amp 897

12.6.4 A Differential Op Amp with Two
Differential Input Stages 898

12.6.5 Neutralization 899

12.7 Unbalanced Fully Differential
Circuits 901

12.8 Bandwidth of the CMFB Loop 907

12.9 Analysis of a CMOS Fully Differential
Folded-Cascode Op Amp 909

12.9.1 DC Biasing 911

12.9.2 Low-Frequency Analysis 914

12.9.3 Frequency and Time Responses in a
Feedback Application 920

Problems 927

References 933

Index 935

Symbol Convention

Unless otherwise stated, the following symbol convention is used in this book. Bias or
dc quantities, such as transistor collector current IC and collector-emitter voltage VCE, are
represented by uppercase symbols with uppercase subscripts. Small-signal quantities, such
as the incremental change in transistor collector current ic, are represented by lowercase
symbols with lowercase subscripts. Elements such as transconductance gm in small-signal
equivalent circuits are represented in the same way. Finally, quantities such as total col-
lector current Ic, which represent the sum of the bias quantity and the signal quantity, are
represented by an uppercase symbol with a lowercase subscript.





Preface

Since the publication of the first edition of this book, the field of analog integrated circuits
has developed and matured. The initial groundwork was laid in bipolar technology, followed
by a rapid evolution of MOS analog integrated circuits. Forty years ago, CMOS technologies
were only fast enough to support applications at audio frequencies. However, the continu-
ing reduction of the minimum feature size in integrated-circuit (IC) technologies has greatly
increased the maximum operating frequencies, and CMOS technologies have become fast
enough for many new applications as a result. For example, CMOS is now routinely used
for radio-frequency applications and beyond. Today, bipolar integrated circuits are sometimes
used in applications that require very low noise, very wide bandwidth, or the ability to drive
low-impedance loads. Also, bipolar transistors appear as parasitic elements in CMOS tech-
nologies and are often used to improve performance.

In this sixth edition, a new super-source-follower circuit is added to Chapter 3. Furthermore,
new sections are added to Chapters 5, 7, 9, and 11 to cover the large-signal behavior, frequency
response, stability, and noise properties of super-source followers. Also, replica biasing is
introduced in Chapter 4, and two CMOS operational amplifiers (op amps) using replica biasing
are described in Chapter 6, where coverage of the low-voltage bipolar op amp, the NE5234, has
been removed. In Chapter 7, weighted zero-value time constants are introduced to estimate the
locations of dominant zeros. New sections on pole-zero doublets are added to Chapters 7 and 9
to explain their effects on settling time and show the effect of feedback on doublets. Chapter 11
introduces a new section on MOS transistor noise performance, including thermally induced
gate noise, which becomes important at very high frequencies.

As in the previous editions of this book, we have included extensive use of the SPICE
computer-analysis program as an integral part of many problems. SPICE is used both to check
hand calculations and to examine complex circuit behavior beyond the scope of hand analysis.

This book is intended to be useful both as a text for students and as a reference book for
practicing engineers. For class use, each chapter includes many worked problems; the problem
sets at the end of each chapter illustrate the practical applications of the material in the text.
All the authors have had extensive industrial experience in IC design as well as in the teaching
of courses on this subject, and this experience is reflected in the choice of text material and in
the problem sets.

Although this book is concerned largely with the analysis and design of ICs, a considerable
amount of material is also included on applications. In practice, these two subjects are closely
linked, and a knowledge of both is essential for designers and users of ICs. The latter compose
the larger group by far, and we believe that a working knowledge of IC design is a great
advantage to an IC user. This is particularly apparent when the user must choose from among a
number of competing designs to satisfy a particular need. An understanding of the IC structure
is then useful in evaluating the relative desirability of the different designs under environmental
extremes and in the presence of variations in supply voltage. In addition, IC users improve their
position to interpret the manufacturer’s data by developing a working knowledge of the internal
operation of integrated circuits they use.

The contents of this book stem largely from courses on analog integrated circuits given at
the University of California at the Berkeley and Davis campuses. The courses are senior-level
electives and first-year graduate courses. The book is structured so that it can be used as the



xvi Preface

basic text for a sequence of such courses. The more advanced material is found at the end
of each chapter or in an appendix so that a first course in analog integrated circuits can omit
this material without loss of continuity. An outline of each chapter is given below together
with suggestions for material to be covered in such a first course. It is assumed that the course
consists of three hours of lecture per week over a 15-week semester and that the students
have a working knowledge of Laplace transforms and frequency-domain circuit analysis. It
is also assumed that the students have had an introductory course in electronics so that they
are familiar with the principles of transistor operation and the functioning of simple analog
circuits. Unless otherwise stated, each chapter requires three to four lecture hours to cover.

Chapter 1 contains a summary of bipolar transistor and MOS transistor device physics. We
suggest spending one week on selected topics from this chapter, the choice of topics depending
on the background of the students. The material of Chapters 1 and 2 is quite important in IC
design because there is significant interaction between circuit and device design, as will be seen
in later chapters. A thorough understanding of the influence of device fabrication on device
characteristics is essential.

Chapter 2 is concerned with the technology of IC fabrication and is largely descriptive. One
lecture on this material should suffice if the students are assigned to read the chapter.

Chapter 3 deals with the characteristics of elementary transistor connections. The material
on one-transistor amplifiers should be a review for students at the senior and graduate levels and
can be assigned as reading. The section on two-transistor amplifiers can be covered in about
three hours, with the greatest emphasis on differential pairs. The material on device-mismatch
effects in differential amplifiers can be covered to the extent that time allows.

In Chapter 4, the important topics of current mirrors and active loads are considered. These
configurations are basic building blocks in modern analog IC design, and this material should
be covered in full, with the exception of the material on band-gap references and the material
in the appendices.

Chapter 5 is concerned with output stages and methods of delivering output power to a load.
Integrated-circuit realizations of Class A, Class B, and Class AB output stages are described,
as well as methods of output-stage protection. A selection of topics from this chapter should
be covered.

Chapter 6 deals with the design of op amps. Illustrative examples of dc and ac analysis in op
amps are performed in detail, and the limitations of basic op amps are described. The design
of op amps with improved characteristics is considered. This key chapter on amplifier design
requires at least six hours.

In Chapter 7, the frequency response of amplifiers is considered. The zero-value
time-constant technique is described as a simple method to estimate the location of the
dominant pole of both simple and complicated circuits. The material of this chapter through
and including this topic should be considered in full.

Chapter 8 describes the analysis of feedback circuits. Two different types of analysis are
presented: two-port and return-ratio analyses. Either approach should be covered in full, with
the section on voltage regulators assigned as reading.

Chapter 9 deals with the frequency response and stability of feedback circuits and should
be covered up to the section on root locus. Time may not permit a detailed discussion of root
locus, but some introduction to this topic can be given.

In a 15-week semester, coverage of the above material leaves about two weeks for Chapters
10, 11, and 12. A selection of topics from these chapters can be chosen as follows. Chapter 10
deals with nonlinear analog circuits, and this material is normally beyond the scope of a first
course. Chapter 11 is a comprehensive treatment of noise in integrated circuits, and material up
to and including Section 11.4.2 is suitable. Chapter 12 describes fully differential operational
amplifiers and common-mode feedback and may be best suited for a second course.
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CHAPTER 1

Models for Integrated-Circuit
Active Devices

1.1 Introduction
The analysis and design of integrated circuits depend heavily on the utilization of suitable
models for integrated-circuit components. This is true in hand analysis, where fairly simple
models are generally used, and in computer analysis, where more complex models are encoun-
tered. Since any analysis is only as accurate as the model used, it is essential that the circuit
designer have a thorough understanding of the origin of the models commonly utilized and the
degree of approximation involved in each.

This chapter deals with the derivation of large-signal and small-signal models for
integrated-circuit devices. The treatment begins with a consideration of the properties of
pn junctions, which are basic parts of most integrated-circuit elements. Since this book is
primarily concerned with circuit analysis and design, no attempt has been made to produce
a comprehensive treatment of semiconductor physics. The emphasis is on summarizing the
basic aspects of semiconductor-device behavior and indicating how these can be modeled by
equivalent circuits.

1.2 Depletion Region of a pn Junction
The properties of reverse-biased pn junctions have an important influence on the character-
istics of many integrated-circuit components. For example, reverse-biased pn junctions exist
between many integrated-circuit elements and the underlying substrate, and these junctions
all contribute voltage-dependent parasitic capacitances. In addition, a number of important
characteristics of active devices, such as breakdown voltage and output resistance, depend
directly on the properties of the depletion region of a reverse-biased pn junction. Finally, the
basic operation of the junction field-effect transistor is controlled by the width of the depletion
region of a pn junction. Because of its importance and application to many different problems,
an analysis of the depletion region of a reverse-biased pn junction is considered below. The
properties of forward-biased pn junctions are treated in Section 1.3 when bipolar-transistor
operation is described.

Consider a pn junction under reverse bias as shown in Fig. 1.1. Assume constant doping
densities of ND atoms/cm3 in the n-type material and NA atoms/cm3 in the p-type material.
(The characteristics of junctions with nonconstant doping densities will be described later.)
Due to the difference in carrier concentrations in the p-type and n-type regions, there exists a
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region at the junction where the mobile holes and electrons have been removed, leaving the
fixed acceptor and donor ions. Each acceptor atom carries a negative charge and each donor
atom carries a positive charge, so that the region near the junction is one of significant space
charge and resulting high electric field. This is called the depletion region or space-charge
region. It is assumed that the edges of the depletion region are sharply defined, as shown in
Fig. 1.1, and this is a good approximation in most cases.

For zero applied bias, there exists a voltage 𝜓0 across the junction called the built-in poten-
tial. This potential opposes the diffusion of mobile holes and electrons across the junction in
equilibrium and has a value1

𝜓0 = VT ln
NAND

n2
i

(1.1)

where
VT = kT

q
≃ 26 mV at 300∘K

the quantity ni is the intrinsic carrier concentration in a pure sample of the semiconductor and
ni ≃ 1.5 × 1010 cm−3 at 300∘K for silicon.

In Fig. 1.1, the built-in potential is augmented by the applied reverse bias, VR, and the total
voltage across the junction is (𝜓0 + VR). If the depletion region penetrates a distance W1 into
the p-type region and W2 into the n-type region, then we require

W1NA = W2ND (1.2)
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because the total charge per unit area on either side of the junction must be equal in magnitude
but opposite in sign.

Poisson’s equation in one dimension requires that

d2V
dx2

= −𝜌

𝜖
=

qNA

𝜖
for −W1 < x < 0 (1.3)

where 𝜌 is the charge density, q is the electron charge (1.6 × 10−19 coulomb), and 𝜖 is the
permittivity of the silicon (1.04 × 10−12 farad/cm). The permittivity is often expressed as

𝜖 = KS𝜖0 (1.4)

where KS is the dielectric constant of silicon and 𝜖0 is the permittivity of free space (8.86 ×
10−14 F/cm). Integration of (1.3) gives

dV
dx

=
qNA

𝜖
x + C1 (1.5)

where C1 is a constant. However, the electric field ℰ is given by

ℰ = −dV
dx

= −
(

qNA

𝜖
x + C1

)
(1.6)

Since there is zero electric field outside the depletion region, a boundary condition is

ℰ = 0 for x = −W1

and use of this condition in (1.6) gives

ℰ = −
qNA

𝜖
(x + W1) = −dV

dx
for −W1 < x < 0 (1.7)

Thus the dipole of charge existing at the junction gives rise to an electric field that varies
linearly with distance.

Integration of (1.7) gives

V =
qNA

𝜖

(
x2

2
+ W1x

)
+ C2 (1.8)

If the zero for potential is arbitrarily taken to be the potential of the neutral p-type region, then
a second boundary condition is

V = 0 for x = −W1

and use of this in (1.8) gives

V =
qNA

𝜖

(
x2

2
+ W1x +

W2
1

2

)
for −W1 < x < 0 (1.9)

At x = 0, we define V = V1, and then (1.9) gives

V1 =
qNA

𝜖

W2
1

2
(1.10)
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If the potential difference from x = 0 to x = W2 is V2, then it follows that

V2 =
qND

𝜖

W2
2

2
(1.11)

and thus the total voltage across the junction is

𝜓0 + VR = V1 + V2 =
q

2𝜖
(NAW2

1 + NDW2
2 ) (1.12)

Substitution of (1.2) in (1.12) gives

𝜓0 + VR =
qW2

1 NA

2𝜖

(
1 +

NA

ND

)
(1.13)

From (1.13), the penetration of the depletion layer into the p-type region is

W1 =

⎡⎢⎢⎢⎢⎣
2𝜖(𝜓0 + VR)

qNA

(
1 +

NA

ND

)
⎤⎥⎥⎥⎥⎦

1∕2

(1.14)

Similarly,

W2 =

⎡⎢⎢⎢⎢⎣
2𝜖(𝜓0 + VR)

qND

(
1 +

ND

NA

)
⎤⎥⎥⎥⎥⎦

1∕2

(1.15)

Equations 1.14 and 1.15 show that the depletion regions extend into the p-type and n-type
regions in inverse relation to the impurity concentrations and in proportion to

√
𝜓0 + VR. If

either ND or NA is much larger than the other, the depletion region exists almost entirely in the
lightly doped region.

◼ EXAMPLE

An abrupt pn junction in silicon has doping densities NA = 1015 atoms/cm3 and
ND = 1016 atoms/cm3. Calculate the junction built-in potential, the depletion-layer depths,
and the maximum field with 10 V reverse bias.

From (1.1),

𝜓0 = 26 ln
1015 × 1016

2.25 × 1020
mV = 638 mV at 300∘K

From (1.14), the depletion-layer depth in the p-type region is

W1 =
(

2 × 1.04 × 10−12 × 10.64

1.6 × 10−19 × 1015 × 1.1

)1∕2

= 3.5 × 10−4 cm

= 3.5μm (where 1μm = 1 micrometer = 10−6 m)

The depletion-layer depth in the more heavily doped n-type region is

W2 =
(

2 × 1.04 × 10−12 × 10.64

1.6 × 10−19 × 1016 × 11

)1∕2

= 0.35 × 10−4 cm = 0.35μm
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Finally, from (1.7), the maximum field that occurs for x = 0 is

ℰmax = −
qNA

𝜖
W1 = −1.6 × 10−19 × 1015 × 3.5 × 10−4

1.04 × 10−12

= −5.4 × 104 V/cm

Note the large magnitude of this electric field.◼

1.2.1 Depletion-Region Capacitance

Since there is a voltage-dependent charge Q associated with the depletion region, we can
calculate a small-signal capacitance Cj as follows:

Cj =
dQ
dVR

= dQ
dW1

dW1

dVR
(1.16)

Now
dQ = AqNAdW1 (1.17)

where A is the cross-sectional area of the junction. Differentiation of (1.14) gives

dW1

dVR
=

⎡⎢⎢⎢⎢⎣
𝜖

2qNA

(
1 +

NA

ND

)
(𝜓0 + VR)

⎤⎥⎥⎥⎥⎦

1∕2

(1.18)

Use of (1.17) and (1.18) in (1.16) gives

Cj = A

[
q𝜖NAND

2(NA + ND)

]1∕2
1√

𝜓0 + VR

(1.19)

The above equation was derived for the case of reverse bias VR applied to the diode. How-
ever, it is valid for positive bias voltages as long as the forward current flow is small. Thus,
if VD represents the bias on the junction (positive for forward bias, negative for reverse bias),
then (1.19) can be written as

Cj = A

[
q𝜖NAND

2(NA + ND)

]1∕2
1√

𝜓0 − VD

(1.20)

=
Cj0√

1 −
VD

𝜓0

(1.21)

where Cj0 is the value of Cj for VD = 0.
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Figure 1.3 Behavior of pn junction depletion-layer capacitance Cj as a function of bias voltage VD.

Equations 1.20 and 1.21 were derived using the assumption of constant doping in the
p-type and n-type regions. However, many practical diffused junctions more closely approach
a graded doping profile, as shown in Fig. 1.2. In this case, a similar calculation yields

Cj =
Cj0

3

√
1 −

VD

𝜓0

(1.22)

Note that both (1.21) and (1.22) predict values of Cj approaching infinity as VD approaches
𝜓0. However, the current flow in the diode is then appreciable and the equations are no longer
valid. A more exact analysis2,3 of the behavior of Cj as a function of VD gives the result shown
in Fig. 1.3. For forward-bias voltages up to about 𝜓0∕2, the values of Cj predicted by (1.21)
are very close to the more accurate value. As an approximation, some computer programs
approximate Cj for VD > 𝜓0∕2 by a linear extrapolation of (1.21) or (1.22).

◼ EXAMPLE
If the zero-bias capacitance of a diffused junction is 3 pF and 𝜓0 = 0.5 V, calculate the capac-
itance with 10 V reverse bias. Assume the doping profile can be approximated by an abrupt
junction.
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From (1.21),

Cj =
3√

1 + 10
0.5

pF = 0.65 pF

◼

1.2.2 Junction Breakdown

From Fig. 1.1c, it can be seen that the maximum electric field in the depletion region occurs
at the junction; and for an abrupt junction, (1.7) yields a value

ℰmax = −
qNA

𝜖
W1 (1.23)

Substitution of (1.14) in (1.23) gives

|ℰmax| = [
2qNANDVR

𝜖 (NA + ND)

]1∕2

(1.24)

where 𝜓0 has been neglected. Equation 1.24 shows that the maximum field increases as the
doping density increases and the reverse bias increases. Although useful for indicating the
functional dependence of ℰmax on other variables, this equation is strictly valid for an ideal
plane junction only. Practical junctions tend to have edge effects that cause somewhat higher
values of ℰmax due to a concentration of the field at the curved edges of the junction.

Any reverse-biased pn junction has a small reverse current flow due to the presence
of minority-carrier holes and electrons in the vicinity of the depletion region. These are
swept across the depletion region by the field and contribute to the leakage current of the
junction. As the reverse bias on the junction is increased, the maximum field increases and
the carriers acquire increasing amounts of energy between lattice collisions in the depletion
region. At a critical field ℰcrit, the carriers traversing the depletion region acquire sufficient
energy to create new hole-electron pairs in collisions with silicon atoms. This is called the
avalanche process and leads to a sudden increase in the reverse-bias leakage current since the
newly created carriers are also capable of producing avalanche. The value of ℰcrit is about
3 × 105 V/cm for junction doping densities in the range of 1015 to 1016 atoms/cm3, but it
increases slowly as the doping density increases and reaches about 106 V/cm for doping
densities of 1018 atoms/cm3.

A typical I-V characteristic for a junction diode is shown in Fig. 1.4, and the effect of
avalanche breakdown is seen by the large increase in reverse current, which occurs as the
reverse bias approaches the breakdown voltage BV. This corresponds to the maximum field
ℰmax approaching ℰcrit. It has been found empirically4 that if the normal reverse-bias current
of the diode is IR with no avalanche effect, then the actual reverse current near the breakdown
voltage is

IRA = MIR (1.25)

where M is the multiplication factor defined by

M = 1

1 −
(

VR

BV

)n (1.26)

In this equation, VR is the reverse bias on the diode, and n has a value between 3 and 6.
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Figure 1.4 Typical I-V characteristic of a junction diode showing avalanche breakdown.

The operation of a pn junction in the breakdown region is not inherently destructive.
However, the avalanche current flow must be limited by external resistors in order to prevent
excessive power dissipation from occurring at the junction and causing damage to the device.
Diodes operated in the avalanche region are widely used as voltage references and are called
Zener diodes. There is another, related process called Zener breakdown,5 which is different
from the avalanche breakdown described above. Zener breakdown occurs only in very heavily
doped junctions where the electric field becomes large enough (even with small reverse-bias
voltages) to strip electrons away from the valence bonds. This process is called tunneling, and
there is no multiplication effect as in avalanche breakdown. Although the Zener breakdown
mechanism is important only for breakdown voltages below about 6 V, all breakdown diodes
are commonly referred to as Zener diodes.

The calculations so far have been concerned with the breakdown characteristic of plane
abrupt junctions. Practical diffused junctions differ in some respects from these results, and
the characteristics of these junctions have been calculated and tabulated for use by designers.5

In particular, edge effects in practical diffused junctions can result in breakdown voltages as
much as 50 percent below the value calculated for a plane junction.

◼ EXAMPLE

An abrupt plane pn junction has doping densities NA = 5 × 1015 atoms/cm3 and ND = 1016

atoms/cm3. Calculate the breakdown voltage if ℰcrit = 3 × 105 V/cm.
The breakdown voltage is calculated using ℰmax = ℰcrit in (1.24) to give

BV =
𝜖 (NA + ND)

2qNAND
ℰ2

crit

= 1.04 × 10−12 × 15 × 1015

2 × 1.6 × 10−19 × 5 × 1015 × 1016
× 9 × 1010 V

= 88 V◼
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1.3 Large-Signal Behavior of Bipolar Transistors
In this section, the large-signal or dc behavior of bipolar transistors is considered. Large-signal
models are developed for the calculation of total currents and voltages in transistor circuits,
and effects such as breakdown voltage limitations, which are usually not included in models,
are also considered. Second-order effects, such as current-gain variation with collector current
and Early voltage, can be important in many circuits and are treated in detail.

The sign conventions used for bipolar transistor currents and voltages are shown in Fig. 1.5.
All bias currents for both npn and pnp transistors are assumed positive going into the device.

1.3.1 Large-Signal Models in the Forward-Active Region

A typical npn planar bipolar transistor structure is shown in Fig. 1.6a, where collector, base,
and emitter are labeled C, B, and E, respectively. The method of fabricating such transistor
structures is described in Chapter 2. It is shown there that the impurity doping density in the
base and the emitter of such a transistor is not constant but varies with distance from the top
surface. However, many of the characteristics of such a device can be predicted by analyzing
the idealized transistor structure shown in Fig. 1.6b. In this structure, the base and emitter
doping densities are assumed constant, and this is sometimes called a uniform-base transis-
tor. Where possible in the following analyses, the equations for the uniform-base analysis are
expressed in a form that also applies to nonuniform-base transistors.

A cross section AA′ is taken through the device of Fig. 1.6b, and carrier concentrations
along this section are plotted in Fig. 1.6c. Hole concentrations are denoted by p and electron
concentrations by n, with subscript p or n representing a p-type or n-type region. The n-type
emitter and collector regions are distinguished by subscripts E and C, respectively. The carrier
concentrations shown in Fig. 1.6c apply to a device in the forward-active region. That is,
the base-emitter junction is forward biased and the base-collector junction is reverse biased.
The minority-carrier concentrations in the base at the edges of the depletion regions can be
calculated from a Boltzmann approximation to the Fermi-Dirac distribution function to give6

np(0) = npo exp
VBE

VT
(1.27)

np(WB) = npo exp
VBC

VT
≃ 0 (1.28)

where WB is the width of the base from the base-emitter depletion layer edge to the
base-collector depletion layer edge and npo is the equilibrium concentration of electrons in
the base. Note that VBC is negative for an npn transistor in the forward-active region, and thus
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Figure 1.5 Bipolar transistor sign
convention.
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Figure 1.6 (a) Cross section of a typical npn planar bipolar transistor structure. (b) Idealized transistor
structure. (c) Carrier concentrations along the cross section AA′ of the transistor in (b). Uniform doping
densities are assumed. (Not to scale.)

np(WB) is very small. Low-level injection conditions are assumed in the derivation of (1.27)
and (1.28). This means that the minority-carrier concentrations are always assumed much
smaller than the majority-carrier concentration.

If recombination of holes and electrons in the base is small, it can be shown that7 the
minority-carrier concentration np(x) in the base varies linearly with distance. Thus a straight
line can be drawn joining the concentrations at x = 0 and x = WB in Fig. 1.6c.

For charge neutrality in the base, it is necessary that

NA + np(x) = pp(x) (1.29)

and thus
pp(x) − np(x) = NA (1.30)
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where pp(x) is the hole concentration in the base and NA is the base doping density that
is assumed constant. Equation 1.30 indicates that the hole and electron concentrations are
separated by a constant amount, and thus pp(x) also varies linearly with distance.

Collector current is produced by minority-carrier electrons in the base diffusing in the direc-
tion of the concentration gradient and being swept across the collector-base depletion region
by the field existing there. The diffusion current density due to electrons in the base is

Jn = qDn

dnp(x)
dx

(1.31)

where Dn is the diffusion constant for electrons. From Fig. 1.6c,

Jn = −qDn

np(0)
WB

(1.32)

If IC is the collector current and is taken as positive flowing into the collector, it follows from
(1.32) that

IC = qADn

np(0)
WB

(1.33)

where A is the cross-sectional area of the emitter. Substitution of (1.27) into (1.33) gives

IC =
qADnnpo

WB
exp

VBE

VT
(1.34)

= IS exp
VBE

VT
(1.35)

where

IS =
qADnnpo

WB
(1.36)

and IS is a constant used to describe the transfer characteristic of the transistor in the
forward-active region. Equation 1.36 can be expressed in terms of the base doping density by
noting that8 (see Chapter 2)

npo =
n2

i

NA
(1.37)

and substitution of (1.37) in (1.36) gives

IS =
qADnn2

i

WBNA
=

qADnn2
i

QB
(1.38)

where QB = WBNA is the number of doping atoms in the base per unit area of the emitter and ni
is the intrinsic carrier concentration in silicon. In this form, (1.38) applies to both uniform- and
nonuniform-base transistors, and Dn has been replaced by Dn, which is an average effective
value for the electron diffusion constant in the base. This is necessary for nonuniform-base
devices because the diffusion constant is a function of impurity concentration. Typical values
of IS as given by (1.38) are from 10−14 to 10−16 A.

Equation 1.35 gives the collector current as a function of base-emitter voltage. The base
current IB is also an important parameter and, at moderate current levels, consists of two
major components. One of these (IB1) represents recombination of holes and electrons in the
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base and is proportional to the minority-carrier charge Qe in the base. From Fig. 1.6c, the
minority-carrier charge in the base is

Qe =
1
2

np(0)WBqA (1.39)

and we have

IB1 =
Qe

𝜏b
= 1

2

np(0)WBqA

𝜏b
(1.40)

where 𝜏b is the minority-carrier lifetime in the base. IB1 represents a flow of majority holes
from the base lead into the base region. Substitution of (1.27) in (1.40) gives

IB1 = 1
2

npoWBqA

𝜏b
exp

VBE

VT
(1.41)

The second major component of base current (usually the dominant one in integrated-circuit
npn devices) is due to injection of holes from the base into the emitter. This current component
depends on the gradient of minority-carrier holes in the emitter and is9

IB2 =
qADp

Lp
pnE(0) (1.42)

where Dp is the diffusion constant for holes and Lp is the diffusion length (assumed small)
for holes in the emitter. pnE(0) is the concentration of holes in the emitter at the edge of the
depletion region and is

pnE(0) = pnEo exp
VBE

VT
(1.43)

If ND is the donor atom concentration in the emitter (assumed constant), then

pnEo ≃
n2

i

ND
(1.44)

The emitter is deliberately doped much more heavily than the base, making ND large and pnEo
small, so that the base-current component, IB2, is minimized.

Substitution of (1.43) and (1.44) in (1.42) gives

IB2 =
qADp

Lp

n2
i

ND
exp

VBE

VT
(1.45)

The total base current, IB, is the sum of IB1 and IB2:

IB = IB1 + IB2 =

(
1
2

npoWBqA

𝜏b
+

qADp

Lp

n2
i

ND

)
exp

VBE

VT
(1.46)

Although this equation was derived assuming uniform base and emitter doping, it gives
the correct functional dependence of IB on device parameters for practical double-diffused
nonuniform-base devices. Second-order components of IB, which are important at low current
levels, are considered later.



1.3 Large-Signal Behavior of Bipolar Transistors 13

Since IC in (1.35) and IB in (1.46) are both proportional to exp(VBE∕VT ) in this analysis,
the base current can be expressed in terms of collector current as

IB =
IC

𝛽F
(1.47)

where 𝛽F is the forward current gain. An expression for 𝛽F can be calculated by substituting
(1.34) and (1.46) in (1.47) to give

𝛽F =

qADnnpo

WB

1
2

npoWBqA

𝜏b
+

qADpn2
i

LpND

= 1

W2
B

2𝜏bDn
+

Dp

Dn

WB

Lp

NA

ND

(1.48)

where (1.37) has been substituted for npo. Equation 1.48 shows that 𝛽F is maximized by
minimizing the base width WB and maximizing the ratio of emitter to base doping densities
ND∕NA. Typical values of 𝛽F for npn transistors in integrated circuits are 50 to 500, whereas
lateral pnp transistors (to be described in Chapter 2) have values 10 to 100. Finally, the emitter
current is

IE = −(IC + IB) = −
(

IC +
IC

𝛽F

)
= −

IC

𝛼F
(1.49)

where

𝛼F =
𝛽F

1 + 𝛽F
(1.50)

The value of 𝛼F can be expressed in terms of device parameters by substituting (1.48) in
(1.50) to obtain

𝛼F = 1

1 + 1
𝛽F

= 1

1 +
W2

B

2𝜏bDn
+

Dp

Dn

WB

Lp

NA

ND

≃ 𝛼T𝛾 (1.51)

where
𝛼T = 1

1 +
W2

B

2𝜏bDn

(1.51a)

𝛾 = 1

1 +
Dp

Dn

WB

Lp

NA

ND

(1.51b)

The validity of (1.51) depends on W2
B∕2𝜏bDn ≪ 1 and (Dp∕Dn)(WB∕Lp)(NA∕ND) ≪ 1, and

this is always true if 𝛽F is large [see (1.48)]. The term 𝛾 in (1.51) is called the emitter injection
efficiency and is equal to the ratio of the electron current (npn transistor) injected into the
base from the emitter to the total hole and electron current crossing the base-emitter junction.
Ideally 𝛾 → 1, and this is achieved by making ND∕NA large and WB small. In that case, very
little reverse injection occurs from base to emitter.

The term 𝛼T in (1.51) is called the base transport factor and represents the fraction of
carriers injected into the base (from the emitter) that reach the collector. Ideally 𝛼T → 1, and
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this is achieved by making WB small. It is evident from the above development that fabrication
changes that cause 𝛼T and 𝛾 to approach unity also maximize the value of 𝛽F of the transistor.

The results derived above allow formulation of a large-signal model of the transistor suit-
able for bias-circuit calculations with devices in the forward-active region. One such circuit
is shown in Fig. 1.7 and consists of a base-emitter diode to model (1.46) and a controlled
collector-current generator to model (1.47). Note that the collector voltage ideally has no influ-
ence on the collector current, and the collector node acts as a high-impedance current source.
A simpler version of this equivalent circuit, which is often useful, is shown in Fig. 1.7b, where
the input diode has been replaced by a battery with a value VBE(on), which is usually 0.6 to
0.7 V. This represents the fact that in the forward-active region, the base-emitter voltage varies
very little because of the steep slope of the exponential characteristic. In some circuits, the
temperature coefficient of VBE(on) is important, and a typical value for this is −2 mV/∘C. The
equivalent circuits of Fig. 1.7 apply for npn transistors. For pnp devices, the corresponding
equivalent circuits are shown in Fig. 1.8.

1.3.2 Effects of Collector Voltage on Large-Signal Characteristics in
the Forward-Active Region

In the analysis of the previous section, the collector-base junction was assumed reverse
biased and ideally had no effect on the collector currents. This is a useful approximation
for first-order calculations but is not strictly true in practice. There are occasions when
the influence of collector voltage on collector current is important, and this will now be
investigated.

The collector voltage has a dramatic effect on the collector current in two regions of device
operation. These are the saturation (VCE approaches zero) and breakdown (VCE very large)
regions that will be considered later. For values of collector-emitter voltage VCE between these
extremes, the collector current increases slowly as VCE increases. The reason for this can be
seen from Fig. 1.9, which is a sketch of the minority-carrier concentration in the base of the
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transistor. Consider the effect of changes in VCE on the carrier concentration for constant VBE.
Since VBE is constant, the change in VCB equals the change in VCE, and this causes an increase
in the collector-base depletion-layer width as shown. The change in the base width of the
transistor, ΔWB, equals the change in the depletion-layer width and causes an increase ΔIC in
the collector current.

From (1.35) and (1.38), we have

IC =
qADnn2

i

QB
exp

VBE

VT
(1.52)

Differentiation of (1.52) yields

𝜕IC

𝜕VCE
= −

qADnn2
i

Q2
B

(
exp

VBE

VT

)
dQB

dVCE
(1.53)

and substitution of (1.52) in (1.53) gives

𝜕IC

𝜕VCE
= −

IC

QB

dQB

dVCE
(1.54)

For a uniform-base transistor, QB = WBNA, and (1.54) becomes

𝜕IC

𝜕VCE
= −

IC

WB

dWB

dVCE
(1.55)

Note that since the base width decreases as VCE increases, dWB∕dVCE in (1.55) is negative and
thus 𝜕IC∕𝜕VCE is positive. The magnitude of dWB∕dVCE can be calculated from (1.18) for a
uniform-base transistor. This equation predicts that dWB∕dVCE is a function of the bias value
of VCE, but the variation is typically small for a reverse-biased junction, and dWB∕dVCE is
often assumed constant. The resulting predictions agree adequately with experimental results.

Equation 1.55 shows that 𝜕IC∕𝜕VCE is proportional to the collector-bias current and
inversely proportional to the transistor base width. Thus narrow-base transistors show a
greater dependence of IC on VCE in the forward-active region. The dependence of 𝜕IC∕𝜕VCE
on IC results in typical transistor output characteristics as shown in Fig. 1.10. In accordance
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Figure 1.10 Bipolar transistor output characteristics showing the Early voltage, VA.

with the assumptions made in the foregoing analysis, these characteristics are shown for
constant values of VBE. However, in most integrated-circuit transistors, the base current is
dependent only on VBE and not on VCE, and thus constant-base-current characteristics can
often be used in the following calculation. The reason for this is that the base current is usually
dominated by the IB2 component of (1.45), which has no dependence on VCE. Extrapolation
of the characteristics of Fig. 1.10 back to the VCE axis gives an intercept VA called the Early
voltage, where

VA =
IC

𝜕IC

𝜕VCE

(1.56)

Substitution of (1.55) in (1.56) gives

VA = −WB
dVCE

dWB
(1.57)

which is a constant, independent of IC. Thus all the characteristics extrapolate to the same
point on the VCE axis. The variation of IC with VCE is called the Early effect, and VA is
a common model parameter for circuit-analysis computer programs. Typical values of VA
for integrated-circuit transistors are 15 to 100 V. The inclusion of Early effect in dc bias
calculations is usually limited to computer analysis because of the complexity introduced into
the calculation. However, the influence of the Early effect is often dominant in small-signal
calculations for high-gain circuits, and this point will be considered later.

Finally, the influence of the Early effect on the transistor large-signal characteristics in the
forward-active region can be represented approximately by modifying (1.35) to

IC = IS

(
1 +

VCE

VA

)
exp

VBE

VT
(1.58)

This is a common means of representing the device output characteristics for computer
simulation.

1.3.3 Saturation and Inverse-Active Regions

Saturation is a region of device operation that is usually avoided in analog circuits because the
transistor gain is very low in this region. Saturation is much more commonly encountered in
digital circuits, where it provides a well-specified output voltage that represents a logic state.
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In saturation, both emitter-base and collector-base junctions are forward biased. Conse-
quently, the collector-emitter voltage VCE is quite small and is usually in the range 0.05 to
0.3 V. The carrier concentrations in a saturated npn transistor with uniform base doping are
shown in Fig. 1.11. The minority-carrier concentration in the base at the edge of the depletion
region is again given by (1.28) as

np(WB) = npo exp
VBC

VT
(1.59)

but since VBC is now positive, the value of np(WB) is no longer negligible. Consequently,
changes in VCE with VBE held constant (which cause equal changes in VBC) directly affect
np(WB). Since the collector current is proportional to the slope of the minority-carrier con-
centration in the base [see (1.31)], it is also proportional to [np(0) − np(WB)] from Fig. 1.11.
Thus changes in np(WB) directly affect the collector current, and the collector node of the
transistor appears to have a low impedance. As VCE is decreased in saturation with VBE held
constant, VBC increases, as does np(WB) from (1.59). Thus, from Fig. 1.11, the collector cur-
rent decreases because the slope of the carrier concentration decreases. This gives rise to the
saturation region of the IC-VCE characteristic shown in Fig. 1.12. The slope of the IC-VCE char-
acteristic in this region is largely determined by the resistance in series with the collector lead
due to the finite resistivity of the n-type collector material. A useful model for the transistor
in this region is shown in Fig. 1.13 and consists of a fixed voltage source to represent VBE(on)
and a fixed voltage source to represent the collector-emitter voltage VCE(sat). A more accurate
but more complex model includes a resistor in series with the collector. This resistor can have
a value ranging from 20 to 500 Ω, depending on the device structure.

An additional aspect of transistor behavior in the saturation region is apparent from
Fig. 1.11. For a given collector current, there is now a much larger amount of stored charge
in the base than there is in the forward-active region. Thus the base-current contribution
represented by (1.41) will be larger in saturation. In addition, since the collector-base junction
is now forward biased, there is a new base-current component due to injection of carriers
from the base to the collector. These two effects result in a base current IB in saturation,
which is larger than in the forward-active region for a given collector current IC. Ratio IC∕IB
in saturation is often referred to as the forced 𝛽 and is always less than 𝛽F. As the forced 𝛽 is
made lower with respect to 𝛽F, the device is said to be more heavily saturated.

The minority-carrier concentration in saturation shown in Fig. 1.11 is a straight line join-
ing the two end points, assuming that recombination is small. This can be represented as a
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Figure 1.11 Carrier concentrations in a saturated npn transistor. (Not to scale.)
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Figure 1.13 Large-signal models for bipolar transistors in the saturation region.

linear superposition of the two dotted distributions as shown. The justification for this is that
the terminal currents depend linearly on the concentrations np(0) and np(WB). This picture of
device carrier concentrations can be used to derive some general equations describing tran-
sistor behavior. Each of the distributions in Fig. 1.11 is considered separately, and the two
contributions are combined. The emitter current that would result from np1(x) above is given
by the classical diode equation

IEF = −IES

(
exp

VBE

VT
− 1

)
(1.60)

where IES is a constant that is often referred to as the saturation current of the junction (no
connection with the transistor saturation previously described). Equation 1.60 predicts that
the junction current is given by IEF ≃ IES with a reverse-bias voltage applied. However, in
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practice, (1.60) is applicable only in the forward-bias region, since second-order effects dom-
inate under reverse-bias conditions and typically result in a junction current several orders
of magnitude larger than IES. The junction current that flows under reverse-bias conditions is
often called the leakage current of the junction.

Returning to Fig. 1.11, we can describe the collector current resulting from np2(x) alone as

ICR = −ICS

(
exp

VBC

VT
− 1

)
(1.61)

where ICS is a constant. The total collector current IC is given by ICR plus the fraction of IEF
that reaches the collector (allowing for recombination and reverse emitter injection). Thus

IC = 𝛼FIES

(
exp

VBE

VT
− 1

)
− ICS

(
exp

VBC

VT
− 1

)
(1.62)

where 𝛼F has been defined previously by (1.51). Similarly, the total emitter current is composed
of IEF plus the fraction of ICR that reaches the emitter with the transistor acting in an inverted
mode. Thus

IE = −IES

(
exp

VBE

VT
− 1

)
+ 𝛼RICS

(
exp

VBC

VT
− 1

)
(1.63)

where 𝛼R is the ratio of emitter to collector current with the transistor operating inverted (i.e.,
with the collector-base junction forward biased and emitting carriers into the base and the
emitter-base junction reverse biased and collecting carriers). Typical values of 𝛼R are 0.5 to
0.8. An inverse current gain 𝛽R is also defined

𝛽R =
𝛼R

1 − 𝛼R
(1.64)

and has typical values 1 to 5. This is the current gain of the transistor when operated inverted
and is much lower than 𝛽F because the device geometry and doping densities are designed to
maximize 𝛽F. The inverse-active region of device operation occurs for VCE negative in an npn
transistor and is shown in Fig. 1.12. In order to display these characteristics adequately in the
same figure as the forward-active region, the negative voltage and current scales have been
expanded. The inverse-active mode of operation is rarely encountered in analog circuits.

Equations 1.62 and 1.63 describe npn transistor operation in the saturation region when
VBE and VBC are both positive, and also in the forward-active and inverse-active regions. These
equations are the Ebers-Moll equations. In the forward-active region, they degenerate into a
form similar to that of (1.35), (1.47), and (1.49) derived earlier. This can be shown by putting
VBE positive and VBC negative in (1.62) and (1.63) to obtain

IC = 𝛼FIES

(
exp

VBE

VT
− 1

)
+ ICS (1.65)

IE = −IES

(
exp

VBE

VT
− 1

)
− 𝛼RICS (1.66)

Equation 1.65 is similar in form to (1.35) except that leakage currents that were previously
neglected have now been included. This minor difference is significant only at high temper-
atures or very low operating currents. Comparison of (1.65) with (1.35) allows us to identify
IS = 𝛼FIES, and it can be shown10 in general that

𝛼FIES = 𝛼RICS = IS (1.67)
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where this expression represents a reciprocity condition. Use of (1.67) in (1.62) and (1.63)
allows the Ebers-Moll equations to be expressed in the general form

IC = IS

(
exp

VBE

VT
− 1

)
−

IS

𝛼R

(
exp

VBC

VT
− 1

)
(1.62a)

IE = −
IS

𝛼F

(
exp

VBE

VT
− 1

)
+ IS

(
exp

VBC

VT
− 1

)
(1.63a)

This form is often used for computer representation of transistor large-signal behavior.
The effect of leakage currents mentioned above can be further illustrated as follows. In the

forward-active region, from (1.66),

IES

(
exp

VBE

VT
− 1

)
= −IE − 𝛼RICS (1.68)

Substitution of (1.68) in (1.65) gives

IC = −𝛼FIE + ICO (1.69)

where
ICO = ICS(1 − 𝛼R𝛼F) (1.69a)

and ICO is the collector-base leakage current with the emitter open. Although ICO is given
theoretically by (1.69a), in practice, surface leakage effects dominate when the collector-base
junction is reverse biased, and ICO is typically several orders of magnitude larger than the
value given by (1.69a). However, (1.69) is still valid if the appropriate measured value for ICO
is used. Typical values of ICO are from 10−10 to 10−12 A at 25∘C, and the magnitude doubles
about every 8∘C. As a consequence, these leakage terms can become very significant at high
temperatures. For example, consider the base current IB. From Fig. 1.5, this is

IB = −(IC + IE) (1.70)

If IE is calculated from (1.69) and substituted in (1.70), the result is

IB =
1 − 𝛼F

𝛼F
IC −

ICO

𝛼F
(1.71)

But from (1.50),
𝛽F =

𝛼F

1 − 𝛼F
(1.72)

and use of (1.72) in (1.71) gives

IB =
IC

𝛽F
−

ICO

𝛼F
(1.73)

Since the two terms in (1.73) have opposite signs, the effect of ICO is to decrease the magnitude
of the external base current at a given value of collector current.

◼ EXAMPLE

If ICO is 10−10 A at 24∘C, estimate its value at 120∘C.
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Assuming that ICO doubles every 8∘C, we have

ICO(120∘C) = 10−10 × 212

= 0.4μA◼

1.3.4 Transistor Breakdown Voltages

In Section 1.2.2, the mechanism of avalanche breakdown in a pn junction was described.
Similar effects occur at the base-emitter and base-collector junctions of a transistor, and these
effects limit the maximum voltages that can be applied to the device.

First consider a transistor in the common-base configuration shown in Fig. 1.14a and
supplied with a constant emitter current. Typical IC-VCB characteristics for an npn transistor
in such a connection are shown in Fig. 1.14b. For IE = 0, the collector-base junction breaks
down at a voltage BVCBO, which represents collector-base breakdown with the emitter open.
For finite values of IE, the effects of avalanche multiplication are apparent for values of VCB
below BVCBO. In the example shown, the effective common-base current gain 𝛼F = IC∕IE
becomes larger than unity for values of VCB above about 60 V. Operation in this region (but
below BVCBO) can, however, be safely undertaken if the device power dissipation is not
excessive. The considerations of Section 1.2.2 apply to this situation, and neglecting leakage
currents, we can calculate the collector current in Fig. 1.14a as

IC = −𝛼FIEM (1.74)

where M is defined by (1.26) and thus

IC = −𝛼FIE
1

1 −
(

VCB

BVCBO

)n (1.75)

One further point to note about the common-base characteristics of Fig. 1.14b is that for
low values of VCB where avalanche effects are negligible, the curves show very little of the
Early effect seen in the common-emitter characteristics. Base widening still occurs in this
configuration as VCB is increased, but unlike the common-emitter connection, it produces
little change in IC. This is because IE is now fixed instead of VBE or IB, and in Fig. 1.9, this
means the slope of the minority-carrier concentration at the emitter edge of the base is fixed.
Thus the collector current remains almost unchanged.

Now consider the effect of avalanche breakdown on the common-emitter characteristics of
the device. Typical characteristics are shown in Fig. 1.12, and breakdown occurs at a value
BVCEO, which is sometimes called the sustaining voltage LVCEO. As in previous cases, oper-
ation near the breakdown voltage is destructive to the device only if the current (and thus the
power dissipation) becomes excessive.

The effects of avalanche breakdown on the common-emitter characteristics are more com-
plex than in the common-base configuration. This is because hole-electron pairs are produced
by the avalanche process and the holes are swept into the base, where they effectively con-
tribute to the base current. In a sense, the avalanche current is then amplified by the transistor.
The base current is still given by

IB = −(IC + IE) (1.76)

Equation 1.74 still holds, and substitution of this in (1.76) gives

IC =
M𝛼F

1 − M𝛼F
IB (1.77)
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where
M = 1

1 −
(

VCB

BVCBO

)n (1.78)

Equation 1.77 shows that IC approaches infinity as M𝛼F approaches unity. That is, the
effective 𝛽 approaches infinity because of the additional base-current contribution from the
avalanche process itself. The value of BVCEO can be determined by solving

M𝛼F = 1 (1.79)

If we assume that VCB ≃ VCE, this gives

𝛼F

1 −
(

BVCEO

BVCBO

)n = 1 (1.80)

and this results in
BVCEO

BVCBO
= n

√
1 − 𝛼F

and thus

BVCEO ≃
BVCBO

n
√
𝛽F

(1.81)

Equation 1.81 shows that BVCEO is less than BVCBO by a substantial factor. However, the value
of BVCBO, which must be used in (1.81), is the plane junction breakdown of the collector-base
junction, neglecting any edge effects. This is because it is only collector-base avalanche current
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actually under the emitter that is amplified as described in the previous calculation. However,
as explained in Section 1.2.2, the measured value of BVCBO is usually determined by avalanche
in the curved region of the collector, which is remote from the active base. Consequently, for
typical values of 𝛽F = 100 and n = 4, the value of BVCEO is about one-half of the measured
BVCBO and not 30 percent as (1.81) would indicate.

Equation 1.81 explains the shape of the breakdown characteristics of Fig. 1.12 if the depen-
dence of 𝛽F on collector current is included. As VCE is increased from zero with IB = 0, the
initial collector current is approximately 𝛽FICO from (1.73); since ICO is typically several
picoamperes, the collector current is very small. As explained in the next section, 𝛽F is small
at low currents, and thus from (1.81) the breakdown voltage is high. However, as avalanche
breakdown begins in the device, the value of IC increases and thus 𝛽F increases. From (1.81)
this causes a decrease in the breakdown voltage and the characteristic bends back as shown in
Fig. 1.12 and exhibits a negative slope. At higher collector currents, 𝛽F approaches a constant
value and the breakdown curve with IB = 0 becomes perpendicular to the VCE axis. The value
of VCE in this region of the curve is usually defined to be BVCEO, since this is the maximum
voltage the device can sustain. The value of 𝛽F to be used to calculate BVCEO in (1.81) is thus
the peak value of 𝛽F. Note from (1.81) that high-𝛽 transistors will thus have low values of
BVCEO.

The base-emitter junction of a transistor is also subject to avalanche breakdown. However,
the doping density in the emitter is made very large to ensure a high value of 𝛽F [ND is made
large in (1.45) to reduce IB2]. Thus the base is the more lightly doped side of the junction
and determines the breakdown characteristic. This can be contrasted with the collector-base
junction, where the collector is the more lightly doped side and results in typical values of
BVCBO of 20 to 80 V or more. The base is typically an order of magnitude more heavily doped
than the collector, and thus the base-emitter breakdown voltage is much less than BVCBO and is
typically about 6 to 8 V. This is designated BVEBO. The breakdown voltage for inverse-active
operation shown in Fig. 1.12 is approximately equal to this value because the base-emitter
junction is reverse biased in this mode of operation.

The base-emitter breakdown voltage of 6 to 8 V provides a convenient reference voltage
in integrated-circuit design, and this is often utilized in the form of a Zener diode. However,
care must be taken to ensure that all other transistors in a circuit are protected against reverse
base-emitter voltages sufficient to cause breakdown. This is because, unlike collector-base
breakdown, base-emitter breakdown is damaging to the device. It can cause a large degrada-
tion in 𝛽F, depending on the duration of the breakdown-current flow and its magnitude.11 If
the device is used purely as a Zener diode, this is of no consequence, but if the device is an
amplifying transistor, the 𝛽F degradation may be serious.

◼ EXAMPLE

If the collector doping density in a transistor is 2 × 1015 atoms/cm3 and is much less than the
base doping, calculate BVCEO for 𝛽 = 100 and n = 4. Assume ℰcrit = 3 × 105 V/cm.

The plane breakdown voltage in the collector can be calculated from (1.24) using
ℰmax = ℰcrit:

BVCBO =
𝜖(NA + ND)

2qNAND
ℰ2

crit

Since ND ≪ NA, we have

BVCBO|plane =
𝜖

2qND
ℰ2

crit =
1.04 × 10−12

2 × 1.6 × 10−19 × 2 × 1015
× 9 × 1010 V = 146 V
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From (1.81),

BVCEO = 146
4
√

100
V = 46 V

◼

1.3.5 Dependence of Transistor Current Gain 𝛽F on Operating Conditions

Although most first-order analyses of integrated circuits make the assumption that 𝛽F is con-
stant, this parameter does in fact depend on the operating conditions of the transistor. It was
shown in Section 1.3.2, for example, that increasing the value of VCE increases IC while pro-
ducing little change in IB, and thus the effective 𝛽F of the transistor increases. In Section 1.3.4
it was shown that as VCE approaches the breakdown voltage, BVCEO, the collector current
increases due to avalanche multiplication in the collector. Equation 1.77 shows that the effec-
tive current gain approaches infinity as VCE approaches BVCEO.

In addition to the effects just described, 𝛽F also varies with both temperature and tran-
sistor collector current. This is illustrated in Fig. 1.15, which shows typical curves of 𝛽F
versus IC at three different temperatures for an npn integrated circuit transistor. It is evi-
dent that 𝛽F increases as temperature increases, and a typical temperature coefficient for 𝛽F
is +7000 ppm/∘C (where ppm signifies parts per million). This temperature dependence of 𝛽F
is due to the effect of the extremely high doping density in the emitter,12 which causes the
emitter injection efficiency 𝛾 to increase with temperature.

The variation of 𝛽F with collector current, which is apparent in Fig. 1.15, can be divided into
three regions. Region I is the low-current region, where 𝛽F decreases as IC decreases. Region II
is the midcurrent region, where 𝛽F is approximately constant. Region III is the high-current
region, where 𝛽F decreases as IC increases. The reasons for this behavior of 𝛽F with IC can
be better appreciated by plotting base current IB and collector current IC on a log scale as a
function of VBE. This is shown in Fig. 1.16, and because of the log scale on the vertical axis,
the value of ln 𝛽F can be obtained directly as the distance between the two curves.

At moderate current levels represented by region II in Figs. 1.15 and 1.16, both IC and IB
follow the ideal behavior, and

IC = IS exp
VBE

VT
(1.82)

IB ≃
IS

𝛽FM
exp

VBE

VT
(1.83)

where 𝛽FM is the maximum value of 𝛽F and is given by (1.48).
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Figure 1.15 Typical curves of 𝛽F

versus IC for an npn integrated-circuit
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Figure 1.16 Base and
collector currents of a bipolar
transistor plotted on a log
scale versus VBE on a linear
scale. The distance between
the curves is a direct measure
of ln 𝛽F .

At low current levels, IC still follows the ideal relationship of (1.82), and the decrease in
𝛽F is due to an additional component in IB, which is mainly due to recombination of carriers
in the base-emitter depletion region and is present at any current level. However, at higher
current levels, the base current given by (1.83) dominates, and this additional component has
little effect. The base current resulting from recombination in the depletion region is5

IBX ≃ ISX exp
VBE

mVT
(1.84)

where
m ≃ 2

At very low collector currents, where (1.84) dominates the base current, the current gain can
be calculated from (1.82) and (1.84) as

𝛽FL ≃
IC

IBX
=

IS

ISX
exp

VBE

VT

(
1 − 1

m

)
(1.85)

Substitution of (1.82) in (1.85) gives

𝛽FL ≃
IS

ISX

(
IC

IS

)[1−(1∕m)]
(1.86)

If m ≃ 2, then (1.86) indicates that 𝛽F is proportional to
√

IC at very low collector currents.
At high current levels, the base current IB tends to follow the relationship of (1.83), and

the decrease in 𝛽F in region III is due mainly to a decrease in IC below the value given by
(1.82). (In practice, the measured curve of IB versus VBE in Fig. 1.16 may also deviate from a
straight line at high currents due to the influence of voltage drop across the base resistance.)
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The decrease in IC is due partly to the effect of high-level injection, and at high current levels
the collector current approaches7

IC ≃ ISH exp
VBE

2VT
(1.87)

The current gain in this region can be calculated from (1.87) and (1.83) as

𝛽FH ≃
ISH

IS
𝛽FM exp

(
−

VBE

2VT

)
(1.88)

Substitution of (1.87) in (1.88) gives

𝛽FH ≃
I2
SH

IS
𝛽FM

1
IC

Thus 𝛽F decreases rapidly at high collector currents.
In addition to the effect of high-level injection, the value of 𝛽F at high currents is also

decreased by the onset of the Kirk effect,13 which occurs when the minority-carrier concentra-
tion in the collector becomes comparable to the donor-atom doping density. The base region
of the transistor then stretches out into the collector and becomes greatly enlarged.

1.4 Small-Signal Models of Bipolar Transistors
Analog circuits often operate with signal levels that are small compared to the bias currents
and voltages in the circuit. In these circumstances, incremental or small-signal models can be
derived that allow calculation of circuit gain and terminal impedances without the necessity
of including the bias quantities. A hierarchy of models with increasing complexity can be
derived, and the more complex ones are generally reserved for computer analysis. Part of the
designer’s skill is knowing which elements of the model can be omitted when performing hand
calculations on a particular circuit, and this point is taken up again later.

Consider the bipolar transistor in Fig. 1.17a with bias voltages VBE and VCC applied as
shown. These produce a quiescent collector current, IC, and a quiescent base current, IB,
and the device is in the forward-active region. A small-signal input voltage vi is applied in
series with VBE and produces a small variation in base current ib and a small variation in
collector current ic. Total values of base and collector currents are Ib and Ic, respectively,
and thus Ib = (IB + ib) and Ic = (IC + ic). The carrier concentrations in the base of the
transistor corresponding to the situation in Fig. 1.17a are shown in Fig. 1.17b. With only bias
voltages applied, the carrier concentrations are given by the solid lines. Application of the
small-signal voltage vi causes np(0) at the emitter edge of the base to increase and produces
the concentrations shown by the dotted lines. These pictures can now be used to derive the
various elements in the small-signal equivalent circuit of the bipolar transistor.

1.4.1 Transconductance

The transconductance is defined as

gm =
dIC

dVBE
(1.89)
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Figure 1.17 Effect of a small-signal input voltage applied to a bipolar transistor. (a) Circuit schematic.
(b) Corresponding changes in carrier concentrations in the base when the device is in the forward-active
region.

Since

ΔIC =
dIC

dVBE
ΔVBE

we can write
ΔIC = gmΔVBE

and thus
ic = gmvi (1.90)

The value of gm can be found by substituting (1.35) in (1.89) to give

gm = d
dVBE

IS exp
VBE

VT
=

IS

VT
exp

VBE

VT
=

IC

VT
=

qIC

kT
(1.91)

The transconductance thus depends linearly on the bias current IC and is 38 mA/V for
IC = 1 mA at 25∘C for any bipolar transistor of either polarity (npn or pnp), of any size, and
made of any material (Si, Ge, GaAs).

To illustrate the limitations on the use of small-signal analysis, the foregoing relation will
be derived in an alternative way. The total collector current in Fig. 1.17a can be calculated
using (1.35) as

Ic = IS exp
VBE + vi

VT
= IS exp

VBE

VT
exp

vi

VT
(1.92)
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But the collector bias current is

IC = IS exp
VBE

VT
(1.93)

and use of (1.93) in (1.92) gives

Ic = IC exp
vi

VT
(1.94)

If vi < VT , the exponential in (1.94) can be expanded in a power series,

Ic = IC

[
1 +

vi

VT
+ 1

2

(
vi

VT

)2

+ 1
6

(
vi

VT

)3

+ …

]
(1.95)

Now the incremental collector current is

ic = Ic − IC (1.96)

and substitution of (1.96) in (1.95) gives

ic =
IC

VT
vi +

1
2

IC

V2
T

v2
i +

1
6

IC

V3
T

v3
i + … (1.97)

If vi ≪ VT , (1.97) reduces to (1.90), and the small-signal analysis is valid. The criterion for
use of small-signal analysis is thus vi = ΔVBE ≪ 26 mV at 25∘C. In practice, if ΔVBE is less
than 10 mV, the small-signal analysis is accurate within about 10 percent.

1.4.2 Base-Charging Capacitance

Figure 1.17b shows that the change in base-emitter voltage ΔVBE = vi has caused a change
ΔQe = qe in the minority-carrier charge in the base. By charge-neutrality requirements, there
is an equal change ΔQh = qh in the majority-carrier charge in the base. Since majority carriers
are supplied by the base lead, the application of voltage vi requires the supply of charge qh to
the base, and the device has an apparent input capacitance

Cb =
qh

vi
(1.98)

The value of Cb can be related to fundamental device parameters as follows. If (1.39) is divided
by (1.33), we obtain

Qe

IC
=

W2
B

2Dn
= 𝜏F (1.99)

The quantity 𝜏F has the dimension of time and is called the base transit time in the forward
direction. Since it is the ratio of the charge in transit (Qe) to the current flow (IC), it can be iden-
tified as the average time per carrier spent in crossing the base. To a first order, it is independent
of operating conditions and has typical values 10 to 500 ps for integrated npn transistors and
1 to 40 ns for lateral pnp transistors. Practical values of 𝜏F tend to be somewhat lower than
predicted by (1.99) for diffused transistors that have nonuniform base doping.14 However, the
functional dependence on base width WB and diffusion constant Dn is as predicted by (1.99).

From (1.99)
ΔQe = 𝜏FΔIC (1.100)
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But since ΔQe = ΔQh, we have
ΔQh = 𝜏FΔIC (1.101)

and this can be written
qh = 𝜏Fic (1.102)

Use of (1.102) in (1.98) gives

Cb = 𝜏F
ic
vi

(1.103)

and substitution of (1.90) in (1.103) gives

Cb = 𝜏Fgm (1.104)

= 𝜏F
qIC

kT
(1.105)

Thus the small-signal, base-charging capacitance is proportional to the collector bias current.
In the inverse-active mode of operation, an equation similar to (1.99) relates stored charge

and current via a time constant 𝜏R. This is typically orders of magnitude larger than 𝜏F because
the device structure and doping are optimized for operation in the forward-active region. Since
the saturation region is a combination of forward-active and inverse-active operation, inclu-
sion of the parameter 𝜏R in a SPICE listing will model the large charge storage that occurs in
saturation.

1.4.3 Input Resistance

In the forward-active region, the base current is related to the collector current by

IB =
IC

𝛽F
(1.47)

Small changes in IB and IC can be related using (1.47):

ΔIB = d
dIC

(
IC

𝛽F

)
ΔIC (1.106)

and thus

𝛽0 =
ΔIC

ΔIB
=

ic
ib

=
[

d
dIC

(
IC

𝛽F

)]−1

(1.107)

where 𝛽0 is the small-signal current gain of the transistor. Note that if 𝛽F is constant, then
𝛽F = 𝛽0. Typical values of 𝛽0 are close to those of 𝛽F, and in subsequent chapters little differ-
entiation is made between these quantities. A single value of 𝛽 is often assumed for a transistor
and then used for both ac and dc calculations.

Equation 1.107 relates the change in base current ib to the corresponding change in collector
current ic, and the device has a small-signal input resistance given by

r𝜋 =
vi

ib
(1.108)
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Substitution of (1.107) in (1.108) gives

r𝜋 =
vi

ic
𝛽0 (1.109)

and use of (1.90) in (1.109) gives

r𝜋 =
𝛽0

gm
(1.110)

Thus the small-signal input shunt resistance of a bipolar transistor depends on the current gain
and is inversely proportional to IC.

1.4.4 Output Resistance

In Section 1.3.2, the effect of changes in collector-emitter voltage VCE on the large-signal
characteristics of the transistor was described. It follows from that treatment that small changes
ΔVCE in VCE produce corresponding changes ΔIC in IC, where

ΔIC =
𝜕IC

𝜕VCE
ΔVCE (1.111)

Substitution of (1.55) and (1.57) in (1.111) gives

ΔVCE

ΔIC
=

VA

IC
= ro (1.112)

where VA is the Early voltage and ro is the small-signal output resistance of the transistor.
Since typical values of VA are 50 to 100 V, corresponding values of ro are 50 to 100 kΩ for
IC = 1 mA. Note that ro is inversely proportional to IC, and thus ro can be related to gm, as are
many of the other small-signal parameters:

ro = 1
𝜂gm

(1.113)

where
𝜂 = kT

qVA
(1.114)

If VA = 100 V, then 𝜂 = 2.6 × 10−4 at 25∘C. Note that 1∕ro is the slope of the output char-
acteristics of Fig. 1.10.

1.4.5 Basic Small-Signal Model of the Bipolar Transistor

Combination of the above small-signal circuit elements yields the small-signal model of
the bipolar transistor shown in Fig. 1.18. This is valid for both npn and pnp devices in the
forward-active region and is called the hybrid-𝜋 model. Collector, base, and emitter nodes
are labeled C,B and E, respectively. The elements in this circuit are present in the equivalent
circuit of any bipolar transistor and are specified by relatively few parameters (𝛽, 𝜏F, 𝜂, IC).
Note that in the evaluation of the small-signal parameters for pnp transistors, the magnitude
only of IC is used. In the following sections, further elements are added to this model to
account for parasitics and second-order effects.
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Figure 1.18 Basic bipolar transistor
small-signal equivalent circuit.

1.4.6 Collector-Base Resistance

Consider the effect of variations in VCE on the minority charge in the base as illustrated in
Fig. 1.9. An increase in VCE causes an increase in the collector depletion-layer width and con-
sequent reduction of base width. This causes a reduction in the total minority-carrier charge
stored in the base and thus a reduction in base current IB due to a reduction in IB1 given by
(1.40). Since an increase ΔVCE in VCE causes a decrease ΔIB in IB, this effect can be modeled
by inclusion of a resistor r𝜇 from collector to base of the model of Fig. 1.18. If VBE is assumed
held constant, the value of this resistor can be determined as follows:

r𝜇 =
ΔVCE

ΔIB1
=

ΔVCE

ΔIC

ΔIC

ΔIB1
(1.115)

Substitution of (1.112) in (1.115) gives

r𝜇 = ro
ΔIC

ΔIB1
(1.116)

If the base current IB is composed entirely of component IB1, then (1.107) can be used in
(1.116) to give

r𝜇 = 𝛽0ro (1.117)

This is a lower limit for r𝜇. In practice, IB1 is typically less than 10 percent of IB [component
IB2 from (1.42) dominates] in integrated npn transistors, and since IB1 is very small, the change
ΔIB1 in IB1 for a given ΔVCE and ΔIC is also very small. Thus a typical value for r𝜇 is greater
than 10𝛽0ro. For lateral pnp transistors, recombination in the base is more significant, and r𝜇
is in the range 2𝛽0ro to 5𝛽0ro.

1.4.7 Parasitic Elements in the Small-Signal Model

The elements of the bipolar transistor small-signal equivalent circuit considered so far may be
considered basic in the sense that they arise directly from essential processes in the device.
However, technological limitations in the fabrication of transistors give rise to a number of
parasitic elements that must be added to the equivalent circuit for most integrated-circuit tran-
sistors. A cross section of a typical npn transistor in a junction-isolated process is shown in
Fig. 1.19. The means of fabricating such devices is described in Chapter 2.

As described in Section 1.2, all pn junctions have a voltage-dependent capacitance
associated with the depletion region. In the cross section of Fig. 1.19, three depletion-region
capacitances can be identified. The base-emitter junction has a depletion-region capacitance
Cje, and the base-collector and collector-substrate junctions have capacitances C𝜇 and Ccs,
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Figure 1.19 Integrated-circuit npn bipolar transistor structure showing parasitic elements. (Not to scale.)

respectively. The base-emitter junction closely approximates an abrupt junction due to the
steep rise of the doping density caused by the heavy doping in the emitter. Thus the variation
of Cje with bias voltage is well approximated by (1.21). The collector-base junction behaves
like a graded junction for small bias voltages since the doping density is a function of distance
near the junction. However, for larger reverse-bias values (more than about a volt), the
junction depletion region spreads into the collector, which is uniformly doped, and thus for
devices with thick collectors the junction tends to behave like an abrupt junction with uniform
doping. Many modern high-speed processes, however, have very thin collector regions (of the
order of one micron), and the collector depletion region can extend all the way to the buried
layer for quite small reverse-bias voltages. When this occurs, both the depletion region and
the associated capacitance vary quite slowly with bias voltage. The collector-base capacitance
C𝜇 thus tends to follow (1.22) for very small bias voltages and (1.21) for large bias voltages
in thick-collector devices. In practice, measurements show that the variation of C𝜇 with bias
voltage for most devices can be approximated by

C𝜇 =
C𝜇0(

1 − V
𝜓o

)n (1.117a)

where V is the forward bias on the junction and n is an exponent between about 0.2 and 0.5.
The third parasitic capacitance in a monolithic npn transistor is the collector-substrate
capacitance Ccs, and for large reverse-bias voltages, this varies according to the abrupt
junction equation (1.21) for junction-isolated devices. In the case of oxide-isolated devices,
however, the deep p diffusions used to isolate the devices are replaced by oxide. The sidewall
component of Ccs then consists of a fixed oxide capacitance. Equation 1.117a may then be
used to model Ccs, but a value of n less than 0.5 gives the best approximation. In general,
(1.117a) will be used to model all three parasitic capacitances with subscripts e, c, and s on n
and 𝜓0 used to differentiate emitter-base, collector-base, and collector-substrate capacitances,
respectively. Typical zero-bias values of these parasitic capacitances for a minimum-size npn
transistor in a modern oxide-isolated process are Cje0 ≃ 10 fF,C𝜇0 ≃ 10 fF, and Ccs0 ≃ 20 fF.
Values for other devices are summarized in Chapter 2.

As described in Chapter 2, lateral pnp transistors have a parasitic capacitance Cbs from
base to substrate in place of Ccs. Note that the substrate is always connected to the most
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negative voltage supply in the circuit in order to ensure that all isolation regions are separated
by reverse-biased junctions. Thus the substrate is an ac ground, and all parasitic capacitance
to the substrate is connected to ground in an equivalent circuit.

The final elements to be added to the small-signal model of the transistor are resistive par-
asitics. These are produced by the finite resistance of the silicon between the top contacts on
the transistor and the active base region beneath the emitter. As shown in Fig. 1.19, there
are significant resistances rb and rc in series with the base and collector contacts, respec-
tively. There is also a resistance rex of several ohms in series with the emitter lead that can
become important at high bias currents. (Note that the collector resistance rc is actually com-
posed of three parts labeled rc1, rc2, and rc3.) Typical values of these parameters are rb = 50
to 500 Ω, rex = 1 to 3 Ω, and rc = 20 to 500 Ω. The value of rb varies significantly with col-
lector current because of current crowding.15 This occurs at high collector currents where
the dc base current produces a lateral voltage drop in the base that tends to forward bias the
base-emitter junction preferentially around the edges of the emitter. Thus the transistor action
tends to occur along the emitter periphery rather than under the emitter itself, and the distance
from the base contact to the active base region is reduced. Consequently, the value of rb is
reduced, and in a typical npn transistor, rb may decrease 50 percent as IC increases from 0.1
to 10 mA.

The value of these parasitic resistances can be reduced by changes in the device structure.
For example, a large-area transistor with multiple base and emitter stripes will have a smaller
value of rb. The value of rc is reduced by inclusion of the low-resistance buried n+ layer beneath
the collector.

The addition of the resistive and capacitive parasitics to the basic small-signal circuit of
Fig. 1.18 gives the complete small-signal equivalent circuit of Fig. 1.20. The internal base node
is labeled B′ to distinguish it from the external base contact B. The capacitance C𝜋 contains
the base-charging capacitance Cb and the emitter-base depletion layer capacitance Cje.

C𝜋 = Cb + Cje (1.118)

Note that the representation of parasitics in Fig. 1.20 is an approximation in that lumped
elements have been used. In practice, as suggested by Fig. 1.19, C𝜇 is distributed across rb
and Ccs is distributed across rc. This lumped representation is adequate for most purposes
but can introduce errors at very high frequencies. It should also be noted that while the para-
sitic resistances of Fig. 1.20 can be very important at high bias currents or for high-frequency
operation, they are usually omitted from the equivalent circuit for low-frequency calculations,
particularly for collector bias currents less than 1 mA.
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Figure 1.20 Complete bipolar transistor small-signal equivalent circuit.
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◼ EXAMPLE
Derive the complete small-signal equivalent circuit for a bipolar transistor at IC = 1 mA,
VCB = 3 V, and VCS = 5 V. Device parameters are Cje0 = 10 fF, ne = 0.5, 𝜓0e = 0.9 V, C𝜇0 =
10 fF, nc = 0.3, 𝜓0c = 0.5 V, Ccs0 = 20 fF, ns = 0.3, 𝜓0s = 0.65 V, 𝛽0 = 100, 𝜏F = 10 ps,
VA = 20 V, rb = 300 Ω, rc = 50 Ω, rex = 5 Ω, and r𝜇 = 10 𝛽0ro.

Since the base-emitter junction is forward biased, the value of Cje is difficult to determine
for reasons described in Section 1.2.1. Either a value can be determined by computer or a
reasonable estimation is to double Cje0. Using the latter approach, we estimate

Cje = 20 fF

Using (1.117a) gives, for the collector-base capacitance,

C𝜇 =
C𝜇0(

1 +
VCB

𝜓0c

)nc
= 10(

1 + 3
0.5

)0.3
= 5.6 fF

The collector-substrate capacitance can also be calculated using (1.117a),

Ccs =
Ccs0(

1 +
VCS

𝜓0s

)ns
= 20(

1 + 5
0.65

)0.3
= 10.5 fF

From (1.91), the transconductance is

gm =
qIC

kT
= 10−3

26 × 10−3
A/V = 38 mA/V

From (1.104), the base-charging capacitance is

Cb = 𝜏Fgm = 10 × 10−12 × 38 × 10−3 F = 0.38 pF

The value of C𝜋 from (1.118) is

C𝜋 = 0.38 + 0.02 pF = 0.4 pF

The input resistance from (1.110) is

r𝜋 =
𝛽0

gm
= 100 × 26Ω = 2.6 kΩ

The output resistance from (1.112) is

ro = 20

10−3
Ω = 20 kΩ

and thus the collector-base resistance is

r𝜇 = 10𝛽0ro = 10 × 100 × 20 kΩ = 20 MΩ

The equivalent circuit with these parameter values is shown in Fig. 1.21.◼
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Figure 1.21 Complete small-signal equivalent circuit for a bipolar transistor at IC = 1 mA, VCB = 3 V,
and VCS = 5 V. Device parameters are Cje0 = 10 fF, ne = 0.5, 𝜓0e = 0.9 V, C𝜇0 = 10 fF, nc = 0.3,
𝜓0c = 0.5 V, Ccs0 = 20 fF, ns = 0.3, 𝜓0s = 0.65 V, 𝛽0 = 100, 𝜏F = 10 ps, VA = 20 V, rb = 300 Ω,
rc = 50 Ω, rex = 5 Ω, and r𝜇 = 10 𝛽0r0.

1.4.8 Specification of Transistor Frequency Response

The high-frequency gain of the transistor is controlled by the capacitive elements in the
equivalent circuit of Fig. 1.20. The frequency capability of the transistor is most often
specified in practice by determining the frequency where the magnitude of the short-circuit,
common-emitter current gain falls to unity. This is called the transition frequency, fT , and is
a measure of the maximum useful frequency of the transistor when it is used as an amplifier.
The value of fT can be measured as well as calculated, using the ac circuit of Fig. 1.22.
A small-signal current ii is applied to the base, and the output current io is measured with the
collector short-circuited for ac signals. A small-signal equivalent circuit can be formed for
this situation by using the equivalent circuit of Fig. 1.20 as shown in Fig. 1.23, where rex and
r𝜇 have been neglected. If rc is assumed small, then ro and Ccs have no influence, and we have

v1 ≃
r𝜋

1 + r𝜋(C𝜋 + C𝜇)s
ii (1.119)

io

ii

Figure 1.22 Schematic of ac circuit for measurement of fT .
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Figure 1.23 Small-signal equivalent circuit for the calculation of fT .
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If the current fed forward through C𝜇 is neglected,

io ≃ gmv1 (1.120)

Substitution of (1.119) in (1.120) gives

io ≃ ii
gmr𝜋

1 + r𝜋(C𝜋 + C𝜇)s

and thus
io
ii
(j𝜔) =

𝛽0

1 + 𝛽0

C𝜋 + C𝜇

gm
j𝜔

(1.121)

using (1.110).
Now if io∕ii(j𝜔) is written as 𝛽(j𝜔) (the high-frequency, small-signal current gain), then

𝛽(j𝜔) =
𝛽0

1 + 𝛽0

C𝜋 + C𝜇

gm
j𝜔

(1.122)

At high frequencies, the imaginary part of the denominator of (1.122) is dominant, and we can
write

𝛽(j𝜔) ≃
gm

j𝜔 (C𝜋 + C𝜇)
(1.123)

From (1.123), |𝛽(j𝜔)| = 1 when

𝜔 = 𝜔T =
gm

C𝜋 + C𝜇

(1.124)

and thus
fT = 1

2𝜋

gm

C𝜋 + C𝜇

(1.125)

The transistor behavior can be illustrated by plotting |𝛽(j𝜔)| using (1.122) as shown in
Fig. 1.24. The frequency 𝜔𝛽 is defined as the frequency where |𝛽(j𝜔)| is equal to 𝛽0∕

√
2 (3 dB

down from the low-frequency value). From (1.122), we have

𝜔𝛽 = 1
𝛽0

gm

C𝜋 + C𝜇

=
𝜔T

𝛽0
(1.126)

From Fig. 1.24, it can be seen that 𝜔T can be determined by measuring |𝛽(j𝜔)| at some
frequency 𝜔x where |𝛽(j𝜔)| is falling at 6 dB/octave and using

𝜔T = 𝜔x|𝛽(j𝜔x)| (1.127)

This is the method used in practice, since deviations from ideal behavior tend to occur as|𝛽(j𝜔)| approaches unity. Thus |𝛽(j𝜔)| is typically measured at some frequency where its
magnitude is about 5 or 10, and (1.127) is used to determine 𝜔T .
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Figure 1.24 Magnitude
of small-signal ac current
gain |𝛽(j𝜔)| versus
frequency for a typical
bipolar transistor.

It is interesting to examine the time constant, 𝜏T , associated with 𝜔T . This is defined as

𝜏T = 1
𝜔T

(1.128)

and use of (1.124) in (1.128) gives

𝜏T =
C𝜋

gm
+

C𝜇

gm
(1.129)

Substitution of (1.118) and (1.104) in (1.129) gives

𝜏T =
Cb

gm
+

Cje

gm
+

C𝜇

gm
= 𝜏F +

Cje

gm
+

C𝜇

gm
(1.130)

Equation 1.130 indicates that 𝜏T is dependent on IC (through gm) and approaches a constant
value of 𝜏F at high collector-bias currents. At low values of IC, the terms involving Cje and C𝜇

dominate, and they cause 𝜏T to rise and fT to fall as IC is decreased. This behavior is illustrated

fT
GHz
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6

5

4

3
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10 μA 100 μA 10 mA1 mA

Figure 1.25 Typical curve of fT versus
IC for an npn integrated-circuit
transistor with 6 μm2 emitter area in a
high-speed process.
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in Fig. 1.25, which is a typical plot of fT versus IC for an integrated-circuit npn transistor. The
decline in fT at high collector currents is not predicted by this simple theory and is due to an
increase in 𝜏F caused by high-level injection and the Kirk effect at high currents. These are the
same mechanisms that cause a decrease in 𝛽F at high currents as described in Section 1.3.5.

◼ EXAMPLE
A bipolar transistor has a short-circuit, common-emitter current gain at 1 GHz of 8 with
IC = 0.25 mA and 9 with IC = 1 mA. Assuming that high-level injection effects are negligible,
calculate Cje and 𝜏F , assuming both are constant. The measured value of C𝜇 is 10 fF.

From the data, values of fT are

fT1 = 8 × 1 = 8 GHz at IC = 0.25 mA

fT2 = 9 × 1 = 9 GHz at IC = 1 mA

Corresponding values of 𝜏T are

𝜏T1 = 1
2𝜋fT1

= 19.9 ps

𝜏T2 = 1
2𝜋fT2

= 17.7 ps

Using these data in (1.130), we have

19.9 × 10−12 = 𝜏F + 104(C𝜇 + Cje) (1.131)

at IC = 0.25 mA. At IC = 1 mA, we have

17.7 × 10−12 = 𝜏F + 26(C𝜇 + Cje) (1.132)

Subtraction of (1.132) from (1.131) yields

C𝜇 + Cje = 28.2 fF

Since C𝜇 was measured as 10 fF, the value of Cje is given by

Cje ≃ 18.2 fF

Substitution in (1.131) gives

𝜏F = 17 ps

This is an example of how basic device parameters can be determined from high-frequency
current-gain measurements. Note that the assumption that Cje is constant is a useful approxi-
mation in practice because VBE changes by only 36 mV as IC increases from 0.25 to 1 mA.◼
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1.5 Large-Signal Behavior of Metal-Oxide-Semiconductor
Field-Effect Transistors
Metal-oxide-semiconductor field-effect transistors (MOSFETs) have become dominant in the
area of digital integrated circuits because they allow high density and low power dissipation.
In contrast, bipolar transistors still provide many advantages in stand-alone analog integrated
circuits. For example, the transconductance per unit bias current in bipolar transistors is
usually much higher than in MOS transistors. So in systems where analog techniques are
used on some integrated circuits and digital techniques on others, bipolar technologies are
often preferred for the analog integrated circuits and MOS technologies for the digital. To
reduce system cost and increase portability, both increased levels of integration and reduced
power dissipation are required, forcing the associated analog circuits to use MOS-compatible
technologies. One way to achieve these goals is to use a processing technology that provides
both bipolar and MOS transistors, allowing great design flexibility. However, all-MOS
processes are less expensive than combined bipolar and MOS processes. Therefore, economic
considerations drive integrated-circuit manufacturers to use all-MOS processes in many
practical cases. As a result, the study of the characteristics of MOS transistors that affect
analog integrated-circuit design is important.

1.5.1 Transfer Characteristics of MOS Devices

A cross section of a typical enhancement-mode n-channel MOS (NMOS) transistor is shown
in Fig. 1.26. Heavily doped n-type source and drain regions are fabricated in a p-type substrate
(often called the body). A thin layer of silicon dioxide is grown over the substrate material, and
a conductive gate material (metal or polycrystalline silicon) covers the oxide between source
and drain. Note that the gate is horizontal in Fig. 1.26, and we will use this orientation in all
descriptions of the physical operation of MOS devices. In operation, the gate-source voltage
modifies the conductance of the region under the gate, allowing the gate voltage to control the
current flowing between source and drain. This control can be used to provide gain in analog
circuits and switching characteristics in digital circuits.

The enhancement-mode NMOS device of Fig. 1.26 shows significant conduction between
source and drain only when an n-type channel exists under the gate. This observation is the
origin of the n-channel designation. The term enhancement mode refers to the fact that no
conduction occurs for VGS = 0. Thus, the channel must be enhanced to cause conduction. MOS
devices can also be made by using an n-type substrate with a p-type conducting channel. Such

n+ n+

B

p-type substrate (body)

SiO2 SiO2SiO2

Source,
S

Drain,
D

Gate,
G

Channel
region

Metal or poly silicon
gate contact

Figure 1.26 Typical
enhancement-mode NMOS
structure.
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devices are called enhancement-mode p-channel MOS (PMOS) transistors. In complementary
MOS (CMOS) technology, both device types are present.

The derivation of the transfer characteristics of the enhancement-mode NMOS device of
Fig. 1.26 begins by noting that with VGS = 0, the source and drain regions are separated by
back-to-back pn junctions. These junctions are formed between the n-type source and drain
regions and the p-type substrate, resulting in an extremely high resistance (about 1012 Ω)
between drain and source when the device is off.

Now consider the substrate, source, and drain grounded with a positive voltage VGS applied
to the gate, as shown in Fig. 1.27. The gate and substrate then form the plates of a capacitor
with the SiO2 as a dielectric. Positive charge accumulates on the gate and negative charge in
the substrate. Initially, the negative charge in the p-type substrate is manifested by the creation
of a depletion region and the exclusion of holes under the gate as described in Section 1.2 for
a pn-junction. The depletion region is shown in Fig. 1.27. The results of Section 1.2 can now
be applied. Using (1.10), the depletion-layer width X under the oxide is

X =
(

2𝜖𝜙
qNA

)1∕2

(1.133)

where 𝜙 is the potential in the depletion layer at the oxide-silicon interface, NA is the doping
density (assumed constant) of the p-type substrate in atoms/cm3, and 𝜖 is the permittivity of
the silicon. The charge per area in this depletion region is

Q = qNAX =
√

2qNA𝜖𝜙 (1.134)

When the surface potential in the silicon reaches a critical value equal to twice the Fermi
level 𝜙f , a phenomenon known as inversion occurs.16 The Fermi level 𝜙f is defined as

𝜙f =
kT
q

ln

[
NA

ni

]
(1.135)

where k is Boltzmann’s constant. Also, ni is the intrinsic carrier concentration, which is

ni =
√

NcNv exp

(
−

Eg

2kT

)
(1.136)

where Eg is the band gap of silicon at T = 0∘K, Nc is the density of allowed states near the
edge of the conduction band, and Nv is the density of allowed states near the edge of the
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Figure 1.27 Idealized NMOS device
cross section with positive VGS applied,
showing depletion region and the
induced channel.
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valence band, respectively. The Fermi level 𝜙f is usually about 0.3 V. After the potential in
the silicon reaches 2𝜙f , further increases in gate voltage produce no further changes in the
depletion-layer width but instead induce a thin layer of electrons in the depletion layer at the
surface of the silicon directly under the oxide. Inversion produces a continuous n-type region
with the source and drain regions and forms the conducting channel between source and drain.
The conductivity of this channel can be modulated by increases or decreases in the gate-source
voltage. In the presence of an inversion layer, and without substrate bias, the depletion region
contains a fixed charge density

Qb0 =
√

2qNA𝜖2𝜙f (1.137)

If a substrate bias voltage VSB (positive for n-channel devices) is applied between the source
and the substrate, the potential required to produce inversion becomes (2𝜙f + VSB), and the
charge density stored in the depletion region in general is

Qb =
√

2qNA𝜖(2𝜙f + VSB) (1.138)

The gate-source voltage VGS required to produce an inversion layer is called the threshold
voltage Vt and can now be calculated. This voltage consists of several components. First, a
voltage [2𝜙f + (Qb∕Cox)] is required to sustain the depletion-layer charge Qb, where Cox is the
gate oxide capacitance per unit area. Second, a work-function difference 𝜙ms exists between
the gate metal and the silicon. Third, positive charge density Qss always exists in the oxide at
the silicon interface. This charge is caused by crystal discontinuities at the Si-SiO2 interface
and must be compensated by a gate-source voltage contribution of −Qss∕Cox. Thus we have a
threshold voltage

Vt = 𝜙ms + 2𝜙f +
Qb

Cox
−

Qss

Cox
(1.139)

= 𝜙ms + 2𝜙f +
Qb0

Cox
−

Qss

Cox
+

Qb − Qb0

Cox

= Vt0 + 𝛾

(√
2𝜙f + VSB −

√
2𝜙f

)
(1.140)

where (1.137) and (1.138) have been used, and Vt0 is the threshold voltage with VSB = 0. The
parameter 𝛾 is defined as

𝛾 = 1
Cox

√
2q𝜖NA (1.141)

and
Cox =

𝜖ox

tox
(1.142)

where 𝜖ox and tox are the permittivity and thickness of the oxide, respectively. A typical value
of 𝛾 is 0.5 V1∕2, and Cox = 3.45 fF/μm2 for tox = 100 angstroms.

In practice, the value of Vt0 is usually adjusted in processing by implanting additional impu-
rities into the channel region. Extra p-type impurities are implanted in the channel to set Vt0
between 0.3 V and 1.5 V for n-channel enhancement devices. By implanting n-type impurities
in the channel region, a conducting channel can be formed even for VGS = 0, forming a deple-
tion device with typical values of Vt0 in the range −1 V to −4 V. If Qi is the charge density due
to the implant, then the threshold voltage given by (1.139) is shifted by approximately Qi∕Cox.
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The preceding equations can now be used to calculate the large-signal characteristics of an
n-channel MOSFET. In this analysis, the source is assumed grounded and bias voltages VGS,
VDS, and VSB are applied as shown in Fig. 1.28. If VGS > Vt, inversion occurs and a conducting
channel exists. The channel conductivity is determined by the vertical electric field, which is
controlled by the value of (VGS − Vt). If VDS = 0, the current ID that flows from drain to source
is zero because the horizontal electric field is zero. Nonzero VDS produces a horizontal electric
field and causes current ID to flow. The value of the current depends on both the horizontal
and the vertical electric fields, explaining the term field-effect transistor. Positive voltage VDS
causes the reverse bias from the drain to the substrate to be larger than from the source to
substrate, and thus the widest depletion region exists at the drain. For simplicity, however, we
assume that the voltage drop along the channel itself is small so that the depletion-layer width
is constant along the channel.

The drain current ID is

ID = dQ
dt

(1.143)

where dQ is the incremental channel charge at a distance y from the source in an incremental
length dy of the channel, and dt is the time required for this charge to cross length dy. The
charge dQ is

dQ = QIWdy (1.144)

where W is the width of the device perpendicular to the plane of Fig. 1.28 and QI is the induced
electron charge per unit area of the channel. At a distance y along the channel, the voltage with
respect to the source is V(y) and the gate-to-channel voltage at that point is VGS − V(y). We
assume this voltage exceeds the threshold voltage Vt. Thus the induced electron charge per
unit area in the channel is

QI(y) = Cox[VGS − V(y) − Vt] (1.145)

Also,

dt =
dy

vd(y)
(1.146)

where vd is the electron drift velocity at a distance y from the source. Combining (1.144) and
(1.146) gives

ID = WQI(y)vd(y) (1.147)
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The drift velocity is determined by the horizontal electric field. When the horizontal electric
field ℰ (y) is small, the drift velocity is proportional to the field and

vd(y) = 𝜇nℰ (y) (1.148)

where the constant of proportionality 𝜇n is the average electron mobility in the channel. In
practice, the mobility depends on both the temperature and the doping level but is almost
constant for a wide range of normally used doping levels. Also, 𝜇n is sometimes called the
surface mobility for electrons because the channel forms at the surface of the silicon. Typical
values range from about 500 cm2/(V-s) to about 700 cm2/(V-s), which are much less than the
mobility of electrons in the bulk of the silicon (about 1400 cm2/V-s) because surface defects
not present in the bulk impede the flow of electrons in MOS transistors.17 The electric field
ℰ (y) is

ℰ (y) = dV
dy

(1.149)

where dV is the incremental voltage drop along the length of channel dy at a distance y from
the source. Substituting (1.145), (1.148), and (1.149) into (1.147) gives

ID = WCox[VGS − V − Vt]𝜇n
dV
dy

(1.150)

Separating variables and integrating gives

∫
L

0
ID dy = ∫

VDS

0
W𝜇nCox(VGS − V − Vt) dV (1.151)

Carrying out this integration gives

ID = k′

2
W
L
[2(VGS − Vt)VDS − V2

DS] (1.152)

where
k′ = 𝜇nCox =

𝜇n𝜖ox

tox
(1.153)

When VDS ≪ 2(VGS − Vt), (1.152) predicts that ID is approximately proportional to VDS. This
result is reasonable because the average horizontal electric field in this case is VDS∕L, and
the average drift velocity of electrons is proportional to the average field when the field is
small. Equation 1.152 is important and describes the I-V characteristics of an MOS transistor,
assuming a continuous induced channel. A typical value of k′ for tox = 100 angstroms is about
200 μA/V2 for an n-channel device.

As the value of VDS is increased, the induced conducting channel narrows at the drain end,
and (1.145) indicates that QI at the drain end approaches zero as VDS approaches (VGS − Vt).
That is, the channel is no longer connected to the drain when VDS > VGS − Vt. This phe-
nomenon is called pinch-off and can be understood by writing a KVL equation around the
transistor:

VDS = VDG + VGS (1.154)

Therefore, when VDS > VGS − Vt,

VDG + VGS > VGS − Vt (1.155)
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Rearranging (1.155) gives
VGD < Vt (1.156)

Equation 1.156 shows that when the drain-source voltage is greater than (VGS − Vt), the
gate-drain voltage is less than a threshold, which means that the channel no longer exists at the
drain. This result is reasonable because we know that the gate-to-channel voltage at the point
where the channel disappears is equal to Vt by the definition of the threshold voltage. Therefore,
at the point where the channel pinches off, the channel voltage is (VGS − Vt). As a result, the
average horizontal electric field across the channel in pinch-off depends not on the drain-source
voltage but instead on the voltage across the channel, which is (VGS − Vt). Therefore, (1.152)
is no longer valid if VDS > VGS − Vt. The value of ID in this region is obtained by substituting
VDS = VGS − Vt in (1.152), giving

ID = k′

2
W
L
(VGS − Vt)2 (1.157)

Equation 1.157 predicts that the drain current is independent of VDS in the pinch-off region.
In practice, however, the drain current in the pinch-off region varies slightly as the drain voltage
is varied. This effect is due to the presence of a depletion region between the physical pinch-off
point in the channel at the drain end and the drain region itself. If this depletion-layer width is
Xd, then the effective channel length is given by

Leff = L − Xd (1.158)

If Leff is used in place of L in (1.157), we obtain a more accurate formula for current in the
pinch-off region:

ID = k′

2
W
Leff

(VGS − Vt)2 (1.159)

Because Xd (and thus Leff) are functions of the drain-source voltage in the pinch-off region, ID
varies with VDS. This effect is called channel-length modulation. Using (1.158) and (1.159),
we obtain

𝜕ID

𝜕VDS
= −k′

2
W

L2
eff

(VGS − Vt)2
dLeff

dVDS
(1.160)

and thus
𝜕ID

𝜕VDS
=

ID

Leff

dXd

dVDS
(1.161)

This equation is analogous to (1.55) for bipolar transistors. Following a similar procedure, the
Early voltage can be defined as

VA =
ID

𝜕ID∕𝜕VDS
(1.162)

and thus

VA = Leff

(
dXd

dVDS

)−1

(1.163)

For MOS transistors, a commonly used parameter for the characterization of channel-length
modulation is the reciprocal of the Early voltage,

λ = 1
VA

(1.164)
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As in the bipolar case, the large-signal properties of the transistor can be approximated by
assuming that λ and VA are constants, independent of the bias conditions. Thus we can include
the effect of channel-length modulation in the I-V characteristics by modifying (1.157) to

ID = k′

2
W
L
(VGS − Vt)2

(
1 +

VDS

VA

)
= k′

2
W
L
(VGS − Vt)2(1 + λVDS) (1.165)

In practical MOS transistors, variation of Xd with voltage is complicated by the fact that
the field distribution in the drain depletion region is not one-dimensional. As a result, the
calculation of λ from the device structure is quite difficult,18 and developing effective values
of λ from experimental data is usually necessary. The parameter λ is inversely proportional
to the effective channel length and a decreasing function of the doping level in the channel.
Typical values of λ are in the range 0.05 to 0.005 V−1.

Plots of ID versus VDS with VGS as a parameter are shown in Fig. 1.29 for an NMOS transis-
tor. The device operates in the pinch-off region when VDS > (VGS − Vt). The pinch-off region
for MOS devices is often called the saturation region. In saturation, the output characteristics
are almost flat, which shows that the current depends mostly on the gate-source voltage and
only to a small extent on the drain-source voltage. On the other hand, when VDS < (VGS − Vt),
the device operates in the Ohmic or triode region, where the device can be modeled as a
nonlinear voltage-controlled resistor connected between the drain and source. The resistance
of this resistor is nonlinear because the V2

DS term in (1.152) causes the resistance to depend
on VDS. Since this term is small when VDS is small, however, the nonlinearity is also small
when VDS is small, and the triode region is also sometimes called the linear region. The
boundary between the triode and saturation regions occurs when VDS = (VGS − Vt). On
this boundary, both (1.152) and (1.157) correctly predict ID. Since VDS = (VGS − Vt)
along the boundary between triode and saturation, (1.157) shows that the boundary is
ID = (k′∕2)(W∕L)V2

DS. This parabolic function of VDS is shown in Fig. 1.29. For depletion
n-channel MOS devices, Vt is negative, and ID is nonzero even for VGS = 0. For PMOS
devices, all polarities of voltages and currents are reversed.

The results derived above can be used to form a large-signal model of the NMOS transistor
in saturation. The model topology is shown in Fig. 1.30, where ID is given by (1.152) in the
triode region and (1.157) in saturation, ignoring the effect of channel-length modulation. To
include the effect of channel-length modulation, (1.159) or (1.165) should be used instead of
(1.157) to find the drain current in saturation.

ID

VDS = VGS – Vt

VDS

VGS
increases

VGS ≤ Vt

Actual

Ideal

Active or
pinch-off region

Ohmic or
triode region

Figure 1.29 NMOS device
characteristics.
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Figure 1.30 Large-signal model for the NMOS transistor.

1.5.2 Comparison of Operating Regions of Bipolar and MOS Transistors

Notice that the meaning of the word saturation for MOS transistors is quite different than
for bipolar transistors. Saturation in bipolar transistors refers to the region of operation where
both junctions are forward biased and the collector-emitter voltage is approximately constant
or saturated. On the other hand, saturation in MOS transistors refers to the region of operation
where the channel is attached only to the source but not to the drain and the current is approx-
imately constant or saturated. To avoid confusion, the term active region will be used in this
book to describe the flat region of the MOS transistor characteristics, as shown in Fig. 1.29.
This wording is selected to form a link between the operation of MOS and bipolar transistors.
This link is summarized in the table of Fig. 1.31, which reviews the operating regions of npn
bipolar and n-channel MOS transistors.

When the emitter junction is forward biased and the collector junction is reverse biased,
bipolar transistors operate in the forward-active region. They operate in the reverse-active
region when the collector junction is forward biased and the emitter junction is reverse
biased. This distinction is important because integrated-circuit bipolar transistors are typically
not symmetrical in practice; that is, the collector operates more efficiently as a collector
of minority carriers than as an emitter. Similarly, the emitter operates more efficiently as
an emitter of minority carriers than as a collector. One reason for this asymmetry is that
the collector region surrounds the emitter region in integrated-circuit bipolar transistors,
as shown in Fig. 1.19. A consequence of this asymmetry is that the current gain in the
forward-active region 𝛽F is usually much greater than the current gain in the reverse-active
region 𝛽R.

In contrast, the source and drain of MOS transistors are completely interchangeable based
on the preceding description. (In practice, the symmetry is good but not perfect.) Therefore,
distinguishing between the forward-active and reverse-active regions of operation of an MOS
transistor is not necessary.

Figure 1.31 also shows that npn bipolar transistors operate in cutoff when both junctions
are reversed biased. Similarly, MOS transistors operate in cutoff when the gate is biased so
that inversion occurs at neither the source nor the drain. Furthermore, npn transistors operate
in saturation when both junctions are forward biased, and MOS transistors operate in the triode
region when the gate is biased so that the channel is connected to both the source and the drain.

npn Bipolar Transistor n-channel MOS Transistor

Region VBE VBC Region VGS VGD

Cutoff < VBE(on) < VBC(on) Cutoff < Vt < Vt

Forward active ≥ VBE(on) < VBC(on) Saturation (active) ≥ Vt < Vt

Reverse active < VBE(on) ≥ VBC(on) Saturation (active) < Vt ≥ Vt

Saturation ≥ VBE(on) ≥ VBC(on) Triode ≥ Vt ≥ Vt

Figure 1.31 Operating regions of npn bipolar and n-channel MOS transistors.
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Figure 1.32 (a) NMOS and PMOS symbols used in CMOS circuits. (b) NMOS and PMOS symbols
used when the substrate connection is nonstandard. (c) Depletion MOS device symbols.

Therefore, this comparison leads us to view the voltage required to invert the surface of an
MOS transistor as analogous to the voltage required to forward bias a pn junction in a bipolar
transistor. To display this analogy, we will use the circuit symbols in Fig. 1.32a to represent
MOS transistors. These symbols are intentionally chosen to appear similar to the symbols of
the corresponding bipolar transistors. In bipolar-transistor symbols, the arrow at the emitter
junction represents the direction of current flow when the emitter junction is forward biased.
In MOS transistors, the pn junctions between the source and body and the drain and body are
reverse biased for normal operation. Therefore, the arrows in Fig. 1.32a do not indicate pn
junctions. Instead, they indicate the direction of current flow when the terminals are biased so
that the terminal labeled as the drain operates as the drain and the terminal labeled as the source
operates as the source. In NMOS transistors, the source is the source of electrons; therefore, the
source operates at a lower voltage than the drain, and the current flows in a direction opposite
that of the electrons in the channel. In PMOS transistors, the source is the source of holes;
therefore, the source operates at a higher voltage than the drain, and the current flows in the
same direction as the holes in the channel.

In CMOS technology, one device type is fabricated in the substrate, which is common to all
devices, invariably connected to a dc power-supply voltage, and usually not shown on the cir-
cuit diagram. The other device type, however, is fabricated in separate isolation regions called
wells, which may or may not be connected together and which may or may not be connected
to a power-supply voltage. If these isolation regions are connected to the appropriate power
supply, the symbols of Fig. 1.32a will be used, and the substrate connection will not be shown.
On the other hand, if the individual isolation regions are connected elsewhere, the devices
will be represented by the symbols of Fig. 1.32b, where the substrate is labeled B. Finally,
symbols for depletion-mode devices, for which a channel forms for VGS = 0, are shown
in Fig. 1.32c.
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1.5.3 Decomposition of Gate-Source Voltage

The gate-source voltage of a given MOS transistor is usually separated into two parts: the
threshold, Vt, and the voltage over the threshold, VGS − Vt. We will refer to this latter part of
the gate-source voltage as the overdrive. This decomposition is used because these two com-
ponents of the gate-source voltage have different properties. Assuming square-law behavior
as in (1.157), the overdrive is

Vov = VGS − Vt =

√
2ID

k′(W∕L)
(1.166)

Since the transconductance parameter k′ is proportional to mobility, and since mobility falls
with increasing temperature, the overdrive rises with temperature. In contrast, the next section
shows that the threshold falls with increasing temperature. Furthermore, (1.140) shows that
the threshold depends on the source-body voltage, but not on the current; (1.166) shows that
the overdrive depends directly on the current, but not on the source-body voltage.

1.5.4 Threshold Temperature Dependence

Assume that the source-body voltage is zero. Substituting (1.138) into (1.139) gives

Vt =

√
2qNA𝜖(2𝜙f )

Cox
+ 2𝜙f + 𝜙ms −

Qss

Cox
(1.167)

Assume that 𝜙ms, Qss, and Cox are independent of temperature.19 Then differentiating (1.167)
gives

dVt

dT
=

√
2qNA𝜖(2)

2Cox

√
𝜙f

d𝜙f

dT
+ 2

d𝜙f

dT
=

d𝜙f

dT

⎡⎢⎢⎣2 + 1
Cox

√
qNA𝜖

𝜙f

⎤⎥⎥⎦ (1.168)

Substituting (1.136) into (1.135) gives

𝜙f =
kT
q

ln

⎡⎢⎢⎢⎢⎣
NA exp

( Eg

2kT

)
√

NcNv

⎤⎥⎥⎥⎥⎦
(1.169)

Assume both Nc and Nv are independent of temperature.20 Then differentiating (1.169) gives

d𝜙f

dT
= kT

q

[
−

Eg

2kT2

]
+ k

q
ln

⎡⎢⎢⎢⎢⎣
NA exp

( Eg

2kT

)
√

NcNv

⎤⎥⎥⎥⎥⎦
(1.170)

Substituting (1.169) into (1.170) and simplifying gives

d𝜙f

dT
= −

Eg

2qT
+

𝜙f

T
= − 1

T

[Eg

2q
− 𝜙f

]
(1.171)
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Substituting (1.141) and (1.171) into (1.168) gives

dVt

dT
= − 1

T

[Eg

2q
− 𝜙f

][
2 + 𝛾√

2𝜙f

]
(1.172)

Equation 1.172 shows that the threshold voltage falls with increasing temperature if
𝜙f < Eg∕(2q). The slope is usually in the range of −0.5 mV/∘C to −4 mV/∘C.21

◼ EXAMPLE

Assume T = 300 ∘K, NA = 1015 cm−3, and tox = 100 Å. Find dVt∕dT .
From (1.135),

𝜙f = (25.8 mV) ln

(
1015cm−3

1.45 × 1010cm−3

)
= 287 mV (1.173)

Also,
Eg

2q
= 1.12 eV

2q
= 0.56 V (1.174)

Substituting (1.173) and (1.174) into (1.171) gives

d𝜙f

dT
= − 1

300
(560 − 287) mV

∘K
= −0.91

mV
∘K

(1.175)

From (1.142),

Cox =
3.9

(
8.854 × 10−14 F/cm

)
100 × 10−8 cm

= 3.45
fF
μm2

(1.176)

Also,

𝛾√
2𝜙f

= 1
Cox

√
(2)(1.6 × 10−19 C)(11.7)(8.854 × 10−14 F/cm)(1015 cm−3)

(2)(0.287 V)

= 2.4 × 10−8 F/cm2

3.45 × 10−15 F/μm2
=

2.4 × 10−16 F/μm2

3.45 × 10−15 F/μm2
= 0.07

(1.177)

Substituting (1.173)–(1.177) into (1.172) gives

dVt

dT
=

(
−0.91

mV
∘K

)
(2 + 0.07) ≃ −1.9

mV
∘K

= −1.9
mV
∘C

(1.178)

◼

1.5.5 MOS Device Voltage Limitations

The main voltage limitations in MOS transistors are described next.22,23 Some of these limita-
tions have a strong dependence on the gate length L; others have little dependence on L. Also,
some of the voltage limitations are inherently destructive; others cause no damage as long as
overheating is avoided.
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Junction Breakdown. For long channel lengths, the drain-depletion region has little effect
on the channel, and the ID-versus-VDS curves closely follow the ideal curves of Fig. 1.29.
For increasing VDS, however, eventually the drain-substrate pn-junction breakdown voltage
is exceeded, and the drain current increases abruptly by avalanche breakdown as described in
Section 1.2.2. This phenomenon is not inherently destructive.

Punchthrough. If the depletion region around the drain in an MOS transistor touches the
depletion region around the source before junction breakdown occurs, increasing the drain-
source voltage increases the drain current by reducing the barrier to electron flow between
the source and drain. This phenomenon is called punchthrough. Since it depends on the two
depletion regions touching, it also depends on the gate length. Punchthrough is not inher-
ently destructive and causes a more gradual increase in the drain current than is caused by
avalanche breakdown. Punchthrough normally occurs below the surface of the silicon and
is often prevented by an extra ion implantation below the surface to reduce the size of the
depletion regions.

Hot Carriers. With sufficient horizontal or vertical electric fields, electrons or holes may
reach sufficient velocities to be injected into the oxide, where most of them increase the gate
current and some of them become trapped. Such carriers are called hot because the required
velocity for injection into the oxide is usually greater than the random thermal velocity. Car-
riers trapped in the oxide shift the threshold voltage and may cause a transistor to remain on
when it should turn off or vice versa. In this sense, injection of hot carriers into the oxide is a
destructive process. This process is most likely to be problematic in short-channel technolo-
gies, where horizontal electric fields are likely to be high.

Oxide Breakdown. In addition to VDS limitations, MOS devices must also be protected
against excessive gate voltages. Typical gate oxides break down with an electric field of
about 6 × 106 V/cm to 7 × 106 V/cm,24,25 which corresponds to 6 to 7 V applied from gate to
channel with an oxide thickness of 100 angstroms. Since this process depends on the vertical
electrical field, it is independent of channel length. However, this process is destructive to the
transistor, resulting in resistive connections between the gate and the channel. Oxide break-
down can be caused by static electricity and can be avoided by using pn diodes and resistors
to limit the voltage range at sensitive nodes internal to the integrated circuit that connect to
bonding pads.

1.6 Small-Signal Models of MOS Transistors
As mentioned in Section 1.5, MOS transistors are often used in analog circuits. To simplify
the calculation of circuit gain and terminal impedances, small-signal models can be used.
As in the case for bipolar transistors, a hierarchy of models with increasing complexity can
be derived, and choosing the simplest model required to do a given analysis is important in
practice.

Consider the MOS transistor in Fig. 1.33 with bias voltages VGS and VDD applied as shown.
These bias voltages produce quiescent drain current ID. If VGS > Vt and VDD > (VGS − Vt), the
device operates in the saturation or active region. A small-signal input voltage vi is applied in
series with VGS and produces a small variation in drain current id. The total value of the drain
current is Id = (ID + id).
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1.6.1 Transconductance

Assuming square-law operation, the transconductance from the gate can be determined from
(1.165) by differentiating:

gm =
𝜕ID

𝜕VGS
= k′

W
L
(VGS − Vt)(1 + λVDS) (1.179)

If λVDS ≪ 1, (1.179) simplifies to

gm = k′
W
L
(VGS − Vt) =

√
2k′

W
L

ID (1.180)

Unlike that of the bipolar transistor, the transconductance of the MOS transistor is propor-
tional to the square root of the bias current and depends on device geometry (oxide thickness
via k′ and W∕L). Another key difference between bipolar and MOS transistors can be seen
by calculating the ratio of the transconductance to the current. Using (1.157) and (1.180) for
MOS transistors shows that gm

ID
= 2

VGS − Vt
= 2

Vov
(1.181)

Also, for bipolar transistors, (1.91) shows that

gm

IC
=

q

kT
= 1

VT
(1.182)

At room temperature, the thermal voltage VT is equal to about 26 mV. In contrast, the overdrive
Vov for MOS transistors in many applications is chosen to be approximately several hundred
mV so that MOS transistors are fast enough for the given application. (Section 1.6.8 shows
that the transition frequency fT of an MOS transistor is proportional to the overdrive.) Under
these conditions, the transconductance per given current is much higher for bipolar transistors
than for MOS transistors. One of the key challenges in MOS analog circuit design is designing
high-quality analog circuits with a low transconductance-to-current ratio.

The transconductance calculated in (1.180) is valid for small-signal analysis. To determine
the limitation on the use of small-signal analysis, the change in the drain current resulting from
a change in the gate-source voltage will be derived from a large-signal standpoint. The total
drain current in Fig. 1.33 can be calculated using (1.157) as

Id = k′

2
W
L
(VGS + vi − Vt)2 = k′

2
W
L

[
(VGS − Vt)2 + 2(VGS − Vt)vi + v2

i

]
(1.183)

Id = ID + id

VDD

VGS

vi

+

–

Figure 1.33 Schematic of an MOS transistor with
biasing.
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Substituting (1.157) in (1.183) gives

Id = ID + k′

2
W
L

[
2(VGS − Vt)vi + v2

i

]
(1.184)

Rearranging (1.184) gives

id = Id − ID = k′
W
L
(VGS − Vt)vi

[
1 +

vi

2(VGS − Vt)

]
(1.185)

If the magnitude of the small-signal input |vi| is much less than twice the overdrive defined in
(1.166), substituting (1.180) into (1.185) gives

id ≃ gmvi (1.186)

In particular, if |vi| = |ΔVGS| is less than 20 percent of the overdrive, the small-signal analysis
is accurate within about 10 percent.

1.6.2 Intrinsic Gate-Source and Gate-Drain Capacitance

If Cox is the oxide capacitance per unit area from gate to channel, then the total capacitance
under the gate is CoxWL. This capacitance is intrinsic to the device operation and models the
gate control of the channel conductance. In the triode region of device operation, the channel
exists continuously from source to drain, and the gate-channel capacitance is usually lumped
into two equal parts at the drain and source with

Cgs = Cgd =
CoxWL

2
(1.187)

In the saturation or active region, however, the channel pinches off before reaching the
drain, and the drain voltage exerts little influence on either the channel or the gate charge.
As a consequence, the intrinsic portion of Cgd is essentially zero in the saturation region.
To calculate the value of the intrinsic part of Cgs in the saturation or active region, we must
calculate the total charge QT stored in the channel. This calculation can be carried out by
substituting (1.145) into (1.144) and integrating to obtain

QT = WCox ∫
L

0
[VGS − V(y) − Vt]dy (1.188)

Solving (1.150) for dy and substituting into (1.188) gives

QT =
W2C2

ox𝜇n

ID ∫
VGS−Vt

0
(VGS − V − Vt)2dV (1.189)

where the limit y = L corresponds to V = (VGS − Vt) in the saturation or active region.
Solution of (1.189) and use of (1.153) and (1.157) gives

QT = 2
3

WLCox(VGS − Vt) (1.190)

Therefore, in the saturation or active region,

Cgs =
𝜕QT

𝜕VGS
= 2

3
WLCox (1.191)

and
Cgd = 0 (1.192)
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1.6.3 Input Resistance

The gate of an MOS transistor is insulated from the channel by the SiO2 dielectric. As a result,
the low-frequency gate current is essentially zero and the input resistance is essentially infinite.
This characteristic is important in some circuits such as sample-and-hold amplifiers, where the
gate of an MOS transistor can be connected to a capacitor to sense the voltage on the capacitor
without leaking away the charge that causes that voltage. In contrast, bipolar transistors have
small but nonzero base current and finite input resistance looking into the base, complicating
the design of bipolar sample-and-hold amplifiers.

1.6.4 Output Resistance

In Section 1.5.1, the effect of changes in drain-source voltage on the large-signal character-
istics of the MOS transistor was described. Increasing drain-source voltage in an n-channel
MOS transistor increases the width of the depletion region around the drain and reduces the
effective channel length of the device in the saturation or active region. This effect is called
channel-length modulation and causes the drain current to increase when the drain-source
voltage is increased. From that treatment, we can calculate the change in the drain current ΔID
arising from changes in the drain-source voltage ΔVDS as

ΔID =
𝜕ID

𝜕VDS
ΔVDS (1.193)

Substitution of (1.161), (1.163), and (1.164) in (1.193) gives

ΔVDS

ΔID
=

VA

ID
= 1

λID
= ro (1.194)

where VA is the Early voltage, λ is the channel-length modulation parameter, ID is the drain
current without channel-length modulation given by (1.157), and ro is the small-signal output
resistance of the transistor.

1.6.5 Basic Small-Signal Model of the MOS Transistor

Combination of the preceding small-signal circuit elements yields the small-signal model of
the MOS transistor shown in Fig. 1.34. This model was derived for n-channel transistors in the
saturation or active region and is called the hybrid-𝜋 model. Drain, gate, and source nodes are
labeled D, G, and S, respectively. When the gate-source voltage is increased, the model predicts
that the incremental current id flowing from drain to source increases. Since the dc drain current
ID also flows from drain to source in an n-channel transistor, increasing the gate-source voltage
also increases the total drain current Id. This result is reasonable physically because increasing

G D

S

Cgs vgs
gmvgs ro

+

–

Figure 1.34 Basic small-signal model of an MOS transistor in the saturation or active region.
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the gate-source voltage in an n-channel transistor increases the channel conductivity and drain
current.

The model shown in Fig. 1.34 is also valid for p-channel devices. Therefore, the model
again shows that increasing the gate-source voltage increases the incremental current id flowing
from drain to source. Unlike in the n-channel case, however, the dc current ID in a p-channel
transistor flows from source to drain because the source acts as the source of holes. Therefore,
the incremental drain current flows in a direction opposite to the dc drain current when the
gate-source voltage increases, reducing the total drain current Id. This result is reasonable
physically because increasing the gate-source voltage in a p-channel transistor reduces the
channel conductivity and drain current.

1.6.6 Body Transconductance

The drain current is a function of both the gate-source and body-source voltages. On the one
hand, the gate-source voltage controls the vertical electric field, which controls the channel
conductivity and therefore the drain current. On the other hand, the body-source voltage
changes the threshold, which changes the drain current when the gate-source voltage is fixed.
This effect stems from the influence of the substrate acting as a second gate and is called
the body effect. Note that the body of an MOS transistor is usually connected to a constant
power-supply voltage, which is a small-signal or ac ground. However, the source connection
can have a significant ac voltage impressed on it, which changes the body-source voltage
when the body voltage is fixed. Therefore, when the body-source voltage is not constant, two
transconductance terms are required to model MOS transistors: one associated with the main
gate and the other associated with the body or second gate.

Using (1.165), the transconductance from the body or second gate is

gmb =
𝜕ID

𝜕VBS
= −k′

W
L
(VGS − Vt)(1 + λVDS)

𝜕Vt

𝜕VBS
(1.195)

From (1.140),
𝜕Vt

𝜕VBS
= − 𝛾

2
√

2𝜙f + VSB

= −𝜒 (1.196)

This equation defines a factor 𝜒 , which is the rate of change of threshold voltage with body
bias voltage. Substitution of (1.141) in (1.196) and use of (1.20) gives

𝜒 =
Cjs

Cox
(1.197)

where Cjs is the capacitance per unit area of the depletion region under the channel, assuming
a one-sided step junction with a built-in potential 𝜓0 = 2𝜙f . Substitution of (1.196) in (1.195)
gives

gmb =
𝛾 k′(W∕L)(VGS − Vt)(1 + λVDS)

2
√

2𝜙f + VSB

(1.198)
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If λVDS ≪ 1, we have

gmb =
𝛾 k′(W∕L)(VGS − Vt)

2
√

2𝜙f + VSB

= 𝛾

√
k′(W∕L)ID

2(2𝜙f + VSB)
(1.199)

The ratio gmb∕gm is an important quantity in practice. From (1.179) and (1.198), we find

gmb

gm
= 𝛾

2
√

2𝜙f + VSB

= 𝜒 (1.200)

The factor 𝜒 is typically in the range 0.1 to 0.3; therefore, the transconductance from the main
gate is typically a factor of about 3 to 10 times larger than the transconductance from the body
or second gate.

1.6.7 Parasitic Elements in the Small-Signal Model

The elements of the small-signal model for MOS transistors described above may be con-
sidered basic in the sense that they arise directly from essential processes in the device. As
in the case of bipolar transistors, however, technological limitations in the fabrication of the
devices give rise to a number of parasitic elements that must be added to the equivalent cir-
cuit for most integrated-circuit transistors. A cross section and top view of a typical n-channel
MOS transistor are shown in Fig. 1.35. The means of fabricating such devices is described
in Chapter 2.

All pn junctions in the MOS transistor should be reverse biased during normal operation,
and each junction exhibits a voltage-dependent parasitic capacitance associated with its deple-
tion region. The source-body and drain-body junction capacitances shown in Fig. 1.35a are Csb

GateSource Drain Body

n+n+

p

p+

Csb

Col Col

Cdb

L

S GW D

Cgb

B

(a)

(b)

Figure 1.35 (a) Cross section and (b) top view of an n-channel MOS transistor.
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and Cdb, respectively. If the doping levels in the source, drain, and body regions are assumed
to be constant, (1.21) can be used to express these capacitances as follows:

Csb =
Csb0(

1 +
VSB

𝜓0

)1∕2
(1.201)

Cdb =
Cdb0(

1 +
VDB

𝜓0

)1∕2
(1.202)

These capacitances are proportional to the source and drain region areas (including sidewalls).
Since the channel is attached to the source in the saturation or active region, Csb also includes
depletion-region capacitance from the induced channel to the body. A detailed analysis of the
channel-body capacitance is given by Tsividis.26

In practice, Cgs and Cgd, given in (1.187) for the triode region of operation and in (1.191)
and (1.192) for the saturation or active region, are increased due to parasitic oxide capacitances
arising from gate overlap of the source and drain regions. These overlap capacitances Col are
shown in Fig. 1.35a, and their values are calculated in Chapter 2.

Capacitance Cgb between gate and body or substrate models parasitic oxide capacitance
between the gate-contact material and the substrate outside the active-device area. This
capacitance is independent of the gate-body voltage and models coupling from polysilicon
and metal interconnects to the underlying substrate, as shown by the shaded regions in the
top view of Fig. 1.35b. Parasitic capacitance of this type underlies all polysilicon and metal
traces on integrated circuits. Such parasitic capacitance should be taken into account when
simulating and calculating high-frequency circuit and device performance. Typical values
depend on oxide thicknesses. With a silicon dioxide thickness of 100 Å, the capacitance is
about 3.45 fF per square micron. Fringing capacitance becomes important for lines narrower
in width than several microns.

Parasitic resistance in series with the source and drain can be used to model the nonzero
resistivity of the contacts and diffusion regions. In practice, these resistances are often
ignored in hand calculations for simplicity but included in computer simulations. These
parasitic resistances have an inverse dependence on channel width W. Typical values of these
resistances are 50 to 100 Ω for devices with W of about 1 μm. Similar parasitic resistances
in series with the gate and body terminals are sometimes included but often ignored because
very little current flows in these terminals, especially at low frequencies. The small-signal
model including capacitive parasitics but ignoring resistive parasitics is shown in Fig. 1.36.

G D

B

Cgd

Cgs

Cdb

Cgb

S
Csb

vgs

vbs

gmvgs gmbvbs ro

+

+

–

–

Figure 1.36 Small-signal MOS transistor equivalent circuit.
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1.6.8 MOS Transistor Frequency Response

As for a bipolar transistor, the frequency capability of an MOS transistor is usually specified by
finding the transition frequency fT . For an MOS transistor, fT is defined as the frequency where
the magnitude of the short-circuit, common-source current gain falls to unity. Although the dc
gate current of an MOS transistor is essentially zero, the high-frequency behavior of the tran-
sistor is controlled by the capacitive elements in the small-signal model, which cause the gate
current to increase as frequency increases. To calculate fT , consider the ac circuit of Fig. 1.37a
and the small-signal equivalent of Fig. 1.37b. Since vsb = vds = 0, gmb, ro, Csb, and Cdb have
no effect on the calculation and are ignored. The small-signal input current ii is

ii = s(Cgs + Cgb + Cgd)vgs (1.203)

If the current fed forward through Cgd is neglected,

io ≃ gmvgs (1.204)

Solving (1.203) for vgs and substituting into (1.204) gives

io
ii

≃
gm

s(Cgs + Cgb + Cgd)
(1.205)

To find the frequency response, we set s = j𝜔. Then

io
ii

≃
gm

j𝜔(Cgs + Cgb + Cgd)
(1.206)

The magnitude of the small-signal current gain is unity when

𝜔 = 𝜔T =
gm

Cgs + Cgb + Cgd
(1.207)

Therefore,

fT = 1
2𝜋

𝜔T = 1
2𝜋

gm

Cgs + Cgb + Cgd
(1.208)

Assume the intrinsic device capacitance Cgs is much greater than (Cgb + Cgd). Then substitut-
ing (1.180) and (1.191) into (1.208) gives

fT = 1.5
𝜇n

2𝜋L2
(VGS − Vt) (1.209)

ii

ii

io

vgs

vgs

Cgs + Cgb
gmvgs

io
Cgd

+
+

–
–

(b)(a)

Figure 1.37 Circuits for calculating the fT of an MOS transistor: (a) ac schematic and (b) small-signal
equivalent.
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Comparison of this equation with the intrinsic fT of a bipolar transistor when parasitic
depletion-layer capacitance is neglected leads to an interesting result. From (1.128) and
(1.130) with 𝜏F ≫ (Cje + C𝜇)∕gm,

fT = 1
2𝜋𝜏F

(1.210)

Substituting from (1.99) for 𝜏F and using the Einstein relationship Dn∕𝜇n = kT∕q = VT , we
find for a bipolar transistor

fT = 2
𝜇n

2𝜋W2
B

VT (1.211)

The similarity in form between (1.211) and (1.209) is striking. In both cases, the intrinsic
device fT increases as the inverse square of the critical device dimension across which carriers
are in transit. The voltage VT = 26 mV is fixed for a bipolar transistor, but the fT of an MOS
transistor can be increased by operating at high values of (VGS − Vt). Note that the base width
WB in a bipolar transistor is a vertical dimension determined by diffusions or implants and can
typically be made much smaller than the channel length L of an MOS transistor, which depends
on surface geometry and photolithographic processes. Thus bipolar transistors generally have
higher fT than MOS transistors made with comparable processing. Finally, (1.209) was derived
assuming that the MOS transistor exhibits square-law behavior as in (1.157). However, as
described in Section 1.7, submicron MOS transistors depart significantly from square-law
characteristics, and we find that for such devices fT is proportional to L−1 rather than L−2.

◼ EXAMPLE
Derive the complete small-signal model for an NMOS transistor with ID = 100 μA, VSB =
1 V, VDS = 2 V. Device parameters are 𝜙f = 0.3 V, W = 10 μm, L = 1 μm, 𝛾 = 0.5 V1∕2,
k′ = 200 μA/V2, λ = 0.02 V−1, tox = 100 angstroms, 𝜓0 = 0.6 V, and Csb0 = Cdb0 = 10 fF.
Overlap capacitance from gate to source and gate to drain is 1 fF. Assume Cgb = 5 fF.

From (1.166),

Vov = VGS − Vt =

√
2ID

k′(W∕L)
=

√
2 × 100

200 × 10
≃ 0.316 V

Since VDS > Vov, the transistor operates in the saturation or active region. From (1.180),

gm =
√

2k′
W
L

ID =
√

2 × 200 × 10 × 100μA/V ≃ 632μA/V

From (1.199),

gmb = 𝛾

√
k′(W∕L)ID

2(2𝜙f + VSB)
= 0.5

√
200 × 10 × 100

2 × 1.6
≃ 125μA/V

From (1.194),

ro = 1
λID

= 1000
0.02 × 100

kΩ = 500 kΩ

Using (1.201) with VSB = 1 V, we find

Csb = 10(
1 + 1

0.6

)1∕2
fF ≃ 6 fF
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The voltage from drain to body is

VDB = VDS + VSB = 3 V

and substitution in (1.202) gives

Cdb = 10(
1 + 3

0.6

)1∕2
fF ≃ 4 fF

From (1.142), the oxide capacitance per unit area is

Cox =
3.9 × 8.854 × 10−14 F

cm
× 100 cm

106 μm

100 Å ×
106 μm

1010 Å

≃ 3.45
fF
μm2

The intrinsic portion of the gate-source capacitance can be calculated from (1.191), giving

Cgs ≃
2
3
× 10 × 1 × 3.45 fF ≃ 23 fF

The addition of overlap capacitance gives

Cgs ≃ 24 fF

Finally, since the transistor operates in the saturation or active region, the gate-drain capaci-
tance consists of only overlap capacitance and is

Cgd = 1 fF

The complete small-signal equivalent circuit is shown in Fig. 1.38. The fT of the device can
be calculated from (1.208) as

fT = 1
2𝜋

gm

Cgs + Cgb + Cgd
= 1

2𝜋
× 632 × 10−6 × 1015

24 + 5 + 1
Hz = 3.4 GHz

G D

B

24 fF

6 fF

4 fF5 fF

632 ×
10–6 × vgs

125 ×
10–6 × vbs

1 fF

S

vgs

vbs

500 kΩ
+

+

–

–

Figure 1.38 Complete small-signal equivalent circuit for an NMOS transistor with ID = 100 μA, VSB =
1 V, VDS = 2 V. Device parameters are W = 10 μm, L = 1 μm, 𝛾 = 0.5 V1∕2, k′ = 200 μA/ V2, λ =
0.02 V−1, tox = 100 Å, 𝜓0 = 0.6 V, Csb0 = Cdb0 = 10 fF, Cgd = 1 fF, and Cgb = 5 fF.◼



60 Chapter 1 ▪ Models for Integrated-Circuit Active Devices

1.7 Short-Channel Effects in MOS Transistors
The evolution of integrated-circuit processing techniques has led to continuing reductions
in both the horizontal and vertical dimensions of the active devices. (The minimum allowed
dimensions of passive devices have also decreased.) This trend is driven primarily by
economics in that reducing dimensions increases the number of devices and circuits that
can be processed at one time on a given wafer. A second benefit has been that the frequency
capability of the active devices continues to increase, as intrinsic fT values increase with
smaller dimensions while parasitic capacitances decrease.

Vertical dimensions such as the base width of a bipolar transistor in production processes
may now be on the order of 0.05 μm or less, whereas horizontal dimensions such as bipolar
emitter width or MOS transistor gate length may be significantly less than 1 μm. Even with
these small dimensions, the large-signal and small-signal models of bipolar transistors given in
previous sections remain valid. However, significant short-channel effects become important in
MOS transistors at channel lengths of about 1 μm or less and require modifications to the MOS
models given previously. The primary effect is to modify the classical MOS square-law transfer
characteristic in the saturation or active region to make the device voltage-to-current transfer
characteristic more linear. However, even in processes with submicron capability, many of the
MOS transistors in a given analog circuit may be deliberately designed to have channel lengths
larger than the minimum and may be well approximated by the square-law model.

1.7.1 Velocity Saturation from the Horizontal Field

The most important short-channel effect in MOS transistors stems from velocity saturation of
carriers in the channel.27 When an MOS transistor operates in the triode region, the average
horizontal electric field along the channel is VDS∕L. When VDS is small and/or L is large, the
horizontal field is low, and the linear relation between carrier velocity and field assumed in
(1.148) is valid. At high fields, however, the carrier velocities approach the thermal velocities,
and subsequently the slope of the carrier velocity decreases with increasing field. This effect
is illustrated in Fig. 1.39, which shows typical measured electron drift velocity vd versus hor-
izontal electric field strength magnitude ℰ in an NMOS surface channel. While the velocity
at low field values is proportional to the field, the velocity at high field values approaches a
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Figure 1.39 Typical
measured electron drift
velocity vd versus horizontal
electric field ℰ in an MOS
surface channel (solid plot).
Also shown (dashed plot) is
the analytical approxi-
mation of (1.212) with
ℰc = 1.5 × 106 V/m and
𝜇n = 0.07 m2/V-s.
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constant called the scattering-limited velocity vscl. A first-order analytical approximation to
this curve is

vd =
𝜇n ℰ

1 +ℰ∕ℰc
(1.212)

where ℰc ≃ 1.5 × 106 V/m and 𝜇n ≃ 0.07 m2/V-s is the low-field mobility close to the gate.
Equation 1.212 is also plotted in Fig. 1.39. From (1.212), as ℰ → ∞, vd → vscl = 𝜇nℰc. At
the critical field value ℰc, the carrier velocity is a factor of 2 less than the low-field formula
would predict. In a device with a channel length L = 0.5 μm, we need a voltage drop of only
0.75 V along the channel to produce an average field equal to ℰc, and this condition is readily
achieved in short-channel MOS transistors. Similar results are found for PMOS devices.

Substituting (1.212) and (1.149) into (1.147) and rearranging gives

ID

(
1 + 1

ℰc

dV
dy

)
= WQI(y)𝜇n

dV
dy

(1.213)

Note that as ℰc → ∞ and velocity saturation becomes negligible, (1.213) approaches the orig-
inal equation (1.147). Integrating (1.213) along the channel, we obtain

∫
L

0
ID

(
1 + 1

ℰc

dV
dy

)
dy = ∫

VDS

0
WQI(y)𝜇n dV (1.214)

and thus

ID =
𝜇nCox

2

(
1 +

VDS

ℰcL

) W
L
[2(VGS − Vt)VDS − V2

DS] (1.215)

In the limit as ℰc → ∞, (1.215) is the same as (1.152), which gives the drain current in the
triode region without velocity saturation. The quantity VDS∕L in (1.215) can be interpreted as
the average horizontal electric field in the channel. If this field is comparable to ℰc, the drain
current for a given VDS is less than the simple expression (1.152) would predict.

Equation 1.215 is valid in the triode region. Let VDS(act) represent the maximum value of
VDS for which the transistor operates in the triode region, which is equivalent to the minimum
value of VDS for which the transistor operates in the active region. In the active region, the
current should be independent of VDS because channel-length modulation is not included here.
Therefore, VDS(act) is the value of VDS that sets 𝜕ID∕𝜕VDS = 0. From (1.215),

𝜕ID

𝜕VDS
= k′

2
W
L

⎡⎢⎢⎢⎢⎣

(
1 +

VDS

ℰcL

)
[2(VGS − Vt) − 2VDS] −

[2(VGS − Vt)VDS − V2
DS]

ℰcL(
1 +

VDS

ℰcL

)2

⎤⎥⎥⎥⎥⎦
(1.216)

where k′ = 𝜇nCox as given by (1.153). To set 𝜕ID∕𝜕VDS = 0,(
1 +

VDS

ℰcL

)
[2(VGS − Vt) − 2VDS] −

[2(VGS − Vt)VDS − V2
DS]

ℰcL
= 0 (1.217)

Rearranging (1.217) gives

V2
DS

ℰcL
+ 2VDS − 2(VGS − Vt) = 0 (1.218)
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Solving the quadratic equation gives

VDS(act) = VDS = −ℰcL ±ℰcL

√
1 +

2(VGS − Vt)
ℰcL

(1.219)

Since the drain-source voltage must be greater than zero,

VDS(act) = VDS = ℰcL
⎛⎜⎜⎝
√

1 +
2(VGS − Vt)

ℰcL
− 1

⎞⎟⎟⎠ (1.220)

To determine VDS(act) without velocity-saturation effects, let ℰc → ∞ so that the drift veloc-
ity is proportional to the electric field, and let x = (VGS − Vt)∕(ℰcL). Then x → 0, and a Taylor
series can be used to show that √

1 + 2x = 1 + x − x2

2
+ · · · (1.221)

Using (1.221) in (1.220) gives

VDS(act) = (VGS − Vt)
(

1 −
VGS − Vt

2ℰcL
+ · · ·

)
(1.222)

When ℰc → ∞, (1.222) shows that VDS(act) → (VGS − Vt), as expected.28 This observation is
confirmed by plotting the ratio of VDS(act) to the overdrive Vov versus ℰcL in Fig. 1.40. When
ℰc → ∞, VDS(act) → Vov = VGS − Vt, as predicted by (1.222). On the other hand, when ℰc is
small enough that velocity saturation is significant, Fig. 1.40 shows that VDS(act) < Vov.

To find the drain current in the active region with velocity saturation, substitute VDS(act) in
(1.220) for VDS in (1.215). After rearranging, the result is

ID =
𝜇nCox

2
W
L
[VDS(act)]2 (1.223)

Equation 1.223 is in the same form as (1.157), where velocity saturation is neglected, except
that VDS(act) is less than (VGS − Vt)when velocity saturation is significant, as shown in Fig. 1.40.

Vov = 0.1 V

Vov = 0.5 V

Vov

VDS(act)

1

0.9
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0 1 2 3 4 5 6 7 8 9 10

cL (V)

Figure 1.40 Ratio of the minimum
drain-source voltage required for
operation in the active region to the
overdrive versus the product of the
critical field and the channel length.
When ℰc → ∞, velocity saturation
is not a factor, and VDS(act) →
Vov = VGS − Vt, as expected. When
velocity saturation is significant,
VDS(act) < Vov.
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Therefore, the current predicted by (1.157) overestimates the current that really flows when the
carrier velocity saturates. To examine the limiting case when the velocity is completely satu-
rated, let ℰc → 0. Then (1.212) shows that the drift velocity approaches the scattering-limited
velocity vd → vscl = 𝜇nℰc. Substituting (1.220) into (1.223) gives

lim
ℰc→0

ID = 𝜇nCoxW(VGS − Vt)ℰc = WCox(VGS − Vt)vscl (1.224)

In contrast to the square-law behavior predicted by (1.157), (1.224) shows that the drain cur-
rent is a linear function of the overdrive (VGS − Vt) when the carrier velocity saturates. Also,
(1.224) shows that the drain current is independent of the channel length when the carrier
velocity saturates. In this case, both the charge in the channel and the time required for the
charge to cross the channel are proportional to L. Since the current is the ratio of the charge
in the channel to the time required to cross the channel, the current does not depend on L as
long as the channel length is short enough to produce an electric field that is high enough
for velocity saturation to occur.29 In contrast, when the carrier velocity is proportional to the
electric field instead of being saturated, the time required for channel charge to cross the chan-
nel is proportional to L2 because increasing L both reduces the carrier velocity and increases
the distance between the source and the drain. Therefore, when velocity saturation is not sig-
nificant, the drain current is inversely proportional to L, as we have come to expect through
(1.157). Finally, (1.224) shows that the drain current in the active region is proportional to the
scattering-limited velocity vscl = 𝜇nℰc when the velocity is saturated.

Substituting (1.222) into (1.223) gives

ID =
𝜇nCox

2
W
L
(VGS − Vt)2

(
1 −

VGS − Vt

2ℰcL
+ · · ·

)2

=
𝜇nCox

2
W
L
(VGS − Vt)2

(
1 − x

2
+ · · ·

)2

=
𝜇nCox

2
W
L
(VGS − Vt)2 (1 − x + · · · )

=
𝜇nCox

2
W
L
(VGS − Vt)2

(
1 −

VGS − Vt

ℰcL
+ · · ·

)
(1.225)

where x = (VGS − Vt)∕(ℰcL) as defined for (1.221). If x ≪ 1, (1 − x) ≃ 1∕(1 + x), and

ID ≃
𝜇nCox

2

(
1 +

VGS − Vt

ℰcL

) W
L
(VGS − Vt)2 (1.226)

Equation 1.226 is valid without velocity saturation and at its onset, where (VGS − Vt) ≪ ℰcL.
The effect of velocity saturation on the current in the active region predicted by (1.226) can
be modeled with the addition of a resistance in series with the source of an ideal square-law
device, as shown in Fig. 1.41. Let V ′

GS be the gate-source voltage of the ideal square-law tran-
sistor. From (1.157),

ID =
𝜇nCox

2
W
L
(V ′

GS − Vt)2 (1.227)

Let VGS be the sum of V ′
GS and the voltage drop on RSX . Then

VGS = V ′
GS + IDRSX (1.228)
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Figure 1.41 Model of velocity saturation in an MOSFET by addition of series
source resistance to an ideal square-law device.

This sum models the gate-source voltage of a real MOS transistor with velocity saturation.
Substituting (1.228) into (1.227) gives

ID =
𝜇nCox

2
W
L
(VGS − IDRSX − Vt)2

ID =
𝜇nCox

2
W
L

(
(VGS − Vt)2 − 2(VGS − Vt)IDRSX + (IDRSX)2

)
(1.229)

Rearranging (1.229) while ignoring the (IDRSX)2 term gives

ID ≃
𝜇nCox

2
(

1 + 𝜇nCox
W
L

RSX(VGS − Vt)
) W

L
(VGS − Vt)2 (1.230)

Equation 1.230 has the same form as (1.226) if we identify

𝜇nCox
W
L

RSX = 1
ℰcL

(1.231)

Rearranging (1.231) gives

RSX = 1
ℰc𝜇nCoxW

(1.232)

Thus the influence of velocity saturation on the large-signal characteristics of an MOS tran-
sistor can be modeled to first order by a resistor RSX in series with the source of an ideal
square-law device. Note that RSX varies inversely with W, as does the intrinsic physical series
resistance due to the source and drain contact regions. Typically, RSX is larger than the physical
series resistance. For W = 2 μm, k′ = 𝜇nCox = 200 μA/V2, and ℰc = 1.5 × 106 V/m, we find
RSX ≃ 1700 Ω.

1.7.2 Transconductance and Transition Frequency

The values of all small-signal parameters can change significantly in the presence of
short-channel effects.30 One of the most important changes is to the transconductance.
Substituting (1.220) into (1.223) and calculating 𝜕ID∕𝜕VGS gives

gm =
𝜕ID

𝜕VGS
= WCoxvscl

√
1 +

2(VGS − Vt)
ℰcL

− 1√
1 +

2(VGS − Vt)
ℰcL

(1.233)
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where vscl = 𝜇nℰc as in Fig. 1.39. To determine gm without velocity saturation, let Ec → ∞
and x = (VGS − Vt)∕(ℰcL). Then substituting (1.221) into (1.233) and rearranging gives

lim
ℰc→∞

gm = k′
W
L
(VGS − Vt) (1.234)

as predicted by (1.180). In this case, the transconductance increases when the overdrive
increases or the channel length decreases. On the other hand, letting ℰc → 0 to determine gm
when the velocity is saturated gives

lim
ℰc→0

gm = WCoxvscl (1.235)

Equation 1.235 shows that further decreases in L or increases in (VGS − Vt) do not change the
transconductance when the velocity is saturated.

From (1.223) and (1.233), the ratio of the transconductance to the current can be
calculated as

gm

I
= 2

(ℰcL)

√
1 +

2(VGS − Vt)
ℰcL

⎛⎜⎜⎝
√

1 +
2(VGS − Vt)

ℰcL
− 1

⎞⎟⎟⎠
(1.236)

As ℰc → 0, the velocity saturates and

lim
ℰc→0

gm

I
= 1

VGS − Vt
(1.237)

Comparing (1.237) to (1.181) shows that velocity saturation reduces the transconductance-to-
current ratio for a given overdrive.

On the other hand, when x = (VGS − Vt)∕(ℰcL) ≪ 1, substituting (1.221) into (1.236) gives

gm

I
≃ 2

(VGS − Vt)(1 + x)
(1.238)

Therefore, as ℰc → ∞, x → 0, and (1.238) collapses to

lim
ℰc→∞

gm

I
= 2

VGS − Vt
(1.239)

as predicted by (1.181). Equation 1.238 shows that if x < 0.1, the error in using (1.181) to
calculate the transconductance-to-current ratio is less than about 10 percent. Therefore, we
will conclude that velocity-saturation effects are insignificant in hand calculations if

(VGS − Vt) < 0.1(ℰcL) (1.240)

Figure 1.42 plots the transconductance-to-current ratio versus the overdrive for three cases.
The highest and lowest ratios come from (1.239) and (1.237), which correspond to asymptotes
where velocity saturation is insignificant and dominant, respectively. In practice, the transition
between these extreme cases is gradual and described by (1.236), which is plotted in Fig. 1.42
for an example where ℰc = 1.5 × 106 V/m and L = 0.5 μm.
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Figure 1.42 Transconductance-
to-current ratio versus overdrive
(VGS − Vt) where velocity
saturation is insignificant
(ℰcL → ∞), dominant
(ℰcL = 0), and of gradually
increasing importance
(ℰcL = 0.75 V).

One reason the change in transconductance caused by velocity saturation is important is
because it affects the transition frequency fT . Assuming that Cgs ≫ Cgb + Cgd, substituting
(1.235) into (1.208) shows that

fT = 1
2𝜋

gm

Cgs
∝

WCoxvscl

WLCox
∝

vscl

L
(1.241)

A key point here is that the transition frequency is independent of the overdrive once velocity
saturation is reached. In contrast, (1.209) shows that increasing (VGS − Vt) increases fT before
the velocity saturates. Also, (1.241) shows that the transition frequency is inversely propor-
tional to the channel length when the velocity is saturated. In contrast, (1.209) predicts that
fT is inversely proportional to the square of the channel length before the velocity saturates.
As a result, velocity saturation reduces the speed improvement that can be achieved through
reductions in the minimum channel length.

1.7.3 Mobility Degradation from the Vertical Field

Thus far, we have considered only the effects of the horizontal field due to the VDS along the
channel when considering velocity saturation. However, a vertical field originating from the
gate voltage also exists and influences carrier velocity. A physical reason for this effect is that
increasing the vertical electric field forces the carriers in the channel closer to the surface of
the silicon, where surface imperfections impede their movement from the source to the drain,
reducing mobility.31 The vertical field at any point in the channel depends on the gate-channel
voltage. Since the gate-channel voltage is not constant from the source to the drain, the effect of
the vertical field on mobility should be included within the integration in (1.214) in principle.32

For simplicity, however, this effect is often modeled after integration by changing the mobility
in the previous equations to an effective mobility given by

𝜇eff =
𝜇n

1 + 𝜃(VGS − Vt)
(1.242)

where 𝜇n is the mobility with zero vertical field, and 𝜃 is inversely proportional to the oxide
thickness. For tox = 100 Å, 𝜃 is typically in the range from 0.1 to 0.4 V−1.33 In practice, 𝜃 is
determined by a best fit to measured device characteristics.
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1.8 Weak Inversion in MOS Transistors
The MOSFET analysis of Section 1.5 considered the normal region of operation for which
a well-defined conducting channel exists under the gate. In this region of strong inversion,
changes in the gate-source voltage are assumed to cause changes only in the channel charge
and not in the depletion-region charge. In contrast, for gate-source voltages less than the extrap-
olated threshold voltage Vt but high enough to create a depletion region at the surface of the
silicon, the device operates in weak inversion. In the weak-inversion region, the channel charge
is much less than the charge in the depletion region, and the drain current arising from the drift
of majority carriers is negligible. However, the total drain current in weak inversion is larger
than that caused by drift because a gradient in minority-carrier concentration causes a diffu-
sion current to flow. In weak inversion, an n-channel MOS transistor operates as an npn bipolar
transistor, where the source acts as the emitter, the substrate as the base, and the drain as the
collector.34

1.8.1 Drain Current in Weak Inversion

To analyze this situation, assume that the source and the body are both grounded. Also assume
that VDS > 0. (If VDS < 0, the drain acts as the emitter and the source as the collector.)35 Then
increasing the gate-source voltage increases the surface potential 𝜓s, which tends to reduce the
reverse bias across the source-substrate (emitter-base) junction and to exponentially increase
the concentration of electrons in the p-type substrate at the source np(0). From (1.27),

np(0) = npo exp
𝜓s

VT
(1.243)

where npo is the equilibrium concentration of electrons in the substrate (base). Similarly, the
concentration of electrons in the substrate at the drain np(L) is

np(L) = npo exp
𝜓s − VDS

VT
(1.244)

From (1.31), the drain current due to the diffusion of electrons in the substrate is

ID = qADn

np(L) − np(0)
L

(1.245)

where Dn is the diffusion constant for electrons, and A is the cross-sectional area in which the
diffusion current flows. The area A is the product of the transistor width W and the thickness X
of the region in which ID flows. Substituting (1.243) and (1.244) into (1.245) and rearranging
gives

ID = W
L

qXDnnpo exp

(
𝜓s

VT

)[
1 − exp

(
−

VDS

VT

)]
(1.246)

In weak inversion, the surface potential is approximately a linear function of the gate-source
voltage.36 Assume that the charge stored at the oxide-silicon interface is independent of the
surface potential. Then in weak inversion, changes in the surface potential Δ𝜓s are controlled
by changes in the gate-source voltageΔVGS through a voltage divider between the oxide capac-
itance Cox and the depletion-region capacitance Cjs. Therefore,

d𝜓s

dVGS
=

Cox

Cjs + Cox
= 1

n
= 1

1 + 𝜒
(1.247)
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in which n = (1 + Cjs∕Cox) and 𝜒 = Cjs∕Cox, as defined in (1.197). Separating variables in
(1.247) and integrating gives

𝜓s =
VGS

n
+ k1 (1.248)

where k1 is a constant. Equation 1.248 is valid only when the transistor operates in weak
inversion. When VGS = Vt with VSB = 0, 𝜓s = 2𝜙f by definition of the threshold voltage. For
VGS > Vt, the inversion layer holds the surface potential nearly constant and (1.248) is not
valid. Since (1.248) is valid only when VGS ≤ Vt, (1.248) is rewritten as follows:

𝜓s =
VGS − Vt

n
+ k2 (1.249)

where k2 = k1 + Vt∕n. Substituting (1.249) into (1.246) gives

ID = W
L

qXDnnpo exp

(
k2

VT

)
exp

(
VGS − Vt

nVT

)[
1 − exp

(
−

VDS

VT

)]
(1.250)

Let

It = qXDnnpo exp

(
k2

VT

)
(1.251)

represent the drain current with VGS = Vt, W∕L = 1, and VDS ≫ VT . Then

ID = W
L

It exp

(
VGS − Vt

nVT

)[
1 − exp

(
−

VDS

VT

)]
(1.252)

Figure 1.43 plots the drain current versus the drain-source voltage for three values of the
overdrive, with W = 20 μm, L = 20 μm, n = 1.5, and It = 0.1 μA. Notice that the drain current
is almost constant when VDS > 3VT because the last term in (1.252) approaches unity in this
case. Therefore, unlike in strong inversion, the minimum drain-source voltage required to force
the transistor to operate as a current source in weak inversion is independent of the overdrive.37

Figure 1.43 and (1.252) also show that the drain current is not zero when VGS ≤ Vt. To further
illustrate this point, we show measured NMOS characteristics plotted on two different scales
in Fig. 1.44. In Fig. 1.44a, we show

√
ID versus VGS in the active region plotted on linear

VDS = 3VT ≃ 78 mV

VDS (V)

ID (μA) VGS – Vt = –10 mV

VGS – Vt = –20 mV

VGS – Vt = 0

0.12

0.10

0.08

0.06

0.04

0.02

0 0.1 0.2 0.3 0.4 0.5
0 Figure 1.43 Drain current

versus drain-source voltage in
weak inversion.
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Figure 1.44 (a) Measured
NMOS transfer character-
istic in the active region
plotted on linear scales as√

ID versus VGS, showing
the square-law
characteristic.
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Figure 1.44 (b) Data from
Fig. 1.44a plotted on log-linear
scales showing the exponential
character- istic in the
subthreshold region.

scales. For this device, W = 20 μm, L = 20 μm, and short-channel effects are negligible. (See
Problem 1.21 for an example of a case in which short-channel effects are important.) The
resulting straight line shows that the device characteristic is close to an ideal square law. Plots
like the one in Fig. 1.44a are commonly used to obtain Vt by extrapolation (0.7 V in this case)
and also k′ from the slope of the curve (54 μA/V2 in this case). Near the threshold voltage, the
curve deviates from the straight line representing the square law. This region is weak inversion.
The data are plotted a second time in Fig. 1.44b on log-linear scales. The straight line obtained
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for VGS < Vt fits (1.252) with n = 1.5. For ID < 10−12 A, the slope decreases because leakage
currents are significant and do not follow (1.252).

The major use of transistors operating in weak inversion is in very-low-power applications
at relatively low signal frequencies. The limitation to low signal frequencies occurs because
the MOSFET fT becomes very small. This result stems from the fact that the small-signal gm
calculated from (1.252) becomes proportional to ID and therefore very small in weak inversion,
as shown next.

1.8.2 Transconductance and Transition Frequency in Weak Inversion

Calculating 𝜕ID∕𝜕VGS from (1.252) and using (1.247) gives

gm = W
L

It

nVT
exp

(
VGS − Vt

nVT

)[
1 − exp

(
−

VDS

VT

)]
=

ID

nVT
=

ID

VT

Cox

Cjs + Cox
(1.253)

The transconductance of an MOS transistor operating in weak inversion is identical to that of a
corresponding bipolar transistor, as shown in (1.182), except for the factor of 1∕n = Cox∕(Cjs +
Cox). This factor stems from a voltage divider between the oxide and depletion capacitors in
the MOS transistor, which models the indirect control of the gate on the surface potential.

From (1.253), the ratio of the transconductance to the current of an MOS transistor in weak
inversion is

gm

I
= 1

nVT
= 1

VT

Cox

Cjs + Cox
(1.254)

Equation 1.254 predicts that this ratio is independent of the overdrive. In contrast, (1.181)
predicts that the ratio of transconductance to current is inversely proportional to the overdrive.
Therefore, as the overdrive approaches zero, (1.181) predicts that this ratio becomes infinite.
However, (1.181) is valid only when the transistor operates in strong inversion. To estimate the
overdrive required to operate the transistor in strong inversion, we will equate the gm∕I ratios
calculated in (1.254) and (1.181). The result is

Vov = VGS − Vt = 2nVT (1.255)

which is about 78 mV at room temperature with n = 1.5. Although this analysis implies that
the transition from weak to strong inversion occurs abruptly, a nonzero transition width occurs
in practice. Between weak and strong inversion, the transistor operates in a region of moderate
inversion, where both diffusion and drift currents are significant.38

Figure 1.44 plots the transconductance-to-current ratio versus overdrive for an example case
with n = 1.5. When the overdrive is negative but high enough to cause depletion at the surface,
the transistor operates in weak inversion and the transconductance-to-current ratio is constant,
as predicted by (1.254). When VGS − Vt = 0, the surface potential is 2𝜓f , which means that
the surface concentration of electrons is equal to the bulk concentration of holes. This point is
usually defined as the upper bound on the region of weak inversion. When VGS − Vt > 2nVT ,
the transconductance-to-current ratio is given by (1.181), assuming that velocity saturation is
negligible. If velocity saturation is significant, (1.236) should be used instead of (1.181) both
to predict the transconductance-to-current ratio and to predict the overdrive required to operate
in strong inversion. For 0 ≤ VGS − Vt ≤ 2nVT , the transistor operates in moderate inversion.
Because simple models for moderate inversion are not known in practice, we will ignore this
region in the remainder of this book and assume that MOS transistors operate in weak inversion
for overdrives less than the bound given in (1.255).
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Figure 1.45 Transconductance-to-current ratio versus overdrive.

Equation 1.208 can be used to find the transition frequency. In weak inversion,
Cgs ≃ Cgd ≃ 0 because the inversion layer contains little charge.39 However, Cgb can be
thought of as the series combination of the oxide and depletion capacitors. Therefore,

Cgs + Cgb + Cgd ≃ Cgb = WL

( CoxCjs

Cox + Cjs

)
(1.256)

Substituting (1.253) and (1.256) into (1.208) gives

fT = 1
2𝜋

𝜔T = 1
2𝜋

ID

VT

Cox

Cjs + Cox

WL
CoxCjs

Cox + Cjs

= 1
2𝜋

ID

VT

1
WLCjs

(1.257)

Let IM represent the maximum drain current that flows in the transistor in weak inversion. Then

IM = W
L

It (1.258)

where It is given in (1.251). Multiplying the numerator and denominator in (1.257) by IM and
using (1.258) gives

fT = 1
2𝜋

W
L

It

VT

1
WLCjs

ID

IM
= 1

2𝜋

It

VT

1
Cjs

1
L2

ID

IM
(1.259)

From (1.251), It ∝ Dn. Using the Einstein relationship Dn = 𝜇nVT gives

fT ∝
Dn

L2

ID

IM
∝

𝜇nVT

L2

ID

IM
(1.260)

Equation 1.260 shows that the transition frequency for an MOS transistor operating in weak
inversion is inversely proportional to the square of the channel length. This result is consistent
with (1.209) for strong inversion without velocity saturation. In contrast, when velocity
saturation is significant, the transition frequency is inversely proportional to the channel
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length, as predicted by (1.241). Equation 1.260 also shows that the transition frequency in
weak inversion is independent of the overdrive, unlike the case in strong inversion without
velocity saturation, but like the case with velocity saturation. Finally, a more detailed analysis
shows that the constant of proportionality in (1.260) is approximately unity.39

◼ EXAMPLE
Calculate the overdrive and the transition frequency for an NMOS transistor with ID = 1 μA,
It = 0.1 μA, and VDS ≫ VT . Device parameters are W = 10 μm, L = 1 μm, n = 1.5,
k′ = 200 μA/V2, and tox = 100 Å. Assume that the temperature is 27∘C.

From (1.166), if the transistor operates in strong inversion,

Vov = VGS − Vt =

√
2ID

k′(W∕L)
=

√
2 × 1

200 × 10
≃ 32 mV

Since the value of the overdrive calculated by (1.166) is less than 2nVT ≃ 78 mV, the overdrive
calculated previously is not valid except to indicate that the transistor does not operate in strong
inversion. From (1.252), the overdrive in weak inversion with VDS ≫ VT is

Vov = nVT ln

(
ID

It

L
W

)
= (1.5)(26 mV) ln

( 1
0.1

1
10

)
= 0

From (1.253),

gm =
1 μA

1.5(26 mV)
≃ 26

μA

V

From (1.247),

Cjs = (n − 1)Cox = (0.5)Cox

From (1.256),

Cgs + Cgb + Cgd ≃ Cgb = WL
Cox(0.5Cox)
Cox + 0.5Cox

= WL
Cox

3

=
10 μm2

3

3.9 × 8.854 × 10−14 F
cm

× 100 cm

106 μm

100 Å ×
106 μm

1010 Å
≃ 11.5 fF

From (1.208),

fT = 1
2𝜋

𝜔T = 1
2𝜋

26 μA/V

11.5 fF
≃ 360 MHz

Although 360 MHz may seem to be a high transition frequency at first glance, this result
should be compared with the result of the example at the end of Section 1.6, where the same
transistor operating in strong inversion with an overdrive of 316 mV had a transition frequency
of 3.4 GHz.◼
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1.9 Substrate Current Flow in MOS Transistors
In Section 1.3.4, the effects of avalanche breakdown on bipolar transistor characteristics were
described. As the reverse-bias voltages on the device are increased, carriers traversing the
depletion regions gain sufficient energy to create new electron-hole pairs in lattice collisions
by a process known as impact ionization. Eventually, at sufficient bias voltages, the process
results in large avalanche currents. For collector-base bias voltages well below the breakdown
value, a small enhanced current flow may occur across the collector-base junction due to this
process, with little apparent effect on the device characteristics.

Impact ionization also occurs in MOS transistors but has a significantly different effect on
the device characteristics. This difference is because the channel electrons (for the NMOS
case) create electron-hole pairs in lattice collisions in the drain depletion region, and some
of the resulting holes then flow to the substrate, creating a substrate current. (The electrons
created in the process flow out the drain terminal.) The carriers created by impact ionization
are therefore not confined within the device as in a bipolar transistor. The effect of this phe-
nomenon can be modeled by inclusion of a controlled current generator IDB from drain to
substrate, as shown in Fig. 1.46 for an NMOS device. The magnitude of this substrate current
depends on the voltage across the drain depletion region (which determines the energy of the
ionizing channel electrons) and also on the drain current (which is the rate at which the channel
electrons enter the depletion region). Empirical investigation has shown that the current IDB
can be expressed as

IDB = K1(VDS − VDS(act))ID exp

(
−

K2

VDS − VDS(act)

)
(1.261)

where K1 and K2 are process-dependent parameters and VDS(act) is the minimum value of VDS
for which the transistor operates in the active region.40 Typical values for NMOS devices are
K1 = 5 V−1 and K2 = 30 V. The effect is generally much less significant in PMOS devices
because the holes carrying the charge in the channel are much less efficient in creating
electron-hole pairs than energetic electrons.

The major impact of this phenomenon on circuit performance is that it creates a parasitic
resistance from drain to substrate. Because the common substrate terminal must always be
connected to the most negative supply voltage in the circuit, the substrate of an NMOS device
in a p-substrate process is an ac ground. Therefore, the parasitic resistance shunts the drain to
ac ground and can be a limiting factor in many circuit designs. Differentiating (1.261), we find
that the drain-substrate small-signal conductance is

gdb =
𝜕IDB

𝜕VD
=

IDB

VDS − VDS(act)

(
K2

VDS − VDS(act)
+ 1

)
≃

K2IDB

(VDS − VDS(act))2
(1.262)

where the gate and the source are assumed to be held at fixed potentials.

IDB

B

D

S

G

Figure 1.46 Representation of impact ionization in an MOSFET
by a drain-substrate current generator.
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◼ EXAMPLE

Calculate rdb = 1∕gdb for VDS = 2 V and 4 V, and compare with the device ro. Assume
ID = 100 μA, λ = 0.05 V−1, VDS(act) = 0.3 V, K1 = 5 V−1, and K2 = 30 V.

For VDS = 2 V, we have from (1.261)

IDB = 5 × 1.7 × 100 × 10−6 × exp
(
− 30

1.7

)
≃ 1.8 × 10−11 A

From (1.262),

gdb ≃ 30 × 1.8 × 10−11

1.72
≃ 1.9 × 10−10 A

V

and thus
rdb = 1

gdb
≃ 5.3 × 109 Ω = 5.3 GΩ

This result is negligibly large compared with

ro = 1
λID

= 1

0.05 × 100 × 10−6
= 200 kΩ

However, for VDS = 4 V,

IDB = 5 × 3.7 × 100 × 10−6 × exp
(
− 30

3.7

)
≃ 5.6 × 10−7 A

The substrate leakage current is now about 0.5 percent of the drain current. More important,
we find from (1.262) that

gdb ≃ 30 × 5.6 × 10−7

3.72
≃ 1.2 × 10−6 A

V

and thus
rdb = 1

gdb
≃ 8.15 × 105 Ω = 815 kΩ

This parasitic resistor is now comparable to ro and can have a dominant effect on
high-output-impedance MOS current mirrors, as described in Chapter 4.◼

APPENDIX
A.1.1 SUMMARY OF ACTIVE-DEVICE PARAMETERS

(a) npn Bipolar Transistor Parameters

Quantity Formula

Large-Signal Forward-Active Operation

Collector current Ic = IS exp
Vbe

VT

Small-Signal Forward-Active Operation

Transconductance gm =
qIC

kT
=

IC

VT
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Quantity Formula

Small-Signal Forward-Active Operation

Transconductance-to-current ratio
gm

IC

= 1
VT

Input resistance r𝜋 =
𝛽0

gm

Output resistance ro =
VA

IC

= 1
𝜂gm

Collector-base resistance r𝜇 = 𝛽0ro to 5𝛽0ro

Base-charging capacitance Cb = 𝜏F gm

Base-emitter capacitance C𝜋 = Cb + Cje

Emitter-base junction depletion capacitance Cje ≃ 2Cje0

Collector-base junction capacitance C𝜇 =
C𝜇0(

1 −
VBC

𝜓0c

)nc

Collector-substrate junction capacitance Ccs =
Ccs0(

1 −
VSC

𝜓0s

)ns

Transition frequency fT = 1
2𝜋

gm

C𝜋 + C𝜇

Effective transit time 𝜏T = 1
2𝜋fT

= 𝜏F +
Cje

gm

+
C𝜇

gm

Maximum gain gmro =
VA

VT

= 1
𝜂

(b) NMOS Transistor Parameters

Quantity Formula

Large-Signal Operation

Drain current (active region) Id =
𝜇Cox

2
W
L
(Vgs − Vt)

2

Drain current (triode region) Id =
𝜇Cox

2
W
L
[2(Vgs − Vt)Vds − Vds

2]

Threshold voltage Vt = Vt0 + 𝛾

[√
2𝜙f + Vsb −

√
2𝜙f

]
Threshold voltage parameter 𝛾 = 1

Cox

√
2q𝜖NA

Oxide capacitance Cox =
𝜖ox

tox

= 3.45 fF/μm2 for tox = 100 Å
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Quantity Formula

Small-Signal Operation (Active Region)

Top-gate transconductance gm = 𝜇Cox
W
L
(VGS − Vt) =

√
2ID𝜇Cox

W
L

Transconductance-to-current ratio
gm

ID

= 2
VGS − Vt

Body-effect transconductance gmb =
𝛾

2
√

2𝜙f + VSB

gm = 𝜒gm

Channel-length modulation parameter λ = 1
VA

= 1
Leff

dXd

dVDS

Small-Signal Operation (Active Region)

Output resistance ro =
1
λID

=
Leff

ID

(
dXd

dVDS

)−1

Effective channel length Leff = Ldrwn − 2Ld − Xd

Maximum gain gmro =
1
λ

2
VGS − Vt

=
2VA

VGS − Vt

Source-body depletion capacitance Csb =
Csb0(

1 +
VSB

𝜓0

)0.5

Drain-body depletion capacitance Cdb =
Cdb0(

1 +
VDB

𝜓0

)0.5

Gate-source capacitance Cgs =
2
3

WLCox

Transition frequency fT =
gm

2𝜋(Cgs + Cgd + Cgb)

PROBLEMS
1.1 .(a) Calculate the built-in potential, depletion-

layer depths, and maximum field in a plane-abrupt
pn junction in silicon with doping densities NA = 8 ×
1015 atoms/cm3 and ND = 1017 atoms/cm3. Assume a
reverse bias of 5 V.

(b) Repeat (a) for zero external bias and 0.3 V
forward bias.

1.2 Calculate the zero-bias junction capac-
itance for the example in Problem 1.1, and
also calculate the value at 5 V reverse bias and
0.3 V forward bias. Assume a junction area of
2 × 10−5 cm2.

1.3 Calculate the breakdown voltage for the junc-
tion of Problem 1.1 if the critical field is ℰcrit = 4 ×
105 V/cm.

1.4 If junction curvature causes the maximum
field at a practical junction to be 1.5 times the the-
oretical value, calculate the doping density required
to give a breakdown voltage of 150 V with an abrupt
pn junction in silicon. Assume that one side of the
junction is much more heavily doped than the other
and ℰcrit = 3 × 105 V/cm.

1.5 If the collector doping density in a transis-
tor is 6 × 1015 atoms/cm3 and is much less than the
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base doping, find BVCEO for 𝛽F = 200 and n = 4. Use
ℰcrit = 3 × 105 V/cm.

1.6 Repeat Problem 1.5 for a doping density of
1015 atoms/cm3 and 𝛽F = 400.

1.7 .(a) Sketch the IC-VCE characteristics in
the forward-active region for an npn transistor
with 𝛽F = 100 (measured at low VCE), VA = 50 V,
BVCBO = 120 V, and n = 4. Use

IC =
(

1 +
VCE

VA

)
M𝛼F

1 − M𝛼F

IB

where M is given by (1.78). Plot IC from 0 to 10 mA
and VCE from 0 to 50 V. Use IB = 1 μA, 10 μA, 30 μA,
and 60 μA.

(b) Repeat (a), but sketch VCE from 0 to 10 V.

1.8 Derive and sketch the complete small-signal
equivalent circuit for a bipolar transistor at IC =
0.2 mA, VCB = 3 V, and VCS = 4 V. Device parame-
ters are Cje0 = 20 fF, C𝜇0 = 10 fF, Ccs0 = 20 fF, 𝛽0 =
100, 𝜏F = 15 ps, 𝜂 = 10−3, rb = 200 Ω, rc = 100 Ω,
rex = 4 Ω, and r𝜇 = 5𝛽0ro. Assume 𝜓0 = 0.55 V for
all junctions.

1.9 Repeat Problem 1.8 for IC = 1 mA, VCB =
1 V, and VCS = 2 V.

1.10 Sketch the graph of small-signal,
common-emitter current gain versus frequency on
log scales from 0.1 to 1000 MHz for the examples of
Problems 1.8 and 1.9. Calculate the fT of the device
in each case.

1.11 An integrated-circuit npn transistor has
the following measured characteristics: rb = 100 Ω,
rc = 100 Ω, 𝛽0 = 100, ro = 50 kΩ at IC = 1 mA,
fT = 600 MHz with IC = 1 mA and VCB = 10 V,
fT = 1 GHz with IC = 10 mA and VCB = 10 V,
C𝜇 = 0.15 pF with VCB = 10 V, and Ccs = 1 pF with
VCS = 10 V. Assume 𝜓0 = 0.55 V for all junctions,
and assume Cje is constant in the forward-bias region.
Use r𝜇 = 5𝛽0ro.

(a) Form the complete small-signal equivalent
circuit for this transistor at IC = 0.1 mA, 1 mA, and
5 mA with VCB = 2 V and VCS = 15 V.

(b) Sketch the graph of fT versus IC for this
transistor on log scales from 1 μA to 10 mA with
VCB = 2 V.

1.12 A lateral pnp transistor has an effective base
width of 10 μm (1 μm = 10−4 cm).

(a) If the emitter-base depletion capacitance is
2 pF in the forward-bias region and is constant, cal-
culate the device fT at IC = −0.5 mA. (Neglect C𝜇.)
Also, calculate the minority-carrier charge stored in

the base of the transistor at this current level. Data∶
DP = 13 cm2/s in silicon.

(b) If the collector-base depletion layer width
changes 0.11 μm per volt of VCE, calculate ro for this
transistor at IC = −0.5 mA.

1.13 If the area of the transistor in Problem 1.11
is effectively doubled by connecting two transistors in
parallel, which model parameters in the small-signal
equivalent circuit of the composite transistor will
differ from those of the original device if the total
collector current is unchanged? What is the relation-
ship between the parameters of the composite and
original devices?

1.14 An integrated npn transistor has the fol-
lowing characteristics: 𝜏F = 0.25 ns, small-signal,
short-circuit current gain is 9 with IC = 1 mA
at f = 50 MHz, VA = 40 V, 𝛽0 = 100, rb = 150 Ω,
rc = 150 Ω, C𝜇 = 0.6 pF, and Ccs = 2 pF at the
bias voltage used. Determine all elements in the
small-signal equivalent circuit at IC = 2 mA, and
sketch the circuit.

1.15 An NMOS transistor has parameters W =
10 μm, L = 1 μm, k′ = 194 μA/V2, λ = 0.024 V−1,
tox = 80 Å, 𝜙f = 0.3 V, Vt0 = 0.6 V, and NA = 5 ×
1015 atoms/cm3. Ignore velocity saturation effects.

(a) Sketch the ID-VDS characteristics for VDS from
0 to 3 V and VGS = 0.5 V, 1.5 V, and 3 V. Assume
VSB = 0.

(b) Sketch the ID-VGS characteristics for VDS =
2 V as VGS varies from 0 to 2 V with VSB = 0, 0.5 V,
and 1 V.

1.16 Derive and sketch the complete small-signal
equivalent circuit for the device of Problem 1.15
with VGS = 1 V, VDS = 2 V, and VSB = 1 V. Use
𝜓0 = 0.7 V, Csb0 = Cdb0 = 20 fF, and Cgb = 5 fF.
Overlap capacitance from gate to source and gate
to drain is 2 fF.

1.17 Use the device data of Problems 1.15 and
1.16 to calculate the frequency of unity current gain of
this transistor with VDS = 3 V, VSB = 0 V, and VGS =
1 V, 1.5 V, and 2 V.

1.18 Examine the effect of velocity saturation on
MOSFET characteristics by plotting ID-VDS curves
for VGS = 1 V, 2 V and 3 V and VDS = 0 to 3 V in the
following cases, and by comparing the results with
and without inclusion of velocity saturation effects.
Assume VSB = 0, Vt0 = 0.6 V, k′ = 194 μA/V2, λ =
0, and ℰc = 1.5 × 106 V/m.

(a) W = 100 μm and L = 10 μm.

(b) W = 10 μm and L = 1 μm.

(c) W = 5 μm and L = 0.5 μm.
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1.19 Consider an NMOS transistor with W =
2 μm, L = 0.5 μm, k′ = 194 μA/V2, λ = 0, Vt0 =
0.6 V, and ℰc = 1.5 × 106 V/m. Compare the drain
current predicted by the model of Fig. 1.41 to the
drain current predicted by direct calculation using the
equations including velocity saturation for VGS from
0 to 3 V. Assume VDS = 3 V and VSB = 0. For what
range of VGS is the model of Fig. 1.41 accurate within
10 percent?

1.20 Calculate the transconductance of an
n-channel MOSFET with W = 10 μm, 𝜇n =
450 cm2/(V-s), and ℰc = 1.5 × 106 V/m using chan-
nel lengths from 10 to 0.4 μm. Assume that tox = L∕50
and that the device operates in the active region with
VGS − Vt = 0.1 V. Compare the result to a calculation

that ignores velocity saturation. For what range of
channel lengths is the model without velocity satura-
tion accurate within 10 percent?

1.21 Plot
√

ID versus VGS for an n-channel MOS-
FET with W = 1 μm, L = 1 μm, k′ = 54 μA/V2,
λ = 0, VDS = 5 V, VSB = 0, Vt0 = 0.7 V, and ℰc =
1.5 × 106 V/m. Ignore subthreshold conduction.
Compare the plot with Fig. 1.44a and explain the
main difference for large VGS.

1.22 Calculate the transconductance of an
n-channel MOSFET at ID = 10 nA and VDS = 1 V,
assuming subthreshold operation and n = 1.5. Assum-
ing (Cgs + Cgd + Cgb) = 10 fF, calculate the corre-
sponding device fT .
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CHAPTER 2

Bipolar, MOS, and BiCMOS
Integrated-Circuit
Technology

2.1 Introduction
For the designer and user of integrated circuits (ICs), a knowledge of the details of the fabrica-
tion process is important for two reasons. First, IC technology has become pervasive because
it provides the economic advantage of the planar process for fabricating complex circuitry at
low cost through batch processing. Thus a knowledge of the factors influencing the cost of fab-
rication of integrated circuits is essential for both the selection of a circuit approach to solve
a given design problem by the designer and the selection of a particular circuit for fabrication
as a custom integrated circuit by the user. Second, integrated-circuit technology presents a
completely different set of cost constraints to the circuit designer from those encountered with
discrete components. The optimum choice of a circuit approach to realize a specified circuit
function requires an understanding of the degrees of freedom available with the technology
and the nature of the devices that are most easily fabricated on the integrated-circuit chip.

At the present time, analog integrated circuits are designed and fabricated in bipolar tech-
nology, in MOS technology, and in technologies that combine both types of devices in one
process. The necessity of combining complex digital functions on the same integrated circuit
with analog functions has resulted in an increased use of digital MOS technologies for analog
functions, particularly those functions such as analog-digital conversion required for interfaces
between analog signals and digital systems. However, bipolar technology is now used and will
continue to be used in a wide range of applications requiring high-current drive capability and
the highest levels of precision analog performance.

In this chapter, we first enumerate the basic processes that are fundamental in the fabrication
of bipolar and MOS integrated circuits: solid-state diffusion, lithography, epitaxial growth, ion
implantation, selective oxidation, and polysilicon deposition. Next, we describe the sequence
of steps that are used in the fabrication of bipolar integrated circuits and describe the properties
of the passive and active devices that result from the process sequence. Also, we examine
several modifications to the basic process. In the next subsection, we consider the sequence
of steps in fabricating MOS integrated circuits and describe the types of devices resulting in
that technology. This is followed by descriptions of BiCMOS technology, silicon-germanium
heterojunction transistors, and interconnect materials under study to replace aluminum wires

Analysis and Design of Analog Integrated Circuits, Sixth Edition. Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, and Robert G. Meyer

© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.

Companion Website: http://www.wiley.com/go/gray/analogintegratedcircuits6e

http://www.wiley.com/go/gray/analogintegratedcircuits6e


82 Chapter 2 ▪ Bipolar, MOS, and BiCMOS Integrated-Circuit Technology

and silicon-dioxide dielectric. Next, we examine the factors affecting the manufacturing cost
of monolithic circuits and, finally, present packaging considerations for integrated circuits.

2.2 Basic Processes in Integrated-Circuit Fabrication
The fabrication of integrated circuits and most modern discrete component transistors is based
on a sequence of photomasking, diffusion, ion implantation, oxidation, and epitaxial growth
steps applied to a slice of silicon starting material called a wafer.1,2 Before beginning a descrip-
tion of the basic process steps, we will first review the effects produced on the electrical
properties of silicon by the addition of impurity atoms.

2.2.1 Electrical Resistivity of Silicon

The addition of small concentrations of n-type or p-type impurities to a crystalline silicon
sample has the effect of increasing the number of majority carriers (electrons for n-type, holes
for p-type) and decreasing the number of minority carriers. The addition of impurities is called
doping the sample. For practical concentrations of impurities, the density of majority carriers
is approximately equal to the density of the impurity atoms in the crystal. Thus for n-type
material,

nn ≃ ND (2.1)

where nn (cm−3) is the equilibrium concentration of electrons and ND (cm−3) is the concentra-
tion of n-type donor impurity atoms. For p-type material,

pp ≃ NA (2.2)

where pp (cm−3) is the equilibrium concentration of holes and NA (cm−3) is the concentration of
p-type acceptor impurities. Any increase in the equilibrium concentration of one type of carrier
in the crystal must result in a decrease in the equilibrium concentration of the other. This occurs
because the holes and electrons recombine with each other at a rate that is proportional to the
product of the concentration of holes and the concentration of electrons. Thus the number of
recombinations per second, R, is given by

R = 𝛾np (2.3)

where 𝛾 is a constant, and n and p are electron and hole concentrations, respectively, in the
silicon sample. The generation of the hole-electron pairs is a thermal process that depends
only on temperature; the rate of generation, G, is not dependent on impurity concentration. In
equilibrium, R and G must be equal, so that

G = constant = R = 𝛾np (2.4)

If no impurities are present, then
n = p = ni(T) (2.5)

where ni (cm−3) is the intrinsic concentration of carriers in a pure sample of silicon.
Equations 2.4 and 2.5 establish that, for any impurity concentration, 𝛾np = constant = 𝛾n2

i ,
and thus

np = n2
i (T) (2.6)



2.2 Basic Processes in Integrated-Circuit Fabrication 83

Equation 2.6 shows that as the majority carrier concentration is increased by impurity dop-
ing, the minority carrier concentration is decreased by the same factor so that product np is
constant in equilibrium. For impurity concentrations of practical interest, the majority carriers
outnumber the minority carriers by many orders of magnitude.

The importance of minority- and majority-carrier concentrations in the operation of the
transistor was described in Chapter 1. Another important effect of the addition of impurities
is an increase in the ohmic conductivity of the material itself. This conductivity is given by

𝜎 = q (𝜇nn + 𝜇pp) (2.7)

where 𝜇n (cm2/V-s) is the electron mobility, 𝜇p (cm2/V-s) is the hole mobility, and 𝜎(Ω-cm )−1

is the electrical conductivity. For an n-type sample, substitution of (2.1) and (2.6) in
(2.7) gives

𝜎 = q

(
𝜇nND + 𝜇p

n2
i

ND

)
≃ q𝜇nND (2.8)

For a p-type sample, substitution of (2.2) and (2.6) in (2.7) gives

𝜎 = q

(
𝜇n

n2
i

NA
+ 𝜇pNA

)
≃ q𝜇pNA (2.9)

The mobility 𝜇 is different for holes and electrons and is also a function of the impurity concen-
tration in the crystal for high impurity concentrations. Measured values of mobility in silicon
as a function of impurity concentration are shown in Fig. 2.1. The resistivity 𝜌 (Ω-cm) is usu-
ally specified in preference to the conductivity, and the resistivity of n- and p-type silicon as
a function of impurity concentration is shown in Fig. 2.2. The conductivity and resistivity are
related by the simple expression 𝜌 = 1∕𝜎.

2.2.2 Solid-State Diffusion

Solid-state diffusion of impurities in silicon is the movement, usually at high temperature,
of impurity atoms from the surface of the silicon sample into the bulk material. During this
high-temperature process, the impurity atoms replace silicon atoms in the lattice and are termed
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substitutional impurities. Since the doped silicon behaves electrically as p-type or n-type mate-
rial depending on the type of impurity present, regions of p-type and n-type material can be
formed by solid-state diffusion.

The nature of the diffusion process is illustrated by the conceptual example shown in
Figs. 2.3 and 2.4. We assume that the silicon sample initially contains a uniform concentration
of n-type impurity of 1015 atoms per cubic centimeter. Commonly used n-type impurities in
silicon are phosphorus, arsenic, and antimony. We further assume that by some means we
deposit atoms of p-type impurity on the top surface of the silicon sample. The most commonly
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Figure 2.3 An n-type silicon sample with boron
deposited on the surface.
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Figure 2.4 Distribution of impurities after
diffusion.

used p-type impurity in silicon device fabrication is boron. The distribution of impurities
prior to the diffusion step is illustrated in Fig. 2.3. The initial placement of the impurity atoms
on the surface of the silicon is called the predeposition step and can be accomplished by a
number of different techniques.

If the sample is now subjected to a high temperature of about 1100∘C for a time of about
one hour, the impurities diffuse into the sample, as illustrated in Fig. 2.4. Within the silicon, the
regions in which the p-type impurities outnumber the original n-type impurities display p-type
electrical behavior, whereas the regions in which the n-type impurities are more numerous
display n-type electrical behavior. The diffusion process has allowed the formation of a pn
junction within the continuous crystal of silicon material. The depth of this junction from
the surface varies from 0.1 to 20 μm for silicon integrated-circuit diffusions (where 1 μm =
1 micrometer = 10−6 m).

2.2.3 Electrical Properties of Diffused Layers

The result of the diffusion process is often a thin layer near the surface of the silicon sample
that has been converted from one impurity type to another. Silicon devices and integrated
circuits are constructed primarily from these layers. From an electrical standpoint, if the pn
junction formed by this diffusion is reverse biased, then the layer is electrically isolated from
the underlying material by the reverse-biased junction, and the electrical properties of the layer
itself can be measured. The electrical parameter most often used to characterize such layers
is the sheet resistance. To define this quantity, consider the resistance of a uniformly doped
sample of length L, width W, thickness T, and n-type doping concentration ND, as shown in
Fig. 2.5. The resistance is

R = 𝜌L
WT

= 1
𝜎

L
WT

Substitution of the expression for conductivity 𝜎 from (2.8) gives

R =
(

1
q𝜇nND

)
L

WT
= L

W

(
1

q𝜇nNDT

)
= L

W
R◽ (2.10)
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Figure 2.5 Rectangular sample for calculation
of sheet resistance.

Quantity R◽ is the sheet resistance of the layer and has units of ohms. Since the sheet resistance
is the resistance of any square sheet of material with thickness T, its units are often given as
ohms per square (Ω/◽) rather than simply ohms. The sheet resistance can be written in terms
of the resistivity of the material, using (2.8), as

R◽ = 1
q𝜇nNDT

= 𝜌

T
(2.11)

The diffused layer illustrated in Fig. 2.6 is similar to this case except that the impurity
concentration is not uniform. However, we can consider the layer to be made up of a parallel
combination of many thin conducting sheets. The conducting sheet of thickness dx at depth x
has a conductance

dG = q
(W

L

)
𝜇nND(x) dx (2.12)

To find the total conductance, we sum all the contributions:

G = ∫
xj

0
q

W
L
𝜇nND(x) dx = W

L ∫
xj

0
q𝜇nND(x) dx (2.13)
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Figure 2.6 Calculation of the
resistance of a diffused layer.
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Inverting (2.13), we obtain

R = L
W

⎡⎢⎢⎢⎢⎣
1

∫
xj

0
q𝜇nND(x) dx

⎤⎥⎥⎥⎥⎦
(2.14)

Comparison of (2.10) and (2.14) gives

R◽ =
[
∫

xj

0
q𝜇nND(x) dx

]−1

≃
[

q𝜇n ∫
xj

0
ND(x) dx

]−1

(2.15)

where 𝜇n is the average mobility. Thus (2.10) can be used for diffused layers if the appropriate
value of R◽ is used. Equation 2.15 shows that the sheet resistance of the diffused layer depends
on the total number of impurity atoms in the layer per unit area. The depth xj in (2.13), (2.14),
and (2.15) is actually the distance from the surface to the edge of the junction depletion layer,
since the donor atoms within the depletion layer do not contribute to conduction. Sheet resis-
tance is a useful parameter for the electrical characterization of diffusion processes and is a
key parameter in the design of integrated resistors. The sheet resistance of a diffused layer is
easily measured in the laboratory; the actual evaluation of (2.15) is seldom necessary.

◼ EXAMPLE
Calculate the resistance of a layer with length 50 μm and width 5 μm in material of sheet
resistance 200 Ω/◽.

From (2.10),

R = 50
5

× 200 Ω = 2 kΩ

Note that this region constitutes 10 squares in series, and R is thus 10 times the sheet resistance.◼

In order to use these diffusion process steps to fabricate useful devices, the diffusion must
be restricted to a small region on the surface of the sample rather than the entire planar surface.
This restriction is accomplished with photolithography.

2.2.4 Photolithography

When a sample of crystalline silicon is placed in an oxidizing environment, a layer of silicon
dioxide will form at the surface. This layer acts as a barrier to the diffusion of impurities so
that impurities separated from the surface of the silicon by a layer of oxide do not diffuse into
the silicon during high-temperature processing. A pn junction can thus be formed in a selected
location on the sample by first covering the sample with a layer of oxide (called an oxida-
tion step), removing the oxide in the selected region, and then performing a predeposition and
diffusion step. The selective removal of the oxide in the desired areas is accomplished with
photolithography. This process is illustrated by the conceptual example of Fig. 2.7. Again, we
assume the starting material is a sample of n-type silicon. We first perform an oxidation step in
which a layer of silicon dioxide (SiO2) is thermally grown on the top surface, usually of thick-
ness 0.2 to 1 μm. The wafer following this step is shown in Fig. 2.7a. Then the sample is coated
with a thin layer of photosensitive material called photoresist. When this material is exposed
to a particular wavelength of light, it undergoes a chemical change and, in the case of positive
photoresist, becomes soluble in certain chemicals in which the unexposed photoresist is insol-
uble. The sample at this stage is illustrated in Fig. 2.7b. To define the desired diffusion areas
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Figure 2.7 Conceptual example of the use of photolithography to form a pn junction diode. (a) Grow
SiO2. (b) Apply photoresist. (c) Expose through mask. (d ) Develop photoresist. (e) Etch SiO2 and remove
photoresist. (f) Predeposit and diffuse impurities.

on the silicon sample, a photomask is placed over the surface of the sample; this photomask
is opaque except for clear areas where the diffusion is to take place. Light of the appropriate
wavelength is directed at the sample, as shown in Fig. 2.7c, and falls on the photoresist only in
the clear areas of the mask. These areas of the resist are then chemically dissolved in the devel-
opment step, as shown in Fig. 2.7d. The unexposed areas of the photoresist are impervious to
the developer.

Since the objective is the formation of a region clear of SiO2, the next step is the etching of
the oxide. This step can be accomplished by dipping the sample in an etching solution, such as
hydrofluoric acid, or by exposing it to an electrically produced plasma in a plasma etcher. In
either case, the result is that in the regions where the photoresist has been removed, the oxide
is etched away, leaving the bare silicon surface.

The remaining photoresist is next removed by a chemical stripping operation, leaving the
sample with holes, or windows, in the oxide at the desired locations, as shown in Fig. 2.7e.
The sample now undergoes a predeposition and diffusion step, resulting in the formation of
p-type regions where the oxide had been removed, as shown in Fig. 2.7f. In some instances,
the impurity to be locally added to the silicon surface is deposited by using ion implantation
(see Section 2.2.6). This method of insertion can often take place through the silicon dioxide
so that the oxide-etch step is unnecessary.

The minimum dimension of the diffused region that can be routinely formed with this
technique in device production has decreased with time and at present is approximately
0.1 μm × 0.1 μm. The number of such regions that can be fabricated simultaneously can be
calculated by noting that the silicon sample used in the production of integrated circuits is
a round slice, typically 4 to 12 inches in diameter and 250 μm thick. Thus the number of
electrically independent pn junctions of dimension 0.1 μm × 0.1 μm spaced 0.1 μm apart that
can be formed on one such wafer is on the order of 1012. In actual integrated circuits, a number
of masking and diffusion steps are used to form more complex structures such as transistors,
but the key points are that photolithography is capable of defining a large number of devices
on the surface of the sample and that all of these devices are batch fabricated at the same time.
Thus the cost of the photomasking and diffusion steps applied to the wafer during the process
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is divided among the devices or circuits on the wafer. This ability to fabricate hundreds or
thousands of devices at once is the key to the economic advantage of IC technology.

2.2.5 Epitaxial Growth

Early planar transistors and the first integrated circuits used only photomasking and diffusion
steps in the fabrication process. However, all-diffused integrated circuits had severe limita-
tions compared with discrete component circuits. In a triple-diffused bipolar transistor, as
illustrated in Fig. 2.8, the collector region is formed by an n-type diffusion into the p-type
wafer. The drawbacks of this structure are that the series collector resistance is high and
the collector-to-emitter breakdown voltage is low. The former occurs because the impurity
concentration in the portion of the collector diffusion below the collector-base junction
is low, giving the region high resistivity. The latter occurs because the concentration of
impurities near the surface of the collector is relatively high, resulting in a low breakdown
voltage between the collector and base diffusions at the surface, as described in Chapter 1.
To overcome these drawbacks, the impurity concentration should be low at the collector-base
junction for high breakdown voltage but high below the junction for low collector resistance.
Such a concentration profile cannot be realized with diffusions alone, and the epitaxial growth
technique was adopted as a result.

Epitaxial (epi) growth consists of the formation of a layer of single-crystal silicon on the
surface of the silicon sample so that the crystal structure of the silicon is continuous across
the interface. The impurity concentration in the epi layer can be controlled independently and
can be greater or smaller than in the substrate material. In addition, the epi layer is often of
opposite impurity type from the substrate on which it is grown. The thickness of epi layers
used in integrated-circuit fabrication varies from 1 to 20 μm, and the growth of the layer is
accomplished by placing the wafer in an ambient atmosphere containing silicon tetrachloride
(SiCl4) or silane (SiH4) at an elevated temperature. A chemical reaction takes place in which
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elemental silicon is deposited on the surface of the wafer, and the resulting surface layer of
silicon is crystalline in structure with few defects if the conditions are carefully controlled.
Such a layer is suitable as starting material for the fabrication of bipolar transistors. Epitaxy
is also utilized in some CMOS and most BiCMOS technologies.

2.2.6 Ion Implantation

Ion implantation is a technique for directly inserting impurity atoms into a silicon wafer.5,6

The wafer is placed in an evacuated chamber, and ions of the desired impurity species are
directed at the sample at high velocity. These ions penetrate the surface of the silicon wafer
to an average depth of from less than 0.1 μm to about 0.6 μm, depending on the velocity with
which they strike the sample. The wafer is then held at a moderate temperature for a period
of time (for example, 800∘C for 10 minutes) in order to allow the ions to become mobile and
fit into the crystal lattice. This is called an anneal step and is essential to allow repair of any
crystal damage caused by the implantation. The principal advantages of ion implantation over
conventional diffusion are (1) that small amounts of impurities can be reproducibly deposited,
and (2) that the amount of impurity deposited per unit area can be precisely controlled. In
addition, the deposition can be made with a high level of uniformity across the wafer. Another
useful property of ion-implanted layers is that the peak of the impurity concentration profile
can be made to occur below the surface of the silicon, unlike with diffused layers. This allows
the fabrication of implanted bipolar structures with properties that are significantly better than
those of diffused devices. This technique is also widely applied in MOS technology, where
small, well-controlled amounts of impurity are required at the silicon surface for adjustment
of device thresholds, as described in Section 1.5.1.

2.2.7 Local Oxidation

In both MOS and bipolar technologies, the need often arises to fabricate regions of the silicon
surface that are covered with relatively thin silicon dioxide, adjacent to areas covered by rel-
atively thick oxide. Typically, the former regions constitute the active-device areas, whereas
the latter constitute the regions that electrically isolate the devices from each other. A sec-
ond requirement is that the transition from thick to thin regions must be accomplished without
introducing a large vertical step in the surface geometry of the silicon, so that the metallization
and other patterns that are later deposited can lie on a relatively planar surface. Local oxidation
is used to achieve this result. The local oxidation process begins with a sample that already
has a thin oxide grown on it, as shown in Fig. 2.9a. First a layer of silicon nitride (SiN) is
deposited on the sample and subsequently removed with a masking step from all areas where
thick oxide is to be grown, as shown in Fig. 2.9b. Silicon nitride acts as a barrier to oxygen
atoms that might otherwise reach the Si-SiO2 interface and cause further oxidation. Thus when
a subsequent long, high-temperature oxidation step is carried out, a thick oxide is grown in the
regions where there is no nitride, but no oxidation takes place under the nitride. The resulting
geometry after nitride removal is shown in Fig. 2.9c. Note that the top surface of the silicon
dioxide has a smooth transition from thick to thin areas and that the height of this transition
is less than the oxide thickness difference because the oxidation in the thick oxide regions
consumes some of the underlying silicon.

2.2.8 Polysilicon Deposition

Many process technologies utilize layers of polycrystalline silicon that are deposited during
fabrication. After deposition of the polycrystalline silicon layer on the wafer, the desired
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features are defined by using a masking step and can serve as gate electrodes for silicon-gate
MOS transistors, emitters of bipolar transistors, plates of capacitors, resistors, fuses, and
interconnect layers. The sheet resistance of such layers can be controlled by the impurity
added, much like bulk silicon, in a range from about 20 Ω/◽ up to very high values. The
process that is used to deposit the layer is much like that used for epitaxy. However, since the
deposition is usually over a layer of silicon dioxide, the layer does not form as a single-crystal
extension of the underlying silicon but instead forms as a granular (or polysilicon) film. Some
MOS technologies contain as many as three separate polysilicon layers, separated from one
another by layers of SiO2.

2.3 High-Voltage Bipolar Integrated-Circuit Fabrication
Integrated-circuit fabrication techniques have changed dramatically since the invention of the
basic planar process. This change has been driven by developments in photolithography, pro-
cessing techniques, and also the trend to reduce power-supply voltages in many systems.
Developments in photolithography have reduced the minimum feature size attainable from tens
of microns to the submicron level. The precise control allowed by ion implantation has resulted
in this technique becoming the dominant means of predepositing impurity atoms. Finally, many
circuits now operate from 3 V or 5 V power supplies instead of from the ± 15 V supplies
used earlier to achieve high dynamic range in stand-alone integrated circuits, such as opera-
tional amplifiers. Reducing the operating voltages allows closer spacing between devices in
an IC. It also allows shallower structures with higher frequency capability. These effects stem
from the fact that the thickness of junction depletion layers is reduced by reducing operating
voltages, as described in Chapter 1. Thus the highest-frequency IC processes are designed
to operate from 5 V supplies or less and are generally not usable at higher supply voltages.
In fact, a fundamental trade-off exists between the frequency capability of a process and its
breakdown voltage.

In this section, we examine first the sequence of steps used in the fabrication of high-voltage
bipolar integrated circuits using junction isolation. This was the original IC process and is
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useful as a vehicle to illustrate the basic methods of IC fabrication. It is still used in various
forms to fabricate high-voltage circuits.

The fabrication of a junction-isolated bipolar integrated circuit involves a sequence of from
six to eight masking and diffusion steps. The starting material is a wafer of p-type silicon,
usually 250 μm thick and with an impurity concentration of approximately 1016 atoms/cm3.
We will consider the sequence of diffusion steps required to form an npn integrated-circuit
transistor. The first mask and diffusion step, illustrated in Fig. 2.10, forms a low-resistance
n-type layer that will eventually become a low-resistance path for the collector current of the
transistor. This step is called the buried-layer diffusion, and the layer itself is called the buried
layer. The sheet resistance of the layer is in the range of 20 to 50 Ω/◽, and the impurity used
is usually arsenic or antimony because these impurities diffuse slowly and thus do not greatly
redistribute during subsequent processing.

After the buried-layer step, the wafer is stripped of all oxide and an epi layer is grown,
as shown in Fig. 2.11. The thickness of the layer and its n-type impurity concentration
determine the collector-base breakdown voltage of the transistors in the circuit since this
material forms the collector region of the transistor. For example, if the circuit is to operate
at a power-supply voltage of 36 V, the devices generally are required to have BVCEO
breakdown voltages above this value. As described in Chapter 1, this implies that the plane
breakdown voltage in the collector-base junction must be several times this value because
of the effects of collector avalanche multiplication. For BVCEO = 36 V, a collector-base
plane breakdown voltage of approximately 90 V is required, which implies an impurity
concentration in the collector of approximately 1015 atoms/cm3 and a resistivity of 5 Ω-cm.
The thickness of the epitaxial layer then must be large enough to accommodate the depletion
layer associated with the collector-base junction. At 36 V, the results of Chapter 1 can be
used to show that the depletion-layer thickness is approximately 6 μm. Since the buried layer
diffuses outward approximately 8 μm during subsequent processing, and the base diffusion
will be approximately 3 μm deep, a total epitaxial layer thickness of 17 μm is required
for a 36 V circuit. For circuits with lower operating voltages, thinner and more heavily
doped epitaxial layers are used to reduce the transistor collector series resistance, as will
be shown later.

Following the epitaxial growth, an oxide layer is grown on the top surface of the epitaxial
layer. A mask step and boron (p-type) predeposition and diffusion are performed, resulting
in the structure shown in Fig. 2.12. The function of this diffusion is to isolate the collectors
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of the transistors from each other with reverse-biased pn junctions, and it is termed the
isolation diffusion. Because of the depth to which the diffusion must penetrate, this diffusion
requires several hours in a diffusion furnace at temperatures of about 1200∘C. The isolated
diffused layer has a sheet resistance from 20 to 40 Ω/◽.

The next steps are the base mask, base predeposition, and base diffusion, as shown in
Fig. 2.13. The latter is usually a boron diffusion, and the resulting layer has a sheet resistance
of from 100 to 300 Ω/◽, and a depth of 1 to 3 μm at the end of the process. This diffusion forms
not only the bases of the transistors but also many of the resistors in the circuit, so control of
the sheet resistance is important.

Following the base diffusion, the emitters of the transistors are formed by a mask step,
n-type predeposition, and diffusion, as shown in Fig. 2.14. The sheet resistance is between
2 and 10 Ω/◽, and the depth is 0.5 to 2.5 μm after the diffusion. This diffusion step is also
used to form a low-resistance region, which serves as the contact to the collector region.
This is necessary because ohmic contact is difficult to accomplish between aluminum
metallization and the high-resistivity epitaxial material directly. The next masking step, the
contact mask, is used to open holes in the oxide over the emitter, the base, and the collector
of the transistors so that electrical contact can be made to them. Contact windows are also
opened for the passive components on the chip. The entire wafer is then coated with a
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Base metallization

Base contact window

Edge of base diffusion
Emitter contact window

Emitter metallization

Collector metallization

Collector contact window

Edge of collector n+ diffusion

Edge of emitter diffusion

Figure 2.16 Scanning electron microscope photograph of npn transistor structure.

thin (about 1 μm) layer of aluminum that will interconnect the circuit elements. The actual
interconnect pattern is defined by the last mask step, in which the aluminum is etched away
in the areas where the photoresist is removed in the develop step. The final structure is shown
in Fig. 2.15. A microscope photograph of an actual structure of the same type is shown in
Fig. 2.16. The terraced effect on the surface of the device results from the fact that additional
oxide is grown during each diffusion cycle, so the oxide is thickest over the epitaxial
region, where no oxide has been removed; is less thick over the base and isolation regions,
which are both opened at the base mask step; and is thinnest over the emitter diffusion.
A typical diffusion profile for a high-voltage, deep-diffused analog integrated circuit is shown
in Fig. 2.17.

This sequence allows simultaneous fabrication of a large number (often thousands) of com-
plex circuits on a single wafer. The wafer is then placed in an automatic tester, which checks
the electrical characteristics of each circuit on the wafer and puts an ink dot on circuits that
fail to meet specifications. The wafer is then broken up, by sawing or scribing and breaking,
into individual circuits. The resulting silicon chips are called dice, and the singular is die. Each
good die is then mounted in a package, ready for final testing.
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Figure 2.17 Typical impurity concentration for a monolithic npn transistor in a high-voltage,
deep-diffused process.

2.4 Advanced Bipolar Integrated-Circuit Fabrication
A large fraction of bipolar analog integrated circuits currently manufactured uses the basic
technology described in the previous section, or variations thereof. The fabrication sequence
is relatively simple and low in cost. However, many of the circuit applications of commercial
importance have demanded steadily increasing frequency-response capability, which translates
directly to a need for transistors of higher frequency-response capability in the technology.
The higher speed requirement dictates a device structure with thinner base width to reduce
base transit time and smaller dimensions overall to reduce parasitic capacitances. The smaller
device dimensions require that the width of the junction depletion layers within the structure
be reduced in proportion, which in turn requires the use of lower circuit operating voltages
and higher impurity concentrations in the device structure. To meet this need, a class of bipo-
lar fabrication technologies has evolved that, compared to the high-voltage process sequence
described in the last section, use much thinner and more heavily doped epitaxial layers, selec-
tively oxidized regions for isolation instead of diffused junctions, and a polysilicon layer as
the source of dopant for the emitter. Because of the growing importance of this class of bipolar
process, the sequence for such a process is described in this section.

The starting point for the process is similar to that for the conventional process, with a
mask and implant step resulting in the formation of a heavily-doped n+ buried layer in a p-type
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Figure 2.18 Device cross section following initial buried-layer mask, implant, and epitaxial-layer
growth.

substrate. Following this step, a thin n-type epitaxial layer is grown, about 1 μm in thickness
and about 0.5 Ω-cm in resistivity. The result after these steps is shown in cross section in
Fig. 2.18.

Next, a selective oxidation step is carried out to form the regions that will isolate the transis-
tor from its neighbors and also isolate the collector-contact region from the rest of the transistor.
The oxidation step is as described in Section 2.2.7, except that prior to the actual growth of
the thick SiO2 layer, an etching step is performed to remove silicon material from the regions
where oxide will be grown. If this is not done, the thick oxide growth results in elevated humps
in the regions where the oxide is grown. The steps around these humps cause difficulty in cov-
erage by subsequent layers of metal and polysilicon that will be deposited. The removal of
some silicon material before oxide growth results in a nearly planar surface after the oxide is
grown and removes the step-coverage problem in subsequent processing. The resulting struc-
ture following this step is shown in Fig. 2.19. Note that the SiO2 regions extend all the way
down to the p-type substrate, electrically isolating the n-type epi regions from one another.
These regions are often referred to as moats. Because growth of oxide layers thicker than a
micron or so requires impractically long times, this method of isolation is practical only for
very thin transistor structures.

Next, two mask and implant steps are performed. A heavy n+ implant is made in the
collector-contact region and diffused down to the buried layer, resulting in a low-resistance
path to the collector. A second mask is performed to define the base region, and a thin-base
p-type implant is performed. The resulting structure is shown in Fig. 2.20.

A major challenge in fabricating this type of device is the formation of very thin base and
emitter structures, and then providing low-resistance ohmic contact to these regions. This is
most often achieved using polysilicon as a doping source. An n+ doped layer of polysilicon is
deposited and masked to leave polysilicon only in the region directly over the emitter. During
subsequent high-temperature processing steps, the dopant (usually arsenic) diffuses out of the
polysilicon and into the crystalline silicon, forming a very thin, heavily doped emitter region.
Following the poly deposition, a heavy p-type implant is performed, which results in a more

n+

n– n–

p-type substrate

SiO2 moats

Figure 2.19 Device cross section following selective etch and oxidation to form thick-oxide moats.
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Figure 2.20 Device cross section following mask, implant, and diffusion of collector n+ region, and
mask and implant of base p-type region.
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Figure 2.21 Device cross section following poly deposition and mask, base p-type implant, and thermal
diffusion cycle.

heavily doped p-type layer at all points in the base region except directly under the polysilicon,
where the polysilicon itself acts as a mask to prevent the boron atoms from reaching this part
of the base region. The structure that results following this step is shown in Fig. 2.21.

This method of forming low-resistance regions to contact the base is called a self-aligned
structure because the alignment of the base region with the emitter happens automatically and
does not depend on mask alignment. Similar processing is used in MOS technology, described
later in this chapter.

The final device structure after metallization is shown in Fig. 2.22. Since the moats
are made of SiO2, the metallization contact windows can overlap into them, a fact that

n+
n+

Base contact
metal

Polysilicon emitter Collector contact
metal

p-type substrate

Figure 2.22 Final device cross section. Note that collector and base contact windows can overlap moat
regions. Emitter contact for the structure shown here would be made on an extension of the polysilicon
emitter out of the device active area, allowing the minimum possible emitter size.
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Figure 2.23 Scanning-electron-microscope photographs of a bipolar transistor in an advanced,
polysilicon-emitter, oxide-isolated process. (a) After polysilicon emitter definition and first-metal con-
tact to the base and collector. The polysilicon emitter is 1 μm wide. (b) After oxide deposition, contact
etch, and second-metal interconnect. [QUBic process photograph courtesy of Signetics.]

dramatically reduces the minimum achievable dimensions of the base and collector regions.
All exposed silicon and polysilicon is covered with a highly conductive silicide (a compound
of silicon and a refractory metal such as tungsten) to reduce series and contact resistance.
For minimum-dimension transistors, the contact to the emitter is made by extending the
polysilicon to a region outside the device active area and forming a metal contact to the
polysilicon there. A photograph of such a device is shown in Fig. 2.23, and a typical impurity
profile is shown in Fig. 2.24. The use of the remote emitter contact with polysilicon connection
does add some series emitter resistance, so for larger device geometries or cases in which
emitter resistance is critical, a larger emitter is used and the contact is placed directly on top
of the polysilicon emitter itself. Production IC processes7,8 based on technologies similar to
the one just described yield bipolar transistors having fT values well in excess of 10 GHz,
compared to a typical value of 500 MHz for deep-diffused, high-voltage processes.

2.5 Active Devices in Bipolar Analog Integrated Circuits
The high-voltage IC fabrication process described previously is an outgrowth of the one used
to make npn double-diffused discrete bipolar transistors, and as a result the process inher-
ently produces double-diffused npn transistors of relatively high performance. The advanced
technology process improves further on all aspects of device performance except breakdown
voltage. In addition to npn transistors, pnp transistors are also required in many analog circuits,
and an important development in the evolution of analog IC technologies was the invention of
device structures that allowed the standard technology to produce pnp transistors as well. In
this section, we will explore the structure and properties of npn, lateral pnp, and substrate pnp
transistors. We will draw examples primarily from the high-voltage technology. The available
structures in the more advanced technology are similar, except that their frequency response
is correspondingly higher. We will include representative device parameters from these newer
technologies as well.
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Figure 2.24 Typical impurity profile in a shallow oxide-isolated bipolar transistor.

2.5.1 Integrated-Circuit npn Transistors

The structure of a high-voltage, integrated-circuit npn transistor was described in the last
section and is shown in plan view and cross section in Fig. 2.25. In the forward-active region
of operation, the only electrically active portion of the structure that provides current gain
is that portion of the base immediately under the emitter diffusion. The rest of the structure
provides a top contact to the three transistor terminals and electrical isolation of the device
from the rest of the devices on the same die. From an electrical standpoint, the principal effect
of these regions is to contribute parasitic resistances and capacitances that must be included
in the small-signal model for the complete device to provide an accurate representation of
high-frequency behavior.

An important distinction between integrated-circuit design and discrete-component circuit
design is that the IC designer has the capability to utilize a device geometry that is specifi-
cally optimized for the particular set of conditions found in the circuit. Thus the circuit-design
problem involves a certain amount of device design as well. For example, the need often
exists for a transistor with a high current-carrying capability to be used in the output stage
of an amplifier. Such a device can be made by using a larger device geometry than the stan-
dard one, and the transistor then effectively consists of many standard devices connected in
parallel. The larger geometry, however, will display larger base-emitter, collector-base, and
collector-substrate capacitance than the standard device, and this must be taken into account
in analyzing the frequency response of the circuit. The circuit designer then must be able to
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Figure 2.25 Integrated-circuit npn transistor. The mask layers are coded as shown.

determine the effect of changes in device geometry on device characteristics and to estimate
the important device parameters when the device structure and doping levels are known. To
illustrate this procedure, we will calculate the model parameters of the npn device shown in
Fig. 2.25. This structure is typical of the devices used in circuits with a 5 Ω-cm, 17 μm epi-
taxial layer. The emitter diffusion is 20 μm × 25 μm, the base diffusion is 45 μm × 60 μm,
and the base-isolation spacing is 25 μm. The overall device dimensions are 140 μm × 95 μm.
Device geometries intended for lower epi resistivity and thickness can be much smaller; the
base-isolation spacing is dictated by the side diffusion of the isolation region plus the depletion
layers associated with the base-collector and collector-isolation junctions.

Saturation Current IS. In Chapter 1, the saturation current of a graded-base transistor was
shown to be

IS =
qA Dnn2

i

QB
(2.16)

where A is the emitter-base junction area, QB is the total number of impurity atoms per unit area
in the base, ni is the intrinsic carrier concentration, and Dn is the effective diffusion constant for
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electrons in the base region of the transistor. From Fig. 2.17, the quantity QB can be identified as
the area under the concentration curve in the base region. This could be determined graphically
but is most easily determined experimentally from measurements of the base-emitter voltage
at a constant collector current. Substitution of (2.16) in (1.35) gives

QB

Dn

= A
qn2

i

IC
exp

VBE

VT
(2.17)

and QB can be determined from this equation.

◼ EXAMPLE
A base-emitter voltage of 550 mV is measured at a collector current of 10 μA on a test tran-
sistor with a 100 μm × 100 μm emitter area. Estimate QB if T = 300∘K.

From Chapter 1, we have ni = 1.5 × 1010 cm−3. Substitution in (2.17) gives

QB

Dn

= (100 × 10−4)2 1.6 × 10−19 × 2.25 × 1020

10−5
exp(550∕26)

= 5.54 × 1011 cm−4s

At the doping levels encountered in the base, an approximate value of Dn, the electron diffu-
sivity, is

Dn = 13 cm2s−1

Thus for this example,

QB = 5.54 × 1011 × 13 cm−2 = 7.2 × 1012 atoms/cm2

Note that QB depends on the diffusion profiles and will be different for different types of
processes. Generally speaking, fabrication processes intended for lower-voltage operation use
thinner base regions and display lower values of QB. Within one nominally fixed process,
QB can vary by a factor of two or three to one because of diffusion process variations. The
principal significance of the numerical value for QB is that it allows the calculation of the
saturation current IS for any device structure once the emitter-base junction area is known.◼

Series Base Resistance rb. Because the base contact is physically removed from the active
base region, a significant series ohmic resistance is observed between the contact and the active
base. This resistance can have a significant effect on the high-frequency gain and the noise
performance of the device. As illustrated in Fig. 2.26a, this resistance consists of two parts.
The first is the resistance rb1 of the path between the base contact and the edge of the emitter

(a)

rb1 rb2

B E

Figure 2.26 (a) Base resistance
components for the npn transistor.
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diffusion. The second part rb2 is the resistance between the edge of the emitter and the site
within the base region at which the current is actually flowing. The former component can be
estimated by neglecting fringing and assuming that this component of the resistance is that of
a rectangle of material, as shown in Fig. 2.26b. For a base sheet resistance of 100 Ω/◽ and
typical dimensions as shown in Fig. 2.26b, this would give a resistance of

rb1 =
10 μm

25 μm
100 Ω = 40 Ω

The calculation of rb2 is complicated by several factors. First, the current flow in this region
is not well modeled by a single resistor because the base resistance is distributed throughout
the base region and two-dimensional effects are important. Second, at even moderate current
levels, the effect of current crowding9 in the base causes most of the carrier injection from
the emitter into the base to occur near the periphery of the emitter diffusion. At higher current
levels, essentially all of the injection takes place at the periphery, and the effective value of
rb approaches rb1. In this situation, the portion of the base directly beneath the emitter is not
involved in transistor action. A typically observed variation of rb with collector current for the
npn geometry of Fig. 2.25 is shown in Fig. 2.27. In transistors designed for low-noise and/or
high-frequency applications where low rb is important, an effort is often made to maximize the
periphery of the emitter that is adjacent to the base contact. At the same time, the emitter-base
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Figure 2.27 Typical variation of effective
small-signal base resistance with collector
current for integrated-circuit npn transistor.
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Figure 2.28 (a) Components of collector resistance rc.

junction and collector-base junction areas must be kept small to minimize capacitance. In the
case of high-frequency transistors, this usually dictates the use of an emitter geometry that
consists of many narrow stripes with base contacts between them. The ease with which the
designer can use such device geometries is an example of the flexibility allowed by monolithic
IC construction.

Series Collector Resistance rc. The series collector resistance is important both in
high-frequency circuits and in low-frequency applications where low collector-emitter satu-
ration voltage is required. Because of the complex three-dimensional shape of the collector
region itself, only an approximate value for the collector resistance can be obtained by hand
analysis. From Fig. 2.28a, we see that the resistance consists of three parts: that from the
collector-base junction under the emitter down to the buried layer, rc1; that of the buried layer
from the region under the emitter over to the region under the collector contact, rc2; and finally,
that portion from the buried layer up to the collector contact, rc3. The small-signal series
collector resistance in the forward-active region can be estimated by adding the resistance of
these three paths.

◼ EXAMPLE
Estimate the collector resistance of the transistor of Fig. 2.25, assuming the doping profile of
Fig. 2.17.

We first calculate the rc1 component. The thickness of the lightly doped epi layer between
the collector-base junction and the buried layer is 6 μm. Assuming that the collector-base
junction is at zero bias, the results of Chapter 1 can be used to show that the depletion layer is
about 1 μm thick. Thus the undepleted epi material under the base is 5 μm thick.

The effective cross-sectional area of the resistance rc1 is larger at the buried layer than at
the collector-base junction. The emitter dimensions are 20 μm × 25 μm, while the buried layer
dimensions are 41 μm × 85 μm on the mask. Since the buried layer side-diffuses a distance
roughly equal to the distance that it out-diffuses, about 8 μm must be added on each edge,
giving an effective size of 57 μm × 101 μm. An exact calculation of the ohmic resistance of
this three-dimensional region would require a solution of Laplace’s equation in the region, with
a rather complex set of boundary conditions. Consequently, we will carry out an approximate
analysis by modeling the region as a rectangular parallelepiped, as shown in Fig. 2.28b. Under
the assumptions that the top and bottom surfaces of the region are equipotential surfaces and
that the current flow in the region takes place only in the vertical direction, the resistance of
the structure can be shown to be

R = 𝜌T
WL

ln
(a

b

)
(a − b)

(2.18)
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Figure 2.28 (b) Model for calculation of collector
resistance.

where

T = thickness of the region
𝜌 = resistivity of the material

W, L = width, length of the top rectangle
a = ratio of the width of the bottom rectangle to the width of the top rectangle
b = ratio of the length of the bottom rectangle to the length of the top rectangle

Direct application of this expression to the case at hand would give an unrealistically low
value of resistance, because the assumption of one-dimensional flow is seriously violated
when the dimensions of the lower rectangle are much larger than those of the top rectan-
gle. Equation 2.18 gives realistic results when the sides of the region form an angle of about
60∘ or less with the vertical. When the angle of the sides is increased beyond this point, the
resistance does not decrease very much because of the long path for current flow between the
top electrode and the remote regions of the bottom electrode. Thus the limits of the bottom
electrode should be determined either by the edges of the buried layer or by the edges of the
emitter plus a distance equal to about twice the vertical thickness T of the region, whichever
is smaller. For the case of rc1,

T = 5 μm = 5 × 10−4 cm

𝜌 = 5 Ω-cm

We assume that the effective emitter dimensions are those defined by the mask plus approxi-
mately 2 μm of side diffusion on each edge. Thus

W = 20 μm + 4 μm = 24 × 10−4 cm

L = 25 μm + 4 μm = 29 × 10−4 cm

For this case, the buried-layer edges are further away from the emitter edge than twice the
thickness T on all four sides when side diffusion is taken into account. Thus the effective
buried-layer dimensions that we use in (2.18) are

WBL = W + 4T = 24 μm + 20 μm = 44 μm

LBL = L + 4T = 29 μm + 20 μm = 49 μm

and

a =
44 μm

24 μm
= 1.83

b =
49 μm

29 μm
= 1.69
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Thus from (2.18),

rc1 = (5)(5 × 10−4)
(24 × 10−4)(29 × 10−4)

(0.57) Ω = 204 Ω

We will now calculate rc2, assuming a buried-layer sheet resistance of 20 Ω/◽. The distance
from the center of the emitter to the center of the collector-contact diffusion is 62 μm, and the
width of the buried layer is 41 μm. The rc2 component is thus, approximately,

rc2 = (20 Ω/◽)
( L

W

)
= 20 Ω/◽

(
62 μm

41 μm

)
= 30 Ω

Here the buried-layer side diffusion was not taken into account because the ohmic resistance
of the buried layer is determined entirely by the number of impurity atoms actually diffused
[see (2.15)] into the silicon, which is determined by the mask dimensions and the sheet resis-
tance of the buried layer.

For the calculation of rc3, the dimensions of the collector-contact n+ diffusion are
18 μm × 49 μm, including side diffusion. The distance from the buried layer to the bottom
of the n+ diffusion is seen in Fig. 2.17 to be 6.5 μm, and thus T = 6.5 μm in this case. On
the three sides of the collector n+ diffusion that do not face the base region, the out-diffused
buried layer extends only 4 μm outside the n+ diffusion, and thus the effective dimension
of the buried layer is determined by the actual buried-layer edge on these sides. On the side
facing the base region, the effective edge of the buried layer is a distance 2T , or 13 μm, away
from the edge of the n+ diffusion. The effective buried-layer dimensions for the calculation
of rc3 are thus 35 μm × 57 μm. Using (2.18),

rc3 = (5)(6.5 × 10−4)
(18 × 10−4)(49 × 10−4)

0.66 = 243 Ω

The total collector resistance is thus

rc = rc1 + rc2 + rc3 = 531 Ω

The value actually observed in such devices is somewhat lower than this for three reasons.
First, we have approximated the flow as one-dimensional, and it is actually three-dimensional.
Second, for larger collector-base voltages, the collector-base depletion layer extends further
into the epi, decreasing rc1. Third, the value of rc that is important is often that for a sat-
urated device. In saturation, holes are injected into the epi region under the emitter by the
forward-biased, collector-base function, and they modulate the conductivity of the region even
at moderate current levels.10 Thus the collector resistance one measures when the device is in
saturation is closer to (rc2 + rc3), or about 250 to 300 Ω. So, rc is smaller in saturation than in
the forward-active region.◼

Collector-Base Capacitance. The collector-base capacitance is simply the capacitance
of the collector-base junction including both the flat bottom portion of the junction and the
sidewalls. This junction is formed by the diffusion of boron into an n-type epitaxial material
that we will assume has a resistivity of 5 Ω-cm, corresponding to an impurity concentration of
1015 atoms/cm3. The uniformly doped epi layer is much more lightly doped than the 𝜌-diffused
region, and as a result, this junction is well approximated by a step junction in which the
depletion layer lies almost entirely in the epitaxial material. Under this assumption, the results
of Chapter 1 regarding step junctions can be applied, and for convenience this relationship has
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Figure 2.29 Capacitance and depletion-layer width of an abrupt pn junction as a function of applied
voltage and doping concentration on the lightly doped side of the junction.11

been plotted in nomograph form in Fig. 2.29. This nomograph is a graphical representation of
the relation

Cj

A
=

√
q𝜖NB

2(𝜓0 + VR)
(2.19)

where NB is the doping density in the epi material and VR is the reverse bias on the junction.
The nomograph of Fig. 2.29 can also be used to determine the junction depletion-region width
as a function of applied voltage, since this width is inversely proportional to the capacitance.
The width in microns is given on the axis on the right side of the figure.

Note that the horizontal axis in Fig. 2.29 is the total junction potential, which is the applied
potential plus the built-in voltage 𝜓0. In order to use the curve, then, the built-in potential must
be calculated. While this would be an involved calculation for a diffused junction, the built-in
potential is actually only weakly dependent on the details of the diffusion profile and can be
assumed to be about 0.55 V for the collector-base junction, 0.52 V for the collector-substrate
junction, and about 0.7 V for the emitter-base junction.

◼ EXAMPLE
Calculate the collector-base capacitance of the device of Fig. 2.25.

The zero-bias capacitance per unit area of the collector-base junction can be found from
Fig. 2.29 to be approximately 10−4 pF/μm2. The total area of the collector-base junction is the
sum of the area of the bottom of the base diffusion plus the base sidewall area. From Fig. 2.25,
the bottom area is

Abottom = 60 μm × 45 μm = 2700μm2

The edges of the base region can be seen from Fig. 2.17 to have the shape similar to one-quarter
of a cylinder. We will assume that the region is cylindrical in shape, which yields a sidewall
area of

Asidewall = P × d × 𝜋

2
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where
P = base region periphery
d = base diffusion depth

Thus we have

Asidewall = 3 μm × (60 μm + 60 μm + 45 μm + 45 μm) × 𝜋

2
= 989 μm2

and the total capacitance is

C𝜇0 = (Abottom + Asidewall)(10−4 pF/μm2) = 0.36 pF
◼

Collector-Substrate Capacitance. The collector-substrate capacitance consists of three
portions: that of the junction between the buried layer and the substrate, that of the sidewall
of the isolation diffusion, and that between the epitaxial material and the substrate. Since the
substrate has an impurity concentration of about 1016 cm−3, it is more heavily doped than
the epi material, and we can analyze both the sidewall and epi-substrate capacitance under
the assumption that the junction is a one-sided step junction with the epi material as the lightly
doped side. Under this assumption, the capacitance per unit area in these regions is the same
as in the collector-base junction.

◼ EXAMPLE
Calculate the collector-substrate capacitance of the standard device of Fig. 2.25.

The area of the collector-substrate sidewall is

Asidewall = (17 μm)(140 μm + 140 μm + 95 μm + 95 μm)
(
𝜋

2

)
= 12,550 μm2

We will assume that the actual buried layer covers the area defined by the mask, indicated
in Fig. 2.25 as an area of 41 μm × 85 μm, plus 8 μm of side diffusion on each edge. This gives
a total area of 57 μm × 101 μm. The area of the junction between the epi material and the
substrate is the total area of the isolated region minus that of the buried layer:

Aepi-substrate = (140 μm × 95 μm) − (57 μm × 101 μm)

= 7543μm2

The capacitances of the sidewall and epi-substrate junctions are, using a capacitance per unit
area of 10−4 pF/μm2

Ccs0 (sidewall) = (12,550 μm2)(10−4 pF/μm2) = 1.26 pF

Ccs0(epi-substrate) = (7543 μm2)(10−4 pF/μm2) = 0.754 pF

For the junction between the buried layer and the substrate, the lightly doped side of
the junction is the substrate. Assuming a substrate doping level of 1016 atoms/cm3 and a
built-in voltage of 0.52 V, we can calculate the zero-bias capacitance per unit area as
3.3 × 10−4 pF/μm2. The area of the buried layer is

ABL = 57 μm × 101 μm = 5757 μm2
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and the zero-bias capacitance from the buried layer to the substrate is thus

Ccs0(BL) = (5757 μm2)(3.3 × 10−4 pF/μm2) = 1.89 pF

The total zero-bias, collector-substrate capacitance is thus

Ccs0 = 1.26 pF + 0.754 pF + 1.89 pF = 3.90 pF
◼

Emitter-Base Capacitance. The emitter-base junction of the transistor has a doping profile
that is not well approximated by a step junction because the impurity concentration on both
sides of the junction varies with distance in a rather complicated way. Furthermore, the sidewall
capacitance per unit area is not constant but varies with distance from the surface because the
base impurity concentration varies with distance. A precise evaluation of this capacitance can
be carried out numerically, but a first-order estimate of the capacitance can be obtained by
calculating the capacitance of an abrupt junction with an impurity concentration on the lightly
doped side that is equal to the concentration in the base at the edge of the junction. The sidewall
contribution is neglected.

◼ EXAMPLE
Calculate the zero-bias, emitter-base junction capacitance of the standard device of Fig. 2.25.

We first estimate the impurity concentration at the emitter edge of the base region. From
Fig. 2.17, it can be seen that this concentration is approximately 1017 atoms/cm3. From the
nomograph of Fig. 2.29, this abrupt junction would have a zero-bias capacitance per unit
area of 10−3 pF/μm2. Since the area of the bottom portion of the emitter-base junction is
25 μm × 20 μm, the capacitance of the bottom portion is

Cbottom = (500 μm2)(10−3 pF/μm2) = 0.5 pF

Again assuming a cylindrical cross section, the sidewall area is given by

Asidewall = 2 (25 μm + 20 μm)
(
𝜋

2

)
(2.5 μm) = 353 μm2

Assuming that the capacitance per unit area of the sidewall is approximately the same as the
bottom,

Csidewall = (353 μm2)(10−3 pF/μm2) = 0.35 pF

The total emitter-base capacitance is

Cje0 = 0.85 pF
◼

Current Gain. As described in Chapter 1, the current gain of the transistor depends on
minority-carrier lifetime in the base, which affects the base transport factor, and on the dif-
fusion length in the emitter, which affects the emitter efficiency. In analog IC processing, the
base minority-carrier lifetime is sufficiently long that the base transport factor is not a limiting
factor in the forward current gain in npn transistors. Because the emitter region is heavily doped
with phosphorus, the minority-carrier lifetime is degraded in this region, and current gain is
limited primarily by emitter efficiency.12 Because the doping level, and hence lifetime, vary
with distance in the emitter, the calculation of emitter efficiency for the npn transistor is diffi-
cult, and measured parameters must be used. The room-temperature current gain typically lies
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between 200 and 1000 for these devices. The current gain falls with decreasing temperature,
usually to a value of from 0.5 to 0.75 times the room temperature value at −55∘C.

Summary of High-Voltage npn Device Parameters. A typical set of device parameters
for the device of Fig. 2.25 is shown in Fig. 2.30. This transistor geometry is typical of that
used for circuits that must operate at power-supply voltages up to 40 V. For lower operating
voltages, thinner epitaxial layers can be used, and smaller device geometries can be used as

Typical Value, Typical Value,
5 Ω-cm, 17 μm epi 1 Ω-cm, 10 μm epi

Parameter 44 V Device 20 V Device

𝛽F 200 200

BR 2 2

VA 130 V 90 V

𝜂 2 × 10−4 2.8 × 10−4

IS 5 × 10−15 A 1.5 × 10−15 A

ICO 10−10 A 10−10 A

BVCEO 50 V 25 V

BVCBO 90 V 50 V

BVEBO 7 V 7 V

𝜏F 0.35 ns 0.25 ns

𝜏R 400 ns 200 ns

𝛽0 200 150

rb 200 Ω 200 Ω

rc (saturation) 200 Ω 75 Ω

rex 2 Ω 2 Ω⎧⎪⎨⎪⎩
Cje0

𝜓0e

ne

Base-emitter junction 1 pF 1.3 pF

0.7 V 0.7 V

0.33 0.33

⎧⎪⎨⎪⎩
C𝜇0

𝜓0c

nc

Base-collector junction 0.3 pF 0.6 pF

0.55 V 0.6 V

0.5 0.5

⎧⎪⎨⎪⎩
Ccs0

𝜓0s

ns

Collector-substrate junction 3 pF 3 pF

0.52 V 0.58 V

0.5 0.5

Figure 2.30 Typical parameters for high-voltage integrated npn transistors with 500 μm2 emitter area.
The thick epi device is typical of those used in circuits operating at up to 44 V power-supply voltage,
while the thinner device can operate up to about 20 V. While the geometry of the thin epi device is smaller,
the collector-base capacitance is larger because of the heavier epi doping. The emitter-base capacitance
is higher because the base is shallower, and the doping level in the base at the emitter-base junction is
higher.
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Figure 2.31 Plan view and cross section of a typical advanced-technology bipolar transistor. Note the
much smaller dimensions compared with the high-voltage device.

a result. Also shown in Fig. 2.30 are typical parameters for a device made with 1 Ω-cm epi
material, which is 10 μm thick. Such a device is physically smaller and has a collector-emitter
breakdown voltage of about 25 V.

Advanced-Technology Oxide-Isolated npn Bipolar Transistors. The structure of an
advanced oxide-isolated, poly-emitter npn bipolar transistor is shown in plan view and cross
section in Fig. 2.31. Typical parameters for such a device are listed in Fig. 2.32. Note the
enormous reduction in device size, transit time, and parasitic capacitance compared to the
high-voltage, deep-diffused process. These very small devices achieve optimum performance
characteristics at relatively low bias currents. The value of 𝛽 for such a device typically peaks
at a collector current of about 50 μA. For these advanced-technology transistors, the use of
ion implantation allows precise control of very shallow emitter (0.1 μm) and base (0.2 μm)
regions. The resulting base width is on the order of 0.1 μm, and (1.99) predicts a base transit
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time about 25 times smaller than the deep-diffused device of Fig. 2.17. This is observed in
practice, and the ion-implanted transistor has a peak fT of about 13 GHz.

2.5.2 Integrated-Circuit pnp Transistors

As mentioned previously, the integrated-circuit bipolar fabrication process is an outgrowth
of that used to build double-diffused epitaxial npn transistors, and the technology inherently
produces npn transistors of high performance. However, pnp transistors of comparable perfor-
mance are not easily produced in the same process, and the earliest analog integrated circuits
used no pnp transistors. The lack of a complementary device for use in biasing, in level shift-
ing, and as load devices in amplifier stages proved to be a severe limitation on the performance
attainable in analog circuits, leading to the development of several pnp transistor structures
that are compatible with the standard IC fabrication process. Because these devices utilize the
lightly doped n-type epitaxial material as the base of the transistor, they are generally inferior

Vertical npn Lateral pnp
Transistor with 2 μm2 Transistor with 2 μm2

Parameter Emitter Area Emitter Area

𝛽F 120 50

𝛽R 2 3

VA 35 V 30 V

IS 6 × 10−18 A 6 × 10−18 A

ICO 1 pA 1 pA

BVCEO 8 V 14 V

BVCBO 18 V 18 V

BVEBO 6 V 18 V

𝜏F 10 ps 650 ps

𝜏R 5 ns 5 ns

rb 400 Ω 200 Ω

rc 100 Ω 20 Ω

rex 40 Ω 10 Ω

Cje0 5 fF 14 fF

𝜓0e 0.8 V 0.7 V

ne 0.4 0.5

C𝜇0 5 fF 15 fF

𝜓0c 0.6 V 0.6 V

nc 0.33 0.33

Ccs0 (Cbs0) 20 fF 40 fF

𝜓0s 0.6 V 0.6 V

ns 0.33 0.4

Figure 2.32 Typical device parameters for bipolar transistors in a low-voltage, oxide-isolated,
ion-implanted process.
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to the npn devices in frequency response and high-current behavior, but are useful nonetheless.
In this section, we will describe the lateral pnp and substrate pnp structures.

Lateral pnp Transistors. A typical lateral pnp transistor structure fabricated in a
high-voltage process is illustrated in Fig. 2.33a.13 The emitter and collector are formed with
the same diffusion that forms the base of the npn transistors. The collector is a p-type ring
around the emitter, and the base contact is made in the n-type epi material outside the collector
ring. The flow of minority carriers across the base is illustrated in Fig. 2.33b. Holes are
injected from the emitter, flow parallel to the surface across the n-type base region, and ideally
are collected by the p-type collector before reaching the base contact. Thus the transistor
action is lateral rather than vertical as is the case for npn transistors. The principal drawback
of the structure is the fact that the base region is more lightly doped than the collector. As
a result, the collector-base depletion layer extends almost entirely into the base. The base
region must then be made wide enough that the depletion layer does not reach the emitter

p-type substrate
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Figure 2.33 (a) Lateral pnp structure fabricated in a high-voltage process.
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Figure 2.33 (b) Minority-carrier flow in the lateral pnp transistor.

when the maximum collector-emitter voltage is applied. In a typical analog IC process, the
width of this depletion layer is 6 to 8 μm when the collector-emitter voltage is in the 40 V
range. Thus the minimum base width for such a device is about 8 μm, and the minimum base
transit time can be estimated from (1.99) as

𝜏F =
W2

B

2Dp
(2.20)

Use of WB = 8 μm and Dp = 10 cm2/s (for holes) in (2.20) gives

𝜏F = 32 ns

This corresponds to a peak fT of 5 MHz, which is a factor of 100 lower than a typical npn
transistor in the same process.

The current gain of lateral pnp transistors tends to be low for several reasons. First, minority
carriers (holes) in the base are injected downward from the emitter as well as laterally, and
some of them are collected by the substrate, which acts as the collector of a parasitic vertical
pnp transistor. The buried layer sets up a retarding field that tends to inhibit this process, but it
still produces a measurable degradation of 𝛽F. Second, the emitter of the pnp is not as heavily
doped as is the case for the npn devices, and thus the emitter injection efficiency given by
(1.51b) is not optimized for the pnp devices. Finally, the wide base of the lateral pnp results in
both a low emitter injection efficiency and also a low base transport factor as given by (1.51a).

Another drawback resulting from the use of a lightly doped base region is that the current
gain of the device falls very rapidly with increasing collector current due to high-level
injection. The minority-carrier distribution in the base of a lateral pnp transistor in the
forward-active region is shown in Fig. 2.34. The collector current per unit of cross-sectional
area can be obtained from (1.32) as

Jp = qDp
pn(0)
WB

(2.21)

Inverting this relationship, we can calculate the minority-carrier density at the emitter edge of
the base as

pn(0) =
JpWB

qDp
(2.22)

As long as this concentration is much less than the majority-carrier density in the base,
low-level injection conditions exist and the base minority-carrier lifetime remains constant.
However, when the minority-carrier density becomes comparable with the majority-carrier
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Figure 2.34 Minority-carrier
distribution in the base of a lateral pnp
transistor in the forward-active region.
This distribution is that observed
through section x-x′ in Fig. 2.33b.

density, the majority-carrier density must increase to maintain charge neutrality in the base.
This causes a decrease in 𝛽F for two reasons. First, there is a decrease in the effective lifetime
of minority carriers in the base since there is an increased number of majority carriers with
which recombination can occur. Thus the base transport factor given by (1.51a) decreases.
Second, the increase in the majority-carrier density represents an effective increase in base
doping density. This causes a decrease in emitter injection efficiency given by (1.51b). Both
these mechanisms are also present in npn transistors but occur at much higher current levels
due to the higher doping density in the base of the npn transistor.

The collector current at which these effects become significant can be calculated for a lateral
pnp transistor by equating the minority-carrier concentration given by (2.22) to the equilibrium
majority-carrier concentration. Thus

JpWB

qDp
= nn ≃ ND (2.23)

where (2.1) has been substituted for nn, and ND is the donor density in the pnp base (npn col-
lector). From (2.23), we can calculate the collector current for the onset of high-level injection
in a pnp transistor as

IC =
qANDDp

WB
(2.24)

where A is the effective area of the emitter-base junction. Note that this current depends directly
on the base doping density in the transistor, and since this is quite low in a lateral pnp transistor,
the current density at which this fall-off begins is quite low.

Lateral pnp transistors are also widely used in shallow oxide-isolated bipolar IC technolo-
gies. The device structure used is essentially identical to that of Fig. 2.33, except that the device
area is orders of magnitude smaller and the junction isolation is replaced by oxide isolation.
Typical parameters for such a device are listed in Fig. 2.32. As in the case of npn transistors,
we see dramatic reductions in device transit time and parasitic capacitance compared to the
high-voltage, thick-epi process. The value of 𝛽 for such a device typically peaks at a collector
current of about 50 nA.

◼ EXAMPLE
Calculate the collector current at which the current gain begins to fall for the pnp structure of
Fig. 2.33a.
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The effective cross-sectional area A of the emitter is the sidewall area of the emitter, which
is the p-type diffusion depth multiplied by the periphery of the emitter multiplied by 𝜋∕2:

A = (3 μm)(30 μm + 30 μm + 30 μm + 30 μm)
(
𝜋

2

)
= 565 μm2 = 5.6 × 10−6 cm2

The majority-carrier density is 1015 atoms/cm3 for an epi-layer resistivity of 5 Ω-cm. In addi-
tion, we can assume WB = 8 μm and Dp = 10 cm2/s. Substitution of this data in (2.24) gives

IC = 5.6 × 10−6 × 1.6 × 10−19 × 1015 × 10
1

8 × 10−4
A = 11.2 μA

◼

The typical lateral pnp structure of Fig. 2.33a shows a low-current beta of approximately 30
to 50, which begins to decrease at a collector current of a few tens of microamperes and has
fallen to less than 10 at a collector current of 1 mA. A typical set of parameters for a structure
of this type is shown in Fig. 2.35. Note that in the lateral pnp transistor, the substrate junction
capacitance appears between the base and the substrate.

Substrate pnp Transistors. One reason for the poor high-current performance of the lateral
pnp is the relatively small effective cross-sectional area of the emitter, which results from
the lateral nature of the injection. A common application for a pnp transistor is in a Class-B
output stage where the device is called on to operate at collector currents in the 10 mA range.
A lateral pnp designed to do this would require a large amount of die area. In this application, a
different structure is usually used in which the substrate itself is used as the collector instead of
a diffused p-type region. Such a substrate pnp transistor in a high-voltage, thick-epi process is
shown in Fig. 2.36a. The p-type emitter diffusion for this particular substrate pnp geometry is
rectangular with a rectangular hole in the middle. In this hole, an n+ region is formed with the
npn emitter diffusion to provide a contact for the n-type base. Because of the lightly doped base
material, the series base resistance can become quite large if the base contact is far removed
from the active base region. In this particular structure, the n+ base contact diffusion is actually
allowed to come in contact with the p-type emitter diffusion, in order to get the low-resistance
base contact diffusion as close as possible to the active base. The only drawback of this, in a
substrate pnp structure, is that the emitter-base breakdown voltage is reduced to approximately
7 V. If larger emitter-base breakdown is required, then the p-emitter diffusion must be separated
from the n+ base contact diffusion by a distance of about 10 to 15 μm. Many variations exist
on the substrate pnp geometry shown in Fig. 2.36a. They can also be realized in thin-epi,
oxide-isolated processes.

The minority-carrier flow in the forward-active region is illustrated in Fig. 2.36b. The prin-
cipal advantage of this device is that the current flow is vertical and the effective cross-sectional
area of the emitter is much larger than in the case of the lateral pnp for the same overall device
size. The device is restricted to use in emitter-follower configurations, however, since the col-
lector is electrically identical with the substrate that must be tied to the most negative circuit
potential. Other than the better current-handling capability, the properties of substrate pnp
transistors are similar to those for lateral pnp transistors since the base width is similar in
both cases. An important consideration in the design of substrate pnp structures is that the
collector current flows in the p-substrate region, which usually has relatively high resistiv-
ity. Thus, unless care is taken to provide an adequate low-resistance path for the collector
current, a high series collector resistance can result. This resistance can degrade device per-
formance in two ways. First, large collector currents in the pnp can cause enough voltage drop
in the substrate region itself that other substrate-epitaxial layer junctions within the circuit can
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Typical Value, Typical Value,
5 Ω-cm, 17 μm epi 1 Ω-cm, 10 μm epi

Parameter 44 V Device 20 V Device

𝛽F 50 20

𝛽R 4 2

VA 50 V 50 V

𝜂 5 × 10−4 5 × 10−4

IS 2 × 10−15 A 2 × 10−15 A

ICO 10−10 A 5 × 10−9 A

BVCEO 60 V 30 V

BVCBO 90 V 50 V

BVEBO 90 V 50 V

𝜏F 30 ns 20 ns

𝜏R 3000 ns 2000 ns

𝛽0 50 20

rb 300 Ω 150 Ω

rc 100 Ω 75 Ω

rex 10 Ω 10 Ω⎧⎪⎨⎪⎩
Cje0

𝜓0e

ne

Base-emitter junction 0.3 pF 0.6 pF

0.55 V 0.6 V

0.5 0.5

⎧⎪⎨⎪⎩
C𝜇0

𝜓0c

nc

Base-collector junction 1 pF 2 pF

0.55 V 0.6 V

0.5 0.5

⎧⎪⎨⎪⎩
Cbs0

𝜓0s

ns

Base-substrate junction 3 pF 3.5 pF

0.52 V 0.58 V

0.5 0.5

Figure 2.35 Typical parameters for lateral pnp transistors with 900 μm2 emitter area in a high-voltage,
thick-epi process.

become forward biased. This usually has a catastrophic effect on circuit performance. Second,
the effects of the collector-base junction capacitance on the pnp are multiplied by the Miller
effect resulting from the large series collector resistance, as described further in Chapter 7.
To minimize these effects, the collector contact is usually made by contacting the isolation
diffusion immediately adjacent to the substrate pnp itself with metallization. For high-current
devices, this isolation diffusion contact is made to surround the device to as great an extent
as possible.



2.5 Active Devices in Bipolar Analog Integrated Circuits 117

p-type substrate collector

n-type epi layer

Emitter
contact

Base
contact

Emitter
contact

n+

pp

E

B

EBE

0

10

20

30

40

50

60

70

80

90

100

110

120

Substrate
Distance

(μm)

(a)

p p

Figure 2.36 (a) Substrate pnp structure in a high-voltage, thick-epi process.

E
B

n+

n

p p

pp Injected
holes

(b)

p-type substrate collector

Figure 2.36 (b) Minority-carrier flow in the substrate pnp transistor.
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Typical Value, Typical Value,
5 Ω-cm, 17 μm epi 1 Ω-cm, 10 μm epi

44 V Device, 20 V Device,
5100 μm2 5100 μm2

Parameter Emitter Area Emitter Area

𝛽F 50 30

𝛽R 4 2

VA 50 V 30 V

𝜂 5 × 10−4 9 × 10−4

IS 10−14 A 10−14 A

ICO 2 × 10−10 A 2 × 10−10 A

BVCEO 60 V 30 V

BVCBO 90 V 50 V

BVEBO 7 or 90 V 7 or 50 V

𝜏F 20 ns 14 ns

𝜏R 2000 ns 1000 ns

𝛽0 50 30

rb 150 Ω 50 Ω

rc 50 Ω 50 Ω

rex 2 Ω 2 Ω⎧⎪⎨⎪⎩
Cje0

𝜓0e

ne

Base-emitter junction 0.5 pF 1 pF

0.55 V 0.58 V

0.5 0.5

⎧⎪⎨⎪⎩
C𝜇0

𝜓0c

nc

Base-collector junction 2 pF 3 pF

0.52 V 0.58 V

0.5 0.5

Figure 2.37 Typical device parameters for a substrate pnp with 5100 μm2 emitter area in a high-voltage,
thick-epi process.

The properties of a typical substrate pnp transistor in a high-voltage, thick-epi process are
summarized in Fig. 2.37. The dependence of current gain on collector current for a typical
npn, lateral pnp, and substrate pnp transistor in a high-voltage, thick-epi process are shown
in Fig. 2.38. The low-current reduction in 𝛽, which is apparent for all three devices, is due to
recombination in the base-emitter depletion region, described in Section 1.3.5.

2.6 Passive Components in Bipolar Integrated Circuits
In this section, we describe the structures available to the integrated-circuit designer for realiza-
tion of resistance and capacitance. Resistor structures include base-diffused, emitter-diffused,
ion-implanted, pinch, epitaxial, and pinched epitaxial resistors. Other resistor technologies,
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such as thin-film resistors, are considered in Section 2.7.3. Capacitance structures include
MOS and junction capacitors. Inductors with values larger than a few nanohenries have not
proven to be feasible in monolithic technology. However, such small inductors are useful in
very-high-frequency integrated circuits.14–16

2.6.1 Diffused Resistors

In an earlier section of this chapter, the sheet resistance of a diffused layer was calculated.
Integrated-circuit resistors are generally fabricated using one of the diffused or ion-implanted
layers formed during the fabrication process, or in some cases a combination of two layers.
The layers available for use as resistors include the base, the emitter, the epitaxial layer, the
buried layer, the active-base region layer of a transistor, and the epitaxial layer pinched between
the base diffusion and the p-type substrate. The choice of layer generally depends on the value,
tolerance, and temperature coefficient of the resistor required.

Base- and Emitter-Diffused Resistors. The structure of a typical base-diffused resistor in
a high-voltage process is shown in Fig. 2.39. The resistor is formed from the p-type base
diffusion for the npn transistors and is situated in a separate isolation region. The epitaxial
region into which the resistor structure is diffused must be biased in such a way that the pn
junction between the resistor and the epi layer is always reverse biased. For this reason, a
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contact is made to the n-type epi region, as shown in Fig. 2.39, and it is connected either to
that end of the resistor that is most positive or to a potential that is more positive than either
end of the resistor. The junction between these two regions contributes a parasitic capacitance
between the resistor and the epi layer, and this capacitance is distributed along the length of
the resistor. For most applications, this parasitic capacitance can be adequately modeled by
separating it into two lumped portions and placing one lump at each end of the resistor, as
illustrated in Fig. 2.40.

The resistance of the structure shown in Fig. 2.39 is given by (2.10) as

R = L
W

R◽

Isolation
region
contact

Resistor
contact

Resistor
contact

V1

+

–

V2

+

–

Cj

2
Cj

2

L
W

R R= )(

Figure 2.40 Lumped model for the base-diffused
resistor.
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where L is the resistor length and W is the width. The base sheet resistance R◽ lies in the
range 100 to 200 Ω/◽, and thus resistances in the range 50 to 50 kΩ are practical using the
base diffusion. The resistance contributed by the clubheads at each end of the resistor can be
significant, particularly for small values of L∕W. The clubheads are required to allow space
for ohmic contact to be made at the ends of the resistor.

Since minimization of die area is an important objective, the width of the resistor is kept
as small as possible, the minimum practical width being limited to about 1 μm by photolitho-
graphic considerations. Both the tolerance on the resistor value and the precision with which
two identical resistors can be matched can be improved by the use of wider geometries.
However, for a given base sheet resistance and a given resistor value, the area occupied by the
resistor increases as the square of its width. This can be seen from (2.10) since the ratio L∕W
is constant.

In shallow ion-implanted processes, the ion-implanted base can be used in the same way to
form a resistor.

◼ EXAMPLE
Calculate the resistance and parasitic capacitance of the base-diffused resistor structure shown
in Fig. 2.39 for a base sheet resistance of 100 Ω/◽ and an epi resistivity of 2.5 Ω-cm. Neglect
end effects.

The resistance is simply

R = 100 Ω/◽
(

100 μm

10 μm

)
= 1 kΩ

The capacitance is the total area of the resistor multiplied by the capacitance per unit area. The
area of the resistor body is

A1 = (10 μm)(100 μm) = 1000 μm2

The area of the clubheads is

A2 = 2 (30 μm × 30 μm) = 1800 μm2

The total zero-bias capacitance is, from Fig. 2.29,

Cj0 = (10−4 pF/μm2)(2800 μm2) = 0.28 pF

As a first-order approximation, this capacitance can be divided into two parts, one placed at
each end. Note that this capacitance will vary depending on the voltage at the clubhead with
respect to the epitaxial pocket.◼

Emitter-diffused resistors are fabricated using geometries similar to the base resistor, but the
emitter diffusion is used to form the actual resistor. Since the sheet resistance of this diffusion
is in the 2 to 10 Ω/◽ range, these resistors can be used to advantage where very low resis-
tance values are required. In fact, they are widely used simply to provide a crossunder beneath
an aluminum metallization interconnection. The parasitic capacitance can be calculated in a
way similar to that for the base diffusion. However, these resistors have different temperature
dependence from base-diffused resistors, and the two types do not track with temperature.

Base Pinch Resistors. A third layer available for use as a resistor is the layer that forms
the active base region in the npn transistor. This layer is pinched between the n+ emitter and
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the n-type collector regions, giving rise to the term pinch resistor. The layer can be elec-
trically isolated by reverse biasing the emitter-base and collector-base junctions, which is
usually accomplished by connecting the n-type regions to the most positive end of the resistor.
The structure of a typical pinch resistor is shown in Fig. 2.41; the n+ diffusion overlaps the
p-diffusion so that the n+ region is electrically connected to the n-type epi region. The sheet
resistance is in the 5 to 15 kΩ/◽ range. As a result, this resistor allows the fabrication of large
values of resistance. Unfortunately, the sheet resistance undergoes the same process-related
variations as does the QB of the transistor, which is approximately ±50 percent. Also, because
the material making up the resistor itself is relatively lightly doped, the resistance displays
a relatively large variation with temperature. Another significant drawback is that the max-
imum voltage that can be applied across the resistor is limited to around 6 V because of the
breakdown voltage between the emitter-diffused top layer and the base diffusion. Nonetheless,
this type of resistor has found wide application where the large tolerance and low breakdown
voltage are not significant drawbacks.

2.6.2 Epitaxial and Epitaxial-Pinch Resistors

The limitation of the pinch resistor to low operating voltages disallows its use in circuits
where a small bias current is to be derived directly from a power-supply voltage of more than
about 7 V using a large-value resistor. The epitaxial layer itself has a sheet resistance much
larger than the base diffusion, and the epi layer is often used as a resistor for this application.
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For example, the sheet resistance of a 17 μm thick, 5 Ω-cm epi layer can be calculated from
(2.11) as

R◽ =
𝜌epi

T
= 5 Ω-cm

(17 μm) × (10−4 cm/μm)
= 2.9 kΩ/◽ (2.25)

Large values of resistance can be realized in a small area using structures of the type shown
in Fig. 2.42. Again, because of the light doping in the resistor body, these resistors display a
rather large temperature coefficient. A still larger sheet resistance can be obtained by putting
a p-type base diffusion over the top of an epitaxial resistor, as shown in Fig. 2.42. The depth
of the p-type base and the thickness of the depletion region between the p-type base and the
n-type epi together reduce the thickness of the resistor, increasing its sheet resistance. Such a
structure actually behaves as a junction FET in which the p-type gate is tied to the substrate.17

The properties of the various diffused and pinch-resistor structures are summarized in
Fig. 2.43.
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Sheet 𝜌 Absolute Matching
Resistor Type Ω/◽ Tolerance (%) Tolerance (%) Temperature Coefficient

Base diffused 100 to 200 ±20 ±2 (5 μm wide) (+1500 to +2000) ppm/∘C
±0.2 (50 μm wide)

Emitter diffused 2 to 10 ±20 ±2 +600 ppm/∘C

Ion implanted 100 to 1000 ±3 ±1 (5 μm wide) Controllable
±0.1 (50 μm wide) to ±100 ppm/∘C

Base pinch 2k to 10k ±50 ±10 +2500 ppm/∘C

Epitaxial 2k to 5k ±30 ±5 +3000 ppm/∘C

Epitaxial pinch 4k to 10k ±50 ±7 +3000 ppm/∘C

Thin film 0.1k to 2k ±5 to ±20 ±0.2 to ±2 (±10 to ±200) ppm/∘C

Figure 2.43 Summary of resistor properties for different types of IC resistors.

2.6.3 Integrated-Circuit Capacitors

Early analog integrated circuits were designed on the assumption that capacitors of usable
value were impractical to integrate on the chip because they would take too much area, and
external capacitors were used where required. Monolithic capacitors of value larger than a few
tens of picofarads are still expensive in terms of die area. As a result, design approaches have
evolved for monolithic circuits that allow small values of capacitance to be used to perform
functions that previously required large capacitance values. The compensation of operational
amplifiers is perhaps the best example of this result, and monolithic capacitors are now widely
used in all types of analog integrated circuits. These capacitors fall into two categories. First,
pn junctions under reverse bias inherently display depletion capacitance, and in certain circum-
stances this capacitance can be effectively utilized. The drawbacks of junction capacitance are
that the junction must always be kept reverse biased, that the capacitance varies with reverse
voltage, and that the breakdown voltage is only about 7 V for the emitter-base junction. For
the collector-base junction, the breakdown voltage is higher, but the capacitance per unit area
is quite low.

By far the most commonly used monolithic capacitor in bipolar technology is the MOS
capacitor structure shown in Fig. 2.44. In the fabrication sequence, an additional mask step is
inserted to define a region over an emitter diffusion on which a thin layer of silicon dioxide
is grown. Aluminum metallization is then placed over this thin oxide, producing a capacitor
between the aluminum and the emitter diffusion, which has a capacitance of 0.3 to 0.5 fF/μm2

and a breakdown voltage of 60 to 100 V. This capacitor is extremely linear and has a low tem-
perature coefficient. A sizable parasitic capacitance CISO is present between the n-type bottom
plate and the substrate because of the depletion capacitance of the epi-substrate junction, but
this parasitic is unimportant in many applications.

2.6.4 Zener Diodes

As described in Chapter 1, the emitter-base junction of the npn transistor structure displays a
reverse breakdown voltage of between 6 and 8 V, depending on processing details. When the
total supply voltage is more than this value, the reverse-biased, emitter-base junction is useful
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as a voltage reference for the stabilization of bias reference circuits, and for such functions as
level shifting. The reverse-bias I-V characteristic of a typical emitter-base junction is illustrated
in Fig. 2.45a.

An important aspect of the behavior of this device is the temperature sensitivity of the
breakdown voltage. The actual breakdown mechanism is dominated by quantum mechanical
tunneling through the depletion layer when the breakdown voltage is below about 6 V; it is
dominated by avalanche multiplication in the depletion layer at the larger breakdown voltages.
Because these two mechanisms have opposite temperature coefficients of breakdown voltage,
the actually observed breakdown voltage has a temperature coefficient that varies with the
value of breakdown voltage itself, as shown in Fig. 2.45b.

2.6.5 Junction Diodes

Junction diodes can be formed by various connections of the npn and pnp transistor structures,
as illustrated in Fig. 2.46. When the diode is forward biased in the diode connections a, b,
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and d of Fig. 2.46, the collector-base junction becomes forward biased as well. When this
occurs, the collector-base junction injects holes into the epi region that can be collected by
the reverse-biased, epi-isolation junction or by other devices in the same isolation region.
A similar phenomenon occurs when a transistor enters saturation. As a result, substrate
currents can flow that can cause voltage drops in the high-resistivity substrate material,
and other epi-isolation junctions within the circuit can become inadvertently forward
biased. Thus the diode connections of Fig. 2.46c are usually preferable since they keep the
base-collector junction at zero bias. These connections have the additional advantage of result-
ing in the smallest amount of minority charge storage within the diode under forward-bias
conditions.
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(a)

(b)

(c)

(d ) Figure 2.46 Diode connections for npn and pnp
transistors.

2.7 Modifications to the Basic Bipolar Process
The basic high-voltage bipolar IC fabrication process described previously can be modified by
the addition of extra processing steps to produce special devices or characteristics.

2.7.1 Dielectric Isolation

We first consider a special isolation technique—dielectric isolation—that has been used in dig-
ital and analog integrated circuits that must operate at very high speed and/or must operate in
the presence of large amounts of radiation. The objective of the isolation technique is to electri-
cally isolate the collectors of the devices from each other with a layer of silicon dioxide rather
than with a pn junction. This layer has much lower capacitance per unit area than a pn junction,
and as a result, the collector-substrate capacitance of the transistors is greatly reduced. Also,
the reverse photocurrent that occurs with junction-isolated devices under intense radiation is
eliminated.

The fabrication sequence used for dielectric isolation is illustrated in Figs. 2.47a–d. The
starting material is a wafer of n-type material of resistivity appropriate for the collector region
of the transistor. The first step is to etch grooves in the back side of the starting wafer, which
will become the isolation regions in the finished circuit. These grooves are about 20 μm deep
for typical analog circuit processing. This step, called moat etch, can be accomplished with a
variety of techniques, including a preferential etch that allows precise definition of the depth of
the moats. Next, an oxide is grown on the surface and a thick layer of polycrystalline silicon is
deposited on the surface. This layer will be the mechanical support for the finished wafer and
thus must be on the order of 200 μm thick. Next, the starting wafer is etched or ground from the
top side until it is entirely removed except for the material left in the isolated islands between
the moats, as illustrated in Fig. 2.47c. After the growth of an oxide, the wafer is ready for the
rest of the standard process sequence. Note that the isolation of each device is accomplished
by means of an oxide layer.
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Figure 2.47 Fabrication steps in dielectric isolation. (a) Moat etch on bottom of starting wafer.
(b) Deposit polycrystalline silicon support layer. (c) Grind off starting wafer and polish. (d) Carry out
standard process, starting with base mask.

2.7.2 Compatible Processing for High-Performance Active Devices

Many specialized circuit applications require a particular type of active device other than the
npn and pnp transistors that result from the standard process schedule. These include high-beta
(superbeta) npn transistors for low-input-current amplifiers, MOSFETs for analog switching
and low-input-current amplifiers, and high-speed pnp transistors for fast analog circuits. The
fabrication of these devices generally requires the addition of one or more mask steps to the
basic fabrication process. We now describe these special structures.

Superbeta Transistors. One approach to decreasing the input bias current in amplifiers is to
increase the current gain of the input stage transistors.18 Since a decrease in the base width of a
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transistor improves both the base transport factor and the emitter efficiency (see Section 1.3.1),
the current gain increases as the base width is made smaller. Thus the current gain of the devices
in the circuit can be increased by simply increasing the emitter diffusion time and narrowing
the base width in the resulting devices. However, any increase in the current gain also causes
a reduction in the breakdown voltage BVCEO of the transistors. Section 1.3.4 shows that

BVCEO =
BVCBO

n
√
𝛽

(2.26)

where BVCBO is the plane breakdown voltage of the collector-base junction. Thus for a given
epitaxial layer resistivity and corresponding collector-base breakdown voltage, an increase in
beta gives a decrease in BVCEO. As a result, using such a process modification to increase
the beta of all the transistors in an operational amplifier is not possible because the modified
transistors could not withstand the required operating voltage.

The problem of the trade-off between current gain and breakdown voltage can be avoided
by fabricating two different types of devices on the same die. The standard device is similar
in structure to conventional transistors. By inserting a second diffusion, however, high-beta
devices can also be formed. A structure typical of such devices is shown in Fig. 2.48. These
devices may be made by utilizing the same base diffusion for both devices and using separate
emitter diffusions, or by using two different base diffusions and the same emitter diffusion.
Both techniques are used. If the superbeta devices are used only as the input transistors in an
operational amplifier, they are not required to have a breakdown voltage of more than about
1 V. Therefore, they can be diffused to extremely narrow base widths, giving current gain on
the order of 2000 to 5000. At these base widths, the actual breakdown mechanism is often
no longer collector multiplication at all but is due to the depletion layer of the collector-base
junction depleting the whole base region and reaching the emitter-base depletion layer. This
breakdown mechanism is called punchthrough. These devices have been used as the input
transistors in low-input-current op amps.

MOS Transistors. MOS transistors are useful in bipolar integrated-circuit design because
they provide high-performance analog switches and low-input-current amplifiers, and particu-
larly because complex digital logic can be realized in a small area using MOS technology. The
latter consideration is important since the partitioning of subsystems into analog and digital
chips becomes more and more cumbersome as the complexity of the individual chips becomes
greater.
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Figure 2.48 Superbeta device structure.
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Figure 2.49 Compatible p-channel MOS transistor.

Metal-gate p-channel MOS transistors can be formed in a standard high-voltage bipolar
analog IC process with one extra mask step.19 If a capacitor mask is included in the original
sequence, then no extra mask steps are required. As illustrated in Fig. 2.49, the source and
drain are formed in the epi material using the base diffusion. The capacitor mask is used to
define the oxide region over the channel, and the aluminum metallization forms the metal gate.

A major development in IC processing was the combination on the same chip of
high-performance bipolar devices with CMOS devices in a BiCMOS process. This topic is
considered in Section 2.11.

Double-Diffused pnp Transistors. The limited frequency response of the lateral pnp tran-
sistor places a limitation on the high-frequency performance attainable with certain types of
analog circuits. While this problem can be circumvented by clever circuit design in many cases,
the resulting circuit is often quite complex and costly. An alternative approach is to use a more
complex process that produces a high-speed, double-diffused pnp transistor with properties
comparable to those of the npn transistor.20 The process usually utilizes three additional mask
steps and diffusions: one to form a lightly doped p-type region, which will be the collector of
the pnp; one n-type diffusion to form the base of the pnp; and one p-type diffusion to form the
emitter of the pnp. A typical resulting structure is shown in Fig. 2.50. This process requires
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Figure 2.50 Compatible double-diffused pnp process.
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Cermet
Nichrome Tantalum (Cr-SiO)
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Figure 2.52 Properties of monolithic thin-film resistors.

ten masking steps and two epitaxial growth steps. Oxide isolation and poly-emitter technology
have been incorporated into more advanced versions of this process.

2.7.3 High-Performance Passive Components

Diffused resistors have three drawbacks: they have high temperature coefficients, they have
poor tolerance, and they are junction-isolated. The latter means that a parasitic capacitance is
associated with each resistor, and exposure to radiation causes photocurrents to flow across the
isolating junction. These drawbacks can be overcome by the use of thin-film resistors deposited
on the top surface of the die over an insulating layer of oxide. After the resistor material itself is
deposited, the individual resistors are defined in a conventional way using a masking step. They
are then interconnected with the rest of the circuit using the standard aluminum interconnect
process. The most common materials for the resistors are nichrome and tantalum, and a typical
structure is shown in Fig. 2.51. The properties of the resulting resistors using these materials
are summarized in Fig. 2.52.

2.8 MOS Integrated-Circuit Fabrication
Fabrication technologies for MOS integrated circuits span a considerably wider spectrum of
complexity and performance than those for bipolar technology. CMOS technologies provide
two basic types of transistors: enhancement-mode n-channel transistors (which have positive
thresholds) and enhancement-mode p-channel transistors (which have negative thresholds).
The magnitudes of the threshold voltages of these transistors are typically set to be 0.6 to
0.8 V so that the drain current resulting from subthreshold conduction with zero gate-source
voltage is very small. This property gives standard CMOS digital circuits high noise margins
and essentially zero static power dissipation. However, such thresholds do not always
minimize the total power dissipation because significant dynamic power is dissipated by
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charging and discharging internal nodes during logical transitions, especially for high clock
rates and power-supply voltages.21 To reduce the minimum required supply voltage and the
total power dissipation for some applications, low-threshold, enhancement-mode devices or
depletion-mode devices are sometimes used instead of or along with the standard-threshold,
enhancement-mode devices. For the sake of illustration, we will consider an example process
that contains enhancement-mode n- and p-channel devices along with a depletion-mode
n-channel device.

CMOS technologies can utilize either a p-type or n-type substrate, with the complementary
device type formed in an implanted well of the opposite impurity type. We will take as an
example a process in which the starting material is p-type. The starting material is a silicon
wafer with a concentration in the range of 1014 to 1015 atoms/cm3. In CMOS technology, the
first step is the formation of a well of opposite impurity-type material where the complementary
device will be formed. In this case, the well is n-type and is formed by a masking operation
and ion implantation of a donor species, typically phosphorus. Subsequent diffusion results in
the structure shown in Fig. 2.53. The surface concentration in the well following diffusion is
typically between 1015 and 1016 atoms/cm3.

Next, a layer of silicon nitride is deposited and defined with a masking operation so that
nitride is left only in the areas that are to become active devices. After this masking operation,
additional ion implantations are carried out, which increase the surface concentrations in the
areas that are not covered by nitride, called the field regions. This often involves an extra mask-
ing operation so that the surface concentration in the well and that in the substrate areas can
be independently controlled by means of separate implants. This increase in surface concen-
tration in the field is necessary because the field regions themselves are MOS transistors with
very thick gate oxide. To properly isolate the active devices from one another, the field devices
must have a threshold voltage high enough that they never turn on. This can be accomplished
by increasing the surface concentration in the field regions. Following the field implants, a
local oxidation is performed, which results in the structure shown in Fig. 2.54.

p-type substrate

n-type wellSiO2 (thin)

Figure 2.53 Cross section of sample following implantation and diffusion of the n-type well. Sub-
sequent processing will result in formation of an n-channel device in the unimplanted p-type portions of
the substrate and a p-type transistor in the n-type well region.

p-type substrate

 Implanted n-layerImplanted p-layerThick SiO2

SiO2 

Figure 2.54 Cross section of the sample following field-implant steps and field oxidation.
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After field-oxide growth, the nitride is removed from the active areas, and implantation
steps are carried out, which adjust the surface concentrations in what will become the chan-
nel of the MOS transistors. Equation 1.139, applied to the doping levels usually found in the
active-device areas, gives an n-channel threshold of within a few hundred millivolts of zero
and p-channel threshold of about −2 V. To shift the magnitudes of the device threshold volt-
ages to 0.6 to 0.8 V, an implantation step that changes the impurity concentration at the surface
in the channel regions of the two transistor types is usually included. This shift in threshold
can sometimes be accomplished by using a single sheet implant over the entire wafer, which
simultaneously shifts the thresholds of both types of devices. More typically, however, two sep-
arate masked implants are used, one for each device type. Also, if a depletion-mode n-channel
device is included in the process, it is defined at this point by a masking operation and subse-
quent implant to shift the threshold of the selected devices to a negative value so that they are
normally on.

Next, a layer of polysilicon is deposited, and the gates of the various devices are defined with
a masking operation. The resulting structure is shown in Fig. 2.55. Silicon-gate MOS technol-
ogy provides three materials that can be used for interconnection: polysilicon, diffusion, and
several layers of metal. Unless special provision is made in the process, connections between
polysilicon and diffusion layers require a metallization bridge, since the polysilicon layer acts
as a mask for the diffused layers. To provide a direct electrical connection between polysilicon
and diffusion layers, a buried contact can be included just prior to the polysilicon deposition.
This masking operation opens a window in the silicon dioxide under the polysilicon, allowing
it to touch the bare silicon surface when it is deposited, forming a direct polysilicon-silicon
contact. The depletion device shown in Fig. 2.55 has such a buried contact connecting its
source to its gate.

Next, a masking operation is performed such that photoresist covers the p-channel devices,
and the wafer is etched to remove the oxide from the source and drain areas of the n-channel
devices. Arsenic or phosphorus is then introduced into these areas, using either diffusion or
ion implantation. After a short oxidation, the process is repeated for the p-channel source and
drain areas, where boron is used. The resulting structure is shown in Fig. 2.56.

At this point in the process, a layer of silicon dioxide is usually deposited on the wafer,
using chemical vapor deposition or some other similar technique. This layer is required to
reduce the parasitic capacitance of the interconnect metallization and cannot be thermally
grown because of the redistribution of the impurities within the device structures that would
result during the growth. Following the oxide deposition, the contact windows are formed with
a masking operation, and metallization is deposited and defined with a second masking oper-
ation. The final structure is shown in Fig. 2.57. A microscope photograph of such a device is
shown in Fig. 2.58. Subsequent fabrication steps are as described in Section 2.3 for bipolar
technology.

p-type substrate

Polysilicon

Buried contact

 n-type implanted layer
for depletion device

SiO2 

Figure 2.55 Cross section of the sample following deposition and definition of the polysilicon gate layer.
Ion implantations have been performed in the thin-oxide regions to adjust the thresholds of the devices.
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p-type substrate

n+ implant or
diffusion

p+ implant or
diffusion

SiO2 
n-type well

Figure 2.56 Cross section of the sample following the source drain masking and diffusion operations.

p-type substrate

Depletion-mode
n-channel
transistor

Enhancement-mode
n-channel
transistor

Enhancement-mode
p-channel
transistor

SiO2 

Metallization

Figure 2.57 Cross section of the sample after final process step. The enhancement and depletion
n-channel devices are distinguished from each other by the fact that the depletion device has received
a channel implantation of donor impurities to lower its threshold voltage, usually to the range of
−1.5 to −3 V.

Edge of field
oxide region

Polysilicon gate

Source
contact windows (2)

Drain
metallization

Drain contact
windows (2)

Source metallization

Figure 2.58 Photomicrograph of a silicon-gate
MOS transistor. Visible in this picture are the
polysilicon gate, field-oxide region boundary,
source and drain metallization, and contact
windows. In this particular device, the contact
windows have been broken into two smaller
rectangular openings rather than a single long
one as shown in Fig. 2.59. Large contact
windows are frequently implemented with an
array of small openings so that all individual
contact holes in the integrated circuit have the
same nominal geometry. This results in better
uniformity of the etch rate of the contact
windows and better matching.
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2.9 Active Devices in MOS Integrated Circuits
The process sequence described in the previous section results in a variety of device types
having different threshold voltages, channel mobilities, and parasitic capacitances. In addition,
the sequence allows the fabrication of a bipolar emitter follower, using the well as a base. In
this section, we explore the properties of these different types of devices.

2.9.1 n-Channel Transistors

A typical layout of an n-channel MOS transistor is shown in Fig. 2.59. The electrically active
portion of the device is the region under the gate; the remainder of the device area simply
provides electrical contact to the terminals. As in the case of integrated bipolar transistors,
these areas contribute additional parasitic capacitance and resistance.

In the case of MOS technology, the circuit designer has even greater flexibility than in the
bipolar case to tailor the properties of each device to the role it is to play in the individual
circuit application. Both the channel width (analogous to the emitter area in bipolar) and the
channel length can be defined by the designer. The latter is analogous to the base width of
a bipolar device, which is not under the control of the bipolar circuit designer since it is a
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Figure 2.59 Example layout of an
n-channel silicon-gate MOS tran-
sistor. The mask layers are coded as
shown.
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process parameter and not a mask parameter. In contrast to a bipolar transistor, the transcon-
ductance of an MOS device can be made to vary over a wide range at a fixed drain current
by simply changing the device geometry. The same is true of the gate-source voltage. In mak-
ing these design choices, the designer must be able to relate changes in device geometry to
changes in the electrical properties of the device. To illustrate this procedure, we will calcu-
late the model parameters of the device shown in Fig. 2.59. This device has a drawn channel
length of 6 μm and channel width of 50 μm. We will assume the process has the parameters
that are summarized in Table 2.1. This is typical of processes with minimum allowed gate
lengths of 3 μm. Parameters for more advanced processes are given in Tables 2.2, 2.3, 2.4, 2.5,
and 2.6.

Table 2.1 Summary of Process Parameters for a Typical Silicon-Gate n-Well CMOS
Process with 3 μm Minimum Allowed Gate Length

Value Value
n-Channel p-Channel

Parameter Symbol Transistor Transistor Units

Substrate doping NA,ND 1 × 1015 1 × 1016 Atoms/cm3

Gate oxide thickness tox 400 400 Å

Metal-silicon work function 𝜙ms −0.6 −0.1 V

Channel mobility 𝜇n, 𝜇p 700 350 cm2/V-s

Minimum drawn channel length Ldrwn 3 3 μm

Source, drain junction depth Xj 0.6 0.6 μm

Source, drain side diffusion Ld 0.3 0.3 μm

Overlap capacitance per unit
gate width

Col 0.35 0.35 fF/μm

Threshold adjust implant (box dist)

impurity type P P

effective depth Xi 0.3 0.3 μm

effective surface
concentration

Nsi 2 × 1016 0.9 × 1016 Atoms/cm3

Nominal threshold voltage Vt 0.7 −0.7 V

Polysilicon gate doping concentration Ndpoly 1020 1020 Atoms/cm3

Poly gate sheet resistance Rs 20 20 Ω∕◽
Source, drain-bulk junction

capacitances (zero bias)
Cj0 0.08 0.20 fF/μm2

Source, drain-bulk junction
capacitance grading coefficient

n 0.5 0.5

Source, drain periphery capacitance
(zero bias)

Cjsw0 0.5 1.5 fF/μm

Source, drain periphery capacitance
grading coefficient

n 0.5 0.5

Source, drain junction built-in
potential

𝜓0 0.65 0.65 V

Surface-state density
QSS

q
1011 1011 Atoms/cm2

Channel-length modulation parameter
||||| dXd

dVDS

||||| 0.2 0.1 μm/V
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Table 2.2 Summary of Process Parameters for a Typical Silicon-Gate n-Well CMOS
Process with 1.5 μm Minimum Allowed Gate Length

Value Value
n-Channel p-Channel

Parameter Symbol Transistor Transistor Units

Substrate doping NA,ND 2 × 1015 1.5 × 1016 Atoms/cm3

Gate oxide thickness tox 250 250 Å

Metal-silicon work function 𝜙ms −0.6 −0.1 V

Channel mobility 𝜇n, 𝜇p 650 300 cm2/V-s

Minimum drawn channel length Ldrwn 1.5 1.5 μm

Source, drain junction depth Xj 0.35 0.4 μm

Source, drain side diffusion Ld 0.2 0.3 μm

Overlap capacitance per unit gate
width

Col 0.18 0.26 fF/μm

Threshold adjust implant (box dist)

impurity type P P

effective depth Xi 0.3 0.3 μm

effective surface
concentration

Nsi 2 × 1016 0.9 × 1016 Atoms/cm3

Nominal threshold voltage Vt 0.7 −0.7 V

Polysilicon gate doping
concentration

Ndpoly 1020 1020 Atoms/cm3

Poly gate sheet resistance Rs 20 20 Ω/◽
Source, drain-bulk junction

capacitances (zero bias)
Cj0 0.14 0.25 fF/μm2

Source, drain-bulk junction
capacitance grading coefficient

n 0.5 0.5

Source, drain periphery capacitance
(zero bias)

Cjsw0 0.8 1.8 fF/μm

Source, drain periphery capacitance
grading coefficient

n 0.5 0.5

Source, drain junction built-in
potential

𝜓0 0.65 0.65 V

Surface-state density
QSS

q
1011 1011 Atoms/cm2

Channel-length modulation
parameter

||||| dXd

dVDS

||||| 0.12 0.06 μm/V

Threshold Voltage. In Chapter 1, an MOS transistor was shown to have a threshold volt-
age of

Vt = 𝜙ms + 2𝜙f +
Qb

Cox
−

Qss

Cox
(2.27)

where 𝜙ms is the metal-silicon work function, 𝜙f is the Fermi level in the bulk silicon, Qb
is the bulk depletion layer charge, Cox is the oxide capacitance per unit area, and Qss is the
concentration of surface-state charge. An actual calculation of the threshold is illustrated in
the following example.
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Table 2.3 Summary of Process Parameters for a Typical Silicon-Gate n-Well CMOS
Process with 0.8 μm Minimum Allowed Gate Length

Value Value
n-Channel p-Channel

Parameter Symbol Transistor Transistor Units

Substrate doping NA,ND 4 × 1015 3 × 1016 Atoms/cm3

Gate oxide thickness tox 150 150 Å

Metal-silicon work function 𝜙ms −0.6 −0.1 V

Channel mobility 𝜇n, 𝜇p 550 250 cm2/V-s

Minimum drawn channel length Ldrwn 0.8 0.8 μm

Source, drain junction depth Xj 0.2 0.3 μm

Source, drain side diffusion Ld 0.12 0.18 μm

Overlap capacitance per unit gate
width

Col 0.12 0.18 fF/μm

Threshold adjust implant (box dist)

impurity type P P

effective depth Xi 0.2 0.2 μm

effective surface
concentration

Nsi 3 × 1016 2 × 1016 Atoms/cm3

Nominal threshold voltage Vt 0.7 −0.7 V

Polysilicon gate doping
concentration

Ndpoly 1020 1020 Atoms/cm3

Poly gate sheet resistance Rs 10 10 Ω/◽
Source, drain-bulk junction

capacitances (zero bias)
Cj0 0.18 0.30 fF/μm2

Source, drain-bulk junction
capacitance grading coefficient

n 0.5 0.5

Source, drain periphery capacitance
(zero bias)

Cjsw0 1.0 2.2 fF/μm

Source, drain periphery capacitance
grading coefficient

n 0.5 0.5

Source, drain junction built-in
potential

𝜓0 0.65 0.65 V

Surface-state density
QSS

q
1011 1011 Atoms/cm2

Channel-length modulation
parameter

||||| dXd

dVDS

||||| 0.08 0.04 μm/V

Often the threshold voltage must be deduced from measurements, and a useful approach
to doing this is to plot the square root of the drain current as a function of VGS, as shown in
Fig. 2.60. The threshold voltage can be determined as the extrapolation of the straight portion
of the curve to zero current. The slope of the curve also yields a direct measure of the quantity
𝜇nCoxW∕Leff for the device at the particular drain-source voltage at which the measurement is
made. The measured curve deviates from a straight line at low currents because of subthreshold
conduction and at high currents because of mobility degradation in the channel as the carriers
approach scattering-limited velocity.
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Table 2.4 Summary of Process Parameters for a Typical Silicon-Gate n-Well CMOS
Process with 0.4 μm Minimum Allowed Gate Length

Value Value
n-Channel p-Channel

Parameter Symbol Transistor Transistor Units

Substrate doping NA,ND 5 × 1015 4 × 1016 Atoms/cm3

Gate oxide thickness tox 80 80 Å

Metal-silicon work function 𝜙ms −0.6 −0.1 V

Channel mobility 𝜇n, 𝜇p 450 150 cm2/V-s

Minimum drawn channel length Ldrwn 0.4 0.4 μm

Source, drain junction depth Xj 0.15 0.18 μm

Source, drain side diffusion Ld 0.09 0.09 μm

Overlap capacitance per unit gate
width

Col 0.35 0.35 fF/μm

Threshold adjust implant (box dist)

impurity type P P

effective depth Xi 0.16 0.16 μm

effective surface
concentration

Nsi 4 × 1016 3 × 1016 Atoms/cm3

Nominal threshold voltage Vt 0.6 −0.8 V

Polysilicon gate doping concentration Ndpoly 1020 1020 Atoms/cm3

Poly gate sheet resistance Rs 5 5 Ω/◽
Source, drain-bulk junction

capacitances (zero bias)
Cj0 0.2 0.4 fF/μm2

Source, drain-bulk junction
capacitance grading coefficient

n 0.5 0.4

Source, drain periphery capacitance
(zero bias)

Cjsw0 1.2 2.4 fF/μm

Source, drain periphery capacitance
grading coefficient

n 0.4 0.3

Source, drain junction built-in
potential

𝜓0 0.7 0.7 V

Surface-state density
QSS

q
1011 1011 Atoms/cm2

Channel-length modulation parameter
||||| dXd

dVDS

||||| 0.02 0.04 μm/V

◼ EXAMPLE
Calculate the zero-bias threshold voltage of the unimplanted and implanted NMOS transistors
for the process given in Table 2.1.

Each of the four components in the threshold voltage expression (2.27) must be calculated.
The first term is the metal-silicon work function. For an n-channel transistor with an n-type
polysilicon gate electrode, this has a value equal to the difference in the Fermi potentials in
the two regions, or approximately −0.6 V.

The second term in the threshold voltage equation represents the band bending in the semi-
conductor that is required to strongly invert the surface. To produce a surface concentration of
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Table 2.5 Summary of Process Parameters for a Typical CMOS Process with 0.2 μm
Minimum Allowed Gate Length

Value Value
n-Channel p-Channel

Parameter Symbol Transistor Transistor Units

Substrate doping NA,ND 8 × 1016 8 × 1016 Atoms/cm 3

Gate oxide thickness tox 42 42 Angstroms

Metal-silicon work function 𝜙ms −0.6 −0.1 V

Channel mobility 𝜇n, 𝜇p 300 80 cm2/V-s

Minimum drawn channel length Ldrwn 0.2 0.2 μm

Source, drain junction depth Xj 0.16 0.16 μm

Source, drain side diffusion Ld 0.01 0.015 μm

Overlap capacitance per unit gate
width

Col 0.36 0.33 fF/μm

Threshold adjust implant (box dist.)

impurity type P P

effective depth Xi 0.12 0.12 μm

effective surface
concentration

Nsi 2 × 1017 2 × 1017 Atoms/cm 3

Nominal threshold voltage Vt 0.5 −0.45 V

Polysilicon gate doping
concentration

Ndpoly 1020 1020 Atoms/cm 3

Poly gate sheet resistance Rs 7 7 Ω/◽
Source, drain-bulk junction

capacitances (zero bias)
Cj0 1.0 1.1 fF/μm2

Source, drain-bulk junction
capacitance grading coefficient

n 0.36 0.45

Source, drain periphery capacitance
(zero bias)

Cjsw0 0.2 0.25 fF/μm

Source, drain periphery capacitance
grading coefficient

n 0.2 0.24

Source, drain junction built-in
potential

𝜓0 0.68 0.74 V

Surface-state density
QSS

q
1011 1011 Atoms/cm 2

Channel-length modulation
parameter

||||| dXd

dVDS

||||| 0.028 0.023 μm/V

electrons that is approximately equal to the bulk concentration of holes, the surface potential
must be increased by approximately twice the bulk Fermi potential. The Fermi potential in the
bulk is given by

𝜙f =
kT
q

ln

(
NA

ni

)
(2.28)

For the unimplanted transistor with the substrate doping given in Table 2.1, this value is 0.27 V.
Thus the second term in (2.27) takes on a value of 0.54 V. The value of this term will be the
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Table 2.6 Summary of Process Parameters for a Typical CMOS Process with 0.1 μm
Minimum Allowed Gate Length

Value Value
n-Channel p-Channel

Parameter Symbol Transistor Transistor Units

Substrate doping NA,ND 1 × 1017 1 × 1017 Atoms/cm 3

Gate oxide thickness tox 25 25 Angstroms

Gate leakage current density JG 1.2 0.4 nA/μm 2

Metal-silicon work function 𝜙ms −0.6 −0.1 V

Channel mobility 𝜇n, 𝜇p 390 100 cm2/V-s

Minimum drawn channel length Ldrwn 0.1 0.1 μm

Source, drain junction depth Xj 0.15 0.16 μm

Source, drain side diffusion Ld 0.005 0.005 μm

Overlap capacitance per unit gate width Col 0.10 0.07 fF/μm

Threshold adjust implant (box dist.)

impurity type P P

effective depth Xi 0.1 0.1 μm

effective surface
concentration

Nsi 5 × 1017 5 × 1017 Atoms/cm 3

Nominal threshold voltage Vt 0.27 −0.28 V

Polysilicon gate doping concentration Ndpoly 1020 1020 Atoms/cm 3

Poly gate sheet resistance Rs 10 10 Ω/◽
Source, drain-bulk junction

capacitances (zero bias)
Cj0 1.0 1.1 fF/μm2

Source, drain-bulk junction capacitance
grading coefficient

n 0.25 0.35

Source, drain periphery capacitance
(zero bias)

Cjsw0 0.05 0.06 fF/μm

Source, drain periphery capacitance
grading coefficient

n 0.05 0.05

Source, drain junction built-in potential 𝜓0 0.6 0.65 V

Surface-state density
QSS

q
1011 1011 Atoms/cm 2

Channel-length modulation parameter
||||| dXd

dVDS

||||| 0.06 0.05 μm/V
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High-field
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conduction
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Figure 2.60 Typical
experimental variation of the
square root of the drain current
as a function of the gate-source
voltage in the active region.
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same for the implanted transistor since we are defining the threshold voltage as the voltage that
causes the surface concentration of electrons to be the same as that of holes in the bulk material
beneath the channel implant. Thus the potential difference between the surface and the bulk
silicon beneath the channel implant region that is required to bring this condition about is still
given by (2.28), independent of the details of the channel implant.

The third term in (2.27) is related to the charge in the depletion layer under the channel. We
first consider the unimplanted device. Using (1.137), with a value of NA of 1015 atoms/cm3,

Qb0 =
√

2 qNA𝜖2𝜙f =
√

2 (1.6 × 10−19)(1015)(11.6 × 8.86 × 10−14)(0.54)

= 1.34 × 10−8 C/cm2 (2.29)

Also, the capacitance per unit area of the 400 Å gate oxide is

Cox =
𝜖ox

tox
=

3.9 × 8.86 × 10−14 F∕cm

400 × 10−8 cm
= 8.6 × 10−8 F

cm2
= 0.86

fF
μm2

(2.30)

The resulting magnitude of the third term is 0.16 V.
The fourth term in (2.27) is the threshold shift due to the surface-state charge. This positive

charge has a value equal to the charge of one electron multiplied by the density of surface
states, 1011 atoms/cm2, from Table 2.1. The value of the surface-state charge term is then

Qss

Cox
= 1.6 × 10−19 × 1011

8.6 × 10−8
= 0.19 V (2.31)

Using these calculations, the threshold voltage for the unimplanted transistor is

Vt = −0.6 V + 0.54 V + 0.16 V − 0.19 V = −0.09 V (2.32)

For the implanted transistor, the calculation of the threshold voltage is complicated by the
fact that the depletion layer under the channel spans a region of nonuniform doping. A precise
calculation of device threshold voltage would require consideration of this nonuniform profile.
The threshold voltage can be approximated, however, by considering the implanted layer to
be approximated by a box distribution of impurities with a depth Xi and a specified impurity
concentration Ni. If the impurity profile resulting from the threshold-adjustment implant and
subsequent process steps is sufficiently deep that the channel-substrate depletion layer lies
entirely within it, then the effect of the implant is simply to raise the effective substrate dop-
ing. For the implant specified in Table 2.1, the average doping in the layer is the sum of the
implant doping and the background concentration, or 2.1 × 1016 atoms/cm3. This increases
the Qb0 term in the threshold voltage to 0.71 V and gives device threshold voltage of 0.47 V.
The validity of the assumption regarding the boundary of the channel-substrate depletion layer
can be checked by using Fig. 2.29. For a doping level of 2.1 × 1016 atoms/cm3, a one-sided
step junction displays a depletion region width of approximately 0.2 μm. Since the depth of
the layer is 0.3 μm in this case, the assumption is valid.

Alternatively, if the implantation and subsequent diffusion had resulted in a layer that
was very shallow and was contained entirely within the depletion layer, the effect of the
implanted layer would be simply to increase the effective value of Qss by an amount equal
to the effective implant dose over and above that of the unimplanted transistor. The total active
impurity dose for the implant given in Table 2.1 is the product of the depth and the impurity
concentration, or 6 × 1011 atoms/cm2. For this case, the increase in threshold voltage would
have been 1.11 V, giving a threshold voltage of 1.02 V.◼



2.9 Active Devices in MOS Integrated Circuits 143

Body-Effect Parameter. For an unimplanted, uniform-channel transistor, the body-effect
parameter is given by (1.141):

𝛾 = 1
Cox

√
2q𝜖NA (2.33)

The application of this expression is illustrated in the following example.

◼ EXAMPLE
Calculate the body-effect parameter for the unimplanted n-channel transistor in Table 2.1.

Utilizing in (2.33) the parameters given in Table 2.1, we obtain

𝛾 =
√

2 (1.6 × 10−19)(11.6 × 8.86 × 10−14)(1015)
8.6 × 10−8

= 0.21 V1∕2 (2.34)
◼

The calculation of the body effect in an implanted transistor is complicated by the fact that
the channel is not uniformly doped and the preceding simple expression does not apply. The
threshold voltage as a function of body-bias voltage can be approximated again by consider-
ing the implanted layer to be approximated by a box distribution of impurity of depth Xi and
concentration Ni. For small values of body bias where the channel-substrate depletion layer
resides entirely within the implanted layer, the body effect is that corresponding to a transistor
with channel doping (Ni + NA). For larger values of body bias for which the depletion layer
extends into the substrate beyond the implanted distribution, the incremental body effect cor-
responds to a transistor with substrate doping NA. A typical variation of threshold voltage as a
function of substrate bias for this type of device is illustrated in Fig. 2.61.

Effective Channel Length. The gate dimension parallel to current flow that is actually
drawn on the mask is called the drawn channel length Ldrwn. This is the length referred to
on circuit schematics. Because of exposure variations and other effects, the physical length
of the polysilicon strip defining the gate may be somewhat larger or smaller than this value.
The actual channel length of the device is the physical length of the polysilicon gate electrode
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Figure 2.61 Typical variation of threshold voltage as a function of substrate bias for n-channel devices
with uniform channel doping (no channel implant) and with nonuniform channel doping resulting from
threshold adjustment channel implant.
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minus the side or lateral diffusions of the source and the drain under the gate. This length
will be termed the metallurgical channel length and is the distance between the metallurgical
source and drain junctions. Assuming that the lateral diffusion of the source and drain are each
equal to Ld, the metallurgical channel length is L = (Ldrwn − 2Ld).

When the transistor is biased in the active or saturation region, a depletion region exists
between the drain region and the end of the channel. In Chapter 1, the width of this region was
defined as Xd. Thus for a transistor operating in the active region, the actual effective channel
length Leff is given by

Leff = Ldrwn − 2Ld − Xd (2.35)

A precise determination of Xd is complicated by the fact that the field distribution in the drain
region is two-dimensional and quite complex. The drain depletion width Xd can be approxi-
mated by assuming that the electric field in the drain region is one-dimensional and that the
depletion width is that of a one-sided step junction with an applied voltage of VDS − Vov, where
Vov = VGS − Vt is the potential at the drain end of the channel with respect to the source. This
assumption is used in the following example.

As shown in Chapter 1, the small-signal output resistance of the transistor is proportional to
the effective channel length. Because the performance of analog circuits often depends strongly
on the transistor small-signal output resistance, analog circuits often use channel lengths that
are longer than the minimum channel length for digital circuits. This statement is particularly
true for unimplanted transistors.

◼ EXAMPLE
Estimate the effective channel length for the unimplanted and implanted transistors for the
process shown in Table 2.1 and the device geometry shown in Fig. 2.59. Assume the device is
biased at a drain-source voltage of 5 V and a drain current of 10 μA. Calculate the transcon-
ductance and the output resistance. For the calculation of Xd, assume that the depletion region
between the drain and the end of the channel behaves like a step junction. At the given drain
bias voltage, assume that the values of dXd∕dVDS have been deduced from other measurements
to be 0.1 μm/V for the unimplanted device and 0.02 μm/V for the implanted device.

The metallurgical channel length is given by

L = Ldrwn − 2Ld = 6 μm − (2 × 0.3 μm) = 5.4 μm (2.36)

The effective channel length is this length minus the width of the depletion region at the drain
Xd. In the active region, the voltage at the drain end of the channel is approximately (VGS − Vt).
From (1.166),

VGS − Vt =

√
2ID

𝜇nCoxW∕L
= Vov (2.37)

If we ignore Xd at first and assume that L ≃ Leff, we obtain a Vov of 0.16 V using the data
from Table 2.1. Thus the voltage across the drain depletion region is approximately 4.84 V.
To estimate the depletion-region width, assume it is a one-sided step junction that mainly exists
in the lightly doped side. Since the channel and the drain are both n-type regions, the built-in
potential of the junction is near zero. The width of the depletion layer can be calculated using
(1.14) or the nomograph in Fig. 2.29. Using (1.14), and assuming ND ≫ NA,

Xd =

√
2𝜖 (VDS − Vov)

qNA
(2.38)
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For the unimplanted device, this equation gives a depletion width of 2.4 μm. For the implanted
device, the result is 0.5 μm, assuming an effective constant channel doping of 2.1 × 1016

atoms/cm3. Thus the effective channel lengths of the two devices would be approximately
3.0 μm and 4.9 μm, respectively.

From (1.180), the device transconductance is given by

gm =
√

2𝜇nCox(W∕L)ID (2.39)

Assuming that 𝜇n = 700 cm2/V-s, we find

gm =
√

2 (700)(8.6 × 10−8)(50∕3.0)(10 × 10−6) = 141 μA/V (2.40)

for the unimplanted transistor and

gm =
√

2 (700)(8.6 × 10−8)(50∕4.9)(10 × 10−6) = 111 μA/V (2.41)

for the implanted transistor.
The output resistance can be calculated by using (1.163) and (1.194). For the unimplanted

device,

ro =
Leff

ID

(
dXd

dVDS

)−1

=
(

3.0 μm

10 μA

)
1

0.1 μm/V
= 3.0 MΩ (2.42)

For the implanted device,

ro =
(

4.9 μm

10 μA

)
1

0.02 μm/V
= 25 MΩ (2.43)

◼

Because the depletion region for unimplanted devices is much wider than for implanted
devices, the channel length of unimplanted devices must be made longer than for implanted
devices to achieve comparable punchthrough voltages and small-signal output resistances
under identical bias conditions.

Effective Channel Width. The effective channel width of an MOS transistor is determined
by the gate dimension parallel to the surface and perpendicular to the channel length over
which the gate oxide is thin. Thick field oxide regions are grown at the edges of each transis-
tor by using the local-oxidation process described in Sections 2.2.7 and 2.8. Before the field
oxide is grown, nitride is deposited and patterned so that it remains only in areas that should
become transistors. Therefore, the width of a nitride region corresponds to the drawn width
of a transistor. To minimize the width variation, the field oxide should grow only vertically;
that is, the oxide thickness should increase only in regions where nitride does not cover the
oxide. In practice, however, some lateral growth of oxide also occurs near the edges of the
nitride during field-oxide growth. As a result, the edges of the field oxide are not vertical, as
shown in Figures 2.9 and 2.54. This lateral growth of the oxide reduces the effective width of
MOS transistors compared to their drawn widths. It is commonly referred to as the bird’s beak
because the gradually decreasing oxide thickness in the cross sections of Figures 2.9 and 2.54
resembles the corresponding portion of the profile of a bird.

As a result, both the effective lengths and the effective widths of transistors differ from
the corresponding drawn dimensions. In analog design, the change in the effective length is
usually much more important than the change in the effective width because transistors usually
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have drawn lengths much less than their drawn widths. As a result, the difference between the
drawn and effective width is often ignored. However, this difference is sometimes important,
especially when the matching between two ratioed transistors limits the accuracy of a given
circuit. This topic is considered in Section 4.3.

Intrinsic Gate-Source Capacitance. As described in Chapter 1, the intrinsic gate-source
capacitance of the transistor in the active region of operation is given by

Cgs =
2
3

WLeffCox (2.44)

The calculation of this parameter is illustrated in the next example.

Overlap Capacitance. Assuming that the source and drain regions each diffuse under the
gate by Ld after implantation, the gate-source and gate-drain overlap capacitances are given by

Col = WLdCox (2.45)

This parasitic capacitance adds directly to the intrinsic gate-source capacitance. It constitutes
the entire drain-gate capacitance in the active region of operation.

Junction Capacitances. Source-substrate and drain-substrate capacitances result from
the junction-depletion capacitance between the source and drain diffusions and the substrate.
A complicating factor in calculating these capacitances is the fact that the substrate doping
around the source and drain regions is not constant. In the region of the periphery of the
source and drain diffusions that border on the field regions, a relatively high surface con-
centration exists on the field side of the junction because of the field threshold adjustment
implant. Although approximate calculations can be carried out, the zero-bias value and grad-
ing parameter of the periphery capacitance are often characterized experimentally by using
test structures. The bulk-junction capacitance can be calculated directly by using (1.21) or can
be read from the nomograph in Fig. 2.29.

An additional capacitance that must be accounted for is the depletion capacitance between
the channel and the substrate under the gate, which we will term Ccs. Calculation of this capac-
itance is complicated by the fact that the channel-substrate voltage is not constant but varies
along the channel. Also, the allocation of this capacitance to the source and drain varies with
operating conditions in the same way as the allocation of Cgs. A reasonable approach is to
develop an approximate total value for this junction capacitance under the gate and allocate it to
source and drain in the same ratio as the gate capacitance is allocated. For example, in the active
region, a capacitance of two-thirds of Ccs would appear in parallel with the source-substrate
capacitance, and none would appear in parallel with the drain-substrate capacitance.

◼ EXAMPLE
Calculate the capacitances of an implanted device with the geometry shown in Fig. 2.59.
Use the process parameters given in Table 2.1, and assume a drain-source voltage of 5 V, drain
current of 10 μA, and no substrate bias voltage. Neglect the capacitance between the channel
and the substrate. Assume that Xd is negligibly small.

From (2.44), the intrinsic gate-source capacitance is

Cgs =
2
3

WLeffCox =
(2

3

)
50 μm × 5.4 μm × 0.86 fF/μm2 = 155 fF (2.46)
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From (2.45), the overlap capacitance is given by

Col = WLdCox = 50 μm × 0.3 μm × 0.86 fF/μm2 = 12.9 fF (2.47)

Thus the total gate-source capacitance is (Cgs + Col), or 168 fF. The gate-drain capacitance
is equal to the overlap capacitance, or 12.9 fF.

The source- and drain-to-substrate capacitances consist of two portions. The periphery or
sidewall part Cjsw is associated with that portion of the edge of the diffusion area that is adjacent
to the field region. The second portion Cj is the depletion capacitance between the diffused
junction and the bulk silicon under the source and drain. For the bias conditions given, the
source-substrate junction operates with zero bias and the drain-substrate junction has a reverse
bias of 5 V. Using Table 2.1, the periphery portion for the source-substrate capacitance is

Cjsw(source) = (50 μm + 9 μm + 9 μm)(0.5 fF/μm) = 34 fF (2.48)

Here, the perimeter is set equal to W + 2L because that is the distance on the surface of the
silicon around the part of the source and drain regions that border on field-oxide regions. Since
the substrate doping is high along this perimeter to increase the magnitude of the threshold
voltage in the field regions, the sidewall capacitance here is dominant. The bulk capacitance
is simply the source-diffusion area multiplied by the capacitance per unit area from Table 2.1:

Cj(source) = (50 μm)(9 μm)(0.08 fF/μm2) = 36 fF (2.49)

The total capacitance from source to bulk is the sum of these two, or

Csb = 70 fF (2.50)

For the geometry given for this example, the transistor is symmetrical, and the source and
drain areas and peripheries are the same. From Table 2.1, both the bulk and periphery capac-
itances have a grading coefficient of 0.5. As a result, the drain-bulk capacitance is the same
as the source-bulk capacitance modified to account for the 5 V reverse bias on the junction.
Assuming 𝜓0 = 0.65 V,

Cdb = (70 fF)√
1 + VDB∕𝜓0

= (70 fF)√
1 + 5∕0.65

= 24 fF (2.51)

◼

As the minimum channel length decreases, second-order effects cause the operation of
short-channel MOS transistors to deviate significantly from the simple square-law models in
Chapters 1 and 2.22 Equations that include these second-order effects are complicated and
make hand calculations difficult. Therefore, simple models and equations that ignore these
effects are often used as a design aid and to develop intuition. SPICE simulations with highly
accurate device models are used to verify circuit performance and refine a design.

For processes with minimum allowed channel length less than 0.2 μm, the gate-oxide thick-
ness can fall below 30 angstroms (for example, see Table 2.6). With such thin gate oxide,
enough carriers in the channel can tunnel through the gate oxide and create nonzero dc gate
current that is sometimes important.23 This current is referred to as gate-leakage current and
is a complicated function of the operating point and oxide thickness.24,25 The gate-leakage
current IG is the product of the gate-leakage-current density JG and the gate area. SPICE mod-
els are available that include gate-leakage current and accurately predict short-channel-device
operation.26,27
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2.9.2 p-Channel Transistors

The p-channel transistor in most CMOS technologies displays dc and ac properties that are
comparable to the n-channel transistor. One difference is that the transconductance parameter
k′ of a p-channel device is about one-half to one-third that of an n-channel device because holes
have correspondingly lower mobility than electrons. As shown in (1.209), this difference in
mobility also reduces the fT of p-channel devices by the same factor. Another difference is that
for a CMOS technology with a p-type substrate and n-type wells, the substrate terminal of the
p-channel transistors can be electrically isolated since the devices are made in an implanted
well. Good use can be made of this fact in analog circuits to alleviate the impact of the high
body effect in these devices. For a CMOS process made on an n-type substrate with p-type
wells, the p-channel devices are made in the substrate material, which is connected to the
highest power-supply voltage, but the n-channel devices can have electrically isolated substrate
terminals.

The calculation of device parameters for p-channel devices proceeds exactly as for
n-channel devices. An important difference is the fact that for the p-channel transistors, the
threshold voltage that results if no threshold adjustment implant is used is relatively high,
usually in the range of 1 to 3 V. This occurs because the polarities of the Qss term and the
work-function term are such that they tend to increase the p-channel threshold voltages while
decreasing the n-channel threshold voltages. Thus the p-type threshold adjustment implant is
used to reduce the surface concentration by partially compensating the doping of the n-type
well or substrate. Thus, in contrast to the n-channel device, the p-channel transistor has an
effective surface concentration in the channel that is lower than the bulk concentration and, as
a result, often displays a smaller incremental body effect for low values of substrate bias and
a larger incremental body effect for larger values of substrate bias.

2.9.3 Depletion Devices

The properties of depletion devices are similar to those of the enhancement device already con-
sidered, except that an implant has been added in the channel to make the threshold negative
(for an n-channel device). In most respects, a depletion device closely resembles an enhance-
ment device with a voltage source in series with the gate lead of value (VtD − VtE), where VtD
is the threshold voltage of the depletion-mode transistor and VtE is the threshold voltage of
the enhancement-mode transistor. Depletion transistors are most frequently used with the gate
tied to the source. Because the device is on with VGS = 0, if it operates in the active region, it
operates like a current source with a drain current of

IDSS = ID|VGS=0 =
𝜇nCox

2
W
L

V2
tD (2.52)

An important aspect of depletion-device performance is the variation of IDSS with process
variations. These variations stem primarily from the fact that the threshold voltage varies sub-
stantially from its nominal value due to processing variations. Since the transistor IDSS varies
as the square of the threshold voltage, large variations in IDSS due to process variations often
occur. Tolerances of ±40 percent or more from nominal due to process variations are common.
Because IDSS determines circuit bias current and power dissipation, the magnitude of this vari-
ation is an important factor. Another important aspect of the behavior of depletion devices
stems from the body effect. Because the threshold voltage varies with body bias, a depletion
device with VGS = 0 and vsb ≠ 0 displays a finite conductance in the active region even if the
effect of channel-length modulation is ignored. In turn, this finite conductance has a strong
effect on the performance of analog circuits that use depletion devices as load elements.
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2.9.4 Bipolar Transistors

Standard CMOS technologies include process steps that can be used to form a bipolar transistor
whose collector is tied to the substrate. The substrate, in turn, is tied to one of the power
supplies. Fig. 2.62a shows a cross section of such a device. The well region forms the base of
the transistor, and the source/drain diffusion of the device in the well forms the emitter. Since
the current flow through the base is perpendicular to the surface of the silicon, the device is
a vertical bipolar transistor. It is a pnp transistor in processes that utilize p-type substrates,
as in Fig. 2.62a, and an npn transistor in processes that use an n-type substrate. The device
is particularly useful in band-gap references, described in Chapter 4, and in output stages,
considered in Chapter 5. The performance of the device is a strong function of well depth and
doping but is generally similar to the substrate pnp transistor in bipolar technology, described
in Section 2.5.2.

The main limitation of such a vertical bipolar transistor is that its collector is the substrate
and is connected to a power supply to keep the substrate p-n junctions reverse biased. Standard
CMOS processes also provide another bipolar transistor for which the collector need not be
connected to a power supply.28 Figure 2.62b shows a cross section of such a device. As in
the vertical transistor, the well region forms the base and a source/drain diffusion forms the
emitter. In this case, however, another source/drain diffusion forms the collector C1. Since the
current flow through the base is parallel to the surface of the silicon, this device is a lateral
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bipolar transistor. Again, it is a pnp transistor in processes that utilize n-type wells and an npn
transistor in processes that use p-type wells. The emitter and collector of this lateral device
correspond to the source and drain of an MOS transistor. Since the goal here is to build a
bipolar transistor, the MOS transistor is deliberately biased to operate in the cutoff region. In
Fig. 2.62b, for example, the gate of the p-channel transistor must be connected to a voltage
sufficient to bias it in the cutoff region. A key point here is that the base width of the lateral
bipolar device corresponds to the channel length of the MOS device.

One limitation of this structure is that when a lateral bipolar transistor is intentionally
formed, a vertical bipolar transistor is also formed. In Fig. 2.62b, the emitter and base con-
nections of the vertical transistor are the same as for the lateral transistor, but the collector
is the substrate, which is connected to the lowest supply voltage. When the emitter injects
minority carriers into the base, some flow parallel to the surface and are collected by the col-
lector of the lateral transistor C1. However, others flow perpendicular to the surface and are
collected by the substrate C2. Figure 2.62c models this behavior by showing a transistor sym-
bol with one emitter and one base but two collectors. The current IC1 is the collector current
of the lateral transistor, and IC2 is the collector current of the vertical transistor. Although the
base current is small because little recombination and reverse injection occur, the undesired
current IC2 is comparable to the desired current IC1. To minimize the ratio, the collector of
the lateral transistor usually surrounds the emitter, and the emitter area as well as the lateral
base width are minimized. Even with these techniques, however, the ratio of IC2∕IC1 is poorly
controlled in practice.28,29 If the total emitter current is held constant, as in many conventional
circuits, variation of IC2∕IC1 changes the desired collector current and associated small-signal
parameters such as the transconductance. To overcome this problem, the emitter current can be
adjusted by negative feedback so that the desired collector current is insensitive to variations
in IC2∕IC1.30

Some important properties of the lateral bipolar transistor, including its 𝛽F and fT , improve
as the base width is reduced. Since the base width corresponds to the channel length of an MOS
transistor, the steady reduction in the minimum channel length of scaled MOS technologies
is improving the performance and increasing the importance of the available lateral bipolar
transistor.

2.10 Passive Components in MOS Technology
In this section, we describe the various passive components that are available in CMOS
technologies. Resistors include diffused, polysilicon, and well resistors. Capacitors include
poly-poly, metal-poly, metal-silicon, silicon-silicon, and vertical and lateral metal-metal.

2.10.1 Resistors

Diffused Resistors. The diffused layer used to form the source and drain of n-channel and
p-channel devices can be used to form a diffused resistor. The resulting resistor structure and
properties are very similar to the resistors described in Section 2.6.1 on diffused resistors in
bipolar technology. The sheet resistances, layout geometries, and parasitic capacitances are
similar.

Polysilicon Resistors. At least one layer of polysilicon is required in silicon-gate MOS tech-
nologies to form the gates of the transistors, and this layer is often used to form resistors.
The geometries employed are similar to those used for diffused resistors, and the resistor
exhibits a parasitic capacitance to the underlying layer much like a diffused resistor. In this
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case, however, the capacitance stems from the oxide layer under the polysilicon instead of
from a reverse-biased pn junction. The nominal sheet resistance of most polysilicon layers
that are utilized in MOS processes is on the order of 20 to 80 Ω/◽ and typically displays a
relatively large variation around the nominal value due to process variations. The matching
properties of polysilicon resistors are similar to those of diffused resistors. A cross section and
plan view of a typical polysilicon resistor are shown in Fig. 2.63a.

The sheet resistance of polysilicon can limit the speed of interconnections, especially in sub-
micron technologies. To reduce the sheet resistance, a silicide layer is sometimes deposited on
top of the polysilicon. Silicide is a compound of silicon and a metal, such as tungsten, that can
withstand subsequent high-temperature processing with little movement. Silicide reduces the
sheet resistance by about an order of magnitude. Also, it has little effect on the oxidation rate
of polysilicon and is therefore compatible with conventional CMOS process technologies.31

Finally, silicide can be used on the source/drain diffusions as well as on the polysilicon.

Well Resistors. In CMOS technologies, the well region can be used as the body of a resistor.
It is a relatively lightly doped region and when used as a resistor provides a sheet resistance on
the order of 10 kΩ/◽. Its properties and geometrical layout are much like the epitaxial resistor
described in Section 2.6.2 and shown in Fig. 2.42. It displays large tolerance, a high volt-
age coefficient, and a high temperature coefficient relative to other types of resistors. Higher
sheet resistance can be achieved by the addition of the pinching diffusion just as in the bipolar
technology case.

MOS Devices as Resistors. The MOS transistor biased in the triode region can be used in
many circuits to perform the function of a resistor. The drain-source resistance can be calcu-
lated by differentiating the equation for the drain current in the triode region with respect to
the drain-source voltage. From (1.152),

R =
(

𝜕ID

𝜕VDS

)−1

= L
W

1
k′(VGS − Vt − VDS)

(2.53)
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Since L∕W gives the number of squares, the second term on the right side of this equation
gives the sheet resistance. This equation shows that the effective sheet resistance is a function
of the applied gate bias. In practice, this sheet resistance can be much higher than that of
polysilicon or diffused resistors, allowing large amounts of resistance to be implemented in a
small area. Also, the resistance can be made to track the transconductance of an MOS transistor
operating in the active region, allowing circuits to be designed with properties insensitive to
variations in process, supply, and temperature. An example of such a circuit is considered in
Section 9.4.3. The principal drawback of this form of resistor is the high degree of nonlinearity
of the resulting resistor element; that is, the drain-source resistance is not constant but depends
on the drain-source voltage. Nevertheless, it can be used very effectively in many applications.

2.10.2 Capacitors in MOS Technology

As passive components, capacitors play a much more important role in MOS technology than
they do in bipolar technology. Because of the fact that MOS transistors have virtually infinite
input resistance, voltages stored on capacitors can be sensed with little leakage using MOS
amplifiers. As a result, capacitors can be used to perform many functions that are traditionally
performed by resistors in bipolar technology.

Poly-Poly Capacitors. Many MOS technologies that are used to implement analog func-
tions have two layers of polysilicon. The additional layer provides an efficient capacitor struc-
ture and an extra layer of interconnect and can also be used to implement floating-gate memory
cells that are electrically programmable and optically erasable with UV light (EPROM). A typ-
ical poly-poly capacitor structure is shown in cross section and plan view in Fig. 2.63b. The
plate separation is usually comparable to the gate oxide thickness of the MOS transistors.

An important aspect of the capacitor structure is the parasitic capacitance associated with
each plate. The largest parasitic capacitance exists from the bottom plate to the underlying
layer, which could be either the substrate or a well diffusion whose terminal is electrically
isolated. This bottom-plate parasitic capacitance is proportional to the bottom-plate area and
typically has a value from 10 to 30 percent of the capacitor itself.

 Si substrate

(b)

First poly layer Second poly layerSiO2

Figure 2.63 (b) Plan view
and cross section of typical
poly-poly capacitor.
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The top-plate parasitic is contributed by the interconnect metallization or polysilicon that
connects the top plate to the rest of the circuit, plus the parasitic capacitance of the transistor to
which it is connected. In the structure shown in Fig. 2.63b, the drain-substrate capacitance of
an associated MOS transistor contributes to the top-plate parasitic capacitance. The minimum
value of this parasitic is technology dependent but is typically on the order of 5 to 50 fF.

Other important parameters of monolithic capacitor structures are the tolerance, voltage
coefficient, and temperature coefficient of the capacitance value. The tolerance on the absolute
value of the capacitor value is primarily a function of oxide-thickness variations and is usually
in the 10 to 30 percent range. Within the same die, however, the matching of one capacitor to
another identical structure is much more precise and can typically be in the range of 0.05 to
1 percent, depending on the geometry. Because the plates of the capacitor are a heavily doped
semiconductor rather than an ideal conductor, some variation in surface potential relative to the
bulk material of the plate occurs as voltage is applied to the capacitor.32 This effect is analogous
to the variation in surface potential that occurs in an MOS transistor when a voltage is applied
to the gate. However, since the impurity concentration in the plate is usually relatively high,
the variations in surface potential are small. The result of these surface potential variations is
a slight variation in capacitance with applied voltage. Increasing the doping in the capacitor
plates reduces the voltage coefficient. For the impurity concentrations that are typically used
in polysilicon layers, the voltage coefficient is usually less than 50 ppm/V,32,33 a level small
enough to be neglected in most applications.

A variation in the capacitance value also occurs with temperature variations. This variation
stems primarily from the temperature variation of the surface potential in the plates previously
described.32 Also, secondary effects include the temperature variation of the dielectric constant
and the expansion and contraction of the dielectric. For heavily doped polysilicon plates, this
temperature variation is usually less than 50 ppm/∘C.32,33

MOS Transistors as Capacitors. The MOS transistor itself can be used as a capacitor when
biased in the triode region, the gate forming one plate and the source, drain, and channel form-
ing another. Unfortunately, because the underlying substrate is lightly doped, a large amount
of surface potential variation occurs with changes in applied voltage, and the capacitor dis-
plays a high voltage coefficient. In noncritical applications, however, it can be used effectively
under two conditions. The circuit must be designed in such a way that the device is biased in
the triode region when a high capacitance value is desired, and the high sheet resistance of the
bottom plate formed by the channel must be taken into account.

Other Vertical Capacitor Structures. In processes with only one layer of polysilicon,
alternative structures must be used to implement capacitive elements. One approach involves
the insertion of an extra mask to reduce the thickness of the oxide on top of the polysilicon
layer so that when the interconnect metallization is applied, a thin-oxide layer exists between
the metal layer and the polysilicon layer in selected areas. Such a capacitor has properties that
are similar to poly-poly capacitors.

Another capacitor implementation in single-layer polysilicon processing involves the inser-
tion of an extra masking and diffusion operation such that a diffused layer with low sheet
resistance can be formed underneath the polysilicon layer in a thin-oxide area. This is not pos-
sible in conventional silicon-gate processes because the polysilicon layer is deposited before
the source-drain implants or diffusions are performed. The properties of such capacitors are
similar to the poly-poly structure, except that the bottom-plate parasitic capacitance is that of
a pn junction, which is voltage dependent and usually larger than in the poly-poly case. Also,
the bottom plate has a junction leakage current associated with it, which is important in some
applications.
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To avoid the need for extra processing steps, capacitors can also be constructed using the
metal and poly layers with standard oxide thicknesses between layers. For example, in a pro-
cess with one layer of polysilicon and two layers of metal, the top metal and the poly can be
connected together to form one plate of a capacitor, and the bottom metal can be used to form
the other plate. A key disadvantage of such structures, however, is that the capacitance per
unit area is small because the oxide used to isolate one layer from another is thick. Therefore,
such capacitors usually occupy large areas. Furthermore, the thickness of this oxide changes
little as CMOS processes evolve with reduced minimum channel length. As a result, the area
required by analog circuits using such capacitors undergoes a much smaller reduction than
that of digital circuits in new technologies. This characteristic is important because reducing
the area of an integrated circuit reduces its cost.

Lateral Capacitor Structures. To reduce the capacitor area, and to avoid the need for extra
processing steps, lateral capacitors can be used.34 A lateral capacitor can be formed in one
layer of metal by separating one plate from another by spacing s, as shown in Fig. 2.64a. If
w is the width of the metal and t is the metal thickness, the capacitance is (wt𝜖∕s), where
𝜖 is the dielectric constant. As technologies evolve to reduced feature sizes, the minimum
metal spacing shrinks but the thickness changes little; therefore, the die area required for a
given lateral capacitance decreases in scaled technologies.35 Note that the lateral capacitance
is proportional to the perimeter of each plate that is adjacent to the other in a horizontal plane.
Geometries to increase this perimeter in a given die area have been proposed.35

Lateral capacitors can be used in conjunction with vertical capacitors, as shown in
Fig. 2.64b.34 The key point here is that each metal layer is composed of multiple pieces, and
each capacitor node is connected in an alternating manner to the pieces in each layer. As
a result, the total capacitance includes vertical and lateral components arising between all
adjacent pieces. If the vertical and lateral dielectric constants are equal, the total capacitance
is increased compared to the case in which the same die area is used to construct only a
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vertical capacitor when the minimum spacing s <
√

2t (tox), where t is the metal thickness and
tox is the oxide thickness between metal layers. This concept can be extended to additional
pieces in each layer and additional layers.

2.10.3 Latchup in CMOS Technology

The device structures that are present in standard CMOS technology inherently form a pnpn
sandwich of layers. For example, consider the typical circuit shown in Fig. 2.65a. It uses one
n-channel and one p-channel transistor and operates as an inverter if the two gates are con-
nected together as the inverter input. Figure 2.65b shows the cross section in an n-well process.
When the two MOS transistors are fabricated, two parasitic bipolar transistors are also formed:
a lateral npn and a vertical pnp. In this example, the source of the n-channel transistor forms the
emitter of the parasitic lateral npn transistor, the substrate forms the base, and the n-well forms
the collector. The source of the p-channel transistor forms the emitter of a parasitic vertical
pnp transistor, the n-well forms the base, and the p-type substrate forms the collector. The elec-
trical connection of these bipolar transistors that results from the layout shown is illustrated
in Fig. 2.65c. In normal operation, all the pn junctions in the structure are reverse biased. If
the two bipolar transistors enter the active region for some reason, however, the circuit can
display a large amount of positive feedback, causing both transistors to conduct heavily. This
device structure is similar to that of a silicon-controlled rectifier (SCR), a widely used com-
ponent in power-control applications. In power-control applications, the property of the pnpn
sandwich to remain in the on state with no externally supplied signal is a great advantage. How-
ever, the result of this behavior here is usually a destructive breakdown phenomenon called
latchup.
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The positive feedback loop is labeled in Fig. 2.65c. Feedback is studied in detail in
Chapters 8 and 9. To explain why the feedback around this loop is positive, assume that both
transistors are active and that the base current of the npn transistor increases by i for some
reason. Then the collector current of the npn transistor increases by 𝛽npni. This current is
pulled out of the base of the pnp transistor if R2 is ignored. As a result, the current flowing
out of the collector of the pnp transistor increases by 𝛽npn𝛽pnpi. Finally, this current flows into
the base of the npn transistor if R1 is ignored. This analysis shows that the circuit generates
a current that flows in the same direction as the initial disturbance; therefore, the feedback
is positive. If the gain around the loop is more than unity, the response of the circuit to the
initial disturbance continues to grow until one or both of the bipolar transistors saturate. In
this case, a large current flows from the positive supply to ground until the power supply is
turned off or the circuit burns out. This condition is called latchup. If R1 and R2 are large
enough that base currents are large compared to the currents in these resistors, the gain
around the loop is 𝛽npn𝛽pnp. Therefore, latchup can occur if the product of the betas is greater
than unity.

For latchup to occur, one of the junctions in the sandwich must become forward biased.
In the configuration illustrated in Fig. 2.65, current must flow in one of the resistors between
the emitter and the base of one of the two transistors in order for this to occur. This current
can come from a variety of causes. Examples are an application of a voltage that is larger than
the power-supply voltage to an input or output terminal, improper sequencing of the power
supplies, the presence of large dc currents in the substrate or p- or n-well, or the flow of dis-
placement current in the substrate or well due to fast-changing internal nodes. Latchup is more
likely to occur in circuits as the substrate and well concentration is made lighter, as the well
is made thinner, and as the device geometries are made smaller. All these trends in process
technology tend to increase R1 and R2 in Fig. 2.65b. Also, they tend to increase the betas of
the two bipolar transistors. These changes increase the likelihood of the occurrence of latchup.

The layout of CMOS-integrated circuits must be carried out with careful attention paid
to the prevention of latchup. Although the exact rules followed depend on the specifics of
the technology, the usual steps are to keep R1 and R2, as well as the product of the betas,
small enough to avoid this problem. The beta of the vertical bipolar transistor is determined by
process characteristics, such as the well depth, that are outside the control of circuit designers.
However, the beta of the lateral bipolar transistor can be decreased by increasing its base width,
which is the distance between the source of the n-channel transistor and the n-type well. To
reduce R1 and R2, many substrate and well contacts are usually used instead of just one each,
as shown in the simple example of Fig. 2.65. In particular, guard rings of substrate and well
contacts are often used just outside and inside the well regions. These rings are formed by
using the source/drain diffusion and provide low-resistance connections in the substrate and
well to reduce series resistance. Also, special protection structures at each input and output
pad are usually included so that excessive currents flowing into or out of the chip are safely
shunted.

2.11 BiCMOS Technology
In Section 2.3, we showed that to achieve a high collector-base breakdown voltage in a
bipolar transistor structure, a thick epitaxial layer is used (17 μm of 5 Ω-cm material for
36 V operation). This in turn requires a deep p-type diffusion to isolate transistors and other
devices. On the other hand, if a low breakdown voltage (say, about 7 V to allow 5 V supply
operation) can be tolerated, then a much more heavily doped (on the order of 0.5 Ω-cm)
collector region can be used that is also much thinner (on the order of 1 μm). Under these
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conditions, the bipolar devices can be isolated by using the same local-oxidation technique
used for CMOS, as described in Section 2.4. This approach has the advantage of greatly
reducing the bipolar transistor collector-substrate parasitic capacitance because the heavily
doped high-capacitance regions near the surface are now replaced by low-capacitance oxide
isolation. The devices can also be packed much more densely on the chip. In addition, CMOS
and bipolar fabrication technologies begin to look rather similar, and the combination of
high-speed, shallow, ion-implanted bipolar transistors with CMOS devices in a BiCMOS
technology becomes feasible (at the expense of several extra processing steps).36 This tech-
nology has performance advantages in digital applications because the high current-drive
capability of the bipolar transistors greatly facilitates driving large capacitive loads. Such
processes are also attractive for analog applications because they allow the designer to take
advantage of the unique characteristics of both types of devices.

We now describe the structure of a typical high-frequency, low-voltage, oxide-isolated
BiCMOS process. A simplified cross section of a high-performance process37 is shown in
Fig. 2.66. The process begins with masking steps and the implantation of n-type antimony
buried layers into a p-type substrate wherever an npn bipolar transistor or PMOS device is to
be formed. A second implant of p-type boron impurities forms a p-well wherever an NMOS
device is to be formed. This is followed by the growth of about 1 μm of n− epi, which forms
the collectors of the npn bipolar devices and the channel regions of the PMOS devices. During
this and subsequent heat cycles, the more mobile boron atoms diffuse outward and the p-well
extends to the surface, whereas the antimony buried layers remain essentially fixed.

A masking step defines regions where thick field oxide is to be grown, and these regions are
etched down into the epi layer. Field-oxide growth is then carried out, followed by a planariza-
tion step where the field oxide that has grown above the plane of the surface is etched back
level with the other regions. This eliminates the lumpy surface shown in Fig. 2.57 and helps
to overcome problems of ensuring reliable metal connections over the oxide steps (so-called
step coverage). Finally, a series of masking steps and p- and n-type implants are carried out to
form bipolar base and emitter regions, low-resistance bipolar collector contact, and source and
drain regions for the MOSFETs. In this sequence, gate oxide is grown, polysilicon gates and
emitters are formed, and threshold-adjusting implants are made for the MOS devices. Metal
contacts are then made to the desired regions, and the chip is coated with a layer of deposited
SiO2. A second layer of metal interconnects is formed on top of this oxide with connections
where necessary to the first layer of metal below. A further deposited layer of SiO2 is then
added with a third layer of metal interconnect and vias to give even more connection flexibility
and thus improve the density of the layout.

2.12 Heterojunction Bipolar Transistors
A heterojunction is a pn junction made of two different materials. Until this point, all the
junctions we have considered have been homojunctions because the same material (silicon)
has been used to form both the n-type and the p-type regions. In contrast, a junction between
an n-type region of silicon and a p-type region of germanium or a compound of silicon and
germanium forms a heterojunction.

In homojunction bipolar transistors, the emitter doping is selected to be much greater than
the base doping to give an emitter injection efficiency 𝛾 of about unity, as shown by (1.51b).
As a result, the base is relatively lightly doped while the emitter is heavily doped in practice.
Section 1.4.8 shows that the fT of bipolar devices is limited in part by 𝜏F, which is the time
required for minority carriers to cross the base. Maximizing fT is important in some appli-
cations such as radio-frequency electronics. To increase fT , the base width can be reduced.
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If the base doping is fixed to maintain a constant 𝛾 , however, this approach increases the base
resistance rb by increasing rb2 in Fig. 2.26a. In turn, this base resistance limits speed because
it forms a time constant with capacitance attached to the base node. As a result, a trade-off
exists in standard bipolar technology between high fT on the one hand and low rb on the other,
and both extremes limit the speed that can be attained in practice.

One way to overcome this trade-off is to add some germanium to the base of bipolar tran-
sistors to form heterojunction transistors. The key idea is that the different materials on the two
sides of the junction have different band gaps. In particular, the band gap of silicon is greater
than for germanium, and forming a SiGe compound in the base reduces the band gap there.
The relatively large band gap in the emitter can be used to increase the potential barrier to
holes that can be injected from the base back to the emitter. Therefore, this structure does not
require that the emitter doping be much greater than the base doping to give 𝛾 ≃ 1. As a result,
the emitter doping can be decreased and the base doping can be increased in a heterojunc-
tion bipolar transistor compared to its homojunction counterpart. Increasing the base doping
allows rb to be constant even when the base width is reduced to increase fT . Furthermore,
this change also reduces the width of the base-collector depletion region in the base when the
transistor operates in the forward active region, thus decreasing the effect of base-width mod-
ulation and increasing the early voltage VA. Not only does increasing the base doping have a
beneficial effect on performance, but also decreasing the emitter doping increases the width of
the base-emitter, space-charge region in the emitter, reducing the Cje capacitance and further
increasing the maximum speed.

The base region of the heterojunction bipolar transistors can be formed by growing a thin
epitaxial layer of SiGe using ultra-high vacuum chemical vapor deposition (UHV/CVD).38

Since this is an epi layer, it takes on the crystal structure of the silicon in the substrate. Because
the lattice constant for germanium is greater than that for silicon, the SiGe layer forms under
a compressive strain, limiting the concentration of germanium and the thickness of the layer
to avoid defect formation after subsequent high-temperature processing used at the back end
of conventional technologies.39 In practice, with a base thickness of 0.1 μm, the concentration
of germanium is limited to about 15 percent so that the layer is unconditionally stable.40 With
only a small concentration of germanium, the change in the band gap and the resulting shift
in the potential barrier that limits reverse injection of holes into the emitter is small. However,
the reverse injection is an exponential function of this barrier; therefore, even a small change
in the barrier greatly reduces the reverse injection and results in these benefits.

In practice, the concentration of germanium in the base need not be constant. In particular,
the UHV/CVD process is capable of increasing the concentration of germanium in the base
from the emitter end to the collector end. This grading of the germanium concentration
results in an electric field that helps electrons move across the base, further reducing 𝜏F and
increasing fT .

The heterojunction bipolar transistors described above can be included as the bipolar tran-
sistors in otherwise conventional BiCMOS processes. The key point is that the device process-
ing sequence retains the well-established properties of silicon integrated-circuit processing
because the average concentration of germanium in the base is small.39 This characteristic is
important because it allows the extra processing steps to be included as a simple addition to an
existing process, reducing the cost of this technology. For example, a BiCMOS process with a
minimum drawn CMOS channel length of 0.3 μm and heterojunction bipolar transistors with
a fT of 50 GHz has been reported.40 The use of the heterojunction technology increases the fT
by about a factor of two compared to a comparable homojunction technology.
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2.13 Interconnect Delay
As the minimum feature size allowed in integrated-circuit technologies is reduced, the max-
imum operating speed and bandwidth have steadily increased. This trend stems partly from
the reductions in the minimum base width of bipolar transistors and the minimum channel
length of MOS transistors, which in turn increase the fT of these devices. While scaling has
increased the speed of the transistors, however, it is also increasing the delay introduced by the
interconnections to the point where it could limit the maximum speed of integrated circuits.41

This delay is increasing as the minimum feature size is reduced because the width of metal
lines and spacing between them are both being reduced to increase the allowed density of
interconnections. Decreasing the width of the lines increases the number of squares for a
fixed length, increasing the resistance. Decreasing the spacing between the lines increases the
lateral capacitance between lines. The delay is proportional to the product of the resistance and
capacitance. To reduce the delay, alternative materials are being studied for use in integrated
circuits.

First, copper is replacing aluminum in metal layers because copper reduces the resistiv-
ity of the interconnection by about 40 percent and is less susceptible to electromigration and
stress migration than aluminum. Electromigration and stress migration are processes in which
the material of a conductor moves slightly while it conducts current and is under tension,
respectively. These processes can cause open circuits to appear in metal interconnects and
are important failure mechanisms in integrated circuits. Unfortunately, however, copper can-
not simply be substituted for aluminum with the same fabrication process. Two key problems
are that copper diffuses through silicon and silicon dioxide more quickly than aluminum, and
copper is difficult to plasma etch.42 To overcome the diffusion problem, copper must be sur-
rounded by a thin film of another metal that can endure high-temperature processing with
little movement. To overcome the etch problem, a damascene process has been developed.43

In this process, a layer of interconnection is formed by first depositing a layer of oxide. Then
the interconnect pattern is etched into the oxide, and the wafer is uniformly coated by a thin
diffusion-resistant layer and then copper. The wafer is then polished by a chemical-mechanical
process until the surface of the oxide is reached, which leaves the copper in the cavities etched
into the oxide. A key advantage of this process is that it results in a planar structure after each
level of metalization.

Also, low-permittivity dielectrics are being studied to replace silicon dioxide to reduce the
interconnect capacitance. The dielectric constant of silicon dioxide is 3.9 times more than for
air. For relative dielectric constants between about 2.5 and 3.0, polymers have been studied.
For relative dielectric constants below about 2.0, the proposed materials include foams and
gels, which include air.42 Other important requirements of low-permittivity dielectric materi-
als include low leakage, high breakdown voltage, high thermal conductivity, stability under
high-temperature processing, and adhesion to the metal layers.41 The search for a replacement
for silicon dioxide is difficult because it is an excellent dielectric in all these ways.

2.14 Economics of Integrated-Circuit Fabrication
The principal reason for the growing pervasiveness of integrated circuits in systems of all types
is the reduction in cost attainable through integrated-circuit fabrication. Proper utilization of
the technology to achieve this cost reduction requires an understanding of the factors influenc-
ing the cost of an integrated circuit in completed, packaged form. In this section, we consider
these factors.
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2.14.1 Yield Considerations in Integrated-Circuit Fabrication

As pointed out earlier in this chapter, integrated circuits are batch-fabricated on single wafers,
each containing up to several thousand separate but identical circuits. At the end of the process-
ing sequence, the individual circuits on the wafer are probed and tested prior to the breaking up
of the wafer into individual dice. The percentage of the circuits that are electrically functional
and within specifications at this point is termed the wafer-sort yield Yws and is usually in the
range of 10 to 90 percent. The nonfunctional units can result from a number of factors, but one
major source of yield loss is point defects of various kinds that occur during the photoresist
and diffusion operations. These defects can result from mask defects, pinholes in the photore-
sist, airborne particles that fall on the surface of the wafer, crystalline defects in the epitaxial
layer, and so on. If such a defect occurs in the active region on one of the transistors or resistors
making up the circuit, a nonfunctional unit usually results. The frequency of occurrence per
unit of wafer area of such defects is usually dependent primarily on the particular fabrication
process used and not on the particular circuit being fabricated. Generally speaking, the more
mask steps and diffusion operations the wafer is subjected to, the higher will be the density of
defects on the surface of the finished wafer.

The existence of these defects limits the size of the circuit that can be economically fab-
ricated on a single die. Consider the two cases illustrated in Fig. 2.67, where two identical
wafers with the same defect locations have been used to fabricate circuits of different area.
Although the defect locations in both cases are the same, the wafer-sort yield of the large die
would be zero. When the die size is cut to one-fourth of the original size, the wafer sort yield
is 62 percent. This conceptual example illustrates the effect of die size on wafer-sort yield.
Quantitatively, the expected yield for a given die size is a strong function of the complexity
of the process, the nature of the individual steps in the process, and, perhaps most impor-
tantly, the maturity and degree of development of the process as a whole and the individual
steps within it. Since the inception of the planar process, a steady reduction in defect densities
has occurred as a result of improved lithography, increased use of low-temperature process-
ing steps such as ion implantation, improved manufacturing environmental control, and so
forth. Three typical curves derived from yield data on bipolar and MOS processes are shown
in Fig. 2.68. These are representative of yields for processes ranging from a very complex
process with many yield-reducing steps to a very simple process carried out in an advanced
VLSI fabrication facility. Also, the yield curves can be raised or lowered by more conserva-
tive design rules, and other factors. Uncontrolled factors such as testing problems and design
problems in the circuit can cause results for a particular integrated circuit to deviate widely
from these curves, but still the overall trend is useful.

In addition to affecting yield, the die size also affects the total number of dice that can be
fabricated on a wafer of a given size. The total number of usable dice on the wafer, called the
gross die per wafer N, is plotted in Fig. 2.69 as a function of die size for several wafer sizes.

Yws = 0 Yws =       = 62%

Defects

10
16

Figure 2.67 Conceptual exam-
ple of the effect of die size on
yield.
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The product of the gross die per wafer and the wafer-sort yield gives the net good die per wafer,
plotted in Fig. 2.70 for the yield curve of Fig. 2.68, assuming a 4-inch wafer.

Once the wafer has undergone the wafer-probe test, it is separated into individual dice
by sawing or scribing and breaking. The dice are visually inspected, sorted, and readied for
assembly into packages. This step is termed die fab, and some loss of good dice occurs in
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the process. Of the original electrically good dice on the wafer, some will be lost in the die
fab process due to breakage and scratching of the surface. The ratio of the electrically good
dice following die fab to the number of electrically good dice on the wafer before die fab is
called the die fab yield Ydf . The good dice are then inserted in a package, and the electrical
connections to each die are made with bonding wires to the pins on the package. The packaged
circuits then undergo a final test, and some loss of functional units usually occurs because of
improper bonding and handling losses. The ratio of the number of good units at final test to
the number of good dice into assembly is called the final test yield Yft.

2.14.2 Cost Considerations in Integrated-Circuit Fabrication

The principal direct costs to the manufacturer can be divided into two categories: those associ-
ated with fabricating and testing the wafer, called the wafer fab cost Cw, and those associated
with packaging and final testing the individual dice, called the packaging cost Cp. If we con-
sider the costs incurred by the complete fabrication of one wafer of dice, we first have the
wafer cost itself Cw. The number of electrically good dice that are packaged from the wafer is
NYwsYdf . The total cost Ct incurred once these units have been packaged and tested is

Ct = Cw + CpNYwsYdf (2.54)

The total number of good finished units Ng is

Ng = NYwsYdf Yft (2.55)

Thus the cost per unit is

C =
Ct

Ng
=

Cw

NYwsYdf Yft
+

Cp

Yft
(2.56)
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The first term in the cost expression is wafer fab cost, while the second is associated with
assembly and final testing. This expression can be used to calculate the direct cost of the fin-
ished product to the manufacturer, as shown in the following example.

◼ EXAMPLE
Plot the direct fabrication cost as a function of die size for the following two sets of
assumptions:

(a) Wafer-fab cost of $75.00, packaging and testing costs per die of $0.06, a die-fab yield of
0.9, and a final-test yield of 0.9. Assume yield curve B in Fig. 2.68. This set of conditions
might characterize an operational amplifier manufactured on a medium-complexity bipolar
process and packaged in an inexpensive 8- or 14-lead package.

From (2.56),

C = $75.00
(NYws)(0.81)

+ 0.06
0.9

= $92.59
NYws

+ 0.066 (2.57)

This cost is plotted versus die size in Fig. 2.71a.

(b) A wafer-fab cost of $100.00, packaging and testing costs of $1.00, die-fab yield of 0.9, and
final-test yield of 0.8. Assume yield curve A in Fig. 2.68. This might characterize a complex
analog/digital integrated circuit, utilizing an advanced CMOS process and packaged in a
large, multilead package. Again, from (2.56),

C = $100.00
(NYws)(0.72)

+ $1.00
0.8

= $138.89
NYws

+ $1.25 (2.58)

This cost is plotted versus die size in Fig. 2.71b.
◼

This example shows that most of the cost comes from packaging and testing for small die
sizes, whereas most of the cost comes from wafer-fab costs for large die sizes. This relationship
is made clearer by considering the cost of the integrated circuit in terms of cost per unit area
of silicon in the finished product, as illustrated in Fig. 2.72 for the examples previously given.
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These curves plot the ratio of the finished-product cost to the number of square mils of silicon
on the die. The minimum cost per unit area of silicon results midway between the package-cost
and die-cost limited regions for each example. Thus the fabrication of excessively large or
small dice is uneconomical in terms of utilizing the silicon die area at minimum cost. The sig-
nificance of these curves is that, for example, if a complex analog/digital system, characterized
by example b in Fig. 2.72, with a total silicon area of 80,000 square mils is to be fabricated
in silicon, it probably would be most economical to build the system on two chips rather than
on a single chip. This decision would also be strongly affected by other factors such as the
increase in the number of total package pins required for the two chips to be interconnected,
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the effect on performance of the required interconnections, and the additional printed circuit
board space required for additional packages. The shape of the cost curves is also a strong
function of the package cost, test cost of the individual product, yield curve for the particular
process, and so forth.

The preceding analysis concerned only the direct costs to the manufacturer of the fabrication
of the finished product; the actual selling price is much higher and reflects additional research
and development, engineering, and selling costs. Many of these costs are fixed, however, so the
selling price of a particular integrated circuit tends to vary inversely with the quantity of the
circuits sold by the manufacturer.

APPENDIX
A.2.1 SPICE MODEL-PARAMETER FILES

In this section, SPICE model-parameter symbols are compared with the symbols employed in
the text for commonly used quantities.

Bipolar Transistor Parameters

SPICE
Symbol Text Symbol Description

IS IS Transport saturation current

BF 𝛽F Maximum forward current gain

BR 𝛽R Maximum reverse current gain

VAF VA Forward Early voltage

RB rb Base series resistance

RE rex Emitter series resistance

RC rc Collector series resistance

TF 𝜏F Forward transit time

TR 𝜏R Reverse transit time

CJE Cje0 Zero-bias base-emitter depletion capacitance

VJE 𝜓0e Base-emitter junction built-in potential

MJE ne Base-emitter junction-capacitance exponent

CJC C𝜇0 Zero-bias base-collector depletion capacitance

VJC 𝜓0c Base-collector junction built-in potential

MJC nc Base-collector junction-capacitance exponent

CJS CCS0 Zero-bias collector-substrate depletion capacitance

VJS 𝜓0s Collector-substrate junction built-in potential

MJS ns Collector-substrate junction-capacitance exponent

Note: Depending on which version of SPICE is used, a separate diode may have to be included to
model base-substrate capacitance in a lateral pnp transistor.
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MOSFET Parameters

SPICE
Symbol Text Symbol Description

VTO Vt Threshold voltage with zero source-substrate voltage

KP k′ = 𝜇Cox Transconductance parameter

GAMMA 𝛾 =
√

2q𝜖NA

Cox

Threshold voltage parameter

PHI 2𝜙f Surface potential

LAMBDA 𝜆 = 1
Leff

dXd

dVDS

Channel-length modulation parameter

CGSO Col Gate-source overlap capacitance per unit channel width

CGDO Col Gate-drain overlap capacitance per unit channel width

CJ Cj0 Zero-bias junction capacitance per unit area from source and drain
bottom to bulk (substrate)

MJ n Source-bulk and drain-bulk junction capacitance exponent (grading
coefficient)

CJSW Cjsw0 Zero-bias junction capacitance per unit junction perimeter from
source and drain sidewall (periphery) to bulk

MJSW n Source-bulk and drain-bulk sidewall junction capacitance exponent

PB 𝜓0 Source-bulk and drain-bulk junction built-in potential

TOX tox Oxide thickness

NSUB NA,ND Substrate doping

NSS Qss∕q Surface-state density

XJ Xj Source, drain junction depth

LD Ld Source, drain lateral diffusion

PROBLEMS
2.1 What impurity concentration corresponds to

a 1 Ω-cm resistivity in p-type silicon? In n-type sili-
con?

2.2 What is the sheet resistance of a layer of
1 Ω-cm material that is 5 μm thick?

2.3 Consider a hypothetical layer of silicon that
has an n-type impurity concentration of 1017 cm−3 at
the top surface, and in which the impurity concen-
tration decreases exponentially with distance into the
silicon. Assume that the concentration has decreased
to 1∕e of its surface value at a depth of 0.5 μm and
that the impurity concentration in the sample before
the insertion of the n-type impurities was 1015 cm−3

p-type. Determine the depth below the surface of

the pn junction that results, and determine the sheet
resistance of the n-type layer. Assume a constant elec-
tron mobility of 800 cm2/V-s. Assume that the width
of the depletion layer is negligible.

2.4 A diffused resistor has a length of 200 μm
and a width of 5 μm. The sheet resistance of the
base diffusion is 100 Ω/◽, and the emitter diffusion is
5 Ω/◽. The base pinched layer has a sheet resistance
of 5 kΩ/◽. Determine the resistance of the resistor if it
is an emitter-diffused, base-diffused, or pinch resistor.

2.5 A base-emitter voltage of 520 to 580 mV
is measured on a test npn transistor structure with
10 μA collector current. The emitter dimensions on
the test transistor are 100 μm× 100 μm. Determine the
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range of values of QB implied by these data. Use this
information to calculate the range of values of sheet
resistance that will be observed in the pinch resistors
in the circuit. Assume a constant electron diffusiv-
ity, Dn, of 13 cm2/s and a constant hole mobility of
150 cm2/V-s. Assume that the width of the depletion
layer is negligible.

2.6 Estimate the series base resistance, series
collector resistance rc, base-emitter capacitance,
base-collector capacitance, and collector-substrate
capacitance of the high-current npn transistor struc-
ture shown in Fig. 2.73. This structure is typical of
those used as the output transistor in operational
amplifiers that must supply up to about 20 mA.
Assume a doping profile as shown in Fig. 2.17.

2.7 If the lateral pnp structure of Fig. 2.33a is
fabricated with an epi layer resistivity of 0.5 Ω-cm,
determine the value of collector current at which the
current gain begins to fall off. Assume a diffusivity
for holes of Dp = 10 cm2/s. Assume a base width of
8 μm.

2.8 The substrate pnp of Fig. 2.36a is to be used
as a test device to monitor epitaxial layer thickness.
Assume that the flow of minority carriers across the
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Figure 2.73 Device structure for Problem 2.6.

base is vertical and that the width of the emitter-base
and collector-base depletion layers is negligible.
Assume that the epi layer resistivity is known
to be 2 Ω-cm by independent measurement. The
base-emitter voltage is observed to vary from 525
to 560 mV over several wafers at a collector cur-
rent of 10 μA. What range of epitaxial layer thick-
ness does this imply? What is the corresponding range
of sheet resistance that will be observed in the epi-
taxial pinch resistors? Assume a hole diffusivity of
10 cm2/s and an electron mobility of 800 cm2/V-s.
Neglect the depletion layer thickness. Assume a junc-
tion depth of 3 μm for the base diffusion.

2.9 Calculate the total parasitic junction capac-
itance associated with a 10 kΩ base-diffused resistor
if the base sheet resistance is 100 Ω/◽ and the resistor
width is 6 μm. Repeat for a resistor width of 12 μm.
Assume the doping profiles are as shown in Fig. 2.17.
Assume the clubheads are 26 μm× 26 μm and that
the junction depth is 3 μm. Account for sidewall
effects.

2.10 For the substrate pnp structure shown in
Fig. 2.36a, calculate IS, Cje, C𝜇, and 𝜏F . Assume the
doping profiles are as shown in Fig. 2.17.
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2.11 A base-emitter voltage of 480 mV is mea-
sured on a super-𝛽 test transistor with a 100 μm×
100 μm emitter area at a collector current of 10 μA.
Calculate the QB and the sheet resistance of the base
region. Estimate the punchthrough voltage in the fol-
lowing way. When the base depletion region includes
the entire base, charge neutrality requires that the
number of ionized acceptors in the depletion region in
the base be equal to the number of ionized donors in
the depletion region on the collector side of the base.
[See (1.2).] Therefore, when enough voltage is applied
that the depletion region in the base region includes
the whole base, the depletion region in the collector
must include a number of ionized atoms equal to QB.
Since the density of these atoms is known (equal to
ND), the width of the depletion layer in the collec-
tor region at punchthrough can be determined. If we
assume that the doping in the base NA is much larger
than that in the collector ND, then (1.15) can be used to
find the voltage that will result in this depletion layer
width. Repeat this problem for the standard device,
assuming a VBE measured at 560 mV. Assume an elec-
tron diffusivity Dn of 13 cm2/s and a hole mobility 𝜇p

of 150 cm2/V-s. Assume the epi doping is 1015 cm−3.
Use 𝜖 = 1.04 × 10−12 F/cm for the permittivity of sil-
icon. Also, assume 𝜓o for the collector-base junction
is 0.55 V.

2.12 An MOS transistor biased in the active
region displays a drain current of 100 μA at a VGS of
1.5 V and a drain current of 10 μA at a VGS of 0.8 V.
Determine the threshold voltage and 𝜇nCox(W/L).
Neglect subthreshold conduction, and assume that the
mobility is constant.

2.13 Calculate the threshold voltage of the p-
channel transistors for the process given in Table 2.1.
Do the calculation first for the unimplanted transistor
and then for the case in which the device receives the
channel implant specified. Note that this is a p-type
implant, so the effective surface concentration is the
difference between the background substrate concen-
tration and the effective concentration in the implant
layer.

2.14 An n-channel implanted transistor from the
process described in Table 2.1 displays a measured
output resistance of 5 MΩ at a drain current of 10 μA,
biased in the active region at a VDS of 5 V. The drawn
dimensions of the device are 100 μm× 7 μm. Find the
output resistance of a second device on the same tech-
nology that has drawn dimensions of 50 μm× 12 μm
and is operated at a drain current of 30 μA and a VDS

of 5 V.

2.15 Calculate the small-signal model parameters
of the device shown in Fig. 2.74, including gm, gmb, ro,

Cgs, Cgd, Csb, and Cdb. Assume the transistor is biased
at a drain-source voltage of 2 V and a drain current of
20 μA. Use the process parameters that are specified
in Table 2.4. Assume VSB = 1 V.

DrainGateSource

1 μm

10 μm

1 μm 1 μm

Figure 2.74 Transistor for Problem 2.15.

2.16 The transistor shown in Fig. 2.74 is con-
nected in the circuit shown in Fig. 2.75. The gate is
grounded, the substrate is connected to −1.5 V, and
the drain is open circuited. An ideal current source is
tied to the source, and this source has a value of zero
for t < 0 and 10 μA for t > 0. The source and drain
are at an initial voltage of +1.5 V at t = 0. Sketch the
voltage at the source and drain from t = 0 until the
drain voltage reaches −1.5 V. For simplicity, assume
that the source-substrate and drain-substrate capaci-
tances are constant at their zero-bias values. Assume
the transistor has a threshold voltage of 0.6 V.

10 μA

–1.5 V

D

i(t )

i(t )

t

Figure 2.75 Circuit for Problem 2.16.
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2.17 Show that two MOS transistors connected
in parallel with channel widths of W1 and W2 and
identical channel lengths of L can be modeled as one
equivalent MOS transistor whose width is W1 + W2

and whose length is L, as shown in Fig. 2.76. Assume
the transistors are identical except for their channel
widths.

M1 W1
L

M2 W2
L

W1 + W2
L

=

Figure 2.76 Circuit for Problem 2.17.

2.18 Show that two MOS transistors connected in
series with channel lengths of L1 and L2 and identical
channel widths of W can be modeled as one equivalent
MOS transistor whose width is W and whose length is
L1 + L2, as shown in Fig. 2.77. Assume the transistors
are identical except for their channel lengths. Ignore
the body effect and channel-length modulation.

M1

M2 W

L2

W

L1

W
L1 + L2

=

Figure 2.77 Circuit for Problem 2.18.

2.19 An integrated electronic subsystem is to
be fabricated, which requires 40,000 square mils of
silicon area. Determine whether the system should be
put on one or two chips, assuming that the fabrication

cost of the two chips is the only consideration. Assume
that the wafer-fab cost is $100.00, the packaging and
testing costs are $0.60, the die-fab yield is 0.9, and the
final-test yield is 0.8. Assume the process used follows
curve B in Fig. 2.68. Repeat the problem assuming
yield curve A and then yield curve C. Assume a 4-inch
wafer.

2.20 Determine the direct fabrication cost of an
integrated circuit that is 150 mils on a side in size.
Assume a wafer-fab cost of $130.00, a package and
testing cost of $0.40, a die-fab yield of 0.8, and a
final-test yield of 0.8. Work the problem for yield
curves A,B, and C in Fig. 2.68. Assume a 4-inch wafer.

2.21 .(a) A frequently used empirical approxima-
tion for the yield of an IC process as a function of die
size is

Yws = exp (−A∕A0)

where A is the die area and A0 is a constant. Using
Fig. 2.68, determine approximate values of A0 for each
of the three processes shown. Use the point on the
curve at which the yield is e−1 to determine A0. Plot
the yield predicted by this expression, and compare
with the curves shown in Fig. 2.68.

(b) Use the expression derived in (a), together
with the gross-die-per-wafer curves shown in
Fig. 2.69, to develop an analytical expression for the
cost of silicon per unit area as a function of die size,
Ydf , Yft, Cp, and Cw for each of the three processes
A,B, and C.

2.22 Calculate the small-signal model parameters
gm, ro, Cgs, and Cgd for a NMOS transistor. Assume
the transistor operates in the active region with ID =
100 μA, VDS = 1 V, VBS = 0 V, W = 0.9 μm, and L =
0.2 μm. Use the transistor model data in Table 2.5.

2.23 Calculate the small-signal model parameters
gm, ro, Cgs, and Cgd for a NMOS transistor. Also cal-
culate the gate-leakage current IG. Assume the tran-
sistor operates in the active region with ID = 100 μA,
VDS = 1 V, VBS = 0 V, W = 0.5 μm, and L = 0.1 μm.
Use the transistor model data in Table 2.6.
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CHAPTER 3

Single-Transistor and
Multiple-Transistor Amplifiers

The technology used to fabricate integrated circuits presents a unique set of component-cost
constraints to the circuit designer. The most cost-effective circuit approach to accomplish a
given function may be quite different when the realization of the circuit is to be in monolithic
form as opposed to discrete transistors and passive elements.1 As an illustration, consider the
two realizations of a three-stage audio amplifier shown in Figs. 3.1 and 3.2. The first reflects
a cost-effective solution in the context of discrete-component circuits, since passive com-
ponents such as resistors and capacitors are less expensive than the active components, the
transistors. Hence, the circuit contains a minimum number of transistors, and the interstage
coupling is accomplished with capacitors. However, for the case of monolithic construction,
a key determining factor in cost is the die area used. Capacitors of the values used in most
discrete-component circuits are not feasible and would have to be external to the chip, increas-
ing the pin count of the package, which increases cost. Therefore, a high premium is placed on
eliminating large capacitors, and a dc-coupled circuit realization is very desirable. A second
constraint is that the cheapest component that can be fabricated in the integrated circuit is the
one that occupies the least area, usually a transistor. Thus a circuit realization that contains the
minimum possible total resistance while using more active components may be optimum.2,3

Furthermore, an important application of analog circuits is to provide interfaces between the
real world and digital circuits. In building digital integrated circuits, CMOS technologies have
become dominant because of their high densities and low power dissipations. To reduce the
cost and increase the portability of mixed-analog-and-digital systems, both increased levels
of integration and reduced power dissipations are required. As a result, we are interested in
building analog interface circuits in CMOS technologies. The circuit of Fig. 3.2 reflects these
constraints. It uses a CMOS technology and many more transistors than in Fig. 3.1, has less
total resistance, and has no coupling capacitors. A differential pair is used to allow direct cou-
pling between stages, while transistor current sources provide biasing without large amounts
of resistance. In practice, feedback would be required around the amplifier shown in Fig. 3.2
but is not shown for simplicity. Feedback is described in Chapter 8.

The next three chapters analyze various circuit configurations encountered in linear inte-
grated circuits. In discrete-component circuits, the number of transistors is usually minimized.
The best way to analyze such circuits is usually to regard each individual transistor as a stage
and to analyze the circuit as a collection of single-transistor stages. A typical monolithic
circuit, however, contains a large number of transistors that perform many functions, both
passive and active. Thus monolithic circuits are often regarded as a collection of subcircuits
that perform specific functions, where the subcircuits may contain many transistors. In this
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Figure 3.1 Typical discrete-component realization of an audio amplifier.
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Figure 3.2 Typical CMOS integrated-circuit realization of an audio amplifier.

chapter, we first consider the dc and low-frequency properties of the simplest subcircuits:
common-emitter, common-base, and common-collector single-transistor amplifiers and their
counterparts using MOS transistors. We then consider some multi-transistor subcircuits that
are useful as amplifying stages. The most widely used of these multi-transistor circuits are
the differential pairs, which are analyzed extensively in this chapter.

3.1 Device Model Selection for Approximate Analysis
of Analog Circuits
Much of this book is concerned with the salient performance characteristics of a variety of
subcircuits commonly used in analog circuits and of complete functional blocks made up of
these subcircuits. The aspects of the performance that are of interest include the dc currents
and voltages within the circuit; the effect of mismatches in device characteristics on these
voltages and currents; the small-signal, low-frequency input and output resistance; and the
voltage gain of the circuit. In later chapters, the high-frequency, small-signal behavior of
circuits is considered. The subcircuit or circuit under investigation is often one of considerable
complexity, and the most important single principle that must be followed to achieve success
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in the hand analysis of such circuits is selecting the simplest possible model for the devices
within the circuit that will result in the required accuracy. For example, in the case of dc
analysis, hand analysis of a complex circuit is greatly simplified by neglecting certain aspects
of transistor behavior, such as the output resistance, which may result in a 10 to 20 percent
error in the dc currents calculated. The principal objective of hand analysis, however, is to
obtain an intuitive understanding of factors affecting circuit behavior so that an iterative
design procedure resulting in improved performance can be carried out. The performance of
the circuit can at any point in this cycle be determined precisely by computer simulation, but
this approach does not yield the intuitive understanding necessary for design.

Unfortunately, no specific rules can be formulated regarding the selection of the simplest
device model for analysis. For example, in the dc analysis of bipolar biasing circuits, assum-
ing constant base-emitter voltages and neglecting transistor output resistances often provides
adequate accuracy. However, certain bias circuits depend on the nonlinear relation between
the collector current and base-emitter voltage to control the bias current, and the assumption
of a constant VBE will result in gross errors in the analyses of these circuits. When analyzing
the active-load stages in Chapter 4, the output resistance must be considered to obtain mean-
ingful results. Therefore, a key step in every analysis is to inspect the circuit to determine what
aspects of the behavior of the transistors strongly affect the performance of the circuit, and then
simplify the model(s) to include only those aspects. This step in the procedure is emphasized
in this and the following chapters.

3.2 Two-Port Modeling of Amplifiers
The most basic parameter of an amplifier is its gain. Since amplifiers may be connected to
a wide variety of sources and loads, predicting the dependence of the gain on the source
and load resistance is also important. One way to observe this dependence is to include
these resistances in the amplifier analysis. However, this approach requires a completely
new amplifier analysis each time the source or load resistance is changed. To simplify
this procedure, amplifiers are often modeled as two-port equivalent networks. As shown in
Fig. 3.3, two-port networks have four terminals and four port variables (a voltage and a current
at each port). A pair of terminals is a port if the current that flows into one terminal is equal
to the current that flows out of the other terminal. To model an amplifier, one port represents
the amplifier input characteristics and the other represents the output. One variable at each
port can be set independently. The other variable at each port is dependent on the two-port
network and the independent variables. This dependence is expressed by two equations.
We will focus here on the admittance-parameter equations, where the terminal currents are
viewed as dependent variables controlled by the independent terminal voltages because we
usually model transistors with voltage-controlled current sources. If the network is linear and
contains no independent sources, the admittance-parameter equations are

i1 = y11v1 + y12v2 (3.1)
i2 = y21v1 + y22v2 (3.2)

The voltages and currents in these equations are deliberately written as small-signal quantities
because transistors behave in an approximately linear way only for small signals around a

i1

i1

i2

i2

Two-port
network

v2

+

–
v1

+

–

Figure 3.3 Two-port-network block diagram.
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i1 i2

v1 y11 y12 v2

+

–

v2y22y21 v1

+

–

Figure 3.4 Admittance-
parameter, two-port equivalent
circuit.

fixed operating point. An equivalent circuit for these equations is shown in Fig. 3.4. The
parameters can be found and interpreted as follows:

y11 =
i1
v1

|||| v2=0
= Input admittance with the output short-circuited (3.3)

y12 =
i1
v2

|||| v1=0
= Reverse transconductance with the input short-circuited (3.4)

y21 =
i2
v1

|||| v2=0
= Forward transconductance with the output short-circuited (3.5)

y22 =
i2
v2

|||| v1=0
= Output admittance with the input short-circuited (3.6)

The y12 parameter represents feedback in the amplifier. When the signal propagates back
from the output to the input as well as forward from the input to the output, the amplifier is said
to be bilateral. In many practical cases, especially at low frequencies, this feedback is negli-
gible and y12 is assumed to be zero. Then the amplifier is unilateral and characterized by the
other three parameters. Since the model includes only one transconductance when y12 = 0, y21
is usually referred to simply as the short-circuit transconductance, which will be represented
by Gm in this book. When an amplifier is unilateral, the calculation of y11 is simplified from
that given in (3.3) because the connections at the output port do not affect the input admittance
when y12 = 0.

Instead of calculating y11 and y22, we will often calculate the reciprocals of these parame-
ters, or the input and output impedances Zi = 1∕y11 and Zo = 1∕y22, as shown in the unilateral
two-port model of Fig. 3.5a. Also, instead of calculating the short-circuit transconductance
Gm = y21, we will sometimes calculate the open-circuit voltage gain av. This substitution
is justified by conversion of the Norton-equivalent output model shown in Fig. 3.5a to the
Thévenin-equivalent output model shown in Fig. 3.5b. In general, finding any two of the three

i1 i2

Ziv1

+

–

v2Gm v1

+

–

(a)

i1 i2

Zi av v1v1

+

–

+

–

v2

Zo

Zo

+

–

(b)

Figure 3.5 Unilateral two-port equivalent
circuits with (a) Norton output model;
(b) Thévenin output model.
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+
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Figure 3.6 Example of loading at the input and output of an amplifier modeled by a two-port equivalent
circuit.

parameters including Gm, Zo, and av specifies the third parameter because

av =
v2

v1

|||| i2=0
= −GmZo (3.7)

Once two of these parameters and the input impedance are known, calculation of the effects
of loading at the input and output ports is possible. At low frequencies, the input and out-
put impedances are usually dominated by resistances. Therefore, we will characterize the
low-frequency behavior of many amplifiers in this book by finding the input and output resis-
tances, Ri and Ro, as well as Gm or av.

◼ EXAMPLE

A two-port model of a unilateral amplifier is shown in Fig. 3.6. Assume Ri = 1 kΩ,
Ro = 1 MΩ, and Gm = 1 mA/V. Let RS and RL represent the source resistance of the input
generator and load resistance, respectively. Find the low-frequency gain vout∕vin, assuming
that the input is an ideal voltage source and the output is unloaded. Repeat, assuming that
RS = 1 kΩ and RL = 1 MΩ.

The open-circuit voltage gain of the two-port amplifier model by itself from v1 to vout is

vout

v1

|||| RL→∞
=

v2

v1

|||| i2=0
= −GmRo = −(1 mA/V)(1000 kΩ) = −1000

Since the source and input resistances form a voltage divider, and since the output resistance
appears in parallel with the load resistance, the overall gain from vin to vout is

vout

vin
=

v1

vin

vout

v1
= −

Ri

Ri + RS
Gm (Ro ∥ RL)

With an ideal voltage source at the input and no load at the output, RS = 0, RL → ∞, and
vout∕vin = −1000. With RS = 1 kΩ and RL = 1 MΩ, the gain is reduced by a factor of four to
vout∕vin = −0.5(1 mA/V)(500 kΩ) = −250.◼

3.3 Basic Single-Transistor Amplifier Stages
Bipolar and MOS transistors are capable of providing useful amplification in three different
configurations. In the common-emitter or common-source configuration, the signal is applied
to the base or gate of the transistor, and the amplified output is taken from the collector or
drain. In the common-collector or common-drain configuration, the signal is applied to the
base or gate, and the output signal is taken from the emitter or source. This configuration is
often referred to as the emitter follower for bipolar circuits and the source follower for MOS
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circuits. In the common-base or common-gate configuration, the signal is applied to the emitter
or the source, and the output signal is taken from the collector or the drain. Each of these
configurations provides a unique combination of input resistance, output resistance, voltage
gain, and current gain. In many instances, the analysis of complex multistage amplifiers can
be reduced to the analysis of a number of single-transistor stages of these types.

We showed in Chapter 1 that the small-signal equivalent circuits for the bipolar and MOS
transistors are very similar, with the two devices differing mainly in the values of some of
their small-signal parameters. In particular, MOS transistors have essentially infinite input
resistance from the gate to the source, in contrast with the finite r𝜋 of bipolar transistors. On
the other hand, bipolar transistors have a gm that is usually an order of magnitude larger than
that of MOS transistors biased with the same current. These differences often make one or the
other device desirable for use in different situations. For example, amplifiers with very high
input impedance are more easily realized with MOS transistors than with bipolar transistors.
However, the higher gm of bipolar transistors makes the realization of high-gain amplifiers with
bipolar transistors easier than with MOS transistors. In other applications, the exponential
large-signal characteristics of bipolar transistors and the square-law characteristics of MOS
transistors may each be used to advantage.

As described in Chapter 2, integrated-circuit processes of many varieties now exist.
Examples include processes with bipolar or MOS transistors as the only active devices and
combined bipolar and CMOS devices in BiCMOS processes. Because the more complex
processes involve more masking steps and are thus somewhat more costly to produce,
integrated-circuit designers generally use the simplest process available that allows the
desired circuit specifications to be achieved. Therefore, designers must appreciate the
similarities and differences between bipolar and MOS transistors so that appropriate choices
of technology can be made.

3.3.1 Common-Emitter Configuration

The resistively loaded common-emitter (CE) amplifier configuration is shown in Fig. 3.7.
The resistor RC represents the collector load resistance. The short horizontal line labeled VCC
at the top of RC implies that a voltage source of value VCC is connected between that point
and ground. This symbol will be used throughout the book. We first calculate the dc transfer
characteristic of the amplifier as the input voltage is increased in the positive direction from
zero. We assume that the base of the transistor is driven by a voltage source of value Vi.
When Vi is zero, the transistor operates in the cutoff state, and no collector current flows
other than the leakage current ICO. As the input voltage is increased, the transistor enters the

Ib

Ic

RC

VCC

Vo

Vi

+

–

+

–

Figure 3.7 Resistively loaded common-emitter amplifier.
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Ic = IS exp (      ) =   FIb
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VT

This diode has a
saturation current of

IS

  Fβ

β

Figure 3.8 Large-signal
equivalent circuit valid when
the transistor is in the
forward-active region. The
saturation current of the
equivalent base-emitter
diode is IS∕𝛽F .

forward-active region, and the collector current is given by

Ic = IS exp
Vi

VT
(3.8)

The equivalent circuit for the amplifier when the transistor operates in the forward-active
region was derived in Chapter 1 and is repeated in Fig. 3.8. Because of the exponential
relationship between Ic and Vbe, the value of the collector current is very small until the input
voltage reaches approximately 0.5 V. As long as the transistor operates in the forward-active
region, the base current is equal to the collector current divided by 𝛽F, or

Ib =
Ic

𝛽F
=

IS

𝛽F
exp

Vi

VT
(3.9)

The output voltage is equal to the supply voltage, VCC, minus the voltage drop across the
collector resistor:

Vo = VCC − IcRC = VCC − RCIS exp
Vi

VT
(3.10)

When the output voltage approaches zero, the collector-base junction of the transistor becomes
forward biased and the device enters saturation. Once the transistor becomes saturated, the
output voltage and collector current take on nearly constant values:

Vo = VCE(sat) (3.11)

Ic =
VCC − VCE(sat)

RC
(3.12)

The base current, however, continues to increase with further increases in Vi. Therefore, the
forward current gain Ic∕Ib decreases from 𝛽F as the transistor leaves the forward-active region
of operation and moves into saturation. In practice, the current available from the signal source
is limited. When the signal source can no longer increase the base current, Vi is maximum.
The output voltage and the base current are plotted as a function of the input voltage in
Fig. 3.9. Note that when the device operates in the forward-active region, small changes in
the input voltage can give rise to large changes in the output voltage. The circuit thus provides
voltage gain. We now proceed to calculate the voltage gain in the forward-active region.

While incremental performance parameters such as the voltage gain can be calculated from
derivatives of the large-signal analysis, the calculations are simplified by using the small-signal
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Figure 3.9 Output voltage and base current as a
function of Vi for the common-emitter circuit.
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Figure 3.10 Small-signal
equivalent circuit for the CE
amplifier.

hybrid-𝜋 model for the transistor developed in Chapter 1. The small-signal equivalent circuit
for the common-emitter amplifier is shown in Fig. 3.10. Here we have neglected rb, assuming
that it is much smaller than r𝜋 . We have also neglected rμ. This equivalent circuit does not
include the resistance of the load connected to the amplifier output. The collector resistor RC
is included because it is usually present in some form as a biasing element. Our objective is to
characterize the amplifier alone so that the voltage gain can then be calculated under arbitrary
conditions of loading at the input and output. Since the common-emitter amplifier is unilateral
when rμ is neglected, we will calculate the small-signal input resistance, transconductance,
and output resistance of the circuit as explained in Section 3.2.

The input resistance is the Thévenin-equivalent resistance seen looking into the input. For
the CE amplifier,

Ri =
vi

ii
= r𝜋 =

𝛽0

gm
(3.13)

The transconductance Gm is the change in the short-circuit output current per unit change of
input voltage and is given by

Gm =
io
vi

|||| vo=0
= gm (3.14)
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Equation 3.14 shows that the transconductance of the CE amplifier is equal to the transcon-
ductance of the transistor. The output resistance is the Thévenin-equivalent resistance seen
looking into the output with the input shorted, or

Ro =
vo

io

|||| vi=0
= RC ∥ ro (3.15)

The open-circuit, or unloaded, voltage gain is

av =
vo

vi

|||| io=0
= −gm(ro ∥ RC) (3.16)

If the collector load resistor RC is made very large, then av becomes

lim
RC→∞

av = −gmro = −
IC

VT

VA

IC
= −

VA

VT
= −1

𝜂
(3.17)

where IC is the dc collector current at the operating point, VT is the thermal voltage, VA is
the Early voltage, and 𝜂 is given in (1.114). This gain represents the maximum low-frequency
voltage gain obtainable from the transistor. It is independent of the collector bias current for
bipolar transistors, and the magnitude is approximately 5000 for typical npn devices.

Another parameter of interest is the short-circuit current gain ai. This parameter is the ratio
of io to ii when the output is shorted. For the CE amplifier,

ai =
io
ii

|||| vo=0
=

Gmvi
vi

Ri

= gmr𝜋 = 𝛽0 (3.18)

◼ EXAMPLE
.
(a) Find the input resistance, output resistance, voltage gain, and current gain of the

common-emitter amplifier in Fig. 3.11a. Assume that IC = 100 μA, 𝛽0 = 100, rb = 0,
and ro → ∞.

Ri = r𝜋 =
𝛽0

gm
≃ 100 (26 mV)

100 μA
= 26 kΩ

Ro= RC = 5 kΩ

av = −gmRC ≃ −
(

100 μA

26 mV

)
(5 kΩ) ≃ −19.2

ai = 𝛽0 = 100

(b) Calculate the voltage gain of the circuit of Fig. 3.11b. Assume that VBIAS is adjusted so
that the dc collector current is maintained at 100 μA.

v1 = vs

(
Ri

RS + Ri

)
vo =−Gmv1(Ro ∥ RL) = −Gm

(
Ri

RS + Ri

)
(Ro ∥ RL) vs

vo

vs
=−

( 1
260 Ω

)( 26 kΩ
26 kΩ + 20 kΩ

)[
(10 kΩ)(5 kΩ)
10 kΩ + 5 kΩ

]
≃ −7.25

◼
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Figure 3.11 (a) Example amplifier circuit. (b) Circuit for calculation of voltage gain with typical source
and load resistance values.

3.3.2 Common-Source Configuration

The resistively loaded common-source (CS) amplifier configuration is shown in Fig. 3.12a
using an n-channel MOS transistor. The corresponding small-signal equivalent circuit is shown
in Fig. 3.12b. As in the case of the bipolar transistor, the MOS transistor is cut off for Vi = 0 and
thus Id = 0 and Vo = VDD. As Vi is increased beyond the threshold voltage Vt, nonzero drain
current flows, and the transistor operates in the active region (which is often called saturation
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Figure 3.12 (a) Resistively loaded,
common-source amplifier. (b) Small-signal
equivalent circuit for the common-source
amplifier.

for MOS transistors) when Vo > VGS − Vt. The large-signal model of Fig. 1.30 can then be
used together with (1.157) to derive

Vo = VDD − IdRD (3.19)

= VDD −
μnCox

2
W
L

RD (Vi − Vt)2 (3.20)

The output voltage is equal to the drain-source voltage and decreases as the input
increases. When Vo < VGS − Vt, the transistor enters the triode region, where its output
resistance becomes low and the small-signal voltage gain drops dramatically. In the triode
region, the output voltage can be calculated by using (1.152) in (3.19). These results
are illustrated in the plot of Fig. 3.13. The transistor threshold is labeled just below 1 V.
In practice, the threshold in modern processes might be anywhere between about 0.3 V
and 0.8 V. Also, the slope of this transfer characteristic at any operating point is the
small-signal voltage gain at that point. The MOS transistor has much lower voltage gain in
the active region than does the bipolar transistor; therefore, the active region for the MOS
CS amplifier extends over a much larger range of Vi than in the bipolar common-emitter
amplifier.

Since the source and body of the MOS transistor both operate at ac ground, vbs = 0 in
Fig. 1.36; therefore, the gmb generator is omitted in Fig. 3.12b. As a result, this circuit is
topologically identical to the small-signal equivalent circuit for the common-emitter amplifier
shown in Fig. 3.10. The CS amplifier is unilateral because it contains no feedback. Therefore,
the low-frequency behavior of this circuit can be characterized using the transconductance,
input resistance, and output resistance as described in Section 3.2.
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Figure 3.13 Output voltage
versus input voltage for the
common-source circuit.

The transconductance Gm is

Gm =
io
vi

|||| vo=0
= gm (3.21)

Equation 3.21 shows that the transconductance of the CS amplifier is equal to the transconduc-
tance of the transistor, as in a common-emitter amplifier. Since the input of the CS amplifier
is connected to the gate of an MOS transistor, the dc input current and its low-frequency,
small-signal variation ii are both assumed to equal zero. Under this assumption, the input
resistance Ri is

Ri =
vi

ii
→ ∞ (3.22)

Another way to see this result is to let 𝛽0 → ∞ in (3.13) because MOS transistors behave like
bipolar transistors with infinite 𝛽0. The output resistance is the Thévenin-equivalent resistance
seen looking into the output with the input shorted, or

Ro =
vo

io

|||| vi=0
= RD ∥ ro (3.23)

The open-circuit, or unloaded, voltage gain is

av =
vo

vi

|||| io=0
= −gm(ro ∥ RD) (3.24)

If the drain load resistor RD is replaced by a current source, RD → ∞ and av becomes

lim
RD→∞

av = −gmro (3.25)

Equation 3.25 gives the maximum possible voltage gain of a one-stage CS amplifier. This
result is identical to the first part of (3.17) for a common-emitter amplifier. In the case of
the CS amplifier, however, gm is proportional to

√
ID from (1.180), whereas ro is inversely

proportional to ID from (1.194). Thus, we find in (3.25) that the maximum voltage gain per
stage is proportional to 1∕

√
ID. In contrast, the maximum voltage gain in the common-emitter
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Figure 3.14 Typical variation of
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amplifier is independent of current. A plot of the maximum voltage gain versus ID for a typical
MOS transistor is shown in Fig. 3.14. At very low currents, the gain approaches a constant
value comparable to that of a bipolar transistor. This region is sometimes called subthreshold,
where the transistor operates in weak inversion and the square-law characteristic in (1.157) is
no longer valid. As explained in Section 1.8, the drain current becomes an exponential function
of the gate-source voltage in this region, resembling the collector-current dependence on the
base-emitter voltage in a bipolar transistor.

Using (1.194), the limiting gain given by (3.25) can also be expressed as

lim
RD→∞

av = −gmro = −
gm

ID
IDro = −

gm

ID
VA (3.26)

In the square-law region in Fig. 3.14, substituting (1.181) into (3.26) gives

lim
RD→∞

av = −
VA

(VGS − Vt)∕2
= −

2VA

Vov
(3.27)

where Vov = VGS − Vt is the gate overdrive. Since the gate overdrive is typically an order of
magnitude larger than the thermal voltage VT , the magnitude of the maximum gain predicted
by (3.27) is usually much smaller than that predicted by (3.17) for the bipolar case. Substituting
(1.163) into (3.27) gives

lim
RD→∞

av = −
2Leff

VGS − Vt

(
dXd

dVDS

)−1

(3.28)

◼ EXAMPLE
Find the voltage gain of the common-source amplifier of Fig 3.12a with VDD = 5 V,
RD = 5 kΩ, k′ = μnCox = 100μA∕V2, W = 50μm, L = 1μm, Vt = 0.8 V, Ld = 0, Xd = 0,
and 𝜆 = 0. Assume that the bias value of Vi is 1 V.

To determine whether the transistor operates in the active region, we first find the dc output
voltage VO = VDS. If the transistor operates in the active region, (1.157) gives

ID = k′

2
W
L

(VGS − Vt)2 = 100
2

× 10−6 × 50
1

(1 − 0.8)2 = 100 μA
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Then
VO = VDS = VDD − IDRD = 5 V − (0.1 mA)(5 kΩ) = 4.5 V

Since VDS = 4.5 V > VGS − Vt = 0.2 V, the transistor does operate in the active region, as
assumed. Then from (1.180),

gm = k′
W
L
(VGS − Vt) = 100 × 10−6 × 50

1
(1 − 0.8) = 1000

μA

V

Then since 𝜆 = 0, VA → ∞ and (3.24) gives

av = −gmRD = −(1.0 mA/V) (5 kΩ) = −5

Note that the open-circuit voltage gain here is much less than in the bipolar example in
Section 3.3.1 even though the dc bias currents are equal.◼

3.3.3 Common-Base Configuration

In the common-base (CB) configuration,4 the input signal is applied to the emitter of the
transistor, and the output is taken from the collector. The base is tied to ac ground. The
common-base connection is shown in Fig. 3.15. While the connection is not as widely used as
the common-emitter amplifier, it has properties that make it useful in certain circumstances.
In this section, we calculate the small-signal properties of the common-base stage.

The hybrid-𝜋 model provides an accurate representation of the small-signal behavior of the
transistor independent of the circuit configuration. For the common-base stage, however, the
hybrid-𝜋 model is somewhat cumbersome because the dependent current source is connected
between the input and output terminals.4 The analysis of common-base stages can be simplified
if the model is modified as shown in Fig. 3.16. The small-signal hybrid-𝜋 model is shown in
Fig. 3.16a. First note that the dependent current source flows from the collector terminal to
the emitter terminal. The circuit behavior is unchanged if we replace this single current source
with two current sources of the same value, one going from the collector to the base and the
other going from the base to the emitter, as shown in Fig. 3.16b. Since the currents fed into
and removed from the base are equal, the equations that describe the operation of these circuits
are identical. We next note that the controlled current source connecting the base and emitter
is controlled by the voltage across its own terminals. Therefore, by the application of Ohm’s
law to this branch, this dependent current source can be replaced by a resistor of value 1∕gm.
This resistance appears in parallel with r𝜋 , and the parallel combination of the two is called
the emitter resistance re:

re =
1

gm + 1
r𝜋

= 1

gm

(
1 + 1

𝛽0

) =
𝛼0

gm
(3.29)

VCC

RC

Vo

+

–

Vi

+

–

Figure 3.15 Typical common-base amplifier.
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Figure 3.16 Generation of emitter-current-controlled T model from the hybrid-𝜋. (a) Hybrid-𝜋 model.
(b) The collector current source gmv1 is changed to two current sources in series, and the point between
them attached to the base. This change does not affect the current flowing in the base. (c) The current
source between base and emitter is converted to a resistor of value 1∕gm. (d) T model for low frequencies,
neglecting ro, rμ, and the charge-storage elements.
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Figure 3.17 Small-signal equivalent
circuit of the common-base stage; ro, rb,
and rμ are assumed negligible.

The new equivalent circuit is called the T model and is shown in Fig. 3.16d. It has terminal
properties exactly equivalent to those of the hybrid-𝜋 model but is often more convenient to
use for common-base calculations. For dc and low input frequencies, the capacitors C𝜋 and
Cμ appear as high-impedance elements and can be neglected. Assume at first that rb = 0 and
ro → ∞ so that the circuit is unilateral. When rμ is also neglected, the model reduces to the
simple form shown in Fig. 3.16d. Using the T model under these conditions, the small-signal
equivalent circuit of the common-base stage is shown in Fig. 3.17. By inspection of Fig. 3.17,
the short-circuit transconductance is

Gm = gm (3.30)

The input resistance is just the resistance re:

Ri = re (3.31)

The output resistance is given by
Ro = RC (3.32)

Using these parameters, the open-circuit voltage gain and the short-circuit current gain are

av = GmRo = gmRC (3.33)

ai = GmRi = gmre = 𝛼0 (3.34)

Comparing (3.31) and (3.13) shows that the input resistance of the common-base configu-
ration is a factor of (𝛽0 + 1) less than in the common-emitter configuration. Also, comparing
(3.34) and (3.18) shows that the current gain of the common-base configuration is reduced by
a factor of (𝛽0 + 1) compared to that of the common-emitter configuration.

Until now, we have assumed that rb is negligible. In practice, however, the base resistance
has a significant effect on the transconductance and the input resistance when the common-base
stage is operated at sufficiently high current levels. To recalculate these parameters with rb > 0,
assume the transistor operates in the forward-active region and consider the small-signal model
shown in Fig. 3.18. Here, the transconductance is

Gm =
io
vi

|||| vo=0
= gm

(
ve

vi

)
(3.35)

1
vi

ii io

ve gmvere
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–
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–
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–
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–

Figure 3.18 Small-signal model of the
common-base stage with rb > 0.
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To find the relationship between ve and vi, Kirchoff’s current law (KCL) and Kirchoff’s
voltage law (KVL) can be applied at the internal base node (node 1©) and around the input
loop, respectively. From KCL at node 1©,

gmve +
vb

rb
−

ve

re
= 0 (3.36)

From KVL around the input loop,
vi = ve + vb (3.37)

Solving (3.37) for vb, substituting into (3.36), and rearranging gives

vi

ve
= 1 +

gm

𝛽0
rb = 1 +

rb

r𝜋
(3.38)

Substituting (3.38) into (3.35) gives

Gm =
gm

1 +
rb

r𝜋

(3.39)

Similarly, the input resistance in Fig. 3.18 is

Ri =
vi

ii
=

vi

ve∕re
= re

(
vi

ve

)
(3.40)

Substituting (3.38) into (3.40) gives

Ri = re

(
1 +

rb

r𝜋

)
=

𝛼0

gm

(
1 +

rb

r𝜋

)
(3.41)

Thus if the dc collector current is large enough that r𝜋 is comparable with rb, then the effects
of base resistance must be included. For example, if rb = 100 Ω and 𝛽0 = 100, then a collector
current of 26 mA makes rb and r𝜋 equal.

The main motivation for using common-base stages is twofold. First, the collector-base
capacitance does not cause high-frequency feedback from output to input as in the
common-emitter amplifier. As described in Chapter 7, this change can be important in the
design of high-frequency amplifiers. Second, as described in Chapter 4, the common-base
amplifier can achieve much larger output resistance than the common-emitter stage in the
limiting case where RC → ∞. As a result, the common-base configuration can be used as a
current source whose current is nearly independent of the voltage across it.

3.3.4 Common-Gate Configuration

In the common-gate configuration, the input signal is applied to the source of the transistor, and
the output is taken from the drain while the gate is connected to ac ground. This configuration
is shown in Fig. 3.19, and its behavior is similar to that of a common-base stage.

As in the analysis of common-base amplifiers in Section 3.3.3, the analysis of common-gate
amplifiers can be simplified if the model is changed from a hybrid-𝜋 configuration to a T
model, as shown in Fig. 3.20. In Fig. 3.20a, the low-frequency hybrid-𝜋 model is shown. Note
that both transconductance generators are now active. If the substrate or body connection is
assumed to operate at ac ground, then vbs = vgs because the gate also operates at ac ground.
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Figure 3.19 Common-gate configuration.
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Figure 3.20 Conversion from hybrid-𝜋 to T model.
(a) Low-frequency hybrid-𝜋 model. (b) The two
dependent sources are combined. (c) The combined
source is converted into two sources. (d) The current
source between the source and gate is converted into
a resistor.

Therefore, in Fig. 3.20b, the two dependent current sources are combined. In Fig. 3.20c, the
combined current source from the source to the drain is replaced by two current sources: one
from the source to the gate and the other from the gate to the drain. Since equal currents are
pushed into and pulled out of the gate, the equations that describe the operation of the circuits
in Figs. 3.20b and 3.20c are identical. Finally, because the current source from the source to
the gate is controlled by the voltage across itself, it can be replaced by a resistor of value
1∕(gm + gmb), as in Fig. 3.20d.
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–

vo
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RD Figure 3.21 Small-signal
equivalent circuit of the
common-gate stage; ro is assumed
negligible.

If ro is finite, the circuit of Fig. 3.20d is bilateral because of feedback provided through
ro. At first, we will assume that ro → ∞ so that the circuit is unilateral. Using the T model
under these conditions, the small-signal equivalent circuit of the common-gate stage is shown
in Fig. 3.21. By inspection of Fig. 3.21,

Gm = gm + gmb (3.42)

Ri =
1

gm + gmb
(3.43)

Ro = RD (3.44)

Using these parameters, the open-circuit voltage gain and the short-circuit current gain are

av = GmRo = (gm + gmb)RD (3.45)

ai = GmRi = 1 (3.46)

3.3.5 Common-Base and Common-Gate Configurations with Finite ro

In calculating the expressions for Gm, Ri, and Ro of the common-base and common-gate
amplifiers, we have neglected the effects of ro. Since ro is connected from each amplifier output
back to its input, finite ro causes each circuit to be bilateral, making the input resistance depend
on the connection at the amplifier output. Let R = RC in Fig. 3.17 or R = RD in Fig. 3.21,
depending on which circuit is under consideration. When R becomes large enough that it is
comparable with ro, ro must be included in the small-signal model to accurately predict not
only the input resistance, but also the output resistance. On the other hand, since the transcon-
ductance is calculated with the output shorted, the relationship between ro and R has no effect
on this calculation, and the effect of finite ro on transconductance can be ignored if ro ≫ 1∕Gm.

3.3.5.1 Common-Base and Common-Gate Input Resistance. Figure 3.22a shows
a small-signal T model of a common-base or common-gate stage including finite ro, where
Ri(ideal) is given by (3.29) and (3.31) for a common-base amplifier or by (3.43) for a
common-gate amplifier. Also, R represents RC in Fig. 3.17 or RD in Fig. 3.21. Connections
to the load and the input source are shown in Fig. 3.22a to include their contributions to the
input and output resistance, respectively. In Fig. 3.22a, the input resistance is Ri = v1∕ii. To
find the input resistance, a simplified equivalent circuit such as in Fig. 3.22b is often used.
Here, a test voltage source vt is used to drive the amplifier input, and the resulting test current
it is calculated. KCL at the output node in Fig. 3.22b gives

vo

R ∥ RL
+

vo − vt

ro
= Gmvt (3.47)

KCL at the input in Fig. 3.22b gives

it =
vt

Ri(ideal)
+

vt − vo

ro
(3.48)
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+
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ro
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it

vt

+
+
–
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+

–

RGmv1
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Figure 3.22 (a) Model of common-base and common-gate amplifiers with finite ro, showing connec-
tions to the input source and load. (b) Equivalent circuit for calculation of Ri. (c) Equivalent circuit for
calculation of Ro.

Solving (3.47) for vo and substituting into (3.48) gives

it
vt

= 1
Ri(ideal)

+ 1
ro

⎛⎜⎜⎜⎝1 −
Gm + 1

ro

1
R ∥ RL

+ 1
ro

⎞⎟⎟⎟⎠ (3.49)

Rearranging (3.49) gives

Ri =
vt

it
=

ro + R ∥ RL

1 − Gm(R ∥ RL) +
ro + R ∥ RL

Ri(ideal)

(3.50)

Common-Base Input Resistance. For the common-base amplifier, Gm = gm from (3.30),
and Ri(ideal) = re = 𝛼0∕gm from (3.31). Substituting (3.30) and (3.31) into (3.50) with R = RC
and rearranging gives

Ri =
vt

it
=

ro + RC ∥ RL

1 +
gm(RC ∥ RL)

𝛽0
+

gmro

𝛼0

=
ro + RC ∥ RL

1 +
gm

𝛽0
(RC ∥ RL + (𝛽0 + 1) ro)

(3.51)
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From (3.51), when (𝛽0 + 1)ro ≫ RC ∥ RL,

Ri ≃
ro + RC ∥ RL

1 +
gmro

𝛼0

(3.52)

From (3.52), when gmro ≫ 𝛼0,

Ri ≃
𝛼0

gm
+

𝛼0 (RC ∥ RL)
gmro

= re +
𝛼0 (RC ∥ RL)

gmro
(3.53)

The first term on the right side of (3.53) is the same as in (3.31), where the common-base
amplifier was unilateral because infinite ro was assumed. The second term shows that the input
resistance now depends on the connection to the output (because finite ro provides feedback
and makes the amplifier bilateral). The second term is about equal to the resistance at the
amplifier output divided by the Gmro product. When ro ≫ (RC ∥ RL), the effect of the second
term can be neglected.

Common-Gate Input Resistance. For the common-gate amplifier, Gm = (gm + gmb) from
(3.42) and Ri(ideal) = 1∕(gm + gmb) from (3.43). Substituting (3.42) and (3.43) into (3.50) with
R = RD and rearranging gives

Ri =
vt

it
=

ro + RD ∥ RL

1 + (gm + gmb) ro
(3.54)

When (gm + gmb) ro ≫ 1,

Ri ≃
1

gm + gmb
+

RD ∥ RL

(gm + gmb) ro
(3.55)

The first term on the right side of (3.55) is the same as in (3.43), where the common-gate
amplifier was unilateral because infinite ro was assumed. The second term is about equal to
the resistance at the amplifier output divided by the Gmro product and shows the effect of finite
ro, which makes the circuit bilateral. When ro ≫ (RD ∥ RL), the effect of the second term can
be neglected. Neglecting the second term usually causes only a small error when RD here or
RC in the common-base case is built as a physical resistor even if the amplifier is unloaded
(RL → ∞). However, when RD or RC is replaced by a transistor current source, the effect of
the second term can be significant. Chapter 4 describes techniques used to construct transistor
current sources that can have very high equivalent resistance.

3.3.5.2 Common-Base and Common-Gate Output Resistance. The output resistance
in Fig. 3.22a is Ro = vo∕io with vs = 0. For this calculation, consider the equivalent circuit
shown in Fig. 3.22c, where vs = 0. A test voltage vt is used to drive the amplifier output, and
the resulting test current it can be calculated. Since R appears in parallel with the amplifier
output, the calculation will be done in two steps. First, the output resistance with R → ∞ is
calculated. Second, this result is placed in parallel with R to give the overall output resistance.
From KCL at the input node in Fig. 3.22c,

v1

RS
+

v1

Ri(ideal)
+

v1 − vt

ro
= 0 (3.56)
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With R → ∞, KCL at the output node gives

it = −Gmv1 +
vt − v1

ro
(3.57)

Solving (3.56) for v1 and substituting into (3.57) gives

it
vt

= 1
ro

− 1
ro

⎛⎜⎜⎜⎜⎝
Gm + 1

ro

1
RS

+ 1
Ri(ideal)

+ 1
ro

⎞⎟⎟⎟⎟⎠
(3.58)

Rearranging (3.58) gives

vt

it
=

ro

(
1

RS
+ 1

Ri(ideal)
+ 1

ro

)
1

RS
+ 1

Ri(ideal)
− Gm

(3.59)

With finite R, the output resistance is

Ro = R ∥
(

vt

it

)
= R ∥

⎡⎢⎢⎢⎢⎣
ro

(
1

RS
+ 1

Ri(ideal)
+ 1

ro

)
1

RS
+ 1

Ri(ideal)
− Gm

⎤⎥⎥⎥⎥⎦
(3.60)

Common-Base Output Resistance. For the common-base amplifier, Gm = gm from (3.30)
and Ri(ideal) = re = 𝛼0∕gm from (3.31). Substituting (3.30) and (3.31) into (3.60) and rearrang-
ing gives

Ro = R ∥

⎡⎢⎢⎢⎢⎣
ro + RS

(
1 +

gmro

𝛼0

)
1 +

RS

r𝜋

⎤⎥⎥⎥⎥⎦
(3.61)

The term in brackets on the right side of (3.61) shows that the output resistance of the
common-base amplifier depends on the resistance of the input source RS when ro is finite. For
example, if the input comes from an ideal voltage source, RS = 0 and

Ro = R ∥ ro (3.62)

On the other hand, if the input comes from an ideal current source, RS → ∞ and

Ro = R ∥
[(

1 + gmro

𝛼0

)
r𝜋

]
(3.63)

From (3.61), when RS ≪ r𝜋 ,

Ro ≃ R ∥
[

ro + RS

(
1 + gmro

𝛼0

)]
(3.64)
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From (3.64), when gmro ≫ 𝛼0 and gmRS ≫ 𝛼0,

Ro ≃ R ∥
(

gmro

𝛼0
RS

)
(3.65)

The term in parentheses in (3.65) is about equal to the input source resistance multiplied by
the Gmro product. Therefore, (3.65) and (3.53) together show that the common-base amplifier
can be thought of as a resistance scaler, where the resistance is scaled up from the emitter to
the collector and down from the collector to the emitter by a factor approximately equal to the
Gmro product in each case.

Common-Gate Output Resistance. For the common-gate amplifier, Gm = (gm + gmb)
from (3.42) and Ri(ideal) = 1∕(gm + gmb) from (3.43). Substituting (3.42) and (3.43) into (3.60)
and rearranging gives

Ro = R ∥ [ro + RS(1 + (gm + gmb) ro)] (3.66)

From (3.66), when (gm + gmb) ro ≫ 1 and (gm + gmb)RS ≫ 1,

Ro ≃ R ∥ ((gm + gmb) roRS) (3.67)

The term in parentheses in (3.67) is equal to the input source resistance multiplied by the
Gmro product. Therefore, (3.67) and (3.55) together show that the common-gate amplifier is
also a resistance scaler, where the resistance is scaled up from the source to the drain and
down from the drain to the source by a factor approximately equal to the Gmro product in
each case.

3.3.6 Common-Collector Configuration (Emitter Follower)

The common-collector connection is shown in Fig. 3.23a. The distinguishing feature of this
configuration is that the signal is applied to the base and the output is taken from the emitter.4

From a large-signal standpoint, the output voltage is equal to the input voltage minus the
base-emitter voltage. Since the base-emitter voltage is a logarithmic function of the collector
current, the base-emitter voltage is almost constant even when the collector current varies. If
the base-emitter voltage were exactly constant, the output voltage of the common-collector
amplifier would be equal to the input voltage minus a constant offset, and the small-signal
gain of the circuit would be unity. For this reason, the circuit is also known as an emitter
follower because the emitter voltage follows the base voltage. In practice, the base-emitter
voltage is not exactly constant if the collector current varies. For example, (1.82) shows
that the base-emitter voltage must increase by about 18 mV to double the collector current
and by about 60 mV to increase the collector current by a factor of 10 at room temperature.
Furthermore, even if the collector current were exactly constant, the base-emitter voltage
depends to some extent on the collector-emitter voltage if the Early voltage is finite. These
effects are most easily studied using small-signal analysis.

The appropriate small-signal transistor model is the hybrid-𝜋, and the small-signal
equivalent circuit is shown in Fig. 3.23b. When the input voltage vs increases, the base-emitter
voltage of the transistor increases, which increases the output current io. However, increasing
io increases the output voltage vo, which decreases the base-emitter voltage by negative
feedback. Negative feedback is covered thoroughly in Chapter 8. The key point here is that the
common-collector configuration is not unilateral. As a result, the input resistance depends on
the load resistor RL, and the output resistance depends on the source resistance RS. Therefore,
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Figure 3.23 (a) Common-collector configuration. (b) Small-signal equivalent circuit of the emitter-
follower circuit including RL and RS.

the characterization of the emitter follower by the corresponding equivalent two-port network
is not particularly useful for intuitive understanding. Instead, we will analyze the entire
emitter-follower circuit of Fig. 3.23b, including both the source resistance RS and the load
resistor RL. From KCL at the output node, we find

vs − vo

RS + r𝜋
+ 𝛽0

(
vs − vo

RS + r𝜋

)
−

vo

RL
−

vo

ro
= 0 (3.68)

from which we find vo

vs
= 1

1 +
RS + r𝜋

(𝛽0 + 1)(RL ∥ ro)

(3.69)

If the base resistance rb is significant, it can simply be added to RS in these expressions. The
voltage gain is always less than unity and will be close to unity if 𝛽0 (RL ∥ ro) ≫ (RS + r𝜋).
In most practical circuits, this condition holds. Note that because we have included the source
resistance in this calculation, the value of vo∕vs is not analogous to av calculated for the CE
and CB stages. When r𝜋 ≫ RS, 𝛽0 ≫ 1, and ro ≫ RL, (3.69) can be approximated as

vo

vs
≃

gmRL

1 + gmRL
(3.70)

We calculate the input resistance Ri by removing the input source, driving the input with a
test current source it, and calculating the resulting voltage vt across the input terminals. The
circuit used to do this calculation is shown in Fig. 3.24a. From KCL at the output node,

vo

RL
+

vo

ro
= it + 𝛽0it (3.71)
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Figure 3.24 (a) Circuit for calculation of the
input resistance of the emitter follower.
(b) Circuit for calculation of the output
resistance of the emitter follower. (c) Example
emitter follower.

Then the voltage vt is

vt = itr𝜋 + vo = itr𝜋 +
it + 𝛽0it
1

RL
+ 1

ro

(3.72)

and thus
Ri =

vt

it
= r𝜋 + (𝛽0 + 1)(RL ∥ ro) (3.73)

A general property of emitter followers is that the resistance looking into the base is equal to
r𝜋 plus (𝛽0 + 1) times the incremental resistance connected from the emitter to small-signal
ground. The factor of 𝛽0 + 1 in (3.73) stems from the current gain of the common-collector
configuration from the base to the emitter, which increases the voltage drop on the resistance
connected from the emitter to small-signal ground and its contribution to the test voltage vt
in (3.72).

We now calculate the output resistance Ro by removing the load resistance RL and finding
the Thévenin-equivalent resistance looking into the output terminals. We can do this by either
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inserting a test current and calculating the resulting voltage or applying a test voltage and
calculating the current. In this case, the calculation is simpler if a test voltage vt is applied as
shown in Fig. 3.24b. The voltage v1 is given by

v1 = −vt

(
r𝜋

r𝜋 + RS

)
(3.74)

The total output current it is thus

it =
vt

r𝜋 + RS
+

vt

ro
+ gmvt

(
r𝜋

r𝜋 + RS

)
(3.75)

Therefore,

Ro =
vt

it
=
(

r𝜋 + RS

𝛽0 + 1

)
∥ ro (3.76)

If 𝛽0 ≫ 1 and ro ≫ (1∕gm) + RS∕(𝛽0 + 1),

Ro ≃ 1
gm

+
RS

𝛽0 + 1
(3.77)

Equation 3.77 shows that the resistance at the output is about equal to the resistance in the
base lead, divided by (𝛽0 + 1), plus 1∕gm. In (3.77), RS is divided by 𝛽0 + 1 because the base
current flows in RS, and the base current is 𝛽0 + 1 times smaller than the emitter current.

Therefore, the emitter follower has high input resistance, low output resistance, and
near-unity voltage gain. It is most widely used as an impedance transformer to reduce loading
of a preceding signal source by the input impedance of a following stage. It also finds
application as a unity-voltage-gain level shift because the dc output voltage is shifted from
the dc input voltage by VBE(on).

◼ EXAMPLE
Calculate the input resistance, output resistance, and voltage gain of the emitter follower of
Fig. 3.24c. Assume that 𝛽0 = 100, rb = 0, ro → ∞, and IC = 100 μA.

Ri = r𝜋 + RL (1 + 𝛽0) = 26 kΩ + (1 kΩ)(101) = 127 kΩ

vo

vs
= 1

1 +
r𝜋 + RS

(𝛽0 + 1)RL

= 1

1 + 26 kΩ + 1 kΩ
(101)(1 kΩ)

≃ 0.79

Ro =
RS + r𝜋
1 + 𝛽0

= 1 kΩ + 26 kΩ
101

≃ 270 Ω
◼

3.3.7 Common-Drain Configuration (Source Follower)

The common-drain configuration is shown in Fig. 3.25a. The input signal is applied to the gate,
and the output is taken from the source. From a large-signal standpoint, the output voltage is
equal to the input voltage minus the gate-source voltage. The gate-source voltage consists
of two parts: the threshold and the overdrive. If both parts are constant, the resulting output
voltage is simply offset from the input, and the small-signal gain is unity. Therefore, the source
follows the gate, and the circuit is also known as a source follower. In practice, the body effect
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Figure 3.25 (a) Common-drain configuration. (b) Small-signal equivalent circuit of the common-drain
configuration.

changes the threshold voltage, and the overdrive depends on the drain current, which changes
as the output voltage changes unless RL → ∞. Furthermore, even if the current were exactly
constant, the overdrive would depend to some extent on the drain-source voltage unless the
Early voltage were infinite. We will use small-signal analysis to study these effects.

The small-signal equivalent circuit is shown in Fig. 3.25b. Since the body terminal is not
shown in Fig. 3.25a, we assume that the body is connected to the lowest supply voltage (ground
here) to keep the source-body pn junction reverse biased. As a result, vbs changes when the
output changes because the source is connected to the output, and the gmb generator is active
in general.

From KVL around the input loop,

vi = vgs + vo (3.78)

With the output open circuited, io = 0, and KCL at the output node gives

gmvgs − gmbvo −
vo

RL
−

vo

ro
= 0 (3.79)

Solving (3.78) for vgs, substituting into (3.79), and rearranging gives

vo

vi

|||| io=0
=

gm

gm + gmb +
1

RL
+ 1

ro

=
gmro

1 + (gm + gmb) ro +
ro

RL

(3.80)

If RL → ∞, (3.80) simplifies to

lim
RL→∞

vo

vi

|||| io=0
=

gmro

1 + (gm + gmb) ro
(3.81)
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Equation 3.81 gives the open-circuit voltage gain of the source follower with the load resistor
replaced by an ideal current source. If ro is finite, this gain is less than unity even if the body
effect is eliminated by connecting the source to the body to deactivate the gmb generator. In this
case, variation in the output voltage changes the drain-source voltage and the current through
ro. From a large-signal standpoint, solving (1.165) for VGS − Vt shows that the overdrive also
depends on the drain-source voltage unless the channel-length modulation parameter 𝜆 is zero.
This dependence causes the small-signal gain to be less than unity.

A significant difference between bipolar and MOS followers is apparent from (3.80). If
RL → ∞ and ro → ∞,

lim
RL→∞
ro→∞

vo

vi
=

gm

gm + gmb
= 1

1 + 𝜒
(3.82)

Equation 3.82 shows that the source-follower gain is less than unity under these conditions
and that the gain depends on 𝜒 = gmb∕gm, which is typically in the range of 0.1 to 0.3. (How-
ever, 𝜒 can be reduced by about an order of magnitude or more in process technologies more
advanced than those considered in this book.) In contrast, the gain of an emitter follower would
be unity under these conditions. As a result, the source-follower gain is often not as well spec-
ified as that of an emitter follower when body effect is a factor. Furthermore, (1.200) shows
that 𝜒 depends on the source-body voltage, which is equal to Vo when the body is connected to
ground. Therefore, the gain calculated in (3.82) depends on the output voltage, causing distor-
tion to arise for large-signal changes in the output as shown in Section 5.3.2. To overcome these
limitations in practice, the type of source follower (n-channel or p-channel) can be chosen so
that it can be fabricated in an isolated well. Then the well can be connected to the source of the
transistor, setting VSB = 0 and vsb = 0. Unfortunately, the parasitic capacitance from the well
to the substrate increases the capacitance attached to the source with this connection, reducing
the bandwidth of the source follower. The frequency response of source followers is covered
in Chapter 7.

The output resistance of the source follower can be calculated from Fig. 3.25b by setting
vi = 0 and driving the output with a voltage source vo. Then vgs = −vo and io is

io =
vo

ro
+

vo

RL
+ gmvo + gmbvo (3.83)

Rearranging (3.83) gives

Ro =
vo

io
= 1

gm + gmb +
1
ro

+ 1
RL

(3.84)

Equation 3.84 shows that the body effect reduces the output resistance, which is desirable
because the source follower produces a voltage output. This beneficial effect stems from the
nonzero small-signal current conducted by the gmb generator in Fig. 3.25b, which increases
the output current for a given change in the output voltage. As ro → ∞ and RL → ∞, this
output resistance approaches 1∕(gm + gmb). The common-gate input resistance given in (3.54)
approaches the same limiting value.

As with emitter followers, source followers are used as voltage buffers and level shifters.
When used as a level shifter, they are more flexible than emitter followers because the dc value
of VGS can be altered by changing the W∕L ratio.
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3.3.8 Common-Emitter Amplifier with Emitter Degeneration

In the common-emitter amplifier considered earlier, the signal is applied to the base, the out-
put is taken from the collector, and the emitter is attached to ac ground. In practice, however,
the common-emitter circuit is often used with a nonzero resistance in series with the emitter,
as shown in Fig. 3.26a. The resistance has several effects, including reducing the transcon-
ductance, increasing the output resistance, and increasing the input resistance. These changes
stem from negative feedback introduced by the emitter resistor RE. When Vi increases, the
base-emitter voltage increases, which increases the collector current. As a result, the voltage
dropped across the emitter resistor increases, reducing the base-emitter voltage compared to
the case where RE = 0. Therefore, the presence of nonzero RE reduces the base-emitter volt-
age through a negative-feedback process termed emitter degeneration. This circuit is examined
from a feedback standpoint in Chapter 8.

In this section, we calculate the input resistance, output resistance, and transconductance of
the emitter-degenerated, common-emitter amplifier. To find the input resistance and transcon-
ductance, consider the small-signal equivalent circuit shown in Fig. 3.26b, and focus on vi, ib,
and io. From KCL at the emitter,

ve

RE
+

ve + ioRC

ro
= (𝛽0 + 1) ib (3.85)

From KCL at the collector,

io +
ve + ioRC

ro
= 𝛽0ib (3.86)

From KVL around the input loop,

ib =
vi − ve

r𝜋
(3.87)

Solving (3.85) for io, substituting into (3.86), and rearranging gives

ve = ib

⎛⎜⎜⎜⎝
1 + (𝛽0 + 1)

ro

RC

1
RC

+ 1
RE

+
ro

RCRE

⎞⎟⎟⎟⎠ (3.88)

Substituting (3.88) into (3.87) and rearranging gives

Ri =
vi

ib
= r𝜋 + (𝛽0 + 1)RE

⎛⎜⎜⎜⎜⎝
ro +

RC

𝛽0 + 1

ro + RC + RE

⎞⎟⎟⎟⎟⎠
(3.89)

If ro ≫ RC and ro ≫ RE, the last term in parentheses in (3.89) is approximately equal to unity
and

Ri ≃ r𝜋 + (𝛽0 + 1)RE (3.90)

Because the last term in parentheses in (3.89) is less than one, comparing (3.89) and (3.90)
shows that finite ro reduces the input resistance of the common-emitter amplifier with emitter
degeneration. This reduction stems from nonzero current that flows in ro when ro is finite. If
vi increases, ve follows vi because the base-emitter voltage is approximately constant, but the
collector voltage (−ioRC) decreases by an amount determined by the small-signal gain from
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+
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+
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π
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RoRi Gmv1

+

–

v1

Ri    r   (1 + gmRE)

Ro    ro (1 + gmRE)

gm

1 + gmRE

π

Gm 

Figure 3.26 (a) Common-emitter
amplifier with emitter
degeneration. (b) Small-signal
equivalent circuit for
emitter-degenerated,
common-emitter amplifier.
(c) Circuit for calculation of
output resistance.
(d) Small-signal, two-port
equivalent of emitter-degenerated
CE amplifier.

the base to the collector. Therefore, the current that flows in ro from the emitter to the collector
increases, increasing the base current and reducing the input resistance. In practice, (3.90) is
usually used to calculate the input resistance. The error in the approximation is usually small
unless the resistances represented by RC and RE are large, such as when implemented with
transistors in active-load configurations. Active loads are considered in Chapter 4.
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Now we will calculate the transconductance of the stage. First, set RC = 0 in Fig. 3.26b
because Gm = io∕vi with the output shorted. Substituting (3.87) into (3.85) with RC = 0 and
rearranging gives

ve = vi

⎛⎜⎜⎜⎜⎝
(𝛽0 + 1)

r𝜋
1

RE
+ 1

ro
+

𝛽0 + 1

r𝜋

⎞⎟⎟⎟⎟⎠
(3.91)

Substituting (3.87) and (3.91) into (3.86) with RC = 0 and rearranging gives

Gm =
io
vi

= gm

⎡⎢⎢⎢⎢⎣
1 −

RE

𝛽0ro

1 + gmRE

(
1 + 1

𝛽0
+ 1

gmro

)
⎤⎥⎥⎥⎥⎦

(3.92)

In most practical cases, 𝛽0 ≫ 1, ro ≫ RE, and gmro ≫ 1. Then

Gm ≃
gm

1 + gmRE
(3.93)

Equation 3.93 is usually used to calculate the transconductance of a common-emitter amplifier
with emitter degeneration.

The output resistance is calculated using the equivalent circuit of Fig. 3.26c. For the time
being, assume that RC is very large and can be neglected. The test current it flows in the parallel
combination of r𝜋 and RE, so that

v1 = −it(r𝜋 ∥ RE) (3.94)

The current through ro is

i1 = it − gmv1 = it + itgm (r𝜋 ∥ RE) (3.95)

As a result, the voltage vt is

vt = −v1 + i1ro = it (r𝜋 ∥ RE) + itro [1 + gm (r𝜋 ∥ RE)] (3.96)

Thus
Ro =

vt

it
= (r𝜋 ∥ RE) + ro [1 + gm (r𝜋 ∥ RE)] (3.97)

In this equation, the first term is much smaller than the second. If the first term is neglected,
we obtain

Ro ≃ ro

(
1 + gm

r𝜋RE

r𝜋 + RE

)
= ro

⎛⎜⎜⎜⎜⎝
1 +

gmRE

1 +
RE

r𝜋

⎞⎟⎟⎟⎟⎠
= ro

⎛⎜⎜⎜⎜⎝
1 +

gmRE

1 +
gmRE

𝛽0

⎞⎟⎟⎟⎟⎠
(3.98)

If gmRE ≪ 𝛽0, then
Ro ≃ ro (1 + gmRE) (3.99)

Thus the output resistance is increased by a factor of (1 + gmRE). This fact makes the use
of emitter degeneration desirable in transistor current sources. If the collector load resistor
RC is not large enough to neglect, it must be included in parallel with the expressions
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in (3.97)–(3.99). A small-signal equivalent circuit, neglecting RC, is shown in Fig. 3.26d. On
the other hand, if gmRE ≫ 𝛽0, (3.98) shows that

Ro ≃ ro (1 + 𝛽0) (3.100)

The output resistance is finite even when RE → ∞ because nonzero test current flows in r𝜋
when 𝛽0 is finite.

3.3.9 Common-Source Amplifier with Source Degeneration

Source degeneration in MOS transistor amplifiers is not as widely used as emitter degenera-
tion in bipolar circuits for at least two reasons. First, the transconductance of MOS transistors
is normally much lower than that of bipolar transistors so that further reduction in transcon-
ductance is usually undesirable. Second, although degeneration increases the input resistance
in the bipolar case, Ri → ∞ even without degeneration in the MOS case. However, examining
the effects of source degeneration is important in part because it is widely used to increase the
output resistance of MOS current sources. Also, because small-geometry MOS transistors can
be modeled as ideal square-law devices with added source resistors, as shown in Section 1.7.1,
we will consider the effects of source degeneration below.

A common-source amplifier with source degeneration is shown in Fig. 3.27. Its small-signal
equivalent circuit is shown in Fig. 3.28. Because the input is connected to the gate of the MOS
transistor, Ri → ∞. To calculate the transconductance, set RD = 0 because Gm = io∕vi with
the output shorted. Also, since a connection to the body is not shown in Fig. 3.27, we assume
that the body is connected to the lowest power-supply voltage, which is ground. Therefore, the
dc body voltage is constant and vb = 0. From KCL at the source with RD = 0,

vs

RS
+

vs

ro
= gm (vi − vs) + gmb (0 − vs) (3.101)

Vo

RD

RS

+

–
Vi

VDD

+

–
Figure 3.27 Common-source amplifier with source
degeneration.
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ro
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gmbvbsgmvgs RD

+

–
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+

–

vgs

+

–
vi

+

–

Figure 3.28 Small-signal
equivalent of the source-
degenerated, common-
source amplifier.
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From KCL at the drain with RD = 0,

io +
vs

ro
= gm (vi − vs) + gmb (0 − vs) (3.102)

Solving (3.101) for vs, substituting into (3.102), and rearranging gives

Gm =
io
vi

=
gm

1 + (gm + gmb)RS +
RS

ro

(3.103)

If ro ≫ RS,

Gm ≃
gm

1 + (gm + gmb)RS
(3.104)

For large RS, (3.104) shows that the value of Gm approaches 1∕[(1 + 𝜒)RS]. Even in this limit-
ing case, the transconductance of the common-source amplifier with degeneration is dependent
on an active-device parameter 𝜒 . When 𝜒 is in the range of 0.1 to 0.3, the body effect causes
the transconductance to deviate from 1∕RS by about 10 to 20 percent. In contrast, (3.92)
indicates that the value of Gm for a common-emitter amplifier with degeneration approaches
𝛽0∕[(𝛽0 + 1)RE] for large RE, assuming that ro ≫ RE and gmro ≫ 1. If 𝛽0 > 100, the transcon-
ductance of this bipolar amplifier is within 1 percent of 1∕RE. Therefore, the transconduc-
tance of a common-source amplifier with degeneration is usually much more dependent on
active-device parameters than in its bipolar counterpart.

The output resistance of the circuit can be calculated from the equivalent circuit of Fig. 3.29,
where RD is neglected. Since the entire test current flows in RS,

vs = itRS (3.105)

Then
vt = vs + i1ro = vs + ro [it − gm (0 − vs) − gmb (0 − vs)] (3.106)

Substituting (3.105) into (3.106) and rearranging gives

Ro =
vt

it
= RS + ro [1 + (gm + gmb)RS] (3.107)

This equation shows that as RS is made arbitrarily large, the value of Ro continues to increase. In
contrast, (3.100) shows that Ro in the common-emitter amplifier with degeneration approaches
a maximum value of about (𝛽0 + 1) ro as RE → ∞.

ro

RS

gmbvbsgmvgs
itvt

+

–

vs

+

–

vgs

+

–

i1

Figure 3.29 Circuit for
calculation of output resistance.
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3.4 Multiple-Transistor Amplifier Stages
Most integrated-circuit amplifiers consist of a number of stages, each of which provides voltage
gain, current gain, and/or impedance-level transformation from input to output. Such circuits
can be analyzed by considering each transistor to be a stage and analyzing the circuit as a
collection of individual transistors. However, certain combinations of transistors occur so fre-
quently that these combinations are usually characterized as subcircuits and regarded as a
single stage. The usefulness of these topologies varies considerably with the technology being
used. For example, the Darlington two-transistor connection is widely used in bipolar inte-
grated circuits to improve the effective current gain and input resistance of a single bipolar
transistor. Since the current gain and input resistance are infinite with MOS transistors, how-
ever, this connection finds little use in pure MOS integrated circuits. On the other hand, the
cascode connection achieves a very high output resistance and is useful in both bipolar and
MOS technologies.

3.4.1 The CC-CE, CC-CC, and Darlington Configurations

The common-collector−common-emitter (CC-CE), common-collector–common-collector
(CC-CC), and Darlington5 configurations are all closely related. They incorporate an
additional transistor to boost the current gain and input resistance of the basic bipolar
transistor. The common-collector–common-emitter configuration is shown in Fig. 3.30a. The
biasing current source IBIAS is present to establish the quiescent dc operating current in the
emitter-follower transistor Q1; this current source may be absent in some cases or may be
replaced by a resistor. The common-collector–common-collector configuration is illustrated
in Fig. 3.30b. In both of these configurations, the effect of transistor Q1 is to increase the
current gain through the stage and increase the input resistance. For the purpose of the
low-frequency, small-signal analysis of circuits, the two transistors Q1 and Q2 can be thought
of as a single composite transistor, as illustrated in Fig. 3.31. The small-signal equivalent
circuit for this composite device is shown in Fig. 3.32, assuming that the effects of the ro
of Q1 are negligible. We will now calculate effective values for the r𝜋 , gm, 𝛽0, and ro of the
composite device, and we will designate these composite parameters with a superscript c. We
will also denote the terminal voltages and currents of the composite device with a superscript
c. We assume that 𝛽0 is constant.

The effective value of r𝜋 , rc
𝜋 , is the resistance seen looking into the composite base Bc with

the composite emitter Ec grounded. Referring to Fig. 3.32, we see that the resistance looking

(a) (b)

VCC

In Q1

Q2

Out

IBIAS

VCC

In Q1

Q2

Out
IBIAS

Figure 3.30 (a) Common-collector–common-emitter cascade. (b) Common-collector–common-
collector cascade.
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VCC

Q1

Q2

Cc

Bc

Ec

Cc

Bc

Ec

IBIAS
Figure 3.31 The composite
transistor representation of the
CC-CE and CC-CC connections.
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gm2v2
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r  2π

Figure 3.32 Small-signal equivalent
circuit for the CC-CE and CC-CC
connected transistors.

into the base of Q2 with Ec grounded is simply r𝜋2. Thus (3.73) for the input resistance of the
emitter follower can be used. Substituting r𝜋2 for RL and allowing ro → ∞ gives

rc
𝜋 = r𝜋1 + (𝛽0 + 1) r𝜋2 (3.108)

The effective transconductance of the configuration gc
m is the change in the collector current

of Q2, icc, for a unit change in vc
be with Cc and Ec grounded. To calculate this transconductance,

we first find the change in v2 that occurs for a unit change in vc
be. Equation 3.69 can be used

directly, giving
v2

vc
be

= 1

1 +
(

r𝜋1

(𝛽0 + 1) r𝜋2

) (3.109)

Also

icc = gc
mvc

be = gm2v2 =
gm2vc

be

1 +
(

r𝜋1

(𝛽0 + 1) r𝜋2

) (3.110)

Thus

gc
m =

icc
vc

be

=
gm2

1 +
(

r𝜋1

(𝛽0 + 1) r𝜋2

) (3.111)

For the special case in which the biasing current source IBIAS is zero, the emitter current
of Q1 is equal to the base current of Q2. Thus the ratio of r𝜋1 to r𝜋2 is (𝛽0 + 1), and (3.111)
reduces to

gc
m =

gm2

2
(3.112)



208 Chapter 3 ▪ Single-Transistor and Multiple-Transistor Amplifiers

The effective current gain 𝛽c is the ratio

𝛽c =
icc
icb

=
ic2

ib1
(3.113)

The emitter current of Q1 is given by

ie1 = (𝛽0 + 1) ib1 (3.114)

Since ie1 = ib2,
ic2 = icc = 𝛽0ib2 = 𝛽0 (𝛽0 + 1) ib1 = 𝛽0 (𝛽0 + 1) icb (3.115)

Therefore,
𝛽c = 𝛽0 (𝛽0 + 1) (3.116)

Equation 3.116 shows that the current gain of the composite transistor is approximately equal
to 𝛽2

0 . Also, by inspection of Fig. 3.32, assuming rμ is negligible, we have

rc
o = ro2 (3.117)

The small-signal, two-port network equivalent for the CC-CE connection is shown in Fig. 3.33,
where the collector resistor RC has not been included. This small-signal equivalent can be used
to represent the small-signal operation of the composite device, simplifying the analysis of
circuits containing this structure.

The Darlington configuration, illustrated in Fig. 3.34, is a composite two-transistor device
in which the collectors are tied together and the emitter of the first device drives the base of
the second. A biasing element of some sort is used to control the emitter current of Q1. The
result is a three-terminal composite transistor that can be used in place of a single transistor
in common-emitter, common-base, and common-collector configurations. When used as an
emitter follower, the device is identical to the CC-CC connection already described. When used
as a common-emitter amplifier, the device is very similar to the CC-CE connection, except that
the collector of Q1 is connected to the output instead of to the power supply. One effect of this
change is to reduce the effective output resistance of the device because of feedback through
the ro of Q1. Also, this change increases the input capacitance because of the connection of the
collector-base capacitance of Q1 from the input to the output. Because of these drawbacks,
the CC-CE connection is normally preferable in integrated small-signal amplifiers. The term
Darlington is often used to refer to both the CC-CE and CC-CC connections.

Ri

Ri = r   = r  1 + (  0 + 1) r  2

Gmv1

+

–

v1

Ro = ro = ro2

1 +
r  1

(  0 + 1) r  2

Gm
 = gm = 

gm2

π π π

π
πβ

β

c

c

c c

c c

c

Ro
cc

Figure 3.33 Two-port representation, CC-CE
connection.
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Q1

Q2

Cc

Bc

Ec

IBIAS

Figure 3.34 The Darlington configuration.

M1

Q2

IBIAS

Figure 3.35 Compound Darlington connection available in BiCMOS
technology.

As mentioned previously, Darlington-type connections are used to boost the effective
current gain of bipolar transistors and have no significant application in pure-MOS circuits.
In BiCMOS technologies, however, a potentially useful connection is shown in Fig. 3.35,
where an MOS transistor is used for Q1. This configuration realizes not only the infinite input
resistance and current gain of the MOS transistor but also the large transconductance of the
bipolar transistor.

◼ EXAMPLE
Find the effective rc

𝜋 , 𝛽c, and gc
m for the composite transistor shown in Fig. 3.31. For both

devices, assume that 𝛽0 = 100, rb = 0, and ro → ∞. For Q2, assume that IC = 100 μA and
that IBIAS = 10 μA.

The base current of Q2 is 100 μA∕100 = 1 μA. Thus the emitter current of Q1 is 11 μA.
Then

r𝜋1 = 𝛽0
gm

= 100
11 μA∕26 mV

= 236 kΩ

gm1 = (2.36 kΩ)−1

r𝜋2 = 26 kΩ
gm2 = (260 Ω)−1

rc
𝜋 = 236 kΩ + (101)(26 kΩ) = 2.8 MΩ
𝛽c = (101)(100) = 10,100

gc
m = gm2 (0.916) = (283 Ω)−1

Thus the composite transistor has much higher input resistance and current gain than a single
transistor.◼
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3.4.2 The Cascode Configuration

The cascode configuration was first invented for vacuum-tube circuits.6,7 With a three-terminal
vacuum tube known as a triode, the terminal that emits electrons is the cathode, the terminal
that controls current flow is the grid, and the terminal that collects electrons is the anode.
The name cascode seems to have been originally used to refer to one vacuum tube inter-
nally connected as a cascade of two triodes. The cascode configuration is important mostly
because it increases output resistance and reduces unwanted capacitive feedback in amplifiers,
allowing operation at higher frequencies than would otherwise be possible. The high output
resistance attainable is particularly useful in desensitizing bias references from variations in
power-supply voltage and in achieving large amounts of voltage gain. These applications are
described further in Chapter 4. The topic of frequency response is covered in Chapter 7. Here,
we will focus on the low-frequency, small-signal properties of the cascode configuration.

3.4.2.1 The Bipolar Cascode. In bipolar form, the cascode is a common-emitter–
common-base (CE-CB) amplifier, as shown in Fig. 3.36. We will assume here that rb in both
devices is zero. Although the base resistances have a negligible effect on the low-frequency
performance, the effects of nonzero rb are important in the high-frequency performance of
this combination. These effects are considered in Chapter 7.

The small-signal equivalent for the bipolar cascode circuit is shown in Fig. 3.37. Since we
are considering the low-frequency performance, we neglect the capacitances in the model of
each transistor. We will determine the input resistance, output resistance, and transconductance
of the cascode circuit. By inspection of Fig. 3.37, the input resistance is simply

Ri = r𝜋1 (3.118)

Since the current gain from the emitter to the collector of Q2 is nearly unity, the transconduc-
tance of the circuit from input to output is

Gm ≃ gm1 (3.119)

Vi

R
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–
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+

–
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RoQ2

Q1

Figure 3.36 The cascode amplifier using
bipolar transistors.
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r  1π Figure 3.37 Small-signal
equivalent circuit for the
bipolar-transistor cascode
connection.
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The output resistance can be calculated by shorting the input vi to ground and applying a test
signal at the output. Then v1 = 0 in Fig. 3.37 and the gm1v1 generator is inactive. The circuit is
then identical to that of Fig. 3.26c for a bipolar transistor with emitter degeneration. Therefore,
using (3.98) with RE = ro1 shows that the output resistance is

Ro ≃ ro2

⎛⎜⎜⎜⎝1 +
gm2ro1

1 +
gm2ro1

𝛽0

⎞⎟⎟⎟⎠ (3.120)

If gm2ro1 ≫ 𝛽0 and 𝛽0 ≫ 1,
Ro ≃ 𝛽0ro2 (3.121)

Therefore, the CE-CB connection displays an output resistance that is larger by a factor of
about 𝛽0 than the CE stage alone. If this circuit is operated with a hypothetical collector load
that has infinite incremental resistance, the voltage gain is

Av =
vo

vi
= −GmRo ≃ −gm1ro2𝛽0 = −

𝛽0

𝜂
(3.122)

Thus the magnitude of the maximum available voltage gain is higher by a factor 𝛽0 than for
the case of a single transistor. For a typical npn transistor, the ratio of 𝛽0∕𝜂 is approximately
2 × 105. In this analysis, we have neglected rμ. As described in Chapter 1, the value of rμ
for integrated-circuit npn transistors is usually much larger than 𝛽0ro, and then rμ has little
effect on Ro. For lateral pnp transistors, however, rμ is comparable with 𝛽0ro and decreases Ro
somewhat.

3.4.2.2 The MOS Cascode. In MOS form, the cascode is a common-source−common-gate
(CS-CG) amplifier, as shown in Fig. 3.38. The small-signal equivalent circuit is shown in
Fig. 3.39. Since the input is connected to the gate of M1, the input resistance is

Ri → ∞ (3.123)

To find the transconductance, set R = 0 to short the output, and calculate the current io.
From KCL at the output,

io + gm2vds1 + gmb2vds1 +
vds1

ro2
= 0 (3.124)

From KCL at the source of M2,

gm1vi + gm2vds1 + gmb2vds1 +
vds1

ro1
+

vds1

ro2
= 0 (3.125)

Vi
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–
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Vo
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–

VBIAS

RoM2

M1

Figure 3.38 Cascode amplifier using
MOSFETs.
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Solving (3.125) for vds1, substituting into (3.124), and rearranging gives

Gm =
io
vi

|||| vo=0
= gm1

⎛⎜⎜⎜⎝1 − 1

1 + (gm2 + gmb2) ro1 +
ro1

ro2

⎞⎟⎟⎟⎠ ≃ gm1 (3.126)

Equation 3.126 shows that the transconductance of the simple cascode is less than gm1. If
(gm2 + gmb2) ro1 ≫ 1, however, the difference is small, and the main point here is that the
cascode configuration has little effect on the transconductance. This result stems from the
observation that Ri2, the resistance looking in the source of M2, is much less than ro1. From
(3.54) and (3.55) with R = RD ∥ RL,

Ri2 =
ro2 + R

1 + (gm2 + gmb2) ro2
≃ 1

gm2 + gmb2
+ R

(gm2 + gmb2) ro2
(3.127)

In finding the transconductance, we set R = 0 so that vo = 0. Then Ri2 ≃ 1∕(gm + gmb), and
most of the gm1vi current flows in the source of M2 because Ri2 ≪ ro1. Finally, the current gain
from the source to the drain of M2 is unity. Therefore, most of the gm1vi current flows in the
output, and Gm ≃ gm1, as shown in (3.126).

To find the output resistance, set vi = 0, which deactivates the gm1 generator in Fig. 3.39
and reduces the model for common-source transistor M1 to simply ro1. Therefore, the output
resistance of the cascode can be found by substituting RS = ro1 in (3.66), which was derived for
a common-gate amplifier. To focus on the output resistance of the cascode itself, let R → ∞.
The result is

Ro = ro1 + ro2 + (gm2 + gmb2) ro1ro2 ≃ (gm2 + gmb2) ro1ro2 (3.128)

Equation 3.128 shows that the MOS cascode increases the output resistance by a factor of
about (gm + gmb) ro compared to a common-source amplifier.

The increase in the output resistance can be predicted in another way that provides insight
into the operation of the cascode. Let io represent the current that flows in the output node in
Fig. 3.39 when the output is driven by voltage vo. Since vds1 = ioro1 when vi = 0, the output
resistance is

Ro =
vo

io

|||| vi=0
=

vo

(vds1∕ro1)
|||| vi=0

= ro1

(
vds1

vo

)−1 ||||| vi=0

(3.129)

To find the ratio vds1∕vo, consider the modified small-signal circuits shown in Fig. 3.40. In
Fig. 3.40a, R → ∞ so we can concentrate on the output resistance of the cascode circuit itself.
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–
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gmb2vbs2
= –gmb2vds1

gm2vgs2
= –gm2vds1

gm1vi

+

–

ro2

ro1

io

voR

+

–

Figure 3.39 Small-signal
equivalent circuit for the
MOS-transistor cascode
connection.
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(gm2 + gmb2)vds1 ro2

io
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+

–
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+

–
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ro1
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+

–
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+

–

(a) (b)
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–

ro2
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+

–

(c)
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) ||ro1

Figure 3.40 Construction of a cascode model to find vds1∕vo. (a) The dependent sources are combined.
(b) The combined source is converted into two sources. (c) The current source between the source of M2

and ground is converted into a resistor.

Also, the gm1vi generator is eliminated because vi = 0, and the two generators gm2vds1 and
gmb2vds1 have been combined into one equivalent generator (gm2 + gmb2) vds1. In Fig. 3.40b,
the (gm2 + gmb2) vds1 generator from the source to the drain of M2 has been replaced by two
equal-valued generators: one from ground to the drain of M2 and the other from the source of
M2 to ground. This replacement is similar to the substitution made in Fig. 3.20 to convert the
hybrid-𝜋 model to a T model for a common-gate amplifier. Because the equations that describe
the operation of the circuits in Figs. 3.40a and 3.40b are identical, the circuit in Fig. 3.40b is
equivalent to that in Fig. 3.40a. Finally, in Fig. 3.40c, the current source from the source of M2
to ground, which is controlled by the voltage across itself, is replaced by an equivalent resistor
of value 1∕(gm2 + gmb2). The current (gm2 + gmb2) vds1 in Fig. 3.40c flows into the test source
vo. The two resistors in Fig. 3.40c form a voltage divider, giving

vds1

vo
=

(
1

gm2 + gmb2

)
∥ ro1[(

1
gm2 + gmb2

)
∥ ro1

]
+ ro2

≃ 1
(gm2 + gmb2) ro2

(3.130)

Substituting (3.130) into (3.129) and rearranging gives the same result as in (3.128). In (3.130),
the term 1∕(gm2 + gmb2) represents the resistance looking into the source of the common-gate
transistor M2 when the output in Fig. 3.39 is voltage driven. The key point here is that the output
resistance of the cascode can be increased by reducing the input resistance of the common-gate
transistor under these conditions because this change reduces both vds1 and io.

Unlike in the bipolar case, the maximum value of the output resistance in the MOS cas-
code does not saturate at a level determined by 𝛽0; therefore, further increases in the output
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resistance can be obtained by using more than one level of cascoding. This approach is used
in practice. Ultimately, the maximum output resistance is limited by impact ionization, as
described in Section 1.9, or by leakage current in the reverse-biased junction diode at the
output. Also, the number of levels of cascoding is limited by the power-supply voltage and
signal-swing requirements. Each additional level of cascoding places one more transistor in
series with the input transistor between the power supply and ground. To operate all the tran-
sistors in the active region, the drain-source voltage of each transistor must be greater than its
overdrive VGS − Vt. Since the cascode transistors operate in series with the input transistor,
additional levels of cascoding use some of the available power-supply voltage, reducing the
amount by which the output can vary before pushing one or more transistors into the triode
region. This topic is considered further in Chapter 4.

In BiCMOS technologies, cascodes are sometimes used with the MOS transistor M2 in
Fig. 3.38 replaced by a bipolar transistor, such as Q2 in Fig. 3.36. This configuration has
the infinite input resistance given by M1. Also, the resistance looking into the emitter of the
common-base stage Q2 when the output is grounded is Ri2 ≃ 1∕gm2 in this configuration. Since
the transconductance for a given bias current of bipolar transistors is usually much greater
than for MOS transistors, the BiCMOS configuration is often used to reduce the load resis-
tance presented to M1 and improve the high-frequency properties of the cascode amplifier. The
frequency response of a cascode amplifier is described in Chapter 7.

◼ EXAMPLE
Calculate the transconductance and output resistance of the cascode circuit of Fig. 3.38.
Assume that both transistors operate in the active region with gm = 1 mA/V, 𝜒 = 0.1, and
ro = 20 kΩ.

From (3.126),

Gm =
(

1
mA
V

)(
1 − 1

1 + (1.1)(20) + 1

)
= 960

μA

V

From (3.128),
Ro = 20 kΩ + 20 kΩ + (1.1)(20) 20 kΩ = 480 kΩ

The approximations in (3.126) and (3.128) give Gm ≃ 1 mA/V and Ro ≃ 440 kΩ. These
approximations deviate from the exact results by about 4 percent and 8 percent, respectively,
and are usually close enough for hand calculations.◼

3.4.3 The Active Cascode

As mentioned in the previous section, increasing the number of levels of cascoding increases
the output resistance of MOS amplifiers. In practice, however, the power-supply voltage and
signal-swing requirements limit the number of levels of cascoding that can be applied. One way
to increase the output resistance of the MOS cascode circuit without increasing the number of
levels of cascoding is to use the active-cascode circuit, as shown in Fig. 3.41.8,9

This circuit uses an amplifier in a negative feedback loop to control the voltage from the
gate of M2 to ground. If the amplifier gain a is infinite, the negative feedback loop adjusts
the gate of M2 until the voltage difference between the two amplifier inputs is zero. In other
words, the drain-source voltage of M1 is driven to equal VBIAS. If the drain-source voltage of
M1 is constant, the change in the drain current in response to changes in the output voltage Vo
is zero, and the output resistance is infinite. In practice, the amplifier gain a is finite, which
means that the drain-source voltage of M1 is not exactly constant and the output resistance
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–

Vo
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+

–

Figure 3.41 Active cascode amplifier
using MOSFETs.

is finite. The effect of negative feedback on output resistance is considered quantitatively in
Chapter 8. In this section, we will derive the small-signal properties of the active-cascode
circuit by comparing its small-signal model to that of the simple cascode described in the
previous section.

Qualitatively, when the output voltage increases, the drain current of M2 increases, which
increases the drain current and drain-source voltage of M1. This voltage increase is amplified
by −a, causing the voltage from the gate of M2 to ground to fall. The falling gate voltage of
M2 acts to reduce the change in its drain current, increasing the output resistance compared to
a simple cascode, where the voltage from the gate of M2 to ground is held constant.

Figure 3.42 shows the low-frequency, small-signal equivalent circuit. The body-effect
transconductance generator for M1 is inactive because vbs1 = 0. The gate-source voltage of
M2 is

vgs2 = vg2 − vs2 = vg2 − vds1 = −(a) vds1 − vds1 = −(a + 1) vds1 (3.131)

In contrast, vgs2 = −vds1 in a simple cascode because the voltage from the gate of M2 to
ground is constant in Fig. 3.38. Therefore, if a > 0, the factor (a + 1) in (3.131) amplifies
the gate-source voltage of M2 compared to the case of a simple cascode. This amplification is
central to the characteristics of the active-cascode circuit. Since the small-signal diagrams of
the simple and active-cascode circuits are identical except for the value of vgs2, and since vgs2
is only used to control the current flowing in the gm2 generator, the active-cascode circuit can

vi

+

–

vds1

gmb2vbs2
= –gmb2vds1

gm2vgs2
= –gm2(a + 1)vds1

gm1vi

+

–

ro2

ro1

io

voR

+

–

Figure 3.42 Small-signal equivalent circuit for the active-cascode connection with MOS transistors.
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be analyzed using the equations for the simple cascode with gm2 replaced by (a + 1) gm2. In
other words, the active cascode behaves as if it were a simple cascode with an enhanced value
of gm2.

To find the transconductance of the active cascode, gm2 (a + 1) replaces gm2 in (3.126),
giving

Gm = gm1

⎛⎜⎜⎜⎝1 − 1

1 + [gm2 (a + 1) + gmb2] ro1 +
ro1

ro2

⎞⎟⎟⎟⎠ (3.132)

Again, Gm ≃ gm1 under most conditions; therefore, the active-cascode structure is generally
not used to modify the transconductance.

The active cascode reduces Ri2, the resistance looking into the source of M2, compared to
the simple cascode, which reduces the vds1∕vo ratio given in (3.130) and increases the output
resistance. Substituting (3.130) into (3.129) with gm2 (a + 1) replacing gm2 gives

Ro = ro1 + ro2 + [gm2 (a + 1) + gmb2] ro1ro2 ≃ [gm2 (a + 1) + gmb2] ro1ro2 (3.133)

This result can also be derived by substituting gm2 (a + 1) for gm2 in (3.128). Equation 3.133
shows that the active-cascode configuration increases the output resistance by a factor of about
[gm (a + 1) + gmb] ro compared to a common-source amplifier.

A key limitation of the active-cascode circuit is that the output impedance is increased
only at frequencies where the amplifier that drives the gate of M2 provides some gain. In
practice, the gain of this amplifier falls with increasing frequency, reducing the potential
benefits of active-cascode circuits in high-frequency applications. A potential problem with
the active-cascode configuration is that the negative feedback loop through M2 may not be
stable in all cases.

3.4.4 The Super Source Follower

Equation 3.84 shows that the output resistance of a source follower is approximately
1∕(gm + gmb). In part because MOS transistors usually have much lower transconductance
than their bipolar counterparts, this output resistance may be too high for some applications,
especially when a resistive load must be driven. One way to reduce the output resistance is to
increase the transconductance by increasing the W∕L ratio of the source follower and its dc
bias current. However, this approach requires a proportionate increase in the area and power
dissipation to reduce Ro.

To minimize the area and power dissipation required to reach a given output resistance,
the super-source-follower configuration shown in Fig. 3.43a is sometimes used. The core
of this circuit uses a complementary pair composed of an n-channel transistor M1 and a
p-channel transistor M2. Alternatively, this core could use a p-channel transistor M1 and an
n-channel transistor M2. (See Problem 3.29.) Figure 5.26 shows a corresponding connection
of a pnp transistor and an npn transistor invented by Sziklai.10 The key point here is that
the circuit in Fig. 3.43a uses negative feedback through M2 to reduce the circuit’s output
resistance. Negative feedback is studied quantitatively in Chapter 8.

From a qualitative standpoint, suppose the input voltage is constant and the output
voltage is driven by a test voltage source used to observe the output resistance. If the test
voltage increases, Vgs1 decreases, which increases Vds1 because I2 is constant. Therefore,
the voltage from the gate of M2 to ground increases, decreasing the source-gate voltage of
M2. Since M2 is a p-channel transistor, reducing Vsg2 decreases the current flowing out of
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Figure 3.43 Super-source-follower
configurations: (a) with M1 as an n-channel
transistor and M2 as a p-channel transistor
and (b) with both M1 and M2 as n-channel
transistors.

the drain of M2 and into the test voltage source. This change can be viewed as reducing the
output resistance by increasing the small-signal current flowing out of the test voltage source
under these conditions. (Similarly, negative feedback also increases the input resistance of
this circuit when it is implemented with bipolar transistors.)

In Fig. 3.43a, the bias current in M2 is I1 − I2; therefore, I1 > I2 is required for proper oper-
ation. Also, M2 is a p-channel common-source amplifier in this figure. Changing M2 to an
n-channel common-source amplifier maintains the same qualitative effect of negative feed-
back described above. Fig. 3.43b shows the revised circuit, which is another version of the
super source follower.11,12 Since this change makes the source of M2 an n-type region, it is
connected to ground. As a result, the bias current flowing through M1 can also flow through
M2, eliminating the need for current source I1. Therefore, the bias current in both M1 and M2
is I2 in Fig. 3.43b.

Figure 3.44 shows a small-signal model that can be used to analyze both circuits in
Fig. 3.43. The body-effect transconductance generator for M2 is inactive because vbs2 = 0.
Also, the polarities of the voltage-controlled current sources for n- and p-channel devices
are identical. Finally, the output resistances of current sources I1 and I2 are represented by
r1 and r2, respectively. Since I1 is not used in Fig. 3.43b, r1 → ∞ in the analysis below
for that circuit. Also, r1 → ∞ and r2 → ∞ if the current sources are ideal. In practice,
however, the output resistances of real current sources are large but finite. Techniques to build
high-resistance current sources are considered in Chapter 4.

vo
io

ro1 ro2

v2

–gmb1vo gm2v2
gm1(vi – vo)

+

–

r2

–

+

vi

+

–

r1
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Figure 3.44 Small-signal equivalent circuit of the super source follower.
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To find the output resistance, set vi = 0 and calculate the current io that flows in the output
node when the output is driven by a voltage vo. From KCL at the output under these conditions,

io =
vo

r1
+

vo

ro2
+ gm2v2 +

v2

r2
(3.134)

From KCL at the drain of M1 with vi = 0,

v2

r2
− gm1vo − gmb1vo +

v2 − vo

ro1
= 0 (3.135)

Solving (3.135) for v2, substituting into (3.134), and rearranging gives

Ro =
vo

io

|||| vi=0
= r1 ∥ ro2 ∥

(
ro1 + r2

[1 + (gm1 + gmb1) ro1](1 + gm2r2)

)
(3.136)

Assume I1 and I2 are ideal current sources so that r1 → ∞ and r2 → ∞. If ro2 → ∞, and if
(gm1 + gmb1) ro1 ≫ 1,

Ro ≃ 1
gm1 + gmb1

(
1

gm2ro1

)
(3.137)

Comparing (3.84) and (3.137) shows that the negative feedback through M2 reduces the output
resistance by a factor of about gm2ro1.

Now we will calculate the open-circuit voltage gain of the super source follower. With the
output open circuited, KCL at the output node gives

vo

r1
+

vo

ro2
+ gm2v2 +

v2

r2
= 0 (3.138)

From KCL at the drain of M1,

v2

r2
+ gm1 (vi − vo) − gmb1vo +

v2 − vo

ro1
= 0 (3.139)

Solving (3.138) for v2, substituting into (3.139), and rearranging gives

vo

vi

|||| io=0
=

gm1ro1

1 + (gm1 + gmb1) ro1 +
(r2 + ro1)

(r1 ∥ ro2)(1 + gm2r2)

(3.140)

With ideal current sources,

lim
r1→∞
r2→∞

vo

vi

|||| io=0
=

gm1 ro1

1 + (gm1 + gmb1) ro1 +
1

gm2ro2

(3.141)

Comparing (3.141) and (3.81) shows that the deviation of this gain from unity is greater than
with a simple source follower. If gm2ro2 ≫ 1, however, the difference is small, and the main
conclusion is that the super-source-follower configuration has little effect on the open-circuit
voltage gain.

The above analysis finds the small-signal output resistance and voltage gain of the super
source follower. The large-signal properties of super-source-follower circuits are considered
in Section 5.3.3. Also, a bipolar counterpart of this circuit is used in output stages to reduce
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the current conducted in a weak lateral pnp transistor. This application is described in
Section 5.4.5. The main potential problem with the super-source-follower configuration is
that the negative feedback loop through M2 may not be stable in all cases, especially when
driving a large capacitive load. The stability of feedback amplifiers is considered in Chapter 9.

3.5 Differential Pairs
The differential pair is another example of a circuit that was first invented for use with vacuum
tubes.13 The original circuit uses two vacuum tubes whose cathodes are connected together.
Modern differential pairs use bipolar or MOS transistors coupled at their emitters or sources,
respectively, and are perhaps the most widely used two-transistor subcircuits in monolithic
analog circuits. The usefulness of the differential pair stems from two key properties. First,
cascades of differential pairs can be directly connected to one another without interstage cou-
pling capacitors. Second, the differential pair is primarily sensitive to the difference between
two input voltages, allowing a high degree of rejection of signals common to both inputs.14,15

In this section, we consider the properties of emitter-coupled pairs of bipolar transistors and
source-coupled pairs of MOS transistors in detail.

3.5.1 The dc Transfer Characteristic of an Emitter-Coupled Pair

The simplest form of an emitter-coupled pair is shown in Fig. 3.45. The biasing circuit in the
lead connected to the emitters of Q1 and Q2 can be a transistor current source, which is called
a tail current source, or a simple resistor. If a simple resistor RTAIL is used alone, ITAIL = 0
in Fig. 3.45. Otherwise, ITAIL and RTAIL together form a Norton-equivalent model of the tail
current source.

The large-signal behavior of the emitter-coupled pair is important in part because it
illustrates the limited range of input voltages over which the circuit behaves almost linearly.
Also, the large-signal behavior shows that the amplitude of analog signals in bipolar circuits
can be limited without pushing the transistors into saturation, where the response time would
be increased because of excess charge storage in the base region. For simplicity in the
analysis, we assume that the output resistance of the tail current source RTAIL → ∞, that the
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Figure 3.45 Emitter-coupled pair circuit
diagram.
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output resistance of each transistor ro → ∞, and that the base resistance of each transistor
rb = 0. These assumptions do not strongly affect the low-frequency, large-signal behavior of
the circuit. From KVL around the input loop,

Vi1 − Vbe1 + Vbe2 − Vi2 = 0 (3.142)

Assume the collector resistors are small enough that the transistors do not operate in saturation
if Vi1 ≤ VCC and Vi2 ≤ VCC. If Vbe1 ≫ VT and Vbe2 ≫ VT , the Ebers-Moll equations show that

Vbe1 = VT ln
Ic1

IS1
(3.143)

Vbe2 = VT ln
Ic2

IS2
(3.144)

Assume the transistors are identical so that IS1 = IS2. Then combining (3.142), (3.143), and
(3.144), we find

Ic1

Ic2
= exp

(
Vi1 − Vi2

VT

)
= exp

(
Vid

VT

)
(3.145)

where Vid = Vi1 − Vi2. Since we have assumed that the transistors are identical,
𝛼F1 = 𝛼F2 = 𝛼F. Then KCL at the emitters of the transistors shows

−(Ie1 + Ie2) = ITAIL =
Ic1 + Ic2

𝛼F
(3.146)

Combining (3.145) and (3.146), we find that

Ic1 =
𝛼FITAIL

1 + exp(−VidVT )
(3.147)

Ic2 =
𝛼FITAIL

1 + exp(VidVT )
(3.148)

These two currents are shown as a function of Vid in Fig. 3.46. When the magnitude of Vid
is greater than about 3VT , which is approximately 78 mV at room temperature, the collector
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Figure 3.46 Emitter-coupled pair
collector currents as a function of
differential input voltage.
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Figure 3.47 Emitter-coupled pair,
differential output voltage as a
function of differential input voltage.

currents are almost independent of Vid because one of the transistors turns off and the other
conducts all the current that flows. Furthermore, the circuit behaves in an approximately
linear fashion only when the magnitude of Vid is less than about VT . We can now compute
the output voltages as

Vo1 = VCC − Ic1RC (3.149)

Vo2 = VCC − Ic2RC (3.150)

The output signal of interest is often the difference between Vo1 and Vo2, which we define as
Vod. Then

Vod = Vo1 − Vo2 = 𝛼FITAILRC tanh

(−Vid

2VT

)
(3.151)

This function is plotted in Fig. 3.47. Here a significant advantage of differential amplifiers is
apparent: when Vid is zero, Vod is zero if Q1 and Q2 are identical and if identical resistors are
connected to the collectors of Q1 and Q2. This property allows direct coupling of cascaded
stages without offsets.

3.5.2 The dc Transfer Characteristic with Emitter Degeneration

To increase the range of Vid over which the emitter-coupled pair behaves approximately as
a linear amplifier, emitter-degeneration resistors are frequently included in series with the
emitters of the transistors, as shown in Fig. 3.48. The analysis of this circuit proceeds in
the same manner as without degeneration, except that the voltage drop across these resistors
must be included in the KVL equation corresponding to (3.142). A transcendental equation
results from this analysis. The effect of the resistors may be understood intuitively from the
examples plotted in Fig. 3.49. For large values of emitter-degeneration resistors, the linear
range of operation is extended by an amount approximately equal to ITAILRE. This result
stems from the observation that all of ITAIL flows in one of the degeneration resistors when
one transistor turns off. Therefore, the voltage drop is ITAILRE on one resistor and zero on the
other, and the value of Vid required to turn one transistor off is changed by the difference of
the voltage drops on these resistors. Furthermore, since the voltage gain is the slope of the
transfer characteristic, the voltage gain is reduced by approximately the same factor that the
input range is increased. In operation, the emitter resistors introduce local negative feedback
in the differential pair. This topic is considered in Chapter 8.
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Figure 3.49 Output voltage as a function of input voltage, emitter-coupled pair with emitter
degeneration.

3.5.3 The dc Transfer Characteristic of a Source-Coupled Pair

Consider the n-channel MOS-transistor source-coupled pair shown in Fig. 3.50. The following
analysis applies equally well to a corresponding p-channel source-coupled pair with appropri-
ate sign changes. In monolithic form, a transistor current source, called a tail current source,
is usually connected to the sources of M1 and M2. In that case, ITAIL and RTAIL together form
a Norton-equivalent model of the tail current source.

For this large-signal analysis, we assume that the output resistance of the tail current source
is RTAIL → ∞. Also, we assume that the output resistance of each transistor ro → ∞. Although
these assumptions do not strongly affect the low-frequency, large-signal behavior of the circuit,
they could have a significant impact on the small-signal behavior. Therefore, we will reconsider
these assumptions when we analyze the circuit from a small-signal standpoint. From KVL
around the input loop,

Vi1 − Vgs1 + Vgs2 − Vi2 = 0 (3.152)

We assume that the drain resistors are small enough that neither transistor operates in the triode
region if Vi1 ≤ VDD and Vi2 ≤ VDD. Furthermore, we assume that the drain current of each
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Figure 3.50 n-channel MOSFET
source-coupled pair.

transistor is related to its gate-source voltage by the approximate square-law relationship given
in (1.157). If the transistors are identical, applying (1.157) to each transistor and rearranging
gives

Vgs1 = Vt +

√
2Id1

k′ (W∕L)
(3.153)

and

Vgs2 = Vt +

√
2Id2

k′ (W∕L)
(3.154)

Substituting (3.153) and (3.154) into (3.152) and rearranging gives

Vid = Vi1 − Vi2 =
√

Id1 −
√

Id2√
k′

2
W
L

(3.155)

From KCL at the source of M1 and M2,

Id1 + Id2 = ITAIL (3.156)

Solving (3.156) for Id2, substituting into (3.155), rearranging, and using the quadratic formula
gives

Id1 =
ITAIL

2
± k′

4
W
L

Vid

√
4ITAIL

k′ (W∕L)
− V2

id (3.157)

Since Id1 > ITAIL∕2 when Vid > 0, the potential solution where the second term is subtracted
from the first in (3.157) cannot occur in practice. Therefore,

Id1 =
ITAIL

2
+ k′

4
W
L

Vid

√
4ITAIL

k′ (W∕L)
− V2

id (3.158)
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Substituting (3.158) into (3.156) gives

Id2 =
ITAIL

2
− k′

4
W
L

Vid

√
4ITAIL

k′ (W∕L)
− V2

id (3.159)

Equations 3.158 and 3.159 are valid when both transistors operate in the active or saturation
region. Since we have assumed that neither transistor operates in the triode region, the
limitation here stems from turning off one of the transistors. When M1 turns off, Id1 = 0 and
Id2 = ITAIL. On the other hand, Id1 = ITAIL and Id2 = 0 when M2 turns off. Substituting these
values in (3.155) shows that both transistors operate in the active region if

|Vid| ≤
√

2ITAIL

k′ (W∕L)
(3.160)

Since Id1 = Id2 = ITAIL∕2 when Vid = 0, the range in (3.160) can be rewritten as

|Vid| ≤ √
2
⎛⎜⎜⎝
√

2Id1

k′ (W∕L)

⎞⎟⎟⎠
||||||| Vid=0

=
√

2(Vov)| Vid=0 (3.161)

Equation 3.161 shows that the range of Vid for which both transistors operate in the active
region is proportional to the overdrive calculated when Vid = 0. This result is illustrated in
Fig. 3.51. The overdrive is an important quantity in MOS circuit design, affecting not only
the input range of differential pairs but also other characteristics including the speed, off-
set, and output swing of MOS amplifiers. Since the overdrive of an MOS transistor depends
on its current and W∕L ratio, the range of a source-coupled pair can be adjusted to suit a
given application by adjusting the value of the tail current and/or the aspect ratio of the input
devices. In contrast, the input range of the bipolar emitter-coupled pair is about±3VT , indepen-
dent of bias current or device size. In fact, the source-coupled pair behaves somewhat like an
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Figure 3.51 dc transfer characteristic of the MOS source-coupled pair. The parameter is the overdrive
Vov = VGS − Vt determined when Vid = 0.
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emitter-coupled pair with emitter-degeneration resistors that can be selected to give a desired
input voltage range.

In many practical cases, the key output of the differential pair is not Id1 or Id2 alone but the
difference between these quantities. Subtracting (3.159) from (3.158) gives

ΔId = Id1 − Id2 = k′

2
W
L

Vid

√
4ITAIL

k′ (W∕L)
− V2

id (3.162)

We can now compute the differential output voltage as

Vod = Vo1 − Vo2 = VDD − Id1RD − VDD + Id2RD = −(ΔId)RD (3.163)

Since ΔId = 0 when Vid = 0, (3.163) shows that Vod = 0 when Vid = 0 if M1 and M2 are iden-
tical and if identical resistors are connected to the drains of M1 and M2. This property allows
direct coupling of cascaded MOS differential pairs, as in the bipolar case.

3.5.4 Introduction to the Small-Signal Analysis of Differential Amplifiers

The features of interest in the performance of differential pairs are often the small-signal prop-
erties for dc differential input voltages near zero volts. In the next two sections, we assume
that the dc differential input voltage is zero and calculate the small-signal parameters. If the
parameters are constant, the small-signal model predicts that the circuit operation is linear.
The results of the small-signal analysis are valid for signals that are small enough to cause
insignificant nonlinearity.

In previous sections, we have considered amplifiers with two input terminals (Vi and
ground) and two output terminals (Vo and ground). Small-signal analysis of such circuits
leads to one equation for each circuit, such as

vo = Avi (3.164)

Here, A is the small-signal voltage gain under given loading conditions. In contrast, differential
pairs have three input terminals (Vi1, Vi2, and ground) and three output terminals (Vo1, Vo2, and
ground). Therefore, direct small-signal analysis of differential pairs leads to two equations for
each circuit (one for each output), where each output depends on each input:

vo1 = A11vi1 + A12vi2 (3.165)

vo2 = A21vi1 + A22vi2 (3.166)

Here, four voltage gains, A11, A12, A21, and A22, specify the small-signal operation of the circuit
under given loading conditions. These gains can be interpreted as

A11 =
vo1

vi1

|||| vi2=0
(3.167)

A12 =
vo1

vi2

|||| vi1=0
(3.168)

A21 =
vo2

vi1

|||| vi2=0
(3.169)

A22 =
vo2

vi2

|||| vi1=0
(3.170)
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Although direct small-signal analysis of differential pairs can be used to calculate these four
gain values in a straightforward way, the results are difficult to interpret because differential
pairs usually are not used to react to vi1 or vi2 alone. Instead, differential pairs are used most
often to sense the difference between the two inputs while trying to ignore the part of the
two inputs that is common to each. Desired signals will be forced to appear as differences in
differential circuits. In practice, undesired signals will also appear. For example, mixed-signal
integrated circuits use both analog and digital signal processing, and the analog signals are
vulnerable to corruption from noise generated by the digital circuits and coupled through the
common power supply and substrate. The hope in using differential circuits is that undesired
signals will appear equally on both inputs and be rejected.

To highlight this behavior, we will define new differential and common-mode variables
at the input and output as follows. The differential input, to which differential pairs are
sensitive, is

vid = vi1 − vi2 (3.171)

The common-mode or average input, to which differential pairs are insensitive, is

vic =
vi1 + vi2

2
(3.172)

These equations can be inverted to give vi1 and vi2 in terms of vid and vic:

vi1 = vic +
vid

2
(3.173)

vi2 = vic −
vid

2
(3.174)

The physical significance of these new variables can be understood by using (3.173) and
(3.174) to redraw the input connections to a differential amplifier, as shown in Fig. 3.52. The
common-mode input is the input component that appears equally in vi1 and vi2. The differential
input is the input component that appears between vi1 and vi2.

New output variables are defined in the same way. The differential output is

vod = vo1 − vo2 (3.175)

The common-mode or average output is

voc =
vo1 + vo2

2
(3.176)
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2

vid

2

Figure 3.52 A differential
amplifier with its inputs
(a) shown as independent of
each other and (b) redrawn in
terms of the differential and
common-mode components.
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Solving these equations for vo1 and vo2, we obtain

vo1 = voc +
vod

2
(3.177)

vo2 = voc −
vod

2
(3.178)

We have now defined two new input variables and two new output variables. By substituting
the expressions for vi1, vi2, vo1, and vo2 in terms of the new variables back into (3.165) and
(3.166), we find

vod =
(

A11 − A12 − A21 + A22

2

)
vid + (A11 + A12 − A21 − A22)vic (3.179)

voc =
(

A11 − A12 + A21 − A22

4

)
vid +

(
A11 + A12 + A21 + A22

2

)
vic (3.180)

Defining four new gain factors that are equal to the coefficients in these equations, (3.179) and
(3.180) can be rewritten as

vod = Admvid + Acm−dmvic (3.181)

voc = Adm−cmvid + Acmvic (3.182)

The differential-mode gain Adm is the change in the differential output per unit change in dif-
ferential input:

Adm =
vod

vid

|||| vic=0
=

A11 − A12 − A21 + A22

2
(3.183)

The common-mode gain Acm is the change in the common-mode output voltage per unit change
in the common-mode input:

Acm =
voc

vic

|||| vid=0
=

A11 + A12 + A21 + A22

2
(3.184)

The differential-mode-to-common-mode gain Adm−cm is the change in the common-mode out-
put voltage per unit change in the differential-mode input:

Adm−cm =
voc

vid

|||| vic=0
=

A11 − A12 + A21 − A22

4
(3.185)

The common-mode-to-differential-mode gain Acm−dm is the change in the differential-mode
output voltage per unit change in the common-mode input:

Acm−dm =
vod

vic

|||| vid=0
= A11 + A12 − A21 − A22 (3.186)

The purpose of a differential amplifier is to sense changes in its differential input while
rejecting changes in its common-mode input. The desired output is differential, and its
variation should be proportional to the variation in the differential input. Variation in the
common-mode output is undesired because it must be rejected by another differential stage to
sense the desired differential signal. Therefore, an important design goal in differential ampli-
fiers is to make Adm large compared to the other three gain coefficients in (3.181) and (3.182).



228 Chapter 3 ▪ Single-Transistor and Multiple-Transistor Amplifiers

In differential amplifiers with perfect symmetry, each component on the side of one
output corresponds to an identical component on the side of the other output. With such
perfectly balanced amplifiers, when vi1 = −vi2, vo1 = −vo2. In other words, when the input
is purely differential (vic = 0), the output of a perfectly balanced differential amplifier is
purely differential (voc = 0), and thus Adm−cm = 0. Similarly, pure common-mode inputs (for
which vid = 0) produce pure common-mode outputs, and Acm−dm = 0 in perfectly balanced
differential amplifiers. Even with perfect symmetry, however, Acm ≠ 0 is possible. Therefore,
the ratio Adm∕Acm is one figure of merit for a differential amplifier, giving the ratio of the
desired differential-mode gain to the undesired common-mode gain. In this book, we will
define the magnitude of this ratio as the common-mode-rejection ratio, CMRR:

CMRR ≡ ||||Adm

Acm

|||| (3.187)

Furthermore, since differential amplifiers are not perfectly balanced in practice, Adm−cm ≠ 0
and Acm−dm ≠ 0. The ratios Adm∕Acm−dm and Adm∕Adm−cm are two other figures of merit
that characterize the performance of differential amplifiers. Of these, the first is particularly
important because ratio Adm∕Acm−dm determines the extent to which the differential output is
produced by the desired differential input instead of by the undesired common-mode input.
This ratio is important because once a common-mode input is converted to a differential
output, the result is treated as the desired signal by subsequent differential amplifiers. In
fact, in multistage differential amplifiers, the common-mode-to-differential-mode gain of the
first stage is usually an important factor in the overall CMRR. In Section 3.5.5, we consider
perfectly balanced differential amplifiers from a small-signal standpoint; in the section
3.5.6.9, we consider imperfectly balanced differential amplifiers from the same standpoint.

3.5.5 Small-Signal Characteristics of Balanced Differential Amplifiers

In this section, we will study perfectly balanced differential amplifiers. Therefore, Acm−dm = 0
and Adm−cm = 0 here, and our goal is to calculate Adm and Acm. Although calculating Adm and
Acm from the entire small-signal equivalent circuit of a differential amplifier is possible, these
calculations are greatly simplified by taking advantage of the symmetry that exists in perfectly
balanced amplifiers. In general, we first find the response of a given circuit to pure differential
and pure common-mode inputs separately. Then the results can be superposed to find the total
solution. Since superposition is valid only for linear circuits, the following analysis is strictly
valid only from a small-signal standpoint and approximately valid only for signals that cause
negligible nonlinearity. In previous sections, we carried out large-signal analyses of differential
pairs and assumed that the Norton-equivalent resistance of the tail current source was infinite.
Since this resistance has a considerable effect on the small-signal behavior of differential pairs,
however, we now assume that this resistance is finite.

Because the analysis here is virtually the same for both bipolar and MOS differential pairs,
the two cases will be considered together. Consider the bipolar emitter-coupled pair of Fig. 3.45
and the MOS source-coupled pair of Fig. 3.50 from a small-signal standpoint. Then Vi1 = vi1
and Vi2 = vi2. These circuits are redrawn in Figs. 3.53a and 3.53b with the common-mode
input voltages set to zero so we can consider the effect of the differential-mode input by itself.
The small-signal equivalent circuit for both cases is shown in Fig. 3.54 with R used to replace
RC in Fig. 3.53a and RD in 3.53b. Note that the small-signal equivalent circuit neglects finite
ro in both cases. Also, in the MOS case, nonzero gmb is ignored and r𝜋 → ∞ because 𝛽0 → ∞.

Because the circuit in Fig. 3.54 is perfectly balanced, and because the inputs are driven
by equal and opposite voltages, the voltage across RTAIL does not vary at all. Another way
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Figure 3.53 (a) Emitter-coupled pair with
pure differential input. (b) Source-coupled
pair with pure differential input.
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Figure 3.54 Small-signal equivalent circuit for differential pair with pure differential-mode input.
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Figure 3.55 Differential-mode circuit with the tail current source grounded. Because of the symmetry
of the circuit, ix = 0.
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Figure 3.56 Differential-mode half
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to see this result is to view the two lower parts of the circuit as voltage followers. When one
side pulls up, the other side pulls down, resulting in a constant voltage across the tail current
source by superposition. Since the voltage across RTAIL experiences no variation, the behavior
of the small-signal circuit is unaffected by the placement of a short circuit across RTAIL, as
shown in Fig. 3.55. After placing this short circuit, we see that the two sides of the circuit
are not only identical but also independent because they are joined at a node that operates
as a small-signal ground. Therefore, the response to small-signal differential inputs can be
determined by analyzing one side of the original circuit with RTAIL replaced by a short circuit.
This simplified circuit, shown in Fig. 3.56, is called the differential-mode half circuit and is
useful for analysis of both the low- and high-frequency performance of all types of differential
amplifiers. By inspection of Fig. 3.56, we recognize this circuit as the small-signal equivalent
of a common-emitter or common-source amplifier. Therefore,

vod

2
= −gmR

vid

2
(3.188)

and

Adm =
vod

vid

|||| vic=0
= −gmR (3.189)

To include the output resistance of the transistor in the above analysis, R in (3.189) should be
replaced by R ∥ ro. Finally, note that neglecting gmb from this analysis for MOS source-coupled
pairs has no effect on the result because the voltage from the source to the body of the input
transistors is the same as the voltage across the tail current source, which is constant with a
pure differential input.

The circuits in Figs. 3.45 and 3.50 are now reconsidered from a small-signal, common-mode
standpoint. Setting Vi1 = Vi2 = vic, the circuits are redrawn in Figs. 3.57a and 3.57b. The
small-signal equivalent circuit is shown in Fig. 3.58, but with the modification that the resistor
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Figure 3.57 (a) Emitter-coupled pair
with pure common-mode input.
(b) Source-coupled pair with pure
common-mode input.

RTAIL has been split into two parallel resistors, each of value twice the original. Also, R has
been used to replace RC in Fig. 3.57a and RD in 3.57b. Again ro is neglected in both cases, and
gmb is neglected in the MOS case, where r𝜋 → ∞ because 𝛽0 → ∞.

Because the circuit in Fig. 3.58 is divided into two identical halves, and because each half
is driven by the same voltage vic, no current ix flows in the lead connecting the half circuits.
The circuit behavior is thus unchanged when this lead is removed, as shown in Fig. 3.59.
As a result, we see that the two halves of the circuit in Fig. 3.58 are not only identical,
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but also independent because they are joined by a branch that conducts no small-signal
current. Therefore, the response to small-signal, common-mode inputs can be determined
by analyzing one half of the original circuit with an open circuit replacing the branch that
joins the two halves of the original circuit. This simplified circuit, shown in Fig. 3.60, is
called the common-mode half circuit. By inspection of Fig. 3.60, we recognize this circuit as
a common-emitter or common-source amplifier with degeneration. Then

voc = −GmRvic (3.190)

and

Acm =
voc

vic

|||| vid=0
= −GmR (3.191)
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Figure 3.60 Common-mode half
circuit.
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where Gm is the transconductance of a common-emitter or common-source amplifier with
degeneration and will be considered quantitatively below. Since degeneration reduces the
transconductance, and since degeneration occurs only in the common-mode case, (3.189) and
(3.191) show that |Adm| > |Acm|; therefore, the differential pair is more sensitive to differential
inputs than to common-mode inputs. In other words, the tail current source provides local
negative feedback to common-mode inputs (or local common-mode feedback). Negative
feedback is studied in Chapter 8.

3.5.5.1 Bipolar Emitter-Coupled Pair. For the bipolar case, substituting (3.93) for Gm
with RE = 2RTAIL into (3.191) and rearranging gives

Acm ≃ −
gmR

1 + gm (2RTAIL)
= −

gmR

1 + 2gmRTAIL
(3.192)

To include the effect of finite ro in the above analysis, R in (3.192) should be replaced
by R ∥ Ro, where Ro is the output resistance of a common-emitter amplifier with emitter
degeneration of RE = 2RTAIL, given in (3.97) or (3.98). This substitution ignores the effect of
finite ro on Gm, which is shown in (3.92) and is usually negligible.

The CMRR is found by substituting (3.189) and (3.192) into (3.187), which gives

CMRR = 1 + 2gmRTAIL (3.193)

This expression applies to the particular case of a single-stage, emitter-coupled pair. It
shows that increasing the output resistance of the tail current source RTAIL improves the
common-mode-rejection ratio. This topic is considered in Chapter 4.

Since bipolar transistors have finite 𝛽0, and since differential amplifiers are often used as
the input stage of instrumentation circuits, the input resistance of emitter-coupled pairs is also
an important design consideration. The differential input resistance Rid is defined as the ratio
of the small-signal differential input voltage vid to the small-signal input current ib when a pure
differential input voltage is applied. By inspecting Fig. 3.56, we find that

vid

2
= ibr𝜋 (3.194)

Therefore, the differential input resistance of the emitter-coupled pair is

Rid =
vid

ib

|||| vic=0
= 2r𝜋 (3.195)

Thus the differential input resistance depends on the r𝜋 of the transistor, which increases with
increasing 𝛽0 and decreasing collector current. High input resistance is therefore obtained
when an emitter-coupled pair is operated at low bias current levels. Techniques to achieve
small bias currents are considered in Chapter 4.

The common-mode input resistance Ric is defined as the ratio of the small-signal,
common-mode input voltage vic to the small-signal input current ib in one terminal when
a pure common-mode input is applied. Since the common-mode half circuit in Fig. 3.60
is the same as that for a common-emitter amplifier with emitter degeneration, substituting
RE = 2RTAIL into (3.90) gives Ric as

Ric =
vic

ib

|||| vid=0
= r𝜋 + (𝛽0 + 1)(2RTAIL) (3.196)
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Figure 3.61 (a) General low-frequency, small-signal, 𝜋-equivalent input circuit for the differential
amplifier. (b) T-equivalent input circuit.

The small-signal input current that flows when both common-mode and differential-mode
input voltages are applied can be found by superposition and is given by

ib1 =
vid

Rid
+

vic

Ric
(3.197)

ib2 = −
vid

Rid
+

vic

Ric
(3.198)

where ib1 and ib2 represent the base currents of Q1 and Q2, respectively.
The input resistance can be represented by the 𝜋-equivalent circuit of Fig. 3.61a or the

T-equivalent circuit of Fig. 3.61b. For the 𝜋 model, the common-mode input resistance is
exactly Ric independent of Rx. To make the differential-mode input resistance exactly Rid, the
value of Rx should be more than Rid to account for nonzero current in Ric. On the other hand,
for the T model, the differential-mode input resistance is exactly Rid independent of Ry, and
the common-mode input resistance is Ric if Ry is chosen to be less than Ric∕2, as shown. The
approximations in Fig. 3.61 are valid if Ric is much larger than Rid.

3.5.5.2 MOS Source-Coupled Pair. For the MOS case, substituting (3.104) for Gm with
gmb = 0 and RS = 2RTAIL into (3.191) and rearranging gives

Acm ≃ −
gmR

1 + gm (2RTAIL)
= −

gmR

1 + 2gmRTAIL
(3.199)

Although (3.199) and the common-mode half circuit in Fig. 3.60 ignore the body-effect
transconductance gmb, the common-mode gain depends on gmb in practice because the body
effect changes the source-body voltage of the transistors in the differential pair. Since nonzero
gmb was included in the derivation of the transconductance of the common-source amplifier
with degeneration, a simple way to include the body effect here is to allow nonzero gmb when
substituting (3.104) into (3.191). The result is

Acm ≃ −
gmR

1 + (gm + gmb)(2RTAIL)
= −

gmR

1 + 2 (gm + gmb)RTAIL
(3.200)

To include the effect of finite ro in the above analysis, R in (3.199) and (3.200) should be
replaced by R ∥ Ro, where Ro is the output resistance of a common-source amplifier with
source degeneration of RS = 2RTAIL, given in (3.107). This substitution ignores the effect of
finite ro on Gm, which is shown in (3.103) and is usually negligible.
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The CMRR is found by substituting (3.189) and (3.200) into (3.187), which gives

CMRR ≃ 1 + 2(gm + gmb)RTAIL (3.201)

Equation 3.201 is valid for a single-stage, source-coupled pair and shows that increasing RTAIL
increases the CMRR. This topic is studied in Chapter 4.

3.5.6 Device Mismatch Effects in Differential Amplifiers

An important aspect of the performance of differential amplifiers is the minimum dc and ac
differential voltages that can be detected. The presence of component mismatches within
the amplifier itself and drifts of component values with temperature produce dc differential
voltages at the output that are indistinguishable from the dc component of the amplified
signal. Also, such mismatches and drifts cause nonzero common-mode-to-differential-mode
gain as well as nonzero differential-mode-to-common-mode gain to arise. Nonzero Acm−dm is
especially important because it converts common-mode inputs to differential outputs, which
are treated as the desired signal by subsequent stages. In many analog systems, these types
of errors pose the basic limitation on the resolution of the system, and hence consideration of
mismatch-induced effects is often central to the design of analog circuits.

3.5.6.1 Input Offset Voltage and Current. For differential amplifiers, the effect of
mismatches on dc performance is most conveniently represented by two quantities: the input
offset voltage and the input offset current. These quantities represent the input-referred effect
of all the component mismatches within the amplifier on its dc performance.14,15 As illustrated
in Fig. 3.62, the dc behavior of the amplifier containing the mismatches is identical to an ideal
amplifier with no mismatches but with the input offset voltage source added in series with the
input and the input offset current source in shunt across the input terminals. Both quantities
are required to represent the effect of mismatch in general so that the model is valid for any
source resistance. For example, if the input terminals are driven by an ideal voltage source
with zero resistance, the input offset current does not contribute to the amplifier output, and
the offset voltage generator is needed to model the effect of mismatch. On the other hand,
if the input terminals are driven by an ideal current source with infinite resistance, the input
offset voltage does not contribute to the amplifier output, and the offset current generator
is needed to model the effect of mismatch. These quantities are usually a function of both
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Figure 3.62 Equivalent input offset voltage (VOS) and current (IOS) for a differential amplifier. (a) Actual
circuit containing mismatches. (b) Equivalent dc circuit with identically matched devices and the offset
voltage and current referred to the input.
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temperature and common-mode input voltage. In the next several sections, we calculate the
input offset voltage and current of the emitter-coupled pair and the source-coupled pair.

3.5.6.2 Input Offset Voltage of the Emitter-Coupled Pair. The predominant sources of
offset error in the emitter-coupled pair are (1) mismatches in the base width, base doping
level, and collector doping level of the transistors; (2) mismatches in the effective emitter area
of the transistors; and (3) mismatches in the collector load resistors. To provide analytical
results simple enough for intuitive interpretation, the analysis will be carried out assuming a
uniform-base transistor. The results are similar for the nonuniform case, although the analytical
procedure is more tedious. In most instances, the dc base current is low enough that the dc
voltage drop in rb is negligible, so we neglect rb.

Consider Fig. 3.45 with dc signals so that Vi1 = VI1, Vi2 = VI2, Vo1 = VO1, and Vo2 = VO2.
Let VID = VI1 − VI2. Also assume that the collector resistors may not be identical. Let RC1
and RC2 represent the values of the resistors attached to Q1 and Q2, respectively. From KVL
around the input loop,

VID − VBE1 + VBE2 = 0 (3.202)

Therefore,

VID = VT ln
IC1

IS1
− VT ln

IC2

IS2
= VT ln

IC1

IC2

IS2

IS1
(3.203)

The factors determining the saturation current IS of a bipolar transistor are described in
Chapter 1. There it was shown that if the impurity concentration in the base region is uniform,
these saturation currents can be written

IS1 =
qn2

i Dn

NAWB1(VCB)
A1 =

qn2
i Dn

QB1(VCB)
A1 (3.204)

IS2 =
qn2

i Dn

NAWB2(VCB)
A2 =

qn2
i Dn

QB2(VCB)
A2 (3.205)

where WB(VCB) is the base width as a function of VCB, NA is the acceptor density in the base,
and A is the emitter area. We denote the product NAWB(VCB) as QB(VCB), the total base impurity
doping per unit area.

The input offset voltage VOS is equal to the value of VID = VI1 − VI2 that must be applied
to the input to drive the differential output voltage VOD = VO1 − VO2 to zero. For VOD to be
zero, IC1RC1 = IC2RC2; therefore,

IC1

IC2
=

RC2

RC1
(3.206)

Substituting (3.204), (3.205), and (3.206) into (3.203) gives

VOS = VT ln

[(
RC2

RC1

)(
A2

A1

)(
QB1(VCB)
QB2(VCB)

)]
(3.207)

This expression relates the input offset voltage to the device parameters and RC mismatch.
Usually, however, the argument of the log function is very close to unity, and the equation can
be interpreted in a more intuitively satisfying way. In the following section, we perform an
approximate analysis, valid if the mismatches are small.
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3.5.6.3 Offset Voltage of the Emitter-Coupled Pair: Approximate Analysis. In cases
of practical interest involving offset voltages and currents, the mismatch between any two
nominally matched circuit parameters is usually small compared with the absolute value of
that parameter. This observation leads to a procedure by which the individual contributions to
offset voltage can be considered separately and summed.

First, define new parameters to describe the mismatch in the components, using the relations

ΔX = X1 − X2 (3.208)

X =
X1 + X2

2
(3.209)

Thus ΔX is the difference between two parameters, and X is the average of the two nominally
matched parameters. Note that ΔX can be positive or negative. Next invert (3.208) and (3.209)
to give

X1 = X + ΔX
2

(3.210)

X2 = X − ΔX
2

(3.211)

These relations can be applied to the collector resistances, the emitter areas, and the base
doping parameters in (3.207) to give

VOS = VT ln

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

RC −
ΔRC

2

RC +
ΔRC

2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

A − ΔA
2

A + ΔA
2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

QB +
ΔQB

2

QB −
ΔQB

2

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ (3.212)

With the assumptions that ΔRC ≪ RC, ΔA ≪ A, and ΔQB ≪ QB, (3.212) can be simplified to

VOS ≃ VT ln

[(
1 −

ΔRC

RC

)(
1 − ΔA

A

)(
1 +

ΔQB

QB

)]
≃ VT

[
ln

(
1 −

ΔRC

RC

)
+ ln

(
1 − ΔA

A

)
+ ln

(
1 +

ΔQB

QB

)]
(3.213)

If x ≪ 1, a Taylor series can be used to show that

ln (1 + x) = x − x2

2
+ x3

3
− · · · (3.214)

Applying (3.214) to each logarithm in (3.213) and ignoring terms higher than first order in the
expansions gives

VOS ≃ VT

(
−
ΔRC

RC
− ΔA

A
+

ΔQB

QB

)
(3.215)

Thus, under the assumptions made, we have obtained an approximate expression for the
input offset voltage, which is the linear superposition of the effects of the different compo-
nents. It can be shown that this can always be done for small component mismatches. Note
that the signs of the individual terms of (3.215) are not particularly significant, since the mis-
match factors can be positive or negative depending on the direction of the random parameter



238 Chapter 3 ▪ Single-Transistor and Multiple-Transistor Amplifiers

variation. The worst-case offset occurs when the terms have signs such that the individual
contributions add.

Equation 3.215 relates the offset voltage to mismatches in the resistors and in the structural
parameters A and QB of the transistors. For the purpose of predicting the offset voltage from
device parameters that are directly measurable electrically, we rewrite (3.215) to express the
offset in terms of the resistor mismatch and the mismatch in the saturation currents of the
transistors:

VOS ≃ VT

(
−
ΔRC

RC
−

ΔIS

IS

)
(3.216)

where
ΔIS

IS
= ΔA

A
−

ΔQB

QB
(3.217)

is the offset voltage contribution from the transistors themselves, as reflected in the mismatch in
saturation current. Mismatch factors ΔRC∕RC and ΔIS∕IS are actually random parameters that
take on a different value for each circuit fabricated, and the distribution of the observed values
is described by a probability distribution. For large samples, the distribution tends toward a
normal, or Gaussian, distribution with zero mean. Typically observed standard deviations for
the preceding mismatch parameters for small-area diffused devices are

𝜎ΔR∕R = 0.01 𝜎ΔIS∕IS
= 0.05 (3.218)

In the Gaussian distribution, 68 percent of the samples have a value within ±𝜎 of the mean
value. If we assume that the mean value of the distribution is zero, then 68 percent of the resistor
pairs in a large sample will match within 1 percent, and 68 percent of the transistor pairs will
have saturation currents that match within 5 percent for the distributions described by (3.218).
These values can be heavily influenced by device geometry and processing. If we pick one
sample from each distribution so that the parameter mismatch is equal to the corresponding
standard deviation, and if the mismatch factors are chosen in the direction so that they add, the
resulting offset from (3.216) will be

VOS ≃ (26 mV)(0.01 + 0.05) ≃ 1.5 mV (3.219)

Large ion-implanted devices with careful layout can achieve VOS ≃ 0.1 mV. A parameter of
more interest to the circuit designer than the offset of one sample is the standard deviation of
the total offset voltage. Since the offset is the sum of two uncorrelated random parameters,
the standard deviation of the sum is equal to the square root of the sum of the squares of the
standard deviation of the two mismatch contributions, or

𝜎VOS
= VT

√
(𝜎ΔR∕R)2 + (𝜎ΔIS∕IS

)2 (3.220)

The properties of the Gaussian distribution are summarized in Appendix A.3.1.

3.5.6.4 Offset Voltage Drift in the Emitter-Coupled Pair. When emitter-coupled pairs
are used as low-level dc amplifiers where the offset voltage is critical, provision is sometimes
made to manually adjust the input offset voltage to zero with an external potentiometer. When
this adjustment is done, the important parameter becomes not the offset voltage itself but the
variation of this offset voltage with temperature, often referred to as drift. For most practical
circuits, the sensitivity of the input offset voltage to temperature is not zero, and the wider the
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excursion of temperature experienced by the circuit, the more error the offset voltage drift will
contribute. This parameter is easily calculated for the emitter-coupled pair by differentiating
(3.207) as follows

dVOS

dT
=

VOS

T
(3.221)

using VT = kT∕q and assuming the ratios in (3.207) are independent of temperature. Thus
the drift and offset are proportional for the emitter-coupled pair. This relationship is observed
experimentally. For example, an emitter-coupled pair with a measured offset voltage of 2 mV
would display a drift of 2 mV∕300∘K or 6.6 μV∕∘C under the assumptions we have made.

Equation 3.221 appears to show that the drift also would be nulled by externally adjusting
the offset to zero. This observation is only approximately true because of the way in which the
nulling is accomplished.16 Usually, an external potentiometer is placed in parallel with a por-
tion of one of the collector load resistors in the pair. The temperature coefficient of the nulling
potentiometer generally does not match that of the diffused resistors, so a resistor-mismatch
temperature coefficient is introduced that can make the drift worse than it was without nulling.
Voltage drifts in the 1 μV∕∘C range can be obtained with careful design.

3.5.6.5 Input Offset Current of the Emitter-Coupled Pair. The input offset current IOS
is measured with the inputs connected only to current sources and is the difference in the base
currents that must be applied to drive the differential output voltage VOD = VO1 − VO2 to zero.
Since the base current of each transistor is equal to the corresponding collector current divided
by beta, the offset current is

IOS =
IC1

𝛽F1
−

IC2

𝛽F2
(3.222)

when VOD = 0. As before, we can write

IC1 = IC +
ΔIC

2
IC2 = IC −

ΔIC

2
(3.223)

𝛽F1 = 𝛽F +
Δ𝛽F

2
𝛽F2 = 𝛽F −

Δ𝛽F

2
(3.224)

Inserting (3.223) and (3.224) into (3.222), the offset current becomes

IOS =
⎛⎜⎜⎜⎝

IC +
ΔIC

2

𝛽F +
Δ𝛽F

2

−
IC −

ΔIC

2

𝛽F −
Δ𝛽F

2

⎞⎟⎟⎟⎠ (3.225)

Neglecting higher-order terms, this becomes

IOS ≃
IC

𝛽F

(ΔIC

IC
−

Δ𝛽F

𝛽F

)
(3.226)

For VOD to be zero, IC1RC1 = IC2RC2; therefore, from (3.206), the mismatch in collector
currents is

ΔIC

IC
= −

ΔRC

RC
(3.227)
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Equation 3.227 shows that the fractional mismatch in the collector currents must be equal in
magnitude and opposite in polarity from the fractional mismatch in the collector resistors to
force VOD = 0. Substituting (3.227) into (3.226) gives

IOS ≃ −
IC

𝛽F

(ΔRC

RC
+

Δ𝛽F

𝛽F

)
(3.228)

A typically observed beta mismatch distribution displays a deviation of about 10 percent.
Assuming a beta mismatch of 10 percent and a mismatch in collector resistors of 1 percent,
we obtain

IOS ≃ −
IC

𝛽F

(ΔRC

RC
+

Δ𝛽F

𝛽F

)
= −

IC

𝛽F
(0.11) = −0.11 (IB) (3.229)

In many applications, the input offset current as well as the input current itself must be
minimized. A good example is the input stage of operational amplifiers. Various circuit and
technological approaches to reduce these currents are considered in Chapter 6.

3.5.6.6 Input Offset Voltage of the Source-Coupled Pair. As mentioned earlier in
the chapter, MOS transistors inherently provide higher input resistance and lower input bias
current than bipolar transistors when the MOS gate is used as the input. This observation also
applies to differential-pair amplifiers. The input offset current of an MOS differential pair is
the difference between the two gate currents and is essentially zero because the gates of the
input transistors are connected to silicon dioxide, which is an insulator, neglecting current
from tunneling. However, MOS transistors exhibit lower transconductance than bipolar
transistors at the same current, resulting in poorer input offset voltage and common-mode
rejection ratio in MOS differential pairs than in the case of bipolar transistors. In this section,
we calculate the input offset voltage of the source-coupled MOSFET pair.

Consider Fig. 3.50 with dc signals so that Vi1 = VI1, Vi2 = VI2, Vo1 = VO1, and Vo2 = VO2.
Let VID = VI1 − VI2. Also, assume that the drain resistors may not be identical. Let RD1 and
RD2 represent the values of the resistors attached to M1 and M2, respectively. KVL around the
input loop gives

VID − VGS1 + VGS2 = 0 (3.230)

Solving (1.157) for the gate-source voltage and substituting into (3.230) gives

VID = VGS1 − VGS2

= Vt1 +

√
2ID1

k′ (W∕L)1
− Vt2 −

√
2ID2

k′ (W∕L)2
(3.231)

As in the bipolar case, the input offset voltage VOS is equal to the value of VID = VI1 − VI2 that
must be applied to the input to drive the differential output voltage VOD = VO1 − VO2 to zero.
For VOD to be zero, ID1RD1 = ID2RD2; therefore,

VOS = Vt1 − Vt2 +

√
2ID1

k′ (W∕L)1
−

√
2ID2

k′ (W∕L)2
(3.232)

subject to the constraint that ID1RD1 = ID2RD2.
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3.5.6.7 Offset Voltage of the Source-Coupled Pair: Approximate Analysis. The mis-
match between any two nominally matched circuit parameters is usually small compared with
the absolute value of that parameter in practice. As a result, (3.232) can be rewritten in a way
that allows us to understand the contributions of each mismatch to the overall offset.

Defining difference and average quantities in the usual way, we have

ΔID = ID1 − ID2 (3.233)

ID =
ID1 + ID2

2
(3.234)

Δ(W∕L) = (W∕L)1 − (W∕L)2 (3.235)

(W∕L) =
(W∕L)1 + (W∕L)2

2
(3.236)

ΔVt = Vt1 − Vt2 (3.237)

Vt =
Vt1 + Vt2

2
(3.238)

ΔRL = RL1 − RL2 (3.239)

RL =
RL1 + RL2

2
(3.240)

Rearranging (3.233) and (3.234) as well as (3.235) and (3.236) gives

ID1 = ID +
ΔID

2
ID2 = ID −

ΔID

2
(3.241)

(W∕L)1 = (W∕L) +
Δ(W∕L)

2
(W∕L)2 = (W∕L) −

Δ(W∕L)
2

(3.242)

Substituting (3.237), (3.241), and (3.242) into (3.232) gives

VOS = ΔVt +

√
2 (ID + ΔID∕2)

k′ [(W∕L) + Δ(W∕L)∕2]
−

√
2 (ID − ΔID∕2)

k′ [(W∕L) − Δ(W∕L)∕2]
(3.243)

Rearranging (3.243) gives

VOS = ΔVt + (VGS − Vt)

⎛⎜⎜⎜⎜⎝
√√√√√1 + ΔID∕2ID

1 +
Δ(W∕L)
2 (W∕L)

−
√√√√√1 − ΔID∕2ID

1 −
Δ(W∕L)
2 (W∕L)

⎞⎟⎟⎟⎟⎠
(3.244)

If the mismatch terms are small, the argument of each square root in (3.244) is approximately
unity. Using

√
x ≃ (1 + x)∕2 when x ≃ 1 for the argument of each square root in (3.244), we

have

VOS ≃ ΔVt +
(VGS − Vt)

2

⎛⎜⎜⎜⎝
1 + ΔID∕2ID

1 +
Δ(W∕L)
2 (W∕L)

−
1 − ΔID∕2ID

1 −
Δ(W∕L)
2 (W∕L)

⎞⎟⎟⎟⎠ (3.245)
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Carrying out the long divisions in (3.245) and ignoring terms higher than first order gives

VOS ≃ ΔVt +
(VGS − Vt)

2

(
ΔID

ID
−

Δ(W∕L)
(W∕L)

)
(3.246)

When the differential input voltage is VOS, the differential output voltage is zero; therefore,
ID1RL1 = ID2RL2, and

ΔID

ID
= −

ΔRL

RL
(3.247)

In other words, the mismatch in the drain currents must be the opposite of the mismatch of the
load resistors to set VOD = 0. Substituting (3.247) into (3.246) gives

VOS = ΔVt +
(VGS − Vt)

2

(
−
ΔRL

RL
−

Δ(W∕L)
(W∕L)

)
(3.248)

The first term on the right side of (3.248) stems from threshold mismatch. This mismatch
component is present in MOS devices but not in bipolar transistors. This component results in
a constant offset component that is bias-current independent. Threshold mismatch is a strong
function of process cleanliness and uniformity and can be substantially improved by the use of
careful layout. Measurements indicate that large-geometry structures are capable of achieving
threshold-mismatch distributions with standard deviations on the order of 2 mV in a mod-
ern silicon-gate MOS process. This offset component alone limits the minimum offset in the
MOS case and is an order of magnitude larger than the total differential-pair offset in modern
ion-implanted bipolar technologies.

The second term on the right side of (3.248) shows that another component of the offset
scales with the overdrive Vov = (VGS − Vt) and is related to a mismatch in the load elements or
in the device W∕L ratio. In the bipolar emitter-coupled pair offset, the corresponding mismatch
terms were multiplied by VT , typically a smaller number than Vov∕2. Thus source-coupled
pairs of MOS transistors display higher input offset voltage than bipolar pairs for the same
level of geometric mismatch or process gradient even when threshold mismatch is ignored.
The key reason for this limitation is that the ratio of the transconductance to the bias current
is much lower with MOS transistors than in the bipolar case. The quantities VT in (3.216)
and (VGS − Vt)∕2 = Vov∕2 in (3.248) are both equal to IBIAS∕gm for the devices in question.
This quantity is typically in the range 50 to 500 mV for MOS transistors instead of 26 mV for
bipolar transistors.

3.5.6.8 Offset Voltage Drift in the Source-Coupled Pair. Offset voltage drift in MOS-
FET source-coupled pairs does not show the high correlation with offset voltage observed in
bipolar pairs. The offset consists of several terms that have different temperature coefficients.
Both Vt and Vov have a strong temperature dependence, affecting VGS in opposite directions.
The temperature dependence of Vov stems primarily from the mobility variation, which gives
a negative temperature coefficient to the drain current, while the threshold voltage depends
on the Fermi potential. As shown in Section 1.5.4, the latter decreases with temperature and
contributes a positive temperature coefficient to the drain current. The drift due to theΔVt term
in VOS may be quite large if this term itself is large. These two effects can be made to cancel at
one value of ID, which is a useful phenomenon for temperature-stable biasing of single-ended
amplifiers. In differential amplifiers, however, this phenomenon is not greatly useful
because differential configurations already give first-order cancellation of VGS temperature
variations.
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3.5.6.9 Small-Signal Characteristics of Unbalanced Differential Amplifiers.14 As
mentioned in Section 3.5.4, the common-mode-to-differential-mode gain and differential-
mode-to-common-mode gain of unbalanced differential amplifiers are nonzero. The direct
approach to calculation of these cross-gain terms requires analysis of the entire small-signal
diagram. In perfectly balanced differential amplifiers, the cross-gain terms are zero, and the
differential-mode and common-mode gains can be found by using two independent half
circuits, as shown in Section 3.5.5. With imperfect matching, exact half-circuit analysis is still
possible if the half circuits are coupled instead of independent. Furthermore, if the mismatches
are small, a modified version of half-circuit analysis gives results that are approximately
valid. This modified half-circuit analysis not only greatly simplifies the required calculations
but also gives insight about how to reduce Acm−dm and Adm−cm in practice.

First consider a pair of mismatched resistors R1 and R2, shown in Fig. 3.63. Assume
that the branch currents are i1 and i2, respectively. From Ohm’s law, the differential and
common-mode voltages across the resistors can be written as

vd = v1 − v2 = i1R1 − i2R2 (3.249)

and

vc =
v1 + v2

2
=

i1R1 + i2R2

2
(3.250)

Define id = i1 − i2, ic = (i1 + i2)∕2, ΔR = R1 − R2, and R = (R1 + R2)∕2. Then (3.249) and
(3.250) can be rewritten as

vd =
(

ic +
id
2

)(
R + ΔR

2

)
−
(

ic −
id
2

)(
R − ΔR

2

)
= idR + ic (ΔR) (3.251)

and

vc =

(
ic +

id
2

)(
R + ΔR

2

)
+
(

ic −
id
2

)(
R − ΔR

2

)
2

= icR +
id (ΔR)

4
(3.252)

These equations can be used to draw differential and common-mode half circuits for the
pair of mismatched resistors. Since the differential half circuit should give half the differen-
tial voltage dropped across the resistors, the two terms on the right-hand side of (3.251) are
each divided by two and used to represent one component of a branch voltage of vd∕2. The
differential half circuit is shown in Fig. 3.64a. The first component of the branch voltage is the
voltage dropped across R and is half the differential current times the average resistor value.
The second component is the voltage across the dependent voltage source controlled by the
current flowing in the common-mode half circuit and is proportional to half the mismatch in

+

–

i1

v1R1

+

–

i2

v2R2

Figure 3.63 A pair of mismatched resistors.
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id
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2
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–
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ΔR
2

(b)

R R

Figure 3.64 (a) Differential and
(b) common-mode half circuits for a
pair of mismatched resistors.

the resistor values. The common-mode half circuit is constructed from (3.252) and is shown
in Fig. 3.64b. Here the total branch voltage vc is the sum of the voltages across a resistor and
a dependent voltage source controlled by the current flowing in the differential half circuit.
In the limiting case where ΔR = 0, the voltage across each dependent source in Fig. 3.64 is
zero, and each half circuit collapses to simply a resistor of value R. Therefore, the half cir-
cuits are independent in this case, as expected. In practice, however, ΔR ≠ 0, and Fig. 3.64
shows that the differential voltage depends not only on the differential current but also on the
common-mode current. Similarly, the common-mode voltage depends in part on the differen-
tial current. Thus the behavior of a pair of mismatched resistors can be represented exactly by
using coupled half circuits.

Next consider a pair of mismatched voltage-controlled current sources as shown in
Fig. 3.65. Assume that the control voltages are v1 and v2, respectively. Then the differential
and common-mode currents can be written as

id = i1 − i2 = gm1v1 − gm2v2

=
(

gm +
Δgm

2

)(
vc +

vd

2

)
−
(

gm −
Δgm

2

)(
vc −

vd

2

)
= gmvd + Δgmvc

(3.253)

and

ic =
i1 + i2

2
=

gm1v1 + gm2v2

2

=

(
gm +

Δgm

2

)(
vc +

vd

2

)
+
(

gm −
Δgm

2

)(
vc −

vd

2

)
2

= gmvc +
Δgmvd

4
(3.254)

where vd = v1 − v2, vc = (v1 + v2)∕2, Δgm = gm1 − gm2, and gm = (gm1 + gm2)∕2.

gm2v2

i2

gm1v1

i1

Figure 3.65 A pair of mismatched voltage-controlled current
sources.
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(a) (b)
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2
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2
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2

Δgm

2
vc

gmvc

ic

Δgm

2

Figure 3.66 (a) Differential and
(b) common-mode half circuits
for a pair of mismatched voltage-
controlled current sources.

The corresponding differential and common-mode half circuits each use two voltage-
controlled current sources, as shown in Fig. 3.66. In each case, one dependent source is
proportional to the average transconductance and the other to half the mismatch in the
transconductances. With perfect matching, the mismatch terms are zero, and the two half
circuits are independent. With imperfect matching, however, the mismatch terms are nonzero.
In the differential half circuit, the mismatch current source is controlled by the common-mode
control voltage. In the common-mode half circuit, the mismatch current source is controlled
by half the differential control voltage. Thus, as for mismatched resistors, the behavior of a
pair of mismatched voltage-controlled current sources can be represented exactly by using
coupled half circuits.

With these concepts in mind, construction of the differential and common-mode half
circuits of unbalanced differential amplifiers is straightforward. In the differential half circuit,
mismatched resistors are replaced by the circuit shown in Fig. 3.64a, and mismatched
voltage-controlled current sources are replaced by the circuit in Fig. 3.66a. Similarly, the
circuits shown in Figs. 3.64b and 3.66b replace mismatched resistors and voltage-controlled
current sources in the common-mode half circuit. Although mismatches change the differen-
tial and common-mode components of signals that appear at various points in the complete
unbalanced amplifier, the differential components are still equal and opposite, while the
common-mode components are identical by definition. Therefore, small-signal short and
open circuits induced by the differential and common-mode signals are unaffected by these
replacements.

For example, the differential and common-mode half circuits of the unbalanced differential
amplifier shown in Fig. 3.67 are shown in Fig. 3.68. KCL at the output of the differential half
circuit in Fig. 3.68a gives

iRd

2
+ gm

vid

2
+

Δgm

2
v = 0 (3.255)

R1

+

–

–

+
+

–

gm1v1 gm2v2

vo1 R2

–

+

vo2

v1

+

–

v2vi1

+

–

vi2

rtail Figure 3.67 The small-signal
diagram of an unbalanced differential
amplifier.
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Figure 3.68 (a) Differential and
(b) common-mode half circuits of the
differential amplifier shown in Fig. 3.67.

KCL at the output of the common-mode half circuit in Fig. 3.68b gives

gmv +
Δgm

2

vid

2
+ iRc = 0 (3.256)

Also, KVL around the input loop in the common-mode half circuit gives

v = vic − vtail = vic + 2iRcrtail (3.257)

Substituting (3.257) into (3.256) and rearranging gives

iRc = −
gmvic +

Δgm

2

vid

2
1 + 2gmrtail

(3.258)

Substituting (3.257) and (3.258) into (3.255) and rearranging gives

iRd

2
=

vid

2

⎛⎜⎜⎜⎝−gm +
Δgmrtail

Δgm

2
1 + 2gmrtail

⎞⎟⎟⎟⎠ + vic

(
−
Δgm

2
+

Δgmrtailgm

1 + 2gmrtail

)
(3.259)

From KVL in the R branch in the differential half circuit in Fig. 3.68a,

vod

2
= iRc

ΔR
2

+
iRd

2
R (3.260)
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Substituting (3.258) and (3.259) into (3.260) and rearranging gives

vod = Admvid + Acm−dmvic (3.261)

where Adm and Acm−dm are

Adm =
vod

vid

|||| vic=0
= −gmR +

Δgmrtail
Δgm

2
R −

Δgm

2
ΔR
2

1 + 2gmrtail
(3.262)

Acm−dm =
vod

vic

|||| vid=0
= −

(
gmΔR + ΔgmR

1 + 2gmrtail

)
(3.263)

From KVL in the R branch in the common-mode half circuit in Fig. 3.68b,

voc =
iRd

2
ΔR
2

+ iRcR (3.264)

Substituting (3.258) and (3.259) into (3.264) and rearranging gives

voc = Adm−cmvid + Acmvic (3.265)

where Adm−cm and Acm are

Adm−cm =
voc

vid

|||| vic=0

= −1
4

⎡⎢⎢⎢⎢⎢⎣
gmΔR +

ΔgmR − gmΔR

(
2gmrtail

(
Δgm

2gm

)2
)

1 + 2gmrtail

⎤⎥⎥⎥⎥⎥⎦
(3.266)

Acm =
voc

vic

|||| vid=0
= −

⎛⎜⎜⎜⎝
gmR +

Δgm

2
ΔR
2

1 + 2gmrtail

⎞⎟⎟⎟⎠ (3.267)

The calculations in (3.255) through (3.267) are based on the half circuits in Fig. 3.68
and give exactly the same results as an analysis of the entire differential amplifier shown in
Fig. 3.67. Because the half circuits are coupled, however, exact half-circuit analysis requires
the simultaneous consideration of both half circuits, which is about as complicated as the direct
analysis of the entire original circuit.

In practice, the mismatch terms are usually a small fraction of the corresponding average
values. As a result, the dominant contributions to the differential signals that control the
mismatch generators in the common-mode half circuit stem from differential inputs. Similarly,
the dominant part of the common-mode signals that control the mismatch generators in the
differential half circuit arise from common-mode inputs. Therefore, we will assume that the
signals controlling the mismatch generators can be found approximately by analyzing each
half circuit independently without mismatch. The signals that control the mismatch generators
in Fig. 3.68 are iRc, iRd∕2, v, and vid∕2. We will find approximations to these quantities, îRc,
îRd∕2, v̂, and v̂id∕2, using the half circuits shown in Fig. 3.69, where the inputs are the same
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R

+

–

+

–

gm
vid

2

vid

2

R

+

–

+

–

2rtail

vic

iRc

gmvv

(a) (b)

‹

‹

‹‹

vid

2

‹

iRd

2

‹

Figure 3.69 (a) Differen-
tial and (b) common-mode
half circuits of the
differential amplifier shown
in Fig. 3.67, with mismatch
terms set equal to zero.

as in Fig. 3.68 but the mismatch terms are set equal to zero. By ignoring the second-order
interactions in which the mismatch generators influence the values of the control signals, this
process greatly simplifies the required calculations, as shown next.

From inspection of the differential half circuit in Fig. 3.69a,

v̂id

2
=

vid

2
(3.268)

and

îRd

2
= −gm

vid

2
(3.269)

From the common-mode half circuit in Fig. 3.69b,

v̂ = vic − gmv̂ (2rtail) =
vic

1 + 2gmrtail
(3.270)

Therefore,

îRc = −
gmvic

1 + 2gmrtail
(3.271)

Now reconsider the differential half circuit with mismatch shown in Fig. 3.68a. Assume
that iRc ≃ îRc and v ≃ v̂. Then

vod

2
≃ −ΔR

2

(
gmvic

1 + 2gmrtail

)
− gm

vid

2
R −

Δgm

2

vic

1 + 2gmrtail
R (3.272)

From (3.272),

Adm =
vod

vid

|||| vic=0
≃ −gmR (3.273)

and

Acm−dm =
vod

vic

|||| vid=0
≃ −

(
gmΔR + ΔgmR

1 + 2gmrtail

)
(3.274)
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Equation 3.274 shows that the ratio Adm∕Acm−dm is approximately proportional to 1 + 2gmrtail.
Also, (3.274) agrees exactly with (3.263) in this case because the gm generator in
Fig. 3.68a is controlled by a purely differential signal. In other examples, the common-
mode-to-differential-mode gain calculated in this way will be only approximately correct.

Now reconsider the common-mode half circuit with mismatch shown in Fig. 3.68b and
assume that iRd ≃ îRd. From KCL at the tail node,

vtail ≃
(

gmv +
Δgm

2

vid

2

)
2rtail (3.275)

Then

v = vic − vtail ≃
vic −

Δgm

2

vid

2
(2rtail)

1 + 2gmrtail
(3.276)

From KCL at the output node in Fig. 3.68b,

voc −
iRd

2
ΔR
2

R
+ gmv +

Δgm

2

vid

2
= 0 (3.277)

Assume that iRd ≃ îRd. Substituting (3.269) and (3.276) into (3.277) and rearranging gives

voc ≃ −1
4

(
gmΔR +

ΔgmR

1 + 2gmrtail

)
vid −

gmR

1 + 2gmrtail
vic (3.278)

From (3.278),

Adm−cm =
voc

vid

|||| vic=0
≃ −1

4

(
gmΔR +

ΔgmR

1 + 2gmrtail

)
(3.279)

and

Acm =
voc

vic

|||| vid=0
≃ −

gmR

1 + 2gmrtail
(3.280)

These equations show that increasing the degeneration to common-mode inputs represented
by the quantity 1 + 2gmrtail reduces the magnitude of Acm−dm, Adm−cm, and Acm. As rtail → ∞ in
this case, Acm−dm → 0 and Acm → 0. On the other hand, Adm−cm does not approach zero when
rtail becomes infinite. Instead,

lim
rtail→∞

Adm−cm ≃ −
gmΔR

4
(3.281)

With finite and mismatched transistor output resistances, Acm−dm also approaches a nonzero
value as rtail becomes infinite. Therefore, rtail should be viewed as an important parameter
because it reduces the sensitivity of differential pairs to common-mode inputs and helps reduce
the effects of mismatch. However, even an ideal tail current source does not overcome all the
problems introduced by mismatch. In Chapter 4, we will consider transistor current sources
for which rtail can be quite large.
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◼ EXAMPLE
Consider the unbalanced differential amplifier in Fig. 3.67. Assume that

gm1 = 1.001 mA/V gm2 = 0.999 mA/V
R1 = 101 kΩ R2 = 99 kΩ rtail = 1 MΩ

Find Adm, Acm, Acm−dm, and Adm−cm.
Calculating average and mismatch quantities gives

gm =
gm1 + gm2

2
= 1

mA
V

Δgm = gm1 − gm2 = 0.002
mA
V

R =
R1 + R2

2
= 100 kΩ ΔR = R1 − R2 = 2 kΩ

From (3.269),

îRd

2
= −1

mA
V

vid

2
= −

vid

2 kΩ
From (3.271),

îRc = −
1

mA
V

vic

1 + 2 (1)(1000)
= −

vic

2001 kΩ

From (3.273), (3.274), (3.279), and (3.280),

Adm ≃ −1 (100) = −100

Acm−dm ≃ −1 (2) + 0.002 (100)
1 + 2 (1)(1000)

≃ −0.0011

Adm−cm ≃ −1
4

(
1 (2) + 0.002 (100)

1 + 2 (1)(1000)

)
≃ −0.5

Acm ≃ − 1 (100)
1 + 2 (1)(1000)

≃ −0.05
◼

APPENDIX
A.3.1 ELEMENTARY STATISTICS AND THE GAUSSIAN DISTRIBUTION

From the standpoint of a circuit designer, many circuit parameters are best regarded as random
variables whose behavior is described by a probability distribution. This view is particularly
important in the case of a parameter such as offset voltage. Even though the offset may be
zero with perfectly matched components, random variations in resistors and transistors cause
a spread of offset voltage around the mean value, and the size of this spread determines the
fraction of circuits that meet a given offset specification.

Several factors cause the parameters of an integrated circuit to show random variations.
One of these factors is the randomness of the edge definition when regions are defined to form
resistors and active devices. In addition, random variations across the wafer in the diffusion of
impurities can be a significant factor. These processes usually give rise to a Gaussian distri-
bution (sometimes called a normal distribution) of the parameters. A Gaussian distribution of
a parameter x is specified by a probability density function p(x) given by

p(x) = 1√
2𝜋𝜎

exp

[
−(x − m)2

2𝜎2

]
(3.282)
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where 𝜎 is the standard deviation of the distribution and m is the mean or average value of x.
The significance of this function is that, for one particular circuit chosen at random from a large
collection of circuits, the probability of the parameter having values between x and (x + dx) is
given by p(x)dx, which is the area under the curve p(x) in the range x to (x + dx). For example,
the probability that x has a value less than X is obtained by integrating (3.282) to give

P(x < X) = ∫
X

−∞
p(x) dx (3.283)

= ∫
X

−∞

1√
2𝜋𝜎

exp

[
−(x − m)2

2𝜎2

]
dx (3.284)

In a large sample, the fraction of circuits where x is less than X will be given by the probability
P(x < X), and thus this quantity has real practical significance. The probability density function
p(x) in (3.282) is sketched in Fig. 3.70 and shows a characteristic bell shape. The peak value
of the distribution occurs when x = m, where m is the mean value of x. The standard deviation
𝜎 is a measure of the spread of the distribution, and large values of 𝜎 give rise to a broad
distribution. The distribution extends over −∞ < x < ∞, as shown by (3.282), but most of
the area under the curve is found in the range x = m ± 3𝜎, as will be seen in the following
analysis.

The development thus far has shown that the probability of the parameter x having values in
a certain range is just equal to the area under the curve of Fig. 3.70 in that range. Since x must
lie somewhere in the range ±∞, the total area under the curve must be unity, and integration of
(3.282) will show that this is so. The most common specification of interest to circuit designers
is the fraction of a large sample of circuits that lies inside a band around the mean. For example,
if a circuit has a gain x that has a Gaussian distribution with mean value 100, what fraction of
circuits have gain values in the range 90 to 110? This fraction can be found by evaluating the
probability that x takes on values in the range x = m ± 10, where m = 100. This probability

x linear scale

p(x)
linear
scale

0.5

2  

m – 2  

m –   

m

σ

0.4
σ

0.3
σ

σ

σ
σ m +   σ

m + 2  σ

0.2
σ

0.1
σ

Figure 3.70 Probability density function p(x) for a Gaussian distribution with mean value m and standard

deviation 𝜎. p(x) = exp[−(x − m)2∕(2𝜎2)]∕(
√

2𝜋𝜎).
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can be found from (3.282), if 𝜎 is known, by integrating as follows:

P(m − 10 < x < m + 10) = ∫
m+10

m−10

1√
2𝜋𝜎

exp

[
−(x − m)2

2𝜎2

]
dx (3.285)

This equation gives the area under the Gaussian curve in the range x = m ± 10.
To simplify calculations of the kind described above, values of the integral in (3.285) have

been calculated and tabulated. To make the tables general, the range of integration is normal-
ized to 𝜎 to give

P(m − k𝜎 < x < m + k𝜎) = ∫
m+k𝜎

m−k𝜎

1√
2𝜋𝜎

exp

[
−(x − m)2

2𝜎2

]
dx (3.286)

Values of this integral for various values of k are tabulated in Fig. 3.71. This table shows that
P = 0.683 for k = 1, and thus 68.3 percent of a large sample of a Gaussian distribution lies
within a range x = m ± 𝜎. For k = 3, the value of P = 0.997, and thus 99.7 percent of a large
sample lies within a range x = m ± 3𝜎.

Circuit parameters such as offset or gain often can be expressed as a linear combination of
other parameters, as shown in (3.216) and (3.248) for offset voltage. If all the parameters are
independent random variables with Gaussian distributions, the standard deviations and means
can be related as follows. Assume that the random variable x can be expressed in terms of
random variables a, b, and c using

x = a + b − c (3.287)

Area under the Gaussian curve

k in the range m ± k𝜎

0.2 0.159

0.4 0.311

0.6 0.451

0.8 0.576

1.0 0.683

1.2 0.766

1.4 0.838

1.6 0.890

1.8 0.928

2.0 0.954

2.2 0.972

2.4 0.984

2.6 0.991

2.8 0.995

3.0 0.997

Figure 3.71 Values of the integral in (3.286) for various values of k. This integral gives the area under
the Gaussian curve of Fig. 3.70 in the range x = ±k𝜎.
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Then it can be shown that

mx = ma + mb − mc (3.288)

𝜎2
x = 𝜎2

a + 𝜎2
b + 𝜎2

c (3.289)

where mx is the mean value of x and 𝜎x is the standard deviation of x. Equation 3.289 shows
that the square of the standard deviation of x is the sum of the square of the standard deviations
of a, b, and c. This result extends to any number of variables.

These results were treated in the context of the random variations found in circuit
parameters. The Gaussian distribution is also useful in the treatment of random noise, as
described in Chapter 11.

◼ EXAMPLE
The offset voltage of a circuit has a mean value of m = 0 and a standard deviation of 𝜎 = 2 mV.
What fraction of circuits will have offsets with magnitudes less than 4 mV?

A range of offset of ±4 mV corresponds to ±2𝜎. From Fig. 3.71, we find that the area under
the Gaussian curve in this range is 0.954, and thus 95.4 percent of circuits will have offsets
with magnitudes less than 4 mV.◼

PROBLEMS
For the npn bipolar transistors in these problems, use
the high-voltage bipolar device parameters given in
Fig. 2.30, unless otherwise specified.

3.1 Determine the input resistance, transconduc-
tance, and output resistance of the CE amplifier of
Fig. 3.7 if RC = 20 kΩ and IC = 250 μA. Assume that
rb = 0.

3.2 A CE transistor is to be used in the amplifier
of Fig. 3.72 with a source resistance RS and collector
resistor RC. First, find the overall small-signal gain
vo∕vi as a function of RS, RC, 𝛽0, VA, and the collector
current IC. Next, determine the value of dc collec-
tor bias current IC that maximizes the small-signal
voltage gain. Explain qualitatively why the gain falls
at very high and very low collector currents. Do not
neglect ro in this problem. What is the voltage gain at
the optimum IC? Assume that rb = 0.

RC

RS

VCC

vi

vo

+

–

+

–

Figure 3.72 Circuit for Problem 3.2.

3.3 Assume that RS = RC = 50 kΩ in Prob-
lem 3.2, and calculate the optimum IC. What is the
dc voltage drop across RC? What is the voltage gain?

3.4 For the common-source amplifier of Fig. 3.12,
calculate the small-signal voltage gain and the bias
values of Vi and Vo at the edge of the triode region.
Also calculate the bias values of Vi and Vo where
the small-signal voltage gain is unity with the tran-
sistor operating in the active region. What is the
maximum voltage gain of this stage? Assume VDD =
3 V, RD = 5 kΩ, μnCox = 200 μA∕V2, W = 10 μm,
L = 1 μm, Vt = 0.6 V, and 𝜆 = 0. Check your answer
with SPICE.

3.5 Determine the input resistance, transconduc-
tance, and output resistance of the CB amplifier of
Fig. 3.15 if IC = 250 μA and RC = 10 kΩ. Neglect rb

and ro.

3.6 Assume that RC is made large compared with
ro in the CB amplifier of Fig. 3.15. Use the equiva-
lent circuit of Fig. 3.17 and add ro between the input
(emitter terminal) and the output (collector terminal)
to calculate the output resistance when

(a) The amplifier is driven by an ideal current
source.

(b) The amplifier is driven by an ideal voltage
source. Neglect rb.

3.7 Determine the input resistance of the CG
amplifier of Fig. 3.19 if the transistor operates in
the active region with ID = 100 μA. Let RD = 10 kΩ,
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μnCox = 200 μA∕V2, 𝜆 = 0.01 V−1, W = 100 μm,
and L = 1 μm. Ignore the body effect. Repeat with
RD = 1 MΩ. If the 100-μA current flows through RD

in this case, a power-supply voltage of at least 100 V
would be required. To overcome this problem, assume
that an ideal 100-μA current source is placed in paral-
lel with RD here.

3.8 Determine the input resistance, voltage gain
vo∕vs, and output resistance of the CC amplifier of
Fig. 3.23a if RS = 5 kΩ, RL = 500 Ω, and IC = 1 mA.
Neglect rb and ro. Do not include RS in calculating the
input resistance. In calculating the output resistance,
however, include RL. Include both RS and RL in the
gain calculation.

3.9 For the common-drain amplifier of Fig. 3.73,
assume W∕L = 10 and 𝜆 = 0. Use Table 2.2 for
other parameters. Find the dc output voltage VO

and the small-signal gain vo∕vi under the following
conditions:

(a) Ignoring the body effect and with R → ∞.

(b) Including the body effect and with R → ∞.

(c) Including the body effect and with
R = 100 kΩ.

(d) Including the body effect and with R = 10 kΩ.

VDD = 5 V

R Vo

vi
+

–

+

–
200 μA

3 V

Figure 3.73 Circuit for Problem 3.9.

3.10 Determine the dc collector currents in Q1 and
Q2 and then the input resistance and voltage gain for
the Darlington emitter follower of Fig. 3.74. Neglect
rμ, rb, and ro. Assume that VBE(on) = 0.7 V. Check your
answer with SPICE, and also use SPICE to determine
the output resistance of the stage.

3.11 Calculate the output resistance rc
o of the

common-emitter Darlington transistor of Fig. 3.75 as
a function of IBIAS. Do not neglect either ro1 or ro2 in
this calculation, but you may neglect rb and rμ. If IC2 =
1 mA, what is rc

o for IBIAS = 1 mA? For IBIAS = 0?

3.12 A BiCMOS Darlington is shown in Fig. 3.76.
The bias voltage VB is adjusted for a dc output
voltage of 2 V. Calculate the bias currents in both
devices, and then calculate the small-signal voltage

VCC = 10 V

vo

+

–

vi

Q1

Q2

+

–

5 V
1 kΩ

50 Ω

Figure 3.74 Circuit for Problem 3.10.

ro
c

IBIAS

Q1

Q2

Ic2

ac ground

Figure 3.75 Circuit for Problem 3.11.

VCC = 3 V

vi

M1

Q2

+

– vo

+

–

VB

RB
1 kΩ

RL = 1 kΩ

Figure 3.76 BiCMOS Darlington circuit for
Problem 3.12.

gain vo∕vi of the circuit. For the MOS transistor,
assume W = 10 μm, L = 1 μm, μnCox = 200 μA∕V2,
Vt = 0.6 V, 𝛾 = 0.25 V1∕2,𝜙f = 0.3 V, and 𝜆 = 0. For
the bipolar transistor, assume IS = 10−16A, 𝛽F = 100,
rb = 0, and VA → ∞. Use SPICE to check your result.
Then add 𝜆 = 0.05 V−1, rb = 100 Ω, and VA = 20 V
and compare the original result to the result with this
new transistor data. Finally, use SPICE to compute the
dc transfer characteristic of the circuit.
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3.13 Determine the input resistance, transconduc-
tance, output resistance, and maximum open-circuit
voltage gain for the CE-CB circuit of Fig. 3.36 if
IC1 = IC2 = 250 μA.

3.14 Determine the input resistance, transconduc-
tance, output resistance, and maximum open-circuit
voltage gain for the CS-CG circuit of Fig. 3.38 if ID1 =
ID2 = 250 μA. Assume W∕L = 100, 𝜆 = 0.1 V−1, and
𝜒 = 0.1. Use Table 2.2 for other parameters.

3.15 Find the output resistance for the active-
cascode circuit of Fig. 3.77 excluding resistor R.
Assume that all the transistors operate in the active
region with dc drain currents of 100 μA. Use the
transistor parameters in Table 2.4. Ignore the body
effect. Assume W = 10 μm, Ldrwn = 0.4 μm, and
Xd = 0.1 μm for all transistors. Check your answer
with SPICE.

Vi

+

–

Vo

+

–

Ro

I R

M2

M1

M3

VDD

Figure 3.77 Active-cascode circuit for Problem 3.15.

1 kΩ

M1

RL1

300

1

10 kΩ

Q1

RL2 10 kΩ

Q2

M2

Q3

1 kΩRL3

RB

20

1

5 V

+

−
Vo

+

−
Vi

RF = 30 kΩ

Figure 3.78 BiCMOS amplifier for Problem 3.17.

3.16 Find the short-circuit transconductance of
the super source follower shown in Fig. 3.43a.
Assume I1 = 200 μA, I2 = 100 μA, W1 = 30 μm, and
W2 = 10 μm. Also, assume that both transistors
operate in the active region, and ignore the body
effect. Use the transistor parameters in Table 2.4.
Assume Ldrwn = 0.4 μm and Xd = 0.1μm for all
transistors.

3.17 A BiCMOS amplifier is shown in Fig. 3.78.
Let Vi = VI + vi and Vo = VO + vo. Calculate the
small-signal voltage gain vo∕vi. Assume IS = 10−16 A,
𝛽F = 100, rb = 0, VA → ∞, μnCox = 200 μA∕V2,
Vt = 0.6 V, and 𝜆 = 0. Check your answer with
SPICE, and then use SPICE to investigate the effects
of velocity saturation by including source degener-
ation in the MOS transistors as shown in Fig. 1.41
using c = 1.5 × 106 V∕m.

3.18 Determine the differential-mode gain,
common-mode gain, differential-mode input resis-
tance, and common-mode input resistance for the cir-
cuit of Fig. 3.45 with ITAIL = 20 μA, RTAIL = 10 MΩ,
RC = 100 kΩ, and VEE = VCC = 5 V. Neglect rb, ro,
and rμ. Calculate the CMRR. Check with SPICE, and
use SPICE to investigate the effects of adding nonzero
rb and finite VA as given in Fig. 2.30.

3.19 Repeat Problem 3.18, but with the addition
of emitter-degeneration resistors of value 4 kΩ each.

3.20 Determine the overall input resistance, volt-
age gain, and output resistance of the CC-CB con-
nection of Fig. 3.79. Neglect ro, rμ, and rb. Note
that the addition of a 10 kΩ resistor in the col-
lector of Q1 would not change the results, so
the results of the emitter-coupled pair analysis can
be used.
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vi

+

–

vo

VCC = +15 V

VEE = –15 V

RTAIL = 10 kΩ

+

–Q1 Q2

10 kΩ

Figure 3.79 Circuit for Problem 3.20.

3.21 Use half-circuit concepts to determine the
differential-mode and common-mode gain of the
circuit shown in Fig. 3.80. Neglect ro, rμ, and rb.
Calculate the differential-mode and common-mode
input resistance.

vi1 vi2

vo2vo1

+VCC

IEE IEE

RL
RCRC

RE

–VEE 

Q1 Q2

Figure 3.80 Circuit for Problem 3.21.

3.22 Consider the circuit of Fig. 3.80, except
replace both npn transistors with n-channel MOS
transistors. Neglect the body effect, and assume
𝜆 = 0. Use half-circuit concepts to determine the
differential-mode and common-mode gain of this
modified circuit.

3.23 Design an emitter-coupled pair of the type
shown in Fig. 3.53a. Assume ITAIL = 0, and select val-
ues of RC and RTAIL to give a differential input resis-
tance of 2 MΩ, a differential voltage gain of 500, and
a CMRR of 500. What are the minimum values of
VCC and VEE that will yield this performance while
keeping the transistors biased in the forward-active
region under zero-signal conditions? Assume that the
dc common-mode input voltage is zero. Neglect rb, rμ,
and ro.

3.24 Determine the required bias current and
device sizes to design a source-coupled pair to
have the following two characteristics. First, the
small-signal transconductance with zero differential
input voltage should be 1.0 mA/V. Second, a differ-
ential input voltage of 0.2 V should result in a differ-
ential output current of 85 percent of the maximum
value. Assume that the devices are n-channel transis-
tors that are made with the technology summarized in
Table 2.4. Use a drawn device channel length of 1 μm.
Neglect channel-length modulation, and assume
Xd = 0.

3.25 For the circuit of Fig. 3.45, determine the
input offset voltage if the transistor base widths mis-
match by 10 percent but otherwise the circuit is bal-
anced. Let RTAIL → ∞.

3.26 Determine the input offset voltage of
the source-coupled pair in Fig. 3.50 for which
ITAIL = 50 μA. The drawn device dimensions are
W = 10 μm and L = 1 μm. Use the process param-
eters given in Table 2.4. Assume that the worst-case
W∕L mismatch is 2 percent and the device thresholds
are identical. Also assume that Xd = 0, RTAIL → ∞,
and the load resistors are identical.

3.27 Use half-circuit analysis to determine Adm,
Acm, Acm−dm, and Adm−cm for a resistively loaded dif-
ferential pair with mismatched resistive loads R1

and R2. Assume that R1 = 10.1 kΩ and R2 = 9.9 kΩ.
Also assume that gm1 = gm2 = 1 mA/V, ro1 → ∞, and
ro2 → ∞. Finally, assume that the equivalent resis-
tance of the tail current source rtail = 1 MΩ.

3.28 Repeat Problem 3.27 but with matched loads
and mismatched transistor output resistances. Assume
R1 = R2 = 10 kΩ, ro1 = 505 kΩ, and ro2 = 495 kΩ.
What happens when rtail → ∞?

3.29 Draw the schematics of two super-source-
follower circuits using a p-channel transistor for M1 in
each case. M2 should be an n-channel transistor in one
of the circuits and a p-channel transistor in the other.
In both circuits, label the current sources so that the
equations derived in Section 3.4.4 apply to these new
circuits.
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CHAPTER 4

Current Mirrors, Active
Loads, and References

4.1 Introduction
Current mirrors made by using active devices have come to be widely used in analog
integrated circuits both as biasing elements and as load devices for amplifier stages. The
use of current mirrors in biasing can result in superior insensitivity of circuit performance to
variations in power supply and temperature. Current mirrors are frequently more economical
than resistors in terms of the die area required to provide bias current of a certain value,
particularly when the required value of bias current is small. When used as a load element
in transistor amplifiers, the high incremental resistance of the current mirror results in high
voltage gain at low power-supply voltages.

Section 4.2 introduces replica biasing as a general technique that can be used to design
current mirrors. Section 4.3 describes the general properties of current mirrors and compares
various bipolar and MOS mirrors to each other using these properties. Section 4.4 deals with
the use of current mirrors as load elements in amplifier stages. The last section shows how
current mirrors are used to construct references that are insensitive to variations in supply and
temperature. Finally, the appendix analyzes the effects of device mismatch.

4.2 Replica Biasing
Suppose that M1 in Fig. 4.1a is the tail current source for a differential pair, which is not
shown for simplicity. Assume the goal is to bias the gate of M1 so that its dc drain current is
I. If I = (k′∕2)(W∕L)(VGS1 − Vt)2, as shown in (1.157), then this drain current flows when the
gate-source voltage is driven by a voltage source VGS1 = Vt + Vov, where the overdrive voltage
Vov =

√
2I∕[k′(W∕L)], as shown in (1.166). However, the biasing scheme shown in Fig. 4.1a

is rarely if ever used in practice for several reasons. First, the transconductance parameter, k′,
and the threshold, Vt, are not normally known precisely. Second, the idea that the drain current
is proportional to the square of VGS1 − Vt is an approximation that stems from a first-order
analysis of transistor physics used mainly to simplify hand calculations. Third, variation in
VGS1 in Fig. 4.1a arising for any reason, for example from variation in a power-supply voltage
used to produce this gate-source voltage, introduces unwanted variation in I. To overcome
these problems, replica biasing can be used instead.

Figure 4.1b shows transistor M1 with a replica or copy of itself M2. Neither transistor is
biased in Fig. 4.1b. With replica biasing, the replica is connected in a negative feedback loop
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Figure 4.1 (a) M1 biased by VGS1 voltage
source. (b) M1 with replica M2 with
neither biased. (c) Replica M2 in a
negative feedback loop finding VBIAS that
sets ID2 = IBIAS. (d) The entire
replica-biased circuit with VGS1 = VBIAS.

and forced to generate one or more bias voltages that can be used to control the original cir-
cuit (M1 in this case). Negative feedback is presented in Chapter 8. For now, the key point is
that negative feedback is implemented in Fig. 4.1c by connecting the drain to the gate of M2,
setting VGD2 = 0. Also, a current source IBIAS is connected to the drain of M2. For simplicity,
assume that zero gate current flows in MOS transistors. To satisfy KCL at the drain of M2,
this circuit generates the value of VGS2 for which ID2 = IBIAS without knowledge of k′ and
Vt and no matter what the actual relationship is between VGS2 and ID2. This value of VGS2 is
labeled VBIAS in Fig. 4.1c. Finally, Fig. 4.1d shows the gate of M1 connected to the gate of
M2 to bias M1. If M2 is a perfect replica of M1, then I = IBIAS, provided that VDS1 = VDS2.
Since VGD2 = 0, VDS2 = VGS2. VDS1 is established by circuits connected to the drain of M1,
which are not shown in Fig. 4.1 for simplicity. If VDS1 ≠ VDS2, then I normally is not equal to
IBIAS, creating an error that is ignored here but analyzed later in this chapter. Under these con-
ditions, the original goal of biasing M1 so that its dc drain current is I is satisfied by choosing
IBIAS = I in Fig. 4.1d.

In practice, the replica is often scaled compared to the circuit it biases to reduce power
dissipation. For example, Fig. 4.2 shows a circuit in which the output current, I, comes from
M1a and M1b together. If M1a, M1b, and M2 are identical to each other, M2 is a replica of one of
the two output transistors here. Under the conditions used to analyze the circuit in Fig. 4.1d,
ID2 = IBIAS = ID1a = ID1b. From KCL, the output current is I = ID1a + ID1b = 2IBIAS. There-
fore, IBIAS is halved here to produce the same output current as in Fig. 4.1d, halving the
power dissipated in the replica branch. Since many electronic circuits are battery operated
nowadays, reducing power dissipation is important. However, a drawback of this approach is
that it reduces the transconductance of M2, worsening the frequency response of this circuit.
Frequency response is covered in Chapter 7.

Replica biasing counts on excellent matching between components that are ideally identi-
cal. Integrated-circuit (IC) technologies provide excellent matching because components are
built close to each other under almost the same conditions. In contrast, with discrete transis-
tors and passive elements, matching is much worse than in IC technologies. Therefore, replica
biasing has become important in IC technologies, and other examples of replica biasing are
shown in Chapters 6, 9, and 12.
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Figure 4.2 Replica biasing of a
current source with a scaled replica.

The circuits shown in Fig. 4.1d and Fig. 4.2 are called current mirrors, which are analyzed
in this chapter, starting in the next section. We will see that replica biasing is used in all current
mirrors, but the biasing branches are not always replicas of the circuits they are biasing.

4.3 Current Mirrors
4.3.1 General Properties

A current mirror is an element with at least three terminals, as shown in Fig. 4.3. The common
terminal is connected to a power supply, and the input current source is connected to the input
terminal. Ideally, the output current is equal to the input current multiplied by a desired current
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Figure 4.3 Current-mirror block diagrams
referenced to (a) ground and (b) the
positive supply.
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gain. If the gain is unity, the input current is reflected to the output, leading to the name current
mirror. Under ideal conditions, the current-mirror gain is independent of input frequency, and
the output current is independent of the voltage between the output and common terminals.
Furthermore, the voltage between the input and common terminals is ideally zero because this
condition allows the entire supply voltage to appear across the input current source, simplifying
its transistor-level design. More than one input and/or output terminals are sometimes used.

In practice, real transistor-level current mirrors suffer many deviations from this ideal
behavior. For example, the gain of a real current mirror is never independent of the input
frequency. The topic of frequency response is covered in Chapter 7, and mainly dc and
low-frequency ac signals are considered in the rest of this chapter. Deviations from ideality
that will be considered in this chapter are listed below:

1. One of the most important deviations from ideality is the variation of the current-mirror
output current with changes in voltage at the output terminal. This effect is character-
ized by the small-signal output resistance, Ro, of the current mirror. A Norton-equivalent
model of the output of the current mirror includes Ro in parallel with a current source
controlled by the input current. The output resistance directly affects the performance of
many circuits that use current mirrors. For example, the common-mode rejection ratio
of the differential amplifier depends directly on this resistance, as does the gain of the
active-load circuits. Increasing the output resistance reduces the dependence of the out-
put current on the output voltage and is therefore desirable. Generally speaking, the
output resistance increases in practical circuits when the output current decreases. Unfor-
tunately, decreasing the output current also decreases the maximum operating speed.
Therefore, when comparing the output resistance of two current mirrors, they should be
compared at identical output currents.

2. Another important error source is the gain error, which is the deviation of the gain of
a current mirror from its ideal value. The gain error is separated into two parts: (1) the
systematic gain error and (2) the random gain error. The systematic gain error, 𝜖, is the
gain error that arises even when all matched elements in the mirror are perfectly matched
and will be calculated for each of the current mirrors presented in this section. The
random gain error is the gain error caused by unintended mismatches between matched
elements.

3. When the input current source is connected to the input terminal of a real current mirror,
it creates a positive voltage drop, VIN, that reduces the voltage available across the input
current source. Minimizing VIN is important because it simplifies the design of the input
current source, especially in low-supply applications. To reduce VIN, current mirrors
sometimes have more than one input terminal. In that case, we will calculate an input
voltage for each input terminal. An example is the MOS high-swing cascode current
mirror considered in Section 4.3.5.

4. A positive output voltage, VOUT, is required in practice to make the output current depend
mainly on the input current. This characteristic is summarized by the minimum voltage
across the output branch, VOUT(min), that allows the output device(s) to operate in the
active region. Minimizing VOUT(min) maximizes the range of output voltages for which
the current-mirror output resistance is almost constant, which is important in applica-
tions where current mirrors are used as active loads in amplifiers (especially with low
power-supply voltages). This topic is covered in Section 4.4. When current mirrors have
more than one output terminal, each output must be biased above its VOUT(min) to make
the corresponding output current depend mainly on the input current.
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In later sections, the performance of various current mirrors will be compared to each other
through these four parameters: Ro, 𝜖, VIN, and VOUT(min).

4.3.2 Simple Current Mirror

4.3.2.1 Bipolar. The simplest form of a current mirror consists of two transistors.
Figure 4.4a shows a bipolar version of this mirror. Transistor Q1 is diode connected, forcing
its collector-base voltage to zero. In this mode, the collector-base junction is off in the sense
that no injection takes place there, and Q1 operates in the forward-active region. Assume that
Q2 also operates in the forward-active region and that both transistors have infinite output
resistance. Then IOUT is controlled by VBE2, which is equal to VBE1 by KVL. A KVL equation
is at the heart of the operation of all current mirrors. Neglecting junction leakage currents,

VBE2 = VT ln
IC2

IS2
= VBE1 = VT ln

IC1

IS1
(4.1)

where VT = kT∕q is the thermal voltage and IS1 and IS2 are the transistor saturation currents.
From (4.1),

IC2 =
IS2

IS1
IC1 (4.2)
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Figure 4.4 (a) A simple
bipolar current mirror.
(b) npn output
characteristic.
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If the transistors are identical, IS1 = IS2, and (4.2) shows that the current flowing in the
collector of Q1 is mirrored to the collector of Q2. KCL at the collector of Q1 yields

IIN − IC1 −
IC1

𝛽F
−

IC2

𝛽F
= 0 (4.3)

Therefore, with identical transistors,

IOUT = IC2 = IC1 =
IIN

1 + 2
𝛽F

(4.4)

If 𝛽F is large, the base currents are small, and

IOUT = IC1 ≃ IIN (4.5)

Thus for identical devices Q1 and Q2, the gain of the current mirror is approximately unity.
This result holds for both dc and low-frequency ac currents. Above the 3 dB frequency
of the mirror, however, the base current increases noticeably because the impedance of
the base-emitter capacitance decreases, reducing the gain of the current mirror. Frequency
response is studied in Chapter 7. The rest of this section considers dc currents only.

In practice, the devices need not be identical. Then from (4.2) and (4.3),

IOUT =
IS2

IS1
IC1 =

(
IS2

IS1
IIN

)⎛⎜⎜⎜⎜⎝
1

1 +
1 + (IS2∕IS1)

𝛽F

⎞⎟⎟⎟⎟⎠
(4.6)

When IS2 = IS1, (4.6) is the same as (4.4). Since the saturation current of a bipolar transistor is
proportional to its emitter area, the first term in (4.6) shows that the gain of the current mirror
can be larger or smaller than unity because the emitter areas can be ratioed. If the desired
current-mirror gain is a rational number, M∕N, the area ratio is usually set by connecting M
identical devices called units in parallel to form Q2 and N units in parallel to form Q1, to
minimize mismatch arising from lithographic effects in forming the emitter regions. However,
area ratios greater than about five to one consume a large die area dominated by the area of the
larger of the two devices. Thus other methods described in later sections are preferred for the
generation of large current ratios. The last term in (4.6) accounts for error introduced by finite
𝛽F. Increasing IS2∕IS1 increases the magnitude of this error by increasing the base current of
Q2 compared to that of Q1.

In writing (4.1) and (4.2), we assumed that the collector currents of the transistors are
independent of their collector-emitter voltages. If a transistor is biased in the forward-active
region, its collector current actually increases slowly with increasing collector-emitter voltage.
Figure 4.4b shows an output characteristic for Q2. The output resistance of the current mirror
at any given operating point is the reciprocal of the slope of the output characteristic at that
point. In the forward-active region,

Ro = ro2 =
VA

IC2
(4.7)

The point where VCE2 = VCE1 and VBE2 = VBE1 is labeled on the characteristic. Because
the collector current is controlled by the base-emitter and collector-emitter voltages,
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IC2 = (IS2∕IS1)IC1 at this point. If the slope of the characteristic in saturation is constant, the
variation in IC2 for changes in VCE2 can be predicted by a straight line that goes through
the labeled point. As described in Chapter 1, extrapolation of the output characteristic in
the forward-active region back to the VCE2 axis gives an intercept at −VA, where VA is the
Early voltage. If VA ≫ VCE1, the slope of the straight line is about equal to (IS2∕IS1)(IC1∕VA).
Therefore,

IOUT =
IS2

IS1
IC1

(
1 +

VCE2 − VCE1

VA

)
=

IS2

IS1
IIN

(
1 +

VCE2 − VCE1

VA

)
1 +

1 + (IS2∕IS1)
𝛽F

(4.8)

Since the ideal gain of the current mirror is IS2∕IS1, the systematic gain error, 𝜖, of the current
mirror can be calculated from (4.8).

𝜖 =

⎛⎜⎜⎜⎜⎝
1 +

VCE2 − VCE1

VA

1 +
1 + (IS2∕IS1)

𝛽F

⎞⎟⎟⎟⎟⎠
− 1 ≃

VCE2 − VCE1

VA
−

1 + (IS2∕IS1)
𝛽F

(4.9)

The first term in (4.9) stems from finite output resistance and the second term from finite 𝛽F.
If VCE2 > VCE1, the polarities of the two terms are opposite. Since the two terms are indepen-
dent, however, cancellation is unlikely in practice. The first term dominates when the difference
in the collector-emitter voltages and 𝛽F are large. For example, with identical transistors and
VA = 130 V, if the collector-emitter voltage of Q1 is held at VBE(on), and if the collector-emitter
voltage of Q2 is 30 V, then the systematic gain error (30 − 0.6)∕130 − 2∕200 ≃ 0.22. Thus for
a circuit operating at a power-supply voltage of 30 V, the current-mirror currents can differ by
more than 20 percent from those values calculated by assuming that the transistor output resis-
tance and 𝛽F are infinite. Although the first term in (4.9) stems from finite output resistance,
it does not depend on ro2 directly but instead on the collector-emitter and Early voltages. The
Early voltage is independent of the bias current, and

VIN = VCE1 = VBE1 = VBE(on) (4.10)

Since VBE(on) is proportional to the natural logarithm of the collector current, VIN changes
little with changes in bias current. Therefore, changing the bias current in a current mirror
changes systematic gain error mainly through changes in VCE2.

Finally, the minimum output voltage required to keep Q2 in the forward-active region is

VOUT(min) = VCE2(sat) (4.11)

4.3.2.2 MOS. Figure 4.5a shows an MOS version of the simple current mirror. The
drain-gate voltage of M1 is zero; therefore, the channel does not exist at the drain, and the
transistor operates in the saturation or active region if the threshold is positive. Although
the principle of operation for MOS transistors does not involve forward biasing any diodes,
M1 is said to be diode connected in an analogy to the bipolar case. Assume that M2 also
operates in the active region and that both transistors have infinite output resistance. Then ID2
is controlled by VGS2, which is equal to VGS1 by KVL. A KVL equation is at the heart of the
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Figure 4.5 (a) A simple MOS current mirror. (b) Output characteristic of simple MOS current mirror.

operation of all current mirrors. As described in Section 1.5.3, the gate-source voltage of a
given MOS transistor is usually separated into two parts: the threshold Vt and the overdrive
Vov. Assuming square-law behavior as in (1.157), the overdrive for M2 is

Vov2 = VGS2 − Vt =

√
2ID2

k′(W∕L)2
(4.12)

Since the transconductance parameter k′ is proportional to mobility, and since mobility falls
with increasing temperature, the overdrive rises with temperature. In contrast, Section 1.5.4
shows that the threshold falls with increasing temperature. From KVL and (1.157),

VGS2 = Vt +

√
2ID2

k′(W∕L)2
= VGS1 = Vt +

√
2ID1

k′(W∕L)1
(4.13)

Equation 4.13 shows that the overdrive of M2 is equal to that of M1:

Vov2 = Vov1 = Vov (4.14)

If the transistors are identical, (W∕L)2 = (W∕L)1, and therefore

IOUT = ID2 = ID1 (4.15)
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Equation 4.15 shows that the current that flows in the drain of M1 is mirrored to the drain of
M2. Since 𝛽F → ∞ for MOS transistors, (4.15) and KCL at the drain of M1 yield

IOUT = ID1 = IIN (4.16)

Thus for identical devices operating in the active region with infinite output resistance, the
gain of the current mirror is unity. This result holds when the gate currents are zero; that is,
(4.16) is at least approximately correct for dc and low-frequency ac currents. As the input
frequency increases, however, the gate currents of M1 and M2 increase because each transistor
has a nonzero gate-source capacitance. The part of the input current that flows into the gate
leads does not flow into the drain of M1 and is not mirrored to M2; therefore, the gain of the
current mirror decreases as the frequency of the input current increases. The rest of this section
considers dc currents only.

In practice, the devices need not be identical. Then from (4.13) and (4.16),

IOUT =
(W∕L)2
(W∕L)1

ID1 =
(W∕L)2
(W∕L)1

IIN (4.17)

Equation 4.17 shows that the gain of the current mirror can be larger or smaller than unity
because the transistor sizes can be ratioed. To ratio the transistor sizes, either the widths or
the lengths can be made unequal in principle. In practice, however, the lengths of M1 and M2
are rarely made unequal. The lengths that enter into (4.17) are the effective channel lengths
given by (2.35). Equation 2.35 shows that the effective channel length of a given transistor
differs from its drawn length by offset terms stemming from the depletion region at the drain
and lateral diffusion at the drain and source. Since the offset terms are independent of the
drawn length, a ratio of two effective channel lengths is equal to the drawn ratio only if the
drawn lengths are identical. As a result, a ratio of unequal channel lengths depends on pro-
cess parameters that may not be well controlled in practice. Similarly, Section 2.9.1 shows
that the effective width of a given transistor differs from the drawn width because of lateral
oxidation resulting in a bird’s beak. Therefore, a ratio of unequal channel widths will also
be process dependent. In many applications, however, the shortest channel length allowed in
a given technology is selected for most transistors to maximize speed and minimize area. In
contrast, the drawn channel widths are usually many times larger than the minimum dimen-
sions allowed in a given technology. Therefore, to minimize the effect of the offset terms when
the current-mirror gain is designed to differ from unity, the widths are ratioed rather than the
lengths in most practical cases. If the desired current-mirror gain is a rational number, M∕N,
the ratio is usually set by connecting M identical devices called units in parallel to form M2
and N units in parallel to form M1 to minimize mismatch arising from lithographic effects in
forming the gate regions. As in the bipolar case, ratios greater than about five to one consume
a large die area dominated by the area of the larger of the two devices. Thus other methods
described in later sections are preferred for the generation of large current ratios.

In writing (4.13) and (4.15), we assumed that the drain currents of the transistors are inde-
pendent of their drain-source voltages. If a transistor is biased in the active region, its drain
current actually increases slowly with increasing drain-source voltage. Figure 4.5b shows an
output characteristic for M2. The output resistance of the current mirror at any given operating
point is the reciprocal of the slope of the output characteristic at that point. In the active region,

Ro = ro2 =
VA

ID2
= 1

𝜆ID2
(4.18)
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The point where VDS2 = VDS1 and VGS2 = VGS1 is labeled on the characteristic. Because
the drain current is controlled by the gate-source and drain-source voltages, ID2 =
[(W∕L)2∕(W∕L)1]ID1 at this point. If the slope of the characteristic in saturation is
constant, the variation in ID2 for changes in VDS2 can be predicted by a straight line that
goes through the labeled point. As described in Chapter 1, extrapolation of the output
characteristic in the active region back to the VDS2 axis gives an intercept at −VA = −1∕𝜆,
where VA is the Early voltage. If VA ≫ VDS1, the slope of the straight line is about equal to
[(W∕L)2∕(W∕L)1][ID1∕VA]. Therefore,

IOUT =
(W∕L)2
(W∕L)1

IIN

(
1 +

VDS2 − VDS1

VA

)
(4.19)

Since the ideal gain of the current mirror is (W∕L)2∕(W∕L)1, the systematic gain error, 𝜖, of
the current mirror can be calculated from (4.19):

𝜖 =
VDS2 − VDS1

VA
(4.20)

For example, if the drain-source voltage of M1 is held at 1.2 V, and if the drain-source voltage
of M2 is 5 V, then the systematic gain error is (5 − 1.2)∕10 ≃ 0.38, with VA = 10 V. Thus for
a circuit operating at a power-supply voltage of 5 V, the current-mirror currents can differ
by more than 35 percent from those values calculated by assuming that the transistor output
resistance is infinite. Although 𝜖 stems from finite output resistance, it does not depend on ro2
directly but instead on the drain-source and Early voltages. Since the Early voltage is indepen-
dent of the bias current, this observation shows that changing the input bias current in a current
mirror changes systematic gain error mainly through changes to the drain-source voltages.

For the simple MOS current mirror, the input voltage is

VIN = VGS1 = Vt + Vov1 = Vt + Vov (4.21)

With square-law behavior, the overdrive in (4.21) is proportional to the square root of the input
current. In contrast, (4.10) shows that the entire VIN in a simple bipolar mirror is proportional
to the natural logarithm of the input current. Therefore, for a given change in the input current,
the variation in VIN in a simple MOS current mirror is generally larger than in its bipolar
counterpart.

Finally, the minimum output voltage required to keep M2 in the active region is

VOUT(min) = Vov2 = Vov =

√
2IOUT

k′(W∕L)2
(4.22)

Equation 4.22 predicts that VOUT(min) depends on the transistor geometry and can be made
arbitrarily small in a simple MOS mirror, unlike in the bipolar case. However, if the overdrive
predicted by (4.22) is less than 2nVT , where n is defined in (1.247) and VT is a thermal voltage,
the result is invalid except to indicate that the transistors operate in weak inversion. At room
temperature with n = 1.5, 2nVT ≃ 78 mV. If the transistors operate in weak inversion,

VOUT(min) ≃ 3VT (4.23)

as shown in Fig. 1.43.1
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4.3.3 Simple Current Mirror with Beta Helper

4.3.3.1 Bipolar. In addition to the variation in output current due to finite output resistance,
the second term in (4.9) shows that the collector current IC2 differs from the input current
because of finite 𝛽F. To reduce this source of error, an additional transistor can be added, as
shown in Fig. 4.6. If Q1 and Q3 are identical, the emitter current of transistor Q2 is

IE2 = −
IC1

𝛽F
−

IC3

𝛽F
= − 2

𝛽F
IC1 (4.24)

where IE, IC, and IB are defined as positive when flowing into the transistor, and where we
have neglected the effects of finite output resistance. The base current of transistor Q2 is
equal to

IB2 = −
IE2

𝛽F + 1
= 2

𝛽F(𝛽F + 1)
IC1 (4.25)

Finally, KCL at the collector of Q1 gives

IIN − IC1 −
2

𝛽F(𝛽F + 1)
IC1 = 0 (4.26)

Since IC1 and IC3 are equal when Q1 and Q3 are identical,

IOUT = IC3 =
IIN

1 + 2
𝛽F(𝛽F + 1)

≃ IIN

(
1 − 2

𝛽F(𝛽F + 1)

)
(4.27)

Equation 4.27 shows that the systematic gain error from finite 𝛽F has been reduced by a factor
of [𝛽F + 1], which is the current gain of emitter follower Q2. As a result, Q2 is often referred
to as a beta helper.

Although the beta helper has little effect on the output resistance and the minimum output
voltage of the current mirror, it increases the input voltage by the base-emitter voltage of Q2:

VIN = VBE1(on) + VBE2(on) (4.28)

VCC

IC1

IE2

IOUT = IC3

IB2

IIN

Q3Q1

Q2

VOUT
VIN

+

+

––
Figure 4.6 Simple current mirror with
beta helper.
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VCC

IOUT 1 = IC3 IOUT 2 = IC4

IIN

Q3
Q1

Q2

Q4

R4R3R1
Figure 4.7 Simple current mirror with
beta helper, multiple outputs, and
emitter degeneration.

If multiple emitter followers are cascaded to further reduce the gain error arising from finite
𝛽F, VIN increases by an extra base-emitter voltage for each additional emitter follower, posing
one limit to the use of cascaded emitter followers.

Current mirrors often use a beta helper when they are constructed with pnp transistors
because the value of 𝛽F for pnp transistors is usually less than for npn transistors. Another
application of the beta-helper configuration is in current mirrors with multiple outputs. An
example with two independent outputs is shown in Fig. 4.7. At first, ignore Q2 and imagine
that Q1 is simply diode connected. Also, let R1 = R3 = R4 = 0 here. (The effects of nonzero
resistances will be considered in Section 4.3.4.) Then the gain from the input to each out-
put is primarily determined by the area ratios IS3∕IS1 and IS4∕IS1. Because the bases of three
instead of two transistors are connected together, the total base current is increased here, which
increases the gain error from the input to either output arising from finite 𝛽F. Furthermore, the
gain errors worsen as the number of independent outputs increases. Since the beta helper, Q2,
reduces the gain error from the input to each output by a factor of [𝛽F + 1], it is often used in
bipolar current mirrors with multiple outputs.

4.3.3.2 MOS. Since 𝛽F → ∞ for an MOS transistor, beta helpers are not used in simple
MOS current mirrors to reduce the systematic gain error. However, a beta-helper configuration
can increase the bandwidth of MOS and bipolar current mirrors.

4.3.4 Simple Current Mirror with Degeneration

4.3.4.1 Bipolar. The performance of the simple bipolar transistor current mirror of Fig. 4.6
can be improved by the addition of emitter degeneration, as shown in Fig. 4.7 for a current
mirror with two independent outputs. The purpose of the emitter resistors is twofold. First,
Section A.4.1 in the appendix shows that the matching between IIN and outputs IC3 and IC4
can be greatly improved by using emitter degeneration. Second, as shown in Section 3.3.8,
the use of emitter degeneration boosts the output resistance of each output of the current
mirror. Transistors Q1 and Q2 combine to present a very low resistance at the bases of Q3
and Q4. Therefore, from (3.99), the small-signal output resistance seen at the collectors of
Q3 and Q4 is

Ro ≃ ro(1 + gmRE) (4.29)
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if r𝜋 ≫ RE. Taking Q3 as an example and using gm3 = IC3∕VT , we find

Ro ≃ ro3

(
1 +

IC3R3

VT

)
(4.30)

This increase in the output resistance for a given output current also decreases the component
of systematic gain error that stems from finite output resistance by the same factor. From (4.9)
and (4.30) with infinite 𝛽F,

𝜖 ≃
VCE2 − VCE1

VA

(
1 +

IC3R3

VT

) (4.31)

The quantity IC3R3 is just the dc voltage drop across R3. If this quantity is 260 mV, for example,
then Ro is about 10ro at room temperature, and 𝜖 is reduced by a factor of about 11. Unfortu-
nately, this improvement in Ro is limited by corresponding increases in the input and minimum
output voltages of the mirror:

VIN ≃ VBE1(on) + VBE2(on) + IINR1 (4.32)

and

VOUT(min) = VCE3(sat) + IC3R3 (4.33)

The emitter areas of Q1, Q3, and Q4 may be matched or ratioed. For example, if we wanted
IOUT1 = IIN and IOUT2 = 2IIN, we would make Q3 identical to Q1, and Q4 consist of two copies
of Q1 connected in parallel so that IS4 = 2IS1. In addition, we could make R3 = R1, and R4
consist of two copies of R1 connected in parallel so that R4 = R1∕2. Note that all the dc voltage
drops across R1, R3, and R4 would then be equal. Using KVL around the loop including Q1
and Q4 and neglecting base currents, we find

IC1R1 + VT ln
IC1

IS1
= IC4R4 + VT ln

IC4

IS4
(4.34)

from which

IOUT2 = IC4 = 1
R4

(
IINR1 + VT ln

IIN

IC4

IS4

IS1

)
(4.35)

Since IS4 = 2IS1, the solution to (4.35) is

IOUT2 =
R1

R4
IIN = 2IIN (4.36)

because the last term in (4.35) goes to zero. If we make the voltage drops IINR1 and IC4R4 much
greater than VT , the current-mirror gain to the Q4 output is determined primarily by the resistor
ratio R4∕R1, and only to a secondary extent by the emitter area ratio, because the natural log
term in (4.35) varies slowly with its argument.



272 Chapter 4 ▪ Current Mirrors, Active Loads, and References

4.3.4.2 MOS. Source degeneration is rarely used in MOS current mirrors because, in effect,
MOS transistors are inherently controlled resistors. Thus, matching in MOS current mirrors
is improved simply by increasing the gate areas of the transistors.2–4 Furthermore, the output
resistance can be increased by increasing the channel length. To increase the output resis-
tance while keeping the current and VGS − Vt constant, the W∕L ratio must be held constant.
Therefore, the channel width must be increased as much as the length, and the price paid
for the improved output resistance is that increased chip area is consumed by the current
mirror.

4.3.5 Cascode Current Mirror

4.3.5.1 Bipolar. Section 3.4.2 shows that the cascode connection achieves a very high out-
put resistance. Since this is a desirable characteristic for a current mirror, exploring the use of
cascodes for high-performance current mirrors is natural. A bipolar-transistor current mirror
based on the cascode connection is shown in Fig. 4.8. Transistors Q3 and Q1 form a simple cur-
rent mirror, and emitter resistances can be added to improve the matching. Transistor Q2 acts
as the common-base part of the cascode and transfers the collector current of Q1 to the output
while presenting a high output resistance. Transistor Q4 acts as a diode level shifter and biases
the base of Q2 so that Q1 operates in the forward-active region with VCE1 ≃ VCE3 = VBE3(on). If
we assume that the small-signal resistances of diodes Q3 and Q4 are small, a direct application
of (3.98) with RE = ro1 concludes that

Ro = ro2

⎛⎜⎜⎜⎝1 +
gm2ro1

1 +
gm2ro1

𝛽0

⎞⎟⎟⎟⎠ ≃ 𝛽0ro2 (4.37)

because gm2ro1 ≃ gm1ro1 ≫ 𝛽0. This calculation assumes that almost all of the small-signal
current that flows into the collector of Q2 flows out its base because the small-signal resistance
connected to the emitter of Q2 is much greater than that connected to its base. A key problem
with this calculation, however, is that it ignores the effect of the simple current mirror formed
by Q3 and Q1. Let ib2 and ie2 represent increases in the base and emitter currents flowing out

VCC

VOUTVIN

IIN

IOUT = IC2

IC1 = IC3

Q4

IE4

IC3

Q3

Q2

Q1

+
+

–
–

Figure 4.8 Cascode current mirror
with bipolar transistors.
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of Q2 caused by increasing output voltage. Then the simple mirror forces ie2 ≃ ib2. As a result,
the variation in the collector current of Q2 splits into two equal parts and half flows in r𝜋2.
A small-signal analysis shows that Ro in (4.37) is reduced by half to

Ro ≃
𝛽0ro2

2
(4.38)

Thus, the cascode configuration boosts the output resistance by approximately 𝛽0∕2. For
𝛽0 = 100, VA = 130 V, and IC2 = 1 mA,

Ro =
𝛽0VA

2IC2
= 100(130)

2 mA
= 6.5 MΩ (4.39)

In this calculation of output resistance, we have neglected the effects of rμ. Although this
assumption is easy to justify in the case of the simple current mirror, it must be reexamined here
because the output resistance is so high. The collector-base resistance rμ results from modu-
lation of the base-recombination current as a consequence of the Early effect, as described
in Chapter 1. For a transistor whose base current is composed entirely of base-recombination
current, the percentage change in base current when VCE is changed at a constant VBE would
equal that of the collector current, and rμ would be equal to 𝛽0ro. In this case, the effect of
rμ would be to reduce the output resistance of the cascode current mirror given in (4.38) by a
factor of 1.5.

In actual integrated-circuit npn transistors, however, only a small percentage of the base
current results from recombination in the base. Since only this component is modulated by the
Early effect, the observed values of rμ are a factor of 10 or more larger than 𝛽0ro. Therefore, rμ
has a negligible effect here with npn transistors. On the other hand, for lateral pnp transistors,
the feedback resistance rμ is much smaller than for npn transistors because most of the base
current results from base-region recombination. The actual value of this resistance depends
on a number of process and device-geometry variables, but observed values range from 2 to 5
times 𝛽0ro. Therefore, for a cascode current mirror constructed with lateral pnp transistors, the
effect of rμ on the output resistance can be significant. Furthermore, when considering current
mirrors that give output resistances higher than 𝛽0ro, the effects of rμ must be considered.

In the cascode current mirror, the base of Q1 is connected to a low-resistance point because
Q3 is diode connected. As a result, feedback from rμ1 is greatly attenuated and has negligi-
ble effect on the output resistance. On the other hand, if the resistance from the base of Q1
to ground is increased while all other parameters are held constant, local feedback from rμ1
significantly affects the base-emitter voltage of Q1 and reduces the output resistance. In the
limit where the resistance from the base of Q1 to ground becomes infinite, Q1 acts as if it were
diode connected. Local feedback is considered in Chapter 8.

The input voltage of the cascode current mirror is

VIN = VBE3 + VBE4 = 2VBE(on) (4.40)

Although VIN is higher here than in (4.10) for a simple current mirror, the increase becomes a
limitation only if the power-supply voltage is reduced to nearly two diode drops.

The minimum output voltage for which the output resistance is given by (4.38) must allow
both Q1 and Q2 to be biased in the forward-active region. Since VCE1 ≃ VCE3 = VBE(on),

VOUT(min) = VCE1 + VCE2(sat) ≃ VBE(on) + VCE2(sat) (4.41)
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Comparing (4.41) and (4.11) shows that the minimum output voltage for a cascode current mir-
ror is higher than for a simple current mirror by a diode drop. This increase poses an important
limitation on the minimum supply voltage when the current mirror is used as an active load
for an amplifier.

Since VCE1 ≃ VCE3, IC1 ≃ IC3, and the systematic gain error arising from finite transistor
output resistance is almost zero. A key limitation of the cascode current mirror, however, is
that the systematic gain error arising from finite 𝛽F is worse than for a simple current mirror.
From KCL at the collector of Q3,

−IE4 = IC3 +
2IC3

𝛽F
(4.42)

From KCL at the collector of Q4,

IIN = −IE4 +
IC2

𝛽F
(4.43)

The collector current of Q2 is

IC2 =
𝛽F

𝛽F + 1
IC3 (4.44)

Substituting (4.42) and (4.44) into (4.43) gives

IIN = IC3 +
2IC3

𝛽F
+

IC3

𝛽F + 1
(4.45)

Rearranging (4.45) to find IC3 and substituting back into (4.44) gives

IOUT = IC2 =
(

𝛽F

𝛽F + 1

)⎛⎜⎜⎜⎝
IIN

1 + 2
𝛽F

+ 1
𝛽F + 1

⎞⎟⎟⎟⎠ (4.46)

Equation 4.46 can be rearranged to give

IOUT = IIN

(
1 −

4𝛽F + 2

𝛽F
2 + 4𝛽F + 2

)
(4.47)

Equation 4.47 shows that the systematic gain error is

𝜖 = −
4𝛽F + 2

𝛽F
2 + 4𝛽F + 2

(4.48)

When 𝛽F ≫ 1, (4.48) simplifies to

𝜖 ≃ − 4
𝛽F + 4

(4.49)

In contrast, the systematic gain error stemming from finite 𝛽F in a simple current mirror with
identical transistors is about −2∕𝛽F, which is less in magnitude than (4.49) predicts for a cas-
code current mirror if 𝛽F > 4. This limitation of a cascode current mirror is overcome by the
Wilson current mirror described in Section 4.3.6.



4.3 Current Mirrors 275

4.3.5.2 MOS. The cascode current mirror is widely used in MOS technology, where it
does not suffer from finite 𝛽F effects. Figure 4.9 shows the simplest form. From (3.107), the
small-signal output resistance is

Ro = ro2[1 + (gm2 + gmb2)ro1] + ro1 (4.50)

As shown in the previous section, the bipolar cascode current mirror cannot realize an out-
put resistance larger than 𝛽0ro∕2 because 𝛽0 is finite and nonzero small-signal base current
flows in the cascode transistor. In contrast, the MOS cascode is capable of realizing arbitrarily
high output resistance by increasing the number of stacked cascode devices because 𝛽0 → ∞
for MOS transistors. However, the MOS substrate leakage current described in Section 1.9
can create a resistive shunt to ground from the output node, which can dominate the output
resistance for VOUT > VOUT(min).

5

◼ EXAMPLE
Find the output resistance of the double-cascode current mirror shown in Fig. 4.10. Assume
all the transistors operate in the active region with ID = 10 μA, VA = 50 V, and gmro = 50.
Neglect the body effect.

VDD

IOUT

M1

M2

M3

IIN

M4

VOUT

VOUT

IOUT

VOUT(min)

Vov1

VIN

–

++

–

(a)

(b)

M1 active, M2 in triode region

Both M1 and M2 in triode region
Figure 4.9 (a) Cascode current mirror
using MOS transistors. (b) I-V
characteristic.
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VDD
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M1
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IIN

M3

M4

M5

M6

Figure 4.10 Example of a double-cascode current mirror.

The output resistance of each transistor is

ro =
VA

ID
= 50 V

10 μA
= 5 MΩ

From (4.50), looking into the drain of M2,

Ro2 = ro2(1 + gm2ro1) + ro1 (4.51)

Similarly, looking into the drain of M3,

Ro = ro3[1 + gm3Ro2] + Ro2 (4.52)

Each cascode stage increases the output resistance by a factor of about (1 + gmro). Therefore,

Ro ≃ ro(1 + gmro)2 ≃ 5(51)2 MΩ ≃ 13 GΩ (4.53)

With such a large output resistance, other parasitic leakage paths, such as the substrate leakage
path, could be comparable to this resistance in practice.◼

From KVL in Fig. 4.9,
VDS1 = VGS3 + VGS4 − VGS2 (4.54)

Since VDS3 = VGS3, (4.54) shows that VDS1 = VDS3 when VGS2 = VGS4. Under this condition,
the systematic gain error of the cascode current mirror is zero because M1 and M3 are identi-
cally biased and because 𝛽F → ∞ for MOS transistors. In practice, VGS2 is not exactly equal
to VGS4 even with perfect matching unless VOUT = VIN because of channel-length modulation.
As a result, VDS1 ≃ VDS3, and

𝜖 ≃ 0 (4.55)

The input voltage of the MOS cascode current mirror in Fig. 4.9 is

VIN = VGS3 + VGS4

= Vt3 + Vov3 + Vt4 + Vov4 (4.56)
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The input voltage here includes two gate-source drops, each composed of threshold and
overdrive components. Ignoring the body effect and assuming the transistors all have
equal overdrives,

VIN = 2Vt + 2Vov (4.57)

Also, adding extra cascode levels increases the input voltage by another threshold and another
overdrive component for each additional cascode. Furthermore, the body effect increases the
threshold of all transistors with VSB > 0. Together, these facts increase the difficulty of design-
ing the input current source for low power-supply voltages.

When M1 and M2 both operate in the active region, VDS1 ≃ VDS3 = VGS3. For M2 to operate
in the active region, VDS2 > Vov2 is required. Therefore, the minimum output voltage for which
M1 and M2 operate in the active region is

VOUT(min) = VDS1 + Vov2

≃ VGS3 + Vov2 = Vt + Vov3 + Vov2 (4.58)

If the transistors all have equal overdrives,

VOUT(min) ≃ Vt + 2Vov (4.59)

On the other hand, M2 operates in the triode region if VOUT < VOUT(min), and both M1 and M2
operate in the triode region if VOUT < Vov1. These results are shown graphically in Fig. 4.9b.

Although the overdrive term in (4.59) can be made small by using large values of W for a
given current, the threshold term represents a significant loss of voltage swing when the current
mirror is used as an active load in an amplifier. The threshold term in (4.59) stems from the
biasing of the drain-source voltage of M1 so that

VDS1 = VIN − VGS2 (4.60)

Ignoring the body effect and assuming that M1–M4 all operate in the active region with equal
overdrives,

VDS1 = Vt + Vov (4.61)

Therefore, the drain-source voltage of M1 is a threshold larger than necessary to operate M1
in the active region. To reduce VDS1, the voltage from the gate of M2 to ground can be level
shifted down by a threshold, as shown in Fig. 4.11a. In practice, a source follower is used to
implement the level shift, as shown in Fig. 4.11b.6 Transistor M5 acts as the source follower
and is biased by the output of the simple current mirror M3 and M6. Because the gate-source
voltage of M5 is greater than its threshold by the overdrive, however, the drain-source voltage
of M1 would be zero with equal thresholds and overdrives on all transistors. To bias M1 at the
boundary between the active and triode regions,

VDS1 = Vov (4.62)

is required. Therefore, the overdrive on M4 is doubled by reducing its W∕L by a factor of four
to satisfy (4.62). As a result, the threshold term in (4.59) is eliminated and

VOUT(min) ≃ 2Vov (4.63)
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Figure 4.11 (a) MOS cascode current mirror with improved biasing for maximum voltage swing.
(b) Practical implementation. (c) I-V characteristic.

Because the minimum output voltage does not contain a threshold component, the range of
output voltages for which M1 and M2 both operate in the active region is significantly improved.
Therefore, the current mirror in Fig. 4.11 places much less restriction on the range of output
voltages that can be achieved in an amplifier using this current mirror as an active load than
the mirror in Fig. 4.9. For this reason, the mirror in Fig. 4.11 is called a high-swing cascode
current mirror. This type of level shifting to reduce VOUT(min) can also be applied to bipolar
circuits.

The output resistance of the high-swing cascode current mirror is the same as in (4.50) when
both M1 and M2 operate in the active region. However, the input voltage and the systematic
gain error are worsened compared to the cascode current mirror without level shift. The input
voltage is still given by (4.56), but the overdrive component of the gate-source voltage of
M4 has increased by a factor of two because its W∕L has been reduced by a factor of four.
Therefore,

VIN = 2Vt + 3Vov (4.64)
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Since M3 and M1 form a simple current mirror with unequal drain-source voltages, the sys-
tematic gain error is

𝜖 =
VDS1 − VDS3

VA
≃

Vov1 − (Vt + Vov1)
VA

= −
Vt

VA
(4.65)

The negative sign in (4.65) shows that IOUT < IIN. For example, if IIN = 100 μA, Vt = 1 V, and
VA = 10 V, 𝜖 ≃ −0.1, which means that IOUT ≃ 90 μA.

In practice, (W∕L)4 < (1∕4)(W∕L) is usually selected for two reasons. First, MOS tran-
sistors display an indistinct transition from the triode to active regions. Therefore, increasing
the drain-source voltage of M1 by a few hundred millivolts above Vov1 is usually required to
realize the incremental output resistance predicted by (4.50). Second, although the body effect
was not considered in this analysis, it tends to reduce the drain-source voltage on M1, which
is determined by the following KVL loop:

VDS1 = VGS3 + VGS4 − VGS5 − VGS2 (4.66)

Each of the gate-source voltage terms in (4.66) contains a threshold component. Since the
source-body voltage of M5 is higher than that of M4, Vt5 > Vt4. Also, Vt2 > Vt3 because the
source-body voltage of M2 is higher than that of M3. Simulations with high-accuracy models
are usually required to find the optimum (W∕L)4.

One drawback of the current mirror in Fig. 4.11 is that the input current is mirrored to a
new branch to do the level shift. Combining the input branches eliminates the possibility of
mismatch between the two branch currents and may reduce the power dissipation. In a sin-
gle combined input branch, some element must provide a voltage drop equal to the desired
difference between the gate voltages of M1 and M2. To bias M1 at the edge of the active
region, the required voltages from the gates M1 and M2 to ground are Vt + Vov and Vt + 2Vov,
respectively. Therefore, the desired difference in the gate voltages is Vov. This voltage dif-
ference can be developed across the drain to the source of a transistor deliberately operated
in the triode region, as shown in Fig. 4.12a.7 Since M6 is diode connected, it operates in
the active region as long as the input current and threshold are positive. However, since the
gate-source voltage of M6 is equal to the gate-drain voltage of M5, a channel exists at the
drain of M5 when it exists at the source of M6. In other words, M6 forces M5 to operate in the
triode region.

To use the circuit in Fig. 4.12a in a current mirror, we would like to choose the aspect ratios
of the transistors so that the drain-source voltage of M5 is Vov. Since M6 operates in the active
region,

IIN = k′

2

(W
L

)
6
(VGS6 − Vt)2 (4.67)

Since M5 operates in the triode region,

IIN = k′

2

(W
L

)
5

(
2(VGS5 − Vt)VDS5 − (VDS5)2

)
(4.68)

The goal is to set
VDS5 = Vov (4.69)

when
VGS6 = Vt + Vov (4.70)
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Figure 4.12 (a) Circuit that forces M5 to operate in the triode region. (b) Sooch cascode current mirror
using the circuit in (a).

From (4.69) and (4.70),
VGS5 = VGS6 + VDS5 = Vt + 2Vov (4.71)

Substituting (4.68) - (4.71) into (4.67) gives

k′

2

(W
L

)
6
(Vov)2 = k′

2

(W
L

)
5

(
2(2Vov)Vov − (Vov)2

)
(4.72)

Equation 4.72 can be simplified to (W
L

)
5
= 1

3

(W
L

)
6

(4.73)

The circuit of Fig. 4.12a is used in the current mirror of Fig. 4.12b,7 which is called the
Sooch cascode current mirror after its inventor. At first, ignore transistor M4 and assume that
M3 is simply diode connected. The difference between the voltages to ground from the gates
of M1 and M2 is set by the drain-source voltage of M5. By choosing equal aspect ratios for
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all devices except M5, whose aspect ratio is given by (4.73), the drain-source voltage of M5 is
Vov, and M1 is biased at the edge of the active region. The output resistance, minimum output
voltage, input voltage, and systematic gain error are the same as in (4.50), (4.63), (4.64), and
(4.65), respectively.

Now we will consider the effect of transistor M4. The purpose of M4 is to set the drain-source
voltage of M3 equal to that of M1. Without M4, these drain-source voltages differ by a threshold,
causing nonzero systematic gain error. With M4,

VDS3 = VG2 − VGS4 (4.74)

where
VG2 = VGS3 + VDS5 (4.75)

Ignoring channel-length modulation,

VG2 = (Vt + Vov) + Vov = Vt + 2Vov (4.76)

Ignoring the body effect and assuming that M4 operates in the active region,

VGS4 = Vt + Vov (4.77)

Then substituting (4.76) and (4.77) into (4.74) gives

VDS3 = Vov (4.78)

If M2 also operates in the active region under these conditions, VDS3 = VDS1. As a result, the
systematic gain error is

𝜖 = 0 (4.79)

Therefore, the purpose of M4 is to equalize the drain-source voltages of M3 and M1 to reduce
the systematic gain error.

For M4 to operate in the active region, VDS4 > Vov is required. Using KVL, we find

VDS4 = VGS3 − VDS3 = (Vt + Vov) − Vov = Vt (4.80)

Equation 4.80 shows that M4 operates in the active region if Vt > Vov. Although this condition
is usually satisfied, a low threshold and/or high overdrive may cause M4 to operate in the triode
region. If this happens, the gate-source voltage of M4 depends strongly on its drain-source
voltage, increasing the systematic gain error. Since increasing temperature causes the threshold
to decrease but the overdrive to increase, checking the region of operation of M4 in simulation
at the maximum expected operating temperature is important in practice.

The main limitation of the high-swing cascode current mirrors just presented is that the
input voltage is large. In Fig. 4.11, the input voltage is the sum of the gate-source voltages of
M3 and M4 and is given by (4.64), ignoring the body effect. In Fig. 4.12, the input voltage is

VIN = VGS3 + VDS5 + VGS6

= Vt + Vov + Vov + Vt + Vov

= 2Vt + 3Vov (4.81)



282 Chapter 4 ▪ Current Mirrors, Active Loads, and References

Equation 4.81 shows that the input voltage of the high-swing cascode current mirror in
Fig. 4.12 is the same as in (4.64) for Fig. 4.11. The large input voltages may limit the
minimum power-supply voltage because a transistor-level implementation of the input
current source requires some nonzero drop for proper operation. With threshold voltages
of about 1 V, the cascode current mirrors in Figs. 4.11 and 4.12 can operate properly
for power-supply voltages greater than about 3 V. Below about 2 V, however, reduced
thresholds or a new configuration is required. Reducing the magnitude of the thresh-
old for all transistors increases the difficulty in turning off transistors that are used as
switches. This problem can be overcome by using low-threshold devices in the current
mirror and high-threshold devices as switches, but this solution increases process com-
plexity and cost. Therefore, circuit techniques to reduce the input voltage are important to
minimize cost.

To reduce the input voltage, the input branch can be split into two branches, as shown in
Fig. 4.13. If M1 and M2 are biased in the active region, the output resistance is still given by
(4.50). Also, the minimum output voltage for which (4.50) applies is still given by (4.63).
Furthermore, if M4 operates in the active region, the drain-source voltage of M3 is equal to
that of M1, and the systematic gain error is still zero as in (4.79).

Since the mirror in Fig. 4.13 has two input branches, an input voltage can be calculated for
each:

VIN1 = VDS5 + VGS6 = Vt + 2Vov (4.82)

VIN2 = VGS3 = Vt + Vov (4.83)

Both VIN1 and VIN2 are less than the input voltage given in (4.64) for Fig. 4.12b by more than
a threshold, allowing the input current sources to operate properly with power-supply voltages
greater than about 2 V, assuming thresholds of about 1 V.

Finally, in Fig. 4.13, the drain-source voltage of M5 is only used to bias the source of M6.
Therefore, M5 and M6 can be collapsed into one diode-connected transistor whose source
is grounded. Call this replacement transistor M7. The aspect ratio of M7 should be a fac-
tor of four smaller than the aspect ratios of M1–M4 to maintain the bias conditions as in
Fig. 4.13. In practice, the aspect ratio of M7 is further reduced to bias M1 past the edge
of the active region and overcome a mismatch in the thresholds of M7 and M2 caused by
the body effect.
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Figure 4.13 MOS high-swing current mirror with two input branches.
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4.3.6 Wilson Current Mirror

4.3.6.1 Bipolar. The main limitation of the bipolar cascode current mirror is that the sys-
tematic gain error stemming from finite 𝛽F was large, as given in (4.49). To overcome this
limitation, the Wilson current mirror can be used as shown in Fig. 4.14a.8 This circuit uses
negative feedback through Q1, activating Q3 to reduce the base-current error and raise the
output resistance. (See Chapter 8.)

From a qualitative standpoint, the difference between the input current and IC3 flows into
the base of Q2. This base current is multiplied by (𝛽F + 1) and flows in the diode-connected
transistor Q1, which causes current of the same magnitude to flow in Q3. A feedback path
is thus formed that regulates IC3 so that it is nearly equal to the input current, reducing the
systematic gain error caused by finite 𝛽F. Similarly, when the output voltage increases, the
collector current of Q2 also increases, in turn increasing the collector current of Q1. As a result,
the collector current of Q3 increases, which reduces the base current of Q2. The decrease in
the base current of Q2 caused by negative feedback reduces the original change in the collector
current of Q2 and increases the output resistance.

To find the output resistance of the Wilson current mirror when all transistors operate
in the active region, we will analyze the small-signal model shown in Fig. 4.14b, in which
a test current source it is applied at the output. Transistors Q1 and Q3 form a simple
current mirror. Since Q1 is diode connected, the small-signal resistance from the base of
Q1 to ground is (1∕gm1)||r𝜋1||r𝜋3||ro1. Assume that an unknown current i1 flows in this
resistance. When gm1r𝜋1 ≫ 1, gm1r𝜋3 ≫ 1, and gm1ro1 ≫ 1, this resistance is approximately
equal to 1∕gm1. Transistor Q3 could be modeled as a voltage-controlled current source of
value gm3v𝜋3 in parallel with ro3. Since v𝜋3 = v𝜋1 ≃ i1∕gm1, the voltage-controlled current
source in the model for Q3 can be replaced by a current-controlled current source of value
(gm3∕gm1)(i1) = 1(i1), as shown in Fig. 4.14b. This model represents the behavior of the simple
current mirror directly: the input current i1 is mirrored to the output by the current-controlled
current source.

Using this model, the resulting voltage vt is

vt =
i1

gm1
+ (it − gm2v𝜋2)ro2 (4.84)
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Figure 4.14 (a) Bipolar Wilson current mirror. (b) Small-signal model.
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To find the relationship between i1 and v𝜋2, note that the voltage across ro3 is (i1∕gm1 + v𝜋2),
and use KCL at node 2© in Fig. 4.14b to show that

v𝜋2

r𝜋2
+ i1 +

i1
gm1

+ v𝜋2

ro3
= 0 (4.85)

Rearranging (4.85) gives

v𝜋2 = −i1r𝜋2

⎛⎜⎜⎜⎝
1 + 1

gm1ro3

1 +
r𝜋2

ro3

⎞⎟⎟⎟⎠ (4.86)

To find the relationship between i1 and it, use KCL at node 1© in Fig. 4.14b to show that

it = i1 −
v𝜋2

r𝜋2
(4.87)

Substituting (4.86) into (4.87) and rearranging gives

i1 =
it

1 +
⎛⎜⎜⎜⎝

1 + 1
gm1ro3

1 +
r𝜋2

ro3

⎞⎟⎟⎟⎠
(4.88)

Substituting (4.88) into (4.86) and rearranging gives

v𝜋2 = −itr𝜋2

⎛⎜⎜⎜⎝
1 + 1

gm1ro3

2 +
r𝜋2

ro3
+ 1

gm1ro3

⎞⎟⎟⎟⎠ (4.89)

Substituting (4.88) and (4.89) into (4.84) and rearranging gives

Ro =
vt

it
= 1

gm1

⎡⎢⎢⎢⎣1 +
⎛⎜⎜⎜⎝

1 + 1
gm1ro3

1 +
r𝜋2

ro3

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
+ ro2 +

gm2r𝜋2ro2

(
1 + 1

gm1ro3

)
2 +

r𝜋2

ro3
+ 1

gm1ro3

(4.90)

If ro3 → ∞, the small-signal current that flows in the collector of Q3 is equal to i1, and (4.90)
reduces to

Ro = 1
gm1(2)

+ ro2 +
gm2r𝜋2ro2

2
≃

𝛽0ro2

2
(4.91)

This result is the same as (4.38) for the cascode current mirror. In the cascode current mirror,
the small-signal current that flows in the base of Q2 is mirrored through Q3 to Q1 so that the
small-signal base and emitter currents leaving Q2 are approximately equal. On the other hand,
in the Wilson current mirror, the small-signal current that flows in the emitter of Q2 is mirrored
through Q1 to Q3 and then flows in the base of Q2. Although the cause-and-effect relationship
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here is opposite that in a cascode current mirror, the output resistance is unchanged because
the small-signal base and emitter currents leaving Q2 are still forced to be equal. Therefore,
the small-signal collector current of Q2 that flows because of changes in the output voltage
still splits into two equal parts with half flowing in r𝜋2.

For the purpose of dc analysis, we assume that VA → ∞ and that the transistors are identical.
Then the input voltage is

VIN = VCE3 = VBE1 + VBE2 = 2VBE(on) (4.92)

which is the same as in (4.40) for a cascode current mirror. Also, the minimum output voltage
for which both transistors in the output branch operate in the forward-active region is

VOUT(min) = VCE1 + VCE2(sat) = VBE(on) + VCE2(sat) (4.93)

The result in (4.93) is the same as in (4.41) for a cascode current mirror.
To find the systematic gain error, start with KCL at the collector of Q1 to show that

−IE2 = IC1 + IB1 + IB3 = IC1

(
1 + 1

𝛽F

)
+

IC3

𝛽F
(4.94)

Since we assumed that the transistors are identical and VA → ∞,

IC3 = IC1 (4.95)

Substituting (4.95) into (4.94) gives

−IE2 = IC1

(
1 + 2

𝛽F

)
(4.96)

Using (4.96), the collector current of Q2 is then

IC2 = −IE2

(
𝛽F

1 + 𝛽F

)
= IC1

(
1 + 2

𝛽F

)(
𝛽F

1 + 𝛽F

)
(4.97)

Rearranging (4.97), we obtain

IC1 = IC2

⎡⎢⎢⎢⎢⎣
1(

1 + 2
𝛽F

)(
𝛽F

1 + 𝛽F

)
⎤⎥⎥⎥⎥⎦

(4.98)

From KCL at the base of Q2,

IC3 = IIN −
IC2

𝛽F
(4.99)

Inserting (4.98) and (4.99) into (4.95), we find that

IOUT = IC2 = IIN

(
1 − 2

𝛽2
F + 2𝛽F + 2

)
=

IIN

1 + 2
𝛽F (𝛽F + 2)

(4.100)
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In the configuration shown in Fig. 4.14a, the systematic gain error arising from finite output
resistance is not zero because Q3 and Q1 operate with collector-emitter voltages that differ by
the base-emitter voltage of Q2. With finite VA and finite 𝛽F,

IOUT ≃ IIN

(
1 − 2

𝛽2
F + 2𝛽F + 2

)(
1 +

VCE1 − VCE3

VA

)

≃ IIN

(
1 − 2

𝛽2
F + 2𝛽F + 2

)(
1 −

VBE2

VA

)
(4.101)

Therefore, the systematic gain error is

𝜖 ≃ −

(
2

𝛽2
F + 2𝛽F + 2

+
VBE2

VA

)
(4.102)

Comparing (4.102) to (4.49) shows two key points. First, the systematic gain error arising from
finite 𝛽F in a Wilson current mirror is much less than in a cascode current mirror. Second, the
systematic gain error arising from finite output resistance is worse in the Wilson current mirror
shown in Fig. 4.14a than in the cascode current mirror shown in Fig. 4.9. However, this lim-
itation is not fundamental because it can be overcome by introducing a new diode-connected
transistor between the collector of Q3 and the base of Q2 to equalize the collector-emitter
voltages of Q3 and Q1.

4.3.6.2 MOS. Wilson current mirrors are also used in MOS technology, as shown in
Fig. 4.15. Ignoring M4, the circuit operation is essentially identical to the bipolar case with
𝛽F → ∞. One way to calculate the output resistance is to let r𝜋2 → ∞ in (4.90), which gives

Ro = 1
gm1

+ ro2 + gm2ro2

(
1 + 1

gm1ro3

)
ro3 ≃ (1 + gm2ro3)ro2 (4.103)

Since the calculation in (4.103) is based on the small-signal model for the bipolar Wilson
current mirror in Fig. 4.14b, it ignores the body effect in transistor M2. Repeating the analysis

VDD

IOUT = ID2

IIN

VOUTVIN

M4 M2

M3 M1

+

–

+

–

Figure 4.15 Improved MOS
Wilson current mirror with an
additional device such that the
drain voltages of M1 and M3 are
equal.
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with a body-effect generator in parallel with ro2 gives

Ro ≃ (2 + gm2ro3)ro2 (4.104)

The body effect on M2 has little effect on (4.104) because M1 is diode connected and therefore
the voltage from the source of M2 to ground is almost constant.

Although 𝛽F → ∞ for MOS transistors, the systematic gain error is not zero without M4
because the drain-source voltage of M3 differs from that of M1 by the gate-source voltage of
M2. Therefore, without M4,

𝜖 =
VDS1 − VDS3

VA
= −

VGS2

VA
(4.105)

Transistor M4 is inserted in series with M3 to equalize the drain-source voltages of M3 and M1
so that

𝜖 ≃ 0 (4.106)

With M4, the output resistance is still given by (4.104) if all transistors operate in the active
region. Also, insertion of M4 does not change either the minimum output voltage for which
(4.104) applies or the input voltage. Ignoring the body effect and assuming equal overdrives
on all transistors, the minimum output voltage is

VOUT(min) = VGS1 + Vov2 = Vt + 2Vov (4.107)

Under the same conditions, the input voltage is

VIN = VGS1 + VGS2 = 2Vt + 2Vov (4.108)

4.4 Active Loads
4.4.1 Motivation

In differential amplifiers of the type described in Chapter 3, resistors are used as the load
elements. For example, consider the differential amplifier shown in Fig. 3.45. For this circuit,
the differential-mode (dm) voltage gain is

Adm = −gmRC (4.109)

Large gain is often desirable because it allows negative feedback to make the gain with feed-
back insensitive to variations in the parameters that determine the gain without feedback. This
topic is covered in Chapter 8. In Chapter 9, we will show that the required gain should be
obtained in as few stages as possible to minimize potential problems with instability. There-
fore, maximizing the gain of each stage is important.

Multiplying (4.109) by I/I and rearranging gives

Adm = −
I(RC)
I∕gm

(4.110)

With bipolar transistors, let I represent the collector current IC of each transistor in the differ-
ential pair. From (1.91), (4.110) can be rewritten as

Adm = −
ICRC

VT
(4.111)
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To achieve large voltage gain, (4.111) shows that the ICRC product must be made large, which
in turn requires a large power-supply voltage. Furthermore, large values of resistance are
required when low current is used to limit the power dissipation. As a result, the required
die area for the resistors can be large.

A similar situation occurs in MOS amplifiers with resistive loads. Let I represent the drain
current ID of each transistor in the differential pair, and let the resistive loads be RD. From
(1.157) and (1.180), (4.110) can be rewritten as

Adm = −
IDRD

(VGS − Vt)∕2
= −

2IDRD

Vov
(4.112)

Equation 4.112 shows that the IDRD product must be increased to increase the gain with con-
stant overdrive. As a result, a large power supply is usually required for large gain, and large
resistance is usually required to limit power dissipation. Also, since the overdrive is usually
much larger than the thermal voltage, comparing (4.111) and (4.112) shows that the gain of an
MOS differential pair is usually much less than the gain of its bipolar counterpart with equal
resistive drops. This result stems from the observation that bipolar transistors provide much
more transconductance for a given current than MOS transistors provide.

If the power-supply voltage is only slightly larger than the drop on the resistors, the range
of common-mode input voltages for which the input transistors would operate in the active
region would be severely restricted in both bipolar and MOS amplifiers. To overcome this
problem and provide large gain without large power-supply voltages or resistances, the ro of a
transistor can be used as a load element.9 Since the load element in such a circuit is a transistor
instead of a resistor, the load element is said to be active instead of passive.

4.4.2 Common-Emitter–Common-Source Amplifier with Complementary
Load

A common-emitter amplifier with pnp current-mirror load is shown in Fig. 4.16a. The
common-source counterpart with a p-channel MOS current-mirror load is shown in
Fig. 4.16b. In both cases, there are two output variables: the output voltage, Vout, and the
output current, Iout. The relationship between these variables is governed by both the input
transistor and the load transistor. From the standpoint of the input transistor T1,

Iout = Ic1 or Iout = Id1 (4.113)

and
Vout = Vce1 or Vout = Vds1 (4.114)
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Iout = Ic1 Iout = Id1

IREF IREF

+

+

–

+

–

+

–
–

+

–Vi

+

–
Vi

T2 T3 T2

T1T1

T3

VCC VDD

(a) (b)

Figure 4.16 (a) Common-emitter amplifier with active load. (b) Common-source amplifier with active
load.
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Equations 4.113 and 4.114 show that the output I-V characteristics of T1 can be used directly
in the analysis of the relationship between the output variables. Since the input voltage is
the base-emitter voltage of T1 in Fig. 4.16a and the gate-source voltage of T1 in Fig. 4.16b,
the input voltage is the parameter that determines the particular curve in the family of output
characteristics under consideration at any point, as shown in Fig. 4.17a.

In contrast, the base-emitter or gate-source voltage of the load transistor T2 is fixed by
diode-connected transistor T3. Therefore, only one curve in the family of output I-V character-
istics needs to be considered for the load transistor, as shown in Fig. 4.17b. From the standpoint
of the load transistor,

Iout = −Ic2 or Iout = −Id2 (4.115)

and

Vout = VCC + Vce2 or Vout = VDD + Vds2 (4.116)

Equation 4.115 shows that the output characteristic of the load transistor should be mirrored
along the horizontal axis to plot in the same quadrant as the output characteristics of the input
transistor. Equation 4.116 shows that the load curve should be shifted to the right by an amount
equal to the power-supply voltage.
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Figure 4.17 (a) I-V characteristics of the input transistor. (b) I-V characteristic of the active load. (c) I-V
characteristics with load characteristic superimposed. (d) dc transfer characteristic of common-emitter
or common-source amplifier with current-mirror load.
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We now consider the dc transfer characteristic of the circuits. Initially, assume that Vi = 0.
Then the input transistor is turned off, and the load is saturated in the bipolar case and linear in
the MOS case, corresponding to point 1© in Fig. 4.17c. As Vi is increased, the input transistor
eventually begins to conduct current, but the load remains saturated or linear until point 2© is
reached. Here the load enters the active region, and a small further increase in Vi moves the
operating point through point 3© to point 4©, where the input transistor saturates in the bipolar
case or enters the linear region in the MOS case. The change in Vi required to move from
point 2© to point 4© is small because the slopes of the output I-V characteristics in the active
region are small for both transistors. The transfer curve (Vout as a function of Vi) is sketched
in Fig. 4.17d.

A key point of this analysis is that the slope of the output characteristic is not constant,
which is important because the slope is the gain of the amplifier. Since the gain of the amplifier
depends on the input voltage, the amplifier is nonlinear in general, causing distortion to appear
in the amplifier output. For low Vi, the output is high and the gain is low because the load
transistor does not operate in the active region. Similarly, for large Vi, the output is low and
the gain is low because the input transistor does not operate in the active region. To minimize
distortion while providing gain, the amplifier should be operated in the intermediate region
of Vi, where all transistors operate in the active region. The range of outputs for which all
transistors operate in the active region should be maximized to use the power-supply voltage to
the maximum extent. The active loads in Fig. 4.16 maintain high incremental output resistance
as long as the drop across the load is more than VOUT(min) of the current mirror, which is|VCE2(sat)| in the bipolar case and |Vov2| in the MOS case here. Therefore, minimizing VOUT(min)
of the mirror maximizes the range of outputs over which the amplifier provides high and nearly
constant gain. In contrast, an ideal passive load requires a large voltage drop to give high gain,
as shown in (4.111) and (4.112). As a result, the range of outputs for which the gain is high
and nearly constant is much less than with an active load.

The gain at any output voltage can be found by finding the slope in Fig. 4.17d. In general,
this procedure requires writing equations for the various curves in all of Fig. 4.17. Although
this process is required to study the nonlinear behavior of the circuits, it is so complicated
analytically that it is difficult to carry out for more than just a couple of transistors at a
time. Furthermore, after completing such a large-signal analysis, the results are often so
complicated that the effects of the key parameters are difficult to understand, increasing the
difficulty of designing with these results. Since we are ultimately interested in being able
to analyze and design circuits with a large number of transistors, we will concentrate on the
small-signal analysis, which is much simpler to carry out and interpret than the large-signal
analysis. Unfortunately, the small-signal analysis provides no information about nonlinearity
because it assumes that all transistor parameters are constant.

The primary characteristics of interest in the small-signal analysis here are the voltage gain
and output resistance when both devices operate in the active region. The small-signal equiv-
alent circuit is shown in Fig. 4.18. It is drawn for the bipolar case but applies for the MOS
case as well when r𝜋1 → ∞ and r𝜋2 → ∞ because 𝛽0 → ∞. Since IREF in Fig. 4.16 is assumed
constant, the large-signal base-emitter or gate-source voltage of the load transistor is constant.
Therefore, the small-signal base-emitter or gate-source voltage of the load transistor, v2, is
zero. As a result, the small-signal voltage-controlled current gm2v2 = 0. To find the output
resistance of the amplifier, we set the input to zero. Therefore, v1 = 0 and gm1v1 = 0, and the
output resistance is

Ro = ro1||ro2 (4.117)

Equation 4.117 together with (1.112) and (1.194) show that the output resistance is inversely
proportional to the current in both the bipolar and MOS cases.
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Figure 4.18 Small-signal equivalent circuit for
common-emitter amplifier with active load.

Since v2 = 0, gm1v1 flows in ro1||ro2 and

Av = −gm1(ro1||ro2) (4.118)

Substituting (1.91) and (1.112) into (4.118) gives for the bipolar case

Av = − 1
VT

VA1
+

VT

VA2

(4.119)

Equation 4.119 shows that the gain is independent of the current in the bipolar case because
the transconductance is proportional to the current while the output resistance is inversely
proportional to the current. Typical values for this voltage gain are in the 1000 to 2000 range.
Therefore, the actively loaded bipolar stage provides very high voltage gain.

In contrast, (1.180) shows that the transconductance is proportional to the square root of
the current in the MOS case assuming square-law operation. Therefore, the gain in (4.118) is
inversely proportional to the square root of the current. With channel lengths less than 1 μm,
however, the drain current is almost linearly related to the gate-source voltage, as shown in
(1.224). Therefore, the transconductance is almost constant, and the gain is inversely pro-
portional to the current with very short channel lengths. Furthermore, typical values for the
voltage gain in the MOS case are between 10 and 100, which is much less than with bipolar
transistors.

4.4.3 Common-Emitter–Common-Source Amplifier with Depletion Load

Actively loaded gain stages using MOS transistors can be realized in processes that include
only n-channel or only p-channel transistors if depletion devices are available. A depletion
transistor is useful as a load element because it behaves like a current source when the transistor
operates in the active region with the gate shorted to the source.
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The I-V characteristic of an n-channel MOS depletion-load transistor is illustrated in
Fig. 4.19. Neglecting the body effect, the device exhibits a very high output resistance (equal
to the device ro) as long as the device operates in the active region. When the body effect is
included, the resistance seen across the device drops to approximately 1∕gmb. A complete
gain stage is shown in Fig. 4.20 together with its dc transfer characteristic. The small-signal
equivalent model when both transistors operate in the active region is shown in Fig. 4.21.
From this circuit, we find that the gain is

vo

vi
= −gm1

(
ro1||ro2|| 1

gmb2

)
≃ −

gm1

gmb2
(4.120)

For a common-source amplifier with a depletion load, rearranging (4.120) and using (1.180)
and (1.200) gives

vo

vi
≃ −

gm1
gmb2

gm2
gm2

= − 1
𝜒

√
(W∕L)1
(W∕L)2

(4.121)
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Figure 4.21 Small-signal equivalent circuit of the
common-source amplifier with depletion load,
including the body effect in the load and the
channel-length modulation in the load and the
common-source device.

From (1.196) and (1.141),

1
𝜒

= 2
√

2𝜙f Cox

√
1 + VSB∕(2𝜙f )

2q𝜖NA
(4.122)

Since 𝜒 depends on Vo = VSB, the incremental voltage gain varies with output voltage, giving
the slope variation shown in the active region of Fig. 4.20b.

Equation 4.120 applies for either a common-emitter or common-source driver with a deple-
tion MOS load. If this circuit is implemented in a p-well CMOS technology, M2 can be built
in an isolated well, which can be connected to the source of M2. Since this connection sets
the source-body voltage in the load transistor to zero, it eliminates the body effect. Setting
gmb2 = 0 in (4.120) gives

vo

vi
= −gm1(ro1||ro2) (4.123)

Although the gain predicted in (4.123) is much higher than in (4.120), this connection reduces
the bandwidth of the amplifier because it adds extra capacitance (from the well of M2 to the
substrate of the integrated circuit) to the amplifier output node.

4.4.4 Common-Emitter–Common-Source Amplifier with Diode-Connected
Load

In this section, we examine the common-emitter/source amplifier with diode-connected load,
as shown in MOS form in Fig. 4.22. Since the load is diode connected, the load resistance is
no more than the reciprocal of the transconductance of the load. As a result, the gain of this
circuit is low, and it is often used in wideband amplifiers that require low gain.

For input voltages that are less than one threshold voltage, transistor M1 is off, and no
current flows in the circuit. When the input voltage exceeds a threshold, transistor M1 turns
on, and the circuit provides amplification. Assume that both transistors operate in the active
region. From (1.157), the drain currents of M1 and M2 are

I1 = k′

2

(W
L

)
1
(Vgs1 − Vt1)2 (4.124)

and

I2 = k′

2

(W
L

)
2
(Vgs2 − Vt2)2 (4.125)
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Figure 4.22 (a) Common-source amplifier with enhancement-mode load. (b) I-V characteristic of load
transistor. (c) Transfer characteristic of the circuit.

From KVL in Fig. 4.22,

Vo = VDD − Vgs2 (4.126)

Solving (4.125) for Vgs2 and substituting into (4.126) gives

Vo = VDD − Vt2 −

√
2I2

k′(W∕L)2
(4.127)

Since I2 = I1, (4.127) can be rewritten as

Vo = VDD − Vt2 −

√
2I1

k′(W∕L)2
(4.128)

Substituting (4.124) into (4.128) with Vgs1 = Vi gives

Vo = VDD − Vt2 −

√
(W∕L)1
(W∕L)2

(Vi − Vt1) (4.129)
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Equation 4.129 shows that the slope of the transfer characteristic is the square root of the aspect
ratios, assuming that the thresholds are constant. Since the slope of the transfer characteristic
is the gain of the amplifier, the gain is constant and the amplifier is linear for a wide range
of inputs if the thresholds are constant. This amplifier is useful in implementing broadband,
low-gain amplifiers with high linearity.

Equation 4.129 holds when both transistors operate in the active region and when
channel-length modulation and body effect are negligible. In practice, the requirement that
both transistors operate in the active region leads to an important performance limitation
in enhancement-load inverters. The load device remains in the active region only if the
drain-source voltage of the load is at least a threshold voltage. For output voltages more
positive than VDD − Vt2, the load transistor enters the cutoff region and carries no current.
Therefore, the amplifier is incapable of producing an output more positive than one threshold
voltage below the positive supply. Also, in practice, channel-length modulation and body
effect reduce the gain, as shown in the following small-signal analysis.

The small-signal voltage gain can be determined by using the small-signal equivalent circuit
of Fig. 4.23, in which both the body effect and the output resistance of the two transistors have
been included. From KCL at the output node,

gm1vi +
vo

ro1
+

vo

ro2
+ gm2vo + gmb2vo = 0 (4.130)

Rearranging (4.130) gives

vo

vi
= −gm1

(
1

gm2
|| 1

gmb2
||ro1||ro2

)

= −
gm1

gm2

⎛⎜⎜⎜⎝
1

1 +
gmb2

gm2
+ 1

gm2ro1
+ 1

gm2ro2

⎞⎟⎟⎟⎠ (4.131)

If gm2∕gmb2 ≫ 1, gm2ro1 ≫ 1, and gm2ro2 ≫ 1,

vo

vi
≃ −

gm1

gm2
= −

√
(W∕L)1
(W∕L)2

(4.132)
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gm1vgs1

–gmb2vs2–gm2vs2

Figure 4.23 Small-signal equivalent circuit for the
common-source amplifier with enhancement-mode load,
including output resistance and body effect in the load.
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as in (4.129). For practical device geometries, this relationship limits the maximum voltage
gain to values on the order of 10 to 20.

The bipolar counterpart of the circuit in Fig. 4.22 is a common-emitter amplifier with a
diode-connected load. The magnitude of its gain would be approximately equal to the ratio
of the transconductances, which would be unity. However, the current that would flow in this
circuit would be extremely large for inputs greater than Vbe(on) because the collector current in
a bipolar transistor is an exponential function of its base-emitter voltage. To limit the current
but maintain unity gain, equal-value resistors can be placed in series with the emitter of each
transistor. Alternatively, the input transistors can be replaced by a differential pair, where the
current is limited by the tail current source. In this case, emitter degeneration is used in the
differential pair to increase the range of inputs for which all transistors operate in the active
region, as in Fig. 3.49. In contrast, source degeneration is rarely used in MOS differential pairs
because their transconductance and linear range can be controlled through the device aspect
ratios.

4.4.5 Differential Pair with Current-Mirror Load

4.4.5.1 Large-Signal Analysis. A straightforward application of the active-load concept
to the differential pair would yield the circuit shown in Fig. 4.24a. Assume at first that all
n-channel transistors are identical and that all p-channel transistors are identical. Then the
differential-mode half-circuit for this differential pair is just a common-source amplifier with
an active load, as in Fig. 4.16b. Thus the differential-mode voltage gain is large when all the
transistors are biased in the active region. The circuit as it stands, however, has the drawback
that the quiescent value of the common-mode output voltage is very sensitive to changes in the
drain currents of M3, M4, M7, and M8. As a result, some transistors may operate in or near the
triode region, reducing the differential gain or the range of outputs for which the differential
gain is high.

This fact is illustrated by the dc common-mode half-circuit shown in Fig. 4.24b. In the
common-mode half-circuit, the combination of M1, M6, and M8 form a cascode current mir-
ror, which is connected to the simple current mirror formed by M3 and M5. If all transistors
operate in the active region, M3 pushes down a current about equal to IREF1, and M8 pulls
down a current about equal to IREF2. KCL requires that the current in M3 must be equal to the
current in M8. If IREF2 = IREF1, KCL can be satisfied while all transistors operate in the active
region. In practice, however, IREF2 is not exactly equal to IREF1, and the current mirrors con-
tain nonzero mismatch, causing changes in the common-mode output to satisfy KCL. Since
the output resistance of each current mirror is high, the required change in the common-mode
output voltage can be large even for a small mismatch in reference currents or transistors, and
one or more transistors can easily move into or near the triode region. For example, suppose
that the current pushed down by M3 when it operates in the active region is more than the cur-
rent pulled down by M8 when it operates in the active region. Then the common-mode output
voltage must rise to reduce the current in M3. If the common-mode output voltage rises within
Vov3 of VDD, M3 operates in the triode region. Furthermore, even if all the transistors continue
to be biased in the active region, any change in the common-mode output voltage from its
desired value reduces the range of outputs for which the differential gain is high.

Since M1 and M2 act as cascodes for M7 and M8, shifts in the common-mode input voltage
have little effect on the common-mode output unless the inputs become low enough that M7 and
M8 are forced to operate in the triode region. Therefore, feedback to the inputs of the circuit in
Fig. 4.24a is not usually adequate to overcome the common-mode bias problem. Instead, this
problem is usually overcome in practice through the use of a separate common-mode feedback
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Figure 4.24 (a) Differential pair with active load. (b) Common-mode half-circuit for differential pair
with active load.

circuit, which either adjusts the sum of the currents in M3 and M4 to be equal to the sum of
the currents in M7 and M8 or vice versa for a given common-mode output voltage. This topic
is covered in Chapter 12.

An alternative approach that avoids the need for common-mode feedback is shown in
Fig. 4.25. For simplicity in the bipolar circuit shown in Fig. 4.25a, assume that 𝛽F → ∞.
The circuit in Fig. 4.25b is the MOS counterpart of the bipolar circuit in Fig. 4.25a because
each npn and pnp transistor has been replaced by n-channel and p-channel MOS transistors,
respectively. Then under ideal conditions in both the bipolar and MOS circuits, the active
load is a current mirror that forces the current in its output transistor T4 to equal the current
in its input transistor T3. Since the sum of the currents in both transistors of the active load
must equal ITAIL by KCL, ITAIL∕2 flows in each side of the active load. Therefore, these cir-
cuits eliminate the common-mode bias problem by allowing the currents in the active load
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Figure 4.25 (a) Emitter-
coupled pair with
current-mirror load.
(b) Source-coupled pair
with current-mirror load
(MOS counterpart).

to be set by the tail current source. Furthermore, these circuits each provide a single output
with much better rejection of common-mode input signals than a standard resistively loaded
differential pair with the output taken off one side only. Although these circuits can be ana-
lyzed from a large-signal standpoint, we will concentrate on the small-signal analysis for
simplicity.

4.4.5.2 Small-Signal Analysis. We will analyze the low-frequency small-signal behavior
of the bipolar circuit shown in Fig. 4.25a because these results cover both the bipolar and
MOS cases by letting 𝛽0 → ∞ and r𝜋 → ∞. Key parameters of interest in this circuit include
the small-signal transconductance and output resistance. (The product of these two quantities
gives the small-signal voltage gain with no load.) Since only one transistor in the active load is
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Figure 4.26 (a) Small-signal equivalent circuit, differential pair with current-mirror load. (b) Simplified
drawing of small-signal model of differential pair with current-mirror load.

diode connected, the circuit is not symmetrical, and a half-circuit approach is not useful. There-
fore, we will analyze the small-signal model of this circuit directly. Assume that all transistors
operate in the active region with rμ → ∞ and rb = 0. Let rtail represent the output resistance
of the tail current source ITAIL. The resulting small-signal circuit is shown in Fig. 4.26a.

Since T3 and T4 form a current mirror, we expect the mirror output current to be approxi-
mately equal to the mirror input current. Therefore, we will write

gm4v3 = i3(1 − 𝜖m) (4.133)
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where 𝜖m is the systematic gain error of the current mirror calculated from small-signal param-
eters. Let r3 represent the total resistance connected between the base or gate of T3 and the
power supply. Then r3 is the parallel combination of 1∕gm3, r𝜋3, r𝜋4, and ro3. Under the sim-
plifying assumptions that 𝛽0 ≫ 1 and gmro ≫ 1, this parallel combination is approximately
equal to 1∕gm3. Then the drop across r𝜋4 is

v3 = i3r3 ≃
i3

gm3
(4.134)

We will also assume that the two transistors in the differential pair match perfectly and operate
with equal dc currents, as do the two transistors in the current-mirror load. Then gm(dp) =
gm1 = gm2, gm(mir) = gm3 = gm4, r𝜋(dp) = r𝜋1 = r𝜋2, r𝜋(mir) = r𝜋3 = r𝜋4, ro(dp) = ro1 = ro2, and
ro(mir) = ro3 = ro4. From (4.134), the resulting voltage-controlled current gm4v3 is

gm4v3 = gm(mir)v3 ≃ gm(mir)
i3

gm(mir)
= i3 (4.135)

Equations 4.133 and 4.135 show that 𝜖m ≃ 0 and thus the active load acts as a current mirror in a
small-signal sense, as expected. Using (4.133), the small-signal circuit is redrawn in Fig. 4.26b
with the output grounded to find the transconductance. Note that ro4 is omitted because it is
attached to a small-signal ground on both ends.

From KCL at node 1©,

(vi1 − v1 + vi2 − v1)
(

1
r𝜋(dp)

+ gm(dp)

)
+

v3 − v1

ro(dp)
−

v1

ro(dp)||rtail
= 0 (4.136)

where v1 and v3 are the voltages to ground from nodes 1© and 3©. To complete an exact
small-signal analysis, KCL equations could also be written at nodes 2© and 3©, and these KCL
equations plus (4.136) could be solved simultaneously. However, this procedure is complicated
algebraically and leads to an equation that is difficult to interpret. To simplify the analysis, we
will assume at first that rtail → ∞ and ro(dp) → ∞ since the transistors are primarily controlled
by their base-emitter or gate-source voltages. Then from (4.136)

v1 =
vi1 + vi2

2
= vic (4.137)

where vic is the common-mode component of the input. Let vid = vi1 − vi2 represent the
differential-mode component of the input. Then vi1 = vic + vid∕2 and vi2 = vic − vid∕2, and
the small-signal collector or drain currents

i1 = gm(dp)(vi1 − v1) =
gm(dp)vid

2
(4.138)

and
i2 = gm(dp)(vi2 − v1) = −

gm(dp)vid

2
(4.139)

With a resistive load and a single-ended output, only i2 flows in the output. Therefore, the
transconductance for a differential-mode (dm) input with a passive load is

Gm[dm] =
iout

vid

||||vout=0
= −

i2
vid

=
gm(dp)

2
(4.140)
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On the other hand, with the active loads in Fig. 4.25, not only i2 but also most of i3 flows
in the output because of the action of the current mirror, as shown by (4.135). Therefore, the
output current in Fig. 4.26b is

iout = −(1 − 𝜖m)i3 − i2 (4.141)

Assume at first that the current mirror is ideal so that 𝜖m = 0. Then since i3 = −i1, substituting
(4.138) and (4.139) in (4.141) gives

iout = gm(dp)vid (4.142)

Therefore, with an active load,

Gm[dm] =
iout

vid

||||vout=0
= gm(dp) (4.143)

Equation 4.143 applies for both the bipolar and MOS amplifiers shown in Fig. 4.25. Comparing
(4.140) and (4.143) shows that the current-mirror load doubles the differential transconduc-
tance compared to the passive-load case. This result stems from the fact that the current mirror
creates a second signal path to the output. (The first path is through the differential pair.)
Although frequency response is not analyzed in this chapter, note that the two signal paths
usually have different frequency responses, which is often important in high-speed applica-
tions.

The key assumptions that led to (4.142) and (4.143) are that the current mirror is ideal
so 𝜖m = 0 and that rtail → ∞ and ro(dp) → ∞. Under these assumptions, the output current is
independent of the common-mode input. In practice, none of these assumptions is exactly
true, and the output current depends on the common-mode input. However, this dependence is
small because the active load greatly enhances the common-mode rejection ratio of this stage,
as shown in the section 4.4.5.3.

Another important parameter of the differential pair with active load is the output resistance.
The output resistance is calculated using the circuit of Fig. 4.27, in which a test-voltage source

1
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Figure 4.27 Circuit for calculation of the output resistance of the differential pair with current-mirror
load.
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vt is applied at the output while the inputs are connected to small-signal ground. The resulting
current it has four components. The current in ro4 is

it1 =
vt

ro4
(4.144)

The resistance in the emitter or source lead of T2 is rtail in parallel with the resistance seen
looking into the emitter or source of T1, which is approximately 1∕gm1. Thus, using (3.99)
for a transistor with degeneration, we find that the effective output resistance looking into the
collector or drain of T2 is

Ro2 ≃ ro2

(
1 + gm2

1
gm1

)
= 2ro2 (4.145)

Hence

it2 + it4 ≃
vt

2ro2
(4.146)

If rtail ≫ 1∕gm1, this current flows into the emitter or source of T1 and is mirrored to the output
with a gain of approximately unity to produce

it3 ≃ it2 + it4 ≃
vt

2ro2
(4.147)

Thus

it = it1 + it2 + it3 + it4 ≃ vt

(
1

ro4
+ 1

ro2

)
(4.148)

Since ro2 = ro(dp) and ro4 = ro(mir),

Ro =
vt

it

|||| vi1=0
vi2=0

≃ 1
1

ro(dp)
+ 1

ro(mir)

= ro(dp)||ro(mir) (4.149)

The result in (4.149) applies for both the bipolar and MOS amplifiers shown in Fig. 4.25.
In multistage bipolar amplifiers, the low-frequency gain of the loaded circuit is likely to be
reduced by the input resistance of the next stage because the output resistance is high. In
contrast, low-frequency loading is probably not an issue in multistage MOS amplifiers because
the next stage has infinite input resistance if the input is the gate of an MOS transistor.

Finally, although the source-coupled pair has infinite input resistance, the emitter-coupled
pair has finite input resistance because 𝛽0 is finite. If the effects of the ro of T2 and T4 are
neglected, the differential input resistance of the actively loaded emitter-coupled pair is simply
2r𝜋(dp) as in the resistively loaded case. In practice, however, the asymmetry of the circuit
together with the high voltage gain cause feedback to occur through the output resistance of
T2 to node 1©. This feedback causes the input resistance to differ slightly from 2r𝜋(dp).

In summary, the actively loaded differential pair is capable of providing differential-to-
single-ended conversion: that is, the conversion from a differential voltage to a voltage refer-
enced to the ground potential. The high output resistance of the circuit requires that the next
stage must have high input resistance if the large gain is to be realized. A small-signal two-port
equivalent circuit for the stage is shown in Fig. 4.28.
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Figure 4.28 Two-port representation of
small-signal properties of differential pair with
current-mirror load. The effects of
asymmetrical input resistance have been
neglected.

4.4.5.3 Common-Mode Rejection Ratio. In addition to providing high voltage gain, the
circuits in Fig. 4.25 provide conversion from a differential input signal to an output signal that
is referenced to ground. Such a conversion is required in all differential-input, single-ended
output amplifiers.

The simplest differential-to-single-ended converter is a resistively loaded differential pair
in which the output is taken from only one side, as shown in Fig. 4.29a. In this case, Adm > 0,
Acm < 0, and the output is

vo = −
vod

2
+ voc = −

Admvid

2
+ Acmvic (4.150)

vo = −
Adm

2

(
vid −

2Acm

Adm
vic

)
= −

Adm

2

(
vid + 2

||||Acm

Adm

|||| vic

)
(4.151)

= −
Adm

2

(
vid +

2vic

CMRR

)
(4.152)

Thus, common-mode signals at the input will cause changes in the output voltage. The
common-mode rejection ratio (CMRR) is

CMRR =
||||Adm

Acm

|||| = ||||Gm[dm]Ro

Gm[cm]Ro

|||| = ||||Gm[dm]
Gm[cm]

|||| (4.153)

where the common-mode (cm) transconductance is

Gm[cm] =
iout

vic

||||vout=0
(4.154)

Since the circuits in Fig. 4.29a are symmetrical, a common-mode half-circuit can be used
to find Gm[cm]. The common-mode half-circuit is a common-emitter/source amplifier with
degeneration. From (3.93) and (3.104),

Gm[cm] = −
i2
vic

≃ −
gm(dp)

1 + gm(dp)(2rtail)
(4.155)

where gm(dp) = gm1 = gm2 and rtail represents the output resistance of the tail current source T5.
The negative sign appears in (4.155) because the output current is defined as positive when it
flows from the output terminal into the small-signal ground to be consistent with the differential
case, as in Fig. 4.26b. Equation 4.155 applies for both the bipolar and MOS cases if the base
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Figure 4.29 Differential-to-single-ended conversion using (a) resistively loaded differential pairs and
(b) actively loaded differential pairs.

current is ignored in the bipolar case, the body effect is ignored in the MOS case, and ro1 and
ro2 are ignored in both cases. Substituting (4.140) and (4.155) into (4.153) gives

CMRR =
1 + 2gm(dp)rtail

2
≃ gm(dp)rtail = gm1ro5 (4.156)

Equation 4.156 shows that the common-mode rejection ratio here is about half that in (3.193)
because the outputs in Fig. 4.29 are taken only from one side of each differential pair instead
of from both sides, reducing the differential-mode gain by a factor of two. The result in (4.156)
applies for both the bipolar and MOS amplifiers shown in Fig. 4.29a. Because gmro is much
higher for bipolar transistors than MOS transistors, the CMRR of a bipolar differential pair
with resistive load is much higher than that of its MOS counterpart.
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On the other hand, the active-load stages shown in Fig 4.29b have common-mode rejection
ratios much superior to those of the corresponding circuits in Fig. 4.29a. Assume that
the outputs in Fig. 4.29b are connected to small-signal ground to allow calculation of the
common-mode transconductance. The small-signal model is the same as shown in Fig. 4.26b
with vi1 = vi2 = vic. For simplicity, let 𝛽0 → ∞ and r𝜋 → ∞ at first. As with a resistive load,
changes in the common-mode input will cause changes in the tail bias current itail because
the output resistance of T5 is finite. If we assume that the currents in the differential-pair
transistors are controlled only by the base-emitter or gate-source voltages, the change in the
current in T1 and T2 is

i1 = i2 =
itail

2
(4.157)

If 𝜖m = 0, the gain of the current mirror is unity. Then substituting (4.157) into (4.141) with
i3 = −i1 gives

iout = −i3 − i2 = i1 − i2 = 0 (4.158)

As a result,

Gm[cm] =
iout

vic

|||| vout=0
= 0 (4.159)

Therefore,

CMRR → ∞ (4.160)

The common-mode rejection ratio in (4.160) is infinite because the change in the current in
T4 cancels that in T2 even when rtail is finite under these assumptions.

The key assumptions that led to (4.160) are that ro(dp) → ∞ so i1 = i2 and that the current
mirror is ideal so 𝜖m = 0. In practice, the currents in the differential-pair transistors are con-
trolled not only by their base-emitter or gate-source voltages but also to some extent by their
collector-emitter or drain-source voltages. As a result, i1 is not exactly equal to i2 because of
finite ro(dp) in T1 and T2. Furthermore, the gain of the current mirror is not exactly unity, which
means that 𝜖m is not exactly zero in practice because of finite ro(mir) in T3 and T4. Finite 𝛽0 also
affects the systematic gain error of the current mirror when bipolar transistors are used. For
these reasons, the common-mode rejection ratio is finite in practice. However, the use of the
active load greatly improves the common-mode rejection ratio compared to the resistive load
case, as we will show next.

Suppose that

i1 = i2(1 − 𝜖d) (4.161)

where 𝜖d can be thought of as the gain error in the differential pair. Substituting (4.161) into
(4.141) with i3 = −i1 gives

iout = i1(1 − 𝜖m) − i2 = i2
(
(1 − 𝜖d)(1 − 𝜖m) − 1

)
(4.162)

Rearranging (4.162) gives

iout = −i2(𝜖d + 𝜖m − 𝜖d𝜖m) (4.163)
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If 𝜖d ≪ 1 and 𝜖m ≪ 1, the product term 𝜖d𝜖m is a second-order error and can be neglected.
Therefore,

iout ≃ −i2(𝜖d + 𝜖m) (4.164)

Substituting (4.164) into (4.154) gives

Gm[cm] ≃ −
(

i2
vic

)
(𝜖d + 𝜖m) (4.165)

Equation 4.165 applies for the active-load circuits shown in Fig. 4.29b; however, the first term
has approximately the same value as in the passive-load case. Therefore, we will substitute
(4.155) into (4.165), which gives

Gm[cm] ≃ −
( gm(dp)

1 + gm(dp)(2rtail)

)
(𝜖d + 𝜖m) (4.166)

Substituting (4.166) and (4.143) into (4.153) gives

CMRR =
||||Gm[dm]
Gm[cm]

|||| ≃ 1 + 2gm(dp)rtail

(𝜖d + 𝜖m)
(4.167)

Comparing (4.167) and (4.156) shows that the active load improves the common-mode rejec-
tion ratio by a factor of 2∕(𝜖d + 𝜖m). The factor of 2 in the numerator of this expression stems
from the increase in the differential transconductance, and the denominator stems from the
decrease in the common-mode transconductance.

To find 𝜖d, we will refer to Fig. 4.26b with vi1 = vi2 = vic. First, we write

i1 = gm(dp)(vic − v1) +
v3 − v1

ro(dp)
(4.168)

and
i2 = gm(dp)(vic − v1) −

v1

ro(dp)
(4.169)

Substituting (4.134) and i3 = −i1 into (4.168) gives

i1 ≃ gm(dp)(vic − v1) −
v1

ro(dp)
−

i1
gm(mir)ro(dp)

(4.170)

Equation 4.170 can be rearranged to give(1 + gm(mir)ro(dp)

gm(mir)ro(dp)

)
i1 ≃ gm(dp)(vic − v1) −

v1

ro(dp)
(4.171)

Substituting (4.169) into (4.171) gives

i1 ≃
( gm(mir)ro(dp)

1 + gm(mir)ro(dp)

)
i2 (4.172)
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Substituting (4.161) into (4.172) gives

𝜖d ≃ 1
1 + gm(mir)ro(dp)

(4.173)

To find 𝜖m, we will again refer to Fig. 4.26b with vi1 = vi2 = vic. In writing (4.134), we
assumed that r3 ≃ 1∕gm3. We will now reconsider this assumption and write

r3 = 1
gm3

||r𝜋3||r𝜋4||ro3 (4.174)

We will still assume that the two transistors in the differential pair match perfectly and oper-
ate with equal dc currents, as do the two transistors in the active load. Then (4.174) can be
rewritten as

r3 =
r𝜋(mir)ro(mir)

r𝜋(mir) + 2ro(mir) + gm(mir)r𝜋(mir)ro(mir)
(4.175)

Substituting (4.175) into (4.135) gives

gm4v3 = gm4i3r3 =
gm(mir)r𝜋(mir)ro(mir)i3

r𝜋(mir) + 2ro(mir) + gm(mir)r𝜋(mir)ro(mir)
(4.176)

Substituting (4.133) into (4.176) gives

𝜖m =
r𝜋(mir) + 2ro(mir)

r𝜋(mir) + 2ro(mir) + gm(mir)r𝜋(mir)ro(mir)
(4.177)

For bipolar transistors, r𝜋 is usually much less than ro; therefore,

𝜖m[bip] =
2 +

r𝜋(mir)

ro(mir)

2 +
r𝜋(mir)

ro(mir)
+ gm(mir)r𝜋(mir)

≃ 1

1 +
gm(mir)r𝜋(mir)

2

= 1

1 +
𝛽0

2

(4.178)

Since r𝜋 → ∞ for MOS transistors,

𝜖m[MOS] = 1
1 + gm(mir)ro(mir)

(4.179)

For the bipolar circuit in Fig. 4.29b, substituting (4.173) and (4.178) into (4.167) gives

CMRR ≃
1 + 2gm(dp)rtail⎛⎜⎜⎜⎝

1
1 + gm(mir)ro(dp)

+ 1

1 +
gm(mir)r𝜋(mir)

2

⎞⎟⎟⎟⎠
(4.180)

If (gm(mir)ro(dp)) ≫ 1 and (gm(mir)r𝜋(mir)∕2) ≫ 1, (4.180) can be simplified to give

CMRR ≃ (1 + 2gm(dp)rtail)gm(mir)

(
ro(dp)|| r𝜋(mir)

2

)
≃ (2gm(dp)rtail)gm(mir)

(
ro(dp)|| r𝜋(mir)

2

)
(4.181)
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Comparing (4.181) and (4.156) shows that the active load increases the common-mode rejec-
tion ratio by a factor of about 2gm(mir)

(
ro(dp)||(r𝜋(mir)∕2)

)
for the bipolar circuit in Fig. 4.29b

compared to its passive-load counterpart in Fig. 4.29a.
On the other hand, for the MOS circuit in Fig. 4.29b, substituting (4.173) and (4.179) into

(4.167) gives

CMRR ≃
1 + 2gm(dp)rtail(

1
1 + gm(mir)ro(dp)

+ 1
1 + gm(mir)ro(mir)

) (4.182)

If (gm(mir)ro(dp)) ≫ 1 and (gm(mir)ro(mir)) ≫ 1, (4.182) can be simplified to give

CMRR ≃ (1 + 2gm(dp)rtail)gm(mir)(ro(dp)||ro(mir))

≃ (2gm(dp)rtail)gm(mir)(ro(dp)||ro(mir)) (4.183)

Comparing (4.183) and (4.156) shows that the active load increases the common-mode rejec-
tion ratio by a factor of about 2gm(mir)(ro(dp)||ro(mir)) for the MOS circuit in Fig. 4.29b compared
to its passive-load counterpart in Fig. 4.29a.

For these calculations, perfect matching was assumed so that gm1 = gm2, gm3 = gm4,
ro1 = ro2, and ro3 = ro4. In practice, however, nonzero mismatch occurs. With mismatch in a
MOS differential pair using a current-mirror load, the differential-mode transconductance is

Gm[dm] ≃ gm1−2

⎡⎢⎢⎢⎢⎣
1 −

(
Δgm1−2

2gm1−2

)2

1 +
(
Δgm3−4

2gm3−4

)
⎤⎥⎥⎥⎥⎦

(4.184)

where Δgm1−2 = gm1 − gm2, gm1−2 = (gm1 + gm2)∕2, Δgm3−4 = gm3 − gm4, and gm3−4 =
(gm3 + gm4)∕2. See Problem 4.18. The approximation in (4.184) is valid to the extent
that gmro ≫ 1 for each transistor and (gm1 + gm2)rtail ≫ 1 for the tail current source.
Equation 4.184 shows that the mismatch between gm1 and gm2 has only a minor effect on
Gm[dm]. This result stems from the fact that the small-signal voltage across the tail current
source, vtail, is zero with a purely differential input only when gm1 = gm2, assuming ro1 → ∞
and ro2 → ∞. For example, increasing gm1 compared to gm2 tends to increase the small-signal
drain current i1 if vgs1 is constant. However, this change also increases vtail, which reduces vgs1
for a fixed vid. The combination of these two effects causes i1 to be insensitive to gm1 − gm2.
On the other hand, mismatch between gm3 and gm4 directly modifies the contribution of i1
through the current mirror to the output current. Therefore, (4.184) shows that Gm[dm] is
most sensitive to the mismatch between gm3 and gm4.

With mismatch in a MOS differential pair using a current-mirror load, the common-mode
transconductance is

Gm[cm] ≃ − 1
2rtail

(𝜖d + 𝜖m) (4.185)

where 𝜖d is the gain error in the source-coupled pair with a pure common-mode input defined
in (4.161) and 𝜖m is the gain error in the current mirror defined in (4.133). From Problem 4.19,

𝜖d ≃ 1
gm3ro(dp)

−
Δgm1−2

gm1−2

(
1 +

2rtail

ro(dp)

)
−

2rtail

ro(dp)

Δro(dp)

ro(dp)
(4.186)
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Each term in (4.186) corresponds to one source of gain error by itself, and interactions between
terms are ignored. The first term in (4.186) is consistent with (4.173) when gm3ro(dp) ≫ 1 and
stems from the observation that the drain of T1 is not connected to a small-signal ground dur-
ing the calculation of Gm[dm], unlike the drain of T2. The second term in (4.186) stems from
mismatch between gm1 and gm2 alone. The third term in (4.186) stems from the mismatch
between ro1 and ro2 alone. The contribution of this mismatch to Gm[cm] is significant because
the action of the current mirror nearly cancels the contributions of the input gm generators to
Gm[cm] under ideal conditions, causing Gm[cm] ≃ 0 in (4.166). In contrast, Gm[dm] is insensi-
tive to the mismatch between ro1 and ro2 because the dominant contributions to Gm[dm] arising
from the input gm generators do not cancel at the output. From Problem 4.19,

𝜖m = 1
1 + gm3ro3

+
(gm3 − gm4)ro3

1 + gm3ro3
≃ 1

gm3ro3
+

Δgm3−4

gm3−4
(4.187)

Each term in (4.187) corresponds to one source of gain error by itself, and interactions
between terms are ignored. The first term in (4.187), which is consistent with (4.179)
when gm3ro3 ≫ 1, stems from the observation that the small-signal input resistance of the
current mirror is not exactly 1∕gm3 but (1∕gm3)||ro3. The second term in (4.187) stems from
mismatch between gm3 and gm4 alone. The CMRR with mismatch is the ratio of Gm[dm] in
(4.184) to Gm[cm] in (4.185), using (4.186) and (4.187) for 𝜖d and 𝜖m, respectively. Since the
common-mode transconductance is very small without mismatch (as a result of the behavior
of the current-mirror load), mismatch usually reduces the CMRR by increasing |Gm[cm]|.
4.5 Voltage and Current References

4.5.1 Low-Current Biasing

4.5.1.1 Bipolar Widlar Current Source. In ideal operational amplifiers, the current is zero
in each of the two input leads. However, the input current is not zero in real op amps with
bipolar input transistors because 𝛽F is finite. Since the op-amp inputs are usually connected
to a differential pair, the tail current must usually be very small in such op amps to keep the
input current small. Typically, the tail current is on the order of 5 μA. Bias currents of this
magnitude are also required in a variety of other applications, especially where minimizing
power dissipation is important. The simple current mirrors shown in Fig. 4.30 are usually not
optimum for such small currents. For example, using a simple bipolar current mirror as in
Fig. 4.30a and assuming a maximum practical emitter area ratio between transistors of ten
to one, the mirror would need an input current of 50 μA for an output current of 5 μA. If the
power-supply voltage in Fig. 4.30a is 5 V, and if VBE(on) = 0.7 V, R = 86 kΩwould be required.
Resistors of this magnitude are costly in terms of die area. Currents of such low magnitude
can be obtained with moderate values of resistance, however, by modifying the simple current
mirror so that the transistors operate with unequal base-emitter voltages. In the Widlar current
source of Fig. 4.31a, resistor R2 is inserted in series with the emitter of Q2, and transistors Q1
and Q2 operate with unequal base emitter voltages if R2 ≠ 0.10,11 This circuit is referred to as
a current source rather than a current mirror because the output current in Fig. 4.31a is much
less dependent on the input current and the power-supply voltage than in the simple current
mirror of Fig. 4.30a, as shown in Section 4.5.2. We will now calculate the output current of
the Widlar current source.
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Q2Q1
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M2M1
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Figure 4.30 Simple two-transistor current mirrors where the input current is set by the supply voltage
and a resistor using (a) bipolar and (b) MOS transistors.
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Q2Q1
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(b)

M2M1

VDD

IIN

Figure 4.31 Widlar current sources: (a) bipolar and (b) MOS.

If IIN > 0, Q1 operates in the forward-active region because it is diode connected. Assume
that Q2 also operates in the forward-active region. KVL around the base-emitter loop gives

VBE1 − VBE2 −
𝛽F + 1

𝛽F
IOUTR2 = 0 (4.188)

If we assume that VBE1 = VBE2 = VBE(on) = 0.7 V in (4.188), we would predict that IOUT = 0.
Although IOUT is small in practice, it is greater than zero under the usual bias conditions, which
means that the standard assumption about VBE(on) is invalid here. In contrast, the standard
assumption is usually valid in calculating IIN because small variations in VBE1 have little effect
on IIN if VCC ≫ VBE1. When one base-emitter voltage is subtracted from another, however,
small differences between them are important. If VA → ∞, (4.188) can be rewritten using
(1.35) as

VT ln
IC1

IS1
− VT ln

IOUT

IS2
−

𝛽F + 1

𝛽F
IOUTR2 = 0 (4.189)
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If 𝛽F → ∞, (4.189) simplifies to

VT ln
IIN

IS1
− VT ln

IOUT

IS2
− IOUTR2 = 0 (4.190)

For identical transistors, IS1 and IS2 are equal, and (4.190) becomes

VT ln
IIN

IOUT
= IOUTR2 (4.191)

This transcendental equation can be solved by trial and error to find IOUT if R2 and IIN are
known, as in typical analysis problems. Because the logarithm function compresses changes in
its argument, attention can be focused on the linear term in (4.191), simplifying convergence of
the trial-and-error process. In design problems, however, the desired IIN and IOUT are usually
known, and (4.191) provides the required value of R2.

◼ EXAMPLE
In the circuit of Fig. 4.31a, determine the proper value of R2 to give IOUT = 5 μA. Assume
that VCC = 5 V, R1 = 4.3 kΩ, VBE(on) = 0.7 V, and 𝛽F → ∞.

IIN = 5 V − 0.7 V
4.3 kΩ

= 1 mA

VT ln
IIN

IOUT
= 26 mV ln

(
1 mA
5 μA

)
= 137 mV

Thus from (4.191),

IOUTR2 = 137 mV

and
R2 = 137 mV

5 μA
= 27.4 kΩ

The total resistance in the circuit is 31.7 kΩ.◼

◼ EXAMPLE

In the circuit of Fig. 4.31a, assume that IIN = 1 mA, R2 = 5 kΩ, and 𝛽F → ∞. Find IOUT.
From (4.191),

VT ln
1 mA
IOUT

− 5 kΩ(IOUT) = 0

Try
IOUT = 15 μA

108 mV − 75 mV ≠ 0

The linear term IOUTR2 is too small; therefore, IOUT > 15μA should be tried. Try

IOUT = 20 μA

101.7 mV − 100 mV ≃ 0
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Therefore, the output current is close to 20 μA. Notice that while the linear term increased by
25 mV from the first to the second trial, the logarithm term decreased by only about 6 mV
because the logarithm function compresses changes in its argument.◼

4.5.1.2 MOS Widlar Current Source. The Widlar configuration can also be used in MOS
technology, as shown in Fig. 4.31b. If IIN > 0, M1 operates in the active region because it is
diode connected. Assume that M2 also operates in the forward-active region. KVL around the
gate-source loop gives

VGS1 − VGS2 − IOUTR2 = 0 (4.192)

If we ignore the body effect, the threshold components of the gate-source voltages cancel, and
(4.192) simplifies to

IOUTR2 + Vov2 − Vov1 = 0 (4.193)

If the transistors operate in strong inversion and VA → ∞,

IOUTR2 +

√
2IOUT

k′(W∕L)2
− Vov1 = 0 (4.194)

This quadratic equation can be solved for
√

IOUT:

√
IOUT =

−
√

2
k′(W∕L)2

±
√

2
k′(W∕L)2

+ 4R2Vov1

2R2
(4.195)

where Vov1 =
√

2IIN∕[k′(W∕L)1]. From (1.157),

√
IOUT =

√
k′(W∕L)2

2
(VGS2 − Vt) (4.196)

Equation 4.196 applies only when M2 operates in the active region, which means that VGS2 >

Vt. As a result,
√

IOUT > 0, and the potential solution where the second term in the numerator
of (4.195) is subtracted from the first cannot occur in practice. Therefore,

√
IOUT =

−
√

2
k′(W∕L)2

+
√

2
k′(W∕L)2

+ 4R2Vov1

2R2
(4.197)

Equation 4.197 shows that a closed-form solution for the output current can be written for
a Widlar current source that uses MOS transistors operating in strong inversion, unlike the
bipolar case where trial and error is required to find IOUT.

◼ EXAMPLE

In Fig. 4.31b, find IOUT if IIN = 100 μA, R2 = 4 kΩ, k′ = 200 μA∕V2, and (W∕L)1 =
(W∕L)2 = 25. Assume that the temperature is 27∘C and that n = 1.5 in (1.247). Then
R2 = 0.004 MΩ, Vov1 =

√
200∕(200 × 25) V = 0.2 V,

√
IOUT =

−
√

2
200(25)

+
√

2
200(25)

+ 4(0.004)(0.2)

2(0.004)
√
μA = 5

√
μA
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and IOUT = 25 μA. Also,

Vov2 = Vov1 − IOUTR2 = 0.2 − 25 × 0.004 = 0.1 V > 2nVT ≃ 78 mV

Therefore, both transistors operate in strong inversion, as assumed.◼

4.5.1.3 Bipolar Peaking Current Source. The Widlar source described in the section
4.5.1.1 allows currents in the microamp range to be realized with moderate values of resistance.
Biasing integrated-circuit stages with currents on the order of nanoamps is often desirable. To
reach such low currents with moderate values of resistance, the circuit shown in Fig. 4.32 can
be used.12–15 Neglecting base currents, we have

VBE1 − IINR = VBE2 (4.198)

If VA → ∞, (4.198) can be rewritten using (1.35) as

VT ln
IIN

IS1
− VT ln

IOUT

IS2
= IINR (4.199)

If Q1 and Q2 are identical, (4.199) can be rewritten as

IOUT = IIN exp

(
−

IINR

VT

)
(4.200)

Equation 4.200 is useful for analysis of a given circuit. For a design with identical Q1 and Q2,
(4.199) can be rewritten as

R =
VT

IIN
ln

IIN

IOUT
(4.201)

For example, for IIN = 10 μA and IOUT = 100 nA, (4.201) can be used to show that
R ≃ 12 kΩ.

A plot of IOUT versus IIN from (4.200) is shown in Fig. 4.33. When the input current is
small, the voltage drop on the resistor is small, and VBE2 ≃ VBE1 so IOUT ≃ IIN. As the input
current increases, VBE1 increases in proportion to the logarithm of the input current while

VCC

R

IIN

IOUT

Q2Q1

Figure 4.32 Bipolar peaking current source.
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Figure 4.33 Transfer
characteristics of the bipolar
peaking current source with
T = 27∘C.

the drop on the resistor increases linearly with the input current. As a result, increases in the
input current eventually cause the base-emitter voltage of Q2 to decrease. The output current
reaches a maximum when VBE2 is maximum. The name peaking current source stems from
this behavior, and the location and magnitude of the peak both depend on R.

4.5.1.4 MOS Peaking Current Source. The peaking-current configuration can also be
used in MOS technology, as shown in Fig. 4.34. If IIN is small and positive, the voltage drop
on R is small and M1 operates in the active region. Assume that M2 also operates in the active
region. KVL around the gate-source loop gives

VGS1 − IINR − VGS2 = 0 (4.202)

Since the sources of M1 and M2 are connected together, the thresholds cancel and (4.202)
simplifies to

Vov2 = Vov1 − IINR (4.203)

From (1.157),

IOUT =
k′(W∕L)2

2
(Vov2)2 =

k′(W∕L)2
2

(Vov1 − IINR)2 (4.204)

VDD

IIN

M1 M2

IOUT
R

Figure 4.34 MOS peaking current source.
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Figure 4.35 Transfer
characteristics of the MOS peaking
current source, assuming both
transistors operate in weak inversion
or in strong inversion.

where Vov1 =
√

2IIN∕[k′(W∕L)1]. Equation 4.204 assumes that the transistors operate in strong
inversion. In practice, the input current is usually small enough that the overdrive of M1 is less
than 2nVT , where n is defined in (1.247) and VT is a thermal voltage. Equation 4.203 shows that
the overdrive of M2 is even smaller than that of M1. Therefore, both transistors usually operate
in weak inversion, where the drain current is an exponential function of the gate-source voltage,
as shown in (1.252). If VDS1 > 3VT , applying (1.252) to M1 and substituting into (4.202) gives

VGS2 − Vt ≃ nVT ln

(
IIN

(W∕L)1It

)
− IINR (4.205)

Then if the transistors are identical and VDS2 > 3VT , substituting (4.205) into (1.252) gives

IOUT ≃ W
L

It exp

(
VGS2 − Vt

nVT

)
≃ IIN exp

(
−

IINR

nVT

)
(4.206)

where It is given by (1.251) and represents the drain current of M2 with VGS2 = Vt, W∕L = 1,
and VDS ≫ VT . Comparing (4.206) with (4.200) shows that the output current in an MOS
peaking current source where both transistors operate in weak inversion is the same as in the
bipolar case except that 1.3 ≤ n ≤ 1.5 in the MOS case and n = 1 in the bipolar case.

Plots of (4.206) and (4.204) are shown in Fig. 4.35 for n = 1.5, T = 27∘C, R = 10 kΩ,
k′ = 200 μA∕V2, and (W∕L)2 = (W∕L)1 = 25. In both cases, when the input current is small,
the voltage drop on the resistor is small, and IOUT ≃ IIN. As the input current increases, VGS1
increases more slowly than the drop on the resistor. As a result, increases in the input current
eventually cause the gate-source voltage of M2 to decrease. The output current reaches a max-
imum when VGS2 is maximum. As in the bipolar case, the name peaking current source stems
from this behavior, and the location and magnitude of the peak both depend on R. Because
the overdrives on both transistors are usually very small, the strong-inversion equation (4.204)
usually underestimates the output current.

4.5.2 Supply-Insensitive Biasing

Consider the simple current mirror of Fig. 4.30a, where the input current source has been
replaced by a resistor. Ignoring the effects of finite 𝛽F and VA, (4.5) shows that the output
current is

IOUT ≃ IIN =
VCC − VBE(on)

R
(4.207)
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If VCC ≫ VBE(on), this circuit has the drawback that the output current is proportional to the
power-supply voltage. For example, if VBE(on) = 0.7 V, and if this current mirror is used in an
operational amplifier that has to function with power-supply voltages ranging from 3 to 10 V,
the bias current will vary over a 4-to-1 range, and the power dissipation will vary over a 13-to-1
range.

One measure of this aspect of bias-circuit performance is the fractional change in the
bias current that results from a given fractional change in supply voltage. The most useful
parameter for describing the variation of the output current with the power-supply voltage
is the sensitivity S. The sensitivity of any circuit variable y to a parameter x is defined as
follows:

Sy
x = lim

Δx→0

Δy∕y

Δx∕x
= x

y

𝜕y

𝜕x
(4.208)

Applying (4.208) to find the sensitivity of the output current to small variations in the
power-supply voltage gives

SIOUT
VSUP

=
VSUP

IOUT

𝜕IOUT

𝜕VSUP
(4.209)

The supply voltage VSUP is usually called VCC in bipolar circuits and VDD in MOS circuits. If
VCC ≫ VBE(on) in Fig. 4.30a, and if VDD ≫ VGS1 in Fig. 4.30b,

SIOUT
VSUP

≃ 1 (4.210)

Equation 4.210 shows that the output currents in the simple current mirrors in Fig. 4.30 depend
strongly on the power-supply voltages. Therefore, this configuration should not be used when
supply insensitivity is important.

4.5.2.1 Widlar Current Sources. For the case of the bipolar Widlar source in Fig. 4.31a,
the output current is given implicitly by (4.191). To determine the sensitivity of IOUT to the
power-supply voltage, this equation is differentiated with respect to VCC:

VT
𝜕

𝜕VCC
ln

IIN

IOUT
= R2

𝜕IOUT

𝜕VCC
(4.211)

Differentiating yields

VT

(
IOUT

IIN

)(
1

IOUT

𝜕IIN

𝜕VCC
−

IIN

I2
OUT

𝜕IOUT

𝜕VCC

)
= R2

𝜕IOUT

𝜕VCC
(4.212)

Solving this equation for 𝜕IOUT∕𝜕VCC, we obtain

𝜕IOUT

𝜕VCC
=

⎛⎜⎜⎜⎜⎝
1

1 +
IOUTR2

VT

⎞⎟⎟⎟⎟⎠
IOUT

IIN

𝜕IIN

𝜕VCC
(4.213)
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Substituting (4.213) into (4.209) gives

SIOUT
VCC

=

⎛⎜⎜⎜⎜⎝
1

1 +
IOUTR2

VT

⎞⎟⎟⎟⎟⎠
VCC

IIN

𝜕IIN

𝜕VCC
=

⎛⎜⎜⎜⎜⎝
1

1 +
IOUTR2

VT

⎞⎟⎟⎟⎟⎠
SIIN

VCC
(4.214)

If VCC ≫ VBE(on), IIN ≃ VCC∕R1, and the sensitivity of IIN to VCC is approximately unity, as in
the simple current mirror of Fig. 4.30a. For the example in the section “Bipolar Widlar Current
Source” where IIN = 1 mA, IOUT = 5 μA, and R2 = 27.4 kΩ, (4.214) gives

SIOUT
VCC

=
VCC

IOUT

𝜕IOUT

𝜕VCC
≃ 1

1 + 137 mV
26 mV

≃ 0.16 (4.215)

Thus for this case, a 10 percent power-supply voltage change results in only a 1.6 percent
change in IOUT.

For the case of the MOS Widlar source in Fig. 4.31b, the output current is given by (4.197).
Differentiating with respect to VDD gives

1

2
√

IOUT

𝜕IOUT

𝜕VDD
= 1

4R2

1√
2

k′(W∕L)2
+ 4R2Vov1

4R2
𝜕Vov1

𝜕VDD
(4.216)

where
𝜕Vov1

𝜕VDD
=

√
2

k′(W∕L)1
1

2
√

IIN

𝜕IIN

𝜕VDD
=

Vov1

2IIN

𝜕IIN

𝜕VDD
(4.217)

Substituting (4.216) and (4.217) into (4.209) gives

SIOUT
VDD

=
Vov1√

V2
ov2 + 4IOUTR2Vov1

SIIN
VDD

(4.218)

Since IOUT is usually much less than IIN, Vov2 is usually small and IOUTR2 ≃ Vov1, and (4.218)
simplifies to

SIOUT
VDD

≃
Vov1√
4V2

ov1

SIIN
VDD

= 0.5SIIN
VDD

(4.219)

If VDD ≫ VGS1, IIN ≃ VDD∕R1, and the sensitivity of IIN to VDD is approximately unity, as in
the simple current mirror of Fig. 4.30b. Thus for this case, a 10 percent power-supply voltage
change results in a 5 percent change in IOUT.

4.5.2.2 Current Sources Using Other Voltage Standards. The level of power-supply
independence provided by the bipolar and MOS Widlar current sources is not adequate for
many types of analog circuits. Much lower sensitivity can be obtained by causing bias currents
in the circuit to depend on a voltage standard other than the supply voltage. Bias reference
circuits can be classified according to the voltage standard by which the bias currents are
established. The most convenient standards are the base-emitter or threshold voltage of a tran-
sistor, the thermal voltage, and the breakdown voltage of a reverse-biased pn junction (a Zener
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diode). Each of these standards can be used to reduce supply sensitivity, but the drawback of
the first three standards is that the reference voltage is quite temperature dependent. Both the
base-emitter and threshold voltages have negative temperature coefficients of magnitude 1 to
2 mV/∘C, and the thermal voltage has a positive temperature coefficient of k∕q ≃ 86 μV/∘C.
The Zener diode has the disadvantage that at least 7 to 10 V of supply voltage are required
because standard integrated-circuit processes produce a minimum breakdown voltage of about
6 V across the most highly doped junctions (usually npn transistor emitter-base junctions). Fur-
thermore, pn junctions produce large amounts of voltage noise under the reverse-breakdown
conditions encountered in a bias reference circuit. Noise in avalanche breakdown is considered
further in Chapter 11.

We now consider bias reference circuits based on the base-emitter or gate-source voltage.
The circuit in simplest form in bipolar technology is shown in Fig. 4.36a. This circuit is sim-
ilar to a Wilson current mirror where the diode-connected transistor is replaced by a resistor.
For the input current to flow in T1, transistor T2 must supply enough current into R2 that the
base-emitter voltage of T1 is

VBE1 = VT ln
IIN

IS1
(4.220)

If we neglect base currents, IOUT is equal to the current flowing through R2. Since the volt-
age drop on R2 is VBE1, the output current is proportional to this base-emitter voltage. Thus,
neglecting base currents, we have

IOUT =
VBE1

R2
=

VT

R2
ln

IIN

IS1
(4.221)

Differentiating (4.221) and substituting into (4.209) gives

SIOUT
VCC

=
VT

IOUTR2
SIIN

VCC
=

VT

VBE(on)
SIIN

VCC
(4.222)

T1

T2

R2

R1

IOUT

IIN

VCC

(a)

T1

T2

R2

R1

IOUT

IIN

VDD

(b)

Figure 4.36 (a) Base-emitter referenced
current source. (b) Threshold-referenced
current source.
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If VCC ≫ 2VBE(on), IIN ≃ VCC∕R1, and the sensitivity of IIN to VCC is approximately unity.
With VBE(on) = 0.7 V,

SIOUT
VCC

= 0.026 V
0.7 V

≃ 0.037 (4.223)

Thus for this case, a 10 percent power-supply voltage change results in a 0.37 percent change
in IOUT. The result is significantly better than for a bipolar Widlar current source.

The MOS counterpart of the base-emitter reference is shown in Fig. 4.36b. Here,

IOUT =
VGS1

R2
=

Vt + Vov1

R2
=

Vt +

√
2IIN

k′(W∕L)1
R2

(4.224)

The case of primary interest is when the overdrive of T1 is small compared to the threshold
voltage. This case can be achieved in practice by choosing sufficiently low input current and
large (W∕L)1. In this case, the output current is determined mainly by the threshold voltage
and R2. Therefore, this circuit is known as a threshold-referenced bias circuit. Differentiating
(4.224) with respect to VDD and substituting into (4.209) gives

SIOUT
VDD

=
Vov1

2IOUTR2
SIIN

VDD
=

Vov1

2VGS1
SIIN

VDD
(4.225)

For example, if Vt = 1 V, Vov1 = 0.1 V, and SIIN
VDD

≃ 1,

SIOUT
VDD

≃ 0.1
2(1.1)

≃ 0.045 (4.226)

These circuits are not fully supply independent because the base-emitter or gate-source volt-
ages of T1 change slightly with power-supply voltage. This change occurs because the collector
or drain current of T1 is approximately proportional to the supply voltage. The resulting sup-
ply sensitivity is often a problem in bias circuits whose input current is derived from a resistor
connected to the supply terminal, since this configuration causes the currents in some portion
of the circuit to change with the supply voltage.

4.5.2.3 Self-Biasing. Power-supply sensitivity can be greatly reduced by the use of the
so-called bootstrap bias technique, also referred to as self-biasing. Instead of developing the
input current by connecting a resistor to the supply, the input current is made to depend directly
on the output current of the current source itself. The concept is illustrated in block-diagram
form in Fig. 4.37a. Assuming that the feedback loop formed by this connection has a stable
operating point, the currents flowing in the circuit are much less sensitive to power-supply
voltage than in the resistively biased case. The two key variables here are the input current,
IIN, and the output current, IOUT. The relationship between these variables is governed by
both the current source and the current mirror. From the standpoint of the current source, the
output current is almost independent of the input current for a wide range of input currents,
as shown in Fig. 4.37b. From the standpoint of the current mirror, IIN is set equal to IOUT,
assuming that the gain of the current mirror is unity. The operating point of the circuit must
satisfy both constraints and hence is at the intersection of the two characteristics. In the plot
of Fig. 4.37b, two intersections or potential operating points are shown. Point A is the desired
operating point, and point B is an undesired operating point because IOUT = IIN = 0.
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COMMON

COMMON

(a) (b)

OUT IN

IN OUT

Current mirror

Current source

VSUP

IOUTIIN

IIN

IOUT

Current mirror

IIN = IOUT

Current source

Desired operating point

(point A)

Undesired operating point

(point B)

Figure 4.37 (a) Block diagram of a self-biased reference. (b) Determination of operating point.

If the output current in Fig. 4.37a increases for any reason, the current mirror increases
the input current by the same amount because the gain of the current mirror is assumed to be
unity. As a result, the current source increases the output current by an amount that depends on
the gain of the current source. Therefore, the loop responds to an initial change in the output
current by further changing the output current in a direction that reinforces the initial change.
In other words, the connection of a current source and a current mirror as shown in Fig. 4.37a
forms a positive feedback loop, and the gain around the loop is the gain of the current source.
In Chapter 9, we will show that circuits with positive feedback are stable if the gain around the
loop is less than unity. At point A, the gain around the loop is quite small because the output
current of the current source is insensitive to changes in the input current around point A. On
the other hand, at point B, the gain around the feedback loop is deliberately made greater than
unity so that the two characteristics shown in Fig. 4.37b intersect at a point away from the
origin. As a result, this simplified analysis shows that point B is an unstable operating point in
principle, and the circuit would ideally tend to drive itself out of this state.

In practice, however, point B is frequently a stable operating point because the currents
in the transistors at this point are very small, often in the picoampere range. At such low
current levels, leakage currents and other effects reduce the current gain of both bipolar and
MOS transistors, usually causing the gain around the loop to be less than unity. As a result,
actual circuits of this type are usually unable to drive themselves out of the zero-current state.
Thus, unless precautions are taken, the circuit may operate in the zero-current condition. For
these reasons, self-biased circuits often have a stable state in which zero current flows in the
circuit even when the power-supply voltage is nonzero. This situation is analogous to a gasoline
engine that is not running even though it has a full tank of fuel. An electrical or mechanical
device is required to start the engine. Similarly, a start-up circuit is usually required to prevent
the self-biased circuit from remaining in the zero-current state.

The application of this technique to the VBE-referenced current source is illustrated in
Fig. 4.38a, and the threshold-referenced MOS counterpart is shown in Fig. 4.38b. We assume
for simplicity that VA → ∞. The circuit composed of T1, T2, and R dictates that the current
IOUT depends weakly on IIN, as indicated by (4.221) and (4.224). Second, the current mirror
composed of matched transistors T4 and T5 dictates that IIN is equal to IOUT. The operating
point of the circuit must satisfy both constraints and hence is at the intersection of the two char-
acteristics as in Fig. 4.37b. Except for the effects of finite output resistance of the transistors,
the bias currents are independent of supply voltage. If required, the output resistance of the
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IOUT

T6T4

T3

IBIAS1

IBIAS2

T1

T2

R

T5

VCC

IIN

(a)

VDD

T5

T2

R

IIN IOUT

IBIAS2

IBIAS1

T6T4

T3T1

(b)

Figure 4.38 (a) Self-biasing VBE reference. (b) Self-biasing Vt reference.

current source and mirror could be increased by the use of cascode or Wilson configurations
in the circuits. The actual bias currents for other circuits are supplied by T6 and/or T3, which
are matched to T5 and T1, respectively.

The zero-current state can be avoided by using a start-up circuit to ensure that some current
always flows in the transistors in the reference so that the gain around the feedback loop at
point B in Fig. 4.37b does not fall below unity. An additional requirement is that the start-up
circuit must not interfere with the normal operation of the reference once the desired operat-
ing point is reached. The VBE-referenced current source with a typical start-up circuit used in
bipolar technologies is illustrated in Fig. 4.39a. We first assume that the circuit is in the unde-
sired zero-current state. If this were true, the base-emitter voltage of T1 would be zero. The
base-emitter voltage T2 would be tens of millivolts above ground, determined by the leakage
currents in the circuit. However, the voltage on the left-hand end of D1 is four diode drops
above ground, so a voltage of at least three diode drops would appear across Rx, and a current
would flow through Rx into the T1–T2 combination. This action would cause current to flow in
T4 and T5, avoiding the zero-current state.

The bias reference circuit then drives itself toward the desired stable state, and we require
that the start-up circuit not affect the steady-state current values. This can be accomplished by
causing Rx to be large enough that when the steady-state current is established in T1, the voltage
drop across Rx is large enough to reverse bias D1. In the steady state, the collector-emitter
voltage of T1 is two diode drops above ground, and the left-hand end of D1 is four diode drops
above ground. Thus if we make IINRx equal to two diode drops, D1 will have zero voltage
across it in the steady state. As a result, the start-up circuit composed of Rs, D2–D5, and D1 is,
in effect, disconnected from the circuit for steady-state operation.

Floating diodes are not usually available in MOS technologies. The threshold-referenced
current source with a typical start-up circuit used in MOS technologies is illustrated in
Fig. 4.39b. If the circuit is in the undesired zero-current state, the gate-source voltage of T1
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Figure 4.39 (a)
Self-biasing VBE reference
with start-up circuit. (b)
Self-biasing Vt reference
with start-up circuit.

is less than a threshold voltage. As a result, T7 is off, and T8 operates in the triode region,
pulling the gate-source voltage of T9 up to VDD. Therefore, T9 is on and pulls down on the
gates of T4 and T5. This action causes current to flow in T4 and T5, avoiding the zero- current
state.

In steady state, the gate-source voltage of T7 rises to IOUTR, which turns on T7 and reduces
the gate-source voltage of T9. In other words, T7 and T8 form a CMOS inverter whose output
falls when the reference circuit turns on. Since the start-up circuit should not interfere with
normal operation of the reference in steady state, the inverter output should fall low enough to
turn T9 off in steady state. Therefore, the gate-source voltage of T9 must fall below a thresh-
old voltage when the inverter input rises from zero to IOUTR. In practice, this requirement is
satisfied by choosing the aspect ratio of T7 to be much larger than that of T8.



4.5 Voltage and Current References 323

Another important aspect of the performance of biasing circuits is their dependence on
temperature. This variation is most conveniently expressed in terms of the fractional change
in output current per degree centigrade of temperature variation, which we call the fractional
temperature coefficient TCF:

TCF = 1
IOUT

𝜕IOUT

𝜕T
(4.227)

For the VBE-referenced circuit of Fig. 4.38a,

IOUT =
VBE1

R
(4.228)

𝜕IOUT

𝜕T
= 1

R

𝜕VBE1

𝜕T
−

VBE1

R2

𝜕R
𝜕T

(4.229)

= IOUT

(
1

VBE1

𝜕VBE1

𝜕T
− 1

R
𝜕R
𝜕T

)
(4.230)

Therefore,

TCF = 1
IOUT

𝜕IOUT

𝜕T
= 1

VBE1

𝜕VBE1

𝜕T
− 1

R
𝜕R
𝜕T

(4.231)

Thus the temperature dependence of the output current is related to the difference between the
resistor temperature coefficient and that of the base-emitter junction. Since the former has a
positive and the latter a negative coefficient, the net TCF is quite large.

◼ EXAMPLE
Design a bias reference as shown in Fig. 4.38a to produce 100 μA output current. Find the TCF .
Assume that for T1, IS = 10−14 A. Assume that 𝜕VBE∕𝜕T = −2 mV∕∘C and (1∕R)(𝜕R∕𝜕T) =
+1500 ppm∕∘C.

The current in T1 will be equal to IOUT, so

VBE1 = VT ln
100 μA

10−14 A
= 598 mV

Thus from (4.228),

R = 598 mV
0.1 mA

= 5.98 kΩ

From (4.231),

TCF ≃
−2 mV∕∘C

598 mV
− 1.5 × 10−3 ≃ −3.3 × 10−3 − 1.5 × 10−3

and thus
TCF ≃ −4.8 × 10−3/∘C = −4800 ppm∕∘C

The term ppm is an abbreviation for parts per million and implies a multiplier of 10−6.◼

For the threshold-referenced circuit of Fig. 4.38b,

IOUT =
VGS1

R
≃

Vt

R
(4.232)
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Differentiating (4.232) and substituting into (4.227) gives

TCF = 1
IOUT

𝜕IOUT

𝜕T
≃ 1

Vt

𝜕Vt

𝜕T
− 1

R
𝜕R
𝜕T

(4.233)

Since the threshold voltage of an MOS transistor and the base-emitter voltage of a bipolar
transistor both change at about −2 mV∕∘C, (4.233) and (4.231) show that the temperature
dependence of the threshold-referenced current source in Fig. 4.38b is about the same as the
VBE-referenced current source in Fig. 4.38a.

VBE-referenced bias circuits are also used in CMOS technology. An example is shown in
Fig. 4.40, where the pnp transistor is the parasitic device inherent in p-substrate CMOS tech-
nologies. A corresponding circuit utilizing npn transistors can be used in n-substrate CMOS
technologies. The feedback circuit formed by M2, M3, M4, and M5 forces the current in tran-
sistor Q1 to be the same as in resistor R. Assuming matched devices, VGS2 = VGS3, and thus

IOUT =
VBE1

R
(4.234)

An alternate source for the voltage reference is the thermal voltage VT . The difference in
junction potential between two junctions operated at different current densities can be shown
to be proportional to VT . This voltage difference must be converted to a current to provide the
bias current. For the Widlar source shown in Fig. 4.31a, (4.190) shows that the voltage across
the resistor R2 is

IOUTR2 = VT ln
IIN

IOUT

IS2

IS1
(4.235)

Thus if the ratio of the input to the output current is held constant, the voltage across R2 is
indeed proportional to VT . This fact is utilized in the self-biased circuit of Fig. 4.41. Here Q3
and Q4 are selected to have equal areas. Therefore, if we assume that 𝛽F → ∞ and VA → ∞,
the current mirror formed by Q3 and Q4 forces the collector current of Q1 to equal that of Q2.
Figure 4.41 also shows that Q2 has two emitters and Q1 has one emitter, which indicates that
the emitter area of Q2 is twice that of Q1 in this example. This selection is made to force the
gain around the positive feedback loop at point B in Fig. 4.37b to be more than unity so that

VDD

IBIAS

R

M3M2

M5 M6

IOUTIIN

M4

Q1

Figure 4.40 Example of a
VBE-referenced self-biased circuit in
CMOS technology.
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+

–

Figure 4.41 Bias current source using the
thermal voltage.

point B is an unstable operating point and a stable nonzero operating point exists at point A.
As in other self-biased circuits, a start-up circuit is required to make sure that enough current
flows to force operation at point A in Fig. 4.37b in practice. Under these conditions, IS2 = 2IS1,
and the voltage across R2 is

IOUTR2 = VT ln
IIN

IOUT

IS2

IS1
= VT ln 2 (4.236)

Therefore, the output current is

IOUT =
VT

R2
ln 2 (4.237)

The temperature variation of the output current can be calculated as follows. From (4.237),

𝜕IOUT

𝜕T
= (ln 2)

R2
𝜕VT

𝜕T
− VT

𝜕R2

𝜕T
R2

2

=
VT

R2
(ln 2)

(
1

VT

𝜕VT

𝜕T
− 1

R2

𝜕R2

𝜕T

)
(4.238)

Substituting (4.237) in (4.238) gives

TCF = 1
IOUT

𝜕IOUT

𝜕T
= 1

VT

𝜕VT

𝜕T
− 1

R2

𝜕R2

𝜕T
(4.239)

This circuit produces a much smaller temperature coefficient of the output current than the
VBE reference because the fractional sensitivities of both VT and a diffused resistor R2 are
positive and tend to cancel in (4.239). We have chosen a transistor area ratio of two to one as
an example. In practice, this ratio is often chosen to minimize the total area required for the
transistors and for resistor R2.
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Figure 4.42 Example of a CMOS
VT -referenced self-biased circuit.

◼ EXAMPLE
Design a bias reference of the type shown in Fig. 4.41 to produce an output cur-
rent of 100 μA. Find the TCF of IOUT. Assume the resistor temperature coefficient
(1∕R)(𝜕R∕𝜕T) = +1500 ppm∕∘C.

From (4.237),

R2 =
VT (ln 2)

IOUT
= (26 mV)(ln 2)

100 μA
≃ 180 Ω

From (4.239),

1
IOUT

𝜕IOUT

𝜕T
= 1

VT

𝜕VT

𝜕T
− 1500 × 10−6 = 1

VT

VT

T
− 1500 × 10−6

= 1
T
− 1500 × 10−6

Assuming operation at room temperature, T = 300∘K, and

1
IOUT

𝜕IOUT

𝜕T
≃ 3300 × 10−6 − 1500 × 10−6 = 1800 ppm∕∘C

◼

VT -referenced bias circuits are also commonly used in CMOS technology. A simple
example is shown in Fig. 4.42, where bipolar transistors Q1 and Q2 are parasitic devices
inherent in p-substrate CMOS technologies. Here the emitter areas of these transistors differ
by a factor n, and the feedback loop forces them to operate at the same bias current. As a
result, the difference between the two base-emitter voltages must appear across resistor R.
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The resulting current is

IOUT =
VT ln(n)

R
(4.240)

In the circuit of Fig. 4.42, small differences in the gate-source voltages of M3 and M4
result in large variations in the output current because the voltage drop across R is only on
the order of 100 mV. Such gate-source voltage differences can result from device mismatches
or channel-length modulation in M3 and M4 because they have different drain-source voltages.
Practical implementations of this circuit typically utilize large geometry devices for M3 and
M4 to minimize offsets and cascode or Wilson current sources to minimize channel-length
modulation effects. A typical example of a practical circuit is shown in Fig. 4.43. In general,
cascoding is often used to improve the performance of reference circuits in all technologies.
The main limitation of the application of cascoding is that it increases the minimum required
power-supply voltage to operate all transistors in the active region.

4.5.3 Temperature-Insensitive Biasing

As illustrated by the examples in Section 4.5.2, the base-emitter-voltage- and thermal-voltage-
referenced circuits have rather high temperature coefficients of output current. Although
the temperature sensitivity is reduced considerably in the thermal-voltage circuit, even
its temperature coefficient is not low enough for many applications. Thus we are led to
examine other possibilities for the realization of a biasing circuit with low temperature
coefficient.

VDD

IBIAS

M5 M6 M7

M10 M11

M8 M9

M3

Q1 Q2

n1

M4

R

M12

Figure 4.43 Example of a CMOS
VT -referenced self-biased reference
circuit with cascoded devices to improve
power-supply rejection and initial
accuracy.
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4.5.3.1 Band-Gap-Referenced Bias Circuits in Bipolar Technology. Since the bias
sources referenced to VBE(on) and VT have opposite TCF , the possibility exists for referenc-
ing the output current to a composite voltage that is a weighted sum of VBE(on) and VT . By
proper weighting, zero temperature coefficient should be attainable.

In the biasing sources described so far, we have concentrated on the problem of obtain-
ing a current with low temperature coefficient. In practice, requirements often arise for
low-temperature-coefficient voltage bias or reference voltages. The voltage reference for
a voltage regulator is a good example. The design of these two types of circuits is similar
except that in the case of the current source, a temperature coefficient must be intentionally
introduced into the voltage reference to compensate for the temperature coefficient of the
resistor that will define the current. In the following description of the band-gap reference,
we assume for simplicity that the objective is a voltage source of low temperature coefficient.

First consider the hypothetical circuit of Fig. 4.44. An output voltage is developed that is
equal to VBE(on) plus a constant M times VT . To determine the required value for M, we must
determine the temperature coefficient of VBE(on). Neglecting base current,

VBE(on) = VT ln
I1

IS
(4.241)

As shown in Chapter 1, the saturation current IS can be related to the device structure by

IS =
qAn2

i Dn

QB
= Bn2

i Dn = B′n2
i Tμn (4.242)

where ni is the intrinsic minority-carrier concentration, QB is the total base doping per unit area,
μn is the average electron mobility in the base, A is the emitter-base junction area, and T is the
temperature. Here, the constants B and B′ involve only temperature-independent quantities.

VBE(on)

VBE(on)

I1

VCC

+

–

–2 mV/°C

T

T

MVT
M

VTVT
generator

VT

VOUT = VBE(on) + MVT

+3300 ppm/°C = + 0.085 mV/°C

Sum

Figure 4.44 Hypothetical
band-gap reference circuit.
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The Einstein relation μn = (q∕kT)Dn was used to write IS in terms of μn and n2
i . The quantities

in (4.242) that are temperature dependent are given by16

μn = CT−n (4.243)

n2
i = DT3 exp

(
−

VG0

VT

)
(4.244)

where VG0 is the band-gap voltage of silicon extrapolated to 0∘K. Here again C and D are
temperature-independent quantities whose exact values are unimportant in the analysis. The
exponent n in the expression for base-region electron mobility μn is dependent on the doping
level in the base. Combining (4.241), (4.242), (4.243), and (4.244) yields

VBE(on) = VT ln

(
I1T−𝛾E exp

VG0

VT

)
(4.245)

where E is another temperature-independent constant and

𝛾 = 4 − n (4.246)

In actual band-gap circuits, the current I1 is not constant but varies with temperature. We
assume for the time being that this temperature variation is known and that it can be written in
the form

I1 = GT𝛼 (4.247)

where G is another temperature-independent constant. Combining (4.245) and (4.247) gives

VBE(on) = VG0 − VT [(𝛾 − 𝛼) ln T − ln(EG)] (4.248)

From Fig. 4.44, the output voltage is

VOUT = VBE(on) + MVT (4.249)

Substitution of (4.248) into (4.249) gives

VOUT = VG0 − VT (𝛾 − 𝛼) ln T + VT [M + ln(EG)] (4.250)

This expression gives the output voltage as a function of temperature in terms of the circuit
parameters G, 𝛼, and M and the device parameters E and 𝛾 . Our objective is to make VOUT
independent of temperature. To this end, we take the derivative of VOUT with respect to tem-
perature to find the required values of G, 𝛾 , and M to give zero TCF . Differentiating (4.250)
gives

0 =
dVOUT

dT

||||T=T0

=
VT0

T0
[M + ln(EG)] −

VT0

T0
(𝛾 − 𝛼) ln T0 −

VT0

T0
(𝛾 − 𝛼) (4.251)

where T0 is the temperature at which the TCF of the output is zero and VT0 is the thermal
voltage VT evaluated at T0. Equation 4.251 can be rearranged to give

[M + ln(EG)] = (𝛾 − 𝛼) ln T0 + (𝛾 − 𝛼) (4.252)
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This equation gives the required values of circuit parameters M, 𝛼, and G in terms of the
device parameters E and 𝛾 . In principle, these values could be calculated directly from (4.252).
However, further insight is gained by back-substituting (4.252) into (4.250). The result is

VOUT = VG0 + VT (𝛾 − 𝛼)
(

1 + ln
T0

T

)
(4.253)

Thus the temperature dependence of the output voltage is entirely described by the single
parameter T0, which in turn is determined by the constants M, E, and G.

Using (4.253), the output voltage at the zero TCF temperature (T = T0) is given by

VOUT
|| T=T0

= VG0 + VT0(𝛾 − 𝛼) (4.254)

For example, to achieve zero TCF at 27∘C, assuming that 𝛾 = 3.2 and 𝛼 = 1,

VOUT
|| T=T0=27∘C = VG0 + 2.2VT0 (4.255)

The band-gap voltage of silicon is VG0 = 1.205 V, so

VOUT
|| T=T0=27∘C = 1.205 V + (2.2)(0.026 V) = 1.262 V (4.256)

Therefore, the output voltage for zero temperature coefficient is close to the band-gap voltage
of silicon, which explains the name given to these bias circuits.

Differentiating (4.253) with respect to temperature yields

dVOUT

dT
= 1

T

[
VT (𝛾 − 𝛼)

(
1 + ln

T0

T

)]
−

VT

T
(𝛾 − 𝛼)

= (𝛾 − 𝛼)
VT

T

(
ln

T0

T

)
(4.257)

Equation 4.257 gives the slope of the output as a function of temperature. A typical family
of output-voltage-variation characteristics is shown in Fig. 4.45 for different values of T0 for
the special case in which 𝛼 = 0 and I1 is temperature independent. The slope of each curve
is zero at T = T0. When T < T0, the slope is positive because the argument of the logarithm
in (4.257) is more than unity. Similarly, the slope is negative when T > T0. For values of
T near T0,

ln
T0

T
= ln

(
1 +

T0 − T

T

)
≃

T0 − T

T
(4.258)

and we have
dVOUT

dT
≃ (𝛾 − 𝛼)

VT

T

(
T0 − T

T

)
(4.259)

As shown by (4.257) and (4.259), the temperature coefficient of the output is zero only at
one temperature: T = T0. This result stems from the addition of a weighted thermal voltage to a
base-emitter voltage, as in Fig. 4.44. Since the temperature coefficient of the base-emitter volt-
age is not exactly constant, the gain M can be chosen to set the temperature coefficient of the
output to zero only at one temperature. In other words, the thermal voltage generator is used to
cancel the linear dependence of the base-emitter voltage with temperature. After this cancella-
tion, the changing outputs in Fig. 4.45 stem from the nonlinear dependence of the base-emitter
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Figure 4.45 Variation of band-gap reference output voltage with temperature.

voltage with temperature. Band-gap references that compensate for this nonlinearity are said
to be curvature compensated.17–19

◼ EXAMPLE
A band-gap reference is designed to give a nominal output voltage of 1.262 V, which gives zero
TCF at 27∘C. Because of component variations, the actual room-temperature output voltage
is 1.280 V. Find the temperature of actual zero TCF of VOUT. Also write an equation for VOUT
as a function of temperature, and calculate the TCF at room temperature. Assume that 𝛾 = 3.2
and 𝛼 = 1.

From (4.253) at T = 27∘C = 300∘K,

1.280 V = 1.205 + (0.026 V)(2.2)
(

1 + ln
T0

300∘K

)
and thus

T0 = 300∘K
(

exp
18 mV
57 mV

)
= 411∘K

Therefore, the TCF will be zero at T0 = 411∘K = 138∘C, and we can express VOUT as

VOUT = 1.205 V + 57 mV

(
1 + ln

411∘K
T

)
From (4.259) with T = 300∘K and T0 = 411∘K,

dVOUT

dT
≃ (2.2)26 mV

300∘K

(411 − 300
300

)
≃ 70 μV/∘K = 70 μV/∘C

Therefore, the TCF at room temperature is

TCF = 1
VOUT

dVOUT

dT
≃

70μV/∘C
1.280 V

≃ 55 ppm/∘C
◼
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To reduce the TCF , the constant M in (4.249)–(4.252) is often trimmed at one temperature
so that the band-gap output is set to a desired target voltage.20 In principle, the target volt-
age is given by (4.253). In practice, however, significant inaccuracy in (4.253) stems from an
approximation in (4.244).21 As a result, the target voltage is usually determined experimen-
tally by measuring the TCF directly for several samples of each band-gap reference in a given
process.22,23 This procedure reduces the TCF at the reference temperature to a level of about
10 ppm/∘C.

A key parameter of interest in reference sources is the variation of the output that is encoun-
tered over the entire temperature range. Since the TCF expresses the temperature sensitivity
only at one temperature, a different parameter must be used to characterize the behavior of the
circuit over a broad temperature range. An effective temperature coefficient can be defined for
a voltage reference as

TCF(eff) =
1

VOUT

(
VMAX − VMIN

TMAX − TMIN

)
(4.260)

where VMAX and VMIN are the largest and smallest output voltages observed over the tempera-
ture range, and TMAX − TMIN is the temperature excursion. VOUT is the nominal output voltage.
By this standard, TCF(eff) over the −55 to 125∘C range for case (b) of Fig. 4.45 is 44 ppm/∘C.
If the temperature range is restricted to 0 to 70∘C, TCF(eff) improves to 17 ppm/∘C. Thus over a
restricted temperature range, this reference is comparable with the standard cell in temperature
stability once the zero TCF temperature has been set at room temperature. Saturated standard
cells (precision batteries) have a TCF of about ±30 ppm/∘C.

Practical realizations of band-gap references in bipolar technologies take on several
forms.16,20,24 One such circuit is illustrated in Fig. 4.46a.16 This circuit uses a feedback loop to
establish an operating point in the circuit such that the output voltage is equal to a VBE(on) plus a
voltage proportional to the difference between two base-emitter voltages. The operation of the
feedback loop is best understood by reference to Fig. 4.46b, in which a portion of the circuit is
shown. We first consider the variation of the output voltage V2 as the input voltage V1 is varied
from zero in the positive direction. Initially, with V1 = 0, devices Q1 and Q2 do not conduct
and V2 = 0. As V1 is increased, Q1 and Q2 do not conduct significant current until the input
voltage reaches about 0.6 V. When V1 < 0.6 V, V2 = V1 since the voltage drop on R2 is zero.
When V1 exceeds 0.6 V, however, Q1 begins to conduct current, corresponding to point 1© in
Fig. 4.46b. The magnitude of the current in Q1 is roughly equal to (V1 − 0.6 V)∕R1. For small
values of this current, Q1 and Q2 carry the same current because the drop across R3 is negligible
at low currents. Since R2 is much larger than R1, the voltage drop across R2 is much larger than
(V1 − 0.6 V), and transistor Q2 saturates, corresponding to point 2© in Fig. 4.46b. Because of
the presence of R3, the collector current that would flow in Q2 if it were in the forward-active
region has an approximately logarithmic dependence on V1, exactly as in the Widlar source.
Thus as V1 is further increased, a point is reached at which Q2 comes out of saturation because
V1 increases faster than the voltage drop across R2. This point is labeled point 3© in Fig. 4.46b.

Now consider the complete circuit of Fig. 4.46a. If transistor Q3 is initially turned
off, transistor Q4 will drive V1 in the positive direction. This process will continue until
enough voltage is developed at the base of Q3 to produce a collector current in Q3 approxi-
mately equal to I. Thus the circuit stabilizes with voltage V2 equal to one diode drop, the
base-emitter voltage of Q3, which can occur at point 1© or point 4© in Fig. 4.46b. Appropriate
start-up circuitry must be included to ensure operation at point 4©.

Assuming that the circuit has reached a stable operating point at point 4©, the output voltage
VOUT is the sum of the base-emitter voltage of Q3 and the voltage drop across R2. The drop
across R2 is equal to the voltage drop across R3 multiplied by R2∕R3 because the collector
current of Q2 is approximately equal to its emitter current. The voltage drop across R3 is equal
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Figure 4.46 (a) Widlar band-gap reference. (b) Band-gap subcircuit. (c) Improved band-gap reference.

to the difference in base-emitter voltages of Q1 and Q2. The ratio of currents in Q1 and Q2 is
set by the ratio of R2 to R1.

A drawback of this reference is that the current I is set by the power supply and may vary
with power-supply variations. A self-biased band-gap reference circuit is shown in Fig. 4.46c.
Assume that a stable operating point exists for this circuit and that the op amp is ideal. Then the
differential input voltage of the op amp must be zero, and the voltage drops across resistors R1
and R2 are equal. Thus the ratio of R2 to R1 determines the ratio of I1 to I2. These two currents
are the collector currents of the two diode-connected transistors Q2 and Q1, assuming base
currents are negligible. The voltage across R3 is

VR3 = ΔVBE = VBE1 − VBE2 = VT ln
I1

I2

IS2

IS1
= VT ln

R2

R1

IS2

IS1
(4.261)
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Since the same current that flows in R3 also flows in R2, the voltage across R2 must be

VR2 =
R2

R3
VR3 =

R2

R3
ΔVBE =

R2

R3
VT ln

R2

R1

IS2

IS1
(4.262)

This equation shows that the voltage across R2 is proportional to absolute temperature (PTAT)
because of the temperature dependence of the thermal voltage. Since the op amp forces the
voltages across R1 and R2 to be equal, the currents I1 and I2 are both proportional to temperature
if the resistors have zero temperature coefficient. Thus for this reference, 𝛼 = 1 in (4.247). The
output voltage is the sum of the voltage across Q2, R3, and R2:

VOUT = VBE2 + VR3 + VR2 = VBE2 +
(

1 +
R2

R3

)
ΔVBE

= VBE2 +
(

1 +
R2

R3

)
VT ln

R2

R1

IS2

IS1
= VBE2 + MVT (4.263)

The circuit thus behaves as a band-gap reference, with the value of M set by the ratios of R2∕R3,
R2∕R1, and IS2∕IS1.

4.5.3.2 Band-Gap-Referenced Bias Circuits in CMOS Technology. Band-gap-refe-
renced biasing also can be implemented using the parasitic bipolar devices inherent in CMOS
technology. For example, in an n-well process, substrate pnp transistors can be used to replace
the npn transistors in Fig. 4.46c, as shown in Fig. 4.47. Assume that the CMOS op amp has
infinite gain but nonzero input-referred offset voltage VOS. (The input-referred offset voltage
of an op amp is defined as the differential input voltage required to drive the output to zero.)
Because of the threshold mismatch and the low transconductance per current of CMOS
transistors, the offset of op amps in CMOS technologies is usually larger than in bipolar
technologies. With the offset voltage, the voltage across R3 is

VR3 = VEB1 − VEB2 + VOS = ΔVEB + VOS (4.264)

The emitter-base voltages are used here because the base-emitter voltages of the pnp transistors
operating in the forward-active region are negative. Then the voltage across R2 is

VR2 =
R2

R3
VR3 =

R2

R3

(
VEB1 − VEB2 + VOS

)
=

R2

R3

(
ΔVEB + VOS

)
(4.265)
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Figure 4.47 A band-gap
reference in n-well CMOS.



4.5 Voltage and Current References 335

and the output voltage is19

VOUT = VEB2 + VR3 + VR2

= VEB2 +
(

1 +
R2

R3

)(
ΔVEB + VOS

)
(4.266)

Since the difference in the base-emitter voltages is proportional to the thermal voltage, compar-
ing (4.266) with VOS = 0 to (4.249) shows that the gain M here is proportional to (1 + R2∕R3).
Rearranging (4.266) gives

VOUT = VEB2 +
(

1 +
R2

R3

)(
ΔVEB

)
+ VOS(out) (4.267)

where the output-referred offset is

VOS(out) =
(

1 +
R2

R3

)
VOS (4.268)

Equations 4.267 and 4.268 show that the output contains an offset voltage that is a factor of
(1 + R2∕R3) times bigger than the input-referred offset voltage. Therefore, the same gain that
is applied to the difference in the base-emitter voltages is also applied to the input-referred
offset voltage.

Assume that the offset voltage is independent of temperature. To set TCF of the output equal
to zero, the gain must be changed so that temperature coefficients of the VEB and ΔVEB terms
cancel. Since the offset is assumed to be temperature independent, this cancellation occurs
when the output is equal to the target, where zero offset was assumed, plus the output-referred
offset. If the gain is trimmed at T = T0 to set the output to a target voltage assuming the offset
is zero, (4.267) shows that the gain is too small if the offset voltage is positive and that the
gain is too big if the offset voltage is negative. Since the gain is applied to the PTAT term, the
resulting slope of the output versus temperature is negative when the offset is positive and
the gain is too small. On the other hand, this slope is positive when the offset is negative and
the gain is too big.

We will now calculate the magnitude of the slope of the output versus temperature at T = T0.
With zero offset and a target that assumes zero offset, trimming R2 and/or R3 to set the output
in (4.267) to the target forces the slope of the ΔVEB term to cancel the slope of the VEB term.
With nonzero offset but the same target, the factor (1 + R2∕R3) differs from its ideal value after
trimming by −VOS(out)∕ΔVEB. Since this error is multiplied by ΔVEB in (4.267), the resulting
slope of the output versus temperature is

dVOUT

dT

|||| T=T0

= −
(

VOS(out)

ΔVEB

)
dΔVEB

dT
(4.269)

Since ΔVEB is proportional to the thermal voltage VT ,

ΔVEB = HVT (4.270)

where H is a temperature-independent constant. Substituting (4.270) into (4.269) gives

dVOUT

dT

|||| T=T0

= −
VOS(out)

HVT

HVT

T

|||| T=T0

= −
VOS(out)

T0
(4.271)
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Therefore, when the gain is trimmed at one temperature to set the band-gap output to a
desired target voltage, variation in the op-amp offset causes variation in the output tem-
perature coefficient. In practice, the op-amp offset is usually the largest source of nonzero
temperature coefficient.19 Equation 4.271 shows that the temperature coefficient at T = T0
is proportional to the output-referred offset under these circumstances. Furthermore, (4.268)
shows that the output-referred offset is equal to the gain that is applied to the ΔVEB term
times the input-referred offset. Therefore, minimizing this gain minimizes the variation in
the temperature coefficient at the output. Since the reference output at T = T0 for zero TCF
is approximately equal to the band-gap voltage, the required gain can be minimized by
maximizing the ΔVEB term.

To maximize the ΔVEB term, designers generally push a large current into a small transistor
and a small current into a large transistor, as shown in Fig. 4.48. Ignoring base currents,

ΔVEB = VEB1 − VEB2 = VT ln

(
I1

I2

IS2

IS1

)
(4.272)

Equation 4.272 shows that maximizing the product of the ratios I1∕I2 and IS2∕IS1 maximizes
ΔVEB. In Fig. 4.48, I1 > I2 is emphasized by drawing the symbol for I1 larger than the symbol
for I2. Similarly, the emitter area of Q2 is larger than that of Q1 to make IS2 > IS1, and this
relationship is shown by drawing the symbol of Q2 larger than the symbol of Q1.25 In practice,
these ratios are often each set to be about equal to ten, and the resulting ΔVEB ≃ 120 mV at
room temperature. Because the logarithm function compresses its argument, however, a limita-
tion of this approach arises. For example, if the argument is increased by a factor of ten, ΔVEB
increases by only VT ln(10) ≃ 60 mV. Therefore, to double ΔVEB to 240 mV, (I1∕I2)(IS2∕IS1)
must be increased by a factor of 100 to 10,000. On the other hand, if Q1 and the transistors
that form I2 are minimum-sized devices when (I1∕I2)(IS2∕IS1) = 100, the required die area
would be dominated by the biggest devices (Q2 and/or the transistors that form I1). Therefore,
increasing (I1∕I2)(IS2∕IS1) from 100 to 10,000 would increase the die area by about a factor of
100 but only double ΔVEB.

To overcome this limitation, stages that each contribute to ΔVEB can be cascaded.26 For
example, consider Fig. 4.49, where two emitter-follower stages are cascaded. Here,

ΔVEB = VEB3 − VEB4 + VEB1 − VEB2 (4.273)

Assume the new devices in Fig. 4.49 are identical to the corresponding original devices in
Fig. 4.48 so that I3 = I1, I4 = I2, IS3 = IS1, and IS4 = IS2. Then ignoring base currents,

ΔVEB = 2(VEB1 − VEB2) = 2VT ln

(
I1

I2

IS2

IS1

)
(4.274)

I2

Q2 Q1

I1

VDD

– +ΔVEB

Figure 4.48 A circuit that increases ΔVEB by
increasing I1∕I2 and IS2∕IS1.
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Figure 4.49 A circuit that cascades emitter followers to double ΔVEB if IS3 = IS1 and IS4 = IS2.

Thus cascading two identical emitter followers doublesΔVEB while only doubling the required
die area.

The effect of the offset in a band-gap reference can also be reduced by using offset can-
cellation. An example of offset cancellation in a CMOS band-gap reference with curvature
correction in addition to an analysis of other high-order effects arising from finite 𝛽F, 𝛽F
mismatch, 𝛽F variation with temperature, nonzero base resistance, and nonzero temperature
coefficient in the resistors is presented in Ref. 18.

A high-performance CMOS band-gap reference is shown in Fig. 4.50, where cascoded
current mirrors are used to improve supply rejection. A VT -dependent current from M11 devel-
ops a VT -dependent voltage across resistor xR. A proper choice of the ratio x can give a
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Figure 4.50 Example of a VBE-referenced self-biased reference circuit in CMOS technology.
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band-gap voltage at VOUT. If desired, a temperature-independent output current can be realized
by choosing x to give an appropriate temperature coefficient to VOUT to cancel the temperature
coefficient of resistor R2.

APPENDIX
A.4.1 MATCHING CONSIDERATIONS IN CURRENT MIRRORS

In many types of circuits, an objective of current-mirror design is generation of two or more
current sources whose values are identical. This objective is particularly important in the design
of digital-to-analog converters, operational amplifiers, and instrumentation amplifiers. We first
examine the factors affecting matching in active current mirrors in bipolar technologies and
then in MOS technologies.

A.4.1.1 BIPOLAR

Consider the bipolar current mirror with two outputs in Fig. 4.51. If the resistors and transistors
are identical and the collector voltages are the same, the collector currents will match precisely.
However, mismatch in the transistor parameters 𝛼F and IS and in the emitter resistors will cause
the currents to be unequal. For Q3,

VT ln
IC3

IS3
+

IC3

𝛼F3
R3 = VB (4.275)

For Q4,

VT ln
IC4

IS4
+

IC4

𝛼F4
R4 = VB (4.276)

Subtraction of these two equations gives

VT ln
IC3

IC4
− VT ln

IS3

IS4
+

IC3

𝛼F3
R3 −

IC4

𝛼F4
R4 = 0 (4.277)
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Figure 4.51 Matched bipolar current sources.
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We now define average and mismatch parameters as follows:

IC =
IC3 + IC4

2
(4.278)

ΔIC = IC3 − IC4 (4.279)

IS =
IS3 + IS4

2
(4.280)

ΔIS = IS3 − IS4 (4.281)

R =
R3 + R4

2
(4.282)

ΔR = R3 − R4 (4.283)

𝛼F =
𝛼F3 + 𝛼F4

2
(4.284)

Δ𝛼F = 𝛼F3 − 𝛼F4 (4.285)

These relations can be inverted to give the original parameters in terms of the average and
mismatch parameters. For example,

IC3 = IC +
ΔIC

2
(4.286)

IC4 = IC −
ΔIC

2
(4.287)

This set of equations for the various parameters is now substituted into (4.277). The result is
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= 0 (4.288)

The first term in this equation can be rewritten as

VT ln
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(4.289)

If ΔIC∕2IC ≪ 1, this term can be rewritten as
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(4.290)
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≃ VT ln

[
1 +

ΔIC
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+
(ΔIC

2IC

)2
]

(4.291)

≃ VT ln

(
1 +

ΔIC

IC

)
(4.292)

where the squared term is neglected. The logarithm function has the infinite series

ln(1 + x) = x − x2

2
+ · · · (4.293)

If x ≪ 1,

ln(1 + x) ≃ x (4.294)

To simplify (4.292) when ΔIC∕IC ≪ 1, let x = ΔIC∕IC. Then
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ΔIC
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(4.295)

Applying the same approximations to the other terms in (4.288), we obtain
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(4.296)

We will consider two important limiting cases. First, since gm = IC∕VT , when gmR ≪ 1, the
voltage drop on an emitter resistor is much smaller than the thermal voltage. In this case, the
second term in (4.296) is small and the mismatch is mainly determined by the transistor IS
mismatch in the first term. Observed mismatches in IS typically range from ±10 to ±1 per-
cent depending on geometry. Second, when gmR ≫ 1, the voltage drop on an emitter resistor
is much larger than the thermal voltage. In this case, the first term in (4.296) is small and the
mismatch is mainly determined by the resistor mismatch and transistor 𝛼F mismatch in the sec-
ond term. Resistor mismatch typically ranges from±2 to±0.1 percent depending on geometry,
and 𝛼F matching is in the ±0.1 percent range for npn transistors. Thus for npn current sources,
the use of emitter resistors offers significantly improved current matching. On the other hand,
for pnp current sources, the 𝛼F mismatch is larger due to the lower 𝛽F, typically around ±1
percent. Therefore, the advantage of emitter degeneration is less significant with pnp than npn
current sources.

A.4.1.2 MOS

Matched current sources are often required in MOS analog integrated circuits. The factors
affecting this mismatch can be calculated using the circuit of Fig. 4.52. The two transistors M1
and M2 will have mismatches in their W∕L ratios and threshold voltages. The drain currents
are given by

ID1 = 1
2
μnCox

(W
L

)
1
(VGS − Vt1)2 (4.297)

ID2 = 1
2
μnCox

(W
L

)
2
(VGS − Vt2)2 (4.298)
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Figure 4.52 Matched MOS current sources.

Defining average and mismatch quantities, we have

ID =
ID1 + ID2

2
(4.299)

ΔID = ID1 − ID2 (4.300)
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(4.302)

Vt =
Vt1 + Vt2

2
(4.303)

ΔVt = Vt1 − Vt2 (4.304)

Substituting these expressions into (4.297) and (4.298) and neglecting high-order terms, we
obtain

ΔID

ID
=

ΔW
L

W
L

−
ΔVt

(VGS − Vt)∕2
(4.305)

The current mismatch consists of two components. The first is geometry dependent and con-
tributes a fractional current mismatch that is independent of bias point. The second is depen-
dent on threshold voltage mismatch and increases as the overdrive (VGS − Vt) is reduced. This
change occurs because as the overdrive is reduced, the fixed threshold mismatch progressively
becomes a larger fraction of the total gate drive that is applied to the transistors and therefore
contributes a progressively larger percentage error to the current mismatch. In practice, these
observations are important because they affect the techniques used to distribute bias signals
on integrated circuits.

Consider the current mirror shown in Fig. 4.53, which has one input and two outputs. At
first, assume that RS1 = RS2 = 0. Also assume that the input current is generated by a circuit
with desirable properties. For example, a self-biased band-gap reference might be used to make
IIN insensitive to changes in the power supply and temperature. Finally, assume that each output
current is used to provide the required bias in one analog circuit on the integrated circuit (IC).
For example, M2 and M3 could each act as the tail current source of a differential pair.

One way to build the circuit in Fig. 4.53 is to place M1 on the IC near the input current
source IIN, while M2 and M3 are placed near the circuits that they bias, respectively. Since
the gate-source voltage of M1 must be routed to M2 and M3 here, this case is referred to
as an example of the voltage routing of bias signals. An advantage of this approach is that
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Figure 4.53 Current mirror with two
outputs used to compare voltage- and
current-routing techniques.

by routing only two nodes (the gate and the source of M1) around the IC, any number of
output currents can be produced. Furthermore the gains from the input to each output of
the current mirror are not affected by the number of outputs in MOS technologies because
𝛽F → ∞. (In bipolar technologies, 𝛽F is finite, and the gain error increases as the number of
outputs increase, but a beta-helper configuration can be used to reduce such errors as described
in Section 4.3.3.)

Unfortunately, voltage routing has two important disadvantages. First, the input and output
transistors in the current mirror may be separated by distances that are large compared to
the size of the IC, increasing the potential mismatches in (4.305). In particular, the threshold
voltage typically displays considerable gradient with distance across a wafer. Therefore, when
the devices are physically separated by large distances, large current mismatch can result from
biasing current sources sharing the same gate-source bias, especially when the overdrive is
small. The second disadvantage of voltage routing is that the output currents are sensitive to
variations in the supply resistances RS1 and RS2. Although these resistances were assumed to
be zero above, they are nonzero in practice because of imperfect conduction in the interconnect
layers and their contacts. Since IOUT2 flows in RS2 and (IOUT1 + IOUT2) flows in RS1, nonzero
resistances cause VGS2 < VGS1 and VGS3 < VGS1 when IOUT1 > 0 and IOUT2 > 0. Therefore,
with perfectly matched transistors, the output currents are less than the input current, and
the errors in the output currents can be predicted by an analysis similar to that presented in
Section 4.5.1 for Widlar current sources. The key point here is that RS1 and RS2 increase as the
distances between the input and output transistors increase, increasing the errors in the output
currents. As a result of both of these disadvantages, the output currents may have considerable
variation from one IC to another with voltage routing, increasing the difficulty of designing
the circuits biased by M2 and M3 to meet the required specifications even if IIN is precisely
controlled.

To overcome these problems, the circuit in Fig. 4.53 can be built so that M1–M3 are close
together physically, and the current outputs IOUT1 and IOUT2 are routed as required on the IC.
This case is referred to as an example of the current routing of bias signals. Current routing
reduces the problems with mismatch and supply resistance by reducing the distances between
the input and output transistors in the current mirror in Fig. 4.53 compared to voltage rout-
ing. One disadvantage of current routing is that it requires one node to be routed for each
bias signal. Therefore, when the number of bias outputs is large, the die area required for the
interconnect to distribute the bias currents can be much larger than that required with voltage
routing. Another disadvantage of current routing is that it can increase the parasitic capacitance
on the drains of M2 and M3. If these nodes are connected to circuits that process high-frequency
signals, increased parasitic capacitance can reduce performance in some ways. For example, if
M2 and M3 act as the tail current sources of differential pairs, increased parasitic capacitance
will increase the common-mode gain and reduce the common-mode rejection ratio of each
differential pair at high frequencies.
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Figure 4.54 Bias-distribution
circuit using both current
routing and voltage routing.

In practice, many ICs use a combination of current- and voltage-routing techniques. For
example, Fig. 4.54 shows a circuit with five current mirrors, where the input and output currents
are still referenced as in Fig. 4.53. If the current routing bus in Fig. 4.54 travels over a large
distance, the parasitic capacitances on the drains of M2 and M3 may be large. However, the
parasitic capacitances on the drains of M7 and M11 are minimized by using voltage routing
within each current mirror. Although simple current mirrors are shown in Fig. 4.54, cascoding
is often used in practice to reduce gain errors stemming from a finite Early voltage. In ICs using
both current and voltage routing, currents are routed globally and voltages locally, where the
difference between global and local routing depends on distance. When the distance is large
enough to significantly worsen mismatch or supply-resistance effects, the routing is global.
Otherwise, it is local. An effective combination of these bias distribution techniques is to divide
an IC into blocks, where bias currents are routed between blocks and bias voltages within the
blocks.

A.4.2 INPUT OFFSET VOLTAGE OF A DIFFERENTIAL PAIR WITH ACTIVE LOAD

A.4.2.1 BIPOLAR

For the resistively loaded emitter-coupled pair, we showed in Chapter 3 that the input offset
voltage arises primarily from mismatches in IS in the input transistors and from mismatches
in the collector load resistors. In the active-load case, the input offset voltage results from
nonzero base current of the load devices and mismatches in the input transistors and load
devices. Refer to Fig. 4.25a. Assume the inputs are grounded. If the matching is perfect and
if 𝛽F → ∞ in T3 and T4,

VOUT = VCC − |VBE3| (4.306)

Equation 4.306 holds because only this output voltage forces VCE3 = VCE4, where IC1 = IC2
and VBE1 = VBE2, which is required by KVL when VI1 = VI2.
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The differential input required to drive the output to the value given by (4.306) is the
input-referred offset voltage. With finite 𝛽F in the active-load transistors and/or device
mismatch, the offset is usually nonzero. In the active-load, KVL shows that

VBE3 = VBE4 (4.307)

Solving (1.58) for VBE3 and VBE4 and substituting in (4.307) gives
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⎛⎜⎜⎜⎜⎝
1
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⎞⎟⎟⎟⎟⎠
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IC4

IS4

⎛⎜⎜⎜⎜⎝
1

1 +
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VA4

⎞⎟⎟⎟⎟⎠
(4.308)

Assume that the Early voltages of T3 and T4 are identical. Since VCE3 = VCE4 when (4.306)
is satisfied, (4.308) can be simplified to

IC4 = IC3

(
IS4

IS3

)
(4.309)

Since IC2 = −IC4, (4.309) can be written as

IC2 = −IC3

(
IS4

IS3

)
(4.310)

From KCL at the collector of T3,

IC1 = −IC3

[
1 +

(
2
𝛽F

)]
(4.311)

where 𝛽F is the ratio of the collector to base current in the active-load devices. From KVL in
the input loop,

VID = VI1 − VI2 = VBE1 − VBE2 (4.312)

Then the input offset voltage, VOS, is the value of VID for which the output voltage is given
by (4.306). If the Early voltages of T1 and T2 are identical, solving (1.58) for VBE1 and VBE2
and substituting into (4.312) gives

VOS = VID = VT ln

(
IC1

IC2

IS2

IS1

)
(4.313)

because VCE1 = VCE2 when (4.306) is satisfied. Substituting (4.310) and (4.311) in (4.313)
gives

VOS = VT ln

[
IS3

IS4

IS2

IS1

(
1 + 2

𝛽F

)]
(4.314)

If the mismatches are small, this expression can be approximated as

VOS ≃ VT

(ΔISP

ISP
−

ΔISN

ISN
+ 2

𝛽F

)
(4.315)
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using the technique described in the section 3.5.6.3, where

ΔISP = IS3 − IS4 (4.316)

ISP =
IS3 + IS4

2
(4.317)

ΔISN = IS1 − IS2 (4.318)

ISN =
IS1 + IS2

2
(4.319)

In the derivation of (4.315), we assumed that the Early voltages of matched transistors are
identical. In practice, mismatch in Early voltages also contributes to the offset, but the effect
is usually negligible when the transistors are biased with collector-emitter voltages much less
than their Early voltages.

Assuming a worst-case value for ΔIS∕IS of ±5 percent and a pnp beta of 20, the worst-case
offset voltage is

VOS ≃ VT (0.05 + 0.05 + 0.1) = 0.2VT ≃ 5 mV (4.320)

To find the worst-case offset, we have added the mismatch terms for the pnp and npn tran-
sistors in (4.320) instead of subtracting them as shown in in (4.315) because the mismatch
terms are random and independent of each other in practice. Therefore, the polarity of the
mismatch terms is unknown in general. Comparing (4.320) to (3.219) shows that the actively
loaded differential pair has significantly higher offset than the resistively loaded case under
similar conditions. The offset arising here from mismatch in the load devices can be reduced
by inserting resistors in series with the emitters of T3 and T4 as shown in Section A.4.1. To
reduce the offset arising from finite 𝛽F in the load devices, the current mirror in the load can
use a beta helper transistor as described in Section 4.3.3.

A.4.2.2 MOS

The offset in the CMOS differential pair with active load shown in Fig. 4.25b is similar to the
bipolar case. If the matching is perfect with the inputs grounded,

VOUT = VDD − |VGS3| (4.321)

Equation 4.321 holds because only this output voltage forces VDS3 = VDS4, where I1 = I2 and
VGS1 = VGS2, which is required by KVL when VI1 = VI2.

The differential input required to drive the output to the value given by (4.321) is the
input-referred offset voltage. With device mismatch, the offset is usually nonzero:

VID = VGS1 − VGS2 = Vt1 + Vov1 − Vt2 − Vov2 (4.322)

Assume that the Early voltages of T1 and T2 are identical. Since VDS1 = VDS2 = VDSN when
VID = VOS, applying (1.165) to Vov1 and Vov2 in (4.322) gives

VOS = Vt1 − Vt2 +

√
1

1 + 𝜆NVDSN

(√
2I1

k′(W∕L)1
−

√
2I2

k′(W∕L)2

)
(4.323)
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If the mismatches are small, this expression can be approximated as

VOS ≃ Vt1 − Vt2 +
VovN

2

(ΔIN

IN
−

Δ(W∕L)N
(W∕L)N

)
(4.324)

using the technique described in the section 3.5.6.7, where

VovN =

√
2IN

k′(W∕L)N(1 + 𝜆NVDSN)
(4.325)

ΔIN = I1 − I2 (4.326)

IN =
I1 + I2

2
(4.327)

Δ(W∕L)N = (W∕L)1 − (W∕L)2 (4.328)

(W∕L)N =
(W∕L)1 + (W∕L)2

2
(4.329)

Since I1 = −I3 and I2 = −I4,

ΔIN

IN
=

ΔIP

IP
(4.330)

where

ΔIP = I3 − I4 (4.331)

IP =
I3 + I4

2
(4.332)

To find ΔIP∕IP, we will use KVL in the gate-source loop in the load as follows:

0 = VGS3 − VGS4 = Vt3 + Vov3 − Vt4 − Vov4 (4.333)

Since T3 and T4 are p-channel transistors, their overdrives are negative. Assume that the Early
voltages of T3 and T4 are identical. Since VDS3 = VDS4 = VDSP when VID = VOS, (4.333) can
be rewritten as

0 = Vt3 − Vt4 −

√
1

1 + |𝜆PVDSP|
⎛⎜⎜⎝
√

2|I3|
k′(W∕L)3

−

√
2|I4|

k′(W∕L)4

⎞⎟⎟⎠ (4.334)

In (4.334), absolute value functions have been used so that the arguments of the square-root
functions are positive. If the mismatches are small, this expression can be approximated as

ΔIP

IP
≃

Vt3 − Vt4|VovP|
2

+
Δ(W∕L)P
(W∕L)P

(4.335)

using the technique described in Section 3.5.6.7, where

|VovP| =
√

2|IP|
k′(W∕L)P(1 + |𝜆PVDSP|) (4.336)
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Δ(W∕L)P = (W∕L)3 − (W∕L)4 (4.337)

(W∕L)P =
(W∕L)3 + (W∕L)4

2
(4.338)

Substituting (4.335) and (4.330) into (4.324) gives

VOS ≃ Vt1 − Vt2 +
VovN

2

⎛⎜⎜⎜⎝
Vt3 − Vt4|VovP|

2

+
Δ(W∕L)P
(W∕L)P

−
Δ(W∕L)N
(W∕L)N

⎞⎟⎟⎟⎠ (4.339)

Comparing (4.339) to (4.315) shows that the MOS differential pair with active load includes
terms to account for threshold mismatch but excludes a term to account for finite beta in the
active load because 𝛽F → ∞ in MOS transistors.

◼ EXAMPLE
Find the input-referred offset voltage of the circuit in Fig. 4.25b using the transistor parameters
in the table below.

Transistor Vt (V) W (μm) L (μm) k′ (μA/V2)

T1 0.705 49 1 100

T2 0.695 51 1 100

T3 −0.698 103 1 50

T4 −0.702 97 1 50

Assume that ITAIL = 200 μA and that 𝜆NVDSN ≪ 1 and |𝜆PVDSP| ≪ 1. From (4.327) and
KCL,

IN =
I1 + I2

2
=

ITAIL

2
= 100 μA (4.340)

Substituting (4.340) and (4.329) into (4.325) gives

VovN ≃
√

200
100(49 + 51)∕2

V = 0.2 V (4.341)

Similarly, from (4.332) and KCL,

IP =
I3 + I4

2
= −

ITAIL

2
= −100 μA (4.342)

Substituting (4.342) and (4.338) into (4.336) gives

|VovP| ≃ √
200

50(103 + 97)∕2
V = 0.2 V (4.343)



348 Chapter 4 ▪ Current Mirrors, Active Loads, and References

Substituting (4.337) and (4.328) into (4.339) gives

VOS ≃ 0.705 V − 0.695 V

+ 0.1

(
−0.698 + 0.702

0.1
+ 103 − 97

(103 + 97)∕2
− 49 − 51

(49 + 51)∕2

)
V

≃ 0.01 V + 0.1(0.04 + 0.06 + 0.04) V = 0.024 V (4.344)

In this example, the mismatches have been chosen so that the individual contributions to the
offset add constructively to give the worst-case offset.◼

PROBLEMS
For the bipolar transistors in these problems, use the
high-voltage device parameters given in Fig. 2.30 and
Fig. 2.35, unless otherwise specified. Assume that
rb = 0 and rμ → ∞ in all problems. Assume all bipolar
transistors operate in the forward-active region, and
neglect base currents in bias calculations unless oth-
erwise specified.

4.1 Determine the output current and output resis-
tance of the bipolar current mirror shown in Fig. 4.55.
Find the output current if VOUT = 1 V, 5 V, and 30 V.
Ignore the effects of nonzero base currents. Compare
your answer with a SPICE simulation.

4.2 Repeat Problem 4.1 including the effects of
nonzero base currents.

IOUT

VOUT

Q5Q4Q3Q2

VCC = 15 V

R = 10 kΩ

Q1

+

–

Figure 4.55 Circuit for Problem 4.1.

4.3 Design a simple MOS current mirror of the
type shown in Fig. 4.5a to meet the following con-
straints:

(a) Transistor M2 must operate in the active region
for values of VOUT to within 0.2 V of ground.

(b) The output current must be 50 μA.

(c) The output current must change less than
1 percent for a change in output voltage of 1 V.

Make M1 and M2 identical. You are to minimize the
total device area within the given constraints. Here
the device area will be taken to be the total gate
area (W × L product). Assume Xd = 0, and take other
device data from Table 2.4.

4.4 Calculate an analytical expression for the
small-signal output resistance Ro of the bipolar cas-
code current mirror of Fig. 4.8. Assume that the input
current source is not ideal and that the nonideal-
ity is modeled by placing a resistor R1 in parallel
with IIN. Show that for large R1, the output resis-
tance approaches 𝛽0ro∕2. Calculate the value of Ro

if VCC = 5 V, IIN = 0, and R1 = 10 kΩ, and esti-
mate the value of VOUT below which Ro will begin
to decrease substantially. Use SPICE to check your
calculations and also to investigate the 𝛽F sensitiv-
ity by varying 𝛽F by −50 percent and examining
IOUT. Use SPICE to plot the large-signal IOUT-VOUT

characteristic.

4.5 Calculate the output resistance of the circuit of
Fig. 4.9, assuming that IIN = 100 μA and the devices
have drawn dimensions of 100 μm/1 μm. Use the pro-
cess parameters given in Table 2.4, and assume for
all devices that Xd = 0. Also ignore the body effect
for simplicity. Compare your answer with a SPICE
simulation, and also use SPICE to plot the IOUT-VOUT

characteristic for VOUT from 0 to 3 V.

4.6 Using the data given in the example of Section
1.9, include the effects of substrate leakage in the
calculation of the output resistance for the circuit of
Problem 4.5. Let VOUT = 2 V and 3 V.

4.7 Design the circuit of Fig. 4.11b to satisfy the
constraints in Problem 4.3, except the output resis-
tance objective is that the output current change less
than 0.02 percent for a 1 V change in the output volt-
age. Ignore the body effect for simplicity. Make all
devices identical except for M4. Use SPICE to check
your design and also to plot the IOUT-VOUT character-
istic for VOUT from 0 to 3 V.
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4.8 For the circuit of Fig. 4.56, assume that
(W∕L)8 = (W∕L). Ignoring the body effect, find
(W∕L)6 and (W∕L)7 so that VDS6 = VDS7 = Vov8. Draw
the schematic of a double-cascode current mirror that
uses the circuit of Fig. 4.56 to bias both cascode
devices in the output branch. For this current mirror,
calculate the output resistance, the minimum output
voltage for which all three transistors in the output
branch operate in the active region, the total voltage
across all the devices in the input branch, and the sys-
tematic gain error.

VDD

IIN

M8

M7

M6

Figure 4.56 Circuit for Problem 4.8.

4.9 Calculate the output resistance of the Wilson
current mirror shown in Fig. 4.57. What is the percent-
age change in IOUT for a 5 V change in VOUT? Compare
your answer with a SPICE simulation using a full
device model. Use SPICE to check the 𝛽F sensitivity
by varying 𝛽F by −50 percent and examining IOUT.
Also use SPICE to plot the large-signal IOUT-VOUT

characteristic for VOUT from 0 to 15 V.

Q3

Q2

Q1

IOUT

VOUT

13.7 kΩ

+15 V

–

+

Figure 4.57 Circuit for Problem 4.9.

4.10 Calculate the small-signal voltage gain of
the common-source amplifier with active load in
Fig. 4.16b. Assume that VDD = 3 V and that all the
transistors operate in the active region. Do the calcu-
lations for values of IREF of 1 mA, 100 μA, 10 μA, and
1 μA.

Assume that the drawn dimensions of each transis-
tor are W = 100 μm and L = 1 μm. Assume Xd = 0,
and use Table 2.4 for other parameters.

(a) At first, assume the transistors operate in
strong inversion in all cases.

(b) Repeat part (a), including the effects of weak
inversion by using (1.253) with n = 1.5 to calculate
the transconductance of M1. Assume that a transistor
operates in weak inversion when its overdrive is less
than 2nVT , as given in (1.255).

(c) Use SPICE to check your calculations for both
parts (a) and (b).

4.11 Calculate the small-signal voltage gain of
a common-source amplifier with depletion load
in Fig. 4.20, including both the body effect and
channel-length modulation. Assume that VDD = 3 V
and that the dc input voltage is adjusted so that
the dc output voltage is 1 V. Assume that M1 has
drawn dimensions of W = 100 μm and L = 1 μm.
Also assume that M2 has drawn dimensions of W =
10 μm and L = 1 μm. For M2, assume Vt0 = −1 V .

For both transistors, assume that Xd = 0. Use Table 2.4
for other parameters of both transistors.

4.12 Determine the unloaded voltage gain vo∕vi

and output resistance for the circuit of Fig. 4.58.
Check with SPICE, and also use SPICE to plot
out the large-signal VO-VI transfer characteristic for
VSUP = 2.5 V. Use SPICE to determine the CMRR if
the current-source output resistance is 1 MΩ.

+VSUP

–VSUP

Vi = VI + vi

Vo = VO + vo

Q4Q3

Q1 Q2

+

–

+

–

100 μA

Figure 4.58 Circuit for Problem 4.12.

4.13 Repeat Problem 4.12, but now assuming that
2 kΩ resistors are inserted in series with the emitters
of Q3 and Q4.
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4.14 Repeat Problem 4.12, except replace Q1 and
Q2 with n-channel MOS transistors M1 and M2. Also
replace Q3 and Q4 with p-channel MOS transistors M3

and M4. Assume Wn = 50 μm and Wp = 100 μm.
For all transistors, assume Ldrwn = 1 μm and Xd = 0.
Use Table 2.3 for other parameters.

4.15 Repeat Problem 4.14, but now assuming that
2 kΩ resistors are inserted in series with the sources
of M3 and M4. Ignore the body effect.

4.16 Determine the unloaded voltage gain vo∕vi

and output resistance for the circuit of Fig. 4.59.
Neglect rμ. Verify with SPICE, and also use SPICE to
plot the large-signal VO-VI transfer characteristic for
VSUP = 2.5 V.

+VSUP

–VSUP

ITAIL

Vi = VI + vi

Q8Q7

Q6Q5

Q4Q3

Q1 Q2

+

–

Vo = VO + vo

+

+

–
1.3 V

–

Figure 4.59 Cascode active-load circuit for Prob-
lem 4.16.

4.17 Repeat Problem 4.16, except replace the npn
and pnp transistors with n-channel and p-channel
MOS transistors, respectively. Assume Wn = 50 μm
and Wp = 100 μm. For all transistors, assume Ldrwn =
1 μm and Xd = 0. Let ITAIL = 100 μA. Ignore the body
effect. Use Table 2.3 for other parameters.

4.18 Find Gm[dm] of a source-coupled pair
with a current-mirror load with nonzero mismatch
(Fig. 4.29b), and show that it is approximately given
by (4.184). Calculate the value of Gm[dm] using the
following data:

T1 T2 T3 T4 T5

gm (mA/V) 1.05 0.95 1.1 0.9 2.0

ro (MΩ) 0.95 1.05 1.0 1.0 0.5

Compare your answer with a SPICE simulation. Also
compare your answer to the result that would apply
without mismatch.

4.19 Although Gm[cm] of a differential pair with
a current-mirror load can be calculated exactly from
a small-signal diagram where mismatch is allowed,
the calculation is complicated because the mismatch
terms interact, and the results are difficult to inter-
pret. In practice, the mismatch terms are often a small
fraction of the corresponding average values, and the
interactions between mismatch terms are often negli-
gible. Using the following steps as a guide, calculate
an approximation to Gm[cm] including the effects of
mismatch:

(a) Derive the ratio i2∕vic included in (4.165), and
show that this ratio is approximately 1∕2rtail, as shown
in (4.185) if 𝜖d ≪ 2, gm2ro2 ≫ 1, and 2gm2rtail ≫ 1.

(b) Use (4.173) to calculate 𝜖d with perfect match-
ing, where 𝜖d represents the gain error of the differ-
ential pair with a pure common-mode input and is
defined in (4.161).

(c) Calculate 𝜖d if 1∕gm3 = 0 and the only mis-
match is gm1 ≠ gm2.

(d) Calculate 𝜖d if 1∕gm3 = 0 and the only mis-
match is ro1 ≠ ro2.

(e) Now estimate the total 𝜖d including mismatch
by adding the values calculated in parts (b), (c),
and (d). Show that the result agrees with (4.186) if
gm3ro(dp) ≫ 1.

(f) Calculate 𝜖m, which represents the gain error of
the current mirror and is defined in (4.133). Show that
the result agrees with (4.187).

(g) Calculate the value of Gm[cm] using (4.185)
and the CMRR for the data given in Problem 4.18.
Compare your answer with a SPICE simulation. Also
compare your answer to the result that would apply
without mismatch.

4.20 Design a Widlar current source using npn
transistors that produces a 5 μA output current. Use
Fig. 4.31a with identical transistors, VCC = 30 V, and
R1 = 30 kΩ. Find the output resistance.

4.21 In the design of a Widlar current source
of Fig. 4.31a to produce a specified output current,
two resistors must be selected. Resistor R1 sets IIN,
and the emitter resistor R2 sets IOUT. Assuming a
supply voltage of VCC and a desired output current
IOUT, determine the values of the two resistors so that
the total resistance in the circuit is minimized. Your
answer should be given as expressions for R1 and R2

in terms of VCC and IOUT. What values would these
expressions give for Problem 4.20? Are these values
practical?
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4.22 Determine the output current in the circuit of
Fig. 4.60.

IOUT

VCC = 15 V

Q1 Q2

20 kΩ

10 kΩ

Figure 4.60 Circuit for Problem 4.22.

4.23 Design a MOS Widlar current source using
the circuit shown in Fig. 4.31b to meet the following
constraints with VDD = 3 V:

(a) The input current should be 100 μA, and the
output current should be 10 μA.

(b) Vov1 = 0.2 V.

(c) Transistor M2 must operate in the active region
if the voltage from the drain of M2 to ground is at least
0.2 V.

(d) The output resistance should be 50 MΩ.

Ignore the body effect. Assume Ldrwn = 1 μm and
Xd = Ld = 0. Use Table 2.4 for other parameters.

4.24 Design the MOS peaking current source in
Fig. 4.34 so that IOUT = 0.1 μA.

(a) First, let IIN = 1 μA, and find the required
value of R.

(b) Second, let R = 10 kΩ, and find the required
IIN.

In both cases, assume that both transistors are iden-
tical and operate in weak inversion with It = 0.1 μA
and n = 1.5. Also find the minimum W∕L in both
cases, assuming that VGS − Vt < 0 is required to
operate a transistor in weak inversion as shown in
Fig. 1.45.

4.25 Determine the output current and output
resistance of the circuit shown in Fig. 4.61.

4.26 Determine the value of sensitivity S of output
current to supply voltage for the circuit of Fig. 4.62,
where S = (VCC∕IOUT)(𝜕IOUT∕𝜕VCC).

4.27 In the analysis of the hypothetical reference
of Fig. 4.44, the current I1 was assumed proportional
to temperature. Assume instead that this current is

IOUT

+ 15 V

Q2

Q1

Q3

13.7 kΩ

700 Ω

Figure 4.61 Circuit for Problem 4.25.

IOUT

VCC = 15 V

Q1

R1

R2

Q2

10 kΩ

1 kΩ

Figure 4.62 Circuit for Problem 4.26.

derived from a diffused resistor and thus has a TCF

of −1500 ppm∕∘C. Determine the new value of VOUT

required to achieve zero TCF at 25∘C. Neglect base
current.

4.28 The circuit of Fig. 4.46c is to be used as a
band-gap reference. If the op amp is ideal, its differ-
ential input voltage and current are both zero and

VOUT = (VBE1 + I1R1) = (VBE1 + I2R2)

VOUT = VBE1 + R2

(
VBE1 − VBE2

R3

)
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Assume that I1 is to be made equal to 200 μA and
(VBE1 − VBE2) is to be made equal to 100 mV. Deter-
mine R1, R2, and R3 to realize zero TCF of VOUT at
25∘C. Neglect base currents.

4.29 A band-gap reference like that of Fig. 4.47 is
designed to have nominally zero TCF at 25∘C. Due to
process variations, the saturation current IS of the tran-
sistors is actually twice the nominal value. Assume
VOS = 0. What is dVOUT∕dT at 25∘C? Neglect base
currents.

4.30 Simulate the band-gap reference from Prob-
lem 4.29 on SPICE. Assume that the amplifier is
just a voltage-controlled voltage source with an
open-loop gain of 10,000 and that the resistor val-
ues are independent of temperature. Also assume
that IS1 = 1.25 × 10−17 A and IS2 = 1 × 10−16 A. In
SPICE, adjust the closed-loop gain of the amplifier
(by choosing suitable resistor values) so that the out-
put TCF is zero at 25∘C. What is the resulting target
value of VOUT? Now double IS1 and IS2. Use SPICE
to adjust the gain so that VOUT is equal to the tar-
get at 25∘C. Find the new dVOUT∕dT at 25∘C with
SPICE. Compare this result with the calculations from
Problem 4.29.

4.31 Repeat Problem 4.29, assuming that the
values of IS, R2, and R1 are nominal but that R3 is
1 percent low. Assume VBE(on) = 0.6 V.

4.32 A band-gap reference circuit is shown in
Fig. 4.63. Assume that 𝛽F → ∞, VA → ∞, IS1 = 1 ×
10−15 A, and IS2 = 8 × 10−15 A. Assume the op amp is
ideal except for a possibly nonzero offset voltage VOS,
which is modeled by a voltage source in Fig. 4.63.

(a) Suppose that R2 is trimmed to set VOUT equal
to the target voltage for which dVOUT∕dT = 0 at
T = 25∘C when VOS = 0. Find dVOUT∕dT at T = 25∘C
when VOS = 30 mV.

(b) Under the conditions in part (a), is dVOUT∕dT
positive or negative? Explain.

Q1 Q2

R2
VOS

VOUT

R1
1 kΩ

R3
1 kΩ

+

+

+

–
–

–

Figure 4.63 Band-gap reference circuit for Problem
4.32.

4.33 For the circuit of Fig. 4.64, find the value of
W∕L for which dVGS∕dT = 0 at 25∘C. Assume that
the threshold voltage falls 2 mV for each 1∘C increase
in temperature. Also assume that the mobility tem-
perature dependence is given by (4.243) with n = 1.5.
Finally, use Table 2.4 for other parameters at 25∘C,
and let I = 200 μA.

I

VGS

VDD

+

–

Figure 4.64 Circuit for Problem 4.33.

4.34 Calculate the bias current of the circuit
shown in Fig. 4.65 as a function of R, μnCox, (W∕L)1,
and (W∕L)2. Comment on the temperature behav-
ior of the bias current. For simplicity, assume that
Xd = Ld = 0 and ignore the body effect. Assume M4

is identical to M3.

VDD

IBIAS

M3 M4

M2M1

W
L

R

1

W
L 2

W
L 1

>

Figure 4.65 Circuit for Problem 4.34.

4.35 The circuit of Fig. 4.65 produces a
supply-insensitive current. Calculate the ratio of
small-signal variations in IBIAS to small-signal varia-
tions in VDD at low frequencies. Ignore the body effect
but include finite transistor ro in this calculation.

4.36 For the bias circuit shown in Fig. 4.66,
determine the bias current. Assume that Xd = Ld = 0.
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Neglect base currents and the body effect. Comment
on the temperature dependence of the bias current.
Assume a channel mobility and oxide thickness from
Table 2.4. Compare your calculations to a SPICE sim-
ulation using a full circuit model from Table 2.4, and
also use SPICE to determine the supply-voltage sen-
sitivity of IBIAS.

+3V

IBIAS

M3 M4

M2M1

Q2 Q1

100
1

50
1

50

10×1×

Bipolar
transistors

1

50
1

Figure 4.66 Circuit for Problem 4.36.

4.37 A pair of bipolar current sources is to be
designed to produce output currents that match within
±1 percent. If resistors display a worst-case mismatch
of ±0.5 percent, and transistors a worst-case VBE mis-
match of 2 mV, how much voltage must be dropped
across the emitter resistors?

4.38 Determine the worst-case input offset volt-
age for the circuit of Fig. 4.58. Assume the worst-case
IS mismatches in the transistors are ±5 percent and
𝛽F = 15 for the pnp transistors. Assume the dc output
voltage is VSUP − |VBE(on)|.

4.39 Repeat Problem 4.38, but assume that 2 kΩ
resistors are placed in series with the emitters of Q3

and Q4. Assume the worst-case resistor mismatch is
±0.5 percent and the worst-case pnp 𝛽F mismatch is
±10 percent.

4.40 Repeat Problem 4.38, but replace the
bipolar transistors with MOS transistors as in
Problem 4.14. Assume the worst-case W∕L mis-
matches in the transistors are ±5 percent and the
worst-case Vt mismatches are ±10 mV. Assume the
dc output voltage to ground is VSUP − |VGS3|. Also
assume that (W∕L)1 + (W∕L)2 = 20 and (W∕L)3 +
(W∕L)4 = 60. Use Table 2.4 to calculate the transcon-
ductance parameters.
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CHAPTER 5

Output Stages

5.1 Introduction
The output stage of an amplifier must satisfy a number of special requirements. One of the
most important requirements is to deliver a specified amount of signal power to a load with
acceptably low levels of signal distortion. Another common objective of output-stage design is
to minimize the output impedance so that the voltage gain is relatively unaffected by the value
of load impedance. A well-designed output stage should achieve these performance specifica-
tions while consuming low quiescent power and, in addition, should not be a major limitation
on the frequency response of the amplifier.

In this chapter, several output-stage configurations will be considered to satisfy the above
requirements. The simplest output-stage configurations are the emitter and source followers.
More complex output stages employing multiple output devices are also treated, and compar-
isons are made of power-output capability and efficiency.

Because of their excellent current-handling capability, bipolar transistors are the preferred
devices for use in output stages. Although parasitic bipolar transistors can be used in some
CMOS output stages, output stages in CMOS technologies are usually constructed without
bipolar transistors and are also described in this chapter.

5.2 The Emitter Follower as an Output Stage
An emitter-follower output stage is shown in Fig. 5.1. To simplify the analysis, positive and
negative bias supplies of equal magnitude VCC are assumed, although these supplies may have
different values in practice. When output voltage Vo is zero, output current Io is also zero. The
emitter-follower output device Q1 is biased to a quiescent current IQ by current source Q2.
The output stage is driven by voltage Vi, which has a quiescent dc value of Vbe1 for Vo = 0 V.
The bias components R1,R3, and Q3 can be those used to bias other stages in the circuit. Since
the quiescent current IQ in Q2 will usually be larger than the reference current IR, resistor R2
is usually smaller than R1 to accommodate this difference.

This circuit topology can also be implemented in CMOS technologies using an MOS cur-
rent source for bias and the parasitic bipolar-transistor emitter follower available in standard
CMOS processes. Because any large current flow to the substrate can initiate the pnpn latchup
phenomenon described in Chapter 2, however, this configuration should be used carefully in
CMOS technologies with lightly doped substrates. Extensive substrate taps in the vicinity of
the emitter follower are essential to collect the substrate current flow.

Analysis and Design of Analog Integrated Circuits, Sixth Edition. Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, and Robert G. Meyer

© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.

Companion Website: http://www.wiley.com/go/gray/analogintegratedcircuits6e

http://www.wiley.com/go/gray/analogintegratedcircuits6e


356 Chapter 5 ▪ Output Stages

+VCC

–VCC

Q1

Q2

Q3

R2R1

R3

Io

Vo

Vi

IQ

IR

RL

+

+

–

–

Figure 5.1 Emitter-follower output stage
with current-mirror bias.

5.2.1 Transfer Characteristics of the Emitter-Follower

The circuit of Fig. 5.1 must handle large signal amplitudes; that is, the current and voltage
swings resulting from the presence of signals may be a large fraction of the bias values. As a
result, the small-signal analyses that have been used extensively up to this point must be used
with care in this situation. For this reason, we first determine the dc transfer characteristic of
the emitter follower. This characteristic allows calculation of the gain of the circuit and also
gives important information on the linearity and thus on the distortion performance of the
stage.

Consider the circuit of Fig. 5.1. The large-signal transfer characteristic can be derived as
follows:

Vi = Vbe1 + Vo (5.1)

In this case, the base-emitter voltage Vbe1 of Q1 cannot be assumed constant but must be
expressed in terms of the collector current Ic1 of Q1 and the saturation current IS. If the load
resistance RL is small compared with the output resistance of the transistors,

Vbe1 = kT
q

ln

(
Ic1

IS

)
(5.2)

if Q1 is in the forward-active region. Also,

Ic1 = IQ +
Vo

RL
(5.3)

if Q2 is in the forward-active region and 𝛽F is assumed large. Substitution of (5.3) and (5.2) in
(5.1) gives

Vi =
kT
q

ln

⎛⎜⎜⎜⎜⎝
IQ +

Vo

RL

IS

⎞⎟⎟⎟⎟⎠
+ Vo (5.4)
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Vo

RL2

RL1

Q2 saturated

(VCC  – VCE1(sat) + Vbe1)

–VCC  + VCE2(sat)

–IQRL2

[–VCC  + VCE1(sat) + Vbe1]

VCC  – VCE1(sat)

Vi
VBE1

Q1 saturated

Q1 cutoff

Figure 5.2 Transfer characteristic of the circuit of Fig. 5.1 for a low (RL2) and a high (RL1) value of load
resistance.

Equation 5.4 is a nonlinear equation relating Vo and Vi if both Q1 and Q2 are in the
forward-active region.

The transfer characteristic from (5.4) has been plotted in Fig. 5.2. First, consider the case
where RL is large, which is labeled RL1. In this case, the first term on the right-hand side of (5.4),
which represents the base-emitter voltage Vbe1 of Q1, is almost constant as Vo changes. This
result stems from the observation that the current in the load is small for a large RL; therefore,
the current in Q1 and Vbe1 are both almost constant as Vo changes in this case. As a result,
the center part of the transfer characteristic for RL = RL1 is nearly a straight line with unity
slope that is offset on the Vi axis by VBE1, the quiescent value of Vbe1. This near-linear region
depends on both Q1 and Q2 being in the forward-active region. However, as Vi is made large
positive or negative, one of these devices saturates, and the transfer characteristic abruptly
changes slope.

Consider Vi made large and positive. Output voltage Vo follows Vi until Vo = VCC −
VCE1(sat), at which point Q1 saturates. The collector-base junction of Q1 is then forward
biased, and large currents flow from base to collector. In practice, the transistor base resis-
tance (and any source resistance present) limit the current in the forward-biased collector-base
junction and prevent the voltage at the internal transistor base from rising appreciably higher.
Further increases in Vi thus produce little change in Vo, and the characteristic flattens out,
as shown in Fig. 5.2. The value of Vi required to cause this behavior is slightly larger than
the supply voltage because Vbe1 is larger than the saturation voltage VCE(sat). Consequently,
the preceding stage often limits the maximum positive output voltage in a practical circuit
because a voltage larger than VCC usually cannot be generated at the base of the output stage.
(The portion of the curve for Vi large positive where Q1 is saturated actually has a positive
slope if the effect of the collector series resistance rc of Q1 is included. In any event, this
portion of the transfer characteristic must be avoided, because the saturation of Q1 results in
large nonlinearity and a major reduction of power gain.)

Now consider Vi made large and negative. The output voltage follows the input until Vo =
−VCC + VCE2(sat), at which point Q2 saturates. (The voltage drop across R2 is assumed small
and is neglected. It could be lumped in with the saturation voltage VCE2(sat) of Q2 if necessary.)
When Q2 saturates, another discontinuity in the transfer curve occurs, and the slope abruptly
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decreases. For acceptable distortion performance in the circuit, the voltage swing must be
limited to the region between these two break points. As mentioned above, the driver stage
supplying Vi usually cannot produce values of Vi that have a magnitude exceeding VCC (if it is
connected to the same supply voltages), and the driver itself then sets the upper limit.

Next consider the case where RL in Fig. 5.1 has a relatively small value. Then when Vo
is made large and negative, the first term in (5.4) can become large. In particular, this term
approaches minus infinity when Vo approaches the critical value

Vo = −IQRL (5.5)

In this situation, the current drawn from the load (−Vo∕RL) is equal to the current IQ, and
device Q1 cuts off, leaving Q2 to draw the current IQ from the load. Further decreases in Vi
produce no change in Vo, and the transfer characteristic is the one labeled RL2 in Fig. 5.2. The
transfer characteristic for positive Vi is similar for both cases.

For the case RL = RL2, the stage will produce severe waveform distortion if Vi is a sinu-
soid with amplitude exceeding IQRL2. Consider the two sinusoidal waveforms in Fig. 5.3a.
Waveform 1© has an amplitude V1 < IQRL2, and waveform 2© has an amplitude V2 > IQRL2.
If these signals are applied as inputs at Vi in Fig. 5.1 (together with a bias voltage), the output
waveforms that result are as shown in Fig. 5.3b for RL = RL2. For the smaller input signal, the
circuit acts as a near-linear amplifier and the output is near sinusoidal. The output waveform
distortion, which is apparent for the larger input, is termed clipping and must be avoided in
normal operation of the circuit as a linear output stage. For a given IQ and RL, the onset of clip-
ping limits the maximum signal that can be handled. Note that if IQRL is larger than VCC, the
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Figure 5.4 Load lines in the Ic1-Vce1 plane for emitter follower Q1 of Fig. 5.1.

situation shown for RL = RL1 in Fig. 5.2 holds, and the output voltage can swing almost to the
positive and negative supply voltages before excessive distortion occurs.

5.2.2 Power Output and Efficiency

Further insight into the operation of the circuit of Fig. 5.1 can be obtained from Fig. 5.4, where
three different load lines are drawn on the Ic-Vce characteristics of Q1. The equation for the
load lines can be written from Fig. 5.1 and is

Vce1 = VCC − (Ic1 − IQ)RL (5.6)

when both Q1 and Q2 are in the forward-active region. The values of Vce1 and Ic1 are related
by (5.6) for any value of Vi, and the line includes the quiescent point Q, where Ic1 = IQ and
Vce1 = VCC. Equation 5.6 is plotted in Fig. 5.4 for load resistances RL1,RL2, and RL3, and the
device operating point moves up and down these lines as Vi varies. As Vi increases and Vce1
decreases, Q1 eventually saturates, as was illustrated in Fig. 5.2. As Vi decreases and Vce1
increases, there are two possibilities as described above. If RL is large (RL1), Vo decreases
and Vce1 increases until Q2 saturates. Thus the maximum possible value that Vce1 can attain
is [2VCC − VCE2(sat)], and this value is marked on Fig. 5.4. However, if RL is small (RL2), the
maximum negative value of Vo as illustrated in Fig. 5.2 is −IQRL2, and the maximum possible
value of Vce1 is (VCC + IQRL2).

Thus far, no mention has been made of the maximum voltage limitations of the output
stage. As described in Chapter 1, avalanche breakdown of a bipolar transistor occurs for Vce =
BVCEO in the common-emitter configuration, which is the worst case for breakdown voltage.
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In a conservative design, the value of Vce in the circuit of Fig. 5.1 should always be less than
BVCEO by an appropriate safety margin. In the preceding analysis, the maximum value that
Vce1 can attain in this circuit for any load resistance was calculated as approximately 2VCC,
and thus BVCEO must be greater than this value.

Consider now the power relationships in the circuit. When sinusoidal signals are present,
the power dissipated in various elements varies with time. We are concerned both with the
instantaneous power dissipated and with the average power dissipated. Instantaneous power
is important when considering transistor dissipation with low-frequency or dc signals. The
junction temperature of the transistor will tend to rise and fall with the instantaneous power
dissipated in the device, limiting the maximum allowable instantaneous power dissipation for
safe operation of any device.

Average power levels are important because the power delivered to a load is usually speci-
fied as an average value. Also note that if an output stage handles only high-frequency signals,
the transistor junction temperature will not vary appreciably over a cycle, and the average
device power dissipation will then be the limiting quantity.

Consider the output signal power that can be delivered to load RL when a sinusoidal input
is applied at Vi. Assuming that Vo is approximately sinusoidal, the average output power
delivered to RL is

PL = 1
2

V̂oÎo (5.7)

where V̂o and Îo are the amplitudes (zero to peak) of the output sinusoidal voltage and current.
As described previously, the maximum output signal amplitude that can be attained before
clipping occurs depends on the value of RL. If PL|max is the maximum value of PL that can be
attained before clipping occurs with sinusoidal signals, then

PL|max = 1
2

V̂omÎom (5.7a)

where V̂om and Îom are the maximum values of V̂o and Îo that can be attained before clipping.
Consider the case of the large load resistance, RL1. Figures 5.2 and 5.4 show that clipping

occurs symmetrically in this case, and we have

V̂om = VCC − VCE(sat) (5.8)

assuming equal saturation voltages in Q1 and Q2. The corresponding sinusoidal output current
amplitude is Îom = V̂om∕RL1. The maximum average power that can be delivered to RL1 is
calculated by substituting these values in (5.7a). This value of power can be interpreted
geometrically as the area of the triangle A in Fig. 5.4 since the base of the triangle equals
V̂om and its height is Îom. As RL1 is increased, the maximum average output power that
can be delivered diminishes because the triangle becomes smaller. The maximum output
voltage amplitude remains essentially the same, but the current amplitude decreases as RL1
increases.

If RL = RL2 in Fig. 5.4, the maximum output voltage swing before clipping occurs is

V̂om = IQRL2 (5.9)

The corresponding current amplitude is Îom = IQ. Using (5.7a), the maximum average output
power PL|max that can be delivered is given by the area of triangle B, shown in Fig. 5.4. As RL2
is decreased, the maximum average power that can be delivered is diminished.
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An examination of Fig. 5.4 shows that the power-output capability of the stage is maximized
for RL = RL3, which can be calculated from (5.6) and Fig. 5.4 as

RL3 =
VCC − VCE(sat)

IQ
(5.10)

This load line gives the triangle of largest area (C) and thus the largest average output power.
In this case, V̂om = [VCC − VCE(sat)] and Îom = IQ. Using (5.7a), we have

PL|max = 1
2

V̂omÎom = 1
2
[VCC − VCE(sat)]IQ (5.11)

To calculate the efficiency of the circuit, the power drawn from the supply voltages must now
be calculated. The current drawn from the positive supply is the collector current of Q1, which
is assumed sinusoidal with an average value IQ. The current flowing in the negative supply is
constant and equal to IQ (neglecting bias current IR). Since the supply voltages are constant,
the average power drawn from the supplies is constant and independent of the presence of
sinusoidal signals in the circuit. The total power drawn from the two supplies is thus

Psupply = 2VCCIQ (5.12)

The power conversion efficiency (𝜂C) of the circuit at an arbitrary output power level is
defined as the ratio of the average power delivered to the load to the average power drawn
from the supplies:

𝜂C =
PL

Psupply
(5.13)

Since the power drawn from the supplies is constant in this circuit, the efficiency increases
as the output power increases. Also, since the previous analysis shows that the power-output
capability of the circuit depends on the value of RL, the efficiency also depends on RL. The
best efficiency occurs for RL = RL3 since this value gives maximum average power output. If
RL = RL3 and V̂o = V̂om, then substitution of (5.11) and (5.12) in (5.13) gives for the maximum
possible efficiency

𝜂max = 1
4

(
1 −

VCE(sat)

VCC

)
(5.14)

Thus if VCE(sat) ≪ VCC, the maximum efficiency of the stage is 1∕4 or 25 percent.
Another important aspect of circuit performance is the power dissipated in the active device.

The current and voltage waveforms in Q1 at maximum signal swing and with RL = RL3 are
shown in Fig. 5.5 (assuming VCE(sat) ≃ 0 for simplicity) together with their product, which is
the instantaneous power dissipation in the transistor. The curve of instantaneous power dis-
sipation in Q1 as a function of time varies at twice the signal frequency and has an average
value of one-half the quiescent value. This result can be shown analytically as follows. The
instantaneous power dissipation in Q1 is

Pc1 = Vce1Ic1 (5.15)

At maximum signal swing with a sinusoidal signal, Pc1 can be expressed as (from Fig. 5.5)

Pc1 = VCC(1 + sin 𝜔t)IQ(1 − sin 𝜔t) =
VCCIQ

2
(1 + cos 2𝜔t) (5.15a)
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Figure 5.5 Waveforms for the
transistor Q1 of Fig. 5.1 at full output
with RL = RL3. (a) Collector-emitter
voltage waveform. (b) Collector
current waveform. (c) Collector
power-dissipation waveform.

The average value of Pc1 from (5.15a) is VCCIQ∕2. Thus at maximum output, the average
power dissipated in Q1 is half its quiescent value, and the average device temperature when
delivering power with RL = RL3 is less than its quiescent value.

Further information on the power dissipated in Q1 can be obtained by plotting curves of
constant device dissipation in the Ic-Vce plane. Equation 5.15 indicates that such curves are
hyperbolas, which are plotted in Fig. 5.6 for constant transistor instantaneous power dissipation
values P1,P2, and P3 (where P1 < P2 < P3). The power hyperbola of value P2 passes through
the quiescent point Q, and the equation of this curve can be calculated from (5.15) as

Ic1 =
P2

Vce1
(5.16)

The slope of the curve is
dIc1

dVce1
= −

P2

V2
ce1

and substitution of (5.16) in this equation gives

dIc1

dVce1
= −

Ic1

Vce1
(5.17)

At the quiescent point Q, we have Ic1 = IQ and Vce1 = VCC. Thus the slope is

dIc1

dVce1

||||Q = −
IQ

VCC
(5.18)
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Figure 5.6 Hyperbolas of constant instantaneous transistor power dissipation P1, P2, and P3 in the
Ic1-Vce1 plane for emitter follower Q1 of Fig. 5.1. Load lines are included for RL = 0, RL = RL3, and
RL → ∞. Note that P1 < P2 < P3.

From (5.6), the slope of the load line with RL = RL3 is −(1∕RL3). Using (5.10) for RL3 gives

− 1
RL3

≃ −
IQ

VCC
(5.19)

Comparing (5.18) with (5.19) shows that the load line with RL = RL3 is tangent to the power
hyperbola passing through the quiescent point, since both curves have the same slope at that
point. This result is illustrated in Fig. 5.6. As the operating point leaves the quiescent point
and moves on the load line with RL = RL3, the load line then intersects constant-power hyper-
bolas representing lower power values; therefore, the instantaneous device power dissipation
decreases. This point of view is consistent with the power waveform shown in Fig. 5.5.

The load line for RL → ∞ (open-circuit load) is also shown in Fig. 5.6. In that case, the
transistor collector current does not vary over a period but is constant. For values of Vce1
greater than the quiescent value, the instantaneous device power dissipation increases. The
maximum possible value of Vce1 is (2VCC − VCE2(sat)). At this value, the instantaneous power
dissipation in Q1 is approximately 2VCCIQ if VCE2(sat) ≪ VCC. This dissipation is twice the
quiescent value of VCCIQ, and this possibility should be taken into account when considering
the power-handling requirements of Q1. At the other extreme of the swing where Vce1 ≃ 0, the
power dissipation in Q2 is also 2VCCIQ.

A situation that is potentially even more damaging can occur if the load is short circuited.
In that case, the load line is vertical through the quiescent point, as shown in Fig. 5.6. With large
input signals, the collector current (and thus the device power dissipation) of Q1 can become
quite large. The limit on collector current is set by the ability of the driver to supply the base
current to Q1 and also by the high-current fall-off in 𝛽F of Q1, described in Chapter 1. In prac-
tice, these limits may be sufficient to prevent burnout of Q1, but current-limiting circuitry may
be necessary. An example of such protection is given in Section 5.4.6.
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A useful general result can be derived from the calculations above involving load lines and
constant-power hyperbolas. Figure 5.6 shows that the maximum instantaneous device power
dissipation for RL = RL3 occurs at the quiescent point Q (since P1 < P2 < P3), which is the
midpoint of the load line if VCE2(sat) ≪ VCC. (The midpoint of the load line is assumed to be
midway between its intersections with the Ic and Vce axes.) It can be seen from (5.17) that
any load line tangent to a power hyperbola makes contact with the hyperbola at the midpoint
of the load line. Consequently, the midpoint is the point of maximum instantaneous device
power dissipation with any load line. For example, in Fig. 5.4 with RL = RL2, the maximum
instantaneous device power dissipation occurs at the midpoint of the load line where Vce1 =
1
2
(VCC + IQRL2).

An output stage of the type described in this section, where the output device always
conducts appreciable current, is called a Class A output stage. This type of operation can
be realized with different transistor configurations but always has a maximum efficiency of
25 percent.

Finally, the emitter follower in this analysis was assumed to have a current source IQ in its
emitter as a bias element. In practice, the current source is sometimes replaced by a resistor
connected to the negative supply, and such a configuration will give some deviations from the
above calculations. In particular, the output power available from the circuit will be reduced.

◼ EXAMPLE
An output stage such as shown in Fig. 5.1 has the following parameters: VCC = 10 V,R3 =
5 kΩ,R1 = R2 = 0,VCE(sat) = 0.2 V, and RL = 1 kΩ. Assume that the dc input voltage is
adjusted so that the dc output voltage is 0 volts.

(a) Calculate the maximum average output power that can be delivered to RL before clipping
occurs, and the corresponding efficiency. What is the maximum possible efficiency with
this stage, and what value of RL is required to achieve this efficiency? Assume the signals
are sinusoidal.

(b) Calculate the maximum possible instantaneous power dissipation in Q1. Also calculate the
average power dissipation in Q1 when V̂o = 1.5 V and the output voltage is sinusoidal.

The solution proceeds as follows.

(a) The bias current IQ is first calculated:

IQ = IR =
VCC − VBE3

R3
= 10 − 0.7

5
mA = 1.86 mA

The product, IQRL, is given by

IQRL = 1.86 × 1 = 1.86 V

Since the dc output voltage is assumed to be 0 volts, and since IQRL is less than VCC, the
maximum sinusoidal output voltage swing is limited to 1.86 V by clipping on negative
voltage swings, and the situation corresponds to RL = RL2 in Fig. 5.4. The maximum out-
put voltage and current swings are thus V̂om = 1.86 V and Îom = 1.86 mA. The maximum
average output power available from the circuit for sinusoidal signals can be calculated
from (5.7a) as

PL|max = 1
2

V̂omÎom = 1
2
× 1.86 × 1.86 mW = 1.73 mW
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The power drawn from the supplies is calculated from (5.12) as

Psupply = 2VCCIQ = 2 × 10 × 1.86 mW = 37.2 mW

The efficiency of the circuit at the output power level calculated above can be determined
from (5.13):

𝜂C =
PL|max

Psupply
= 1.73

37.2
= 0.047

The efficiency of 4.7 percent is quite low and is due to the limitation on the negative voltage
swing.

The maximum possible efficiency with this stage occurs for RL = RL3 in Fig. 5.4, and
RL3 is given by (5.10) as

RL3 =
VCC − VCE(sat)

IQ
= 10 − 0.2

1.86
kΩ = 5.27 kΩ

In this instance, the maximum average power that can be delivered to the load before
clipping occurs is found from (5.11) as

PL|max = 1
2
[VCC − VCE(sat)]IQ = 1

2
(10 − 0.2)1.86 mW = 9.11 mW

The corresponding efficiency using (5.14) is

𝜂max = 1
4

[
1 −

VCE(sat)

VCC

]
= 1

4

(
1 − 0.2

10

)
= 0.245

This result is close to the theoretical maximum of 25 percent.

(b) The maximum possible instantaneous power dissipation in Q1 occurs at the midpoint of
the load line. Reference to Fig. 5.4 and the load line RL = RL2 shows that this occurs for

Vce1 = 1
2
(VCC + IQRL) =

1
2
(10 + 1.86) = 5.93 V

The corresponding collector current in Q1 is Ic1 = 5.93∕RL = 5.93 mA since RL = 1 kΩ.
Thus the maximum instantaneous power dissipation in Q1 is

Pc1 = Ic1Vce1 = 35.2 mW

This power dissipation occurs for Vce1 = 5.93 V, which represents a signal swing beyond
the linear limits of the circuit [clipping occurs when the output voltage reaches −1.86 V as
calculated in (a)]. However, this condition could easily occur if the circuit was overdriven
by a large input signal.

The average power dissipation in Q1 can be calculated by noting that for sinusoidal
signals, the average power drawn from the two supplies is constant and independent of the
presence of signals. Since the power input to the circuit from the supplies is constant, the
total average power dissipated in Q1,Q2, and RL must be constant and independent of
the presence of sinusoidal signals. The average power dissipated in Q2 is constant because
IQ is constant, and thus the average power dissipated in Q1 and RL together is constant.
Thus as V̂o is increased, the average power dissipated in Q1 decreases by the same amount
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that the average power in RL increases. With no input signal, the quiescent power dissipated
in Q1 is

PCQ = VCCIQ = 10 × 1.86 mW = 18.6 mW

For V̂o = 1.5 V, the average power delivered to the load is

PL = 1
2

V̂2
o

RL
= 1

2
2.25

1
mW = 1.13 mW

Thus the average power dissipated in Q1 when V̂o = 1.5 V with a sinusoidal signal is

Pav = PCQ − PL = 17.5 mW
◼

5.2.3 Emitter-Follower Drive Requirements

The calculations above have been concerned with the performance of the emitter-follower
output stage when driven by a sinusoidal input voltage. The stage preceding the output stage
is called the driver stage, and in practice it may introduce additional limitations on the circuit
performance. For example, it was shown that to drive the output voltage Vo of the emitter
follower to its maximum positive value required an input voltage slightly greater than the
supply voltage. Since the driver stage is connected to the same supplies as the output stage in
most cases, the driver stage generally cannot produce voltages greater than the supply, further
reducing the possible output voltage swing.

The above limitations stem from the observation that the emitter follower has a voltage gain
of unity and thus the driver stage must handle the same voltage swing as the output. However,
the driver can be a much lower-power stage than the output stage because the current it must
deliver is the base current of the emitter follower, which is about 1∕𝛽F times the emitter current.
Consequently, the driver bias current can be much lower than the output-stage bias current, and
a smaller geometry can be used for the driver device. Although it has only unity voltage gain,
the emitter follower has substantial power gain, which is a requirement of any output stage.

5.2.4 Small-Signal Properties of the Emitter Follower

A simplified low-frequency, small-signal equivalent circuit of the emitter follower of Fig. 5.1
is shown in Fig. 5.7. As described in Chapter 7, the emitter follower is an extremely wideband
circuit and rarely is a source of frequency limitation in the small-signal gain of an amplifier.
Thus the equivalent circuit of Fig. 5.7 is useful over a wide frequency range, and an analy-
sis of this circuit shows that the voltage gain Av and output resistance Ro can be expressed
approximately for 𝛽0 ≫ 1 as

Av =
vo

vi
≃

RL

RL + 1
gm

+
RS

𝛽0

(5.20)

Ro = 1
gm

+
RS

𝛽0
(5.21)

These quantities are small-signal quantities, and since gm = qIC /kT is a function of the bias
point, both Av and Ro are functions of IC. Since the emitter follower is being considered here
for use as an output stage where the signal swing may be large, (5.20) and (5.21) must be
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Figure 5.7 Low-frequency, small-
signal equivalent circuit for the emitter
follower of Fig. 5.1.

applied with caution. However, for small to moderate signal swings, these equations may be
used to estimate the average gain and output resistance of the stage if quiescent bias values
are used for transistor parameters in the equations. Equation 5.20 can also be used as a means
of estimating the nonlinearity1 in the stage by recognizing that it gives the incremental slope
of the large-signal characteristic of Fig. 5.2 at any point. If this equation is evaluated at the
extremes of the signal swing, an estimate of the curvature of the characteristic is obtained, as
illustrated in the following example.

◼ EXAMPLE
Calculate the incremental slope of the transfer characteristic of the circuit of Fig. 5.1 at the
quiescent point and at the extremes of the signal swing with a peak sinusoidal output of 0.6 V.
Use data as in the previous example, and assume that RS = 0.

From (5.20), the small-signal gain with RS = 0 is

Av =
RL

RL + 1
gm

(5.22)

Since IQ = 1.86 mA, 1∕gm = 14 Ω at the quiescent point, and the quiescent gain is

AvQ = 1000
1000 + 14

= 0.9862

Since the output voltage swing is 0.6 V, the output current swing is

Îo =
V̂o

RL
= 0.6

1000
= 0.6 mA

Thus at the positive signal peak, the transistor collector current is

IQ + Îo = 1.86 + 0.6 = 2.46 mA

At this current, 1∕gm = 10.6 Ω, and use of (5.22) gives the small-signal gain as

A+
v = 1000

1010.6
= 0.9895

This gain is 0.3 percent more than the quiescent value. At the negative signal peak, the tran-
sistor collector current is

IQ − Îo = 1.86 − 0.6 = 1.26 mA
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At this current, 1∕gm = 20.6 Ω, and use of (5.22) gives the small-signal gain as

A−
v = 1000

1020.6
= 0.9798

This gain is 0.7 percent less than the quiescent value. Although the collector-current signal
amplitude is one-third of the bias current in this example, the small-signal gain variation is
extremely small. This circuit thus has a high degree of linearity. Since the nonlinearity is
small, the resulting distortion can be determined from the three values of the small-signal
gain calculated in this example. See Problem 5.8.◼

5.3 The Source Follower as an Output Stage
The small-signal properties of the source follower are calculated in Chapter 3. Since this circuit
has low output resistance, it is often used as an output stage. The large signal properties of the
source follower are considered next.

5.3.1 Transfer Characteristics of the Source Follower

A source-follower output stage is shown in Fig. 5.8a. The large-signal transfer characteristic
can be derived as follows:

Vi = Vo + Vgs1 = Vo + Vt1 + Vov1 (5.23)

If the threshold and overdrive terms are exactly constant, the output voltage follows the input
voltage with a constant difference. In practice, however, the body effect changes the threshold
voltage. Also, the overdrive is not constant, mainly because the drain current is not constant.
Substituting (1.140) with Vsb = Vo + VSS and (1.166) with Id1 = IQ + Vo∕RL into (5.23) gives

Vi = Vo + Vt0 + 𝛾

(√
2𝜙f + Vo + VSS −

√
2𝜙f

)
+

√√√√√√2

(
IQ +

Vo

RL

)
k′(W∕L)1

(5.24)

This equation is valid provided that M1 and M2 operate in the active region with output resis-
tances much larger than RL.

The transfer characteristic is plotted in Fig. 5.8b. It intersects the x axis at the input-referred
offset voltage labeled VGS1, which is

Vi|Vo=0 = Vt0 + 𝛾

(√
2𝜙f + VSS −

√
2𝜙f

)
+

√
2IQ

k′(W∕L)1
(5.25)

The slope at this point is the incremental gain calculated in (3.80). With ro → ∞, the slope is

vo

vi
=

gmRL

1 + (gm + gmb)RL
(5.26)

This equation shows that the slope depends on RL, as illustrated in Fig. 5.8b for RL = RL1 and
RL = RL2 with RL1 > RL2. When RL → ∞,

vo

vi
=

gm

gm + gmb
= 1

1 + 𝜒
(5.27)
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Figure 5.8 (a) Source-follower output stage with current-mirror bias. (b) Transfer characteristic for a
low (RL2) and a high (RL1) value of load resistance.

Since 𝜒 is typically in the range of 0.1 to 0.3, the slope typically ranges from about 0.7 to 0.9. In
contrast, the slope of the emitter-follower transfer characteristic is unity under these conditions.
Furthermore, (1.200) shows that 𝜒 depends on the source-body voltage, which is Vo + VSS
in Fig. 5.8a. Therefore, the slope calculated in (5.27) changes as Vo changes even when M1
operates in the active region, causing distortion. Figure 5.8b ignores this variation in the slope,
but it is considered in Section 5.3.2.

When the input voltage rises to VDD + Vt1, VGD1 = Vt1, and M1 enters the triode region,
causing the slope of the transfer characteristic to be dramatically reduced. The correspond-
ing output voltage is VDD − Vov1, where the overdrive Vov1 is calculated using the total drain
current, which exceeds IQ if RL is finite. For simplicity, however, VDD − Vov1 is labeled only
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for one case (RL = RL1) in Fig. 5.8b. Unlike in the emitter follower, the output can pull up
asymptotically to the supply voltage with unlimited input voltage. In practice, however, M1
never reaches the triode region if the input voltage is limited to VDD.

For negative input voltages, the minimum value of the output voltage depends on RL, as
in the emitter follower. If IQRL > VSS, the slope of the transfer characteristic is approximately
constant until M2 enters the triode region, which happens when

Vo = −VSS + Vov2 = −VSS +

√
2IQ

k′(W∕L)2
(5.28)

This case is labeled RL1 in Fig. 5.8b. On the other hand, if IQRL < VSS, the slope is almost
constant until M1 turns off. The corresponding minimum output voltage is

Vo = −IQRL (5.29)

This case is labeled RL2 in Fig. 5.8b. From a design standpoint, IQRL is usually set larger
than VSS, so the situation shown for RL = RL1 in Fig. 5.8b holds. Under this condition, the
output voltage can swing almost to the positive and negative supply voltages before excessive
distortion occurs.

5.3.2 Distortion in the Source Follower

The transfer function of the source-follower stage was calculated in (5.23), where Vi is
expressed as a function of Vo. The calculation of signal distortion from a nonlinear transfer
function will now be illustrated using the source-follower stage as an example.

Using a Taylor series, the input voltage can be written as

Vi = VI + vi =
∞∑

n=0

f (n)(Vo = VO)(Vo − VO)n

n!
(5.30)

where f (n) represents the nth derivative of f. Since vo = Vo − VO, (5.30) can be rewritten as

Vi = VI + vi =
∞∑

n=0

bn(vo)n (5.31)

where bn = f (n)(Vo = VO)∕(n!). For simplicity, assume that RL → ∞. From (1.140) and (5.23),

Vi = f (Vo) = Vo + Vt0 + 𝛾

(√
Vo + VSS + 2𝜙f −

√
2𝜙f

)
+ Vov1 (5.32)

Then
f ′(Vo) = 1 + 𝛾

2
(Vo + VSS + 2𝜙f )−1∕2 (5.33)

f ′′(Vo) = −𝛾

4
(Vo + VSS + 2𝜙f )−3∕2 (5.34)

f ′′′(Vo) =
3𝛾
8
(Vo + VSS + 2𝜙f )−5∕2 (5.35)

Therefore,

b0 = f (Vo = VO) = VO + Vt0 + 𝛾

(√
VO + VSS + 2𝜙f −

√
2𝜙f

)
+ Vov1 (5.36)

b1 = f ′(Vo = VO) = 1 + 𝛾

2
(VO + VSS + 2𝜙f )−1∕2 (5.37)
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b2 =
f ′′(Vo = VO)

2
= −𝛾

8
(VO + VSS + 2𝜙f )−3∕2 (5.38)

b3 =
f ′′′(Vo = VO)

3!
= 𝛾

16
(VO + VSS + 2𝜙f )−5∕2 (5.39)

Since the constant b0 is the dc input voltage VI , (5.31) can be rewritten as

vi =
∞∑

n=1

bn(vo)n = b1vo + b2v2
o + b3v3

o + … (5.40)

To find the distortion, we would like to rearrange this equation into the following form:

vo =
∞∑

n=1

an(vi)n = a1vi + a2v2
i + a3v3

i + … (5.41)

Substituting (5.41) into (5.40) gives

vi = b1(a1vi + a2v2
i + a3v3

i + …) + b2(a1vi + a2v2
i + a3v3

i + …)2

+ b3(a1vi + a2v2
i + a3v3

i + …)3 + …

= b1a1vi + (b1a2 + b2a2
1)v

2
i + (b1a3 + 2b2a1a2 + b3a3

1)v
3
i + … (5.42)

Matching coefficients in (5.42) shows that

1 = b1a1 (5.43)

0 = b1a2 + b2a2
1 (5.44)

0 = b1a3 + 2b2a1a2 + b3a3
1 (5.45)

From (5.43),

a1 = 1
b1

(5.46)

Substituting (5.46) into (5.44) and rearranging gives

a2 = −
b2

b3
1

(5.47)

Substituting (5.46) and (5.47) into (5.45) and rearranging gives

a3 =
2b2

2

b5
1

−
b3

b4
1

(5.48)

For the source follower, substituting (5.37) into (5.46) gives

a1 = 1

1 + 𝛾

2
(VO + VSS + 2𝜙f )−1∕2

(5.49)
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Substituting (5.37) and (5.38) into (5.47) and rearranging gives

a2 =

𝛾

8
(VO + VSS + 2𝜙f )−3∕2(

1 + 𝛾

2
(VO + VSS + 2𝜙f )−1∕2

)3
(5.50)

Substituting (5.37), (5.38), and (5.39) into (5.48) and rearranging gives

a3 = −

𝛾

16
(VO + VSS + 2𝜙f )−5∕2(

1 + 𝛾

2
(VO + VSS + 2𝜙f )−1∕2

)5
(5.51)

Equations 5.41, 5.49, 5.50, and 5.51 can be used to calculate the distortion of
the source-follower stage. For small values of vi such that a2vi

2 ≪ a1vi, the first term on the
right-hand side of (5.41) dominates, and the circuit is essentially linear. However, as vi
becomes comparable to a1∕a2, other terms become significant, and distortion products are
generated, as is illustrated next. A common method of describing the nonlinearity of an
amplifier is the specification of harmonic distortion, which is defined for a single sinusoidal
input applied to the amplifier. Thus let

vi = v̂i sin𝜔t (5.52)

Substituting (5.52) into (5.41) gives

vo = a1v̂i sin𝜔t + a2v̂2
i sin2𝜔t + a3v̂3

i sin3𝜔t + …

= a1v̂i sin𝜔t +
a2v̂2

i

2
(1 − cos 2𝜔t) +

a3v̂3
i

4
(3 sin𝜔t − sin 3𝜔t) + … (5.53)

Equation 5.53 shows that the output voltage contains frequency components at the fun-
damental frequency, 𝜔 (the input frequency), and also at harmonic frequencies 2𝜔, 3𝜔, and
so on. The latter terms represent distortion products that are not present in the input signal.
Second-harmonic distortion HD2 is defined as the ratio of the amplitude of the output-signal
component at frequency 2𝜔 to the amplitude of the first harmonic (or fundamental) at fre-
quency 𝜔. For small distortion, the term (3∕4)a3v̂3

i sin 𝜔t in (5.53) is small compared to
a1v̂i sin 𝜔t, and the amplitude of the fundamental is approximately a1v̂i. Again for small dis-
tortion, higher-order terms in (5.53) may be neglected, and

HD2 =
a2v̂2

i

2
1

a1v̂i
= 1

2

a2

a1
v̂i (5.54)

Under these assumptions, HD2 varies linearly with the peak signal level v̂i. The value of HD2
can be expressed in terms of known parameters by substituting (5.49) and (5.50) in (5.54) to
give

HD2 = 𝛾

16

(VO + VSS + 2𝜙f )−3∕2(v̂i)(
1 + 𝛾

2
(VO + VSS + 2𝜙f )−1∕2

)2
(5.55)

If 𝛾 ≪ 2
√

VO + VSS + 2𝜙f , then

HD2 ≃ 𝛾

16
(VO + VSS + 2𝜙f )−3∕2v̂i (5.56)
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This equation shows that the second-harmonic distortion can be reduced by increasing the
dc output voltage VO. This result is reasonable because this distortion stems from the body
effect. Therefore, increasing VO decreases the variation of the source-body voltage compared
to its dc value caused by an input with fixed peak amplitude.2 Equation 5.56 also shows that
the second-harmonic distortion is approximately proportional to 𝛾 , neglecting the effect of
𝛾 on VO.

Similarly, third-harmonic distortion HD3 is defined as the ratio of the output signal com-
ponent at frequency 3𝜔 to the first harmonic. From (5.53), and assuming small distortion,

HD3 =
a3v̂3

i

4
1

a1v̂i
= 1

4

a3

a1
v̂2

i (5.57)

Under these assumptions, HD3 varies as the square of the signal amplitude. The value of HD3
can be expressed in terms of known parameters by substituting (5.49) and (5.51) in (5.57) to
give

HD3 = − 𝛾

64

(VO + VSS + 2𝜙f )−5∕2(v̂2
i )(

1 + 𝛾

2
(VO + VSS + 2𝜙f )−1∕2

)4
(5.58)

Since the distortion calculated above stems from the body effect, it can be eliminated by
placing the source follower in an isolated well and connecting the source to the well. However,
this approach specifies the type of source-follower transistor because it must be opposite the
type of the doping in the well. Also, this approach adds the well-substrate parasitic capacitance
to the output load of the source follower, reducing its bandwidth.

◼ EXAMPLE
Calculate second- and third-harmonic distortion in the circuit of Fig. 5.8a for a peak sinusoidal
input voltage v̂i = 0.5 V. Assume that VI = 0, VDD = 2.5 V, −VSS = −2.5 V, IQ = 1 mA, and
RL → ∞. Also assume that (W∕L)1 = 1000, k′ = 200 μA/V2, Vt0 = 0.7 V, 𝜙f = 0.3 V, and
𝛾 = 0.5 V1∕2.

First, the dc output voltage VO is

VO = VI − Vt0 − 𝛾

(√
VO + VSS + 2𝜙f −

√
2𝜙f

)
− Vov1 (5.59)

Rearranging (5.59) gives

(VO + VSS + 2𝜙f ) + 𝛾

√
VO + VSS + 2𝜙f

− VI + Vov1 + Vt0 − 𝛾

√
2𝜙f − VSS − 2𝜙f = 0 (5.60)

This quadratic equation can be solved for
√

VO + VSS + 2𝜙f . Since the result must be positive,

√
VO + VSS + 2𝜙f

= −𝛾

2
+
√(

𝛾

2

)2
+ VI − Vov1 − Vt0 + 𝛾

√
2𝜙f + VSS + 2𝜙f (5.61)
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Squaring both sides and rearranging gives

VO = − VSS − 2𝜙f

+

(
−𝛾

2
+
√(

𝛾

2

)2
+ VI − Vov1 − Vt0 + 𝛾

√
2𝜙f + VSS + 2𝜙f

)2

(5.62)

In this example,

Vov1 =

√
2IQ

k′(W∕L)1
=

√
2(1000)

200(1000)
V = 0.1 V (5.63)

Since VSS + 2𝜙f = 3.1 V and VI − Vov1 − Vt0 = −0.8 V,

VO = −3.1 V +
(
−0.25 +

√
(0.25)2 − 0.8 + 0.5

√
0.6 + 3.1

)2

V

= −1.117 V

Therefore,
VO + VSS + 2𝜙f = (−1.117 + 2.5 + 0.6) V = 1.983 V

From (5.55),

HD2 = 0.5
16

(1.983)−3∕2(0.5)(
1 + 0.5

2
(1.983)−1∕2

)2
= 0.0040 (5.64)

From (5.58),

HD3 = −0.5
64

(1.983)−5∕2(0.5)2(
1 + 0.5

2
(1.983)−1∕2

)4
= −1.8 × 10−4 (5.65)

Thus the second-harmonic distortion is 0.40 percent and the third-harmonic distortion is 0.018
percent. In practice, the second-harmonic distortion is usually dominant.3◼

5.3.3 Transfer Characteristics of the Super Source Follower

Figure 5.9a shows the super source follower output stage from Fig. 3.43a with current-mirror
biasing and a resistive load. Figure 5.9b plots the transfer characteristics with two values of
the load resistance RL, where RL1 > RL2. As in the source follower of Fig. 5.8, Vo = 0 when
Vi = VGS1, where VGS1 is defined in (5.25) provided that I2 in Fig. 5.9a equals IQ in Fig. 5.8a.
For similar values of RL in Figs. 5.8 and 5.9, the slopes of the transfer characteristics in Fig. 5.9b
are less dependent on RL than in Fig. 5.8b. This property stems from the fact that the output
resistance of the super source follower is much less than the output resistance of the source
follower, as shown in (3.137) and (3.84). In the source follower of Fig. 5.8a, the voltage from
the drain of M1 to ground is VDD. In contrast, the voltage from the drain of M1 to ground is
VDD − |Vt2| − |Vov2| in the super source follower of Fig. 5.9a because M2 level shifts this drain
voltage down by VSG2 = |Vt2| + |Vov2|. As a result, M1 enters the triode region in this super
source follower for smaller Vi than in a source follower, as shown in Fig. 5.9b. Also, operating
M1 in the triode region increases the output resistance of the super source follower, causing
the curves for RL1 and RL2 to separate.
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Figure 5.9 (a) Super source follower with n-channel M1 and p-channel M2 using two current mirrors
for biasing. (b) Transfer characteristic for a low (RL2) and a high (RL1) value of load resistance.

For negative input voltages, the minimum value of the output voltage depends on RL, as
in the source follower. If I1RL > VSS, the slope of the transfer characteristic is approximately
constant until M4 enters the triode region. This case is labeled RL1 in Fig. 5.9b. On the other
hand, if I1RL < VSS, the slope is almost constant until M1 turns off, limiting the minimum
output voltage to −I1RL. This case is labeled RL2 in Fig. 5.9b. From a design standpoint, I1RL
is usually set larger than VSS so that the plot shown for RL = RL1 in Fig. 5.9b holds.

Figure 5.10a shows the super-source-follower output stage from Fig. 3.43b with
current-mirror biasing and a resistive load. Figure 5.10b plots the transfer characteristics
with two values of the load resistance RL, where RL1 > RL2. The biggest change here
compared to Fig. 5.9b is that Vo < 0 for all values of Vi in Fig. 5.10b. The main reason
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Figure 5.10 (a) Super source follower with n-channel M1 and M2 using a current mirror for biasing.
(b) Transfer characteristic for a low (RL2) and a high (RL1) value of load resistance. (c) Transfer charac-
teristic for a low (RL2) and a high (RL1) value of load resistance with VSS = 0.
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for this change is that the voltage from the drain of M1 to ground is −VSS + Vt2 + Vov2
in Fig. 5.10a instead of VDD − |Vt2| − |Vov2| in Fig. 5.9a. Hence, M1 enters the tri-
ode region when Vi = −VSS + Vt1 + Vt2 + Vov2, and the corresponding output voltage is
Vo = Vi − Vt1 − Vov1 = −VSS + Vt2 + Vov2 − Vov1. In Fig. 5.10b, VSS > Vt2 + Vov2 − Vov1 is
assumed, causing Vo to be negative when M1 enters the triode region.

Operating M1 in the triode region increases the output resistance of the super source fol-
lower, causing the curves for RL1 and RL2 to separate. Note that the maximum value of Vo when
RL = RL2 is greater than when RL = RL1 in Fig. 5.10b, unlike in Fig. 5.9b. This result stems
from the fact that RL is connected to ground, which is a higher voltage than the maximum Vo
in Fig. 5.10b. Therefore, the load pulls Vo up toward ground in Fig. 5.10b. Since RL1 > RL2,
RL2 pulls Vo up to a higher maximum voltage than in the RL1 case. In contrast, in Fig. 5.9b, the
maximum Vo is positive. Therefore, the effect of the load is to pull Vo down toward ground,
and a smaller RL has a greater effect than a larger RL.

The super source follower of Fig. 5.10a is commonly used with VSS = 0, and Fig. 5.10c
shows the output characteristics in this case. The curves are shifted upward by VSS, and the
resulting Vo is never negative. When Vi > Vt1 + Vov1 + Vov2, then Vo > Vov2, and M2 operates
in the saturation or active region. Increasing Vi increases Vo, and the slope is approximately
constant, ignoring the body effect, until M2 cuts off or M1 enters the triode region. If I2RL >

Vov2 + Vt2 − Vov1, the linear range is limited by M1 operating in the triode region. On the other
hand, the maximum Vo is I2RL when this inequality is not satisfied because I2 flows through
M1 and RL in this case.

Note that the value of VDD does not appear in Fig. 5.10b or 5.10c because VDD is assumed
to be high enough that current mirror M3 and M5 operates properly. Since the voltage from the
drain of M1 to ground is −VSS + Vt2 + Vov2, VDD must be higher than this voltage by at least|Vov3| to operate M3 in the saturation or active region. Therefore, VDD ≥ −VSS + Vt2 + Vov2 +|Vov3|. Also, VDD must be high enough for the branch with I2 and M5 to operate properly. If I2
is an ideal current source, as drawn in Fig. 5.10a, it sets the current in M5 to I2 for any voltage
across the current source I2. In practice, however, I2 is not ideal and is often implemented as
a single n-channel transistor. Suppose this transistor is called M7. Then VDD ≥ −VSS + Vov7 +|Vt5| + |Vov5| is also required.

◼ EXAMPLE
Assume VSS = 0, and find the minimum values of VDD for the super source followers of
Figs. 5.9a and 5.10a to be able to produce a peak-to-peak output swing of 0.3 V. For simplicity,
ignore the body effect and assume RL → ∞. Also assume that |Vt| = 0.4 V and |Vov| = 0.1 V
for all transistors, and assume that the input sides of all current mirrors do not limit the required
VDD.

With VSS = 0 in Fig. 5.9a, the linear output range is VDD − Vov1 − |Vt2| − |Vov2| − Vov4.
To satisfy the swing requirement of 0.3 V, VDD ≥ Vov1 + |Vt2| + |Vov2| + Vov4 + 0.3 V. There-
fore, VDD ≥ (0.1 + 0.4 + 0.1 + 0.1 + 0.3) V or VDD ≥ 1.0 V. With VDD = 1.0 V, Fig. 5.9b
shows that the linear input range is

Vov4 + Vt1 + Vov1 ≤ Vi ≤ VDD + Vt1 − |Vt2| − |Vov2|
(0.1 + 0.4 + 0.1) V ≤ Vi ≤ (1.0 + 0.4 − 0.4 − 0.1) V

0.6 V ≤ Vi ≤ 0.9 V

A circuit driving this super source follower from VDD = 1.0 V and VSS = 0 can produce Vi
throughout this range.
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With VSS = 0 in Fig. 5.10a, VDD ≥ Vt2 + Vov2 + |Vov3| is required. Therefore, VDD ≥ (0.4 +
0.1 + 0.1) V or VDD ≥ 0.6 V, which is 0.4 V less than for the circuit of Fig. 5.9a. Reducing
the minimum required VDD is an advantage because modern process technologies often limit
the power supply to about 1 V. However, Fig. 5.10c shows that the input range here is

Vt1 + Vov1 + Vov2 ≤ Vi ≤ Vt1 + Vt2 + Vov2

(0.4 + 0.1 + 0.1) V ≤ Vi ≤ (0.4 + 0.4 + 0.1) V

0.6 V ≤ Vi ≤ 0.9 V

Unfortunately, producing Vi > 0.6 V with a circuit using VDD = 0.6 V and VSS = 0 would be
a problem. In practice, this problem could be overcome by increasing VDD to 1.0 V, but this
change eliminates the potential advantage of reducing the minimum VDD in the first place.
Furthermore, increasing VDD increases the linear range of the circuit of Fig. 5.9a but not of the
circuit of Fig. 5.10a. Problem 5.28 shows one way to increase the linear range of the circuit of
Fig. 5.10a with a corresponding increase in VDD.◼

5.4 Class B Push–Pull Output Stage4,5

The major disadvantage of Class A output stages is that large power dissipation occurs even
for no ac input. In many applications of power amplifiers, the circuit may spend long periods
of time in a standby condition with no input signal, or with intermittent inputs as in the case
of voice signals. Power dissipated in these standby periods is wasted, which is important for
two reasons. First, in battery-operated equipment, supply power must be conserved to extend
the battery life. Second, any power wasted in the circuit is dissipated in the active devices,
increasing their operating temperatures and thus the chance of failure. Furthermore, the power
dissipated in the devices affects the physical size of device required, and larger devices are
more expensive in terms of silicon area.

A Class B output stage alleviates this problem by having essentially zero power dissipation
with zero input signal. Two active devices are used to deliver the power instead of one, and each
device conducts for alternate half cycles. This behavior is the origin of the name push–pull.
Another advantage of Class B output stages is that the efficiency is much higher than for a
Class A output stage (ideally 78.6 percent at full output power).

A typical integrated-circuit realization of the Class B output stage is shown in Fig. 5.11a in
bipolar technology. This circuit uses both pnp and npn devices and is known as a complemen-
tary output stage. The pnp transistor is usually a substrate pnp. Note that the load resistance
RL is connected to the emitters of the active devices; therefore, the devices act as emitter
followers.

5.4.1 Transfer Characteristic of the Class B Stage

The transfer characteristic of the circuit of Fig. 5.11a is shown in Fig. 5.11b. For Vi equal
to zero, Vo is also zero, and both devices are off with Vbe = 0. As Vi is made positive, the
base-emitter voltage of Q1 increases until it reaches the value VBE(on), when appreciable current
will start to flow in Q1. At this point, Vo is still approximately zero, but further increases in
Vi will cause similar increases in Vo because Q1 acts as an emitter follower. When Vi > 0,
Q2 is off with a reverse bias of VBE(on) across its base-emitter junction. As Vi is made even
more positive, Q1 eventually saturates (for Vi = VCC + Vbe1 − VCE1(sat)), and the characteristic
flattens out as for the conventional emitter follower considered earlier.
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Figure 5.11 (a) Simple
integrated-circuit Class B
output stage. (b) Transfer
characteristic of the Class
B output stage.

As Vi is taken negative from Vi = 0, a similar characteristic is obtained, except that Q2 now
acts as an emitter follower for Vi more negative than −VBE(on). In this region, Q1 is held in the
off condition with a reverse bias of VBE(on) across its base-emitter junction.

The characteristic of Fig. 5.11b shows a notch (or deadband) of 2VBE(on) in Vi centered
around Vi = 0. This deadband is common in Class B output stages and gives rise to crossover
distortion, which is illustrated in Fig. 5.12, where the output waveforms from the circuit are
shown for various amplitude input sinusoidal signals. In this circuit, the distortion is high for
small input signals with amplitudes somewhat larger than VBE(on). The effect of this source
of distortion diminishes as the input signal becomes larger and the deadband represents a
smaller fraction of the signal amplitude. Eventually, for very large signals, saturation of Q1
and Q2 occurs, and distortion rises sharply again due to clipping. This behavior is character-
istic of Class B output stages and is why distortion figures are often quoted for both low- and
high-output power operation.

The crossover distortion described above can be reduced by using Class AB operation of
the circuit. In this scheme, the active devices are biased so that each conducts a small quiescent
current for Vi = 0. Such biasing can be achieved as shown in Fig. 5.13, where the current source
IQ forces bias current in diodes Q3 and Q4. Since the diodes are connected in parallel with the
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Figure 5.13 Class AB output stage. The diodes reduce
crossover distortion.

base-emitter junctions of Q1 and Q2, the output transistors are biased on with a current that
is dependent on the area ratios of Q1,Q2,Q3, and Q4. A typical transfer characteristic for this
circuit is shown in Fig. 5.14, and the deadband has been effectively eliminated. The remaining
nonlinearities due to crossover in conduction from Q1 to Q2 can be reduced by using negative
feedback, as described in Chapter 8.

The operation of the circuit of Fig. 5.13 is quite similar to that of Fig. 5.11. As Vi is taken
negative from its quiescent value, emitter follower Q2 forces Vo to follow. The load current
flows through Q2, whose base-emitter voltage will increase slightly. Since the diodes maintain
a constant total bias voltage across the base-emitter junctions of Q1 and Q2, the base-emitter
voltage of Q1 will decrease by the same amount that Q2 increased. Thus during the negative
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(–VBE2)

Slope ≃ 1

Figure 5.14 Transfer characteristic of
the circuit of Fig. 5.13.

output voltage excursion, Q1 stays on but conducts little current and plays no part in deliv-
ering output power. For Vi taken positive, the opposite occurs, and Q1 acts as the emitter
follower delivering current to RL with Q2 conducting only a very small current. In this case,
the current source IQ supplies the base-current drive to Q1.

In the derivation of the characteristics of Figs. 5.11b and 5.14, we assumed that the magni-
tude of the input voltage Vi was unlimited. In the characteristic of Fig. 5.11b, the magnitude
of Vi required to cause saturation of Q1 or Q2 exceeds the supply voltage VCC. However, as
in the case of the single emitter follower described earlier, practical driver stages generally
cannot produce values of Vi exceeding VCC if they are connected to the same supply voltages
as the output stage. For example, the current source IQ of Fig. 5.13 is usually realized with a
pnp transistor, and thus the voltage at the base of Q1 cannot exceed (VCC − VCE(sat)), at which
point saturation of the current-source transistor occurs. Consequently, the positive and nega-
tive limits of Vo where clipping occurs are generally somewhat less than shown in Figs. 5.11b
and 5.14, and the limitation usually occurs in the driver stage. This point will be investigated
further when practical output stages are considered in later sections.

5.4.2 Power Output and Efficiency of the Class B Stage

The method of operation of a Class B stage can be further appreciated by plotting the collector
current waveforms in the two devices, as in Fig. 5.15, where crossover distortion is ignored.
Note that each transistor conducts current to RL for half a cycle.

The collector current waveforms of Fig. 5.15 also represent the waveforms of the current
drawn from the two supplies. If the waveforms are assumed to be half-sinusoids, then the
average current drawn from the +VCC supply is

Isupply = 1
T ∫

T

0
Ic1(t)dt = 1

T ∫
T∕2

0

V̂o

RL
sin

(2𝜋t
T

)
dt = 1

𝜋

V̂o

RL
= 1

𝜋
Îo (5.66)

where T is the period of the input signal. Also, V̂o and Îo are the zero-to-peak amplitudes of the
output sinusoidal voltage and current. Since each supply delivers the same current magnitude,
the total average power drawn from the two supplies is

Psupply = 2VCCIsupply = 2
𝜋

VCC

RL
V̂o (5.67)

where (5.66) has been substituted. Unlike in the Class A case, the average power drawn from
the supplies does vary with signal level for a Class B stage and is directly proportional to V̂o.
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Figure 5.15 Voltage and current waveforms
for a Class B output stage. (a) Input voltage.
(b) Output voltage. (c) Q1 collector current.
(d ) Q2 collector current.

The average power delivered to RL is given by

PL = 1
2

V̂2
o

RL
(5.68)

From the definition of circuit efficiency in (5.13),

𝜂C =
PL

Psupply
= 𝜋

4

V̂o

VCC
(5.69)

where (5.67) and (5.68) have been substituted. Equation 5.69 shows that 𝜂 for a Class B stage
is independent of RL but increases linearly as the output voltage amplitude V̂o increases.

The maximum value that V̂o can attain before clipping occurs with the characteristic of
Fig. 5.14 is V̂om = (VCC − VCE(sat)), and thus the maximum average signal power that can be
delivered to RL for sinusoidal signals can be calculated from (5.68) as

PL|max = 1
2

[VCC − VCE(sat)]2

RL
(5.70)
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Figure 5.16 Load line for one device in a Class B stage.

From (5.69), the corresponding maximum efficiency is

𝜂max = 𝜋

4

(
VCC − VCE(sat)

VCC

)
(5.71)

If VCE(sat) is small compared with VCC, the circuit has a maximum efficiency of 0.786 or 78.6
percent. This maximum efficiency is much higher than the value of 25 percent achieved in
Class A circuits. In addition, the standby power dissipation is essentially zero in the Class B
circuit. These advantages explain the widespread use of Class B and Class AB output stages.

The load line for one device in a Class B stage is shown in Fig. 5.16. For values of Vce less
than the quiescent value (which is VCC), the load line has a slope of (−1∕RL). For values of Vce
greater than VCC, the load line lies along the Vce axis because the device under consideration
turns off and the other device conducts. As a result, the Vce of the device under consideration
increases while its collector current is zero. The maximum value of Vce is (2VCC − VCE(sat)). As
in the case of a Class A stage, a geometrical interpretation of the average power PL delivered to
RL can be obtained by noting that PL = 1

2
ÎoV̂o, where Îo and V̂o are the peak sinusoidal current

and voltage delivered to RL. Thus PL is the area of the triangle in Fig. 5.16 between the Vce
axis and the portion of the load line traversed by the operating point.

Consider the instantaneous power dissipated in one device:

Pc = VceIc (5.72)

But
Vce = VCC − IcRL (5.73)

Substitution of (5.73) in (5.72) gives

Pc = Ic(VCC − IcRL) = IcVCC − I2
c RL (5.74)

Differentiation of (5.74) shows that Pc reaches a peak for

Ic =
VCC

2RL
(5.75)
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Figure 5.17 Waveforms at maximum
output for one device in a Class B
stage. (a) Collector current waveform.
(b) Collector voltage waveform.
(c) Collector power dissipation waveform.

This peak lies on the load line midway between the Ic and Vce axis intercepts and agrees with
the result derived earlier for the Class A stage. As in that case, the load line of Fig. 5.16 is tan-
gent to a power hyperbola at the point of peak dissipation. Thus, in a Class B stage, maximum
instantaneous device dissipation occurs for an output voltage equal to about half the maxi-
mum swing. Since the quiescent device power dissipation is zero, the operating temperature
of a Class B device always increases when nonzero signal is applied.

The instantaneous device power dissipation as a function of time is shown in Fig. 5.17,
where collector current, collector-emitter voltage, and their product are displayed for one
device in a Class B stage at maximum output. (Crossover distortion is ignored, and VCE(sat) = 0
is assumed.) When the device conducts, the power dissipation varies at twice the signal fre-
quency. The device power dissipation is zero for the half cycle when the device is cut off. For
an open-circuited load, the load line of Fig. 5.16 lies along the Vce axis and the device has zero
dissipation. As in the case of Class A stage, the load line of Fig. 5.16 becomes vertical through
the quiescent point for a short-circuited load, and the instantaneous device power dissipation
can then become excessive. Methods of protection against such a possibility are described in
Section 5.4.6.

◼ EXAMPLE

A Class B stage of the type shown in Fig. 5.11a drives a load RL = 500 Ω. If the positive
and negative supplies have magnitudes of 15 V, calculate the maximum average power that is
delivered to RL for V̂o = 14.4 V, the corresponding efficiency, and the maximum instantaneous
device dissipation. Assume that Vo is sinusoidal.

From (5.66), the average supply current is

Isupply = 1
𝜋

V̂o

RL
= 1

𝜋

14.4
500

= 9.17 mA



5.4 Class B Push–Pull Output Stage 385

Use of (5.67) gives the average power drawn from the supplies as

Psupply = Isupply × 2VCC = 9.17 × 30 mW = 275 mW

From (5.68), the average power delivered to RL is

PL = 1
2

V̂2
o

RL
= 1

2
14.42

500
= 207 mW

From (5.13), the corresponding efficiency is

𝜂C =
PL

Psupply
= 207

275
= 75.3 percent

This result is close to the theoretical maximum of 78.6 percent. From (5.75), the maximum
instantaneous device power dissipation occurs when

Ic =
VCC

2RL
= 15 V

1000 Ω
= 15 mA

The corresponding value of Vce is VCC∕2 = 7.5 V, and thus the maximum instantaneous device
dissipation is

Pc = IcVce = 15 × 7.5 mW = 112.5 mW

By conservation of power, the average power dissipated per device is

Pav = 1
2
(Psupply − PL) =

1
2
(275 − 207) mW = 34 mW

◼

5.4.3 Practical Realizations of Class B Complementary Output Stages6

The practical aspects of Class B output-stage design will now be illustrated by considering two
examples. One of the simplest realizations is the output stage of the 709 operational amplifier
(op amp), and a simplified schematic of this is shown in Fig. 5.18. Transistor Q3 acts as a
common-emitter driver stage for output devices Q1 and Q2.

The transfer characteristic of this stage can be calculated as follows. In the quiescent condi-
tion, Vo = 0 and V1 = 0. Since Q1 and Q2 are then off, there is no base current in these devices.
Therefore, for VCC = 10 V, the bias current in Q3 is

IC3 =
VCC − V1

R1
=

VCC

R1
= 10 V

20 kΩ
= 0.50 mA

The limiting values that Vo can take are determined by the driver stage. When Vi is taken
large positive, V1 decreases until Q3 saturates, at which point the negative voltage limit V−

o is
reached:

V−
o = −VCC + VCE3(sat) − Vbe2 (5.76)

For values of V1 between (−VCC + VCE3(sat)) and (−VBE(on)), both Q3 and Q2 are in the
forward-active region, and Vo follows V1 with Q2 acting as an emitter follower.
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Figure 5.18 Simplified schematic of the
output stage of the 709 op amp.

As Vi is taken negative, the current in Q3 decreases and V1 rises, turning Q1 on. The positive
voltage limit V+

o is reached when Q3 cuts off, and the base of Q1 is simply fed from the positive
supply via R1. Then

VCC = Ib1R1 + Vbe1 + V+
o (5.77)

If 𝛽F1 is large, then
V+

o = Ic1RL = 𝛽F1Ib1RL

where 𝛽F1 is the current gain of Q1. Thus

Ib1 =
V+

o

𝛽F1RL
(5.78)

Substituting (5.78) in (5.77) and rearranging gives

V+
o =

VCC − Vbe1

1 +
R1

𝛽F1RL

(5.79)

For RL = 10 kΩ and 𝛽F1 = 100, (5.79) gives

V+
o = 0.98(VCC − Vbe1)

In this case, the limit on Vo is similar for positive and negative swings. However, if RL = 1 kΩ
and 𝛽F1 = 100, (5.79) gives

V+
o = 0.83(VCC − Vbe1)

For this lower value of RL, the maximum positive value of Vo is reduced, and clipping on a
sine wave occurs first for Vo going positive.

Computer-generated transfer curves using SPICE for this circuit with VCC = 10 V are
shown in Fig. 5.19 for RL = 1 kΩ and RL = 10 kΩ. (𝛽F = 100 is assumed for all devices.) The
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Figure 5.19 SPICE-generated
transfer characteristic for
the circuit of Fig. 5.18 with
VCC = 10 V and RL = 1 kΩ
and 10 kΩ.

reduced positive voltage capability for RL = 1 kΩ is apparent, as is the deadband present in
the transfer characteristic. The curvature in the characteristic is due to the exponential nonlin-
earity of the driver Q3. In practice, the transfer characteristic may be even more nonlinear than
shown in Fig. 5.19 because 𝛽F for the npn transistor Q1 is generally larger than 𝛽F for the pnp
transistor Q2, causing the positive and negative sections of the characteristic to differ signif-
icantly. This behavior can be seen by calculating the small-signal gain ΔVo∕ΔVi for positive
and negative Vo. In the actual 709 integrated circuit, negative feedback is applied around this
output stage to reduce these nonlinearities in the transfer characteristic.

A second example of a practical Class B output stage is shown Fig. 5.20, where
SPICE-calculated bias currents are included. This circuit is a simplified schematic of the 741
op amp output circuitry. The output devices Q14 and Q20 are biased to a collector current
of about 0.17 mA by the diodes Q18 and Q19. The value of the bias current in Q14 and Q20
depends on the effective area ratio between diodes Q18 and Q19 and the output devices. (Q18
and Q19 are implemented with transistors in practice.) The output stage is driven by lateral
pnp emitter follower Q23, which is driven by common-emitter stage Q17 biased to 0.68 mA
by current source Q13B.

The diodes of Fig. 5.20 essentially eliminate crossover distortion in the circuit, which can
be seen in the SPICE-generated transfer characteristic of Fig. 5.21. The linearity of this stage is
further improved by the fact that the output devices are driven from a low resistance provided
by emitter follower Q23. Consequently, differences in 𝛽F between Q14 and Q20 produce little
effect on the transfer characteristic because small-signal gain ΔVo∕ΔV1 ≃ 1 for any practical
value of 𝛽F with either Q14 or Q20 conducting.

The limits on the output voltage swing shown in Fig. 5.21 can be determined as follows.
As Vi is taken positive, the voltage V1 at the base of Q23 goes negative, and voltages V2 and
Vo follow with Q20 drawing current from RL. When Q17 saturates, the output voltage limit for
negative excursions is reached at

V−
o = −VCC + VCE17(sat) − Vbe23 − Vbe20 (5.80)
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Figure 5.21 SPICE-generated transfer curve for the circuit of Fig. 5.20a with VCC = 15 V and
RL = 1 kΩ.

This limit is about 1.4 V more positive than the negative supply. Thus V−
o is limited by satura-

tion in Q17, which is the stage preceding driver stage Q23.
As Vi is taken negative from its quiescent value (where Vo = 0), voltage V1 rises and volt-

ages V2 and Vo follow, with Q14 delivering current to the load. The positive output voltage
limit V+

o is reached when current source Q13A saturates and

V+
o = VCC + VCE13A(sat) − Vbe14 (5.81)

This limit is about 0.8 V below the positive supply because VCE13A(sat) ≃ −0.1 V for the pnp
device. Thus V+

o is also limited by the driver stage.
The power requirements of the driver circuits in a configuration such as shown in Fig. 5.20

require some consideration. The basic requirement of the driver is to supply sufficient drive
to the output stage so that it can supply the desired power to RL. As Vo is taken negative,
Q23 draws current from the base of Q20 with essentially no limit. In fact, the circuit must be
protected in case of a short-circuited load. Otherwise, in this case, a large input signal could
cause Q23 and Q20 to conduct such heavy currents that they burn out. As explained before, the
negative voltage limit is reached when Q17 saturates and can no longer drive the base of Q23
negative.

As Vo is taken positive (by Vi going negative and V1 going positive), Q23 conducts less, and
current source Q13A supplies base current to Q14. The maximum output current is limited by
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the current of 0.22 mA available for driving Q14. As V1,V2, and Vo go positive, the current
in Q14 increases, and the current in Q13A is progressively diverted to the base of Q14. The
maximum possible output current delivered by Q14 is thus

Io = 𝛽F14 × 0.22 mA

If 𝛽F14 = 100, the maximum output current is 22 mA. The driver stage may thus limit the
maximum positive current available from the output stage. However, this output current level is
only reached if RL is small enough that Q13A does not saturate on the positive voltage excursion.

The stage preceding the driver in this circuit is Q17. As mentioned above, the negative
voltage limit of Vo is reached when Q17 saturates. The bias current of 0.68 mA in Q17 is
much greater than the base current of Q23, and thus Q23 produces very little loading on Q17.
Consequently, voltage V1 at the base of Q23 can be driven to within VCE(sat) of either supply
voltage with only a very small fractional change in the collector current of Q17.

Finally, we will now examine the detail of the fabrication of diodes Q18 and Q19 in the 741.
The actual circuit is shown in Fig. 5.20b with the output protection circuitry omitted. Diode
Q19 conducts only a current equal to the base current of Q18 plus the bleed current in pinch
resistor R10. Transistor Q18 thus conducts most of the bias current of current source Q13A. This
arrangement is used for two reasons. First, the basic aim of achieving a voltage drop equal to
two base-emitter voltages is achieved. Since Q18 and Q19 have common collectors, however,
they can be placed in the same isolation region, reducing die area. Second, since Q19 conducts
only a small current, the bias voltage produced by Q18 and Q19 across the bases of Q14 and
Q20 is less than would result from a connection as shown in Fig. 5.20a. This observation is
important because output transistors Q14 and Q20 generally have emitter areas larger than the
standard device geometry (typically four times larger or more) so that they can maintain high
𝛽F while conducting large output currents. Thus in the circuit of Fig. 5.20a, the bias current in
Q14 and Q20 would be about four times the current in Q18 and Q19, which would be excessive
in a 741-type circuit. However, the circuit of Fig. 5.20b can be designed to bias Q14 and Q20 to
a current comparable to the current in the diodes, even though the output devices have a large
area. The basic reason for this result is that the small bias current in Q19 in Fig. 5.20b gives it
a smaller base-emitter voltage than for the same device in Fig. 5.20a, reducing the total bias
voltage between the bases of Q14 and Q20.

The results described above can be illustrated quantitatively by calculating the bias currents
in Q14 and Q20 of Fig. 5.20b. From KVL,

VBE19 + VBE18 = VBE14 + |VBE20|
and thus

VT ln
IC19

IS19
+ VT ln

IC18

IS18
= VT ln

IC14

IS14
+ VT ln

|||| IC20

IS20

|||| (5.82)

If we assume that the circuit is biased for Vo = 0 V and also that 𝛽F14 ≫ 1 and 𝛽F20 ≫ 1, then|IC14| = |IC20| and (5.82) becomes

IC19IC18

IS18IS19
=

I2
C14

IS14IS20

from which

IC14 = −IC20 =
√

IC19IC18

√
IS14IS20

IS18IS19
(5.83)
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Equation 5.83 may be used to calculate the output bias current in circuits of the type shown in
Fig. 5.20b. The output-stage bias current from (5.83) is proportional to

√
IC18 and

√
IC19. For

this specific example, the collector current in Q19 is approximately equal to the current in R10
if 𝛽F is large, and thus

IC19 ≃
VBE18

R10
≃ 0.6

40
mA = 15 μA

If the base currents of Q14 and Q20 are neglected, the collector current of Q18 is

IC18 ≃ |IC13A| − IC19 = (220 − 15) μA = 205 μA

To calculate the output-stage bias currents from (5.83), values for the various reverse satura-
tion currents are required. These values depend on the particular IC process used, but typical
values are IS18 = IS19 = 2 × 10−15 A, IS14 = 4IS18 = 8 × 10−15 A, and IS20 = 4 × 10−15 A.
Substitution of these data in (5.83) gives IC14 = −IC20 = 0.16 mA.

◼ EXAMPLE
For the output stage of Fig. 5.20a, calculate bias currents in all devices for Vo = +10 V.
Assume that VCC = 15 V, RL = 2 kΩ, and 𝛽F = 100. For simplicity, assume all devices have
equal area and for each device

|IC| = 10−14 exp
||||Vbe

VT

|||| (5.84)

Assuming that Q14 supplies the load current for positive output voltages, we have

Ic14 =
Vo

RL
= 10 V

2 kΩ
= 5 mA

Substitution in (5.84) and rearranging gives

Vbe14 = (26 mV) ln

(
5 × 10−3

10−14

)
= 700 mV

Also,

Ib14 =
Ic14

𝛽F14
= 5 mA

100
= 0.05 mA

Thus
Ic19 ≃ Ic18 ≃ −Ic23 = (0.22 − 0.05) mA = 0.17 mA

Substitution in (5.84) and rearranging gives

Vbe19 = Vbe18 = −Vbe23 = (26 mV) ln

(
0.17 × 10−3

10−14

)
= 613 mV

Thus
Vbe20 = −(Vbe19 + Vbe18 − Vbe14) = −525 mV

Use of (5.84) gives
Ic20 = −5.9 μA
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and the collector current in Q20 is quite small as predicted. Finally,

Ic17 = 0.68 mA −
Ic23

𝛽F23
=
(

0.68 − 0.17
100

)
mA = 0.68 mA

and also
V2 = Vo − |Vbe20| = (10 − 0.525)V = 9.475 V

and
V1 = V2 − |Vbe23| = (9.475 − 0.613)V = 8.862 V

◼

5.4.4 All-npn Class B Output Stage7–9

The Class B circuits described above are adequate for many integrated-circuit applications
where the output power to be delivered to the load is of the order of several hundred milliwatts
or less. However, if output-power levels of several watts or more are required, these circuits
are inadequate because the substrate pnp transistors used in the output stage have a limited
current-carrying capability. This limit stems from the fact that the doping levels in the emitter,
base, and collector of these devices are not optimized for pnp structures because the npn
devices in the circuit have conflicting requirements.

A circuit design that uses high-power npn transistors in both halves of a Class B configura-
tion is shown in Fig. 5.22. In this circuit, common-emitter transistor Q1 delivers power to the
load during the negative half-cycle, and emitter follower Q2 delivers power during the positive
half-cycle.

To examine the operation of this circuit, consider Vi taken negative from its quiescent value
so that Q1 is off and Ic1 = 0. Then diodes D1 and D2 must both be off, and all of the collector
current of Q3 is delivered to the base of Q2. The output voltage then has its maximum positive
value V+

o . If RL is big enough, Q3 saturates, and

V+
o = VCC − |VCE3(sat)| − Vbe2 (5.85)
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Figure 5.22 All-npn Class B output
stage.
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To attain this maximum positive value, transistor Q3 must saturate in this extreme condition.
In contrast, Q2 in this circuit cannot saturate because the collector of Q2 is connected to the
positive supply and the base voltage of Q2 cannot exceed the positive supply voltage. The con-
dition for Q3 to be saturated is that the nominal collector bias current IQ3 in Q3 (when Q3 is not
saturated) should be larger than the required base current of Q2 when Vo = V+

o . Thus we require

IQ3 > Ib2 (5.86)

Since Q2 supplies the current to RL for Vo > 0, we have

V+
o = −Ie2RL = (𝛽2 + 1)Ib2RL (5.87)

Substitution of (5.87) and (5.85) in (5.86) gives the requirement on the bias current of Q3 as

IQ3 >
VCC − VCE3(sat) − Vbe2

(𝛽2 + 1)RL
(5.88)

Equation 5.88 also applies to the circuit of Fig. 5.20a. It gives limits on IC3, 𝛽2, and RL for Vo
to be able to swing close to the positive supply. If IQ3 is less than the value given by (5.88), Vo
will begin clipping at a positive value less than that given by (5.85), and Q3 will never saturate.

Now consider Vi made positive to turn Q1 on and produce nonzero Ic1. Since the base of
Q2 is more positive than its emitter, diode D1 will turn on in preference to D2, which will be
off with zero volts across its junction. The current Ic1 will flow through D1 and will be drawn
from Q3, which is assumed saturated at first. As Ic1 increases, Q3 will eventually come out
of saturation, and voltage V2 at the base of Q2 will then be pulled down. Since Q2 acts as an
emitter follower, Vo will follow V2 down. This behavior occurs during the positive half of the
cycle, and Q1 acts as a driver with Q2 as the output device.

When Vo is reduced to 0 V, the load current is zero and Ic2 = 0. This point corresponds
to Ic1 = |IC3|, and all of the bias current in Q3 passes through D1 to Q1. If Ic1 is increased
further, Vo stays constant at 0 V while V2 is reduced to 0 V also. Therefore, V1 is negative by
an amount equal to the diode voltage drop of D1, and thus power diode D2 turns on. Since
the current in D1 is essentially fixed by Q3, further increases in Ic1 cause increasing current to
flow through D2. The negative half of the cycle consists of Q1 acting as the output device and
feeding RL through D2. The maximum negative voltage occurs when Q1 saturates and is

V−
o = −VCC + VCE1(sat) + Vd2 (5.89)

where Vd2 is the forward voltage drop across D2.
The sequence just described gives rise to a highly nonlinear transfer characteristic, as shown

in Fig. 5.23, where Vo is plotted as a function of Ic1 for convenience. When Vo is positive, the
current Ic1 feeds into the base of Q2 and the small-signal gain is

ΔVo

ΔIc1
≃

ΔV2

ΔIc1
= ro1||ro3||[r𝜋2 + (𝛽2 + 1)RL]

where the impedance of D1 is assumed negligible. That is, the impedance at the base of Q2 is
equal to the parallel combination of the output resistances of Q1 and Q3 and the input resistance
of emitter follower Q2.

When Vo in Fig. 5.22 is negative, Ic1 feeds RL directly, and the small-signal gain is

ΔVo

ΔIc1
≃ ro1||RL

where the impedance of D2 is assumed negligible.
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Slope = ro1 || ro3 || [ r  2 + (  2 + 1) RL]

Slope = RL || ro1

IC3

Ic2
IQ3 –

  2

Ic1

Q3 saturated

Q1 saturated

Vo = [–VCC + Vd2 + VCE1(sat)]
–

Vo

β

βπ

Vo  = [VCC – Vbe2 – VCE3(sat) ]+

Figure 5.23 Transfer characteristic of the circuit of Fig. 5.22 from Ic1 to Vo.

Note the small deadband in Fig. 5.23 where diode D2 turns on. This deadband can be elim-
inated by adding a second diode in series with D1. In practice, negative feedback must be used
around this circuit to linearize the transfer characteristic, and such feedback will reduce any
crossover effects. The transfer characteristic of the circuit from Vi to Vo is even more nonlinear
than shown in Fig. 5.23 because it includes the exponential nonlinearity of Q1.

In integrated-circuit fabrication of the circuit of Fig. 5.22, devices Q1 and Q2 are iden-
tical large-power transistors. In high-power circuits (delivering several watts or more), they
may occupy 50 percent of the whole die. Diode D2 is a large-power diode that also occupies
considerable area. These features are illustrated in Fig. 5.24, which is a die photo of the 791
high-power op amp. This circuit can dissipate 10 W of power and can deliver 15 W of output
power into an 8-Ω load. The large power transistors in the output stage can be seen on the
right-hand side of the die.

Finally, the power and efficiency results derived previously for the complementary Class B
stage apply equally to the all-npn Class B stage if allowance is made for the voltage drop in
D2. Thus the ideal maximum efficiency is 79 percent.

5.4.5 Quasi-Complementary Output Stages10,11

The all-npn stage described above is one solution to the problem of the limited power-handling
capability of the substrate pnp. Another solution is shown in Fig. 5.25, where a composite pnp
has been made from a lateral pnp Q3 and a high-power npn transistor Q4. This circuit is called
a quasi-complementary output stage.

The operation of the circuit of Fig. 5.25 is almost identical to that of Fig. 5.20. The comple-
mentary pair Q3−Q4 was invented by Sziklai12 and is equivalent to a pnp transistor, as shown
in Fig. 5.26. The collector current of Q3 is

IC3 = −IS exp

(
−

VBE

VT

)
(5.90)
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Figure 5.24 Die photo of the 791 high-power op amp.
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complementary Class B output
stage.
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Figure 5.26 Equivalence of
the composite connection and
a pnp transistor.

The composite collector current IC is the emitter current of Q4, which is

IC = (𝛽F4 + 1)IC3 = −(𝛽F4 + 1)IS exp

(
−

VBE

VT

)
(5.91)

The composite device thus shows the standard relationship between IC and VBE for a pnp
transistor. However, most of the current is carried by the high-power npn transistor. Note that
the magnitude of the saturation voltage of the composite device is (|VCE3(sat)| + VBE4). This
magnitude is higher than normal because saturation occurs when Q3 saturates, and VBE4 must
be added to this voltage.

The major problem with the configuration of Fig. 5.25 is potential instability of the local
feedback loop formed by Q3 and Q4, particularly with capacitive loads on the amplifier. The
stability of feedback loops is considered in Chapter 9.

The quasi-complementary Class B stage can also be effectively implemented in BiCMOS
technology. In the circuit of Fig. 5.25, the compound bipolar device Q3−Q4 can be replaced
by the MOS-bipolar combination13 of Fig. 5.27, where Q4 is a large-area high-current bipolar
device. The overall transfer characteristic is

ID = (𝛽F4 + 1)ID3 = −(𝛽F4 + 1)
μnCox

2

(W
L

)
3
(VGS − Vt)2 (5.92)

Equation 5.92 shows that the composite PMOS device appears to have a W∕L ratio (𝛽F4 + 1)
times larger than the physical PMOS device M3. With this circuit, one of the diodes Q5 or
Q6 of Fig. 5.25 would now be replaced by a diode-connected PMOS transistor to set up
a temperature-stable standby current in the output stage. A bias bleed resistor can be con-
nected from the base to the emitter of Q4 to optimize the bias current in M3 and speed up

G G

S S

D

D

ID

ID

ID3

VGS
VGS

M3

Q4

– –

+ +

Figure 5.27 Compound high-current
PMOS connection.
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the turn-off of Q4 in high-frequency applications by allowing reverse base current to remove
the base charge. Such a resistor can also be connected from the base to the emitter of Q4
in Fig. 5.25.

5.4.6 Overload Protection

The most common type of overload protection in integrated-circuit output stages is
short-circuit current protection. As an example, consider the 741 output stage shown in
Fig. 5.28 with partial short-circuit protection included. Initially, assume that R6 = 0 and
ignore Q15. The maximum positive drive delivered to the output stage occurs for Vi large
positive. If RL = 0, then Vo is held at zero volts, and Va in Fig. 5.28 is equal to Vbe14. Thus,
as Vi is taken positive, Q23,Q18, and Q19 will cut off, and all of the current of Q13A is fed to
Q14. If this is a high-𝛽F device, then the output current can become destructively large:

Ic14 = 𝛽F14|IC13A| (5.93)

If
𝛽F14 = 500

then
Ic14 = 500 × 0.22 = 110 mA

If VCC = 15 V, this current level gives a power dissipation in Q14 of

Pc14 = VceIc = 15 × 110 mW = 1.65 W

which is sufficient to destroy the device. Thus the current under short-circuit conditions must
be limited, and this objective is achieved using R6 and Q15 for positive Vo.

The short-circuit protection operates by sensing the output current with resistor R6 of about
25 Ω. The voltage developed across R6 is the base-emitter voltage of Q15, which is nor-
mally off. When the current through R6 reaches about 20 mA (the maximum safe level),
Q15 begins to conduct appreciably and diverts any further drive away from the base of Q14.
The drive current is thus harmlessly passed to the output instead of being multiplied by the
𝛽F of Q14.

The operation of this circuit can be seen by calculating the transfer characteristic of Q14
when driving a short-circuit load. This can be done using Fig. 5.29:

Ii = Ib14 + Ic15 (5.94)

Ic15 = IS15 exp
Vbe15

VT
(5.95)

Also,
Vbe15 ≃ Ic14R (5.96)

From (5.94),
Ib14 = Ii − Ic15

But
Ic14 = 𝛽F14Ib14 = 𝛽F14(Ii − Ic15) (5.97)
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Figure 5.28 Schematic of the output stage
of the 741 op amp showing partial
short-circuit protection.
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R
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Figure 5.29 Equivalent circuit for the calculation of the effect
of Q15 on the transfer characteristic of Q14 in Fig. 5.28 when
RL = 0.

Substitution of (5.95) and (5.96) in (5.97) gives

Ic14 + 𝛽F14IS15 exp
Ic14R

VT
= 𝛽F14Ii (5.98)

The second term on the left side of (5.98) stems from Q15. If this term is negligible,
then Ic14 = 𝛽F14Ii as expected. The transfer characteristic of the stage is plotted from (5.98)
in Fig. 5.30, using 𝛽F14 = 500, IS15 = 10−14 A, and R = 25 Ω. For a maximum drive of
Ii = 0.22 mA, the value of Ic14 is effectively limited to 24 mA. For values of Ic14 below 20 mA,
Q15 has little effect on circuit operation.

Similar protection for negative output voltages in Fig. 5.29 is achieved by sensing the
voltage across R7 and diverting the base drive away from one of the preceding stages.
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Figure 5.30 Transfer characteristic of the
circuit of Fig. 5.29 with and without protection
transistor Q15 (𝛽F14 = 500).

5.5 CMOS Class AB Output Stages
The classical Class AB topology of Fig. 5.13 can also be implemented in standard CMOS
technology. However, the output swing of the resulting circuit is usually much worse than in
the bipolar case. Although the swing can be improved using a common-source configuration,
this circuit suffers from poor control of the quiescent current in the output devices. These issues
are described below.

5.5.1 Common-Drain Configuration

Figure 5.31 shows the common-drain Class AB output configuration. From KVL,

VSG5 + VGS4 = Vgs1 + Vsg2 (5.99)

Ignoring the body effect, VSG5 + VGS4 is constant if the bias current from M3 is constant. Under
these conditions, increasing Vgs1 decreases Vsg2 and vice versa.

M3

M6

M5

M4

M2

M1

Vi

–VSS

RL Vo

VDD

BIAS

+

+

–

–

Figure 5.31 Complementary source-
follower CMOS output stage based on
traditional bipolar implementation.
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For simplicity, assume at first that a short circuit is connected from the drain of M4 to the
drain of M5. Then VSG5 + VGS4 = 0 and Vgs1 = Vgs2 from (5.99). For M1 to conduct nonzero
drain current, Vgs1 > Vt1 is required. Similarly, Vgs2 < Vt2 is required for M2 to conduct
nonzero drain current. With standard enhancement-mode devices, Vt1 > 0 and Vt2 < 0.
Therefore, M1 and M2 do not both conduct simultaneously under these conditions, which is a
characteristic of a Class B output stage. When Vo > 0, M1 operates as a source follower and
M2 is off. Similarly, M2 operates as a source follower and M1 is off when Vo < 0.

In Fig. 5.31, however, VSG5 + VGS4 > 0, and both M1 and M2 are biased to conduct nonzero
drain current when Vo = 0, which is a characteristic of a Class AB output stage. If Vt1 = Vt4
and Vt2 = Vt5, using (1.157) in (5.99) with ID5 = −ID4 gives√

2ID4

k′p(W∕L)5
+

√
2ID4

k′n(W∕L)4
=

√
2Id1

k′n(W∕L)1
+

√
2|Id2|

k′p(W∕L)2
(5.100)

If Vo = 0, then Id2 = −Id1, and (5.100) can be rearranged to give

ID1 = ID4

(√
1

k′n(W∕L)4
+
√

1
k′p(W∕L)5

)2

(√
1

k′n(W∕L)1
+
√

1
k′p(W∕L)2

)2
(5.101)

where ID1 = Id1 with Vo = 0. The key point of this equation is that the quiescent current
in the output transistors is well controlled with respect to the bias current that flows in the
diode-connected transistors, as in the bipolar case.

An important problem with this circuit is that its output swing can be much less than the
corresponding bipolar circuit with equal supply voltages. For Vo > 0, Vgs1 > Vt1 and M1 acts
as a source follower. Therefore,

Vo = VDD − Vsd3 − Vgs1 (5.102)

The minimum Vsd3 required to operate M3 as a current source is |Vov3| = |VGS3 − Vt3|. From
(5.102), the maximum output voltage V+

o is

V+
o = VDD − |Vov3| − Vgs1 (5.103)

The minimum output voltage can be found by similar reasoning. (See Problem 5.21.) Although
(5.103) appears to be quite similar to (5.81) if VCC in Fig. 5.20 is equal to VDD in Fig. 5.31,
the limit in (5.103) is usually much less than in (5.81) for three reasons. First, the gate-source
voltage includes a threshold component that is absent in the base-emitter voltage. Second, the
body effect increases the threshold voltage Vt1 as Vo increases. Finally, the overdrive part of the
gate-source voltage rises more steeply with increasing current than the entire base-emitter volt-
age because the overdrive is proportional to the square root of the current and the base-emitter
voltage is proportional to the logarithm of the current. In practice, the output-voltage swing
can be increased by increasing the W∕L ratios of the output devices to reduce their overdrives.
However, the required transistor sizes are sometimes so large that the parasitic capacitances
associated with the output devices can dominate the overall performance at high frequencies.
Thus the circuit of Fig. 5.31 is generally limited to much smaller currents than its bipolar
equivalent.



5.5 CMOS Class AB Output Stages 401

◼ EXAMPLE
An output stage such as shown in Fig. 5.31 is required to produce a maximum output voltage
of 0.7 V with RL = 35 Ω and VDD = VSS = 1.5 V. Using the transistor parameters in Table 2.4,
find the required W∕L of M1. Assume |Vov3| = 100 mV, and ignore the body effect.

From (5.103),

Vgs1 = VDD − |Vov3| − V+
o = (1.5 − 0.1 − 0.7) V = 0.7 V

Since Table 2.4 gives Vt1 = 0.6 V,

Vov1 = Vgs1 − Vt1 = (0.7 − 0.6) V = 0.1 V

With Vo = 0.7 V, the current in the load is (0.7 V)∕(35 Ω) = 20 mA. If Id2 = 0 under these
conditions, Id1 = 20 mA. Rearranging (1.157) gives(W

L

)
1
= 2I

k′nVov1
2
= 2(20000)

194(0.1)2
≃ 20,000 (5.104)

which is a very large transistor.◼

5.5.2 Common-Source Configuration with Error Amplifiers

Another alternative is the use of quasi-complementary configurations. In this case, a
common-source transistor together with an error amplifier replaces an output source-follower
device. A circuit with this substitution for both output transistors is shown conceptually
in Fig. 5.32.14–16 The combination of the error amplifier and the common-source device
mimics the behavior of a source follower with high dc transconductance. The function of
the amplifiers is to sense the voltage difference between the input and output of the stage
and drive the gates of the output transistors so as to make the difference as small as possible.
This operation can be viewed as negative feedback. A key advantage of the use of negative
feedback here is that it reduces the output resistance. Since negative feedback is covered in
Chapter 8, we will analyze this structure with straightforward circuit analysis.

To find the output resistance, consider the small-signal model of this output stage shown in
Fig. 5.33. The current it is

it =
vt

ro1
+

vt

ro2
+ gm1Avt + gm2Avt (5.105)
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A Figure 5.32 A complementary
Class AB output stage using
embedded common-source
output devices.
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Figure 5.33 Small-signal
model of the output stage of
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Rearranging this equation to solve for vt∕it gives

Ro =
vt

it

||||vi=0
= 1

(gm1 + gm2)A
||ro1||ro2 (5.106)

This equation shows that increasing the gain A of the error amplifiers reduces Ro and that Ro
is much less than the drain-source resistance of M1 or M2 because of the negative feedback.

To find the transfer characteristic, consider the dc model of the output stage shown in
Fig. 5.34. The model includes the input-referred offset voltages of the error amplifiers as volt-
age sources. Assume k′p(W∕L)1 = k′n(W∕L)2 = k′(W∕L) and −Vt1 = Vt2 = Vt. Also assume
that the error amplifiers are designed so that −ID1 = ID2 = IQ when Vi = 0, VOSP = 0, and
VOSN = 0. Under these conditions, Vo = 0 and

Vgs1 = −Vt − Vov (5.107)

Vgs2 = Vt + Vov (5.108)

where

Vov =

√
2IQ

k′(W∕L)
(5.109)
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With nonzero input and offsets, the output may not be zero. As a result, the differential input to
the top error amplifier changes from zero to Vo − (Vi − VOSP). Similarly, the differential input
to the bottom error amplifier changes from zero to Vo − (Vi − VOSN). Assuming that the output
of each error amplifier changes by its gain A times the change in its input,

Vgs1 = −Vt − Vov + A[Vo − (Vi − VOSP)] (5.110)

Vgs2 = Vt + Vov + A[Vo − (Vi − VOSN)] (5.111)

If M1 and M2 operate in the active region,

Id1 = −
k′p
2

(W
L

)
1
(Vgs1 − Vt1)2 = −k′

2
W
L
(Vgs1 + Vt)2 (5.112)

Id2 =
k′n
2

(W
L

)
2
(Vgs2 − Vt2)2 = k′

2
W
L
(Vgs2 − Vt)2 (5.113)

Also,

Io =
Vo

RL
(5.114)

From KCL at the output,
Io + Id1 + Id2 = 0 (5.115)

Substituting (5.110)–(5.114) into (5.115) and rearranging gives

Vo =
Vi −

VOSP + VOSN

2

1 + 1

k′
W
L

A[2Vov − A(VOSP − VOSN)]RL

(5.116)

If VOSP = VOSN = 0,

Vo =
Vi

1 + 1

k′
W
L

A2VovRL

=
Vi

1 + 1
2AgmRL

≃ Vi

(
1 − 1

2AgmRL

)
(5.117)

where gm = k′(W∕L)Vov as shown in (1.180). The term (2AgmRL) is the gain around the feed-
back loop or the loop gain and is usually chosen to be high enough to make the slope of
the transfer characteristic unity within an allowable gain error. (The concept of loop gain is
described in Chapter 8.) The gain error here is approximately 1∕(2AgmRL). The key point is
that the error is reduced if A, gm, or RL is increased.

With nonzero offsets, (5.116) shows that the circuit also displays an offset error. If A(VOSP −
VOSN) ≪ 2Vov and 2AgmRL ≫ 1,

Vo ≃
Vi −

VOSP + VOSN

2

1 + 1

k′
W
L

A2VovRL

=
Vi −

VOSP + VOSN

2

1 + 1
2AgmRL

≃ Vi −
VOSP + VOSN

2
(5.118)

Therefore, the input offset voltage of the buffer is about −(VOSP + VOSN)∕2.
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Equation 5.116 is valid as long as both M1 and M2 operate in the active region. If the
magnitude of the output voltage is large enough, however, one of the two output transistors
turns off. For example, when Vi increases, Vo also increases, but the gain is slightly less than
unity. As a result, the differential inputs to the error amplifiers both decrease, decreasing Vgs1
and Vgs2. In turn, these changes increase |Id1| but reduce Id2, and M2 turns off for large enough
Vi. To find the portion of the transfer characteristic with M1 in the active region but M2 off, the
above analysis can be repeated with Id2 = 0. See Problem 5.23.

The primary motivation for using the quasi-complementary configuration is to increase
the output swing. If the output transistors are not allowed to operate in the triode region, the
output voltage can pull within an overdrive of either supply. This result is an improvement
compared to the limit given in (5.103) for the common-drain output stage mostly because the
threshold voltages of the output transistors do not limit the output swing in the common-source
configuration.

Although quasi-complementary circuits improve the output swing, they suffer from two
main problems. First, the error amplifiers must have large bandwidth to prevent crossover
distortion problems for high input frequencies. Unfortunately, increasing the bandwidth of the
error amplifiers worsens the stability margins, especially in the presence of large capacitive
loads. As a result, these circuits present difficult design problems in compensation. The topics
of stability and compensation are covered in Chapter 9. Second, nonzero offset voltages in
the error amplifiers change the quiescent current flowing in the output transistors. From a
design standpoint, the quiescent current is chosen to be barely high enough to limit crossover
distortion to an acceptable level. Although further increases in the quiescent current reduce the
crossover distortion, such increases also increase the power dissipation and reduce the output
swing. Therefore, proper control of the quiescent current with nonzero offsets is also a key
design constraint.

One way to control the quiescent current is to sense and feedback a copy of the current.14

This method is not considered further here. Another way to limit the variation in the quiescent
current is to design the error amplifiers to have low gain.15,16 The concept is that the quiescent
current is controlled by the gate-source voltages on the output transistors, which in turn are
controlled by the outputs of the error amplifiers. Therefore, reducing the error-amplifier gain
reduces the variation of gate-source voltages and the quiescent current for a given variation in
the offset voltages.

To study this situation quantitatively, define the quiescent current in the output devices as
the common-mode component of the current flowing from VDD to −VSS with Vi = 0. Then

IQ =
ID2 − ID1

2
(5.119)

Subtraction is used in the above equation because the drain current of each transistor is defined
as positive when it flows into the transistor. Substituting (5.110)–(5.113) into (5.119) gives

IQ = k′

4
W
L
((Vov + A[Vo + VOSN])2 + (−Vov + A[Vo + VOSP])2) (5.120)

Since Vo = 0 if VOSP = VOSN = 0, (5.120) shows that

IQ| VOSP=0
VOSN=0

= k′

4
W
L
((Vov)2 + (−Vov)2) =

k′

2
W
L
(Vov)2 (5.121)

From (5.118) with Vi = 0,

Vo + VOSP ≃
VOSP − VOSN

2
(5.122)

Vo + VOSN ≃ −
VOSP − VOSN

2
(5.123)
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Substituting (5.122) and (5.123) into (5.120) gives

IQ = k′

2
W
L

(
Vov − A

[
VOSP − VOSN

2

])2

(5.124)

Define ΔIQ as the change in IQ caused by nonzero offsets; that is,

ΔIQ = IQ| VOSP=0
VOSN=0

− IQ (5.125)

Substituting (5.124) and (5.121) into (5.125) gives

ΔIQ = k′

2
W
L

A(VOSP − VOSN)
[

Vov − A

(
VOSP − VOSN

4

)]
(5.126)

To evaluate the magnitude of ΔIQ, we will compare it to the quiescent current with zero offsets
by dividing (5.126) by (5.121). The result is

ΔIQ

IQ|VOSP=0
VOSN=0

= A

(
VOSP − VOSN

Vov

)[
1 − A

(
VOSP − VOSN

4Vov

)]
(5.127)

If A(VOSP − VOSN) ≪ 4Vov,

ΔIQ

IQ|VOSP=0
VOSN=0

≃ A

(
VOSP − VOSN

Vov

)
(5.128)

Therefore, to keep the fractional change in the quiescent current less than a given amount, the
maximum error-amplifier gain is

A <

(
Vov

VOSP − VOSN

)⎛⎜⎜⎝
ΔIQ

IQ|VOSP=0
VOSN=0

⎞⎟⎟⎠ (5.129)

For example, if Vov = 200 mV, VOSP − VOSN = 5 mV, and up to 20 percent variation in the
quiescent current is allowed, (5.129) shows that the error amplifier gain should be less than
about 8.15,16

Figure 5.35 shows a schematic of the top error amplifier and M1 from Fig. 5.32.16 A com-
plementary structure used to drive M2 is not shown. The difference between Vi and Vo is sensed
by the differential pair M11 and M12, which is biased by the tail current source ITAIL. The load
of the differential pair consists of two parts: current mirror M13 and M14 and common-drain
transistors M15 and M16. The purpose of the common-drain transistors is to reduce the output
resistance of the error amplifier to set its gain to a well-defined low value. The gates of the
common-drain transistors are biased by a negative feedback loop including M13, M17, IBIAS,
and M15. This circuit adjusts the voltage at the gate of M15 so that M17 operates in the active
region and conducts IBIAS. Although negative feedback is studied in Chapter 8, the basic idea
can be understood here as follows. If |ID17| is less than IBIAS, current source IBIAS pulls the gate
voltage of M15 down. Since M15 operates as a source follower, the source of M15 is pulled down,
increasing |ID13|. Because M13 and M17 together form a current mirror, |ID17| also increases
until |ID17| = IBIAS. Similar reasoning shows that this equality is established when |ID17| is
initially greater than IBIAS. If M15 and M17 are enhancement-mode devices, M17 operates in
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Figure 5.35 Schematic of the top error amplifier and output transistor M1.

the active region because VGD17 = VSG15 = |Vt15| + |Vov15| > 0 > Vt17; therefore, the channel
does not exist at the drain of M17.

Since M13 and M17 form a current mirror,

ID13 = ID17
(W∕L)13

(W∕L)17
= −IBIAS

(W∕L)13

(W∕L)17
(5.130)

Since M13 and M14 also form a current mirror, and since (W∕L)14 = (W∕L)13,

ID14 = ID13 = −IBIAS
(W∕L)13

(W∕L)17
(5.131)

With Vi = Vo,

ID11 = ID12 =
ITAIL

2
(5.132)

From KCL,
ID16 = ID14 + ID11 (5.133)

Substituting (5.131) and (5.132) into (5.133) gives

ID16 = −IBIAS
(W∕L)13

(W∕L)17
+

ITAIL

2
(5.134)

Since ID15 = ID16 when ID11 = ID12,

VSD14 = VSD13 = VSG13 = VSG1 (5.135)
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Therefore, ignoring channel-length modulation,

ID1 = ID13
(W∕L)1
(W∕L)13

(5.136)

Substituting (5.130) into (5.136) and rearranging gives

ID1 = −IBIAS
(W∕L)1
(W∕L)17

(5.137)

This equation shows that the drain current in M1 is controlled by IBIAS and a ratio of transistor
sizes if the offset voltage of the error amplifier is zero so that Vo = 0 when Vi = 0. In practice,
(W∕L)1 ≫ (W∕L)17 so that little power is dissipated in the bias circuits.

Another design consideration comes out of these equations. To keep the gain of the error
amplifier low under all conditions, M16 must never cut off. Therefore, from (5.133), |ID14|
should be greater than the maximum value of ID11. Since the maximum value of ID11 is ITAIL,
(5.131) and (5.133) show that

|ID14| = IBIAS
(W∕L)13

(W∕L)17
> ITAIL (5.138)

To find the gain of the error amplifier, the key observation is that the small-signal resis-
tance looking into the source of M15 is zero, ignoring channel-length modulation. This result
stems from the operation of the same negative feedback loop that biases the gate of M15. If the
small-signal voltage at the source of M15 changes, the negative feedback loop works to undo
the change. For example, suppose that the source voltage of M15 increases. This change reduces
the gate voltage of M15 because M17 operates as a common-source amplifier. Then the source
voltage of M15 falls because M15 operates as a source follower. Ignoring channel-length mod-
ulation, the source voltage of M15 must be held exactly constant because id17 = 0 if IBIAS is
constant. Therefore, the small-signal resistance looking into the source of M15 is zero. As a
result, none of the small-signal drain current from M12 flows in M13. Instead, it all flows in the
source of M15. To calculate the transconductance of the error amplifier, the output at the drain
of M16 is connected to a small-signal ground. Since M15 and M16 share the same gate connec-
tion, and since their sources each operate at small-signal grounds, the small-signal current in
M15 is copied to M16. Therefore, the entire small-signal current from the differential pair flows
at the error-amplifier output, and the transconductance is

Gm = gm11 = gm12 (5.139)

Ignoring channel-length modulation, the output resistance is set by common-drain transistor
M16. From (3.84),

Ro = 1
gm16 + gmb16

(5.140)

Therefore, the gain of the error amplifier is

A = GmRo =
gm11

gm16 + gmb16
(5.141)
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5.5.3 Alternative Configurations

The main potential advantage of the common-source output stage described in the last section
is that it can increase the output swing compared to the common-drain case. However, the
common-source configuration suffers from an increase in harmonic distortion, especially at
high frequencies, for two main reasons. First, the bandwidth of the error amplifiers is usually
limited, to avoid stability problems. Second, the gain of these amplifiers is limited to establish
adequate control on the quiescent output current.

5.5.3.1 Combined Common-Drain Common-Source Configuration. One way to
overcome this problem is to use a combination of the common-drain and common-source
configurations shown in Figs. 5.31 and 5.32.17 The combined schematic is shown in Fig. 5.36.
The key aspect of this circuit is that it uses two buffers connected to the output: a Class AB
common-drain buffer (M1−M2) and a Class B quasi-complementary common-source buffer
(M11−M12 and the error amplifiers A). The common-source buffer is dominant when the out-
put swing is maximum, but off with zero output. On the other hand, the common-drain buffer
controls the quiescent output current and improves the frequency response, as described next.

From KVL,
Vo = V1 + Vgs4 − Vgs1 (5.142)

If Vt1 = Vt4, this equation can be rewritten as

Vo = V1 + Vov4 − Vov1 (5.143)

Therefore, when Vi is adjusted so that V1 = 0, M1−M5 force Vo = 0 if Vov1 = Vov4. From
(1.166), Vov1 = Vov4 if

ID1

(W∕L)1
=

ID4

(W∕L)4
(5.144)

Substituting (5.101) into (5.144) and rearranging shows that Vov1 = Vov4 if

(W∕L)1
(W∕L)2

=
(W∕L)4
(W∕L)5

(5.145)
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Figure 5.36 Combined common-drain, common-source output stage.
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We will assume that this condition holds so that Vo = 0 when V1 = 0. In this case, M11 and
M12 are designed to be cut off. This characteristic stems from small offsets designed into
the error amplifiers. These offsets are shown as voltage sources VOS in Fig. 5.36 and can be
introduced by intentionally mismatching the input differential pair in each error amplifier. With
V1 = Vo = 0 and VOS > 0, the error amplifiers are designed to give Vgs11 > Vt11 and Vgs12 <

Vt12 so that M11 and M12 are off. As a result, the quiescent output current is controlled by the
common-drain stage and its biasing circuit M1−M5, as shown in (5.101).

As Vi decreases from the value that forces V1 = 0, V1 increases and Vo follows but with less
than unity gain if RL is finite. Therefore V1 − Vo increases, and both Vgs11 and Vgs12 decrease,
eventually turning on M11 but keeping M12 off. After M11 turns on, both Id1 and |Id11| increase
as Vo rises until Vgs1 − Vt1 reaches its maximum value. Such a maximum occurs when the
output swing from the common-source stage is greater than that of the common-drain stage.
As Vo rises beyond this point, |Id11| increases but Id1 decreases, and the common-source stage
becomes dominant.

From (5.103), the output swing allowed by the common-drain stage of Fig. 5.31 is limited
in part by Vgs1, which includes a threshold component. On the other hand, the output swing
limitation of the common-source stage of Fig. 5.32 does not include a threshold term, and this
circuit can swing within an overdrive of the positive supply. So with proper design, we expect
the common-source stage to have a larger output swing than the common-drain stage. When
the two circuits are combined as in Fig. 5.36, however, the output swing is limited by the driver
stage that produces V1. Define V+

1 as the maximum value of V1 for which M3 operates in the
active region. Then

V+
1 = VDD − |Vov3| − Vgs4 (5.146)

Since V1 is the input to the common-source stage, the maximum output V+
o can be designed

to be
V+

o ≃ V+
1 = VDD − |Vov3| − Vgs4 (5.147)

Comparing (5.147) with (5.103) shows that the positive swing of the combined output stage
of Fig. 5.36 exceeds that of the common-drain output stage of Fig. 5.31, provided Vgs4 <

Vgs1 when Vo = V+
o . This condition is usually satisfied because Id4 ≪ Id1 when the output is

maximum with finite RL. Therefore, the circuit of Fig. 5.36 can be designed to increase the
output swing.

Since the common-source stage of Fig. 5.36 is not responsible for establishing the quiescent
output current, the gain of the error amplifiers of Fig. 5.36 is not limited as in (5.129). In
practice, the error amplifiers are often designed as one-stage amplifiers with a gain related
to the product of gm and ro that can be achieved in a given technology. This increase in gain
reduces the harmonic distortion because it reduces the error between the input and the output
of the common-source stage.

Finally, we will consider the frequency response of the circuit in Fig. 5.36 qualitatively. The
circuit has two paths from V1 to the output. The path through the common-source transistors
M11 and M12 may be slow because of the need to limit the bandwidth of the error amplifiers
to guarantee that the circuit is stable. (Stability is studied in Chapter 9.) On the other hand,
the path through the common-drain transistors M1 and M2 is fast because source followers
are high-bandwidth circuits, as shown in Chapter 7. Since the circuit sums the current from
the common-drain and common-source stages in the load to produce the output voltage, the
fast path will dominate for high-frequency signals. This technique is called feedforward, and
other instances are described in Chapter 9. It causes the circuit to take on the characteristics
of the source followers for high frequencies, reducing the phase shift that would otherwise be
introduced by the slow error amplifiers. As a result, the design required to guarantee stability
is simplified,17 and the harmonic distortion for high-frequency signals is reduced.
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Figure 5.37 Combined common-drain, common-source output stage with improved swing.

5.5.3.2 Combined Common-Drain Common-Source Configuration with High
Swing. Although the swing of the circuit of Fig. 5.36 is improved compared to the circuit
of Fig. 5.31, it can be improved even further. As shown in (5.147), the main limitation to the
positive swing in Fig. 5.36 stems from Vgs4. This voltage includes a threshold component,
which increases with increasing V1 and Vo because of the body effect. Similarly, the negative
swing is limited by Vgs5, whose threshold component increases in magnitude as V1 and Vo
decrease. In practice, these terms alone reduce the available output swing by about 1.5 to 2 V.

Figure 5.37 shows a circuit that overcomes this limitation.18 The circuit is the same as in
Fig. 5.36 except that one extra branch is included. The new branch consists of transistors M7
and M8 and operates in parallel with the branch containing M3−M6 to produce voltage V1. The
swing of V1 in Fig. 5.36 is limited by the threshold voltages of M4 and M5 as described above.
In contrast, the new branch in Fig. 5.37 can drive V1 within an overdrive of either supply while
M7 and M8 operate in the active region. Since the output swing in Fig. 5.36 is limited by the
swing of V1, improving the swing of V1 as in Fig. 5.37 also improves the output swing.

5.5.3.3 Parallel Common-Source Configuration. Another circuit that overcomes the
problem described in the introduction of Section 5.5.3 is shown in Fig. 5.38.19 Like the circuit
of Fig. 5.37, this circuit combines two buffers in parallel at the output. The error amplifiers
with gain A1 along with M1 and M2 form one buffer, which controls the operation of the output
stage with Vi = 0. The error amplifiers with gain A2 together with M11 and M12 form the other
buffer, which dominates the operation of the output stage for large-magnitude output voltages.

This behavior stems from small offset voltages intentionally built into the A1 amplifiers.
These offsets are shown as voltage sources VOS in Fig. 5.38 and are introduced in practice by
intentionally mismatching the input differential pairs in the A1 amplifiers. At first, assume that
these offsets have little effect on the drain currents of M1 and M2 because A1 is intentionally
chosen to be small. Therefore, M1 and M2 operate in the active region when Vi = 0, and the
buffer that includes these transistors operates in a Class AB mode. On the other hand, the
offsets force M11 and M12 to operate in cutoff when Vi = 0 because the gates of these transistors
are driven by the outputs of the A2 amplifiers, which in turn are driven by the differential
outputs of the A1 amplifiers. In particular, the product VOSA1A2 is chosen by design to be
big enough to force Vgs11 > Vt11 and Vgs12 < Vt12 so that M11 and M12 are off when Vi = 0.
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Figure 5.38 Output stage with a Class AB common-source buffer and a Class B common-source buffer.
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Figure 5.39 Schematic of the top A1 amplifier and output transistor M1.

As a result, the quiescent output current of this output stage is controlled by M1, M2, and the
A1 amplifiers.

Figure 5.39 shows a schematic of the top A1 amplifier and M1 from Fig. 5.38.19 A com-
plementary configuration is used for the bottom A1 amplifier but is not shown for simplicity.
The difference between Vi and Vo is sensed by the differential pair M3 and M4. The load of
the differential pair consists of two parts: diode-connected transistors M5 and M6 and current
sources IBIAS, which are implemented by the outputs of p-channel current mirrors in practice.
The purpose of the diode-connected transistors is to limit the gain of the error amplifier to
a small value so that the output quiescent current is well controlled. Ignoring channel-length
modulation, the gain of this error amplifier is

A1 =
gm3

gm5
(5.148)

where A1 is the gain from the differential input to the differential output of the error amplifier.
This equation shows that the gain is determined by the ratios of the transconductance of a
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differential-pair transistor to that of a load transistor. Substituting (1.180) into (5.148) for each
transistor and rearranging gives

A1 =

√
k′n
k′p

(W∕L)3
(W∕L)5

ID3|ID5| (5.149)

This equation shows that the gain is determined by the product of the ratios of the transcon-
ductance parameters, the transistor sizes, and the bias currents. From KCL at the drain of M5,

−ID5 = ID3 − IBIAS (5.150)

where ID3 > IBIAS. Substituting (5.150) into (5.149) gives

A1 =

√
k′n
k′p

(W∕L)3
(W∕L)5

(
ID3

ID3 − IBIAS

)
(5.151)

This equation shows that the purpose of the IBIAS current sources is to allow the bias current
in a transistor in the differential pair to exceed that in a diode-connected load. As a result, the
term in parentheses in (5.151) is greater than unity and contributes to the required gain.

Now consider the effect of the offset VOS in Fig. 5.38. In practice, the offset is implemented
in Fig. 5.39 by choosing the width of M3 to be less than the width of M4 by about 20 percent.19

Assume that Vo = 0 when Vi = 0. Increasing VOS reduces ID3, making |ID5| less than the value
given in (5.150). Since M5 and M1 form a current mirror, a positive offset reduces |ID1|. Under
the assumption that Vo = 0 when Vi = 0, the differential pair in the error amplifier operates
with Vgs3 = Vgs4. Therefore, if Vt3 = Vt4, Vov3 = Vov4. From (1.166),

ID3

(W∕L)3
=

ID4

(W∕L)4
(5.152)

Substituting ID3 + ID4 = ITAIL into (5.152) and rearranging gives

ID3 =
(W∕L)3

(W∕L)3 + (W∕L)4
ITAIL (5.153)

when Vo = Vi = 0. Similarly, a positive offset in the bottom A1 amplifier as labeled in Fig. 5.38
reduces ID2. If the tail and bias current in the top A1 amplifier are identical to the corresponding
values in the bottom A1 amplifier, and if the fractional mismatches in the differential pairs are
identical, the reductions in |ID1| and ID2 caused by the mismatches intentionally introduced
into the differential pairs are equal, and Vo = 0 when Vi = 0 is assumed. In other words, the
offset of the entire output stage shown in Fig. 5.38 is zero even with nonzero VOS in the error
amplifiers.

Because a design goal is to bias M1 in the active region when Vi = 0, the offset must be
chosen to be small enough that ID3 > 0 when Vo = Vi = 0. Also, the error amplifiers contain
some unintentional mismatches stemming from random effects in practice. Because another
design goal is to bias M11 in cutoff, the random component must not be allowed to be larger
than the systematic offset in magnitude and opposite in polarity. Therefore, VOS is chosen to
be bigger than the expected random offset.

Since the quiescent output current is controlled by the A1 error amplifiers along with M1
and M2, the gain of the A2 error amplifiers driving M11 and M12 need not be small. With large
A2, M11 or M12 becomes the dominant output device for large output magnitudes if the aspect
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ratios of M11 and M12 are at least as big as M1 and M2, respectively. Furthermore, increasing
A2 has the advantage of increasing the loop gain when M11 or M12 turns on. This loop gain
is related to the product of A2, gm11 or gm12, and RL. Increasing the loop gain reduces the
error between the input and output, as shown in Chapter 8. If M11 conducts, increasing A2
allows the output stage to drive reduced loads with constant gm11 and error. If the load is fixed,
increasing A2 allows the transconductance to be reduced, which in turn allows (W∕L)11 to be
reduced. One potential concern here is that reducing the transistor sizes also reduces the range
of outputs for which the devices operate in the active region. If M11 operates in the triode
region, its drain-source resistance ro11 is finite, and the loop gain is proportional to the product
A2gm11(ro11 ∥ RL). Thus, operation of M11 in the triode region increases the error by reducing
gm11 and ro11. However, increasing A2 compensates for this effect. Therefore, a key advantage
of the output-stage configuration shown in Fig. 5.38 is that it allows the output swing with a
given level of nonlinearity to be increased by allowing the dominant transistor to operate in
the triode region.

The A1 and A2 amplifiers together form the two-stage error amplifiers that drive M11
and M12. The A2 amplifiers operate on the differential outputs of the A1 amplifiers. Since
the common-mode components of the outputs of the A1 amplifiers are well controlled by
diode-connected loads, differential pairs are not required at the inputs of the A2 amplifiers.
Figure 5.40 shows a schematic of the top A2 amplifier.19 A complementary configuration
used for the bottom A2 amplifier is not shown for simplicity. The inputs are applied to the
gates of common-source transistors M21 and M22. The cascode current mirror M23−M26 then
converts the differential signal into a single-ended output. Because the output resistance of
the cascode-current mirror is large compared to the output resistance of the common-source
transistor M22,

A2 ≃ gm22ro22 (5.154)

and A2 ≃ 70 in Ref. 19.
To determine the range of input voltages for which M11 and M12 are both off, let Vg11

represent the voltage from the gate of M11 to ground. Assuming that the gains A1 and A2 are
constant,

Vg11 = [Vo − (Vi − VOS)]A1A2 + K (5.155)

BIAS BIAS

M25 M26

–VSS

VDD

V2t

Vg11

M21

M23 M24

M22

–

+

+

–

Figure 5.40 Schematic of the top
A2 amplifier.
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where K is a constant. If the differential input voltage to the top A2 amplifier shown in Fig. 5.40
is zero, Vg11 = −VSS + Vt25 + Vov25 so that Id21 = Id22. Substituting this boundary condition
into (5.155) gives K = −VSS + Vt25 + Vov25; therefore,

Vg11 = [Vo − (Vi − VOS)]A1A2 − VSS + Vt25 + Vov25 (5.156)

Also, (5.117) with gm = gm1 = gm2 gives Vo in terms of Vi for the output stage in Fig. 5.38
as long as the random offset is negligible, both M1 and M2 operate in the active region, and
M11 and M12 are off. Since the gates of M1 and M2 are each driven by only one output of the
corresponding A1 amplifiers, A = A1∕2. With these substitutions, (5.117) gives

Vo =
Vi

1 + 1
A1gm1RL

(5.157)

To turn M11 on, Vg11 < VDD − |Vt11|. Substituting this condition and (5.157) into (5.156) gives

Vi(min) = VOS(1 + A1gm1RL) −
(VDD + VSS − |Vt11| − Vt25 − Vov25)(1 + A1gm1RL)

A1A2
(5.158)

where Vi(min) is the minimum value of Vi for which M11 conducts nonzero drain current. To
interpret this result, let A2 → ∞. Then to turn M11 on, the required differential input voltage of
the top A2 amplifier V2t = 0. Therefore, the required differential input of the top A1 amplifier
is zero; that is,

Vo = Vi − VOS (5.159)

This equation and (5.157) are both plotted in Fig. 5.41. As the input voltage increases, the
output voltage follows with a slope less than unity if RL is finite, as shown by the solid plot.
Therefore, as Vi increases, Vi − Vo also increases. To turn M11 barely on, this difference must
be equal to VOS so that the circuit operates at the intersection of the two lines in Fig. 5.41.
Substituting (5.157) into (5.159) gives

Vi(min) = VOS(1 + A1gm1RL) (5.160)

This equation agrees with the result that would be obtained by allowing A2 → ∞ in (5.158).
The term in parentheses in (5.160) is equal to the reciprocal of the difference in the slopes of
the two lines in Fig. 5.41.

From (5.159)

From (5.157)

Vi
Vi(min)

–VOS

Vo

Figure 5.41 Graphical interpretation of Vi(min),
which is the minimum Vi needed to turn on M11 in
Fig. 5.38.
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◼ EXAMPLE
Find the minimum input voltage in Fig. 5.38 for which M11 turns on, assuming at first that
A2 → ∞ and then that A2 = 70. Let VOS = 10 mV, A1 = 8, gm1 = 5 mA/V, RL = 60 Ω, VDD =
VSS = 2.5 V, Vt11 = −0.7 V, Vt25 = 0.7 V, and Vov25 = 0.1 V.

From (5.160),
Vi(min) = 10 mV[1 + 8(0.005)(60)] = 34 mV

when A2 → ∞. On the other hand, when A2 = 70, (5.158) shows that

Vi(min) = 10 mV[1 + 8(0.005)(60)] − 3.5[1 + 8(0.005)(60)]
8(70)

≃ 0.13 mV

This example shows that the minimum input voltage required to turn on M11 is reduced
from the value given in (5.160) when A2 is finite, because the fractional term in (5.158) is
positive.◼

The key point of this analysis is that M11 and M12 in Fig. 5.38 remain off for only a small
range of input voltages. Therefore, the nonlinearity introduced by turning on M11 or M12 occurs
when |Vi| is small. As a result, this circuit is well suited for the ISDN (Integrated Service Digi-
tal Network) line-driving application for which it was designed because the required four-level
output code does not include zero, avoiding distortion that would be introduced by turning M11
and M12 on or off19 if a zero-level output pulse were required.

PROBLEMS
5.1 A circuit as shown in Fig. 5.1 has VCC =

15 V,R1 = R2 = 0, R3 = 5 kΩ, RL = 2 kΩ, VCE(sat) =
0.2 V, and VBE(on) = 0.7 V. All device areas are equal.

(a) Sketch the transfer characteristic from Vi

to Vo.

(b) Repeat (a) if RL = 10 kΩ.

(c) Sketch the waveform of Vo if a sinusoidal
input voltage with an amplitude (zero to peak) of 10 V
is applied at Vi in (a) and (b) above.

(d) Use SPICE to verify (a), (b), and (c) and also
to determine second- and third-harmonic distortion in
Vo for the conditions in (c).

5.2 .(a) For the circuit of Problem 5.1, sketch
load lines in the Ic-Vce plane for RL = 2 kΩ and RL =
10 kΩ.

(b) Calculate the maximum average sinusoidal
output power that can be delivered to RL (both val-
ues) before clipping occurs in (a) above. Sketch cor-
responding waveforms for Ic1,Vce1, and Pc1.

(c) Calculate the circuit efficiency for each
value of RL in (b). (Neglect power dissipated in Q3

and R3.)

(d) Select RL for maximum efficiency in this cir-
cuit, and calculate the corresponding average output
power with sinusoidal signals.

5.3 .(a) Prove that any load line tangent to a
power hyperbola makes contact with the hyperbola at
the midpoint of the load line.

(b) Calculate the maximum possible instanta-
neous power dissipation in Q1 for the circuit of
Problem 5.1 with RL = 2 kΩ and RL = 10 kΩ.

(c) Calculate the average power dissipated in Q1

for the circuit of Problem 5.1 with RL = 2 kΩ and
RL = 10 kΩ. Assume that Vo is sinusoidal with an
amplitude equal to the maximum possible before clip-
ping occurs.

5.4 If 𝛽F = 100 for Q1 in Problem 5.1, calculate
the average signal power delivered to Q1 by its driver
stage if Vo is sinusoidal with an amplitude equal to
the maximum possible before clipping occurs. Repeat
for RL = 10 kΩ. Thus calculate the power gain of the
circuit.

5.5 Calculate the incremental slope of the trans-
fer characteristic of the circuit of Problem 5.1 at the
quiescent point and at the extremes of the signal swing
with a peak sinusoidal output of 1 V and RL = 2 kΩ.

5.6 .(a) For the circuit of Problem 5.1, draw
load lines in the Ic-Vce plane for RL = 0 and RL → ∞.
Use an Ic scale from 0 to 30 mA. Also draw constant
power hyperbolas for Pc = 0.1 W, 0.2 W, and 0.3 W.
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What is the maximum possible instantaneous power
dissipation in Q1 for the above values of RL? Assume
that the driver stage can supply a maximum base cur-
rent to Q1 of 0.3 mA and 𝛽F = 100 for Q1.

(b) If the maximum allowable instantaneous
power dissipation in Q1 is 0.2 W, calculate the min-
imum allowable value of RL. (A graphical solution is
the easiest.)

5.7 Calculate the incremental slope of the trans-
fer characteristic of the circuit of Fig. 5.8a at the qui-
escent point and at the extremes of the signal swing
with vi = v̂i sin𝜔t and v̂i = 0.5 V:

(a) Let A+
v = Av when vi is maximum.

(b) Let AvQ = Av when vi = 0.

(c) Let A−
v = Av when vi is minimum.

Assume that VI = 0, VDD = 2.5 V, IQ = 1 mA,
and RL → ∞. Also assume that (W∕L)1 = 1000,
k′ = 200 μA/V2, Vt0 = 0.7 V, 𝜙f = 0.3 V, and 𝛾 =
0.5 V1∕2.

5.8 When the distortion is small, the second- and
third-harmonic-distortion terms of an amplifier can be
calculated from the small-signal gains at the quiescent
and extreme operating points. Starting with the power
series given in (5.41),

(a) Calculate an expression for the small-signal
gain Av = dvo∕dvi.

(b) Let vi = v̂i sin𝜔t as in (5.52), and derive
expressions for A+

v , AvQ, and A−
v as defined in

Problem 5.7.

(c) Define two normalized differential gain error
terms as

(i) E+ = (A+
v − AvQ)∕AvQ

(ii) E− = (A−
v − AvQ)∕AvQ

and calculate expressions for (E+ + E−) and
(E+ − E−).

(d) Compare the results of part (c) with (5.54)
and (5.57) to calculate HD2 and HD3 in terms of E+

and E−.

(e) Use the results of part (d) and Problem 5.7
to calculate HD2 and HD3 for the circuit of Fig. 5.8a
under the conditions given in Problem 5.7. Com-
pare the results to the results of the example in
Section 5.3.2.

5.9 Calculate second-harmonic distortion in the
common-source amplifier with a depletion load shown
in Fig. 4.20a for a peak sinusoidal input voltage
v̂i = 0.01 V and VDD = 3 V. Assume that the dc input
voltage is adjusted so that the dc output voltage
is 1 V. For simplicity, assume that the two transis-
tors have identical parameters except for unequal

threshold voltages. Let W∕L = 100, k′ = 200 μA/V2,
and 𝜆 = 0. Assume Vt1|VSB1=0 = 0.6 V, Vt2|VSB2=0 =
−0.6 V, 𝜙f = 0.3 V, and 𝛾 = 0.5 V1∕2. Use SPICE to
verify the result.

5.10 The circuit of Fig. 5.11a has VCC = 15 V,
RL = 2 kΩ,VBE(on) = 0.6 V, and VCE(sat) = 0.2 V.

(a) Sketch the transfer characteristic from Vi to
Vo, assuming that the transistors turn on abruptly for
Vbe = VBE(on).

(b) Sketch the output voltage waveform and the
collector current waveform in each device for a sinu-
soidal input voltage of amplitude 1 V, 10 V, 20 V.

(c) Check (a) and (b) using SPICE with IS =
10−16 A, 𝛽F = 100, rb = 100 Ω, and rc = 20 Ω for
each device. Use SPICE to determine second- and
third-harmonic distortion in Vo for the conditions
in (b).

5.11 For the circuit of Fig. 5.11a, assume that
VCC = 12 V, RL = 1 kΩ, and VCE(sat) = 0.2 V. Assume
that there is sufficient sinusoidal input voltage avail-
able at Vi to drive Vo to its limits of clipping. Calculate
the maximum average power that can be delivered
to RL before clipping occurs, the corresponding
efficiency, and the maximum instantaneous device
dissipation. Neglect crossover distortion.

5.12 For the circuit of Problem 5.10, calculate
and sketch the waveforms of Ic1,Vce1, and Pc1 for
device Q1 over one cycle. Do this for output volt-
age amplitudes (zero to peak) of 11.5 V, 6 V, and 3 V.
Neglect crossover distortion, and assume sinusoidal
signals.

5.13 In the circuit of Fig. 5.13, VCC = 12 V,
IQ = 0.1 mA, RL = 1 kΩ, and for all devices IS =
10−15A, 𝛽F = 150. Calculate the value of Vi and the
current in each device for Vo = 0, ±5 V, and ±10 V.
Then sketch the transfer characteristic from Vo = 10 V
to Vo = −10 V.

5.14 For the output stage of Fig. 5.18, assume
that VCC = 15 V and for all devices VCE(sat) = 0.2 V,
VBE(on) = 0.7 V, and 𝛽F = 50.

(a) Calculate the maximum positive and nega-
tive limits of Vo for RL = 10 kΩ and RL = 2 kΩ.

(b) Calculate the maximum average power that
can be delivered to RL before clipping occurs for RL =
10 kΩ and RL = 2 kΩ. Calculate the correspond-
ing circuit efficiency (for the output devices only)
and the average power dissipated per output device.
Neglect crossover distortion, and assume sinusoidal
signals.

5.15 For the output stage of Fig. 5.20a, assume
that VCC = 15 V, 𝛽F(pnp) = 50, 𝛽F(npn) = 200, and
for all devices VBE(on) = 0.7 V, VCE(sat) = 0.2 V, and
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IS = 10−14 A. Assume that the magnitude of the col-
lector current in Q13A is 0.2 mA.

(a) Calculate the maximum positive and nega-
tive limits of Vo for RL = 10 kΩ,RL = 1 kΩ, and RL =
200 Ω.

(b) Calculate the maximum average power that
can be delivered to RL = 1 kΩ before clipping occurs,
and the corresponding circuit efficiency (for the output
devices only). Also calculate the peak instantaneous
power dissipation in each output device. Assume sinu-
soidal signals.

5.16 .(a) For the circuit of Problem 5.15, cal-
culate the maximum possible average output power
that can be delivered to a load RL if the instanta-
neous power dissipation per device must be less than
100 mW. Also specify the corresponding value of RL

and the circuit efficiency (for the output devices only).
Assume sinusoidal signals.

(b) Repeat (a) if the maximum instantaneous
power dissipation per device is 200 mW.

5.17 For the circuit of Problem 5.15, calculate
bias currents in Q23, Q20, Q19, Q18, and Q14 for Vo =
−10 V with RL = 1 kΩ. Use IS = 10−14 A for all
devices.

5.18 An all-npn Darlington output stage is shown
in Fig. 5.42. For all devices, VBE(on) = 0.7 V,
VCE(sat) = 0.2 V, and 𝛽F = 100. The magnitude of the
collector current in Q3 is 2 mA.

BIAS

+12 V

–12 V

2 mA

Q3

D3

D2

D1

Q4

Q2

Q1

Q5

Vi

RL Vo

+

+

–

–

Figure 5.42 All-npn Darlington output stage.

(a) If RL = 8 Ω, calculate the maximum positive
and negative limits of Vo.

(b) Calculate the power dissipated in the circuit
for Vo = 0 V.

(c) Calculate the maximum average power that
can be delivered to RL = 8 Ω before clipping occurs
and the corresponding efficiency of the complete
circuit. Also calculate the maximum instantaneous
power dissipated in each output transistor. Assume
that feedback is used around the circuit so that Vo is
approximately sinusoidal.

(d) Use SPICE to plot the dc transfer characteris-
tic from Vi to Vo as Vo is varied over the complete out-
put voltage range with RL = 8 Ω. For Q1, Q5, and D1,
assume IS = 10−15 A, rb = 1 Ω, rc = 0.2 Ω, 𝛽F = 100,
and VA = 30 V. Assume Q4, Q2, D2, and D3 are 1∕100
the size of the large devices. For Q3, assume rc = 50 Ω
and VA = 30 V.

5.19 For the circuit of Fig. 5.25, assume that
VCC = 15 V, 𝛽F(pnp) = 30, 𝛽F(npn) = 150, IS(npn) =
10−14 A, IS(pnp) = 10−15 A, and for all devices
VBE(on) = 0.7 V and VCE(sat) = 0.2 V. Assume that Q5

and Q6 are npn devices and the collector current in Q7

is 0.15 mA.

(a) Calculate the maximum positive and nega-
tive limits of Vo for RL = 1 k Ω.

(b) Calculate quiescent currents in Q1−Q7 for
Vo = 0 V.
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(c) Calculate the maximum average output
power (sine wave) that can be delivered to RL if the
maximum instantaneous dissipation in any device
is 100 mW. Calculate the corresponding value of RL,
and the peak currents in Q3 and Q4.

5.20 A BiCMOS Class AB output stage
is shown in Fig. 5.43. Device parameters are
𝛽F(npn) = 80, 𝛽F(pnp) = 20,VBE(on) = 0.8 V , μpCox =
26 μA/V2, and Vt = −0.7 V.

(a) Calculate bias currents in all devices for
Vo = 0.

(b) Calculate the positive and negative limits
of Vo for RL = 200 Ω. Thus calculate the maximum
average power that can be delivered to RL before clip-
ping occurs.

(c) Use SPICE to check (a) and also to plot the
complete dc transfer characteristic of the circuit from
Vi to Vo. Also plot the waveforms of Ic1, Ic2, and Id2

for a sinusoidal output voltage at Vo of 2 V and then
4 V zero to peak. In the simulation, assume bipolar
parameters as in Fig. 2.32 and MOS parameters as in
Table 2.3 (apart from the values of 𝛽F and μpCox given
above).

+5 V

–5 V

R3
500

R4
100

R1

Vi

M1

M2

M3

×5
Q6

Q3
×25

Q1
×25

Q2
×25

×1
Q5

100 μA

10 kΩ

R210 kΩ

500

1

500

1

2

2

+

–

Vo
RL

200

+

–

Figure 5.43 BiCMOS Class AB output stage.

5.21 Find the minimum output voltage for the cir-
cuit in Fig. 5.31.

5.22 Design a CMOS output stage based on the
circuit of Fig. 5.31 to deliver ±1 V before clipping at
Vo with RL = 1 kΩ and VDD = VSS = 2.5 V. Use 10 μA

bias current in M3 and 100 μA idling current in M1 and
M2. Set (W∕L)3 = 50∕1 and (W∕L)6 = 25∕1. Spec-
ify the W∕L for M1−M6 that minimizes the total chip
area. Use the transistor parameters in Table 2.3, except
assume that Leff = Ldrwn for simplicity. The minimum
channel length is 1 μm. Assume the body of each
n-channel transistor is connected to−VSS and the body
of each p-channel transistor is connected to VDD. Use
SPICE to verify your design by plotting the Vo versus
Vi characteristic.

5.23 For the circuit in Fig. 5.34, assume that the
input voltage Vi is high enough that M1 operates in the
active region but M2 is cut off. Using the same assump-
tions as in the derivation of (5.116), show that Vo is
related to Vi by the following expression:

Vo = Vi +
Vov

A
− VOSP + 1

k′
W
L

A2RL

− 1

k′
W
L

A2

√
1

R2
L

+ 2k′
W
L

A2

RL

(
Vi +

Vov

A
− VOSP

)

5.24 Using a circuit that is the complement of the
one in Fig. 5.35, draw the schematic for the bottom
error amplifier and output transistor M2, which are
shown in block diagram form in Fig. 5.32. In the error
amplifier, label the transistors M21−M27, where M21 is
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the complement of M11, M22 is the complement of M12,
etc. Also label the current sources complementary to
IBIAS and ITAIL as IBIASP and ITAILP, respectively.

5.25 Using the schematics from Fig. 5.35 and
Problem 5.24, design the output stage shown in
Fig. 5.32 to satisfy the following requirements:

(a) VDD = VSS = 2.5 V.

(b) The standby power dissipation should be no
more than 70 mW.

(c) RL = 100 Ω.

(d) The maximum allowed gain error with zero
offsets and all transistors operating in the active region
is 1 percent.

(e) In Fig. 5.35, (W∕L)17 = (W∕L)1∕100 and
(W∕L)13 = (W∕L)14 = (W∕L)1∕10. Similarly, in
Problem 5.24, (W∕L)27 = (W∕L)2∕100 and
(W∕L)23 = (W∕L)24 = (W∕L)2∕10.

(f) To control the quiescent current, the maxi-
mum allowed error-amplifier gain is 5.

(g) Your solution is allowed to use four ideal
current sources, two in each error amplifier. To allow
these ideal current sources to be replaced by real tran-
sistors in a design step not required in this problem, the
voltage across each ideal current source in Fig. 5.35
must be at least 0.5 V when Vo ≥ 0. Similarly, the
voltage across each ideal current source in the com-
plementary circuit from Problem 5.24 must be at least
0.5 V when Vo ≤ 0.

(h) To guarantee that M16 and M26 do not cut
off under these conditions, assume ITAIL = 5IBIAS in
Fig. 5.35 and ITAILP = 5IBIASP in Problem 5.24.

I2

I1

RL

+
Vo
−+

Vi−

VDD

(a)

−VSS

I1 I2 M1

M2

M3

M4

M5

M6

VDD

−VSS

I2
M1

M2

M3M5

I2

RL

+
Vo
−

+
Vi−

(b)

Figure 5.44 Super-source-follower configurations: (a) with M1 as a p-channel transistor and M2 as an
n-channel transistor and (b) with both M1 and M2 as p-channel transistors.

(i) For both n- and p-channel transistors,
assume that 𝜆 = 0 and Ld = Xd = 0, and ignore the
body effect. Use Ldrwn = 1 μm for all transistors, and
use Table 2.3 for other transistor parameters.

(j) The distortion of the output stage should be
minimized under the above conditions.

Verify your design using SPICE.

5.26 For the super source follower of Fig. 5.44a,
sketch the transfer characteristic from Vi to Vo

and label the key points. Consider two cases: (1)
RL = RL1 → ∞ and (2) RL = RL2 = 60 kΩ. For sim-
plicity, ignore the body effect and assume that
ro → ∞ for all transistors operating in saturation.
Use the following data: I1 = 20 μA, I2 = 10 μA,
Vtn = 0.7 V, Vtp = −0.7 V, and VDD = VSS = 2.5 V.
Also, when RL = RL1 → ∞, assume Vovn = 0.1 V and
Vovp = −0.2 V.

VDD

I3

M1

M2

M8

I2

RL

+
Vo
−

+
Vi−

Figure 5.45 A super source follower with increased
linear range.20
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5.27 Repeat the previous problem for the super
source follower of Fig. 5.44b. Since I1 is not used in
this circuit, assume I1 = 0.

5.28 For the super source follower of Fig. 5.45,
sketch the transfer characteristic from Vi to Vo

and label the key points. Consider two cases: (1)
RL = RL1 → ∞ and (2) RL = RL2, where I2RL2 is
less than the maximum output in the first case for
which all the transistors operate in saturation. Ignore
the body effect, and assume that ro → ∞ for all
transistors operating in saturation. Compare your

labeled plot to Fig. 5.10c and explain the differences.
Note that the negative feedback loop that reduces
the output resistance in this circuit is more compli-
cated than in Fig. 5.10a because it includes source
follower M8 and I3, which drives the gate of M2

here. In practice, this source follower introduces a
frequency-dependent phase shift at high frequency,
and the circuit must be carefully considered from a
stability standpoint to avoid undesired oscillation.20

Stability analysis techniques are described in
Chapter 9.
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CHAPTER 6

Operational Amplifiers with
Single-Ended Outputs

In the previous three chapters, the most important circuit building blocks utilized in analog
integrated circuits (ICs) have been studied. Most analog ICs consist primarily of these basic
circuits connected in such a way as to perform the desired function. Although the variety of
standard and special-purpose custom ICs is almost limitless, a few standard circuits stand out
as perhaps having the widest application in systems of various kinds. These include opera-
tional amplifiers, voltage regulators, and analog-to-digital (A/D) and digital-to-analog (D/A)
converters. In this chapter, we will consider monolithic operational amplifiers (op amps) with
single-ended outputs, both as an example of the utilization of the previously described circuit
building blocks and as an introduction to the design and application of this important class
of analog circuit. Op amps with fully differential outputs are considered in Chapter 12, and
voltage-regulator circuits are considered in Chapter 8. The design of A/D and D/A convert-
ers is not covered, but it involves application of the circuit techniques described throughout
the book.

An ideal op amp with a single-ended output has a differential input, infinite voltage gain,
infinite input resistance, and zero output resistance. A conceptual schematic diagram is shown
in Fig. 6.1. While actual op amps do not have these ideal characteristics, their performance is
usually sufficiently good that the circuit behavior closely approximates that of an ideal op amp
in most applications.

In op-amp design, bipolar transistors offer many advantages over their CMOS counterparts,
such as higher transconductance for a given current, higher gain (gmro), higher speed, lower
input-referred offset voltage, and lower input-referred noise voltage. (The topic of noise is
considered in Chapter 11.) As a result, op amps made from bipolar transistors offer the best
performance in many cases, including for example dc-coupled, low-offset, low-drift applica-
tions. For these reasons, bipolar op amps became commercially significant first and still usually
offer superior analog performance. However, CMOS technologies have become dominant in
building the digital portions of signal-processing systems because CMOS digital circuits are
smaller and dissipate less power than their bipolar counterparts. Since these systems often
operate on signals that originate in analog form, analog circuits such as op amps are required
to interface to the digital CMOS circuits. To reduce system cost and increase portability, analog
and digital circuits are now often integrated together, providing a strong economic incentive
to use CMOS op amps.

In this chapter, we first explore several applications of op amps to illustrate their versatility
in analog circuit and system design. CMOS op amps are considered next. Then design

Analysis and Design of Analog Integrated Circuits, Sixth Edition. Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, and Robert G. Meyer
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a → ∞ Figure 6.1 Ideal operational
amplifier.

considerations for improving various aspects of the low-frequency performance of CMOS op
amps are described. The high-frequency and transient responses of op amps are covered in
Chapters 7 and 9.

6.1 Applications of Operational Amplifiers
6.1.1 Basic Feedback Concepts

Virtually all op-amp applications rely on the principles of feedback. The topic of feedback
amplifiers is covered in detail in Chapter 8; we now consider a few basic concepts necessary
for an understanding of op-amp circuits. A generalized feedback amplifier is shown in Fig. 6.2.
The block labeled a is called the forward or basic amplifier, and the block labeled f is called the
feedback network. The gain of the basic amplifier when the feedback network is not present is
called the open-loop gain, a, of the amplifier. The function of the feedback network is to sense
the output signal So and develop a feedback signal Sfb, which is equal to f So, where f is usually
less than unity. This feedback signal is subtracted from the input signal Si, and the difference S𝜖
is applied to the basic amplifier. The gain of the system when the feedback network is present
is called the closed-loop gain. For the basic amplifier, we have

So = aS𝜖 = a(Si − Sfb) = a(Si − f So) (6.1)

and thus

So

Si
= a

1 + af
= 1

f

(
af

1 + af

)
= 1

f

( T
1 + T

)
(6.2)

a

f

Si So

S 

Sfb

+

–

ϵ

Figure 6.2 A conceptual feedback
amplifier.
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where T = af is called the loop gain. When T becomes large compared to unity, the closed-
loop gain becomes

lim
T→∞

So

Si
= 1

f
(6.3)

Since the feedback network is composed of passive components, the value of f can be set
much more accurately than the value of the open-loop gain a. If T ≫ 1, the closed-loop
gain is approximately equal to 1∕f , independent of any variations in a. This independence
of closed-loop performance from the parameters of the active amplifier is the primary factor
motivating the wide use of op amps as active elements in analog circuits.

For the circuit shown in Fig. 6.2, the feedback signal tends to reduce the magnitude of
S𝜖 below that of the open-loop case (for which f = 0) when a and f have the same sign.
This case is called negative feedback and is the case of practical interest in this chapter.

With this brief introduction to feedback concepts, we proceed to a consideration of several
examples of useful op-amp configurations. Because these example circuits are simple, direct
analysis with Kirchoff’s laws is easier than attempting to consider them as feedback amplifiers.
In Chapter 8, more complicated feedback configurations are considered in which the use of
feedback concepts as an analytical tool is more useful than in these examples.

6.1.2 Inverting Amplifier

The inverting amplifier connection is shown in Fig. 6.3a.1–3 We assume that the op-amp input
resistance is infinite and that the output resistance is zero as shown in Fig. 6.1. From KCL at
node X,

Vs − Vi

R1
+

Vo − Vi

R2
= 0 (6.4)

Since R2 is connected between the amplifier output and the inverting input, the feedback is
negative. Therefore, Vi would be driven to zero with infinite open-loop gain. On the other
hand, with finite open-loop gain a,

Vi =
−Vo

a
(6.5)

Substituting (6.5) into (6.4) and rearranging gives

Vo

Vs
= −

R2

R1

⎡⎢⎢⎢⎢⎣
1

1 + 1
a

(
1 +

R2

R1

)
⎤⎥⎥⎥⎥⎦

(6.6)

If the gain of the op amp is large enough that

a

(
R1

R1 + R2

)
≫ 1 (6.7)

then the closed-loop gain is

Vo

Vs
≃ −

R2

R1
(6.8)
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When the inequality in (6.7) holds, (6.8) shows that the closed-loop gain depends primarily
on the external passive components R1 and R2. Since these components can be selected with
arbitrary accuracy, a high degree of precision can be obtained in closed-loop performance
independent of variations in the active device (op-amp) parameters. For example, if the op-amp
gain were to change from 5 × 104 to 105, this 100 percent increase in gain would have almost
no observable effect on closed-loop performance, provided (6.7) is valid.

◼ EXAMPLE

Calculate the gain of the circuit of Fig. 6.3a for a = 104 and a = 105, and R1 = 1 kΩ,
R2 = 10 kΩ.

From (6.6) with a = 104,

A =
Vo

Vs
= −10

⎛⎜⎜⎜⎝
1

1 + 11

104

⎞⎟⎟⎟⎠ = −9.9890 (6.9a)

From (6.6) with a = 105,

A =
Vo

Vs
= −10

⎛⎜⎜⎜⎝
1

1 + 11

105

⎞⎟⎟⎟⎠ = −9.99890 (6.9b)

◼

The large gain of op amps allows the approximate analysis of circuits like that of Fig. 6.3a
to be performed by the use of summing-point constraints.1 If the op amp is connected in a

(a)
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I1 I2
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+
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Figure 6.3 (a) Inverting amplifier configuration. (b) Noninverting amplifier configuration. (c) Voltage-
follower configuration.
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negative-feedback circuit, and if the gain of the op amp is very large, then for a finite value of
output voltage, the input voltage must approach zero since

Vi = −
Vo

a
(6.10)

Thus one can analyze such circuits approximately by assuming a priori that the op-amp input
voltage is driven to zero. An implicit assumption in doing so is that the feedback is negative
and that the circuit has a stable operating point at which (6.10) is valid.

The assumption that Vi = 0 is called a summing-point constraint. A second constraint is
that no current can flow into the op-amp input terminals, since no voltage exists across the
input resistance of the op amp if Vi = 0. This summing-point approach allows an intuitive
understanding of the operation of the inverting amplifier configuration of Fig. 6.3a. Since the
inverting input terminal is forced to ground potential, the resistor R1 serves to convert the
voltage Vs to an input current of value Vs∕R1. This current cannot flow in the input terminal of
an ideal op amp; therefore, it flows through R2, producing a voltage drop of VsR2∕R1. Because
the op-amp input terminal operates at ground potential, the input resistance of the overall
circuit as seen by Vs is equal to R1. Since the inverting input of the amplifier is forced to
ground potential by the negative feedback, it is sometimes called a virtual ground. (Unlike a
real ground, a virtual ground cannot source or sink current.)

6.1.3 Noninverting Amplifier

The noninverting amplifier is shown in Fig. 6.3b.1–3 Using Fig. 6.1, assume that no current
flows into the inverting op-amp input terminal. If the open-loop gain is a, Vi = Vo∕a and

Vx = Vo

(
R1

R1 + R2

)
= Vs −

Vo

a
(6.11)

Rearranging (6.11) gives

Vo

Vs
=
(

1 +
R2

R1

) aR1

R1 + R2

1 +
aR1

R1 + R2

≃
(

1 +
R2

R1

)
(6.12)

The approximation in (6.12) is valid to the extent that aR1∕(R1 + R2) ≫ 1.
In contrast to the inverting case, this circuit displays a very high input resistance, as seen

by Vs, because of the type of feedback used. (See Chapter 8.) Also unlike the inverting case,
the noninverting connection causes the common-mode input voltage of the op amp to be equal
to Vs. An important variation of this connection is the voltage follower, in which R1 → ∞ and
R2 = 0. This circuit is shown in Fig. 6.3c, and its gain is close to unity if a ≫ 1.

6.1.4 Differential Amplifier

The differential amplifier is used to amplify the difference between two voltages. The circuit
is shown in Fig. 6.4.1,2 For this circuit, Ii1 = 0, and thus resistors R1 and R2 form a voltage
divider. Voltage Vx is then given by

Vx = V1

(
R2

R1 + R2

)
(6.13)
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Figure 6.4 Differential amplifier
configuration.

The current I1 is

I1 =
(V2 − Vy

R1

)
= I2 (6.14)

The output voltage is given by

Vo = Vy − I2R2 (6.15)

If the open-loop gain is infinite, the summing-point constraint that Vi = 0 is valid and forces
Vy = Vx. Substituting Vy = Vx, (6.13), and (6.14) into (6.15) and rearranging gives

Vo =
R2

R1
(V1 − V2) (6.16)

The circuit thus amplifies the difference voltage (V1 − V2).
Differential amplifiers are often required to detect and amplify small differences between

two sizable voltages. For example, a typical application is the measurement of the difference
voltage between the two arms of a Wheatstone bridge. As in the case of the noninverting
amplifier, the op amp of Fig. 6.4 experiences a common-mode input that is almost equal to the
common-mode voltage (V1 + V2)∕2 applied to the input terminals when R2 ≫ R1.

6.1.5 Nonlinear Analog Operations

By including nonlinear elements in the feedback network, op amps can be used to perform non-
linear operations on one or more analog signals. The logarithmic amplifier, shown in Fig. 6.5,
is an example of such an application. Log amplifiers find wide application in instrumentation
systems where signals of very large dynamic range must be sensed and recorded. The opera-
tion of this circuit can again be understood by application of the summing-point constraints.
Because the input voltage of the op amp must be zero, the resistor R serves to convert the input
voltage Vs into a current. This same current must then flow into the collector of the transistor.
Thus the circuit forces the collector current of the transistor to be proportional to the input volt-
age. Furthermore, the transistor operates in the forward-active region because VCB ≃ 0. Since
the base-emitter voltage of a bipolar transistor in the forward-active region is logarithmically
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Figure 6.5 Logarithmic amplifier
configuration.

related to the collector current, and since the output voltage is just the emitter-base voltage of
the transistor, a logarithmic transfer characteristic is produced. In terms of equations,

I1 =
Vs

R
= Ic = IS

[
exp

(
Vbe

VT

)
− 1

]
≃ IS exp

(
Vbe

VT

)
(6.17)

and

Vo = −Vbe (6.18)

Thus

Vo = −VT ln

(
Vs

ISR

)
(6.19)

The log amplifier is only one example of a wide variety of op-amp applications in which a
nonlinear feedback element is used to develop a nonlinear transfer characteristic. For example,
two log amplifiers can be used to develop the logarithm of two different signals. These volt-
ages can be summed, and then the exponential function of the result can be developed using an
inverting amplifier connection with R1 replaced with a diode. The result is an analog multiplier.
Other nonlinear operations such as limiting, rectification, peak detection, squaring, square
rooting, raising to a power, and division can be performed in conceptually similar ways.

6.1.6 Integrator, Differentiator

The integrator and differentiator circuits, shown in Fig. 6.6, are examples of using op amps
with reactive elements in the feedback network to realize a desired frequency response or
time-domain response.1,2 In the case of the integrator, the resistor R is used to develop a current
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Figure 6.6 (a) Integrator configuration. (b) Differentiator configuration.
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I1 that is proportional to the input voltage. This current flows into the capacitor C, whose
voltage is proportional to the integral of the current I1 with respect to time. Since the output
voltage is equal to the negative of the capacitor voltage, the output is proportional to the integral
of the input voltage with respect to time. In terms of equations,

I1 =
Vs

R
= I2 (6.20)

and

Vo = − 1
C ∫

t

0
I2d𝜏 + Vo(0) (6.21)

Combining (6.20) and (6.21) yields

Vo(t) = − 1
RC ∫

t

0
Vs(𝜏)d𝜏 + Vo(0) (6.22)

The performance limitations of real op amps limit the range of Vo and the rate of change of Vo
for which this relationship is maintained.

In the case of the differentiator, the capacitor C is connected between Vs and the inverting
op-amp input. The current through the capacitor is proportional to the time derivative of the
voltage across it, which is equal to the input voltage. This current flows through the feedback
resistor R, producing a voltage at the output proportional to the capacitor current, which is
proportional to the time rate of change of the input voltage. In terms of equations,

I1 = C
dVs

dt
= I2 (6.23)

Vo = −RI2 = −RC
dVs

dt
(6.24)

6.1.7 Internal Amplifiers

The performance objectives for op amps to be used within a monolithic analog subsystem
are often quite different from those of general-purpose op amps that use external feedback
elements. In a monolithic analog subsystem, only a few of the amplifiers must drive a signal
off-chip where the capacitive and resistive loads are significant and variable. These amplifiers
will be termed output amplifiers, and the amplifiers whose outputs do not go off-chip will be
termed internal amplifiers. Perhaps the most important difference is that the load an internal
amplifier has to drive is well defined and often purely capacitive with a value of a few pico-
farads. In contrast, stand-alone general-purpose amplifiers usually must be designed to achieve
a certain level of performance that is independent of changes in capacitive loads up to several
hundred picofarads and resistive loads down to 2 kΩ or less.

6.1.7.1 Switched-Capacitor Amplifier. In MOS technologies, capacitors instead of
resistors are often used as passive elements in feedback amplifiers in part because capacitors
are often the best available passive components. Also, capacitors can store charge propor-
tional to analog signals of interest, and MOS transistors can act as switches to connect to the
capacitors without offset and with little leakage, allowing the discrete-time signal processing
of analog quantities. The topic of MOS switched-capacitor amplifiers is one important
application of internal amplifiers. Here, we introduce the application to help explain the
construction of MOS op amps.
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Figure 6.7 Inverting amplifier configuration with
capacitive feedback without dc bias for the inverting
op-amp input.

Figure 6.7 shows the schematic of an inverting amplifier with capacitive feedback in
contrast to the resistive feedback shown in Fig. 6.3a. If the op amp is ideal, the gain from
a change in the input ΔVs to a change in the output ΔVo is still given by the ratio of the
impedance of the feedback element C2 to the impedance of the input element C1, or

ΔVo

ΔVs
= −

1
𝜔C2

1
𝜔C1

= −
C1

C2
(6.25)

Unlike the case when resistors are used as passive elements, however, this circuit does not
provide dc bias for the inverting op-amp input because the impedances of both capacitors are
infinite at dc. To overcome this problem, switches controlled by a two-phase nonoverlapping
clock are used to control the operation of the above circuit. The resulting circuit is known as
a switched-capacitor amplifier.

Figure 6.8a shows the schematic of a switched-capacitor amplifier. Each switch in the
schematic is controlled by one of two clock phases 𝜙1 and 𝜙2, and the timing diagram is
shown in Fig. 6.8b. We will assume that each switch is closed when its controlling clock sig-
nal is high and open when its clock signal is low. Since 𝜙1 and 𝜙2 are never both high at the
same time, the switches controlled by one clock phase are never closed at the same time as
the switches controlled by the other clock phase. Because of this property, the clock signals
in Fig. 6.8b are known as nonoverlapping. For example, the left side of C1 is connected to the
input Vs through switch S1 when 𝜙1 is high and to ground through switch S2 when 𝜙2 is high,
but this node is never simultaneously connected to both the input and ground.

To simplify the description of the operation of switched-capacitor circuits, they are often
redrawn twice, once for each nonoverlapping clock phase. Figures 6.8c and 6.8d show the con-
nections when 𝜙1 is high (during 𝜙1) and when 𝜙2 is high (during 𝜙2), respectively. Switches
that are closed are assumed to be short circuits, and switches that are open are assumed to be
open circuits.

To find the output for a given input, an analysis based on charge conservation is used. After
switch S3 opens, the charge on the plates of the capacitors that connect to the op-amp input
node is conserved until this switch closes again. This property stems partly from the fact that
the passive elements connected to the op-amp input node are capacitors, which conduct zero
dc current. Also, if the op amp is constructed with an MOS differential input pair, the op-amp
input is connected to the gate of one transistor in the differential pair, and the gate conducts
zero dc current. Finally, if we assume that switch S3 conducts zero current when it is open, the
charge stored cannot leak away while S3 is open.

Since both sides of C2 are grounded in Fig. 6.8c, the charge stored on the plates of the
capacitors that connect to the op-amp input node during 𝜙1 is

Q1 = (0 − Vs)C1 + (0)C2 = (0 − Vs)C1 (6.26)
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Figure 6.8 (a) Schematic of a switched-capacitor amplifier with ideal switches. (b) Timing diagram of
clock signals. (c) Connections during 𝜙1. (d) Connections during 𝜙2.

Because the input voltage is sampled or stored onto capacitor C1 during𝜙1, this phase is known
as the input sample phase. If the op amp is ideal, the voltage Vi from the inverting op-amp input
to ground is driven to zero by negative feedback during𝜙2. Therefore, the charge stored during
𝜙2 is

Q2 = (0)C1 + (0 − Vo)C2 = (0 − Vo)C2 (6.27)
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Because the sampled charge appears on C1 during 𝜙1 and on C2 during 𝜙2, 𝜙2 is known as the
charge-transfer phase. By charge conservation, Q2 = Q1; therefore,

Vo

Vs
=

C1

C2
(6.28)

In (6.28), Vs represents the input voltage at the end of 𝜙1, and Vo represents the output voltage
at the end of 𝜙2. The shape of the output voltage waveform is not predicted by (6.28) and
depends on the rates at which the capacitors are charged and discharged. In practice, these
rates depend on the bandwidth of the op amp and the resistances of the closed switches. The
result in (6.28) is valid as long as the op amp is ideal, the input Vs is dc, and the intervals over
which 𝜙1 and 𝜙2 are high are long enough to completely charge and discharge the associated
capacitors. The ratio of Vo∕Vs in (6.28) is positive because if Vs > 0 during 𝜙1, the voltage
applied between the left side of C1 and ground decreases from a positive value to zero during
𝜙2. Therefore, this negative change in the applied voltage during 𝜙2 is multiplied by a negative
closed-loop amplifier gain, giving a positive ratio in (6.28).

MOS technologies are well suited to building switched-capacitor circuits for two key rea-
sons. First, the dc current that flows into the input terminals of MOS op amps is zero as long as
the inputs are connected only to the gates of MOS transistors. In contrast, bipolar op amps have
nonzero dc input currents that stem from finite 𝛽F in bipolar transistors. Second, the switches
in Fig. 6.8 can be implemented without offset by using MOS transistors, as shown in Fig. 6.9a.
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Figure 6.9 (a) Schematic of a switched-capacitor amplifier with n-channel MOS transistors used as
switches. (b) Clock waveforms with labeled voltages.



432 Chapter 6 ▪ Operational Amplifiers with Single-Ended Outputs

The arrows indicating the source terminals of M1–M5 are arbitrarily chosen in the sense that
the source and drain terminals are interchangeable. (Since the source is the source of electrons
in n-channel transistors, the source-to-ground voltage is lower than the drain-to-ground volt-
age.) Assume that the clock voltages alternate between −VSS and VDD as shown in Fig. 6.9b.
Also assume that all node voltages are no lower than −VSS and no higher than VDD. Finally,
assume that the transistor threshold voltages are positive. Under these conditions, each transis-
tor turns off when its gate is low. Furthermore, each transistor turns on when its gate is high as
long as its source operates at least a threshold below VDD. If Vs is a dc signal, all drain currents
approach zero as the capacitors become charged. As the drain currents approach zero, the MOS
transistors that are on operate in the triode region, where the drain-source voltage is zero when
the drain current is zero. Therefore, the input voltage Vs is sampled onto C1 with zero offset
inserted by the MOS transistors operating as switches. This property of MOS transistors is
important in the implementation of switched-capacitor circuits. In contrast, bipolar transistors
operating as switches do not give zero collector-emitter voltage with zero collector current.

The switched-capacitor amplifier shown in Fig. 6.9a is important in practice mainly because
the gain of this circuit has little dependence on the various parasitic capacitances that are
present on all the nodes in the circuit. These undesired capacitances stem in part from the
drain-body and source-body junction capacitances of each transistor. Also, the op-amp input
capacitance contributes to the parasitic capacitance on the op-amp input node. Furthermore,
as described in Section 2.10.2, the bottom plates of capacitors C1 and C2 exhibit at least some
capacitance to the underlying layer, which is the substrate or a well diffusion. Since the gain
of the circuit is determined by charge conservation at the op-amp input node, the presence
of parasitic capacitance from any node except the op-amp input to any node with a constant
voltage to ground makes no difference to the accuracy of the circuit. (Such parasitics do reduce
the maximum clock rate, however.) On the other hand, parasitic capacitance on the op-amp
input node does affect the accuracy of the circuit gain, but the error is inversely proportional
to the op-amp gain, as we will now show.

Let CP represent the total parasitic capacitance from the op-amp input to all nodes with
constant voltage to ground. If the op-amp gain is a, the voltage from the inverting op-amp
input to ground during 𝜙2 is given by (6.10). Therefore, with finite op-amp gain, C1 and CP
are not completely discharged during 𝜙2. Under these conditions, the charge stored on the
op-amp input node during 𝜙2 becomes

Q2 =
(
−

Vo

a

)
C1 +

(
−

Vo

a

)
CP +

(
−

Vo

a
− Vo

)
C2 (6.29)

When the op-amp gain becomes infinite, (6.29) collapses to (6.27), as expected. Setting Q2 in
(6.29) equal to Q1 in (6.26) by charge conservation gives

Vo

Vs
=

C1

C2

⎡⎢⎢⎢⎢⎣
1

1 + 1
a

(
C1 + C2 + CP

C2

)
⎤⎥⎥⎥⎥⎦

(6.30)

This closed-loop gain can be written as

Vo

Vs
=

C1

C2
(1 − 𝜖) (6.31)
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where 𝜖 is a gain error given by

𝜖 = 1

1 + a

(
C2

C1 + C2 + CP

) (6.32)

As a → ∞, 𝜖 → 0, and the gain of the switched-capacitor amplifier approaches C1∕C2 as
predicted in (6.28). As a result, the circuit gain is said to be parasitic insensitive to an extent
that depends on the op-amp gain.

One important parameter of the switched-capacitor amplifier shown in Fig. 6.9a is the
minimum clock period. This period is divided into two main parts, one for each clock phase.
The duration of 𝜙2 must be long enough for the op-amp output to reach and stay within
a given level of accuracy. This time is defined as the op-amp settling time and depends
on the switch resistances, the circuit capacitances, and the op-amp properties. The settling
time is usually determined by SPICE simulations. Such simulations should be run for
both clock phases because the op-amp output voltage during 𝜙1 is not well controlled in
practice. If the op amp is ideal, this output voltage is zero. With nonzero offset voltage,
however, the output voltage will be driven to a nonzero value during 𝜙1 that depends on
both the offset voltage and the op-amp gain. If the op-amp gain is large, the offset can
easily be large enough to force the output voltage to clip near one of the supplies. The
output voltage at the end of 𝜙1 can be thought of as an initial condition for the circuit
during 𝜙2. If the initial condition and the desired final output at the end of 𝜙2 happen to
have far different values, the time required for the output to reach a given level of accuracy
during 𝜙2 can be increased. Furthermore, nonzero offset can increase the time required for
the op-amp output voltage to reach a constant level during 𝜙1. Although the circuit output
voltage defined in (6.30) only appears during 𝜙2, failure to reach a constant output voltage
during 𝜙1 causes the initial condition defined above to vary, depending on the value of Vo
at the end of the preceding 𝜙2. As a result of this memory effect, the circuit can behave
as a filter (which is possibly nonlinear), weighting together the results of more than one
previous input sample to determine any given output. The key point is that an increase in
the minimum duration of either phase requires an increase in the minimum clock period.
This effect should be included in simulation by intentionally simulating with nonzero offset
voltages.

One way to reduce the effect of nonzero offset voltage on the minimum clock period is
to include a reset switch at the op-amp output. If the op amp has a single-ended output as
shown in Fig. 6.9a, such a switch can be connected between the op-amp output and a bias
point between the two supplies. On the other hand, if the op amp has differential outputs, as
described in Chapter 12, such a reset switch can be connected between the two op-amp outputs.
In either case, the reset switch would be turned on during 𝜙1 and off during 𝜙2. The main value
of such a reset switch is that it can reduce both the maximum output voltage produced by a
nonzero offset voltage during 𝜙1 and the time required to reach this value, in turn reducing the
effect of nonzero offset on the minimum durations of both phases.

The accuracy of the switched-capacitor amplifier shown in Fig. 6.9a is limited by several
other factors that we will now consider briefly. First, even with an ideal op amp, the gain
depends on the ratio of capacitors C1∕C2, which is not controlled perfectly in practice
because of random-mismatch effects. Second, op-amp offset limits the minimum signal
that can be distinguished from the offset in the switched-capacitor amplifier. As shown in
Section 3.5.6, the input-referred offset of CMOS differential pairs is usually worse than for
bipolar differential pairs. This property extends to op amps and stems partly from the reduced
transconductance-to-current ratio of MOS transistors compared to their bipolar counterparts
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and partly from the threshold mismatch term, which appears only in the MOS case. Third, the
charge-conservation equation and accuracy of the switched-capacitor amplifier are affected by
the charge stored under the gates of some of the MOS transistors acting as switches in Fig. 6.9a.
For example, some of the charge stored under the gate of transistor M3 in Fig. 6.9a is injected
onto the op-amp input node after M3 is turned off. Techniques to overcome these limitations
are often used in circuit are identical. The latter results from mismatches in supposedly.

6.1.7.2 Switched-Capacitor Integrator. Another application of an internal op amp, a
switched-capacitor integrator, is illustrated in its simplest form in Fig. 6.10a. This circuit is
widely utilized as the basic element of monolithic switched-capacitor filters for two main
reasons. First, the frequency response of the integrator is insensitive to the various parasitic

   1

Vo

Vs

Vo[n]

Vs[n]

M1 M2

M3

CS ≃
1 pF

Vs

M4

Vo

(a)

(b)

(c)

+

–

Top

CI ≃ 5 pF

CL ≃ 2 pF

+

–

–

+

t

t

t

t

Vo [n+1] = Vo[n] + 
CS

CI
Vs [n]

Time

nT T T
   Time

n + 1
2

Time

 (n + 1)

+
+

–

–

+

–

Vs Vo

CI

R = 1
fCS

ϕ

   1ϕ

   2ϕ

   2ϕ
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capacitances that are present on all nodes in the circuit.4,5 Second, using switched-capacitor
integrators as the basic elements, the synthesis of desired filter frequency responses is
relatively straightforward. In this section, we will analyze the frequency response of the
switched-capacitor integrator.

The integrator consists of an op amp, a sampling capacitor CS, an integrating capac-
itor CI , and four MOS transistor switches. The load capacitance shown represents the
sampling capacitor of the following integrator plus any parasitic capacitances that may
be present. Typical values for the sampling, integrating, and load capacitances are labeled
in Fig. 6.10a.

Figure 6.10b shows the timing diagram of two nonoverlapping clock signals, 𝜙1 and 𝜙2,
that control the operation of the circuit as well as typical input and output waveforms. During
the interval when clock phase 𝜙1 is high, transistors M1 and M3 operate in the triode region
and serve to charge the sampling capacitor to a voltage that is equal to the input voltage.
Subsequently, clock signal 𝜙1 falls. Then clock signal 𝜙2 rises, causing transistors M2 and
M4 to turn on and the sampling capacitor to be connected between the inverting op-amp
input, which is sometimes called the summing node, and ground. If the op amp is ideal, the
resulting change in the summing-node voltage causes the op-amp output to move so that the
summing-node voltage is driven back to ground. After the transient has gone to completion,
the voltage across CS is driven to zero.

To find the relationship between the input and output, a charge-conservation analysis is
used. After transistor M1 opens in Fig. 6.10a, the charge on the plates of the capacitors con-
nected to node Top and the inverting op-amp input is conserved until M1 closes again. Define
time points [n] and [n + 1∕2] as the time indexes at which 𝜙1 and 𝜙2 first fall in Fig. 6.10b,
respectively. Point [n + 1] is defined as the next time index at which 𝜙1 falls. The points [n]
and [n + 1] are separated by one clock period T. If the switches and the op amp are ideal, the
charge stored at time index [n] is

Q[n] = (0 − Vs[n])CS + (0 − Vo[n])CI (6.33)

Under the same conditions, the charge stored at time index [n + 1∕2] is

Q[n + 1∕2] = (0)CS + (0 − Vo[n + 1∕2])CI (6.34)

From charge conservation, Q[n + 1∕2] = Q[n]. Also, the charge stored on CI is constant dur-
ing 𝜙1 under these conditions; therefore, Vo[n + 1] = Vo[n + 1∕2]. Combining these relations
gives

Vo[n + 1] = Vo[n] +
(

CS

CI

)
Vs[n] (6.35)

Thus, one complete clock cycle results in a change in the integrator output voltage that is
proportional to the value of the input voltage and to the capacitor ratio.

Equation 6.35 can be used to find the frequency response of the integrator by using the fact
that the operation of delaying a signal by one clock period T in the time domain corresponds
to multiplication by the factor e−j𝜔T in the frequency domain. Thus

Vo(j𝜔) = Vo(j𝜔)e−j𝜔T +
(

CS

CI

)
Vs(j𝜔)e−j𝜔T (6.36)



436 Chapter 6 ▪ Operational Amplifiers with Single-Ended Outputs

Therefore, the integrator frequency response is

Vo

Vs
(j𝜔) = −

CS

CI

( 1
1 − ej𝜔T

)
=

CS

CI

(
2j

ej𝜔T∕2 − e−j𝜔T∕2

)(
e−j𝜔T∕2

2j

)
(6.37)

Using the identity

sin x = 1
2j
(ejx − e−jx) (6.38)

in (6.37) with x = 𝜔T∕2, we find

Vo

Vs
(j𝜔) =

CS

CI

(
𝜔T∕2

sin𝜔T∕2

)(
e−j𝜔T∕2

2j𝜔T∕2

)
= 1

j𝜔

𝜔o

(
𝜔T∕2

sin𝜔T∕2
e−j𝜔T∕2

)
(6.39)

where

𝜔o =
CS

TCI
=

f CS

CI
= 1

𝜏
(6.40)

where 𝜏 is the time constant of the integrator. Here f is the clock frequency, equal to 1∕T . For
input frequencies that are much less than the clock frequency, the quantity 𝜔T is much less
than unity, and the right-most term in parentheses in (6.39) reduces to unity. The remaining
term is simply the frequency response of an analog integrator, as desired. In practical designs,
the excess phase and magnitude error contributed by the term in parentheses in (6.39) must
often be taken into account. From a conceptual standpoint, however, the circuit can be thought
of as providing an analog integration of the signal. Note that the time constant of the inte-
grator is the same as would occur if the sampling capacitor and switches were replaced by a
continuous-value resistor of value (1∕f CS). This equivalence is illustrated in Fig. 6.10c.

A key advantage of a switched-capacitor integrator compared to its continuous-time coun-
terpart is that the time constant of the switched-capacitor integrator can be much better con-
trolled in practice. The time constant of a continuous-time integrator depends on the product
of a resistance and a capacitance, as in (6.22). In monolithic technologies, resistance and
capacitance values do not track each other. Therefore, the time constant of a continuous-time
integrator is not well controlled over variations in process, supply, and temperature in general.
However, the time constant of a switched-capacitor integrator is determined by the ratio of
two capacitor values and the clock frequency, as in (6.40). If the two capacitors have the same
properties, the ratio is well controlled even when the absolute values are poorly controlled.
Since the clock frequency can be precisely determined by a crystal-controlled clock genera-
tor, the time constant of a switched-capacitor integrator can be well controlled in monolithic
technologies.

A key requirement for the op amps in Figs. 6.9a and 6.10a is that dc currents at the input
terminals must be extremely small to minimize the loss of charge over the time when the
above analyses assumed that charge was conserved. Therefore, switched-capacitor amplifiers
and integrators are ideally suited to the use of op amps with MOS transistors in the input stage.

6.2 Deviations from Ideality in Real Operational Amplifiers
Real op amps deviate from ideal behavior in significant ways. The main effects of these devia-
tions are to limit the frequency range of the signals that can be accurately amplified, to place a
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lower limit on the magnitude of dc signals that can be detected, and to place an upper limit on
the magnitudes of the impedance of the passive elements that can be used in the feedback net-
work with the amplifier. This section summarizes the most important deviations from ideality
and their effects in applications.

6.2.1 Input Bias Current

An input stage for a bipolar transistor op amp is shown in Fig. 6.11. Here Q1 and Q2 are the
input transistors of the amplifier. The base currents of Q1 and Q2 flow into the amplifier input
terminals, and the input bias current is defined as the average of the two input currents:

IBIAS =
IB1 + IB2

2
(6.41)

Nonzero bias current violates the assumption made in summing-point analysis that the cur-
rent into the input terminals is zero. Typical magnitudes for the bias current are 10 to 100 nA
for bipolar input devices and less than 0.001 pA for MOS input devices. In dc inverting and
noninverting amplifiers, this bias current can cause undesired voltage drops in the resistors
forming the feedback network, with the result that a residual dc voltage appears at the output
when the amplifier is ideal in all other ways and the external input voltage is zero. In integra-
tor circuits, the input bias current is indistinguishable from the current being integrated and
causes the output voltage to change at a constant rate even when Vs is zero. To the extent that
the currents are equal in the two input leads, however, their effects can be canceled in some
applications by including a balancing resistor in series with one of the input leads so that the
same resistance is seen looking away from each op-amp input. For example, the differential
amplifier of Fig. 6.4 produces zero output with V1 = V2 = 0 if identical currents flow in both
op-amp input leads. In practice, however, the two input currents are not exactly equal because
of random mismatches, causing nonzero output in Fig. 6.4 when V1 = V2 = 0.

6.2.2 Input Offset Current

For the emitter-coupled pair shown in Fig. 6.11, the two input bias currents will be equal only
if the two transistors have equal betas. Geometrically identical devices on the same IC die

Q1 Q2

IB2IB1

RC1 RC2

IEE

–VEE

+VCC

Figure 6.11 Typical op-amp input stage.
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typically display beta mismatches that are described by a normal distribution with a standard
deviation of a few percent of the mean value. Since this mismatch in the two currents varies
randomly from circuit to circuit, it cannot be compensated by a fixed resistor. This aspect of
op-amp performance is characterized by the input offset current, defined as

IOS = IB1 − IB2 (6.42)

Consider the differential amplifier in Fig. 6.4. Repeating the analysis in Section 6.1.4 for
that circuit with nonzero IOS and V1 = V2 = 0 gives a dc output voltage of

VO = (IB2 − IB1)R2 = −IOSR2 (6.43)

If IOS = 0, then VO = 0 here. This equation shows that the error in the dc output voltage is
proportional to both the input offset current and the feedback resistance under these condi-
tions. The key point is that the size of the feedback resistance is limited by the maximum
offset current that can arise and by the allowed error in the dc output voltage in practice. See
Problem 6.6.

6.2.3 Input Offset Voltage

As described in Chapter 3, mismatches result in nonzero input offset voltage in amplifiers.
The input offset voltage is the differential input voltage that must be applied to drive the
output to zero. For untrimmed monolithic op amps, this offset is typically 0.1 to 2 mV for
bipolar input devices and 1 to 20 mV for MOS input devices. This offset can be nulled
with an external potentiometer in the case of stand-alone op amps; however, the variation
of offset with temperature (called drift) does not necessarily go to zero when the input
offset is nulled. In dc amplifier applications, the offset and drift place a lower limit on
the magnitude of the dc voltage that can be accurately amplified. In some sampled-data
applications such as switched-capacitor filters, the input offset voltage of the op amp is
sampled and stored on the capacitors every clock cycle. Thus the input offset is effectively
canceled and is not a critical parameter. This same principle is used in chopper-stabilized
op amps.

6.2.4 Common-Mode Input Range

The common-mode input range is the range of dc common-mode input voltages for which
an op amp behaves normally with its key parameters, including offset voltage and input
bias current, within specifications. Many years ago, op amps were usually designed to use
large equal-and-opposite power-supply voltages. For example, the 741 op amp, described
in previous editions of this book, often operated with supply voltages of ±15 V, with a
corresponding common-mode input range of about ±13 V. In contrast, modern op amps
often operate between ground and one positive power-supply voltage of 3 V or less. If
the common-mode input range were limited to be 2 V above ground and 2 V below the
positive supply in this case, the input stage in such op amps would not operate properly for
any common-mode input voltage. Although reducing the gap between the common-mode
input range and the supplies overcomes this problem, the inverting amplifier configuration
shown in Fig. 6.3a cannot be used without modification when the op amp operates from
a single nonzero supply voltage unless the common-mode input range is extended to
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include ground. In practice, including both power-supply voltages in the common-mode
input range is often important. For example, in the noninverting amplifier and voltage
follower shown in Figs. 6.3b and 6.3c, respectively, the op-amp common-mode input
voltage is approximately equal to Vs. Extending the common-mode input range to include
both supplies avoids an unnecessary limit to op-amp performance in these configura-
tions. Op amps with this property are said to have a rail-to-rail common-mode input
range.

6.2.5 Common-Mode Rejection Ratio (CMRR)

If an op amp has a differential input and a single-ended output, its small-signal output voltage
can be described in terms of its differential and common-mode input voltages (vid and vic) by
the following equation:

vo = Admvid + Acmvic (6.44)

where Adm is the differential-mode gain and Acm is the common-mode gain. As defined in
(3.187), the common-mode rejection ratio of the op amp is

CMRR =
||||Adm

Acm

|||| (6.45)

From an applications standpoint, the CMRR can be regarded as the change in input offset
voltage that results from a unit change in common-mode input voltage. For example, assume
that we apply zero common-mode input voltage to the amplifier and then apply just enough
differential voltage to the input to drive the output voltage to zero. The dc voltage we have
applied is just the input offset voltage VOS. If we keep the applied differential voltage constant
and increase the common-mode input voltage by an amount ΔVic, the output voltage will
change by an amount

vo = ΔVo = AcmΔVic = Acmvic (6.46)

To drive the output voltage back to zero, we will have to change the differential input voltage
by an amount

vid = ΔVid =
ΔVo

Adm
=

AcmΔVic

Adm
(6.47)

Thus we can regard the effect of finite CMRR as causing a change in the input offset voltage
whenever the common-mode input voltage is changed. Using (6.45) and (6.47), we obtain

CMRR =
||||Adm

Acm

|||| =
(

ΔVid

ΔVic

||||Vo=0

)−1

=
(ΔVOS

ΔVic

)−1

≃

(
𝜕VOS

𝜕Vic

||||Vo=0

)−1

(6.48)

In circuits such as the differential amplifier of Fig. 6.11, an offset voltage is produced that is
a function of the common-mode signal input, producing a voltage at the output that is indis-
tinguishable from the desired signal. For a common-mode rejection ratio of 104 (or 80 dB),
(6.48) shows that a 10-V common-mode signal produces a 1-mV change in the input offset
voltage.
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6.2.6 Power-Supply Rejection Ratio (PSRR)

In (6.44), we assumed that the power-supply voltages are constant so that the op-amp output
voltage depends only on the differential and common-mode input voltages provided to the op
amp. In practice, however, the power-supply voltages are not exactly constant, and variations in
the power-supply voltages contribute to the op-amp output. Figure 6.12 shows a block diagram
of an op amp with varying power-supply voltages. The small-signal variation on the positive
and negative power supplies is vdd and vss, respectively. If vic = 0 is assumed for simplicity,
the resulting small-signal op-amp output voltage is

vo = Admvid + A+vdd + A−vss (6.49)

where A+ and A− are the small-signal gains from the positive and negative power supplies to the
output, respectively. Since op amps should be sensitive to changes in their differential-mode
input voltage but insensitive to changes in their supply voltages, this equation is rewritten
below in a form that simplifies comparison of these gains:

vo = Adm

(
vid +

A+

Adm
vdd +

A−

Adm
vss

)
= Adm

(
vid +

vdd

PSRR+ +
vss

PSRR−

)
(6.50)

where

PSRR+ =
Adm

A+ and PSRR− =
Adm

A− (6.51)

Figure 6.13 shows one way to interpret (6.50), where the diagram in Fig. 6.12 is redrawn
using an op amp with constant power supplies. To set the output in Fig. 6.13 equal to that in
Fig. 6.12, the power-supply variations from Fig. 6.12 are included as equivalent differential
inputs in Fig. 6.13. Equation 6.50 and Fig. 6.13 show that the power-supply rejection ratios
should be maximized to minimize the undesired contributions to the op-amp output voltage.
In practice, the power-supply rejection ratios are functions of frequency and often decrease for
increasing frequency.
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Figure 6.12 Block
diagram of an op amp with
varying power-supply
voltages.
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Figure 6.13 Block diagram of an op amp with supply variations modeled in the input differential loop
and with vic = 0.

Power-supply rejection ratio has become an increasingly important parameter in MOS
amplifier design as the level of integration increases. With small-scale integration, few
transistors could be integrated on one integrated circuit. Therefore, analog and digital
functions were isolated from each other on separate chips, avoiding some coupling from the
digital circuits to the analog supplies. Also, such separation provides an opportunity to filter
interference generated by the digital circuits at the printed-circuit-board level with external
capacitors connected in parallel with the supplies. With large-scale integration, however,
many transistors can be integrated on one integrated circuit. Integrating analog and digital
functions on the same chip reduces cost but increases the coupling from the digital circuits
to the analog supplies. In principle, monolithic filter capacitors can be used to reduce the
resulting supply variations; however, the required areas of such capacitors are large in practice.
For example, if the oxide thickness is 100 Å, the capacitance per unit area is 3.45 fF∕μm2.
For a capacitor of 0.01 μF (a commonly used value to filter supplies on printed-circuit
boards), the required area is 1.7 mm2. Since many integrated circuits occupy areas less than
100 mm2, this single capacitor would account for a significant fraction of the cost of many
integrated circuits.

To reduce the cost, instead of concentrating only on reducing supply variations through fil-
tering, another option is to build circuits with low sensitivities to power-supply variations. The
use of fully differential circuit techniques has emerged as an important tool in this effort. Fully
differential circuits represent all signals of interest as differences between two corresponding
quantities such as voltages or currents. If two identical signal paths are used to determine
corresponding quantities, and if the coupling from supply variations to one quantity is the
same as to the other quantity, the difference can be independent of the supply variations and the
coupling in principle. In practice, mismatches cause differences in the two signal paths, and
the coupling may not be identical, causing imperfect cancellation. Also, if the power-supply
noise is large enough, nonlinearity may result and limit the extent of the cancellation.
Although the op amps considered in this chapter have differential inputs, they are not fully
differential because their outputs are single-ended. Fully differential op amps are considered
in Chapter 12.

6.2.7 Input Resistance

In bipolar transistor input stages, the input resistance is typically in the 100 kΩ to 1 MΩ range.
Usually, however, the voltage gain is large enough that this input resistance has little effect on
circuit performance in closed-loop feedback configurations.
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Op amps whose inputs are connected to the gates of MOS transistors have essentially
infinite input resistance in principle. In practice, however, MOS-transistor gates connected
through package pins to the outside world must be protected against damage by static
electricity. This protection is typically achieved by connecting back-biased clamping diodes
from VDD and VSS to the gate, and thus the effective input leakage currents are determined
by junction leakage and are of the order of picoamps. However, protection is required
only at the inputs and outputs of integrated circuits. In internal applications, where op-amp
inputs are not connected to the external pins of an integrated circuit, protection is not
required and op amps with MOS transistor gates as inputs do realize ultra-high input
resistance.

6.2.8 Output Resistance

General-purpose bipolar op amps usually use a buffer as an output stage, which typically
produces an output resistance on the order of 40 to 100 Ω. On the other hand, in MOS
technologies, internal op amps usually do not have to drive resistive loads. Therefore, internal
MOS op amps usually do not use a buffer output stage, and the resulting output resistance
can be much larger than in the bipolar case. In both cases, however, the output resistance
does not strongly affect the closed-loop performance except as it affects stability under
large capacitive loading, and in the case of power op amps that must drive a small load
resistance.

6.2.9 Frequency Response

Because of the capacitances associated with devices in the op amp, the voltage gain
decreases at high frequencies. This fall-off must usually be controlled by the addition of
extra capacitance, called compensation capacitance, to ensure that the circuit does not
oscillate when connected in a feedback loop. (See Chapter 9.) This aspect of op-amp
behavior is characterized by the unity-gain bandwidth, which is the frequency at which the
magnitude of the open-loop voltage gain is equal to unity. For general-purpose amplifiers,
this frequency is typically in the 1 to 100 MHz range. This topic is considered in detail in
Chapters 7 and 9.

A second aspect of op-amp high-frequency behavior is a limitation of the rate at which the
output voltage can change under large-signal conditions. This limitation stems from the limited
current available within the circuit to charge the compensation capacitor. This maximum rate,
called the slew rate, is described more extensively in Chapter 9.

6.2.10 Operational-Amplifier Equivalent Circuit

The effect of some of these deviations from ideality on the low-frequency performance of
an op amp in a particular application can be calculated using the equivalent circuit shown
in Fig. 6.14. (This model does not include the effects of finite PSRR or CMRR.) Here, the
two current sources labeled IBIAS represent the average value of dc current flowing into the
input terminals. The polarity of these current sources shown in Fig. 6.14 applies for an npn
transistor input stage. The current source labeled IOS represents the difference between the
currents flowing into the amplifier terminals. For example, if a particular circuit displayed a
current of 1.5μA flowing into the noninverting input terminal and a current of 1μA flowing
into the inverting input terminal, then the value of IBIAS in Fig. 6.14 would be 1.25μA, and the
value of IOS would be 0.5 μA.
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Figure 6.14 Equivalent circuit for the operational amplifier including input offset voltage and current,
input and output resistance, and voltage gain.

6.3 Basic Two-Stage MOS Operational Amplifiers
Figure 6.15 shows a schematic of a basic two-stage CMOS op amp.6–8 A differential input
stage drives an active load followed by a second gain stage. An output stage is usually not
used but may be added for driving heavy loads off-chip. This circuit configuration provides
good common-mode range, output swing, voltage gain, and CMRR in a simple circuit that can
be compensated with a single capacitor. The circuit is redrawn in Fig. 6.16, where the ideal
current sources are replaced with transistor current mirrors. In this section, we will analyze
the various performance parameters of this CMOS op-amp circuit.

VDD

–VSS

CC

vo

vi

I1 I2

+

–

Figure 6.15 Basic two-stage CMOS
operational amplifier.
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6.3.1 Input Resistance, Output Resistance, and Open-Circuit Voltage Gain

The first stage in Fig. 6.16 consists of a p-channel differential pair M1–M2 with an n-channel
current mirror load M3–M4 and a p-channel tail current source M5. The second stage consists
of an n-channel common-source amplifier M6 with a p-channel current-source load M7.
Because the op-amp inputs are connected to the gates of MOS transistors, the input resistance
is essentially infinite when the op amp is used in internal applications, which do not require
the protection diodes described in Section 6.2.7. For the same reason, the input resistance of
the second stage of the op amp is also essentially infinite.

The output resistance is the resistance looking back into the second stage with the op-amp
inputs connected to small-signal ground:

Ro = ro6||ro7 (6.52)

Although this output resistance is almost always much larger than in general-purpose bipolar
op amps, low output resistance is usually not required when driving purely capacitive loads.

Since the input resistance of the second stage is essentially infinite, the voltage gain of the
amplifier in Fig. 6.16 can be found by considering the two stages separately. The first stage is
precisely the same configuration as that considered in Section 4.4.5. The small-signal voltage
gain is

Av1 =
vo1

vi
= Gm1Ro1 (6.53)

where Gm1 and Ro1 are the transconductance and output resistance of the first stage,
respectively. From (4.143) and (4.149),

Av1 = gm1(ro2||ro4) (6.54)
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Figure 6.16 More detailed
schematic diagram of a
typical two-stage CMOS
operational amplifier.
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Similarly, the second-stage voltage gain is

Av2 = −gm6Ro (6.55)

where Ro is given in (6.52). As a result, the overall gain of the amplifier is

Av = Av1Av2 = −gm1(ro2||ro4)gm6(ro6||ro7) (6.56)

This equation shows that the overall gain is related to the quantity (gmro)2. Recall from (3.27)
that

gmro =
2VA

Vov
(6.57)

Therefore, the overall voltage gain is a strong function of the Early voltage (which is
proportional to the effective channel length) and the overdrive (which is set by the bias
conditions).

◼ EXAMPLE
Calculate the gain of the op amp in Fig. 6.16 assuming that it uses the 0.8 μm process tech-
nology described in Table 2.3. Also assume that Leff = 0.8μm and |Vov| = |VGS − Vt| = 0.2 V
for all devices.

Let ID2, ID4, ID6, and ID7 represent the bias currents flowing into the drains of M2, M4, M6,
and M7, respectively. Since ID4 = −ID2 and ID7 = −ID6, (6.56) shows that

Av = −gm1

⎛⎜⎜⎜⎜⎝
|VA2||ID2| VA4|ID2||VA2||ID2| +

VA4|ID2|
⎞⎟⎟⎟⎟⎠

gm6

⎛⎜⎜⎜⎜⎝
VA6

ID6

|VA7|
ID6

VA6

ID6
+

|VA7|
ID6

⎞⎟⎟⎟⎟⎠
= −

gm1|ID2| gm6

ID6

( |VA2|VA4|VA2| + VA4

)(
VA6|VA7|

VA6 + |VA7|
)

(6.58)

where the absolute-value function has been used so that each quantity in (6.58) is positive.
From (1.181),

Av = − 2|Vov1| 2
Vov6

( |VA2|VA4|VA2| + VA4

)(
VA6|VA7|

VA6 + |VA7|
)

(6.59)

because ID1 = ID2 with zero differential input. From (1.163),

VA = Leff

(
dXd

dVDS

)−1

(6.60)

Substituting (6.60) into (6.59) with the given data and dXd∕dVDS from Table 2.3 gives

Av = − 2
0.2

2
0.2

⎛⎜⎜⎜⎝
0.8
0.04

× 0.8
0.08

0.8
0.04

+ 0.8
0.08

⎞⎟⎟⎟⎠
2

≃ −4400

◼

The overall gain can be increased by either increasing the channel lengths of the devices to
increase the Early voltages or by reducing the bias current to reduce the overdrives.
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6.3.2 Output Swing

The output swing is defined to be the range of output voltages Vo = VO + vo for which all
transistors operate in the active region so that the gain calculated in (6.56) is approximately
constant. From inspection of Fig. 6.16, M6 operates in the triode region if the output voltage is
less than Vov6 − VSS. Similarly, M7 operates in the triode region if the output voltage is more
than VDD − |Vov7|. Therefore, the output swing is

Vov6 − VSS ≤ Vo ≤ VDD − |Vov7| (6.61)

This inequality shows that the op amp can provide high gain while its output voltage swings
within one overdrive of each supply. Beyond these limits, one of the output transistors enters
the triode region, where the overall gain of the amplifier would be greatly diminished. As a
result, the output swing can be increased by reducing the overdrives of the output transistors.

6.3.3 Input Offset Voltage

In Sections 3.5.6 and 6.2.3, the input offset voltage of a differential amplifier was defined as
the differential input voltage for which the differential output voltage is zero. Because the op
amp in Fig. 6.16 has a single-ended output, this definition must be modified here. Referring to
the voltage between the output node and ground as the output voltage, the most straightforward
modification is to define the input offset voltage of the op amp as the differential input voltage
for which the op-amp output voltage is zero. This definition is reasonable if VDD = VSS because
setting the output voltage to zero maximizes the allowed variation in the output voltage before
one transistor operates in the triode region, provided that Vov6 = |Vov7|. If VDD ≠ VSS, however,
the output voltage should be set midway between the supply voltages to maximize the output
swing. Therefore, we will define the input offset voltage of op amps with differential inputs
and single-ended outputs as the differential input voltage for which the dc output voltage is
midway between the supplies.

The offset voltage of an op amp is composed of two components: the systematic offset
and the random offset. The former results from the design of the circuit and is present even
when all the matched devices in the circuit are identical. The latter results from mismatches in
supposedly identical pairs of devices.

6.3.3.1 Systematic Offset Voltage. In bipolar technologies, the gain of each stage in an
op amp can be quite high (on the order of 500) because the gmro product is usually greater than
1000. As a result, the input-referred offset voltage of a bipolar op amp usually depends mainly
on the design of the first stage. In MOS technologies, however, the gmro product is usually
between about 20 and 100, reducing the gain per stage and sometimes causing the offset of
the second stage to play an important role in determining the op-amp offset voltage.

To study the systematic offset, Fig. 6.17a shows the op amp of Fig. 6.16 split into two sepa-
rate stages. If the inputs of the first stage are grounded, and if the matching is perfect, then the
dc drain-source voltage of M4 must be equal to the dc drain-source voltage of M3. This result
stems from the observation that if VDS3 = VDS4, then VDS1 = VDS2 and ID1 = ID2 = ID5∕2.
Therefore, with VDS3 = VDS4, ID3 = ID4 = −ID5∕2. As a result, VDS3 must be equal to VDS4
because this operating point is the only point for which the current flowing out of the
drain of M2 is equal to the current flowing into the drain of M4. For example, increasing the
drain-source voltage of M4 would increase the current flowing into the drain of M4 but decrease
the current flowing out of the drain of M2 because of the effects of channel-length modulation.
Therefore, the dc drain-source voltages of M3 and M4 must be equal under these conditions.
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Figure 6.17 (a) Two-stage
amplifier with first and second
stages disconnected to show the
effect of interstage coupling on
input-referred offset voltage.

On the other hand, the value of the gate-source voltage of M6 required to set the amplifier
output voltage midway between the supplies may differ from the dc output voltage of the first
stage. If the first stage gain is 50, for example, each 50-mV difference in these voltages results
in 1 mV of input-referred systematic offset. Ignoring channel-length modulation in M5 and
M7, the current in these transistors is independent of their drain-source voltages if they operate
in the active region. To set the output voltage midway between the supplies, the gate-source
voltage of M6 should be chosen so that the drain current of M6 is equal to the drain current of
M7 while both transistors operate in the active region. When the input of the second stage is
connected to the output of the first stage, VGS6 = VDS4. With perfect matching and zero input
voltages, VDS4 = VDS3 = VGS3 and Vt3 = Vt4 = Vt6. Therefore,

Vov3 = Vov4 = Vov6 (6.62)

is required. Substituting (1.166) into (6.62) gives

ID3

(W∕L)3
=

ID4

(W∕L)4
=

ID6

(W∕L)6
(6.63)

In other words, requiring that the transistors have equal overdrives is equivalent to requiring
that they have equal drain-current-to-W∕L ratios (or current densities). Since ID3 = ID4 =|ID5|∕2 and ID6 = |ID7|, |ID5|

2(W∕L)3
=

|ID5|
2(W∕L)4

=
|ID7|

(W∕L)6
(6.64)

Since M5 and M7 have equal gate-source voltages,

ID5

ID7
=

(W∕L)5
(W∕L)7

(6.65)
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Substituting (6.65) into (6.64) gives

(W∕L)3
(W∕L)6

=
(W∕L)4
(W∕L)6

= 1
2

(W∕L)5
(W∕L)7

(6.66)

With the aspect ratios chosen to satisfy (6.66), M3, M4, and M6 operate with equal cur-
rent densities. In the active region, the current density of a device depends not only on its
gate-source voltage but also on its drain-source voltage to some extent. Since the gate-source
voltages and current densities of M3, M4, and M6 are equal, the drain-source voltages of these
transistors must also be equal. Therefore, the dc output voltage under these conditions is

VO = VDS6 − VSS = VDS3 − VSS = VGS3 − VSS = Vt3 + Vov3 − VSS (6.67)

To find the systematic offset voltage at the op-amp output, the output voltage in (6.67) should be
subtracted from a voltage midway between the supplies. To refer the systematic offset voltage
to the op-amp input, this difference should be divided by the op-amp gain. The result is

VOS(sys) =

VDD − VSS

2
− (Vt3 + Vov3 − VSS)

Av
(6.68)

where Av is the op-amp gain given in (6.56). In most cases, the dc output voltage will not
be midway between the supplies because VGS3 = Vt3 + Vov3 ≠ (VDD + VSS)∕2. Therefore, the
systematic offset is usually nonzero. Although the systematic offset voltage is nonzero in
general, the choice of aspect ratios as given in (6.66) can result in an operating point that
is insensitive to process variations, as explained next.

Equation 2.35 shows that the effective channel length of a MOS transistor differs from its
drawn length by offset terms caused by the side diffusion of the source and drain (Ld) and
the depletion region width around the drain (Xd). Similarly, the effective width of a MOS
transistor differs from the drawn width by an offset term dW caused by the bird’s-beak effect
in the oxide described in Section 2.9.1. To keep the ratio in (6.66) constant in the presence
of process-induced variations in Ld, Xd, and dW, the drawn channel lengths and widths of the
ratioed transistors can each be chosen to be identical. In this case, the ratio in (6.66) can be
set equal to any rational number J∕K by connecting J identical devices called n-channel units
in parallel to form M3 and M4 while K n-channel units in parallel form M6. Then if M5 is
constructed of 2J identical devices called p-channel units, M7 should be constructed from K
p-channel units. In practice for matched devices, the channel lengths are almost never ratioed
directly because the use of small channel lengths for high-speed operation would result in
a large sensitivity to process variations. On the other hand, the channel widths of matched
devices are sometimes ratioed directly when the width is large enough to make the resulting
sensitivity to process variations insignificant.

◼ EXAMPLE
Calculate the output-referred systematic offset voltage of the op amp in Fig. 6.17b. Let
VDD = 1.5 V, −VSS = −1.5 V, and IBIAS = 10 μA. Assume all the transistors operate in satu-
ration and the p-channel current mirror (M8, M5, and M7) is ideal. Also assume (W∕L)8 = 20,
(W∕L)3 = 5, and n = 10. M5 is a copy of M8, and M7 consists of n∕2 parallel copies of M8.
Similarly, M4 is a copy of M3, and M6 consists of n parallel copies of M3. Use the following
transistor data: Vtn = 0.5 V, Vtp = −0.5 V, k

′
n = 200 μA∕V2, k

′
p = 100 μA∕V2, L = 1 μm,

and Ld = Xd = 0.
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M5

M1
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W

L 5
=

W

L 8

I5 = IBIAS

I1 =
IBIAS
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M4

I2 =
IBIAS

2

W

L 4
=

W

L 3
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M6

W

L 7
=

n

2

W

L 8

W

L 6
=n

W
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I7 =
n

2
IBIAS

+

VO + vo

−

(b)

Figure 6.17 (b) Two-stage
amplifier with the second
stage reconnected to the
first-stage output for an
example on systematic offset.

Since all the transistors operate in saturation and the p-channel current mirror is ideal,

I5 =
(W∕L)5
(W∕L)8

IBIAS = 10 μA

and

I7 =
(W∕L)7
(W∕L)8

IBIAS =
(n

2

)
IBIAS = 50 μA

With perfect matching, the first stage operates in balance. As a result,

I1 = I2 = 5 μA

and

VDS4 = VDS3 = VGS3 = VGS4 = VGS6 = Vtn +

√
2I1

k′n(W∕L)3
= 0.5 +

√
2(5)

200(5)
= 0.6 V

The drain current of M3 equals IBIAS∕2, and the drain current of M6 is n times larger than
that. Since M6 consists of n parallel unit transistors (each a copy of M3), and since VGS3 = VGS6,
each unit transistor in M6 is biased in the same way as M3. (In other words, each has the same
gate-source voltage and the same drain current.) So, their drain-source voltages are also equal;
that is, VDS6 = VDS3. Thus, the dc output voltage is

VO = −VSS + VDS6 = −1.5 + 0.6 = −0.9 V

The ideal output voltage is midway between the supplies, which is zero in this example. There-
fore, the output-referred systematic offset voltage is

VOS(sys)|out = 0 − (−0.9) = 0.9 V
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This result holds for any even value of n because then n∕2 is an integer, which allows M7
to consist of an integer number of parallel copies of M8.◼

A key point of this analysis is that making M3, M4, and M6 consist of units of M3 means
that they all have identical channel lengths. This condition conflicts with a combination of
other requirements. First, for stability reasons described in Chapter 9, M6 should have a large
transconductance and thus a short channel length. Second, for low noise and random input
offset voltage, M3 and M4 should have a small transconductance and therefore a long channel
length. Noise is considered in Chapter 11, and random input offset voltage is considered next.

6.3.3.2 Random Input Offset Voltage. As described in Section 3.5.6, source-coupled
pairs generally display a higher random offset than their bipolar counterparts. Ignoring the
contribution of the second stage in the op amp to the input-referred random offset, a straight-
forward analysis for the offset voltage of the circuit of Fig. 6.16, which is analogous to the
analysis leading to (3.248), gives

VOS ≃ ΔVt(1−2) + ΔVt(3−4)

(
gm3

gm1

)

+
Vov(1−2)

2

⎡⎢⎢⎢⎣
Δ
(W

L

)
(3−4)(W

L

)
(3−4)

−
Δ
(W

L

)
(1−2)(W

L

)
(1−2)

⎤⎥⎥⎥⎦ (6.69)

The first term represents the threshold mismatch of the input transistors. The second is the
threshold mismatch of the current-mirror-load devices and is minimized by choosing the W∕L
ratio of the load devices so that their transconductance is small compared to that of the input
transistors. For this reason, selecting a longer channel length for M3 and M4 than for M1 and
M2 reduces the random input offset voltage. The third term represents the effects of W∕L mis-
matches in the input transistors and loads and is minimized by operating the input transistors
at low values of overdrive, typically on the order of 50 to 200 mV.

6.3.4 Common-Mode Rejection Ratio

For the op amp in Fig. 6.16, (6.45) gives

CMRR =
||||Adm

Acm

|||| =
||||||||

vo

vo1

vo1

vid
vo

vo1

vo1

vic

|||||||| = CMRR1 (6.70)

where CMRR1 is the common-mode rejection ratio of the first stage. The second stage does not
contribute to the common-mode rejection ratio of the op amp because the second stage has a
single-ended input and a single-ended output. In (4.182) and (4.183), the common-mode rejec-
tion ratio of a stage with a differential pair and a current-mirror load was calculated assuming
perfect matching. Applying (4.183) here gives

CMRR ≃ (2gm(dp)rtail)gm(mir)(ro(dp)||ro(mir)) (6.71)

where gm(dp) and ro(dp) are the transconductance and output resistance of M1 and M2, gm(mir)
and ro(mir) are the transconductance and output resistance of M3 and M4, and rtail is the output



6.3 Basic Two-Stage MOS Operational Amplifiers 451

resistance of M5. By a process similar to the derivation of (6.59), this equation can be simplified
to give

CMRR ≃
||||| 2
Vov(dp)

2
Vov(mir)

( VA(dp)VA(mir)|VA(dp)| + |VA(mir)|
)||||| (6.72)

where Vov(dp) and VA(dp) are the overdrive and Early voltage of the differential pair, and
Vov(mir) and VA(mir) are the overdrive and Early voltage of the mirror. Equation 6.72 shows that
the common-mode rejection ratio of the op amp can be increased by reducing the overdrive
voltages.

Another way to increase the common-mode rejection ratio is to replace the simple cur-
rent mirror M5 and M8 with one of the high-output-resistance current mirrors considered in
Chapter 4. Unfortunately, such a replacement would also worsen the common-mode input
range.

6.3.5 Common-Mode Input Range

The common-mode input range of the op amp in Fig. 6.16 is the range of dc common-mode
input voltages for which all transistors in the first stage operate in the active region. To operate
in the active region, the gate-drain voltages of n-channel transistors must be less than their
thresholds so that their channels do not exist at their drains. Similarly, p-channel transistors
operate in the active region only if their gate-drain voltages are more than their thresholds,
again so that their channels do not exist at their drains. With a pure common-mode input VIC
applied to the inputs of the op amp in Fig. 6.16,

VDS4 = VDS3 = VGS3 = Vt3 + Vov3 (6.73)

The gate-drain voltage of M1 and M2 is

VGD1 = VGD2 = VIC − Vt3 − Vov3 + VSS (6.74)

When VIC is reduced to the point at which VGD1 = VGD2 = Vt1 = Vt2, M1 and M2 operate
at the edge between the triode and active regions. This point defines the lower end of the
common-mode range, which is

VIC > Vt1 + Vt3 + Vov3 − VSS (6.75)

If VIC is too high, however, M5 operates in the triode region. The drain-source voltage of
M5 is

VDS5 = VIC − VGS1 − VDD = VIC − Vt1 − Vov1 − VDD (6.76)

From the standpoint of drain-source voltages, n-channel transistors operate in the active region
only if their drain-source voltage is more than their overdrive. On the other hand, p-channel
transistors operate in the active region only if their drain-source voltage is less than their over-
drive. Therefore, the upper end of the common-mode input range is

VIC < Vt1 + Vov1 + Vov5 + VDD (6.77)

Since M1 and M5 are p-channel transistors, their overdrives are negative; that is, their
gate-source voltages must be less than their thresholds for the channel to exist at the source.
Furthermore, if M1 is an enhancement-mode device, its threshold is negative because it is
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p-type. Under this assumption, the common-mode range limits in (6.75) and (6.77) can be
rewritten as

Vt3 − |Vt1| + Vov3 − VSS < VIC < VDD − |Vt1| − |Vov1| − |Vov5| (6.78)

This inequality shows that the magnitudes of the overdrive terms should be minimized to
maximize the common-mode range. Also, the body effect on the input transistors can be used
to increase the range. If the bodies of M1 and M2 are connected to VDD as implied in Fig. 6.16,
the source-body voltage of these transistors is low when VIC is high. Therefore, the upper
limit in (6.78) can be found approximately by using the zero-bias value of Vt1. On the other
hand, when VIC decreases, the source-body voltage of M1 and M2 becomes more negative,
widening the depletion region around the source and making the threshold voltage of these
transistors more negative. Therefore, the body effect can be used to include the negative
supply in the common-mode range.

◼ EXAMPLE
For the two-stage CMOS op amp in Fig. 6.16, choose the device sizes to give a dc voltage
gain greater than 5000 and a peak output swing of at least 1 V. Use the 0.4 μm CMOS model
parameters in Table 2.4. Use bias currents of |ID1| = |ID2| = 100 μA, and ID6 = 400 μA.
Assume VDD = VSS = 1.65 V ± 0.15 V. Assume perfect matching and that all transistors
operate in the active (or saturation) region with dc voltages VIC = 0 (where VIC is the
common-mode input voltage), VI = 0, and VO ≃ 0. Ignore the body effect.

To simplify the design, a drawn channel length L = 1 μm will be used for all transistors.
This selection avoids short-channel effects that degrade output resistance and cause transistor
operation to deviate from the square-law equations.

Since the peak output swing should be 1 V and the magnitude of each supply is at least
1.5 V, (6.61) shows that

Vov6 = |Vov7| ≤ 0.5 V

To maximize the transition frequency fT of each device subject to this constraint, we will
choose Vov6 = |Vov7| = 0.5 V. Using (1.157) with |ID7| = ID6 = 400 μA gives(W

L

)
7
=

2|ID7|
k′p(Vov7)2

= 2(400)
64.7(−0.5)2

≃ 50

and (W
L

)
6
=

2ID6

k′n(Vov6)2
= 2(400)

194(0.5)2
≃ 16

Since Vov5 = Vov7 by KVL and ID1 + ID2 = ID7∕2,(W
L

)
5
= 1

2

(W
L

)
7
≃ 25

From (6.66), (W
L

)
3
=
(W

L

)
4
= 1

2

(W∕L)5
(W∕L)7

(W∕L)6 ≃ 1
2

(25
50

)
16 = 4
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Since the common-mode input range should include VIC = 0, the allowed overdrives on M1
and M2 are limited by (6.77), and rearranging this equation with VIC = 0 and VDD = 1.5 V
gives

Vov1 > VIC − Vt1 − Vov5 − VDD = 0 − (−0.8 V) − (−0.5 V) − 1.5 V = −0.2 V

Therefore, (W
L

)
1
=
(W

L

)
2
>

2|ID1|
k′p(Vov1)2

= 2(100)
64.7(−0.2)2

≃ 77

From (6.59) and (6.60) with Leff ≃ Ldrwn − 2Ld, and using data from Table 2.4,

Av = − 2|Vov1| 2
Vov6

( |VA2|VA4|VA2| + VA4

)(
VA6|VA7|

VA6 + |VA7|
)

= − 2
0.2

2
0.5

⎛⎜⎜⎜⎝
0.82
0.04

× 0.82
0.02

0.82
0.04

+ 0.82
0.02

⎞⎟⎟⎟⎠
2

≃ −7500

This calculation assumes that dXd∕dVDS and Leff are constant for each type of transis-
tor, allowing us to use constant Early voltages. In practice, however, dXd∕dVDS and Leff both
depend on the operating point, and accurate values of the Early voltages are rarely available
to circuit designers when channel lengths are less than about 1.5 μm. As a result, circuit simu-
lations are an important part of the design process. SPICE simulation of the op amp under the
conditions described above gives a gain of about 6200, which shows that the hand calculations
are accurate within about 20 percent.◼

6.3.6 Power-Supply Rejection Ratio (PSRR)

To calculate the PSRR from the Vdd supply for the op amp in Fig. 6.16, we will divide the
small-signal gain A+ = vo∕vdd into the gain from the input. For this calculation, assume that
the Vss supply voltage is constant and that both op-amp inputs in Fig. 6.16 are connected
to small-signal grounds. The current in M8 is equal to IBIAS. If this current is constant, the
gate-source voltage of M8 must be constant because M8 is diode connected. Therefore, vgs8 =
vgs5 = vgs7 = 0, and the gm generators in M5 and M7 are inactive. As a result, if ro5 = rtail → ∞
and ro7 → ∞, vo∕vdd = 0. To find the gain with finite rtail and ro7, consider the small-signal
diagrams shown in Fig. 6.18, where the gm generators for M5 and M7 are omitted because they
are inactive. In Fig. 6.18a, the output is defined as voa, and the vdd supply variation is set equal
to zero at the point where rtail is connected. In Fig. 6.18b, the output is defined as vob, and the
vdd supply variation is set equal to zero at the point where ro7 is connected. We will find voa
and vob separately and use superposition to find the total gain vo∕vdd = (voa + vob)∕vdd.

In Fig. 6.18a, the first stage experiences no variation, and vgs6 = 0. Therefore, gm6 is inac-
tive, and the output stage appears as a simple voltage divider to the supply variation. Since the
dc drain current in M6 is equal and opposite to that in M7,

voa

vdd
=

ro6

ro6 + ro7
=

VA6

ID6

VA6

ID6
+

|VA7|
ID6

=
VA6

VA6 + |VA7| (6.79)
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Figure 6.18 Small-signal diagrams of the two-stage op amp used to calculate the coupling from vdd to
the output (a) through the second stage and (b) through the first stage.

In Fig. 6.18b,
vob

vdd
=

vgs6

vdd

vob

vgs6
(6.80)

where the first term on the right side represents the gain of the first stage, and the second term
represents the gain of the second stage. The vdd input to the first stage in Fig. 6.18b is applied
between the top of rtail and ground while the gates of M1 and M2 are grounded. This situation
is equivalent to grounding the top of rtail and applying a voltage of −vdd between the gates of
M1 and M2 and ground. In other words, the vdd input in Fig. 6.18b appears as a common-mode
input vic = −vdd to the first stage. Therefore, the gain of the first stage can be expressed as

vgs6

vdd
= −

vgs6

vic
= −Gm[cm]Ro1 (6.81)

where Gm[cm] is the common-mode transconductance of the first stage and Ro1 is the output
resistance of the first stage. Substituting (4.149), (4.166), (4.173), and (4.179) into (6.81) gives

vgs6

vdd
≃

gm(dp)(ro(dp)||ro(mir))
1 + 2gm(dp)rtail

(
1

1 + gm(mir)ro(dp)
+ 1

1 + gm(mir)ro(mir)

)
(6.82)

If 2gm(dp)rtail ≫ 1, gm(mir)ro(dp) ≫ 1, and gm(mir)ro(mir) ≫ 1,

vgs6

vdd
≃

ro(dp)||ro(mir)

2rtailgm(mir)(ro(dp)||ro(mir))
= 1

2gm(mir)rtail
(6.83)

Substituting (6.83), (6.55), and (6.52) into (6.80) gives

vob

vdd
≃ −

gm6(ro6||ro7)
2gm(mir)rtail

(6.84)
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If Vov3 = Vov6 as in (6.62) to control the systematic offset, gm6∕gm(mir) = ID6∕ID3. Since the dc
drain current in M6 is equal and opposite to that in M7,

vob

vdd
≃ −

ID6

2ID3

⎛⎜⎜⎜⎜⎝
VA6

ID6

|VA7|
ID6

VA6

ID6
+

|VA7|
ID6

⎞⎟⎟⎟⎟⎠
|ID5||VA5| = −

|ID5|
2ID3

(
VA6

VA6 + |VA7|
) |VA7||VA5|

= −
VA6

VA6 + |VA7| (6.85)

because VA5 = VA7 and |ID5| = 2ID3. Combining (6.79) and (6.85) gives

A+ =
vo

vdd
=

voa + vob

vdd
≃ 0 (6.86)

Therefore, from (6.51), PSRR+ → ∞ for low frequencies with perfect matching because
the coupling from vdd to the output through the first stage cancels that through the second
stage. In practice, mismatch can increase the common-mode transconductance of the first
stage, as shown at the end of Section 4.4.5.3, disrupting this cancellation and decreasing the
low-frequency PSRR+.

To calculate the PSRR from the Vss supply for the op amp in Fig. 6.16, we will calculate the
small-signal gain A− = vo∕vss and then normalize to the gain from the input. For this calcula-
tion, assume that the Vdd supply voltage is constant and that both op-amp inputs in Fig. 6.16 are
connected to small-signal grounds. Under these conditions, M1 and M2 act as common-gate
amplifiers, attempting to keep the bias current in M3 and M4 constant. If the drain current
of M3 is constant, the gate-source voltage of M3 must be constant because M3 is diode con-
nected. Therefore, vgs3 = 0. Since vds3 = vgs3, and since vds4 = vds3 under these conditions,
vds4 = vgs6 = 0. Therefore, gm6 is inactive, and the output stage appears as a simple voltage
divider to the supply variation. Since the drain current in M6 is equal and opposite to that in M7,

A− =
vo

vss
=

ro7

ro6 + ro7
=

|VA7|
ID6

VA6

ID6
+

|VA7|
ID6

=
|VA7|

VA6 + |VA7| (6.87)

Substituting (6.59) and (6.87) into (6.51) gives

PSRR− =
Adm

A− =

vo

vid
vo

vss

= − 2|Vov1| 2
Vov6

( |VA2|VA4|VA2| + VA4

)
VA6 (6.88)

This equation gives the low-frequency supply rejection from the negative supply. This
rejection worsens as frequency increases. The topic of frequency response is covered in
detail in Chapters 7 and 9, but the essence of this behavior can be understood without a
complete frequency-response analysis. As the applied frequency increases, the impedance of
the compensation capacitor CC in Fig. 6.16 decreases, effectively shorting the gate of M6 to its
drain for high-frequency ac signals. If the gate-source voltage on M6 is constant, the variation
on the negative supply is fed directly to the output at high frequencies. Therefore, A− ≃ 1
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at frequencies high enough to short-circuit CC, assuming that CC ≫ CL, where CL is the
load capacitance of the op amp connected between the op-amp output and ground. The same
phenomenon causes the gains Adm and A+ to decrease as frequency increases, so the PSRR+

remains relatively constant with increasing frequency. Since A− increases to unity as Adm
decreases, however, PSRR− decreases and reaches unity at the frequency where |Adm| = 1.

6.3.6.1 Power-Supply Rejection and Supply Capacitance. Another important con-
tribution to nonzero gain between the power supplies and the op-amp output is termed sup-
ply capacitance.9,10 This phenomenon manifests itself as a capacitive coupling between one
or both of the power supplies and the op-amp input leads when the op amp is connected
with capacitive feedback CI , as shown in Fig. 6.19. For simplicity, assume that the op-amp
open-loop gain is infinite. If the supply-coupling capacitance is Csup, the gain from Csup to the
op-amp output is −Csup∕CI . Figure 6.19 shows two possible sources of supply capacitance,
which are the gate-drain and gate-source capacitance of M1. Four important ways in which
supply capacitance can occur are described below:

1. If the drain current of M3 is constant, a variation on Vss causes the voltage from the drain
of M1 to ground to vary to hold the gate-source voltage of M3 constant. This variation
couples to the summing node through the gate-drain capacitance of M1; that is, the sup-
ply capacitance Csup = Cgd1. This problem is usually overcome by the use of cascode
transistors in series with the drains of the input transistors.

2. A variation on Vdd or Vss causes the current flowing in the tail current source to vary.
To understand the effect of this bias-current variation, consider Fig. 6.20a, which shows
a p-channel source follower whose biasing current source Itail = ITAIL + itail is not con-
stant. The source follower models the behavior of M1 in Fig. 6.19 from the standpoint
of variation in Itail for two reasons. First, the voltage from the gate of M1 to ground is
held to small-signal ground by negative feedback. Second, MOS transistors that operate
in the active region are controlled mainly by their gate-source voltages. For simplicity,
ignore the body effect because it is not needed to demonstrate the problem here. The

Vi

+

–

Vo

+

–

Vdd

CC

Vss

ITAIL I7

M2

M6M4M3

Cgs1

Cgd1

M1

CS

CI

Figure 6.19 Supply capacitance in a two-stage MOS amplifier with capacitive feedback.
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ITAIL + itail
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+

–

(a)

itail

vs

+

–

(b)

ro
gmvgs

= –gmvs

Figure 6.20 (a) Source follower and
(b) small-signal diagram to calculate
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small-signal diagram of the source follower is shown in Fig. 6.20b. From KCL at the
source,

itail = gmvs +
vs

ro
(6.89)

Rearranging this equation gives

vs =
itailro

1 + gmro
≃

itail

gm
(6.90)

Therefore, nonzero itail arising from supply variations causes nonzero vs in the source
follower. Similarly, in Fig. 6.19, the voltage from the source of M1 to ground varies with
Itail, and this variation couples to the summing node through the gate-source capacitance
of M1; that is, the supply capacitance Csup = Cgs1. A supply-independent bias reference
is usually used to overcome this problem.

3. If the substrate terminal of the input transistors is connected to a supply or a
supply-related voltage, then the substrate bias changes as the supply voltage changes.
In turn, substrate bias variation changes the threshold through the body effect, which
changes the gate-source voltage. Again, this mechanism can be studied with the help
of a source follower, as shown in Fig. 6.21a. Here ITAIL is assumed to be constant, but

VDD + vdd

ITAIL

VS + vs

+

–

(a)

vs

+

–

(b)

ro
gmvgs

= –gmvs

gmbvsb
= gmb(vs– vdd)

Figure 6.21 (a) Source follower and (b) small-signal diagram to calculate the dependence of vs on vdd

through the body effect.
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Vdd = VDD + vdd is assumed to vary. The small-signal diagram is shown in Fig. 6.21b.
From KCL at the source,

gmbvdd = gmvs + gmbvs +
vs

ro
(6.91)

Rearranging this equation gives

vs =
gmbro

1 + (gm + gmb)ro
vdd ≃

gmb

gm + gmb
vdd (6.92)

Therefore, nonzero vdd in the source follower in Fig. 6.21 causes nonzero vs. Similarly, in
Fig. 6.19, the voltage from the source of M1 to ground varies with Vdd, and this variation
couples to the summing node through the gate-source capacitance of M1; that is, the
supply capacitance Csup = Cgs1.

A solution to this problem is to place the input transistors in a well and connect the
well to the sources of the input transistors to eliminate the body effect. This solution
has two potential disadvantages. First, it disallows the use of the body effect on the
input devices to increase the common-mode input range of the op amp, as described
in Section 6.3.5. Second, this solution dictates the polarity of the input transistors in
a given process. For example, in a p-well process, the input devices must be n-channel
devices to place them in a p well. This requirement might conflict with the polarity of the
input transistors that would be chosen for other reasons. For example, p-channel input
transistors would be used to minimize the input-referred flicker noise. (See Chapter 11.)

4. Interconnect crossovers in the op-amp and system layout can produce undesired capac-
itive coupling between the supplies and the summing node. In this case, the supply
capacitance is a parasitic or undesired capacitance. This problem is usually overcome
with careful layout. In particular, one important layout technique is to shield the op-amp
inputs with metal lines connected to ground.

The result of supply capacitance can be quite poor power-supply rejection in switched-
capacitor filters and other sampled-data analog circuits that use capacitive feedback. In
addition to the solutions to this problem mentioned above, another solution is to use fully
differential op amps, which have two outputs. The output voltage of interest is the voltage
difference between these outputs. Fully differential op amps, which are considered in
Chapter 12, overcome the supply capacitance problem to the extent that the coupling from a
given supply to one output is the same as to the other output.

6.3.7 Effect of Overdrive Voltages

The overdrive of a MOS transistor can be reduced by reducing the ratio of its drain current
to its W∕L. Reducing the overdrive voltages in the op amp in Fig. 6.16 improves the op-amp
performance by increasing the voltage gain as shown by (6.59), increasing the swing as
shown by (6.61), reducing the input offset voltage as shown by (6.69), increasing the CMRR
as shown by (6.72), increasing the common-mode range as shown by (6.78), and increasing
the power-supply rejection ratio as shown by (6.88). These observations are valid provided
that the transistors in the op amp operate in strong inversion. Also, increasing the channel
lengths increases the corresponding Early voltages as shown by (1.163) and thereby increases
the op-amp gain, common-mode rejection ratio, and power-supply rejection ratio as shown
by (6.59), (6.72), and (6.88). Unfortunately, the transition frequency of MOS transistors is
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proportional to the overdrive and inversely proportional to the square of the channel length
from (1.209). Therefore, reducing overdrives and increasing the channel lengths degrades the
frequency response of the transistors and in turn the amplifier. Thus we find a fundamental
trade-off between the frequency response and the other measures of performance in CMOS
op-amp design.

6.3.8 Layout Considerations

A basic objective in op-amp design is to minimize the mismatch between the two signal
paths in the input differential pair so that common-mode input signals are rejected to the
greatest possible extent. Mismatch affects the performance of the differential pair not only at
dc, where it causes nonzero offset voltage, but also at high frequencies, where it reduces the
common-mode and power-supply rejection ratios.

Figure 6.22a shows a possible layout of a differential pair. Five nodes are labeled: two gates,
two drains, and one source. Connections to each region are omitted for simplicity. The sources
of the two transistors are connected to each other by merging the two sources together into
one diffusion region. Although such a layout saves area and minimizes undesired capacitance
connected to the sources, this layout is not optimum from the standpoint of matching in part
because it is sensitive to alignment shifts between masks that define various layers in an inte-
grated circuit. The key problem is that the layout in Fig. 6.22a uses only mirror symmetry in
the sense that each transistor is a mirror image of the other. For example, suppose that two
additional grounded segments of metal are added to the layout to produce the layout shown
in Fig. 6.22b. In exactly these locations, the parasitic capacitance CP1 from D1 to ground is

D1

CP1 CP2

G1 S G2 D2

D1 G1 S G2 D2

(b)

(a)

Figure 6.22 (a)–(b) Differential-pair
layouts with mirror symmetry.
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Figure 6.22 (c)–(e)
Differential-pair layouts with
translational symmetry.

equal to the parasitic capacitance CP2 from D2 to ground. However, if the mask that defines
the metal shifts to the right compared to the mask that defines the diffusion, CP1 increases but
CP2 decreases, creating mismatch. In practice, balancing the parasitics in a way that is insen-
sitive to alignment shifts is most important in amplifiers that have both differential inputs and
differential outputs. Such amplifiers are considered in Chapter 12.

Figure 6.22c–e shows layouts that overcome these problems. In Fig. 6.22c–d, the transis-
tors are drawn using translational symmetry; that is, each transistor is a copy of the other
without rotation. Another option is shown in Fig. 6.22e, where each transistor has been split
into two pieces. To maintain the same width/length ratio as in the previous drawings, the width
of each transistor in Fig. 6.22e has been reduced by a factor of two. This structure has both
translational and mirror symmetry. Structures with translational symmetry are insensitive to
alignment shifts.

One limitation of these layouts is that they are sensitive to process gradients perpendicular
to the line of symmetry. For example, in Fig. 6.22e, suppose the oxide thickness increases from
left to right. Then the gate stripes connected to G1 have thinner oxide than those connected to
G2, causing the transistors to have unequal thresholds and unequal transconductance parame-
ters. The effects of process-related gradients across the die can be partially alleviated by use of
common-centroid geometries. Figure 6.23 shows a common-centroid layout of the differential
pair. Each side of the differential pair is split into two components that are cross connected in
the layout. In a geometric sense, the centroid of both composite devices lies at center of the
structure. Because any gradient can be decomposed into horizontal and vertical components,
this layout overcomes the effect of linear process gradients in any direction.
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Figure 6.23 Common-centroid
structure for the MOS differential
pair.

Figure 6.23 also shows two layers of metal used to cross connect the devices. One layer
of metal is drawn with solid lines. The other is drawn with dashed lines. The two layers
connect at intersections only where dots are drawn. The interconnect drawn here is shift
insensitive and balanced in the sense that any signal line that crosses a node on one side of the
differential pair also crosses the corresponding node on the other side. This balance helps to
keep undesired signals in common-mode form so they can be rejected by the differential pair.
Finally, the only line that crosses the metal connected to the two input gates is the metal line
to the sources of the differential pair. This characteristic is important because such crossings
create a small parasitic capacitance between the two layers that cross and can allow undesired
signals to couple to the op-amp inputs. Since op amps are designed to have high gain, op-amp
inputs are the most sensitive nodes in analog integrated circuits. Therefore, if any signal line is
allowed to cross one gate, it should also cross the other to balance the parasitic capacitances.
Since the parasitics may not be perfectly matched in practice, however, avoiding crossings
is better than balancing them. In Fig. 6.23, the gates are allowed to cross the source of
the differential pair because the transistors themselves already provide a large capacitance
between each gate and the source in the form of the gate-source capacitance of each transistor.

A disadvantage of common-centroid layouts is also apparent in Fig. 6.23. That is, the need to
cross-connect the devices increases the separation between matched devices and may worsen
matching in cases where linear process gradients are not the main limitation. Therefore, the
value of a common-centroid layout must be determined on a case-by-case basis.
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6.3.9 Amplifier with Level Shifting in the Input Stage

As mentioned in Section 6.3.3, M3, M4, and M6 in Fig. 6.16 should have identical channel
lengths to make the systematic offset voltage insensitive to process variations. Also, increasing
the channel lengths for M3 and M4 reduces the input-referred random offset voltage as well
as the input-referred flicker noise. (Noise is analyzed in Chapter 11.) Finally, decreasing the
channel length of M6 improves the stability margins described in Chapter 9. As a result, the
amplifier circuit in Fig. 6.16 cannot be independently optimized for all of these parameters.
A circuit that overcomes this limitation is described next.

The new circuit starts with the same basic amplifier shown in Fig. 6.16. Assume the effec-
tive width of each transistor is equal to its drawn width, ignoring the offset term described in
Section 2.9.1 for simplicity. Then assume that L3 = L4 is large, to reduce the input-referred
random offset and flicker noise, and L6 is small, to increase the stability margins. Also assume
that (6.63) is satisfied, ignoring Ld and Xd in (2.35) so Leff = Ldrwn. Then Vov3 = Vov6. In
practice, Ld > 0 and Xd > 0, increasing the effective W∕L for all transistors and causing
Vov3 > Vov6 because the effect of the Ld and Xd terms on the effective W∕L increases as
Ldrwn decreases. Furthermore, variations in Ld and Xd that occur from one process run
to another change Vov3 − Vov6, introducing variations in the systematic offset voltage of
the amplifier.

This problem can be avoided by introducing a level shift in the current mirror in the first
stage. Figure 6.24a shows a schematic of the new amplifier. The only change here compared
to the circuit in Fig. 6.16 is to insert M9 in series with M3. M9 is deliberately operated in the
triode region, and it behaves as a resistor whose resistance and drain-source voltage are set by
its drain current and VB2. Assuming zero gate current flows in M3 and M4 (and all transistors),
the drain current of M9 is set by M1, M2, and M5 and is equal to I5∕2 with vi = 0 and perfect
matching. Then the output of the first stage is VDS4 = VDS3 = VGS3 − VDS9. Ideally, VB2 should
be set so that VDS9 gives the needed level shift to bias the output voltage VO midway between
the supplies, producing zero systematic offset voltage. In practice, nonzero systematic offset
voltage is acceptable as long as the operating point is insensitive to process variations even
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Figure 6.24 (a) Amplifier using M9 to
level shift the output of the first stage.
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when L3 = L4 is big and L6 is small. Replica biasing can be used to design a bias circuit
that sets VB2.

Figure 6.24b shows a schematic of the replica bias circuit.11 Assume that M103 is a replica
of M3, M105 is a replica of M5, and so on. (In practice, the replica transistors are usually scaled
versions of the transistors they copy to reduce power dissipation, as described in Section 4.2.
Also, the scale factor applied to M105 is usually half the scale factor applied to M103 because
the drain current of M3 is I5∕2 in Fig. 6.24a when vi = 0.) To generate VB2, two negative
feedback loops are used. They are labeled NFB1 and NFB2. Negative feedback is presented in
Chapter 8 but is described here as follows. In the first loop, negative feedback is implemented
by connecting the gate of M103 to the drain of M109. To satisfy KCL at the drain of M109, this
loop adjusts VB3 until I103 = I105. In the second loop, negative feedback is implemented by
connecting the gate of M109 to the drain of M106. This second loop is more complicated than
the first, and the behavior of the second loop is described next.

Figure 6.24c shows two plots of VB2 versus VGS106. One plot is labeled Amplifier Character-
istic. In this case, VGS106 is applied as an independent input, and VB2 is observed as an output.
For VGS106 < Vt106, M106 is off, so I106 = 0 and VB2 rises to VDD + VSS so that VDS107 = 0 and
I107 = 0, satisfying KCL at the drain of M106. For VGS106 slightly greater than Vt106, increasing
VGS106 causes VB2 to decrease with a slope of −gm106(ro106||ro107) because M106 operates as a
common-source amplifier with M107 acting as a current-source load. For large enough VGS106,
M106 operates in the triode region, and VB2 falls to nearly zero.

The other plot is labeled Feedback Characteristic. In this case, VB2 is applied as an inde-
pendent input, and VGS106 is observed as an output. M105, M109, and M103 form a super source
follower, as shown in Fig. 3.43b. The feedback characteristic plotted in Fig. 6.24c comes from
Fig. 5.10b, with two changes. First, the x and y axes are interchanged because VB2 is the input
to the super source follower and is plotted on the y axis, and VGS106 is the output of the super
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Figure 6.24 (b) Replica biasing to generate VB2. (c) Two plots of VB2 versus VGS106. For the ampli-
fier characteristic, VGS106 is applied as an independent input and VB2 is observed as the output. For the
feedback characteristic, VB2 is applied as an independent input and VGS106 is observed as the output.
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source follower and is plotted on the x axis. Second, the resulting plot from Fig. 5.10b is shifted
to the right and upward by VSS because both VGS106 and VB2 are defined with respect to −VSS
instead of with respect to ground.

For VB2 < Vt109, M109 is off; therefore, M105 and M103 operate in the triode region with
I105 = I103 = 0, which means that VDS105 = VDS103 = VGS106 = 0. For VB2 slightly > Vt109,
M109 turns on. Further increases in VB2 increase VGS106 because VGS106 follows VB2 at least
to some extent. At first, however, M109 operates in the saturation or active region and limits
the branch current, while M105 and M103 continue to operate in the triode region. In the op amp,
the goal is to bias M5 and M3 in the active or saturation region and M9 in the triode region.
Therefore, the bias circuit should adjust VB2 so that each replica transistor operates in the same
region as the transistor it copies.

To operate M105 and M103 in the active or saturation region, VSD105 > |Vov105| and VDS103 >

Vov103. If these conditions are satisfied, VSD105 = VDD − (−VSS + Vt103 + Vov103) and
VDS103 = VB2 − VGS109. Therefore, VDD + VSS > Vt103 + Vov103 + |Vov105| and VB2 > VGS109 +
Vov103 are required. Also, to operate M109 in the triode region, VGD109 > Vt109. Since
VGD109 = VB2 − (Vt103 + Vov103), VB2 > Vt109 + Vt103 + Vov103 is also required. In Fig. 5.10b,
note that the difference between the upper and lower ends of the output range for which all the
transistors operate in the active or saturation region is Vt2 − Vov1 for the circuit in Fig. 5.10a.
This difference is Vt103 − Vov109 for the circuit in Fig. 6.24b. Since the goal in Fig. 6.24b is
to bias M109 in the triode region, (W∕L)109 ≪ 1 is chosen in practice to increase Vov109 and
reduce (or eliminate) the output range for which M109 operates in saturation.

Changes in VGS106 adjust VB2 along the amplifier characteristic, and changes in VB2 adjust
VGS106 along the feedback characteristic. In steady state, both characteristics must be satisfied,
and the second feedback loop operates at the intersection of these two plots. At this operating
point, I106 = I107, and both M106 and M107 operate in the active or saturation region provided
that VDS106 = VB2 > Vov106 and VSD107 = VDD − (−VSS + VB2) > |Vov107|. The first condition
is usually satisfied because VB2 = VGS106 + VGS109 > Vt106 + Vt109, which is normally greater
than Vov106. The second condition is equivalent to VDD + VSS > VB2 + |Vov107|, which is nor-
mally satisfied as well. Under these conditions and with perfect matching of corresponding
transistors in the op amp and the replica bias circuit, M6 and M7 in Fig. 6.24a operate in the
active or saturation region with vi = 0, which maximizes the op-amp gain.

Since M109 operates in the triode region, it functions as a nonlinear resistor with I109 and
VDS109 set by the replica circuit as boundary conditions to the operation of M109. First, I109 is
forced to be equal to I105, where NFB1 sets VB3 so that I103 = I105. Second, VDS109 is forced
to be equal to VGS103 − VGS106, where VGS103 is set by NFB1 and VGS106 is set by NFB2. If
the slope of the amplifier characteristic in Fig. 6.24c is steep, VGS106 is forced to be equal to
Vt106 + Vov106, where Vov106 is set by I107, assuming that M106 and M107 operate in saturation as
described above. While converging to this operating point, changes in VB2 cause correspond-
ing changes in VGS109 = VB2 − VGS106. These changes in VGS109 can be viewed as changing
the output characteristic on which M109 operates. Figure 6.24d shows example output charac-
teristics of M109 (plots of I109 versus VDS109) for three values of VGS109. This figure also shows
the two boundary conditions. At the operating point in Fig. 6.24d, VGS109 = VGS109(2), where
the drain-source resistance of M109 [(dI109∕dVDS109)−1] satisfies both boundary conditions.

If M109 operates well into the triode region, the small-signal gain of the super source
follower in Fig. 6.24b, vgs106∕vb2 ≪ 1. Therefore, the slope of the feedback characteristic
in Fig. 6.24c is much greater than 1 at the operating point (vb2∕vgs106 ≫ 1). As a result, the
operating point is highly sensitive to changes in Vt106. For example, suppose Vt106 decreases
by vt106. This change shifts the nearly vertical drop in the amplifier characteristic in Fig. 6.24c
to the left by vt106 but does not change the feedback characteristic. Therefore, VB2 at the
operating point is reduced by about vt106 × (vb2∕vgs106).
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and boundary conditions that set
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When VB2 is used to bias the op amp in Fig. 6.24a, VDS9 = VDS109 = VGS103 − VGS106 =
VGS3 − VGS6 if the matching between transistors in the op amp and corresponding transistors
in the replica circuit is perfect. With this value of VDS9, VO in Fig. 6.24a is equal to −VSS + VB2
in Fig. 6.24b, ignoring channel-length modulation.

The sensitivity of the operating point to changes in Vt106 can be reduced by moving the
operating point of M109 toward the saturation or active region. However, this change would
increase the drain-source resistances of M109 and M9, worsening undesired changes in the
frequency response of the op amp introduced by the level shifting. See Problems 7.51 to 7.56.

Although changes in VB2 caused by changes in Vt6 = Vt106 appear in the output-referred sys-
tematic offset voltage of the op amp, the corresponding change in the input-referred systematic
offset is small because it is divided by the op-amp gain.

6.4 Two-Stage MOS Operational Amplifiers with Cascodes
The basic two-stage op amp described in Section 6.3 is widely used with many variations that
optimize certain aspects of the performance. In this section, we consider an important variation
on the basic circuit to increase the voltage gain.

The voltage gain that is available from the basic circuit shown in Fig. 6.16 may be inad-
equate in a given application to achieve the required accuracy in the closed-loop gain. For
example, suppose the basic op amp uses transistors with gmro = 20 and is connected in the
voltage-follower configuration shown in Fig. 6.3c. The op-amp gain is given in (6.56) and is
less than (gmro)2 in practice. For simplicity, assume that the op-amp gain is about (gmro)2, or
400 in this case. The closed-loop gain is given by (6.12) and is approximately unity because
R2 = 0 in the follower configuration. The error in this approximation is one part in the op-amp
gain or at least 0.25 percent. In precision applications, this error may be too large to meet the
given specifications, requiring an increase in the op-amp gain.

One approach to increasing the op-amp gain is to add another common-source gain stage to
the op amp so that the overall gain is approximately (gmro)3 instead of (gmro)2. An important
problem with this approach, however, stems from the fact that op amps are intended to be used
in negative-feedback configurations. In practice, op-amp frequency response is not constant.
If the op amp introduces an additional phase shift of 180o at some frequency, the negative
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feedback that was intended becomes positive feedback at that frequency, and the op amp may
be unstable. The topics of frequency response and stability are covered in detail in Chapters 7
and 9, respectively. The key point here is that if an op amp is unstable in a given feedback
configuration, it does not act as an amplifier but as a latch or oscillator. To avoid this problem,
op amps are usually designed with no more than two gain stages because each stage contains
a node for which the impedance to ground is high and as a result contributes a significant
pole to the op-amp transfer function. Since the phase shift from one pole approaches −90o

asymptotically, an op amp with no more than two poles cannot provide the 180o phase shift
that is required to convert negative feedback into positive feedback.

To increase the voltage gain without adding another common-source gain stage, common-
gate transistors can be added. Together with a common-source transistor, a common-gate
transistor forms a cascode that increases the output resistance and gain of the stage while
contributing a less significant pole to the amplifier transfer function than would be contributed
by another common-source stage. Figure 6.25 illustrates the use of cascodes to increase
the voltage gain of a two-stage amplifier. Here, a series connection of two transistors, one
in the common-source connection and one in the common-gate connection, replace each
common-source transistor in the first stage. Therefore, M1 and M1A in Fig. 6.25 replace M1
in Fig. 6.16. Similarly, M2 and M2A in Fig. 6.25 replace M2 in Fig. 6.16. Transistor M9 and
current source IC have also been added to bias the gates of M1A and M2A. In practice, the W∕L
of M9 is chosen so that M1 and M2 are operated barely in the active region. The effect of these
replacements is to increase the unloaded output impedance of the differential pair by a factor
that is approximately equal to gmro of the cascode device.

If the current mirror M3–M4 were not also cascoded, however, the output resistance of the
first stage including the current-mirror load would be limited by the mirror. To overcome this
limitation, a cascode current mirror shown in Fig. 4.9 is used instead. As a result, the stage
gain and output resistance including the load are increased by approximately a factor gmro. In
this circuit, M10 and M11 are included to level shift the output of the first stage down by VGS10
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Figure 6.25 Two-stage amplifier with cascoded first stage.
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so that the second stage input is driven by a signal whose dc level is VGS3 above −VSS. If the
aspect ratios are chosen to satisfy (6.66), and if each common-gate transistor is identical to
its common-source counterpart, the systematic offset voltage with this level shift is given by
(6.68), where the op-amp gain here is on the order of (gmro)3 instead of (gmro)2 in Fig. 6.16.
One disadvantage of this circuit is a substantial reduction in the common-mode input range.
(See Problem 6.16.) To overcome this problem, cascoding could be added instead to the second
stage. In that case, however, the output swing of the op amp would be degraded by the cascodes.

6.5 MOS Folded-Cascode Operational Amplifiers
Figure 6.26 shows two cascode circuits where VDD = 0 for simplicity. In Fig. 6.26a, both M1
and M1A are p-channel devices. In Fig. 6.26b, M1 is still a p-channel device but M1A is now an
n-channel device. In both cases, however, M1 is connected in a common-source configuration,
and M1A is connected in a common-gate configuration. Small-signal variations in the drain
current of M1 are conducted primarily through M1A in both cases because IBIAS is a constant
current source. Therefore, both circuits are examples of cascodes. The cascode in Fig. 6.26b
is said to be folded in the sense that it reverses the direction of the signal flow back toward
ground. This reversal has two main advantages when used with a differential pair. First, it
increases the output swing. Second, it increases the common-mode input range.

Figure 6.27a shows a simplified schematic of a circuit that applies the folded-cascode
structure to both sides of a differential pair. As in Fig. 6.26b, M1 and M1A form one cascode
structure in Fig. 6.27a. M2 and M2A form another. The current mirror converts the differential
signal into a single-ended output by sending variations in the drain current of M1A to the
output. The resulting op amp is called a folded-cascode op amp.7,12 A complete schematic is
shown in Fig. 6.27b. Bias is realized by making the currents in current sources M11 and M12
larger than |ID5|∕2. Thus

ID1A = ID2A = ID11 −
|ID5|

2
= ID12 −

|ID5|
2

= IBIAS −
ITAIL

2
(6.93)

Compared to the other op-amp configurations we have considered, the folded-cascode con-
figuration improves the common-mode input range. The upper end of the range is the same as
in the basic two-stage op amp and the telescopic cascode op amp. On the other hand, the lower
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Figure 6.26 (a) Standard cascode configuration. (b) Folded-cascode configuration.
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Figure 6.27 Schematics of a folded-cascode op amp, (a) simplified and (b) more detailed.
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end of the range can be reduced significantly compared to both of the other configurations if
VBIAS2 is adjusted so that M11 and M12 operate at the edge of the active region. Under this
condition, the bias voltage from the drain of M1 to −VSS is Vov11, which can be much less than
in the other configurations. See (6.75), (6.77), and Problem 6.18.

To calculate the output swing, first consider the p-type cascode current mirror by itself.
Since M3 and M3A are diode connected, the voltage from VDD to the gate of M4A is 2|Vtp| +
2|Vov|. Therefore, the source-drain voltage of M4 is |Vtp| + |Vov|, and the maximum output for
which both M4 and M4A operate in the active region is

VO(max) = VDD − |Vtp| − 2|Vov| (6.94)

The threshold term in this equation can be eliminated by using a p-type version of one of the
high-swing cascode current mirrors shown in Figs. 4.11 and 4.12. The result is

VO(max) = VDD − 2|Vov| (6.95)

To find the minimum output voltage, assume that VBIAS2 is adjusted so that M12 operates at
the edge of the active region. Then the drain-source voltage of M12 is Vov, and the minimum
output voltage for which both M2A and M12 operate in the active region is

VO(min) = −VSS + 2Vov (6.96)

Therefore, a folded-cascode op amp can provide nearly constant voltage gain while its output
swings within two overdrives of each supply.

The small-signal voltage gain of this circuit at low frequencies is

Av = GmRo (6.97)

where Gm is the transconductance and Ro is the output resistance. When all the transistors
operate in the active region, the range of typical gain magnitudes is from several hundred to
several thousand. Because of the action of the current mirror M3–M4, variation in the drain
current of M1 and M2 contribute constructively to the transconductance. Therefore,

Gm = gm1 = gm2 (6.98)

To find Ro, both inputs are connected to ac ground. Although the input voltages do not move
in this case, the sources of M1–M2 do not operate at ac ground. However, connecting this node
to small-signal ground as shown in Fig. 6.28a causes little change in Ro because of the action
of the current mirror M3–M4, as explained next.

Let id1 and id2 represent the small-signal drain currents of M1 and M2, respectively. Also
let Δid1 and Δid2 represent the corresponding changes in id1 and id2 caused by connecting the
sources of M1–M2 to a small-signal ground, as shown in Fig. 6.28a. If ro → ∞, Δid1 = Δid2
because this connection introduces equal changes in the gate-source voltages of M1 and M2.
Then Δid1 flows in the source of M1A, where it is mirrored to the output with a gain of unity if
ro → ∞ in M3–M4. Therefore, KCL at the output shows that Δid1 and Δid2 cancel, causing no
change to the output current ix or the output resistance Ro. As a result, Ro can be found while
assuming that the sources of M1–M2 operate at ac ground. In practice, ro in all the transistors
is finite, and Ro is altered slightly by connecting this point to ac ground for two reasons. First,
Δid1 and Δid2 are not exactly equal with finite ro because vds1 and vds2 are not exactly equal.
Differences between vds1 and vds2 stem from finite ro in M1A and M2A because M3 and M3A
are diode connected but their counterparts M4 and M4A are not diode connected. Second, the
small-signal current gain of the current mirror is not exactly unity with finite ro because vds3
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Figure 6.28 (a) Test voltage source applied to the output to calculate the output resistance. (b) Simplified
circuit.

and vds4 are not exactly equal. However, the change in the output resistance introduced by
these considerations is usually negligible. (These effects are related to the explanation of how a
current-mirror load increases the common-mode rejection ratio of a differential pair presented
in the section 4.4.5.3 in Chapter 4.)

With the sources of M1–M2 connected to ac ground, the drain current of M1 is constant.
Furthermore, the Thévenin equivalent resistances presented to the gates of M4 and M4A are
small because M3 and M3A are diode connected. So little error is introduced by assuming that
the gates of M4 and M4A are connected to small-signal ground. Therefore, the calculation of
Ro can be carried out using the circuit of Fig. 6.28b. By inspection,

Ro = (Rout|M2A) ∥ (Rout|M4A) (6.99)

The output resistance of transistor current sources with nonzero source resistance was con-
sidered in Chapter 4. The result is the same as for a common-source amplifier with source
degeneration. The incremental resistance in the source of M2A is the ro of M2 in parallel with
the ro of M12, while the incremental resistance in the source of M4A is the ro of M4. From
(3.107),

Rout|M2A = (ro2||ro12) + ro2A[1 + (gm2A + gmb2A)(ro2||ro12)]

≃ [gm2A(ro2 ∥ ro12)]ro2A (6.100)

and

Rout|M4A = ro4 + ro4A[1 + (gm4A + gmb4A)(ro4)]

≃ (gm4Aro4)ro4A (6.101)
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An important advantage of this circuit is that the load capacitance CL performs the
compensation function (see Chapter 9). Thus no additional capacitance (such as CC in
previous circuits) need be added to keep the amplifier from oscillating when connected in a
feedback loop. Furthermore, in the basic two-stage op amp, CC feeds the variation from one
power supply forward to the op-amp output at high frequencies, as described in Section 6.3.6.
This feedforward does not occur in the folded-cascode op amp, improving its high-frequency
power-supply rejection ratio.

6.6 MOS Telescopic-Cascode Operational Amplifiers
The first stage of Fig. 6.25 is sometimes used by itself as an op amp and provides a gain
comparable to the gain of the two-stage op-amp in Fig. 6.16. This structure has been called
a telescopic-cascode op amp13 because the cascodes are connected between the power sup-
plies in series with the transistors in the differential pair, resulting in a structure in which the
transistors in each branch are connected along a straight line like the lenses of a refracting
telescope.

Figure 6.29a shows the schematic of another telescopic-cascode op amp that uses n-channel
transistors not only for the input differential pair, M1 and M2, but also for the cascodes M1A and
M2A. The main potential advantage of telescopic-cascode op amps is that they can be designed
so that the signal variations are mainly handled by the n-channel transistors, which have higher
mobility and therefore higher fT than p-channel transistors. Such designs use fully differential
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Figure 6.29 (a) A telescopic cascode op amp with an n-channel input pair. (b) The corresponding tele-
scopic cascode op amp without a tail current source.
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configurations and are considered in Chapter 12. Even with fully differential configurations,
however, the p-channel load contributes at least one pole-zero pair, as described in Chapter 7.

One disadvantage of the telescopic-cascode configuration is that it has poor common-mode
input range. See Problem 6.16. Another disadvantage is that the output swing is small. For
example, consider the op amp in Fig. 6.29a, and assume that all transistors are enhancement
mode with identical overdrive magnitudes for simplicity. To calculate the output swing, first
consider the cascode current mirror (M3, M4, M3A, and M4A) by itself. To operate in the active
region, the minimum voltage from the source of M4 to the drain of M4A is |Vtp| + 2|Vov|.
Therefore, the maximum output voltage for which M4 and M4A operate in the active region is

VO(max) = VDD − |Vtp| − 2|Vov| (6.102)

This equation is the same as (6.94), which was derived for the folded-cascode op amp in
Fig. 6.27b. The presence of a threshold term in this equation is an important limitation
because it causes a substantial reduction in the allowed output swing. This limitation can
be overcome by using a p-channel counterpart of one of the high-swing cascode current
mirrors shown in Figs. 4.11 and 4.12. For example, Fig. 6.29c shows a telescopic cascode

op amp using a high-swing Sooch current mirror. Under ideal conditions with 3
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, this circuit eliminates the threshold term

from (6.102) and gives
VO(max) = VDD − 2|Vov| (6.103)

With this change, we can see that to achieve a gain comparable to (gmro)2 in one stage, the
swing is limited at best to two overdrives away from the supply. In contrast, the basic two-stage
op amp in Fig. 6.16 gives about the same gain but allows the output to swing within one
overdrive of each supply, as shown by (6.61).

To find the minimum output voltage swing of the telescopic-cascode op amp, consider
the cascoded differential pair and tail current source (M1, M2, M1A, M2A, and M5) shown in
Fig. 6.29a. Assume that the common-mode input from the gates of M1 and M2 to ground is
VIC. The voltage from the source of M1 and M2 to ground is

VS = VIC − Vtn − Vov (6.104)

To operate M5 in the active region, its drain-source voltage should be at least Vov. Therefore,

VS − (−VSS) ≥ Vov (6.105)

Substituting (6.104) into (6.105) and rearranging gives

VIC ≥ −VSS + Vtn + 2Vov (6.106)

If we assume that VBIAS1 is chosen to operate M1 and M2 at the edge of the active region, the
minimum output voltage for which M2 and M2A operate in the active region is

VO(min) = VS + 2Vov (6.107)

Substituting (6.104) into (6.107) gives

VO(min) = VIC − Vtn + Vov (6.108)
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Figure 6.29 (c) A telescopic cascode op amp
with a high-swing p-channel current mirror.

This equation shows another limitation of the telescopic-cascode op amp from the standpoint
of output swing; that is, the minimum output voltage depends on the common-mode input.
However, this limitation as well as the limitation on the common-mode input range can be
overcome in switched-capacitor circuits. Such circuits allow the op-amp common-mode input
voltage to be set to a level that is independent of all other common-mode voltages on the same
integrated circuit. This property holds when signals are coupled to the op-amp inputs only
through capacitors, which conduct zero dc current even with a nonzero dc voltage drop. In this
case, the reduced common-mode input range of the telescopic-cascode op amp is not a primary
concern. As a result, telescopic-cascode op amps are sometimes used instead of folded-cascode
op amps in high-speed switched-capacitor applications when the power-supply voltage is large
enough to allow the required output swing.

Assuming that the op-amp inputs are biased to the minimum common-mode input voltage
for which M5 operates in the active region, the minimum output voltage can be found by
substituting the minimum VIC from (6.106) into (6.108), which gives

VO(min) = −VSS + 3Vov (6.109)
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This equation shows that the minimum output voltage of the telescopic op amp in Fig. 6.29a
with optimum common-mode input biasing is three overdrives more than the negative supply.
This result stems from the observation that three transistors (M2A, M2, and M5) are connected
between the output and −VSS. In contrast, (6.103) shows that the maximum output voltage is
limited by two overdrives.

To determine the minimum required supply voltage difference, we will subtract (6.109)
from (6.103), which gives

VO(max) − VO(min) = VDD − (−VSS) − 5|Vov| (6.110)

assuming that the magnitudes of all the overdrives are all equal. Rearranging this equation
gives

VDD − (−VSS) = VO(max) − VO(min) + 5|Vov| (6.111)

This equation shows that the minimum difference between the supply voltages for the tele-
scopic cascode op amp in Fig. 6.29a must be at least equal to the peak-to-peak output signal
swing plus five overdrive voltages to operate all transistors in the active region. For example,
with a peak-to-peak output swing of 1 V and |Vov| = 100 mV for each transistor, the minimum
difference between the supply voltages is 1.5 V.

In practice, this calculation has two main limitations. First, if transistors are deliberately
biased at the edge of the active region, a small change in the process, supply, or tempera-
ture may cause one or more transistors to operate in the triode region, reducing the output
resistance and gain of the op amp. To avoid this problem, transistors in practical op amps are
usually biased so that the magnitude of the drain-source voltage of each transistor is more
than the corresponding overdrive by a margin of typically 20 to 40%. The margin allowed
for each transistor directly adds to the minimum required supply voltage difference. Second,
this calculation determines the supply requirements only for transistors between the output
node and each supply, and other branches may require a larger supply difference than given in
(6.111). For example, consider the path from one supply to the other through M3, M3A, M1A,
M1, and M5 in Fig. 6.29a. Ignore the body effect for simplicity. Since M3 and M3A are diode
connected, the drain-source voltage of each is |Vt| + |Vov|. Furthermore, if the W∕L of M3A
is reduced by a factor of four to implement a p-channel version of the high-swing cascode
current mirror shown in Fig. 4.11, the voltage drop from the source of M3 to the drain of M3A
is 2|Vt| + 3|Vov|. If the other three transistors in this path are each biased so that VDS = Vov,
the required supply difference for all the transistors in this path to operate in the active region
is 2|Vt| + 6|Vov|. This requirement exceeds the requirement given in (6.111) if 2|Vt| + |Vov|
is more than the peak-to-peak output swing. However, this result does not pose a fundamental
limitation to the minimum required power-supply voltage because low-threshold devices are
sometimes available.

As in the folded-cascode op amp, the load capacitance CL performs the compensation
function (see Chapter 9), avoiding the need for additional capacitance to keep the amplifier
from oscillating when connected in a feedback loop. Furthermore, in the basic two-stage op
amp in Fig. 6.16, CC feeds the variation from one power supply forward to the op-amp out-
put at high frequencies, as described in Section 6.3.6. This feedforward does not occur in
one-stage op amps such as the telescopic-cascode and folded-cascode structures, improving
their high-frequency power-supply rejection ratios from one of the power supplies.

The minimum supply voltage difference in (6.111) includes five overdrive terms. In con-
trast, the corresponding equation for the op amp in Fig. 6.16 would include only two overdrive
terms, one for M6 and the other for M7. The presence of the three extra overdrive terms
increases the minimum required supply difference or reduces the allowed overdrives for a
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given supply difference. The extra three overdrive terms in (6.111) stem from the two cascode
devices (M2A and M4A) and the tail current source (M5). One way to eliminate the overdrive
of the tail current source is to use a folded-cascode op amp instead of a telescopic-cascode
op amp, as shown in the previous section. With a folded-cascode op amp, however, the input
differential pair (M1 and M2) uses one polarity transistor (p-channel in Fig. 6.27b), and the
cascodes (M1A and M2A) use the opposite polarity transistor. This configuration reduces the
op-amp bandwidth because p-channel transistors are slower than n-channel transistors.

Another way to eliminate the overdrive of the tail current source is to keep a
telescopic-cascode op amp but remove M5. This idea was proposed for a fully differen-
tial op amp.14 Figure 6.29b shows the schematic of a telescopic op amp without M5 and with
a single-ended output. One disadvantage of this circuit is that eliminating M5 reduces the
CMRR because, without M5, the input differential pair (M1 and M2) treats common-mode
inputs the same way it treats differential inputs.

Another disadvantage of this circuit is that eliminating M5 reduces the PSRR from the
Vss supply. Assume that the VDD supply voltage is constant and that the op-amp inputs in
Fig. 6.29a,b are all connected to small-signal grounds. Let the Vss supply voltage change by
vss, and consider the small-signal gain |vo∕vss| with and without M5. First, assume that M5 in
Fig. 6.29a is the output of a simple current mirror biased with a constant current. Then variation
in Vss does not change Vgs5, and the output voltage is constant to the extent that ro5 → ∞. In
practice, ro5 is finite, and |vo∕vss| is small in this case. Second, consider the circuit without M5
in Fig. 6.29b. Then variation in Vss changes both Vgs1 and Vgs2 directly, increasing the changes
in the drain currents of M1 and M2 (id1 and id2) compared to the previous case. As a result,|vo∕vss| increases even though the low-frequency changes in id1 and id2 mostly cancel at the
output, as shown in Section 4.4.5.

The next section describes the use of replica biasing of the tail current source, which
increases the output swing and the common-mode input range of the telescopic cascode
op amp.

6.7 Replica Biasing of the Tail Current Source
Figure 6.30 shows the schematic of a differential amplifier (M1, M2, M5, R1, and R2) that uses
replica biasing to allow its tail current source (M5) to operate in the triode region while main-
taining high CMRR and PSRR, reducing its effect on the output swing and the common-mode
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input range.15,16 This differential amplifier is called the main amplifier below. For simplicity,
it uses resistive loads and does not use cascodes, but the replica-biasing technique described
in this section can be used with active loads and cascodes as well.

In the replica branch, M15 is a copy of M5, and M11 and M12 are copies of M1 and M2,
respectively. Also, the replica branch is biased by current source I and connected in a negative
feedback (NFB) loop, which includes the amplifier with gain a, M15, and both M11 and M12.
The gain around this loop is negative because M15 gives negative gain from its gate to its
drain. Negative feedback is studied in Chapter 8, but the concept can be understood here as
follows. To satisfy KCL at the drains of M11 and M12, the amplifier adjusts its output, Vbias2,
until the drain current of M15, ID15, is equal to I. If a → ∞, the difference between the two
amplifier input voltages becomes zero. Since the voltage from the inverting amplifier input to
ground is V , the voltage from the noninverting input to ground, Vor, also becomes equal to V .

In the main amplifier, assume that the resistance of R1 = R2 is chosen so that the common-
mode output Voc = 0.5(Vo1 + Vo2) = Vor = V when ID5 = ID15. Then ID5 ≃ ID15 for three rea-
sons. First, M5 and M15 are assumed to be identical. Second, Vgs5 = Vgs15. Third, Vds5 ≃ Vds15,
assuming that Vi1 − Vi2 is small enough that the changing Vo1 and Vo2 have little effect on Vds5.
See Problem 6.26. This last assumption is reasonable because the main amplifier forms a sim-
ple op amp, which is used in practice with NFB that keeps its differential input voltage small
under most conditions, as shown in (6.10).

Assume Vi1 = Vi2. If M1, M2, M11, and M12 operate in the active or saturation region, Vds5
and Vds15 are mainly determined by the common-mode input Vic = 0.5(Vi1 + Vi2) as follows:

Vds5 ≃ Vds15 ≃ Vic − Vt − Vov (6.112)

where Vt is the threshold voltage of M1, M2 M11, and M12, and Vov is their overdrive voltage.
As a result, if Vic is low enough, M5 and M15 operate in the triode region. However, the NFB
loop around the replica branch still adjusts Vbias2 to force ID15 = I when Vor = V if a → ∞.
Also, ID5 ≃ ID15 by matching because Vds5 ≃ Vds15. Therefore, the tail current source in the
main amplifier, M5, conducts nearly constant current even when it operates in the triode region.
This characteristic increases the output swing and the input common-mode range of the main
amplifier.

A key point here is that Vbias2, Vds5, and Vds15 should all be viewed as quantities that may
vary with time because they all depend on Vic. As a result, the bandwidth of the amplifier with
gain a limits the ability of this circuit to work properly with high-frequency variations on Vic.
Another limitation stems from the fact that the output swing of this amplifier is limited by VDD.
See Problem 6.27.

With M1 identical to M2, and with a purely differential-mode small-signal input in Fig. 6.30,
Vds5 is constant. Therefore, the sources of M1 and M2 operate as a small-signal ground, and
the differential gain is

Adm =
vod

vid
= −gm1Rom[dm] (6.113)

where gm1 = gm2 is the transconductance of M1 or M2, and Rom[dm] is the differential-mode
output resistance of the main amplifier.

Finding the common-mode gain is more complicated than in a conventional amplifier
because Vbias2 changes with Vic. Figure 6.31 shows a small-signal model of the circuit in
Fig. 6.30 with a common-mode input.16 Gm and Gr represent the small-signal common-mode
transconductances of the input differential pair, M1 and M2, and the replica differential
pair, M11 and M12, respectively, with vbias2 = 0. Gmt and Grt represent the small-signal
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Figure 6.31 Small-signal model of the
circuit in Fig. 6.30 with a common-mode
input.

transconductances of the tail current source M5 and the replica tail current source M15,
respectively, with vic = 0. Rom[cm] is the small-signal common-mode output resistance from
voc. Since the drains of M11 and M12 are connected to each other, the replica has only one
output, and Ror is the small-signal output resistance from vor. Both Rom[cm] and Ror are found
with vbias2 = 0.

To find Gm, assume that M1 and M2 are identical. Figure 6.32a shows a common-mode
half circuit of the main amplifier in Fig. 6.30 with vbias2 = 0, ignoring the body effect. From
(3.103),

Gm =
im
vic

||||vbias2 = 0
=

gm1

1 + gm1(2ro5) +
2ro5

ro1

(6.114)

Assuming that M11 and M12 are identical and vbias2 = 0, Fig. 6.32b shows a small-signal model
to find Gr, ignoring the body effect. From (3.103),

Gr =
ir
vic

||||vbias2 = 0
=

2gm11

1 + 2gm11(ro15) +
2ro15

ro11

(6.115)

With perfect matching, gm11 = gm1, ro11 = ro1, and ro15 = ro5. As a result,

Gr = 2Gm (6.116)
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Figure 6.32 Small-signal models to find (a) Gm and (b) Gr.
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Figure 6.33 (a) Small-signal model to find Gmt. (b) Simplified small-signal model to find Gmt.

This factor of two stems from the fact that both M11 and M12 contribute to Gr because their
drains are connected, but only M1 or M2 contributes to Gm because their drains are separated.

Figure 6.33a shows a common-mode half circuit of the main amplifier in Fig. 6.30 with
vic = 0, ignoring the body effect. Figure 6.33b shows that the top voltage-controlled current
source in Fig. 6.33a can be replaced by an equivalent resistance because this dependent source
is controlled by the voltage across itself. This circuit is a current divider, and

Gmt =
im

vbias2

||||vic = 0
= (0.5)gm5

2ro5

2ro5 +
[(

1
gm1

) ||ro1

] (6.117)

Figure 6.34a shows a small-signal model to find Grt, ignoring the body effect. In this case,
M11 and M12 are in parallel, doubling the transconductance and halving the resistance on the
top of the circuit. Again, the voltage-controlled current source on the top is controlled by
the voltage across itself. Figure 6.34b shows this controlled source replaced by an equivalent
resistance. This circuit is a current divider, and

Grt =
ir

vbias2

||||vic = 0
= gm15

ro15

ro15 +
[(

1
2gm11

) ||(0.5)ro11

] (6.118)

With perfect matching, gm15 = gm5, ro11 = ro1, and ro15 = ro5. As a result,

Grt = 2Gmt (6.119)

ir

(2gm11)(0−vsr)

gm15(vbias2)

(0.5)ro11

ro15

+
vsr−

(a)

ir

1

2gm11
||(0.5)ro11

gm15(vbias2) ro15

+
vsr−

(b)

Figure 6.34 (a) Small-signal model to find Grt. (b) Simplified small-signal model to find Grt.
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Again, this factor of two stems from connecting the drains of M11 and M12 so they both con-
tribute to Grt but separating the drains of M1 or M2 so only one of these transistors contributes
to Gmt.

From KCL at the replica output in Fig. 6.31,

vor = −(Grvic + Grtvbias2)Ror (6.120)

Using vbias2 = avor and rearranging gives

vor

vic
= −

GrRor

1 + aGrtRor
(6.121)

Solving this equation for vor and substituting into (6.120) gives

−
GrRor

1 + aGrtRor
vic = −GrvicRor − Grtvbias2Ror (6.122)

Solving this equation for vbias2 gives

vbias2 = −Gr

(
aRor

1 + aGrtRor

)
vic (6.123)

From KCL at the main output in Fig. 6.31,

voc = −(Gmvic + Gmtvbias2)Rom[cm] (6.124)

Substituting (6.123) into (6.124) and simplifying gives

voc = −Ge(Rom[cm])vic (6.125)

where Ge, the effective common-mode transconductance with replica biasing, is

Ge = Gm

(
1 −

GmtGr

GrtGm

aGrtRor

1 + aGrtRor

)
(6.126)

The loop gain around the replica loop is

T = aGrtRor (6.127)

Substituting (6.127) into (6.126) gives

Ge = Gm

(
1 −

GmtGr

GrtGm

T
1 + T

)
(6.128)

Rearranging this equation gives

Ge =
Gm

1 + T
(1 + TΔ) (6.129)

where Δ represents the mismatch between the main amplifier and its replica and is

Δ = 1 −
Gmt

Grt

Gr

Gm
(6.130)
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From (6.125), the common-mode gain Acm is

Acm =
voc

vic
= −GeRom[cm] (6.131)

Then substituting (6.113) and (6.131) into (3.187) gives

CMRR =
||||Adm

Acm

|||| = gm1

Ge

Rom[dm]
Rom[cm]

(6.132)

One important limiting case is when the main amplifier and its replica match perfectly. Then
substituting (6.116) and (6.119) into (6.130) gives

Δ = 1 −
(1

2

)(2
1

)
= 0 (6.133)

as expected. Then (6.129) gives

Ge =
Gm

1 + T
(6.134)

In this case, replica biasing reduces the effective common-mode transconductance by a factor
of 1 + T , which increases the CMRR by the same factor. As a result, the CMRR can be high
even when M5 and M15 operate in the triode region, as long as T ≫ 1.

In practice, mismatch between the main amplifier and the replica in inevitable. IfΔ ≫ 1∕T ,
however, then (6.129) gives

Ge =
Gm

1 + T
(1 + TΔ) ≃

Gm

1 + T
(TΔ) = GmΔ

T
1 + T

≃ GmΔ (6.135)

provided that T ≫ 1. If Δ < 1, replica biasing reduces the effective common-mode transcon-
ductance by a factor of Δ, which increases the CMRR by a factor of 1∕Δ. In other words, the
CMRR improves to the extent that the replica matches the main amplifier in this case.

A key point of this analysis is that the replica bias loop works to keep ID15 nearly constant
even when Vic changes and M15 operates in the triode region. Then because M5 is a replica of
M15 and Vds5 ≃ Vds15, as shown by (6.112), ID5 is also nearly constant. To achieve this result,
the replica bias loop changes Vbias2. Substituting (6.127) into (6.123) and rearranging gives

vbias2

vic
= −

Gr

Grt

( T
1 + T

)
≃ −

Gr

Grt
(6.136)

if T ≫ 1. Keep in mind that Gr∕Grt is not constant in practice but instead varies with the
operating point, especially the common-mode input voltage. When M15 operates in the triode
region, however, Gr can be much larger than Grt, causing Vbias2 to change much more than the
change in Vic.

Figure 6.35 shows another single-stage amplifier. It uses an active load (M3 and M4) to
produce a single-ended output (Vout). It also uses replica biasing to allow its tail current source
(M5) to operate in the triode region.15 In the replica circuit, the drain currents of M11 and M12
are pulled out of the input side of current mirror M23–M24. The mirror copies this current to its
output |ID24|. Increases in |ID24| increase the voltage from the drain of M24 to ground, reducing
VSG26 and |Id26|, which flows into the input side of mirror M25–M15. Reducing |Id26| reduces
ID15, |ID23|, and |ID24|. Since the loop responds to an initial increase in |ID24| by decreasing



6.7 Replica Biasing of the Tail Current Source 481

M3

M1

M5
ID5

+
Vds5−

M4

M2

M23

M11 M12

M15

|ID23|

ID15
+

Vds15−

M24

M9

|ID24|

ID9

M26

M25

|Id26|

Id25

C

+
Vbias2−

M8
ID8

IB

+
VBIAS1−

+
Vi1−

+
Vi2−

+
Vi1−

+
Vi2−

VDD

+
Vout−

Figure 6.35 Single-stage amplifier with replica biasing for its tail current source.

|ID24|, the loop has negative feedback. (Capacitor C is used to make sure that this loop is
stable. Stability is covered in Chapter 9.)

In steady state, the loop adjusts |Id26| to satisfy KCL at the drain of M24, and

VSD24 = VSG26 = |Vt26| + |Vov26| (6.137)

M24 normally operates in the saturation or active region in part because the threshold term in
the above equation usually makes VSD24 > |Vov24|. Also,

VDS9 = VDD − VSG26 = VDD − |Vt26| − |Vov26| (6.138)

and M9 operates in saturation if VDS9 > Vov9, which is true when

VDD > |Vt26| + |Vov26| + Vov9 (6.139)

Under these conditions, the loop adjusts |Id26| until |ID24| = ID9 with both M24 and M9 oper-
ating in saturation.

In Fig. 6.35, assume that all the n-type transistors are identical to each other and all the
p-type transistors are identical to each other as well, for simplicity. To find the dc operating
point, assume that all transistors except possibly M5 and M15 operate in saturation, with 𝜆 = 0.
(See Problem 6.29.) Then ID9 = ID8 = IB. Also, |ID24| = |ID23| = ID15. Since the loop adjusts|Id26| until |ID24| = ID9, the loop forces

ID15 = IB (6.140)

Then

ID5 = ID15 = IB (6.141)

because M5 = M15 and Vds5 = Vds15.
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The equations derived earlier in this section for the circuit in Fig. 6.30 can be applied with
some changes to analyze the circuit in Fig. 6.35 as well. To see the improvement in the CMRR
provided by replica biasing of the tail current source, the key equation is (6.127). Applying
this equation to Fig. 6.35 gives

a = gm24(ro9||ro24)gm26

(
1

gm25
||ro25||ro26

)
(6.142)

In addition, (6.118) gives Grt. Also,

Ror =
(

1
gm23

) ||ro23||Rdown (6.143)

where Rdown is the small-signal resistance looking down into the drains of M11 and M12 with
constant Vbias2. Ignoring the body effect, (3.107) gives

Rdown = ro15 + (ro11||ro12) + (gm11 + gm12)(ro11||ro12)ro15 (6.144)

In most cases, Rdown is big enough to ignore, and

Ror ≃
(

1
gm23

) ||ro23 (6.145)

When 𝜆 = 0 for M11 and M12, this equation is exact.
To illustrate the improvement in the CMRR provided by replica biasing of the tail current

source, two examples are considered next. The first example does not use the replica biasing
technique described in this section, and the second example uses this technique.

◼ EXAMPLE

In Fig. 6.36a, assume the common-mode input Vic = 0.5(Vi1 + Vi2) is set so that M5 operates
in the triode region with VDS5 = 20 mV. Find ID25 so that ID5 = 200 μA, and calculate the
low-frequency CMRR of the amplifier with zero differential dc input (VI1 = VI2). Ignore the
body effect, and use the transistor data given in Fig. 6.36b.

Since M5 operates in the triode region, (1.152) gives

ID5 =
k′n
2

(W
L

)
5
[2(VGS5 − Vtn)VDS5 − V2

DS5] (6.146)

Since VGS5 = VGS25, and since M25 operates in the active or saturation region, (1.166) gives

VGS5 − Vtn =

√
2ID25

k′n(W∕L)25
(6.147)
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M3

M1

M5
ID5

+
VDS5−

M4

M2

M25
ID25

I

+
VBIAS2−

+
Vi1−

+
Vi2−

VDD = 3 V

+
Vout−

Parameter Value
Vtn 0.5 V
Vtp −0.5 V
kn 200 µA/V2

kp 100 µA/V2

λn 0
λp 0.1 V−1

Ld = Xd 0
L 1 µm

W1 100 µm
W2 100 µm
W3 200 µm
W4 200 µm
W5 200 µm

W25 50 µm

(a) (b)

Figure 6.36 (a) Single-stage amplifier without replica biasing. (b) Transistor data.

Substituting (6.147) into (6.146) and solving for ID25 gives

ID25 =
k′n
2

(W
L

)
25

⎛⎜⎜⎜⎜⎝
2ID5

k′n(W∕L)5
+ V2

DS5

2VDS5

⎞⎟⎟⎟⎟⎠

2

= 200 × 10−6

2
(50)

⎛⎜⎜⎜⎜⎝
2(200 × 10−6)

200 × 10−6(200)
+ (0.02)2

2(0.02)

⎞⎟⎟⎟⎟⎠

2

= 338 μA (6.148)

From (4.167),

CMRR =
||||Gm[dm]
Gm[cm]

|||| (6.149)

where Gm[dm] is the differential-mode transconductance and Gm[cm] is the common-mode
transconductance. The output resistance does not appear in this equation because the
amplifier in Fig. 6.36a has only one output; therefore, the output resistance is the same for
differential-mode signals as for common-mode signals. From (4.143),

Gm[dm] = gm(dp) = gm1 = gm2 (6.150)

where gm(dp) is the transconductance of the differential pair. From (4.166),

Gm[cm] ≃ −
( gm(dp)

1 + gm(dp)(2rtail)

)
(𝜖d + 𝜖m) (6.151)
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where rtail = ro5. Also, 𝜖d is the gain error of the differential pair as defined in (4.161), and 𝜖m
is the gain error of the M3–M4 current mirror as defined in (4.133). Since 𝜆n = 0, 𝜖d = 0. In
other words, the small-signal drain current of M1 is equal to that of M2 with a common-mode
input when these transistors are identical. Substituting (6.150) and (6.151) into (6.149) gives

CMRR ≃
1 + 2gm1ro5

𝜖m
(6.152)

Since VI1 = VI2, ID1 = 0.5(ID5) = 100 μA, and (1.180) gives

gm1 =
√

2k′n(W∕L)1ID1 =
√

2(200 × 10−6)100(100 × 10−6) = 2 mA∕V (6.153)

Since M5 operates in the triode region,

ro5 =
[
𝜕ID5

𝜕VDS5

]−1

=
[
k′n
(W

L

)
5
(VGS5 − Vtn − VDS5)

]−1

=

[
k′n
(W

L

)
5

(√
2ID25

k′n(W∕L)25
− VDS5

)]−1

=
⎡⎢⎢⎣200 × 10−6(200)

⎛⎜⎜⎝
√

2(338 × 10−6)
200 × 10−6(50)

− 0.02
⎞⎟⎟⎠
⎤⎥⎥⎦
−1

= 1
9.6 mA∕V

(6.154)

From (4.179),

𝜖m = 1
1 + gm(mir)ro(mir)

= 1
1 + gm3ro4

(6.155)

where gm(mir) and ro(mir) are the transconductance and output resistance of the M3–M4 current
mirror, respectively. From (1.180),

gm3 =
√

2(100 × 10−6)200(100 × 10−6) = 2 mA∕V (6.156)

From (1.194),

ro4 = 1
𝜆p|ID4| = 1

0.1(100 × 10−6)
= 100 kΩ (6.157)

Therefore,

𝜖m = 1

1 + (2 × 10−3)(100 × 103)
= 1

201
≃ 1

200
(6.158)

and

CMRR ≃
(

1 + 2(2 × 10−3)
9.6 × 10−3

)
200 ≃ 280 = 48.9 dB (6.159)

Because M5 operates in the triode region here, the drain currents of M1 and M2 vary
significantly with the common-mode input voltage. As a result, most of the CMRR in this
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case comes from the 𝜖m term. This term accounts for the subtraction of the drain currents of
M1 and M2 provided by the M3–M4 current mirror.

A key point in this example is that ID25 can be set so that ID5 meets a given specification even
though M5 operates in the triode region. In this case, I = ID25 = 338 μA to force ID5 = 200 μA
with VDS5 = 20 mV. This value of ID25 is found here by calculation but also can be found by
trial and error and/or simulation. The circuit in the next example adjusts ID25 automatically to
bias ID5 the same way as in this example under ideal conditions without user intervention.◼

◼ EXAMPLE
For the amplifier in Fig. 6.35, let VDD = 3 V and IB = 50 μA. Again, assume the common-
mode input Vic = 0.5(Vi1 + Vi2) is set so that M5 operates in the triode region with VDS5 =
20 mV. Find Id25 and ID5 as well as the low-frequency CMRR of the amplifier with zero dif-
ferential dc input (VI1 = VI2). Ignore the body effect, and use the transistor data in Fig. 6.37,
except assume 𝜆p = 0 when calculating the dc operating point. (See Problem 6.29.)

In this example, M11, M12, and M15 are scaled replicas of M1, M2, and M5, respectively.
The scale factor here is N = 4; that is, (W∕L)11 = (W∕L)12 = (W∕L)1∕N = (W∕L)2∕N, and
(W∕L)15 = (W∕L)5∕N. The purpose of this scaling is to reduce the power dissipated in the
bias circuit in Fig. 6.35. In practice, scaling also reduces the bandwidth of the bias circuit,
which worsens the frequency response of the amplifier, as mentioned in Section 4.2. Also, to
minimize mismatch from lithographic effects, each transistor in Figs. 6.35 and 6.36a should
be built from unit transistors, as described in Section 4.3.2. In practice, using (W∕L) = 25 for
each unit transistor would be a good choice in these two examples. In that case, M1 in each
circuit would consist of four unit transistors in parallel for example.

In Fig. 6.35, ID9 = ID8 = IB = 50 μA. The replica bias loop adjusts |Id26| until |ID24| = ID9.
Since |ID24| = |ID23| = ID15, the loop forces ID15 = IB = 50 μA.

To find ID5, ignore the scaling at first for simplicity. That is, assume initially that (W∕L)1 =
(W∕L)2 = (W∕L)11 = (W∕L)12, and (W∕L)5 = (W∕L)15. Then ID5 = ID15 if Vds5 = Vds15.
Also, (6.112) shows that Vds5 ≃ Vds15 under these conditions. Furthermore, in this example,
Vds5 = Vds15 as long as M1, M2, M11, and M12 operate in saturation because Fig. 6.37 gives
𝜆n = 0, which means that Vds5 and Vds15 do not depend on the drain-source voltages of M1,
M2, M11, and M12 here (as long as these transistors operate in the saturation or active region).
Therefore, ID5 would be equal to ID15 or 50 μA without scaling.

On the other hand, (W∕L)5 is N = 4 times larger than (W∕L)15 in this example. Since VGS5 =
VGS15, ID5 = 4ID15 if Vds5 = Vds15. From (6.112), Vds5 = Vds15 if Vov1 = Vov2 = Vov11 = Vov12.

Parameter Value Parameter Value Parameter Value

Vtn 0.5 V W1 100 μm W11 25 μm

Vtp −0.5 V W2 100 μm W12 25 μm

k
′
n 200 μA∕V2 W3 200 μm W15 50 μm

k
′
p 100 μA∕V2 W4 200 μm W23 100 μm

𝜆n 0 W5 200 μm W24 100 μm

𝜆p 0.1 V−1 W8 50 μm W25 50 μm

Ld = Xd 0 W9 50 μm W26 100 μm

L 1 μm

Figure 6.37 Transistor data for the amplifier in Fig. 6.35.
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Since the overdrive of a transistor operating in saturation depends on the ratio of its drain
current to its (W∕L), Vov1 = Vov2 = Vov11 = Vov12, and ID5 = 4ID15 = 200 μA in this example.

Furthermore, because M1–M5 and M25 each have the same (W∕L) as the corresponding
transistors in the previous example and are arranged to form the same circuit as used there,
the drain current of M25 required here to set ID5 = 200 μA is the same as in the last example.
Therefore, Id25 = 338 μA. (This current is written with a lowercase subscript here because it
depends on the common-mode input Vic, which may change with time in practice.) Figure 6.38
shows the dc bias currents for the amplifier in Fig. 6.35, assuming 𝜆p = 0 and also assuming
M5 operates in the triode region with VDS5 = 20 mV.

To find the CMRR, do not use (6.132) because that equation was derived for the passive load
(R1 and R2) in Fig. 6.30. In contrast, the amplifier in Fig. 6.35 has an active load (M3 and M4),
which improves the CMRR by subtracting the drain currents of M1 and M2, as calculated in the
last example. Instead, start with (6.152) from the previous example. All the parameters in that
equation have the same values as in that example because that amplifier has the same circuit,
the same (W∕L) ratios, and the same bias as this amplifier. The only problem in applying
(6.152) here is that it is based on (6.151), which finds the common-mode transconductance
without accounting for the replica biasing of the tail current source described in this section.

Equation 6.129 shows that this replica biasing multiplies the common-mode transconduc-
tance by a factor of (1 + TΔ)∕(1 + T), where T and Δ are defined in (6.127) and (6.130).

Δ depends on Gmt, Grt, Gr, and Gm. Equation 6.117 gives Gmt. It depends on gm1, ro1, gm5,
and ro5. Equation 6.153 gives gm1, and (6.154) gives ro5. Since 𝜆n = 0, ro1 → ∞ from (1.194).
Since M5 operates in the triode region, (6.146) gives

gm5 =
𝜕ID5

𝜕VGS5
= k′n

(W
L

)
5
(VDS5)

= 200 × 10−6(200)(0.02) = 0.8 mA∕V (6.160)

From (6.117),

Gmt = (0.5)(0.8 × 10−3)

2
9.6

2
9.6

+ 1
2

≃ 0.118 mA∕V (6.161)

Trans. |ID| (μA) Trans. |ID| (μA)
M1 100 M11 25

M2 100 M12 25

M3 100 M15 50

M4 100 M23 50

M5 200 M24 50

M8 50 M25 338

M9 50 M26 338

Figure 6.38 The dc bias currents for the amplifier in Fig. 6.35 in this example.
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For Grt, use (6.118) with ro11 → ∞, and

gm11 =
√

2k′n(W∕L)11ID11 =
√

2(200 × 10−6)25(25 × 10−6) = 0.5 mA∕V (6.162)

gm15 = k′n
(W

L

)
15
(VDS15) = 200 × 10−6(50)(0.02) = 0.2 mA∕V (6.163)

ro15 =
[
k′n
(W

L

)
15
(VGS15 − Vtn − VDS15)

]−1

=

[
k′n
(W

L

)
15

(√
2ID25

k′n(W∕L)25
− VDS15

)]−1

=
⎡⎢⎢⎣200 × 10−6(50)

⎛⎜⎜⎝
√

2(338 × 10−6)
200 × 10−6(50)

− 0.02
⎞⎟⎟⎠
⎤⎥⎥⎦
−1

= 1
2.4 mA∕V

(6.164)

From (6.118),

Grt = (0.2 × 10−3)

1
2.4

1
2.4

+ 1
2(0.5)

≃ 0.059 mA∕V (6.165)

From (6.114),

Gm = 2 × 10−3

1 + 2
( 2

9.6

) ≃ 1.41 mA∕V (6.166)

From (6.115),

Gr =
2(0.5 × 10−3)

1 + 2(0.5)
2.4

≃ 0.706 mA∕V (6.167)

From (6.130),

Δ = 1 − (2)(0.5) = 0 (6.168)

This result is expected because this example assumes that the replica matches the main ampli-
fier exactly as desired.

Note that Gmt∕Grt = Gm∕Gr = 2 exactly here in part because (6.116) and (6.119) show
that Gm∕Gr = Gmt∕Grt = 0.5 with perfect matching and without scaling. Also, choosing the
(W∕L) ratios in the main amplifier to be N = 4 times larger than their counterparts in the replica
increases both Gm∕Gr and Gmt∕Grt by a factor of four each.

Since Δ = 0 here, (6.129) shows that the replica biasing described in this section reduces
the common-mode transconductance by a factor of 1 + T , where T = aGrtRor, as defined in
(6.127). To find a, use (6.142) with ro9 = ro25 → ∞, and
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gm24 =
√

2k′p(W∕L)24ID24 =
√

2(100 × 10−6)100(50 × 10−6) = 1.0 mA∕V (6.169)

ro24 = 1
𝜆p|ID24| = 1

0.1(50 × 10−6)
= 200 kΩ (6.170)

gm26 =
√

2(100 × 10−6)100(338 × 10−6) = 2.6 mA∕V (6.171)

gm25 =
√

2(200 × 10−6)50(338 × 10−6) = 2.6 mA∕V (6.172)

ro26 = 1

0.1(338 × 10−6)
= 1

33.8 μA∕V
= 1

0.0338 mA∕V
(6.173)

Then

a = 1(200)2.6
( 1

2.6 + 0.0338

)
≃ 200 (6.174)

From (6.165),

Grt ≃ 0.059 mA∕V (6.175)

To find Ror, use (6.143) with

gm23 =
√

2(100 × 10−6)100(50 × 10−6) = 1.0 mA∕V (6.176)

ro23 = 1

0.1(50 × 10−6)
= 1

5 μA∕V
= 1

0.005 mA∕V
(6.177)

Rdown → ∞ (6.178)

because ro11 = ro12 → ∞ in this example. Then

Ror =
1

gm23 + 1∕ro23
= 1

(1.0 + 0.005) mA∕V
≃ 995 Ω (6.179)

Therefore,

T ≃ 200(0.059)
1.005

≃ 11.7 (6.180)

With perfect matching, the replica biasing in this section reduces the common-mode
transconductance of the amplifier in Fig. 6.35 by a factor of 1 + T compared to the common-
mode transconductance of the amplifier in Fig. 6.36a. Since the differential transconductances
of the two amplifiers are identical, the CMRR is increased by a factor of 1 + T . From (6.159),
the CMRR ≃ 280 in the previous example. As a result, the CMRR here is

CMRR = 280(1 + T) = 280(12.7) ≃ 3600 (6.181)
◼
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6.8 MOS Active-Cascode Operational Amplifiers
One way to increase the gain of the folded-cascode op amp without cascading additional stages
is to add another layer of cascodes. See Problem 6.21. Although this approach gives a gain on
the order of (gmro)3, it reduces the output swing by at least another overdrive in each direction.
This reduction becomes increasingly important as the difference between the power-supply
voltages is reduced in scaled technologies. To increase the op-amp gain without reducing the
output swing, the active-cascode technique described in Chapter 3 can be used.17

Figure 6.39a shows the schematic of a folded-cascode op amp with active cascodes. The
gates of each of the four cascode transistors M1A, M2A, M3A, and M4A are no longer connected
to constant bias sources but instead to the outputs of amplifiers. These auxiliary amplifiers
are themselves connected in negative feedback loops to increase the resistance looking into
the drain of each cascode transistor. As shown by (3.133), the active-cascode configuration
increases the output resistance by increasing the effective transconductance of the cascode
transistor by (a + 1), where a is the voltage gain of the auxiliary amplifier. Let the gains of the
auxiliary amplifiers driving M3A and M4A be A1. Applying (3.133) to (6.101) to find the output
resistance looking into the drain of M4A gives

Rout|M4A = ro4 + ro4A{1 + [gm4A(A1 + 1) + gmb4A](ro4)}

≃ (A1 + 1)(gm4Aro4)ro4A (6.182)

Let the gains of the auxiliary amplifiers driving M1A and M2A be A2. Applying (3.133) to
(6.100) to find the output resistance looking into the drain of M2A gives

(a)
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Figure 6.39 (a) Folded-cascode op amp with active-cascode gain-enhancement auxiliary amplifiers.
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Rout|M2A = (ro2||ro12) + ro2A{1 + [gm2A(A2 + 1) + gmb2A](ro2||ro12)}

≃ (A2 + 1)[gm2A(ro2 ∥ ro12)]ro2A (6.183)

To find the overall op-amp gain, (6.182) and (6.183) can be substituted into (6.99) and the
result in (6.97). This analysis shows that the gain enhancement in the folded-cascode op amp
does not rely on the use of auxiliary amplifiers driving the gates of M1A and M3A. However,
these auxiliary amplifiers are included in Fig. 6.39a because they reduce the systematic offset
of the folded-cascode op amp. Also, using identical auxiliary amplifiers to drive the gates of
both M1A and M2A balances the two signal paths until the differential signal is converted into
single-ended form by the current mirror.

In Fig. 6.39a, the auxiliary amplifiers with gain A1 drive the gates of M3A and M4A so that
the voltages from the drains of M3 and M4 to ground are approximately equal to VBIAS2. For
simplicity, assume that the overdrive voltages for all p- and n-channel transistors operating
in the active region are Vovp and Vovn, respectively. Also assume that all n-channel transistors
have positive thresholds and all p-channel transistors have negative thresholds. To maximize
the positive output swing of the folded-cascode amplifier, the voltage drop from VDD to
VBIAS2 is chosen to be about |Vovp|. Therefore, the A1 amplifiers must operate with a high
common-mode input voltage. If these amplifiers use a p-channel differential input pair, the
maximum common-mode input voltage will be no more than VDD − |Vtp| − 2|Vovp|. To
overcome this limitation, the A1 amplifiers use an n-channel differential pair M21 and M22, as
shown in Fig. 6.39b. In operation, the dc voltage from VDD to the output of the A1 amplifiers
is about |Vtp| + 2|Vovp| so that the source-drain voltages of M3 and M4 are |Vovp|. Therefore,
the gate-drain voltage of M22 is approximately |Vtp| + |Vovp|, and M22 operates in the active
region only if its threshold (with the body effect) is greater than this value.

A similar argument can be made to explain the use of p-channel differential pairs in the
auxiliary amplifiers with gain A2. The schematic is shown in Fig. 6.39c, and the common-mode
inputs are close to −VSS in this case.

Figure 6.39d shows a circuit that produces the bias voltages needed in Fig. 6.39a–c. The
voltage from VDD to VBIAS1 is |Vtp| + |Vovp|, and the voltage from VBIAS4 to −VSS is Vtn + Vovn.
Transistor M105 forces M106 to operate in the triode region, and the voltage from VDD to VBIAS2
is at least |Vovp| if (W

L

)
106

≤ 1
3

(W
L

)
105

(6.184)

ignoring the body effect as in (4.73). Similarly, the voltage from VBIAS3 to −VSS is at least
Vovn if (W

L

)
114

≤ 1
3

(W
L

)
113

(6.185)

One potential problem with the structure shown in Fig. 6.39a is instability in the feedback
loops around the auxiliary amplifiers. To avoid instability, a compensation capacitor can
be placed from each auxiliary-amplifier output to a small-signal ground. Since the A1
amplifiers are used to improve the performance of a p-channel current mirror, where signals
are referenced to VDD, compensation capacitors for the A1 amplifiers CC1 are connected to
VDD. Similarly, compensation capacitors for the A2 amplifiers CC2 are connected to −VSS.
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Figure 6.39 (b) Auxiliary amplifier with gain A1. (c) Auxiliary amplifier with gain A2. (d) Bias
circuit.

The need for such capacitors stems from the observation that the capacitance looking into
the gates of M1A, M2A, M3A, and M4A can be quite small because the gate-source capacitances
of these transistors are bootstrapped. This expression means that the source of each of these
transistors follows its gate when the corresponding drain current is constant. If the gate-source
voltages are exactly constant, zero ac current flows into the gate-source capacitances, and
the capacitances looking into the gates of the cascode transistors are independent of their
gate-source capacitances. In practice, the gate-source voltages are not exactly constant
because of variations in the drain currents caused by variations in the differential input
voltage of the folded-cascode op amp, but the bootstrapping effect is significant. As a result,
the load capacitances of the auxiliary amplifiers are dominated by parasitics that may vary
considerably over variations in processing unless a capacitor is added at the output of each
auxiliary amplifier. The issue of stability in feedback amplifiers is considered in detail in
Chapter 9.
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PROBLEMS
6.1 For the circuit of Fig. 6.40, determine the

output current as a function of the input voltage.
Assume that the transistor operates in the active
region.

Ideal

++

––
Vin

R

Iout

Figure 6.40 Circuit for Problem 6.1.

6.2 Determine the output voltage as a function of
the input voltage for the circuit of Fig. 6.41. Assume
the op amp is ideal.

–

+

Vin Vout

+

–

+

–

1 kΩ 1 kΩ

Figure 6.41 Circuit for Problem 6.2.

6.3 In the circuit of Fig. 6.42, determine the cor-
rect value of Rx so that the output voltage is zero when
the input voltage is zero. Assume a nonzero input bias
current but zero input offset current and input offset
voltage.

–

+

+

–

Vin

Vout

R1 R2

Rx

Figure 6.42 Circuit for Problem 6.3.

6.4 The differential instrumentation amplifier
shown in Fig. 6.43 must have a voltage gain of 103

with an accuracy of 0.1 percent. What is the minimum
required open-loop gain of the op amp? Assume the op
amp open-loop gain has a tolerance of +100 percent,
–50 percent. Neglect the effects of Rin and Rout in the
op amp.

–

+

+

+

–
–

vin

vout
1 kΩ 1 MΩ

1 kΩ 1 MΩ

Figure 6.43 Circuit for Problem 6.4.

6.5 Once the offset voltage of the differential
amplifier in Problem 6.4 is adjusted to zero, the
input-referred offset voltage must remain less than
1 mV in magnitude for common-mode input voltages
between ±10 V. What is the minimum CMRR allow-
able for the amplifier to meet this requirement?

6.6 Consider the differential amplifier shown in
Fig. 6.4. Choose values of R1 and R2 for which the
gain is equal to −10 and the magnitude of the dc
output voltage is less than or equal to −10 mV with
V1 = V2 = 0. Assume that the op amp is ideal except
that |IOS| = 100 nA.

6.7 Suppose an op amp with PSRR+ = 10 is con-
nected in the voltage-follower configuration shown
in Fig. 6.3c. The input VS is set to zero, but a
low-frequency ac signal with peak magnitude vsup =
20 mV is superimposed on the positive power supply.
Calculate the peak magnitude of the output voltage.

6.8 In the switched-capacitor amplifier of
Fig. 6.9a, assume that the source of M4 is connected
to VS instead of to ground. Calculate the output volt-
age that appears during 𝜙2 for a given VS. Assume
the op amp is ideal except that it has a finite gain a
and a nonzero input capacitance CP. Assume ideal
MOS switches with zero on-resistance and infinite
off-resistance.

6.9 .(a) Calculate and sketch the output volt-
age waveform of the switched-capacitor integrator
of Fig. 6.10a from t = 0 to t = 20 μs, assuming a
fixed Vs = 1 V and a clock rate of 1 MHz. Assume
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an ideal MOS op amp with infinite gain and zero out-
put rise time. Assume ideal MOS switches with zero
on-resistance and infinite off-resistance.

(b) Compare the result for (a) with the output
waveform of the continuous-time equivalent circuit of
Fig. 6.10c.

(c) Investigate the effect on the output voltage
waveform in (a) of a finite voltage gain of 1000 in the
MOS op amp.

6.10 Calculate the low-frequency PSRR from the
Vdd and Vss power supplies for the common-source
amplifier shown in Fig. 6.44. Assume the transistor is
biased in the active region.

VDD + vdd

VSS + vss

R

vo

vi

+

+

–

–

Figure 6.44 Circuit for Problem 6.10.

6.11 Draw a two-stage op amp similar to the op
amp in Fig. 6.16, except reverse the polarity of every
transistor. For example, the resulting op amp should
have an n-channel input pair. Calculate the following
parameters: (a) low-frequency voltage gain, (b) output
swing, (c) systematic input offset voltage assuming
(6.66) is satisfied, (d) common-mode rejection ratio,
(e) common-mode input range, and (f) low-frequency
power-supply rejection ratio from both supplies.

6.12 .(a) Equation 6.69 gives the random input
offset voltage of the op amp in Fig. 6.16. Explain the
polarity of each term in (6.69) by assuming that the
matching is perfect except for the term under consid-
eration. Keep in mind that the overdrive is negative for
p-channel transistors. Therefore, (6.69) predicts that
the offset stemming from W3 > W4 is negative.

(b) Repeat (a) for an op amp that uses an
n-channel differential pair and a p-channel current-
mirror load. Equation 6.69 still applies in this case.

6.13 .(a) Calculate the random input offset voltage
for the op amp in Fig. 6.16. Assume the matching is
perfect except that Vt3 − Vt4 = 10 mV. Also assume
that all transistors have equal W∕L and operate in the

active region. Ignore short-channel effects, and use the
data in Table 2.4.

(b) Repeat (a) for an op amp that uses an
n-channel differential pair and a p-channel current-
mirror load.

(c) Which of these two configurations gives lower
input offset voltage? Explain.

6.14 List and explain at least three reasons to
select a two-stage op amp with an n-channel input pair
instead of with a p-channel input pair for a given appli-
cation.

6.15 Calculate bias currents and the low-
frequency small-signal voltage gain for the CMOS op
amp of Fig. 6.45. Use the parameters given in Table
2.4, and assume that Xd = 0.1 μm and dXd∕dVDS =
0.04 μm∕V for all the transistors at the operat-
ing point. Calculate the input common-mode range
assuming that the wells of M1 and M2 are connected
to their common-source point. Calculate the low-
frequency gain from each supply to the output. Check
these calculations with SPICE simulations.

6.16 Calculate the common-mode input range of
the op amp in Fig. 6.25. Assume that all the transis-
tors are enhancement-mode devices with |Vt| = 1 V,
and ignore the body effect. Also assume that the bias-
ing is arranged so that |Vov| = 0.2 V for each transistor
except M9. Finally, assume that M1 and M2 are biased
at the edge of the active region by M9 and IC.

6.17 Draw a telescopic-cascode op amp simi-
lar to the first stage in Fig. 6.25, except use an
n-channel input pair and a high-swing p-type cascode
current-mirror load. Calculate the maximum output
swing in terms of the common-mode input voltage.
Determine the optimum common-mode input voltage
for maximizing the output swing, and calculate the
swing with this common-mode input voltage under the
same assumptions given in Problem 6.16.

6.18 Calculate the common-mode input range of
the folded-cascode op amp of Fig. 6.27. Assume that
all the transistors are enhancement-mode devices with|Vt| = 1 V, and ignore the body effect. Also assume
that the biasing is arranged so that |Vov| = 0.2 V for
each transistor. Finally, assume that M11 and M12 are
biased at the edge of the active region.

6.19 Find the low-frequency voltage gain from
variation on each power supply to the op-amp out-
put in Fig. 6.27. Assume that the bias voltages VBIAS1,
VBIAS2, and VBIAS3 are produced by the circuit shown in
Fig. 6.46, where M106 is the only transistor that oper-
ates in the triode region. Assume that the W∕L ratios
are chosen so that all transistors in the op amp oper-
ate in the active region. Compare your calculations to
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Figure 6.45 Circuit for Problem 6.15.

M102 M103 M109

M101 M104

M105

M106

IBIAS

VBIAS1

VBIAS2

VBIAS3

–VSS

VDD

M107

M108

Figure 6.46 Bias circuit for Problem 6.19.
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SPICE simulations. Use models and supply voltages
of your choice, provided that the above conditions are
satisfied.

6.20 Design a CMOS op amp based on the
folded-cascode architecture of Fig. 6.27 using sup-
ply voltages of ±1.5 V. Use the bias circuit of
Fig. 4.42 (with M3 and M4 cascoded) to generate the
bias current IBIAS. Then design an extension to this
bias circuit that produces the bias voltages VBIAS1,
VBIAS2, and VBIAS3 based on IBIAS. The output current-
drive capability is to be ±100 μA, the output voltage-
swing capability should be 1.5 V peak-peak, and the
input common-mode range should extend from 0.5 V
to the negative supply. Matching requirements dic-
tate a minimum effective channel length of 1μm. To
make the gain insensitive to small shifts in the oper-
ating point, design the circuit so that the magnitude
of the drain-source voltage for each transistor oper-
ating in the active region exceeds the magnitude of
its overdrive by at least 100 mV. Specify all device
geometries and bias currents. The process is the n-well
process with parameters given in Table 2.4. Assume
Xd = 0 and 𝛾 = 0.25 V1∕2 for both n- and p-channel
transistors, but ignore the body effect in the hand cal-
culations. Use SPICE to verify and refine your design
as well as to determine the gain.

6.21 Draw the schematic of a folded-cascode op
amp similar to the op amp in Fig. 6.27 except with two
layers of both n- and p-type cascodes. Choose a cur-
rent mirror that maximizes the output swing. Assume
that all transistors have equal overdrive magnitudes
except where changes are needed to maximize the
output swing. Use the models in Table 2.4, and ignore
the body effect. Specify the W∕L ratios in multiples
of (W∕L)1.

6.22 For the folded-active-cascode op amp in
Fig. 6.39, choose the device sizes to give a peak-peak
output swing of at least 2.5 V. Use the 0.4 μm
CMOS model parameters in Table 2.4, except let
𝛾 = 0.25 V1∕2 and Xd = 0 for all transistors and
Vt0 = 0.7 V and −0.7 V for n-channel and p-channel
transistors, respectively. Assume the drawn chan-
nel length L = 1 μm is used for all transistors
to simplify the design. With IBIAS = 25 μA, the
bias currents should be |ID5| = ID11 = ID12 = ID25 =|ID35| = 200 μA. Assume VDD = VSS = 1.65 V and
that the matching is perfect. When the dc input volt-
age VI = 0, assume that all transistors except M106 and
M114 operate in the active region with equal overdrive
magnitudes. To make the gain insensitive to small
shifts in the operating point, design the circuit so that
the magnitude of the drain-source voltage for each
transistor operating in the active region exceeds the
magnitude of its overdrive by at least 100 mV. Ignore

the body effect in the hand calculations. Use SPICE to
verify your design, to choose the widths of M106 and
M114, and to determine the gain. Also use SPICE to
determine the gain if Vt0 = 0.6 V for n-channel tran-
sistors and Vt0 = −0.8 V for p-channel transistors, as
given in Table 2.4. Explain the resulting change in the
op-amp gain.

6.23 Suppose that the peak-peak output swing
requirement in Problem 6.22 is reduced while the
other conditions are held constant. This change allows
the overdrive magnitude to be increased. Which
transistor in the bias circuit of Fig. 6.39d enters
the triode region first if the overdrive magnitudes
are increased uniformly? Explain. Exclude M106 and
M114 from consideration because they are deliber-
ately operated in the triode region. How can the
bias circuit be redesigned to increase the allowed
overdrive magnitude while operating all transis-
tors except M106 and M114 in the active region?
What are the disadvantages of the modified bias
circuit?

6.24 .(a) Figure 6.47a shows a folded version of
the op amp in Fig. 6.15. A differential interstage
level-shifting network composed of voltage sources V
has been inserted between the first and second stages.
Assume that current source I1 is implemented using an
n-channel transistor with overdrive of Vovn, which is
equal to the overdrives of the other n-channel transis-
tors shown in Fig. 6.47a. Assume that current sources
I2 and I3 are each implemented using one p-channel
transistor with an overdrive of Vovp. In the resulting op
amp, only n-channel transistors conduct time-varying
currents. Find the input common-mode range and the
maximum output swing of the op-amp in terms of
VDD, −VSS, the level-shift voltage V, the threshold
voltages of individual transistors, and the overdrives
Vovn and Vovp.

(b) Figure 6.47b shows a realization of an active
floating level shift (active battery). Design this
level-shift circuit to give a battery voltage of 1.5 V
with a small-signal resistance less than 1 kΩ at I =
100 μA dc. Ignore the body effect. Use IB = 100 μA
and VDD = VSS = 1.65 V. Use SPICE to plot the
large-signal I-V characteristic for V = 0 to 1.65 V.
Use μnCox = 194 μA∕V2, 𝜆 = 0, and Vt = 0.6 V. For
SPICE simulations, connect the lower end of the bat-
tery to the negative supply.

6.25 In BiCMOS technology, MOS source fol-
lowers can be used to drive a bipolar differential pair
to reduce the average current flowing in the stage
input leads. See Fig. 6.48. Calculate the input-referred
random offset voltage of this structure. Assume
nonzero mismatch occurs in the following parameters:
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Figure 6.47 Circuits for Problem 6.24.
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Figure 6.48 Circuit for Problem 6.25.

the thresholds of the MOS transistors, the W∕L of the
MOS transistors, the bias currents, the saturation cur-
rents of the bipolar transistors, and the load resistors.
Ignore the body effect.

6.26 .(a) In Fig. 6.30, explain why Vds5 becomes
unequal to Vds15 as Vid = Vi1 − Vi2 increases with con-
stant Vic = (Vi1 + Vi2)∕2. Assume that 𝜆 = 0 and that
the matching is perfect. When Vid = 0, assume M1–M2

and M11–M12 operate in saturation and Voc = (Vo1 +
Vo2)∕2 = Vor = V .

(b) Repeat (a) for 𝜆 > 0.

6.27 In Fig. 6.30, assume that a → ∞ and 0 ≤
Vbias2 ≤ VDD. Also assume Vid = Vi1 − Vi2 → 0. Find
the minimum value of Vic = (Vi1 + Vi2)∕2 for which
the replica biasing works properly. Assume the resis-
tance of R1 = R2 is chosen so that the common-mode
output Voc = 0.5(Vo1 + Vo2) = Vor = V when 0 ≤
Vbias2 ≤ VDD. Use VDD = 3 V, I = 10 μA, V = 1.5 V,
k′ = 200 μA∕V2, Vt = 0.5 V, 𝜆 = 0, Ld = Xd = 0,
(W∕L)1 = (W∕L)2 = (W∕L)11 = (W∕L)12 = 5, and
(W∕L)5 = (W∕L)11 = 10. Ignore the body effect.
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6.28 In Fig. 6.30, replica biasing changes Vbias2

to keep the drain current of M5 almost constant
even when M5 operates in the triode region, improv-
ing the CMRR. Find the equivalent small-signal
resistance looking into the drain of M5 to give the
same CMRR without replica biasing (when Vbias2 is
constant) as with replica biasing. Use gm1 = gm2 =
gm11 = gm12 = 100 μA∕V, gm5 = gm15 = 33 μA∕V,
ro1 = ro2 = ro11 = ro12 = 1 MΩ, ro5 = ro15 = 1 kΩ,
and a = 1000. Ignore the body effect, and assume
perfect matching.

6.29 Find the dc bias current of every transistor
in Fig. 6.35 using the conditions in Fig. 6.37 (with
𝜆p = 0.1 V−1).

6.30 Figure 6.49 shows a differential amplifier
in which M3 and M4 are deliberately operated in the
triode region.18 Let Vid = VID + vid and Vod = VOD +
vod. Find the small-signal differential gain vod∕vid in
terms of VSD3 and VGS1 − Vt1 under the following
assumptions: (1) M1 and M2 are identical and oper-
ate in saturation. (2) M3 and M4 are identical. (3)
VB is large enough to force M3 and M4 to operate
deep in the triode region, where VSD3 ≪ |VGS3 − Vt3|.
(4) VID = VOD = 0. (5) Ignore the body effect and
channel-length modulation.

M3

M1

M4

M2

VDD

−
VB

+

IT

Vo1 Vo2+ Vod −
Vi2

−
Vid

+
Vi1

Figure 6.49 Differential amplifier.

6.31 Using the differential amplifier in Fig. 6.49
plus an ideal op amp, an ideal current source, an ideal
voltage source VR, and as many transistors as needed,
draw the schematic of a replica bias circuit that sets
VSD3 = VSD4 = VR under the assumptions given in the
previous problem.

6.32 Figure 6.50 shows a supply-insensitive bias-
ing circuit. Assume: (1) The MOS transistors oper-
ate in saturation, with 𝜆 = 0 and Xd = Ld = 0.
(2) (W∕L)13 = (W∕L)14, and (W∕L)11 > (W∕L)12.
(3) The bipolar transistors have infinite 𝛽F and infi-
nite VA. (4) The emitter area of Q2 is n times larger
than the emitter area of Q1. Also ignore the body
effect.

M13

M11

Q1

M14

M12

Q2

I13 I14

VDD

Figure 6.50 Supply-insensitive biasing circuit.

(a) Find I13 and I14. Are these currents constant
when μn and/or Coxn changes under the constraint that
all the n-channel transistors have the same μn and the
same Coxn? Explain.

(b) Draw the schematic of an extension of this cir-
cuit that implements the tail current source in the dif-
ferential amplifier in Fig. 6.49 and sets IT = 2I14. Also
include the elements that set the current in the replica
branch in the previous problem.

(c) Find VGS1 − Vt1 of M1 in Fig. 6.49 with IT =
2I14 under the assumptions given in Problem 6.30.
How do changes in μn, Coxn, VDD, and temperature
affect VGS1 − Vt1? Explain.

6.33 .(a) Draw the schematic of a voltage refer-
ence circuit that produces the voltage VR used to set
VSD3 = VSD4 = VR with replica biasing in Problem
6.31. This voltage VR should have the characteristics
needed to make the small-signal differential gain of
the amplifier in Fig. 6.49 insensitive to changes in pro-
cess, supply, and temperature under the assumptions
in Problems 6.30–6.32.

(b) Does halving k′n change VGS1 − Vt1, VSD3,
and/or vod∕vid using the circuits and assumptions in
Problems 6.30–6.33? Explain.
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CHAPTER 7

Frequency Response of
Integrated Circuits

7.1 Introduction
The analysis of integrated-circuit behavior in previous chapters was concerned with
low-frequency performance, and the effects of parasitic capacitance in transistors were not
considered. However, as the frequency of the signal being processed by a circuit increases,
the capacitive elements in the circuit eventually become important.

In this chapter, the small-signal behavior of integrated circuits at high frequencies is
considered. The frequency response of single-stage amplifiers is treated first, followed by an
analysis of multistage amplifiers.

7.2 Single-Stage Amplifiers
The basic topology of the small-signal equivalent circuits of bipolar and MOS single-stage
amplifiers is similar. Therefore, in the following sections, the frequency-response analysis for
each type of single-stage circuit is initially carried out using a general small-signal model that
applies to both types of transistors, and the general results are then applied to each type of
transistor. The general small-signal transistor model is shown in Fig. 7.1. Table 7.1 lists the
parameters of this small-signal model and the corresponding parameters that transform it into
a bipolar or MOS model. For example, Cin in the general model becomes C𝜋 in the bipolar
model and Cgs in the MOS model. However, some device-specific small-signal elements are
not included in the general model. For example, the gmb generator and capacitors Csb and Cgb in
the MOS models are not incorporated in the general model. The effect of such device-specific
elements will be handled separately in the bipolar and MOS sections.

The common-emitter and common-source stages are analyzed in the sections below on
differential amplifiers.

7.2.1 Single-Stage Voltage Amplifiers and the Miller Effect

Single-transistor voltage-amplifier stages are widely used in integrated circuits. Figures 7.2a
and 7.2b show the ac schematics for common-emitter and common-source amplifiers with
resistive loads, respectively. Resistance RS is the source resistance, and RL is the load resis-
tance. A simple linear model that can be applied to both of these circuits is shown in Fig. 7.2c.
The elements in the dashed box form the general small-signal transistor model from Fig. 7.1
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Cf

v1 gmv1

B or G C or D

E or S

+

–

Figure 7.1 A general small-signal
transistor model.

Table 7.1 Small-Signal Model Elements

General Model Bipolar Model MOS Model

rx rb 0

rin r𝜋 ∞
Cin C𝜋 Cgs

Cf Cμ Cgd

ro ro ro

RL
vi

vi

Cinrin

RS

RL

RS

rx
Cfi1

v1
gmv1

vo

(c)

(a) (b)

+

+

–

–

+

–

A

A

vi

vo vo

RL

RS

+

–

Figure 7.2 (a) An ac schematic of a common-emitter amplifier. (b) An ac schematic of a common-
source amplifier. (c) A general model for both amplifiers.

without ro. We will assume that the output resistance of the transistor ro is much larger than RL.
Since these resistors are connected in parallel in the small-signal circuit, ro can be neglected.
An approximate analysis of this circuit can be made using the Miller approximation. This
analysis is done by considering the input impedance seen looking across the plane AA in
Fig. 7.2c. To find this impedance, we calculate the current i1 produced by the voltage v1:

i1 = (v1 − vo)sCf (7.1)
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KCL at the output node gives

gmv1 +
vo

RL
+ (vo − v1)sCf = 0 (7.2)

From (7.2), the voltage gain Av from v1 to vo can be expressed as

Av(s) =
vo

v1
= −gmRL

⎛⎜⎜⎜⎜⎝
1 − s

Cf

gm

1 + sRLCf

⎞⎟⎟⎟⎟⎠
(7.3)

Using vo = Av(s)v1 from (7.3) in (7.1) gives

i1 = [1 − Av(s)]sCf v1 (7.4)

Equation 7.4 indicates that the admittance seen looking across the plane AA has a value
[1 − Av(s)]sCf . This modification to the admittance sCf stems from the voltage gain across
Cf and is referred to as the Miller effect. Unfortunately, this admittance is complicated, due
to the frequency dependence of Av(s). Replacing the voltage gain Av(s) in (7.4) with its
low-frequency value Av0 = Av(0), (7.4) indicates that a capacitance of value

CM = (1 − Av0)Cf (7.5)

is seen looking across plane AA. The use of the low-frequency voltage gain here is
called the Miller approximation, and CM is called the Miller capacitance. From (7.3),
Av0 = Av(0) = −gmRL; therefore, (7.5) can be written as

CM = (1 + gmRL)Cf (7.6)

The Miller capacitance is often much larger than Cf because usually gmRL ≫ 1.
The physical origin of the Miller capacitance is found in the voltage gain of the

circuit. At low frequencies, a small input voltage v1 produces a large output voltage
vo = Av0v1 = −gmRLv1 of opposite polarity. Thus the voltage across Cf in Fig. 7.2c is
(1 + gmRL)v1, and a correspondingly large current i1 flows in this capacitor. The voltage
across CM in Fig. 7.3 is only v1, but CM is larger than Cf by the factor (1 + gmRL); therefore,
CM conducts the same current as Cf .

We can now form a new equivalent circuit that is useful for calculating the forward
transmission and input impedance of the circuit. This is shown in Fig. 7.3 using the Miller
approximation. Note that this equivalent circuit is not useful for calculating high-frequency

RLvi Cin CMrinv1

RS rx

gmv1

vo

+

–

+

–

Figure 7.3 Equivalent circuit for Fig. 7.2c using the Miller approximation.



502 Chapter 7 ▪ Frequency Response of Integrated Circuits

reverse transmission or output impedance. From this circuit, we can see that at high
frequencies the input impedance will eventually approach rx.

In Fig. 7.3, the Miller capacitance adds directly to Cin and thus reduces the bandwidth of
the amplifier, which can be seen by calculating the gain of the amplifier as follows:

v1 =

rin

1 + srinCt
rin

1 + srinCt
+ RS + rx

vi (7.7)

vo = −gmRLv1 (7.8)

where
Ct = CM + Cin (7.9)

Substitution of (7.7) in (7.8) gives the gain

A(s) =
vo

vi
= −gmRL

rin

RS + rx + rin

1

1 + sCt
(RS + rx)rin

RS + rx + rin

(7.10a)

= K
1

1 − s
p1

(7.10b)

where K is the low-frequency voltage gain and p1 is the pole of the circuit. Comparing (7.10a)
and (7.10b) shows that

K = −gmRL
rin

RS + rx + rin
(7.11a)

p1 = −
RS + rx + rin

(RS + rx)rin
⋅

1
Ct

= − 1
[(RS + rx)||rin]Ct

= − 1
[(RS + rx)||rin] ⋅ [Cin + Cf (1 + gmRL)]

(7.11b)

This analysis indicates that the equivalent circuit based on the Miller approximation
(Fig. 7.3) has a single pole, and setting s = j𝜔 in (7.10b) shows that the voltage gain is 3 dB
below its low-frequency value at a frequency

𝜔−3dB = |p1| = RS + rx + rin

(RS + rx)rin
⋅

1
Ct

= 1
[(RS + rx)||rin] ⋅ [Cin + Cf (1 + gmRL)]

(7.12)

As Ct,RL, or RS increases, the −3 dB frequency of the amplifier is reduced.
The exact gain expression for this circuit can be found by analyzing the equivalent circuit

shown in Fig. 7.4. The poles from an exact analysis can be compared to the pole found using
the Miller effect. In Fig. 7.4, a Norton equivalent is used at the input where

R = (RS + rx)||rin (7.13)

ii =
vi

RS + rx
(7.14)
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RLii CinR

Cf

v1 gmv1 vo

+

+

–

–

X Y

Figure 7.4 Figure 7.2c redrawn using a
Norton equivalent circuit at the input.

KCL at node X gives

ii =
v1

R
+ v1sCin + (v1 − vo)sCf (7.15)

KCL at node Y gives

gmv1 +
vo

RL
+ (vo − v1)sCf = 0 (7.16a)

Equation 7.16a can be written as

v1(gm − sCf ) = −vo

(
1

RL
+ sCf

)
(7.16b)

and thus

v1 = −vo

1
RL

+ sCf

gm − sCf
(7.17)

Substitution of (7.17) in (7.15) gives

ii = −
( 1

R
+ sCin + sCf

) 1
RL

+ sCf

gm − sCf
vo − sCf vo

and the transfer function can be calculated as

vo

ii
= −

RRL(gm − sCf )
1 + s(Cf RL + Cf R + CinR + gmRLRCf ) + s2RLRCf Cin

(7.18)

Substitution of ii from (7.14) in (7.18) gives

vo

vi
= −

gmRLR

RS + rx

1 − s
Cf

gm

1 + s(Cf RL + Cf R + CinR + gmRLRCf ) + s2RLRCf Cin
(7.19)

Substitution of R from (7.13) into (7.19) gives, for the low-frequency gain,

vo

vi

||||𝜔=0
= −gmRL

rin

RS + rx + rin
(7.20)

as obtained in (7.10).
Equation 7.19 shows that the transfer function vo∕vi has a positive real zero with magnitude

gm∕Cf . This zero stems from the transmission of the signal directly through Cf to the output.
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The effect of this zero is small except at very high frequencies, and it will be neglected here.
However, this positive real zero can be important in the stability analysis of some operational
amplifiers, and it will be considered in detail in Chapter 9. The denominator of (7.19) shows
that the transfer function has two poles, which are usually real and widely separated in practice.
If the poles are at p1 and p2, we can write the denominator of (7.19) as

D(s) =
(

1 − s
p1

)(
1 − s

p2

)
(7.21)

and thus

D(s) = 1 − s

(
1
p1

+ 1
p2

)
+ s2

p1p2
(7.22)

We now assume that the poles are real and widely separated, and we let the lower-frequency
pole be p1 (the dominant pole) and the higher-frequency pole be p2 (the nondominant pole).
Then |p2|≫ |p1|, and (7.22) becomes

D(s) ≈ 1 − s
p1

+ s2

p1p2
(7.23)

If the coefficient of s in (7.23) is compared with that in (7.19), we can identify

p1 = − 1
CinR + Cf (R + gmRLR + RL)

= − 1

R

[
Cin + Cf

(
1 + gmRL +

RL

R

)] (7.24)

If the value of R from (7.13) is substituted in (7.24), then the dominant pole is

p1 = −
RS + rx + rin

(RS + rx)rin

1[
Cin + Cf

(
1 + gmRL +

RL

R

)]
= − 1

[(RS + rx)||rin] ⋅
[

Cin + Cf

(
1 + gmRL +

RL

R

)] (7.25)

This value of p1 is almost identical to that given in (7.11b) by the Miller approximation. The
only difference between these equations is in the last term in the denominator of (7.25), RL∕R,
and this term is usually small compared to the (1 + gmRL) term. This result shows that the
Miller-effect calculation is nearly equivalent to calculating the dominant pole of the amplifier
and neglecting higher frequency poles. The Miller approximation gives a good estimate of
𝜔−3dB in many circuits.

Let us now calculate the nondominant pole by equating the coefficient of s2 in (7.23) with
that in (7.19), giving

p2 = 1
p1

1
RLRCf Cin

(7.26)

Substitution of p1 from (7.24) in (7.26) gives

p2 = −
(

1
RLCf

+ 1
RCin

+ 1
RLCin

+
gm

Cin

)
(7.27)
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The results in this section were derived using a general small-signal model. The general
model parameters and the corresponding parameters for a bipolar and MOS transistor are listed
in Table 7.1. By substituting values from Table 7.1, the general results of this section will be
extended to the bipolar common-emitter and MOS common-source amplifiers, which appear
in the half-circuits for differential amplifiers in the following sections.

7.2.1.1 The Bipolar Differential Amplifier: Differential-Mode Gain. A basic building
block of analog bipolar integrated circuits is the differential stage shown in Fig. 7.5. For
small-signal differential inputs at vi, the node E is a virtual ground, and we can form the
differential-mode (DM) ac half-circuit of Fig. 7.6a. The gain of this common-emitter circuit
is equal to the DM gain of the full circuit. The circuit analysis that follows applies to this
DM half-circuit as well as any single-stage common-emitter amplifier of the form shown in
Fig. 7.6a. The small-signal equivalent circuit of Fig. 7.6a is shown in Fig. 7.6b and, for com-
pactness, the factor of 1∕2 has been omitted from the input and output voltages. This change
does not alter the analysis in any way. Also, for simplicity, the collector-substrate capacitance
of the transistor has been omitted. Since this capacitance would be connected in parallel with
RL, its effect could be included in the following analysis by replacing RL with ZL, where ZL
equals RL in parallel with Ccs.

The small-signal circuit in Fig. 7.2c becomes the circuit in Fig. 7.6b when the bipolar
model parameters in the second column of Table 7.1 are substituted for the general model
parameters in Fig. 7.2c. Therefore, the analysis results from the previous section can be used
here. Substituting the values in the second column of Table 7.1 into (7.19), the voltage gain
is given by

vo

vi
= −

gmRLR

RS + rb

(
1 − s

Cμ

gm

)
1 + s(CμRL + CμR + C𝜋R + gmRLRCμ) + s2RLRCμC𝜋

(7.28)

VCC

–VEE

IEE

RS

RL RL

RS

E
vi

vo

+

+ –

–

Figure 7.5 Bipolar differential amplifier
circuit.
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+
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gmv1

μ
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Figure 7.6 (a) Differential-mode ac half-circuit for Fig. 7.5. (b) Small-signal equivalent circuit for (a).

where R = (RS + rb)||r𝜋 . Using (7.25), the dominant pole is given by

p1 = − 1

[(RS + rb)||r𝜋] [C𝜋 + Cμ

(
1 + gmRL +

RL

R

)] (7.29)

Calculation of p1 using (7.11b), which is based on the Miller approximation, gives

p1 = − 1
[(RS + rb)||r𝜋][C𝜋 + Cμ(1 + gmRL)]

= − 1
[(RS + rb)||r𝜋](C𝜋 + CM)

(7.30)

where
CM = Cμ(1 + gmRL) (7.31)

is the Miller capacitance. Equation 7.30 gives virtually the same p1 as (7.29) if
RL∕R ≪ (1 + gmRL), which is usually true. This result shows that the Miller approximation
is useful for finding the dominant pole. From (7.27), the nondominant pole is given by

p2 = −
(

1
RLCμ

+ 1
RC𝜋

+ 1
RLC𝜋

+
gm

C𝜋

)
(7.32)

The last term of (7.32) is gm∕C𝜋 > gm∕(C𝜋 + Cμ) = 𝜔T , and thus |p2| > 𝜔T . (Recall that 𝜔T
is the transition frequency for the transistor, as defined in Chapter 1.) Consequently, |p2| is a
very high frequency; therefore, |p1| is almost always much less than |p2|, as assumed. In the
s plane, the poles of the amplifier are thus widely separated, as shown in Fig. 7.7.



7.2 Single-Stage Amplifiers 507
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s plane

j

σ

ω

× ×

Figure 7.7 Typical pole positions
for the circuit in Fig. 7.4.

◼ EXAMPLE
Using the Miller approximation, calculate the −3 dB frequency of a common-emitter tran-
sistor stage and plot the gain magnitude versus frequency on log scales using the following
parameters:

RS = 1 kΩ rb = 200 Ω IC = 1 mA 𝛽0 = 100

fT = 400 MHz (at IC = 1 mA) Cμ = 0.5 pF RL = 5 kΩ

The transistor small-signal parameters are

r𝜋 =
𝛽0

gm
= 100 × 26 Ω = 2.6 kΩ

𝜏 T = 1
2𝜋fT

= 398 ps

Using (1.129) gives

C𝜋 + Cμ = gm𝜏 T =
( 1 mA

26 mV

)
398 ps = 15.3 pF

Thus
C𝜋 = 14.8 pF

Substitution of data in (7.31) gives for the Miller capacitance

CM = (1 + gmRL)Cμ =
(

1 + 1 mA
26 mV

(5 kΩ)
)
(0.5 pF) = 96.7 pF

This term is much greater than C𝜋 and dominates the frequency response. Substitution of
values in (7.30) gives

f−3dB =
|p1|
2𝜋

= 1
2𝜋

1000 + 200 + 2600
(1000 + 200)2600

1012

14.8 + 96.7
= 1.74 MHz
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For comparison, using (7.29) gives |p1| = 10.7 Mrad/s and f−3dB = 1.70 MHz, which is
in close agreement with the value using the Miller effect. The low-frequency gain can be
calculated from (7.28) as

vo

vi

||||𝜔=0
= −gmRL

r𝜋
RS + rb + r𝜋

= −5000
26

2.6
1 + 0.2 + 2.6

= −132

The gain magnitude at low frequency is thus 42.4 dB, and Fig. 7.8 plots the gain magnitude
versus frequency on log scales for frequencies below and slightly above |p1|.◼

7.2.1.2 The MOS Differential Amplifier: Differential-Mode Gain. A MOS differential
amplifier with resistive loads is shown in Fig. 7.9. The DM ac half-circuit and the correspond-
ing small-signal circuit are shown in Figs. 7.10a and 7.10b, respectively. For compactness,

f (Hz)

vo

vi
(dB)

0

10

20

30

40

50

103 104 105 106 107 108 109

42.4 dB

1.74 MHz

−6 dB/octave

Figure 7.8 Gain magnitude versus
frequency for the circuit in Fig. 7.3
using typical bipolar transistor data.
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–

Figure 7.9 MOS differential amplifier
circuit.
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+

–
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Figure 7.10 (a) Differential-mode ac half-circuit for Fig. 7.9. (b) Small-signal equivalent circuit for (a).

the factor of 1∕2 has been omitted from the input and output voltages in Fig. 7.10b, but this
change does not alter the analysis in any way. This circuit is a common-source amplifier. The
gmb generator and source-body capacitance Csb are not shown; they have no effect because
vbs = 0 here. For simplicity, the drain-body capacitance Cdb of the transistor has been omitted.
Since this capacitance would be connected in parallel with RL, its effect could be handled in
the following analysis by replacing RL with ZL, where ZL equals RL in parallel with Cdb. For
simplicity, the gate-body capacitance Cgb is ignored. It could be included by simply adding it
to Cgs since Cgb appears in parallel with Cgs in the common-source amplifier. However, usually
Cgs ≫ Cgb, so Cgs + Cgb ≈ Cgs. The analysis of this ac circuit applies to this DM half-circuit
as well as any single-stage common-source amplifier of the form shown in Fig. 7.10a. The
small-signal circuit in Fig. 7.10b is the same as the circuit in Fig. 7.2c if we rename the model
parameters as listed in Table 7.1. Therefore, we can use the results of the analysis of Fig. 7.2c.
Substituting the values from the third column in Table 7.1 in (7.19), the exact transfer function
is given by

vo

vi
= −

gmRL

(
1 − s

Cgd

gm

)
1 + s(CgdRL + CgdRS + CgsRS + gmRLRSCgd) + s2RLRSCgdCgs

(7.33)

Using (7.25), the dominant pole is given by

p1 = − 1

RS

[
Cgs + Cgd(1 + gmRL +

RL

RS
)
] (7.34)
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Calculation of p1 using (7.11b), which is based on the Miller approximation, gives

p1 ≈ − 1
RS[Cgs + Cgd(1 + gmRL)]

= − 1
RS(Cgs + CM)

(7.35)

where
CM = Cgd(1 + gmRL) (7.36)

is the Miller capacitance. Equation 7.35 gives nearly the same value for p1 as (7.34) if RL∕RS ≪

(1 + gmRL), which shows that the Miller approximation is useful for finding the dominant pole.
From (7.27), the nondominant pole is given by

p2 = −
(

1
RLCgd

+ 1
RSCgs

+ 1
RLCgs

+
gm

Cgs

)
(7.37)

The last term of (7.37) is gm∕Cgs > gm∕(Cgs + Cgd + Cgb) = 𝜔T , and thus |p2| > 𝜔T .
(Recall that 𝜔T is the transition frequency for the transistor, as defined in Chapter 1.)
Consequently, |p2| is a very high frequency; therefore, |p1| is almost always much less than|p2|. In the s plane, the poles of the amplifier are thus widely separated, as shown in Fig. 7.7.

◼ EXAMPLE
Using the Miller approximation, calculate the −3 dB frequency of a common-source transistor
stage using the following parameters:

RS = 1 kΩ ID = 1 mA k′
W
L

= 100
mA
V2

fT = 400 MHz (at ID = 1 mA) Cgd = 0.5 pF Cgb = 0 RL = 5 kΩ

The small-signal transconductance is

gm =
√

2
(

100
mA
V2

)
(1 mA) = 14.1

mA
V

Using (1.207) from Chapter 1 and Cgb = 0 gives

Cgs + Cgd =
gm

𝜔T
=

14.1 mA∕V

2𝜋(400 MHz)
= 5.6 pF

Thus
Cgs = 5.6 pF − Cgd = 5.1 pF

Substitution of data in (7.36) gives for the Miller capacitance

CM = (1 + gmRL)Cgd =
[
1 +
(

14.1
mA
V

)
(5 kΩ)

]
(0.5 pF) = 35.7 pF

This capacitance is much greater than Cgs and dominates the frequency response. Substitution
of values in (7.35) gives

f−3dB =
|p1|
2𝜋

= 1
2𝜋

1
(1000 Ω)(5.1 pF + 35.7 pF)

= 3.9 MHz



7.2 Single-Stage Amplifiers 511

For comparison, using (7.34) gives |p1| = 23.1 Mrad/s and f−3dB = 3.7 MHz, which is close
to the result using the Miller approximation. The low-frequency gain can be calculated from
(7.33) as

vo

vi

||||𝜔=0
= −gmRL = −

(
14.1

mA
V

)
(5000 Ω) = −70.5

◼

7.2.2 Frequency Response of the Common-Mode Gain for a Differential
Amplifier

In Chapter 3, the importance of the common-mode (CM) gain of a differential amplifier was
described. It was shown that low values of CM gain are desirable so that the circuit can reject
undesired signals that are applied equally to both inputs. Because undesired CM signals may
have high-frequency components, the frequency response of the CM gain is important. The
CM frequency response of the differential circuits in Figs. 7.5 and 7.9 can be calculated from
the CM half-circuits shown in Figs. 7.11a and 7.11b. In Fig. 7.11, RT and CT are the equivalent
output resistance and capacitance of the tail current source. Since impedances common to the
two devices are doubled in the CM half-circuit, RT and CT become 2RT and CT∕2, respectively.
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voc

+

+

–

–

2 RT

(a)
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+

+

–
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(b)

rin RL

2 RT

Cin

CT

2
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Cf

vic vocgmv1v1

RS

(c)

+

–

+

–

+

–

Figure 7.11 (a) Common-mode ac half-circuit for Fig. 7.5. (b) Common-mode ac half-circuit for
Fig. 7.9. (c) A general model for both half-circuits.
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A general small-signal equivalent circuit for Fig. 7.11a,b is shown in Fig. 7.11c. The parallel
combination of 2RT and CT∕2 will be referred to as ZT .

The complete analysis of Fig. 7.11c is quite complex. However, the important aspects of
the frequency response can be calculated by making some approximations. Consider the time
constant RTCT . The resistance RT is the output resistance of the current source and is usu-
ally greater than or equal to the ro of a transistor. Let us assume that this resistance is on the
order of 1 MΩ. The capacitor CT includes Ccs of the bipolar current-source transistor or Cdb
of the current-source transistor plus Csb of the input transistors in the MOS circuit. Typically,
CT is 1 pF or less. Using RT = 1 MΩ and CT = 1 pF, the time constant RTCT is 1 μs, and the
break frequency corresponding to this time constant is 1∕(2𝜋RTCT ) = 166 kHz. Below this
frequency, the impedance ZT is dominated by RT , and above this frequency CT , dominates.
Thus as the frequency of operation is increased, the impedance ZT will exhibit frequency vari-
ation before the rest of the circuit. So, we calculate the frequency response assuming that CT
is the only significant capacitance. Since the impedance ZT is high, almost all of vic appears
across ZT if RS is small. Therefore, we can approximate the CM gain as

Acm =
voc

vic
≈ −

RL

ZT
(7.38)

where

ZT =
2RT

1 + sCTRT
(7.39)

Substitution of (7.39) in (7.38) gives

Acm(s) =
voc

vic
(s) ≈ −

RL

2RT
(1 + sCTRT ) (7.40)

Equation 7.40 shows that the CM gain expression contains a zero, which causes the CM gain
to rise at 6 dB/octave above a frequency 𝜔 = 1∕RTCT . This behavior is undesirable because
the CM gain should ideally be as small as possible. The increase in CM gain cannot con-
tinue indefinitely, however, because the other capacitors in the circuit of Fig. 7.11c eventually
become important. The other capacitors cause the CM gain to fall at very high frequencies,
and this behavior is shown in the plot of CM gain versus frequency in Fig. 7.12a.

The DM gain Adm of the circuit of Fig. 7.5 or Fig. 7.9 is plotted versus frequency in
Fig. 7.12b using (7.10). As described earlier, |Adm| begins to fall off at a frequency given
by f = 1∕2𝜋RCt, where R = (RS + rx)||rin and Ct = Cin + CM . As pointed out in Chapter 3,
an important differential amplifier parameter is the common-mode rejection ratio (CMRR)
defined as

CMRR =
|Adm||Acm| (7.41)

The CMRR is plotted as a function of frequency in Fig. 7.12c by simply taking the mag-
nitude of the ratio of the DM and CM gains. This quantity begins to decrease at frequency
f = 1∕2𝜋RTCT when |Acm| begins to increase. The rate of decrease of CMRR further increases
when |Adm| begins to fall with increasing frequency. Thus differential amplifiers are far less
able to reject CM signals as the frequency of those signals increases.
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Figure 7.12 Variation with
frequency of the gain
parameters for the differential
amplifier in Fig. 7.5 or Fig. 7.9.
(a) Common-mode gain.
(b) Differential-mode gain.
(c) Common-mode rejection
ratio.

7.2.3 Frequency Response of Voltage Buffers

Single-stage voltage buffers are often used in integrated circuits. A voltage buffer has the
following properties: (1) a voltage gain of about unity, (2) a high input impedance so the
buffer has little effect on the voltage connected to its input, and (3) a low output impedance
so loads connected to the buffer’s output have little effect on its output voltage. Figures 7.13a
and 7.13b show ac schematics of bipolar and MOS voltage buffers, respectively. Figure 7.13c
shows a small-signal model that can be used to model both of these circuits. Resistance
RS is the source resistance, and RL is the load resistance. We will assume that the output
resistance of the transistor ro is much larger than RL. Since these resistors are in parallel in the
small-signal circuit, ro can be neglected. The series input resistance in the transistor model and
the source resistance are in series and can be lumped together as R′

S = RS + rx. For simplicity,
the effect of capacitor Cf in Fig. 7.1 is initially neglected, a reasonable approximation if R′

S is
small. The effect of Cf is to form a low-pass circuit with R′

S and to cause the gain to decrease
at very high frequencies. From Fig. 7.13c,

vi = iiR
′
S + v1 + vo (7.42)

ii =
v1

zin
(7.43)
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Figure 7.13 (a) An ac
schematic of an
emitter-follower amplifier.
(b) An ac schematic of a
source-follower amplifier.
(c) A general model for
both amplifiers.

zin =
rin

1 + sCinrin
(7.44)

ii + gmv1 =
vo

RL
(7.45)

Using (7.43) and (7.44) in (7.45) gives

v1

rin
(1 + sCinrin) + gmv1 =

vo

RL

and thus

v1 =
vo

RL

1

gm + 1
rin

(1 + sCinrin)
(7.46)

Using (7.46) and (7.43) in (7.42) gives

vi =

(
R′

S

zin
+ 1

)
vo

RL

1

gm + 1
rin

(1 + sCinrin)
+ vo
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Figure 7.14 Small-signal
model for the emitter
follower in Fig. 7.13a.

Collecting terms in this equation, we find

vo

vi
=

gmRL +
RL

rin

1 + gmRL +
R′

S + RL

rin

⎡⎢⎢⎢⎣
1 − s

z1

1 − s
p1

⎤⎥⎥⎥⎦ (7.47)

where

z1 = −
gm + 1

rin

Cin
(7.48)

p1 = − 1
R1Cin

(7.49)

with

R1 = rin|| R′
S + RL

1 + gmRL
(7.50)

Equation 7.47 shows that, as expected, the low-frequency voltage gain is about unity if
gmRL ≫ 1 and gmRL ≫ (R′

S + RL)∕rin. The high-frequency gain is controlled by the presence
of a pole at p1 and a zero at z1.

7.2.3.1 Frequency Response of the Emitter Follower. The small-signal circuit for the
emitter follower in Fig. 7.13a is shown in Fig. 7.14. We initially ignore Cμ, as in the gen-
eral analysis in Section 7.2.3. The transfer function for the emitter follower can be found by
substituting the appropriate values in Table 7.1 into (7.47) through (7.50). If gmRL ≫ 1 and
gmRL ≫ (R′

S + RL)∕r𝜋 , where R′
S = RS + rb, the low-frequency gain is about unity. The zero

and pole are given by

z1 = −
gm + 1

r𝜋
C𝜋

≈ −
gm

C𝜋

≈ −𝜔T (7.51)

p1 = − 1
C𝜋R1

(7.52)
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where

R1 = r𝜋|| R′
S + RL

1 + gmRL
(7.53)

Typically, the zero has a magnitude that is slightly larger than the pole, and both are approxi-
mately equal to 𝜔T of the device. In particular, if gmRL ≫ 1 and R′

S ≪ RL in (7.53), then
R1 ≈ 1∕gm, and (7.52) gives p1 ≈ −gm∕C𝜋 ≈ −𝜔T . However, if RS is large, then R′

S in (7.53)
becomes large compared to RL, and the pole magnitude will be significantly less than 𝜔T .

◼ EXAMPLE

Calculate the transfer function for an emitter follower with C𝜋 = 10 pF, Cμ = 0, RL = 2 kΩ,
RS = 50 Ω, rb = 150 Ω, 𝛽 = 100, and IC = 1 mA.

From the data, gm = (1 mA)∕(26 mV) = 1∕(26 Ω), r𝜋 = 2.6 kΩ, and R′
S = RS + rb =

200 Ω. Since Cμ = 0, 𝜔T of the device is

𝜔T =
gm

C𝜋

= 1 mA
26 mV

1
10 pF

= 3.85 × 109 rad∕s (7.54)

and thus fT = 612 MHz. From (7.51) and (7.54), the zero of the transfer function is

z1 ≈ −𝜔T = −3.85 × 109 rad∕s

From (7.53)

R1 = 2.6 kΩ || ⎛⎜⎜⎜⎝
200 + 2000

1 + 2000
26

Ω
⎞⎟⎟⎟⎠ ≈ 28 Ω

Using (7.52), the pole is

p1 = −1012

10
1

28
rad∕s = −3.57 × 109 rad∕s

The pole and zero are thus quite closely spaced, as shown in the s-plane plot of Fig. 7.15a.
The low-frequency gain of the circuit from (7.47) is

vo

vi
=

gmRL +
RL

r𝜋

1 + gmRL +
R′

S + RL

r𝜋

=

2000
26

+ 2000
2600

1 + 2000
26

+ 2200
2600

= 0.986

The parameters derived above are used in (7.47) to plot the circuit gain versus frequency in
Fig. 7.15b. The gain is flat with frequency until near fT = 612 MHz, where a decrease of 0.4 dB
occurs. The analysis predicts that the gain is then flat as frequency is increased further.

By inspecting Fig. 7.14, we can see that the high-frequency gain is asymptotic to
RL∕(RL + R′

S) since C𝜋 becomes a short circuit. This forces v1 = 0, and thus the controlled
current gmv1 is also zero. If a value of Cμ = 1 pF is included in the equivalent circuit, the more
realistic dashed frequency response of Fig. 7.15b is obtained. Since the collector is grounded,
Cμ is connected from B′ to ground, and thus high-frequency signals are attenuated by voltage
division between R′

S and Cμ. As a result, the circuit has a −3 dB frequency of 725 MHz due
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Figure 7.15 (a) Pole-zero
plot for a voltage buffer.
(b) Voltage gain versus
frequency for the voltage
buffer.

to the low-pass action of R′
S and Cμ. However, the bandwidth of the emitter follower is still

quite large, and bandwidths of the order of the fT of the device can be obtained in practice.◼

The preceding considerations have shown that large bandwidths are available from the
emitter-follower circuit. One of the primary uses of an emitter follower is as a voltage buffer
circuit due to its high input impedance and low output impedance. The behavior of these
terminal impedances as a function of frequency is thus significant, especially when driving
large loads, and will now be examined.

In Chapter 3, the terminal impedances of the emitter follower were calculated using a circuit
similar to that of Fig. 7.14b, except that C𝜋 was not included. The results obtained there can
be used here if r𝜋 is replaced by z𝜋 , which is a parallel combination of r𝜋 and C𝜋 . In the
low-frequency calculation, 𝛽0 was used as a symbol for gmr𝜋 and thus is now replaced by gmz𝜋 .
Using these substitutions in (3.73) and (3.76), including rb and letting ro → ∞, we obtain for
the emitter follower

zi = rb + z𝜋 + (gmz𝜋 + 1)RL (7.55)

zo =
z𝜋 + RS + rb

1 + gmz𝜋
(7.56)
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where
z𝜋 =

r𝜋
1 + sC𝜋r𝜋

(7.57)

Consider first the input impedance. Substituting (7.57) in (7.55) gives

zi = rb +
r𝜋

1 + sC𝜋r𝜋
+
(

gmr𝜋
1 + sC𝜋r𝜋

+ 1

)
RL (7.58)

= rb +
(1 + gmRL)r𝜋

1 + sC𝜋r𝜋
+ RL

= rb +
(1 + gmRL)r𝜋

1 + s
C𝜋

1 + gmRL
(1 + gmRL)r𝜋

+ RL

= rb +
R

1 + sCR
+ RL (7.59)

where
R = (1 + gmRL)r𝜋 (7.59a)

and

C =
C𝜋

1 + gmRL
(7.59b)

Thus zi can be represented as a parallel R-C circuit in series with rb and RL, as shown
in Fig. 7.16. The effective input capacitance is C𝜋∕(1 + gmRL) and is much less than C𝜋

for typical values of gmRL. The collector-base capacitance Cμ may dominate the input
capacitance and can be added to this circuit from B′ to ground. Thus, at high frequencies, the
input impedance of the emitter follower becomes capacitive and its magnitude decreases.

The emitter-follower high-frequency output impedance can be calculated by substituting
(7.57) in (7.56). Before proceeding, we will examine (7.57) to determine the high and low
frequency limits on |zo|. At low frequencies, z𝜋 = r𝜋 and

zo|𝜔=0 ≈ 1
gm

+
RS + rb

𝛽0
(7.60)

1 + gmRL

RL

C 
(1 + gmRL) r

B B'rb

zi π
π

Figure 7.16 Equivalent circuit for
the input impedance of an emitter
follower with Cμ = 0.
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At high frequencies, z𝜋 → 0 because C𝜋 becomes a short circuit, and thus

zo|𝜔=∞ = RS + rb (7.61)

Thus zo is resistive at very low and very high frequencies, and its behavior in between depends
on parameter values. At very low collector currents, 1∕gm is large. If 1∕gm > (RS + rb), a com-
parison of (7.60) and (7.61) shows that |zo| decreases as frequency increases and the output
impedance appears capacitive. However, at collector currents of more than several hundred
microamperes, we usually find that 1∕gm < (RS + rb). Then |zo| increases with frequency,
which represents inductive behavior that can have a major influence on the circuit behavior,
particularly when driving capacitive loads. If 1∕gm = (RS + rb), then the output impedance
is resistive and independent of frequency over a wide bandwidth. To maintain this condition
over variations in process, supply, and temperature, practical design goals are RS ≈ 1∕gm and
rb ≪ RS.

Assuming that the collector bias current is such that zo is inductive, we can postulate an
equivalent circuit for zo, as shown in Fig. 7.17. At low frequencies, the inductor is a short
circuit and

zo|𝜔=0 = R1||R2 (7.62)

At high frequencies, the inductor is an open circuit and

zo|𝜔=∞ = R2 (7.63)

If we assume that zo|𝜔=0 ≪ zo|𝜔=∞, then R1 ≪ R2, and we can simplify (7.62) to

zo|𝜔=0 ≈ R1 (7.64)

The impedance of the circuit of Fig. 7.17 can be expressed as

zo =
(R1 + sL)R2

R1 + R2 + sL
≈

(R1 + sL)R2

R2 + sL
(7.65)

assuming that R1 ≪ R2.

R1

R2

zo

L

Figure 7.17 Equivalent circuit for the output impedance
of an emitter follower at moderate current levels.
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The complete emitter-follower output impedance can be calculated by substituting (7.57)
in (7.56) with R′

S = rb + RS, which gives

zo =

r𝜋
1 + sC𝜋r𝜋

+ R′
S

1 +
gmr𝜋

1 + sC𝜋r𝜋

=
r𝜋 + R′

S + sC𝜋r𝜋R′
S

𝛽0 + 1 + sC𝜋r𝜋

≈

(
1

gm
+

R′
S

𝛽0
+ sC𝜋r𝜋

R′
S

𝛽0

)
R′

S

R′
S + sC𝜋r𝜋

R′
S

𝛽0

(7.66)

where 𝛽0 ≫ 1 is assumed.
Comparing (7.66) with (7.65) shows that, under the assumptions made in this analysis, the

emitter-follower output impedance can be represented by the circuit of Fig. 7.17 with

R1 = 1
gm

+
R′

S

𝛽0
(7.67)

R2 = R′
S (7.68)

L = C𝜋r𝜋
R′

S

𝛽0
(7.69)

The effect of Cμ was neglected in this calculation, which is a reasonable approximation for
low to moderate values of R′

S.
The preceding calculations have shown that the input and output impedances of the emitter

follower are frequency dependent. One consequence of this dependence is that the variation
of the terminal impedances with frequency may limit the useful bandwidth of the circuit.

◼ EXAMPLE
Calculate the elements in the equivalent circuits for input and output impedance of the
emitter follower in the previous example. In Fig. 7.16, the input capacitance can be calculated
from (7.59):

C𝜋

1 + gmRL
= 10

1 + 2000
26

pF = 0.13 pF

The resistance in shunt with this capacitance is

(1 + gmRL)r𝜋 =
(

1 + 2000
26

)
(2.6 kΩ) = 202 kΩ

In addition, rb = 150 Ω and RL = 2 kΩ. The elements in the output equivalent circuit of
Fig. 7.17 can be calculated from (7.67), (7.68), and (7.69) as

R1 =
(

26 + 200
100

)
Ω = 28 Ω

R2 = 200 Ω

L = 10−11 × 2600 × 200
100

H = 52 nH

Note that the assumption R1 ≪ R2 is valid in this case.◼
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7.2.3.2 Frequency Response of the Source Follower. The small-signal circuit for the
source follower in Fig. 7.13b is shown in Fig. 7.18. Here, Cgd, Cgb, and Csb are ignored initially.
One key difference between Figs. 7.18 and 7.13c is the gmb generator. Since the current through
the gmb generator is controlled by the voltage across it, this generator can be replaced with a
resistor of value 1∕gmb from vo to ground, which is in parallel with RL. Therefore, the total
effective load resistance is R′

L = RL||(1∕gmb). The transfer function for the source follower can
be found by substituting the appropriate values from Table 7.1 into (7.47), (7.48), and (7.49).
If gmR′

L ≫ 1, the low-frequency gain is about unity. The zero and pole are given by

z1 = −
gm

Cgs
≈ −𝜔T (7.70)

p1 = − 1
CgsR1

(7.71)

where

R1 =
RS + R′

L

1 + gmR′
L

(7.72)

Typically, the zero has a magnitude that is slightly larger than the pole. If gmR′
L ≫ 1 and RS ≪

R′
L in (7.72), then R1 ≈ 1∕gm, and (7.71) gives p1 ≈ −gm∕Cgs ≈ −𝜔T . However, if RS in (7.72)

becomes large compared to RL, or if gmR′
L is not much larger than one, the pole magnitude will

be significantly less than 𝜔T .

◼ EXAMPLE

Calculate the transfer function for a source follower with Cgs = 7.33 pF, k′W∕L =
100 mA∕V2, RL = 2 kΩ, RS = 190 Ω, and ID = 4 mA. Ignore the body effect, and let
Cgd = 0, Cgb = 0, and Csb = 0.

From the data, gm =
√

2(100)4 mA∕V = 28.2 mA∕V. Ignoring the body effect, we have
R′

L = RL||(1∕gmb) = RL. Since Cgd = 0, 𝜔T of the device is

𝜔T =
gm

Cgs
=

28.2
mA
V

7.33 pF
= 3.85 × 109 rad∕s (7.73)

and thus fT = 612 MHz. From (7.70) and (7.73), the zero of the transfer function is

z1 = −
gm

Cgs
= −3.85 × 109 rad∕s

vi

RS

Cgs

Cgd + Cgb

RL Csb

G

v1 gmv1 gmbvsb = gmbvo

vo

+
+

+

–

–
–

Figure 7.18 Small-signal model
for the source follower in
Fig. 7.13b.
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From (7.72),

R1 = 190 + 2000
1 + 0.0282 × 2000

Ω = 38.2 Ω

The pole from (7.71) is

p1 = −1012

7.33
1

38.2
rad∕s = −3.57 × 109 rad∕s

The pole and zero are thus quite closely spaced, as shown in Fig. 7.15a.
Ignoring the body effect for simplicity, the low-frequency gain of the source follower can

be found from (7.47) using rin → ∞, as shown in Table 7.1. This low-frequency gain is

vo

vi
=

gmR′
L

1 + gmR′
L

= 28.2 × 10−3 × 2000

1 + 28.2 × 10−3 × 2000
= 0.983

The parameters derived above can be used in (7.47) to plot the circuit gain versus frequency,
and this plot is similar to the magnitude plot shown in Fig. 7.15b for Cgd = 0. The gain is
flat with frequency until near fT = 612 MHz, where a decrease of about 0.4 dB occurs. The
analysis predicts that the gain is then flat as frequency is increased further because the input
signal is simply fed forward to R′

L via Cgs at very high frequencies. In practice, capacitors Cgd,
Cgb, and Csb that were assumed to be zero in this example cause the gain to roll off at high
frequencies, as will be demonstrated in the next example.◼

When capacitors Cgd, Cgb, and Csb that were ignored above are included in the analysis,
the voltage-gain expression becomes more complicated than (7.47). An exact analysis, with
all the capacitors included, follows the same steps as the analysis of Fig. 7.13c and yields

vo

vi
=

gmR′
L

1 + gmR′
L

1 + s
Cgs

gm

1 + as + bs2
(7.74a)

with

a =
R′

L(Cgs + Csb) + RS(Cgs + C′
gd) + RSgmR′

LC′
gd

1 + gmR′
L

≈
R′

L(Cgs + Csb) + RSCgs + RSgmR′
LC′

gd

1 + gmR′
L

(7.74b)

b =
RSR′

L

[
Csb(Cgs + C′

gd) + CgsC
′
gd

]
1 + gmR′

L

≈
RSR′

L

[
CsbCgs + CgsC

′
gd

]
1 + gmR′

L

(7.74c)

where C′
gd = Cgd + Cgb. The approximations for a and b use Cgs + C′

gd ≈ Cgs since Cgs ≫ C′
gd.

This exact transfer function has a zero at −gm∕Cgs, in agreement with (7.70), and two poles.
If C′

gd and Csb are set to zero, (7.74) has one pole as given by (7.71). Making approximations
in (7.74) that lead to simple, useful expressions for the poles is difficult since a dominant real
pole does not always exist. In fact, the poles can be complex.
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◼ EXAMPLE
Calculate the transfer function for a source follower with Cgs = 7.33 pF, Cgd = 0.1 pF,
Cgb = 0.05 pF, Csb = 0.5 pF, k′W∕L = 100 mA∕V2, RL = 2 kΩ, RS = 190 Ω, and
ID = 4 mA. Ignore the body effect for simplicity.

These data are the same as in the last example, except we now have nonzero Cgd, Cgb, and
Csb. From the data, gm = 28.2 mA∕V and C′

gd = Cgd + Cgb = 0.15 pF. Also, ignoring the body
effect, we have R′

L = RL||(1∕gmb) = RL. The low-frequency gain of the circuit, as calculated
in the previous example, is 0.983. From (7.74a), the zero is

z = −
gm

Cgs
= −

28.2
mA
V

7.33 pF
= −3.85 × 109 rad∕s

From (7.74b) and (7.74c), the coefficients of the denominator of the transfer function are

a ≈
2k (7.33p + 0.5p) + 190 (7.33p) + 190 (0.0282)(2k)(0.15p)

1 + (0.0282)(2k)
s = 0.324 ns

b ≈
190(2k)[(0.5p)(7.33p) + (7.33p)(0.15p)]

1 + (0.0282)(2k)
s2 = 0.0315 (ns)2

Using the quadratic formula to solve for the poles, we find that the poles are

p1,2 = −5.1 × 109 ± j2.3 × 109 rad∕s

The poles and zero are fairly close together, as shown in Fig. 7.19a. The gain magnitude and
phase are plotted in Fig. 7.19. The −3-dB bandwidth is 1.6 GHz. Because the two poles and
zero are fairly close together, the gain versus frequency approximates a one-pole roll-off.

High-frequency input signals are attenuated by capacitors Cgd and Cgb that connect between
the gate and ground, causing the gain to roll off and approach zero as 𝜔 → ∞. However, the
bandwidth of the source follower is still quite large, and bandwidths of the order of the fT of
the device can be obtained in practice.◼

(a)

×

×

× 109
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Figure 7.19 (a) Pole-zero
plot for the source-follower
example using (7.74).
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If the source follower drives a load capacitance in parallel with the load resistance, its value
can be added to Csb in (7.74). Such a load capacitance is present whenever the source-follower
transistor is fabricated in a well and its source is connected to its well to avoid body effect.
The well-body capacitance can be large and may significantly affect the 3 dB bandwidth of
the circuit.

In the section 7.2.3.1 calculations were carried out for the input and output impedances of
the emitter follower. Since the equivalent circuit for the MOSFET is similar to that for the
bipolar transistor (apart from the gmb generator), similar results can be found for the source
follower by substituting the appropriate values from Table 7.1 in the formulas for zi and zo in
that section. One major difference is that the MOSFET has a gm that is usually much lower than
for the bipolar transistor with the same bias current. Therefore, the condition that produces an
inductive output impedance (1∕gm < RS) occurs less often with source followers than emitter
followers.

7.2.3.3 Frequency Response of the Super Source Follower. Figures 7.19d and 7.19e
show two super-source-follower configurations introduced in Chapter 3. A small-signal equiv-
alent circuit that can be used to analyze the frequency response is shown in Fig. 7.19f. For
simplicity, the only capacitances included are the gate-source capacitance of each transistor
(Cgs1 and Cgs2) and the load capacitance CL driven by the output of each follower. Also assume
current sources I1 and I2 are implemented with transistors and have output resistances of r1 and
r2, respectively. This small-signal equivalent circuit applies for both super source followers as
long as r1 → ∞ for the circuit in Fig. 7.19e because I1 is not used in this circuit.

To analyze the frequency response of the super source follower, let (1) Z1 represent the
impedance of Cgs1, (2) Z2 represent the impedance of r2 in parallel with Cgs2, and (3) ZL
represent the impedance of r1 in parallel with ro2 and in parallel with CL. In other words,

Z1 = 1
sCgs1

(7.74d)

Z2 =
r2

1 + sr2Cgs2
(7.74e)

ZL =
r1||ro2

1 + s(r1||ro2)CL
(7.74f)

Then KCL at the output gives

vo

ZL
+ gm2v2 +

vo − vi

Z1
+

v2

Z2
= 0 (7.74g)

Also, KCL at the drain of M1 gives

v2

Z2
+ gm1(vi − vo) − gmb1vo +

v2 − vo

ro1
= 0 (7.74h)

Solving (7.74g) for v2, substituting this result along with (7.74d–f) into (7.74h), and rearrang-
ing gives

vo

vi
=

a1s2 + b1s + c1

a2s2 + b2s + c2
(7.74i)
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Figure 7.19 (b) Magnitude and (c) phase of the gain versus frequency for this source follower.

where

a1 = Cgs1Cgs2 (7.74j)

b1 =
Cgs1

r2
+

Cgs1

ro1
+ gm1Cgs2 (7.74k)

c1 = gm1gm2 +
gm1

r2
(7.74l)

a2 = (Cgs1 + CL)Cgs2 (7.74m)

b2 =
(Cgs1 + CL)

r2||ro1
+

Cgs2

r1||ro2
+ Cgs2

(
gm1 + gmb1 +

1
ro1

)
(7.74n)

c2 =
(

1
r1||ro2

)(
1

r2||ro1

)
+
(

gm1 + gmb1 +
1

ro1

)(
gm2 +

1
r2

)
(7.74o)
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+
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Figure 7.19 (d) Super source follower with n-channel M1 and p-channel M2. (e) Super source follower
with both M1 and M2 as n-channel transistors. (f) An ac schematic of a super source follower.

The quadratic formula can be used to find the zeros and the poles of the super source follower,
as shown in the following example.

◼ EXAMPLE
Find the locations of the zeros and poles of the super source follower modeled in Fig. 7.19f.
Assume that gm1 = gm2 = 100 μA∕V, ro1 = ro2 = r1 = r2 = 1 MΩ, Cgs1 = CL = 100 fF, and
Cgs2 = 1 pF, and ignore the body effect.

The coefficients in the numerator and denominator of (7.74i) are

a1 = 10−13 ⋅ 10−12 = 10−25 F2 (7.74p)

b1 = 10−13

106
+ 10−13

106
+ 10−4 ⋅ 10−12 = 1.002 × 10−16 F∕Ω (7.74q)

c1 = 10−4 ⋅ 10−4 + 10−4

106
= 1.01 × 10−8 (1∕Ω)2 (7.74r)

a2 = (10−13 + 10−13) ⋅ 10−12 = 2 × 10−25 F2 (7.74s)

b2 = 10−13 + 10−13

106||106
+ 10−12

106||106
+ 10−12

(
10−4 + 1

106

)
= 1.034 × 10−16 F∕Ω (7.74t)
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c2 =
(

1

106||106

)(
1

106||106

)
+
(

10−4 + 1

106

)(
10−4 + 1

106

)
= 1.0205 × 10−8 (1∕Ω)2 (7.74u)

Let the zeros be z1 and z2. Then

z1, z2 = −
b1

2a1
±

√
b2

1 − 4a1c1

2a1

= −1.002 × 10−16

2(10−25)
±
√
(1.002 × 10−16)2 − 4(10−25)(1.01 × 10−8)

2(10−25)
= −113.7 Mrad∕s and −888.3 Mrad∕s (7.74v)

The zeros are both real in this example, but they can be complex conjugates in other cases.
Let the poles be p1 and p2. Then

p1, p2 = −
b2

2a2
±

√
b2

2 − 4a2c2

2a2

= −1.034 × 10−16

2(2 × 10−25)
±
√
(1.034 × 10−16)2 − 4(2 × 10−25)(1.0205 × 10−8)

2(2 × 10−25)
= −132.8 Mrad∕s and −384.2 Mrad∕s (7.74w)

In this example, the poles are both real, which means that the step response of the super source
follower is overdamped here. In other cases, however, the poles can be complex conjugates,
causing the step response to be underdamped.◼

Since the poles of a circuit are independent of the applied input and the observed output, the
poles of the output impedance of the super source follower are the same as calculated above.
On the other hand, the zeros depend on where the input is applied as well as on the output that is
observed. In the case considered above with only gate-source and load capacitances, the output
impedance has only one zero. This zero has a significant effect on the output impedance of the
super source follower. See Problem 7.60.

7.2.4 Frequency Response of Current Buffers

The common-base (CB) and common-gate (CG) amplifier configurations are shown in ac
schematic form in Fig. 7.20. These stages have a low input impedance, high output impedance,
approximately unity current gain, and wide bandwidth. They find use in wideband applica-
tions and also in applications requiring low input impedance. As described in Chapter 1, the
bipolar transistor breakdown voltage is maximum in this configuration. The combination of
this property and the wideband property make the CB stages useful in high-voltage wideband
output stages.

A small-signal equivalent circuit that can model both the CB and CG stages by using
a general small-signal model is shown in Fig. 7.20c. The input voltage source and source
resistance are represented by a Norton equivalent. Resistance RS is neglected in the following
analysis since the input impedance of the amplifier is quite low. Another good approximation
if rx is small is that Cf simply shunts RL, as shown in Fig. 7.20c. In this analysis, ro will be
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Figure 7.20 (a) An ac schematic of a common-base amplifier. (b) An ac schematic of a common-gate
amplifier. (c) A general model for both amplifiers.

neglected and the output signal io will be taken as the output of the gm controlled source. The
approximate output voltage vo is obtained by assuming io flows in the parallel combination of
RL and Cf .

The analysis of the circuit of Fig. 7.20c proceeds by applying KCL at node W.
Neglecting RS,

ii +
v1

zin
+ gmv1 = 0 (7.75)

where
zin =

rin

1 + sCinrin
(7.76)

From (7.75) and (7.76),

ii = −v1

(
gm + 1

rin
+ sCin

)
(7.77)

Now
io = −gmv1 (7.78)



7.2 Single-Stage Amplifiers 529

Substituting (7.77) into (7.78) gives

io
ii

=
gmrin

gmrin + 1
1

1 + s
rin

gmrin + 1
Cin

(7.79)

7.2.4.1 Common-Base Amplifier Frequency Response. The small-signal circuit for the
CB amplifier of Fig. 7.20a is shown in Fig. 7.21. Substituting the values in Table 7.1 into (7.79)
gives for the current gain

io
ii

=
gmr𝜋

gmr𝜋 + 1
1

1 + s
r𝜋

gmr𝜋 + 1
C𝜋

(7.80)

Using 𝛽0 = gmr𝜋 and assuming 𝛽0 ≫ 1, (7.80) simplifies to

io
ii

≈
𝛽0

𝛽0 + 1
1

1 + s
C𝜋

gm

= 𝛼0
1

1 + s
C𝜋

gm

(7.81)

where 𝛼0 = 𝛽0∕(𝛽0 + 1). This analysis shows that the CB stage current gain has a
low-frequency value 𝛼0 ≈ 1 and a pole at p1 = −gm∕C𝜋 ≈ −𝜔T . The CB stage is thus
a wide-band unity-current gain amplifier with low input impedance and high output
impedance. It can be seen from the polarities in Fig. 7.20a that the phase shift between vi and
vo in the CB stage is zero at low frequencies. This result can be compared with the case of
the common-emitter stage of Fig. 7.2a, which has 180∘ phase shift between vi and vo at low
frequencies.

If the desired output is the current flowing through RL, then Cμ and RL form a current divider
from io to this desired current (under the assumption that Cμ is in parallel with RL because rb is
very small). When included in the analysis, this current divider introduces an additional pole
p2 = −1∕RLCμ in the transfer function.

Comparing Fig. 7.20a with Fig. 7.13a shows that the input impedance of the common-base
stage is the same as the output impedance of the emitter follower with RS = 0. Thus the
common-base stage input impedance is low at low frequencies and becomes inductive at high
frequencies for collector bias currents of several hundred microamperes or more. As shown in
Chapter 3, the output resistance of the common-base stage at low frequencies with large RS

C

B'

B

RS

rb

C

RL

gmv1

v1

vo

io CE
+

–

 ii

ii = RS

vi

–

+

μπrπ

Figure 7.21 Small-signal model for the common-base circuit in Fig. 7.20a.
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is approximately 𝛽0ro, which is extremely large. At high frequencies, the output impedance is
capacitive and dominated by Cμ (and Ccs for npn transistors).

Unlike the common-emitter stage, where Cμ is Miller multiplied, the common-base stage
does not contain a feedback capacitance from collector to emitter to cause the Miller effect. As
a consequence, the effect of large values of RL on the frequency response of the common-base
stage is much less than in the common-emitter stage.

7.2.4.2 Common-Gate Amplifier Frequency Response. The small-signal circuit for the
CG amplifier of Fig. 7.20b is shown in Fig. 7.22. One element in this circuit that does not
appear in the general model in Fig. 7.20c is the gmb generator. Since vbs = vgs and the gm and
gmb generators are in parallel here, these controlled sources can be combined. Also, capac-
itors Cgb, Cdb, and Csb are not included in the general model. Here, Cgb is shorted and can
be ignored. Capacitance Cdb is in parallel with RL and therefore can be ignored if the out-
put variable of interest is the current io. Capacitance Csb appears in parallel with Cgs in the
small-signal circuit since the body and gate both connect to small-signal ground. Using the
combined transconductance and input capacitance and values from Table 7.1 in (7.79) gives

io
ii

= 1

1 + s
Cgs + Csb

gm + gmb

(7.82)

From this equation, the current gain of the common-gate stage has a low-frequency value of
unity and a pole at p1 = −(gm + gmb)∕(Cgs + Csb). If Cgs ≫ Csb, then |p1| ≈ (gm + gmb)∕Cgs >

gm∕Cgs ≈ 𝜔T . The CG stage is thus a wideband unity-current-gain amplifier with low input
impedance and high output impedance. It can be seen from the polarities in Fig. 7.20b that
there is zero phase shift between vi and vo in the CG stage at low frequencies. This phase shift
can be compared with the case of the common-source stage of Fig. 7.2b, which has 180∘ phase
shift between vi and vo at low frequencies.

If the desired output is the current flowing through RL, then Cdb, Cgd, and RL form a current
divider from io to this desired current. When included in the analysis, this current divider
introduces an additional pole p2 = −1∕RL(Cdb + Cgd) in the transfer function.

Unlike the common-source stage where Cgd is Miller multiplied, the common-gate stage
does not contain a feedback capacitance from drain to source to cause the Miller effect. As a
consequence, the effect of large values of RL on the frequency response of the common-gate
stage is much less than in the common-source stage.

Cgs + Csb

RS

Cgd

RL

gmv1

gmbv1

v1

vo

ioS D

G

+

–
RS

= ii
vi

–

+

Figure 7.22 Small-signal model for the common-gate circuit in Fig. 7.20b.
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7.3 Multistage Amplifier Frequency Response
The above analysis of the frequency behavior of single-stage circuits indicates the complexity
that can arise even with simple circuits. The complete analysis of the frequency response
of multistage circuits with many capacitive elements rapidly becomes very difficult, and the
answers become so complicated that little use can be made of the results. For this reason,
approximate methods of analysis have been developed to aid in the circuit design phase,
and computer simulation is used to verify the final design. One such method of analysis is
the zero-value time constant analysis that will now be described. First some ideas regarding
dominant poles are developed.

7.3.1 Dominant-Pole Approximation

For any electronic circuit, we can derive a transfer function A(s) by small-signal analysis to
give

A(s) = N(s)
D(s)

=
a0 + a1s + a2s2 + · · · + amsm

1 + b1s + b2s2 + · · · + bnsn
(7.83)

where a0, a1, … , am, and b1, b2, … , bn are constants. Very often, the transfer function con-
tains poles only (or the zeros are unimportant). In this case, we can factor the denominator of
(7.83) to give

A(s) = K(
1 − s

p1

)(
1 − s

p2

)
· · ·
(

1 − s
pn

) (7.84)

where K is a constant and p1, p2 , … , pn are the poles of the transfer function.
It is apparent from (7.84) that

b1 =
n∑

i=1

(
− 1

pi

)
(7.85)

An important practical case occurs when one pole is dominant: that is, when

|p1|≪ |p2|, |p3|, … so that
|||| 1
p1

||||≫ |||||
n∑

i=2

(
− 1

pi

)|||||
This situation is shown in the s plane in Fig. 7.23, and in this case it follows from (7.85) that

b1 ≃
|||| 1
p1

|||| (7.86)

×××
p3 p2 p1

j  

σ

ω

s plane

Figure 7.23 Pole diagram for a circuit
with a dominant pole.
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If we return now to (7.84) and calculate the gain magnitude in the frequency domain, we obtain

|A(j𝜔)| = K√√√√[1 +
(
𝜔

p1

)2
][

1 +
(
𝜔

p2

)2
]
· · ·

[
1 +
(
𝜔

pn

)2
] (7.87)

If a dominant pole exists, then (7.87) can be approximated by

|A(j𝜔)| ≃ K√
1 +
(
𝜔

p1

)2
(7.88)

This approximation will be quite accurate at least until𝜔 ≃ |p1|, and thus (7.88) will accurately
predict the −3 dB frequency and we can write

𝜔−3dB ≃ |p1| (7.89)

Use of (7.86) in (7.89) gives

𝜔−3dB ≃ 1
b1

(7.90)

for a dominant-pole situation.

7.3.2 Zero-Value Time Constant Analysis

This is an approximate method of analysis that gives b1, allowing an estimate to be made of
the dominant pole (and thus the −3 dB frequency) of complex circuits. Considerable saving
in computational effort is achieved because a full analysis of the circuit is not required. The
method will be developed by considering a practical example.

Figure 7.24a shows a small-signal model of a single-stage bipolar transistor amplifier
with resistive source and load impedances. The feedback capacitance is split into two parts
(Cx and Cμ) as shown. This is a slightly better approximation of the actual situation than the
single collector-base capacitor we have been using but is rarely used in hand calculations
because it increases the analysis complexity. For purposes of analysis, consider the model in
Fig. 7.24b, where the capacitor voltages v1, v2, and v3 are chosen as variables. The external
input vi is set to zero, and the circuit is excited with three independent current sources i1, i2,
and i3 across the capacitors. With this choice of variables, we can show that the circuit
equations are of the form

i1 = (g11 + sC𝜋)v1 + g12v2 + g13v3 (7.91)

i2 = g21v1 + (g22 + sCμ)v2 + g23v3 (7.92)

i3 = g31v1 + g32v2 + (g33 + sCx)v3 (7.93)

where the g terms are conductances. Note that the terms involving s contributed by the capac-
itors are associated only with their respective capacitor voltage variables and only appear on
the diagonal of the system determinant.
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Figure 7.24 (a) Small-signal equivalent
circuit of a common-emitter stage with internal
feedback capacitors Cμ and Cx. (b) Previous
circuit modified for analysis.

The poles of the circuit transfer function are the zeros of the determinant Δ of the circuit
equations, which can be written in the form

Δ(s) = K3s3 + K2s2 + K1s + K0 (7.94)

where the coefficients K are composed of terms from the above equations. For example, K3
is the sum of the coefficients of all terms involving s3 in the expansion of the determinant.
Equation 7.94 can be expressed as

Δ(s) = K0(1 + b1s + b2s2 + b3s3) (7.95)

where this form corresponds to (7.83). Note that this is a third-order determinant because there
are three capacitors in the circuit. The term K0 in (7.94) is the value of Δ(s) if all capacitors
are zero (Cx = Cμ = C𝜋 = 0). This can be seen from (7.91), (7.92), and (7.93). Thus

K0 = Δ|C𝜋=Cμ=Cx=0

and it is useful to define

K0
Δ
= Δ0 (7.96)

Consider now the term K1s in (7.94). This is the sum of all the terms involving s that
are obtained when the system determinant is evaluated. However, from (7.91) to (7.93), it
is apparent that s only occurs when associated with a capacitance. Thus the term K1s can be
written as

K1s = h1sC𝜋 + h2sCμ + h3sCx (7.97)
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where the h terms are constants. The term h1 can be evaluated by expanding the determinant
of (7.91) to (7.93) about the first row:

Δ(s) = (g11 + sC𝜋)Δ11 + g12Δ12 + g13Δ13 (7.98)

where Δ11, Δ12, and Δ13 are cofactors of the determinant. Inspection of (7.91), (7.92), and
(7.93) shows that C𝜋 occurs only in the first term of (7.98). Thus the coefficient of C𝜋s in
(7.98) is found by evaluating Δ11 with Cμ = Cx = 0, which will eliminate the other capacitive
terms in Δ11. But this coefficient of C𝜋s is just h1 in (7.97), and so

h1 = Δ11|Cμ=Cx=0 (7.99)

Now consider expansion of the determinant about the second row. This must give the same
value for the determinant, and thus

Δ(s) = g21Δ21 + (g22 + sCμ)Δ22 + g23Δ23 (7.100)

In this case, Cμ occurs only in the second term of (7.100). Thus the coefficient of Cμs in
this equation is found by evaluating Δ22 with C𝜋 = Cx = 0, which will eliminate the other
capacitive terms. This coefficient of Cμs is just h2 in (7.97), and thus

h2 = Δ22|C𝜋=Cx=0 (7.101)

Similarly, by expanding about the third row, it follows that

h3 = Δ33|C𝜋=Cμ=0 (7.102)

Combining (7.97) with (7.99), (7.101), and (7.102) gives

K1 = (Δ11|Cμ=Cx=0 × C𝜋) + (Δ22|C𝜋=Cx=0 × Cμ) + (Δ33|Cμ=C𝜋=0 × Cx) (7.103)

and

b1 =
K1

K0
=

Δ11|Cμ

Δ0

=Cx=0
× C𝜋 +

Δ22|C𝜋

Δ0

=Cx=0 × Cμ

+
Δ33|Cμ

Δ0

=C𝜋=0
× Cx (7.104)

where the boundary conditions on the determinants are the same as in (7.103). Now consider
putting i2 = i3 = 0 in Fig. 7.24b. Solving (7.91) to (7.93) for v1 gives

v1 =
Δ11i1
Δ(s)

and thus
v1

i1
=

Δ11

Δ(s)
(7.105)

Equation 7.105 is an expression for the driving-point impedance at the C𝜋 node pair. Thus

Δ11|Cμ

Δ0

=Cx=0
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is the driving-point resistance at the C𝜋 node pair with all capacitors equal to zero because

Δ11|C𝜇

Δ0

= Cx = 0 =
Δ11

Δ
||||C𝜇=Cx=C𝜋=0

(7.106)

We now define

R𝜋0 =
Δ11

Δ0

||||Cμ=Cx=0
(7.107)

Similarly,
Δ22|C𝜋

Δ0

=Cx=0

is the driving-point resistance at the Cμ node pair with all capacitors put equal to zero and is
represented by Rμ0. Thus we can write from (7.104)

b1 = R𝜋 0C𝜋 + Rμ0Cμ + Rx 0Cx (7.108)

The time constants in (7.108) are called zero-value time constants because all capacitors are
set equal to zero to perform the calculation. Although derived in terms of a specific example,
this result is true in any circuit for which the various assumptions made in this analysis are
valid. In its most general form, (7.108) becomes

b1 = ΣT0 (7.109)

where ΣT0 is the sum of the zero-value time constants.
We showed previously that if there are no dominant zeros in the circuit transfer function,

and if there is a dominant pole p1, then

𝜔−3dB ≈ |p1| (7.110)

Using (7.90), (7.109), and (7.110) we can write

𝜔−3dB ≈ |p1| ≈ 1
b1

= 1
ΣT0

(7.111)

For example, consider the circuit of Fig. 7.24. By inspection,

R𝜋0 = r𝜋||(RS + rb) (7.112)

In order to calculate Rμ0, it is necessary to write some simple circuit equations. We apply a
test current i at the Cμ terminals, as shown in Fig. 7.25, and calculate the resulting v:

v1 = R𝜋0i (7.113)

vo = −(i + gmv1)RL (7.114)

Substituting (7.113) in (7.114) gives

vo = −(i + gmR𝜋0i)RL (7.115)
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Figure 7.25 Equivalent circuit for
the calculation of Rμ0 for Fig. 7.24.

Now
Rμ0 = v

i

and
Rμ0 =

v1 − vo

i
(7.116)

Substitution of (7.113) and (7.115) in (7.116) gives

Rμ0 = R𝜋0 + RL + gmRLR𝜋0 (7.117)

Rx0 can be calculated in a similar fashion, and it is apparent that Rx0 ≃ Rμ0 if rb ≪ r𝜋 . This
justifies the common practice of lumping Cx in with Cμ if rb is small. Assuming that this is
done, (7.111) gives, for the −3 dB frequency,

𝜔−3dB ≃ 1
R𝜋0C𝜋 + Rμ 0Cμ

(7.118)

Using (7.117) in (7.118) gives

𝜔−3dB ≃ 1

R𝜋0

{
C𝜋 + Cμ

[
(1 + gmRL) +

RL

R𝜋 0

]} (7.119)

Equation 7.119 is identical with the result obtained in (7.29) by exact analysis. [Recall that
(RS + rb)||r𝜋 in (7.29) is the same as R𝜋0 in (7.119).] However, the zero-value time-constant
analysis gives the result with much less effort. It does not give any information on the non-
dominant pole.

As a further illustration of the uses and limitations of the zero-value time-constant approach,
consider the emitter-follower circuit of Fig. 7.13a, where only the capacitance C𝜋 has been
included. The value of R𝜋0 can be calculated by inserting a current source i as shown in
Fig. 7.26 and calculating the resulting voltage v1:

i =
v1

r𝜋
+

v1 + vo

RS + rb
(7.120)

v1

r𝜋
− i + gmv1 =

vo

RL
(7.121)

Substituting (7.121) in (7.120) gives

i =
v1

r𝜋
+

v1

RS + rb
+

RL

RS + rb

(
v1

r𝜋
+ gmv1 − i

)
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Figure 7.26 Equivalent circuit
for the calculation of R𝜋0 for the
emitter follower.

and this equation can be expressed as

i =
v1

r𝜋
+ v1

1 + gmRL

RS + rb + RL

Finally, R𝜋0 can be calculated as

R𝜋0 =
v1

i
= r𝜋
‖‖‖‖RS + rb + RL

1 + gmRL
(7.122)

Thus the dominant pole of the emitter follower is at

|p| = 1
R𝜋0C𝜋

(7.123)

This is in agreement with the result obtained in (7.52) by exact analysis and requires less
effort. However, the zero-value time-constant approach tells us nothing of the zero that
exact analysis showed. Because of the dominant zero, the dominant-pole magnitude is not
the –3 dB frequency in this case. This shows that care must be exercised in interpreting
the results of zero-value time-constant analysis. However, it is a useful technique, and with
experience the designer can recognize circuits that are likely to contain dominant zeros. Such
circuits usually have a capacitive path directly coupling input and output as C𝜋 does in the
emitter follower.

7.3.3 Cascade Voltage-Amplifier Frequency Response

The real advantages of the zero-value time-constant approach appear when circuits containing
more than one device are analyzed. For example, consider the two-stage common-source
amplifier shown in Fig. 7.27. This circuit could be a drawing of a single-ended amplifier or
the differential half-circuit of a fully differential amplifier. Exact analysis of this circuit to find
the −3 dB frequency is extremely arduous, but the zero-value time-constant analysis is quite
straightforward, as shown below. To show typical numerical calculations, specific parameter
values are assumed. In the example below, as in others in this chapter, parasitic capacitance
associated with resistors is neglected. This approximation is often reasonable for monolithic
resistors of several thousand ohms or less, but it should be checked in each case.

The zero-value time-constant analysis for Fig. 7.27 is carried out in the following example.
Analysis of a two-stage common-emitter amplifier would follow similar steps.
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common-source cascade
amplifier.

◼ EXAMPLE
Calculate the −3 dB frequency of the circuit of Fig. 7.27, assuming the following parameter
values:

RS = 10 kΩ RL1 = 10 kΩ RL2 = 5 kΩ

Cgs1 = 5 pF Cgs2 = 10 pF Cgd1 = Cgd2 = 1 pF

Cdb1 = Cdb2 = 2 pF gm1 = 3 mA∕V gm2 = 6 mA∕V

Ignore Cgb (which is in parallel with Cgs and is much smaller than Cgs).
The small-signal equivalent circuit of Fig. 7.27 is shown in Fig. 7.28a. The zero-value time

constants for this circuit are determined by calculating the resistance seen by each capacitor
across its own terminals. However, significant effort can be saved by recognizing that some
capacitors in the circuit are in similar configurations and the same formula can be applied to
them. For example, consider Cgd1 and Cgd2. The resistance seen by either Cgd capacitor can
be found by calculating the resistance Rgd0 in the circuit of Fig. 7.28b. This circuit is the same

(a)

v1 v2vs Cgs1 Cdb1 Cdb2Cgs2

Cgd2Cgd1

RL1 RL2gm1v1 gm2v2

RS

+

–

+

–

+

–

vo

+

–

(b)

vx RA
gmvx RB

Rgd0

+

–

Figure 7.28 Small-signal equivalent circuit of Fig. 7.27.
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as the circuit in Fig. 7.25 if we let RA = R𝜋0 and RB = RL. Therefore, the resistance Rgd0 in
Fig. 7.28b is given by substituting RA for R𝜋0 and RB for RL in (7.117):

Rgd0 = RA + RB + gmRBRA (7.124)

This equation can be used to find the zero-value time constants for both gate-drain capacitors:

Cgd1Rgd01 = Cgd1(RS + RL1 + gm1RL1RS)

= (1p)[10k + 10k + (3 × 10−3)(10k)(10k)] s = 320 ns

Cgd2Rgd02 = Cgd2(RL1 + RL2 + gm2RL2RL1)

= (1p)[10k + 5k + (6 × 10−3)(10k)(5k)] s = 315 ns

The value of Rgs0 for each device can be found by inspection:

Rgs01 = RS

Rgs02 = RL1

The corresponding time constants are

Cgs1Rgs01 = Cgs1RS = (5p)(10k) s = 50 ns

Cgs2Rgs02 = Cgs2RL1 = (10p)(10k) s = 100 ns

Also, the value for Rdb0 for each device can also be found without computation:

Rdb01 = RL1

Rdb02 = RL2

Thus
Cdb1Rdb01 = (2p)(10k) s = 20 ns

Cdb2Rdb02 = (2p)(5k) s = 10 ns

Assuming that the circuit transfer function has a dominant pole, the −3 dB frequency can be
estimated as

𝜔−3dB = 1∑
T0

= 109

320 + 315 + 50 + 100 + 20 + 10
rad∕s

= 109

815
rad∕s = 1.2 × 106 rad∕s (7.125)

and therefore
f−3dB = 196 kHz

A computer simulation of this circuit using SPICE gave a −3 dB frequency of 205 kHz, which
is close to the calculated value. The simulation gave three negative real poles with magnitudes
205 kHz, 4.02 MHz, and 39.98 MHz. There were two positive real zeros with magnitudes 477
and 955 MHz. From the simulation, the sum of the reciprocals of the pole magnitudes was
815 ns, which exactly equals the sum of the zero-value time constants as calculated by hand.
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An exact analysis of Fig. 7.28a would first apply KCL at three nodes and produce a transfer
function with a third-order denominator, in which some coefficients would consist of a sum
of many products of small-signal model parameters. Many simplifying approximations would
be needed to give useful design equations. As the circuit complexity increases, the number
of equations increases and the order of the denominator increases, eventually making exact
analysis by hand impractical and making time-constant analysis quite attractive.◼

The foregoing analytical result was obtained with relatively small effort, and the calcula-
tion has focused on the contributions to the −3 dB frequency from the various capacitors in the
circuit. In this example, as is usually the case in a cascade of this kind, the time constants asso-
ciated with the gate-drain capacitances are the major contributors to the −3 dB frequency of
the circuit. One of the major benefits of the zero-value time-constant analysis is the information
it gives on the circuit elements that most affect the −3 dB frequency of the circuit.

In the preceding calculation, we assumed that the circuit of Fig. 7.28 had a dominant pole.
The significance of this assumption will now be examined in more detail. For purposes of
illustration, assume that capacitors Cgd1,Cgd2,Cdb1, and Cdb2 in Fig. 7.28 are zero and that
RS = RL1 = RL2 and Cgs1 = Cgs2. Then the circuit has two identical stages, and each will
contribute a pole with the same magnitude; that is, a dominant-pole situation does not exist
because the circuit has two identical poles. However, inclusion of nonzero Cgd1 and Cgd2
tends to cause these poles to split apart and produces a dominant-pole situation. Furthermore,
one pole is often made dominant on purpose in amplifiers designed to be used with negative
feedback, to avoid problems with instability. (See Chapter 9.) For this reason, most practical
circuits of this kind do have a dominant pole, and the zero-value time-constant analysis gives
a good estimate of 𝜔−3dB. Even if the circuit has two identical poles, however, the zero-value
time-constant analysis is still useful. Equations 7.85 and 7.109 are valid in general, and thus

ΣT0 =
n∑

i=1

(
− 1

pi

)
(7.126)

is always true. That is, the sum of the zero-value time constants equals the sum of the negative
reciprocals of all the poles, whether or not a dominant pole exists. Consider a circuit with two
identical negative real poles with magnitudes 𝜔x. Then the gain magnitude of the circuit is

|G( j𝜔)| = G0

1 +
(

𝜔

𝜔x

)2
(7.127)

The −3 dB frequency of this circuit is the frequency where |G(j𝜔)| = G0 ∕
√

2, which can be
shown to be

𝜔−3dB = 𝜔x

√√
2 − 1 = 0.64𝜔x (7.128)

The zero-value time-constant approach predicts

ΣT0 = 2
𝜔x

and thus
𝜔−3dB = 1

ΣT0
= 0.5𝜔x (7.129)

Even in this extreme case, the prediction is only 22 percent in error and gives a pessimistic
estimate.
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7.3.4 Cascode Frequency Response

The cascode connection is a multiple-device configuration that is useful in high-frequency
applications. An ac schematic of a bipolar version, shown in Fig. 7.29a, consists of a
common-emitter stage driving a common-base stage. An MOS version, shown in Fig. 7.29b,
consists of a common-source stage driving a common-gate stage. In both circuits, transistor T2
operates as a current buffer. Therefore, the voltage gain of the cascode circuit is approximately

vo

vi
≈ −gm1RL (7.130)

assuming that the output resistance of the cascode circuit is large compared to RL. This result
is the same as the voltage gain for a common-emitter or common-source stage without the
current buffer T2. The cascode derives its advantage at high frequencies from the fact that the
load for transistor T1 is the low input impedance of the current buffer. This impedance at low
frequencies was shown in Sections 3.3.3 and 3.3.4 to be

Ri2 ≈ 1
gm2

(7.131)

if ro2 → ∞, ignoring the body effect in the MOS transistor and assuming rb∕(𝛽0 + 1) ≪ 1∕gm2
and 𝛽0 ≫ 1 for the bipolar transistor. If transistors T1 and T2 have equal bias currents and
device dimensions, then gm1 = gm2. Since the load resistance seen by T1 is about 1∕gm2, the
magnitude of the voltage gain from vi to vx is about unity. Thus the influence of the Miller
effect on T1 is minimal, even for fairly large values of RL. Since the current-buffer stage T2
has a wide bandwidth (see Section 7.2.4), the cascode circuit overall has good high-frequency
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vo
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Figure 7.29 Cascode circuit
connections: (a) bipolar and
(b) MOS.
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Figure 7.30 Cascode
differential amplifier.

performance when compared to a single common-emitter or common-source stage, especially
for large RL. (See Problems 7.29 and 7.30.)

If the assumption that ro2 → ∞ is removed, the magnitude of the voltage gain from vi to vx
can be larger than one. For example, RL might be the output resistance of a cascoded current
source in an amplifier stage. In this case, RL is large compared to ro2, and the input resistance
of the current buffer T2 is given by

Ri2 ≈ 1
gm2

+ 1
gm2

RL

ro2
(7.132)

from the section 3.3.5.1 [ignoring the body effect in the MOS transistor and assuming
rb∕(𝛽0 + 1) ≪ 1∕gm2 and 𝛽0 ≫ 1 for the bipolar transistor]. Since this resistance is signif-
icantly bigger than 1∕gm2 when RL ≫ ro2, the magnitude of the gain from vi to vx can be
significantly larger than one. However, this gain is still much smaller in magnitude than the
gain from vi to vo; therefore, the Miller effect on T1 is smaller with the cascode transistor T2
than without it. To further reduce the Miller effect when RL is large, the input resistance of
the current buffer in (7.132) can be reduced by replacing the cascode transistor with the active
cascode shown in Chapter 3.

A useful characteristic of the cascode is the small amount of reverse transmission that
occurs in the circuit. The current-buffer stage provides good isolation that is required in
high-frequency tuned-amplifier applications. Another useful characteristic of the cascode is
its high output resistance. This characteristic is used to advantage in current-source design, as
described in Chapter 4, and in operational amplifier design, as described in Chapter 6.

As an example of the calculation of the−3 dB frequency of a cascode amplifier, consider the
circuit of Fig. 7.30. The input differential pair is biased using a resistor R3. If common-mode
rejection is an important consideration, R3 can be replaced with an active current source. The
resistive divider composed of R1 and R2 sets the bias voltage at the bases of Q3 and Q4, and
this voltage is chosen to give adequate collector-emitter bias voltage for each device.
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Figure 7.31 (a) The ac differential half-circuit of Fig. 7.30. (b) Small-signal equivalent of the circuit
in (a).

For purposes of analysis, the circuit is assumed driven with source resistance RS from
each base to ground. If the base of Q2 is grounded, the frequency response of the circuit
is not greatly affected if RS is small. The circuit of Fig. 7.30 can be analyzed using the ac
differential half-circuit of Fig. 7.31a. Note that in forming the differential half-circuit, the
common-base point of Q3 and Q4 is assumed to be a virtual ground for differential signals. The
frequency response (vo∕vs)(j𝜔) of the circuit of Fig. 7.31a will be the same as that of Fig. 7.30
if R3 in Fig. 7.30 is large enough to give a reasonable value of common-mode rejection. The
small-signal equivalent circuit of Fig. 7.31a is shown in Fig. 7.31b.

◼ EXAMPLE
Calculate the low-frequency, small-signal gain and −3 dB frequency of the circuit of Fig. 7.30
using the following data: RS = 1 kΩ, RE = 75 Ω, R3 = 4 kΩ, RL = 1 kΩ, R1 = 4 kΩ,
R2 = 10 kΩ, and VCC = VEE = 10 V. Device data are 𝛽 = 200, VBE(on) = 0.7 V, 𝜏F = 0.25 ns,
rb = 200 Ω, rc(active region) = 150 Ω, Cje0 = 1.3 pF,Cμ0 = 0.6 pF, 𝜓0c = 0.6 V, Ccs 0 =
2 pF, 𝜓0s = 0.58 V, and ns = 0.5.

The dc bias conditions are first calculated, neglecting transistor base currents. The voltage
at the base of Q3 and Q4 is

VB3 = VCC −
R1

R1 + R2
(VCC + VEE) = 10 − 4

14
× 20 = 4.3 V

The voltage at the collectors of Q1 and Q2 is

VC1 = VB3 − VBE3(on) = 3.6 V

Assuming that the bases of Q1 and Q2 are grounded, we can calculate the collector currents of
Q1 and Q2 as

IC1 =
VEE − VBE(on)

2R3 + RE
= 10 − 0.7

8.075
mA = 1.15 mA
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Therefore, we have
IC1 = IC2 = IC3 = IC4 = 1.15 mA

The dc analysis is completed by noting that the voltage at the collectors of Q3 and Q4 is

VC3 = VCC − IC3RL = 10 V − 1.15 V = 8.85 V

The low-frequency gain can be calculated from the ac differential half-circuit of Fig. 7.31a,
using the results derived in Chapter 3 for a stage with emitter resistance. If we neglect base
resistance, the small-signal transconductance of Q1 including RE is given by (3.93) as

Gm1 ≈
gm1

1 + gm1RE
= 10.24 mA∕V

The small-signal input resistance of Q1 including RE is given by (3.90) as

Ri1 ≈ r𝜋1 + (𝛽 + 1)RE = 19.5 kΩ

As shown in Chapter 3, the common-base stage has a current gain of approximately unity, and
thus the small-signal collector current of Q1 appears in the collector of Q3. By inspection, the
voltage gain of the circuit of Fig. 7.31a is

vo

vs
= −

Ri1

Ri1 + RS
Gm1RL = − 19.5

19.5 + 1
× 10.24 × 1 = −9.74

To calculate the −3 dB frequency of the circuit, the parameters in the small-signal equivalent
circuit of Fig. 7.31b must be determined. The resistive parameters are gm1 = gm3 = qIC1∕kT =
44.2 mA∕V, r𝜋1 = r𝜋3 = 𝛽∕gm1 = 4525 Ω, rc1 = rc3 = 150 Ω, rb1 = rb3 = 200 Ω, and RS +
rb = 1.2 kΩ. Because of the low resistances in the circuit, transistor output resistances are
neglected.

The capacitive elements in Fig. 7.31b are calculated as described in Chapter 1. First consider
base-emitter, depletion-layer capacitance Cje. As described in Chapter 1, the value of Cje in
the forward-active region is difficult to estimate, and a reasonable approximation is to double
Cje0. This gives Cje = 2.6 pF. From (1.104) the base-charging capacitance for Q1 is

Cb1 = 𝜏Fgm1 = 0.25 × 10−9 × 44.2 × 10−3 F = 11.1 pF

Use of (1.118) gives
C𝜋1 = Cb1 + Cje1 = 13.7 pF

Since the collector currents of Q1 and Q3 are equal, C𝜋3 = C𝜋1 = 13.7 pF.
The collector-base capacitance Cμ1 of Q1 can be calculated using (1.117a) and noting that

the collector-base bias voltage of Q1 is VCB1 = 3.6 V. Thus

Cμ1 =
Cμ0√

1 +
VCB

𝜓0c

= 0.6√
1 + 3.6

0.6

pF = 0.23 pF
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The collector-substrate capacitance of Q1 can also be calculated using (1.117a) with
a collector-substrate voltage of VCS = VC1 + VEE = 13.6 V. (The substrate is assumed
connected to the negative supply voltage.) Thus we have

Ccs1 =
Ccs0√

1 +
VCS

𝜓0s

= 2√
1 + 13.6

0.58

pF = 0.40 pF

Similar calculations show that the parameters of Q3 are Cμ3 = 0.20 pF and Ccs3 = 0.35 pF.
The −3 dB frequency of the circuit can now be estimated by calculating the zero-value time

constants for the circuit. First consider C𝜋1. The resistance seen across its terminals is given by
(7.122), which was derived for the emitter follower. The presence of resistance in series with
the collector of Q1 makes no difference to the calculation because of the infinite impedance of
the current generator gm1v1. Thus from (7.122),

R𝜋01 = r𝜋1||RS + rb1 + RE

1 + gm1RE
=
(

4525||1000 + 200 + 75
1 + 44.2 × 0.075

)
Ω = (4525||295) Ω = 277 Ω

Note that the effect of RE is to reduce R𝜋01, which increases the bandwidth of the circuit by
reducing the zero-value time constant associated with C𝜋1. This time constant has a value

C𝜋1R𝜋01 = 13.7 × 0.277 ns = 3.79 ns

The collector-substrate capacitance of Q1 sees a resistance equal to rc1 plus the common-base
stage input resistance, which is

Ri3 = 1
gm3

+
rb3

𝛽 + 1
= 23.6 Ω

and thus Ccs1 sees a resistance

Rcs 01 = Ri3 + rc1 = 174 Ω

The zero-value time constant is

Ccs1Rcs 01 = 0.4 × 0.174 ns = 0.07 ns

The zero-value time constant associated with Cμ1 of Q1 can be determined by calculating the
resistance Rμ01 seen across the terminals of Cμ1 using the equivalent circuit of Fig. 7.32a.
To simplify the analysis, the circuit in Fig. 7.32a is transformed into the circuit of Fig. 7.32b,
where the transistor with emitter degeneration is represented by parameters Ri1 and Gm1, which
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Figure 7.32 (a) Circuit for the
calculation of Rμ01 for Q1.
(b) Equivalent circuit for the circuit
in (a).

were defined previously. The circuit of Fig. 7.32b is in the form of a common-emitter stage as
shown in Fig. 7.25, and the formula derived for that case can be used now. Thus from (7.117),

Rμ01 = R1 + RL1 + Gm1RL1R1 (7.133)

where
R1 = Ri1||(RS + rb) = (19.5||1.2) kΩ = 1.13 kΩ

The load resistance RL1 is just rc1 plus the input resistance of Q3. Using the previously calcu-
lated values, we obtain

RL1 = 174 Ω

Substituting into (7.133) gives

Rμ01 = [1.13 + 0.17 + (10.24 × 1.13 × 0.17)] kΩ = 3.27 kΩ

The zero-value time constant associated with Cμ1 is thus

Cμ1Rμ01 = 0.23 × 3.27 ns = 0.75 ns

Because the input impedance of the common-base stage is small, the contribution of Cμ1 to
the sum of the zero-value time constants is much smaller than that due to C𝜋1.
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The time constant associated with C𝜋3 of Q3 can be calculated by recognizing that (7.122)
derived for the emitter follower also applies here. The effective source resistance RS is zero as
the base is grounded, and the effective emitter resistance RL is infinite because the collector of
Q1 is connected to the emitter of Q3. Thus (7.122) gives

R𝜋03 = r𝜋3|| 1
gm3

= 22.6 Ω

The zero-value time constant associated with C𝜋3 is thus

C𝜋3R𝜋03 = 13.7 × 0.0023 ns = 0.32 ns

The time constant associated with collector-base capacitance Cμ3 of Q3 can be calculated using
(7.133) with Gm1 equal to zero since the effective value of RE is infinite in this case. In (7.133),
the effective value of R1 is just rb, and thus

Rμ03 = rb + RL3

where
RL3 = rc3 + RL

and RL3 is the load resistance seen by Q3. Thus

Rμ03 = [200 + 150 + 1000]Ω = 1.35 kΩ

and the time constant is
Cμ3Rμ03 = 0.2 × 1.35 ns = 0.27 ns

Finally, the collector-substrate capacitance of Q3 sees a resistance

Rcs 03 = rc3 + RL = 1.15 kΩ

and
Ccs3Rcs03 = 0.35 × 1.15 ns = 0.4 ns

The sum of the zero-value time constants is thus

ΣT0 = (3.79 + 0.07 + 0.75 + 0.32 + 0.27 + 0.4) ns = 5.60 ns

The −3 dB frequency is estimated as

f−3dB = 1
2𝜋ΣT0

= 28.4 MHz

Computer simulation of this circuit using SPICE gave a −3 dB frequency of 34.7 MHz. The
computer simulation showed six poles, of which the first two were negative real poles with
magnitudes 35.8 MHz and 253 MHz. The zero-value time constant analysis has thus given a
reasonable estimate of the −3 dB frequency and has also shown that the major limitation on
the circuit frequency response comes from C𝜋1 of Q1. The circuit can thus be broadbanded
even further by increasing resistance RE in the emitter of Q1, since the calculation of R𝜋 01
showed that increasing RE will reduce the value of R𝜋 01. Note that this change will reduce the
gain of the circuit.◼

Further useful information regarding the circuit frequency response can be obtained from
the previous calculations by recognizing that Q3 in Fig. 7.31 effectively isolates Cμ3 and
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Ccs3 from the rest of the circuit. In fact, if rb3 is zero, then these two capacitors are con-
nected in parallel across the output and will contribute a separate pole to the transfer function.
The magnitude of this pole can be estimated by summing zero-value time constants for Cμ3
and Ccs3 alone to give ΣT0 = 0.67 ns. This time constant corresponds to a pole with magni-
tude 1∕(2𝜋ΣT0) = 237 MHz, which is very close to the second pole calculated by the com-
puter. The dominant pole is then estimated by summing the rest of the time constants to give
ΣT0 = 4.93 ns, which corresponds to a pole with magnitude 32.3 MHz and is also close to
the computer-calculated value. This technique can be used any time a high degree of isolation
exists between various portions of a circuit. To estimate the dominant pole of a given section,
the zero-value time constants may be summed for that section.

In this example, the bandwidth of the differential-mode gain was estimated by com-
puting the zero-value time constants for the differential half-circuit. The bandwidth of the
common-mode gain could be estimated by computing the zero-value time constants for the
common-mode half-circuit.

7.3.5 Frequency Response of a Current Mirror Loading a Differential Pair

A CMOS differential pair with current-mirror load is shown in Fig. 7.33a. The current mirror
here introduces a pole and a zero that are not widely separated. To show this result, consider
the simplified small-signal circuit in Fig. 7.33b for finding the transconductance Gm = io∕vid
with vo = 0. The circuit has been simplified by letting ro → ∞ for all transistors and ignoring
all capacitors except Cx. Here Cx models the total capacitance from node X to ground, which
consists of Cgs3, Cgs4, and other smaller capacitances. With a purely differential input, node Y
is an ac ground. The zero-value time constant associated with Cx is T0 = Cx∕gm3; therefore,

p = −
gm3

Cx
(7.134)

An exact analysis of this circuit yields a transfer function with a pole given by (7.134) and a
zero at z = −2gm3∕Cx. (See Problem 7.48.) The magnitudes of the pole and zero are separated
by one octave. The magnitude and phase responses for Gm(s) are plotted in Fig. 7.34. The
phase shift from this pole-zero pair is between 0 and −19.4 degrees.

The frequency-response plot can be explained as follows. The drain currents in the
differential pair are id1 = gm1vid∕2 and id2 = −gm1vid∕2. At low frequencies, M3 and M4
mirror id1, giving for the output current

io = −id2 − id4 = −id2 + id1 = gm1vid (7.135)

At high frequencies (𝜔 → ∞), Cx becomes a short, so vgs4 → 0 and id4 → 0. Therefore,

io = −id2 − id4 = −id2 − 0 =
gm1vid

2
(7.136)

These equations show that the transconductance falls from gm1 at low frequencies to
gm1∕2 at high frequencies. This result stems from the observation that the current mirror
does not contribute to the output current when Cx becomes a short. The change in the
transconductance occurs between frequencies |p| and |z|. This analysis shows that the pole
and zero are both important in this circuit. Since Cx ≈ Cgs3 + Cgs4 = 2Cgs3, (7.134) gives|p| ≈ gm3∕2Cgs3 ≈ 𝜔T(M3)∕2. Therefore, the pole-zero pair has an effect only at very high
frequencies, and the effect of this pair is much less than that of either an isolated pole or zero.

Analysis of a bipolar version of the circuit in Fig. 7.33a gives a similar result.
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Figure 7.33 (a) Differential pair with current-mirror load. (b) A simplified small-signal model.

7.3.6 Short-Circuit Time Constants

Zero-value time-constant analysis (which is sometimes called open-circuit time-constant
analysis) can be used to estimate the smallest-magnitude pole of an amplifier. This estimated
pole magnitude is approximately equal to the −3 dB frequency of the gain of a dc-coupled
amplifier with a low-pass transfer function. Another type of time-constant analysis is called
short-circuit time-constant analysis. Short-circuit time constants can be used to estimate the
location of the largest-magnitude pole. While short-circuit time-constant analysis is often
used to estimate the lower −3 dB frequency in ac-coupled amplifiers,1,2 we will use these
time constants to estimate the magnitude of the nondominant pole in dc-coupled amplifiers
that have only two widely spaced, real poles.

The short-circuit time-constant formulas will be derived for the small-signal circuit in
Fig. 7.24. Equations 7.91–7.93 describe this circuit, and (7.94) is the determinant Δ(s) of
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Figure 7.34 (a) Magnitude and (b) phase versus frequency of the transconductance Gm = io∕vid for the
circuit in Fig. 7.33.

these equations. This determinant can be written as

Δ(s) = K3

(
s3 +

K2

K3
s2 +

K1

K3
s +

K0

K3

)
= K3(s − p1)(s − p2)(s − p3) (7.137)

since the zeros of Δ(s) are the poles of the transfer function. Expanding the right-most expres-
sion and equating the coefficients of s2 gives

K2

K3
= −

3∑
i=1

pi (7.138)

Now a formula for calculating K2∕K3 will be derived. Evaluating the determinant of the
circuit equations in (7.91) to (7.93), the term K3 that multiplies s3 in (7.94) is given by

K3 = C𝜋CμCx (7.139)
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and the K2 term is
K2 = g11CμCx + g22C𝜋Cx + g33C𝜋Cμ (7.140)

From (7.139) and (7.140), the ratio K2∕K3 is

K2

K3
=

g11

C𝜋

+
g22

Cμ
+

g33

Cx
= 1

r11C𝜋

+ 1
r22Cμ

+ 1
r33Cx

(7.141)

where rii = 1∕gii. Now, let us examine each term in the right-most expression. The first term
is 1∕(r11C𝜋). Using (7.91), r11 = 1∕g11 can be found as

r11 = 1
g11

=
v1

i1
|v2=v3=0, C𝜋=0 (7.142)

That is, r11 is the resistance in parallel with C𝜋 , computed with C𝜋 removed from the circuit
and with the other capacitors Cμ and Cx shorted. (Note that shorting Cμ makes v2 = 0; shorting
Cx makes v3 = 0.) Therefore, the product r11C𝜋 is called the short-circuit time constant for
capacitor C𝜋 . Similarly, from (7.92),

r22 = 1
g22

=
v2

i2
|v1=v3=0, Cμ=0 (7.143)

This r22 is the resistance in parallel with Cμ, computed with Cμ removed from the circuit and
with the other capacitors C𝜋 and Cx shorted. Finally, from (7.93),

r33 = 1
g33

=
v3

i3
|v1=v2=0, Cx=0 (7.144)

So r33 is the resistance in parallel with Cx, computed with Cx removed from the circuit and with
the other capacitors C𝜋 and Cμ shorted. Using (7.142) to (7.144), (7.141) can be rewritten as

K2

K3
=

3∑
i=1

1
𝜏si

(7.145)

where 𝜏si is the short-circuit time constant associated with the ith capacitor in the circuit. The
short-circuit time constant for the ith capacitor is found by multiplying its capacitance by the
driving-point resistance in parallel with the ith capacitor, computed with all other capacitors
shorted.

Combining (7.138) and (7.145) gives

3∑
i=1

pi = −
3∑

i=1

1
𝜏si

(7.146)

This key equation relates the sum of the poles and the sum of the reciprocals of the short-circuit
time constants. This relationship holds true for any small-signal circuit that consists of resis-
tors, capacitors, and controlled sources, assuming that the circuit has no loops of capacitors.1

If a circuit has n poles and pole pn has a magnitude that is much larger than the magnitude
of every other pole, then a general version of (7.146) can be written as

pn ≈
n∑

i=1

pi = −
∑ 1

𝜏si
(7.147)
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For a circuit that has only two widely spaced, real poles, (7.147) simplifies to

p2 ≈ −
∑ 1

𝜏si
(7.148)

This simple relationship allows the magnitude of the nondominant pole to be readily estimated
from the short-circuit time constants.

◼ EXAMPLE
Estimate the nondominant pole magnitude for the circuit in Fig. 7.35 with

RS = 10 kΩ RL = 10 kΩ

Cgs = 1 pF Cf = 20 pF gm = 3 mA∕V

This circuit has two poles because it has two independent capacitors. First, we will calculate
the short-circuit time constant 𝜏s1 for Cf . With Cgs shorted and the independent source set to
zero, we have v1 = 0, so the current through the dependent source is also zero. Therefore, the
resistance seen by Cf is just RL, and the corresponding time constant is

𝜏s1 = Cf RL = (20 pF)(10 kΩ) = 200 ns (7.149a)

To find the short-circuit time constant for Cgs, we short Cf and find the resistance seen by Cgs.
With Cf shorted, the dependent source is controlled by the voltage across it; therefore, it acts
as a resistance of 1∕gm. This resistance is in parallel with RL and RS, so the short-circuit time
constant for Cgs is

𝜏s2 = Cgs[RS||1∕gm||RL] = (1 pF)[10 kΩ||333 Ω||10 kΩ] = 0.312 ns (7.149b)

From (7.148),

p2 ≈ −
∑ 1

𝜏si
= −
( 1

200 ns
+ 1

0.312 ns

)
= −3.21 Grad∕s (7.149c)

if the poles are real and widely spaced. An exact analysis of this circuit gives p2 =
−3.20 Grad∕s, which is very close to the estimate above, and p1 = −156 krad∕s.

Cf

Cgs

RS

vs

+

–

v1

vo

gmv1 RL

+

–

Figure 7.35 Example
circuit for calculating
short-circuit time
constants.
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Using zero-value time constants, the dominant-pole magnitude can be estimated. From
(7.124), the zero-value time constant for Cf is

Cf Rf 0 = Cf (RS + RL + gmRLRS)

= (20p)[10k + 10k + (3 × 10−3)(10k)(10k)] s = 6.4 μs (7.150a)

The zero-value time constant for Cgs is simply

CgsRS = (1 pF)(10 kΩ) = 10 ns (7.150b)

Therefore, (7.111) gives

p1 ≈ − 1
6.4 μs + 10 ns

= −156 krad∕s (7.150c)

Exact analysis of this circuit gives p1 = −156 krad∕s, which is the same as the estimate above.
This example demonstrates that for circuits with two widely spaced, real poles, time-constant
analyses can give accurate estimates of the magnitudes of the dominant and nondominant
poles.

In this case of widely spaced poles, note that p1 and p2 can be accurately estimated using
only one time constant for each pole. Since Cf is large compared to Cgs and the resistance Cf
sees when computing its zero-value time constant is large compared to the resistance seen by
Cgs, a reasonable conclusion is that Cgs has negligible effect near the frequency |p1|. Therefore,
the most important zero-value time constant in (7.111) for estimating p1 is the time constant
for Cf (computed with Cgs replaced with an open circuit). Using only that time constant from
(7.150a), we estimate

p1 ≈ − 1
6.4 μs

= −156 krad∕s

which is a very accurate estimate of p1.
If the real poles are widely separated and the dominant pole was set by Cf , a reason-

able assumption is that Cf is a short circuit near the frequency |p2|. Therefore, the important
short-circuit time constant in (7.149c) is the time constant for Cgs, computed with Cf shorted.
Using only that time constant from (7.149b) in (7.148) gives

p2 ≈ − 1
0.312 ns

= −3.21 Grad∕s

which is an accurate estimate of p2.◼

This last set of calculations shows that if two real poles are widely spaced and if one
capacitor is primarily responsible for p1 and another capacitor is responsible for p2, we need
only compute one zero-value time constant to estimate p1 and one short-circuit time constant
to estimate p2.
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7.3.7 Weighted Zero-Value Time Constants3

In Section 7.3.2, zero-value time-constant analysis was introduced to estimate the magnitude
of a dominant pole. This section shows how to use weighted zero-value time constants to
estimate the location of a dominant zero in a transfer function.

For an amplifier with only resistors, capacitors, and controlled sources, a general expression
for its transfer function is

vo

vin
= H(s) = N(s)

D(s)
=

a0 + a1s + a2s2 + ...aMsM

1 + b1s + b2s2 + ...bNsN
(7.151a)

Here N is the number of poles and is equal to the number of independent capacitors in the
circuit. M is the number of zeros and depends on the circuit topology, including where the
input is placed and the output is taken. In the KCL and KVL equations for the amplifier, s is
always multiplied by a capacitance. For example, see (7.91). Therefore, b1 is a linear function
of the weighted capacitors in the circuit:

b1 =
N∑

i=1

diCi (7.151b)

For the same reason, a1 is also a linear function of the capacitors in the circuit:

a1 =
N∑

i=1

niCi (7.151c)

If the transfer function contains no zeros, all ni are zero and a1 = 0. If the transfer function
contains one zero, a1 ≠ 0.

In the denominator of (7.151a), b2 is the coefficient of s2 and is a linear combination of
products of different capacitances, so

b2 =
N−1∑
i=1

N∑
j=i+1

ei,jCiCj (7.151d)

Similarly,

a2 =
N−1∑
i=1

N∑
j=i+1

hi,jCiCj (7.151e)

A squared-capacitor term such as C2
j never appears in (7.151d) or (7.151e), as explained after

the next equation. In general, the coefficients ak and bk of the sk terms are linear combinations
of non-repeated products of k different capacitances.

The transfer function in (7.151a) is valid for any set of capacitor values. To focus on the
contribution of Ci to a1 and b1, consider the case where all capacitors are zero except Ci. Then
(7.151a) reduces to

vo

vin
[with all capacitors set to 0 except Ci] =

a0 + niCis

1 + diCis
(7.151f)

If a squared-capacitor term such as C2
j had appeared in (7.151d) or (7.151e), then a C2

j s2 term
would have appeared here. However, that is not possible because the circuit contains only one
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capacitor, and therefore its transfer must be first order. From zero-value time-constant analysis
in Section 7.3.2, we know that the coefficient of s in the denominator of (7.151f) must equal
the zero-value time constant for Ci. Therefore,

diCi = Ri,0Ci (7.151g)

or
di = Ri,0 (7.151h)

where Ri,0 is the resistance in parallel with Ci when all other capacitors are set to zero. (In other
words, all other capacitors are open circuits.)

If Ci → ∞ in (7.151f), the transfer function reduces to

H∞(Ci) =
vo

vin
[with Ci → ∞ and all other capacitors set to 0] =

ni

di
(7.151i)

So, H∞(Ci) is the gain from input to output when Ci → ∞ (i.e., Ci is shorted) and all other
capacitors are set to zero (i.e., they are open). Using (7.151h) and (7.151i) gives

ni =
ni

di
⋅ di = H∞(Ci) ⋅ Ri,0 (7.151j)

If H∞(Ci) and Ri,0 are known for all the capacitors in the circuit, a1 in (7.151a) can be found
by substituting (7.151j) into (7.151c):

a1 =
N∑

i=1

niCi =
N∑

i=1

H∞(Ci)Ri,0Ci =
N∑

i=1

H∞(Ci)𝜏i,0 (7.151k)

where 𝜏i,0 = Ri,0Ci is the zero-value time constant associated with capacitor Ci. In (7.151k),
some H∞(Ci) typically equal zero.

The number of zeros in the transfer function in (7.151a) is equal to the maximum number
of capacitors that can be shorted and give a nonzero gain from input to output. For example,
in Fig. 7.35, shorting Cf results in a nonzero voltage gain, but shorting both capacitors gives
a gain of zero. Therefore, that circuit has one zero. This conclusion agrees with the transfer
function in (7.33) from exact analysis. Another example is in Fig. 7.31b. If C𝜋1,Cμ1,C𝜋3, and
Cμ3 are all shorted, the gain from input vs to output vo is nonzero. However, shorting any
additional capacitors gives a gain of zero. Therefore, the voltage-gain transfer function of that
circuit has four zeros.

If a transfer function has a dominant real zero, it can be estimated from a0 and a1, as
explained next. First, factoring the numerator in (7.151a) gives

vo

vin
= H(s) = N(s)

D(s)
=

a0[1 + (a1∕a0)s + (a2∕a0)s2 + ... + (aM∕a0)sM]
D(s)

(7.151l)

=
a0[(1 − s∕z1)(1 − s∕z2)...(1 − s∕zM)]

D(s)
(7.151m)

Expanding the numerator in (7.151m) and equating the coefficient of s in the resulting expres-
sion with the coefficient of s in (7.151l) gives

a1

a0
=

M∑
i=1

(
− 1

zi

)
(7.151n)
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If a dominant zero z1 exists such that |z1|≪ |z2|, |z3|, … , then

M∑
i=1

(
− 1

zi

)
≈ − 1

z1
(7.151o)

In this case, (7.151n) reduces to
a1

a0
≈ − 1

z1
(7.151p)

or
z1 ≈ −

a0

a1
(7.151q)

So, −a0∕a1 is an estimate of the dominant zero. If the transfer function has only one zero, then

z1 = −
a0

a1
(7.151r)

◼ EXAMPLE
Consider the circuit in Fig. 7.18, which is a small-signal model for the source-follower circuit
in Fig. 7.13b. Its exact transfer function is given just after the first example in the section
7.2.3.2. Here we will use weighted time constants to find a1 and then use a1 and a0 to find the
zero of the transfer function.

To simplify analysis of the circuit, note that the gmb controlled-current source is controlled
by the voltage across itself, so it can be replaced by a resistor of value 1∕gmb. Figure 7.36a
shows this transformation. The 1∕gmb resistance is in parallel with RL. These two parallel resis-
tors can be combined into one resistor of value R′

L = (1∕gmb)||RL, as indicated in Fig. 7.36a.
First, calculate a1. Notice that if Csb is shorted (i.e., Csb → ∞) in Fig. 7.36a, then vo

is zero. So,

H∞(Csb) =
vo

vi
[with Csb → ∞ and all other capacitors set to 0] = 0 (7.152a)

vi
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−

RS

Cgsv1
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−
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RL

G
Cgd + Cgb = C2

gmv1

1

gmb
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+
vo
−

RL

(a)

RS

vg +−
vt

+

−

it

S

RL

+
vo
−

G

gmvt

(b)

Figure 7.36 (a) Circuit of
Fig. 7.18 modified for weighted
time-constant analysis.
(b) Previous circuit modified to
compute Rgs,0.
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Next, since Cgd and Cgb are in parallel, let C2 = Cgd + Cgb be the combined capacitance.
When C2 is shorted (i.e., C2 → ∞), the voltage vg at the gate node G is zero. Since the source
follows the gate, the source voltage is also zero. Because vo equals the voltage at the source,
vo = 0. Therefore,

H∞(C2) =
vo

vi
[with C2 → ∞ and all other capacitors set to 0] = 0 (7.152b)

Finally, let Cgs become a short (Cgs → ∞) while all other capacitors are zero (open circuits).
Then the resistor R′

L forms a voltage divider with RS, so

H∞(Cgs) =
vo

vi
[with Cgs → ∞ and all other capacitors set to 0] =

R′
L

RS + R′
L

(7.152c)

Since the gains in (7.152a) and (7.152b) are zero, the only zero-value time constant that
contributes to the calculation of a1 in (7.151k) is 𝜏gs,0 = Rgs,0Cgs. The value of Rgs,0 can be
found by replacing Cgs with vt, as shown in Fig. 7.36b, and finding Rgs,0 = vt∕it. KCL at the
source node S yields

it = gmvt −
vo

R′
L

(7.152d)

From KVL, the voltage at the gate node G is

vg = vt + vo (7.152e)

KCL at node G gives

it =
vg

RS
(7.152f)

Using these last three equations gives

Rgs,0 =
vt

it
=

RS + R′
L

1 + gmR′
L

(7.152g)

Hence, using (7.151k),

a1 = H∞(Csb)Rsb,0Csb + H∞(C2)R2,0C2 + H∞(Cgs)Rgs,0Cgs

= 0 ⋅ Rsb,0Csb + 0 ⋅ R2,0C2 + H∞(Cgs)Rgs,0Cgs = H∞(Cgs)Rgs,0Cgs (7.152h)

where (7.152a) and (7.152b) have been used. Using (7.152c) and (7.152g) in (7.152h),

a1 = H∞(Cgs) ⋅ Rgs,0 ⋅ Cgs =
R′

L

RS + R′
L

⋅
RS + R′

L

1 + gmR′
L

⋅ Cgs =
R′

L

1 + gmR′
L

Cgs (7.152i)

To calculate the zero, we also need to find the dc gain a0. Consider Fig. 7.36a with all
capacitors open. KVL gives

vi = vo + v1 (7.152j)

Then KCL at node S gives
vo

R′
L

= gmv1 (7.152k)
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Using these last two equations gives

a0 =
vo

vi
(s = 0) =

gmR′
L

1 + gmR′
L

(7.152l)

This circuit has only one zero because shorting Cgs gives a nonzero gain H∞(Cgs) but short-
ing any two or all three capacitors gives zero gain. Therefore, (7.151r) can be used here, and

z = −
a0

a1
= −

gmR′
L

1 + gmR′
L

R′
L

1 + gmR′
L

Cgs

= −
gm

Cgs
(7.152m)

The zero calculated here using weighted time constants is the same as the zero in the exact
transfer function in (7.74a).◼

In the following example, the transfer function has one right-half-plane zero, which is found
using weighted time constants. Then the result of this calculation is compared to the location
of the zero from an exact analysis of the transfer function.

◼ EXAMPLE
Consider Fig. 7.35 with element values given in the example in Section 7.3.6. [Note that
Figs. 7.35 and 7.10b are the same, but Cf in Fig. 7.35 is called Cgd in Fig. 7.10b. The exact
transfer function for Fig. 7.10b is given in (7.33).] The element values in this example are

RS = 10 kΩ RL = 10 kΩ

Cgs = 1 pF Cf = 20 pF gm = 3 mA∕V

The circuit has only two capacitors. The zero-value time constants associated with Cf and
Cgs were calculated in (7.150a) and (7.150b). Therefore, to find a1 using (7.151k), we need to
calculate the gains H∞(Cgs) and H∞(Cf ).

First, if Cgs is shorted (Cgs → ∞) and the other capacitor is open (Cf = 0), v1 = 0, and
gmv1 = 0. Therefore, vo = 0, and hence

H∞(Cgs) = 0 (7.153a)

When Cf is shorted (Cf → ∞) and the other capacitor is open (Cgs = 0), v1 = vo, and KCL
gives

vs − vo

RS
= gmvo +

vo

RL
(7.153b)

Rearranging this equation gives

H∞(Cf ) =
vo

vs
[Cf → ∞ and all other capacitors set to 0] =

RL

|||||||| 1
gm

RL

|||||||| 1
gm

+ RS

=
10 × 103

|||||
|||||
(

1

3 × 10−3

)
10 × 103

|||||
|||||
(

1

3 × 10−3

)
+ 10 × 103

= 0.03125 (7.153c)
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Substituting (7.150a), (7.150b), (7.153a), and (7.153c) in (7.151k) gives

a1 = H∞(Cgs) ⋅ 𝜏gs,0 + H∞(Cf ) ⋅ 𝜏f ,0 = 0 ⋅ 10 ns + 0.03125 ⋅ 6.4 μs = 0.2 μs (7.153d)

To calculate the zero, we also need a0, the dc gain of the circuit. At dc, the gain of this
circuit is simply

a0 =
vo

vs
(s = 0) = −gmRL = −(3 × 10−3) ⋅ (10 × 103) = −30 (7.153e)

This circuit has only one zero because shorting Cgd gives a nonzero gain H∞(Cgd), but
shorting both capacitors gives zero gain. Based on that observation, (7.151r) applies, and the
zero is given by

z = −
a0

a1
= − (−30)

0.2 μs
= 150 Mrad∕s (7.153f)

For comparison, the zero in the exact transfer function in (7.33) (using Cf in place
of Cgd) is

z =
gm

Cf
= 3 × 10−3

20 × 10−12
= 150 Mrad∕s (7.153g)

The zero in (7.153f), found using weighted time constants, and the zero in (7.153g), from the
exact transfer function in (7.33), agree.◼

In the next example, the transfer function has multiple, nondominant zeros. Therefore, the
estimate of the lowest-frequency zero using weighted time constants has a large error.

◼ EXAMPLE
Figure 7.28a is a small-signal model of the two-stage common-source amplifier in Fig. 7.27.
The goal of this example is to estimate the dominant zero of the transfer function using
weighted time constants. All the zero-value time constants were computed in the example
in Section 7.3.3, for the purpose of estimating the dominant pole. We will use those time
constants to find a1. The time constants are

𝜏gd1 = Cgd1Rgd01 = 320 ns 𝜏gs1 = Cgs1Rgs01 = 50 ns 𝜏db1 = Cdb1Rdb01 = 20 ns

𝜏gd2 = Cgd2Rgd02 = 315 ns 𝜏gs2 = Cgs2Rgs02 = 100 ns 𝜏db2 = Cdb2Rdb02 = 10 ns

Other important values from the example in Section 7.3.3 that will be used here are

gm1 = 3 mA∕V RL1 = 10 kΩ gm2 = 6 mA∕V RL2 = 5 kΩ RS = 10 kΩ

In Fig. 7.28a, shorting both Cgd1 and Cgd2 (Cgd1 → ∞ and Cgd2 → ∞) causes the gain from
input vs to output vo to be nonzero. However, shorting any three or more capacitors gives a gain
of zero. So, the voltage-gain transfer function of that circuit has two zeros.

With all the time constants already computed, we only need to find the H∞() weight-
ing factors in (7.151k) to compute a1. First, when Cgs1 → ∞ and all other capacitors are
zero, v1 = 0, so gm1v1 = 0. With the gm1 source inactive, v2 = 0 and gm2v2 = 0. Therefore,
vo = 0, and

H∞(Cgs1) = 0 (7.154a)
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When Cdb1 → ∞, v2 = 0, so gm2v2 = 0 and vo = 0. So,

H∞(Cdb1) = 0 (7.154b)

Since capacitor Cgs2 is in parallel with Cdb1, Cgs2 → ∞ also causes vo = 0. Therefore,

H∞(Cgs2) = 0 (7.154c)

Because the voltage vo is across capacitor Cdb2, Cdb2 → ∞ forces vo = 0. As a result,

H∞(Cdb2) = 0 (7.154d)

Therefore, the only possible nonzero H∞() weighting factors are those associated with Cgd1
and Cgd2.

When Cgd1 → ∞ and all other capacitors are zero, v1 = v2, and hence the gm1 dependent
source is controlled by the voltage across itself. Therefore the gm1 dependent source can be
replaced by a resistor of value 1∕gm1. With that change, the circuit from vs to v2 is a resistive
voltage divider, and we can write

v2 =

1
gm1

||||||||RL1

RS +
1

gm1

||||||||RL1

vs =

1
3m

|||||||| 10k

10k + 1
3m

|||||||| 10k
vs =

322.6
10k + 322.6

vs = 0.03125vs (7.154e)

The output voltage is related to v2 by

vo = −gm2RL2v2 = −(6 × 10−3)(5 × 103) = −30v2 (7.154f)

Using these last two equations, we find

H∞(Cgd1) =
vo

v2
⋅

v2

vs
= 0.03125 ⋅ (−30) = −0.9375 (7.154g)

When Cgd2 → ∞ and all other capacitors are set to zero, v1 = vs and vo = v2. Therefore, the
gm2 dependent source is controlled by the voltage across itself. In that case, the gm2 dependent
source can be replaced by a resistor of value 1∕gm2. With that change, the current from the gm1
generator flows through resistors 1∕gm2, RL1, and RL2 in parallel. Therefore,

vo = −gm1

(
1

gm2

||||||||RL1

||||||||RL2

)
vs = −3m

(
1

6m

|||||||| 10k
|||||||| 5k

)
vs = −0.4762vs (7.154h)

So,
H∞(Cgd2) =

vo

vs
(Cgd2 → ∞) = −0.4762 (7.154i)

Using (7.151k), we can compute a1:

a1 = H∞(Cgs1)𝜏gs1 + H∞(Cdb1)𝜏db1 + H∞(Cgs2)𝜏gs2 + H∞(Cdb2)𝜏db2

+ H∞(Cgd1)𝜏gd1 + H∞(Cgd2)𝜏gd2 (7.154j)
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Substituting values from (7.154a), (7.154b), (7.154c), and (7.154d) (all of which are zero) into
this equation yields a simpler expression:

a1 = H∞(Cgd1)𝜏gd1 + H∞(Cgd2)𝜏gd2 (7.154k)

Now, substituting the time constants listed at the start of this example into (7.154k) along with
the H∞() values in (7.154g) and (7.154i) gives

a1 = H∞(Cgd1)𝜏gd1 + H∞(Cgd2)𝜏gd2

= (−0.9375)(320 ns) + (−0.4762)(315 ns) = −450 ns (7.154l)

To estimate the location of the dominant zero, the dc voltage gain a0 is needed:

a0 =
vo

vs
(s = 0) = gm1RL1gm2RL2 = 3m ⋅ 10k ⋅ 6m ⋅ 5k = 900 (7.154m)

Substituting a0 from (7.154m) and a1 from (7.154l) into (7.151q) gives an estimate of the
dominant zero:

z1 ≈ − 1
(a1∕a0)

= − 1
(−450 ns∕900)

= 1
0.5 ns

= 2 Grad∕s = 2𝜋(318 MHz) (7.154n)

This value of z1 is a useful estimate of the location of the zero with the smallest magnitude.
However, the error in this estimate is large because this circuit has two zeros, and neither is
dominant here. Computer simulation shows that the zeros are in the right-half of the s plane
at 2𝜋(477 MHz) and 2𝜋(955 MHz). As shown in (7.151n), the sum of the reciprocals of these
zeros is exactly equal to −a1∕a0, which is 1∕(2𝜋 ⋅ 477 MHz) + 1∕(2𝜋 ⋅ 955 MHz) = 0.5 ns.
As expected, this result agrees with the calculation of a1∕a0 in (7.154n).◼

The following example shows that the gate-drain overlap capacitance in a transistor acting
as an active load introduces a zero in the transfer function of an amplifier.

◼ EXAMPLE
Figure 7.36c shows a common-source amplifier M1 with an active load M2. The small-signal
model for this amplifier is shown in Fig. 7.36d. For simplicity, this model includes only one
capacitor, Cgd2. The goal of this example is to use weighted time constants to show that the
voltage-gain transfer function has a zero stemming from Cgd2. Assume the current mirror tran-
sistors M2 and M3 are identical. Also assume that VI is adjusted so that all the transistors
operate in saturation. Then, neglecting channel-length modulation, M2 and M3 have the same
bias currents and the same small-signal parameters, and gm2 = gm3. For the purpose of finding
the zero-value time constant, the resistance seen by a gate-to-drain capacitor like Cgd2 was
computed in the example in Section 7.3.3, and the resistance is given by (7.124). Applying
that result to this circuit, the time constant associated with Cgd2 is

𝜏gd2 = Rgd02Cgd2 =
[

1
gm3

+ Ro + gm2
1

gm3
Ro

]
Cgd2

= Ro

[
1 + (gm2 + gm3)Ro

gm3Ro

]
Cgd2 (7.155a)

where Ro = ro1||ro2.
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M1

VDD

IB

VI + vi
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VO + vo
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(c)

(d)

1

gm3 Cgd2

−
vx
+

gm2vx ro2

ro1

+

vo

−
gm1vi

+−vi

Figure 7.36 (c) Common-source amplifier M1 with active load
M2. (d) Small-signal model of previous circuit including only
one capacitor (Cgd2).

With the zero-value time constant 𝜏gd2 computed, next we need to find H∞(Cgd2) to compute
a1. When Cgd2 → ∞, vx = vo. Therefore, the gm2 dependent source is controlled by the voltage
across itself. In that case, the gm2 dependent source can be replaced by a resistor of value 1∕gm2.
With that change, the current from the gm1 generator flows through a load consisting of 1∕gm2,
1∕gm3, and Ro in parallel. Therefore,

H∞(Cgd2) =
vo

vi
(Cgd2 → ∞) = −gm1

[
1

gm2

|||||||| 1
gm3

||||||||Ro

]
= −

gm1Ro

1 + (gm2 + gm3)Ro
(7.155b)

From (7.151k),

a1 = H∞(Cgd2)𝜏gd2

= −
[

gm1Ro

1 + (gm2 + gm3)Ro

]
Ro

[
1 + (gm2 + gm3)Ro

gm3Ro

]
Cgd2

= −
gm1

gm3
(RoCgd2) (7.155c)

To find the location of the zero with (7.151r), the dc voltage gain a0 is needed:

a0 =
vo

vi
(s = 0) = −gm1(ro1||ro2) = −gm1Ro (7.155d)
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Substituting a0 from (7.155d) and a1 from (7.155c) into (7.151r) gives the zero:

z = −
a0

a1
= −

−gm1Ro

(−gm1∕gm3)RoCgd2
= −

gm3

Cgd2
(7.155e)

So, gate-drain capacitance in the active-load transistor introduces a zero in the transfer function
of this amplifier.◼

7.4 Relation Between Frequency Response and Time
Response
In this chapter, the effect of increasing signal frequency on circuit performance has been
illustrated by considering the circuit response to a small-signal sinusoidal input. In practice,
however, an amplifier may be required to amplify nonsinusoidal signals such as pulse trains
or square waves. In addition, such signals are often used in testing circuit step response. The
response of a circuit to such input signals is thus of some interest and will now be calculated.

Initially, we consider a circuit whose small-signal transfer function can be approximated
by a single-pole expression

vo

vi
(s) = K

1 − s
p1

(7.156)

where K is the low-frequency gain and p1 is the pole of the transfer function. As described
earlier, the−3 dB frequency of this circuit for sinusoidal signals is𝜔−3dB = −p1. Now consider
a small input voltage step of amplitude va applied to the circuit. If we assume that the circuit
responds linearly, we can use (7.156) to calculate the circuit response using vi(s) = va∕s. Thus

vo(s) =
Kva

s
1

1 − s
p1

= Kva

(
1
s
− 1

s − p1

)

and the circuit response to a step input is

vo(t) = Kva(1 − ep1t) (7.157)

The output voltage thus approaches Kva, and the time constant of the exponential in (7.157) is
−1∕p1. Equation 7.157 is sketched in Fig. 7.37a together with vi. The rise time of the output
is usually specified by the time taken to go from 10 percent to 90 percent of the final value.
From (7.157), we have

0.1Kva = Kva(1 − ep1t1) (7.158)

0.9Kva = Kva(1 − ep1t2) (7.159)

From (7.158) and (7.159), we obtain, for the 10 percent to 90 percent rise time,

tr = t2 − t1 = − 1
p1

ln 9 = 2.2
𝜔−3dB

= 0.35
f−3dB

(7.160)

This equation shows that the pulse rise time is directly related to the −3 dB frequency of the
circuit. For example, if f−3dB = 10 MHz, then (7.160) predicts tr = 35 ns. If a square wave is
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 K va
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tr = 10–90% rise time

t2
t

t
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(a)

Figure 7.37 (a) Step response of a
linear circuit with gain K and a
single-pole transfer function.

(b)

t

t

vi

vo

Figure 7.37 (b) Response of a
linear circuit with a single-pole
when a square-wave input is
applied.

applied to a circuit with a single-pole transfer function, the response is as shown in Fig. 7.37b.
The edges of the square wave are rounded as described above for a single pulse.

The calculations in this section have shown the relation between frequency response and
time response for small signals applied to a circuit with a single-pole transfer function. For
circuits with multiple-pole transfer functions, the same general trends apply, but the pulse
response may differ greatly from that shown in Figs. 7.37a,b. In particular, if the circuit transfer
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(c)

t

vo

vi

t
Figure 7.37 (c) Typical step response of a
linear circuit whose transfer function
contains complex poles.

function contains complex poles leading to a frequency response with a high-frequency peak
(see Chapter 9), then the pulse response will exhibit overshoot4 and damped sinusoidal
oscillation, as shown in Fig. 7.37c. Such a response is usually undesirable in pulse amplifiers.

Finally, it should be pointed out that all the foregoing results were derived on the assumption
that the applied signals were small in the sense that the amplifier acted linearly. If the applied
pulse is large enough to cause nonlinear operation of the circuit, the pulse response may differ
significantly from that predicted here. This point is discussed further in Chapter 9.

7.5 Pole-Zero Doublets
A closely spaced pole-zero pair (i.e., a pole and a zero that are nearly equal) in a transfer
function is called a pole-zero doublet or, more simply, a doublet. Although a doublet may have
little effect on the frequency response of an amplifier, it may have a large effect on the step
response,5–7 as explained below.

Section 7.5.1 analyzes the effect of a doublet on the step response of an amplifier.
Sections 7.5.2, 7.5.3, and 7.5.4 each analyze a circuit that may introduce a doublet.

7.5.1 Effect of a Pole-Zero Doublet on Settling Time5–7

This section shows that a doublet may introduce an undesired slow-settling component in the
step response of an amplifier. Assume the gain of the amplifier is given by

Vo(s)
Vi(s)

= A(s) = A0

(
1 − s

zx

)
(

1 − s
px

)(
1 − s

p1

) (7.161)

where zx and px are about equal and form a pole-zero doublet, p1 is a second pole, and A0 is
the dc gain of the amplifier. Assume A0 > 0. Since this transfer function has only one zero,
zx must be real to produce real coefficients in the transfer function.8 Also assume that the poles
px and p1 are real.
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If px ≠ p1, a partial fraction expansion of (7.161) yields

A(s) = Ax
1(

1 − s
px

) + A1
1(

1 − s
p1

) (7.162)

Equation 7.162 can be written as

A(s) =
Ax

(
1 − s

p1

)
+ A1

(
1 − s

px

)
(

1 − s
px

)(
1 − s

p1

) (7.163)

Since the denominators in (7.161) and (7.163) are identical, Ax and A1 can be found by equating
the numerators in these equations. To find Ax, let 1 − s∕px = 0 by setting s = px. Similarly, to
find A1, let 1 − s∕p1 = 0 by setting s = p1. Then

Ax =
A0

(
1 −

px

zx

)
(

1 −
px

p1

) A1 =
A0

(
1 −

p1

zx

)
(

1 −
p1

px

) (7.164)

The dc gain of the amplifier is A0 = Ax + A1.
Assuming the amplifier behaves linearly, the time-domain output for a 1 V step input at

t = 0 stemming from (7.162) is

Vo(t) = (1 V)[Ax(1 − epxt) + A1(1 − ep1t)] (7.165)

If px ≈ zx and |px|≪ |p1|, the numerator in Ax is small in magnitude compared to A0
while the denominator is close to one, so |Ax|≪ A0. Therefore, |A1| ≈ A0 since A0 = Ax + A1.
Although |Ax|≪ |A1| in this case, |Ax| may not be small enough to allow the 1 − epxt term in
(7.165) to be neglected, as explained next.

With |px|≪ |p1|, the 1 − epxt term in (7.165) approaches one much more slowly than does
the 1 − ep1t term. As a result, the doublet may significantly affect the settling time of the ampli-
fier. The settling time is the time required for the output to reach and stay within given error
bounds of the final value. Let Vo(fin) = Vo(t → ∞) represent the final value. The error bounds
are placed at Vo(fin)(1 ± 𝜖), where 0 < 𝜖 < 1 gives the separation between each error bound and
the final value as a fraction of the final value. For example, error bounds of±1% are 0.01(Vo(fin))
above and below the final value. In practice, the error bounds are selected based on the required
accuracy of the amplifier output. Typical error bounds are ±1%,±0.1%, or ± 0.01%. When
𝜖 < |Ax∕A0|, the slow-settling component, Ax(1 − epxt), can significantly increase the
settling time.

◼ EXAMPLE
Determine the 1 percent settling time of a linear amplifier with a 1 V input step, A0 = 1,
p1 = −1 Mrad/s, px → −∞, and zx → −∞.

When px → −∞ and zx → −∞, (7.161) gives

Vo(s)
Vi(s)

= A(s) = A0
1(

1 − s
p1

) (7.166)
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This equation shows that the amplifier has only one pole, and the doublet is eliminated in this
case. The corresponding unit step response is

Vo(t) = (1 V)(1 − e−106t) (7.167)

In this case, Vo(fin) = 1 V, and the error bounds are 0.99 V and 1.01 V. After Vo(t) = 0.99 V,
the output is always within 1 percent of 1 V because Vo(t) in (7.167) increases monotonically
with time. Setting Vo(t) = 0.99 V in (7.167) and solving for t gives the 1 percent settling time,
which is tst = 4.6 μs.◼

◼ EXAMPLE
Repeat the previous example, except with px = −10 krad/s and zx = −10.52 krad/s.

In this case, Ax and A1 are given by (7.164) as

Ax =
1 −
( −10 k
−10.52 k

)
1 −
(−10 k
−1 M

) ≈ 0.05 A1 =
1 −
( −1 M
−10.52 k

)
1 −
(−1 M
−10 k

) ≈ 0.95 (7.168)

Therefore, Ax∕A0 ≈ 0.05 = 5 percent here, which is much less than one but much greater than
the 1 percent error bounds in this example. From (7.165) and (7.168),

Vo(t) = (0.05 V)(1 − e−104t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Vox

+ (0.95 V)(1 − e−106t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Vo1

(7.169)

Figure 7.38a plots Vox, Vo1, and Vo versus time. As t → ∞, Vox → 0.05 V, Vo1 → 0.95 V,
and Vo → 1.0 V. All three of these voltages rise monotonically with increasing time because
Ax and A1 are both positive in this example.

t (s)

Vox, Vo1, Vo (V)

0

1

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2

± 1% error bounds

tst = 1.6 × 10−4 s

Vo

Vox

Vo1

(a)

Figure 7.38 (a) Step response
in (7.169) using a log scale on
the time axis.
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Note three key aspects of these plots. First, Vox rises much more slowly to its final value
than does Vo1 because |px|≪ |p1|. Second, the final amplitude of Vox is much less than the
final amplitude of Vo1 because Ax ≪ A1. Third, the slow response of Vox limits the settling
time of Vo to 1 percent accuracy because the final value of Vo1 alone is 5 percent less than the
final value of Vo. Therefore, a contribution from the Vox term is required for Vo to reach the
lower 1 percent settling bound. The 1 percent settling time is found by setting Vo(t) = 0.99 V
in (7.169) and solving for the time. In this calculation, Vo1 ≈ 0.95 V when t = tst because|p1|≫ |px| here. The result is tst = 0.16 ms. Therefore, the presence of a low-frequency
doublet increases the settling time by a large factor (almost 35) in this case.◼

◼ EXAMPLE
Repeat the previous example, except with zx = −10.08 krad/s, which is closer to px than in
the previous example. Also explain the effect of zx approaching px with the other parameters
unchanged.

In this case, zx is closer to px than in the last example, and (7.164) gives

Ax =
1 −
( −10 k
−10.08 k

)
1 −
(−10 k
−1 M

) ≈ 0.008 A1 =
1 −
( −1 M
−10.08 k

)
1 −
(−1 M
−10 k

) ≈ 0.992 (7.170)

Therefore, Ax∕A0 ≈ 0.008 = 0.8 percent here, which is less than the value of 5 percent in the
previous example and also less than the 1 percent error bounds. From (7.165) and (7.170),

Vo(t) = (0.008 V)(1 − e−104t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Vox

+ (0.992 V)(1 − e−106t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Vo1

(7.171)

Again, Vo increases monotonically with time. In this case, zx is close enough to px that a con-
tribution from the Vox term is not needed to reach the lower 1 percent settling bound. Assume
Vox(t = tst) = 0 at first for simplicity. Then the settling time can be estimated by finding the
time when Vo1 = 0.99 V. The result is tst ≈ 6.2 μs. At this time, Vox ≈ 0.5 mV. Therefore, an
improved estimate of the settling time is the time when Vo1 = (0.99 − 0.0005) V. The result
is tst = 6.0 μs. Compared to the settling time in the previous example, the settling time here is
reduced by a large factor (about 27).

This change can be explained mathematically by examining (7.164). With |px| < |zx| <|p1|, choosing zx → px reduces Ax by decreasing the numerator in (7.164). Because Ax and A1
are both positive in this case, A1 must increase to keep Ax + A1 = A0. Together, these effects
reduce the significance of the Vox term when Ax∕A0 becomes less than the error bounds.

To develop an intuitive understanding of this behavior, consider (7.161) with |px| < |zx|≪|p1|, and let s = j𝜔 to find the frequency response. Figure 7.38b shows an approximation of|A| versus 𝜔 in this case with log scales using piecewise-linear segments. This plot has four
important regions. (1) For 𝜔 < |px|, the gain is almost constant and equal to the dc gain A0.
(2) For |px| < 𝜔 < |zx|, the pole at px causes the gain to decrease at 6 dB/octave. (3) For|zx| < 𝜔 < |p1|, the zero at zx causes the gain to become constant again. (4) For 𝜔 > |p1|, the
gain decreases again at 6 dB/octave.
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ω

|A|
A0
A1

≈ A0 − A1 = Ax

|px| |zx| |p1|

(b)

Figure 7.38 (b) Approximate magnitude response
versus frequency of an amplifier with|px| < |zx|≪ |p1|.

Now consider (7.162). The right side has two terms, one proportional to Ax and the other
proportional to A1. Since Ax and A1 are both positive in this case, |A| is approximately equal
to the sum of the magnitudes of these two terms when each of these terms introduces about
the same phase shift. For instance, this statement is true for 𝜔 < 0.1|px|, where the phase shift
from each term is approximately zero, and for 𝜔 > 10|p1|, where the phase shift from each
term is approximately −90∘. Also, the difference in the phase shifts caused by each of these
terms is always less than 90∘. As a result, the sum of these terms always has a magnitude bigger
than either term by itself.

Next imagine the magnitude response of the term proportional to A1 in (7.162). It is constant
at A1 for 𝜔 < |p1| and falls at 6 dB/octave for 𝜔 > |p1|. This characteristic accounts for the
shape of |A| in Fig. 7.38b for 𝜔 > |zx|. As a result, the value of |A| for |zx| < 𝜔 < |p1| is
labeled A1 in Fig. 7.38b. If |A| ≈ |Ax| + |A1| as described above, then the term proportional to
Ax in (7.162) accounts for the decrease from |A| = A0 at dc to |A| = A1 for |zx| < 𝜔 < |p1|.

When zx → px, Fig. 7.38b shows that A1 → A0 and Ax → 0. This result is consistent with
the changes predicted by (7.164), which is based on analysis with partial fractions. The key
point here is that this frequency-domain perspective shows qualitatively that Ax decreases as
zx approaches px. This change reduces the effect of the doublet on the settling time, especially
once Ax∕A0 is less than the error bounds used to calculate the settling time.◼

◼ EXAMPLE
Determine the 1 percent settling time of a linear amplifier with a 1 V input step, A0 = 1, p1 =
−1 Mrad/s, zx = −1.4 Mrad/s, and px = −1.6 Mrad/s.

Under these conditions, the doublet occurs beyond the pole p1, and (7.164) gives

Ax =
1 −
(−1.6 M
−1.4 M

)
1 −
(−1.6 M

−1 M

) ≈ 0.24 A1 =
1 −
( −1 M
−1.4 M

)
1 −
( −1 M
−1.6 M

) ≈ 0.76 (7.172)

From (7.165),
Vo(t) = (0.24 V)(1 − e−1.6×106t) + (0.76 V)(1 − e−106t) (7.173)

Although Ax∕A0 = 24 percent is much greater than the error tolerated in the 1 percent settling
bounds, the term proportional to Ax does not limit the settling time here because |px| > |p1|.
Since these pole locations appear in the exponents of the epxt and ep1t terms, even a small
increase from |p1| to |px| is important and causes the term proportional to Ax to settle more
quickly than the term proportional to A1. When t = 4.6 μs in this example,

Vo(t) = (0.24 V)(1 − e−1.6(4.6)) + (0.76 V)(1 − e−4.6)

= 0.24 + 0.75 = 0.99 V (7.174)

Therefore, the 1 percent settling time is tst = 4.6 μs. This result is the same as the settling time
calculated in the first example in this section, where px → −∞ and zx → −∞.◼
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Therefore, if a doublet exists beyond the amplifier bandwidth |p1|, Vox settles more quickly
than Vo1, and the effect of the doublet on the amplifier settling time is not a concern. On the
other hand, if a doublet exists below the amplifier bandwidth, Vox settles more slowly than Vo1,
and the effect of the doublet on the settling time may be important. In this case, the key is to
compare Ax∕A0 to the amplifier settling bounds. If |Ax∕A0| > 𝜖, the doublet can have a large
effect on the settling time. Reducing the separation between zx and px reduces the effect of the
doublet in this case.

In practice, keeping |Ax∕A0| small is difficult because of variability stemming from changes
in the process characteristics, the supply voltage, and the temperature. As a result, designers
usually focus on making all doublets fast (that is, occurring beyond the amplifier bandwidth).

Finally, these results were derived under the assumption that the circuits operate linearly,
which is reasonable under small-signal conditions. However, this analysis ignores an important
large-signal limitation: finite slew rate. The slew rate is defined as the maximum rate of change
of the amplifier output under-large signal conditions. Slew-rate limitations are considered in
Chapter 9.

7.5.2 Frequency Dependence of a Cascode Current-Source Load9

A cascode current source provides a high output resistance. This circuit is used as a load
to increase the voltage gain of some amplifiers. Figure 7.39a shows an amplifier with a
cascode current-source load that consists of M3 and M3A. Let CL represent the part of the
load capacitance that does not include the amplifier itself. To determine the effect of the
cascode current-source load on the amplifier gain, this section analyzes the frequency-
dependent output impedance of this cascode current source.

A simplified small-signal model for M3 and M3A is shown in Fig. 7.39b. Let C3 represent
the sum of all capacitances connected to the source node of M3A, which includes Cgs3A, Cdb3,
Csb3A, and Cgd3. Also, g′m3A = gm3A + gmb3A. C′

L is the total capacitive load at the output, which
includes CL and device capacitances Cdb3A, Cdb1, and Cgd3A.

The total load impedance ZT is the impedance looking into the drain of M3A in parallel with
capacitor C′

L, as indicated in Fig. 7.39b. The impedance Zd looking into the drain of M3A can
be computed using (4.50). In this calculation, M1 and M2 in Fig. 4.9a correspond here to M3
and M3A, respectively. Also, ro1 and ro2 in (4.50) are replaced by ro3||(1∕sC3) and ro3A here,
respectively. With these substitutions, (4.50) gives

Zd = ro3A{1 + g′m3A[ro3||(1∕sC3)]} + ro3||(1∕sC3) = Ro

1 + sReqC3

1 + sro3C3
(7.175)

where
Req = ro3||ro3A||(1∕g′m3A) (7.176)

and
Ro = ro3 + ro3A + g′m3Aro3Aro3 (7.177)

Using (7.175), the total load impedance ZT can be written as

ZT = Zd||(1∕sC′
L) = Ro

1 + sReqC3

1 + s(C′
LRo + C3ro3) + s2C′

LRoC3Req

(7.178)

The impedance ZT has two poles and one zero. The zero is

z = − 1
C3Req

(7.179)
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+

−
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′

vo
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−

v3

+
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(b)

Figure 7.39 (a) Amplifier with cascode-current-source load.
(b) Small-signal model of cascode-current-source load.

Assuming the two poles are widely spaced [see (7.23)], the dominant pole p1 can be found by
equating the coefficients of s in (7.23) and in the denominator of (7.178):

p1 = − 1
C′

LRo + C3ro3
(7.180)

If C′
LRo ≫ C3ro3, p1 can be approximated by

p1 ≈ − 1
C′

LRo
(7.181)

which is usually true because Ro ≫ ro3 from (7.177) and C′
L is typically comparable to or

larger than C3. Equating the coefficients of s2 in (7.23) and (7.178) and using (7.176), (7.177),
(7.179), and (7.180), the nondominant pole p2 can be expressed as

p2 =
(1∕p1)

C′
LRoC3Req

= −
C′

LRo + C3ro3

C′
LRoC3Req

= − 1
C3Req

−
ro3

C′
LRoReq

= z −
ro3

C′
LRoReq

≈ z −
ro3

C′
L(g

′
m3Aro3ro3A)∕g′m3A

= z − 1
C′

Lro3A
(7.182)
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If 1∕(C′
Lro3A) ≪ |z|, (7.182) shows that p2 ≈ z, and a pole-zero doublet occurs. The inequality

1∕(C′
Lro3A) ≪ |z| = 1∕(C3Req) is true because Req ≈ 1∕g′m3A ≪ ro3A [see (7.176)] and C′

L is
typically comparable to or larger than C3.

From the analysis above, the impedance ZT (s) has two poles and one zero, and the
second pole and the zero form a doublet. From the equations above, |p1| ≈ 1∕C′

LRo and|p2| ≈ |z| = 1∕C3Req. Since Ro ≫ Req ≈ 1∕g′m3A [see (7.176) and (7.177)] and C′
L is typically

comparable to or larger than C3, |p1|≪ |p2| ≈ |z|. Therefore, the first and second poles are
widely separated under typical conditions.

7.5.3 Frequency Dependence of an Active-Cascode Current-Source Load

An active-cascode current source can provide a very large output resistance. Figure 7.39c
shows a common-source amplifier M1, which is referred to as the main amplifier below. The
main amplifier has an active-cascode current-source load, which consists of M3, M3A, and
an auxiliary amplifier with gain labeled A. Let ZT represent the output impedance of this
active-cascode current source, including external load capacitance CL. This section analyzes
the frequency dependence of ZT , showing that it introduces a doublet that appears in the
voltage gain of the main amplifier in Fig. 7.39c.10–12

M3

M1

Zd

M3A

ZT

VBB

VBA

+
A
−

VDD

VI + vi
+−

CL VO + vo

+

−

ro3

−v2+ −
v3

+

Av2

+

−

gm3Av3
gmb3Avbs3A

= gmb3Av2
ro3A

Zd

ZT CL vo

+

−

(c)

(d)

Figure 7.39 (c) Common-source
amplifier M1 with an active-cascode
current source as a load.
(d) Small-signal model of the
active-cascode load.



7.5 Pole-Zero Doublets 573

Figure 7.39d shows a small-signal model of the active-cascode load. The total load
impedance ZT is the impedance looking into the drain of M3A, which is labeled Zd, in parallel
with 1∕(sCL). For simplicity, the models for M3 and M3A ignore device capacitances. However,
Zd is still frequency dependent because the auxiliary-amplifier gain is frequency dependent.
Let A(s) represent the gain of the auxiliary amplifier, and assume A(s) has one pole. In other
words, A(s) = A0∕(1 + s𝜏A), where A0 and −1∕𝜏A are the dc gain and the pole of the auxiliary
amplifier. Then the unity-gain frequency or gain-bandwidth product of A(s) is A0∕𝜏A.

Impedance Zd can be found using (3.133), where A(s) replaces a and M1 and M2 in (3.133)
correspond here to M3 and M3A, respectively. The body effect is easily included here. Then

Zd = ro3 + ro3A{1 + [gm3A(1 + A(s)) + gmb3A]ro3}

= Rd0
1 + s𝜏A + A0[gm3Aro3Aro3∕Rd0]

1 + s𝜏A
(7.183)

where Rd0 = Zd with A(s) = 0. In other words,

Rd0 = ro3 + ro3A + (gm3A + gmb3A)ro3Aro3 (7.184)

Using (7.183), ZT = Zd||[1∕(sCL)] is

ZT = Rd0
1 + s𝜏A + A0[gm3Aro3Aro3∕Rd0]

1 + s(CLRd0 + CLgm3Aro3Aro3A0 + 𝜏A) + s2CLRd0𝜏A

(7.185)

Impedance ZT has two poles and one zero. The zero is

z = −
1 + A0[gm3Aro3Aro3∕Rd0]

𝜏A
≈ −

1 + A0

𝜏A
(7.186)

since gm3Aro3Aro3 ≈ Rd0 in (7.184). Assuming the two poles are widely spaced as in (7.23),
the dominant pole p1 can be found as the negative reciprocal of the coefficient of s in the
denominator in (7.185):

p1 = − 1
CLRd0 + CLgm3Aro3Aro3A0 + 𝜏A

(7.187)

If the product term containing A0 dominates the other terms in the denominator of (7.187),

p1 ≈ − 1
CLgm3Aro3Aro3A0

(7.188)

Equating the coefficients of s2 in (7.23) and (7.185) gives

1
p1p2

= CLRd0𝜏A (7.189)

Using (7.187) and (7.189), the nondominant pole p2 is

p2 ≈ 1
p1

1
CLRd0𝜏A

= −
CLRd0 + CLgm3Aro3Aro3A0 + 𝜏A

CLRd0𝜏A

≈ −
1 + A0

𝜏A
− 1

CLRd0
(7.190)

The last approximation holds if gm3Aro3Aro3 ≈ Rd0 in (7.184). If A0 ≫ 1, (1 + A0)∕𝜏A is about
equal to the unity-gain frequency A0∕𝜏A of the auxiliary amplifier. The magnitude of this term
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is large compared to the magnitude of the last term in (7.190), which is the reciprocal of a large
RC product. So, (7.186) and (7.190) show that p2 ≈ z. Therefore, a pole-zero doublet exists in
ZT and appears in the voltage gain of the main amplifier in Fig. 7.39c.

7.5.4 Doublet in a Differential Amplifier with Mismatch

A pole-zero doublet can appear in the gain transfer function of an unbalanced fully differential
amplifier. For example, consider the simple differential amplifier in Fig. 7.39e. Assume: (1)
The tail current source is ideal. (2) The two transistors are identical and operate in saturation
each with a dc bias current of ITAIL∕2. (3) The output resistance of each transistor is infinite
(ro1 = ro2 → ∞). Also, ignore the body effect (gmb1 = gmb2 = 0), and ignore all device
capacitances. If C1 = C2, the circuit is balanced, and it can be analyzed with independent
differential and common-mode half-circuits. Analysis of the differential half-circuit shows
that the differential gain is

Adm =
vod

vid
= −gm1R

1
(1 + sRC1)

(7.191)

where gm = (gm1 + gm2)∕2 = gm1 = gm2 because the transistors are assumed to be identical
with equal bias currents here. In this case, the differential gain has one pole at −1∕(RC1) and
no zeros.

Next, assume a small mismatch exists between the capacitors, so C1 ≠ C2. The differential
gain can be found by analyzing the entire circuit or using half-circuit analysis in which the
differential and common-mode half-circuits are coupled, as shown in Chapter 3. The analysis
below uses coupled half-circuits for simplicity.

Figure 3.68 shows the half-circuits for low-frequency operation, where C1 and C2 are essen-
tially open circuits. Also, (3.262) gives the dc differential gain for a case with finite output
resistance in the tail current source and nonzero mismatch in the device transconductances. In
this section, rtail → ∞ because the tail current source is ideal in Fig. 7.39e. Furthermore, since
M1 and M2 are assumed to be identical with identical bias currents here, Δgm = 0. With these
changes, (3.262) becomes

Adm(s = 0) = −gmR (7.192)

where gm = (gm1 + gm2)∕2 = gm1 = gm2.
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Vo1
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+

R
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Vo2

C2
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Vi2Vi1

+
Vid
−

VDD

(e) Figure 7.39 (e) Differential-pair amplifier.
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To extend this result beyond dc, let the load impedance connected to M1, which is R in
parallel with 1∕(sC1), be

Z1 = R
1 + sRC1

(7.193)

Also let the load impedance connected to M2, which is R in parallel with 1∕(sC2), be

Z2 = R
1 + sRC2

(7.194)

Define the average load impedance with mismatch as

Z =
Z1 + Z2

2
(7.195)

Substituting (7.193) and (7.194) into (7.195) gives

Z = R
1 + sR(C1 + C2)∕2

(1 + sRC1)(1 + sRC2)
(7.196)

Then replacing R in (7.192) with Z gives

Adm =
vod

vid
= −gmR

1 + sR(C1 + C2)∕2

(1 + sRC1)(1 + sRC2)
(7.197)

As a result, the differential gain with mismatch in the capacitive loads has two poles and
one zero. One pole appears at −1∕(RC1) and is the same as without mismatch. The other pole
is −1∕(RC2), and the zero is −1∕[R(C1 + C2)∕2]. If the capacitive mismatch is small, this pole
and zero are about equal and form a pole-zero doublet.

PROBLEMS
7.1 .(a) Use the Miller approximation to calcu-

late the −3 dB frequency of the small-signal volt-
age gain of a common-emitter transistor stage as
shown in Fig. 7.2a using RS = 5 kΩ, RL = 3 kΩ, and
the following transistor parameters: rb = 300 Ω, IC =
0.5 mA, 𝛽 = 200, fT = 500 MHz (at IC = 0.5 mA),
Cμ = 0.3 pF, Ccs = 0, and VA = ∞.

(b) Calculate the nondominant pole magnitude for
the circuit in (a). Compare your answer with a SPICE
simulation.

7.2 Repeat Problem 7.1 for the MOS common-
source stage shown in Fig. 7.2b using RS = 10 kΩ,
RL = 5 kΩ, ID = 0.5 mA, and the following NMOS
transistor data: NMOS: W = 100 μm, Ldrwn = 2 μm,
Ld = 0.2 μm, Xd = 0, 𝜆 = 0, k′n = 60 μA∕V2, 𝛾 = 0,
Csb = Cdb = 0, Cox = 0.7 fF∕(μm2), and Cgd = 14 fF.

7.3 Calculate an expression for the output
impedance of the circuit in Problem 7.1 as seen by
RL, and form an equivalent circuit. Plot the magnitude

of this impedance on log scales from f = 1 kHz to
f = 100 MHz.

7.4 Repeat Problem 7.3 for RS = 0 and RS = ∞.

7.5 Repeat Problem 7.3 for the MOS circuit in
Problem 7.2.

7.6 A bipolar differential amplifier as shown
in Fig. 7.5 has IEE = 1 mA. The resistor values and
transistor data are as given in Problem 7.1. If
the tail current source has an associated resistance
RT = 300 kΩ and capacitance CT = 2 pF as defined
in Fig. 7.11a, calculate the CM and DM gain
and CMRR as a function of frequency. Sketch
the magnitude of these quantities in decibels from
f = 10 kHz to f = 20 MHz using a log fre-
quency scale. Compare your answer with a SPICE
simulation.

7.7 A MOS differential amplifier is shown in
Fig. 7.9. For this circuit, carry out the calcula-
tions in Problem 7.6. Use ISS = 1 mA, the values of
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RT = 300 kΩ and CT = 2 pF as defined in Fig. 7.11b,
and the transistor data in Problem 7.2.

7.8 A lateral pnp emitter follower has RS =
250 Ω, rb = 200 Ω, 𝛽 = 50, IC = −300 μA, fT =
4 MHz, RE = 4 kΩ, Cμ = 0, and ro = ∞. Calculate the
small-signal voltage gain as a function of frequency.
Sketch the magnitude of the voltage gain in decibels
from f = 10 kHz to f = 20 MHz using a log frequency
scale.

7.9 Calculate the values of the elements in the
small-signal equivalent circuits for the input and out-
put impedances of the emitter follower of Problem
7.8. Sketch the magnitudes of these impedances as
a function of frequency from f = 10 kHz to f =
20 MHz, using log scales. Use SPICE to determine
the small-signal step response of the circuit for a resis-
tive load of 1 kΩ and then a capacitive load of 400 pF.
Use a 1 mV input pulse amplitude with zero rise time.
Comment on the shape of the time-domain responses.
(Bias the circuit with an ideal 300 μA current source
connected to the emitter for the capacitive load
test.)

7.10 For the source follower in Fig. 7.13b, find the
low-frequency gain and plot the magnitude and phase
of its voltage gain versus frequency from f = 10 kHz
to f = 20 GHz using log scales. Compare your plot
with a SPICE simulation. Use the transistor data given
in Problem 7.2 with a resistive load of 1 kΩ and then
a capacitive load of 400 pF. In both cases, take ID =
0.5 mA. Use a 1 mV input pulse amplitude with zero
rise time. Comment on the shape of the time-domain
responses. (Bias the circuit with an ideal 0.5 mA cur-
rent source connected to the source for the capacitive
load test.)

7.11 .(a) Find expressions for R1, R2, and L in the
output impedance model for a MOS source follower
assuming RS ≫ 1∕gm, 𝛾 ≠ 0, and vsb = vo.

(b) Plot the magnitude of the output impedance
versus frequency from f = 10 kHz to f = 10 GHz,
using log scales, when RS = 1 MΩ, gm = 0.3 mA∕V,
and 𝛾 = 0.

7.12 A common-base stage has the follow-
ing parameters: IC = 0.5 mA, C𝜋 = 10 pF, Cμ =
0.3 pF, rb = 200 Ω, 𝛽 = 100, ro = ∞, RL = 0, and
RS = ∞.

(a) Calculate an expression for the small-signal
current gain of the stage as a function of frequency
and thus determine the frequency where the current
gain is 3 dB below its low-frequency value.

(b) Calculate the values of the elements in the
small-signal equivalent circuits for the input and

output impedances of the stage, and sketch the mag-
nitudes of these impedances from f = 100 kHz to
f = 100 MHz using log scales.

7.13 Repeat Problem 7.12 for an NMOS
common-gate stage using RL = 0 and RS = ∞. Use
ID = 0.5 mA and the MOS transistor data in Problem
7.2. Plot the impedance magnitudes from f = 100 kHz
to f = 100 GHz.

7.14 The ac schematic of a common-emitter stage
is shown in Fig. 7.2a. Calculate the low-frequency
small-signal voltage gain vo∕vi, and use the zero-
value time-constant method to estimate the −3 dB
frequency for RS = 10 kΩ and RL = 5 kΩ. Data:
𝛽 = 200, fT = 600 MHz (at IC = 1 mA), Cμ =
0.2 pF, Cje = 2 pF, Ccs = 1 pF, rb = 0, ro = ∞, and
IC = 1 mA.

7.15 Repeat Problem 7.14 if an emitter degen-
eration resistor of value 300 Ω is included in the
circuit.

7.16 Repeat Problem 7.14 if a resistor of value
30 kΩ is connected between collector and base of the
transistor.

7.17 Repeat the calculations in Problem 7.14 for
the common-source stage in Fig. 7.2b. Take VDB =
7.5 V and ID = 0.5 mA. Use the same transistor data
and resistor values as in Problem 7.2 with the follow-
ing exceptions:

1. Cox and Cgd are not given, but fT = 3 GHz.

2. Cdb is not equal to 0. Calculate the zero-bias
drain-bulk capacitance as Cdb0 = AD(Cj0) +
PD(Cjsw0), where AD = (5 μm)W, and use
PD = W. Let Cj0 = 0.4 fF∕(μm2) and Cjsw0 =
0.4 fF∕μm. Then use (1.202) with 𝜓0 = 0.6 V
to calculate Cdb.

7.18 Repeat Problem 7.14 using an NMOS tran-
sistor in place of the bipolar transistor. Use ID =
0.5 mA and the transistor data in Problem 7.2.

7.19 Repeat Problem 7.18 if a 900 Ω source-
degeneration resistor is included in the circuit.

7.20 Repeat Problem 7.18 if a resistor of value
50 kΩ is connected between drain and gate of the tran-
sistor.

7.21 A Darlington stage and a common-collector–
common-emitter cascade are shown schematically in
Fig. 7.40, where RS = 100 kΩ and RL = 3 kΩ.

(a) Calculate the low-frequency small-signal
voltage gain vo∕vi for each circuit.

(b) Use the zero-value time-constant method to
calculate the −3 dB frequency of the gain of each
circuit. Data: 𝛽 = 100, fT = 500 MHz at IC = 1 mA,
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Cμ = 0.4 pF, Cje = 2 pF, Ccs = 1 pF, rb = 0, ro = ∞,
IC1 = 10 μA, and IC2 = 1 mA. (Values of Cμ, Ccs, and
Cje are at the bias point.)
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Q2

vo

vi

+

+

– –

(a)

RS

RL

Q1

Q2

vo

vi

+
+

–

–

(b)

Figure 7.40 The ac schematics of (a) Darlington
stage and (b) common-collector–common-emitter
stage.

7.22 Repeat Problem 7.21 if a bleed resistor of
15 kΩ is added from the emitter of Q1 to ground,
which increases the collector bias current in Q1 to
50 μA.

7.23 Repeat Problem 7.21 if the input signal is
a current source of value ii applied at the base of
Q1. (That is, ii replaces the voltage source vi and
resistance RS.) The transfer function is then a transre-
sistance vo∕ii.

7.24 Replace the bipolar transistors in Fig. 7.40
with NMOS transistors. Repeat the calculations in
Problem 7.21, using RS = 100 kΩ, RL = 3 kΩ, and the
NMOS transistor model data in Problem 7.2, but use
Cdb = 200 fF and Csb = 180 fF here. Take ID1 = 50 μA
and ID2 = 1 mA.

7.25 An amplifier stage is shown in Fig. 7.41
where bias current IB is adjusted so that VO = 0 V dc.
Take VSUPPLY = 10 V.

(a) Calculate the low-frequency, small-signal
transresistance vo∕ii, and use the zero-value time-
constant method to estimate the −3 dB frequency.
Data: npn: 𝛽 = 100, fT = 500 MHz at IC = 1 mA,

Cμ0 = 0.7 pF, Cje = 3 pF (at the bias point), Ccs0 =
2 pF, rb = 0, and VA = 120 V. Assume n = 0.5 and
𝜓0 = 0.55 V for all junctions. pnp: 𝛽 = 50, fT =
4 MHz at IC = −0.5 mA, Cμ0 = 1.0 pF, Cje = 3 pF (at
the bias point), Cbs0 = 2 pF, rb = 0, and |VA| = 50 V.
Assume n = 0.5 and 𝜓0 = 0.55 V for all junctions.

(b) Repeat (a) if a 20 Pf capacitor is connected
from collector to base of Q1.

VSUPPLY

–VSUPPLY

Q1

Q2

Q3

vo

IB + ii

30 kΩ

+

–

Figure 7.41 Amplifier stage.

7.26 Repeat Problem 7.25 with the following
changes:

1. Replace Q1 with a p-channel MOS transistor,
M1. Replace Q2 and Q3 with n-channel MOS
transistors, M2 and M3.

2. Add a resistor of value 1∕gm1 from the gate to
the source of M1.

3. Take VSUPPLY = 2.5 V.

4. Use the formula for Cdb0 given in Problem 7.17.

5. For all transistors: Ldrwn = 2 μm, Ld = 0.2 μm,
Xd = 1 μm, and 𝛾 = 0. W1 = 200 μm and
W2 = W3 = 100 μm. Use (1.201) and (1.202)
with 𝜓0 = 0.6 V for the junction capaci-
tances. Use the equations in Problem 7.17 for
Cdb0. NMOS data: Vtn = 1 V, k′n = 60 μA∕V2,
𝜆n = 1∕(100 V), Cox = 0.7 fF∕(μm2), Cj0 =
0.4 fF∕(μm2), and Cjsw0 = 0.4 fF∕μm. PMOS
data: Vtp = −1 V, k′p = 20 μA∕V2, |𝜆p| =
1∕(50 V), Cox = 0.7 fF∕(μm2), Cj0 = 0.2 fF∕
(μm2), and Cjsw0 = 0.2 fF∕μm.
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7.27 A differential circuit employing active loads
is shown in Fig. 7.42. Bias voltage VB is adjusted so
that the collectors of Q1 and Q2 are at +5 V dc. Bias-
ing resistors are RB1 = 10 kΩ and RB2 = 20 kΩ. Cal-
culate the low-frequency, small-signal voltage gain
vo∕vi, and use the zero-value time-constant method in
the DM half-circuit to estimate the −3 dB frequency
of the DM gain. Use the device data in Problem 7.25.

7.28 Repeat Problem 7.27, replacing the bipo-
lar transistors with MOS transistors. Assume that the
values of RB1 and RB2 set ID5 = 1 mA. Use W1 = W2 =
W5 = W6 = 100 μm, W3 = W4 = 50 μm, and Ldrwn =
2 μm. See Problem 7.26 for all other MOS transistor
data.
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Figure 7.42 Differential circuit with active loads.
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Figure 7.43 An ac schematic of (a) common-source
stage and (b) cascode stage.

7.29 The ac schematics of a common-source
stage and a common-source–common-gate (cascode)
stage are shown in Fig. 7.43 with RS = 10 kΩ and
RL = 20 kΩ. Using the transistor and operating-point
data in Problem 7.2:

(a) Calculate the low-frequency, small-signal
voltage gain vo∕vi for each circuit.

(b) Use the zero-value time-constant method to
calculate and compare the −3 dB frequencies of the
gain of the two circuits.

(c) Estimate the 10 to 90 percent rise time for each
circuit for a small step input, and sketch the output
voltage waveform over 0 to 300 ns for a 1 Mv step
input.
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7.30 Replace the NMOS transistors in Fig. 7.43
with npn transistors. The resulting ac schematics are
of a common-emitter stage and a common-emitter–
common-base (cascode) stage. Repeat the calcula-
tions in Problem 7.29 using RS = 5 kΩ, RL = 3 kΩ,
and the following data. Data: IC = 1 mA, 𝛽 = 100,
rb = 0, Ccs = 1 pF, Cμ = 0.4 pF, fT = 500 MHz (at
IC = 1 mA), and ro = ∞.

7.31 An amplifier stage is shown in Fig. 7.44.

(a) Calculate the low-frequency, small-signal
voltage gain vo∕vi.

(b) Apply the zero-value time-constant method to
the DM half-circuit to calculate the −3 dB frequency
of the gain. Data: Ccs0 = 2 pF, Cμ0 = 0.5 pF, Cje =
4 pF (at the bias point), fT = 500 MHz (at IC = 2 mA),
𝛽 = 200, rb = 0, and ro = ∞. Assume n = 0.5 and
𝜓0 = 0.55 V for all junctions.

(c) Use SPICE to find the small-signal gain and
bandwidth of the amplifier and also the magnitude and
phase of the transfer function at 100 MHz.

(d) Investigate the influence of base resistance
by repeating (c) with rb = 200 Ω and comparing the
results.

vi

vo+

–

+ –

10 kΩ 5 kΩ

+6 V

–6 V

10 kΩ5 kΩ

10 μA
1 mA

Q1

Q2 Q3

Q4

10 μA

Figure 7.44 Amplifier stage.

7.32 Repeat Problem 7.31 with n-channel MOS
transistors replacing all bipolar transistors. Assume
W = 100 μm, Ldrwn = 2 μm, Ld = 0.2 μm, Xd = 0,
𝜆 = 0, k′n = 60 μA∕V2, 𝛾 = 0, Vt = 1 V, Cox =
0.7 fF∕μm2, Col = 0.15 fF∕μm, Cj0 = 0.4 fF∕μm2,
and Cjsw0 = 0.4 fF∕μm. Use (1.201) and (1.202) with
𝜓0 = 0.6 V for the junctions. Use the information in
Problem 7.17 to calculate Cdb0 = Csb0. Skip part (d)
in Problem 7.31.

7.33 The ac schematic of a wideband MOS cur-
rent amplifier is shown in Fig. 7.45. The W∕L of
M2 is four times that of M1, and corresponding bias
currents are ID1 = 1 mA and ID2 = 4 mA. Calculate

ii

io

M1

M2

Figure 7.45 An ac schematic of a MOS current
amplifier.

the low-frequency, small-signal current gain io∕ii, and
use the zero-value time-constant method to estimate
the −3 dB frequency. Calculate the 10 to 90 percent
rise time for a small step input. Data at the operating
point: M1: Cgd = 0.05 pF, Cgs = 0.2 pF, Csb = Cdb =
0.09 pF, Vov = 0.3 V, and ro = ∞. M2: Cgd = 0.2 pF,
Cgs = 0.8 pF, Csb = Cdb = 0.36 pF, Vov = 0.3 V, and
ro = ∞.

7.34 Replace the MOS transistors in the amplifier
in Fig. 7.45 with bipolar npn transistors. The emitter

area of Q2 is four times that of Q1, and corresponding
bias currents are IC1 = 1 mA and IC2 = 4 mA. Repeat
the calculations in Problem 7.33 using the following
data. Data at the operating point: Q1 ∶ 𝛽 = 200, 𝜏F =
0.2 ns, Cμ = 0.2 pF, Cje = 1 pF, Ccs = 1 pF, rb = 0,
and ro = ∞. Q2 ∶ 𝛽 = 200, 𝜏F = 0.2 ns, Cμ = 0.8 pF,
Cje = 4 pF, Ccs = 4 pF, rb = 0, and ro = ∞.

7.35 A two-stage amplifier is shown in Fig. 7.46.
Calculate the low-frequency, small-signal gain,
and use the zero-value time-constant method
to estimate the −3 dB frequency. Calculate the
10 to 90 percent rise time for a small step
input. Use SPICE to determine the −3 dB
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Figure 7.46 Two-stage amplifier.
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Figure 7.47 Two-stage amplifier with pnp second
stage.

frequency and also the frequency where the phase
shift in the transfer function is −135∘ beyond the
low-frequency value. Data: 𝛽 = 200, fT = 600 MHz at
IC = 1 mA, Cμ = 0.2 pF, Cje = 2 pF, Ccs = 1 pF, rb =
0, VBE(on) = 0.6 V, and ro = ∞. (Values of Cμ, Ccs, and
Cje are at the bias point.)

7.36 A two-stage bipolar amplifier is shown in
Fig. 7.47. Calculate the low-frequency, small-signal
voltage gain vo∕vi, and use the zero-value
time-constant method to estimate the −3 dB fre-
quency. Use a DM half-circuit for the differential
pair. Use SPICE to estimate the first and second
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most dominant poles of the circuit. Data: npn:
𝛽 = 200, fT = 400 MHz (at IC = 1 mA), Cμ = 0.3 pF,
Cje = 3 pF, Ccs = 1.5 pF, rb = 0, VBE(on) = 0.6 V,
and ro = ∞. pnp: 𝛽 = 100, fT = 6 MHz (at IC =
−0.5 mA), Cμ = 0.3 pF, Cje = 3 pF, Cbs = 1.5 pF,
rb = 0, VBE(on) = −0.6 V, and ro = ∞. (All values of
Cμ, Ccs, Cbs, and Cje are at the bias point.)

7.37 .(a) A wideband MOS amplifier stage is
shown in Fig. 7.48. Calculate the small-signal,
low-frequency gain, and use the zero-value time-
constant method to estimate the −3 dB bandwidth.
Use μnCox = 60 μA∕V2, tox = 20 nm, Col = 0.3 fF∕
(μm of gate width), 𝜓o = 0.6 V, Vt = 0.7 V, 𝛾 =
0.4 V1∕2, 𝜆 = 0, and VO = 2.5 V dc. For Cdb and Csb,
use Cdb0 = Csb0 = 0.8 fF∕(μm of gate width). Assume
that the substrate is grounded. Compare your calcula-
tion with a SPICE simulation, and also use SPICE to
estimate the second most dominant pole. Use SPICE
to plot the small-signal bandwidth as the dc input volt-
age is varied from 0 to 5 V.

(b) Calculate the small-signal gain and −3 dB
bandwidth including short-channel effects with
ℰc = 1.5 × 106 V/m. Assume the same bias currents
as in (a), and model MOSFET short-channel effects
with a resistor in series with the source. Connect the
device capacitances to the lower end of the added
source resistor.

VDD = 5 V

4
1

100
1

M2

M1

RS = 1 kΩ

CL = 100 fF

Vi

+

–

+

–

Vo

Figure 7.48 Wideband MOS amplifier stage.

7.38 A CMOS amplifier stage is shown in
Fig. 7.49. Select W∕L for M1 and M5 to give Vi =
VO = 2.5 V dc and |ID| = 100 μA bias in all devices.
The minimum value of L and W is 2 μm. Calculate
the small-signal, low-frequency gain and the −3 dB
frequency of the stage. Verify with SPICE. Use device
data from Problem 7.37(a) with |𝜆| = 0.03 V−1,
μpCox = 30 μA∕V2, and Vtp = −0.7V.

7.39 Use the zero-value time-constant method to
estimate the first and second most dominant poles

of the BiCMOS circuit in Fig. 3.78. Assume an
input voltage drive, and use the bias point found in
Problem 3.17. Assume the circuit has three signifi-
cant time constants: for (1) the total capacitance from
the collector of Q1 to ground, (2) the total capacitance
from the drain of M1 to ground, and (3) C𝜋3. Also
assume that the second pole stems mainly from the
second time constant. Use bipolar transistor data from
Fig. 2.32 and MOSFET parameters Cgd = 90 fF, Csb =
Cdb = 200 fF, and Cgs = 200 fF at the bias point. Fur-
ther assume μnCox = 200 μA∕V2, Vt = 0.6 V, 𝜆 = 0,
and 𝛾 = 0. Ignore the effect of pole-zero doublets, and
examine the phase shift from the input to the output
versus frequency with SPICE to check your result.

7.40 Use the zero-value time-constant method to
estimate the small-signal dominant pole for the current
gain of the MOS cascode current mirror of Fig. 4.9.
Assume an input ac current source in parallel with IIN

and a zero-load impedance with Vout = VGS3 + VGS4.
The bias current IIN = 100 μA. Compare your answer
with the fT value of the devices. Device parame-
ters are μnCox = 60 μA∕V2, 𝛾 = 0, 𝜆 = 0, Vt = 0.7 V,
W = 10 μm, Leff = 1 μm, Cgs = 20 fF, Cgd = 3 fF,
Csb = Cdb = 10 fF at the bias point. Compare your
answer with a SPICE simulation of the bandwidth of
the circuit, and use SPICE to find the bandwidth for
IIN = 50 μA and IIN = 200 μA.

7.41 Repeat Problem 7.40, including short-
channel effects with ℰc = 1.5 × 106 V/m.

7.42 Use the short-circuit time-constant method
to estimate the nondominant pole that originates at the
drain nodes of M1 and M2 in the CMOS folded cascode
of Fig. 6.27b. Assume the gates of M1A, M2A, M5, M11,
and M12 are biased from low-impedance points and
that a voltage drive is applied at vi. All device sizes
and parameters are as given in Problem 7.40 except
M11 and M12, which have twice the width of the other
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Figure 7.49 CMOS amplifier stage.

transistors. All bias currents are 100 μA except M5,
M11, and M12, which have |ID| = 200 μA. Assume
VGD of M11 and M12 is zero volts. Use CL = 1 pF
and μpCox = 30 μA∕V2. How much phase shift is con-
tributed to the amplifier transfer function by this non-
dominant pole at the amplifier unity-gain frequency?
Check your calculations with SPICE simulations.

7.43 A MOS cascode stage is shown in
Fig. 7.43b. Replace the load resistor with a load
capacitor CL = 2 pF. Assume the total capacitance
that connects to the drain of M1 can be modeled by
a capacitor Cp = 0.2 pF from that drain to ac ground.
Ignore all other capacitors. Therefore, the gain for
this circuit has only two poles. For both transis-
tors, take ID = 100 μA, W = 20 μm, Leff = 0.5 μm,
k′ = 180 μA∕V2, and 𝜆 = 0.04 V−1.

(a) Use zero-value time constants to estimate the
dominant pole.

(b) Use short-circuit time constants to estimate
the nondominant pole.

(c) Compare your answers with a SPICE
simulation.

7.44 .(a) For the common-emitter amplifier in
Problem 7.1, use zero-value time constants to estimate
the dominant pole and short-circuit time constants to
estimate the nondominant pole.

(b) Compare your estimates with a SPICE
simulation.

7.45 .(a) Use zero-value time constants to estimate
the dominant pole and short-circuit time constants to

estimate the nondominant pole for the common-
source amplifier in Problem 7.2.

(b) Compare your answers with a SPICE
simulation.

7.46 .(a) An integrator is shown in Fig. 7.50. Use
zero-value time constants to estimate the dominant
pole and short-circuit time constants to estimate the
nondominant pole for this circuit. Use R = 20 kΩ,
C = 50 pF, Cin = 0.2 pF, av = 1000, and Ro = 5 kΩ.

(b) Compare your answers with a SPICE
simulation.

7.47 Add a 0.5 pF load capacitor from the out-
put to ground to the integrator in Fig. 7.50. When
this capacitor is added, the circuit has a loop of
three capacitors. Direct application of the short-circuit
time-constant method here gives zero for each
short-circuit time constant. (Verify this.)

The problem here is that three short-circuit time
constants are being calculated for the three capacitors,
and the sum of the reciprocal of these time constants
equals the sum of three poles, as shown in (7.146).
However, this circuit has only two poles because only
two of the capacitor voltages are independent.

An alternative approach to estimating the nondom-
inant pole is to calculate the zero-value time constants
and determine if one zero-value time constant is much
larger than the others. If so, the capacitor associated
with the largest zero-value time constant is shorted,
and one time constant for the remaining capacitors,
which are in parallel, is the short-circuit time constant.
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Figure 7.50 An integrator stage.

Carry out these steps, and compare the estimated non-
dominant pole with a SPICE simulation.

7.48 Find an expression for Gm(s) = io(s)∕vid(s)
for the circuit in Fig. 7.33, and verify the equations
for the pole and zero given in Section 7.3.5.

7.49 Calculate the pole and zero associated with
the current-mirror load in Fig. 7.33 if ID3 = −100 μA,|Vov3| = 0.2 V, and Cx = 0.1 pF.

7.50 Use weighted zero-value time constants to
estimate the location of the zero in the transfer func-
tion for vo∕vi of the integrator in Fig. 7.50. Use
R = 20 kΩ, C = 50 pF, Cin = 0.2 pF, av = 1000, and
Ro = 5 kΩ.

7.51 Fig. 7.51 shows a current mirror with a resis-
tor used to introduce a level shift that reduces VDS3

when R > 0. Assume the transistors operate in the
active region with ro → ∞. Also, ignore all capaci-
tances except for Cgs, Cgd, and Cdb for each transistor.

(a) Use conventional KCL analysis to find the

transfer function
io

ii

(s). Use this equation to find the

number of zeros and the number of poles as well as
their locations with R > 0.

(b) Repeat with R = 0.

(c) Compare the results of parts (a) and (b) to
determine how many extra poles and zeros are intro-
duced by nonzero level shifting.

(d) Assume II = 10 μA and (W∕L)4 = 2(W∕L)3,
and find the pole and zero locations with R = 0, gm3 =
200 μA∕V, gm4 = 400 μA∕V, Cgs3 = 30 fF, Cgs4 =
60 fF, Cgd3 = 3 fF, Cgd4 = 6 fF, Cdb3 = 10 fF, and
Cdb4 = 20 fF.

(e) Repeat part (d) with R = 20 kΩ.

7.52 Use open-circuit (zero-value) time-constant
analysis to estimate the dominant pole for the circuit
in Fig. 7.51 when R = 0. Use the transistor data given
in Problem 7.51(d).

II + ii

R

M3 M4

IO + io

VDD

Figure 7.51 Current mirror with level-shifting
resistor.

7.53 Use weighted time-constant analysis to esti-
mate the dominant zero for the circuit in Fig. 7.51
when R = 0. Use the transistor data given in Problem
7.51(d).

7.54 Use short-circuit time-constant analysis to
estimate the non-dominant pole for the circuit in
Fig. 7.51 when R > 0. Use the transistor data for
Problem 7.51(e) except assume Cdb3 = 0 and Cgd4 = 0
so the circuit does not have any loops of capacitors.
Explain why this last assumption is important.

7.55 Use open-circuit time-constant analysis
to estimate the dominant pole for the circuit in
Fig. 7.51 when R > 0. Use the transistor data for
Problem 7.51(e).
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7.56 Use weighted time-constant analysis to esti-
mate the dominant zero for the circuit in Fig. 7.51
when R > 0. Use the transistor data for Problem
7.51(e).

7.57 .(a) Plot and label the unit step response of an
amplifier that has zx = −10 krad/s, px − 10.52 krad/s,
and p1 = −1 Mrad/s. Also, find the 1 percent settling
time.

(b) Explain intuitively why Ax < 0 in this case.

7.58 .(a) Find the transfer function
io

ii

(s) for the

current mirror in Fig. 7.51 including R > 0 and an
extra capacitance C in parallel with R.

(b) Does C > 0 add any extra poles or zeros?

(c) Find the pole and zero locations under the
conditions in Problem 7.51(d) with R = 0 and
C = 100 fF.

(d) Find the pole and zero locations under the
conditions in Problem 7.51(e) with R = 20 kΩ and
C = 100 fF.

(e) Find the response of this circuit to a step
change in the input current of 1 μA at t = 0. In

addition, find the maximum output current and the
time at which the maximum occurs as well as the set-
tling time to 1 percent accuracy. Use the conditions
in Problem 7.51(e) with R = 20 kΩ and C = 100 fF.
Also, ignore the zero stemming from Cgd4.

7.59 .(a) Find the response of a source follower to
a 1 V input step at t = 0. Ignore the body effect, and
assume the circuit operates linearly. Use the model
in Fig. 7.18 with gm = 100 μA∕V, Cgd = 0.01 pF,
Cgb = 0, Cgs = 0.1 pF, Csb = 0.1 pF, RS = 50 Ω, and
RL = 500 kΩ. Also find the settling time to 0.1 percent
accuracy.

(b) Repeat part (a) with Cgs = 0.

7.60 Use weighted time-constant analysis to (1)
show that the output impedance of the super source
follower in the example in the section 7.2.3.3 has only
one zero, and (2) find the location of this zero. As
in that example, assume that gm1 = gm2 = 100 μA∕V,
ro1 = ro2 = r1 = r2 = 1 MΩ, Cgs1 = CL = 100 fF, and
Cgs2 = 1 pF, and ignore the body effect.
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CHAPTER 8

Feedback

Negative feedback is widely used in amplifier design because it produces several important
benefits. One of the most significant is that negative feedback stabilizes the gain of the amplifier
against parameter changes in the active devices due to supply voltage variation, temperature
changes, or device aging. A second benefit is that negative feedback allows the designer to
modify the input and output impedances of the circuit in any desired fashion. Another signifi-
cant benefit of negative feedback is the reduction in signal waveform distortion that it produces,
and for this reason almost all high-quality audio amplifiers employ negative feedback around
the power output stage. Finally, negative feedback can produce an increase in the bandwidth
of circuits and is widely used in broadband amplifiers.

However, the benefits of negative feedback listed above are accompanied by two disadvan-
tages. First, the gain of the circuit is reduced in almost direct proportion to the other benefits
achieved. Thus, it is often necessary to make up the decrease in gain by adding extra amplifier
stages with a consequent increase in hardware cost. The second potential problem associated
with the use of feedback is the tendency for oscillation to occur in the circuit, and careful
attention by the designer is often required to overcome this problem.

In this chapter, the various benefits of negative feedback are considered, together with a
systematic classification of feedback configurations. Two different methods for analyzing feed-
back circuits are presented. The problem of feedback-induced oscillation and its solution are
considered in Chapter 9.

8.1 Ideal Feedback Equation
Consider the idealized feedback configuration of Fig. 8.1. In this figure, Si and So are input and
output signals that may be voltages or currents. The feedback network (which is usually linear
and passive) has a transfer function f and feeds back a signal Sfb to the input. At the input,
signal Sfb is subtracted from input signal Si at the input differencing node. Error signal S𝜖 is
the difference between Si and Sfb, and S𝜖 is fed to the basic amplifier with transfer function
a. Note that another common convention is to assume that Si and Sfb are added together in an
input summing node, and this leads to some sign changes in the analysis. It should be pointed
out that negative-feedback amplifiers in practice have an input differencing node and thus the
convention assumed here is more convenient for amplifier analysis.

From Fig. 8.1,

So = aS𝜖 (8.1)
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Figure 8.1 Ideal feedback configuration.

assuming that the feedback network does not load the basic amplifier. Also,

Sfb = f So (8.2)

S𝜖 = Si − Sfb (8.3)

Substituting (8.2) in (8.3) gives
S𝜖 = Si − f So (8.4)

Substituting (8.4) in (8.1) gives
So = aSi − af So

and thus
So

Si
= A = a

1 + af
(8.5)

Equation 8.5 is the fundamental equation for negative feedback circuits where A is the overall
gain with feedback applied. (A is often called the closed-loop gain.)

It is useful to define a quantity T called the loop gain such that

T = af (8.6)

and
So

Si
= A = a

1 + T
(8.7)

T is the total gain around the feedback loop. If T ≫ 1, then, from (8.5), gain A is given by

A ≃ 1
f

(8.8)

That is, for large values of loop gain T , the overall amplifier gain is determined by the feed-
back transfer function f . Since the feedback network is usually formed from stable, passive
elements, the value of f is well defined and so is the overall amplifier gain.

The feedback loop operates by forcing Sfb to be nearly equal to Si. This is achieved by
amplifying the difference S𝜖 = Si − Sfb, and the feedback loop then effectively minimizes error
signal S𝜖 . This can be seen by substituting (8.5) in (8.4) to obtain

S𝜖 = Si − f
aSi

1 + af

and this leads to
S𝜖
Si

= 1
1 + af

= 1
1 + T

(8.9)
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As T becomes much greater than 1, S𝜖 becomes much less than Si. In addition, substituting
(8.5) in (8.2) gives

Sfb = f Si
a

1 + af

and thus
Sfb

Si
= T

1 + T
(8.10)

If T ≫ 1, then Sfb is approximately equal to Si. That is, feedback signal Sfb is a replica of the
input signal. Since Sfb and So are directly related by (8.2), it follows that if |f | < 1, then So is
an amplified replica of Si. This is the aim of a feedback amplifier.

8.2 Gain Sensitivity
In most practical situations, gain a of the basic amplifier is not well defined. It is dependent
on temperature, active-device operating conditions, and transistor parameters. As mentioned
previously, the negative-feedback loop reduces variations in overall amplifier gain due to vari-
ations in a. This effect may be examined by differentiating (8.5) to obtain

dA
da

=
(1 + af ) − af

(1 + af )2

and this reduces to
dA
da

= 1
(1 + af )2

(8.11)

If a changes by 𝛿a, then A changes by 𝛿A, where

𝛿A = 𝛿a
(1 + af )2

The fractional change in A is
𝛿A
A

=
1 + af

a
𝛿a

(1 + af )2

This can be expressed as

𝛿A
A

=

𝛿a
a

1 + af
=

𝛿a
a

1 + T
(8.12)

Equation 8.12 shows that the fractional change in A is reduced by (1 + T) compared to the
fractional change in a. For example, if T = 100 and a changes by 10 percent due to temperature
change, then the overall gain A changes by only 0.1 percent using (8.12).

8.3 Effect of Negative Feedback on Distortion
The foregoing results show that even if the basic-amplifier gain a changes, the negative feed-
back keeps overall gain A approximately constant. This suggests that feedback should be
effective in reducing distortion because distortion is caused by changes in the slope of the
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Figure 8.2 Basic-amplifier transfer characteristic.

basic-amplifier transfer characteristic. The feedback should tend to reduce the effect of these
slope changes since A is relatively independent of a. This is explained next.

Suppose the basic amplifier has a transfer characteristic with a nonlinearity as shown in
Fig. 8.2. It is assumed that two regions exist, each with constant but different slopes a1 and
a2. When feedback is applied, the overall gain will still be given by (8.5), but the appropriate
value of a must be used, depending on which region of Fig. 8.2 is being traversed. Thus the
overall transfer characteristic with feedback applied will also have two regions of different
slope, as shown in Fig. 8.3. However, slopes A1 and A2 are almost equal because of the effect
of the negative feedback. This can be seen by substituting in (8.5) to give

A1 =
a1

1 + a1f
≃ 1

f
(8.13)

A2 =
a2

1 + a2f
≃ 1

f
(8.14)

Thus the transfer characteristic of the feedback amplifier of Fig. 8.3 shows much less nonlin-
earity than the original basic-amplifier characteristics of Fig. 8.2.

So2

So

So1

–So1

–So2

Si

A3 = 0

A3 = 0

A2

A2

Slope A1

So1
a1

(1 + a1f )

Figure 8.3 Feedback-amplifier transfer characteristic corresponding to the basic-amplifier characteristic
of Fig. 8.2.
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Note that the horizontal scale in Fig. 8.3 has been compressed as compared to Fig. 8.2 in
order to allow easy comparison of the two graphs. This scale change is necessary because the
negative feedback reduces the gain. The reduction in gain by the factor (1 + T), which accom-
panies the use of negative feedback, presents few serious problems, since the gain can easily
be made up by placing a preamplifier in front of the feedback amplifier. Since the preamplifier
handles much smaller signals than does the output amplifier, distortion is usually not a problem
in that amplifier.

One further point that should be made about Figs. 8.2 and 8.3 is that both show hard satu-
ration of the output amplifier (i.e., the output becomes independent of the input) at an output
signal level of So2. Since the incremental slope a3 = 0 in that region, negative feedback cannot
improve the situation as A3 = 0 also, using (8.5).

8.4 Feedback Configurations
The treatment in the previous sections was based on the idealized configuration shown in
Fig. 8.1. Practical feedback amplifiers are composed of circuits that have current or voltage
signals as inputs and produce output currents or voltages. In order to pursue feedback ampli-
fier design at a practical level, it is necessary to specify the details of the feedback sampling
process and the circuits used to realize this operation. There are four basic feedback amplifier
connections. These are specified according to whether the output signal So is a current or a
voltage and whether the feedback signal Sfb is a current or a voltage. It is apparent that four
combinations exist, and these are now considered.

8.4.1 Series-Shunt Feedback

Suppose it is required to design a feedback amplifier that stabilizes a voltage transfer function.
That is, a given input voltage should produce a well-defined proportional output voltage. This
will require sampling the output voltage and feeding back a proportional voltage for compar-
ison with the incoming voltage. This situation is shown schematically in Fig. 8.4. The basic
amplifier has gain a, and the feedback network is a two-port with transfer function f that shunts
the output of the basic amplifier to sample vo. Ideally, the impedance z22f = ∞, and the feed-
back network does not load the basic amplifier. The feedback voltage vfb is connected in series
with the input to allow comparison with vi and, ideally, z11f = 0. The signal v𝜖 is the difference
between vi and vfb and is fed to the basic amplifier. The basic amplifier and feedback circuits
are assumed unilateral in that the basic amplifier transmits only from v𝜖 to vo and the feedback
network transmits only from vo to vfb. This point will be taken up later.

a

f

Basic amplifier

Feedback network

vfb

+

–

+

–

vo

+

–

vi

+

–

+

–
z11f = 0 z22f = ∞ 

v

Figure 8.4 Series-shunt feedback
configuration.
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This feedback is called series-shunt feedback because the feedback network is connected
in series with the input and shunts the output.

From Fig. 8.4,
vo = av𝜖 (8.15)

vfb = f vo (8.16)

v𝜖 = vi − vfb (8.17)

From (8.15), (8.16), and (8.17),
vo

vi
= a

1 + af
(8.18)

Thus the ideal feedback equation applies. Equation 8.18 indicates that the transfer function that
is stabilized is vo∕vi, as desired. If the circuit is fed from a high source impedance as shown
in Fig. 8.5, the ratio vo∕vi is still stabilized [and given by (8.18)], but now vi is given by

vi =
Zi

Zi + zs
vs (8.19)

where Zi is the input impedance seen by vi. If zs ≈ Zi, then vi depends on Zi, which is not
usually well defined since it often depends on active-device parameters. Thus the overall gain
vo∕vs will not be stabilized. Consequently, the full benefits of gain stabilization are achieved
for a series-shunt feedback amplifier when the source impedance is low compared to the input
impedance of the closed-loop amplifier. The ideal driving source is a voltage source.

Consider now the effect of series-shunt feedback on the terminal impedances of the
amplifier. Assume the basic amplifier has input and output impedances zi and zo, as shown in
Fig. 8.6. Again assume the feedback network is ideal and feeds back a voltage f vo as shown.

a

f
–

vi

+
vo

+

–

vs

zs

+

–

Figure 8.5 Series-shunt
configuration fed from a finite
source impedance.

zi
zo

ii

ε

–

+
vo

+

–

vi

+

–

+

–

fvo

+

–

Basic amplifier

Feedback network

avεv

Figure 8.6 Series-shunt
configuration with finite
impedances in the basic amplifier.
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Both networks are unilateral. The applied voltage vi produces input current ii and output
voltage vo. From Fig. 8.6,

vo = av𝜖 (8.20)

vi = v𝜖 + f vo (8.21)

Substituting (8.20) in (8.21) gives

vi = v𝜖 + af v𝜖 = v𝜖(1 + af ) (8.22)

Also,
ii =

v𝜖
zi

(8.23)

Substituting (8.22) in (8.23) gives

ii =
vi

zi

1
1 + af

(8.24)

Thus, from (8.24), input impedance Zi with feedback applied is

Zi =
vi

ii
= (1 + T)zi (8.25)

Series feedback at the input always raises the input impedance by (1 + T).
The effect of series-shunt feedback on the output impedance can be calculated using the

circuit of Fig. 8.7. The input voltage is removed (the input is shorted) and a voltage v applied
at the output. From Fig. 8.7,

v𝜖 + fv = 0 (8.26)

i =
v − av𝜖

zo
(8.27)

Substituting (8.26) in (8.27) gives

i =
v + afv

zo
(8.28)

From (8.28), output impedance Zo with feedback applied is

Zo = v
i
=

zo

1 + T
(8.29)

zi
zo

i

avε

–

vε

+
v

+

–

+

–

fv
+

–

Figure 8.7 Circuit for the
calculation of the output impedance
of the series-shunt feedback
configuration.
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zi (1 + T )

–

vi
vi

+

–

vi

+

vo

+

–

vo

+

–

+

–

zo

1 + T

a
1 + T

+

–

vi

f

(a) (b)

Figure 8.8 (a) Equivalent circuit of a series-shunt feedback amplifier. (b) Equivalent circuit of a
series-shunt feedback amplifier for a → ∞.

Shunt feedback at the output always lowers the output impedance by (1 + T). This makes the
output a better voltage source so that series-shunt feedback produces a good voltage amplifier.
It stabilizes vo∕vi, raises Zi, and lowers Zo.

The original series-shunt feedback amplifier of Fig. 8.6 can now be represented as shown
in Fig. 8.8a using (8.18), (8.25), and (8.29). As the forward gain a approaches infinity, the
equivalent circuit approaches that of Fig. 8.8b, which is an ideal voltage amplifier.

8.4.2 Shunt-Shunt Feedback

This configuration is shown in Fig. 8.9. The feedback network again shunts the output of the
basic amplifier and samples vo and, ideally, z22f = ∞ as before. However, the feedback network
now shunts the input of the main amplifier as well and feeds back a proportional current f vo.
Ideally, z11f = ∞ so that the feedback network does not produce any shunt loading on the
amplifier input. Since the feedback signal is a current, it is more convenient to deal with an
error current i𝜖 at the input. The input signal in this case is ideally a current ii, and this is
assumed. From Fig. 8.9,

a =
vo

i𝜖
(8.30)

where a is a transresistance,

f =
ifb
vo

(8.31)

where f is a transconductance, and
vo = ai𝜖 (8.32)

i𝜖 = ii − ifb (8.33)

Substitution of ifb from (8.31) in (8.33) gives

i𝜖 = ii − f vo (8.34)

Substitution of (8.32) in (8.34) gives

vo

a
= ii − f vo

Rearranging terms, we find
vo

ii
= a

1 + af
= A (8.35)
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vo

fvo

ii zivi

ifb

+

–

zo

Basic amplifier

Feedback network

z11 f = ∞ z22 f = ∞

+
+

–
–

ai

i

Figure 8.9 Shunt-shunt
feedback configuration.

Again the ideal feedback equation applies. Note that although a and f have dimensions of
resistance and conductance, the loop gain T = af is dimensionless. This is always true.

In this configuration, if the source impedance zs is finite, a division of input current ii occurs
between zs and the amplifier input, and the ratio vo∕ii will not be as well defined as (8.35)
suggests. The full benefits of negative feedback for a shunt-shunt feedback amplifier are thus
obtained for zs ≫ Zi, which approaches a current-source drive.

The input impedance of the circuit of Fig. 8.9 can be calculated using (8.32) and (8.35) to
give

i𝜖 =
ii

1 + af
(8.36)

The input impedance Zi with feedback is

Zi =
vi

ii
(8.37)

Substituting (8.36) in (8.37) gives

Zi =
vi

i𝜖

1
1 + af

=
zi

1 + T
(8.38)

Thus shunt feedback at the input reduces the amplifier input impedance by (1 + T). This is
always true.

It is easily shown that the output impedance in this case is

Zo =
zo

1 + T
(8.39)

as before, for shunt feedback at the output.
Shunt-shunt feedback has made this amplifier a good transresistance amplifier. The transfer

function vo∕ii has been stabilized, and both Zi and Zo are lowered.
The original shunt-shunt feedback amplifier of Fig. 8.9 can now be represented as shown in

Fig. 8.10a using (8.35), (8.38), and (8.39). As forward gain a approaches infinity, the equivalent
circuit approaches that of Fig. 8.10b, which is an ideal transresistance amplifier.
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ii

ii

ii

zo

1 + T

zi

1 + T
a

1 + T

ii
f

(a)

(b)

vo

+

–

+

–

+

–
vo

+

–

Figure 8.10 (a) Equivalent circuit
of a shunt-shunt feedback amp-
lifier. (b) Equivalent circuit of a
shunt-shunt feedback amplifier for
a → ∞.

fi o

ii

io

zi

ifb

ε zo

Basic amplifier

Feedback network

z11 f = ∞

z22 f = 0

ai

  i

Figure 8.11 Shunt-series feedback configuration.

8.4.3 Shunt-Series Feedback

The shunt-series configuration is shown in Fig. 8.11. The feedback network samples io and
feeds back a proportional current ifb = f io. Since the desired output signal is a current io, it
is more convenient to represent the output of the basic amplifier with a Norton equivalent. In
this case, both a and f are dimensionless current ratios, and the ideal input source is a current
source ii. It can be shown that

io
ii

= a
1 + af

(8.40)

Zi =
zi

1 + T
(8.41)

Zo = zo(1 + T) (8.42)

This amplifier is a good current amplifier and has stable current gain io∕ii, low Zi, and
high Zo.
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zi zoavv

Basic amplifier

Feedback network

z11 f = 0 z22 f = 0

vi

+

–
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–

vfb

+

–

+

–

Figure 8.12 Series-series feedback configuration.

8.4.4 Series-Series Feedback

The series-series configuration is shown in Fig. 8.12. The feedback network samples io and
feeds back a proportional voltage vfb in series with the input. The forward gain a is a transcon-
ductance and f is a transresistance, and the ideal driving source is a voltage source vi. It can
be shown that

io
vi

= a
1 + af

(8.43)

Zi = zi(1 + T) (8.44)

Zo = zo(1 + T) (8.45)

This amplifier is a good transconductance amplifier and has a stabilized gain io∕vi, as well as
high Zi and Zo.

8.5 Practical Configurations and the Effect of Loading
In practical feedback amplifiers, the feedback network causes loading at the input and output
of the basic amplifier, and the division into basic amplifier and feedback network is not as
obvious as the above treatment implies. In such cases, the circuit can always be analyzed by
writing circuit equations for the whole amplifier and solving for the transfer function and
terminal impedances. However, this procedure becomes very tedious and difficult in most
practical cases, and the equations so complex that one loses sight of the important aspects of
circuit performance. Thus it is profitable to identify a basic amplifier and feedback network
in such cases and then to use the ideal feedback equations derived above. In general, it will
be necessary to include the loading effect of the feedback network on the basic amplifier,
and methods of including this loading in the calculations are now considered. The method
will be developed through the use of two-port representations of the circuits involved,
although this method of representation is not necessary for practical calculations, as we
will see.
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(a)

vo
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–
y21a vi

y22ay11a yLvi

+

–

y
Sis

y12a vo

Basic amplifier

y21f  vi

y22fy11f

y12f  vo

Feedback network

(b)

vo

+

–

y21a vi y22a y22fy11f y11a yLvi

+

–

ySis

New basic amplifier

y12f  vo

New feedback network

Figure 8.13 (a) Shunt-shunt feedback configuration using the y-parameter representation. (b) Circuit of
(a) redrawn with generators y21f vi and y12avo omitted.

8.5.1 Shunt-Shunt Feedback

Consider the shunt-shunt feedback amplifier of Fig. 8.9. The effect of nonideal networks may
be included as shown in Fig. 8.13a, where finite input and output admittances are assumed in
both forward and feedback paths, as well as reverse transmission in each. Finite source and load
admittances yS and yL are assumed. The most convenient two-port representation in this case
is the short-circuit admittance parameters or y parameters,1 as used in Fig. 8.13a. The reason is
that the basic amplifier and the feedback network are connected in parallel at input and output
and thus have identical voltages at their terminals. The y parameters specify the response of a
network by expressing the terminal currents in terms of the terminal voltages, and this results
in very simple calculations when two networks have identical terminal voltages. This will be
evident in the circuit calculations to follow. The y-parameter representation is illustrated in
Fig. 8.14.

From Fig. 8.13a, at the input

is = (yS + y11a + y11f )vi + (y12a + y12 f )vo (8.46)

Summation of currents at the output gives

0 = (y21a + y21f )vi + (yL + y22a + y22f )vo (8.47)
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–
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–
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i1 = y11 v1 + y12 v2

y11 =
i1
v1 v2 = 0

i2 = y21 v1 + y22 v2

y21 =
i2
v1 v2 = 0

y12 =
i1
v2 v1 = 0

y22 =
i2
v2 v1 = 0

Figure 8.14 The y-parameter
representation of a two-port.

It is useful to define
yi = yS + y11a + y11f (8.48)

yo = yL + y22a + y22f (8.49)

Solving (8.46) and (8.47) by using (8.48) and (8.49) gives

vo

is
=

−(y21a + y21f )
yiyo − (y21a + y21f )(y12a + y12 f )

(8.50)

The equation can be put in the form of the ideal feedback equation of (8.35) by dividing by
yiyo to give

vo

is
=

−(y21a + y21f )
yiyo

1 +
−(y21a + y21f )

yiyo
(y12a + y12 f )

(8.51)

Comparing (8.51) with (8.35) gives

a = −
y21a + y21f

yiyo
(8.52)

f = y12a + y12 f (8.53)

At this point, a number of approximations can be made that greatly simplify the calculations.
First, we assume that the signal transmitted by the basic amplifier is much greater than the
signal fed forward by the feedback network. Since the former has gain (usually large) while
the latter has loss, this is almost invariably a valid assumption. This means that

|y21a| ≫ |y21f | (8.54)

Second, we assume that the signal fed back by the feedback network is much greater than the
signal fed back through the basic amplifier. Since most active devices have very small reverse
transmission, the basic amplifier has a similar characteristic, and this assumption is almost
invariably quite accurate. This assumption means that

|y12a| ≪ |y12 f | (8.55)
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Using (8.54) and (8.55) in (8.51) gives

vo

is
= A ≃

−y21a

yiyo

1 +
(
−y21a

yiyo

)
y12 f

(8.56)

Comparing (8.56) with (8.35) gives

a = −
y21a

yiyo
(8.57)

f = y12 f (8.58)

A circuit representation of (8.57) and (8.58) can be found as follows. Equations 8.54
and 8.55 mean that in Fig. 8.13a, the feedback generator of the basic amplifier and the
forward-transmission generator of the feedback network may be neglected. If this is done,
the circuit may be redrawn as in Fig. 8.13b, where the terminal admittances y11f and y22f of
the feedback network have been absorbed into the basic amplifier, together with source and
load impedances yS and yL. The new basic amplifier thus includes the loading effect of the
original feedback network, and the new feedback network is an ideal one as used in Fig. 8.9.
If the transfer function of the basic amplifier of Fig. 8.13b is calculated (by first removing the
feedback network), the result given in (8.57) is obtained. Similarly, the transfer function of the
feedback network of Fig. 8.13b is given by (8.58). Thus Fig. 8.13b is a circuit representation
of (8.57) and (8.58).

Since Fig. 8.13b has a direct correspondence with Fig. 8.9, all the results derived in
Section 8.4.2 for Fig. 8.9 can now be used. The loading effect of the feedback network on
the basic amplifier is now included by simply shunting input and output with y11f and y22f ,
respectively. As shown in Fig. 8.14, these terminal admittances of the feedback network are
calculated with the other port of the network short-circuited. In practice, loading term y11f
is simply obtained by shorting the output node of the amplifier and calculating the feedback
circuit input admittance. Similarly, term y22f is calculated by shorting the input node in
the amplifier and calculating the feedback circuit output admittance. The feedback transfer
function f given by (8.58) is the short-circuit reverse transfer admittance of the feedback
network and is defined in Fig. 8.14. This is readily calculated in practice and is often obtained
by inspection. Note that the use of y parameters in further calculations is not necessary. Once
the circuit of Fig. 8.13b is established, any convenient network analysis method may be used
to calculate gain a of the basic amplifier. We have simply used the two-port representation as
a general means of illustrating how loading effects may be included in the calculations.

For example, consider the common shunt-shunt feedback circuit using an op amp as shown
in Fig. 8.15a. The equivalent circuit is shown in Fig. 8.15b and is redrawn in 8.15c to allow
for loading of the feedback network on the basic amplifier. The y parameters of the feedback
network can be found from Fig. 8.15d:

y11f =
i1
v1

||||v2=0
= 1

RF
(8.59)

y22f =
i2
v2

||||v1=0
= 1

RF
(8.60)

y12 f =
i1
v2

||||v1=0
= − 1

RF
= f (8.61)

Using (8.54), we neglect y21f .



8.5 Practical Configurations and the Effect of Loading 599
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–
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Figure 8.15 (a) Shunt-shunt feedback circuit using an op amp as the gain element. (b) Equivalent circuit
of (a) including load resistance RL. (c) Division of the circuit in (b) into forward and feedback paths.
(d) Circuit for the calculation of the y parameters of the feedback network of the circuit in (b).
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The basic-amplifier gain a can be calculated from Fig. 8.15c by putting ifb = 0 to give

v1 =
ziRF

zi + RF
ii (8.62)

vo = − R
R + zo

avv1 (8.63)

where
R = RF||RL (8.64)

Substituting (8.62) in (8.63) gives

vo

ii
= a = − R

R + zo
av

ziRF

zi + RF
(8.65)

Using the formulas derived in Section 8.4.2, we can now calculate all parameters of the feed-
back circuit. The input and output impedances of the basic amplifier now include the effect
of feedback loading, and it is these impedances that are divided by (1 + T) as described in
Section 8.4.2. Thus the input impedance of the basic amplifier of Fig. 8.15c is

zia = RF||zi =
RFzi

RF + zi
(8.66)

When feedback is applied, the input impedance is

Zi =
zia

1 + T
(8.67)

Similarly, for the output impedance of the basic amplifier,

zoa = zo||RF||RL (8.68)

When feedback is applied, this becomes

Zo =
zo||RF||RL

1 + T
(8.69)

Note that these calculations can be made using the circuit of Fig. 8.15c without further need
for two-port y parameters.

Since the loop gain T is of considerable interest, this is now calculated using (8.61) and
(8.65):

T = af =
RFRL

RFRL + zoRF + zoRL
av

zi

zi + RF
(8.70)

◼ EXAMPLE

Assuming that the circuit of Fig. 8.15a is realized using an op amp with RF = 1 MΩ
and RL = 10 kΩ, calculate the terminal impedances, loop gain, and overall gain of the
feedback amplifier at low frequencies. Assume the op amp has the following characteristics:
zi = 170 kΩ, zo = 15 kΩ, and av = 130,000.

From (8.66), the low-frequency input impedance of the basic amplifier including loading is

zia = 106 × 170 × 103

106 + 170 × 103
Ω = 145 kΩ (8.71)
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From (8.68), the low-frequency output impedance of the basic amplifier is

zoa = 15 kΩ||1 MΩ||10 kΩ ≃ 5.96 kΩ (8.72)

The low-frequency loop gain can be calculated from (8.70) as

T = 106 × 104

106 × 104 + 15 × 103 × 106 + 15 × 103 × 104
× 130,000 × 170 × 103

170 × 103 + 106

= 7510 (8.73)

The loop gain in this case is large. Note that a finite source resistance at the input could reduce
this significantly.

The input impedance with feedback applied is found by substituting (8.71) and (8.73) in
(8.67) to give

Zi =
145 × 103

7511
Ω = 19.3 Ω

The output impedance with feedback applied is found by substituting (8.72) and (8.73) in
(8.69) to give

Zo = 5.96 × 103

7511
Ω = 0.794 Ω

In practice, second-order effects in the circuit may result in a larger value of Zo.
The overall transfer function with feedback can be found approximately from (8.8) as

vo

ii
= A ≃ 1

f
(8.74)

Using (8.61) in (8.74) gives
vo

ii
= A ≃ −RF

Substituting for RF, we obtain
vo

ii
= A ≃ −1 MΩ (8.75)

A more exact value of A can be calculated from (8.5). Since the loop gain is large in this
case, it is useful to transform (8.5) as follows:

A = 1
f

1

1 + 1
af

(8.76)

= 1
f

1

1 + 1
T

(8.77)

Since T is high in this example, A differs little from 1∕f . Substituting T = 7510 and 1∕f =
−1 MΩ in (8.77), we obtain

A = −999,867 Ω (8.78)

For most practical purposes, (8.75) is sufficiently accurate.◼
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8.5.2 Series-Series Feedback

Consider the series-series feedback connection of Fig. 8.12. The effect of nonideal networks
can be calculated using the representation of Fig. 8.16a. In this case, the most convenient
two-port representation is the use of the open-circuit impedance parameters or z parameters
because the basic amplifier and the feedback network are now connected in series at input
and output and thus have identical currents at their terminals. As shown in Fig. 8.17, the z
parameters specify the network by expressing terminal voltages in terms of terminal currents,
and this results in simple calculations when the two networks have common terminal currents.
The calculation in this case proceeds as the exact dual of that in Section 8.5.1. From Fig. 8.16,
summation of voltages at the input gives

vs = (zS + z11a + z11f )ii + (z12a + z12 f )io (8.79)

Summing voltages at the output, we obtain

0 = (z21a + z21f )ii + (zL + z22a + z22f )io (8.80)

It is useful to define
zi = zS + z11a + z11f (8.81)

zo = zL + z22a + z22f (8.82)

Again neglecting reverse transmission through the basic amplifier, we assume that

|z12a| ≪ |z12 f | (8.83)

Also neglecting feed-forward through the feedback network, we can write

|z21a| ≫ |z21f | (8.84)

With these assumptions, it follows that

io
vs

= A ≃

−z21a

zizo

1 +
(
−z21a

zizo

)
z12 f

= a
1 + af

(8.85)

where
a = −

z21a

zizo
(8.86)

f = z12 f (8.87)

A circuit representation of a in (8.86) and f in (8.87) can be found by removing generators
z21f ii and z12aio from Fig. 8.16a in accord with (8.83) and (8.84). This gives the approximate
representation of Fig. 8.16b, where the new basic amplifier includes the loading effect of the
original feedback network. The new feedback network is an ideal one, as used in Fig. 8.12.
The transfer function of the basic amplifier of Fig. 8.16b is the same as in (8.86), and the
transfer function of the feedback network of Fig. 8.16b is given by (8.87). Thus Fig. 8.16b is
a circuit representation of (8.86) and (8.87).
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Figure 8.16 (a) Series-series feedback configuration using the z-parameter representation. (b) Circuit
of (a) redrawn with generators z21f ii and z12aio omitted.
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Figure 8.17 The z-parameter
representation of a two-port.

Since Fig. 8.16b has a direct correspondence with Fig. 8.12, all the results of Section 8.4.4
can now be used. The loading effect of the feedback network on the basic amplifier is included
by connecting the feedback-network terminal impedances z11f and z22f in series at the input
and output of the basic amplifier. Terms z11f and z22f are defined in Fig. 8.17 and are obtained
by calculating the terminal impedances of the feedback network with the other port open cir-
cuited. Feedback function f given by (8.87) is the reverse transfer impedance of the feedback
network.

Consider, for example, the series-series feedback triple of Fig. 8.18a, which is useful as a
wideband feedback amplifier. RE2 is usually a small resistor that samples the output current
io, and the resulting voltage across RE2 is sampled by the divider RF and RE1 to produce a
feedback voltage across RE1. Usually RF ≫ RE1 and RE2.

The two-port theory derived earlier cannot be applied directly in this case because the basic
amplifier cannot be represented by a two-port. However, the techniques developed previously
using two-port theory can be used with minor modification by first noting that the feedback
network can be represented by a two-port, as shown in 8.18b. One problem with this circuit is
that the feedback generator z12 f ie3 is in the emitter of Q1 and not in the input lead where it can
be compared directly with vs. This problem can be overcome by considering the small-signal
equivalent of the input portion of this circuit, as shown in Fig. 8.19. For this circuit,

vs = iizS + vbe + ie1z11f + z12 f ie3 (8.88)

Using

ie3 =
io
𝛼3

(8.89)

in (8.88) gives

vs − z12 f
io
𝛼3

= iizS + vbe + ie1z11f (8.90)

where the quantities in these equations are small-signal quantities. Equation 8.90 shows that
the feedback voltage generator z12 f (io∕𝛼3) can be moved back in series with the input lead;
if this was done, exactly the same equation would result. (See Fig. 8.18c.) Note that the
common-base current gain 𝛼3 of Q3 appears in this feedback expression because the output
current is sampled by RE2 in the emitter of Q3 in order to feed back a correcting signal to the
input. This problem is common to most circuits employing series feedback at the output, and
the 𝛼3 of Q3 is outside the feedback loop. There are many applications where this is not a
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Figure 8.18 (a) Series-series feedback triple. (b) Circuit of (a) redrawn using a two-port z-parameter
representation of the feedback network. (c) Approximate representation of the circuit in (b).
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equivalent circuit of the input
stage of the circuit in Fig. 8.18b.
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Figure 8.20 Circuit for the calculation of the z parameters of the feedback network of the circuit in
Fig. 8.18a.

problem, since 𝛼 ≃ 1. However, if high gain precision is required, variations in 𝛼3 can cause
difficulties.

The z parameters of the feedback network can be determined from Fig. 8.20 as

z12 f =
v1

i2

||||i1=0
=

RE1RE2

RE1 + RE2 + RF
(8.91)

z22f =
v2

i2

||||i1=0
= RE2||(RE1 + RF) (8.92)

z11f =
v1

i1

||||i2=0
= RE1||(RF + RE2) (8.93)

Using (8.84), we neglect z21f .
From the foregoing results, we can redraw the circuit of Fig. 8.18b as shown in Fig. 8.18c.

As in previous calculations, the signal fed forward via the feedback network (in this case,
z21f ie1) is neglected. The feedback voltage generator is placed in series with the input lead,
and an ideal differencing node then exists at the input. The effect of feedback loading on the
basic amplifier is represented by the impedances in the emitters of Q1 and Q3. Note that this
case does differ somewhat from the example of Fig. 8.16b in that the impedances z11f and z22f
of the feedback network appear in series with the input and output leads in Fig. 8.16b, whereas
in Fig. 8.18c, these impedances appear in the emitters of Q1 and Q3. This is due to the fact that
the basic amplifier of the circuit of Fig. 8.18a cannot be represented by two-port z parameters
but makes no difference to the method of analysis. Since the feedback voltage generator in
Fig. 8.18c is directly in series with the input and is proportional to io, a direct correspondence
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with Fig. 8.16b can be established and the results of Section 8.4.4 can be applied. There is no
further need of the z parameters, and by inspection we can write

io
vs

= A ≃ a
1 + af

(8.94)

where

f =
z12 f

𝛼3
= 1

𝛼3

RE1RE2

RE1 + RE2 + RF
(8.95)

and a is the transconductance of the circuit of Fig. 8.18c with the feedback generator
[(z12 f∕𝛼3)io] removed.

The input impedance seen by vs with feedback applied is (1 + af ) times the input impedance
of the basic amplifier of Fig. 8.18c including feedback loading.

The output impedance with feedback applied is (1 + af ) times the output impedance of the
basic amplifier including feedback loading.

If the loop gain T = af is large, then the gain with feedback applied is

A =
io
vs

≃ 1
f
= 𝛼3

RE1 + RE2 + RF

RE1RE2
(8.96)

◼ EXAMPLE

A commercial integrated circuit2 based on the series-series triple is the MC 1553 shown in
Fig. 8.21a. Calculate the terminal impedances, loop gain, and overall gain of this amplifier at
low frequencies.

The MC 1553 is a wideband amplifier with a bandwidth of 50 MHz at a voltage gain of
50. The circuit gain is realized by the series-series triple composed of Q1, Q2, and Q3. The
output voltage is developed across the load resistor RC and is then fed to the output via emitter
follower Q4, which ensures a low output impedance. The rest of the circuit is largely for bias
purposes except capacitors CP, CF, and CB. Capacitors CP and CF are small capacitors of
several picofarads and are included on the chip. They ensure stability of the feedback loop,
and their function will be described in Chapter 9. Capacitor CB is external to the chip and is a
large bypass capacitor used to decouple the bias circuitry at the signal frequencies of interest.

Bias Calculation. The analysis of the circuit begins with the bias conditions. The bias cur-
rent levels are set by the reference current IRK in the resistor RK , and assuming VBE(on) = 0.6 V
and VCC = 6 V, we obtain

IRK =
VCC − 2VBE(on)

RK
(8.97)

Substituting data in (8.97) gives

IRK = 6 − 1.2
6000

A = 0.80 mA

The current in the output emitter follower Q4 is determined by the currents in Q6 and Q8.
Transistor Q8 has an area three times that of Q7 and Q6, and thus

IC8 = 3 × 0.8 mA = 2.4 mA

IC6 = 0.8 mA
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Figure 8.21 (a) Circuit of the MC 1553 wideband integrated circuit. (b) Basic amplifier of the series-
series triple in (a).

where 𝛽F is assumed large in these bias calculations. If the base current of Q1 is small, all of
IC6 and IC8 flow through Q4, and

IC4 ≃ IC6 + IC8 (8.98)

Thus
IC4 ≃ 3.2 mA

Transistor Q8 supplies most of the bias current to Q4, and this device functions as a Class A
emitter-follower output stage of the type described in Section 5.2. The function of Q6 is to
allow formation of a negative-feedback bias loop for stabilization of the dc operating point,
and resistor RG is chosen to cause sufficient dc voltage drop to allow connection of RD back
to the base of Q1. Transistors Q1, Q2, Q3, and Q4 are then connected in a negative-feedback
bias loop, and the dc conditions can be ascertained approximately as follows.
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Figure 8.21 (c) Small-signal equivalent circuit of the basic amplifier in (b).

If we assume that Q2 is on, the voltage at the collector of Q1 is about 0.6 V and the voltage
across RA is 5.4 V. Thus the current through RA is

IRA = 5.4
RA

= 5.4
9000

= 0.6 mA (8.99)

If 𝛽F is assumed high, it follows that

IC1 ≃ IRA = 0.6 mA (8.100)

Since the voltage across RE1 is small, the voltage at the base of Q1 is approximately 0.6 V, and
if the base current of Q1 is small, this is also the voltage at the collector of Q6 since any voltage
across RD will be small. The dc output voltage can be written

VO = VC6 + IC6RG (8.101)

Substitution of data gives
VO = (0.6 + 0.8 × 3) V = 3 V

The voltage at the base of Q4 (collector of Q3) is VBE above VO and is thus 3.6 V. The
collector current of Q3 is

IC3 ≃
VCC − VC3

RC
(8.102)

Substitution of parameter values gives

IC3 ≃ 6 − 3.6
600

A = 4 mA

The voltage at the base of Q3 (collector of Q2) is

VB3 ≃ −IE3RE2 + VBE(on) (8.103)
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Thus
VB3 = VC2 ≃ (4 × 0.1 + 0.6) V = 1 V

IC2 may be calculated from

IC2 ≃
VCC − VC2

RB
(8.104)

and substitution of parameter values gives

IC2 ≃ 6 − 1
5000

A = 1 mA

The ac Calculation. The ac analysis can now proceed using the methods previously devel-
oped in this chapter. For purposes of ac analysis, the feedback triple composed of Q1, Q2, and
Q3 in Fig. 8.21a is identical to the circuit in Fig. 8.18a, and the results derived previously for
the latter circuit are directly applicable to the triple in Fig. 8.21a. To obtain the voltage gain
of the circuit of Fig. 8.21a, we simply multiply the transconductance of the triple by the load
resistor RC, since the gain of the emitter follower Q4 is almost exactly unity. Note that resistor
RD is assumed grounded for ac signals by the large capacitor CB and thus has no influence on
the ac circuit operation, except for a shunting effect at the input that will be discussed later.
From (8.95), the feedback factor f of the series-series triple of Fig. 8.21a is

f = 1
0.99

100 × 100
100 + 100 + 640

Ω = 12.0 Ω (8.105)

where 𝛽0 = 100 has been assumed.
If the loop gain is large, the transconductance of the triple of Fig. 8.21a can be calculated

from (8.96) as
io3

vs
≃ 1

f
= 1

12
A/V (8.106)

where io3 is the small-signal collector current in Q3 in Fig. 8.21a. If the input impedance of
the emitter follower Q4 is large, the load resistance seen by Q3 is RC = 600 Ω and the voltage
gain of the circuit is

vo

vs
= −

io3

vs
× RC (8.107)

Substituting (8.106) in (8.107) gives

vo

vs
= −50.0 (8.108)

Consider now the loop gain of the circuit of Fig. 8.21a. This can be calculated by using
the basic-amplifier representation of Fig. 8.18c to calculate the forward gain a. Figure 8.18c
is redrawn in Fig. 8.21b using data from this example, assuming that zS = 0 and omitting the
feedback generator. The small-signal, low-frequency equivalent circuit is shown in Fig. 8.21c
assuming 𝛽0 = 100, and it is a straightforward calculation to show that the gain of the basic
amplifier is

a =
i3
vs

= 20.3 A/V (8.109)
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Combination of (8.105) and (8.109) gives

T = af = 12 × 20.3 = 243.6 (8.110)

The transconductance of the triple can now be calculated more accurately from (8.94) as

io3

vs
= a

1 + T
= 20.3

244.6
A/V = 0.083 A/V (8.111)

Substitution of (8.111) in (8.107) gives for the overall voltage gain

vo

vs
= −

io3

vs
RC = −0.083 × 600 = −49.8 (8.112)

This is close to the approximate value given by (8.108).
The input resistance of the basic amplifier is readily determined from Fig. 8.21c to be

ria = 13.2 kΩ (8.113)

The input resistance when feedback is applied is

Ri = ria(1 + T) (8.114)

Substituting (8.113) and (8.110) in (8.114) gives

Ri = 13.2 × 244.6 kΩ = 3.23 MΩ (8.115)

As expected, series feedback at the input results in a high input resistance. In this example,
however, the bias resistor RD directly shunts the input for ac signals and is outside the feed-
back loop. Since RD = 12 kΩ and is much less than Ri, the resistor RD determines the input
resistance for this circuit.

Finally, the output resistance of the circuit is of some interest. The output resistance of
the triple can be calculated from Fig. 8.21c by including output resistance ro in the model
for Q3. The resistance obtained is then multiplied by (1 + T), and the resulting value is much
greater than the collector load resistor of Q3, which is RC = 600 Ω. The output resistance of
the full circuit is thus essentially the output resistance of emitter follower Q4 fed from a 600 Ω
source resistance, and this is

Ro = 1
gm4

+
RC

𝛽4
=
( 26

3.2
+ 600

100

)
Ω = 14 Ω (8.116)

◼

8.5.3 Series-Shunt Feedback

Series-shunt feedback is shown schematically in Fig. 8.4. The basic amplifier and the
feedback network have the same input current and the same output voltage. A two-port
representation that uses input current and output voltage as the independent variables is
the hybrid h-parameter representation shown in Fig. 8.22. The h parameters can be used to
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Figure 8.22 The h-parameter
representation of a two-port.

represent nonideal circuits in a series-shunt feedback, as shown in Fig. 8.23a. Summation of
voltages at the input of this figure gives

vs = (zS + h11a + h11f )ii + (h12a + h12 f )vo (8.117)

Summing currents at the output yields

0 = (h21a + h21f )ii + (yL + h22a + h22f )vo (8.118)

We now define
zi = zS + h11a + h11f (8.119)

yo = yL + h22a + h22f (8.120)

and make the same assumptions as in previous examples:

|h12a| ≪ |h12 f | (8.121)

|h21a| ≫ |h21f | (8.122)

It can then be shown that

vo

vs
= A ≃

−
h21a

ziyo

1 +
(
−

h21a

ziyo

)
h12 f

= a
1 + af

(8.123)

where

a = −
h21a

ziyo
(8.124)

f = h12 f (8.125)

A circuit representation of a in (8.124) and f in (8.125) can be found by removing the
generators h12avo and h21f ii from Fig. 8.23a, as suggested by the approximations of (8.121)
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and (8.122). This gives the approximate representation of Fig. 8.23b, where the new basic
amplifier includes the loading effect of the original feedback network. As in previous
examples, the circuit of Fig. 8.23b is a circuit representation of (8.123), (8.124), and (8.125)
and has the form of an ideal feedback loop. Thus all the equations of Section 8.4.1 can be
applied to the circuit.
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New basic amplifier

New feedback network

ii

vs
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–
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Figure 8.23 (a) Series-shunt feedback configuration using the h-parameter representation. (b) Circuit
of (a) redrawn with generators h21f ii and h12avo omitted.
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Figure 8.24 Series-shunt feedback circuit using an op amp as the gain element.
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RF

+

–

+

–

i2

Figure 8.25 Circuit for the deter-
mination of the h parameters of the
feedback network in Fig. 8.24.

For example, consider the common series-shunt op-amp circuit of Fig. 8.24, which fits
exactly the model described above. We first determine the h parameters of the feedback net-
work from Fig. 8.25:

h22f =
i2
v2

||||i1=0
= 1

RF + RE
(8.126)

h12 f =
v1

v2

||||i1=0
=

RE

RE + RF
(8.127)

h11f =
v1

i1

||||v2=0
= RE||RF (8.128)

Using (8.122), we neglect h21f . The complete feedback amplifier including loading effects is
shown in Fig. 8.26 and has a direct correspondence with Fig. 8.23b. (The only difference is
that the op amp output is represented by a Thévenin rather than a Norton equivalent.)

The gain a of the basic amplifier can be calculated from Fig. 8.26 by initially disregarding
the feedback generator to give

a =
zi

zi + R
av

zLX

zLX + zo
(8.129)

where
R = RE||RF (8.130)

zLX = zL||(RE + RF) (8.131)
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Figure 8.26 Equivalent circuit for Fig. 8.24.

Also,

f =
RE

RE + RF
(8.132)

Thus the overall gain of the feedback circuit is

A =
vo

vs
= a

1 + af
(8.133)

and A can be evaluated using (8.129) and (8.132).

◼ EXAMPLE
Assume that the circuit of Fig. 8.24 is realized using a differential amplifier with low-frequency
parameters zi = 100 kΩ, zo = 10 kΩ, and av = 3000. Calculate the input impedance of the
feedback amplifier at low frequencies if RE = 5 kΩ, RF = 20 kΩ, and zL = 10 kΩ. Note that
zo in this case is not small as is usually the case for an op amp, and this situation can arise in
some applications.

This problem is best approached by first calculating the input impedance of the basic
amplifier and then multiplying by (1 + T) as indicated by (8.25) to calculate the input
impedance of the feedback amplifier. By inspection from Fig. 8.26, the input impedance of
the basic amplifier is

zia = zi + RE||RF = (100 + 5||20) kΩ = 104 kΩ

The parallel combination of zL and (RF + RE) in Fig. 8.26 is

zLX = 10 × 25
35

= 7.14 kΩ

Substitution in (8.129) gives, for the gain of the basic amplifier of Fig. 8.26,

a = 100
100 + 4

× 3000 × 7.14
7.14 + 10

= 1202

From (8.127), the feedback factor f for this circuit is

f = 5
5 + 20

= 0.2

and thus the loop gain is
T = af = 1202 × 0.2 = 240
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Figure 8.27 (a) Series-shunt
feedback circuit.

The input impedance of the feedback amplifier is thus

Zi = zia(1 + T) = 104 × 241 kΩ = 25 MΩ

In this example, the loading effect produced by (RF + RE) on the output has a significant effect
on the gain a of the basic amplifier and thus on the input impedance of the feedback amplifier.◼

Figure 8.27a shows another series-shunt feedback circuit. The input is vs, and the output is
the voltage at the source of M3. The feedback network consists of RF and RE1. The appropriate
parameters for analyzing Fig. 8.27a are the h parameters. Figure 8.27b shows the circuit with
the feedback network replaced by an h-parameter two-port, neglecting h21f . Figure 8.27b can
be analyzed in the usual manner.

Figure 8.28 shows the same circuit as in Fig. 8.27a, but the output is now the drain current
io of M3. With this change in the output, the feedback is series-series. This is an example
of how the same circuit can realize two different types of feedback if the output is taken
differently. Note that the circuit in Fig. 8.28 is the same as in Fig. 8.18a, except that zL
is replaced by RL3 and the bipolar transistors have been replaced by MOS transistors. In
Fig. 8.18a, the emitter and collector currents of Q3 are not equal, so the basic amplifier cannot
be exactly modeled by a two-port. However, the source and drain currents of M3 are equal
in Fig. 8.28, so the basic amplifier here can be modeled by a two-port. Hence z-parameter
two-port models and the equations (8.81)–(8.87) associated with Fig. 8.16 can be applied
directly.
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vs
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RL2

M3

(RE1 + RF )||RE2
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Figure 8.27 (b) Circuit
equivalent to Fig. 8.27a using a
two-port representation of the
feedback network.
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Figure 8.28 Series-series
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8.5.4 Shunt-Series Feedback

Shunt-series feedback is shown schematically in Fig. 8.11. In this case, the basic amplifier and
the feedback network have common input voltages and output currents, and hybrid g param-
eters as defined in Fig. 8.29 are best suited for use in this case. The feedback circuit is shown
in Fig. 8.30a, and at the input, we find that

is = (yS + g11a + g11f )vi + (g12a + g12 f )io (8.134)

At the output,
0 = (g21a + g21f )vi + (zL + g22a + g22f )io (8.135)

Defining
yi = yS + g11a + g11f (8.136)

zo = zL + g22a + g22f (8.137)

and making the assumptions |g12a| ≪ |g12 f | (8.138)

|g21a| ≫ |g21f | (8.139)
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Figure 8.29 The g-parameter
representation of a two-port.
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Figure 8.30 (a) Shunt-series feedback configuration using the g-parameter representation. (b) Circuit
of (a) redrawn with generators g21f vi and g12aio omitted.

we find

io
is

= A ≃
−

g21a

yizo

1 +
(
−

g21a

yizo

)
g12 f

= a
1 + af

(8.140)
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Figure 8.31 Current-feedback pair.

where
a = −

g21a

yizo
(8.141)

f = g12 f (8.142)

Following the procedure for the previous examples, we can find a circuit representation for
this case by eliminating the generators g21f vi and g12aio to obtain the approximate representa-
tion of Fig. 8.30b. Since this has the form of an ideal feedback circuit, all the results of Section
8.4.3 may now be used.

A common shunt-series feedback amplifier is the current-feedback pair of Fig. 8.31. Since
the basic amplifier of Fig. 8.31 cannot be represented by a two-port, the representation of
Fig. 8.30b cannot be used directly. However, as in previous examples, the feedback network
can be represented by a two-port, and the g parameters can be calculated using Fig. 8.32 to give

g11f =
i1
v1

||||i2=0
= 1

RF + RE
(8.143)

g12 f =
i1
i2

||||v1=0
= −

RE

RE + RF
(8.144)

g22f =
v2

i2

||||v1=0
= RE||RF (8.145)

Using (8.139), we neglect g21f . Assuming that g21f vi is negligible, we can redraw the circuit
of Fig. 8.31 as shown in Fig. 8.33. This circuit has an ideal input differencing node, and the
feedback function can be identified as

f = −
RE

RE + RF

1
𝛼2

(8.146)

RF

RE i2v1

+

–

v2

+

–

i1

Figure 8.32 Circuit for the calculation
of the g parameters of the feedback
network in Fig. 8.31.
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RE + RF α

Figure 8.33 Circuit equivalent to that of Fig. 8.31 using a two-port representation of the feedback
network.

The gain a of the basic amplifier is determined by calculating the current gain of the circuit
of Fig. 8.33 with the feedback generator removed. The overall current gain with feedback
applied can then be calculated from (8.40).

8.5.5 Summary

The results derived above regarding practical feedback circuits and the effect of feedback load-
ing can be summarized as follows.

First, input and output variables must be identified and the feedback identified as shunt or
series at input and output.

The feedback function f is found by the following procedure. If the feedback is shunt at
the input, short the input feedback node to ground and calculate the feedback current. If the
feedback is series at the input, open circuit the input feedback node and calculate the feedback
voltage. In both these cases, if the feedback is shunt at the output, drive the feedback network
with a voltage source. If the feedback is series at the output, drive with a current source.

The effect of feedback loading on the basic amplifier is found as follows. If the feedback is
shunt at the input, short the input feedback node to ground to find the feedback loading on the
output. If the feedback is series at the input, open circuit the input feedback node to calculate
output feedback loading. Similarly, if the feedback is shunt or series at the output, then short
or open the output feedback node to calculate feedback loading on the input.

These results along with other information are summarized in Table 8.1.

8.6 Single-Stage Feedback
The considerations of feedback circuits in this chapter have been mainly directed toward the
general case of circuits with multiple stages in the basic amplifier. However, in dealing with
some of these circuits (such as the series-series triple of Fig. 8.18a), equivalent circuits were
derived in which one or more stages contained an emitter resistor. (See Fig. 8.18c.) Such a
stage represents in itself a feedback circuit, as will be shown. Thus the circuit of Fig. 8.18c
contains feedback loops within a feedback loop, and this has a direct effect on the amplifier
performance. For example, the emitter resistor of Q3 in Fig. 8.18c has a linearizing effect on
Q3, and so does the overall feedback when the loop is closed. It is thus important to calculate
the effects of both local and overall feedback loops. The term local feedback is often used
instead of single-stage feedback. Local feedback is often used in isolated stages as well as
being found inside overall feedback loops. In this section, the low-frequency characteristics of
two basic single-stage feedback circuits will be analyzed.



Table 8.1 Summary of Feedback Configurations

To Calculate
Feedback Loading

Feedback
Configuration

Two-Port
Parameter
Representation

Output
Variable

Input
Variable

Transfer
Function
Stabilized Zi Zo At Input At Output

To Calculate
Feedback Function f

Shunt-shunt y vo is

vo

is

Transresistance

Low Low Short circuit output
feedback node

Short circuit input
feedback node

Drive the feedback
network with a voltage
at its output, and
calculate the current
flowing into a short at
its input

Shunt-series g io is

io

is

Current gain

Low High Open circuit output
feedback node

Short circuit input
feedback node

Drive the feedback
network with a current,
and calculate the
current flowing into a
short

Series-shunt h vo vs

vo

vs

Voltage gain

High Low Short circuit output
feedback node

Open circuit input
feedback node

Drive the feedback
network with a voltage,
and calculate the
voltage produced into
an open circuit

Series-series z io vs

io

vs

Transconductance

High High Open circuit output
feedback node

Open circuit input
feedback node

Drive the feedback
network with a current,
and calculate the
voltage produced into
an open circuit
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Figure 8.34 (a) Single-stage series-series
feedback circuit. (b) Low-frequency
equivalent circuit of (a). (c) Circuit
equivalent to (b) using a Thévenin
equivalent across the plane AA.

8.6.1 Local Series-Series Feedback

A local series-series feedback stage in bipolar technology (emitter degeneration) is shown in
Fig. 8.34a. The characteristics of this circuit were considered previously in Section 3.3.8, and
the circuit will be considered again here from the feedback viewpoint. Similar results are found
for MOS transistors with source degeneration.

The circuit of Fig. 8.34a can be recognized as a degenerate series-series feedback config-
uration as described in Sections 8.4.4 and 8.5.2. Instead of attempting to use the generalized
forms of those sections, we can perform a more straightforward calculation in this simple
case by working directly from the low-frequency, small-signal equivalent circuit shown in
Fig. 8.34b. For simplicity, source impedance is assumed zero but can be lumped in with rb if
desired. If a Thévenin equivalent across the plane AA is calculated, Fig. 8.34b can be redrawn
as in Fig. 8.34c. The existence of an input differencing node is apparent, and quantity ioRE is
identified as the feedback voltage vfb. Writing equations for Fig. 8.34c, we find

v1 =
r𝜋

r𝜋 + rb + RE
(vs − vfb) (8.147)
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io = gmv1 (8.148)

vfb = ioRE (8.149)

These equations are of the form of the ideal feedback equations, where v1 is the error voltage,
io is the output signal, and vfb is the feedback signal. From (8.147) and (8.148), we know that

io =
gmr𝜋

r𝜋 + rb + RE
(vs − vfb) (8.150)

and thus we can identify

a =
gmr𝜋

r𝜋 + rb + RE
=

gm

1 +
rb + RE

r𝜋

(8.151)

From (8.149),
f = RE (8.152)

Thus for the complete circuit,

io
vs

= A = a
1 + af

= 1
RE

1

1 + 1
RE

(
1

gm
+

rb + RE

𝛽0

) (8.153)

and A ≃ 1∕RE for large loop gain.
The loop gain is given by T = af , and thus

T =
gmRE

1 +
rb + RE

r𝜋

(8.154)

If (rb + RE) ≪ r𝜋 , we find
T ≃ gmRE (8.155)

The input resistance of the circuit is given by

Input resistance = (1 + T) × (input resistance with vfb = 0)

= (1 + T)(rb + r𝜋 + RE) (8.156)

Using (8.154) in (8.156) gives

Input resistance = rb + RE + r𝜋(1 + gmRE) (8.157)

= rb + r𝜋 + (𝛽0 + 1)RE (8.158)

We can also show that if the output resistance ro of the transistor is included, the output resis-
tance of the circuit is given by

Output resistance ≃ ro

⎛⎜⎜⎜⎜⎝
1 +

gmRE

1 +
rb + RE

r𝜋

⎞⎟⎟⎟⎟⎠
(8.159)

Both input and output resistance are increased by the application of emitter feedback, as
expected.
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◼ EXAMPLE
Calculate the low-frequency parameters of the series-series feedback stage represented by Q3
in Fig. 8.21b. The relevant parameters are as follows:

RE = 88 Ω r𝜋 = 650 Ω gm = 4
26

A/V 𝛽0 = 100 rb = 0

The loading produced by Q3 at the collector of Q2 is given by the input resistance expression
of (8.158) and is

Ri3 = (650 + 101 × 88) Ω = 9.54 kΩ (8.160)

The output resistance seen at the collector of Q3 can be calculated from (8.159) using rb =
5 kΩ to allow for the finite source resistance in Fig. 8.21b. If we assume that ro = 25 kΩ at
IC = 4 mA for Q3, then from (8.159), we find that

Ro3 = 25

⎛⎜⎜⎜⎝1 +

4
26

88

1 + 5088
650

⎞⎟⎟⎟⎠ kΩ = 63 kΩ (8.161)

In the example of Fig. 8.21b, the above output resistance would be multiplied by the loop gain
of the series-series triple.

Finally, when ac voltage v4 at the collector of Q2 in Fig. 8.21c is determined, output current
i3 in Q3 can be calculated using (8.153):

i3
v4

= 1
88

1

1 + 1
88

(26
4

+ 88
100

) A/V = 1
95.4

A/V (8.162)

Note that since the voltage v4 exists at the base of Q3, the effective source resistance in the
above calculation is zero.◼

8.6.2 Local Series-Shunt Feedback

Another example of a local feedback stage is the common-drain stage shown in Fig. 8.35a. This
circuit is a series-shunt feedback configuration. The small-signal model is shown in Fig. 8.35b.
The current through the gmb controlled source is controlled by the voltage across it; therefore,
it can be replaced by a resistor of value 1∕gmb. Using this transformation, the small-signal
model in Fig. 8.35b is redrawn in Fig. 8.35c, where

R′
L = RL||ro|| 1

gmb
(8.163)

The feedback network is taken to be R′
L. Using Fig. 8.35d, the h two-port parameters for the

feedback network are

h11f =
v1

i1

||||v2=0
= 0 (8.164)

h22f =
i2
v2

||||i1=0
= 1

R′
L

(8.165)
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Figure 8.35 (a) A source follower driving a resistive load. (b) A small-signal model for the circuit in
(a). (c) A simplified small-signal model. (d) Circuit for finding the two-port parameters for the feedback
network. (e) The circuit in (c) with the feedback network replaced by a two-port model.
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and the feedback factor is
f = h12 f =

v1

v2

||||i1=0
= 1 (8.166)

Here we neglect the forward transmission through the feedback network, h21f , as was done in
Section 8.5.3.

Figure 8.35b is redrawn in Fig. 8.35e with the feedback network replaced by a two-port
model. The gain of the basic amplifier a is found by setting the feedback to zero in Fig. 8.35e:

a =
vo

vs

||||vfb=0
= gmR′

L (8.167)

Using (8.166) and (8.167), the closed-loop gain is

A = a
1 + af

=
gmR′

L

1 + gmR′
L

(8.168)

This closed-loop gain is always less than one and approaches unity as gmR′
L → ∞.

From Fig. 8.35e, the output resistance without feedback is R′
L, and the closed-loop output

resistance is

Ro =
R′

L

1 + af
=

R′
L

1 + gmR′
L

= 1
1

R′
L

+ gm

= 1
1

RL
+ 1

ro
+ gmb + gm

(8.169)

where (8.163) is used in the right-most expression. The output resistance is reduced because of
the feedback. The input resistance is infinite because the resistance from the gate to the source
in the model in Fig. 8.35 is infinite.

8.7 The Voltage Regulator as a Feedback Circuit
As an example of a practical feedback circuit, the operation of a voltage regulator will be
examined. This section is introduced for the dual purpose of illustrating the use of feedback
in practice and for describing the elements of voltage regulator design.

Voltage regulators are widely used components that accept a poorly specified (possibly
fluctuating) dc input voltage and produce from it a constant, well-specified output voltage that
can then be used as a supply voltage for other circuits.3 In this way, fluctuations in the supply
voltage are essentially eliminated, and this usually results in improved performance for circuits
powered from such a supply.

A common type of voltage regulator is the series regulator shown schematically in Fig. 8.36.
The name series comes from the fact that the output voltage is controlled by a power transistor
in series with the output. This is the last stage of a high-gain voltage amplifier, as shown in
Fig. 8.36.

Many of the techniques discussed in previous chapters are utilized in the design of circuits
of this kind. A stable reference voltage VR can be generated using a Zener diode or a bandgap
reference, as described in Chapter 4. This is then fed to the noninverting input of the high-gain
amplifier, where it is compared with a sample of the output taken by resistors R1 and R2. This
is recognizable as a series-shunt feedback arrangement, and using (8.132), we find that for
large loop gain,

VO = VR
R1 + R2

R2
(8.170)

The output voltage can be varied by changing ratio R1∕R2.
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Figure 8.36 Schematic of a series voltage regulator.

The characteristics required in the amplifier of Fig. 8.36 are those of a good op amp, as
described in Chapter 6. In particular, low drift and offset are essential so that the output voltage
VO is as stable as possible. Note that the series-shunt feedback circuit will present a high
input impedance to the reference generator, which is desirable to minimize loading effects. In
addition, a very low output impedance will be produced at VO, which is exactly the requirement
for a good voltage source. If the effects of feedback loading are neglected (usually a good
assumption in such circuits), the low-frequency output resistance of the regulator is given by
(8.29) as

Ro =
roa

1 + T
(8.171)

where

T = a
R2

R1 + R2
(8.172)

roa = output resistance of the amplifier without feedback

a = magnitude of the forward gain of the regulator amplifier

If the output voltage of the regulator is varied by changing ratio R1∕R2, then (8.171) and
(8.172) indicate that T and thus Ro also change. Assuming that VR is constant and T ≫ 1, we
can describe this behavior by substituting (8.170) and (8.172) in (8.171) to give

Ro =
roa

aVR
VO (8.173)

which shows Ro to be a function of VO if a, VR, and roa are fixed. If the output current drawn
from the regulator changes by ΔIO, then VO changes by ΔVO, where

ΔVO = RoΔIO (8.174)
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Substitution of (8.173) in (8.174) gives

ΔVO

VO
=

roa

aVR
ΔIO (8.175)

This equation allows calculation of the load regulation of the regulator. This is a widely used
specification, which gives the percentage change in VO for a specified change in IO and should
be as small as possible.

Another common regulator specification is the line regulation, which is the percentage
change in output voltage for a specified change in input voltage. Since VO is directly pro-
portional to VR, the line regulation is determined by the change in reference voltage VR with
changes in input voltage and depends on the particular reference circuit used.

As an example of a practical regulator, consider the circuit diagram of the 723 monolithic
voltage regulator shown in Fig. 8.37. The correspondence to Fig. 8.36 can be recognized, with
the portion of Fig. 8.37 to the right of the dashed line being the voltage amplifier with feedback.
The divider resistors R1 and R2 in Fig. 8.36 are labeled RA and RB in Fig. 8.37 and are external
to the chip. The output power transistor Q15 is on the chip and is Darlington connected with
Q14 for high gain. Differential pair Q11 and Q12, together with active load Q8, contribute most
of the gain of the amplifier. Resistor RC couples the reference voltage to the amplifier, and C2
is an external capacitor, which is needed to prevent oscillation in the high-gain feedback loop.
Its function is discussed in Chapter 9.

◼ EXAMPLE
Calculate the bias conditions and load regulation of the 723. Assume the total supply voltage
is 15 V.

The bias calculation begins at the left-hand side of Fig. 8.37. Current source I1 models a
transistor current source that uses a junction field-effect transistor (JFET)4 that behaves like
an n-channel MOS transistor with a negative threshold voltage. Diodes D1 and D2 are Zener
diodes.4 When operating in reverse breakdown, the voltage across a Zener diode is nearly
constant, as described in Chapter 2.

The Zener diode D1 produces a voltage drop of about 6.2 V, which sets up a reference
current in Q2:

IC2 = −
6.2 − |VBE2|

R1 + R2

= −6.2 − 0.6
16,000

A

= −348 μA (8.176)

Note that IC2 is almost independent of supply voltage because it is dependent only on the Zener
diode voltage.

The voltage across R1 and Q2 establishes the currents in current sources Q3, Q7, and Q8:

IC7 = IC8 = −174 μA (8.177)

IC3 = −10.5 μA (8.178)

Current source Q3 establishes the operating current in the voltage reference circuit com-
posed of transistors Q4, Q5, Q6, resistors R6, R7, R8, and Zener diode D2. This circuit can be
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recognized as a variation of the Wilson current source described in Chapter 4, and the negative
feedback loop forces the current in Q6 to equal IC3 so that

IC6 = 10.5 μA (8.179)

where the base current of Q4 has been neglected.
The output reference voltage VR is composed of the sum of the Zener diode voltage D2 plus

the base-emitter voltage of Q6, giving a reference voltage of about 6.8 V. The current in the
Zener is established by VBE6 and R8, giving

ID2 =
VBE6

R8
= 600

5
μA = 120 μA (8.180)

The Darlington pair Q4, Q5 helps give a large loop gain that results in a very low output
impedance at the voltage reference node. Resistor R6 limits the current and protects Q5 in
case of an accidental grounding of the voltage reference node. Resistor R7 and capacitor C1
form the high-frequency compensation required to prevent oscillation in the feedback loop.
Note that the feedback is shunt at the output node. Any changes in reference-node voltage
(due to loading, for example) are detected at the base of Q6, amplified, and fed to the base of
Q4 and thus back to the output where the original change is opposed.

The biasing of the amplifier is achieved via current sources Q7 and Q8. The current in Q7
also appears in Q10 (neglecting the base current of Q9). Transistor Q13 has an area twice that
of Q10 and one-half the emitter resistance. Thus

IC13 = 2IC10 = 2IC7 = 348 μA (8.181)

Transistor Q9 provides current gain to minimize the effect of base current in Q10 and Q13. This
beta-helper current mirror was described in Chapter 4.

The bias current in each half of the differential pair Q11, Q12 is thus

IC11 = IC12 = 1
2

IC13 = 174 μA (8.182)

Since Q8 and R5 are identical to Q7 and R4, the current in Q8 is given by

IC8 = −174 μA (8.183)

Transistor Q8 functions as an active load for Q12, and since the collector currents in these two
devices are nominally equal, the input offset voltage for the differential pair is nominally zero.

The current in output power transistor Q15 depends on the load resistance but can go as
high as 150 mA before a current-limit circuit (not shown) prevents further increase. Resistor
R12 provides bleed current so that Q14 always has at least 0.04 mA of bias current, even when
the current in Q15 is low and/or its current gain is large.

In order to calculate the load regulation of the 723, (8.175) indicates that it is necessary to
calculate the open-loop gain and output resistance of the regulator amplifier. For this purpose,
a differential ac equivalent circuit of this amplifier is shown in Fig. 8.38. Load resistance RL12
is the output resistance presented by Q8, which is

RL12 ≃ ro8(1 + gm8R5) (8.184)
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Figure 8.38 An ac equivalent circuit of the regulator amplifier of the 723 voltage regulator.

Assuming that the magnitude of the Early voltage of Q8 is 100 V and IC8 = −174 μA, we can
calculate the value of RL12 as

RL12 = 100
0.174

(
1 + 0.174

26
1000

)
kΩ = 4.42 MΩ (8.185)

Since gm11 = gm12, the impedance in the emitter of Q12 halves the transconductance and gives
an effective output resistance of

Ro12 =
(

1 + gm12
1

gm11

)
ro12 (8.186)

where ro12 is the output resistance of Q12 alone and is 575 kΩ if the Early voltage is 100 V.
Thus

Ro12 = 1.15 MΩ (8.187)

The external load resistance RL determines the load current and thus the bias currents in
Q14 and Q15. However, RL is not included in the small-signal calculation of output resis-
tance because this quantity is the resistance seen by RL looking back into the circuit. Thus,
for purposes of calculating the ac output resistance, RL may be assumed infinite, and the out-
put Darlington pair then produces no loading at the collector of Q12. The voltage gain of the
circuit may then be calculated as

a =
||||vo

vi

|||| = ||||v1

vi

|||| = gm12

2
(Ro12||RL12)

= 0.174
26

1
2
(1.15||4.42) × 106

= 3054 (8.188)

The output resistance roa of the circuit of Fig. 8.38 is the output resistance of a Darlington
emitter follower. If R12 is assumed large compared with r𝜋15, then

roa = 1
gm15

+ 1
𝛽0(15)

(
1

gm14
+

RS

𝛽0(14)

)
(8.189)

where
RS = Ro12||RL12 = 913 kΩ (8.190)
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If we assume collector bias currents of 20 mA in Q15 and 0.5 mA in Q14 together with
𝛽0(15) = 𝛽0(14) = 100, then substitution in (8.189) gives

roa =
[

1.3 + 1
100

(
52 + 913,000

100

)]
Ω

= (1.3 + 92) Ω

= 93 Ω (8.191)

Substituting for roa and a in (8.175) and using VR = 6.8 V, we obtain, for the load regulation,

ΔVO

VO
= 93

3054 × 6.8
ΔIO

= 4.5 × 10−3ΔIO (8.192)

where ΔIO is in amps.
If ΔIO is 50 mA, then (8.192) gives

ΔVO

VO
= 2 × 10−4 = 0.02 percent (8.193)

This answer is close to the value of 0.03 percent given on the specification sheet. Note the
extremely small percentage change in output voltage for a 50 mA change in load current.◼

8.8 Feedback Circuit Analysis Using the Return Ratio
The feedback analysis presented so far has used two-ports to manipulate a feedback circuit
into unilateral forward amplifier and feedback networks. Since real feedback circuits have
bilateral feedback networks and possibly bilateral amplifiers, some work is required to find
the amplifier a and feedback f networks. The correct input and output variables and the type
of feedback must be identified, and the correct two-port representation (y, z, h, or g) must be
used. After this work, the correspondence between the original circuit and modified two-ports
is small, which can make these techniques difficult to use.

Alternatively, a feedback circuit can be analyzed in a way that does not use two-ports.
This alternative analysis, which is often easier than two-port analysis, is called return-ratio
analysis.5–7 Here, the closed-loop properties of a feedback circuit are described in terms of the
return ratio for a dependent source in the small-signal model of an active device. The return
ratio for a dependent source in a feedback loop is found by the following procedure:

1. Set all independent sources to zero.

2. Disconnect the dependent source from the rest of the circuit, which introduces a break
in the feedback loop.

3. On the side of the break that is not connected to the dependent source, connect an inde-
pendent test source st of the same sign and type as the dependent source.

4. Find the return signal sr generated by the dependent source.

Then the return ratio (ℛ) for the dependent source is ℛ = −sr∕st, where the variable s
represents either a current or a voltage.
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Figure 8.39 (a) A feedback circuit that gives an inverting voltage gain. The X marks indicate where
the loop will be broken. (b) The circuit in (a) modified to find the return ratio for the dependent voltage
source.

Figure 8.39a shows a negative feedback amplifier that includes a dependent voltage source.
Figure 8.39b shows how the circuit is modified to find the return ratio. The dependent source
is disconnected from the rest of the circuit by breaking the connections at the two Xs marked
in Fig. 8.39a. A test signal vt is connected on the side of the break that is not connected to the
controlled source. The return signal vr is measured at the open circuit across the controlled
source to find the return ratio ℛ = −vr∕vt.

◼ EXAMPLE
Find the return ratio for the circuit in Fig. 8.39b.

The return ratio can be found with little computation because the resistors form a voltage
divider:

vx =
RS||ri

RS||ri + RF + ro
vt (8.194)

The return voltage vr is
vr = −avvx (8.195)

Combining these equations gives

ℛ = −
vr

vt
=

RS||ri

RS||ri + RF + ro
av (8.196)

◼
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Figure 8.40 (a) A transresistance feedback circuit. (b) The small-signal model for the circuit in (a). The
X marks indicate where the loop will be broken. (c) The circuit in (b) modified to find the return ratio
for the dependent current source.

Figure 8.40a is a single-stage feedback circuit. Its small-signal model shown in Fig. 8.40b
includes a dependent current source. Figure 8.40c illustrates how the return ratio is found in
this case. Here, the dependent source is disconnected from the rest of the circuit, and a test
current source it is connected on the side of the break that is not connected to the dependent
source. A short circuit is applied across the dependent current source to provide a path for the
return current ir to flow. The return ratio is computed as ℛ = −ir∕it.

8.8.1 Closed-Loop Gain Using the Return Ratio

A formula for the closed-loop gain of a feedback amplifier in terms of the return ratio will
now be derived. Consider a feedback amplifier as shown in Fig. 8.41. The feedback amplifier
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Figure 8.41 Linear feedback amplifier used to derive the closed-loop gain formula.

consists of linear elements: passive components, controlled sources, and transistor small-signal
models. A controlled source with value k that is part of the small-signal model of an active
device is shown explicitly. The output of the controlled source is soc, and the controlling signal
is sic. The equation that describes the controlled source is

soc = ksic (8.197)

(For example, the output of the controlled source in Fig. 8.40b is soc = gmvbe; the controlling
signal is sic = vbe, and the value of the controlled source is k = gm.) Each signal s in the figure
is labeled as if it is a voltage, but each signal could be either a current or a voltage. Because
the feedback amplifier is linear, signals sic and sout can be expressed as linear functions of the
outputs of the two sources, soc and sin:

sic = B1sin − Hsoc (8.198)

sout = dsin + B2soc (8.199)

The terms B1,B2, and H in (8.198) and (8.199) are defined by

B1 =
sic

sin

||||soc=0
=

sic

sin

||||k=0
(8.200a)

B2 =
sout

soc

||||sin=0
(8.200b)

H = −
sic

soc

||||sin=0
(8.200c)

So B1 is the transfer function from the input to the controlling signal evaluated with k = 0,
B2 is the transfer function from the dependent source to the output evaluated with the input
source set to zero, and H is the transfer function from the output of the dependent source to
the controlling signal evaluated with the input source set to zero, times −1.

Also, the direct feedthrough d is given by

d =
sout

sin

||||soc=0
=

sout

sin

||||k=0
(8.200d)

which is the transfer function from the input to the output evaluated with k = 0. The calculation
of d usually involves signal transfer through passive components that provide a signal path
directly from the input to output, a path that goes around rather than through the controlled
source k.
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Equations 8.197, 8.198, and 8.199 can be solved for the closed-loop gain. Substituting
(8.197) in (8.198) and rearranging gives

sic =
B1

1 + kH
sin (8.201)

Substituting (8.197) in (8.199) and then substituting (8.201) in the resulting equation and rear-
ranging terms gives the closed-loop gain A:

A =
sout

sin
=

B1kB2

1 + kH
+ d (8.202)

The term kH in the denominator is equal to the return ratio, as will be shown next. The return
ratio is found by setting sin = 0, disconnecting the dependent source from the circuit, and
connecting a test source st where the dependent source was connected. After these changes,
soc = st and (8.198) becomes

sic = −Hst (8.203)

Then the output of the dependent source is the return signal sr = ksic = −kHst. Therefore,

ℛ = −
sr

st
= kH (8.204)

So the closed-loop gain in (8.202) can be rewritten as

A =
sout

sin
=

B1kB2

1 +ℛ
+ d (8.205a)

or
A =

sout

sin
=

g

1 +ℛ
+ d (8.205b)

where
g = B1kB2 (8.206)

Here g is the gain from sin to sout if H = 0 and d = 0, and d is the direct signal feedthrough,
which is the value of A when the controlled source is set to zero (k = 0).

The closed-loop gain formula in (8.205a) requires calculations of four terms: B1, B2, d,
and ℛ. That equation can be manipulated into a more convenient form with only three terms.
Combining terms in (8.205b) using a common denominator 1 +ℛ gives

A =
g + d(1 +ℛ)

1 +ℛ
=

g + dℛ
1 +ℛ

+ d
1 +ℛ

=

( g

ℛ
+ d

)
ℛ

1 +ℛ
+ d

1 +ℛ
(8.207)

Defining

A∞ =
g

ℛ
+ d (8.208)

allows (8.207) to be rewritten as

A = A∞
ℛ

1 +ℛ
+ d

1 +ℛ
(8.209)
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Figure 8.42 A block diagram
for the closed-loop gain formula
in (8.209).

This is a useful expression for the closed-loop gain. Here, if ℛ → ∞, then A = A∞ because
ℛ∕(1 +ℛ) → 1 and d∕(1 +ℛ) → 0. So A∞ is the closed-loop gain when the feedback circuit
is ideal (that is, when ℛ → ∞).

A block-diagram representation of (8.209) is shown in Fig. 8.42. The gain around the feed-
back loop is ℛ, and the effective forward gain in the loop is ℛA∞. A key difference between
the two-port and return-ratio analyses can be seen by comparing Figs. 8.1 and 8.42. In the
two-port analysis, all forward signal transfer through the amplifier and the feedback network
is lumped into a. In the return-ratio analysis, there are two forward signal paths: one path (d)
for the feedforward through the feedback network and another path (ℛA∞) for the effective
forward gain.

Typically, A∞ is determined by a passive feedback network and is equal to 1∕f from
two-port analysis. The value of A∞ can be found readily since A∞ = A when k → ∞. Letting
k → ∞ causes ℛ = kH → ∞. (Here we assume k > 0. If k < 0 in a negative feedback circuit,
then ℛ → ∞ when k → −∞.) When k → ∞, the controlling signal sic for the dependent
source must be zero if the output of the dependent source is finite. The controlled source
output will be finite if the feedback is negative. These facts can be used to find A∞ with little
computation in many circuits, as is demonstrated in the next example.

◼ EXAMPLE
Compute the closed-loop gain for the circuit of Fig. 8.40 using (8.209). Use the component
values given in the figure.

To use (8.209), A∞, ℛ, and d are needed. Here, the only controlled source is the gm source,
so k = gm. Also, sin = iin, sout = vo, and sic = vbe. To find A∞, let gm → ∞, which forces the
controlling voltage vbe to equal zero, assuming that the output current from the gm generator
is finite. With vbe = 0, no current flows through r𝜋 , and therefore the input current iin flows
through RF to produce vo. Thus

A∞ =
vo

iin

||||gm=∞
= −RF = −20 kΩ. (8.210)

Next, d is found by setting k = gm = 0 and computing the transfer function from input to
output:

d =
vo

iin

||||gm=0
= (ro||RC) ⋅

r𝜋
r𝜋 + RF + ro||RC

= (1 MΩ||10 kΩ) ⋅ 5 kΩ
5 kΩ + 10 kΩ + 1 MΩ||100 kΩ

(8.211)

= 1.4 kΩ
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Finally, the return ratio for the gm generator can be calculated using Fig. 8.40c. Applying a
current-divider formula gives the current i𝜋 through r𝜋 as

i𝜋 = −
ro||RC

ro||RC + RF + r𝜋
it (8.212)

The return current is
ir = gmvbe = gmr𝜋 i𝜋 (8.213)

Combining these equations gives

ℛ = −
ir
it
= gmr𝜋 ⋅

ro||RC

ro||RC + RF + r𝜋
(8.214)

= (40 mA∕V) ⋅ 5 kΩ ⋅
1 MΩ||10 kΩ

1 MΩ||10 kΩ + 20 kΩ + 5 kΩ
= 56.7 (8.215)

Then using (8.209),

A = A∞
ℛ

1 +ℛ
+ d

1 +ℛ
= −20 kΩ 56.7

1 + 56.7
+ 1.4 kΩ

1 + 56.7
= −19.6 kΩ (8.216)

◼

In (8.209), the second term that includes d can be neglected whenever |d| ≪ |A∞ℛ|. This
condition usually holds at low frequencies because d is the forward signal transfer through a
passive network, while |A∞ℛ| is large because it includes the gain through the active device(s).
For example, ignoring the d∕(1 +ℛ) term in (8.216) gives A ≈ −19.7 kΩ, which is close to
the exact value. As the frequency increases, however, the gain provided by the transistors falls.
As a result, d may become significant at high frequencies.

The effective forward gain A∞ℛ can be computed after A∞ and ℛ have been found. Alter-
natively, this effective forward gain can be found directly from the feedback circuit.8 Call this
forward gain b, so

b = A∞ ⋅ ℛ (8.217)

Then the closed-loop gain in (8.209) can be written as

A = b
1 +ℛ

+ d
1 +ℛ

(8.218)

Using (8.206), (8.208), and ℛ = kH, b can be expressed as

b = A∞ ⋅ ℛ =
( g

ℛ
+ d

)
⋅ ℛ = (B1kB2 + dℛ)

= (B1kB2 + dkH) =
[

B1 +
dH
B2

]
kB2 (8.219)

This final expression breaks b into parts that can be found by analyzing the feedback circuit.
In (8.200b), B2 is defined as the transfer function from the output of the controlled source soc
to sout evaluated with sin = 0. The term in brackets in (8.219) is equal to the transfer function
from sin to sic when sout = 0, as will be shown next.

If sout = 0, then (8.199) simplifies to

B2soc = −dsin (8.220)
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Substituting (8.220) into (8.198) gives

sic = B1sin +
dH
B2

sin (8.221)

Therefore,
sic

sin

||||sout=0
= B1 +

dH
B2

(8.222)

which is the expression in brackets in (8.219). Substituting (8.222) and (8.200b) into (8.219)
gives

b =
sic

sin

||||sout=0
⋅ k ⋅

sout

soc

||||sin=0
(8.223)

The effective forward gain b can be found using this formula.

◼ EXAMPLE

Compute the effective forward gain b = A∞ℛ for the circuit in Fig. 8.40.
As in the previous example, k = gm, sin = iin, sout = vo, sic = vbe, and soc = ioc = gmvbe. To

compute the first term in (8.223), the output vo must be set to zero by shorting the output to
ground. The resulting circuit is shown in Fig. 8.43a. The calculation gives

sic

sin

||||sout=0
=

vbe

iin

||||vo=0
= r𝜋||RF = 5 kΩ||20 kΩ = 4.0 kΩ (8.224)

The last term in (8.223) is found by setting the input iin to zero. This input current can be
set to zero by replacing the source iin with an open circuit, as shown in Fig. 8.43b. Treating

r
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vo = 0
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–

(a)

(b)

π

r ro

RF
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vo

vbe

+

–

RCπ

Figure 8.43 Circuits for finding the
effective forward gain b. (a) The circuit
for the input side. (b) The circuit for the
output side.
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the gm generator as an independent source with value ioc for this calculation, the result is

sout

soc

||||sin=0
=

vo

ioc

||||iin=0
= −[ro||Rc||(RF + r𝜋)]

= −[1 MΩ||10 kΩ||(20 kΩ + 5 kΩ)] = −7.09 kΩ (8.225)

Substituting (8.224) and (8.225) into (8.223) gives

b = 4.0 kΩ(gm)(−7.09 kΩ) = 4.0 kΩ(40 mA/V)(−7.09 kΩ) = −1134 kΩ

For comparison, we can find b using (8.217) and the values of A∞ and ℛ computed in the
previous example:

b = A∞ℛ = −20 kΩ (56.7) = −1134 kΩ

Both calculations give the same value for the effective forward gain b.◼

8.8.2 Closed-Loop Impedance Formula Using the Return Ratio

Feedback affects the input and output impedance of a circuit. In this section, a useful
expression for the impedance at any port in a feedback circuit in terms of the return ratio9 is
derived. Consider the feedback circuit shown in Fig. 8.44. This feedback amplifier consists of
linear elements: passive components, controlled sources, and transistor small-signal models.
A controlled source k that is part of the small-signal model of an active device is shown
explicitly. The derivation is carried out for the impedance Zport looking into an arbitrary
port that is labeled as port X in Fig. 8.44a. The port impedance can be found by driving the
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Figure 8.44 (a) The linear feedback circuit used to derive Blackman’s impedance formula with respect
to port X. (b) The circuit with port X driven by an independent current source.
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port by an independent current source as shown in Fig. 8.44b and computing Zport = vx∕ix.
Since the circuit in Fig. 8.44b is linear, the signals sic and vx are linear functions of the signals
ix and sy applied to the ports labeled X and Y. Therefore, we can write

vx = a1ix + a2sy (8.226)

sic = a3ix + a4sy (8.227)

From (8.226), the impedance looking into the port when k = 0 is

Zport(k = 0) =
vx

ix

||||k=0
=

vx

ix

||||sy=0
= a1 (8.228)

Next we compute two return ratios for the controlled source k under different conditions. Both
are used in the final formula for the closed-loop impedance. The first return ratio is found
with the port open. With port X open, ix = 0. The return ratio is found by disconnecting the
controlled source from the circuit and connecting a test source st where the dependent source
was connected. With these changes to the circuit, sy = st and (8.227) becomes

sic = a4st (8.229)

The output of the controlled source is the return signal

sr = ksic (8.230)

From the last two equations, we find

ℛ(port open) = −
sr

st
= −ka4 (8.231)

The other return ratio is found with the port shorted. With port X shorted, the voltage vx is
zero. To find the return ratio, we disconnect the controlled source and connect test source st
where the dependent source was connected. With these changes, (8.226) gives

ix = −
a2

a1
st (8.232)

Substituting (8.232) into (8.227), using sy = st, and rearranging terms gives

sic =
(

a4 −
a2a3

a1

)
st (8.233)

The return signal is
sr = ksic (8.234)

Combining these last two equations gives the return ratio with the port shorted:

ℛ(port shorted) = −
sr

st
= −k

(
a4 −

a2a3

a1

)
(8.235)

Shortly, we will see that (8.228), (8.231), and (8.235) can be combined to give a useful formula
for the port impedance.
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To complete the derivation, we find the impedance looking into the port in Fig. 8.44b using

Zport =
vx

ix
(8.236)

Using (8.226), (8.227), and sy = ksic, we get (after some manipulation)

Zport =
vx

ix
= a1

⎛⎜⎜⎜⎜⎝
1 − k

(
a4 −

a2a3

a1

)
1 − ka4

⎞⎟⎟⎟⎟⎠
(8.237)

Substituting (8.228), (8.231), and (8.235) into (8.237) yields

Zport = Zport(k = 0)
[

1 +ℛ(port shorted)
1 +ℛ(port open)

]
(8.238)

This expression is called Blackman’s impedance formula.9 The two return ratios, with the port
open and shorted, are computed with respect to the same controlled source k. Equation 8.238
can be used to compute the impedance at any port, including the input and output ports. A key
advantage of this formula is that it applies to any feedback circuit, regardless of the type of
feedback. Usually, one of the two return ratios in (8.238) is zero, and in those cases Blackman’s
formula shows that feedback either increases or decreases the impedance by a factor (1 +ℛ).

◼ EXAMPLE
Use Blackman’s formula to find the output resistance for the feedback circuit in Fig. 8.40.

From Blackman’s formula, the output resistance is given by

Rout = Rout(gm = 0)
[

1 +ℛ(output port shorted)

1 +ℛ(output port open)

]
(8.239)

Shorting the output port in Fig. 8.40c causes vbe = 0, so ir = gmvbe = 0; therefore,
ℛ(output port shorted) = 0. The ℛ(output port open) is the same return ratio that was com-
puted in (8.215), so ℛ(output port open) = 56.7. The only remaining value to be computed
is the resistance at the output port when gm = 0:

Rout(gm = 0) = ro||RC||(RF + r𝜋) = 1 MΩ||10 kΩ||(20 kΩ + 5 kΩ)

= 7.1 kΩ (8.240)

Substituting into (8.239) yields

Rout = 7.1 kΩ
[ 1 + 0

1 + 56.7

]
= 120 Ω (8.241)

The negative feedback reduces the output resistance, which is desirable because the output is
a voltage, and a low output resistance is desired in series with a voltage source.◼

◼ EXAMPLE
Find the output resistance for the MOS super source follower shown in Fig. 8.45a. Ignore the
body effect here to simplify the analysis.
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Figure 8.45 (a) The super-source-follower circuit. (b) The circuit with each transistor replaced by its
small-signal model.

The super source follower uses feedback to reduce the output impedance. Ideal current
sources I1 and I2 bias the transistors and are shown rather than transistor current sources to
simplify the circuit. With current source I1 forcing the current in M1 to be constant, M2 provides
the output current when driving a load. There is feedback from vout to vgs2 through M1. The
small-signal model for this circuit is shown in Fig. 8.45b. In this circuit, either gm1 or gm2 could
be chosen as k. Here, we will use k = gm2. In all the following calculations, the input source
vin is set to zero. First, the output resistance when gm2 = 0 is

Rout(gm2 = 0) = ro2 (8.242)

This result may seem surprising at first, since the output is connected to the source of M1, which
is usually a low-impedance point. However, an ideal current source, which is a small-signal
open circuit, is connected to the drain of M1. Therefore the current in the gm1 generator flows
only in ro1, so M1 has no effect on the output resistance when gm2 = 0.

The return ratio for the gm2 source with the output port open is found to be

ℛ(output open) = gm2ro2(1 + gm1ro1) (8.243)

The return ratio with the output port shorted is

ℛ(output shorted) = 0 (8.244)
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because shorting the output port forces vout = 0 and v1 = −vout = 0. Hence no current flows in
M1, so v2 = 0, and therefore the return ratio is zero. Substituting the last three equations into
(8.238) gives the closed-loop output resistance:

Rout = ro2

[
1 + 0

1 + gm2ro2(1 + gm1ro1)

]
(8.245)

Assuming gmro ≫ 1, then

Rout ≈
ro2

gm2ro2gm1ro1
= 1

gm2gm1ro1
(8.246)

which is much lower than the output resistance of a conventional source follower, which is
about 1∕gm. This result agrees with (3.137), which was derived without the use of feedback
principles. Although gmb1 appears in (3.137), it does not appear in (8.246) because the body
effect is ignored here.◼

The next example demonstrates an unusual case where neither return ratio vanishes in
Blackman’s impedance formula.

◼ EXAMPLE
In the Wilson current source in Fig. 8.46a, assume that the three bipolar transistors are identical
with 𝛽0 ≫ 1 and are biased in the forward-active region. Find the output resistance.

Blackman’s impedance formula can be used here because there is a feedback loop formed by
the current mirror Q1–Q3 with Q2. With all transistors forward active and 𝛽F ≫ 1, IC1 = IC2 =
IC3 = IREF. (The output is connected to other circuitry that is not shown, so IC2 is nonzero.) The
small-signal model is shown in Fig. 8.46b, where diode-connected Q1 is modeled by a resistor
of value 1∕gm1. Resistor r𝜋3, which is in parallel with 1∕gm1, is ignored (since r𝜋3 = 𝛽0∕gm3 =
𝛽0∕gm1 ≫ 1∕gm1). Also, ro3 is ignored, assuming that it is much larger than the resistance
looking into the base of Q2. Selecting k = gm3 and calculating the first term in (8.238) gives

Rout(gm3 = 0) = ro2 +
1

gm1
≈ ro2 (8.247)

since setting gm3 = 0 forces the current through r𝜋2 to be zero. Therefore, the voltage across
r𝜋2 is zero, which causes the current through the gm2 source to be zero.

The return ratios in Blackman’s formula can be found using the circuit shown in Fig. 8.46c.
First, let us find ℛ(output port open). When the output port is open, the current in the gm2
generator can only flow through the parallel resistor ro2, so the currents through r𝜋2 and 1∕gm1
are equal and are supplied by the test source it. Therefore,

vx = −it
1

gm1
(8.248)

Also,
ir = gm3vx (8.249)

Combining these two equations gives

ℛ(output open) = −
ir
it
=

gm3

gm1
= 1 (8.250)

where gm1 = gm3 because IC1 = IC3.
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Figure 8.46 (a) The Wilson current mirror. (b) The circuit with each transistor replaced by its
small-signal model. (c) The small-signal model modified for calculation of ℛ for gm1.

When the output port is shorted, the current through the gm2 generator is not restricted
to flow only through ro2. First, notice that with the output port shorted, ro2 is in parallel with
1∕gm1, so ro2 can be ignored. With this simplification, the current through the resistance 1∕gm1
is from the test and gm2 sources, so

vx =
1

gm1
(−it + gm2vy) (8.251)

Now
vy = −itr𝜋2 (8.252)

Combining these two equations gives

vx =
1

gm1
(−it − itgm2r𝜋2) = −

it
gm1

(1 + 𝛽0) (8.253)
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where the relation 𝛽0 = gm2r𝜋2 has been used. The return current is

ir = gm3vx (8.254)

Therefore,

ℛ(output shorted) = −
ir
it
=

gm3

gm1
(1 + 𝛽0) = 1 + 𝛽0 (8.255)

Substituting in Blackman’s formula gives

Rout(closed loop) = ro2 ⋅
1 + (𝛽0 + 1)

1 + 1
=

ro2(𝛽0 + 2)
2

≈
𝛽0ro2

2
(8.256)

This approximate result agrees with (4.91), which was derived without the use of Blackman’s
formula.◼

8.8.3 Summary—Return-Ratio Analysis

Return-ratio analysis is an alternative approach to feedback circuit analysis that does not use
two-ports. The loop transmission is measured by the return ratio ℛ. The return ratio is a dif-
ferent measure of loop transmission than af from two-port analysis. (The return ratio ℛ is
referred to as loop gain in some textbooks. That name is not associated with ℛ here to avoid
confusion with T = af , which is called loop gain in this chapter.) For negative feedback cir-
cuits, ℛ > 0. In an ideal feedback circuit, ℛ → ∞ and the closed-loop gain is A∞, which
typically depends only on passive components. The actual gain of a feedback circuit is close
to A∞ if ℛ ≫ 1. Blackman’s impedance formula (8.238) gives the closed-loop impedance in
terms of two return ratios.

Return-ratio analysis is often simpler than two-port analysis of feedback circuits. For
example, return-ratio analysis uses equations that are independent of the type of feedback, and
simple manipulations of the circuit allow computation of the various terms in the equations.
In contrast, two-port analysis uses different two-port representations for each of the four
feedback configurations (series-series, series-shunt, shunt-series, and shunt-shunt). Therefore,
the type of feedback must be correctly identified before undertaking two-port analysis.
The resulting two-ports for the amplifier and feedback networks must be manipulated to
find the open-loop forward gain a and the open-loop input and output impedances. With
two-port analysis, the open-loop impedance is either multiplied or divided by (1 + T) to give
the closed-loop impedance, depending upon the type of feedback. In contrast, Blackman’s
formula gives an equation for finding the closed-loop impedance, and this one equation
applies to any port in any feedback circuit.

8.9 Modeling Input and Output Ports in Feedback Circuits
Throughout this chapter, the source and load impedances have been included when analyzing
a feedback circuit. For instance, the inverting voltage-gain circuit in Fig. 8.47a, with source
resistance RS and load resistance RL, can be analyzed using the two-port or return-ratio meth-
ods described in this chapter. The resulting model is shown in Fig. 8.47b. The source and load
resistances do not appear explicitly in the model, but the gain A, input resistance Ri, and out-
put resistance Ro are functions of the source and load resistances. Therefore, use of this model
requires that both the source and load resistances are known. However, both the source and
load are not always known or fixed in value. For example, a feedback amplifier might have to
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Figure 8.47 (a) An
inverting-gain feedback
amplifier. (b) A model for
(a) based on feedback
analysis with known load
and source resistances.
(c) Another model for
(a) based on known load
resistance and unknown
source resistance.
(d) A different model for
(a) based on known source
resistance and unknown
load.

drive a range of load resistances. In that case, it would be desirable to have a simple model of
the amplifier with the following properties: the elements in the model do not depend on the
load, and the effect of a load on the gain can be easily calculated.

If only one of the resistances RS and RL is known, a useful model can be generated. First,
consider Fig. 8.47a when the source resistance is unknown but the load is known. Then the
model in Fig. 8.47c can be used. Here, the key differences from the model in Fig. 8.47b are
that R′

i and A′ are used rather than Ri and A, RS is shown explicitly, and the controlling voltage
for A′ is the voltage vi across R′

i rather than the source voltage vs. (The single-prime mark here
denotes that the quantity is computed with RS unknown.) The input resistance R′

i and gain
A′ are computed with the load connected and with an ideal input driving network. Here, the
Thévenin driving network is ideal if the source resistance RS is zero. (If the input is a Norton
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equivalent consisting of a current source and parallel source resistance, R′
i and A′ are found

with RS → ∞.) The resulting A′ and R′
i are not functions of RS. The source resistance RS in

Fig. 8.47c forms a voltage divider with R′
i ; therefore, the overall voltage gain can be found by

vo

vs
=

vo

vi
⋅

vi

vs
= A′ R′

i

R′
i + RS

(8.257)

Next, consider Fig. 8.47a when the load is unknown but the source resistance is known.
Figure 8.47d shows the appropriate model. Here, the key differences from the model in
Fig. 8.47b are that R′′

o and A′′ are used rather than Ro and A, and RL is shown explicitly.
(The double-prime mark denotes that the quantity is computed with RL unknown.) The output
resistance R′′

o and gain A′′ for this Thévenin model are computed assuming an ideal load,
which is an open circuit here (RL → ∞). The load resistance RL in Fig. 8.47d forms a voltage
divider with R′′

o , so the loaded voltage gain is

vo

vs
= A′′ RL

R′′
o + RL

(8.258)

◼ EXAMPLE
Model Fig. 8.47a with the circuit in Fig. 8.47d, assuming the load resistance is unknown.

The model in Fig. 8.47d can be used when RL is unknown. Using return-ratio analysis, the
calculations of R′′

o and A′′ are as follows. With RL → ∞, the circuit in Fig. 8.47a is identical
to Fig. 8.39a, and therefore the return ratio is given by (8.196):

ℛ′′ = ℛ(RL → ∞) =
RS||ri

RS||ri + RF + ro
av (8.259)

The output resistance with RL → ∞, R′′
o , can be found using Blackman’s formula. First, the

output resistance with the controlled source set to zero is

R′′
o (av = 0) = ro||(RF + ri||RS) (8.260)

The return ratio with the output port open is given in (8.259). The return ratio with the output
port shorted is zero because shorting the output eliminates the feedback. Therefore, for the
closed-loop output resistance, (8.238) gives

R′′
o = ro||(RF + ri||RS)

1 + 0

1 +
RS||ri

RS||ri + RF + ro
av

(8.261)

Calculation of A′′ requires that A′′
∞ and d′′ be found with RL → ∞:

A′′
∞ =

vo

vs

||||av=∞ ς RL=∞
= −

RF

RS
(8.262)

and

d′′ =
vo

vs

||||av=0 ς RL=∞
=

(RF + ro)||ri

RS + (RF + ro)||ri
⋅

ro

RF + ro
(8.263)

Using the results for A′′
∞, ℛ′′, and d′′, we can compute

A′′ = A′′
∞

ℛ′′

1 +ℛ′′ +
d′′

1 +ℛ′′ (8.264)
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[Typically, the d′′∕(1 +ℛ′′) term is small and can be ignored.] The voltage gain when a resis-
tive load is connected can be found using (8.258). The only element of the model that was not
computed is the input resistance Ri. It is a function of RL, so it can only be computed once RL
is known.◼

The output-port model in Fig. 8.47d can be drawn as a Thévenin or Norton equivalent.
With the Thévenin equivalent shown (a controlled voltage source in series with an output
resistance), R′′

o and A′′ are computed with RL → ∞. When the output port is modeled by a
Norton equivalent with a controlled current source and parallel output resistance, their values
are found with RL = 0.

PROBLEMS
Note: In these problems, loop transmission is used
generically to refer to loop gain T = af or return ratio
ℛ.

8.1 .(a) In a feedback amplifier, forward gain a =
100,000 and feedback factor f = 10−3. Calculate over-
all gain A and the percentage change in A if a changes
by 10 percent.

(b) Repeat (a) if f = 0.1.

8.2 For the characteristic of Fig. 8.2, the follow-
ing data apply:

So2 = 15 V So1 = 7 V a1 = 50,000

a2 = 20,000

(a) Calculate and sketch the overall transfer char-
acteristic of Fig 8.3 for the above amplifier when
placed in a feedback loop with f = 10−4.

(b) Repeat (a) with f = 0.1.

8.3 .(a) For the conditions in Problem 8.2(b),
sketch the output voltage waveform So and the error
voltage waveform S𝜖 if a sinusoidal input voltage Si

with amplitude 1.5 V is applied.

(b) Repeat (a) with an input amplitude of 2 V.

8.4 Verify (8.40), (8.41), and (8.42) for a
shunt-series feedback amplifier.

ii

vo

+

–

M1 5 kΩ

10 kΩ

M2 5 kΩ M3 5 kΩ

Figure 8.48 An ac schematic of a shunt-shunt feedback amplifier.

8.5 Verify (8.43), (8.44), and (8.45) for a
series-series feedback amplifier.

8.6 For the shunt-shunt feedback amplifier of
Fig. 8.15a, take RF = 100 kΩ and RL = 15 kΩ. For the
op amp, assume that Ri = 500 kΩ, Ro = 200 Ω, and
av = 75,000. Calculate input resistance, output resis-
tance, loop transmission, and closed-loop gain:

(a) Using the formulas from two-port analysis
(Section 8.5).

(b) Using the formulas from return-ratio analysis
(Section 8.8).

8.7 The ac schematic of a shunt-shunt feed-
back amplifier is shown in Fig. 8.48. All tran-
sistors have ID = 1 mA,W∕L = 100, k′ = 60 μA/V2,
and 𝜆 = 1∕(50 V).

(a) Calculate the overall gain vo∕ii, the loop
transmission, the input impedance, and the output
impedance at low frequencies. Use the formulas from
two-port analysis (Section 8.5).

(b) If the circuit is fed from a source resistance of
1 kΩ in parallel with ii, what is the new output resis-
tance of the circuit?

8.8 .(a) Repeat Problem 8.7(a) with all NMOS
transistors in Fig. 8.48 replaced by bipolar npn tran-
sistors. All collector currents are 1 mA and 𝛽 = 200,
VA = 50 V, and rb = 0.



650 Chapter 8 ▪ Feedback

(b) If the circuit is fed from a source resistance of
1 kΩ in parallel with ii, what is the new output resis-
tance of the circuit?

8.9 Repeat Problem 8.7 using the formulas from
return-ratio analysis (Section 8.8).

8.10 Repeat Problem 8.8 using the formulas from
return-ratio analysis (Section 8.8).

8.11 The half-circuit of a balanced monolithic
series-series triple is shown in Fig. 8.18a. Calculate
the input impedance, output impedance, loop gain,
and overall gain of the half-circuit at low frequencies
using the following data:

RE1 = RE2 = 290 Ω RF = 1.9 kΩ

RL1 = 10.6 kΩ RL2 = 6 kΩ

For the transistors, IC1 = 0.5 mA, IC2 = 0.77 mA,
IC3 = 0.73 mA, 𝛽 = 120, rb = 0, and VA = 40 V.

8.12 Repeat Problem 8.11 if the output signal is
taken as the voltage at the emitter of Q3.

8.13 A feedback amplifier is shown in Fig. 8.49.
Device data are as follows: 𝛽npn = 200, 𝛽pnp = 100,|VBE(on)| = 0.7 V, rb = 0, and |VA| = ∞. If the dc input
voltage is zero, calculate the overall gain vo∕vi, the
loop gain, and the input and output impedance at low
frequencies. Compare your answers with a SPICE
simulation. Also use SPICE to plot the complete
large-signal transfer characteristic and find the second
and third harmonic distortion in vo for a sinusoidal
input voltage with peak-peak amplitude of 0.5 V at vi.

8.14 Replace npn transistors Q1–Q2 in Fig. 8.49
with NMOS transistors M1–M2, and replace the pnp
transistor Q3 with PMOS transistor M3. Also, replace
the 1.25 kΩ resistor in the drain of M1 with a 4.35 kΩ
resistor. Repeat the calculations and simulations in

Q1 Q2

Q3

vi

+

–

vo

+

–

1.25 kΩ

10 kΩ

+6 V

–6 V

5 kΩ

1 kΩ
6 kΩ

Figure 8.49 Feedback amplifier circuit.

Problem 8.13. For all transistors, use W∕L = 100,
𝛾 = 0, and |𝜆| = 0. Also, Vtn = −Vtp = 1 V, k′n =
60 μA/ V2, and k′p = 20 μA/V2.

8.15 A balanced monolithic series-shunt feed-
back amplifier is shown in Fig. 8.50.

(a) If the common-mode input voltage is zero, cal-
culate the bias current in each device. Assume that 𝛽F

is large.

(b) Calculate the voltage gain, input impedance,
output impedance, and loop gain of the circuit at low
frequencies using the following data:

𝛽 = 100 rb = 50 Ω VA = ∞ VBE(on) = 0.7 V

(c) Compare your answers with a SPICE simu-
lation (omit the loop gain), and also use SPICE to
plot the complete large-signal transfer characteris-
tic. If the resistors have a temperature coefficient of
+1000 ppm/∘C, use SPICE to determine the temper-
ature coefficient of the circuit gain over the range
−55∘C to +125∘C.

8.16 How does the loop gain T = af of the circuit
of Fig. 8.50 change as the following circuit elements
change? Discuss qualitatively.

(a) 50 Ω emitter resistor of the input stage

(b) 500 Ω feedback resistor

(c) 200 Ω load resistor on the output

8.17 The ac schematic of a shunt-series feed-
back amplifier is shown in Fig. 8.31. Element val-
ues are RF = 1 kΩ, RE = 100 Ω, RL1 = 4 kΩ, RS =
1∕yS = 1 kΩ, and zL = 0. Device data: 𝛽 = 200,
rb = 0, IC1 = IC2 = 1 mA, and VA = 100 V.

(a) Calculate the overall gain io∕ii, the loop trans-
mission, and the input and output impedances at low
frequencies.
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Figure 8.50 Balanced series-shunt
feedback amplifier.

(b) If the value of RL1 changes by +10 percent,
what is the approximate change in overall transmis-
sion and input impedance?

8.18 .(a) Repeat Problem 8.17(a) with RF = 5 kΩ,
RE = 200 Ω, RL1 = 10 kΩ, and ys = 0.

(b) If the collector current of Q1 increases by 20
percent, what will be the approximate change in over-
all gain and output resistance?

8.19 Calculate the transconductance, input im-
pedance, output impedance, and loop transmission at
low frequencies of the local series-feedback stage of
Fig. 8.34 with parameters RE = 200 Ω, 𝛽 = 150, IC =
1 mA, rb = 200 Ω, and VA = 80 V.

8.20 A commercial wideband monolithic feed-
back amplifier (the 733) is shown in Fig. 8.51. This
consists of a local series-feedback stage feeding a
two-stage shunt-shunt feedback amplifier. The current
output of the input stage acts as a current drive to the
shunt-shunt output stage.

(a) Assuming all device areas are equal, calculate
the collector bias current in each device.

(b) Calculate the input impedance, output im-
pedance, and overall gain vo∕vi for this circuit at
low frequencies with RL = 2 kΩ. Also calculate the
loop gain of the output stage. Data: 𝛽 = 100, rb = 0,
ro = ∞.

(c) Compare your answers with a SPICE simula-
tion of the bias currents, input and output impedances,
and voltage gain.

8.21 If the 723 voltage regulator is used to realize
an output voltage Vo = 10 V with a 1 kΩ load, cal-
culate the output resistance and the loop gain of the
regulator. If a 500 Ω load is connected to the reg-
ulator in place of the 1 kΩ load, calculate the new
value of Vo. Use SPICE to determine the line regula-
tion and load regulation of the circuit. Use I1 = 1 mA,
𝛽 = 100, VA = 100 V, Is = 10−15 A, and rb = 0.

8.22 Assume the BiCMOS amplifier of Fig. 3.78
is fed from a current source. Calculate the
low-frequency small-signal transresistance vo∕ii, the
loop gain, and the input and output impedances of the
circuit. Use data as in Problem 3.17. Compare your
answers with a SPICE simulation, and also use SPICE
to plot the complete large-signal transfer characteristic
of the circuit.

8.23 A variable-gain CMOS amplifier is shown
in Fig. 8.52. Note that M4 represents shunt feedback
around M6. Assuming that the bias value of Vi is
adjusted so that VGD6 = 0 V dc, calculate bias cur-
rents in all devices and the small-signal voltage gain
and output resistance for Vc equal to 3 V and then
4 V. Compare your answer with a SPICE simulation,
and use SPICE to plot out the complete large-signal
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Figure 8.51 Circuit diagram of the 733 wideband monolithic amplifier.
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Figure 8.52 Variable-gain CMOS amplifier for Problem 8.23.

transfer characteristic of the circuit. Use μnCox =
60 μA/V2, μpCox = 30 μA/V2, Vtn = 0.8 V, Vtp =
−0.8 V, 𝜆n = 𝜆p = 0, and 𝛾n = 0.5 V1∕2.

8.24 A CMOS feedback amplifier is shown in
Fig. 8.53. If the dc input voltage is zero, calculate the
overall gain vo∕vi and the output resistance. Com-
pare your answer with a SPICE simulation. Use
μnCox = 60 × 10−6 A/V2, μpCox = 30 × 10−6 A/V2,
Vtn = 0.8 V, Vtp = −0.8 V, 𝜆n = |𝜆p| = 0.03 V−1, and
𝛾n = 𝛾p = 0.

8.25 An active-cascode gain stage is shown in
Fig. 8.54. Assume the amplifier A1 has a voltage gain
a = 1 × 103 and infinite input impedance. For the tran-
sistors, k′n = 140 μA/V2, Vov = 0.3 V, 𝛾 = 0, and 𝜆n =
0.03 V−1. Assume all transistors are active. Calculate
the output resistance using Blackman’s impedance
formula. Then calculate the voltage gain vo∕vi.

8.26 Use Blackman’s impedance formula to find
the output resistance of the active-cascode current
source in Fig. 8.55. Express the result in terms of
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Figure 8.53 CMOS feedback amplifier for Problem 8.24.
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gm1, gm2, ro1, ro2, and a, which is the voltage gain of
the op amp. Assume all transistors are active, with
(W∕L)1 = (W∕L)2 = (W∕L)3 and 𝛾 = 0. (The drain of
M2 connects to other circuitry that is not shown.) Also
assume that the op amp has infinite input impedance
and zero output impedance.

(a) Carry out the calculations with respect to con-
trolled source gm2.

(b) Repeat the calculations with respect to the
voltage-controlled voltage source a in the amplifier.

(c) Compare the results of (a) and (b).

8.27 Use return-ratio analysis and Blackman’s
impedance formula to find the closed-loop gain, return
ratio, input resistance, and output resistance for the
inverting gain amplifier in Fig. 8.56. For the op amp,
assume that Ri = 1 MΩ, Ro = 10 kΩ, and av = 200.

8.28 An ac schematic of a local shunt-shunt
feedback circuit is shown in Fig. 8.57. Take RF =
100 kΩ and RL = 15 kΩ. For the MOS transistor, ID =
0.5 mA, W∕L = 100, k′ = 180 μA/V2, and ro = ∞
Calculate the input resistance, output resistance, loop
transmission, and closed-loop gain:

(a) Using the formulas from two-port analysis
(Section 8.5).

(b) Using the formulas from return-ratio analysis
(Section 8.8).

8.29 Replace the MOS transistor in Fig. 8.57 with
an npn transistor. Take RF = 2 kΩ, RL = 2 kΩ, 𝛽 =
200, IC = 1 mA, rb = 0, and VA = 100 V.

(a) Repeat Problem 8.28(a).

(b) Repeat Problem 8.28(b).
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+

–

+
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Figure 8.56 An inverting feedback amplifier.
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Figure 8.57 A local shunt-shunt feedback amplifier.

8.30 A voltage-follower feedback circuit is
shown in Fig. 8.58. For the MOS transistor, ID =
0.5 mA, k′ = 180 μA/V2, ro = ∞, W∕L = 100, |𝜙f | =
0.3 V, and 𝛾 = 0.3 V1∕2. For the op amp, assume that
Ri = 1 MΩ, Ro = 10 kΩ, and av = 1,000. Calculate
the input resistance, output resistance, loop transmis-
sion, and closed-loop gain:

(a) Using the formulas from two-port analysis
(Section 8.5).

(b) Using the formulas from return-ratio analysis
(Section 8.8).

8.31 Replace the MOS transistor in Fig. 8.58 with
an npn transistor. For the transistor, IC = 0.5 mA and
ro = ∞.

(a) Repeat the calculations in Problem 8.30(a).
(b) Repeat the calculations in Problem 8.30(b).

8.32 For the noninverting amplifier shown in
Fig. 8.59, R1 = 1 kΩ and R2 = 5 kΩ. For the op
amp, take Ri = 1 MΩ, Ro = 100 Ω, and av = 1 × 104.
Calculate the input resistance, output resistance, loop
transmission, and closed-loop gain:
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Figure 8.59 A noninverting feedback amplifier.

(a) Using the formulas from two-port analysis
(Section 8.5).

(b) Using the formulas from return-ratio analysis
(Section 8.8).

8.33 Calculation of return ratio begins by break-
ing a feedback loop at a controlled source. However,
breaking a feedback loop at a controlled source is
often impossible in a SPICE simulation because the
controlled source (e.g., the gm source in a transistor’s
small-signal model) is embedded in a small-signal
model. Therefore, it cannot be accessed or discon-
nected in simulation. A technique that can be used to
simulate the return ratio with SPICE is illustrated in
Fig. 8.59 for the circuit in Fig. 8.59. First, the indepen-
dent source Vi is set to zero. Next, ac test signals vt and
it are injected into the loop at a convenient point (e.g.,
at the X in Fig. 8.59), creating two modified versions
of the circuit as shown in Figs. 8.60a and 8.60b. Using
Fig. 8.60a, calculate ℛ′

i = −im∕id. Using Fig. 8.60b,
calculate ℛ′

v = −vm∕vd. The amplitudes of test sig-
nals it and vt do not affect ℛ′

i or ℛ′
v. Also, these ac

test signals do not affect the dc operating point of the
feedback circuit. The return ratio ℛ for the controlled
source is related to ℛ′

i and ℛ′
v by10

1
1 +ℛ

= 1
1 +ℛ′

i

+ 1
1 +ℛ′

v

(a) Compute ℛ′
i and ℛ′

v for the circuit in
Fig. 8.60. Use element values from Problem 8.32.
Then combine these values using the equation above
to find ℛ.

(b) Compute ℛ directly by breaking the loop at
the av controlled source. Compare the results in (a)
and (b).

(c) Carry out a SPICE simulation to find ℛ′
i and

ℛ′
v. Then combine these values using the equation

above to find ℛ. Compare with your results from (a).

8.34 .(a) Calculate the loop gain T = af for the
series-shunt feedback circuit in Fig. 8.59 using
h-parameter two-ports. Take R1 = 200 kΩ, and R2 =
100 kΩ. For the op amp, assume Ri = 50 kΩ, Ro =
1 MΩ, and av = 1 × 103.

(b) If the input source location and type in
Fig. 8.59 are changed as shown in Fig. 8.61, the
feedback is now shunt-shunt. Calculate the loop
gain T = af for this shunt-shunt feedback circuit
using y-parameter two-ports. Use the element values
in (a).

(c) Calculate the return ratio ℛ for the circuit in
Fig. 8.61, again using the element values in (a). This
return ratio is the same as the return ratio for the circuit
in Fig. 8.59. Why?

(d) Compare the results in (a), (b), and (c).
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CHAPTER 9

Frequency Response and
Stability of Feedback
Amplifiers

9.1 Introduction
In Chapter 8, we considered the effects of negative feedback on circuit parameters such as gain
and terminal impedance. We saw that application of negative feedback resulted in a number
of performance improvements, such as reduced sensitivity of gain to active-device parameter
changes and reduction of distortion due to circuit nonlinearities.

In this chapter, we see the effect of negative feedback on the frequency response of
a circuit. The possibility of oscillation in feedback circuits is illustrated, and methods of
overcoming these problems by compensation of the circuit are described. Finally, the effect
of compensation on the large-signal high-frequency performance of feedback amplifiers is
investigated.

Much of the analysis in this chapter is based on the ideal block diagram in Fig. 9.1. This
block diagram includes the forward gain a and feedback factor f, which are the parameters used
in two-port analysis of feedback circuits in Chapter 8. The equations and results in this chapter
could be expressed in terms of the parameters used in the return-ratio analysis in Chapter 8 by
an appropriate change of variables, as shown in Appendix A.9.1.

The equations and relationships in this chapter are general and can be applied to any feed-
back circuit. However, for simplicity, we will often assume the feedback factor f is a positive,
unitless constant. One circuit that has such an f is the series-shunt feedback circuit shown in
Fig. 8.24. In this circuit, the feedback network is a resistive voltage divider, so f is a constant
with 0 ≤ f ≤ 1. The forward gain a is a voltage gain that is positive at low frequencies. This
circuit gives a noninverting closed-loop voltage gain.

9.2 Relation Between Gain and Bandwidth in Feedback
Amplifiers
Chapter 8 showed that the performance improvements produced by negative feedback were
obtained at the expense of a reduction in gain by a factor (1 + T), where T is the loop gain.
The performance specifications that were improved were also changed by the factor (1 + T).
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f

a(s)vi vo

v  

vfb

+

–

Figure 9.1 Feedback circuit
configuration.

In addition to the foregoing effects, negative feedback also tends to broadband the amplifier.
Consider first a feedback circuit as shown in Fig. 9.1 with a simple basic amplifier whose gain
function contains a single pole

a(s) =
a0

1 − s
p1

(9.1)

where a0 is the low-frequency gain of the basic amplifier and p1 is the basic-amplifier pole in
radians per second. Assume that the feedback path is purely resistive and thus the feedback
function f is a positive constant. Since Fig. 9.1 is an ideal feedback arrangement, the overall
gain is

A(s) =
vo

vi
= a(s)

1 + a(s)f
(9.2)

where the loop gain is T(s) = a(s)f . Substitution of (9.1) in (9.2) gives

A(s) =

a0

1 − s
p1

1 +
a0f

1 − s
p1

=
a0

1 − s
p1

+ a0f
=

a0

1 + a0f
1

1 − s
p1

1
1 + a0f

(9.3)

From (9.3), the low-frequency gain A0 is

A0 =
a0

1 + T0
(9.4)

where
T0 = a0f = low-frequency loop gain (9.5)

The −3 dB bandwidth of the feedback circuit (i.e., the new pole magnitude) is (1 + a0f ) ⋅ |p1|
from (9.3). Thus the feedback has reduced the low-frequency gain by a factor (1 + T0), which
is consistent with the results of Chapter 8, but it is now apparent that the−3 dB frequency of the
circuit has been increased by the same quantity (1 + T0). Note that the gain-bandwidth product
is constant. These results are illustrated in the Bode plots of Fig. 9.2, where the magnitudes of
a(j𝜔) and A(j𝜔) are plotted versus frequency on log scales. It is apparent that the gain curves
for any value of T0 are contained in an envelope bounded by the curve of |a(j𝜔)|.

Because the use of negative feedback allows the designer to trade gain for bandwidth,
negative feedback is widely used as a method for designing broadband amplifiers. The gain
reduction that occurs is made up by using additional gain stages, which in general are also
feedback amplifiers.

Let us now examine the effect of the feedback on the pole of the overall transfer function
A(s). It is apparent from (9.3) that as the low-frequency loop gain T0 is increased, the magnitude
of the pole of A(s) increases. This is illustrated in Fig. 9.3, which shows the locus of the pole
of A(s) in the s plane as T0 varies. The pole starts at p1 for T0 = 0 and moves out along the
negative real axis as T0 is made positive. Figure 9.3 is a simple root-locus diagram and will be
discussed further in Section 9.5.
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Figure 9.2 Gain magnitude versus frequency for the basic amplifier and the feedback amplifier.
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Figure 9.3 Locus of the pole of the
circuit of Fig. 9.1 as loop gain T0

varies.

9.3 Instability1

9.3.1 The Nyquist Criterion

In the above simple example, the basic amplifier was assumed to have a single-pole transfer
function, and this situation is closely approximated in practice by internally compensated
general-purpose op amps. However, many amplifiers have multipole transfer functions that
cause deviations from the above results. The process of compensation overcomes these
problems, as will be seen later.

Consider an amplifier with a three-pole transfer function

a(s) =
a0(

1 − s
p1

)(
1 − s

p2

)(
1 − s

p3

) (9.6)

where |p1|, |p2|, and |p3| are the pole magnitudes in rad/s. The poles are shown in the s plane in
Fig. 9.4, and gain magnitude |a(j𝜔)| and phase ph a(j𝜔) are plotted versus frequency in Fig. 9.5,

p1

σ

jω

X
p2

X
p3

X

s plane

Figure 9.4 Poles of an amplifier in
the s plane.
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Figure 9.5 Gain and phase versus frequency for a circuit with a three-pole transfer function.

assuming about a factor of 10 separation between the poles. Only asymptotes are shown for
the magnitude plot. At frequencies above the first pole magnitude |p1|, the plot of |a(j𝜔)|
falls at 6 dB/octave and ph a(j𝜔) approaches −90∘. Above |p2|, these become 12 dB/octave
and −180∘, and above |p3| they become 18 dB/octave and −270∘. The frequency where ph
a(j𝜔) = −180∘ has special significance and is marked 𝜔180, and the value of |a(j𝜔)| at this
frequency is a180. If the three poles are fairly widely separated (by a factor of 10 or more),
the phase shifts at frequencies |p1|, |p2|, and |p3| are approximately −45∘, −135∘, and −225∘,
respectively. This will now be assumed for simplicity. In addition, the gain magnitude will be
assumed to follow the asymptotic curve, and the effect of these assumptions in practical cases
will be considered later.

Now consider this amplifier connected in a feedback loop as in Fig. 9.1 with f a positive
constant. Since f is constant, the loop gain T(j𝜔) = a(j𝜔)f will have the same variation with
frequency as a(j𝜔). A plot of af (j𝜔) = T(j𝜔) in magnitude and phase on a polar plot (with 𝜔

as a parameter) can thus be drawn using the data of Fig. 9.5 and the magnitude of f. Such a
plot for this example is shown in Fig. 9.6 (not to scale) and is called a Nyquist diagram. The
variable on the curve is frequency and varies from𝜔 = −∞ to𝜔 = ∞. For 𝜔 = 0, |T(j𝜔)| = T0
and ph T(j𝜔) = 0, and the curve meets the real axis with an intercept T0. As 𝜔 increases, as
Fig. 9.5 shows, |a(j𝜔)| decreases and ph a(j𝜔) becomes negative, and thus the plot is in the
fourth quadrant. As 𝜔 → ∞, ph a(j𝜔) → −270∘ and |a(j𝜔)| → 0. Consequently, the plot is
asymptotic to the origin and is tangent to the imaginary axis. At the frequency 𝜔180, the phase
is−180∘ and the curve crosses the negative real axis. If |a(j𝜔180)f | > 1 at this point, the Nyquist
diagram will encircle the point (−1, 0) as shown, and this has particular significance, as will
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Figure 9.6 Nyquist diagram [polar plot of T(j𝜔) in magnitude and phase] corresponding to the charac-
teristic of Fig. 9.5 (not to scale).

now become apparent. For the purposes of this treatment, the Nyquist criterion for stability of
the amplifier can be stated as follows:

“Consider a feedback amplifier with a stable T(s) (i.e., all poles of T(s) are in the left
half plane). If the Nyquist plot of T(j𝜔) encircles the point (−1, 0), the feedback amplifier is
unstable.”

This criterion simply amounts to a mathematical test for poles of transfer function A(s)
in the right half plane. If the Nyquist plot encircles the point (−1, 0), the amplifier has poles
in the right half plane, and the circuit will oscillate. In fact, the number of encirclements of
the point (−1, 0) gives the number of right-half-plane poles, and in this example there are
two. The significance of poles in the right half plane can be seen by assuming that a cir-
cuit has a pair of complex poles at (𝜎1 ± j𝜔1), where 𝜎1 is positive. The transient response
of the circuit then contains a term K1 exp 𝜎1t sin𝜔1t, which represents a growing sinusoid
if 𝜎1 is positive. (K1 is a constant representing initial conditions.) This term is then present
even if no further input is applied, and a circuit behaving in this way is said to be unstable or
oscillatory.

The significance of the point (−1, 0) can be appreciated if the Nyquist diagram is assumed to
pass through this point. Then at the frequency𝜔180,T(j𝜔) = a(j𝜔)f = −1 and A(j𝜔) = ∞ using
(9.2) in the frequency domain. The feedback amplifier is thus calculated to have a forward gain
of infinity, and this indicates the onset of instability and oscillation. This situation corresponds
to poles of A(s) on the j𝜔 axis in the s plane. If T0 is then increased by increasing a0 or f, the
Nyquist diagram expands linearly and then encircles (−1, 0). This corresponds to poles of A(s)
in the right half plane, as shown in Fig. 9.7.

9.3.2 Phase Margin and Gain Margin

From the above criterion for stability, a simpler test can be derived that is useful in most
common cases:

“If |T(j𝜔)| > 1 at the frequency where ph T(j𝜔) = −180∘, then the amplifier is unstable.”
The validity of this criterion for the example considered here is apparent from inspection

of Fig. 9.6 and application of the Nyquist criterion.
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Figure 9.7 Pole positions corresponding to different Nyquist diagrams.

In order to examine the effect of feedback on the stability of an amplifier, consider the
three-pole amplifier with gain function given by (9.6) to be placed in a negative-feedback loop
with f constant. The gain (in decibels) and phase of the amplifier are shown again in Fig. 9.8,
and also plotted is the quantity 20log101∕f . The value of 20log101∕f is approximately equal
to the low-frequency gain in decibels with feedback applied since

A0 =
a0

1 + a0f
(9.7)
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Figure 9.8 Amplifier gain and phase versus frequency showing the phase margin.
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and thus
1
f
≈ A0 (9.8)

if
T0 = a0f ≫ 1

Consider the vertical distance between the curve of 20log10|a(j𝜔)| and the line 20log101∕f
in Fig. 9.8. Since the vertical scale is in decibels, this quantity is

x = 20log10|a(j𝜔)| − 20log101∕f (9.9)

= 20log10|a(j𝜔)f |
= 20log10|T(j𝜔)| (9.10)

Thus the distance x is a direct measure in decibels of the loop-gain magnitude, |T(j𝜔)|. The
point where the curve of 20log10|a(j𝜔)| intersects the line 20log101∕f is the point where the
loop-gain magnitude |T(j𝜔)| is 0 dB or unity, and the curve of |a(j𝜔)| in decibels in Fig. 9.8
can thus be considered a curve of |T(j𝜔)| in decibels if the dotted line at 20log101∕f is taken
as the new zero axis.

The simple example of Section 9.2 showed that the gain curve versus frequency with
feedback applied (20log10|A(j𝜔)|) follows the 20log10A0 line until it intersects the gain
curve 20log10|a(j𝜔)|. At higher frequencies, the curve 20log10|A(j𝜔)| simply follows
the curve of 20log10|a(j𝜔)| for the basic amplifier. The reason for this is now apparent in that
at the higher frequencies, the loop gain |T(j𝜔)| → 0, and the feedback then has no influence
on the gain of the amplifier.

Figure 9.8 shows that the loop-gain magnitude |T(j𝜔)| is unity at frequency 𝜔0. At this
frequency, the phase of T(j𝜔) has not reached −180∘ for the case shown, and using the
modified Nyquist criterion stated above, we conclude that this feedback loop is stable.
Obviously, |T(j𝜔)| < 1 at the frequency where ph T(j𝜔) = −180∘. If the polar Nyquist
diagram is sketched for this example, it does not encircle the point (−1, 0).

As |T(j𝜔)| is made closer to unity at the frequency where ph T(j𝜔) = −180∘, the amplifier
has a smaller margin of stability, and this can be specified in two ways. The most common is
the phase margin, which is defined as follows: Phase margin = 180∘+ (ph T(j𝜔) at frequency
where |T(j𝜔)| = 1). The phase margin is indicated in Fig. 9.8 and must be greater than 0∘ for
stability.

Another measure of stability is the gain margin. This is defined to be 1∕|T(j𝜔)| in decibels
at the frequency where ph T(j𝜔) = −180∘, and this must be greater than 0 dB for stability.

The significance of the phase-margin magnitude is now explored. For the feedback amplifier
considered in Section 9.2, where the basic amplifier has a single-pole response, the phase
margin is obviously 90∘ if the low-frequency loop gain is reasonably large. This is illustrated
in Fig. 9.9a and results in a very stable amplifier. A typical lower allowable limit for the phase
margin in practice is 45∘, with a value of 60∘ being more common.

Consider a feedback amplifier with a phase margin of 45∘ and a feedback function f that is
real (and thus constant). Then

ph T(j𝜔0) = −135∘ (9.11)

where 𝜔0 is the frequency defined by

|T(j𝜔0)| = 1 (9.12)
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Figure 9.9 (a) Gain and phase versus frequency for a single-pole basic amplifier showing the phase
margin for a low-frequency loop gain T0.

Now |T(j𝜔0)| = |a(j𝜔0)f | = 1 implies that

|a(j𝜔0)| = 1
f

(9.13)

assuming that f is positive real.
The overall gain is

A(j𝜔) =
a(j𝜔)

1 + T(j𝜔)
(9.14)

Substitution of (9.11) and (9.12) in (9.14) gives

A(j𝜔0) =
a(j𝜔0)

1 + e−j135∘ =
a(j𝜔0)

1 − 0.7 − 0.7j
=

a(j𝜔0)
0.3 − 0.7j

and thus |A(j𝜔0)| = |a(j𝜔0)|
0.76

= 1.3
f

(9.15)

using (9.13).
The frequency 𝜔0, where |T(j𝜔0)| = 1, is the nominal −3 dB point for a single-pole basic

amplifier, but in this case there is 2.4 dB (1.3 ×) of peaking above the low-frequency gain
of 1∕f .

Consider a phase margin of 60∘. At the frequency 𝜔0 in this case,

ph T(j𝜔0) = −120∘ (9.16)

and |T(j𝜔0)| = 1 (9.17)
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Following a similar analysis, we obtain

|A(j𝜔0)| = 1
f

In this case, there is no peaking at 𝜔 = 𝜔0, but there has also been no gain reduction at this
frequency.

Finally, the case where the phase margin is 90∘ can be similarly calculated. In this case,

ph T(j𝜔0) = −90∘ (9.18a)

and |T(j𝜔0)| = 1 (9.18b)

A similar analysis gives |A(j𝜔0)| = 0.7
f

(9.18c)

As expected in this case, the gain at frequency 𝜔0 is 3 dB below the midband value.
These results are illustrated in Fig. 9.9b, where the normalized overall gain versus

frequency is shown for various phase margins. The plots are drawn assuming the response is
dominated by the first two poles of the transfer function, except for the case of the 90∘ phase
margin, which has only one pole. As the phase margin diminishes, the gain peak becomes
larger until the gain approaches infinity and oscillation occurs for phase margin = 0∘. The gain
peak usually occurs close to the frequency where |T(j𝜔)| = 1, but for a phase margin of 60∘,
there is 0.2 dB of peaking just below this frequency. Note that after the peak, the gain curves
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Figure 9.9 (b) Normalized overall gain for feedback amplifiers versus normalized frequency for various
phase margins. Frequency is normalized to the frequency where the loop gain is unity.
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approach an asymptote of −12 dB/octave for phase margins other than 90∘. This is because the
open-loop gain falls at −12 dB/octave due to the presence of two poles in the transfer function.

The simple tests for stability of a feedback amplifier (i.e., positive phase and gain margins)
can only be applied when the phase and gain margins are uniquely defined. The phase margin
is uniquely defined if there is only one frequency at which the magnitude of the loop gain
equals one. Similarly, the gain margin is uniquely defined if there is only one frequency at
which the phase of the loop gain equals −180∘. In most feedback circuits, these margins are
uniquely defined. However, if either of these margins is not uniquely defined, then stability
should be checked using a Nyquist diagram and the Nyquist criterion.

The loop gain T = af can be examined to determine the stability of a feedback circuit, as
explained in this section. Alternatively, these measures of stability can be applied to the return
ratio ℛ, as explained in Appendix A.9.1. Techniques for simulating ℛ2–5 and T = af 4 using
SPICE have been developed, based on methods for measuring loop transmission.6,7 These
techniques measure the loop transmission at the closed-loop dc operating point. An advantage
of SPICE simulation of the loop transmission is that parasitics that might have an important
effect are included. For example, parasitic capacitance at the op-amp input introduces fre-
quency dependence in the feedback network in Fig. 8.24, which may degrade the phase margin.

9.3.3 Stability of the Super Source Follower

The super source follower uses feedback to reduce its output resistance. Figure 9.10a,b
shows small-signal diagrams of two super source followers from Fig. 3.43, each driving load
capacitance CL. To simplify these diagrams, they do not show small-signal models of the
transistors. Assume the power-supply voltage is constant. Therefore, vdd = 0 in each diagram.
Also assume current sources I1 and I2 in Fig. 3.43 are implemented with transistors and have
output resistances of r1 and r2, respectively.

The stability of each of these circuits can be evaluated by finding its return ratio. To find
the return ratio in each circuit, the small-signal input voltage vi = 0, and each feedback loop is
broken at a point labeled with an X. A test signal vt is connected on the side of each break that
connects to the gate of M2. The return signal vr is measured on the other side of each break,
including the loading effect of the impedance looking into the gate of M2. The return ratio
is ℛ = −vr∕vt. The result is the same as the return ratio of a dependent source calculated in
Chapter 8 as long as the loading effect is properly included.

Figure 9.10c shows a small-signal diagram that includes small-signal models of each tran-
sistor. For simplicity, the only capacitances included are the gate-source capacitances of each
transistor (Cgs1 and Cgs2) and the load capacitance CL at the output of each follower. This
small-signal diagram applies for both of the super source followers in Fig. 3.43 as long as
r1 → ∞ for the circuit in Fig. 3.43b because I1 is not used in that circuit.

KCL at vo gives

vosCL +
vo

ro2
+

vo

r1
+ gm2vt +

vo − vr

ro1
+ (gm1 + gmb1)vo + vosCgs1 = 0 (9.19a)

KCL at vr gives
vr

r2
+ vrsCgs2 + −(gm1 + gmb1)vo +

vr − vo

ro1
= 0 (9.19b)

Solving (9.19a) for vo, plugging into (9.19b), and rearranging gives

ℛ = −
vr

vt
=

gm2

(
gm1 + gmb1 +

1
ro1

)
as2 + bs + c

(9.19c)
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Figure 9.10 Small-signal diagrams of super source followers, each configured to find return ratio.
(a) With n-channel M1 and p-channel M2. (b) With n-channel M1 and M2. (c) Including transistor models
for both of the above cases.

where

a = (CL + Cgs1)Cgs2 (9.19d)

b = (CL + Cgs1)
(

1
r2

+ 1
ro1

)
+ Cgs2

(
1

ro2
+ 1

r1
+ 1

ro1
+ gm1 + gmb1

)
(9.19e)

c =
(

1
ro2

+ 1
r1

)(
1
r2

+ 1
ro1

)
+
(

gm1 + gmb1 +
1

ro1

)(
1
r2

)
(9.19f)

At dc,

ℛ(𝜔 = 0) =
gm2

(
gm1 + gmb1 +

1
ro1

)
(

1
ro2

+ 1
r1

)(
1
r2

+ 1
ro1

)
+
(

gm1 + gmb1 +
1

ro1

)(
1
r2

)
=

gm2(
1

ro2
+ 1

r1

)(
1
r2

+ 1
ro1

)
gm1 + gmb1 +

1
ro1

+ 1
r2

(9.19g)
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If a simple current mirror is used to produce I2 in Fig. 9.10a,b, the denominator in (9.19g) is
normally about equal to 1∕r2. Then

ℛ(𝜔 = 0) ≃ gm2r2 (9.19h)

This approximation is usually reasonable because the resistance looking down into the drain
of M1 is normally large compared to r2 since degeneration provided by M2 and I1 (ro2||r1)
is active even though the loop that controls the gate of M2 is broken. On the other hand, this
approximation is not valid when r2 is large compared to the resistance looking down into the
drain of M1. For example, this case arises when I2 is formed by a cascoded current mirror.

Equation 9.19c shows that the super-source-follower return ratio has two poles and no zeros
when only the gate-source and load capacitances are considered. The poles can be found using
the quadratic formula. Then the dc return ratio and the pole locations can be used to find the
phase margin. If the poles are widely separated, the dominant pole can be estimated using
open-circuit time constants, and the second pole can be estimated using short-circuit time
constants, as shown in the following example.

◼ EXAMPLE
Use the quadratic formula to find the locations of the poles of the return ratio for the super
source follower in Fig. 9.10b, and use these locations to find the phase margin. Also use the
open- and short-circuit time-constant analysis methods to estimate the pole locations and deter-
mine how to change the capacitances to increase the separation between the poles. Assume that
gm1 = gm2 = 100 μA∕V, ro1 = ro2 = r2 = 1 MΩ, Cgs1 = Cgs2 = 100 fF, and CL = 1 pF, and
ignore the body effect.

From (9.19h), the dc return ratio is

ℛ(𝜔 = 0) ≃ gm2r2 = 100 (9.20a)

Since I1 is not used in this super source follower, r1 → ∞. From (9.19d–f),

a = [(1 + 0.1) × 10−12]0.1 × 10−12 = 0.11 × 10−24 F2 (9.20b)

b = [(1 + 0.1) × 10−12](1 + 1) × 10−6 + 0.1 × 10−12(1 + 1 + 100) × 10−6

= 1.2 × 10−17 F∕Ω (9.20c)

c = 10−6[(1 + 1) × 10−6] + [(100 + 1) × 10−6]10−6 = 1.0 × 10−10 (1∕Ω)2 (9.20d)

Let the poles be p1 and p2:

p1, p2 = − b
2a

±
√

b2 − 4ac
2a

= − 1.2 × 10−17

2(0.11 × 10−24)
±

√
(1.2 × 10−17)2 − 4(0.11 × 10−24)(1.0 × 10−10)

2(0.11 × 10−24)
= −9.0 Mrad∕s and −100 Mrad∕s (9.20e)

The return ratio is
ℛ = ℛ(𝜔 = 0)(

1 +
j𝜔|p1|

)(
1 +

j𝜔|p2|
) (9.20f)
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The magnitude |ℛ| = 1 when 𝜔 = 𝜔0:

|ℛ| = 1 = 100√
1 +

(
𝜔0

p1

)2
√

1 +
(
𝜔0

p2

)2
(9.20g)

Assuming (𝜔0∕|p1|)2 ≫ 1 and (𝜔0∕|p2|)2 ≫ 1,

|ℛ| = 1 ≃ 100(
𝜔0|p1|

)(
𝜔0|p2|

) (9.20h)

Therefore,

𝜔0 ≃
√

100|p1| ⋅ |p2| = √
100(9 × 106)(1 × 108) = 300 Mrad∕s (9.20i)

Since 𝜔0∕|p2| = 3 and |p2| > |p1| here, the assumption that (𝜔0∕|p1|)2 ≫ 1 and
(𝜔0∕|p2|)2 ≫ 1 is reasonable in this example but not always in practice. At 𝜔0, the
phase of the return ratio is

<)ℛ(𝜔 = 𝜔0) = −tan−1

(
𝜔0|p1|

)
− tan−1

(
𝜔0|p2|

)
= −tan−1

(
3 × 108

9 × 106

)
− tan−1

(
3 × 108

1 × 108

)
= −88 − 72 = −160∘ (9.20j)

Therefore, the phase margin is 20∘. The phase margin here is so low that significant peaking
in the closed-loop frequency response would occur.

The open-circuit time constants are found by calculating the resistance seen by each
capacitor across its own terminals with the other capacitors open circuited. Start with CL
and Cgs1, which are in parallel because vi = 0 for the loop-gain calculation. Let RL(oc) be the
resistance seen by these capacitors with Cgs2 open circuited. RL(oc) is the open-loop output
resistance of the super source follower with Cgs2 open:

RL(oc) = r1||ro2||Rup(oc) (9.20k)

where Rup(oc) is the open-loop resistance looking up into the source of M1 with vt = 0. Then
using (3.55) with RD||RL = r2 gives

Rup(oc) =
ro1 + r2

1 + (gm1 + gmb1)ro1
= (1 + 1) × 106

1 + 100
≃ 20 kΩ (9.20l)

and
RL(oc) ≃ 1000||20 ≃ 20 kΩ (9.20m)

Then
𝜏L(oc) = RL(oc)(CL + Cgs1) = 20 × 103(1 + 0.1) × 10−12 = 22 ns (9.20n)
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Now consider Rgs2(oc), the resistance seen by Cgs2 with CL and Cgs1 open circuited:

Rgs2(oc) = r2||Rdown(oc) (9.20o)

where Rdown(oc) is the open-loop resistance looking down into the drain of M1 with vt = 0. Then
use (3.66) with R → ∞ and RS = r1||ro2. Since this example does not include I1, r1 → ∞, and

Rdown(oc) = ro1 + (r1||ro2)[1 + (gm1 + gmb1)ro1]

= 1 + 1(1 + 100) ≃ 100 MΩ (9.20p)

and
Rgs2(oc) = 1||100 = 0.99 MΩ (9.20q)

Then
𝜏gs2(oc) = Rgs2(oc)Cgs2 = 0.99 × 106(0.1 × 10−12) = 99 ns (9.20r)

Thus,

p1 ≃ − 1
𝜏L(oc) + 𝜏gs2(oc)

= − 1

(22 + 99) × 10−9

= −8.3 Mrad∕s (9.20s)

The short-circuit time constants are found by calculating the resistance seen by each
capacitor across its own terminals with the other capacitors short circuited. Start with the
parallel CL and Cgs1. Let RL(sc) be the resistance seen by these capacitors with Cgs2 shorted.
RL(sc) is the open-loop output resistance of the super source follower in this case:

RL(sc) = r1||ro2||Rup(sc) (9.20t)

where Rup(sc) is the open-loop resistance looking up into the source of M1 with vt = 0 and
Cgs2 shorted. Then using (3.55) with RD||RL = 0 gives

Rup(sc) =
ro1

1 + (gm1 + gmb1)ro1
= 1

1 + (100)
= 9.9 kΩ (9.20u)

and
RL(sc) ≃ 1000||9.9 = 9.8 kΩ (9.20v)

Then
𝜏L(sc) = RL(sc)(CL + Cgs1) = 9.8 × 103(1 + 0.1) × 10−12 = 11 ns (9.20w)

Now consider Rgs2(sc), the resistance seen by Cgs2 with CL and Cgs1 shorted:

Rgs2(sc) = r2||ro1 = (1||1) = 500 kΩ (9.20x)

Then
𝜏gs2(sc) = Rgs2(sc)Cgs2 = 500 × 103(0.1 × 10−12) = 50 ns (9.20y)
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Thus,

p2 ≃ −
(

1
𝜏L(sc)

+ 1
𝜏gs2(sc)

)
= −

(
1

11 × 10−9
+ 1

50 × 10−9

)
= −110 Mrad∕s (9.20z)

Although the pole locations calculated with time-constant analysis are only approximately
correct, this analysis is important because it is simple enough to show how to change the
stability characteristics of the super source follower. Since |p2| > |p1|, the separation between
the poles increases when |p2| increases or |p1| decreases.

The open-circuit time-constant analysis shows that |p1| is set mainly by the largest
open-circuit time constant. In this example, that time constant is 𝜏gs2(oc), which is proportional
to Cgs2. Thus, |p1| can be reduced by increasing Cgs2. This change can be implemented by
adding extra capacitance in parallel with Cgs2 or by increasing the gate area of M2. (In other
examples, 𝜏L(oc) can be dominant if CL + Cgs1 is big enough.)

Also, the short-circuit time-constant analysis shows that |p2| is set mainly by the smallest
short-circuit time constant. In this example, that time constant is 𝜏L(sc), which is proportional
to CL + Cgs1. Thus, |p2| can be increased by reducing CL + Cgs1. In practice, this option is
not usually available because the circuit does not usually control the load it drives. Also, CL
is usually ≫ Cgs1, as in this example. As a result, reducing Cgs1 is unlikely to help much. (In
other examples, 𝜏gs2(sc) can be dominant if Cgs2 is small enough.)

Therefore, to increase the separation between the poles in this example, a practical solution
would be to increase Cgs2, which would reduce |p1| by increasing 𝜏gs2(oc). As shown in the next
section, increasing the pole separation increases the phase margin. In this case, however, this
change would reduce the bandwidth over which the circuit provides low output impedance.
See Problem 7.60.◼

9.4 Compensation
9.4.1 Theory of Compensation

Consider again the amplifier whose gain and phase are shown in Fig. 9.8. For the feedback
circuit in which this was assumed to be connected, the forward gain was A0, as shown in
Fig. 9.8, and the phase margin was positive. Thus the circuit was stable. It is apparent, however,
that if the amount of feedback is increased by making f larger (and thus A0 smaller), oscillation
will eventually occur. This is shown in Fig. 9.11, where f1 is chosen to give a zero phase
margin and the corresponding overall gain is A1 ≃ 1∕f1. If the feedback is increased to f2 (and
A2 ≃ 1∕f2 is the overall gain), the phase margin is negative, and the circuit will oscillate. Thus,
if this amplifier is to be used in a feedback loop with loop gain larger than a0f1, efforts must be
made to increase the phase margin. This process is known as compensation. Note that without
compensation, the forward gain of the feedback amplifier cannot be made less than A1 ≃ 1∕f1
because of the oscillation problem.

The simplest and most common method of compensation is to reduce the bandwidth of the
amplifier (often called narrowbanding). That is, a dominant pole is deliberately introduced
into the amplifier to force the phase shift to be less than −180∘ when the loop gain is unity.
This involves a direct sacrifice of the frequency capability of the amplifier.

If f is constant, the most difficult case to compensate is f = 1, which is a unity-gain
feedback configuration. In this case, the loop-gain curve is identical to the gain curve of the
basic amplifier. Consider this situation, and assume that the basic amplifier has the same
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Figure 9.11 Gain and phase versus frequency for a three-pole basic amplifier. Feedback factor f1 gives
a zero phase margin, and factor f2 gives a negative phase margin.

characteristic as in Fig. 9.11. To compensate the amplifier, we introduce a new dominant pole
with magnitude |pD|, as shown in Fig. 9.12, and assume that this does not affect the original
amplifier poles with magnitudes |p1|, |p2|, and |p3|. This is often not the case but is assumed
here for purposes of illustration.

The introduction of the dominant pole with magnitude |pD| into the amplifier gain function
causes the gain magnitude to decrease at 6 dB/octave until frequency |p1| is reached, and over
this region the amplifier phase shift asymptotes to −90∘. If frequency |pD| is chosen so that the
gain |a(j𝜔)| is unity at frequency |p1| as shown, then the loop gain is also unity at frequency|p1| for the assumed case of unity feedback with f = 1. The phase margin in this case is then
45∘, which means that the amplifier is stable. The original amplifier would have been unstable
in such a feedback connection.

The price that has been paid for achieving stability in this case is that with the feedback
removed, the basic amplifier has a unity-gain bandwidth of only |p1|, which is much
less than before. Also, with feedback applied, the loop gain now begins to decrease at
a frequency |pD|, and all the benefits of feedback diminish as the loop gain decreases.
For example, in Chapter 8 it was shown that shunt feedback at the input or output of an
amplifier reduces the basic terminal impedance by [1 + T(j𝜔)]. Since T(j𝜔) is frequency
dependent, the terminal impedance of a shunt-feedback amplifier will begin to rise when|T(j𝜔)| begins to decrease. Thus the high-frequency terminal impedance will appear
inductive, as in the case of z0 for an emitter follower, which was calculated in Chapter 7.
(See Problem 9.8.)
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Figure 9.12 Gain and phase versus frequency for a three-pole basic amplifier. Compensation for unity-
gain feedback operation (f = 1) is achieved by introduction of a negative real pole with magnitude |pD|.

◼ EXAMPLE
Calculate the dominant-pole magnitude required to give unity-gain compensation of the 702
op amp with a phase margin of 45∘. The low-frequency gain is a0 = 3600, and the circuit has
poles at −(p1∕2𝜋) = 1 MHz, −(p2∕2𝜋) = 4 MHz, and −(p3∕2𝜋) = 40 MHz.

In this example, the second pole p2 is sufficiently close to p1 to produce significant phase
shift at the amplifier −3 dB frequency. The approach to this problem will be to use the approx-
imate results developed above to obtain an initial estimate of the required dominant-pole
magnitude and then to empirically adjust this estimate to obtain the required results.

The results of Fig. 9.12 indicate that a dominant pole with magnitude |pD| should be intro-
duced so that gain a0 = 3600 is reduced to unity at |p1∕2𝜋| = 1 MHz with a 6 dB/octave
decrease as a function of frequency. The product |a|𝜔 is constant where the slope of the
gain-magnitude plot is −6 dB/octave; therefore,||||pD

2𝜋

|||| = 1
a0

|||| p1

2𝜋

|||| = 106

3600
Hz = 278 Hz

This would give a transfer function

a(j𝜔) = 3600(
1 +

j𝜔|pD|
)(

1 +
j𝜔|p1|

)(
1 +

j𝜔|p2|
)(

1 +
j𝜔|p3|

) (9.21)

where the pole magnitudes are in radians per second. Equation 9.21 gives a unity-gain
frequency [where |a(j𝜔)| = 1] of 780 kHz. This is slightly below the design value of 1 MHz
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because the actual gain curve is 3 dB below the asymptote at the break frequency |p1|.
At 780 kHz, the phase shift obtained from (9.21) is −139∘ instead of the desired −135∘, and
this includes a contribution of −11∘ from pole p2. Although this result is close enough for
most purposes, a phase margin of precisely 45∘ can be achieved by empirically reducing|pD| until (9.21) gives a phase shift of −135∘ at the unity gain frequency. This occurs for|pD∕2𝜋| = 260 Hz, which gives a unity-gain frequency of 730 kHz.◼

Consider now the performance of the amplifier whose characteristic is shown in Fig. 9.12
(with dominant pole magnitude |pD|) when used in a feedback loop with f < 1 (i.e., overall
gain A0 > 1). This case is shown in Fig. 9.13. The loop gain now falls to unity at frequency 𝜔x,
and the phase margin of the circuit is approximately 90∘. The−3 dB bandwidth of the feedback
circuit is 𝜔x. The circuit now has more compensation than needed, and, in fact, bandwidth is
being wasted. Thus, although it is convenient to compensate an amplifier for unity gain and
then use it unchanged for other applications (as is done in many op amps), this procedure is
quite wasteful of bandwidth. Fixed-gain amplifiers that are designed for applications where
maximum bandwidth is required are usually compensated for a specified phase margin (typi-
cally 45∘ to 60∘) at the required gain value. However, op amps are general-purpose circuits that
are used with differing feedback networks with f values ranging from 0 to 1. Optimum band-
width is achieved in such circuits if the compensation is tailored to the gain value required,
and this approach gives much higher bandwidths for high gain values, as seen in Fig. 9.14.
This figure shows compensation of the amplifier characteristic of Fig. 9.11 for operation in a
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Figure 9.13 Gain and phase versus frequency for an amplifier compensated for use in a feedback loop
with f = 1 and a phase margin of 45∘. The phase margin is shown for operation in a feedback loop with
f < 1.
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Figure 9.14 Gain and phase versus frequency for an amplifier compensated for use in a feedback loop
with f < 1 and a phase margin of 45∘. Compensation is achieved by adding a new pole p′

D to the amplifier.

feedback circuit with forward gain A0. A dominant pole is added with magnitude |p′D| to give
a phase margin of 45∘. Frequency |p′D| is obviously ≫ |pD|, and the −3 dB bandwidth of the
feedback amplifier is nominally |p1|, at which frequency the loop gain is 0 dB (disregarding
peaking). The −3 dB frequency from Fig. 9.13 would be only 𝜔x = |p1|∕A0 if unity-gain com-
pensation had been used. Obviously, since A0 can be large, the improvement in bandwidth is
significant.

In the compensation schemes discussed above, an additional dominant pole was assumed
to be added to the amplifier, and the original amplifier poles were assumed to be unaffected by
this procedure. In terms of circuit bandwidth, a much more efficient way to compensate the
amplifier is to add capacitance to the circuit in such a way that the original amplifier dominant
pole magnitude |p1| is reduced so that it performs the compensation function. This technique
requires access to the internal nodes of the amplifier and knowledge of the nodes in the circuit
where added capacitance will reduce frequency |p1|.

Consider the effect of compensating for unity-gain operation the amplifier characteristic
of Fig. 9.11 in this way. Again assume that higher-frequency poles p2 and p3 are unaffected
by this procedure. In fact, depending on the method of compensation, these poles are usually
moved up or down in magnitude by the compensation. This point will be taken up later.

Compensation of the amplifier by reducing |p1| is shown in Fig. 9.15. For a 45∘ phase
margin in a unity-gain feedback configuration, dominant pole magnitude |p′1| must cause the
gain to fall to unity at frequency |p2| (the second pole magnitude). Thus the nominal bandwidth
in a unity-gain configuration is |p2|, and the loop gain is unity at this frequency. This result
can be contrasted with a bandwidth of |p1|, as shown in Fig. 9.12 for compensation achieved
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Figure 9.15 Gain and phase versus frequency for an amplifier compensated for use in a feedback loop
with f = 1 and a phase margin of 45∘. Compensation is achieved by reducing the magnitude |p1| of the
dominant pole of the original amplifier.

by adding another pole with magnitude |pD| to the amplifier. In practical amplifiers, frequency|p2| is often 5 or 10 times frequency |p1|, and substantial improvements in bandwidth are thus
achieved.

The results of this section illustrate why the basic amplifier of a feedback circuit is usually
designed with as few stages as possible. Each stage of gain inevitably adds more poles to the
transfer function, complicating the compensation problem, particularly if a wide bandwidth is
required.

9.4.2 Methods of Compensation

In order to compensate a circuit by the common method of narrowbanding described above,
it is necessary to add capacitance to create a dominant pole with the desired magnitude. One
method of achieving this is shown in Fig. 9.16, which is a schematic of the first two stages of
a simple amplifier. A large capacitor C is connected between the collectors of the input stage.
The output stage, which is assumed relatively broadband, is not shown. A differential half cir-
cuit of Fig. 9.16 is shown in Fig. 9.17, and it should be noted that the compensation capacitor
is doubled in the half circuit. The major contributions to the dominant pole of a circuit of this
type (if RS is not large) come from the input capacitance of Q4 and Miller capacitance asso-
ciated with Q4. Thus the compensation as shown will reduce the magnitude of the dominant
pole of the original amplifier so that it performs the required compensation function. Almost
certainly, however, the higher-frequency poles of the amplifier will also be changed by the
addition of C. In practice, the best method of approaching the compensation design is to use
computer simulation to determine the original pole positions. A first estimate of C is made
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Figure 9.16 Compensation of an amplifier by introduction of a large capacitor C.

RL1

Q2

Q4RS

RL2 vo

+

–

vs

+

–

2C

Figure 9.17 Differential half circuit of Fig. 9.16.

on the assumption that the higher-frequency poles do not change in magnitude, and a new
computer simulation is made with C included to check this assumption. Another estimate of
C is then made on the basis of the new simulation, and this process usually converges after
several iterations.

The magnitude of the dominant pole of Fig. 9.17 can be estimated using zero-value
time-constant analysis. However, if the value of C required is very large, this capacitor will
dominate, and a good estimate of the dominant pole can be made by considering C only and
ignoring other circuit capacitance. In that case, the dominant-pole magnitude is

|pD| = 1
2CR

(9.22)

where
R = RL1||Ri4 (9.23)

and
Ri4 = rb4 + r𝜋4 (9.24)

One disadvantage of the above method of compensation is that the value of C required is quite
large (typically > 1000 pF) and cannot be realized on a monolithic chip.
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Many general-purpose op amps have unity-gain compensation included on the monolithic
chip and require no further compensation from the user. (The sacrifice in bandwidth caused by
this technique when using gain other than unity was described earlier.) In order to realize an
internally compensated monolithic op amp, compensation must be achieved using capacitance
less than about 50 pF. This can be achieved using Miller multiplication of the capacitance as
in the 741 op amp, which uses a 30 pF compensation capacitor and was analyzed in the first
four editions of this book.

As well as allowing use of a small capacitor that can be integrated on the monolithic chip,
this type of compensation has another significant advantage. This is due to the phenomenon
of pole splitting,8 in which the dominant pole moves to a lower frequency while the next
pole moves to a higher frequency. The splitting of the two low-frequency poles in practical
op amps is often a rather complex process involving other higher-frequency poles and zeros
as well. However, the process involved can be illustrated with the two-stage op-amp model
in Fig. 9.18. The input is from from a current is, which stems from the transconductance of
the first stage times the op-amp differential input voltage. Resistors R1 and R2 represent the
total shunt resistances at the output of the first and second stages, including transistor input
and output resistances. Similarly, C1 and C2 represent the total shunt capacitances at the same
places. Capacitor C represents transistor collector-base capacitance of the amplifying transistor
in the second stage plus the compensation capacitance.

For the circuit of Fig. 9.18,

−is =
v1

R1
+ v1C1s + (v1 − vo)Cs (9.25)

gmv1 +
vo

R2
+ voC2s + (vo − v1)Cs = 0 (9.26)

From (9.25) and (9.26),

vo

is
=

(gm − Cs)R2R1

1 + s[(C2 + C)R2 + (C1 + C)R1 + gmR2R1C] + s2R2R1(C2C1 + CC2 + CC1)
(9.27)

The circuit transfer function has a positive real zero at

z =
gm

C
(9.27a)

which usually has such a large magnitude in bipolar circuits that it can be neglected. This is
often not the case in MOS circuits because of their lower gm. This point is taken up later.

C

C1is

ic

gmv1 C2 R2R1 vo

+

–

+

–

v1

Figure 9.18 Small-signal equivalent circuit of a single transistor stage. Feedback capacitor C includes
compensation capacitance.
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The circuit has a two-pole transfer function. If p1 and p2 are the poles of the circuit, then
the denominator of (9.27) can be written

D(s) =
(

1 − s
p1

)(
1 − s

p2

)
(9.28)

= 1 − s

(
1
p1

+ 1
p2

)
+ s2

p1p2
(9.29)

and thus

D(s) ≃ 1 − s
p1

+ s2

p1p2
(9.30)

if the poles are real and widely separated, which is usually true. Note that p1 is assumed to be
the dominant pole.

If the coefficients in (9.27) and (9.30) are equated, then

p1 = − 1
(C2 + C)R2 + (C1 + C)R1 + gmR2R1C

(9.31)

and this can be approximated by

p1 ≃ − 1
gmR2R1C

(9.32)

since the Miller effect due to C will be dominant if C is large and gmR1, gmR2 ≫ 1.
Equation 9.31 is the same result for the dominant pole as that obtained using zero-value
time-constant analysis.

The nondominant pole p2 can now be estimated by equating the coefficients of s2 in (9.27)
and (9.30) and using (9.32):

p2 ≃ −
gmC

C2C1 + C(C2 + C1)
(9.33)

Equation 9.32 indicates that the dominant-pole magnitude |p1| decreases as C increases,
whereas (9.33) shows that |p2| increases as C increases. Thus, increasing C causes the poles
to split apart. The dominant pole moves to a lower frequency because increasing C increases
the time constant associated with the output node of the first stage in Fig. 9.18. The reason
the nondominant pole moves to a higher frequency is explained below.

Equation 9.33 can be interpreted physically by associating p2 with the output node in
Fig. 9.18. Then

p2 = − 1
RoCT

(9.33a)

where Ro is the output resistance including negative feedback around the second stage through
C, and CT is the total capacitance from the output node to ground. The output resistance is

Ro =
R2

1 + T
(9.33b)

where R2 is the open-loop output resistance and T is the loop gain around the second
stage through capacitor C, which is the open-loop gain, gmR2, times the feedback factor, f.
Therefore,

Ro =
R2

1 + gmR2f
≃ 1

gmf
(9.33c)
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assuming that T = gmR2f ≫ 1. Since p2 is a high frequency, we will find f at high-frequency𝜔,
where 1∕𝜔C1 ≪ R1. Then the feedback around the second stage is controlled by a capacitive
voltage divider, and

f ≃ C
C + C1

(9.33d)

Thus,

Ro ≃
C + C1

gmC
(9.33e)

The total capacitance from the output node to ground is C2 in parallel with the series combi-
nation of C and C1:

CT = C2 +
CC1

C + C1
=

CC2 + C1C2 + CC1

C + C1
(9.33f)

Substituting (9.33e) and (9.33f) into (9.33a) gives (9.33).
Equations 9.33d and 9.33f show that increasing C increases the feedback factor but has

little effect on the total capacitance in shunt with the output node because C is in series
with C1. As a result, increasing C reduces the output resistance and increases the frequency
of the nondominant pole. In the limit as C → ∞, the feedback factor approaches unity,
and p2 → −gm∕(C2 + C1). In practice, however, (9.33d) shows that the feedback factor
is less than unity, which limits the increase in the magnitude of the nondominant pole
frequency.

On the other hand, with C = 0, the poles of the circuit of Fig. 9.18 are

p1 = − 1
R1C1

(9.34a)

p2 = − 1
R2C2

(9.34b)

Thus as C increases from zero, the locus of the poles of the circuit of Fig. 9.18 is as shown in
Fig. 9.19.

Another explanation of pole splitting is as follows. The circuit in Fig. 9.18 has two poles.
The compensation capacitor across the second stage provides feedback and causes the second
stage to act like an integrator. The two poles split apart as C increases. One pole moves to a low
frequency (toward dc), and the other moves to a high frequency (toward −∞) to approximate
an ideal integrator, which has only one pole at dc.

The previous calculations have shown how compensation of an amplifier by addition of a
large Miller capacitance to a single transistor stage causes the nondominant pole to move to

Poles split

s plane

gmC

C2C1 + C(C2 + C1)
–

1

gmR1R2C
–

1

R2C2

–

× ×

1

R1C1

–

jω

σ

Figure 9.19 Locus of the poles of the circuit of Fig. 9.18 as C is increased from zero, for the case
−1∕(R1C1) > −1∕(R2C2).
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a much higher frequency. For the sake of comparison, consider compensating the circuit in
Fig. 9.18 without adding capacitance to C by making C1 large enough to produce a dominant
pole. Then the pole can be calculated from (9.31) as p1 ≃ −1∕R1C1. The nondominant pole
can be estimated by equating coefficients of s2 in (9.27) and (9.30) and using this value of p1.
This gives p2 ≃ −1∕R2(C2 + C). This value of p2 is approximately the same as that given by
(9.34b), which is for C = 0 and is before pole splitting occurs. Thus, creation of a dominant
pole in the circuit of Fig. 9.18 by making C1 large will result in a second pole magnitude|p2| that is much smaller than that obtained if the dominant pole is created by increasing C.
As a consequence, the realizable bandwidth of the circuit when compensated in this way is
much smaller than that obtained with Miller-effect compensation. Also, without using the
Miller effect, the required compensation capacitor often would be too large to be included on
a monolithic chip. The same general conclusions are true in the more complex situation that
exists in many practical op amps.

The results derived in this section are useful in further illuminating the considerations
of Section 7.3.3. In that section, it was stated that in a common-source cascade, the exis-
tence of drain-gate capacitance tends to cause pole splitting and produce a dominant-pole
situation. If the equivalent circuit of Fig. 9.18 is taken as a representative section of a
cascade of common-source stages (C2 is the input capacitance of the following stage) and
capacitor C is taken as Cgd, the calculations of this section show that the presence of Cgd
does, in fact, tend to produce a dominant-pole situation because of the pole splitting that
occurs. Thus, the zero-value time-constant approach gives a good estimate of 𝜔−3dB in such
circuits.

The theory of compensation that was developed in this chapter was illustrated with some
bipolar-transistor circuit examples. The theory applies in general to any active circuit, but the
unique device parameters of MOSFETs cause some of the approximations that were made in
the preceding analyses to become invalid. The special aspects of MOS amplifier compensation
are now considered.

9.4.3 Two-Stage MOS Amplifier Compensation

The basic two-stage CMOS op-amp topology shown in Fig. 6.16 is essentially identical
to its bipolar counterpart. As a consequence, the equivalent circuit of Fig. 9.18 can be
used to represent the second stage with its compensation capacitance. The poles of the
circuit are again given by (9.32) and (9.33) and the zero by (9.27a). In the case of the MOS
transistor, however, the value of gm is typically an order of magnitude lower than for a
bipolar transistor, and the break frequency caused by the right-half-plane zero in (9.27) may
actually fall below the nominal unity-gain frequency of the amplifier. The effect of this is
shown in Fig. 9.20. At the frequency |z|, the gain characteristic of the amplifier flattens
out because of the contribution to the gain of +6 dB/octave from the zero. In the same
region, the phase is made 90∘ more negative by the positive real zero. As a consequence,
the amplifier will have negative phase margin and be unstable when the influence of the
next-most-dominant pole is felt. In effect, the zero halts the gain roll-off intended to stabilize
the amplifier and simultaneously pushes the phase in the negative direction. Note also from
(9.33) that the low gm of the MOSFET will tend to reduce the value of |p2| relative to a bipolar
amplifier.

Another way to view this problem is to note from Fig. 9.18 that at high frequencies, feed-
forward through C tends to overwhelm the normal gain path via gm of the second stage if gm is
small. The feedforward path does not have the 180∘ phase shift of the normal gain stage, and
thus the gain path loses an inverting stage. Any feedback applied around the overall ampli-
fier will then be positive instead of negative feedback, resulting in oscillation. At very high
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Figure 9.20 Typical gain and phase of the CMOS op amp of Fig. 6.16.

frequencies, C acts like a short circuit, diode-connecting the second stage, which then simply
presents a resistive load of 1∕gm to the first stage, again showing the loss of 180∘ of phase
shift.

The right-half-plane (RHP) zero is caused by the interaction of current from the gm gener-
ator and the frequency-dependent current that flows forward from the input node to the output
node through C. The current through C in Fig. 9.18 is

ic = sC(vo − v1) (9.35)

This current can be broken into two parts: a feedback current ifb = sCvo that flows from the
output back toward the input, and a feedforward current ifff = sCv1 that flows forward from
the input toward the output. This feedforward current is related to v1. The current gmv1 from
the controlled source flows out of the output node and is also related to v1. Subtracting these
two currents gives the total current at the output node that is related to v1:

iv1
= (gm − sC)v1 (9.36)

A zero exists in the transfer function where this current equals zero, at z = gm∕C.
Three techniques have been used to eliminate the effect of the RHP zero. One approach is

to put a source follower in series with the compensation capacitor,9 as shown in Fig. 9.21a.
The source follower blocks feedforward current through C from reaching the output node
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(a) (b)
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Figure 9.21 (a) Compensation capacitor C in Fig. 9.18 is replaced by C in series with a source follower.
(b) A simple model for the capacitor and source follower.

and therefore eliminates the zero. This will be shown by analyzing Fig. 9.18 with C replaced
by the model in Fig. 9.21b. Here the source follower is modeled as an ideal voltage buffer.
Equation 9.25 still holds because the same elements are connected to the input node and the
voltage across C remains vo − v1. However, summing currents at the output node gives a dif-
ferent equation than (9.26) because no current flows through C to the output node due to the
buffer. The new equation is

gmv1 +
vo

R2
+ sC2vo = 0 (9.37)

Combining this equation with (9.25) gives

vo

is
=

gmR1R2

1 + s[R1(C1 + C) + R2C2 + gmR2R1C] + s2R1R2C2(C1 + C)
(9.38)

The zero has been eliminated. Assuming gmR1, gmR2 ≫ 1 and C is large, the same steps that
led from (9.27) to (9.32) and (9.33) give

p1 ≈ − 1
gmR2R1C

(9.39a)

p2 ≈ −
gmC

(C1 + C)C2
≈ −

gm

C2
(9.39b)

The dominant pole p1 is unchanged, and p2 is about the same as before if C2 ≫ C1. This
approach eliminates the zero, but the follower requires extra devices and bias current. Also,
the source follower has a nonzero dc voltage between its input and output. This voltage will
affect the output voltage swing since the source-follower transistor must remain in the active
region to maintain the desired feedback through C.

A second approach to eliminate the RHP zero is to block the feedforward current through C
using a common-gate transistor,10 as illustrated in Fig. 9.22a. This figure shows a two-stage op
amp, with the addition of two current sources of value I2 and transistor M11. The compensation
capacitor is connected from the op-amp output to the source of M11. Here, common-gate M11
allows capacitor current to flow from the output back toward the input of the second stage.
However, the impedance looking into the drain of M11 is very large. Therefore, feedforward
current through C is very small. If the feedforward current is zero, the RHP zero is eliminated.
A simplified small-signal model for the common-gate stage and compensation capacitor is



684 Chapter 9 ▪ Frequency Response and Stability of Feedback Amplifiers

(a)

VDD

VB

C

Vo

I2

I2

I1 I3

–VSS

V1

M11

M6
+

–

in– in+
1

(b)

ic

1 · ic

C

vo

1
v1

Figure 9.22 (a) A two-stage CMOS op amp with common-gate M11 connected to compensation capac-
itor C. (b) Simple small-signal model for M11 and C.

shown in Fig. 9.22b. Here, common-gate M11 is modeled as an ideal current buffer. Replacing
C in Fig. 9.18 with the model in Fig. 9.22b yields

−is =
v1

R1
+ v1C1s − voCs (9.40a)

gmv1 +
vo

R2
+ voCs + voC2s = 0 (9.40b)

Combining these equations gives

vo

is
=

gmR1R2

1 + s[R1C1 + R2(C + C2) + gmR1R2C] + s2R1R2C1(C2 + C)
(9.41)

The zero has been eliminated. Again assuming gmR1, gmR2 ≫ 1 and C is large, the poles are

p1 ≈ − 1
gmR2R1C

(9.42a)

p2 ≈ −
gm

C + C2
⋅

C
C1

(9.42b)

The dominant pole is the same as before. However, the nondominant pole p2 is different.
This p2 is at a higher frequency than in the two previous approaches because C ≫ C1 when
C and C2 are comparable. (In this section, we assume that the two-stage MOS op amp in
Fig. 9.18 drives a load capacitor C2 that is much larger than parasitic capacitance C1; therefore
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C2 ≫ C1.) Therefore, a smaller compensation capacitor C can be used here for a given load
capacitance C2, when compared to the previous approaches. The increase in |p2| arises because
the input node is not connected to, and therefore is not loaded by, the compensation capacitor.
An advantage of this scheme is that it provides better high-frequency negative-power-supply
rejection than Miller compensation. (Power-supply rejection was introduced in Section 6.3.6.)
With Miller compensation, C is connected from the gate to drain of M6, and it shorts the
gate and drain at high frequencies. Assuming Vgs6 is approximately constant, high-frequency
variations on the negative supply are coupled directly to the op-amp output. Connecting C to
common-gate M11 eliminates this coupling path. Drawbacks of this approach are that extra
devices and dc current are needed to implement the scheme in Fig. 9.22a. Also, if there
is a mismatch between the I2 current sources, the difference current must flow in the input
stage, which disrupts the balance in the input stage and affects the input-offset voltage of the
op amp.

When the first stage of the op amp uses a cascode transistor, the compensation capacitor
can be connected to the source of the cascode device as shown in Fig. 9.23.11 This connection
reduces the feedforward current through C, when compared to connecting C to node Y©, if the
voltage swing at the source of the cascode device is smaller than the swing at its drain. This
approach eliminates the feedforward path and therefore the zero, if the voltage swing at the
source of the cascode device is zero. An advantage of this approach is that it avoids the extra
devices, bias current, and mismatch problems in Fig. 9.22a.

A third way to deal with the RHP zero is to insert a resistor in series with the compensa-
tion capacitor, as shown in Fig. 9.24a.12,13 Rather than eliminate the feedforward current, the
resistor modifies this current and allows the zero to be moved to infinity. If the zero moves to
infinity, the total forward current at the output node that is related to v1 must go to zero when
𝜔 → ∞. When 𝜔 → ∞, capacitor C is a short circuit, and therefore the feedforward current is
only due to RZ :

ifff (𝜔 → ∞) = −
v1

RZ
(9.43)

VDD

VBBVBB

C
Vo

I1 I3

–VSS

in– in+

Y

+

–

Figure 9.23 A two-stage CMOS op amp with a cascoded current-mirror load in the input stage, and with
the compensation capacitor C connected to the cascode node.
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Figure 9.24 (a) Small-signal equivalent circuit of a compensation stage with nulling resistor.
(b) Pole-zero diagram showing movement of the transmission zero for various values of RZ .

When this current is added to the current from the gm source, the total current at the output
node that is related to v1 is

iv1
=
(

gm − 1
RZ

)
v1 (9.44)

when 𝜔 → ∞. If RZ = 1∕gm, this term vanishes, and the zero is at infinity.
The complete transfer function can be found by carrying out an analysis similar to that

performed for Fig. 9.18, which gives

vo

is
=

gmR1R2

[
1 − sC

(
1

gm
− RZ

)]
1 + bs + cs2 + ds3

(9.45)

where

b = R2(C2 + C) + R1(C1 + C) + RZC + gmR1R2C (9.46a)

c = R1R2(C1C2 + CC1 + CC2) + RZC(R1C1 + R2C2) (9.46b)

d = R1R2RZC1C2C (9.46c)

Again assuming gmR1, gmR2 ≫ 1 and C is large, the poles can be approximated by

p1 ≈ − 1
gmR2R1C

(9.47a)

p2 ≈ −
gmC

C1C2 + C(C1 + C2)
≈ −

gm

C1 + C2
(9.47b)

p3 ≈ − 1
RZC1

(9.47c)
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The first two poles, p1 and p2, are the same as for the original circuit in Fig. 9.18. The third
pole is at a very high frequency with |p3| ≫ |p2| because typically C1 ≪ C2 (since C1 is a
small parasitic capacitor and C2 is the load capacitor), and RZ will be about equal to 1∕gm if
the zero is moved to a high frequency [from (9.44)]. This circuit has three poles because there
are three independent capacitors. In contrast, Fig. 9.18 has three capacitors that form a loop, so
only two of the capacitor voltages are independent. Thus there are only two poles associated
with that circuit.

The zero of (9.45) is

z = 1(
1

gm
− RZ

)
C

(9.48)

This zero moves to infinity when RZ equals 1∕gm. Making the resistor greater than 1∕gm moves
the zero into the left half plane, which can be used to provide positive phase shift at high
frequencies and improve the phase margin of a feedback circuit that uses this op amp.13 The
movement of the zero for increasing RZ is shown in Fig. 9.24b.

Figure 9.25 shows a Miller-compensated op amp using a resistor RZ in series with
the compensation capacitor. In practice, resistor RZ is usually implemented using a MOS
transistor biased in the triode region. From (1.152), a MOS transistor operating in the triode
region behaves like a linear resistor if Vds ≪ 2(VGS − Vt). The on-resistance RZ of the triode
device can be made to track 1∕gm of common-source transistor M6 if the two transistors
are identical and have the same VGS − Vt. When this MOS transistor is placed to the left of
the compensation capacitor as shown in Fig. 9.25, its source voltage is set by Vgs6, which is
approximately constant. Therefore, VGS of the triode transistor can be set by connecting its
gate to a dc bias voltage, which can be generated using replica biasing.13 (See Problem 9.23.)

Another way to shift the zero location that can be used in multistage op amps will be
presented in Section 9.4.5.

In all the compensation approaches described so far, the dominant pole is set by compen-
sation capacitor C and is independent of the load capacitor C2. However, the second pole
is a function of C2. If the op amp will be used in different applications with a range of load
capacitors, the compensation capacitor should be selected to give an acceptable phase margin
for the largest C2. Then the phase margin will increase as the load capacitor decreases because|p2| is inversely proportional to C2.
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C VoCLRZ
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X

+

–

IBIAS M6

M1
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M3 M4
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–

Figure 9.25 A two-stage CMOS op amp.
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◼ EXAMPLE
Compensate the two-stage CMOS op amp from the example in Section 6.3.5 (Fig. 6.16) to
achieve a phase margin of 45∘ or larger when driving a load capacitance of 5 pF, assuming the
op amp is connected in unity-gain feedback.

With the op amp in unity-gain feedback, f = 1 and the loop gain T = af = a (or, equiv-
alently, A∞ = 1 and the return ratio ℛ = a). Therefore, the phase and gain margins can be
determined from Bode plots of |a| and ph(a).

The two-stage op amp and a simplified model for this op amp are shown in Fig. 9.25. In the
model, all capacitances that connect to node X© are lumped into C1, and all capacitances that
connect to the output node are lumped into C2. If we apply an input voltage vi in Fig. 9.26,
a current i1 = gm1vi is generated. This i1 drives a circuit that is the same as the circuit that is
drives in Fig. 9.18. Therefore, the equations for the two poles and one zero for the circuit in
Fig. 9.18 apply here, with is = gm1vi, gm = gm6, R1 = ro2||ro4, and R2 = ro6||ro7.

We will use Miller compensation with a series resistance to eliminate the zero. To achieve
a 45∘ phase margin, the compensation capacitor C should be chosen so that |p2| equals the
unity-gain frequency (assuming the zero has been eliminated and |p3| ≫ |p2|). Since the gain
roll-off from |p1| to |p2| is −6 dB/octave, |a(j𝜔)| ⋅ 𝜔 is constant from |p1| to |p2|. Therefore,

a0 ⋅ |p1| = 1 ⋅ |p2| (9.49)

where
a0 = gm1(ro2||ro4)gm6(ro6||ro7) = gm1R1gm6R2 (9.50a)

is the dc gain of the op amp. Substitution of (9.47) and (9.50a) into (9.49) gives

gm1R1gm6R2 ⋅
1

gm6R2R1C
= 1 ⋅

gm6

C1 + C2

or gm1

C
=

gm6

C1 + C2
(9.50b)

The capacitance C2 at the output is dominated by the 5 pF load capacitance, and the internal
parasitic capacitance C1 is much smaller than 5 pF (SPICE simulation gives C1 ≈ 120 fF).
Therefore, C1 + C2 ≈ 5 pF. From the example in Section 6.3.5, we find

gm1 = k′p(W∕L)1|Vov1| = (64.7 μA∕V2)(77)(0.2 V) = 1 mA∕V

and
gm6 = k′n(W∕L)6(Vov6) = (194 μA∕V2)( 16)(0.5 V) = 1.55 mA∕V

Substituting these values into (9.50b) and rearranging gives

C =
gm1

gm6
(C1 + C2) ≈

1 mA∕V

1.55 mA∕V
(5 pF) = 3.2 pF

vi

+

–

C1 R2 = ro6∣∣ro7R1 = ro2∣∣ro4

CRZ

vx vo

C2

i1

gm6vxgm1vi

X

Cin

Figure 9.26 A small-signal model for the op amp in Fig. 9.25.
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To eliminate the zero due to feedforward through C, a resistor RZ of value 1∕gm6 = 645 Ω can
be connected in series with the compensation capacitor C. (In practice, this resistance should
be implemented with an NMOS transistor that is a copy of M6 biased in the triode region, so
that RZ = 1∕gm6. See Problem 9.23.)

SPICE simulations (using models based on Table 2.4) of the op amp before and after com-
pensation give the magnitude and phase plots shown in Fig. 9.27. Before compensation, the
amplifier is unstable and has a phase margin of −6∘. After compensation with RZ = 645 Ω and
C = 3.2 pF, the phase margin improves to 41∘ with a unity-gain frequency of 35 MHz, and the
gain margin is 15 dB. This phase margin is less than the desired 45∘. The simulated value of gm6
is 1.32 mA/V and differs somewhat from the calculated gm6, because the formulas used to cal-
culate gm are based on square-law equations that are only approximately correct. Changing RZ
to 1∕gm6(SPICE) = 758 Ω gives a phase margin of 46∘ with a unity-gain frequency of 35 MHz,
and the gain margin is 22 dB. Without RZ , the phase margin is 14∘, so eliminating the RHP
zero significantly improves the phase margin.

Two earlier assumptions can be checked from SPICE simulations. First, C1 ≈ 120 fF from
SPICE, and C2 ≈ 5 pF; therefore, the assumption that C1 ≪ C2 is valid. Also, |p3| ≫ |p2|
follows from |p3| ≈ 1∕(RZC1) = gm6∕C1, |p2| ≈ gm6∕C2, and C1 ≪ C2.◼
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Figure 9.27 Plots of the
simulated (a) magnitude and
(b) phase of the op-amp gain
before and after compensation
(C = 3.2 pF, RZ = 645 Ω) for
the op amp in Fig. 9.25.
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The op-amp compensation examples earlier in this chapter assume the op amp operates in
unity-gain feedback, so the loop gain T or return ratio ℛ is equal to the op-amp gain. In the
next example, we consider an op amp in a different feedback configuration.

◼ EXAMPLE
Consider the feedback circuit in Fig. 9.28a, which is the switched-capacitor integrator in
Fig. 6.10 when clock phase 𝜙2 is high and 𝜙1 is low, assuming the MOS transistors M1–M4
behave like ideal switches. Assume the op-amp schematic is the one shown in Fig. 9.25, which
is modeled by the circuit in Fig. 9.26 for small signals. Use gm1 = 1 mA/V, gm6 = 1.55 mA/V,
Cin = 0.2 pF, and C1 = 120 fF in Fig. 9.26. Also, C2 in this figure is the total capacitance at the
op-amp output when the feedback loop is broken. The value of C2 depends on the three capaci-
tors in Fig. 9.28a and will be computed later. The capacitor values in Fig. 9.28a are CI = 10 pF,
CS = 2.5 pF, and CL = 5 pF. The goal is to determine the compensation capacitance C needed
in the op amp to give a phase margin of 45∘ for the feedback circuit in Fig. 9.28a.

We will find the return ratio (ℛ) and then use it to solve this example. The circuit in
Fig. 9.28a is redrawn in Fig. 9.28b, with the op amp replaced by the model shown in Fig. 9.26.
Capacitance C2 in Fig. 9.26 is the total output load capacitance and is not shown in Fig. 9.28b
because all the capacitors that contribute to C2 are included in Fig. 9.28b. To find the return
ratio using the gm1 source, break the loop at the X in Fig. 9.28b to disconnect the gm1 dependent
source, replace it with a test source it, find the output ir of the gm1 generator, and then compute
ℛ = −ir∕it. Figure 9.28c shows the resulting circuit for finding the return ratio. We will find
the return ratio ℛ by finding and multiplying transfer functions from it to vo, from vo to vi, and
from vi to ir. The circuit and therefore the transfer function from it to vo in Fig. 9.28c is the
same as from is to vo in Fig. 9.24 if we set gm = gm6 and set C2 equal to the total capacitance
from vo to ground in Fig. 9.28c. Since the feedback loop is broken here to calculate the return
ratio, the op-amp input does not operate as a virtual ground for this calculation. Therefore,
capacitance C2 is CL in parallel with a three-capacitor network that consists of CI in series
with the parallel connection of CS and Cin. In other words,

C2 = CL +
CI(CS + Cin)

CI + (CS + Cin)
= 5 pF +

10 pF(2.5 pF + 0.2 pF)
10 pF + (2.5 pF + 0.2 pF)

= 7.1 pF (9.51a)

Using this value for C2 and gm = gm6, the expression in (9.45) is equal to vo∕it.
The transfer function from vo to vi is set by a voltage divider involving capacitors CI , Cin,

and CS, plus a sign inversion due to the polarity of vi:

vi

vo
= −

CI

CI + CS + Cin
(9.51b)

Finally, vi and ir are simply related by ir = gm1vi. So the return ratio is

ℛ = −
ir
it
= −

vo

it
⋅

vi

vo
⋅

ir
vi

= −
vo

it
⋅
[
−

CI

CI + CS + Cin

]
⋅ gm1 (9.51c)

Replacing vo∕it with (9.45), using gm = gm6 and (9.51a), and rearranging gives

ℛ =
gm1R1gm6R2

[
1 − sC

(
1

gm6
− RZ

)]
1 + bs + cs2 + ds3

⋅
CI

CI + CS + Cin
(9.51d)
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Figure 9.28 (a) Feedback circuit of Fig. 6.10 when clock phase 𝜙2 is high. (b) Previous circuit with the
op amp replaced by the small-signal model in Fig. 9.26. (c) Previous circuit modified for return-ratio
calculation. (d) Plot of return-ratio magnitude versus frequency.
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Equations for b, c, and d are given in (9.46). The first term on the right in (9.51d) (i.e., the
fraction that contains gm1 and gm6) is the gain of the op amp including the output loading
when the feedback loop is broken. Factoring the denominator gives three poles p1, p2, and p3,
which are given by (9.47) using gm = gm6 and (9.51a).

We will choose RZ = 1∕gm6 so the zero inℛ is at infinity. Also, we will ignore p3 here, since|p3| ≫ |p2|, as explained in the text after (9.47c). Then ℛ can be approximated by a two-pole
transfer function. To achieve a 45∘ phase margin, assuming p1 and p2 are widely spaced, |ℛ|
should equal unity at 𝜔 = |p2|, as shown in Fig. 9.28d. (Recall that with two widely spaced
poles, the phase of ℛ is −135∘ at 𝜔 = |p2|, so |ℛ| = 1 at 𝜔 = |p2| gives a phase margin of
45∘.) Let ℛ0 represent the low-frequency value of |ℛ|. From (9.51d),

ℛ0 = gm1R1gm6R2 ⋅
CI

CI + CS + Cin
(9.51e)

From |p1| to |p2|, |ℛ| rolls off at −6 dB/octave, so the product |ℛ| ⋅ 𝜔 is constant in this
region. Equating this product at 𝜔 = |p1| and 𝜔 = |p2| gives

|ℛ(𝜔 = |p1|)| ⋅ |p1| = |ℛ(𝜔 = |p2|)| ⋅ |p2| (9.51f)

From the plot in Fig. 9.28d, |ℛ(𝜔 = |p1|)| = ℛ0, and the desired value of |ℛ(𝜔 = |p2|)| is
1. Using these values in (9.51f) gives

ℛ0 ⋅ |p1| = 1 ⋅ |p2| (9.51g)

Substituting (9.51e) and the expressions in (9.47) for p1 and p2 into (9.51g) gives

gm1R1gm6R2 ⋅
CI

CI + CS + Cin
⋅

1
gm6R2R1C

= 1 ⋅
gm6

C1 + C2
(9.51h)

After simplification, this equation becomes

gm1

C
⋅

CI

CI + CS + Cin
=

gm6

C1 + C2
(9.51i)

Solving this equation for C gives the compensation capacitance required to achieve a phase
margin of 45∘. Substituting the value of C2 from (9.51a) with the given values of gm1, gm6,
CL, CI , CS, Cin, and C1 gives

C =
gm1

gm6
⋅ (C1 + C2) ⋅

CI

CI + CS + Cin

= 1 mA/V
1.55 mA/ V

(0.12 pF + 7.1 pF) ⋅
10 pF

10 pF + 2.5 pF + 0.2 pF
= 3.7 pF (9.51j)

◼
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9.4.4 Compensation of Single-Stage CMOS Op Amps

Single-stage op amps, such as the telescopic cascode or folded cascode, have only one gain
stage; therefore, Miller compensation is not possible. These op amps have high open-loop
output resistance and are typically used in switched-capacitor circuits, where the load is
purely capacitive. Therefore, the dominant pole is associated with the output node, and the
load capacitor provides the compensation.

A simplified, fully differential, telescopic-cascode op amp is shown in Fig. 9.29a. The sim-
plifications here are that ideal current sources replace biasing transistors and all capacitances
have been lumped into the load capacitors CL and the parasitic capacitors Cp at the cascode
nodes. The differential-mode (dm) voltage gain can be found by analyzing the half-circuit
shown in Fig. 9.29b. Since there are two independent capacitors, the dm gain has two poles.
An exact analysis, ignoring body effect, gives a dm gain of

vod

vid
= −

gm1ro1(gm1Aro1A + 1)
1 + s(ro1ACL + ro1Cp + ro1CL + gm1Aro1Aro1CL) + s2ro1ro1ACpCL

(9.52)

VDD

VBBVBB
CL CL

Cp Cp

II

2I

–VSS

M1A M2A

M1 M2
in+ in–

vovo

(a)

+ –

(b)

CL
M1A

M1
Cp

vid

2

vod

2

Figure 9.29 (a) Simplified CMOS telescopic-cascode op amp. (b) The differential-mode half-circuit.
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If gmro ≫ 1, (9.52) simplifies to

vod

vid
= −

gm1ro1gm1Aro1A

1 + sgm1Aro1Aro1CL + s2ro1ro1ACpCL

(9.53)

The gain has two poles and no zeros. Assuming widely spaced real poles, the poles can be
approximated using (9.29) and (9.30):

p1 ≈ − 1
gm1Aro1Aro1CL

≈ − 1
RoCL

(9.54a)

p2 ≈ −
gm1A

Cp
(9.54b)

where Ro is the output resistance of the dm half-circuit and Ro ≈ gm1Aro1Aro1. Alternatively,
these poles can be estimated using time-constant analysis, as shown in Chapter 7. The dom-
inant pole is set by the zero-value time constant for CL, which is computed with Cp open and
equals RoCL. The nondominant pole can be approximated using the short-circuit time constant
for Cp, which is computed with CL shorted. When CL is shorted, the resistance seen by Cp
is the resistance looking into the source of M1A, which is 1∕gm1A (ignoring the body effect).
Typically, |p1| ≪ |p2| because Ro ≫ 1∕gm1A and CL ≫ Cp. If the phase margin is not large
enough for a given feedback application, additional capacitance can be added at the output
node to increase CL, which decreases |p1| without affecting p2 and therefore increases the
phase margin.

Capacitance Cp consists of Cgs1A plus smaller capacitances such as Cdb1 and Csb1A.
Assuming Cp ≈ Cgs1A, then |p2| ≈ gm1A∕Cp ≈ gm1A∕Cgs1A ≈ 𝜔T of M1A. Thus, the frequency
at which the magnitude of the op-amp gain equals one, which is called the unity-gain
bandwidth, can be very high with this op amp.

A simplified, fully differential, folded-cascode op amp is shown in Fig. 9.30a. As
above, the simplifications are that ideal current sources replace biasing transistors and all
capacitances have been lumped into the load capacitors CL and the parasitic capacitors
C′

p at the cascode nodes. With these simplifications, the dm voltage gain can be found by
analyzing the half-circuit shown in Fig. 9.30b. This circuit is identical to Fig. 9.29b except
that the cascode device is p-channel rather than n-channel and C′

p replaces Cp. Therefore,
the gain is identical to (9.52) with Cp replaced by C′

p. Hence the dominant pole has the same
form as (9.54a):

p1 ≈ − 1
gm1Aro1Aro1CL

≈ − 1
RoCL

(9.55a)

The second pole is associated with C′
p and is approximately given by

p2 ≈ −
gm1A

C′
p

(9.55b)

Equations 9.55b and 9.54b look similar, but |p2| for the folded-cascode op amp will usually be
smaller than |p2| for the telescopic-cascode op amp. The reason is that while the transconduc-
tances of the cascode devices in the two circuits are often comparable, C′

p will be significantly
larger than Cp. One cause of the higher capacitance is that more devices are connected to
the node associated with C′

p in the folded-cascode op amp than are connected to the node
associated with Cp in the telescopic cascode. (Recall that the output of each ideal current
source in Fig. 9.30a is the drain of a transistor.) Also, W∕L of the p-channel cascode transistor
M1A in Fig. 9.30b must be larger than W∕L of the n-channel cascode device in Fig. 9.29b to
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Figure 9.30 (a) Simplified CMOS folded-cascode op amp. (b) The differential-mode half-circuit.

make their transconductances comparable. The larger W∕L will cause C′
p to be larger than

Cp. The smaller |p2| for the folded cascode leads to a smaller unity-gain bandwidth if the two
op amps are compensated to give the same phase margin in a given feedback application.

The circuits in Figs. 9.29 and 9.30 are fully differential. These op amps can be converted
to single-ended op amps by replacing a pair of matched current sources with a current mirror.
In Fig. 9.29a, the two I current sources would be replaced with a p-channel current mirror. In
Fig. 9.30a, the two I2 current sources would be replaced with a n-channel current mirror. As
shown in Section 7.3.5, a current mirror introduces a closely spaced pole-zero pair, in addition
to the poles p1 and p2 in (9.54) and (9.55).

Active cascodes can be used to increase the low-frequency gain of an op amp, as shown in
Fig. 6.39a. There are four active cascodes in Fig. 6.39a; each consists of a cascode transistor
(M1A–M4A) and an auxiliary amplifier (A1 or A2) in a feedback loop. When such an op amp is
placed in feedback, multiple feedback loops are present. There are four local feedback loops
associated with the active cascodes in the op amp and one global feedback loop that consists
of the op amp and a feedback network around the op amp. All these feedback loops must
be stable to avoid oscillation. The stability of each local feedback loop can be determined
from its loop gain or return ratio. Since the auxiliary amplifiers in these loops are op amps,
each auxiliary amplifier can be compensated using the techniques described in this chapter to
ensure stability of these local loops. Then the global feedback loop can be compensated to
guarantee its stability.
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9.4.5 Nested Miller Compensation

Many feedback circuits require an op amp with a high voltage gain. While cascoding is com-
monly used to increase the gain in op amps with a total supply voltage of 5 V or more, cascod-
ing becomes increasingly difficult as the power-supply voltage is reduced. (See Chapter 4.) To
overcome this problem, simple gain stages without cascoding can be cascaded to achieve high
gain. When three or more voltage-gain stages must be cascaded to achieve the desired gain,
the op amp will have three or more poles, and frequency compensation becomes complicated.
Nested Miller compensation can be used with more than two gain stages.14,15 This compen-
sation scheme involves repeated, nested application of Miller compensation. An example of
nested Miller compensation applied to three cascaded gain stages is shown in Fig. 9.31a. Two
noninverting gain stages are followed by an inverting gain stage. Each voltage-gain stage is
assumed to have a high-output resistance and therefore is labeled as a gm block. The sign of
the dc voltage gain of each stage is given by the sign of the transconductance. Two Miller
compensation capacitors are used: Cm1, which is placed around the last gain stage, and Cm2,
which is connected across the last two gain stages. Because the dc gain of the second stage is
positive and the dc gain of the third stage is negative, both capacitors are in negative feedback
loops.

A simplified circuit schematic is shown in Fig. 9.31b. Each noninverting gain stage is com-
posed of a differential pair with a current-source load. The inverting gain stage consists of
a common-source amplifier with a current-source load. A simplified small-signal model is
shown in Fig. 9.31c. The main simplification here is that all capacitances associated with the
gain stages are modeled by C0, C1, and C2.

Without the compensation capacitors, this amplifier has three real poles that are not
widely spaced if the RiCi time constants are comparable. When Cm1 is added, the two poles
associated with the output nodes of the second and third stages split apart along the real
axis due to the Miller compensation, but the pole associated with output of the first stage
does not change. From a design standpoint, the goal of this pole splitting is to cause one
pole to dominate the frequency response of the second and third stages together. Assume
at first that this goal is met. Then adding Cm2 across the second and third stages is similar
to adding Cm1 across the third stage. Pole splitting occurs again, and the pole associated
with the output node of the first stage becomes dominant because the Miller-multiplied
Cm2 loads this node. Meanwhile, the pole associated with the output of the second stage
moves to higher frequency because of negative feedback through Cm2. The polarity of this
feedback does not become positive at any frequency where the gain around the loop is at
least unity because the frequency response of of the second and third stages is dominated by
one pole.

In practice, the exact movement of the poles is complicated by the nondominant pole in the
feedback loop though Cm2. Also, zeros are introduced by feedforward through Cm1 and Cm2.
The pole and zero locations can be found from an exact analysis of the small-signal circuit.
The analysis can be carried out by summing currents at the outputs of the gm generators and
then manipulating the resulting three equations. These steps are not conceptually difficult but
are not shown here. The exact transfer function from the output of the current generator in the
input stage, is = gm0vin, to the output voltage vo is

vo

is
= −N(s)

D(s)

= −
R0gm1R1gm2R2 − (gm1R1Cm1 + Cm2)R0R2s − R0R1R2Cm2(C1 + Cm1)s2

1 + a1s + a2s2 + a3s3

(9.56)
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Figure 9.31 (a) Block diagram for a three-stage op amp with nested Miller compensation. (b) A simpli-
fied schematic for such an op amp in CMOS. (c) A small-signal model.

where

a1 = K + R0(Cm2 + C0) + gm1R1gm2R2R0Cm2 (9.57a)

a2 = R1R2(C2 + Cm1 + Cm2)(C1 + Cm1) − R1R2C2
m1 + R0(Cm2 + C0)K

− gm1R1Cm1Cm2R0R2 − R0R2C2
m2 (9.57b)

a3 = R0R1R2[(C2Cm2 + C0C2 + C0Cm2)(C1 + Cm1) + C1Cm1Cm2

+ C0C1Cm1] (9.57c)
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with
K = R2(C2 + Cm1 + Cm2) + R1(C1 + Cm1) + R1Cm1gm2R2 (9.57d)

Equation 9.56 is the transfer function from is to vo. The transfer function of the voltage
gain from vin to vo is found by multiplying (9.56) by gm0 (since is = gm0vin); therefore, the
voltage gain and (9.56) have the same poles and zeros. The transfer function in (9.56) has two
zeros and three poles. Let us first examine the poles. The expressions for the ai coefficients
are complicated and involve many terms. Therefore, assumptions are needed to simplify the
equations. If gm1R1gm2R2 ≫ 1, which is usually true, then

a1 ≈ gm1R1gm2R2R0Cm2 (9.58)

Assuming there is a dominant pole p1, then

p1 ≈ − 1
a1

= − 1
gm1R1gm2R2R0Cm2

(9.59)

Another way to arrive at this estimate of p1 is to apply the Miller effect to Cm2. The effective
Miller capacitor is about Cm2 times the negative of the gain across Cm2, which is gm1R1gm2R2.
This capacitor appears in parallel with R0, giving a time constant of (gm1R1gm2R2)R0Cm2.

The other poles p2 and p3 could be found by factoring the third-order denominator in (9.56),
which can be done using a computer but is difficult by hand. However, these poles can be
estimated from a quadratic equation under certain conditions. If there is a dominant pole p1,
then |p2|, |p3| ≫ |p1|. At high frequencies, where |s| ≫ |p1| ≈ 1∕a1, we have |a1s| ≫ 1, so
the denominator in (9.56) can be approximated by dropping the constant “1” to give

D(s) ≈ a1s + a2s2 + a3s3 = a1s

(
1 +

a2

a1
s +

a3

a1
s2

)
(9.60)

This equation gives three poles. One pole is at dc, which models the effect of the dominant
pole p1 for frequencies well above |p1|. Poles p2 and p3 are the other roots of (9.60). They can
be found by concentrating on the quadratic term in parenthesis in (9.60), which is

D′(s) = D(s)
a1s

≈ 1 +
a2

a1
s +

a3

a1
s2 ≈

(
1 − s

p2

)(
1 − s

p3

)
(9.61)

Assuming that R0,R1,R2 ≫ |1∕(gm2 − gm1)| and Co is small compared to the other
capacitors, (9.57b) and (9.57c) simplify to

a2 ≈ R0R1R2(gm2 − gm1)Cm1Cm2 (9.62)

a3 ≈ R0R1R2(C1C2Cm2 + C2Cm1Cm2 + C1Cm1Cm2) (9.63)

Using (9.58), (9.62), and (9.63), the coefficients in D′(s) are

a2

a1
≈

gm2 − gm1

gm1gm2
Cm1 (9.64)

a3

a1
≈

C1C2 + Cm1C1 + C2Cm1

gm1gm2
(9.65)

To ensure that the high-frequency poles are in the left half plane (LHP), a2∕a1 must be
positive (see Appendix A.9.2). Therefore, gm2 must be larger than gm1. Poles p2 and p3 can be
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real or complex, and in general the quadratic formula must be used to solve for these poles.
However, if these poles are real and widely spaced, and if Cm1 ≫ C1,C2, then approximate
expressions can be found. If |p2| ≪ |p3|, then −1∕p2 is approximately equal to the coefficient
of s in D′(s), so

p2 ≈ −
a1

a2
= −

gm1gm2

(gm2 − gm1)Cm1
(9.66a)

Also, 1∕(p2p3) is equal to the coefficient of s2 in D′(s), so

p3 ≈
a1

a3

1
p2

= −
gm1gm2

C1C2 + Cm1C1 + C2Cm1
⋅
(gm2 − gm1)Cm1

gm1gm2

= −
(gm2 − gm1)Cm1

C1C2 + Cm1(C1 + C2)
≈ −

gm2 − gm1

C1 + C2

(9.66b)

The final approximation here follows if Cm1 is large. Equations 9.66a and 9.66b are accurate
if |p2| ≪ |p3|. Substituting (9.66a) and (9.66b) into this inequality produces an equivalent
condition |p2| ≈ gm1gm2

(gm2 − gm1)Cm1
≪

(gm2 − gm1)Cm1

C1C2 + Cm1(C1 + C2)
≈ |p3| (9.67)

If this condition is not satisfied, p2 and p3 are either complex conjugates or real but closely
spaced. Cm1 can always be chosen large enough to satisfy the inequality in (9.67). While it
is possible to make the high-frequency poles real and widely separated, higher unity-gain
bandwidth may be achievable when p2 and p3 are not real and widely separated.16

In the simplified equations 9.66a and 9.66b, poles p2 and p3 are dependent on Cm1 but not on
Cm2. In contrast, dominant pole p1 is inversely proportional to Cm2 and is independent of Cm1.
The poles can be positioned to approximate a two-pole op amp by making |p1| ≪ |p2| ≪ |p3|
and positioning |p3| well beyond the unity-gain frequency of the op amp.

The zero locations can be found by factoring the second-order numerator N(s) in (9.56).
The coefficients of s and s2 in the numerator are negative, and the constant term is positive.
As a result, the zeros are real. One is positive and the other is negative, as shown in
Appendix A.9.2.

The zeros will be found using some simplifying assumptions. First, the numerator of (9.56)
can be rewritten as

N(s) = R0gm1R1gm2R2

[
1 − s

(
Cm1

gm2
+

Cm2

gm1R1gm2

)
− s2 Cm2(C1 + Cm1)

gm1gm2

]
(9.68)

Assuming that Cm1 ≫ C1 and Cm1 ≫ Cm2∕(gm1R1), then

N(s) ≈ R0gm1R1gm2R2

[
1 − s

Cm1

gm2
− s2 Cm2Cm1

gm1gm2

]
(9.69)

The zeros are the roots of N(s) = 0. Using the quadratic formula and (9.69), the zeros are

z1,2 = −
gm1

2Cm2
±

√(
gm1

2Cm2

)2

+
gm1gm2

Cm1Cm2
= −

gm1

2Cm2

(
1 ±

√
1 +

4gm2Cm2

gm1Cm1

)
(9.70)

Taking the positive square root in the right-most formula in (9.70) yields a value that is larger
than one. Adding this value to one gives a positive value for the term in parentheses; subtracting
this value from one gives a negative quantity with a smaller magnitude than the sum. Therefore,
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one zero is in the LHP and has a magnitude greater than gm1∕(2Cm2). The other zero is in the
RHP and has a smaller magnitude than the LHP zero. As a result, the effect of the RHP zero
is felt at a lower frequency than the LHP zero.

The magnitude of one or both zeros can be comparable to |p2|. Because the RHP zero is
at a lower frequency than the LHP zero, the RHP zero can cause significant negative phase
shift for frequencies at or below |p2|, which would degrade the phase margin of a feedback
loop. This undesired negative phase shift would not occur if the transfer function did not have
zeros. Unfortunately, the three techniques considered in Section 9.4.3 to eliminate a RHP zero
have important limitations in a low-supply application. First, the zeros could be eliminated
by adding a source-follower buffer between the op-amp output and the right-hand side of
capacitors Cm1 and Cm2 (as in Fig. 9.21), thereby eliminating the feedforward paths through
the capacitors. However, the source follower has a nonzero dc voltage between its input and
output. This voltage may limit the op-amp output swing to an unacceptably low value in a
low-power-supply application. Second, cascode stages could be used to eliminate the zeros, as
shown in Fig. 9.23. However, the requirement that all transistors in the cascode stage operate
in the active region may limit the minimum supply voltage. Finally, a series zero-canceling
resistance (as in Fig. 9.24a) implemented with a transistor may require a large gate voltage
that exceeds the power supply.

The NE5234 op amp uses nested Miller-effect compensation.17 As shown in the fifth edi-
tion of this book, Fig. 9.32 plots the loop gain and loop phase versus frequency from SPICE
simulation of this op amp with unity-gain feedback as in Fig. 6.3c. The resulting unity-gain
frequency is 2.7 MHz, and the phase margin is 43∘. Return ratio simulations give the same
results.

Figure 9.33a shows another technique for eliminating a RHP zero that can be used with cas-
caded stages in a low-supply application.16,18 Two gain stages and one Miller compensation
capacitor are shown. A transconductance stage, gmf , is included. It provides a feedforward path
that can be used to move the zero to infinity. The small-signal circuit is shown in Fig. 9.33b. To
allow a simple explanation of this circuit, initially assume that C1 = C2 = 0. The circuit has
one pole due to Cm and one zero due to the feedforward current through Cm. If the zero moves
to infinity, the total forward current must go to zero when 𝜔 → ∞. Also, if the zero moves to
infinity, the output voltage will go to zero as 𝜔 → ∞ due to the pole in the transfer function.
When 𝜔 → ∞, capacitor Cm becomes a short circuit, so v2 = 0 when 𝜔 → ∞. Therefore at
infinite frequency, the current gm1v1 from the gm1 source flows through Cm. Adding this feed-
forward current to the current gmf v1 from the gmf generator gives the total current at the output
node that is related to v1:

iff (𝜔 → ∞) = (−gm1 + gmf )v1 (9.71)

If gmf = gm1, this current equals zero, which means the zero is at infinity.
An exact analysis of the circuit in Fig. 9.33 gives a transfer function

vo

v1
= (9.72)

−gm1R1gm2R2 − gmf R2 − sR1R2[gmf (C1 + Cm) − gm1Cm]
1 + s[gm2R1R2Cm + R2(C2 + Cm) + R1(C1 + Cm)] + s2R1R2(C1C2 + C1Cm + C2Cm)

The zero can be moved to infinity by choosing gmf so that the coefficient of s in the numerator
is zero, which occurs when

gmf = gm1
Cm

C1 + Cm
=

gm1

1 +
C1

Cm

(9.73)
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Figure 9.32 Gain and
phase versus frequency for
the NE5234 op amp from
SPICE.

This value of gmf depends on the ratio of an internal parasitic capacitance C1, which is not well
controlled, and compensation capacitor Cm. Using gmf = gm1 moves the zero into the LHP to
about −gm2∕C1; the magnitude of this zero is usually above the unity-gain frequency of the op
amp. If the gm1 stage has a differential input, the −gmf stage can be realized using a replica of
the gm1 stage with the inputs reversed to change the sign of the transconductance.

This zero-cancellation scheme can be used repeatedly in a three-stage op amp to eliminate
the zeros, as shown in Fig. 9.34a. A small-signal model is shown in Fig. 9.34b. Analysis of
this circuit gives a voltage gain of

vo

vin
=

R2(n0 + n1s + n2s2)
1 + b1s + b2s2 + b3s3

(9.74)

where b1–b3 are related to a1–a3 in (9.57) by

b1 = a1 + gmf 1R0R2Cm2 (9.75a)

b2 = a2 + gmf 1R0R1R2(C1 + Cm1)Cm2 (9.75b)

b3 = a3 (9.75c)
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gmf v1

Figure 9.33 (a) Block diagram of a two-stage op amp with Miller compensation and a feedforward
transconductor. (b) A small-signal model.

and the coefficients in the numerator are

n0 = −gm0gm1gm2R0R1 − gmf 0 − gm0gmf 1R0 (9.76a)

n1 = gm0(gm1 − gmf 1)R0R1Cm1 + (gm0 − gmf 0)R0Cm2

− gmf 0R1(C1 + Cm1) − gmf 0R0C0 − gm0gmf 1R0R1C1 (9.76b)

n2 = (gm0 − gmf 0)R0R1(C1 + Cm1)Cm2 − gmf 0R0R1(C1 + Cm1)C0 (9.76c)

The coefficients of s and s2 in the numerator include both positive and negative terms. There-
fore, they can be set to zero, which eliminates the zeros, by properly choosing gmf 0 and gmf 1.
As in (9.73) above, these values depend on parasitic capacitances C0 and C1, which are not
well controlled in practice. An alternative choice is to set gmf 0 = gm0 and gmf 1 = gm1. When
these values are substituted into (9.76a)–(9.76c), n0, n1, and n2 are negative. Therefore, both
zeros are in the LHP (see Appendix A.9.2), and the RHP zero has been eliminated.

With gmf 1 = gm1 and gmf 0 = gm0, the term added to a1 in (9.75a) is small compared to the
dominant term in a1, which is gm1R1gm2R2R0Cm2, if gm2R1 ≫ 1. Therefore b1 ≈ a1, and the
dominant pole p1 is still given by (9.59). However, b2 can be significantly different from a2,
and therefore p2 and p3 will be different from the values given by (9.66a) and (9.66b). The
new values of the high frequency poles can be found by solving the quadratic equation that
results when b1–b3 are substituted for a1–a3 in (9.60).

The selection of the nested Miller compensation capacitors is complicated because
the values of two compensation capacitors must be chosen, and they affect the pole and
zero locations. The compensation capacitors can be chosen with the aid of a computer to
achieve a particular settling-time or phase-margin goal in a feedback application. Computer
optimization can be carried out on the closed-loop transfer function based on the op-amp
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Figure 9.34 (a) Block diagram of a three-stage op amp with nested Miller compensation and two feed-
forward transconductors. (b) Small-signal model.

transfer function or on the loop gain or return ratio, if the small-signal model parameters
are known. Alternatively, the capacitor values can be estimated using approximations and
the equations presented above. Then SPICE simulations can be run on the transistor circuit
starting with the initial estimates of the compensation capacitors and varying the capacitors by
small amounts to determine the best values. This approach is used in the following example.

◼ EXAMPLE

Design the three-stage op amp in Fig. 9.34 to give a low-frequency gain of 86 dB and 45∘
phase margin for unity feedback (f = 1) when driving a 5 pF load. Compensate the op amp so
that all the poles are real and widely spaced. To simplify this example, assume that the output
resistance of each stage is 5 kΩ and the internal node capacitances C0 and C1 are each 0.05 pF.
Determine the compensation capacitors and the transconductances for the op amp.

The feedforward transconductances gmf 0 and gmf 1 will be used to move the zeros to
well beyond the unity-gain frequency. To simplify the design equations, let gmf 0 = gm0 and
gmf 1 = gm1, based on (9.73)–(9.76) and the assumption that C0 and C1 are small compared to
Cm1 and Cm2.
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When gmf 0 = gmf 1 = 0, the coefficients ai of the denominator of the transfer function are
given by (9.57). With nonzero gmf 0 and gmf 1, however, the coefficients of s and s2 in the denom-
inator of the transfer function change and are given by (9.75). From (9.75c), b3 = a3. Also, as
noted in the text following (9.76), the term added to a1 in (9.75a) is small compared to a1, so
b1 ≈ a1 and p1 is given by (9.59). Hence, poles p2 and p3 are changed due to the added term
that includes gmf 1 in b2 in (9.75b). Assuming C1 ≪ Cm1, (9.75b) reduces to

b2 ≈ a2 + gmf 1R0R1R2Cm1Cm2

Substituting the approximate expression for a2 in (9.62) and using gmf 1 = gm1, this equation
becomes

b2 ≈ gm2R0R1R2Cm1Cm2

Following the analysis from (9.60) to (9.67), we find

p2 ≈ −
b1

b2
≈ −

gm1

Cm1
(9.77a)

p3 ≈
b1

b3

1
p2

≈ −
gm2

C2
(9.77b)

To satisfy |p2| ≪ |p3|, let |p3| = 10|p2|. Substituting (9.77) in this equality and rearranging
yields

Cm1 = 10
gm1

gm2
C2 (9.78)

To ensure that Cm1 is not much larger than C2 = 5 pF, we need gm1∕gm2 ≪ 1 in (9.78). Here,
we chose gm1∕gm2 = 0.2. Substituting this value into (9.78) gives

Cm1 = 10(0.2)(5 pF) = 10 pF

With widely spaced poles, placing |p2| at the unity-gain frequency gives a 45∘ phase margin.
Since |gain| × frequency is constant for frequencies between |p1| and |p2|, we can write

|a0| ⋅ |p1| = 1 ⋅ |p2| (9.79)

where |a0| = gm0R0gm1R1gm2R2 (9.80)

is the low-frequency gain. Substitution of (9.59), (9.77a), and (9.80) into (9.79) gives

gm0

Cm2
=

gm1

Cm1

If the first two gain stages are made identical to reduce the circuit-design effort, gm0 = gm1,
and the last equation reduces to

Cm2 = Cm1 = 10 pF

Now the transconductances can be found from the low-frequency gain requirement and (9.80),

|a0| = gm0R0gm1R1gm2R2 =
g3

m1

0.2
(5 kΩ)3 = 20, 000 = 86 dB
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since gm0 = gm1 = 0.2gm2 has been selected. Solving gives gm1 = gm0 = gmf 1 = gmf 0 =
3.2 mA∕V and gm2 = gm1∕0.2 = 16 mA∕V.

SPICE simulation of this op amp gives a dc gain of 86.3 dB and a phase margin of 52∘ with
a unity-gain frequency of 40 MHz. These values are close enough to the specifications to illus-
trate the usefulness of the calculations. The pole locations are |p1|∕2𝜋 = 2.3 kHz, |p2|∕2𝜋 =
59 MHz, and |p3|∕2𝜋 = 464 MHz. The zero locations are complex with a magnitude
much larger than the unity-gain frequency, at z1,2∕2𝜋 = −345 MHz ± j1.58 GHz. Running
simulations with slight changes to the compensation capacitors, we find that using Cm1 = 10.4
pF and Cm2 = 8.3 pF gives a phase margin of 47∘ with a unity-gain frequency of 45 MHz.◼

9.5 Root-Locus Techniques1,19

To this point, the considerations of this chapter have been mainly concerned with calculations
of feedback amplifier stability and compensation using frequency-domain techniques. Such
techniques are widely used because they allow the design of feedback amplifier compensa-
tion without requiring excessive design effort. The root-locus technique involves calculation
of the actual poles and zeros of the amplifier and of their movement in the s plane as the
low-frequency, loop-gain magnitude T0 is changed. This method thus gives more informa-
tion about the amplifier performance than is given by frequency-domain techniques but also
requires more computational effort. In practice, some problems can be solved equally well
using either method, whereas others yield more easily to one or the other. The circuit designer
needs skill in applying both methods. The root-locus technique will be first illustrated with a
simple example.

9.5.1 Root Locus for a Three-Pole Transfer Function

Consider an amplifier whose transfer function has three identical poles. The transfer function
can be written as

a(s) =
a0(

1 − s
p1

)3
(9.81)

where a0 is the low-frequency gain and |p1| is the pole magnitude. Consider this amplifier
placed in a negative-feedback loop as in Fig. 9.1, where the feedback network has a transfer
function f, which is a constant. If we assume that the effects of feedback loading are small, the
overall gain with feedback is

A(s) = a(s)
1 + a(s)f

(9.82)

Using (9.81) in (9.82) gives

A(s) =

a0(
1 − s

p1

)3

1 +
a0f(

1 − s
p1

)3

=
a0(

1 − s
p1

)3

+ T0

(9.83)

where T0 = a0f is the low-frequency loop gain.
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The poles of A(s) are the roots of the equation(
1 − s

p1

)3

+ T0 = 0 (9.84)

That is, (
1 − s

p1

)3

= −T0

and thus
1 − s

p1
= 3
√
−T0 = − 3

√
T0 or 3

√
T0e j60∘ or 3

√
T0e−j60∘

Thus the three roots of (9.84) are

s1 = p1

(
1 + 3

√
T0

)
s2 = p1

(
1 − 3

√
T0e j60∘

)
(9.85)

s3 = p1

(
1 − 3

√
T0e−j60∘

)
These three roots are the poles of A(s), and (9.83) can be written as

A(s) =
a0

1 + T0

1(
1 − s

s1

)(
1 − s

s2

)(
1 − s

s3

) (9.86)

The equations in (9.85) allow calculation of the poles of A(s) for any value of low-frequency
loop gain T0. For T0 = 0, all three poles are at p1 as expected. As T0 increases, one pole moves
out along the negative real axis while the other two leave the axis at an angle of 60∘ and move
toward the RHP. The locus of the roots (or the root locus) is shown in Fig. 9.35, and each
point of this root locus can be identified with the corresponding value of T0. One point of
significance on the root locus is the value of T0 at which the two complex poles cross into the

s plane

j   

T0 = 0

T0 = 8

60°

   0

σ

ω

ω
p1

Figure 9.35 Root locus for a feedback
amplifier with three identical poles in
T(s).
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RHP, as this is the value of loop gain causing oscillation. From the equation for s2 in (9.85),
this is where Re(s2) = 0, from which we obtain

1 − Re
(

3
√

T0e j60∘
)
= 0

That is,
3
√

T0 cos 60∘ = 1

and
T0 = 8

Thus, any amplifier with three identical poles becomes unstable for low-frequency loop gain
T0 > 8. This is quite a restrictive condition and emphasizes the need for compensation if larger
values of T0 are required. Note that not only does the root-locus technique give the value of
T0 causing instability, but it also allows calculation of the amplifier poles for values of T0 < 8,
and thus allows calculation of both sinusoidal and transient response of the amplifier.

The frequency of oscillation can be found from Fig. 9.35 by calculating the distance

𝜔0 = |p1| tan 60∘ = 1.732|p1| (9.87)

Thus, when the poles just enter the RHP, their imaginary part has a magnitude 1.732|p1|, and
this will be the frequency of the increasing sinusoidal response. That is, if the complex poles
are at (𝜎 ± j𝜔0), where 𝜎 is small and positive, the transient response of the circuit contains a
term Ke𝜎t sin𝜔0t, which represents a growing sinusoid. (K is set by an initial condition.)

It is useful to calculate the value of T0 causing instability in this case by using the
frequency-domain approach and the Nyquist criterion. From (9.81), the loop gain is

T(j𝜔) =
a0f(

1 +
j𝜔|p1|

)3
=

T0(
1 + j

𝜔|p1|
)3

(9.88)

The magnitude and phase of T(j𝜔) as a function of 𝜔 are sketched in Fig. 9.36. The frequency
𝜔180 where the phase shift of T(j𝜔) is −180∘ can be calculated from (9.88) as

180∘ = 3 arctan
𝜔180|p1|

and this gives
𝜔180 = 1.732|p1| (9.89)

Comparing (9.87) with (9.89) shows that

𝜔180 = 𝜔0 (9.90)

The loop-gain magnitude at 𝜔180 can be calculated from (9.88) as

|T(j𝜔180)| = T0||||1 + j
𝜔180|p1| ||||

3
=

T0

8
(9.91)

using (9.89). The Nyquist criterion for stability indicates it is necessary that |T(j𝜔180)| < 1.
This requires that T0 < 8, the same result as obtained using root-locus techniques.
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Figure 9.36 Magnitude and phase of T(j𝜔) for a feedback amplifier with three identical poles in T(s).

9.5.2 Rules for Root-Locus Construction

In the above simple example, it was possible to calculate exact expressions for the amplifier
poles as a function of T0 and thus plot the root loci exactly. In most practical cases, this is quite
difficult since the solution of third- or higher-order polynomial equations is required. Conse-
quently, rules have been developed that allow the root loci to be sketched without requiring
exact calculation of the pole positions, and much of the useful information is thus obtained
without extensive calculation.

In general, the basic-amplifier transfer function and the feedback function may be expressed
as a ratio of polynomials in s:

a(s) = a0
1 + a1s + a2s2 + · · ·
1 + b1s + b2s2 + · · ·

(9.92)

This can be written as

a(s) = a0
Na(s)
Da(s)

(9.93)

Also assume that

f (s) = f0
1 + c1s + c2s2 + · · ·
1 + d1s + d2s2 + · · ·

(9.94)

This can be written as

f (s) = f0
Nf (s)
Df (s)

(9.95)
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Loading produced by the feedback network on the basic amplifier is assumed to be included
in (9.92). It is further assumed that the low-frequency loop gain a0f0 can be changed without
changing the poles and zeros of a(s) or f (s).

The overall gain when feedback is applied is

A(s) = a(s)
1 + a(s)f (s)

(9.96)

Using (9.93) and (9.95) in (9.96) gives

A(s) =
a0Na(s)Df (s)

Df (s)Da(s) + T0Na(s)Nf (s)
(9.97)

where
T0 = a0f0 (9.98)

is the low-frequency loop gain.
Equation 9.97 shows that the zeros of A(s) are the zeros of a(s) and the poles of f (s). From

(9.97), it is apparent that the poles of A(s) are the roots of

Df (s)Da(s) + T0Na(s)Nf (s) = 0 (9.99)

Consider the two extreme cases:

(a) Assume that there is no feedback and that T0 = 0. Then, from (9.99), the poles of a(s)
are the poles of a(s) and f (s). However, the poles of f (s) are also zeros of A(s), and these
cancel, leaving the poles of A(s) composed of the poles of a(s) as expected. The zeros of
A(s) are the zeros of a(s) in this case.

(b) Let T0 → ∞. Then (9.99) becomes

Na(s)Nf (s) = 0 (9.100)

This equation shows that the poles of A(s) are now the zeros of a(s) and the zeros of f (s).
However, the zeros of a(s) are also zeros of A(s), and these cancel, leaving the poles of
A(s) composed of the zeros of f (s). The zeros of A(s) are the poles of f (s) in this case.

Rule 1. The branches of the root locus start at the poles of T(s) = a(s)f (s) where T0 = 0,
and terminate on the zeros of T(s) where T0 = ∞. If T(s) has more poles than zeros, some of
the branches of the root locus will terminate at infinity.

Examples of loci terminating at infinity are shown in Figs. 9.3 and 9.35. More rules for the
construction of root loci can be derived by returning to (9.99) and dividing it by Df (s)Da(s).
Poles of A(s) are roots of

1 + T0
Na(s)
Da(s)

Nf (s)
Df (s)

= 0

That is,

T0
Na(s)
Da(s)

Nf (s)
Df (s)

= −1
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The complete expression including poles and zeros is

T0

(
1 − s

za1

)(
1 − s

za2

)
· · ·

(
1 − s

zf 1

)(
1 − s

zf 2

)
· · ·(

1 − s
pa1

)(
1 − s

pa2

)
· · ·

(
1 − s

pf 1

)(
1 − s

pf 2

)
· · ·

= −1 (9.101)

where
za1, za2 · · · are zeros of a(s)
zf 1, zf 2 · · · are zeros of f (s)
pa1, pa2· · · are poles of a(s)
pf 1, pf 2 · · · are poles of f (s)

Equation 9.101 can be written as

T0

(−pa1)(−pa2) · · · (−pf 1)(−pf 2) · · ·
(−za1)(−za2) · · · (−zf 1)(−zf 2) · · ·

×
(s − za1)(s − za2) · · · (s − zf 1)(s − zf 2) · · ·
(s − pa1)(s − pa2) · · · (s − pf 1)(s − pf 2) · · ·

= −1 (9.102)

If the poles and zeros of a(s) and f (s) are restricted to the LHP [this does not restrict the poles
of A(s)], then −pa1, −pa2, and so on are positive numbers, and (9.102) can be written

T0

|pa1| ⋅ |pa2| · · · |pf 1| ⋅ |pf 2| · · ·|za1| ⋅ |za2| · · · |zf 1| ⋅ |zf 2| · · · ×
(s − za1)(s − za2) · · · (s − zf 1)(s − zf 2) · · ·
(s − pa1)(s − pa2) · · · (s − pf 1)(s − pf 2) · · ·

= −1

(9.103)
Values of complex variable s satisfying (9.103) are poles of closed-loop function A(s).
Equation 9.103 requires the fulfillment of two conditions simultaneously, and these
conditions are used to determine points on the root locus.

The phase condition for values of s satisfying (9.103) is

s − za1 + s − za2 · · · + s − zf 1 + s − zf 2 + · · ·

−
(

s − pa1 + s − pa2 · · · + s − pf 1 + s − pf 2 · · ·
)
= (2n − 1)𝜋 (9.104)

The magnitude condition for values of s satisfying (9.103) is

T0

|pa1| ⋅ |pa2| · · · |pf 1| ⋅ |pf 2| · · ·|za1| ⋅ |za2| · · · |zf 1| ⋅ |zf 2| · · · |s − za1| ⋅ |s − za2| · · · |s − zf 1| ⋅ |s − zf 2| · · ·|s − pa1| ⋅ |s − pa2| · · · |s − pf 1| ⋅ |s − pf 2| · · · = 1 (9.105)

Consider an amplifier with poles and zeros of T(s), as shown in Fig. 9.37. In order to determine
whether some arbitrary point X is on the root locus, the phase condition of (9.104) is used. Note
that the vectors of (9.104) are formed by drawing lines from the various poles and zeros of T(s)
to the point X, and the angles of these vectors are then substituted in (9.104) to check the phase
condition. This is readily done for points Y and Z on the axis.

At Y,
sY − z1 = 0∘

sY − p1 = 0∘

and so on. All angles are zero for point Y, and thus the phase condition is not satisfied. This is
the case for all points to the right of p1.
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Figure 9.37 Poles and zeros of loop gain T(s) of a feedback amplifier. Vectors are drawn to the point X
to determine if this point is on the root locus.

At Z,
sZ − z1 = 0∘

sZ − p1 = 180∘

sZ − p2 = 0∘

sZ − p3 = 0∘

sZ − p4 = 0∘

In this case, the phase condition of (9.104) is satisfied, and points on the axis between p1 and
p2 are on the locus. By similar application of the phase condition, the locus can be shown to
exist on the real axis between p3 and z1 and to the left of p4.

In general, if T(s) has all its zeros and poles in the LHP, the locus is situated along the
real axis where there is an odd number of poles and zeros of T(s) to the right. In some cases,
however, all the zeros of T(s) are not in the LHP. For example, an op amp that uses Miller
compensation can have a RHP zero in a(s) and therefore in T(s). If a(s) has at least one RHP
zero, at least one of the −zai terms in (9.102) is negative, rather than positive as assumed in
(9.103). If the number of RHP zeros is even, an even number of −zai terms that are negative
appear in the denominator of (9.102). The product of these negative terms is positive, and
therefore (9.103) and (9.104) remain correct. However, if the number of RHP zeros is odd,
the product of the −zai terms in (9.102) is negative. As a result, a minus sign appears on the
left-hand side of (9.103) that causes a 𝜋 term to be added on the left side of (9.104). This
change to the phase condition is reflected in the following rule.

Rule 2. If T(s) has all its zeros in the LHP or if T(s) has an even number of RHP zeros, the
locus is situated along the real axis wherever there is an odd number of poles and zeros of T(s)
to the right. However, if T(s) has an odd number of RHP zeros, the locus is situated along the
real axis wherever there is an even number of poles and zeros of T(s) to the right.

Consider again the situation in Fig. 9.37. Rule 1 indicates that branches of the locus must
start at p1, p2, p3, and p4. Rule 2 indicates that the locus exists between p3 and z1, and thus the
branch beginning at p3 ends at z1. Rule 2 also indicates that the locus exists to the left of p4,
and thus the branch beginning at p4 moves out to negative infinity. The branches beginning at
p1 and p2 must also terminate at infinity, which is possible only if these branches break away
from the real axis as shown in Fig. 9.38. This can be stated as follows.

Rule 3. All segments of loci that lie on the real axis between pairs of poles (or pairs of zeros)
of T(s) must, at some internal break point, branch out from the real axis.
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Figure 9.38 Root-locus construction for the poles and zeros of Fig. 9.37.

The following rules can be derived.20

Rule 4. The locus is symmetrical with respect to the real axis (because complex roots occur
only in conjugate pairs).

Rule 5. Branches of the locus that leave the real axis do so at right angles, as illustrated in
Fig. 9.38.

Rule 6. If branches of the locus break away from the real axis, they do so at a point where the
vector sum of reciprocals of distances to the poles of T(s) equals the vector sum of reciprocals
of distances to the zeros of T(s).

Rule 7. If T(s) has no RHP zeros or an even number of RHP zeros, branches of the locus
that terminate at infinity do so asymptotically to straight lines with angles to the real axis of
[(2n − 1)𝜋]∕(Np − Nz) for n = 0, 1, … ,Np − Nz − 1, where Np is the number of poles and Nz
is the number of zeros. However, if T(s) has an odd number of RHP zeros, the asymptotes
intersect the real axis at angles given by (2n𝜋)∕(Np − Nz).

Rule 8. The asymptotes of branches that terminate at infinity all intersect on the real axis at
a point given by

𝜎a =
∑
[poles of T(s)] −

∑
[zeros of T(s)]

Np − Nz
(9.106)

A number of other rules have been developed for sketching root loci, but those described
above are adequate for most requirements in amplifier design. The rules are used to obtain a
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rapid idea of the shape of the root locus in any situation and to calculate amplifier performance
in simple cases. More detailed calculation on circuits exhibiting complicated pole-zero patterns
generally require computer calculation of the root locus.

Note that the above rules are all based on the phase condition of (9.104). Once the locus has
been sketched, it can then be calibrated with values of low-frequency loop gain T0 calculated
at any desired point using the magnitude condition of (9.105).

The procedures described above will now be illustrated with examples.

◼ EXAMPLE
In Section 9.5.1, the root locus was calculated for an amplifier with three identical poles. This
example was chosen because it was analytically tractable. Now consider a more practical case
where the amplifier has three nonidentical poles and resistive feedback is applied. It is required
to plot the root locus for this amplifier as feedback factor f is varied (thus varying T0), and it
is assumed that variations in f do not cause significant changes in the basic-amplifier transfer
function a(s).

Assume that the basic amplifier has a transfer function

a(s) = 100(
1 − s

p1

)(
1 − s

p2

)(
1 − s

p3

) (9.107)

where

p1 = −1 × 106 rad/s

p2 = −2 × 106 rad/s

p3 = −4 × 106 rad/s

Since the feedback circuit is assumed resistive, loop gain T(s) contains three poles. The root
locus is shown in Fig. 9.39a, and, for convenience, the numbers are normalized to 106 rad/s.

Rules 1 and 2 indicate that branches of the locus starting at poles p1 and p2 move toward
each other and then split out and asymptote to infinity. The branch starting at pole p3 moves
out along the negative real axis to infinity.

The breakaway point for the locus between p1 and p2 can be calculated using rule 6. If 𝜎i
is the coordinate of the breakaway point, then

1
𝜎i + 1

+ 1
𝜎i + 2

+ 1
𝜎i + 4

= 0 (9.108)

Solving this quadratic equation for 𝜎i gives 𝜎i = −3.22 or −1.45. The value −1.45 is the only
possible solution because the breakaway point lies between −1 and −2 on the real axis.

The angles of the asymptotes to the real axis can be found using rule 7 and are ±60∘ and
180∘. The asymptotes meet the real axis at a point whose coordinate is 𝜎a given by (9.106),
and using (9.106) gives

𝜎a = (−1 − 2 − 4) − 0
3

= −2.33

When these asymptotes are drawn, the locus can be sketched as in Fig. 9.39a, noting, from
rule 5, that the locus leaves the real axis at right angles. The locus can now be calibrated for
loop gain by using the magnitude condition of (9.105). Aspects of interest about the locus
may be the loop gain required to cause the poles to become complex, the loop gain required
for poles with an angle of 45∘ to the negative real axis, and the loop gain required for oscillation
(RHP poles).



714 Chapter 9 ▪ Frequency Response and Stability of Feedback Amplifiers

s plane × 106 rad/sec

σ

ωj

60°
–8 –7 –6 –5 –4 –3 –2 –1 1 2 3 4

45°
T0 = 25 T0 = 5

T0 = 1.5
T0 = 0.86

T0 = 13.2

6j

5j

4j

2j

j

–j

–2j

–4j

–5j

3j

–3j

(a)

Figure 9.39 (a) Root-locus example for poles of T(s) at −1 × 106
,−2 × 106, and −4 × 106 rad∕s.

Consider first the loop gain required to cause the poles to become complex. This is a point
on the locus on the real axis at 𝜎i = −1.45. Substituting s = −1.45 in (9.105) gives

T0
1 × 2 × 4

0.45 × 0.55 × 2.55
= 1 (9.109)

where |p1| = 1 |p2| = 2 |p3| = 4

|s − p1| = 0.45 |s − p2| = 0.55 |s − p3| = 2.55

and
s = −1.45 at the point being considered

From (9.109), T0 = 0.08. Thus a very small loop-gain magnitude causes poles p1 and p2 to
come together and split.

The loop gain required to cause RHP poles can be estimated by assuming that the locus
coincides with the asymptote at that point. Thus we assume the locus crosses the imaginary
axis at the point

j2.33 tan 60∘ = 4.0j
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Then the loop gain at this point can be calculated using (9.105) to give

T0
1 × 2 × 4

4.1 × 4.5 × 5.7
= 1 (9.110)

where |s − p1| = 4.1 |s − p2| = 4.5 |s − p3| = 5.7

and
s = 4j at this point on the locus

From (9.110), T0 = 13.2. Since a0 = 100 for this amplifier [from (9.107)], the overall gain of
the feedback amplifier to T0 = 13.2 is

A0 =
a0

1 + T0
= 7.04

and

f =
T0

a0
= 0.132

The loop gain when the complex poles make an angle of 45∘ with the negative real axis can
be calculated by making the assumption that this point has the same real-axis coordinate as
the breakaway point. Then using (9.105) with s = (−1.45 + 1.45j), we obtain

T0
1 × 2 × 4

1.52 × 1.55 × 2.93
= 1

and thus
T0 = 0.86

Finally, the loop gain required to move the locus out from pole p3 is of interest. When the
real-axis pole is at −5, the loop gain can be calculated using (9.105) with s = −5 to give

T0
1 × 2 × 4
1 × 3 × 4

= 1

That is,
T0 = 1.5

When this pole is at −6, the loop gain is

T0
1 × 2 × 4
2 × 4 × 5

= 1

and thus
T0 = 5

These values are marked on the root locus of Fig. 9.39a.
In this example, it is useful to compare the prediction of instability at T0 = 13.2 with the

results using the Nyquist criterion. The loop gain in the frequency domain is

T(j𝜔) =
T0(

1 +
j𝜔

106

)(
1 +

j𝜔

2 × 106

)(
1 +

j𝜔

4 × 106

) (9.111)
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A series of trial substitutions shows that ∠ T(j𝜔) = −180∘ for 𝜔 = 3.8 × 106 rad∕s. Note that
this is close to the value of 4 × 106 rad∕s where the root locus was assumed to cross the j𝜔
axis. Substitution of 𝜔 = 3.8 × 106 in (9.111) gives, for the loop gain at that frequency,

|T(j𝜔)| = T0

11.6
(9.112)

Thus, for stability, the Nyquist criterion requires that T0 < 11.6, and this is close to the answer
obtained from the root locus. If the point on the j𝜔 axis where the root locus crossed had
been determined more accurately, it would have been found to be at 3.8 × 106 rad∕s, and both
methods would predict instability for T0 > 11.6.

It should be pointed out that the root locus for Fig. 9.39a shows the movement of the poles
of the feedback amplifier as T0 changes. The theory developed in Section 9.5.2 showed that the
zeros of the feedback amplifier are the zeros of the basic amplifier and the poles of the feedback
network. In this case, there are no zeros in the feedback amplifier, but this is not always so.
It should be kept in mind that if the basic amplifier has zeros in its transfer function, these may
be an important part of the overall transfer function.◼

The rules for drawing a root locus were presented for varying T0, assuming that the poles
and zeros of a(s) and f (s) do not change when T0 changes. This assumption is often not valid
in practice, since changing the circuit to change T0 = a0f usually affects at least some of the
poles and zeros. Alternatively, these rules can be used to draw a root locus of the poles of a
transfer function as the value K of an element in the circuit changes if the closed-loop gain
A(s) can be written in the form

A(s) = N(s)
Pi(s) + KPf (s)

(9.113a)

where N(s), Pi(s), and Pf (s) are polynomials in s. In (9.113a), K must not appear in Pi(s) or
Pf (s). Also, assume K > 0 for simplicity. Then the denominator of (9.113a) is of the same
general form as the denominator in (9.97), with K taking the place of T0.

The poles of A(s) are the roots of the equation

Pi(s) + KPf (s) = 0 (9.113b)

The locus of the poles of A(s) can be plotted as K varies. If K = 0, the poles of A(s) are the
roots of Pi(s) = 0, and the root locus starts at these poles. If K → ∞, the poles of A(s) are
the roots of Pf (s) = 0, and the root locus ends at these poles. For other values of K, the poles
fall on a root locus that can be generated following the rules in this section, with K taking the
place of T0.

◼ EXAMPLE
Consider the model of the two-stage op amp with Miller compensation capacitance C (and
series resistance Rz) shown in Fig. 9.24. Plot a locus of the poles as C varies. For simplicity,
let Rz = 1∕gm so the zero from C appears at infinity. Also assume Rz ≪ R1,R2 and gmR1R2 ≫

R1,R2,Rz.
The transfer function of this circuit is given in (9.45). The coefficients in the denominator of

this equation are given in (9.46), and the compensation capacitance C appears in many terms
in (9.46). The transfer function can be written in the form of (9.113a) with K = C:

vo

is
= A(s) = N(s)

Pi(s) + CPf (s)
(9.113c)
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where
Pi(s) = 1 + s(R1C1 + R2C2) + s2R1C1R2C2 (9.113d)

and

Pf (s) = s(R1 + R2 + Rz + gmR1R2)

+ s2[R1R2(C1 + C2) + R1RzC1 + R2RzC2] + s3R1R2RzC1C2 (9.113e)

Since Rz = 1∕gm, N(s) = gmR1R2 in (9.113c). With the transfer function in this form, a root
locus can be generated for the poles of A(s) as C varies.

The initial pole locations in the root locus occur when C = 0 and are the roots of

Pi(s) = 1 + s(R1C1 + R2C2) + s2R1C1R2C2 = 0 (9.113f)

Factoring this polynomial gives the initial poles:

p1(C = 0) = − 1
R1C1

p2(C = 0) = − 1
R2C2

(9.113g)

The final pole locations of the root locus are the roots of

Pf (s) = s(R1 + R2 + Rz + gmR1R2)

+ s2[R1R2C1 + R1R2C2 + R1RzC1 + R2RzC2] + s3R1R2RzC1C2 = 0 (9.113h)

Since Rz ≪ R1,R2 and gmR1R2 ≫ R1,R2,Rz, this equation can be simplified to

Pf (s) ≃ sgmR1R2 + s2[R1R2(C1 + C2)] + s3R1R2RzC1C2 = 0 (9.113i)

Using Rz = 1∕gm and factoring gives

Pf (s) ≃ sgmR1R2

[
1 + s

C1 + C2

gm
+ s2 C1C2

g2
m

]
= 0 (9.113j)

Solving this equation gives the final poles in the locus:

p1(C → ∞) = 0 p2(C → ∞) = −
gm

C2
p3(C → ∞) = −

gm

C1
(9.113k)

The resulting root-locus plot of the poles as C varies is shown in Fig. 9.39b. Since there are two
initial poles and three final poles, a third initial pole at p3 → −∞ for C = 0 is added to provide
a starting point for the portion of the locus that ends at −gm∕C1. For any C ≠ 0, there are three
poles because the denominator in (9.113c) is third order. If the unity-gain frequency is near or
below gm∕C2, then |p3| is typically well beyond the unity-gain frequency since C1 ≪ C2 in
most cases, and hence |p3| > gm∕C1 ≫ gm∕C2. Therefore, p3 can usually be ignored, as was
done in Section 9.4.3.◼
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Figure 9.39 (b) Root locus of the poles of the op-amp gain as the compensation capacitor C varies.

9.5.3 Root Locus for Dominant-Pole Compensation

Consider an op amp that has been compensated by creation of a dominant pole at p1. If we
assume the second-most-dominant pole is at p2 and neglect the effect of higher-order poles,
the root locus when resistive feedback is applied is as shown in Fig. 9.40. Using rules 1 and 2
indicates that the root locus exists on the axis between p1 and p2, and the breakaway point is
readily shown to be

𝜎i =
p1 + p2

2
(9.114)

using rule 6. Using rules 7 and 8 shows that the asymptotes are at 90∘ to the real axis and meet
the axis at 𝜎i.

As T0 is increased, the branches of the locus come together and then split out to become
complex. As T0 becomes large, the imaginary part of the poles becomes large, and the circuit
will then have a high-frequency peak in its overall gain function A(j𝜔). This is consistent with
the previous viewpoint of gain peaking that occurred with diminishing phase margin.

Assume that maximum bandwidth in this amplifier is required, but that little or no peaking
is allowed. This means that with maximum loop gain applied, the poles should not go beyond
the points marked X and Y on the locus where an angle of 45∘ is made between the negative
real axis and a line drawn from X or Y to the origin. At X, the loop gain can be calculated
using (9.105):

T0
|p1| ⋅ |p2||s − p1| ⋅ |s − p2| = 1 (9.115)
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Figure 9.40 Root locus for
an op amp with two poles in
its transfer function. The feed-
back is assumed resistive.
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If p1 is a dominant pole, we can assume that |p1| ≪ |p2| and 𝜎i = p2∕2. For poles at 45∘,|s − p1| = |s − p2| ≃ √
2|p2|∕2. Thus (9.115) becomes

T0 = 1|p1| ⋅ |p2|
(√

2
|p2|

2

)2

This gives

T0 = 1
2

|p2||p1| (9.116)

for the value of T0 required to produce poles at X and Y in Fig. 9.40. The effect of narrowband-
ing the amplifier is now apparent. As |p1| is made smaller, it requires a larger value of T0 to
move the poles out to 45∘. From (9.116), the dominant-pole magnitude |p1| required to ensure
adequate performance with a given T0 and |p2| can be calculated.

9.5.4 Root Locus for Feedback-Zero Compensation

The techniques of compensation described earlier in this chapter involved modification of the
basic amplifier only. This is the universal method used with op amps that must be compensated
for use with a wide variety of feedback networks chosen by the user. However, this method is
quite wasteful of bandwidth, as was apparent in the calculations.

In this section, a different method of compensation will be described that involves modifi-
cation of the feedback path and is generally limited to fixed-gain amplifiers. This method finds
application in the compensation of wideband feedback amplifiers where bandwidth is of prime
importance. An example is the shunt-series feedback amplifier of Fig. 8.31, which is known
as a current feedback pair. The method is generally useful in amplifiers of this type, where
the feedback is over two stages, and in circuits such as the series-series triple of Fig. 8.18a.

A shunt-series feedback amplifier including a feedback capacitor CF is shown in Fig. 9.41.
The basic amplifier including feedback loading for this circuit is shown in Fig. 9.42. Capacitors
CF at input and output have only a minor effect on the circuit transfer function. The feedback
circuit for this case is shown in Fig. 9.43, and feedback function f is given by

f =
ii
i2

= −
RE

RF + RE

1 + RFCFs

1 +
RERF

RE + RF
CFs

(9.117)

RF

RE

RL1

zL

Q1

Q2

is

io

CF

Figure 9.41 Shunt-series feedback amplifier including a feedback capacitor CF .
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Figure 9.42 Basic amplifier including feedback loading for the circuit of Fig. 9.41.
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Figure 9.43 Circuit for the calculation of
feedback function f for the amplifier of
Fig. 9.41.

Feedback function f thus contains a zero with a magnitude

𝜔z =
1

RFCF
(9.118)

and a pole with a magnitude

𝜔p =
RE + RF

RE

1
RFCF

(9.119)

Quantity (RE + RF)∕RE is approximately the low-frequency gain of the overall circuit with
feedback applied, and since it is usually true that (RE + RF)∕RE ≫ 1, the pole magnitude given
by (9.119) is usually much larger than the zero magnitude. This will be assumed, and the effects
of the pole will be neglected, but if (RE + RF)∕RE becomes comparable to unity, the pole will
be important and must be included.

The basic amplifier of Fig. 9.42 has two significant poles contributed by Q1 and Q2.
Although higher-magnitude poles exist, these do not have a dominant influence and will
be neglected. The effects of this assumption will be investigated later. The loop gain of the
circuit of Fig. 9.41 thus contains two forward-path poles and a feedback zero, giving rise
to the root locus of Fig. 9.44. For purposes of illustration, the two poles are assumed to be
p1 = −10 × 106 rad∕s and p2 = −20 × 106 rad∕s, and the zero is z = −50 × 106 rad∕s. For
convenience in the calculations, the numbers will be normalized to 106 rad∕s.

Assume now that the loop gain of the circuit of Fig. 9.41 can be varied without changing
the parameters of the basic amplifier of Fig. 9.42. Then a root locus can be plotted as the loop
gain changes, and using rules 1 and 2 indicates that the root locus exists on the axis between
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Figure 9.44 Root locus for the circuit of Fig. 9.41, assuming the basic amplifier contributes two poles
to T(s) and the feedback circuit contributes one zero.

p1 and p2, and to the left of z. The root locus must thus break away from the axis between p1
and p2 at 𝜎1, as shown, and return again at 𝜎2. One branch then extends to the right along the
axis to end at the zero while the other branch heads toward infinity on the left. Using rule 6
gives

1
𝜎1 + 10

+ 1
𝜎1 + 20

= 1
𝜎1 + 50

(9.120)

Solution of (9.120) for 𝜎1 gives

𝜎1 = −84.6 or −15.4

Obviously, 𝜎1 = −15.4 and the other value is 𝜎2 = −84.6. Note that these points are equidis-
tant from the zero, and, in fact, it can be shown that in this example, the portion of the
locus that is off the real axis is a circle centered on the zero. An aspect of the root-locus
diagrams that is a useful aid in sketching the loci is apparent from Figs. 9.39a and 9.44.
The locus tends to bend toward zeros as if attracted and tends to bend away from poles
as if repelled.

The effectiveness of the feedback zero in compensating the amplifier is apparent from
Fig. 9.44. If we assume that the amplifier has poles p1 and p2 and there is no feedback zero,
then when feedback is applied, the amplifier poles will split out and move parallel to the j𝜔
axis. For practical values of loop gain T0, this would result in “high Q” poles near the j𝜔
axis, which would give rise to an excessively peaked response. In practice, oscillation can
occur because higher-magnitude poles do exist and would tend to give a locus of the kind of
Fig. 9.39a, where the remote poles cause the locus to bend and enter the RHP. (Note that this
behavior is consistent with the alternative approach of considering a diminished phase margin
to be causing a peaked response and eventual instability.) The inclusion of the feedback zero,
however, bends the locus away from the j𝜔 axis and allows the designer to position the poles
in any desired region.

An important point that should be stressed is that the root locus of Fig. 9.44 gives the poles
of the feedback amplifier. The zero in that figure is a zero of loop gain T(s) and thus must
be included in the root locus. However, the zero is contributed by the feedback network and
is not a zero of the overall feedback amplifier. As pointed out in Section 9.5.2, the zeros of
the overall feedback amplifier are the zeros of basic amplifier a(s) and the poles of feedback
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Figure 9.45 Poles of the transfer function of the
feedback amplifier of Fig. 9.41. The transfer function
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Figure 9.46 Poles and zero of the transfer function
of the feedback amplifier of Fig. 9.41 if the zero is
assumed contributed by the basic amplifier.

network f (s). Thus the transfer function of the overall feedback amplifier in this case has two
poles and no zeros, as shown in Fig. 9.45, and the poles are assumed placed at 45∘ to the axis
by appropriate choice of z. Since the feedback zero affects the root locus but does not appear
as a zero of the overall amplifier, it has been called a phantom zero.

On the other hand, if the zero z were contributed by the basic amplifier, the situation would
be different. For the same zero, the root locus would be identical but the transfer function of
the overall feedback amplifier would then include the zero, as shown in Fig. 9.46. This zero
would then have a significant effect on the amplifier characteristics. This point is made simply
to illustrate the difference between forward-path and feedback-path zeros. There is no practical
way to introduce a useful forward-path zero in this situation.

Before leaving this subject, we mention the effect of higher-magnitude poles on the root
locus of Fig. 9.44, and this is illustrated in Fig. 9.47. A remote pole p3 will cause the locus
to deviate from the original, as shown, and produce poles with a larger imaginary part than
expected. The third pole, which is on the real axis, may also be significant in the final ampli-
fier. Acceptable performance can usually be obtained by modifying the value of z from that
calculated above.

Finally, the results derived in this chapter explain the function of capacitors CP and CF in
the circuit of the MC 1553 series-series triple of Fig. 8.21a, which was described in Chapter 8.
Capacitor CP causes pole splitting to occur in stage Q2 and produces a dominant pole in the
basic amplifier, which aids in the compensation. However, as described above, a large value of
CP will cause significant loss of bandwidth in the amplifier, so a feedback zero is introduced
via CF , which further aids in the compensation by moving the root locus away from the j𝜔
axis. The final design is a combination of two methods of compensation in an attempt to find
an optimum solution.
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Figure 9.47 Root locus of the circuit of Fig. 9.41 when an additional pole of the basic amplifier is
included. (Not to scale.)

9.6 Slew Rate8

The previous sections of this chapter have been concerned with the small-signal behavior of
feedback amplifiers at high frequencies. However, the behavior of feedback circuits with large
input signals (either step inputs or sinusoidal signals) is also of interest, and the effect of fre-
quency compensation on the large-signal, high-frequency performance of fee dback amplifiers
is now considered.

9.6.1 Origin of Slew-Rate Limitations

A common test of the high-frequency, large-signal performance of an amplifier is to apply
a step input voltage as shown in Fig. 9.48. This figure shows an op amp in a unity-gain
feedback configuration and will be used for purposes of illustration in this development.
Assuming the op amp is powered from a single supply between 3 V and ground, the input
here is chosen to step from 0.5 to 2.5 V so that the circuit operates linearly well before
and well after the step. Suppose initially that the circuit has a single-pole transfer function
given by

Vo

Vi
(s) = A

1 + s𝜏
(9.121)

(a)

Vo
Vi

+
+

+

–

–

–

Vi

t

+2.5 V

+0.5 V

(b)

Figure 9.48 (a) Circuit
and (b) input for testing
slew-rate performance.
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where
𝜏 = 1

2𝜋fo
(9.122)

and fo is the −3 dB frequency. Since the circuit is connected as a voltage follower, the
low-frequency gain A will be close to unity. If we assume that this is so, the response of the
circuit to this step input [Vi(s) = 2∕s] is given by

Vo(s) =
1

1 + s𝜏
2
s

(9.123)

using (9.121). Equation 9.123 can be factored to the form

Vo(s) =
2
s
− 2

s + 1
𝜏

(9.124)

From (9.124),
Vo(t) = 2(1 − e−t∕𝜏 ) (9.125)

Figure 9.49a shows the response predicted from (9.125) using an op amp with fo = 1∕(2𝜋𝜏) ≃
2.7 MHz. This plot shows an exponential rise of Vo(t) by 2 V, and 90 percent of the output
change is completed in about 0.14 μs.
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Figure 9.49 Possible responses of the
circuit of Fig. 9.48 with a NE5234 op amp
using an input step of 2 V. (a) Response
predicted by (9.125) ignoring slew-rate
limitation. (b) Response predicted by
SPICE simulation including slew-rate
limitation.
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As shown in the fifth edition of this book, fo ≃ 2.7 MHz for the NE5234 op amp. However,
Fig. 9.49b shows the response of this op amp to the test in Fig. 9.48 predicted by SPICE
simulation, and this response differs significantly from the prediction in Fig. 9.49a. The output
voltage is a slow ramp of almost constant slope, and about 2.6 μs is required to complete 90
percent of the output change. This result shows that small-signal linear analysis is inadequate
for predicting the circuit behavior under the conditions in Fig. 9.48. The response shown
in Fig. 9.49b is typical of op-amp performance observed when a large input step voltage is
applied. The rate of change of the output voltage dVo∕dt in the region of constant slope is called
the slew rate and is usually specified in V/μs. For this op amp, the slew rate is about 0.68 V∕μs.

The reason for the discrepancy between predicted and observed behavior noted above can be
appreciated by examining the circuit of Fig. 9.48a and considering the responses in Fig. 9.49.
At t = 0, the input voltage steps up by +2 V, but the output voltage cannot respond instan-
taneously and is initially unchanged. Thus the op-amp differential input is Vid = 2 V, which
drives the input stage completely out of its linear range of operation. This can be seen by con-
sidering a two-stage op amp; simplified schematics for a bipolar and CMOS op amp for use in
this analysis are shown in Fig. 9.50a,b. The Miller compensation capacitor C connects around
the high-gain second stage and causes this stage to act as an integrator. The current from the
input stage, which charges the compensation capacitor, is Ix. The large-signal transfer charac-
teristic from the op-amp differential input voltage Vid to Ix is that of a differential pair, which is
shown in Fig. 9.50c. From Fig. 9.50c, the maximum current available to charge C is 2I1, which
is the tail current in the input stage. For a bipolar differential pair, |Ix| ≈ 2I1 if |Vid| > 3VT . For
a MOS differential pair, |Ix| ≈ 2I1 if |Vid| > √

2|Vov1|. (See Chapter 3.) Thus, when Vid = 2
V as described above, the input stage limits and Ix ≈ 2I1 (assuming that

√
2|Vov1| < 2 V for

the MOS circuit). The circuit thus operates nonlinearly, and linear analysis fails to predict the
behavior. If the input stage did act linearly, the input voltage change of 2 V would produce a
very large current Ix to charge the compensation capacitor. The fact that this current is limited
to the fairly small value of 2I1 is the reason for the slew rate being much less than a linear
analysis would predict.

Consider a large input voltage applied to the circuits of Fig. 9.50 so that Ix = 2I1. Then the
second stage acts as an integrator with an input current 2I1, and the output voltage Vo can be
written as

Vo = 1
C ∫ 2I1dt (9.126)

and thus
dVo

dt
=

2I1

C
(9.127)

Equation 9.127 predicts a constant rate of change of Vo during the slewing period, which is in
agreement with simulation results and experimental observation.

The above calculation of slew rate was performed on the circuits of Fig. 9.50, which do not
include feedback from Vo to an op-amp input in either differential pair. Since each input stage
produces a constant output current that is independent of its input during the slewing period,
the presence of a feedback connection to the input does not affect the operation of either circuit
during this time. Thus, the slew rate of the amplifier is the same whether feedback is applied
or not.

9.6.2 Methods of Improving Slew Rate in Two-Stage Op Amps

In order to examine methods of slew-rate improvement, a more general analysis is required.
This can be performed using the circuit of Fig. 9.51, which is a general representation of
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Figure 9.50 Simplified
schematics of a two-stage
(a) bipolar and (b) MOS
op amp for slew-rate
calculations.
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signal transfer
characteristic for the input
stages in (a) and (b). For
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Figure 9.51 Generalized representation of an op amp for slew-rate calculations.

an op-amp circuit. The input stage has a small-signal transconductance gmI and, with a large
input voltage, can deliver a maximum current Ixm to the next stage. The compensation is shown
as the Miller effect using the capacitor C, since this representation describes most two-stage
integrated-circuit op amps.

From Fig. 9.51 and using (9.127), we can calculate the slew rate for a large input voltage as

dVo

dt
=

Ixm

C
(9.128)

Consider now small-signal operation. For the input stage, the small-signal transconductance is

ΔIx

ΔVi
= gmI (9.129)

For the second stage (which acts as an integrator), the transfer function at high frequencies is

ΔVo

ΔIx
= 1

sC
(9.130a)

and in the frequency domain,
ΔVo

ΔIx
(j𝜔) = 1

j𝜔C
(9.130b)

Combining (9.129) and (9.130b) gives

ΔVo

ΔVi
(j𝜔) =

gmI

j𝜔C
(9.130c)

In our previous consideration of compensation, it was shown that the small-signal, open-loop
voltage gain (ΔVo∕ΔVi)(j𝜔) must fall to unity at or before a frequency equal to the magnitude
of the second-most-dominant pole (𝜔2). If we assume, for ease of calculation, that the circuit
is compensated for unity-gain operation with 45∘ phase margin as shown in Fig. 9.15, the
gain (ΔVo∕ΔVi)(j𝜔) as given by (9.130c) must fall to unity at frequency 𝜔2. (Compensation
capacitor C must be chosen to ensure that this occurs.) Thus, from (9.130c),

1 =
gmI

𝜔2C
(9.131)

and thus
1
C

=
𝜔2

gmI
(9.132)
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Note that (9.132) was derived on the basis of a small-signal argument. This result can now be
substituted in the large-signal equation (9.128) to give

Slew rate =
dVo

dt
=

Ixm

gmI
𝜔2 (9.133)

Equation 9.133 allows consideration of the effect of circuit parameters on slew rate, and it is
apparent that, for a given 𝜔2, the ratio Ixm∕gml must be increased if slew rate is to be increased.

9.6.3 Improving Slew Rate in Bipolar Op Amps

The analysis of the previous section can be applied to a bipolar op amp that uses Miller com-
pensation. In the case of the op amp in Fig. 9.50a, we have Ixm = 2I1 and gmI = qI1∕kT , and
substitution in (9.133) gives

Slew rate = 2
kT
q
𝜔2 (9.134)

Since both Ixm and gmI are proportional to bias current I1, the influence of I1 cancels in the
equation, and slew rate is independent of I1 for a given 𝜔2. However, increasing 𝜔2 will
increase the slew rate, and this course is followed in most high-slew-rate circuits. The limit
here is set by the frequency characteristics of the transistors in the IC process, and further
improvements depend on circuit modifications as described below.

The above calculation has shown that varying the input-stage bias current of a two-stage
bipolar op amp does not change the circuit slew rate. However, (9.133) indicates that for a
given Ixm, slew rate can be increased by reducing the input-stage transconductance. One way
this can be achieved is by including emitter-degeneration resistors to reduce gmI , as shown in
Fig. 9.52. The small-signal transconductance of this input stage can be shown to be

gmI =
ΔIx

ΔVid
= gm1

1
1 + gm1RE

(9.135)

where

gm1 =
qI1

kT
(9.136)
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–

Figure 9.52 Inclusion of emitter resistors in the
input stage in Fig. 9.50a to improve slew rate.
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The value of Ixm is still 2I1. Substituting (9.135) in (9.133) gives

Slew rate = 2kT
q

𝜔2(1 + gm1RE) (9.137)

Thus the slew rate is increased by the factor [1 + (gm1RE)] over the value given by (9.134). The
fundamental reason is that, for a given bias current I1, reducing gmI reduces the compensation
capacitor C required, as shown by (9.132).

The practical limit to this technique is due to the fact that the emitter resistors of Fig. 9.52
have a dc voltage across them, and mismatches in the resistor values give rise to an input dc
offset voltage. The use of large-area resistors can give resistors whose values match to within
0.2 percent (1 part in 500). If the maximum contribution to input offset voltage allowed from
the resistors is l mV, then these numbers indicate that the maximum voltage drop allowed is

I1RE|max = 500 mV (9.138)

Thus
gm1RE|max =

q

kT
I1RE|max = 500

26
= 20 (9.139)

Using (9.139) in (9.137) shows that given these data, the maximum possible improvement in
slew rate by use of emitter resistors is a factor of 21 times.

Finally, in this description of methods of slew-rate improvement, we mention the Class AB
input stage described by Hearn.21 In this technique, the small-signal transconductance of the
input stage is left essentially unchanged, but the limit Ixm on the maximum current available for
charging the compensation capacitor is greatly increased. This is done by providing alterna-
tive paths in the input stage that become operative for large inputs and deliver large charging
currents to the compensation point. This has resulted in slew rates of the order of 30 V∕μs
in bipolar op amps, and, as in the previous cases, the limitation is an increase in input offset
voltage.

9.6.4 Improving Slew Rate in MOS Op Amps

A two-stage Miller-compensated MOS op amp is shown in Fig. 9.50b, and its slew rate is given
by (9.127). From the analysis in Section 9.6.2, (9.133) shows that the slew rate can be increased
by increasing 𝜔2. On the other hand, if 𝜔2 is fixed, increasing the ratio Ixm∕gmI improves the
slew rate. Using (1.180), (9.133) can be rewritten as

Slew rate =
Ixm

gmI
𝜔2 =

2I1√
2k′(W∕L)1I1

𝜔2 =

√
2I1

k′(W∕L)1
𝜔2 (9.140)

This equation shows that the slew rate increases if (W∕L)1 decreases with I1 constant. In this
case, gmI = gm1 decreases. From (9.132), a smaller compensation capacitor can then be used;
therefore, the slew rate in (9.127) increases because I1 is unchanged. Equation 9.140 also shows
that the slew rate can be increased by increasing I1. Assume that I1 increases by a factor x,
where x > 1. Then the ratio Ixm∕gmI increases by the factor

√
x because gm1 is proportional to√

I1. From (9.132), the compensation capacitor must be increased by the factor
√

x if 𝜔2 is
fixed. With these changes, the slew rate in (9.127) becomes

dVo

dt
=

2xI1

C
√

x
=

2I1

√
x

C
(9.141)

Since x > 1, the slew rate is increased.
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Alternatively, the ratio Ixm∕gmI of the input stage can be increased by adding degeneration
resistors RS in series with the sources of M1 and M2 to give

gmI =
gm1

1 + (gm1 + gmb1)RS
(9.142)

For fixed I1, increasing RS decreases gmI and increases Ixm∕gmI , which increases the slew rate.
These approaches increase the slew rate but have some drawbacks. First, decreasing gmI of

the input stage while keeping its bias current constant will usually lower the dc gain of the
first stage and hence reduce the dc gain of the entire op amp. Also, increasing I1 or reducing
(W∕L)1 tends to increase the input-offset voltage of the op amp, as can be seen from (3.248).
Finally, if source-degeneration resistors are added, mismatch between these resistors degrades
the input-offset voltage.

For single-stage MOS op amps, such as the telescopic-cascode and folded-cascode op amps,
the slew rate is set by the maximum output current divided by the capacitance that loads the
output. The maximum output current is equal to the tail current in these op amps.

◼ EXAMPLE
Find the output slew rate for the cascode op amp shown in Fig. 9.53.

Assuming the op amp has a large positive differential input voltage applied, M2 is cut off,
and ITAIL flows through M1. Therefore the drain current in M2A is zero, and the drain current
in M3 is Id3 = −ITAIL. The current mirror M3–M4 forces Id3 = Id4. It follows that Id4A = Id4 =
−ITAIL. The current flowing into the load capacitor CL is

Io = −Id2A − Id4A = −0 − (−ITAIL) = ITAIL

Therefore the positive output slew rate is

dVo

dt
=

Io

CL
=

ITAIL

CL
(9.143)
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Figure 9.53 A CMOS
telescopic-cascode op amp.
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Application of a large negative input forces M1 into cutoff, so ITAIL must flow through M2.
Therefore, Id4A = Id4 = Id3 = 0 and Id2A = Id2 = ITAIL. The current Io flowing through CL is

Io = −Id2A − Id4A = −ITAIL − 0 = −ITAIL

Hence, the negative slew rate is the opposite of the value in (9.143), −ITAIL∕CL.◼

CMOS op amps are often used without an output stage when the output loading is purely
capacitive, as is the case in switched-capacitor circuits. Avoiding an output stage saves power
and is possible because low-output resistance is not needed to drive a capacitive load. An
example of such a circuit is the switched-capacitor integrator shown in Fig. 6.10a. This cir-
cuit is redrawn in Fig. 9.54 when clock phase 𝜙2 is high and 𝜙1 is low, assuming that MOS
transistors M1–M4 behave like ideal switches. The additional capacitor Cip here models the
total parasitic capacitance at the op-amp input and includes the input capacitance of the op
amp. A question that arises is, “For the feedback circuit in Fig. 9.54, what value of output load
capacitance should be used to compute the slew rate for a single-stage op amp?” When the
op amp is slewing, its behavior is nonlinear. Therefore the feedback is not effective, and the
virtual ground at the negative op-amp input is lost. With the feedback loop broken, the total
capacitance seen from the output to ground is

CL + CI||(CS + Cip) (9.144)

This is the capacitance seen looking from the op-amp output node to ground, with the con-
nection to the op-amp inverting input replaced with an open circuit. The effective output load
capacitance in (9.144) is the same as the output load found when the feedback loop is broken
to find the return ratio.

For the CMOS op amps considered so far in this section, the slew rate is proportional to a
bias current in the op amp. A CMOS op amp with a Class AB input stage can give a slew rate
that is not limited by a dc bias current in the op amp. An example22,23 is shown in Fig. 9.55.
The input voltage is applied between the gates of M1,M2 and M3,M4. Transistors M1 and
M4 act simply as unity-gain source followers to transfer the input voltage to the gates of M6
and M7. Diode-connected transistors M5 and M8 act as level shifts, which, together with bias
current sources I1, set the quiescent Class AB current in M2,M3,M6, and M7. The currents
in M3 and M7 are delivered to the output via cascode current mirrors M9,M10,M13,M14 and
M11,M12,M15,M16. Bias currents can be determined by assuming that the input voltage Vi = 0,
giving

VGS1 + |VGS5| = |VGS6| + VGS3 (9.145)

Assuming that (1.157) is valid, we have

Vtn +

√
2

I1

k′n

(L
W

)
1
+ |Vtp| +

√
2

I1

k′p

(L
W

)
5
= |Vtp| +√

2
IB

k′P

(L
W

)
6
+ Vtn +

√
2

IB

k′n

(L
W

)
3

(9.146)
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Figure 9.54 An op amp with capacitive
load and feedback. This is the switched-
capacitor integrator of Fig. 6.10a during 𝜙2,
assuming ideal MOS switches.
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Figure 9.55 CMOS amplifier with a Class AB input stage.

where IB = |ID6| = ID3 = ID2 = |ID7| is the bias current and subscripts n and p indicate NMOS
and PMOS, respectively. The two sides of the input stage are assumed symmetrical. From
(9.146), we have

√
IB

[√
2
k′p

( L
W

)
6
+

√
2
k′n

( L
W

)
3

]
=
√

I1

[√
2
k′p

( L
W

)
5
+

√
2
k′n

( L
W

)
1

]
(9.147)

Equation 9.147 is the design equation for the input-stage bias current IB.
Assuming that the cascode current mirrors in Fig. 9.55 have unity current gain, the bias

currents in M9–M16 all equal IB. To analyze this circuit, we will connect a voltage Vi to the
noninverting op-amp input and ground the inverting op-amp input. If a positive Vi is applied,
the magnitude of the currents in M3 and M6 increase, while the magnitude of the currents in
M2 and M7 decrease. When mirrored to the output, these changes drive Io and Vo positive.
To calculate the small-signal gain, we neglect the body effect. We can consider M6 to act as
source degeneration for M3. The resistance looking into the source of M6 is 1∕gm6, and thus

id3 =
gm3

1 +
gm3

gm6

vi (9.148)

Similarly, M2 acts as source degeneration for M7, so

id7 =
gm7

1 +
gm7

gm2

vi =
gm2

1 +
gm2

gm7

vi (9.149)
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where the right-most expression is found by rearranging. Thus, the transconductance of the
amplifier is

Gm =
io
vi

||||vo=0
=

id3 + id7

vi
=

2gm3

1 +
gm3

gm6

(9.150)

using gm2 = gm3 and gm6 = gm7. If gm3 = gm6, then Gm = gm3.
The output resistance of this op amp is just the output resistance of the cascodes in parallel

and is
Ro ≈ (ro14gm14ro13)||(ro15gm15ro16) (9.151)

Finally, the small-signal voltage gain is

Av = GmRo (9.152)

The small-signal analysis above showed that a small positive Vi causes a positive Io. If Vi
continues to increase beyond the small-signal linear range of the input stage, M2 and M7 will
be cut off, while M3 and M6 will be driven to larger values of |Vgs|. The currents in M3 and M6
can increase to quite large values, which gives a correspondingly large positive Io. For large
negative values of Vi, M3 and M6 turn off, M2 and M7 conduct large currents, and Io becomes
large negative. Thus this circuit is capable of supplying large positive and negative currents
to a load capacitance, and the magnitude of these output currents can be much larger than the
bias current IB in the input stage. Therefore, this op amp does not display slew-rate limiting in
the usual sense.

One disadvantage of this structure is that about half the transistors turn completely off dur-
ing slewing. As a result, the time required to turn these transistors back on can be an important
limitation to the high-frequency performance. To overcome this problem, the op amp can be
designed so that the minimum drain currents are set to a nonzero value.24

9.6.5 Effect of Slew-Rate Limitations on Large-Signal Sinusoidal
Performance

The slew-rate limitations described above can also affect the performance of the circuit when
handling large sinusoidal signals at higher frequencies. Consider the circuit of Fig. 9.48 with
a large sinusoidal signal applied, as shown in Fig. 9.56a. Since the circuit is connected as a
voltage follower, the output voltage Vo will be forced to follow the Vi waveform. The maximum
value of dVi∕dt occurs as the waveform crosses the axis, and if Vi is given by

Vi = V̂i sin 𝜔t (9.153)

then
dVi

dt
= 𝜔V̂i cos 𝜔t

and
dVi

dt

||||max
= 𝜔V̂i (9.154)

As long as the value of dVi∕dt|max given by (9.154) is less than the slew-rate limit, the output
voltage will closely follow the input. However, if the product 𝜔V̂i is greater than the slew-rate
limit, the output voltage will be unable to follow the input, and waveform distortion of the kind
shown in Fig. 9.56b will result. If a sine wave with V̂i equal to the supply voltage is applied to
the amplifier, slew limiting will eventually occur as the sine-wave frequency is increased. The
frequency at which this occurs is called the full-power bandwidth of the circuit. (In practice, a
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Figure 9.56 (a) Large sinusoidal input voltage
applied to the circuit of Fig. 9.48. (b) Output
voltage resulting from input (a) showing slew
limiting.

value of V̂i slightly less than the supply voltage is used to avoid clipping distortion of the type
described in Chapter 5.)

◼ EXAMPLE

Calculate the full-power bandwidth of the NE5234. Use V̂i = 1 V.
From (9.154), put

𝜔V̂i = slew rate

Using the slew rate of 0.68 V∕μs found in Fig. 9.49b gives

𝜔 =
0.68 V∕μs

1 V
= 680 × 103 rad∕s

Thus
f = 110 kHz

Therefore, this op amp begins to show slew-limiting distortion with a sinusoidal output of 1 V
peak and a frequency exceeding 110 kHz.◼

9.7 Effect of Feedback on a Pole-Zero Doublet26–28

As explained in Chapter 7, a pole-zero doublet can exist in an op-amp transfer function for
various reasons. In this section, we will investigate what happens when feedback is applied
around an op amp that has a doublet. Assume the open-loop gain of the op amp is given by

a(s) = a0
1 − s∕zx

(1 − s∕px)(1 − s∕p1)
(9.155a)
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where zx and px are about equal and form the pole-zero doublet. Figure 9.57a shows a plot of|a| versus frequency. Assume the op amp is in feedback with frequency-independent feedback
function f .

From (8.5), the closed-loop gain is

ACL(s) =
a(s)

1 + a(s)f
=

a0
1 − s∕zx

(1 − s∕px)(1 − s∕p1)

1 + a0f
1 − s∕zx

(1 − s∕px)(1 − s∕p1)

=
a0(1 − s∕zx)

(1 − s∕px)(1 − s∕p1) + a0f (1 − s∕zx)

=
a0(1 − s∕zx)

(1 + T0) − s(1∕px + 1∕p1 + T0∕zx) + s2∕p1px

(9.155b)

≃
a0(1 − s∕zx)

T0

[
1 − s

(
1

T0px
+ 1

T0p1
+ 1

zx

)
+ s2

T0p1px

] (9.155c)

In (9.155c), T0 ≫ 1 is assumed, which means that 1 + T0 ≃ T0. Under this assumption, the
1∕(T0px) term in the denominator of (9.155c) can be neglected because zx ≃ px. Then this
equation simplifies to

ACL(s) ≃
a0(1 − s∕zx)

T0

[
1 − s

(
1

T0p1
+ 1

zx

)
+ s2

T0p1px

] (9.155d)

Since |px| ≃ |zx|, we can replace zx with px in the denominator of this equation, which gives

ACL(s) ≃
a0(1 − s∕zx)

T0

[
1 − s

(
1

T0p1
+ 1

px

)
+ s2

T0p1px

] (9.155e)

Factoring the denominator gives the two poles of the closed-loop gain ACL(s):

pA ≃ px pB ≃ T0p1 (9.155f)

From (9.155e) and (9.155f), ACL has a pole at pA ≃ px and a zero at zx. This pole and zero are
about equal and form a doublet in the closed-loop transfer function. The other pole is about
equal to T0p1. Figure 9.57b plots the magnitude of the closed-loop transfer function. At dc, the
closed-loop gain is approximately a0∕T0 = 1∕f because T0 ≫ 1. The plot also assumes that|T0p1| ≫ |px|.

This analysis shows that if the op-amp open-loop gain has a doublet, a doublet also
appears in the closed-loop gain, assuming T0 ≫ 1. The doublet zero is not changed by the
feedback. The doublet pole pA with feedback is given approximately in (9.155f). Also, pA
can be found exactly by factoring the denominator of (9.155b), which is the exact transfer
function.

On the other hand, when T0 is not ≫ 1, a doublet may not appear in the closed-loop gain
even when one appears in the open-loop gain. In this case, the locations of the poles of ACL
can be found by finding the roots of the denominator in (9.155b). For example, suppose that
p1, px, and zx in Fig. 9.57a are real and in the LHP. Also assume |p1| < |px| < |zx|, where px
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(a)

ω1

∣ACL∣
a0

T0
=

1

f

∣pA∣ ∣zx∣ ∣pB∣
(b)

Figure 9.57 Plots of (a) op-amp open-loop gain
magnitude with a doublet and (b) corresponding
closed-loop gain magnitude.

and zx form a doublet in the open-loop gain. Then for some values of T0, the two poles become
complex conjugates, and a doublet is not formed in the closed-loop gain. (The root locus in
this case would be similar to the one in Fig. 9.44.)

Finally, notice two things. First, this section shows that feedback around an amplifier
does not change the locations of its zeros because the closed-loop gain is proportional to
the open-loop gain, but feedback may change the pole locations. Second, Section 7.5 shows
that doublets inside the bandwidth of an amplifier may increase its settling time. As a result,
a design constraint often practiced in applications where settling time is important is as
follows. The circuit parameters are chosen so that all the zeros of the amplifier lie outside its
closed-loop bandwidth. Then if feedback creates a doublet, it will not limit the settling time
of the amplifier. See Problem 9.50.

APPENDIX
A.9.1 ANALYSIS IN TERMS OF RETURN-RATIO PARAMETERS

Much of the analysis in this chapter is based on the ideal block diagram in Fig. 9.1. This block
diagram includes the forward gain a and feedback f, which are the parameters used in two-port
analysis of feedback circuits in Chapter 8. The resulting closed-loop gain expression is

A = a
1 + T

= a
1 + af

(9.156a)

The block diagram from return-ratio analysis in Fig. 8.42 is the same as Fig. 9.1 if a is
replaced by b, f is replaced by 1∕A∞, and the direct feedforward d is negligible. [The contri-
bution of feedforward through the feedback network to a is also neglected in the analysis in
Sections 9.2–9.5, since feedforward introduces one or more zeros into a(s), but only one- and
two-pole a(s) are considered in these sections. Neglecting the feedforward in a or the direct
feedthrough d is reasonable if its effect is negligible at and below the frequency where the
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magnitude of the loop transmission falls to 1.] The corresponding equations from return-ratio
analysis are

A = b
1 +ℛ

+ d
1 +ℛ

≈ b
1 +ℛ

= b

1 + b
A∞

(9.156b)

For the circuit in Fig. 8.42, 0 ≤ 1∕A∞ ≤ 1, and b is positive at low frequencies. Therefore,
the equations, graphs, and relationships in Sections 9.2–9.5 can be expressed in terms of the
return-ratio variables by making the following substitutions:

a → b (9.157a)

f → 1∕A∞ (9.157b)

T → ℛ (9.157c)

af → b∕A∞ (9.157d)

The return ratio can be used to check stability of an amplifier with a single feedback loop
because A∞ and d are stable transfer functions associated with passive networks, and ℛ(s) is
stable because it is the signal transfer around a loop that consists of one gain stage or a cascade
of stable gain stages. Therefore, the zeros of 1 +ℛ(s), which are poles of the closed-loop gain
A, determine the stability of the feedback circuit.25 From the Nyquist stability criterion, these
zeros are in the LHP if a polar plot of ℛ(j𝜔) does not encircle the point (−1,0). In most cases,
this stability condition is equivalent to having a positive phase margin. The phase margin is
measured at the frequency where |ℛ(j𝜔)| = 1.

Since the equations for two-port and return-ratio analyses are not identical, T(s) and ℛ(s)
may be different for a given circuit.29 In general, the phase margins using T and ℛ may differ,
but both will have the same sign and therefore will agree on the stability of the feedback circuit.

A.9.2 ROOTS OF A QUADRATIC EQUATION

A second-order polynomial often appears in the denominator or numerator of a transfer
function, and the zeros of this polynomial are the poles or zeros of the transfer function.
In this appendix, the relationships between the zeros of a quadratic and its coefficients are
explored for a few specific cases of interest. Also, the conditions under which a dominant
root exists are derived.

Consider the roots of the quadratic equation

as2 + bs + c = 0 (9.158)

The two roots of this equation, r1 and r2, are given by the quadratic formula:

r1,2 = −b ±
√

b2 − 4ac
2a

(9.159)

where it is understood that the square root of a positive quantity is positive. Factoring b out of
the square root and rearranging gives

r1,2 = − b
2a

(
1 ±

√
1 − 4ac

b2

)
(9.160a)

= − b
2a

(1 ±
√

D) (9.160b)
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The quantity under the square root in (9.160a) has been replaced by D in (9.160b), where

D = 1 − 4ac
b2

(9.161)

Now, consider the locations of the roots if coefficients a, b, and c all have the same sign. In
this case, both roots are in the LHP, as will be shown next. First, note that if all the coefficients
have the same sign, then

b
2a

> 0 (9.162)

and
4ac
b2

> 0 (9.163)

Let us divide (9.163) into two different regions. First, if

0 <
4ac
b2

≤ 1 (9.164)

then D will be positive and less than one. Therefore,
√

D < 1, so 1 +
√

D and 1 −
√

D are
both positive. As a result, the roots are both negative and real, because −b∕2a < 0.

Now, consider the other region for (9.163), which is

4ac
b2

> 1 (9.165)

In this case, D < 0; therefore,
√

D is imaginary. The roots are complex conjugates with a
real part of −b∕2a, which is negative. So the roots are again in the LHP. Therefore, when
coefficients a, b, and c all have the same sign, both roots are in the LHP.

Next, consider the locations of the roots if coefficients a and b have the same sign and c
has a different sign. In this case, one real root is in the RHP and the other is in the LHP. To
prove this, first note from (9.161) that D > 1 here because 4ac∕b2 < 0. Therefore, both roots
are real and

√
D > 1, so

1 +
√

D > 0 (9.166a)

and
1 −

√
D < 0 (9.166b)

Substituting into (9.160), one root will be positive and the other negative (the sign of −b∕2a
is negative here).

Finally, let us consider the conditions under which LHP roots are real and widely spaced.
From (9.160), real LHP roots are widely spaced if

− b
2a

(1 +
√

D) ≪ − b
2a

(1 −
√

D) (9.167)

or
1 +

√
D ≫ 1 −

√
D (9.168)
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Table 9.1

Sign of Coefficient Values in (9.158)

a b c Roots

+ + + Both in LHP

− − − Both in LHP

+ + − One in LHP, one in RHP

− − + One in LHP, one in RHP

Substituting the expression for D in (9.161) into (9.168) and simplifying leads to an equivalent
condition for widely spaced roots, which is

4ac
b2

≪ 1 (9.169)

Under this condition, one root is

r2 = − b
2a

(1 +
√

D) ≈ − b
2a

(1 + 1) = −b
a

(9.170a)

The other root is

r1 = − b
2a

(1 −
√

D)

= − b
2a

(
1 −

√
1 − 4ac

b2

)

≈ − b
2a

(
1 −

(
1 − 4ac

2b2

))
= − c

b

(9.170b)

where the approximation √
1 − x ≈ 1 − x

2
for |x| ≪ 1 (9.171)

has been used. Here, |r1| ≪ |r2| because |r1| ≈ c∕b ≪ b∕a ≈ |r2| (which follows from
4ac∕b2 ≪ 1). If these roots are poles, r1 corresponds to the dominant pole, and r2 gives the
nondominant pole. Equations 9.170a and 9.170b are in agreement with (9.30) through (9.33).

Table 9.1 summarizes the location of the roots of (9.158) for the cases considered in this
appendix. When both roots are in the LHP, the roots are both real if (9.164) is satisfied. These
roots are widely spaced if (9.169) is satisfied.

PROBLEMS
9.1 An amplifier has a low-frequency forward

gain of 200, and its transfer function has three nega-
tive real poles with magnitudes 1 MHz, 2 MHz, and
4 MHz. Calculate and sketch the Nyquist diagram for

this amplifier if it is placed in a negative feedback loop
with f = 0.05. Is the amplifier stable? Explain.

9.2 For the amplifier in Problem 9.1, calculate
and sketch plots of gain (in decibels) and phase versus
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frequency (log scale) with no feedback applied. Deter-
mine the value of f that just causes instability and the
value of f giving a 60∘ phase margin.

9.3 If an amplifier has a phase margin of 20∘,
how much does the closed-loop gain peak (above
the low-frequency value) at the frequency where the
loop-gain magnitude is unity?

9.4 An amplifier has a low-frequency forward
gain of 40,000, and its transfer function has three neg-
ative real poles with magnitudes 2 kHz, 200 kHz, and
4 MHz.

(a) If this amplifier is connected in a feedback
loop with f constant and low-frequency gain A0 = 400,
estimate the phase margin.

(b) Repeat (a) if A0 is 200 and then 100.

9.5 An amplifier has a low-frequency forward
gain of 5000, and its transfer function has three nega-
tive real poles with magnitudes 300 kHz, 2 MHz, and
25 MHz.

(a) Calculate the dominant-pole magnitude
required to give unity-gain compensation of this
amplifier with a 45∘ phase margin if the original
amplifier poles remain fixed. What is the resulting
bandwidth of the circuit with the feedback applied?

(b) Repeat (a) for compensation in a feedback
loop with a closed-loop gain of 20 dB and 45∘ phase
margin.

9.6 The amplifier of Problem 9.5 is to be com-
pensated by reducing the magnitude of the most dom-
inant pole.

(a) Calculate the dominant-pole magnitude
required for unity-gain compensation with 45∘ phase
margin, and the corresponding bandwidth of the
circuit with the feedback applied. Assume that the
remaining poles do not move.

(b) Repeat (a) for compensation in a feedback
loop with a closed-loop gain of 20 dB and 45∘ phase
margin.

9.7 Repeat Problem 9.6 for the amplifier of
Problem 9.4.

9.8 An op amp has a low-frequency open-loop
voltage gain of 100,000 and a frequency response
with a single negative-real pole with magnitude 5 Hz.
This amplifier is to be connected in a series-shunt
feedback loop with f = 0.01, giving a low-frequency
closed-loop voltage gain A0 ≈ 100. If the output
impedance without feedback is resistive with a value
of 100 Ω, show that the output impedance of the feed-
back circuit can be represented as shown in Fig. 9.58,
and calculate the values of these elements. Sketch the
magnitude of the output impedance of the feedback
circuit on log scales from 1 Hz to 100 kHz.

L

R1

R2

zo

Figure 9.58 Circuit representation of the output
impedance of a series-shunt feedback circuit.

9.9 An op amp with low-frequency gain of
108 dB has three negative real poles with magnitudes
30 kHz, 500 kHz, and 10 MHz before compensation.
The circuit is compensated by placing a capacitance
across the second stage, causing the second-most-
dominant pole to become negligible because of pole
splitting. Assume the small-signal transconductance
of the second stage is 6.39 mA/V and the small-signal
resistances to ground from the input and output are
1.95 MΩ and 86.3 kΩ, respectively. Calculate the
value of capacitance required to achieve a 60∘ phase
margin in a unity-gain feedback connection, and cal-
culate the frequency where the resulting open-loop
gain is 0 dB. Assume that the pole with magnitude
10 MHz is unaffected by the compensation.

9.10 Repeat Problem 9.9 if the circuit is compen-
sated by using shunt capacitance to ground at the input
of the second stage. Assume that this affects only the
most dominant pole.

9.11 An amplifier has gain a0 = 200, and its
transfer function has three negative real poles with
magnitudes 1 MHz, 3 MHz, and 4 MHz. Calculate and
sketch the root locus when feedback is applied as f
varies from 0 to 1. Estimate the value of f causing
instability.

9.12 Calculate and sketch the root locus for the
amplifier of Problem 9.4 as f varies from 0 to 1. Esti-
mate the value of f causing instability, and check using
the Nyquist criterion.

9.13 For the circuit of Fig. 9.41, parameter val-
ues are RF = 5 kΩ, RE = 50 Ω, and CF = 1.5 pF.
The basic amplifier of the circuit is shown in Fig. 9.42
and has two negative real poles with magnitudes
3 MHz and 6 MHz. The low-frequency current gain
of the basic amplifier is 4000. Assuming that the loop
gain of the circuit of Fig. 9.41 can be varied without
changing the parameters of the basic amplifier, sketch
root loci for this circuit as f varies from 0 to 0.01 both
with and without CF . Estimate the pole positions of the
current-gain transfer function of the feedback ampli-
fier of Fig. 9.41 with the values of RF and RE specified
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both with and without CF . Sketch graphs in each case
of gain magnitude versus frequency on log scales from
f = 10 kHz to f = 100 MHz.

9.14 An op amp has two negative real open-loop
poles with magnitudes 100 Hz and 120 kHz and a neg-
ative real zero with magnitude 100 kHz. The low-
frequency open-loop voltage gain of the op amp is
100 dB. If this amplifier is placed in a negative feed-
back loop, sketch the root locus as f varies from 0 to 1.
Calculate the poles and zeros of the feedback amplifier
for f = 10−3 and f = 1.

9.15 Repeat Problem 9.14 if the circuit has neg-
ative real poles with magnitudes 100 Hz and 100 kHz
and a negative real zero with magnitude 120 kHz.

9.16 The input stages of an op amp are shown in
the schematic of Fig. 9.59.

(a) Assuming that the frequency response is dom-
inated by a single pole, calculate the frequency
where the magnitude of the small-signal voltage gain|vo(j𝜔)∕vi(j𝜔)| is unity and also the output slew rate
of the amplifier.

(b) Sketch the response Vo(t) from 0 to 20 μs for
a step input at Vi from −5 V to +5 V. Assume that the
circuit is connected in a noninverting unity-gain feed-
back loop.

(c) Compare your results with a SPICE simula-
tion using parameters 𝛽 = 100, VA = 130 V, and IS =
10−15 A for all devices.

9.17 Repeat Problem 9.16 if the circuit of
Fig. 9.59 is compensated by a capacitor of 0.05 μF
connected from the base of Q5 to ground. Assume that
the voltage gain from the base of Q5 to Vo is −500.

Q1

Q3

Q5

Q6

Q4

Q2

IEE

Vi

+

+15 V

10 pF

–15 V

–

Vo

+

–

300 μA

50 kΩ

20 μA

Figure 9.59 Input stages of an op amp.

9.18 The slew rate of the circuit of Fig. 9.59
is to be increased by using 10 kΩ resistors in the
emitters Q1 and Q2. If the same unity-gain fre-
quency is to be achieved, calculate the new value
of compensation capacitor required and the improve-
ment in slew rate. Check your result with SPICE
simulations.

9.19 Repeat Problem 9.18 if PMOS transistors
replace Q1 and Q2 (with no degeneration resistors).
Assume that the PMOS transistors are biased to
300 μA each (IEE = 600 μA), at which bias value the
MOS transistors have gm = 300 μA∕V.

9.20 .(a) Calculate the full-power bandwidth of
the circuit of Fig. 9.59.

(b) If this circuit is connected in a noninverting
unity-gain feedback loop, sketch the output waveform
Vo if Vi is a sinusoid of 10 V amplitude and frequency
45 kHz.

9.21 For the CMOS operational amplifier shown
in Fig. 9.60, calculate the open-loop voltage gain,
unity-gain bandwidth, and slew rate. Assume the
parameters of Table 2.1 with Xd = 1 μm. Assume that
the gate of M9 is connected to the positive power sup-
ply and that the W∕L of M9 has been chosen to cancel
the RHP zero. Compare your results with a SPICE
simulation.

9.22 Repeat Problem 9.21, except use the aspect
ratios, supply voltages, and bias current given in
Fig. 6.45 instead of the values in Fig. 9.60. Also,
assume that Xd = 0.1 μm for all transistors operat-
ing in the active region, and use Table 2.4 for other
parameters.
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Figure 9.60 Circuit for Problem 9.21.
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Figure 9.61 Circuit for Problem 9.23.

9.23 If the circuit of Fig. 9.61 is used to gen-
erate the voltage to be applied to the gate of M9 in
Fig. 9.60, calculate the W∕L of M9 required to move
the RHP zero to infinity. Use data from Table 2.1 with
Xd = 1 μm. Check your result with SPICE.

9.24 Repeat Problem 9.23, but skip the SPICE
simulation. Here, M9 will be used in the op amp in
Fig. 6.45. Let VDD = VSS = 1.5 V and IS = 200 μA.
Use L = 1 μm for all transistors, W8 = W10 =
150 μm, and W11 = W12 = 100 μm. Assume that

Xd = 0.1 μm for all transistors operating in the active
region, and use Table 2.4 for other parameters.

9.25 Assuming that the zero has been moved
to infinity, determine the maximum load capacitance
that can be attached directly to the output of the cir-
cuit of Fig. 9.60 and still maintain a phase margin of
45∘. Neglect all higher-order poles except any due to
the load capacitance. Use the value of W∕L obtained
in Problem 9.23 for M9 with the bias circuit of
Fig. 9.61.
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9.26 Repeat Problem 9.25 except, for the op amp,
use the aspect ratios, supply voltages, and bias current
given in Fig. 6.45 instead of the values in Fig. 9.60.
Also, for the bias circuit, use the aspect ratios, sup-
ply voltages, and bias current given in Problem 9.24.
Ignore junction capacitance for all transistors. Also,
assume that Xd = 0.1 μm for all transistors operat-
ing in the active region, and use Table 2.4 for other
parameters.

9.27 For the CMOS op amp of Fig. 9.60, assume
that M9 and the compensation capacitor are removed
and the output is loaded with a 1 MΩ resistor. Using
the data of Table 2.1, use SPICE to determine the gain
and phase versus frequency of the small-signal circuit
voltage gain.

The amplifier is to be connected in a negative feed-
back loop with the 1 MΩ resistor connected from the
output to the gate of M1, and a resistor Rx from the
M1 gate to ground. An input voltage is applied from
the gate of M2 to ground. From your previous simu-
lated data, determine the forward voltage gain of the
feedback configuration and the corresponding values
of Rx giving phase margins of 80∘, 60∘, 45∘, and 20∘.
For each case, use SPICE to plot out the correspond-
ing overall small-signal voltage gain versus frequency
for the feedback circuit and also the step response
for an output voltage step of 100 mV. Compare and
comment on the results obtained. Assume that Xd =
1 μm and the drain and source regions are 2 μm
wide.

9.28 The CMOS circuit of Fig. 9.55 is to be
used as a high-slew-rate op amp. A load capaci-
tance of CL = 10 pF is connected from Vo to ground.
Supply voltages are ±5 V and I1 = 20 μA. Devices
M1–M4 have W = 20 μm and L = 1 μm and devices
M5–M8 have W = 60 μm and L = 1 μm. All other
NMOS devices have W = 60 μm and L = 1 μm,
and all other PMOS devices have W = 300 μm and
L = 1 μm. Device data are μnCox = 60 μA∕V2, Vtn =
0.7 V, Vtp = −0.7 V, 𝛾 = 0, and |𝜆| = 0.05 V−1.

(a) Calculate the small-signal open-loop gain and
unity-gain bandwidth of the circuit. Derive an expres-
sion for the large-signal transfer function Io∕Vi when
all four devices M2, M3, M6, and M7 are on, and also
for larger Vi when two of them cut off. At what value
of Vi does the transition occur?

(b) Connect the circuit in a unity-gain negative
feedback loop (Vo to the gate of M1), and drive the
circuit with a voltage step from −1.5 V to + 1.5 V at
the gate of M4. Calculate and sketch the correspond-
ing output waveform Vo, assuming linear operation,
and compare all your results with a SPICE simulation.
What is the peak current delivered to CL during the
transient?

9.29 Using the basic topology of Fig. 8.53,
design a CMOS feedback amplifier with Ri = ∞,
Ro < 30 Ω, Av = vo∕vi = 10, and small-signal band-
width f−3dB > 2 MHz. No peaking is allowed in the
gain-versus-frequency response. Supply current must
be less than 2 mA from each of ±5 V supplies. The
circuit operates with RL = 1 kΩ to ground and must
be able to swing Vo = ±1 V before clipping occurs.
Use the process data of Table 2.1 with Xd = 0.5 μm
and 𝛾n = 0.5 V1∕2. Source and drain regions are 9 μm
wide. Verify your hand calculations with SPICE
simulations.

9.30 Determine the compensation capacitance
that gives a 60∘ phase margin for the two-stage op amp
in the first example in Section 9.4.3.

9.31 The Miller-compensated two-stage op amp
in Fig. 9.25 can be modeled as shown in Fig. 9.26. In
the model, let gm1 = 0.5 mA∕V, R1 = 200 kΩ, gm6 =
2 mA∕V, R2 = 100 kΩ, C1 = 0.1 pF, and C2 = 8 pF.

(a) Assume the op amp is connected in negative
feedback with f = 0.5. What is the value of C that
gives a 45∘ phase margin? Assume the RHP zero has
been eliminated, and assume the feedback network
does not load the op amp.

(b) What value of Rz in Fig. 9.26 eliminates the
RHP zero?

9.32 Repeat Problem 9.31(a) for the common-
gate compensation scheme in Fig. 9.22a.

9.33 The simple model for the common-gate
M11 in Fig. 9.22b has zero input impedance. Show
that if the common-gate stage M11 is modeled with
nonzero input impedance, the compensation scheme
in Fig. 9.22a introduces a zero at −gm11∕C in the
amplifier gain. To simplify this analysis, assume that
ro11 = ∞ and 𝛾 = 0 an and ignore all device capaci-
tances.

9.34 Plot a locus of the poles of (9.27) as C
varies from 0 to ∞. Use R1 = 200 kΩ, gm = 2 mA∕V,
R2 = 100 kΩ, C1 = 0.1 pF, and C2 = 8 pF.

9.35 For the three-stage op amp with nested
Miller compensation in Fig. 9.31c, determine the val-
ues of the compensation capacitors that give a 45∘
phase margin when the op amp is in a unity-gain neg-
ative feedback loop (f = 1). Assume that the zeros
due to feedforward have been eliminated. Design for
widely spaced real poles. Take R0 = R1 = R2 = 5 kΩ,
C0 = C1 = 0.5 pF, and C2 = 6 pF. Use gm0 = gm1 and
gm2 = 6gm1.

9.36 For the three-stage op amp with nested
Miller compensation in Fig. 9.31c, determine the val-
ues of the compensation capacitors that give a 60∘
phase margin when the op amp is in a unity-gain neg-
ative feedback loop (f = 1). Assume that the zeros
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due to feedforward have been eliminated. Design for
complex poles p2 and p3. Use R0 = R1 = R2 = 5 kΩ,
C0 = C1 = 0.5 pF, and C2 = 6 pF. Use gm0 = gm1 and
gm2 = 6gm1.

9.37 The single-stage op amp in Fig. 9.53 has a
45∘ phase margin when the op amp is in a unity-gain
negative feedback loop (f = 1) with an output load
capacitance CL = 2 pF. What value of CL will give
a 60∘ phase margin? [Assume that the capacitance at
the op-amp output is dominated by CL and the op-amp
gain av(s) can be modeled as having two poles.]

9.38 The single-stage op amp in Fig. 9.53 has
a nondominant pole p2 with |p2| = 200 Mrad/s. The
op amp is in a unity-gain negative feedback loop
(f = 1).

(a) If gm1 = 0.3 mA∕V, what value of CL gives a
45∘ phase margin? [Assume that the capacitance at the
op amp output is dominated by CL and the op-amp
gain a(s) can be modeled as having two poles.]

(b) If ITAIL = 0.5 mA, what is the output slew rate
with this CL?

9.39 The feedback circuit in Fig. 9.54 is a
switched-capacitor circuit during one clock phase.
Assume the op amp is the telescopic-cascode op
amp in Fig. 9.53. Take CL = 1.5 pF, CI = 4 pF, CS =
0.4 pF, and Cip = 0.1 pF.

(a) If ITAIL = 0.2 mA, what is the output
slew rate?

(b) Assume that gm1 = 0.1 mA∕V, the loop trans-
mission [loop gain T(s) or return ratio ℛ(s)] can be
modeled as having two poles, and the magnitude of
the nondominant pole p2 is |p2| =200 Mrad/s. What is
the phase margin of this feedback circuit?
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Figure 9.62 Feedback circuit for Problem 9.40.
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Figure 9.63 Circuit for Problem 9.41.

9.40 Calculate the return ratio for the feedback
circuit in Fig. 9.62. Assume that the amplifier voltage
gain is constant with av > 0. Show that this feedback
circuit is always stable if each impedance is either a
resistor or a capacitor.

9.41 Calculate the return ratio for the integrator
in Fig. 9.63. Show that this feedback circuit is stable
for all values of R and C if av(s) has two LHP poles
and av(s = 0) > 0.

9.42 Calculate the return ratio for the inverting
amplifier in Fig. 9.64. Here, the controlled source and
Cin form a simple op-amp model. Assume av(s) =
1000∕[(1 + s∕100)(1 + s∕106)].

(a) Assume the op-amp input capacitance Cin =
0. What is the frequency at which |ℛ(j𝜔)| = 1? How
does this frequency compare to the frequency at which|av(j𝜔)| = 1?

(b) Find the phase margin for the cases Cin = 0,
Cin = 4 pF, and Cin = 20 pF.

9.43 A technique that allows the return ratio to
be simulated using SPICE without disrupting the dc
operating point is shown in Fig. 8.60 and explained in
Problem 8.33.

(a) Use that technique to simulate the return ratio
for the op amp from Problem 9.21 connected in a
noninverting unity-gain configuration for f = 1 kHz,
100 kHz, 10 MHz, and 1 GHz.

(b) Use that technique to plot the magnitude and
phase of the return ratio. Determine the unity-gain fre-
quency for the return ratio and the phase and gain
margins. [Note: This calculation requires combining
the complex values of ℛ′

i (j𝜔) and ℛ′
v(j𝜔) to find the

complex quantity ℛ(j𝜔).]
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Vi Cin

Vo

100 kΩ

100 kΩ

vx

–

+

+

–

+

–

av(s)vx

+

–

Figure 9.64 Circuit for Problem 9.42.

9.44 Repeat Problem 9.43 for the circuit in
Fig. 9.64 with Cin = 4 pF. Inject the test sources on the
left-hand side of the feedback resistor. Use av(s) from
Problem 9.42. Compare the simulation results with the
calculated values from Problem 9.42.

9.45 Repeat Problem 9.43 for the local feedback
circuit in Fig. 9.65. For the transistor, W = 50 μm and
Leff = 0.6 μm. Use the device data in Table 2.4. Ignore
the drain-body junction capacitance (assuming it is
small compared to the 2 pF load capacitor).

Vo

is

+

–

20 kΩ

5 V

0.5 mA

2 pF

Figure 9.65 Circuit for Problem 9.45.

9.46 Consider a two-stage CMOS op amp mod-
eled by the equivalent circuit in Fig. 9.18, where
is = gmvid and vid is the differential op-amp input.
Let gm = 19.7 mA∕V, R1 = R2 = 6.67 kΩ, and
C1 = C2 = C = 2 pF. Calculate and sketch the root
locus when feedback is applied as f varies from 0 to 1.
Calculate the real component of s for which the poles
become complex. Is the amplifier unconditionally sta-
ble? If yes, calculate the pole positions for unity-gain
feedback. If no, find the loop gain required to cause
instability.

9.47 Consider the super source follower in the
example in Section 9.3.3, except with CL = 1 fF.

(a) Use the quadratic formula to find the loca-
tions of the poles of the return ratio. Also, estimate
the pole locations using time-constant analysis, and
compare the results of the two methods. Are the
estimates more or less accurate than in the example
in the text? Explain.

(b) Find the unity-gain frequency of the return
ratio.

(c) Find the phase margin.

9.48 Repeat the previous problem with CL =
1 nF.

9.49 Consider the super source follower in the
example in Section 9.3.3 with CL ranging from 1 fF
to 1 nF. Use calculations and/or simulations to draw
the following plots. (1) Plot |p1| and |p2| on the y axis
versus CL on the x axis, using a log scale for both axes.
(2) Plot 𝜔0 on the y axis versus CL on the x axis, using
a log scale for both axes. (3) Plot the phase margin on
the y axis versus CL on the x axis, using a linear scale
for the phase margin and a log scale for CL. Explain
the results.

9.50 Consider the unity-gain buffer in Fig. 9.66.
Use open- and short-circuit time constants as well as
Blackman’s impedance formula to find the settling
time to 0.1 percent accuracy for an input step of 0.1 V
in two cases. In case 1, assume (1) the transistors
all operate in saturation with 𝜆 = 0. (2) IT , IB, and
(W∕L)1−4 are chosen so that gm1 = gm2 = gm3 = gm4 =
100 μA∕V. (3) CL = 100 fF, and Cgd3 = 10 fF. (4) All
other capacitances and the body effect are ignored.
In case 2, assume that IB and (W∕L)4 are each reduced
by a factor of 100 to reduce the power dissipated in
the bias branch without changing the drain currents of
the other transistors. Also assume this change reduces
gm4 to 1 μA∕V.

Vi

VDD

IT IB

CL

M1 M2

M3 M4

+

–
Vo

+

–

Figure 9.66 Unity-gain buffer for Problem 9.50.
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CHAPTER 10

Nonlinear Analog Circuits

10.1 Introduction
Chapters 1 through 9 dealt almost entirely with analog circuits whose primary function is
linear amplification of signals. Although some of the circuits discussed (such as Class AB
output stages) were actually nonlinear in their operation, the operations performed on the signal
passing through the amplifier were well approximated by linear relations.

Nonlinear operations on continuous-valued analog signals are often required in instru-
mentation, communication, and control-system design. These operations include modulation,
demodulation, frequency translation, multiplication, and division. In this chapter, we analyze
the most commonly used techniques for performing these operations within a monolithic
integrated circuit. We first discuss the use of the bipolar transistor to synthesize nonlinear
analog circuits and analyze the Gilbert multiplier cell, which is the basis for a wide variety
of such circuits. Next we consider the application of this building block as a small-signal
analog multiplier, as a modulator, as a phase comparator, and as a large-signal, four-quadrant
multiplier.

Following the multiplier discussion, we introduce a highly useful circuit technique
for performing demodulation of FM and AM signals and, at the same time, performing
bandpass filtering. This circuit, the phase-locked loop (PLL), is particularly well-suited
to monolithic construction. After exploring the basic concepts involved, we analyze the
behavior of the PLL in the locked condition and then consider the capture transient. Finally,
some methods of realizing arbitrary nonlinear transfer functions using bipolar transistors are
considered.

10.2 Analog Multipliers Employing the Bipolar Transistor
In analog-signal processing, the need often arises for a circuit that takes two analog inputs and
produces an output proportional to their product. Such circuits are termed analog multipliers.
In the following sections, we examine several analog multipliers that depend on the exponential
transfer function of bipolar transistors.
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10.2.1 The Emitter-Coupled Pair as a Simple Multiplier

The emitter-coupled pair, shown in Fig. 10.1, was shown in Chapter 3 to produce output
currents that are related to the differential input voltage by

Ic1 =
IEE

1 + exp

(
−

Vid

VT

) (10.1)

Ic2 =
IEE

1 + exp

(
Vid

VT

) (10.2)

where base current has been neglected. Equations 10.1 and 10.2 can be combined to give the
difference between the two output currents:

ΔIc = Ic1 − Ic2 = IEE tanh

(
Vid

2VT

)
(10.3)

This relationship is plotted in Fig. 10.2 and shows that the emitter-coupled pair by itself can
be used as a primitive multiplier. We first assume that the differential input voltage Vid is
much less than VT . If this is true, we can utilize the approximation

tanh
Vid

2VT
≈

Vid

2VT

Vid

2VT
≪ 1 (10.4)

and (10.3) becomes

ΔIc ≈ IEE

(
Vid

2VT

)
(10.5)

The current IEE is actually the bias current for the emitter-coupled pair. With the addition
of more circuitry, we can make IEE proportional to a second input signal Vi2, as shown in
Fig. 10.3. Thus we have

IEE ≈ Ko(Vi2 − VBE(on)) (10.6)

Ic1

IEE

Vid

Q1 Q2

Ic2

+

–

Figure 10.1 Emitter-coupled pair.
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IEE

–IEE

–VT +VT
Vid

Ic

Figure 10.2 The dc transfer
characteristic of the
emitter-coupled pair.

IEE

RC RC

–VEE

Vo

VCC

Q4

Q1 Q2

Q3Vi2

Vid

R

+

+

–

–

Figure 10.3 Two-quadrant analog multiplier.
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The differential output current of the emitter-coupled pair can be calculated by substituting
(10.6) in (10.5) to give

ΔIc =
KoVid(Vi2 − VBE(on))

2VT
(10.7)

Thus we have produced a circuit that functions as a multiplier under the assumption that
Vid is small and Vi2 is greater than VBE(on). The latter restriction means that the multiplier
functions in only two quadrants of the Vid–Vi2 plane, and this type of circuit is termed a
two-quadrant multiplier. The restriction to two quadrants of operation is a severe one for many
communications applications, and most practical multipliers allow four-quadrant operation.
The Gilbert multiplier cell,1 shown in Fig. 10.4, is a modification of the emitter-coupled cell
that allows four-quadrant multiplication. It is the basis for most integrated-circuit balanced
multiplier systems. The series connection of an emitter-coupled pair with two cross-coupled,
emitter-coupled pairs produces a particularly useful transfer characteristic, as shown in the
next section.

10.2.2 The dc Analysis of the Gilbert Multiplier Cell

In the following analysis, we assume that the transistors are identical, that the output resistance
of the transistors and that of the biasing current source can be neglected, and that the base
currents can be neglected. For the Gilbert cell shown in Fig. 10.4, the collector currents of Q3

IEE

Ic1 Ic2

Ic3 Ic4 Ic5

Ic3–5

Iout = Ic3–5 – Ic4–6
Ic4–6

Ic6

V2

V1

Q1

Q3 Q4 Q5 Q6

Q2+

–

–

+

Figure 10.4 Gilbert multiplier circuit.
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and Q4 are, using (10.1) and (10.2),

Ic3 =
Ic1

1 + exp

(
−

V1

VT

) (10.8)

Ic4 =
Ic1

1 + exp

(
V1

VT

) (10.9)

Similarly, the collector currents of Q5 and Q6 are given by

Ic5 =
Ic2

1 + exp

(
V1

VT

) (10.10)

Ic6 =
Ic2

1 + exp

(
−

V1

VT

) (10.11)

The two currents Ic1 and Ic2 can be related to V2 by again using (10.1) and (10.2):

Ic1 =
IEE

1 + exp

(
−

V2

VT

) (10.12)

Ic2 =
IEE

1 + exp

(
V2

VT

) (10.13)

Combining (10.8) through (10.13), we obtain expressions for collector currents Ic3, Ic4, Ic5,
and Ic6 in terms of input voltages V1 and V2:

Ic3 =
IEE[

1 + exp

(
−

V1

VT

)][
1 + exp

(
−

V2

VT

)] (10.14)

Ic4 =
IEE[

1 + exp

(
−

V2

VT

)][
1 + exp

(
V1

VT

)] (10.15)

Ic5 =
IEE[

1 + exp

(
V1

VT

)][
1 + exp

(
V2

VT

)] (10.16)

Ic6 =
IEE[

1 + exp

(
V2

VT

)][
1 + exp

(
−

V1

VT

)] (10.17)
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The differential output current is then given by

ΔI = Ic3−5 − Ic4−6 = Ic3 + Ic5 − (Ic6 + Ic4)

= (Ic3 − Ic6) − (Ic4 − Ic5) (10.18)

= IEE

[
tanh

(
V1

2VT

)][
tanh

(
V2

2VT

)]
(10.19)

The dc transfer characteristic, then, is the product of the hyperbolic tangent of the two input
voltages.

Practical applications of the multiplier cell can be divided into three categories according
to the magnitude relative to VT of applied signals V1 and V2. If the magnitude of V1 and V2 are
kept small with respect to VT , the hyperbolic tangent function can be approximated as linear
and the circuit behaves as a multiplier, developing the product of V1 and V2. However, by
including nonlinearity to compensate for the hyperbolic tangent function in series with each
input, the range of input voltages over which linearity is maintained can be greatly extended.
This technique is used in so-called four-quadrant analog multipliers.

The second class of applications is distinguished by the application to one of the inputs of
a signal that is large compared to VT , causing the transistors to which that signal is applied
to behave like switches rather than near-linear devices. This effectively multiplies the applied
small signal by a square wave, and in this mode of operation the circuit acts as a modulator.

In the third class of applications, the signals applied to both inputs are large compared to VT ,
and all six transistors in the circuit behave as nonsaturating switches. This mode of operation
is useful for the detection of phase differences between two amplitude-limited signals, as is
required in phase-locked loops, and is sometimes called the phase-detector mode.

We first consider the application of the circuit as an analog multiplier of two continuous
signals.

10.2.3 The Gilbert Cell as an Analog Multiplier

As mentioned earlier, the hyperbolic tangent function may be represented by the infinite series

tanh x = x − x3

3
· · · (10.20)

Assuming that x is much less than one, the hyperbolic tangent can then be approximated by

tanh x ≈ x (10.21)

Applying this relation to (10.19), we have

ΔI ≈ IEE

(
V1

2VT

)(
V2

2VT

)
V1,V2 ≪ VT (10.22)

Thus for small-amplitude signals, the circuit performs an analog multiplication. Unfortunately,
the amplitudes of the input signals are often much larger than VT , but larger signals can be
accommodated in this mode in a number of ways. In the event that only one of the signals
is large compared to VT , emitter degeneration can be utilized in the lower emitter-coupled
pair, increasing the linear input range for V2 as shown in Fig. 10.5. Unfortunately, this cannot
be done with the cross-coupled pairs Q3–Q6 because the degeneration resistors destroy the
required nonlinear relation between Ic and Vbe in those devices.
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IEE

Ic1 Ic2

Ic3 Ic4 Ic5

Ic3–5

Iout = Ic3–5 – Ic4–6
Ic4–6

Ic6

V2

V1

Q1

R R

Q3 Q4 Q5 Q6

Q2+

–

–

+

Figure 10.5 Gilbert multiplier with emitter degeneration applied to improve input voltage range on V2

input.

An alternate approach is to introduce a nonlinearity that predistorts the input signals to
compensate for the hyperbolic tangent transfer characteristic of the basic cell. The required
nonlinearity is an inverse hyperbolic tangent characteristic, and a hypothetical example of
such a system is shown in Fig. 10.6. Fortunately, this particular nonlinearity is straightforward
to generate.

Referring to Fig. 10.7, we assume for the time being that the circuitry within the box devel-
ops a differential output current that is linearly related to the input voltage V1. Thus

I1 = Io1 + K1V1 (10.23)

I2 = Io1 − K1V1 (10.24)

Here Io1 is the dc current that flows in each output lead if V1 is equal to zero, and K1 is the
transconductance of the voltage-to-current converter. The differential voltage developed across
the two diode-connected transistors is

ΔV = VT ln

(
Io1 + K1V1

IS

)
− VT ln

(
Io1 − K1V1

IS

)
= VT ln

(
Io1 + K1V1

Io1 − K1V1

)
(10.25)
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Q3

Ic3–5

Iout = Ic3–5 – Ic4–6

Ic4–6

V1

V2 V2

Q1 Q2

IEE

Q4 Q5 Q6

'

V1
'tanh–1

tanh–1

Figure 10.6 Gilbert multiplier with predistortion circuits.

VCC

Q7

I1

V1

ΔV

I2

Q8

+

–

Voltage–current
converter

Figure 10.7 Inverse hyperbolic tangent circuit.

This function can be transformed using the identity

tanh−1x = 1
2

ln
(1 + x

1 − x

)
(10.26)

into the desired relationship:

ΔV = 2VT tanh−1
(

K1V1

Io1

)
(10.27)
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Thus if this functional block is used as the compensating nonlinearity in series with each input
as shown in Fig. 10.6, the overall transfer characteristic becomes, using (10.19),

ΔI = IEE

(
K1V1

Io1

)(
K2V2

Io2

)
(10.28)

where Io2 and K2 are the parameters of the functional block following V2.
Equation 10.28 shows that the differential output current is directly proportional to the

product V1V2, and, in principle, this relationship holds for all values of V1 and V2 for which
the two output currents of the differential voltage-to-current converters are positive. For this
to be true, I1 and I2 must always be positive, and from (10.23) and (10.24), we have

−
Io1

K1
< V1 <

Io1

K1
(10.29)

−
Io2

K2
< V2 <

Io2

K2
(10.30)

Note that the inclusion of a compensating nonlinearity on the V2 input simply makes the collec-
tor currents of Q1 and Q2 directly proportional to input voltage V2 rather than to its hyperbolic
tangent. Thus the combination of the pair Q1–Q2 and the compensating nonlinearity on the V2
input is redundant, and the output currents of the voltage-to-current converter on the V2 input
can be fed directly into the emitters of the Q3–Q4 and Q5–Q6 pairs with exactly the same
results. The multiplier then takes the form shown in Fig. 10.8.

10.2.4 A Complete Analog Multiplier2

In order to be useful in a wide variety of applications, the multiplier circuit must develop
an output voltage that is referenced to ground and can take on both positive and negative

Multiplier core

Vout

Ic3–5

Q3Q8Q7

V1

Q4 Q5 Q6

Ic4–6

Differential-to-single-
ended converter

+

–
V2

+

–

Io1 + K1V1 Io1 – K1V1 Io2 + K2V2 Io2 – K2V2

Differential voltage-
to-current converter

Differential voltage-
to-current converter

Figure 10.8 Complete four-quadrant multiplier.
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values. The transistors Q3, Q4, Q5, Q6, Q7, and Q8, shown in Fig. 10.8, are referred to as the
multiplier core and produce a differential current output that then must be amplified, converted
to a single-ended signal, and referenced to ground. An output amplifier is thus required, and
the complete multiplier consists of two voltage-current converters, the core transistors, and an
output current-to-voltage amplifier. While the core configuration of Fig. 10.8 is common to
most four-quadrant transconductance multipliers, the rest of the circuitry can be realized in a
variety of ways.

The most common configurations used for the voltage-current converters are emitter-coupled
pairs with emitter degeneration as shown in Fig. 10.5. The differential-to-single-ended con-
verter of Fig. 10.8 is often realized with an op-amp circuit of the type shown in Fig. 6.4. If
this circuit has a transresistance given by

Vout

ΔI
= K3 (10.31)

then substitution in (10.28) gives for the overall multiplier characteristic

Vout = IEEK3
K1

Io1

K2

Io2
V1V2 (10.32)

The output voltage is thus proportional to the product V1V2 over a wide range. The constants
in (10.32) are usually chosen so that

Vout = 0.1V1V2 (10.33)

and all voltages have a ±10 V range.

10.2.5 The Gilbert Multiplier Cell as a Balanced Modulator and
Phase Detector

The four-quadrant multiplier just described is an example of an application of the multiplier
cell in which all the devices remain in the active region during normal operation. Used in this
way, the circuit is capable of performing precise multiplication of one continuously varying
analog signal by another. In communications systems, however, the need frequently arises for
the multiplication of a continuously varying signal by a square wave. This is easily accom-
plished with the multiplier circuit by applying a sufficiently large signal (i.e., large compared
to 2VT ) directly to the cross-coupled pair so that two of the four transistors alternately turn
completely off and the other two conduct all the current. Since the transistors in the circuit do
not enter saturation, this process can be accomplished at high speed. A set of typical wave-
forms that might result when a sinusoid is applied to the small-signal input and a square wave
to the large-signal input is shown in Fig. 10.9. Note that since the devices in the multiplier
are being switched on and off by the incoming square wave, the amplitude of the output
waveform is independent of the amplitude of the square wave as long as it is large enough
to cause the devices in the multiplier circuit to be fully on or fully off. Thus the circuit in
this mode does not perform a linear multiplication of two waveforms but actually causes the
output voltage of the circuit produced by the small-signal input to be alternately multiplied by
+1 and −1.

The spectrum of the output may be developed directly from the Fourier series of the two
inputs. For the low-frequency modulating sinusoidal input,

Vm(t) = Vm cos𝜔mt (10.34)
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Vm(t) Vc(t)

Vo(t)

t t

t

Output

Small-signal input Large-signal modulating input

Figure 10.9 Input and output waveforms for a phase detector with large input signals.

and for the high-frequency square wave input, which we assume has an amplitude of ±1 as
discussed above,

Vc(t) =
∞∑

n=1

An cos n𝜔ct, An =
sin

n𝜋
2

n𝜋
4

(10.35)

Thus the output signal is

Vo(t) = K[Vc(t)Vm(t)] = K
∞∑

n=1

AnVm cos𝜔nt cos n𝜔ct (10.36)

= K
∞∑

n=1

AnVm

2
[cos(n𝜔c + 𝜔m)t + cos(n𝜔c − 𝜔m)t] (10.37)

where K is the magnitude of the gain of the multiplier from the small-signal input to the output.
The spectrum has components located at frequencies 𝜔m above and below each of the har-

monics of 𝜔c but no component at the carrier frequency 𝜔c or its harmonics. The spectrum of
the input signals and the resulting output signal is shown in Fig. 10.10. The lack of an output
component at the carrier frequency is a very useful property of balanced modulators. The sig-
nal is usually filtered following the modulation process so that only the components near 𝜔c
are retained.

If a dc component is added to the modulating input, the result is a signal component in the
output at the carrier frequency and its harmonics. If the modulating signal is given by

Vm(t) = Vm(1 + M cos𝜔mt) (10.38)

where the parameter M is called the modulation index, then the output is given by

Vo(t) = K
∞∑

n=1

AnVm

[
cos (n𝜔ct) + M

2
cos (n𝜔c + 𝜔m)t +

M
2

cos (n𝜔c − 𝜔m)t
]

(10.39)
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Figure 10.10 Input and output
spectra for a balanced modulator.

This dc component can be introduced intentionally to provide conventional amplitude mod-
ulation, or it can be the result of offset voltages in the devices within the modulator, which
results in undesired carrier feedthrough in suppressed-carrier modulators.

Note that the balanced modulator actually performs a frequency translation. Information
contained in the modulating signal Vm(t) was originally concentrated at the modulating fre-
quency𝜔m. The modulator has translated this information so that it is now contained in spectral
components located near the harmonics of the high-frequency signal Vc(t), usually called
the carrier. Balanced modulators are also useful for performing demodulation, which is the
extraction of information from the frequency band near the carrier and retranslation of the
information back down to low frequencies.

In frequency translation, signals at two different frequencies are applied to the two inputs,
and the sum or the difference frequency component is taken from the output. If unmodulated
signals of identical frequency 𝜔o are applied to the two inputs, the circuit behaves as a phase
detector and produces an output whose dc component is proportional to the phase difference
between the two inputs. For example, consider the two input waveforms of Fig. 10.11, which
are applied to the Gilbert multiplier shown in the same figure. We assume first for simplicity
that both inputs are large in magnitude so that all the transistors in the circuit are behaving as
switches. The output waveform that results is shown in Fig. 10.11c and consists of a dc com-
ponent and a component at twice the incoming frequency. The dc component of this waveform
is given by

Vaverage =
1

2𝜋 ∫
2𝜋

0
Vo(t)d(𝜔0t) (10.40)

= −1
𝜋

(A1 − A2) (10.41)
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Figure 10.11 Typical input and output waveforms for a phase detector.

where areas A1 and A2 are as indicated in Fig. 10.11c. Thus,

Vaverage = −
[

IEERC
(𝜋 − 𝜙)

𝜋
−

IEERC𝜙

𝜋

]
(10.42)

= IEERC

(
2𝜙
𝜋

− 1

)
(10.43)

This phase relationship is plotted in Fig. 10.12. This phase demodulation technique is widely
used in phase-locked loops.

We assumed above that the input waveforms were large in amplitude and were square
waves. If the input signal amplitude is large, the actual waveform shape is unimportant since
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Vo = dc component in phase-detector output
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Figure 10.12 Phase-detector
output versus phase difference.

the multiplier simply switches from one state to the other at the zero crossings of the waveform.
For the case in which the amplitude of one or both of the input signals has an amplitude compa-
rable to or smaller than VT , the circuit still acts as a phase detector. However, the output voltage
then depends both on the phase difference and on the amplitude of the two input waveforms.
The operation of the circuit in this mode is considered further in Section 10.3.3.

10.3 Phase-Locked Loops
The phase-locked loop concept was first developed in the 1930s.3 It has since been used in com-
munications systems of many types, particularly in satellite communications systems. Until
recently, however, phase-locked systems have been too complex and costly for use in most
consumer and industrial systems, where performance requirements are more modest and other
approaches are more economical. The PLL is particularly amenable to monolithic construc-
tion, however, and integrated-circuit PLLs can now be fabricated at very low cost.4 Their use
has become attractive for many applications such as FM demodulators, stereo demodulators,
tone detectors, frequency synthesizers, and others. In this section, we first explore the basic
operation of the PLL and then consider analytically the performance of the loop in the locked
condition. We then discuss the design of monolithic PLLs.

10.3.1 Phase-Locked Loop Concepts

A block diagram of the basic PLL system is shown in Fig. 10.13. The elements of the system
are a phase comparator, a loop filter, an amplifier, and a voltage-controlled oscillator. The
voltage-controlled oscillator (VCO) is simply an oscillator whose frequency is proportional
to an externally applied voltage. When the loop is locked on an incoming periodic signal, the
VCO frequency is exactly equal to that of the incoming signal. The phase detector produces a
dc or low-frequency signal proportional to the phase difference between the incoming signal
and the VCO output signal. This phase-sensitive signal is then passed through the loop filter
and amplifier and is applied to the control input of the VCO. If, for example, the frequency
of the incoming signal shifts slightly, the phase difference between the VCO signal and the
incoming signal will begin to increase with time. This will change the control voltage on the
VCO in such a way as to bring the VCO frequency back to the same value as the incoming
signal. Thus the loop can maintain lock when the input signal frequency changes, and the
VCO input voltage is proportional to the frequency of the incoming signal. This behavior
makes PLLs particularly useful for the demodulation of FM signals, where the frequency of
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the incoming signal varies in time and contains the desired information. The range of input
signal frequencies over which the loop can maintain lock is called the lock range.

An important aspect of PLL performance is the capture process by which the loop goes
from the unlocked, free-running condition to that of being locked on a signal. In the unlocked
condition, the VCO runs at the frequency corresponding to zero applied dc voltage at its control
input. This frequency is called the center frequency or free-running frequency. When a periodic
signal is applied that has a frequency near the free-running frequency, the loop may or may
not lock on it depending on a number of factors. The capture process is inherently nonlinear
in nature, and we will describe the transient in only a qualitative way.

First assume that the loop is opened between the loop filter and the VCO control input, and
that a signal whose frequency is near, but not equal to, the free-running frequency is applied to
the input of the PLL. The phase detector is usually of the type discussed in the last section, but
for this qualitative discussion, we assume that the phase detector is simply an analog multiplier
that multiplies the two sinusoids together. Thus the output of the multiplier-phase detector
contains the sum and difference frequency components, and we assume that the sum frequency
component is sufficiently high in frequency that it is filtered out by the low-pass filter. The
output of the low-pass filter, then, is a sinusoid with a frequency equal to the difference between
the VCO free-running frequency and the incoming signal frequency.

Now assume that the loop is suddenly closed, and the difference frequency sinusoid is now
applied to the VCO input. This will cause the VCO frequency itself to become a sinusoidal
function of time. Let us assume that the incoming frequency was lower than the free-running
frequency. Since the VCO frequency is varying as a function of time, it will alternately move
closer to the incoming signal frequency and farther away from the incoming signal frequency.
The output of the phase detector is a near-sinusoid whose frequency is the difference between
the VCO frequency and the input frequency. When the VCO frequency moves away from the
incoming frequency, this sinusoid moves to a higher frequency. When the VCO frequency
moves closer to the incoming frequency, the sinusoid moves to a lower frequency. If we exam-
ine the effect of this on the phase-detector output, we see that the frequency of this sinusoidal
difference-frequency waveform is reduced when its incremental amplitude is negative and
increased when its amplitude is positive. This causes the phase-detector output to have an
asymmetrical waveform during capture, as shown in Fig. 10.14. This asymmetry in the wave-
form introduces a dc component in the phase-detector output that shifts the average VCO
frequency toward the incoming signal frequency so that the difference frequency gradually
decreases. Once the system becomes locked, of course, the difference frequency becomes zero,
and only a dc voltage remains at the loop-filter output.

The capture range of the loop is that range of input frequencies around the center frequency
onto which the loop will become locked from an unlocked condition. The pull-in time is the
time required for the loop to capture the signal. Both these parameters depend on the amount
of gain in the loop itself and the bandwidth of the loop filter. The objective of the loop filter is
to filter out difference components resulting from interfering signals far away from the center
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frequency. It also provides a memory for the loop in case lock is momentarily lost due to
a large interfering transient. Reducing the loop filter bandwidth thus improves the rejection
of out-of-band signals, but at the same time, the capture range is decreased, the pull-in time
becomes longer, and the loop phase margin becomes poorer.

10.3.2 The Phase-Locked Loop in the Locked Condition

Under locked conditions, a linear relationship exists between the output voltage of the phase
detector and the phase difference between the VCO and the incoming signal. This fact allows
the loop to be analyzed using standard linear feedback concepts when in the locked condition.
A block diagram representation of the system in this mode is shown in Fig. 10.15. The gain of
the phase comparator is KD V/rad of phase difference, the loop-filter transfer function is F(s),
and any gain in the forward loop is represented by A. The VCO gain is Ko rad/s per volt.

If a constant input voltage is applied to the VCO control input, the output frequency of the
VCO remains constant. However, the phase comparator is sensitive to the difference between
the phase of the VCO output and the phase of the incoming signal. The phase of the VCO
output is actually equal to the time integral of the VCO output frequency, since

𝜔osc(t) =
d𝜙osc(t)

dt
(10.44)

and thus

𝜙osc(t) = 𝜙osc|t=0 + ∫
t

0
𝜔osc(t)dt (10.45)

Thus an integration inherently takes place within the PLL. This integration is represented by
the 1/s block in Fig. 10.15.

AF(s)KD V/rad  i

  osc    osc

+

–

1/s
rad/s

V
KO

Vo

ωϕ

ϕ

Figure 10.15 Block diagram of the PLL system.
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For practical reasons, the VCO is actually designed so that when the VCO input voltage
(i.e., Vo) is zero, the VCO frequency is not zero. The relation between the VCO output
frequency 𝜔osc and Vo is actually

𝜔osc = 𝜔o + KOVo

where 𝜔o is the free-running frequency that results when Vo = 0.
The system can be seen from Fig. 10.15 to be a classical linear feedback control system.5

The closed-loop transfer function is given by

Vo

𝜙i
=

KDF(s)A

1 + KDF(s)A
Ko

s

(10.46)

=
sKDF(s)A

s + KDKOAF(s)
(10.47)

Usually we are interested in the response of this loop to frequency variations at the input so
that the input variable is frequency rather than phase. Since

𝜔i =
d𝜙i

dt
(10.48)

then
𝜔i(s) = s𝜙i(s) (10.49)

and
Vo

𝜔i
= 1

s

Vo

𝜙i
=

KDF(s)A
s + KDKOAF(s)

(10.50)

We first consider the case in which the loop filter is removed entirely and F(s) is unity. This is
called a first-order loop, and we have

Vo

𝜔i
=
(

Kv

s + Kv

)(
1

KO

)
(10.51)

where
Kv = KOKDA (10.52)

Thus the loop inherently produces a first-order, low-pass transfer characteristic. Remember
that we regard the input variable as the frequency 𝜔i of the incoming signal. The response
calculated above, then, is really the response from the frequency modulation on the incoming
carrier to the loop voltage output.

The constant above (Kv) is termed the loop bandwidth. If the loop is locked on a carrier
signal, and the frequency of that carrier is made to vary sinusoidally in time with a frequency
𝜔m, then a sinusoid of frequency 𝜔m will be observed at the loop output. When 𝜔m is increased
above Kv, the magnitude of the sinusoid at the output falls. The loop bandwidth Kv, then, is the
effective bandwidth for the modulating signal that is being demodulated by the PLL. In terms
of the loop parameters, Kv is simply the product of the phase detector gain, VCO gain, and any
other electrical gain in the loop. The root locus of this single pole as a function of loop gain Kv is
shown in Fig. 10.16a. The frequency response is also shown in this figure. The response of the
loop to variations in input frequency is illustrated in Fig. 10.16b and by the following example.
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◼ EXAMPLE

A PLL has a KO of 2𝜋 (1 kHz∕V), a Kv of 500 s−1, and a free-running frequency of 500 Hz.

(a) For a constant input signal frequency of 250 Hz and 1 kHz, find Vo.

Vo =
𝜔i − 𝜔o

KO

where
𝜔o = oscillator free-running frequency

At 250 Hz,

Vo = 2𝜋 (250 Hz) − 2𝜋 (500 Hz)
2𝜋 (1 kHz∕V)

= −0.25 V

At 1 kHz,

Vo = 2𝜋 (1 kHz) − 2𝜋 (500 Hz)
2𝜋 (1 kHz∕V)

= +0.5 V

(b) Now the input signal is frequency modulated, so

𝜔i(t) = (2𝜋) 500 Hz [1 + 0.1 sin (2𝜋 × 102) t]

Find the output signal Vo(t). From (10.51), we have

Vo(j𝜔)
𝜔i(j𝜔)

= 1
KO

(
Kv

Kv + j𝜔

)
= 1

KO

[
Kv

Kv + j(2𝜋 × 102)

]

= 1
2𝜋 (1 kHz∕V)

(
500

500 + j628

)
= 1

2𝜋 (1 kHz∕V)
(0.39 − j0.48)

The magnitude of 𝜔i(j𝜔) is

|𝜔i(j𝜔)| = (0.1) (500 Hz) (2𝜋) = (50) (2𝜋)

Therefore,

Vo(j𝜔) =
50 Hz
1 kHz

(0.39 − j0.48) = 50
1000

(0.62∠ − 51∘)

and
Vo(t) = 0.031 sin [(2𝜋 × 102t) − 51∘]

◼

Operating the loop with no loop filter has several practical drawbacks. Since the phase
detector is really a multiplier, it produces a sum frequency component at its output as well as
the difference frequency component. This component at twice the carrier frequency will be
fed directly to the output if there is no loop filter. Also, all the out-of-band interfering signals
present at the input will appear, shifted in frequency, at the output. Thus, a loop filter is very
desirable in applications where interfering signals are present.
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The most common configuration for integrated circuit PLLs is the second-order loop. Here,
loop filter F(s) is simply a single-pole, low-pass filter, usually realized with a single resistor
and capacitor. Thus

F(s) =
⎛⎜⎜⎜⎝

1

1 + s
𝜔1

⎞⎟⎟⎟⎠ (10.53)

By substituting into (10.50), the transfer function becomes

Vo

𝜔1
(s) = 1

KO

⎛⎜⎜⎜⎜⎝
1

1 + s
Kv

+ s2

𝜔1Kv

⎞⎟⎟⎟⎟⎠
(10.54)

The root locus for this feedback system as Kv varies is shown in Fig. 10.17, along with the
corresponding frequency response. The roots of the transfer function are

s = −
𝜔1

2

⎛⎜⎜⎝1 ±

√
1 −

4Kv

𝜔1

⎞⎟⎟⎠ (10.55)

Equation 10.54 can be expressed as

Vo

𝜔i
= 1

KO

⎛⎜⎜⎜⎜⎝
1

s2

𝜔2
n

+ 2𝜁
𝜔n

s + 1

⎞⎟⎟⎟⎟⎠
(10.56)
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Figure 10.17 Root locus and frequency response of second-order, phase-locked loop.
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where

𝜔n =
√

Kv𝜔1 (10.57)

𝜁 = 1
2

√
𝜔1

Kv
(10.58)

The basic factor setting the loop bandwidth is Kv as in the first-order case. The magnitude
𝜔1 of the additional pole is then made as low as possible without causing an unacceptable
amount of peaking in the frequency response. This peaking is of concern both because it dis-
torts the demodulated FM output and because it causes the loop to ring, or experience a poorly
damped oscillatory response, when a transient disturbs the loop. A good compromise is using
a maximally flat low-pass pole configuration in which the poles are placed on radials angled
45∘ from the negative real axis. For this response, the damping factor 𝜁 should be equal to
1∕
√

2. Thus

1√
2
= 1

2

√
𝜔1

Kv
(10.59)

and

𝜔1 = 2Kv (10.60)

The −3 dB frequency of the transfer function (Vo∕𝜔i)(j𝜔) is then

𝜔−3 dB = 𝜔n =
√

Kv𝜔1 =
√

2Kv (10.61)

A disadvantage of the second-order loop as discussed thus far is that the −3 dB bandwidth of
the loop is basically dictated by loop gain Kv, as shown by (10.61). As we will show, the loop
gain also sets the lock range so that with the simple filter used above, these two parameters are
constrained to be comparable. Situations do arise in phase-locked communications in which
a wide lock range is desired for tracking large signal-frequency variations, yet a narrow loop
bandwidth is desired for rejecting out-of-band signals. Using a very small 𝜔1 would accom-
plish this, were it not for the fact that this produces underdamped loop response. By adding a
zero to the loop filter, the loop filter pole can be made small while still maintaining good loop
dampening.

The effect of the addition of a zero on the loop response is best seen by examining the
open-loop response of the circuit. Shown in Fig. 10.18a is the open-loop response of the
circuit with no loop filter. Because of the integration inherent in the loop, the response
has a −20 dB/decade slope throughout the frequency range and crosses unity gain at Kv.
In Fig. 10.18b, a loop filter in which 𝜔1 is much less than Kv has been added, and as a result,
the loop phase shift is very nearly 180∘ at the crossover frequency. The result is a sharp peak
in the closed-loop frequency response at the crossover frequency. By adding a zero in the loop
filter at 𝜔2, as shown in Fig. 10.18c, the loop phase margin can be greatly improved. Note that
for this case, the loop bandwidth, which is equal to the crossover frequency, is much lower
than Kv. This ability to set loop bandwidth and Kv independently is an advantage of this type
of loop filter. An R-C circuit that provides the necessary pole and zero in the filter response is
shown in Fig. 10.18d. The root locus for this loop filter and the resulting closed-loop response
are also shown.
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Loop Lock Range. The loop lock range is the range of input frequencies about the center
frequency for which the loop maintains lock. In most cases, it is limited by the fact that the
phase comparator has a limited phase comparison range; once the phase difference between
the input signal and the VCO output reaches some critical value, the phase comparator ceases
to behave linearly. The transfer characteristic of a typical analog phase comparator is shown
in Fig. 10.12. It is clear from this figure that in order to maintain lock, the phase difference
between the VCO output and the incoming signal must be kept between zero and 𝜋. If the
phase difference is equal to either zero or 𝜋, then the magnitude of the dc voltage at the output
of the phase comparator is

Vo(max) = ±KD

(
𝜋

2

)
(10.62)
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This dc voltage is amplified by the electrical gain A, and the result is applied to the VCO input,
producing a frequency shift away from the free-running center frequency of

Δ𝜔osc = KDAKO

(
𝜋

2

)
=
(

Kv𝜋

2

)
(10.63)

If the input frequency is now shifted away from the free-running frequency, more voltage will
have to be applied to the VCO in order for the VCO frequency to shift accordingly. However,
the phase detector can produce no more dc output voltage to shift the VCO frequency further,
so the loop will lose lock. The lock range 𝜔L is then given by

𝜔L = Kv
𝜋

2
(10.64)

This is the frequency range on either side of the free-running frequency for which the loop
will track input frequency variations. It is a parameter that depends only on the dc gain in the
loop and is independent of the properties of the loop filter. Other types6 of phase detectors can
give larger linear ranges of phase-comparator operation.

The capture range is the range of input frequencies for which the initially unlocked loop
will lock on an input signal when initially in an unlocked condition and is always less than the
lock range. When the input frequency is swept through a range around the center frequency,
the output voltage as a function of input frequency displays a hysteresis effect, as shown in
Fig. 10.19. As discussed earlier, the capture range is difficult to predict analytically. As a very
rough rule of thumb, the approximate capture range can be estimated using the following
procedure: refer to Fig. 10.13, and assume that the loop is opened at the loop-amplifier output

Vout

fin

fin

2   L

2   Cω

ω

Figure 10.19 PLL output versus
frequency of input.
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and that a signal with a frequency not equal to the free-running VCO frequency is applied at
the input of the PLL. The sinusoidal difference frequency component that appears at the output
of the phase detector has the value

Vp(t) =
𝜋

2
KD cos (𝜔i − 𝜔osc)t (10.65)

where 𝜔i is the input signal frequency and 𝜔osc is the VCO free-running frequency. This com-
ponent is passed through the loop filter, and the output from the loop amplifier resulting from
this component is

Vo(t) =
𝜋

2
KDA ∣ F[j(𝜔i − 𝜔osc)] ∣ cos [(𝜔i − 𝜔osc)t + 𝜙] (10.66)

where
𝜙 = ∠F[j(𝜔i − 𝜔osc)]

The output from the loop amplifier thus consists of a sinusoid at the difference frequency
whose amplitude is reduced by the loop filter. In order for capture to occur, the magnitude of
the voltage that must be applied to the VCO input is

∣Vosc∣=
𝜔i − 𝜔osc

KO
(10.67)

The capture process itself is rather complex, but the capture range can be estimated by setting
the magnitudes of (10.66) and (10.67) equal. The result is that capture is likely to occur if the
following inequality is satisfied:

|(𝜔i − 𝜔osc)| < 𝜋

2
KDKOA|F[j(𝜔i − 𝜔osc)]| (10.68)

This equation implicitly gives an estimation of the capture range. For the first-order loop,
where F(s) is unity, it predicts that the lock range and capture range are approximately equal
and that for the second-order loop, the capture range is significantly less than the lock range
because |F[j(𝜔i − 𝜔osc)]| is then less than unity.

10.3.3 Integrated-Circuit Phase-Locked Loops

The principal reason that PLLs have come to be widely used as system components is that
the elements of the PLL are particularly suited to monolithic construction, and complete PLL
systems can be fabricated on a single chip. We now discuss the design of the individual PLL
components.

Phase Detector. Phase detectors for monolithic PLL applications are generally of the
Gilbert multiplier configuration shown in Fig. 10.4. As illustrated in Fig. 10.11, if two signals
large enough in amplitude to cause limiting in the emitter-coupled pairs making up the circuit
are applied to the two inputs, the output will contain a dc component given by

Vaverage = −IEERC

(
1 − 2𝜙

𝜋

)
(10.69)

where 𝜙 is the phase difference between the input signals. An important aspect of the per-
formance of this phase detector is that if the amplitude of the applied signal at Vin2 is small



772 Chapter 10 ▪ Nonlinear Analog Circuits
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Figure 10.20 Sinusoid multiplied by a synchronous
square wave.

compared to the thermal voltage VT , the circuit behaves as a balanced modulator, and the dc
compartment of the output depends on the amplitude of the low-level input. The output wave-
form is then a sinusoid multiplied by a synchronous square wave, as shown in Fig. 10.20. In
the limiting case when the small input is small compared to VT , the dc component in the output
becomes, referring to Fig. 10.20,

Vaverage =
1
𝜋

gmRCVi

[
∫

𝜙

0
(sin 𝜔t) d(𝜔t) − ∫

𝜋

𝜙

(sin 𝜔t) d(𝜔t)
]

(10.70)

= −
2gmRCVi cos𝜙

𝜋
(10.71)

where RC is the collector resistor in the Gilbert multiplier and gm is the transconductance of the
transistors. The phase-detector output voltage then becomes proportional to the amplitude Vi of
the incoming signal, and if the signal amplitude varies, then the loop gain of the PLL changes.
Thus when the signal amplitude varies, it is often necessary to precede the phase detector
with an amplifier/limiter to avoid this problem. In FM demodulators, for example, any ampli-
tude modulation appearing on the incoming frequency-modulated signal will be demodulated,
producing an erroneous output.

In PLL applications, the frequency response of the phase detector is usually not the limiting
factor in the usable operating frequency range of the loop itself. At high operating frequencies,
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the parasitic capacitances of the devices result in a feedthrough of the carrier frequency, giving
an erroneous component in the output at the center frequency. This component is removed by
the loop filter, however, and does not greatly affect loop performance. The VCO is usually the
limiting factor in the operating frequency range.

Voltage-Controlled Oscillator. The operating frequency range, FM distortion,
center-frequency drift, and center-frequency supply-voltage sensitivity are all determined by
the performance of the VCO. Integrated-circuit VCOs often are simply R-C multivibrators in
which the charging current in the capacitor is varied in response to the control input. We first
consider the emitter-coupled multivibrator shown in Fig. 10.21a, which is typical of those
used in this application. We calculate the period by first assuming that Q1 is turned off and
Q2 is turned on. The circuit then appears as shown in Fig. 10.21b. We assume that current I is
large so that the voltage drop IR is large enough to turn on diode Q6. Thus the base of Q4 is
one diode drop below VCC, the emitter is two diode drops below VCC, and the base of Q1
is two diode drops below VCC. If we can neglect the base current of Q3, its base is at VCC and
its emitter is one diode drop below VCC. Thus the emitter of Q2 is two diode drops below VCC.
Since Q1 is off, the current I1 is charging the capacitor so that the emitter of Q1 is becoming
more negative. Q1 will turn on when the voltage at its emitter becomes equal to three diode
drops below VCC. Transistor Q1 will then turn on, and the resulting collector current in Q1
turns on Q5. As a result, the base of Q3 moves in the negative direction by one diode drop,
causing the base of Q2 to move in the negative direction by one diode drop. Q2 will turn off,
causing the base of Q1 to move positive by one diode drop because Q6 also turns off. As a
result, the emitter-base junction of Q2 is reverse biased by one diode drop because the voltage
on C cannot change instantaneously. Current I1 must now charge the capacitor voltage in the

(a)

VCC

IB

I1 I1

IB
C

R Q5

Q3

Q1 Q2

Q4

Q6 R

Vin

Vout

+

–

+

–

Figure 10.21 (a) Voltage-
controlled, emitter-coupled
multivibrator.
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(b)
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R Q5

Q3

Q1 Q2

Q4

Q6 R

I ≈ 2I1

2I1

I1 Vc2

Vb2

Vout

Vc

+

+

–

+

–

+ –

–

Figure 10.21 (b) Equivalent
circuit during one half-cycle.

negative direction by an amount equal to two diode drops before the circuit will switch back
again. Since the circuit is symmetrical, the half period is given by the time required to charge
the capacitor and is

T
2
= Q

I1
(10.72)

where Q = CΔV = 2CVBE(on) is the charge on the capacitor. The frequency of the oscillator is
thus

f = 1
T

=
I1

4CVBE(on)
(10.73)

The various waveforms in the circuit are shown in Fig. 10.21c. This emitter-coupled configura-
tion is nonsaturating and contains only npn transistors. Furthermore, the voltage swings within
the circuit are small. As a result, the circuit is capable of operating up to approximately 1 GHz
for typical integrated-circuit transistors. However, the usable frequency range is limited to a
value lower than this because the center frequency drift with temperature variations becomes
large at the higher frequencies. This drift occurs because the switching transients themselves
become a large percentage of the period of the oscillation, and the duration of the switching
transients depends on circuit parasitics, circuit resistances, transistor transconductance, and
transistor input resistance, which are all temperature sensitive.

Although the emitter-coupled configuration is capable of high operating speed, it displays
considerable sensitivity of center frequency to temperature even at low frequencies, since the
period is dependent on VBE(on). Utilizing (10.73), we can calculate the temperature coefficient
of the center frequency as

1
𝜔osc

d𝜔osc

dT
= − 1

VBE(on)

dVBE(on)

dT
=

+2 mV∕∘C
600 mV

= +3300 ppm∕∘C (10.74)

This temperature sensitivity of center frequency can be compensated by causing current I1 to
be temperature sensitive in such a way that its effect is equal and opposite to the effect of the
variation of VBE(on).
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Figure 10.21 (c) Waveforms
within the emitter-coupled
multivibrator.

10.4 Nonlinear Function Synthesis
The need often arises in electronic systems for circuits with arbitrary nonlinear transfer func-
tions. For example, a common need is for square-law and square-root transfer characteristics
in order to generate true root-mean-square (rms) quantities. The unique, precision exponential
transfer characteristic of the bipolar transistor can be used7,8 to generate these and many other
nonlinear functions.

Consider the circuit shown in Fig. 10.22a. We have

VBE1 + VBE2 − VBE3 − VBE4 = 0 (10.75)

Neglecting base currents and assuming all devices are forward active, we find

VT ln
IB

IS1
+ VT ln

Ii

IS2
− VT ln

Io

IS3
− VT ln

Io

IS4
= 0
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Figure 10.22 Bipolar
nonlinear function circuits.
(a) Square root. (b) Square law.

and thus

Io =
√

Ii

√
IB

√
IS3IS4

IS1IS2
(10.76)

This circuit thus realizes a square-root transfer function with a scale factor set only by the
bias current IB (which could be another input signal) and device area ratios. There is no
(first-order) dependence on supply voltage or temperature. Note that the input current source
Ii must be capable of working into a dc bias voltage of one VBE set by Q1. The small-signal
input impedance of the circuit is very low due to the feedback provided by Q1 and Q2. Since
all nodes in the circuit are low impedance, parasitic capacitance has little influence, and the
bandwidth of the circuit can be on the order of the device fT .

For the circuit in Fig. 10.22b, we have

VBE1 + VBE5 + VBE2 = VBE3 + VBE4 + VBE6 (10.77)
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from which

Io = I2
i

IB1

I2
B2

IS3IS4IS6

IS1IS5IS2
(10.78)

Thus this circuit realizes the square-law transfer function with very wide bandwidth and insen-
sitivity to temperature and supply voltage. Simpler versions of this circuit can be derived if the
current source IB1 is used as a signal input. However, this requires that IB1 be realized by an
active pnp current source (or a PMOS current source in BiCMOS technology), which will
usually restrict the circuit bandwidth.

PROBLEMS
10.1 Sketch the dc transfer curve Iout versus V2

for the Gilbert multiplier of Fig. 10.4 for V1 equal to
0.1 VT , 0.5 VT , and VT .

10.2 For the emitter-coupled pair of Fig. 10.1,
determine the magnitude of the dc differential input
voltage required to cause the slope of the transfer
curve to be different by 1 percent from the slope
through the origin.

10.3 Assume that a sinusoidal voltage signal is
applied to the emitter-coupled pair of Fig. 10.1. Deter-
mine the maximum allowable magnitude of the sinu-
soid such that the magnitude of the third harmonic in
the output is less than 1 percent of the fundamental.
To work this problem, approximate the transfer char-
acteristic of the pair with the first two terms of the
Taylor series for the tanh function. Then assume that
all the other harmonics in the output are negligible and

that the output is approximately

Iout(t) = Io(sin 𝜔ot + 𝛿 sin 3𝜔ot)

where 𝛿 = fractional third-harmonic distortion. Use
SPICE to check your result. For the same sinusoidal
input voltage amplitude, use SPICE to find the third
harmonic distortion in the output if emitter resistors
RE are added to each device such that IE1RE = IE2RE =
100 mV.

10.4 Determine the worst-case input offset
voltage of the voltage-current converter shown in
Fig. 10.23. Assume that the op amps are ideal, that the
resistors mismatch by ±0.3 percent, and that transis-
tor IS values mismatch by ±2 percent. Neglect base
currents. Use SPICE to determine the second and
third harmonic distortion in the output for a sinusoidal

+

–

I1 I2

VCC

–VEE

Vin

+

–

10 kΩ

1 kΩ 1 kΩ 1 kΩ

1 mA

Figure 10.23 Circuit for
Problem 10.4. All op amps
are ideal.
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input drive of amplitude 20 V peak-peak. Assume
IS = 10−16 A for the transistor, and approximate the
op amps by voltage-controlled voltage sources with a
gain of 10,000.

10.5 Determine the dc transfer characteristic of
the circuit of Fig. 10.24. Assume that Z = 0.1XY for
the multiplier.

Analog
multiplier

+
+

–

+

–

–

Vin

Vout

Vref

R

Z X

Y
R

Figure 10.24 Circuit for Problem 10.5. The op amp
is ideal.

10.6 A phase-locked loop has a center frequency
of 105 rad/s, a KO of 103 rad/V-s, and a KD of 1 V/rad.
There is no other gain in the loop. Determine the loop
bandwidth in the first-order loop configuration. Deter-
mine the single-pole, loop-filter pole location to give
the closed-loop poles located on 45∘ radials from the
origin.

10.7 For the same PLL of Problem 10.6, design a
loop filter with a zero that gives a crossover frequency
for the loop gain of 100 rad/s. The loop phase shift at
the loop crossover frequency should be −135∘.

+

Vi

VDD = 5 V

M1 M2 M3 M4

M6

I1
50 μA

I1
50 μA

M7 M8

M10

Io

M9

M5
–

Figure 10.25 CMOS square-law circuit.

10.8 Estimate the capture range of the PLL of
Problem 10.7, assuming that it is not artificially lim-
ited by the VCO frequency range.

10.9 An FM demodulator using a PLL has a
center frequency of 2 kHz and is implemented as a
first-order loop. The input signal alternates between
1.95 kHz and 2.05 kHz at a rate of 200 Hz with instan-
taneous transitions between the two frequency values.
Sketch the demodulated output voltage waveform,
ignoring the term related to the sum of the frequen-
cies at the PLL input and the VCO output. For the
PLL, use A = 1, KD = 2.55 V/rad, and KO = 0.93𝜔osc,
where 𝜔osc is the free-running frequency in rad/sec.

10.10 Design a voltage-controlled oscillator
based on the circuit of Fig. 10.21a. The center fre-
quency is to be 10 kHz, C = 0.01μF, and VCC = 5 V.
For the transistors, 𝛽 = 100 and IS = 10−16 A. The
frequency is to be varied by 2:1 by an input ΔVin =
200 mV. Specify all resistors and the dc value of Vin.
Use SPICE to check your design and also to pro-
duce a plot of the transfer characteristic from Vin to
frequency.

10.11 Using the methods of Section 10.4, design
a circuit with a transfer characteristic Io = KI3∕2

i for
Ii ≥ 0. The input bias voltage must be ≥ VBE, and the
output bias voltage is equal to 2VBE. The value of Io

should be 100μA for Ii = 100μA. The supply voltage
available is VCC = 5 V, and device data are 𝛽 = 100
and IS = 10−17A. Use SPICE to verify your design,
and then examine the effect of finite rb = 200Ω and
re = 2Ω.

10.12 Show that the CMOS circuit of Fig. 10.25
realizes a square-law transfer characteristic from Vi



References 779

to Io, assuming that the MOSFETs have square-law
characteristics. Specify the range of Vi over which this
holds. (The bias analysis of Section 9.6.4 applies.)
All PMOS devices have W∕L = 60, and all NMOS
have W∕L = 20. Device data are 𝜇nCox = 60μA/V2,
𝜇pCox = 20μA/V2, Vtn = 0.7 V, Vtp = −0.7 V, 𝛾 = 0,
and 𝜆 = 0.

Use SPICE to verify your result by plotting and
evaluating the dc transfer characteristic. Then apply
an input sine-wave voltage drive at Vi within the
square-law range and examine the first and second har-
monics in Io and comment.
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CHAPTER 11

Noise in Integrated Circuits

11.1 Introduction
This chapter deals with the effects of electrical noise in integrated circuits. The noise phe-
nomena considered here are caused by the small current and voltage fluctuations that are
generated within the devices themselves, and we specifically exclude extraneous pickup of
human-made signals that can also be a problem in high-gain circuits. The existence of noise
is basically due to the fact that electrical charge is not continuous but is carried in discrete
amounts equal to the electron charge, and thus noise is associated with fundamental processes
in the integrated-circuit devices.

The study of noise is important because it represents a lower limit to the size of electrical
signal that can be amplified by a circuit without significant deterioration in signal quality.
Noise also results in an upper limit to the useful gain of an amplifier, because if the gain is
increased without limit, the output stage of the circuit will eventually begin to limit (that is, a
transistor will leave the active region) on the amplified noise from the input stages.

In this chapter, the various sources of electronic noise are considered, and the equivalent cir-
cuits of common devices including noise generators are described. Methods of circuit analysis
with noise generators as inputs are illustrated, and the noise analysis of complex circuits such
as op amps is performed. Methods of computer analysis of noise are examined, and finally,
some common methods of specifying circuit noise performance are described.

11.2 Sources of Noise
11.2.1 Shot Noise1–4

Shot noise is always associated with a direct-current flow and is present in diodes, MOS tran-
sistors, and bipolar transistors. The origin of shot noise can be seen by considering the diode
of Fig. 11.1a and the carrier concentrations in the device in the forward-bias region as shown
in Fig. 11.1b. As explained in Chapter 1, an electric field  exists in the depletion region, and
a voltage (𝜓0 − V) exists between the p-type and the n-type regions, where 𝜓0 is the built-in
potential and V is the forward bias on the diode. The forward current of the diode I is com-
posed of holes from the p region and electrons from the n region, which have sufficient energy
to overcome the potential barrier at the junction. Once the carriers have crossed the junction,
they diffuse away as minority carriers.

The passage of each carrier across the junction, which can be modeled as a random event,
is dependent on the carrier having sufficient energy and a velocity directed toward the junc-
tion. Thus external current I, which appears to be a steady current, is in fact composed of a
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Figure 11.1 (a) Forward-biased pn junction diode. (b) Carrier concentrations in the diode (not to scale).
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Figure 11.2 Diode current I
as a function of time (not to
scale).

large number of random independent current pulses. If the current is examined on a sensitive
oscilloscope, the trace appears as in Fig. 11.2, where ID is the average current.

The fluctuation in I is termed shot noise and is generally specified in terms of its
mean-square variation about the average value. This is written i2, where

i2= (I − ID)2

= lim
T→∞

1
T ∫

T

0
(I − ID)2 dt

(11.1)
It can be shown that if a current I is composed of a series of random independent pulses with
average value ID, then the resulting noise current has a mean-square value

i2 = 2qID Δf (11.2)

where q is the electronic charge (1.6 × 10−19 C) andΔf is the bandwidth in hertz. This equation
shows that the noise current has a mean-square value that is directly proportional to the band-
width Δf (in hertz) of the measurement. Thus a noise-current spectral density i2∕Δf (with
units square amperes per hertz) can be defined that is constant as a function of frequency.
Noise with such a spectrum is often called white noise. Since noise is a purely random signal,
the instantaneous value of the waveform cannot be predicted at any time. The only infor-
mation available for use in circuit calculations concerns the mean square value of the signal
given by (11.2). Bandwidth Δf in (11.2) is determined by the circuit in which the noise source
is acting.
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Figure 11.3 Spectral density
of shot noise in a diode with
transit time 𝜏 (not to scale).

Equation 11.2 is valid until the frequency becomes comparable to 1∕𝜏, where 𝜏 is the carrier
transit time through the depletion region. For most practical electronic devices, 𝜏 is extremely
small and (11.2) is accurate well into the gigahertz region. A sketch of noise-current spectral
density versus frequency for a diode is shown in Fig. 11.3, assuming that the passage of each
charge carrier across the depletion region produces a square pulse of current with width 𝜏.

◼ EXAMPLE
Calculate the shot noise in a diode current of 1 mA in a bandwidth of 1 MHz.

Using (11.2), we have

i2 = 2 × 1.6 × 10−19 × 10−3 × 106 A2 = 3.2 × 10−16 A2

and thus
i = 1.8 × 10−8 A rms

where i represents the root-mean-square (rms) value of the noise current.◼

The effect of shot noise can be represented in the low-frequency, small-signal equivalent cir-
cuit of the diode by inclusion of a current generator shunting the diode, as shown in Fig. 11.4.
Since this noise signal has random phase and is defined solely in terms of its mean-square
value, it also has no polarity. Thus the arrow in the current source in Fig. 11.2 has no sig-
nificance and is included only to identify the generator as a current source. This practice is
followed in this chapter where we deal only with noise generators having random phase.

The noise-current signal produced by the shot-noise mechanism has an amplitude that varies
randomly with time and that can only be specified by a probability density function. It can be
shown that the amplitude distribution of shot noise is Gaussian and the probability density
function p(I) of the diode current is plotted versus current in Fig. 11.5 (not to scale). The prob-
ability that the diode current lies between values I and (I + dI) at any time is given by p(I)dI.
If 𝜎 is the standard deviation of the Gaussian distribution, then the diode current amplitude lies

2q= ΔfID

kT
qID

ID

rd = i2

Figure 11.4 Junction diode small-signal
equivalent circuit with noise.
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Figure 11.5 Probability density
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(not to scale).

between limits ID ± 𝜎 68 percent of the time. By definition, variance 𝜎2 is the mean-square
value of (I − ID) and thus, from (11.1),

𝜎2 = i2

and
𝜎 =

√
2qID Δf (11.3)

using (11.2). Note that, theoretically, the noise amplitude can have positive or negative values
approaching infinity. However, the probability falls off very quickly as amplitude increases,
and an effective limit to the noise amplitude is ±3𝜎. The noise signal is within these limits
99.7 percent of the time. A brief description of the Gaussian distribution is given in Appendix
A.3.1 in Chapter 3.

It is important to note that the distribution of noise in frequency as shown in Fig. 11.3 is
due to the random nature of the hole and electron transitions across the pn junction. Consider
the situation if all the carriers made transitions with uniform time separation. Since each car-
rier has a charge of 1.6 × 10−19 C, a 1-mA current would then consist of current pulses every
1.6 × 10−16 s. The Fourier analysis of such a waveform would give the spectrum of Fig. 11.6,
which shows an average or dc value ID and harmonics at multiples of 1∕Δt, where Δt is the
period of the waveform and equals 1.6 × 10−16 s. Thus the first harmonic is at 6 × 106 GHz,
which is far beyond the useful frequency of the device. There would be no noise produced in
the normal frequency range of operation.

A
m

pl
itu

de
 o

f F
ou

rie
r

co
m

po
ne

nt

Linear scale

6 × 106 GHz 12 × 106 GHz

ID

f Figure 11.6 Shot-noise
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Figure 11.7 Alternative representations of thermal
noise.

11.2.2 Thermal Noise1,3,5

Thermal noise is generated by a completely different mechanism from shot noise. In conven-
tional resistors, it is due to the random thermal motion of the electrons and is unaffected by
the presence or absence of direct current, since typical electron drift velocities in a conductor
are much less than electron thermal velocities. Since this source of noise is due to the thermal
motion of electrons, we expect that it is related to absolute temperature T . In fact, thermal
noise is directly proportional to T (unlike shot noise, which is independent of T), and as T
approaches zero, thermal noise also approaches zero.

In a resistor R, thermal noise can be shown to be represented by a series voltage gener-
ator v2, as shown in Fig. 11.7a, or by a shunt current generator i2, as in Fig. 11.7b. These
representations are equivalent, and

v2 = 4kTR Δf (11.4)

i2 = 4kT
1
R
Δf (11.5)

where k is Boltzmann’s constant. At room temperature, 4kT = 1.66 × 10−20 V-C.
Equations 11.4 and 11.5 show that the noise spectral density is again independent of
frequency, and for thermal noise, this is true up to 1013 Hz. Thus thermal noise is another
source of white noise. Note that the Norton equivalent of (11.5) can be derived from (11.4) as

i2 = v2

R2
(11.6)

A useful number to remember for thermal noise is that at room temperature (300∘K), the ther-
mal noise spectral density in a 1-kΩ resistor is v2∕Δf ≃ 16 × 10−18 V2/Hz. This can be written
in rms form as v ≃ 4 nV/

√
Hz, where the form nV/

√
Hz is used to emphasize that the rms noise

voltage varies as the square root of the bandwidth. Another useful equivalence is that the ther-
mal noise-current generator of a 1-kΩ resistor at room temperature is the same as that of 50 μA
of direct current exhibiting shot noise.

Thermal noise as described above is a fundamental physical phenomenon and is present in
any linear passive resistor. This includes conventional resistors and the radiation resistance of
antennas, loudspeakers, and microphones. In the case of loudspeakers and microphones, the
source of noise is the thermal motion of the air molecules. In the case of antennas, the source
of noise is the black-body radiation of the object at which the antenna is directed. In all cases,
(11.4) and (11.5) give the mean-square value of the noise.
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The amplitude distribution of thermal noise is again Gaussian. Since shot and thermal noise
each have a flat frequency spectrum and a Gaussian amplitude distribution, they are indistin-
guishable once they are introduced into a circuit. The waveform of shot and thermal noise
combined with a sinewave of equal power is shown in Fig. 11.20b.

11.2.3 Flicker Noise6–8 (1/f Noise)

This is a type of noise found in all active devices, as well as in some discrete passive elements
such as carbon resistors. The origins of flicker noise are varied, but it is caused mainly by traps
associated with contamination and crystal defects. These traps capture and release carriers in
a random fashion, and the time constants associated with the process give rise to a noise signal
with energy concentrated at low frequencies.

Flicker noise, which is always associated with a flow of direct current, displays a spectral
density of the form

i2 = K1
Ia

f b
Δf (11.7)

where
Δf = small bandwidth at frequency f

I = direct current
K1 = constant for a particular device
a = constant in the range 0.5 to 2
b = constant of about unity

If b = 1 in (11.7), the noise spectral density has a 1∕f frequency dependence (hence the
alternative name 1∕f noise), as shown in Fig. 11.8. It is apparent that flicker noise is most
significant at low frequencies, although in devices exhibiting high flicker-noise levels, this
noise source may dominate the device noise at frequencies well into the megahertz range.

It was noted above that flicker noise only exists in association with a direct current. Thus, in
the case of carbon resistors, no flicker noise is present until a direct current is passed through the
resistor (however, thermal noise always exists in the resistor and is unaffected by any direct
current as long as the temperature remains constant). Consequently, carbon resistors can be
used if required as external elements in low-noise, low-frequency integrated circuits as long as
they carry no direct current. If the external resistors for such circuits must carry direct current,
however, metal film resistors that have no flicker noise should be used.

Flicker noise also occurs in many integrated resistors, as described in Section 11.3.4.
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Figure 11.8 Flicker noise spectral
density versus frequency.
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In earlier sections of this chapter, we saw that shot and thermal noise signals have
well-defined mean-square values that can be expressed in terms of current flow, resistance,
and a number of well-known physical constants. By contrast, the mean-square value of a
flicker-noise signal as given by (11.7) contains an unknown constant K1. This constant not
only varies by orders of magnitude from one device type to the next but can also vary widely
for different transistors or integrated circuits from the same process wafer. This is due to the
dependence of flicker noise on contamination and crystal imperfections, which are factors that
can vary randomly even on the same silicon wafer. However, experiments have shown that if
a typical value of K1 is determined from measurements on a number of devices from a given
process, then this value can be used to predict average or typical flicker-noise performance
for integrated circuits from that process.9

The final characteristic of flicker noise that is of interest is its amplitude distribution, which
is often non-Gaussian, as measurements have shown.

11.2.4 Burst Noise7 (Popcorn Noise)

This is another type of low-frequency noise found in some integrated circuits and discrete
transistors. The source of this noise is not fully understood, although it has been shown to be
related to the presence of heavy-metal ion contamination. Gold-doped devices show very high
levels of burst noise.

Burst noise is so named because an oscilloscope trace of this type of noise shows bursts
of noise on a number (two or more) of discrete levels, as illustrated in Fig. 11.9a. The repe-
tition rate of the noise pulses is usually in the audio frequency range (a few kilohertz or less)
and produces a popping sound when played through a loudspeaker. This has led to the name
popcorn noise for this phenomenon.

The spectral density of burst noise can be shown to be of the form

i2 = K2
Ic

1 +
(

f

fc

)2
Δf (11.8)

where
K2 = constant for a particular device

I = direct current
c = constant in the range 0.5 to 2
fc = particular frequency for a given noise process

This spectrum is plotted in Fig. 11.9b and illustrates the typical hump that is characteristic
of burst noise. At higher frequencies, the noise spectrum falls as 1∕f 2.

Burst-noise processes often occur with multiple time constants, and this gives rise to multi-
ple humps in the spectrum. Also, flicker noise is invariably present as well so that the composite
low-frequency noise spectrum often appears as in Fig. 11.10. As with flicker noise, factor K2
for burst noise varies considerably and must be determined experimentally. The amplitude
distribution of the noise is also non-Gaussian.

11.2.5 Avalanche Noise10

This is a form of noise produced by Zener or avalanche breakdown in a pn junction.
In avalanche breakdown, holes and electrons in the depletion region of a reverse-biased
pn junction acquire sufficient energy to create hole-electron pairs by colliding with silicon
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atoms. This process is cumulative, resulting in the production of a random series of large
noise spikes. The noise is always associated with a direct-current flow, and the noise produced
is much greater than shot noise in the same current, as given by (11.2). This is because a
single carrier can start an avalanching process that results in the production of a current burst
containing many carriers moving together. The total noise is the sum of a number of random
bursts of this type.

The most common situation where avalanche noise is a problem occurs when Zener diodes
are used in the circuit. These devices display avalanche noise and are generally avoided in
low-noise circuits. If Zener diodes are present, the noise representation of Fig. 11.11 can
be used, where the noise is represented by a series voltage generator v2. The dc voltage Vz
is the breakdown voltage of the diode, and the series resistance R is typically 10 to 100 Ω.
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+
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VZ

R

v2

Figure 11.11 Equivalent circuit of a Zener diode including noise.

The magnitude of v2 is difficult to predict as it depends on the device structure and the uni-
formity of the silicon crystal, but a typical measured value is v2∕Δf ≃ 10−14 V2/Hz at a dc
Zener current of 0.5 mA. Note that this is equivalent to the thermal noise voltage in a 600-kΩ
resistor and completely overwhelms thermal noise in R. The spectral density of the noise is
approximately flat, but the amplitude distribution is generally non-Gaussian.

11.3 Noise Models of Integrated-Circuit Components
In the above sections, the various physical sources of noise in electronic circuits were
described. In this section, these sources of noise are brought together to form the small-signal
equivalent circuits including noise for diodes and for bipolar and MOS transistors.

11.3.1 Junction Diode

The equivalent circuit for a forward-biased junction diode was considered briefly in the con-
sideration of shot noise. The basic equivalent circuit of Fig. 11.4 can be made complete by
adding series resistance rs, as shown in Fig. 11.12. Since rs is a physical resistor due to the
resistivity of the silicon, it exhibits thermal noise. Experimentally, it has been found that any

ID

rs

rd = i2

v2

kT

qID

s

Figure 11.12 Complete diode small-signal
equivalent circuit with noise sources.
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flicker noise present can be represented by a current generator in shunt with rd and can be
conveniently combined with the shot-noise generator as indicated by (11.10) to give

v2
s = 4k Trs Δf (11.9)

i2 = 2qID Δf + K
Ia
D

f
Δf (11.10)

11.3.2 Bipolar Transistor11

In a bipolar transistor in the forward-active region, minority carriers diffuse and drift across
the base region to be collected at the collector-base junction. Minority carriers entering the
collector-base depletion region are accelerated by the field existing there and swept across
this region to the collector. The time of arrival at the collector-base junction of the diffusing
(or drifting) carriers can be modeled as a random process, and thus the transistor collector
current consists of a series of random current pulses. Consequently, collector current Ic shows

full shot noise as given by (11.2), and this is represented by a shot-noise-current generator i2c
from collector to emitter, as shown in the equivalent circuit of Fig. 11.13.

Base current IB in a transistor is due to recombination in the base and base-emitter depletion
regions and also to carrier injection from the base into the emitter. All of these are inde-
pendent random processes, and thus IB also shows full shot noise. This is represented by

shot-noise-current generator i2b in Fig. 11.13.
Transistor base resistor rb is a physical resistor and thus has thermal noise. Collector series

resistor rc also shows thermal noise, but since this is in series with the high-impedance collector
node, this noise is negligible and is usually not included in the model. Note that resistors r𝜋
and ro in the model are fictitious resistors that are used for modeling purposes only, and they
do not exhibit thermal noise.

Flicker noise and burst noise in a bipolar transistor have been found experimentally to be
represented by current generators across the internal base-emitter junction. These are conve-

niently combined with the shot-noise generator in i2b. Avalanche noise in bipolar transistors is
found to be negligible if VCE is kept at least 5 V below the breakdown voltage BVCEO, and this
source of noise will be neglected in subsequent calculations.

The full small-signal equivalent circuit including noise for the bipolar transistor is shown
in Fig. 11.13. Since they arise from separate, independent physical mechanisms, all the noise
sources are independent of each other and have mean-square values:

v2
b = 4k Trb Δf (11.11)

i2c = 2qIC Δf (11.12)

C

Ccs

rogmv1v1r

rb rc

B

C
B'

E

+

–
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2 ic

2

vb
2

π Cπ

μ

Figure 11.13 Complete bipolar transistor small-signal equivalent circuit with noise sources.
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i2b = 2qIB Δf
⏟⏟⏟

Shot noise

+ K1

Ia
B

f
Δf

⏟⏞⏟⏞⏟

Flicker noise

+ K2

Ic
B

1 +
(

f
fc

)2

⏟⏞⏞⏞⏟⏞⏞⏞⏟

Burst noise

Δf (11.13)

This equivalent circuit is valid for both npn and pnp transistors. For pnp devices, the magni-
tudes of IB and IC are used in the above equations.

The base-current noise spectrum can be plotted using (11.13), and this has been done
in Fig. 11.14, where burst noise has been neglected for simplicity. The shot-noise and
flicker-noise asymptotes meet at a frequency fa, which is called the flicker noise corner
frequency. In some transistors using careful processing, fa can be as low as 100 Hz. In other
transistors, fa can be as high as 10 MHz.

11.3.3 MOS Transistor12–14

The structure of MOS transistors was described in Chapter 1. We showed there that the resis-
tive channel under the gate is modulated by the gate-source voltage so that the drain current
is controlled by the gate-source voltage. Since the channel material is resistive, it exhibits
thermal noise, which is a major source of noise in MOS transistors. This noise source can be

represented by a noise-current generator i2d from drain to source in the small-signal equivalent
circuit of Fig. 11.15a, and

i2d = 4kT𝛾gd0Δf (11.14a)
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Figure 11.14 Spectral density
of the base-current noise
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Figure 11.15 (a) MOSFET small-signal equivalent circuit with noise sources.
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where 𝛾 is defined below and gd0 is the zero-bias drain-source conductance of the channel:

gd0 =
𝜕ID

𝜕VDS

||||VDS=0
(11.14b)

With VGS > Vt and VDS = 0, the transistor operates in the triode region, and

gd0 = k′
W
L
(VGS − Vt) (11.14c)

For long-channel transistors,

𝛾 = 2
3

(
1 + 𝜂 + 𝜂2

1 + 𝜂

)
(11.14d)

where

𝜂 =
⎧⎪⎨⎪⎩

1 −
VDS

VGS − Vt
if 0 ≤ VDS ≤ VGS − Vt

0 if VDS ≥ VGS − Vt

(11.14e)

When VDS = 0, 𝜂 = 1 and 𝛾 = 1. In this case, the transistor’s mean-square thermal noise is the
same as in a resistor with resistance 1∕gd0. Increasing VDS while VDS ≤ VGS − Vt decreases
both 𝜂 and 𝛾 . When VDS = VGS − Vt, 𝜂 = 0 and 𝛾 = 2∕3. In this case, the transistor operates
at the edge of the triode and the saturation regions.

Also, for a transistor in saturation,

gm =
𝜕ID

𝜕VGS

||||VDS=constant≥VGS−Vt

= k′
W
L
(VGS − Vt) (11.14f)

This equation was derived using a square-law model and is reasonable for long-channel tran-
sistors. Comparing (11.14c) to (11.14f) shows that gd0 = gm under these conditions.

However, gd0 is calculated with VDS = 0, but gm in (11.14f) is calculated with VDS ≥
VGS − Vt. Increasing VDS and reducing transistor dimensions both increase the strengths of
the electric fields in the channel. When velocity saturation occurs, the mobility is reduced,
causing gm to be less than gd0. Define

𝛼 =
gm

gd0
(11.14g)

Substituting this equation in (11.14a) gives

i2d = 4kT𝛾
gm

𝛼
Δf (11.14h)

For long-channel devices in saturation, 𝛾 = 2∕3 and 𝛼 ≃ 1, giving a mean-square drain
current of

i2d = 4kT
(2

3

)
gmΔf (11.14i)

stemming from thermal noise in the channel. For short-channel devices, (11.14h) should be
used. High electric fields may increase 𝛾 by a factor of about two or more.15 Multiple possible
explanations of this excess thermal noise have been published.16 A key point is that operating
MOS transistors with low voltages reduces their thermal noise.
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Another noise source in MOS transistors is flicker noise. Because MOS transistors conduct
current near the surface of the silicon where surface states act as traps that capture and release
current carriers, their flicker-noise component can be large. Flicker noise in the MOS transistor
is found experimentally to be represented by a drain-source current generator, and the thermal

and flicker noise can be lumped into one noise generator i2d in Fig. 11.15a with

i2d = 4kT𝛾gd0 Δf
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Thermal noise

+ K
Ia
D

f
Δf

⏟⏟⏟

Flicker noise

(11.14j)

where

ID = drain bias current

K = constant for a given device

a = constant between 0.5 and 2

𝛾 = channel thermal-noise factor

gd0 = zero-bias drain-source conductance of the channel

In practice, assuming that a = 1 is usually reasonable (especially for hand calculations),
and the drain noise current is usually rewritten as

i2d = 4kT𝛾gd0 Δf
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Thermal noise

+ Kf
g2

m

CoxWLf
Δf

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Flicker noise

(11.14k)

Equations 1.153 and 1.180 show that g2
m = 2μCox(W∕L)ID. Then (11.14k) is equivalent to

(11.14j) if Kf = KL2∕(2μ), where μ is the effective mobility. For most devices in widely used
technologies, assuming that Kf is independent of the bias point is reasonable. A typical value
for Kf is about 3 × 10−24 FV2, and this constant depends on the process (especially the clean-
liness at the silicon surface).

Another noise source in the MOS transistor is shot noise generated by the gate-leakage

current. This noise can be represented by i2g in Fig. 11.15a, with

i2g = 2qIGΔf (11.14l)

In technologies with long minimum channel lengths, the gate oxide thickness is usually large
enough that the dc gate current IG is typically very small. As a result, this noise current is
often neglected. However, the gate oxide thickness is reduced in scaled technologies, and tun-
neling significantly increases the gate current with thin oxides, possibly making shot noise

important. For instance, IG = 66.2 μA and i2g∕Δf = 2.1 × 10−23 A2∕Hz for a transistor with an
oxide thickness of 15 Angstroms, W = L = 10 μm, VDS = 1 V, and VGS = 2 V in an example
100-nm technology.17

Next, consider the two resistors in Fig. 11.15a. Thermal noise is not generated by ro because
it does not represent a physical resistance. Instead, it models channel-length modulation, which
causes the drain current to depend in part on the drain-source voltage. On the other hand,
thermal noise is generated by Rg because it represents the physical resistance from the external
gate terminal to the active gate region of the transistor. The description below assumes that the
gate is formed as a layer of polysilicon covered by silicide (a metal layer that can withstand
high-temperature processing).
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Figure 11.15 (b) Example MOSFET layout. (c) The corresponding schematic.

Figure 11.15b shows an example layout of an MOS transistor. The dashed and dotted lines
show polysilicon and diffusion (both covered by silicide), respectively. Also, the solid lines
show metal, and the black squares show contacts from metal to the silicide below. The transistor
dimensions and the drain (D), gate (G), and source (S) terminals are labeled. In practice, the
length of the gate over the diffusion is often less than at a contact where it connects to metal,
but the figure does not show this detail for simplicity. Resistor Rg in Fig. 11.15a stems from
a distributed resistance along the layer that forms the gate and increases monotonically with
the distance from the gate contact to a point on the gate. Figure 11.15b shows a lumped model
with four resistors drawn using thin lines. Figure 11.15c shows the corresponding schematic,
which represents one transistor with aspect ratio W∕L as four transistors each with aspect
ratio W∕(4L). The drains of these transistors are connected together, and the sources are also
connected together. However, the gates are separated by resistances. A key point is that the
effective value of Rg is smallest for the transistor on the left (only Rx) and largest for the
transistor on the right (Rx + Rg1 + Rg2 + Rg3).

Assume the gate current flows across the metal, down through the contact to the silicide,
across the silicide, and down to the polysilicon, and ignore the resistance of the metal. Then
for the lumped transistor with aspect ratio W∕L17,

Rg = Rc +
(

Wx

L

)
R◽ + K

(W
L

)
R◽ +

𝜌sp

WL
(11.14m)

where Rc is the metal-to-silicide contact resistance, Wx∕L is the number of squares from the
contact to the start of the active gate region, R◽ is the sheet resistance of the gate silicide, K is
a layout-dependent constant, W∕L is the number of squares along the active gate region, and
𝜌sp is the silicide-to-polysilicon specific contact resistivity.18 When the gate connects to metal
on only one side of the transistor, a distributed analysis19 shows that K = 1∕3. Connecting the
gate to metal on both sides of the transistor20 gives K = 1∕12.
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Figure 11.15 (d) MOSFET layout
using two unit transistors. (e) The
corresponding schematic.

Reducing the gate resistance is important in part because it generates thermal noise that
contributes directly to the equivalent input noise (defined in Section 11.4.2) of amplifiers that
use the gate as the input terminal. The first three components of Rg can be reduced by splitting
the transistor into units (or “fingers”) and connecting them in parallel with each other. For
example, Fig. 11.15d, e show an example of this approach and the corresponding schematic.
Two units are used, each with an aspect ratio of W∕(2L). In this case, the first two components
of Rg are halved because two parallel paths are used. Also, the third component is reduced
by a factor of four because the width of each unit is halved and two units are operated in
parallel. Since this approach does not change the gate area (WL), however, it does not reduce
the last component in Rg. Furthermore, using gate contacts on both sides of the transistor and
increasing the number of units both increase the parasitic capacitance from the gate to the
substrate by increasing the area of the metal required to connect all the gates to each other.21

The values of this parasitic capacitance and Rg are both considered in choosing the optimum
number of units in practice.

All the noise terms described above for MOS transistors are independent of each other,
and the MOS noise model in Fig. 11.15a is reasonable for hand calculations with low and
moderate frequencies. For frequencies above about 0.1fT , however, the accuracy is reduced.
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Figure 11.15 (f) Input admittance and thermal noise using the model in Fig. 11.15a for a transistor with
constant terminal voltages and (g) for the same transistor represented as two transistors.

This limitation stems from the use of a lumped model even though the channel resistance and
the gate-to-channel capacitance are both distributed along the length of the channel in practice.
As a result, this model does not accurately represent the gate input admittance and the gate
current at high frequencies.

First, consider the input admittance. Figure 11.15f shows a transistor whose terminal volt-
ages are held constant for simplicity. Let Yg represent the admittance to ground looking into
the gate, and ignore the dashed current source at first. Assume VGS > Vt and VDS ≥ VGS − Vt.
Then M1 operates in the saturation or active region. Use the transistor model in Fig. 11.15a with
Rg = 0 and Cgd = 0 for simplicity. Then Yg = j𝜔Cgs. In other words, the predicted input admit-
tance is purely capacitive in this case. In practice, however, the distributed channel resistance
gives Yg a nonzero real component that is important at high frequencies.

This component can be seen by increasing the number of lumped transistors used to repre-
sent M1. For example, Fig. 11.15g uses M11 and M12 to model M1. Again, ignore the dashed
current sources at first. With M1 in saturation, M11 operates in saturation, but M12 operates in
the triode region, as in a Sooch cascode. Then the source of M11 and the drain of M12 repre-
sent a point in the channel of M1 halfway between its source and drain. Let Cgc represent the
gate-to-channel capacitance at this point. This capacitor is drawn with dashed lines to empha-
size that it is not added to this circuit but is instead part of the model of M11 and M12, and
Cgc = Cgs11 + Cgd12 here. The key point is that Cgc connects to ground through the nonzero
channel resistance of M12, giving Yg a real component. Calculating the value of this real com-
ponent here is not important because it would apply only to this case with two transistors
modeling M1, and increasing the number of lumped transistors improves the model.
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Figure 11.15 (h) MOSFET small-signal equivalent circuit with gg and noise sources.

Second, consider the gate current. Assume VGS > Vt in Fig. 11.15f. Then a channel
exists, and it creates thermal noise, which causes variation in the voltage from the channel to
ground along the distributed channel. These variations couple to the gate from the distributed
gate-to-channel capacitance, introducing thermally induced gate noise. In Fig. 11.15f, the
channel thermal noise is represented as a current source with a known mean-square value, as
in Fig. 11.15a. This current source is a part of the model of M1. Ignore all other noise sources
for simplicity. In this case, the model predicts zero gate current because feedback to the gate
is provided only by Cgs and Cgd. Since the voltages across these capacitors are assumed to
be constant, no current flows in them even though thermal noise causes the voltage along the
distributed channel to vary.

As in the case of the input admittance, this limitation can be overcome by increasing the
number of lumped transistors used to represent M1. In Fig. 11.15g, thermal noise from M11
and M12 is modeled by the dashed current sources and causes variation in vc. This variation
creates nonzero ig, coupling back to the gates of M11 and M12 through the gate-to-channel
capacitor Cgc. Because the admittance of this capacitor is j𝜔Cgs, ig is phase shifted ahead of vc
by 90∘. Also, the magnitude of ig is scaled by the frequency 𝜔 for the same reason. Therefore,

the spectral density i2g∕Δf is not constant. Instead, it is proportional to 𝜔2.
Further increases in the number of transistors connected in series to represent M1 improve

the model but increase the complexity. As a result, this approach is usually saved for simula-
tion in demanding cases, such as in low-noise, radio-frequency amplifiers. In practice, using
a model with five lumped transistors connected in series often provides adequate accuracy in
these cases.17

To simplify the calculations that would be required if multiple transistors in series were used
to represent each transistor in a given circuit, the input admittance and the thermally induced
gate noise can be modeled without adding any transistors.

For a transistor in saturation, analysis with a distributed model gives

Yg = gg + j𝜔Cgs (11.15a)

where

gg =
𝜔2C2

gs

5gd0
(11.15b)

Figure 11.15h shows the model from Fig. 11.15a with gg added. A key point here is that gg is
a frequency-dependent conductance that improves the model of the input admittance.

The thermally induced gate noise can also be modeled without adding transistors by adding

a new term to i2g previously defined in (11.14l) to model shot noise. Since the shot noise and
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the thermal noise are independent,

i2g = 2qIG Δf
⏟⏟⏟

Shot noise

+ 4kT𝛿gg Δf
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Thermally induced gate noise

(11.15c)

where 𝛿 = 2𝛾 = 4∕3 for long-channel transistors.
Both gg in (11.15b) and the thermally induced gate noise in (11.15c) are proportional to

𝜔2. Also, the thermally induced gate-current noise is partly correlated with the thermal-noise
term in (11.14k) because both noise currents stem from thermal fluctuations in the channel.
For long-channel transistors, the correlation coefficient is12

c = 0.395j (11.15d)

The j term indicates that the correlation is imaginary. This result stems from the 90∘ phase
shift introduced in the gate-noise current relative to the drain-noise current (and voltage) by the
gate-to-channel capacitance. From this equation, the magnitude of the correlation coefficient
is |c| = 0.395, and the phase is <) c = 90∘. As explained in Section 11.4, these nonzero values
complicate noise calculations.

11.3.4 Resistors

Monolithic and thin-film resistors display thermal noise as given by (11.4) and (11.5), and the
circuit representation of this is shown in Fig. 11.7. As mentioned in Section 11.2.3, discrete
carbon resistors also display flicker noise, and this should be considered if such resistors are
used as external components to the integrated circuit.

Many integrated resistors also display flicker noise. Since thermal and flicker noise stem
from separate physical mechanisms, they are independent, and their mean-square values can

be added together to produce one voltage noise generator v2
R in series with the resistor, where13

v2
R = 4kTRΔf

⏟⏟⏟

Thermal noise

+
(KR2

◽)
WL

V2

f
Δf

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Flicker noise

(11.15e)

In this equation, R, R◽, W, and L are the resistance, sheet resistance, width, and length of the
resistor. Also, V is the dc voltage across the resistor, and K is a constant that depends on the
process and type of resistor.

Let I represent the dc current through the resistor. Substituting both V = IR and (11.6) in

(11.15e) gives the Norton equivalent with a current noise generator i2R in parallel with the
resistor, where

i2R = 4kT
R

Δf

⏟⏟⏟

Thermal noise

+
(KR2

◽)
WL

I2

f
Δf

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Flicker noise

(11.15f)

In practice, K is typically about 5 × 10−16 μm2

Ω2
for diffused resistors13 and about 100 times

larger for polysilicon resistors because of traps that can capture and release current carriers
near the boundaries of the polysilicon grains.22
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◼ EXAMPLE

Suppose R = 1 kΩ, K = 5 × 10−14 μm2

Ω2
, R◽ = 50 Ω∕◽, W = 2 μm, and I = 100 μA for a

polysilicon resistor. Find the frequency at which its thermal noise density is equal to its flicker
noise density.

Since R◽ = 50 Ω∕◽, the resistor requires 20 squares to give a resistance of R = 1 kΩ. Since
W = 2 μm, L = 20 × 2 = 40 μm. Setting the thermal noise density equal to the flicker noise
density gives

4kT
R

=
(KR2

◽)
WL

I2

f
(11.16a)

Rearranging this equation gives

f =
(KR2

◽)
WL

I2 R
4kT

= 5 × 10−14(50)2

2 × 40
(100 × 10−6)2 1000

1.66 × 10−20

= 940 Hz (11.16b)

In the resistor given in this example, the flicker noise is greater than the thermal noise at
frequencies less than 940 Hz. This property could limit the performance of many circuits.
One example is in biomedical instrumentation. Electrocardiography is used to observe elec-
trical heart activity and is limited by low-frequency noise in amplifiers that measure tiny,
low-frequency signals. Another example is in oscillators, where low-frequency noise intro-
duces low-frequency jitter, which is variation in the oscillation period. The performance of an
analog-to-digital converter can be limited by jitter in the oscillator that controls its sampling
period.◼

11.3.5 Capacitors and Inductors

Capacitors are common elements in integrated circuits, either as unwanted parasitics or as
elements introduced for a specific purpose. Inductors are sometimes realized on the silicon
die in integrated high-frequency communication circuits. There are no sources of noise in
ideal capacitors or inductors. In practice, real components have parasitic resistance that does
display noise as given by the thermal noise formulas of (11.4) and (11.5). In the case of
integrated-circuit capacitors, the parasitic resistance usually consists of a small value in series
with the capacitor. Parasitic resistance in inductors can be modeled by either series or shunt
elements.

11.4 Circuit Noise Calculations23,24

The device equivalent circuits including noise that were derived in Section 11.3 can be used for
the calculation of circuit noise performance. First, however, methods of circuit calculation with
noise generators as sources must be established, and attention is now given to this problem.

Consider a noise current source with mean-square value

i2 = S( f ) Δf (11.17)
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Figure 11.16 Representation of
noise in a bandwidth Δf by an
equivalent sinusoid with the same
rms value.

where S( f ) is the noise spectral density. The value of S( f ) is plotted versus frequency in
Fig. 11.16a for an arbitrary noise generator. In a small bandwidth Δf , the mean-square value
of the noise current is given by (11.17), and the rms values can be written as

i =
√

S( f )Δf (11.18)

The noise current in bandwidth Δf can be represented approximately23 by a sinusoidal cur-
rent generator with rms value i,W as shown in Fig. 11.16b. If the noise current in bandwidth
Δf is now applied as an input signal to a circuit, its effect can be calculated by substituting
the sinusoidal generator and performing circuit analysis in the usual fashion. When the cir-
cuit response to the sinusoid is calculated, the mean-square value of the output sinusoid gives
the mean-square value of the output noise in bandwidth Δf . Thus network noise calculations
reduce to familiar sinusoidal circuit-analysis calculations. The only difference occurs when
multiple noise sources are applied, as is usually the case in practical circuits. Each noise source
is then represented by a separate sinusoidal generator, and the output contribution of each one is
separately calculated. The total output noise in bandwidth Δf is calculated as a mean-square
value by adding the individual mean-square contributions from each output sinusoid. This
depends, however, on the original noise sources being independent, as will be shown below.
This requirement is usually satisfied if the equivalent noise circuits derived in previous sections
are used, as all the noise sources except the induced gate noise in (11.15c) arise from separate
mechanisms and are thus independent.

For example, consider two resistors R1 and R2 connected in series as shown in Fig. 11.17.
Resistors R1 and R2 have respective noise generators

v2
1 = 4k TR1 Δf (11.19a)

v2
2 = 4k TR2 Δf (11.19b)
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R1

R2

v1
2

v2
2

vT
2

+

–
Figure 11.17 Circuit for the calculation of the total noise v2

T produced
by two resistors in series.

In order to calculate the mean-square noise voltage v2
T produced by the two resistors in series,

let vT (t) be the instantaneous value of the total noise voltage and v1(t) and v2(t) the instanta-
neous values of the individual generators. Then

vT (t) = v1(t) + v2(t) (11.20)

and thus

vT (t)2 = [v1(t) + v2(t)]2

= v1(t)2 + v2(t)2 + 2v1(t)v2(t) (11.21)

Now, since noise generators v1(t) and v2(t) arise from separate resistors, they must be inde-
pendent. Thus the average value of their product v1(t)v2(t) will be zero, and (11.21) becomes

v2
T = v2

1 + v2
2 (11.22)

Thus the mean-square value of the sum of a number of independent noise generators is the
sum of the individual mean-square values. Substituting (11.19a) and (11.19b) in (11.22) gives

v2
T = 4k T(R1 + R2) Δf (11.23)

Equation 11.23 is just the value that would be predicted for thermal noise in a resistor (R1 + R2)
using (11.4), and thus the results are consistent. These results are also consistent with the
representation of the noise generators by independent sinusoids, as described earlier. It is easily
shown that when two or more such generators are connected in series, the mean-square value
of the total voltage is equal to the sum of the individual mean-square values.

In the above calculation, two noise voltage sources were considered connected in series. It
can be similarly shown that an analogous result is true for independent noise current sources
connected in parallel. The mean-square value of the combination is the sum of the individ-
ual mean-square values. This result was assumed in the modeling of Section 11.3 where, for
example, three independent noise-current generators (shot, flicker, and burst) were combined
into a single base-emitter noise source for a bipolar transistor.
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Figure 11.18 (a) Simple transistor amplifier ac schematic. (b) Small-signal equivalent circuit with noise
sources.

11.4.1 Bipolar Transistor Noise Performance

As an example of the manipulation of noise generators in circuit calculations, consider the
noise performance of the simple transistor stage with the ac schematic shown in Fig. 11.18a.
The small-signal equivalent circuit including noise is shown in Fig. 11.18b. (It should be
pointed out that for noise calculations, the equivalent circuit analyzed must be the actual cir-
cuit configuration used. That is, Fig. 11.18a cannot be used as a half-circuit representation of
a differential pair for the purposes of noise calculation because noise sources in each half of a
differential pair affect the total output noise.)

In the equivalent circuit of Fig. 11.18b, the external input signal vi has been ignored so that
output signal vo is due to noise generators only. Cμ is assumed small and is neglected. Output
resistance ro is also neglected. The transistor noise generators are as described previously, and
in addition,

v2
s = 4k TRS Δf (11.24)

i2l = 4k T
1

RL
Δf (11.25)

The total output noise can be calculated by considering each noise source in turn and per-
forming the calculation as if each noise source were a sinusoid with rms value equal to that of
the noise source being considered. Consider first the noise generator vs due to RS. Then

v1 = Z
Z + rb + RS

vs (11.26)

where
Z = r𝜋

‖‖‖‖ 1
j𝜔C𝜋

(11.27)

The output noise voltage due to vs is

vo1 = −gmRLv1 (11.28)
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Use of (11.26) in (11.28) gives

vo1 = −gmRL
Z

Z + rb + RS
vs (11.29)

The phase information contained in (11.29) is irrelevant because the noise signal has random
phase and the only quantity of interest is the mean-square value of the output voltage produced
by vs. From (11.29), this is

v2
o1 = g2

mR2
L

|Z|2|Z + rb + RS|2 v2
s (11.30)

By similar calculations, it is readily shown that the noise voltage produced at the output by v2
b

and i2b is

v2
o2 = g2

mR2
L

|Z|2|Z + rb + RS|2 v2
b (11.31)

v2
o3 = g2

mR2
L

(RS + rb)2|Z|2|Z + rb + RS|2 i2b (11.32)

Noise at the output due to i2l and i2c is

v2
o4 = i2l R2

L (11.33)

v2
o5 = i2cR2

L (11.34)

Since all five noise generators are independent, the total output noise is

v2
o =

5∑
n=1

v2
on (11.35)

= g2
mR2

L

|Z|2|Z + rb + RS|2
[
v2

s + v2
b + (RS + rb)2i2b

]
+ R2

L(i
2
l + i2c) (11.36)

Substituting expressions for the noise generators, we obtain

v2
o

Δf
= g2

mR2
L

|Z|2|Z + rb + RS|2 [4kT(RS + rb) + (RS + rb)22qIB]

+R2
L

(
4k T

1
RL

+ 2qIC

) (11.37)

where flicker noise has been assumed small and neglected. Substituting for Z from (11.27) in
(11.37), we find

v2
o

Δf
= g2

mR2
L

r2
𝜋

(r𝜋 + RS + rb)2
1

1 +
(

f

f1

)2
[4k T(RS + rb) + (RS + rb)22qIB]

+R2
L

(
4k T

1
RL

+ 2qIC

) (11.38)
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Figure 11.19 Noise voltage spectrum at the output of the circuit of Fig. 11.18.

where

f1 = 1
2𝜋[r𝜋||(RS + rb)]C𝜋

(11.39)

The output noise-voltage spectral density represented by (11.38) has a frequency-dependent
part and a constant part. The frequency dependence arises because the gain of the stage begins

to fall above frequency f1, and noise due to generators v2
s , v

2
b, and i2b, which appears amplified

in the output, also begins to fall. The constant term in (11.38) is due to noise generators i2l and

i2c . Note that this noise contribution would also be frequency dependent if the effect of Cμ had
not been neglected. The noise-voltage spectral density represented by (11.38) has the form
shown in Fig. 11.19.

◼ EXAMPLE
In order to give an appreciation of the numbers involved, specific values will now be assigned
to the parameters of (11.38), and the various terms in the equation will be evaluated. Assume
that

IC = 100 μA 𝛽 = 100 rb = 200 Ω
RS = 500 Ω C𝜋 = 10 pF

RL = 5 kΩ

Substituting these values in (11.38) and using 4 k T = 1.66 × 10−20 V-C gives

v2
o

Δf
=

⎡⎢⎢⎢⎢⎣
5.82 × 10−18 1

1 +
(

f

f1

)2
(700 + 9.4) + 1.66 × 10−20(5000 + 48,080)

⎤⎥⎥⎥⎥⎦
V2/Hz

=

⎡⎢⎢⎢⎢⎣
4.13 × 10−15

1 +
(

f

f1

)2
+ 0.88 × 10−15

⎤⎥⎥⎥⎥⎦
V2/Hz (11.40)
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Equation 11.39 gives
f1 = 23.3 MHz (11.41)

Equation 11.40 shows the output noise-voltage spectral density is 5.0 × 10−15 V2/Hz at low
frequencies, and it approaches 0.88 × 10−15 V2/Hz at high frequencies. The major contributor
to the output noise in this case is the source resistance RS, followed by the base resistance of
the transistor. The noise spectrum given by (11.40) is plotted in Fig. 11.19.◼

◼ EXAMPLE
Suppose the amplifier in the above example is followed by later stages that limit the band-
width to a sharp cutoff at 1 MHz. Since the noise spectrum as shown in Fig. 11.19 does not
begin to fall significantly until f1 = 23.3 MHz, the noise spectrum may be assumed constant at
5.0 × 10−15 V2/Hz over the bandwidth 0 to 1 MHz. Thus the total noise voltage at the output
of the circuit of Fig. 11.18a in a 1-MHz bandwidth is

v2
oT = 5.0 × 10−15 × 106 V2 = 5.0 × 10−9 V2

and thus
voT = 71 μV rms (11.42)

Now suppose that the amplifier of Fig. 11.18a is not followed by later stages that limit
the bandwidth but is fed directly to a wideband detector (this could be an oscilloscope or
a voltmeter). In order to find the total output noise voltage in this case, the contribution from
each frequency increment Δf must be summed at the output. This reduces to integration across
the bandwidth of the detector of the noise-voltage spectral-density curve of Fig. 11.19. For
example, if the detector had a 0 to 50-MHz bandwidth with a sharp cutoff, then the total output
noise would be

v2
oT =

50×106∑
f=0

So( f )Δf

= ∫
50×106

0
So( f ) df

(11.43)
where

So( f ) =
v2

o

Δf
(11.44)

is the noise spectral density defined by (11.40). In practice, the exact evaluation of such inte-
grals is often difficult, and approximate methods are frequently used. Note that if the integra-
tion of (11.43) is done graphically, the noise spectral density versus frequency must be plotted
on linear scales.◼

11.4.2 Equivalent Input Noise and the Minimum Detectable Signal

In the previous section, the output noise produced by the circuit of Fig. 11.18 was calculated.
The significance of the noise performance of a circuit is, however, the limitation it places on the
smallest input signals the circuit can handle before the noise degrades the quality of the output
signal. For this reason, the noise performance is usually expressed in terms of an equivalent
input noise signal, which gives the same output noise as the circuit under consideration. In this



806 Chapter 11 ▪ Noise in Integrated Circuits

(a)

Noiseless

voviN

RS RL

2

Figure 11.20 (a) Representation of circuit noise
performance by an equivalent input noise
voltage.

way, the equivalent input noise can be compared directly with incoming signals, and the effect
of the noise on those signals is easily determined. For this purpose, the circuit of Fig. 11.18

can be represented as shown in Fig. 11.20a, where v2
iN is an input noise-voltage generator that

produces the same output noise as all of the original noise generators. All other sources of noise
in Fig. 11.20a are considered removed. Using the same equivalent circuit as in Fig. 11.18b,
we obtain, for the output noise from Fig. 11.20a,

v2
o = g2

mR2
L

|Z|2|Z + rb + RS|2 v2
iN (11.45a)

If this noise expression is equated to v2
o from (11.37), the equivalent input noise voltage for

the circuit can be calculated as

v2
iN

Δf
= 4k T(RS + rb) + (RS + rb)22qIB

+ 1

g2
mR2

L

|Z + rb + RS|2|Z|2 R2
L

(
4kT

1
RL

+ 2qIC

)
(11.45b)

Note that the noise-voltage spectral density given by (11.45b) rises at high frequencies because
of the variation of |Z| with frequency. This is due to the fact that as the gain of the device falls

with frequency, output noise generators i2c and i2l have a larger effect when referred back to the
input.

◼ EXAMPLE

Calculate the total input noise voltage v2
iNT for the circuit of Fig. 11.18 in a bandwidth of 0 to

1 MHz.
This could be calculated using (11.45b), derived above. Alternatively, since the total out-

put noise voltage v2
oT has already been calculated, this can be used to calculate v2

iNT (in a
1-MHz bandwidth) by dividing by the circuit voltage gain squared. If Av is the low-frequency,
small-signal voltage gain of Fig. 11.18, then

Av =
r𝜋

rb + r𝜋 + RS
gmRL

Use of the previously specified data for this circuit gives

Av =
26,000

200 + 26,000 + 500
5000
260

= 18.7
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Figure 11.20 (b) Output voltage waveform of the circuit of Fig. 11.18 with a 3.78-μV rms sinewave
applied at the input. The circuit bandwidth is limited to 1 MHz, which gives an equivalent input noise
voltage of 3.78 μV rms.

Since the noise spectrum is flat up to 1 MHz, the low-frequency gain can be used to calculate

v2
iNT as

v2
iNT =

v2
oT

A2
v

= 5 × 10−9

18.72
V2 = 14.3 × 10−12 V2

Thus we have
viNT = 3.78 μV rms

◼

The above example shows that in a bandwidth of 0 to 1 MHz, the noise in the circuit appears
to come from a 3.78-μV rms noise-voltage source in series with the input. This noise voltage
can be used to estimate the smallest signal that the circuit can effectively amplify, sometimes
called the minimum detectable signal (MDS). This depends strongly on the nature of the signal
and the application. If no special filtering or coding techniques are used, the MDS can be taken
as equal to the equivalent input noise voltage in the passband of the amplifier. Thus, in this
case,

MDS = 3.78 μV rms

If a sinewave of magnitude 3.78 μV rms were applied to this circuit, and the output in a 1-MHz
bandwidth examined on an oscilloscope, the sine wave would be barely detectable in the noise,
as shown in Fig. 11.20b. The noise waveform in this figure is typical of that produced by shot
and thermal noise.

11.4.3 MOS Transistor Noise Performance

When two noise sources are partially correlated, one of the noise sources is broken down into
two pieces, the first perfectly correlated with the other noise source and the second uncorrelated
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with the other noise source. For example, consider thermally induced gate noise in a transistor,

which is partially correlated with the thermal noise i2d from the channel of the same transistor.
Ignore the shot noise for simplicity, and decompose the thermally induced gate noise as

i2g = 4kT𝛿gg Δf = i2gc + i2gu (11.46a)

In this equation, i2gc is the component of the gate-noise current that is perfectly correlated with

i2d, and i2gu is the uncorrelated component. Then

i2gc = i2g |c|2 (11.46b)

and
i2gu = i2g (1 − |c|2) (11.46c)

Note that this decomposition involves using the magnitude |c| but not the phase <) c of the
correlation coefficient.

To combine the correlated components of the gate- and drain-noise currents, they are
referred to a point in the circuit where they can be added or subtracted using KVL or KCL
with standard sinusoidal circuit analysis. In this analysis, the magnitudes of the gate and

drain currents are the rms magnitudes
√

i2gc and
√

i2d, respectively, and the phase of the gate
current leads the phase of the drain current by 90∘ (the phase of the correlation coefficient).
The relative directions of these currents are also important because they are correlated. The
directions are shown in Fig. 11.15h.25 The result of this analysis gives a sinusoidal signal
somewhere in the circuit with a known rms magnitude. This result is then squared to find the
mean-square value of the combined correlated noise, and this combination is uncorrelated
with other noise sources in the circuit.

After this process is repeated for each pair of correlated noise sources, the remaining noise
sources are all uncorrelated with each other. Therefore, they can be combined by simply adding
their mean-square contributions to the output noise.

◼ EXAMPLE
For the current mirror in Fig. 11.21a, assume VDD = 1 V and I1 = 100 μA. Ignore flicker noise,

and use the transistor data in Fig. 11.21b. Find the mean-square output current noise i2o at room
temperature in a 1-Hz bandwidth at 1 GHz in three cases: (1) ignoring induced gate noise,
(2) including induced gate noise but assuming it is uncorrelated with channel thermal noise,

M
1

I
I 
+ i

i

M
2

I
O
 + i

o

V
DD

(a)

Parameter Value Parameter Value

Vt 0.7 V Cox 2.01 fF∕μm2

0 100 μA∕V2

Ld = Xd 0 1

L 1 μm 2∕3

W1 50 μm 4∕3

W2 100 μm Rg = IG 0

(b)

α

γ

δ

λ kʹ

Figure 11.21 (a) Current mirror. (b) Transistor data.
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and 3) including the correlation between induced gate noise and channel thermal noise. In all
three cases, include gg in each transistor.

With I1 = 100 μA and VDD = 1V, both transistors operate in saturation, and

Vov = VGS − Vt =

√
2I1

k′(W∕L)1
=

√
2(100)
100(50)

= 0.2 V (11.46d)

From (11.14g), gd0 = gm for each transistor because 𝛼 = 1. From (1.180) with 𝜆 = 0,

gd01 = gm1 = k′(W∕L)1Vov = 100(50)(0.2) = 1000 μA∕V (11.46e)

gd02 = gm2 = k′(W∕L)2Vov = 100(100)(0.2) = 2000 μA∕V (11.46f)

From (11.14h), the mean-square thermal-noise currents for M1 and M2 are

i2d1 = 4kT𝛾gd01Δf = 1.66 × 10−20
(2

3

)
(1 × 10−3)(1) = 1.11 × 10−23A2 (11.46g)

i2d2 = 4kT𝛾gd02Δf = 1.66 × 10−20
(2

3

)
(2 × 10−3)(1) = 2.21 × 10−23A2 (11.46h)

Also, from (1.191), (11.15b), and (11.15c),

Cgs1 =
(2

3

)
W1LCox =

(2
3

)
(50)(1)2.01 × 10−15 = 67 fF (11.46i)

Cgs2 =
(2

3

)
W2LCox =

(2
3

)
(100)(1)2.01 × 10−15 = 134 fF (11.46j)

gg1 =
𝜔2C2

gs1

5gd01
= (2𝜋 × 109)2(67 × 10−15)2

5(1000 × 10−6)
= 35.4 × 10−6 A

V
(11.46k)

gg2 =
𝜔2C2

gs2

5gd02
= (2𝜋 × 109)2(134 × 10−15)2

5(2000 × 10−6)
= 70.9 × 10−6 A

V
(11.46l)

i2g1 = 4kT𝛿gg1Δf = 1.66 × 10−20
(4

3

)
(35.4 × 10−6)(1) = 7.84 × 10−25 A2 (11.46m)

i2g2 = 4kT𝛿gg2Δf = 1.66 × 10−20
(4

3

)
(70.9 × 10−6)(1) = 1.57 × 10−24 A2 (11.46n)

In this example, the transition frequency is fT ≃ gm1∕[2𝜋Cgs1] = 1000 × 10−6∕[2𝜋(67 ×
10−15)] = 2.38 GHz. The problem asks for noise calculations at 1 GHz, which is about
40 percent of fT , making induced gate noise important, as shown below.

Figure 11.21c shows a small-signal model of this current mirror with Cgs = Cgs1 + Cgs2 =
201 fF. Since 𝜆 = 0, ro1 = ro2 → ∞. Since M1 is diode connected, Req = 1∕(gm1 + gg1 +
gg2) = 904 Ω. The small-signal gain at 1 GHz is

io
ii

=
gm2Req

1 + j𝜔ReqCgs
= (2 × 10−3)(904)

1 + j(2𝜋109)(904)(201 × 10−15)

= 1.81
1 + j(1.14)

= 1.19 <) − 48.8∘ (11.46o)

At low frequencies, gg1 and gg2 are ≪ gm1, giving Req ≃ 1∕gm1 and io∕ii ≃ gm2∕gm1 = 2.
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ii i2g1 i2d1 i2g2 Req Cgs vgs

+

−
gm2vgs i2d2 io

(c)

Figure 11.21 (c) Small-signal model of a simple current mirror with noise sources.

Ignoring the induced gate noise,

i2o =
(

i2d1

) |||| io
ii

||||
2

+ i2d2

= (1.11 × 10−23)(1.19)2 + 2.21 × 10−23

= 3.78 × 10−23 A2 (11.46p)

Including the induced gate noise but ignoring its correlation with the channel thermal noise,
the phase shift in io∕ii again makes no difference, and

i2o =
(

i2g1 + i2d1 + i2g2

) |||| io
ii

||||2 + i2d2

= (7.84 × 10−25 + 1.11 × 10−23 + 1.57 × 10−24)(1.19)2 + 2.21 × 10−23

= 4.12 × 10−23 A2 (11.46q)

Now include the correlation, starting with M1. Since this transistor is diode connected, i2g1

and i2d1 appear in parallel. The component of i2g1 correlated with i2d1 is i2g1 |c|2. The rms mag-

nitude of this correlated induced gate current is

√
i2g1 |c|. The rms magnitude of the channel

thermal-noise current in M1 at its drain is
√

i2d1. This drain current is assumed to have zero
phase shift, and the induced gate current is shifted forward by 90∘ (multiplied by j) to represent
the phase shift imposed by the gate-to-channel capacitance of M1. Figure 11.21d shows two
current sources that represent these currents and that they can be combined into one equiva-

lent current source labeled
√

i21, which represents all the channel thermal noise in M1 and the
correlated part of its induced gate noise. From KCL,√

i21 =
√

i2g1 |c| j −
√

i2d1 =
√

7.84 × 10−25 (0.395) j −
√

1.11 × 10−23

= 3.50 × 10−13j − 3.33 × 10−12 (11.46r)

i2g1 |c| j i2d1 i21

(d)

Figure 11.21 (d) Combining the correlated noise sources
in M1 at its gate.
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Therefore, i21 = (3.50 × 10−13)2 + (3.33 × 10−12)2 = 1.12 × 10−23A2. The phase of this
quantity does not affect the noise analysis because this combined noise source is uncorrelated

with the other noise sources. Note that i21 = i2g1 |c|2 + i2d1 here. In other words, i21 could have
been found exactly just by adding the mean-square value of the correlated part of the induced
gate noise to the mean-square drain noise. This simplified procedure works in this case

because the two current sources that represent the components of
√

i21 are in parallel, which
means that neither has to be scaled to refer one to the other’s location to apply KCL. As a

result, these two components are separated in phase by 90∘, allowing i21 to be computed by
the Pythagorean theorem.

Now consider the correlated noise sources in M2. The rms value of the part of i2g2 correlated

with i2d2 is

√
i2g2 |c| j. Scaling this component by io∕ii in (11.46o) refers it to the mirror output,

and the scaled current appears in parallel with
√

i2d2. Figure 11.21e shows two current sources
that represent these currents. The drain of M2 is the top node, and the source of M2 is the bot-

tom node. The current source on the left points down because increasing

√
i2g2 in Fig. 11.21c

increases vgs, which increases the current flowing from the drain to the source of M2.
Also, Fig. 11.21e shows that the two current sources can be combined into one equivalent

current source labeled
√

i22, which represents all the channel thermal noise in M2 and the
correlated part of its induced gate noise. From KCL,√

i22 =
√

i2g2 |c| j

(
io
ii

)
+
√

i2d2

=
√

1.57 × 10−24 (0.395) j (1.19 <) − 48.8∘) +
√

2.21 × 10−23

= (5.89 × 10−13 <) 41.2∘) + 4.70 × 10−12

= 5.14 × 10−12 + j 3.88 × 10−13 (11.46s)

Therefore, i22 = (5.14 × 10−12)2 + (3.88 × 10−13)2 = 2.66 × 10−23 A2. The phase of this
quantity does not affect the noise analysis because this combined noise source is uncorrelated

with the other noise sources. Note that i22 ≠ i2g2 |c|2 |io∕ii|2 + i2d2 here because referring the
correlated part of the induced gate current in M2 to the mirror output shifts the phase of this
component with respect to the channel thermal noise in M2.

Finally, the remaining noise sources
[

i2g1(1 − |c|2) , i2g2(1 − |c|2), i21, and i22

]
are all uncor-

related and handled in the usual way:

i2o =
[

i2g1(1 − |c|2) + i2g2(1 − |c|2) + i21

] |||| io
ii

||||
2

+ i22

= [7.84 × 10−25(1 − 0.3952) + 1.57 × 10−24 (1 − 0.3952) + 1.12 × 10−23] (1.19)2

+ 2.66 × 10−23 = 4.53 × 10−23 A2 (11.46t)

(e)

io
ii

i2g2 |c| j i2d2 i22
Figure 11.21 (e) Combining the correlated noise
sources in M2 between its drain (on top) and its
source (on bottom).
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This result is about 20 percent higher than in (11.46p), where induced gate noise was ignored,
and about 10 percent higher than in (11.46q), where induced gate noise was included but its
correlation with channel thermal noise was ignored.◼

11.5 Equivalent Input Noise Generators26

In the previous section, the equivalent input noise voltage for a particular configuration was
calculated. This gave rise to an expression for an equivalent input noise-voltage generator that
was dependent on the source resistance RS, as well as the transistor parameters. This method is
now extended to a more general and more useful representation in which the noise performance
of any two-port network is represented by two equivalent input noise generators. The situation
is shown in Fig. 11.22, where a two-port network containing noise generators is represented
by the same network with internal noise sources removed (the noiseless network) and with

a noise voltage v2
i and current generator i2i connected at the input. It can be shown that this

representation is valid for any source impedance, provided that correlation between the two
noise generators is considered. That is, the two noise generators are not independent in general
because they are both dependent on the same set of original noise sources.

The inclusion of correlation in the noise representation results in a considerable increase in
the complexity of the calculations, and if correlation is important, it is often easier to return
to the original network with internal noise sources to perform the calculations. However, in a
larger number of practical circuits, the correlation is small and may be neglected. In addition,

if either equivalent input generator v2
i or i2i dominates, the correlation may be neglected in

any case. The use of this method of representation is then extremely useful, as will become
apparent.

The need for both an equivalent input noise-voltage generator and an equivalent input
noise-current generator to represent the noise performance of the circuit for any source resis-
tance can be appreciated as follows. Consider the extreme case of source resistance RS equal

to zero or infinity. If RS = 0, i2i in Fig. 11.22 is shorted out, and since the original circuit will

still show output noise in general, we need an equivalent input noise voltage v2
i to represent

this behavior. Similarly, if RS → ∞, v2
i in Fig. 11.22 cannot produce output noise, and i2i rep-

resents the noise performance of the original noisy network. For finite values of RS, both v2
i

and i2i contribute to the equivalent input noise of the circuit.
The values of the equivalent input generators of Fig. 11.22 are readily determined. This is

done by first short-circuiting the input of both circuits and equating the output noise in each

case to calculate v2
i . The value of i2i is found by open-circuiting the input of each circuit and

equating the output noise in each case. This will now be done for the bipolar transistor and the
MOS transistor.

RSRS

vi
2

ii
2≡Noisy

network
Noiseless
network

Figure 11.22 Representation of noise in a two-port network by equivalent input voltage and current
generators.
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Figure 11.23 (a) Bipolar transistor small-signal equivalent circuit with noise generators. (b) Represen-
tation of the noise performance of (a) by equivalent input generators.

11.5.1 Bipolar Transistor Noise Generators

The equivalent input noise generators for a bipolar transistor can be calculated from the equiv-
alent circuit of Fig. 11.23a. The output noise is calculated with a short-circuited load, and Cμ
is neglected. This will be justified later. The circuit of Fig. 11.23a is to be equivalent to that of
Fig. 11.23b in that each circuit should give the same output noise for any source impedance.

The value of v2
i can be calculated by short-circuiting the input of each circuit and equating

the output noise io. We use rms noise quantities in the calculations but make no attempt to
preserve the signs of the noise quantities as the noise generators are all independent and have
random phase. The polarity of the noise generators does not affect the answer. Short-circuiting
the inputs of both circuits in Fig. 11.23, assuming that rb is small (≪ r𝜋) and equating io, we
obtain

gmvb + ic = gmvi (11.47)

which gives

vi = vb +
ic
gm

(11.48)

Since rb is small, the effect of i2b is neglected in this calculation.
Using the fact that vb and ic are independent, we obtain, from (11.48),

v2
i = v2

b +
i2c
g2

m

(11.49)

Substituting in (11.49) for v2
b and i2c from (11.11) and (11.12) gives

v2
i = 4k TrbΔf +

2qIC Δf

g2
m
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and thus
v2

i

Δf
= 4k T

(
rb +

1
2gm

)
(11.50)

The equivalent input noise-voltage spectral density of a bipolar transistor thus appears to come
from a resistor Req such that

v2
i

Δf
= 4k TReq (11.51)

where
Req = rb +

1
2gm

(11.52)

and this is called the equivalent input-noise resistance. Of this fictitious resistance, portion rb
is, in fact, a physical resistor in series with the input, whereas portion 1∕2gm represents the
effect of collector-current shot noise referred back to the input. Equations 11.50 and 11.52
are extremely useful approximations, although the assumption that rb ≪ r𝜋 may not be valid
at high collector bias currents, and the calculation should be repeated without restrictions in
those circumstances.

Equation 11.50 allows easy comparison of the relative importance of noise from rb and IC

in contributing to v2
i . For example, if IC = 1 μA, then 1∕2gm = 13 kΩ, and this will domi-

nate typical rb values of about 100 Ω. Alternately, if IC = 10 mA, then 1∕2gm = 1.3 Ω, and

noise from rb will totally dominate v2
i . Since v2

i is the important noise generator for low source

impedance (since i2i then tends to be shorted), it is apparent that good noise performance from
a low source impedance requires minimization of Req. This is achieved by designing the tran-
sistor to have a low rb and running the device at a large collector bias current to reduce 1∕2gm.
Finally, it should be noted from (11.50) that the equivalent input noise-voltage spectral density
of a bipolar transistor is independent of frequency.

In order to calculate the equivalent input noise-current generator i2i , the inputs of both cir-
cuits in Fig. 11.23 are open-circuited and output noise currents io are equated. Using rms noise
quantities, we obtain

𝛽( j𝜔)ii = ic + 𝛽( j𝜔)ib (11.53)

which gives

ii = ib +
ic

𝛽( j𝜔)
(11.54)

Since ib and ic are independent generators, we obtain, from (11.54),

i2i = i2b +
i2c|𝛽( j𝜔)|2 (11.55)

where

𝛽( j𝜔) =
𝛽0

1 + j
𝜔

𝜔𝛽

(11.56)

and 𝛽0 is the low-frequency, small-signal current gain. [See (1.122) and (1.126).]
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Substituting in (11.55) for i2b and i2c from (11.13) and (11.12) gives

i2i
Δf

= 2q

[
IB + K′

1

Ia
B

f
+

IC|𝛽( j𝜔)|2
]

(11.57)

where

K′
1 =

K1

2q
(11.57a)

and the burst-noise term has been omitted for simplicity. The last term in parentheses in (11.57)
is due to collector-current noise referred to the input. At low frequencies, this becomes IC∕𝛽2

0

and is negligible compared with IB for typical 𝛽0 values. When this is true, i2i and v2
i do not

contain common noise sources and are totally independent. At high frequencies, however, the

last term in (11.57) increases and can become dominant, and correlation between v2
i and i2i

may then be important since both contain a contribution from i2c .
The equivalent input noise-current spectral density given by (11.57) appears to come from

a current Ieq showing full shot noise, such that

i2i
Δf

= 2qIeq (11.58)

where

Ieq = IB + K′
1

Ia
B

f
+

IC|𝛽( j𝜔)|2 (11.59)

and this is called the equivalent input-shot-noise current. This is a fictitious current composed
of the base current of the device plus a term representing flicker noise and one representing
collector-current noise transformed to the input. It is apparent from (11.59) that Ieq is
minimized by utilizing low bias currents in the transistor and also using high-𝛽 transistors.

Since i2i is the dominant equivalent input noise generator in circuits where the transistor is fed
from a high source impedance, low bias currents and high 𝛽 are obviously required for good
noise performance under these conditions. Note that the requirement for low bias currents to

minimize i2i conflicts with the requirement for high bias current to minimize v2
i .

Spectral density i2i ∕Δf of the equivalent input noise-current generator can be plotted as a
function of frequency using (11.57). This is shown in Fig. 11.24 for typical transistor parame-
ters. In this case, the spectral density is frequency dependent at both low and high frequencies,
the low-frequency rise being due to flicker noise and the high-frequency rise being due to
collector-current noise referred to the input. This input-referred noise rises at high frequen-
cies because the transistor current gain begins to fall, and this is the reason for degradation in
transistor noise performance observed at high frequencies.

Frequency fb in Fig. 11.24 is the point where the high-frequency noise asymptote intersects
the midband asymptote. This can be calculated from (11.57) as follows:

𝛽( jf ) =
𝛽0

1 + j
f

fT
𝛽0

(11.60)
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Figure 11.24 Equivalent input noise-current spectral density of a bipolar transistor with IC =
100 μA, 𝛽0 = 𝛽F = 100, and fT = 500 MHz. Typical flicker noise is included.

where 𝛽0 is the low-frequency, small-signal current gain. Thus the collector-current noise term
in (11.57) is

2q
IC|𝛽( jf )|2 = 2q

IC

𝛽2
0

(
1 +

f 2

f 2
T

𝛽2
0

)
≃ 2qIC

f 2

f 2
T

(11.61)

at high frequencies. Equation 11.61 shows that the equivalent input noise current spectrum rises
as f 2 at high frequencies. Frequency fb can be calculated by equating (11.61) to the midband
noise, which is 2q[IB + (IC∕𝛽2

0 )]. For typical values of 𝛽0, this is approximately 2qIB, and
equating this quantity to (11.61), we obtain

2qIB = 2qIC

f 2
b

f 2
T

and thus

fb = fT

√
IB

IC
(11.62)

The large-signal (or dc) current gain is defined as

𝛽F =
IC

IB
(11.63)

and thus (11.62) becomes

fb =
fT√
𝛽F

(11.64)

Using the data given in Fig. 11.24, we obtain fb = 50 MHz for that example.



11.5 Equivalent Input Noise Generators 817

vs vi viN

ii

RL
RS

RL
RS

(a) (b)

≡

22 2

2

Figure 11.25 Representation of circuit noise by a single equivalent input noise-voltage generator.
(a) Original circuit. (b) Equivalent representation.

Once the above input noise generators have been calculated, the transistor noise perfor-
mance with any source impedance is readily calculated. For example, consider the simple
circuit of Fig. 11.25a with a source resistance RS. The noise performance of this circuit can be

represented by the total equivalent noise voltage v2
iN in series with the input of the circuit, as

shown in Fig. 11.25b. Neglecting noise in RL (this will be discussed later), and equating the
total noise voltage at the base of the transistor in Figs. 11.25a and 11.25b, we obtain

viN = vs + vi + iiRS

If correlation between vi and ii is neglected, this equation gives

v2
iN = v2

s + v2
i + i2i R2

S (11.65)

Using (11.50) and (11.57) in (11.65) and neglecting flicker noise, we find

v2
iN

Δf
= 4k TRS + 4k T

(
rb +

1
2gm

)
+ R2

S2q

[
IB +

IC|𝛽( jf )|2
]

(11.66)

Equation 11.66 is similar to (11.45b) if rb is small, as has been assumed.

◼ EXAMPLE
Using data from the example in Section 11.4.1, calculate the total input noise voltage for the
circuit of Fig. 11.25a in a bandwidth 0 to 1 MHz, neglecting flicker noise and using (11.66).
At low frequencies, (11.66) becomes

v2
iN

Δf
= 4k T

(
RS + rb +

1
2gm

)
+ R2

S2qIB

= [1.66 × 10−20(500 + 200 + 130) + 5002 × 3.2 × 10−19 × 10−6] V2/Hz

= (13.8 + 0.08) × 10−18 V2/Hz

= 13.9 × 10−18 V2/Hz

The total input noise in a 1 MHz bandwidth is

v2
iNT = 13.9 × 10−18 × 106 V2

= 13.9 × 10−12 V2
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and thus
viNT = 3.73 μV rms

This is almost identical to the answer obtained in Section 11.4.2. However, the method
described above has the advantage that once the equivalent input generators are known for
any particular device, the answer can be written down almost by inspection and requires much
less labor. Also, the relative contributions of the various noise generators are more easily seen.
In this case, for example, the equivalent input noise current is obviously a negligible factor.◼

11.5.2 MOS Transistor Noise Generators

Ignoring the induced gate noise, the equivalent input noise generators for a MOS field-effect
transistor (MOSFET) can be calculated from the equivalent circuit of Fig. 11.26a. This circuit
is to be made equivalent to that of Fig. 11.26b. The output noise in each case is calculated with
a short-circuit load, and Cgd is neglected.

If the input of each circuit in Fig. 11.26 is short-circuited and resulting output noise currents
io are equated, we obtain

id = gmvi

and thus

v2
i =

i2d
g2

m

(11.67)

Substituting i2d from (11.14j) with 𝛾 = 2∕3 and gd0 = gm in (11.67) gives

v2
i

Δf
= 4k T

2
3

1
gm

+ K
Ia
D

g2
mf

(11.68a)

ig id

ioD
G

rdgmvgvgCgs

Cgs
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–
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ii
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rdgmvgvg

+

–
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(b)

2 2

2

2

Figure 11.26 (a) MOSFET small-signal equivalent circuit with noise generators. (b) Representation of
(a) by two input noise generators.
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Figure 11.27 Typical equivalent input noise-voltage spectral density for a MOSFET.

The equivalent input noise resistance Req of the MOS transistor is defined as

v2
i

Δf
= 4k TReq

where

Req = 2
3

1
gm

+ K′ Ia
D

g2
m f

(11.68b)

and
K′ = K

4k T

At frequencies above the flicker-noise region, Req = (2∕3)(1∕gm). For gm = 1 mA/V, this gives
Req = 667 Ω, which is significantly higher than for a bipolar transistor at a comparable bias
current (about 1 mA). The equivalent input noise-voltage spectral density for a typical MOS
transistor is plotted versus frequency in Fig. 11.27. Unlike the bipolar transistor, the equiv-
alent input noise-voltage generator for a MOS transistor contains flicker noise, and it is not
uncommon for the flicker noise to extend well into the megahertz region.

In MOS field-effect transistors, the presence of electron energy states at the Si–SiO2 inter-
face tends to result in an input-referred flicker noise component that is larger than the thermal
noise component for frequencies below 1 to 10 kHz for most bias conditions and device geome-
tries. Thus, an accurate representation of the input-referred flicker-noise component in MOS
transistors is important for the optimization of the noise performance of MOS analog circuits.

The physical mechanisms giving rise to 1∕f noise in MOS transistors have received exten-
sive study.27 The exact dependence of the magnitude of the input-referred flicker noise on
transistor bias conditions and device geometry is dependent on the details of the process that
is used to fabricate the device. In most cases, the magnitude of the input-referred flicker-noise
component is approximately independent of bias current and voltage and is inversely pro-
portional to the active gate area of the transistor. The latter occurs because as the transistor is
made larger, a larger number of surface states are present under the gate, so an averaging effect
occurs that reduces the overall noise. It is also observed that the input-referred flicker noise
is an inverse function of the gate-oxide capacitance per unit area. This is physically reason-
able since the surface states can be thought of as a time-varying component of the surface-state
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charge Qss. From (1.139), this produces a time-varying component in the threshold voltage that

is inversely proportional to Cox. These considerations are taken into account by substituting i2d
from (11.14k) with 𝛾 = 2∕3 and gd0 = gm in (11.67), which gives

v2
i

Δf
= 4k T

2
3

1
gm

+
Kf

WLCoxf
(11.69)

A typical value for Kf is 3 × 10−24 V2-F, or 3 × 10−12 V2-pF.

The equivalent input noise-current generator i2i for the MOSFET can be calculated by
open-circuiting the input of each circuit in Fig. 11.26 and equating the output noise. This
gives

ii
gm

j𝜔Cgs
= ig

gm

j𝜔Cgs
+ id

and thus

ii = ig +
j𝜔Cgs

gm
id (11.70)

Since ig and id represent independent generators, (11.70) can be written as

i2i = i2g +
𝜔2C2

gs

g2
m

i2d (11.71)

Ignoring induced gate noise and substituting (11.14j) and (11.14l) in (11.71) with 𝛾 = 2∕3 and
gd0 = gm gives

i2i
Δf

= 2qIG +
𝜔2C2

gs

g2
m

(
4k T

2
3

gm + K
Ia
D

f

)
(11.72)

In (11.72), the ac current gain of the MOS transistor can be identified as

AI =
gm

𝜔Cgs
(11.73)

and thus the noise generators at the output are divided by A2
I when referred back to the input.

At low frequencies, the input noise-current generator is determined by the gate-leakage current
IG, which is very small (10−15 A or less) except in technologies with gate oxides thin enough
to make tunneling a significant problem. For this reason, MOS transistors often have noise
performance that is much superior to bipolar transistors when the driving source impedance is
large. Under these circumstances, the input noise-current generator is dominant and is much
smaller for a MOS transistor than for a bipolar transistor. It should be emphasized, however,
that the input noise-voltage generator of a bipolar transistor in (11.50) is typically smaller than
that of a MOS transistor in (11.68a) because the bipolar transistor has a larger gm for a given
bias current. Thus for low source impedances, a bipolar transistor often has noise performance
superior to that of a MOS transistor.

11.6 Effect of Feedback on Noise Performance
The representation of circuit noise performance with two equivalent input noise generators is
extremely useful in the consideration of the effect of feedback on noise performance. This will
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Figure 11.28 (a) Series-shunt feedback amplifier with noise generators. (b) Equivalent representation
of (a) with two input noise generators.

be illustrated by considering first the effect of ideal feedback on the noise performance of an
amplifier. Practical aspects of feedback and noise performance will then be considered.

11.6.1 Effect of Ideal Feedback on Noise Performance

In Fig. 11.28a, a series-shunt feedback amplifier is shown, where the feedback network is ideal
in that the signal feedback to the input is a pure voltage source and the feedback network is

unilateral. Noise in the basic amplifier is represented by equivalent input generators v2
ia and i2ia.

The noise performance of the overall circuit is represented by equivalent input generators v2
i

and i2i as shown in Fig. 11.28b. The value of v2
i can be found by short-circuiting the input of

each circuit and equating the output signal. However, since the output of the feedback network
has a zero impedance, the current generators in each circuit are then short-circuited, and the
two circuits are identical only if

v2
i = v2

ia (11.74)

If the input terminals of each circuit are open-circuited, both voltage generators have a
floating terminal and thus no effect on the circuit, and for equal output it is necessary that

i2i = i2ia (11.75)

Thus, for the case of ideal feedback, the equivalent input noise generators can be moved
unchanged outside the feedback loop, and the feedback has no effect on the circuit noise
performance. Since the feedback reduces the circuit gain, the output noise is reduced by the
feedback, but desired signals are reduced by the same amount and the signal-to-noise ratio will
be unchanged. The above result is easily shown for all four possible feedback configurations
described in Chapter 8.

11.6.2 Effect of Practical Feedback on Noise Performance

The idealized series-shunt feedback circuit considered in the previous section is usually real-
ized in practice as shown in Fig. 11.29a. The feedback circuit is a resistive divider consisting
of RE and RF. If the noise of the basic amplifier is represented by equivalent input noise gen-

erators i2ia and v2
ia and the thermal-noise generators in RF and RE are included, the circuit is

as shown in Fig. 11.29b. The noise performance of the circuit is to be represented by two

equivalent input generators v2
i and i2i , as shown in Fig. 11.29c.
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Figure 11.29 (a) Series-shunt feedback circuit. (b) Series-shunt feedback circuit including noise gener-
ators. (c) Equivalent representation of (b) with two input noise generators.

In order to calculate v2
i , consider the inputs of the circuits of Fig. 11.29b,c short-circuited,

and equate the output noise. It is readily shown that

vi = via + iiaR +
RF

RF + RE
ve +

RE

RF + RE
vf (11.76)

where
R = RF||RE (11.77)

Assuming that all noise sources in (11.76) are independent, we have

v2
i = v2

ia + i2iaR2 + 4k TRΔf (11.78)

where the following substitutions have been made:

v2
e = 4k TRE Δf (11.79)

v2
f = 4k TRF Δf (11.80)

Equation 11.78 shows that in this practical case, the equivalent input noise voltage of the
overall amplifier contains the input noise voltage of the basic amplifier plus two other terms.
The second term in (11.78) is usually negligible, but the third term represents thermal noise in
R = RE||RF and is often significant.
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The equivalent input noise current i2i is calculated by open-circuiting both inputs and equat-
ing output noise. It is apparent that

i2i ≃ i2ia (11.81)

since noise in the feedback resistors is no longer amplified but appears only in shunt with the
output. Thus the equivalent input noise current is unaffected by the application of feedback.
The above results are true in general for series feedback at the input. For single-stage series
feedback, the above equations are valid with RF → ∞ and R = RE.

If the basic amplifier in Fig. 8.29 is an op amp, the calculation is slightly modified. This is
due to the fact (shown in Section 11.8 and Fig. 11.39) that an op amp must be considered a
three-port device for noise representation. However, if the circuit of Fig. 11.39 is used as the
basic amplifier in the above calculation, expressions very similar to (11.78) and (11.81) are
obtained.

Consider now the case of shunt feedback at the input, and as an example consider the
shunt-shunt feedback circuit of Fig. 11.30a. This is shown in Fig. 11.30b with noise sources
v2

ia and i2ia of the basic amplifier, and noise source i2f due to RF. These noise sources are referred

back to the input to give v2
i and i2i as shown in Fig. 11.30c.

Open-circuiting the inputs of Fig. 11.30b,c, and equating output noise, we calculate

ii = iia +
via

RF
+ if (11.82)

Assuming that all noise sources in (11.82) are independent, we find

i2i = i2ia +
v2

ia

R2
F

+ 4k T
1

RF
Δf (11.83)

+

–

v1

vo = av1

a a
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RFRF
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(a) (b)

(c)

vi
2
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2

iia
2

if
2

via
2

Figure 11.30 (a) Shunt-shunt feedback circuit. (b) Shunt-shunt feedback circuit including noise gener-
ators. (c) Equivalent representation of (b) with two input noise generators.
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Thus the equivalent input noise current with shunt feedback applied consists of the input noise
current of the basic amplifier together with a term representing thermal noise in the feedback
resistor. The second term in (11.83) is usually negligible. These results are true in general for
shunt feedback at the input. A general rule for calculating the equivalent input noise contribu-
tion due to thermal noise in the feedback resistors is to follow the two-port methods described
in Chapter 8 for calculating feedback-circuit loading on the basic amplifier. Once the shunt or
series resistors representing feedback loading at the input have been determined, these same
resistors may be used to calculate the thermal-noise contribution at the input due to the feed-
back resistors.

If the inputs of the circuits of Fig. 11.30b,c are short-circuited and the output noise is
equated, it follows that

v2
i ≃ v2

ia (11.84)

Equations 11.83 and 11.84 are true in general for shunt feedback at the input. They apply
directly when the basic amplifier of Fig. 11.30 is an op amp, since one input terminal of the
basic amplifier is grounded and the op amp becomes a two-port device.

The above results allow justification of some assumptions made earlier. For example, in
the calculation of the equivalent input noise generators for a bipolar transistor in Section
11.5.1, collector-base capacitance Cμ was ignored. This capacitance represents single-stage
shunt feedback and thus does not significantly affect the equivalent input noise generators of
a transistor, even if the Miller effect is dominant. Note that there is no thermal-noise contribu-
tion from the capacitor as there was from RF in Fig. 11.30. Also, the second term in (11.83)

becomes v2
ia∕|ZF|2, where ZF is the impedance of Cμ. Since |ZF| is quite large at all frequencies

of interest, this term is negligible.

◼ EXAMPLE
As an example of calculations involving noise in feedback amplifiers, consider the wideband
current-feedback pair whose ac schematic is shown in Fig. 11.31. The circuit is fed from a cur-
rent source, and the frequency response |(io∕ii)( j𝜔)| is flat with frequency to 100 MHz, where
it falls rapidly. We calculate the minimum input signal is required for an output signal-to-noise
ratio greater than 20 dB. Data are as follows: 𝛽1 = 𝛽2 = 100, fT1 = 300 MHz, IC1 = 0.5 mA,
IC2 = 1 mA, fT2 = 500 MHz, rb1 = rb2 = 100 Ω. Flicker noise is neglected.

The methods developed above allow the equivalent input noise generators for this circuit to
be written down by inspection. A preliminary check shows that the noise due to the 20-kΩ inter-
stage resistor and the base current noise of Q2 are negligible. Using the rule stated in Section
11.2.2, we find that the 20-kΩ resistor contributes an equivalent noise current of 2.5 μA. The
base current of Q2 is 10 μA. Both of these can be neglected when compared to the 500 μA
collector current of Q1. Thus the input noise generators of the whole circuit are those of Q1
moved outside the feedback loop, together with the noise contributed by the feedback resistors.

5 kΩ
500 Ω

20 kΩ
Q1

is

io
Q2

Figure 11.31 An ac schematic of a
current-feedback pair.
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 5 kΩ || 500 Ω20 kΩ
5.5 kΩ

Q1

if iia

io
Q2

2

via
2

2

Figure 11.32 Basic
amplifier for the circuit of
Fig. 11.31 including
feedback loading and noise
sources.

Using the methods of Chapter 8, we can derive the basic amplifier including feedback load-
ing and noise sources for the circuit of Fig. 11.31, as shown in Fig. 11.32. The equivalent input
noise-current generator for the overall circuit can be calculated from Fig. 11.32 or by using
(11.83) with RF = 5.5 kΩ. Since the circuit is assumed to be driven from a current source, the
equivalent input noise voltage is not important. From (11.83),

i2i = i2ia +
v2

ia

(5500)2
+ 4k T

1
5500

Δf (11.85)

Using (11.57) and neglecting flicker noise, we have for i2ia

i2ia = 2q

(
IB +

IC|𝛽( jf )|2
)

Δf

and thus
i2ia
Δf

= 2q

(
5 + 500|𝛽|2

)
× 10−6 A2/Hz (11.86)

Substitution of (11.86) in (11.85) gives

i2i
Δf

= 2q

(
5 + 500|𝛽|2

)
× 10−6 +

v2
ia

(5500)2Δf
+ 2q(9.1) × 10−6 (11.87)

where the noise in the 5.5-kΩ resistor has been expressed in terms of the equivalent noise
current of 9.1 μA.

Use of (11.50) gives

v2
ia

Δf
= 4k T

(
rb1 +

1
2gm

)
= 4k T(126)

Division of this equation by (5500)2 gives

v2
ia

(5500)2 Δf
= 4k T

1
240,000

(11.88)

= 2q(0.2) × 10−6 (11.89)

Thus the term involving v2
ia in (11.87) is seen to be equivalent to thermal noise in a 240-kΩ

resistor using (11.88), and this can be expressed as noise in 0.2 μA of equivalent noise current,
as shown in (11.89). This term is negligible in this example, as is usually the case.
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Combining all these terms we can express (11.87) as

i2i
Δf

= 2q

(
5 + 500|𝛽|2 + 0.2 + 9.1

)
× 10−6 A2/Hz

= 2q

(
14.3 + 500|𝛽|2

)
× 10−6 A2/Hz (11.90)

Equation 11.90 shows that the equivalent input noise-current spectral density rises at high
frequencies (as |𝛽| falls), as expected for a transistor. In a single transistor without feedback,
the equivalent input noise current also rises with frequency, but because the transistor gain
falls with frequency, the output noise spectrum of a transistor without feedback always falls
as frequency rises (see Section 11.4.1). However, in this case, the negative feedback holds the
gain constant with frequency, and thus the output noise spectrum of this circuit will rise as
frequency increases, until the amplifier band edge is reached. This is illustrated in Fig. 11.33,
where the input noise-current spectrum, the amplifier frequency response squared, and the
output noise-current spectrum (product of the first two) are shown. The current gain of the
circuit is AI ≃ 11.

103 105 106 107 108 109104

103 105 106 107 108 109104

103 105

10–20

10–22

10–21

10–22

10–24

10–23

1000
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100

106 107 108 109104
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f
(Hz)

f
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f
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121

(a)

(b)

(c)

ii
Δf

2
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|AI|
2

io
Δf

2

(A2/Hz)

Figure 11.33 Noise
performance of the circuit
of Fig. 11.32.
(a) Equivalent input-noise
spectrum. (b) Frequency
response squared.
(c) Output-noise spectrum.
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The total output noise from the circuit i2oT is obtained by integrating the output-noise spectral
density, which is

i2o
Δf

= A2
I

i2i
Δf

(11.91)

Thus

i2oT = ∫
B

0
A2

I

i2i
Δf

df

= A2
I ∫

B

0
2q

(
14.3 + 500|𝛽( jf )|2

)
× 10−6df (11.92)

where (11.90) has been used and A2
I is assumed constant up to B = 108 Hz as specified earlier.

The current gain is

𝛽( jf ) =
𝛽0

1 + j
𝛽0 f

fT1

(11.93)

and
1|𝛽( jf )|2 = 1

𝛽2
0

(
1 +

𝛽2
0 f 2

f 2
T1

)
(11.94)

Substitution of (11.94) in (11.92) gives

i2oT = A2
I 2q × 10−6 ∫

B

0

[
14.3 + 500

𝛽2
0

(
1 +

𝛽2
0 f 2

f 2
T1

)]
df (11.95)

= A2
I 2q × 10−6

[
14.3f + 500

𝛽2
0

f + 500

f 2
T1

f 3

3

]B

0

(11.96)

Using 𝛽0 = 100 and B = 100 MHz = fT1∕3 gives

i2oT = A2
I × 2q × 10−6(14.3B + 18.6B) (11.97)

i2oT = A2
I × 1.05 × 10−15 A2 (11.98)

The equivalent input noise current is

i2iT =
i2oT

A2
I

= 1.05 × 10−15 A2

and from this
iiT = 32.4 nA rms (11.99)

Thus the equivalent input noise current is 32.4 nA rms, and (11.97) shows that the frequency-
dependent part of the equivalent input noise is dominant. For a 20-dB signal-to-noise ratio,
input signal current is must be greater than 0.32 μA rms.◼
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11.7 Noise Performance of Other Transistor Configurations
Transistor configurations other than the common-emitter and common-source stages consid-
ered so far are often used in integrated-circuit design. The noise performance of other important
configurations will now be considered. To avoid repetition, the discussion will be directed
mainly toward bipolar devices. However, all the results carry over directly to FET circuits.
Also, Section 11.7.4 considers the noise performance of a super source follower.

11.7.1 Common-Base-Stage Noise Performance

The common-base stage is sometimes used as a low-input-impedance current amplifier.
A common-base stage is shown in Fig. 11.34a, and the small-signal equivalent circuit is

E C

B

(a)

E C

B

rb

gmv1

v1r

+

–

vi
2

ii
2

(b)

π Cπ Cμ

E C

B

rb

gmv1

v1r
+

–

viB
2

iiB
2

(c)

π Cπ Cμ

Figure 11.34 (a) Common-base transistor configuration. (b) Common-base equivalent circuit with noise
generators. (c) Common-base equivalent circuit with input noise generators.
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shown in Fig. 11.34b together with the equivalent input noise generators derived for a
common-emitter stage. Since these noise generators represent the noise performance of the
transistor in any connection, Fig. 11.34b is a valid representation of common-base noise
performance. In Fig. 11.34c, the noise performance of the common-base stage is represented

in the standard fashion with equivalent input noise generators v2
iB and i2iB. These can be related

to the common-emitter input generators by alternately short circuiting and open circuiting the
circuits of Fig. 11.34b,c and equating output noise. It then follows that

i2iB = i2i (11.100)

v2
iB = v2

i (11.101)

Thus the equivalent input noise generators of common-emitter and common-base connections
are the same, and the noise performance of the two configurations is identical, even though
their input impedances differ greatly.

Although the noise performances of common-emitter and common-base stages are nomi-
nally identical (for the same device parameters), there is one characteristic of the common-base
stage that makes it generally unsuitable for use as a low-noise input stage. This is due to the
fact that its current gain 𝛼 ≃ 1, and thus any noise current at the output of the common-base
stage is referred directly back to the input without reduction. Thus a 10-kΩ load resistor that
has an equivalent noise current of 5 μA produces this amount of equivalent noise current at the
input. In many circuits, this would be the dominant source of input current noise. The equiva-
lent input noise currents of following stages are also referred back unchanged to the input of
the common-base stage. This problem can be overcome in discrete common-base circuits by
use of a transformer that gives current gain at the output of the common-base stage. This option
is not available in integrated-circuit design unless resort is made to external components.

11.7.2 Emitter-Follower Noise Performance

Consider the emitter follower shown in Fig. 11.35. The noise performance of this circuit can be
calculated using the results of previous sections. The circuit can be viewed as a series-feedback
stage, and the equivalent input noise generators of the transistor can be moved unchanged back
to the input of the complete circuit. Thus, if noise in zL is neglected, the emitter follower has
the same equivalent input noise generators as the common-emitter and common-base stages.
However, since the emitter follower has unity voltage gain, the equivalent input noise voltage
of the following stage is transformed unchanged to the input, thus degrading the noise perfor-
mance of the circuit. Noise due to zL must also be included, but since the follower output is

+

+

––

zL vo

vi

Figure 11.35 Emitter-follower circuit.
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taken at the emitter, which is a low impedance point, the noise due to zL is greatly attenuated
compared with its effect on a series-feedback stage.

11.7.3 Differential-Pair Noise Performance

The differential pair is the basic building block of linear integrated circuits, and as such,
its noise performance is of considerable importance. A bipolar differential pair is shown in
Fig. 11.36a, and the base of each device is generally independently accessible, as shown. Thus
this circuit cannot in general be represented as a two-port, and its noise performance cannot
be represented in the usual fashion by two input noise generators. However, the techniques

Q1

RL RL

IEE

–VEE

(a)

+VCC

Q2

Q1

RL RL

IEE

–VEE

(b)

+VCC

Q2

vi
2 vi

2

ii
2 ii

2

Figure 11.36 (a)
Differential-pair circuit.
(b) Complete differential pair
noise representation.
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IEE

–VEE
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+VCC
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vdp
2 vi

2= 2

idp
2 ii

2= idp
2 ii

2= 

Figure 11.36 (c) Simplified
noise representation.

developed previously can be used to derive an equivalent noise representation of the circuit that
employs two noise generators at each input. This is illustrated in Fig. 11.36b, and a simpler
version of this circuit, which employs only three noise generators, is shown in Fig. 11.36c.

The noise representation of Fig. 11.36b can be derived by considering noise due to each
device separately. Consider first noise in Q1, which can be represented by input noise genera-

tors v2
i and i2i as shown in Fig. 11.37a. These noise generators are those for a single transistor, as

given by (11.50) and (11.57). Transistor Q2 is initially assumed noiseless, and the impedance
seen looking in its emitter is zE2. Note that zE2 will be a function of the impedance connected
from the base of Q2 to ground. As described in previous sections, the noise generators of
Fig. 11.37a can be moved unchanged to the input of the circuit (independent of zE2) as shown
in Fig. 11.37b. This representation can then be used to calculate the output noise produced
by Q1 in the differential pair for any impedances connected from the base of Q1 and Q2
to ground.

Now consider noise due to Q2. In a similar fashion, this can be represented by noise gen-

erators v2
i and i2i , as shown in Fig. 11.37c. In this case Q1 is assumed noiseless and zE1 is the

impedance seen looking in at the emitter of Q1. If Q1 and Q2 are identical, the equivalent input
noise generators of Fig. 11.37b,c are identical. However, since they are produced by different
transistors, the noise generators of Fig. 11.37b,c are independent. The total noise performance
of the differential pair including noise due to both Q1 and Q2 can thus be represented as shown
in Fig. 11.36b, and this representation is valid for any source resistance connected to either

input terminal. Noise generators v2
i and i2i are basically those due to each transistor alone. If

noise due to RL or following stages is significant, it should be referred back symmetrically to
the appropriate input. In practice, current source IEE will also contain noise, and this can be
included in the representation. However, if the circuit is perfectly balanced, the current-source
noise represents a common-mode signal and will produce no differential output.

The noise representation of Fig. 11.36b can be simplified somewhat if the common-mode
rejection of the circuit is high. In this case, one of the noise-voltage generators can be moved to
the other side of the circuit, as shown in Fig. 11.36c. This can be justified if equal noise-voltage
generators are added in series with each input and these generators are chosen such that the



832 Chapter 11 ▪ Noise in Integrated Circuits

RL

Q1

zE2

ii
2

vi
2

(a)

RL

Q1

zE2

ii
2

vi
2

(b)

RL

Q2

zE1

ii
2

vi
2

(c)

Figure 11.37 (a) ac
schematic of a differential
pair including noise due to
Q1 only. (b) ac schematic
of a differential pair with
noise due to Q1 referred to
the input. (c) ac schematic
of a differential pair
including noise due to Q2

only.

noise voltage at the base of Q2 is canceled. This leaves two independent noise-voltage gen-
erators in series with the base of Q1, and these can be represented as a single noise-voltage

generator of value 2v2
i . Thus for the circuit of Fig. 11.36c, we can write

v2
dp = 2v2

i (11.102)

i2dp = i2i (11.103)

where v2
dp and i2dp are the equivalent input noise generators of the differential pair.

The differential pair is often operated with the base of Q2 grounded, and in this case the
noise-current generator at the base of Q2 is short circuited. The noise performance of the circuit
is then represented by the two noise generators connected to the base of Q1 in Fig. 11.36c. In
this case, the equivalent input noise-current generator of the differential pair is simply that due
to one transistor alone, whereas the equivalent input noise-voltage generator has a mean-square
value twice that of either transistor. Thus from a low source impedance, a differential pair has
an equivalent input noise voltage 3 dB higher than a common-emitter stage with the same
collector current as the devices in the pair.
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11.7.4 Super-Source-Follower Noise Performance

Figure 11.38a,b redraws the super-source-follower circuits introduced in Chapter 3. For noise
analysis of either circuit, the equations giving the small-signal voltage gain and the output
resistance derived in Section 3.4.4 are useful. In addition, to include the effect of noise in I2,
the transfer function from changes in I2 to changes in Vo is now derived (ignoring capacitors
for simplicity).

Figure 11.38c shows a small-signal model of either circuit with vi = 0, where i2 repre-
sents changes in I2. Also, r1 and r2 represent the small-signal output resistances of current
sources I1 and I2, respectively. To apply Fig. 11.38c to a super source follower without I1, as
in Fig. 11.38b, r1 → ∞. From KCL at the output,

vo

r1
+

vo

ro2
+ gm2v2 + i2 +

v2

r2
= 0 (11.104a)

From KCL at the drain of M1 with vi = 0,

i2 +
v2

r2
− gm1vo − gmb1vo +

v2 − vo

ro1
= 0 (11.104b)

Solving (11.104b) for v2, substituting into (11.104a), and rearranging gives

vo

i2
=

r1(ro2)r2(gm2ro1 − 1)
(ro1 + r2)(r1 + ro2) + r1(ro2)(1 + gm2r2)[1 + (gm1 + gmb1)ro1]

(11.105a)
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+

Vi

−
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+
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i2

−gmb1vo ro1

r2

−
v2
+
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v2

r2
r1

gm2v2 ro2

+

−
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Figure 11.38 (a) Super source follower with n-channel M1 and p-channel M2. (b) Super source follower
with both M1 and M2 as n-channel transistors. (c) Small-signal model with vi = 0, where i2 represents
changes in I2.
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Assuming gm2ro1 ≫ 1, gm2r2 ≫ 1, and (gm1 + gmb1)ro1 ≫ 1,

vo

i2
≃

r2

1 + gm2r2

[
gm2ro1 − 1

1 + (gm1 + gmb1)ro1

]
≃ 1

gm1 + gmb1
(11.105b)

A simple way to see this result is to solve for vo∕i2 in (11.104b) with ro1 → ∞ and
r2 → ∞.

◼ EXAMPLE
Figure 11.38d shows a current mirror that provides I2 in the super source follower in
Fig. 11.38b. Assume all the transistors operate in saturation, and ignore channel-length
modulation for the dc bias calculation. Also ignore the body effect, and use the transistor

data in Fig. 11.38e. Find the mean-square input and output noise voltages (v2
i and v2

o) at room
temperature in a 1-Hz bandwidth at 1 MHz. Assume that this frequency is well below the
bandwidth limitation of the circuit.

The dc current in each transistor is I = 10 μA because all the transistors are biased in sat-
uration and have identical channel widths and identical channel lengths. Since 𝛼 = 1,

gd0n = gmn =
√

2k′n(W∕L)I =
√

2(100)(5)(10) = 100 μA∕V (11.106a)

gd0p = gmp =
√

2k′p(W∕L)I =
√

2(50)(5)(10) = 71 μA∕V (11.106b)

From (11.14k), the mean-square drain-noise currents are

i2d1 = i2d2 = 4kT𝛾gd0nΔf +
Kf g

2
mn

CoxWLf
Δf

= 1.66 × 10−20
(2

3

)
(100 × 10−6)(1) + (3 × 10−24)(100 × 10−6)2

(2.01 × 10−15)(5)(1)(1 × 106)
(1)

= 1.1 × 10−24 + 3.0 × 10−24 = 4.1 × 10−24 A2 (11.107a)
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VDD
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10 μA

(d) (e)

Parameter Value Parameter Value

Vtn 0.7 V ro 1 MΩ
Vtp −0.7 V Cox 2.01 fF∕μm2

n 100 μA∕V2 Kf 3 × 10−24 V2F

p 50 μA∕V2 1

W 5 μm 2∕3

L 1 μm Rg 0

Ld = Xd 0 IG 0

γ

α

kʹ
kʹ

Figure 11.38 (d) Current mirror that produces I2 in Fig. 11.38b. (e) Transistor data.
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i2d3 = i2d5 = 4kT𝛾gd0pΔf +
Kf g

2
mp

CoxWLf
Δf

= 1.66 × 10−20
(2

3

)
(71 × 10−6)(1) + (3 × 10−24)(71 × 10−6)2

(2.01 × 10−15)(5)(1)(1 × 106)
(1)

= 7.8 × 10−25 + 1.5 × 10−24 = 2.3 × 10−24 A2 (11.107b)

In this example, current source I2 is implemented by transistor M3. Let id3 represent a
small-signal current source pointed from the drain to the source of M3. Since gm2ro1 = gm2r2 =
gm1ro1 = 100 ≫ 1, (11.105b) gives the transfer function for the noise from M3 to the output.
Because the body effect is ignored,

vo

id3
≃ 1

gm1
= 10 kΩ (11.108)

Using (11.107b) and (11.108) gives

v2
o (from M3) = i2d3

(
vo

id3

)2

= 2.3 × 10−24(10000)2 = 2.3 × 10−16 V2 (11.109)

Let id5 represent a small-signal current source pointed from the drain to the source of M5.
The transfer function from id5 to the output involves current mirror M5–M3 and (11.108) as
follows

vo

id5
≃
(

1
gm5

|||||||| ro5

)
(gm3)

1
gm1

≃ 1
gm5

(gm3)
1

gm1
≃ 1

gm1
= 10 kΩ (11.110)

because gm5ro5 = 100 ≫ 1 and gm5 = gm3 = gmp. Using (11.107b) and (11.110) gives

v2
o (from M5) = i2d5

(
vo

id5

)2

= 2.3 × 10−24(10000)2 = 2.3 × 10−16 V2 (11.111)

In this example, M5 and M3 contribute almost equally to the output noise voltage because these
transistors are identical, causing the current mirror gain to be about equal to unity.

Let id2 represent a small-signal current pointed from the drain to the source of M2. The
transfer function from id2 to the output is (−1) times the output resistance of the super source
follower derived in Section 3.4.4. The polarity is negative because id2 flows away from the out-
put node. From (3.136), with r1 → ∞, ro1 = ro2 = r2 = 1 MΩ, and gm1 = gm2 = 100 μA∕V,

Ro ≃
ro1 + r2

[(gm1 + gmb1) ro1](gm2r2)
= 2 × 106

100(100)
= 200 Ω (11.112)

Using (11.107a) and (11.112) gives

v2
o (from M2) = i2d2

(
vo

id2

)2

= i2d2(−Ro)2 = 4.1 × 10−24(−200)2 = 1.6 × 10−19 V2 (11.113)

The negative sign makes no difference here because the transfer function is squared when the
contribution of noise in M2 to the output is calculated.

Let id1 represent a small-signal current source pointed from the drain to the source of M1. To
simplify the calculation of the transfer function from id1 to the output, this current source can



836 Chapter 11 ▪ Noise in Integrated Circuits

be viewed as the superposition of two equal-value current sources. One flows from the drain
of M1 to ground, and the other flows from ground to the source of M1. The transfer functions
from these current sources to the output are given by (11.108) and (11.112), respectively, and
their sum gives

vo

id1
≃ 1

gm1
+ Ro = 1

gm1
= 10 + 0.2 ≃ 10 kΩ (11.114)

Using (11.107a) and (11.114) gives

v2
o (from M1) = i2d1

(
vo

id1

)2

= 4.1 × 10−24(10000)2 = 4.1 × 10−16 V2 (11.115)

Since all the noise sources are uncorrelated, the mean-square output voltage noise is just
the sum of the contributions from each transistor:

v2
o = (2.3 + 2.3 + 0.0016 + 4.1) × 10−16 ≃ 8.7 × 10−16 V2 (11.116)

In this example, the noise from M2 is negligible because Ro ≪ 1∕gm1.
To find the input equivalent noise voltage, the small-signal gain is calculated. From (3.140)

with r1 → ∞,
vo

vi
≃

gm1ro1

1 + (gm1 + gmb1) ro1
= 100

101
≃ 1 (11.117)

Then

v2
i =

v2
o(

vo

vi

)2
= 8.7 × 10−16

(1)2
= 8.7 × 10−16 V2 (11.118)

Therefore, the rms input equivalent noise voltage in a 1-Hz bandwidth at 1-MHz is√
v2

i = 29 nV.◼

11.8 Noise in Operational Amplifiers
Since op amps usually use differential pairs at their inputs and provide a high common-mode
rejection ratio, the complete op-amp noise representation usually consists of an equivalent
input noise voltage plus two equivalent input noise-current generators, as described at the end
of Section 11.7.3 for differential pairs. Figure 11.39 shows this arrangement. In MOS tech-

vi
2

ii
2

ii
2

Figure 11.39 Complete op amp noise
representation.
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nologies with thick gate oxides, these noise-current generators are often negligible because the
dc gate currents in the input transistors are typically very small. Therefore, the calculation of
equivalent input noise usually concentrates on the noise-voltage generator for MOS op amps.

Consider the case of the CMOS input stage shown in Fig. 11.40. If the noise in each MOS
transistor is represented as shown by its equivalent input noise-voltage generator, the equiv-

alent input noise voltage of the circuit v2
eqT can be calculated by equating the output current

noise i2o for the circuits in Figs. 11.40a,b giving

v2
eqT = v2

eq1 + v2
eq2 +

(
gm3

gm1

)2

(v2
eq3 + v2

eq4) (11.119)

where it has been assumed that gm1 = gm2 and that gm3 = gm4. Thus, the input transistors con-
tribute to the input noise directly while the contribution of the loads is reduced by the square
of the ratio of their transconductance to that of the input transistors. The significance of this
in the design can be further appreciated by considering the input-referred 1∕f noise and the
input-referred thermal noise separately.

The dependence of the 1∕f portion of the device equivalent input noise-voltage spectrum on
device geometry and bias conditions was considered earlier. Considerable discrepancy exists
in the published data on 1∕f noise, indicating that it arises from a mechanism that is strongly
affected by details of device fabrication. The most widely accepted model for 1∕f noise is that
for a given device, the gate-referred equivalent mean-square voltage noise is approximately
independent of bias conditions in saturation and is inversely proportional to the gate capac-
itance of the device. The following analytical results are based on this model, but it should
be emphasized that the actual dependence must be verified for each process technology and
device type. Thus we let

v2
eq =

Kf Δf

CoxWLf
(11.120)

where the parameter Kf is the flicker-noise coefficient. Utilizing this assumption, and using
(11.119), we obtain for the equivalent input 1∕f noise generator for the circuit of Fig. 11.40a

v2
1∕f

=
2Kp

f W1L1Cox

(
1 +

KnμnL2
1

KpμpL2
3

)
Δf (11.121)

where Kn and Kp are the flicker-noise coefficients for the n-channel and p-channel devices,
respectively. Depending on processing details, these may be comparable or different by a factor
of two or more. Note that the first term in (11.121) is the equivalent input noise of the input
transistors alone, and the term in parentheses is the increase in noise over and above this value
due to the loads. The second term shows that the load contribution can be made small by simply
making the channel lengths of the loads longer than those of the input transistors by a factor of
about two or more. The input transistors can then be made wide enough to achieve the desired
performance. It is interesting to note that changing the width of the channel in the loads does
not effect the 1∕f noise performance.

The thermal noise performance of the circuit of Fig. 11.40a can be calculated as follows. As
discussed in Section 11.5.2, the input-referred thermal noise of a long-channel MOS transistor
is given by

v2
eq = 4kT

(
2

3gm

)
Δf (11.122)
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Figure 11.40 (a) CMOS input stage device noise contributions. (b) Equivalent input noise
representation.
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Figure 11.40 (c) Noise contribution from M9 and the
replica-bias circuit in Fig. 6.24 to the mean-square output noise
current of its first stage.

Utilizing the same approach as for the flicker noise, we obtain for the equivalent input thermal
noise of the circuit of Fig. 11.40a

v2
Th = 4kT

4

3
√

2μpCox(W∕L)1ID

(
1 +

√
μn(W∕L)3
μp(W∕L)1

)
Δf (11.123)

where ID is the bias current in each device. Again, the first term represents the thermal noise
from the input transistors, and the term in parentheses represents the fractional increase in
noise due to the loads. The term in parentheses will be small if the W∕L ratios are chosen
so that the transconductance of the input devices is much larger than that of the loads. If this
condition is satisfied, then the input noise is simply determined by the transconductance of the
input transistors.

Now, consider noise in the amplifier in Fig. 6.24. Figure 11.40c shows its first stage, which
is the same as shown in Fig. 11.40a except for the addition of M9. The left side of this cir-
cuit is similar to the super source follower in Fig. 11.38b, where I2 is provided by M5 and M1
in Fig. 11.40c. Assume that all the transistors except M9 operate in saturation. Also assume
that the channel-length modulation parameter 𝜆 = 0 so that ro1 = ro3 → ∞ at first for sim-
plicity. Then M1 operates as a voltage-controlled current source. M3 operates in a negative
feedback loop, and Vgs3 is adjusted to accommodate the current from M1. This current also
flows in M9, which operates by design in the triode region. M9 is biased by VB2, which comes
from the replica-bias circuit in Fig. 6.24b but is not shown here for simplicity. In practice, the

replica-bias circuit and M9 contribute noise that is modeled by v2
eq9. Since M1 sets the current,

and since this current along with M3 sets Vgs3, the main effect of v2
eq9 is to change Vds3. In other

words, since this part of the circuit is a super source follower, Vds3 follows changes in the gate
voltage of M9 but with a small-signal gain ≪ 1 because M9 operates in the triode region.

In practice, 𝜆 > 0, and ro1 and ro3 are finite. If gm3ro3 ≫ 1, the changes in Vds3 cause small
changes in Vgs3. Furthermore, changing Vgs3 changes Vds1, which causes small changes in the
drain current in M1, provided that 𝜆 is small. When all these factors are considered together,

i2o changes with v2
eq9, but the changes are small. As a result, M1–M4 still dominate the noise
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performance, and (11.119) still gives the equivalent input noise voltage for the amplifier in
Fig. 6.24.

Finally, consider a case where the polarities of all the transistors in Fig. 11.40a are reversed.
For example, Fig. 6.35 shows an input stage in which the differential pair and tail current
source use n-channel transistors and the current mirror uses p-channel transistors. Also, the
tail current source in Fig. 6.35 is controlled by a replica-bias circuit that improves the CMRR
even when the tail current source operates in the triode region. Noise from the replica bias
and the tail current source change ID5 in practice. If the circuit is balanced, however, this
noise becomes a common-mode signal and produces little change in the amplifier output noise
current. Therefore, (11.119) still gives the equivalent input noise voltage of the amplifier in
Fig. 6.35.

11.9 Noise Bandwidth
In the noise analysis performed thus far, the circuits considered were generally assumed to
have simple gain-frequency characteristics with abrupt band edges, as shown in Fig. 11.33b.
The calculation of total circuit noise then reduced to an integration of the noise spectral density
across this band. In practice, many circuits do not have such ideal gain-frequency character-
istics, and the calculation of total circuit noise can be much more complex in those cases.
However, if the equivalent input noise spectral density of a circuit is constant and independent
of frequency (i.e., if the noise is white), we can simplify the calculations using the concept of
noise bandwidth described below.

Consider an amplifier as shown in Fig. 11.41, and assume it is fed from a low source

impedance so that the equivalent input noise voltage v2
i determines the noise performance.

Assume initially that the spectral density v2
i ∕Δf = Si( f ) = Si0 of the input noise voltage is

flat, as shown in Fig. 11.42a. Further assume that the magnitude squared of the voltage gain|Av( jf )|2 of the circuit is as shown in Fig. 11.42b. The output noise-voltage spectral density

So( f ) = v2
o∕Δf is the product of the input noise-voltage spectral density and the square of

the voltage gain and is shown in Fig. 11.42c. The total output noise voltage is obtained by
summing the contribution from So( f ) in each frequency increment Δf between zero and
infinity to give

v2
oT =

∞∑
f=0

So( f ) Δf = ∫
∞

0
So( f )df = ∫

∞

0
|Av( jf )2|Si0df

= Si0 ∫
∞

0
|Av( jf )|2df (11.124)

The evaluation of the integral of (11.124) is often difficult except for very simple transfer
functions. However, if the problem is transformed into a normalized form, the integrals of

vi
2

vo

+

– Figure 11.41 Circuit with equivalent input
noise-voltage generator.
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Figure 11.42 Assumed
parameters for the circuit of
Fig. 11.41. (a) Equivalent
input noise-voltage spectral
density. (b) Circuit transfer
function squared. (c) Output
noise-voltage spectral density.

common circuit functions can be evaluated and tabulated for use in noise calculations. For
this purpose, consider a transfer function as shown in Fig. 11.43 with the same low-frequency
value Av0 as the original circuit but with an abrupt band edge at a frequency fN . Frequency fN is
chosen to give the same total output noise voltage as the original circuit when the same input
noise voltage is applied. Thus

v2
oT = Si0A2

v0fN (11.125)

If (11.124) and (11.125) are equated, we obtain

fN = 1

A2
v0

∫
∞

0
|Av( jf )|2df (11.126)

where fN is the equivalent noise bandwidth of the circuit. Although derived for the case of a
voltage transfer function, this result can be used for any type of transfer function. Note that the
integration of (11.126) can be performed numerically if measured data for the circuit transfer
function are available.
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Av( jf ) 2

Figure 11.43 Transfer function of a circuit giving the
same output noise as a circuit with a transfer function
as specified in Fig. 11.42b.

Once the noise bandwidth is evaluated using (11.126), the total output noise of the circuit
is readily calculated using (11.125). The advantage of the form of (11.126) is that the circuit
gain is normalized to its low-frequency value, and thus the calculation of fN concerns only the
frequency response of the circuit. This can be done in a general way so that whole classes of
circuits are covered by one calculation. For example, consider an amplifier with a single-pole
frequency response given by

Av( jf ) =
Av0

1 + j
f

f1

(11.127)

where f1 is the −3-dB frequency. The noise bandwidth of this circuit can be calculated from
(11.126) as

fN = ∫
∞

0

df

1 +
(

f

f1

)2
= 𝜋

2
f1 = 1.57f1 (11.128)

This gives the noise bandwidth of any single-pole circuit and shows that it is larger than the
−3-dB bandwidth by a factor of 1.57. Thus a circuit with the transfer function of (11.127)
produces noise as if it had an abrupt band edge at a frequency 1.57f1.

As the steepness of the transfer function fall-off with frequency becomes greater, the noise
bandwidth approaches the −3-dB bandwidth. For example, a two-pole transfer function with
complex poles at 45∘ to the negative real axis has a noise bandwidth only 11 percent greater
than the −3-dB bandwidth.

◼ EXAMPLE
As an example of noise bandwidth calculations, suppose an op amp is used in a feedback
configuration with a low-frequency gain of Av0 = 100, and the goal is to calculate the total
output noise voT from the circuit with a zero source impedance and neglecting flicker noise.
Assume that the input noise voltage of the op amp can be represented by an equivalent input
noise resistance of 22 kΩ.

If the unity-gain bandwidth of the op amp is 2.7 MHz, then the transfer function in a gain
of 100 configuration will have a −3-dB frequency of 27 kHz with a single-pole response.
From (11.128), the noise bandwidth is

fN = 1.57 × 27 kHz = 42 kHz (11.129)
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Assuming that the circuit is fed from a zero source impedance, and using the assumed value
of 22 kΩ as the equivalent input noise resistance, we can calculate the low-frequency input
noise-voltage spectral density of the op amp as

Si0 =
v2

i

Δf
= 4kT(22,000) = 3.7 × 10−16 V2/Hz (11.130)

Using Av0 = 100 together with substitution of (11.129) and (11.130) in (11.125) gives, for the
total output noise voltage,

v2
oT = 3.7 × 10−16 × (100)2 × 42 × 103 V2 = 1.6 × 10−7 V2

and thus voT = 390 μV rms.◼

The calculations of noise bandwidth considered above were based on the assumption of a
flat input noise spectrum. This is often true in practice, and the concept of noise bandwidth is
useful in those cases, but there are also many examples where the input noise spectrum varies
with frequency. In these cases, the total output noise voltage is given by

v2
oT = ∫

∞

0
So( f )df (11.131)

= ∫
∞

0
|Av( jf )|2Si( f )df (11.132)

where Av( jf ) is the voltage gain of the circuit and Si( f ) is the input noise-voltage spectral
density. If the circuit has a voltage gain AvS at the frequency of the applied input signal, then
the total equivalent input noise voltage becomes

v2
iT = 1

A2
vS

∫
∞

0
|Av( jf )|2Si( f )df (11.133)

= ∫
∞

0

||||Av( jf )
AvS

||||
2

Si( f )df (11.134)

Equation 11.134 shows that in general, the total equivalent input noise voltage of a circuit is
obtained by integrating the product of the input noise-voltage spectrum and the normalized
voltage gain function.

One last topic that should be mentioned in this section is the problem that occurs in calcu-
lating the flicker noise in direct-coupled amplifiers. Consider an amplifier with an input noise
spectral density as shown in Fig. 11.44a and a voltage gain that extends down to dc and up
to f1 = 10 kHz with an abrupt cutoff, as shown in Fig. 11.44b. Then, using (11.134), we can
calculate the total equivalent input noise voltage as

v2
iT = ∫

f1

0
Si( f )df

= ∫
f1

0

(
1 + 1000

f

)
× 10−16df (11.135)

= 10−16[ f + 1000 ln f ] f1
0
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Evaluating (11.135) produces a problem since v2
iT is infinite when a lower limit of zero is

used on the integration. This suggests infinite power in the 1∕f noise signal. In practice, mea-
surements of 1∕f noise spectra show a continued 1∕f dependence to as low a frequency as is
measured (cycles per day or less). This problem can be resolved only by noting that 1∕f noise
eventually becomes indistinguishable from thermal drift and that the lower limit of the inte-
gration must be specified by the period of observation. For example, taking a lower limit to the
integration of f2 = 1 cycle/day, we have f2 = 1.16 × 10−5 Hz. Changing the limit in (11.135),
we find

v2
iT = 10−16[f + 1000 ln f ]f1f2

= 10−16
[
(f1 − f2) + 1000 ln

f1
f2

] (11.136)

Using f1 = 10 kHz and f2 = 1.16 × 10−5 Hz in (11.136) gives

v2
iT = 10−16(10,000 + 20,600)

= 3.06 × 10−12 V2

and thus

viT = 1.75 μV rms
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If the lower limit of integration is changed to 1 cycle/year = 3.2 × 10−8 Hz, then (11.136)
becomes

v2
iT = 10−16(10,000 + 26,500)

= 3.65 × 10−12 V2

and thus
viT = 1.9 μV rms

The noise voltage changes very slowly as f2 is reduced further because of the ln function in
(11.136).

11.10 Noise Figure and Noise Temperature
11.10.1 Noise Figure

The most general method of specifying the noise performance of circuits is by specifying input
noise generators as described above. However, a number of specialized methods of specifying
noise performance have been developed that are convenient in particular situations. Two of
these methods are now described.

The noise figure (F) is a commonly used method of specifying the noise performance of a
circuit or a device. Its disadvantage is that it is limited to situations where the source impedance
is resistive, and this precludes its use in many applications where noise performance is impor-
tant. However, it is widely used as a measure of noise performance in communication systems
where the source impedance is often resistive.

The definition of the noise figure of a circuit is

F =
input S∕N ratio

output S∕N ratio
(11.137)

and F is usually expressed in decibels. The utility of the noise-figure concept is apparent from
the definition, as it gives a direct measure of the signal-to-noise (S∕N) ratio degradation that
is caused by the circuit. For example, if the S∕N ratio at the input to a circuit is 50 dB and
the circuit noise figure is 5 dB, then the S∕N ratio at the output of the circuit is 45 dB.

Consider a circuit as shown in Fig. 11.45, where S represents signal power and N represents
noise power. The input noise power Ni is always taken as the noise in the source resistance.
The output noise power No is the total output noise including the circuit contribution and noise
transmitted from the source resistance. From (11.137), the noise figure is

F =
Si

Ni

No

So
(11.138)

Circuit So, NoSi, Ni

Figure 11.45 Signal and noise power at the
input and output of a circuit.



846 Chapter 11 ▪ Noise in Integrated Circuits

For an ideal noiseless amplifier, all output noise comes from the source resistance at the
input, and thus if G is the circuit power gain, then the output signal So and the output noise No
are given by

So = GSi (11.139)

No = GNi (11.140)

Substituting (11.139) and (11.140) in (11.138) gives F = 1 or 0 dB in this case.
A useful alternative definition of F may be derived from (11.138) as follows:

F =
Si

Ni

No

So
=

No

GNi
(11.141)

Equation 11.141 can be written as

F =
total output noise

that part of the output noise due to the source resistance
(11.142)

Note that since F is specified by a power ratio, the value in decibels is given by 10 log10
(numerical ratio).

The calculations of the previous sections have shown that the noise parameters of most
circuits vary with frequency, and thus the bandwidth must be specified when the noise figure
of a circuit is calculated. The noise figure is often specified for a small bandwidth Δf at a
frequency f where Δf ≪ f . This is called the spot noise figure and applies to tuned amplifiers
and also to broadband amplifiers that may be followed by frequency-selective circuits. For
broadband amplifiers whose output is utilized over a wide bandwidth, an average noise figure
is often specified. This requires calculation of the total output noise over the frequency band
of interest using the methods described in previous sections.

In many cases, the most convenient way to calculate the noise figure is to return to the orig-
inal equivalent circuit of the device with its basic noise generators to perform the calculation.
However, some insight into the effect of circuit parameters on the noise figure can be obtained
by using the equivalent input noise generator representation of Fig. 11.46. In this figure, a cir-
cuit with input impedance zi and voltage gain G = vo∕vx is fed from a source resistance RS

and drives a load RL. The source resistance shows thermal noise i2s , and the noise of the circuit

itself is represented by i2i and v2
i , assumed uncorrelated. The noise at the input terminals due

to v2
i and i2i is

vxA = vi
zi

zi + RS
+ ii

RSzi

RS + zi

isignal RS is
2 ii

2

vi

vx vozi RLGvx

2

+

–

+

–

+

–

Figure 11.46 Equivalent input noise representation for the calculation of the noise figure.
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and thus

v2
xA = v2

i

|zi|2|zi + RS|2 + i2i
|RSzi|2|RS + zi|2 (11.143)

The noise power in RL produced by v2
i and i2i is

NoA = |G|2
RL

v2
xA = |G|2

RL

(
v2

i

|zi|2|zi + RS|2 + i2i
|RSzi|2|RS + zi|2

)
(11.144)

The noise power in RL produced by source resistance noise generator i2s is

NoB = |G|2
RL

|RSzi|2|RS + zi|2 i2s (11.145)

The noise in the source resistance in a narrow bandwidth Δf is

i2s = 4kT
1

RS
Δf (11.146)

Substituting (11.146) in (11.145) gives

NoB = |G|2
RL

|RSzi|2|RS + zi|2 4kT
1

RS
Δf (11.147)

Using the definition of the noise figure in (11.142) and substituting from (11.147) and
(11.144), we find

F =
NoA + NoB

NoB

= 1 +
NoA

NoB

(11.148)

= 1 +
v2

i

4kTRS Δf
+

i2i

4kT
1

RS
Δf

(11.149)

Equation 11.149 gives the circuit spot noise figure, assuming negligible correlation between

v2
i and i2i . Note that F is independent of all circuit parameters (G, zi, RL) except the source

resistance RS and the equivalent input noise generators.
It is apparent from (11.149) that F has a minimum as RS varies. For very low values of

RS, the v2
i generator is dominant, whereas for large RS, the i2i generator is most important. By

differentiating (11.149) with respect to RS, we can calculate the value of RS giving minimum F:

R2
S(opt) =

v2
i

i2i

(11.150)

This result is true in general, even if correlation is significant. A graph of F in decibels versus
RS is shown in Fig. 11.47.

The existence of a minimum in F as RS is varied is one reason for the widespread use
of transformers at the input of low-noise tuned amplifiers. This technique allows the source
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Figure 11.47 Variation in the
noise figure F with source
resistance RS.

impedance to be transformed to the value that simultaneously gives the lowest noise figure and
causes minimal loss in the circuit.

For example, consider the noise figure of a bipolar transistor at low-to-moderate fre-
quencies, where both flicker noise and high-frequency effects are neglected. From (11.50)
and (11.57),

v2
i = 4kT

(
rb +

1
2gm

)
Δf

i2i = 2qIB Δf = 2q
IC

𝛽F
Δf

Substitution of these values in (11.150) gives

RS(opt) =
√
𝛽F

gm

√
1 + 2gmrb (11.151)

At this value of RS, the noise figure is given by (11.149) as

Fopt ≃ 1 + 1√
𝛽F

√
1 + 2gmrb (11.152)

At a collector current of IC = 1 mA, and with 𝛽F = 100 and rb = 50 Ω, (11.151) gives RS(opt) =
572 Ω and Fopt = 1.22. In decibels, the value is 10 log101.22 = 0.9 dB. Note that Fopt decreases
as 𝛽F increases and as rb and gm decrease. However, increasing 𝛽F and decreasing gm result in
an increasing value of RS(opt), and this may prove difficult to realize in practice.

As another example, consider the MOSFET at low frequencies. Neglecting flicker noise,
we can calculate the equivalent input generators from Section 11.5.2 as

v2
i ≃ 4kT

2
3

1
gm

Δf (11.153)

i2i ≃ 0 (11.154)

Using these values in (11.149) and (11.150), we find that RS(opt) → ∞ and Fopt → 0 dB. Thus
the MOS transistor has excellent noise performance from a high source resistance. However, if
the source resistance is low (kilohms or less) and transformers cannot be used, the noise figure
for the MOS transistor may be worse than for a bipolar transistor. For source resistances of the
order of megohms or higher, the MOS transistor usually has a significantly lower noise figure
than a bipolar transistor.
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11.10.2 Noise Temperature

The noise temperature is an alternative noise representation and is closely related to the noise
figure. The noise temperature Tn of a circuit is defined as the temperature at which the source
resistance RS must be held so that the noise output from the circuit due to RS equals the noise
output due to the circuit itself. If these conditions are applied to the circuit of Fig. 11.46, the
output noise NoA due to the circuit itself is unchanged but the output noise due to the source
resistance becomes

N′
oB = |G|2

RL

|RSzi|2|RS + zi|2 4kTn
1

RS
Δf (11.155)

Substituting for NoB from (11.147) in (11.155), we obtain

N′
oB = NoB

Tn

T
(11.156)

where T is the circuit temperature at which the noise performance is specified (usually taken
as 290∘K). Substituting (11.156) in (11.148) gives

Tn

T
= (F − 1) (11.157)

where F is specified as a ratio and is not in decibels.
Thus the noise temperature and noise figure are directly related. The main application of the

noise temperature provides a convenient expanded measure of noise performance near F = 1
for very-low-noise amplifiers. A noise figure of F = 2 (3 dB) corresponds to Tn = 290∘K, and
F = 1.1 (0.4 dB) corresponds to Tn = 29∘K.

PROBLEMS
11.1 Calculate the noise-voltage spectral den-

sity in V2/Hz at vo for the circuit in Fig. 11.48, and cal-
culate the total noise in a 100-kHz bandwidth. Neglect
capacitive effects, flicker noise, and series resistance
in the diode.

11.2 If the diode in Fig. 11.48 shows flicker
noise, calculate and plot the output noise voltage spec-
tral density at vo in V2/Hz on log scales from f =
1 Hz to f = 10 MHz. Flicker noise data: in (11.7), use
a = b = 1, K1 = 3 × 10−16 A.

+10 V

20 kΩ

+

–

vo

Figure 11.48 Diode circuit for Problems 11.1
and 11.2.

11.3 Repeat Problem 11.2 if a 1000-pF capaci-
tor is connected across the diode. Compare your result
with a SPICE simulation.

11.4 The ac schematic of an amplifier is shown
in Fig. 11.49. The circuit is fed from a current source
iS and data are as follows:

RS = 1 kΩ RL = 10 kΩ IC = 1 mA

𝛽 = 50 rb = 0 ro = ∞

Neglecting capacitive effects and flicker noise, calcu-
late the total noise-voltage spectral density at vo in
V2/Hz. Calculate the MDS at iS if the circuit band-
width is limited to a sharp cutoff at 2 MHz. Compare
your result with a SPICE simulation. (This will require
setting up a bias circuit.)

11.5 Calculate the total input and output
referred noise voltages at 10 Hz, 100 kHz, and 1 GHz
for the common-source amplifier shown in Fig. 7.2b.
Assume that W = 100 μm, L = 1 μm, ID = 100 μA,
Vt = 0.6 V , k′ = 194 μA/ V2, tox = 80 Å, Ld = 0,
Xd = 0, and Kf = 3 × 10−24 F-V2. Ignore shot noise
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and induced-gate-current noise. Let RS = 100 kΩ and
RL = 10 kΩ. Verify your result using SPICE. (Add dc
sources for SPICE.)

RS RLis
vo

+

–

Figure 11.49 Amplifier ac schematic for Problems
11.4 and 11.6.

11.6 Calculate equivalent input noise-voltage
and -current generators for the circuit of Fig. 11.49
(omitting RS). Using these results, calculate the total
equivalent input noise current in a 2-MHz bandwidth
for the circuit of Fig. 11.49 with RS = 1 kΩ, and com-
pare with the result of Problem 11.4. Neglect correla-
tion between the noise generators.

11.7 Four methods of achieving an input
impedance greater than 100 kΩ are shown in the ac
schematics of Fig. 11.50.

(a) Neglecting flicker noise and capacitive
effects, derive expressions for the equivalent input
noise-voltage and -current generators of these cir-
cuits. For circuit (i), this will be on the source side of
the 100-kΩ resistor.

vovo

+ +

– –

vo vs

+

+

–

vs

+

–

vs

+

–

vs

+

–

–

10 kΩ vo

+

–

10 kΩ

10 kΩ
10 kΩ

100 kΩ

1 kΩ

IC = 0.5 mA,     = 100, rb = 100 Ω
(i)

β

β

IC = 0.5 mA,     = 100, rb = 100 Ω
(ii)

IC = 13 μA,     = 50, rb = 100 Ω
(iii)

gm = 1 mA/V
(iv)

ββ

Figure 11.50 Four ac schematics of circuits realizing an input resistance Ri > 100 kΩ.

(b) Assuming that following stages limit the
bandwidth to dc-20 kHz with a sharp cutoff, calculate
the magnitude of the total equivalent input noise volt-
age in each case. Then compare these circuits for use
as low-noise amplifiers from low source impedances.

11.8 Neglecting capacitive effects, calculate
equivalent noise-voltage and -current generators for
circuit (iv) of Fig. 11.50, assuming that the spectral
density of the flicker noise in the MOS transistor drain
current equals that of the thermal noise at 100 kHz.
Assuming that following stages limit the bandwidth
to 0.001 to 20 kHz with a sharp cutoff, calculate the
magnitude of the total equivalent input noise voltage.
Ignore shot noise and induced-gate-current noise, and
assume Cgs = 0.

11.9 A BiCMOS Darlington is shown in
Fig. 11.51. Neglecting frequency effects, calculate the
equivalent input noise-voltage and -current genera-
tors for this circuit, assuming that the dc value of Vi

is adjusted for IC1 = 1 mA. Device data is μnCox =
60 μA/ V2, Vt = 0.7 V, 𝜆 = 0, 𝛾 = 0, W = 100 μm,
L = 1 μm for the MOSFET and IS = 10−16 A, VA =
∞, 𝛽 = 100, and rb = 100 Ω for the bipolar transistor.
Use SPICE to check your calculation. Then add Cgs =
150 fF, Csb = 50 fF for the MOSFET and Cμ = 50 fF,
fT = 10 GHz for the bipolar transistor, and use SPICE
to determine the frequency where the spectral density
of the equivalent input noise-voltage generator v2

i has
doubled. Also use SPICE to determine the equivalent
input noise-current spectral density at that frequency.
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Vi

+

–

Vo

R3

Q1

M1

R2R1

+

–

100 Ω

2 kΩ

300 Ω

5 V

Figure 11.51 BiCMOS Darlington circuit for Prob-
lem 11.9.

RS

Q1 Q2

5 kΩis
Figure 11.52 An ac schematic of a
common-base amplifier for Problem 11.10.

Q1

RS

RSvs

i2

Q2

Q1 Q2

v2

i2

IEE

IEE

–V

–V

(a)

(b)

+

–

Figure 11.53 Super-𝛽 input stage for
Problem 11.11.

11.10 The ac schematic of a low-input-impedance
common-base amplifier is shown in Fig. 11.52.

(a) Calculate the equivalent noise voltage and
current generators of this circuit at the emitter of
Q1 using IC1 = IC2 = 1 mA, rb1 = rb2 = 0, 𝛽1 = 𝛽2 =
100, and fT1 = fT2 = 400 MHz. Neglect flicker noise,
but include capacitive effects in the transistors. Use
SPICE to check your result.

(b) If RS = 5 kΩ and later stages limit the band-
width to a sharp cutoff at 150 MHz, calculate the value
of iS giving an output signal-to-noise ratio of 10 dB.

11.11 A super-𝛽 input stage is shown in
Fig. 11.53a.

(a) Neglecting flicker noise and capacitive effects,
calculate the equivalent input noise-voltage and
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RS

vs

vo

Q1 Q2

–10 V

+10 V

100 kΩ

20 kΩ 20 kΩ

500 Ω500 Ω

+

+

–

–

Figure 11.54 Differential-pair input stage for
Problem 11.14.

noise-current generators v2 and i2 for this stage. Data:
IEE = 1 μA, 𝛽1 = 𝛽2 = 5000, and rb1 = rb2 = 500 Ω.

(b) If the circuit is fed from source resistances
RS = 100 MΩ, as shown in Fig. 11.53b, calculate the
total equivalent input noise voltage at vs in a band-
width of 1 kHz.

11.12 Repeat Problem 11.11 if the bipolar
transistors are replaced by MOS transistors with
IG = 0.1 fA and gm = 0.5 mA/V. Assume Cgs = 0.

11.13 If a 100-pF capacitor is connected across
the diode in Fig. 11.48, calculate the noise bandwidth
of the circuit and the total output noise at vo. Neglect
flicker noise and series resistance in the diode.

11.14 A differential input stage is shown in
Fig. 11.54.

(a) Neglecting flicker noise, calculate expressions
for the equivalent input noise-voltage and -current
generators at the base of Q1. Use SPICE to check your
result.

(b) Assuming the circuit has a dominant pole in
its frequency response at 30 MHz and RS = 50 Ω,
calculate the total equivalent input and output noise
voltages. Data: 𝛽 = 100 and rb = 200 Ω.

11.15 Calculate the source resistance, giving the
minimum noise figure and the corresponding noise
figure in decibels, for a bipolar transistor with param-
eters

(a) IC = 2 mA 𝛽F = 50 rb = 100 Ω
(b) IC = 10 μA 𝛽F = 100 rb = 300 Ω
11.16 Repeat Problem 11.15 if the transistor has

a flicker noise corner frequency of 1 kHz. Calculate
the spot noise figure at 500 Hz.

11.17 Repeat Problem 11.15 if the transistor has
a 1-kΩ emitter resistor.

11.18 .(a) Neglecting flicker noise and capacitive
effects, calculate the noise figure in decibels of the cir-
cuit of Fig. 11.54 with RS = 50 Ω.

(b) If RS were made equal to (i) 100 Ω or (ii)
200 kΩ, would the noise figure increase or decrease?
Explain.

(c) If RS = 200 kΩ and each device has a flicker
noise corner frequency of 10 kHz, calculate the low
frequency where the circuit spot noise figure is 20 dB.

11.19 .(a) A shunt-feedback amplifier is shown in
Fig. 11.55. Using equivalent input noise generators for
the device, calculate the spot noise figure of this circuit
in decibels for RS = 10 kΩ using the following data:

IC = 0.5 mA 𝛽 = 50 rb = 100 Ω

Neglect flicker noise and capacitive effects.

(b) If the device has fT = 500 MHz, calculate the
frequency where the noise figure is 3 dB above its
low-frequency value.

RSis
vo

+

–

10 kΩ

10 kΩ

Figure 11.55 An ac schematic of a single-stage
shunt-feedback amplifier for Problem 11.19.
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11.20 .(a) Neglecting capacitive effects, calculate
the noise figure in decibels of the circuit of Fig. 11.52
with RS = 5 kΩ. Use data as in Problem 11.10.

(b) If the flicker noise corner frequency for each
device is 1 kHz, calculate the low frequency where the
spot noise figure is 3 dB above the value in (a).

11.21 Neglecting flicker noise, calculate the total
equivalent input noise voltage for the MC1553 shown
in Figure 8.21a. Use 𝛽 = 100 and rb = 100 Ω, and
assume a sharp cutoff in the frequency response at
50 MHz. Then calculate the average noise figure of
the circuit with a source resistance of 50 Ω.

11.22 Calculate the total equivalent input noise
current for the shunt-shunt feedback circuit of
Fig. 8.48 in a bandwidth from 0.01 Hz to 100 kHz.
Use the MOS transistor data in Problem 11.5. Ignore
shot noise and induced-gate-current noise.

11.23 Repeat Problem 11.22 if the MOS transis-
tors in Fig. 8.48 are replaced by bipolar transistors.
Assume that 𝛽 = 200, rb = 300 Ω, IC = 1 mA, and the
flicker noise corner frequency is fa = 5 kHz. Neglect
capacitive effects.

11.24 The BiCMOS amplifier of Fig. 3.78 is
to be used as a low-noise transimpedance amplifier.
The input is fed from a current source with a shunt
source capacitance of CS = 1 pF. Assuming that CS

and Cgs1 = 0.5 pF dominate the frequency response,
calculate the equivalent input noise-current spectral
density of the circuit at low frequencies and at the
−3-dB frequency of the transfer function. Use data as
in Problem 3.17. Use SPICE to check your result and
also to investigate the effect of adding rb = 200 Ω to
the bipolar model.

11.25 A MOS current source of the type shown in
Fig. 4.5 is to be designed to achieve minimum output
current noise. The two transistors must be identical,
and the total gate area of the two transistors combined
must not exceed 10 μm2. Choose the W and L of the
devices under two different assumptions:

(a) 1∕f noise dominates.

(b) Thermal noise dominates.

Assume that Ld and Xd are zero. The minimum
allowed transistor length or width is 0.6 μm. Verify
your design using SPICE.

11.26 Calculate the equivalent input noise volt-
age at 100 Hz, 1 kHz, and 10 kHz for the CMOS
op amp shown in Fig. 6.45. Use the MOS param-
eters in Table 2.4, and assume that Xd = 0.1 μm at
the operating point for all transistors operating in
the active region. For this problem, assume that the
gate of M9 is attached to the positive power supply
and that the W/L of M9 has been optimally chosen

to cancel the right-half-plane zero. The flicker-noise
coefficient for all transistors is Kf = 3 × 10−24 F-V2.
Ignore shot noise and induced-gate-current noise. Ver-
ify your result using SPICE.

11.27 Find the mean-square equivalent input
noise voltage v2

i in a 1-Hz bandwidth at 10 MHz for the
cascode circuit in Fig. 11.56. Ignore channel-length
modulation for the dc bias calculation. Assume VI , VB,
and VDD are adjusted so that both transistors operate
in saturation with IO = 10 μA. Use the n-channel tran-
sistor parameters given in Fig. 11.38e, and ignore the
body effect. Do both transistors contribute equally to
v2

i ? Explain.

M2

M1

IO + io

VDD

+
VI + vi−

+
VB−

Figure 11.56 Cascode stage for Problem 11.27.

11.28 .(a) At what frequency are the noise spec-
tral densities for the two components of gate-current
noise in (11.15c) equal? Assume that W = 50 μm, L =
0.5 μm, IG = 0.05 fA, ID = 100 μA, Vt = 0.6 V, k′ =
194 μA/ V2, tox = 80 Å, Ld = Xd = 0, Kf = 3 × 10−24

F-V2, 𝛼 = 1, 𝛾 = 2∕3, 𝛿 = 4∕3, and Rg = 0.

(b) For this transistor, considering only the
gate-current noise, in what bandwidth (from 0 to fBW )
are the total input noise currents due to shot noise and
thermally induced gate noise in (11.15c) equal?

11.29 For the common-source amplifier in
Fig. 11.57, assume the transistor operates in satu-
ration with W = 100 μm, L = 1 μm, IG = 0, ID =
200 μA, Vt = 0.7 V, k′ = 100 μA∕V2, 𝜆 = 0, Cox =
2.01 fF∕μm2, Cdb = 0, Ld = Xd = 0, 𝛼 = 1, 𝛾 = 2∕3,
𝛿 = 4∕3, and Rg = 0. Also assume the resistors are
noiseless and have zero parasitic capacitance. Find
the mean-square output noise voltage v2

o at room
temperature in a 1-Hz bandwidth at 1 GHz in three
cases: (1) ignoring induced gate noise, (2) including
induced gate noise but assuming it is uncorrelated with
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RS

vi

+

−

RL

+

vo

−
Figure 11.57 Common-source amplifier ac schema-
tic for Problems 11.29 and 11.30.

channel thermal noise, and (3) including the correla-
tion between induced gate noise and channel thermal
noise. Include gg in all three cases.

11.30 Including thermal noise from both RS and
RL in the last problem, find the noise figure in all three
cases.
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CHAPTER 12

Fully Differential Operational
Amplifiers

12.1 Introduction
The analysis of integrated-circuit operational amplifiers (op amps) in Chapter 6 focused on
op amps with single-ended outputs. The topic of this chapter is fully differential op amps,
which have a differential input and produce a differential output. Fully differential op amps
are widely used in modern integrated circuits because they have some advantages over their
single-ended counterparts. They provide a larger output voltage swing and are less suscepti-
ble to common-mode noise. Also, even-order nonlinearities are not present in the differential
output of a balanced circuit. (A balanced circuit is symmetric with perfectly matched elements
on either side of an axis of symmetry.) A disadvantage of fully differential op amps is that they
require two matched feedback networks and a common-mode feedback circuit to control the
common-mode output voltage.

In this chapter, the properties of fully differential amplifiers are presented first, followed by
some common-mode feedback approaches. A number of fully differential CMOS op amps are
covered. Some of the terminology used in this chapter was introduced for a simple fully differ-
ential amplifier (a differential pair with resistive loads) in Section 3.5. In most of the chapter,
the circuits are assumed to be perfectly balanced. The effects of imbalance are considered in
Section 12.7. The circuits in this chapter are CMOS; however, most of the techniques and
topologies described can be readily extended to bipolar technologies.

12.2 Properties of Fully Differential Amplifiers1,2

A fully differential feedback amplifier is shown in Fig. 12.1a. It differs from the single-ended
feedback amplifier of Fig. 12.1b in the following two ways. The op amp has two outputs,
and two identical resistive networks provide feedback. While many fully differential op-amp
topologies exist, the simple fully differential amplifier of Fig. 12.2 will be used for illustration
purposes. It consists of a differential pair M1–M2, active loads M3 and M4, and tail current
source M5.

Fully differential op amps provide a larger output voltage swing than their single-ended
counterparts, which is important when the power-supply voltage is small. The larger output
voltage swing provided by a fully differential op amp can be explained using the two feedback
circuits of Fig. 12.1. Assume that each op-amp output, Vo1,Vo2, or Vo, can swing up to Vmax
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Figure 12.1 (a) Fully differential and (b) single-ended inverting amplifiers.
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Figure 12.2 A simple, one-stage, fully
differential op amp.

and down to Vmin. For the single-ended-output circuit of Fig. 12.1b, the peak-to-peak output
voltage can be as large as Vmax − Vmin. In the fully differential circuit of Fig. 12.1a, if Vo1
swings up to Vmax and Vo2 swings down to Vmin, the peak differential output is Vmax − Vmin.
Therefore, the peak-to-peak differential output is 2(Vmax − Vmin). Thus, the output swing of a
fully differential op amp is twice as large as that of a similar op amp with a single-ended output.
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This larger output swing can result in a higher signal-to-noise ratio. Ignoring the noise from
the op amp and the feedback resistor R3, we see that thermal noise associated with the R1 input
resistors is the only source of noise. In the single-ended circuit of Fig. 12.1b, the output noise
power due to resistor R1 is

v2
oN(s.e.) =

(
R3

R1

)2

4kTR1(BWN) (12.1)

where BWN is the equivalent noise bandwidth of the closed-loop amplifier. In the fully differ-
ential amplifier of Fig. 12.1a, the differential output noise power due to the two R1 resistors is

v2
oN(diff) = 2

(
R3

R1

)2

4kTR1(BWN) (12.2)

because the output noise terms from the two R1 resistors are uncorrelated and hence their
contributions add together to give the total output noise power. From (12.1) and (12.2), the
output noise power in the fully differential circuit is twice that in the single-ended circuit.
Since the peak output signal in the differential circuit is twice that in the single-ended
circuit, the maximum output signal power is four times that in the single-ended circuit.
The maximum output signal-to-noise ratio (SNR) for a maximum sinusoidal output signal
with amplitude Vsig(peak) is given by

SNRmax =
maximum output signal power

output noise power
=

V2
sig(peak)

2

v2
oN

(12.3)

This SNR is twice as large, or 3 dB larger, for the fully differential circuit compared to the
single-ended circuit if the same resistance R1 is used in both circuits and R1 is the dominant
noise source.

Fully differential circuits are less susceptible than their single-ended counterparts to
common-mode (CM) noise, such as noise on the power supplies that is generated by digital
circuits that are integrated on the same substrate as the analog circuits. To explain the reduced
sensitivity to CM noise, consider the circuit of Fig. 12.3. This circuit is the same as Fig. 12.1a
with two capacitors Cip added. Each capacitor connects from an op-amp input to voltage
source vn. Here, Cip models parasitic capacitance from the substrate to each op-amp input,

vn

Vs1

Vo1

Vo2

Vs2

Cip

Cip

+

– + –

– +

R3

R3

R1

R1

Figure 12.3 The inverting
amplifier of Fig. 12.1a
including parasitic capacitors
Cip and noise source vn.
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and vn models noise that exists on the power-supply voltage that connects to the substrate.
The parasitic capacitors couple equal signals to the op-amp inputs, causing a CM disturbance
at the op-amp input. If the op amp is perfectly balanced and has zero CM gain, this CM noise
does not affect the CM output voltage. If the op-amp CM gain is nonzero but small, vn causes
a small CM output voltage but does not affect the differential output voltage if the circuit
is perfectly balanced. This capacitive coupling to the op-amp inputs can cause a nonzero
differential-mode (DM) output voltage if the circuit is not perfectly balanced. For example,
mismatch between the Cip capacitors causes the coupled noise at the two op-amp inputs to be
unequal and introduces a differential noise signal across the op-amp inputs.

Even without the capacitive coupling to the substrate in Fig. 12.3, noise on the positive or
negative power supply can couple to the op-amp outputs through the transistors in the op amp
(see Section 6.2.6). If the circuit is balanced, such coupling is the same at each op-amp output.
Therefore, power-supply noise in a balanced circuit alters the CM output but does not affect
the DM output.

Even-order nonlinearities are not present in the differential output of a balanced circuit.
The cancellation of even-order nonlinearities can be explained using Fig. 12.1a. Assume
that the circuit is perfectly balanced but is not perfectly linear. First, consider the case when
the inputs are Vs1 = Va and Vs2 = Vb, and let the resulting output voltages be Vo1 = Vx and
Vo2 = Vy. In this case, the differential input and output are

Vsd = Va − Vb and Vod = Vx − Vy (12.4)

Next, consider the circuit with the inputs swapped: that is, Vs1 = Vb and Vs2 = Va. Then the
output voltages will also be swapped (Vo1 = Vy and Vo2 = Vx) because the circuit is symmetric.
In this second case,

Vsd = Vb − Va = −(Va − Vb) and Vod = Vy − Vx = −(Vx − Vy) (12.5)

Equations 12.4 and 12.5 show that changing the polarity of the differential input of a
balanced circuit causes only a polarity change in the differential output voltage. Therefore,
the differential input-output characteristic f () is an odd function: that is, if Vod = f (Vid), then
−Vod = f (−Vid). Hence, the differential transfer characteristic of a balanced amplifier exhibits
only odd-order nonlinearities, so only odd-order distortion can appear in the differential
output when a differential input is applied. Even-order distortion may exist in each individual
output Vo1 and Vo2, but such distortion in these output voltages is identical and cancels when
they are subtracted to form Vod.

In a balanced, fully differential amplifier, the small-signal differential output voltage is
proportional to the small-signal differential input voltage but is independent of the CM input
voltage, as was shown in Section 3.5.4. Similarly, the small-signal CM output voltage is
proportional to the small-signal CM input voltage but is independent of the differential input
voltage.

12.3 Small-Signal Models for Balanced Differential Amplifiers
A balanced signal source driving a balanced, fully differential amplifier is shown in Fig. 12.4.
A T-network small-signal model for the balanced signal source is shown in Fig. 12.5. Equations
that describe this model are found as follows. Applying KVL from vs1 to ground,

vs1 =
v′sd

2
+ v′sc +

Rsd

2
is1 +

(
Rsc

2
−

Rsd

4

)
(is1 + is2) (12.6)
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vod

vo2
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vs2

+

–

+
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–

il1

il2

Signal
source

Amp

Figure 12.4 A block diagram of a fully differential signal source and amplifier driving a complex load.

vs1

is1

vs2

is 2

–

+ –

vśc

+

–

Rsd

2

Rsc

2
Rsd

4

Rsd

2

vśd

2
+ –

vśd

2

Figure 12.5 A model for a
differential signal source.

Rearranging gives

vs1 =
v′sd

2
+ v′sc +

Rsd

2

is1 − is2

2
+ Rsc

is1 + is2

2
(12.7)

Define

isd =
is1 − is2

2
(12.8)

isc =
is1 + is2

2
(12.9)

Then
is1 = isd + isc (12.10)

is2 = −isd + isc (12.11)

Substituting (12.8) and (12.9) in (12.7) gives

vs1 =
v′sd

2
+ v′sc +

Rsd

2
isd + Rscisc (12.12)

A similar analysis applied from vs2 to ground yields

vs2 = −
v′sd

2
+ v′sc −

Rsd

2
isd + Rscisc (12.13)

The usual definitions apply for the DM and CM source voltages: vsd = vs1 − vs2 and
vsc = (vs1 + vs2)∕2. Voltages v′sd and v′sc are the DM and CM open-circuit source voltages,
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respectively. That is, if isd = isc = 0, then vsd = v′sd and vsc = v′sc. Resistances Rsd and Rsc
are the DM and CM resistances, respectively, associated with the signal source. Subtracting
(12.13) from (12.12) and manipulating the result, we can write

Rsd =
vsd

isd

||||v′
sd
=0

(12.14)

Adding (12.12) and (12.13), we find

Rsc =
vsc

isc

||||v′sc=0
(12.15)

These simple expressions result from the definitions of the CM and DM currents in (12.8) and
(12.9) and the standard definitions for the CM and DM voltages.

Two equivalent models for the inputs of the amplifier of Fig. 12.4 are shown in Fig. 12.6.
These models are extensions of Fig. 3.61 and (3.197) and (3.198), which were derived to model
the inputs for a differential pair with resistive loads. Two equivalent models for the output ports
of the amplifier are shown in Fig. 12.7. The equations that describe the model of Fig. 12.7a,
which uses voltage-controlled voltage sources, are

vo1 = adm
vid

2
+ acmvic +

Rod

2
iod + Rocioc (12.16)

vo2 = −adm
vid

2
+ acmvic −

Rod

2
iod + Rocioc (12.17)

where

adm =
vod

vid

||||iod=0
acm =

voc

vic

||||ioc=0
(12.18)

Rod =
vod

iod

||||vid=0
Roc =

voc

ioc

||||vic=0
(12.19)

(a)

vi1 vi2

–

Zid

2
Zid

2

Zic

2
Zid

4

ii1 ii2

(b)

vi1 vi2

Zic Zic

Zid ||(–2 Zic)

ii1 ii2

Figure 12.6 Models for the input impe-
dance of a fully differential amplifier.
(a) T-network model. (b) 𝜋-network model.
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+

–
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2
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vid

2
adm

υid

2
adm

(b)

vo2υo1

io2io1

Gmdvid GmcvicGmcvic RocRoc

Rod‖(–2Roc)

Figure 12.7 Models for the output ports of a fully differential amplifier. (a) Thévenin-network model.
(b) Norton-network model.

and vid = vi1 − vi2, vic = (vi1 + vi2)∕2, vod = vo1 − vo2, voc = (vo1 + vo2)∕2, iod = (io1 −
io2)∕2, and ioc = (io1 + io2)∕2. Figure 12.7b shows an alternative model that uses
voltage-controlled current sources, and the corresponding equations are

io1 = iod + ioc = Gmdvid + Gmcvic +
vod

Rod
+

voc

Roc
(12.20)

io2 = −iod + ioc = −Gmdvid + Gmcvic −
vod

Rod
+

voc

Roc
(12.21)

where

Gmd =
iod

vid

||||vod=0
(12.22)

Gmc =
ioc

vic

||||voc=0
(12.23)

The parameters for the models of Fig. 12.7 can be computed from the corresponding
half-circuits.

The DM and CM output-load impedances can be computed using

ZLd =
vod

ild
(12.24)

and
ZLc =

voc

ilc
(12.25)
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where ild = (il1 − il2)∕2, ilc = (il1 + il2)∕2, and il1 and il2 are defined in Fig. 12.4. A fully bal-
anced output load can be modeled using a passive network of the form shown in Fig. 12.6a or
12.6b, with Zid and Zic replaced by ZLd and ZLc, respectively.

The DM and CM half-circuits for the amplifier, signal source, and output load of Fig. 12.4
are shown in Figs. 12.8 and 12.9. The DM load ZLd and the CM load ZLc can be found using
(12.24) and (12.25) for the load network of Fig. 12.4, and the resulting load elements are

ZLd = ZL2||(2ZL1) (12.26)

ZLc = ZL1 (12.27)

The DM and CM loads are different for the following reason. The axis of symmetry in Fig. 12.4
passes through the middle of ZL2. For purely DM signals, points along the axis of symmetry
are ac grounds (see Section 3.5.5). Therefore, the load for the DM half-circuit is half of ZL2
in parallel with ZL1. However, points along the axis of symmetry are open circuits for purely
CM signals (see Section 3.5.5). Therefore, ZL2 does not affect the load in the CM half-circuit.

These amplifier models can be used to model any balanced, fully differential amplifier,
including an op amp. If the model is simplified to just the dependent sources (assuming infinite
input impedance and zero output impedance), the equations that describe the model reduce to

vod = vo1 − vo2 = admvid (12.28)

(a)

iid+

–

Rsd

2
vid

2

vsd

2
Zid

2

(b)

iod+

–

Rod

2
vod

2

adm
vid

2
ZLd

2

(c)

iod

Rod

2

vod

2

Gmdvid
ZLd

2
Figure 12.8 DM half-circuits for a fully
differential signal source and amplifier. (a) Input
port. (b) Output port using a Thévenin equivalent.
(c) Output port using a Norton equivalent.
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vsc Zic

(b)
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Roc voc

acmvic ZLc

(c)

ioc

Roc

voc

Gmcvic ZLc

Figure 12.9 CM half-circuits for a fully differential signal source and amplifier. (a) Input port. (b) Output
port using a Thévenin equivalent. (c) Output port using a Norton equivalent.
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–
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–
acmvic

vid

2
adm
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2
adm

Figure 12.10 A simple small-signal
model for a balanced fully differential op
amp, assuming infinite input impedance
and zero output impedance.

and

voc =
vo1 + vo2

2
= acmvic (12.29)

In an ideal, fully differential op amp, acm = 0 and adm → −∞. If acm = 0, then voc = 0 if vic
is finite. If adm → −∞, then vid → 0 if vod is finite. A simple small-signal model for a bal-
anced, fully differential op amp that is based on (12.28) and (12.29) is shown in Fig. 12.10.
Because of its simplicity, this model will be used to illustrate some key points in the following
sections.

12.4 Common-Mode Feedback
The fully differential feedback amplifier of Fig. 12.1a is redrawn in Fig. 12.11a using the
ideal op-amp model of Fig. 12.10. In Fig. 12.11a, the axis of symmetry is shown as a dashed
line. The acm controlled source is shown twice, once on each side of the axis of symmetry.
The DM half-circuit is shown in Fig. 12.11b. Here all nodes intersecting the axis of symmetry
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are connected to ac ground. Using this half-circuit and letting adm → −∞, the differential
gain is

vod

vsd
=

vod

vs1 − vs2
= −

R3

R1
(12.30)

Thus, the DM output voltage is determined by the DM gain, which is accurately set by the DM
feedback loop of Fig. 12.11b. However, the CM output voltage is set by a different feedback

vs1
υi1
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+

–
+–

vs2
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vo2

vi2
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acmvic

+–

acmvic
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2
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+

–

vid

2
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Axis of symmetry

(a)
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+

–

+
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+
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–
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2
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2
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2adm

(b)
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R1

+

–

+

–

voc

+

–

vicvsc acmvic

+

–

(c)

Figure 12.11 (a) The inverting feedback amplifier of Fig. 12.1a, using the op-amp model of Fig. 12.10.
(b) DM half-circuit. (c) CM half-circuit.
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loop. The CM half-circuit for Fig. 12.1a is shown in Fig. 12.11c. If acm = 0, the closed-loop
CM gain voc∕vsc is zero, and the loop gain (or return ratio) for the CM feedback loop of
Fig. 12.11c is zero. Therefore, the CM output voltage voc is independent of the CM op-amp
input voltage vic and the CM source voltage vsc. In practice, |acm| is nonzero but small in
op amps that use an input differential pair with a tail current source because the tail current
source provides local feedback for CM signals and makes the CM gain of the input stage small.
If |acm| is small, the magnitude of the loop gain (or return ratio) for the CM feedback loop of
Fig. 12.11c is small, and this feedback loop exerts little control on the CM output voltage. As a
result, a different feedback loop with high loop gain is used to control the CM output voltage,
as described next.

12.4.1 Common-Mode Feedback at Low Frequencies

For the op amp of Fig. 12.2, the ideal operating point biases M1–M5 in the active region and sets
the dc CM output voltage VOC to the value that maximizes the swing at the op-amp outputs for
which all transistors operate in the active region. However, as described in the section 4.4.5.1,
VOC is very sensitive to mismatches and component variations, and the circuit is not practical
from a bias stability standpoint. (That section describes the circuit of Fig. 4.24a, which is
Fig. 12.2 with the addition of two diode-connected transistors and two ideal current sources that
set the dc drain currents.) Accurately setting VOC in Fig. 12.2 to a desired voltage is impossible
in practice because ID5 is set independently of |ID3| + |ID4|.

To set VOC to a desired dc voltage VCM that biases all transistors in the active region and
maximizes the output voltage swing, either VBIAS or VGS5 must be adjusted so that ID5 =|ID3| + |ID4| when VSD3 = VSD4 = VDD − VCM , which makes VOC = VCM . We will focus on
adjusting VGS5. Adjusting VGS5 to force VOC = VCM requires the use of feedback in prac-
tice. Circuitry is added to form a negative feedback loop that adjusts VGS5 to set VOC = VCM .
Figure 12.12 shows a block diagram of such a feedback loop, which will be referred to as the
common-mode feedback (CMFB) loop. The added blocks will be called the CM-sense blocks.
One CM-sense block, the CM detector, calculates the CM output voltage, Voc = (Vo1 + Vo2)∕2.

Vo1

Voc

Vo2

Voc–VCM

Vcmc = VCMC  + vcmc

Vcms

VCSBIAS VCM

+

–

+

–

+

–

acmcvcmc

acmsΣ Σ

CMC

CM
detector

CM-sense blocks

Figure 12.12 A conceptual
block diagram of the CMFB
loop.
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This voltage is subtracted from the desired CM output voltage, VCM . The difference Voc − VCM
is scaled by an amplifier with gain acms. Then a dc voltage VCSBIAS is added, and the result is
Vcms, where

Vcms = acms(Voc − VCM) + VCSBIAS (12.31)

Vcms drives a new op-amp input labeled CMC (for common-mode control). The CMC input
is chosen so that changing Vcmc changes Voc but does not affect Vod if the circuit is perfectly
balanced. (The voltages Vcms and Vcmc are equal in Fig. 12.12. The label Vcmc will be used when
referring to the CMC input of the op amp, while Vcms will be used to refer to the output of the
CM-sense circuit.) For the op amp of Fig. 12.2, the CMC input is the gate of M5. If the gain in
this CMFB loop is high, the negative feedback forces Voc ≈ VCM and Vcmc to be approximately
constant with Vcmc ≈ VCSBIAS. Transistor M5 supplies the tail current for the pair M1 and M2.
Bias voltage VCSBIAS is added to provide the nominal dc component of Vcmc that sets |ID3| +|ID4| = ID5 when Voc = VCM .

The magnitude of the small-signal gain from Vcmc to Voc is typically much larger than unity.
For example, in the op amp of Fig. 12.2, this gain magnitude is high because it is the gain
of common-source M5 with a large load resistance at the op-amp output. (This gain is com-
puted in the next example.) Often the magnitude of the gain from Vcmc to Voc is large enough
to provide all the gain needed in the CMFB loop. Therefore, the CM-sense amplifier acms
can have low gain and, as a result, a wide bandwidth. Because the CM-sense amplifier is in
the CMFB loop, wide bandwidth in this amplifier simplifies the frequency compensation of
the CMFB loop. If Voc = VCM in Fig. 12.12, Vcmc = VCSBIAS. In practice, the bias voltage
VCSBIAS is usually generated in the CM-sense-amplifier circuit. Hence, the CM-sense ampli-
fier is designed so that when its differential input voltage is zero, its output voltage equals the
nominal bias voltage required at the single-ended CMC input. For the op amp of Fig. 12.2, this
bias voltage is VGS5 − VSS. Practical CM-sense amplifiers that can generate such an output bias
voltage will be shown in Section 12.5.

The simple op-amp model of Fig. 12.10 is modified to include the CMC input in Fig. 12.13a.
Controlled source acmc models the small-signal voltage gain from this new input to voc.
That is,

acmc =
voc

vcmc

||||vic=0
(12.32)

When this gain is included, the equation for the CM output voltage in (12.29) becomes

voc = acmvic + acmcvcmc (12.33)

◼ EXAMPLE
Compute the three voltage gains in the model of Fig. 12.13a for the op amp of Fig. 12.2. Use
the 0.8 μm CMOS model data in Table 2.3 with |Vov| = |VGS − Vt| = 0.2 V and Leff = 0.8 μm
for all devices. Take ID5 = 200 μA, |VAp| = 20 V, and VAn = 10 V. [These VA values follow
from (1.163) and the data in Table 2.3 with Leff = 0.8 μm.] Ignore the body effect.

The DM half-circuit is shown in Fig. 12.14a. It is a common-source amplifier with an active
load. The low-frequency DM gain is

adm =
vod

vid
= −gm1(ro1||ro3) (12.34)

Using (1.181) and ID1 = |ID3| in (12.34),

adm = −
2ID1

Vov1

(
VA1

ID1
|| |VA3||ID3|

)
= − 2

Vov1

VA1|VA3|
VA1 + |VA3| = − 2

0.2
10 × 20
10 + 20

= −66.7
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Figure 12.13 The simple op-amp
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Figure 12.14 (a) DM half-circuit for Fig. 12.2, explicitly showing the output load capacitance.
(b) CM half-circuit for Fig. 12.2, explicitly showing the output load capacitance.
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The CM half-circuit is shown in Fig. 12.14b. To form this half-circuit, the original circuit
was transformed into a symmetric circuit by splitting M5 into two identical halves in paral-
lel, each called M5h with (W∕L)5h = (W∕L)5∕2 (W5h = W5∕2, L5h = L5) and ID5h = ID5∕2.
This half-circuit has two inputs, vic and vcmc. First we find the gain from vcmc to voc with
vic = 0. This circuit consists of common-source M5h, common-gate M1, and active load M3.
The low-frequency gain is

acmc =
voc

vcmc
= −gm5h(Ro(down)||ro3) (12.35)

where Ro(down) is the resistance looking into the drain of M1, which is given by

Ro(down) = ro1(1 + gm1ro5h) ≈ ro1(gm1ro5h) (12.36)

Using the approximation in (12.36), (1.181), and ID1 = |ID3| = ID5h in (12.35), we find

acmc = −
2ID5h

Vov5h

{[
VA1

ID1

(
2ID1

Vov1

VA5h

ID5h

)] || |VA3||ID3|
}

= − 2
Vov5h

VA1

(
2VA5h

Vov1

) |VA3|
VA1

(
2VA5h

Vov1

)
+ |VA3|

= − 2
0.2

10

(
2(10)
0.2

)
20

10

(
2(10)
0.2

)
+ 20

= −196

Finally, we calculate the gain from vic to voc with vcmc = 0. In this circuit, M1 is a
common-source amplifier with a degeneration resistance that is the output resistance of M5h.
The gain is

acm =
voc

vic
= −

gm1

1 + gm1ro5h
(Ro(down)||ro3) ≈ − 1

ro5h
(Ro(down)||ro3) (12.37)

The approximation is accurate if gm1ro5h ≫ 1. Using the approximation in (12.36), (1.181),
and ID1 = |ID3| = ID5h in (12.37),

acm = −
ID5h

VA5h

{[
VA1

ID1

(
2ID1

Vov1

VA5h

ID5h

)] || |VA3||ID3|
}

= − 1
VA5h

VA1

(
2VA5h

Vov1

) |VA3|
VA1

(
2VA5h

Vov1

)
+ |VA3|

= − 1
10

10

(
2(10)
0.2

)
20

10

(
2(10)
0.2

)
+ 20

= −1.96 (12.38)

In this example, |acmc| is much larger than |acm| because the transconductance in (12.35) is
much larger than the degenerated transconductance in (12.37).◼
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The CMFB loop uses negative feedback to make Voc ≈ VCM . If VCM changes by a small
amount from its design value due to parameter variations in the circuit that generates VCM ,
Voc should change by an equal amount so that Voc tracks VCM . The ratio ΔVoc∕ΔVCM is the
closed-loop small-signal gain of the CMFB loop, which from Fig. 12.12 is

ACMFB =
ΔVoc

ΔVCM
=

voc

vcm
=

acms(−acmc)
1 + acms(−acmc)

(12.39)

If acms(−acmc) ≫ 1, ACMFB ≈ 1 and ΔVoc ≈ ΔVCM .
The CM gain from vic to voc is affected by the CMFB loop. This gain can be calculated using

the CMFB block diagram of Fig. 12.12 and the op-amp model of Fig. 12.13a. The op-amp CM
gain when the CMFB is present, which we will call a′cm, is found with the DM input signal set
to zero. Using (12.31), the small-signal CM-sense voltage is related to the small-signal CM
output voltage by

vcms = acmsvoc (12.40)

Using this equation, (12.33), and vcms = vcmc, we find

a′cm =
voc

vic

||||with CMFB
=

acm

1 + acms(−acmc)
(12.41)

Therefore, |a′cm|≪ |acm| if |acms(−acmc)|≫ 1.
The CM gain for a balanced differential amplifier with CMFB can be found using the

model of either Fig. 12.13a or 12.13b with a′cm given by (12.41). These models are equiva-
lent because the effect of the controlled source acmc that is part of the CMFB loop is included
in a′cm.

◼ EXAMPLE

Compute the CM gain from vic to voc when the CMFB loop is active, a′cm, for the op amp in
the last example. Assume that acms = 1.

Substituting values from the last example in (12.41) with acms = 1 gives

a′cm =
voc

vic

||||with CMFB
= −1.96

1 + (1)(196)
= −0.01

Comparing this result with (12.38), we see that the CMFB has reduced the CM gain by more
than two orders of magnitude.◼

12.4.2 Stability and Compensation Considerations in a CMFB Loop

Since the CMFB loop is a negative feedback loop, stability is a key issue. For illustration
purposes, consider the op amp of Fig. 12.2 driving a load capacitance and using the CMFB
scheme shown in Fig. 12.12. The gain in the CMFB loop is (−acmc)acms. The dominant pole p1c
in the CMFB loop is set by the load capacitance and the output resistance in the CM half-circuit
of Fig. 12.14b. Ignoring all nondominant poles and using (12.35), we find

acmc(s) = −
gm5h(Ro(down)||ro3)

1 + s(Ro(down)||ro3)CLc
(12.42)
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At high frequencies [𝜔 ≫ |p1c| = 1∕(Ro(down)||ro3)CLc], (12.42) reduces to

acmc(j𝜔)|𝜔≫|p1c| ≈ −
gm5h

j𝜔CLc
(12.43)

This equation follows from the observation that the drain current from M5h flows into the load
capacitor at high frequencies. From (12.43), |acmc| = 1 at the frequency

𝜔u,cm =
gm5h

CLc
(12.44)

Nondominant poles exist in the CMFB loop, due to capacitance at the source of M1 in
Fig. 12.14b and due to poles in the gain acms(s) of the CM-sense circuit. If the gain roll-off in
(12.43) due to the dominant pole does not provide an adequate phase margin for the CMFB
loop, the unity-gain frequency for the CMFB loop gain can be decreased to increase the phase
margin. From (12.44), increasing the CM load capacitance CLc decreases 𝜔u,cm. However,
adding capacitance to the op-amp outputs increases both the CM and DM load capacitances,
as can be seen from (12.26) and (12.27). The CMFB loop gain may need a smaller unity-gain
frequency than the DM loop gain because the CMFB loop may have more high-frequency
poles than the DM loop. For example, poles of acms(s) of the CM-sense amplifier and the pole
associated with the capacitance at the source of M1 in Fig. 12.14b are poles in the CMFB loop.
However, they are not poles in the DM feedback loop since the source of M1 is an ac ground in
the DM half-circuit. As a result, the load capacitance required in (12.43) to provide an adequate
phase margin for the CMFB loop may result in a larger DM load capacitance than desired,
thereby overcompensating the DM feedback loop. While such overcompensation increases
the phase margin of the DM feedback loop, it also decreases the unity-gain bandwidth of the
DM loop gain and the 3 dB bandwidth of the DM closed-loop gain, which is undesirable when
high bandwidth is desired in the DM feedback circuit to amplify a wide-band DM signal.

To overcome this problem, (12.44) shows that decreasing gm5h = gm5∕2 decreases the
unity-gain frequency of the gain acmc in the CMFB loop and therefore increases the phase
margin of the CMFB loop. Assuming that the tail bias current ID5 cannot be changed, this
decrease could be achieved by decreasing (W∕L)5. However, decreasing (W∕L)5 increases
Vov5, which affects the CM input range of the op amp. Alternatively, a reduction in gm5h can
be realized by splitting M5 into two parallel transistors, which are labeled M51 and M52 in

M3 M4

M2

M52

M1

M51

VDD

VBB2

–VSS

Vo2

Vi2

Vo1

Vi1

Vcmc

VBIAS

Figure 12.15 The op amp of Fig. 12.2
modified by replacing M5 with M51 with
Vg51 constant, and M52 with Vg52 = Vcmc.
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Fig. 12.15. Transistor M51 has its gate connected to a bias voltage and carries a constant drain
current. The gate of M52 acts as the CMC input. To keep the bias currents in the op amp the
same as in Fig. 12.2, we want

ID51 + ID52 = ID5 (12.45)

To keep the CM input range of the op amp unchanged, we need

Vov51 = Vov52 = Vov5 (12.46)

From (1.181), (12.45), and (12.46),

gm52 =
2ID52

Vov52
< gm5 =

2ID5

Vov5
(12.47)

as desired. For the circuit of Fig. 12.15, gm52h = gm52∕2 replaces gm5h = gm5∕2 in (12.42),
(12.43), and (12.44). A disadvantage of this approach is that reducing the transconductance in
(12.42) reduces the magnitude of the CMC gain, |acmc|, at dc.

12.5 CMFB Circuits
In this section, circuits that detect the CM output voltage and generate a signal (a current or
a voltage) that is a function of Voc − VCM are described. These circuits are part of the CMFB
loop and will be referred to as CM-sense circuits. For simplicity, these circuits are described
using the simple, fully differential amplifier shown in Fig. 12.2.

12.5.1 CMFB Using Resistive Divider and Amplifier

A straightforward way to detect the CM output voltage is to use two equal resistors, as shown
in Fig. 12.16a.3,4 The voltage between the two resistors is

Voc =
Vo1 + Vo2

2
(12.48)

This voltage is subtracted from the desired CM output voltage, VCM , and scaled by the
differencing CM-sense amplifier of Fig. 12.16b that consists of source-coupled pair M21–M22,
diode-connected loads M23 and M24, and tail-current source M25. The output of this amplifier,
which drives the CMC input of the op amp, is

Vcms = acms(Voc − VCM) + VCSBIAS (12.49)

If Voc = VCM , then Vcms = VCSBIAS. Therefore, for the circuit of Fig. 12.16b, VCSBIAS =
VGS23 − VSS when ID23 = ID25∕2. The value of VGS23 [or, equivalently, ID23 and (W∕L)23] is
chosen so that ID5 is equal to the design value of |ID3| + |ID4| in Fig. 12.2 when Voc = VCM .
In (12.49), acms is the small-signal voltage gain of the CM-sense amplifier:

acms =
vcms

voc
|CMFB loop open = 1

2

gm21

gm23
(12.50)

Here, we have assumed that the CM gain of the CM-sense amplifier is much smaller in mag-
nitude than its DM gain. The factor of 1∕2 multiplies gm21∕gm23 in (12.50) because the output
is taken from only one side of the differential amplifier.
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Figure 12.16 (a) CMFB using a
resistive divider to detect Voc and a
CM-sense amplifier. (b) A schematic
for the CM-sense amplifier that can
be used with the op amp of Fig. 12.2.

◼ EXAMPLE
Determine the value of VCM that maximizes the output swing for the differential op amp
of Fig. 12.2. Use the CMFB scheme of Fig. 12.16a, and design the CM-sense amplifier of
Fig. 12.16b. Assume that the CM-sense resistors Rcs are very large and can be neglected when
computing small-signal voltage gains for the op amp. Use the data and assumptions in the
next-to-last example with VDD = VSS = 2.5 V. Assume Vic = 0. Ignore the body effect.

For the op amp of Fig. 12.2, if the magnitude of its DM gain is large and if the op amp oper-
ates in a DM negative feedback loop (for example, as shown in Fig. 12.1a), Vid ≈ 0. Therefore,
both op-amp inputs will be close to ground since Vic = 0; that is, Vi1 = Vic + Vid∕2 ≈ 0 and
Vi2 = Vic − Vid∕2 ≈ 0. The output Vo1 reaches its lower limit when M1 enters the triode region,
which occurs when Vgd1 = Vt1; therefore,

Vo1(min) = −Vt1 + Vi1 ≈ −Vt1 = −0.7 V
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(Body effect would increase Vt1 and decrease Vo1(min).) The upper output swing limit occurs
when M3 enters the triode region, and

Vo1(max) = VDD − |Vov3| = 2.5 − 0.2 = 2.3 V

To maximize the output swing, the dc CM output voltage VOC should be halfway between the
swing limits:

VOC =
Vo1(max) + Vo1(min)

2
= 2.3 + (−0.7)

2
= 0.8 V

Therefore, we choose VCM = 0.8 V. The resulting peak differential output voltage is

Vod(peak) = Vo1(max) − Vo2(min) = Vo1(max) − Vo1(min) = 2.3 − (−0.7) = 3.0 V

To design the CM-sense amplifier of Fig. 12.16b, we must choose a value for its
low-frequency gain. In the CMFB loop, the loop gain is (−acmc)acms. From the previous
example, acmc = −196. If we design for acms = 1, the CMFB loop gain is 196, and (12.39)
gives ACMFB = 0.995. Therefore, Voc closely tracks changes in VCM . With this choice of gain
in the CM-sense amplifier of Fig. 12.16b, (12.50) gives

acms =
1
2

gm21

gm23
= 1

2

√
2k′p(W∕L)21|ID21|√
2k′n(W∕L)23ID23

= 1
2

√
k′p(W∕L)21√
k′n(W∕L)23

= 1 (12.51)

The dc output voltage of the CM-sense amplifier when Voc = VCM should equal the dc
voltage needed at the CMC op-amp input, which is

−VSS + VGS5 = −VSS + Vt5 + Vov5

This dc voltage is produced by the CM-sense amplifier if M5 and M23 have equal overdrive
voltages. Assuming that ro → ∞, matching Vov5 and Vov23 requires that M5 and M23 have equal
drain-current-to-W∕L ratios:

ID5

(W∕L)5
=

ID23

(W∕L)23
(12.52)

In (12.51) and (12.52), there are three unknowns: ID23, (W∕L)23, and (W∕L)21. Therefore,
many possible solutions exist. [Note that (W∕L)5 can be determined from Vov5 = 0.2 V (by
assumption) and ID5 = 200 μA.]

One simple solution is ID23 = ID5 and (W∕L)23 = (W∕L)5. Then (W∕L)21 can be determined
from (12.51). While this solution is simple, it requires as much dc current in the CM-sense
amplifier as in the op amp. Equations 12.51 and 12.52 can be solved with ID23 < ID5, which
reduces the power dissipation in the CM-sense amplifier. However, the magnitude of the pole
associated with the M5–M23 current mirror decreases as ID23 decreases. To illustrate this point,
we will ignore all capacitors except the gate-source capacitors for M5 and M23 and assume L23
is fixed. Then the magnitude of the nondominant pole associated with the current mirror is

|pnd| = gm23

Cgs5 + Cgs23
=

2ID23

Vov23

Cgs5 + (2∕3)CoxW23L23
(12.53)
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since the small-signal resistance of diode-connected M23 is 1∕gm23 (assuming that ro23 ≫

1∕gm23). If ID23 is scaled by a factor x (x < 1) and M5 is unchanged, W23 must also scale
by the factor x to satisfy (12.52). With this scaling, the pole magnitude in (12.53) decreases
because the numerator scales by the factor x, but the denominator scales by a factor greater than
x due to the constant Cgs5 term in the denominator. This pole appears in the CMFB loop gain.
Therefore, the phase margin of the CMFB loop decreases as this pole magnitude decreases
due to a decrease in ID23.

Finally, we must verify that the CM input range of the CM-sense amplifier includes its CM
input voltage, which is VCM = 0.8 V. The upper limit of the CM input voltage occurs when
M25 enters the triode region, when |VDS25| = |Vov25|; therefore, we want

VIC < VDD − |Vov25| − |VGS21| = VDD − |Vov25| − |Vtp| − |Vov21|
= 2.5 − 0.2 − 0.7 − 0.2 = 1.4 V

The lower limit of the CM input voltage occurs when M21 (or M22) enters the triode region
(when VGD21 = Vt21); hence,

VIC > −VSS + VGS23 − |Vt21| = −VSS + (Vtn + Vov23) − |Vtp|
= −2.5 + (0.7 + 0.2) − 0.7 = −2.3 V

The applied CM input voltage of 0.8 V falls between these limits; therefore, all transistors
operate in the active region as assumed.◼

In this CMFB approach, the inputs to the CM-sense amplifier are ideally constant, which
simplifies its design. One disadvantage of this CM-sense circuit is that the Rcs resistors and
the input capacitance of the CM-sense amplifier introduce a pole in the transfer function of
the CM-sense circuit and therefore in the CMFB loop. A capacitor Ccs can be connected in
parallel with each sense resistor to introduce a left-half-plane zero in the CM-sense circuit to
reduce the effect of the pole at high frequencies. (See Problem 12.18.)

Another disadvantage of this CM-sense circuit is that the sense resistor Rcs loads the
op-amp output in the DM half-circuit, since the node between the resistors is a DM ac ground.
This loading reduces the open-loop differential voltage gain unless Rcs is much larger than
the output resistance of the DM half-circuit.

To avoid this resistive output loading, voltage buffers can be added between the op-amp
outputs and the Rcs resistors. Source followers are used as buffers in Fig. 12.17. One potential
problem is that each source follower introduces a dc offset of VGS between its input and output.
To avoid a shift in the CM operating point caused by these offsets, voltage VCM can be buffered
by an identical source follower so that the op-amp output voltages and VCM experience equal
offsets. However, these offsets limit the op-amp output swing since each source-follower tran-
sistor that connects to an op-amp output must remain in the active region over the entire output
voltage swing.

The CMFB scheme of Fig. 12.16 can be modified to eliminate the M23–M5 current mir-
ror from the CMFB loop, as shown in Fig. 12.18. This modified CM-sense amplifier directly
injects currents to control the op-amp CM output.5 Here, M21 in Fig. 12.16b is split into two
matched transistors, M21A and M21B, and the drain of each transistor connects to an op-amp
output. The current injected by M21A and M21B into either output is

Icms =
I26

4
−

gm21A

2
(Voc − VCM)
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Figure 12.17 The CMFB scheme of Fig. 12.16 with source followers added as buffers between the
op-amp outputs and the Rcs resistors.
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CM
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Figure 12.18 A CM-sense amplifier that injects currents into the op amp to control the op-amp CM
output voltage. In the CM-sense circuit, (W∕L)21A = (W∕L)21B = 0.5(W∕L)22.

Transistors M3–M5 act as current sources. The CMFB loop will adjust Icms so that

|ID3| + |ID4| + 2Icms = ID5

If Voc = VCM , M21A, M21B, and M22 give 2Icms = I26∕2. Therefore, I26 should be chosen so that

|ID3| + |ID4| + I26

2
= ID5

when all devices are active.
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An advantage of this approach is that it avoids the pole associated with the M5–M23 current
mirror in Figs. 12.2 and 12.16. However, M21A and M21B add resistive and capacitive loading
at the op-amp outputs. If an op amp uses cascoded devices, M21A and M21B can connect to
low-impedance cascode nodes to reduce the impact of this loading.

12.5.2 CMFB Using Two Differential Pairs

A CMFB scheme that uses only transistors is shown in simplified form in Fig. 12.19.
Here M21–M24 are matched. The source-coupled pairs M21–M22 and M23–M24 together
sense the CM output voltage and generate an output that is proportional to the difference
between Voc and VCM .5–7 To show this, assume at first that the differential inputs to the two
source-coupled pairs, which are Vo1 − VCM and Vo2 − VCM , are small enough to allow the use
of small-signal analysis. Also, assume that the CM gain of these source-coupled pairs is zero.
Under these assumptions, the drain currents in M22 and M23 are

Id22 = −
I20

2
− gm22

(Vo2 − VCM)
2

(12.54)

Id23 = −
I20

2
− gm23

(Vo1 − VCM)
2

(12.55)

These currents are summed in diode-connected M25 to give the CM sensor output current

Icms = Id25 = −Id22 − Id23 = I20 + gm22

(
Vo1 + Vo2

2
− VCM

)
= I20 + gm22(Voc − VCM) (12.56)

since gm22 = gm23. This last expression shows that the current through M25 includes a dc term
I20 plus a term that is proportional to Voc − VCM . The current Id25 is mirrored by M5 in Fig. 12.2
to produce the tail current in the op amp, which controls the CM output voltage.

The dc output of the CM-sense circuit should provide the dc voltage needed at the CMC
input to give Voc = VCM . If Voc = VCM , the drain current in M25 is

ID25 = |ID22| + |ID23| = I20

2
+

I20

2
= I20 (12.57)
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Figure 12.19 A CMFB approach that uses two differential pairs. This circuit can be used with the op
amp of Fig. 12.2.
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Choosing I20 = |ID3| + |ID4| and (W∕L)25 = (W∕L)5 is one design option. Again, as for
the CM-sense amplifier of Fig. 12.16b, a smaller value of I20 can be used, but such current
reduction causes the magnitude of the pole associated with the M5–M25 current mirror to
decrease. [See the text associated with (12.53).] This scheme does not resistively load the
op-amp outputs, but the source-coupled pairs M21–M24 capacitively load the op-amp outputs.

The above analysis of this CM-sense circuit assumed that M21–M24 always operate in the
active region and that voltages Vo1 − VCM and Vo2 − VCM could be treated as small-signal
inputs. Even if these voltages become large, the CMFB loop continues to operate as long as
M21–M24 remain on. However, the small-signal analysis is not valid if the transistors leave the
active region. If the op-amp outputs become large enough to turn off any of M21–M24 during
a portion of the output swing, the CMFB loop will not operate properly during that part of the
output swing. The requirement that M21–M24 remain on during the entire output swing imposes
a limit on the output swing of the op amp. The input voltage range for which both transistors
in a differential pair remain on is related to the gate overdrive voltage of those transistors.
[See (3.161).] Therefore, to keep M21–M24 on for a large Vo1 and Vo2, M21–M24 require large
overdrives. In contrast, the scheme that uses resistors to detect the CM output voltage does
not impose such an output-swing limit since the CM-sense amplifier is driven by Voc, which
is ideally constant, rather than Vo1 and Vo2, which include CM and DM components.

Equation 12.56 implies that this CM-sense circuit is nearly perfect since it produces an
output current that includes a constant term plus a term that is proportional to Voc − VCM .
This result is based on a linear small-signal analysis. However, the inputs to the differential
pairs in the CM-sense circuit can include large signals because the op-amp DM output voltage
can be large. Next, a large-signal analysis of this circuit is carried out.

The drain current in M25 is

Id25 = −Id22 − Id23 (12.58)

The differential input of the M21–M22 pair is Vo2 − VCM . Using (3.159) and (1.166) gives

−Id22 =
I20

2
+

k′p
4

(W
L

)
22
(Vo2 − VCM)

√
4V2

ov22 − (Vo2 − VCM)2

≈
I20

2
+

k′p
4

(W
L

)
22

(
−

Vod

2
+ Voc − VCM

)√
4V2

ov22 − (Vod∕2)2 + (Voc − VCM)Vod

=
I20

2
+

k′p
4

(W
L

)
22

(
−

Vod

2
+ Voc − VCM

)
×
√

4V2
ov22 − (Vod∕2)2

√
1 +

(Voc − VCM)Vod

4V2
ov22 − (Vod∕2)2

≈
I20

2
+

k′p
4

(W
L

)
22

(
−

Vod

2
+ Voc − VCM

)√
4V2

ov22 − (Vod∕2)2

×
⎡⎢⎢⎣1 + 1

2

(
(Voc − VCM)Vod

4V2
ov22 − (Vod∕2)2

)
− 1

8

(
(Voc − VCM)Vod

4V2
ov22 − (Vod∕2)2

)2

+ · · ·
⎤⎥⎥⎦ (12.59)

where |Voc − VCM|≪ |Vod| was assumed in the first approximation above and
√

1 + x ≈
1 + x∕2 − x2∕8 + · · ·, where x = [(Voc − VCM)Vod]∕[4V2

ov22 − (Vod∕2)2], was used in the
last line.
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The differential input of the M23–M24 pair is Vo1 − VCM . A similar analysis to that above
for this differential pair yields

−Id23 ≈
I20

2
+

k′p
4

(W
L

)
23

(
Vod

2
+ Voc − VCM

)√
4V2

ov23 − (Vod∕2)2

×
⎡⎢⎢⎣1 − 1

2

(
(Voc − VCM)Vod

4V2
ov23 − (Vod∕2)2

)
− 1

8

(
(Voc − VCM)Vod

4V2
ov23 − (Vod∕2)2

)2

+ · · ·
⎤⎥⎥⎦ (12.60)

Substituting (12.59) and (12.60) in (12.58) with Vov22 = Vov23 and (W∕L)22 = (W∕L)23 gives

Icms = Id25 ≈ I20 +
k′p
2

(W
L

)
23
(Voc − VCM)

√
4V2

ov23 − (Vod∕2)2

×
⎡⎢⎢⎣1 − 1

4

(
V2

od

4V2
ov23 − (Vod∕2)2

)
− 1

8

(
(Voc − VCM)Vod

4V2
ov23 − (Vod∕2)2

)2

+ · · ·
⎤⎥⎥⎦ (12.61)

If |Vod∕2|≪ |2Vov23|, this equation reduces to (12.56). To interpret (12.61), first consider the
case when Voc = VCM . Then (12.61) shows that the CM-sense output current is constant with
Icms = I20. Whereas Icms is constant, (12.59) and (12.60) show that Id22 and Id23 are not constant
if Vod is nonzero and time-varying, and Id22 and Id23 are nonlinear functions of Vod (see the
plot in Fig. 3.51). However, the variation in Id22 due to nonzero Vod is equal and opposite
to the variation in Id23 due to Vod; therefore, these variations cancel when these currents are
summed to form Icms. Next, consider the case when Voc ≠ VCM . Voc may not equal VCM due
to device mismatch, finite gain in the CMFB loop, or the presence of an ac component in
Voc. Equation 12.61 shows that Icms has terms that include V2

od that affect Icms when Voc ≠
VCM . Therefore, even if the transistors are perfectly matched, this CM sensor does not behave
like an ideal CM sensor as described by (12.49). The terms that include V2

od stem from the
(square-law) nonlinearity associated with the M21–M22 and M23–M24 differential pairs that
convert Vo1 − VCM and Vo2 − VCM into currents. The dependence of Icms on V2

od can cause
a shift in the dc CM output voltage. Moreover, if Vod is not constant, this dependence can
produce an ac component in Voc.

12.5.3 CMFB Using Transistors in the Triode Region

Another CMFB scheme is shown in Fig. 12.20.8 The simple op amp of Fig. 12.2 is redrawn
here, with M5 replaced by M30–M32. Transistors M30–M35 are part of the CMFB loop. Here,
M31,M32, M34, and M35 operate in the triode region, while M30, M33, and M36 operate in the
active region. The desired CM output voltage VCM is connected to the gates of M34 and M35.
To simplify the description of this circuit, assume that M30–M35 are matched and ignore body
effect. Before this CMFB approach is mathematically analyzed, its operation will be explained
intuitively. At first, assume that the op-amp outputs of Fig. 12.20 have only a CM compo-
nent: that is, Vo1 = Vo2 = Voc. Then the gate voltages of M31 and M32 equal Voc. Since |ID3| =|ID4| = I1, the drain current in M30 must equal 2I1 to satisfy KCL. Transistors M30–M35 form a
degenerated current mirror and give ID30 = ID33 = 2I1 when Voc = VCM because M30–M35 are
matched. Therefore, Voc = VCM is a possible operating point for this circuit. Negative feedback
forces the circuit to this operating point, as described below. So far, we have assumed that only
CM signals are present. Differential signals do not affect the operation of this feedback loop,
as shown by the following analysis.
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Figure 12.20 A CMFB approach that uses transistors M31, M32, M34, and M35 biased in the triode region.

Since M31 and M32 are matched and operate in the triode region, the sum of their drain
currents Icms is [using (1.152)]

Icms = Id31 + Id32 = k′n
(W

L

)
31

(
(Vo1 + VSS − Vt31)Vds31 −

V2
ds31

2

)

+ k′n
(W

L

)
32

(
(Vo2 + VSS − Vt32)Vds32 −

V2
ds32

2

)

= 2k′n
(W

L

)
31

(
Voc + VSS − Vtn −

Vds31

2

)
Vds31 (12.62)

since Vds31 = Vds32, Vt31 = Vt32 = Vtn, and (W∕L)31 = (W∕L)32. This equation shows that Icms
is dependent on the CM output voltage and independent of the differential output voltage
because changes in the drain currents in M31 and M32 due to nonzero Vod are equal in magnitude
and opposite in sign. Therefore, these changes cancel when the drain currents are summed
in (12.62).

Applying KVL around the lower transistors M30–M35 gives

Vds31 = Vds35 + Vgs33 − Vgs30 (12.63)

Assuming that Id30 ≈ Id33, we have Vgs30 ≈ Vgs33, and (12.63) reduces to

Vds31 ≈ Vds35 (12.64)

Since M35 operates in the triode region with ID35 = I1, rearranging (1.152) gives

Vds35 =
I1

k′n
(W

L

)
35

(
VCM + VSS − Vtn −

Vds35

2

) (12.65)
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Using (12.64) and (12.65) in (12.62) with (W∕L)31 = (W∕L)35 gives

Icms ≈ I1

2k′n
(W

L

)
35

(
Voc + VSS − Vtn −

Vds35

2

)
k′n
(W

L

)
35

(
VCM + VSS − Vtn −

Vds35

2

) = 2I1

Voc + VSS − Vtn −
Vds35

2

VCM + VSS − Vtn −
Vds35

2

= 2I1

VCM + VSS − Vtn −
Vds35

2

VCM + VSS − Vtn −
Vds35

2

+ 2I1
Voc − VCM

VCM + VSS − Vtn −
Vds35

2

= 2I1 + 2I1
Voc − VCM

VCM + VSS − Vtn −
Vds35

2

(12.66)

This last expression shows that the op-amp tail current Icms consists of a constant term 2I1 plus
a term that depends on Voc − VCM . If |Id3| = |Id4| = I1, then KCL requires that Icms = 2I1.
Using this value in (12.66) gives Voc ≈ VCM , as desired. In practice, mismatches can cause Voc
to deviate from VCM . For example, if the drain currents in M3 and M4 are larger than I1, then
(12.66) shows that Voc must be larger than VCM to force Icms to be larger than 2I1.

To see that the CMFB loop here is a negative feedback loop, assume that Voc increases.
Then the gate-source voltages on M31 and M32 increase, which in turn increases Icms. Increasing
Icms causes Vsd3 = Vsd4 to increase since M3 and M4 have fixed gate-source voltages. This
increase in Vsd3 = Vsd4 causes Voc to fall and counteract the assumed increase in Voc. In steady
state, this CMFB loop forces Voc ≈ VCM .

One limitation of this scheme is that the CMFB loop will not function properly whenever the
output voltage swing is large enough to turn off either M31 or M32. Therefore, neither op-amp
output is allowed to swing within a threshold voltage of−VSS. Thus, the op-amp output swing is
limited by this CMFB scheme. Another limitation is that the magnitude of the small-signal gain
in the CMFB loop is smaller here than in the previous approaches because the transconductance
of M31 or M32 in the triode region is smaller than it is in the active region. (See Problem 12.19.)
Reducing the CMFB loop gain reduces the control that the CMFB loop exerts on the CM output
voltage. Also, the bandwidth of the CMFB loop is lower here than in other cases due to the low
transconductance of M31 and M32. Bandwidth requirements for the CMFB loop are considered
in Section 12.8.

12.5.4 Switched-Capacitor CMFB

To overcome the op-amp output swing limitations imposed by the last two CMFB approaches
and avoid resistive output loading of the op amp, capacitors can be used to detect the CM
output voltage. If the CM-sense resistors Rcs in Fig. 12.16 are replaced with capacitors, the
resistive output loading is eliminated, but these capacitors are open circuits at dc. To avoid a dc
bias problem, switched capacitors can be used as the CM detector.9 A switched-capacitor (SC)
CMFB scheme that is often used in switched-capacitor amplifiers and filters (see Section 6.1.7)
is shown in Fig. 12.21. Here the network that consists of switches S1–S6 and capacitors C1 and
C2 senses the CM output voltage and subtracts it from the desired CM output voltage VCM .
Voltage VCSBIAS is a dc bias voltage. As in Fig. 6.8, assume that each switch is on when its
control signal is high and is off when its control signal is low. The switches are controlled by
two nonoverlapping clocks, 𝜙1 and 𝜙2 (that is, 𝜙1 and 𝜙2 are never high at the same time).
In this section, we will assume that these switches are ideal. In practice, switches S1–S6 are
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Figure 12.21 A CMFB scheme that uses switched capacitors.

implemented with MOS transistors. As in the previous section, we use the simple op amp of
Fig. 12.2 as the op amp in Fig. 12.21.

The SC CMFB circuit is a linear, balanced, discrete-time circuit. Therefore, all points on the
axis of symmetry (shown as a dashed line in Fig. 12.21) operate at ac ground for differential
signals. The op-amp CMC input is along the axis of symmetry, so Vcmc has a CM compo-
nent but zero DM component. Therefore, the switched-capacitor circuit is a good CM sensor.
To show that voltage Vcmc depends on the difference between the actual and desired CM output
voltages, consider the CM half-circuit shown in Fig. 12.22a. Capacitor C2 is not switched and
connects from Vcmc to Voc. Since Vcmc is the gate voltage of M5 in Fig. 12.2, there is voltage
gain from Vcmc to Voc, which is modeled by controlled source acmc. Comparing this half-circuit
to Fig. 6.10a, we see that C2 connected across the gain stage and switched-capacitor C1 form
a switched-capacitor integrator. This integrator is in a negative feedback loop since its output
Voc is connected back to a switch that connects to C1.

When 𝜙1 is high, C1 charges to VCM − VCSBIAS. When 𝜙2 is high, C1 connects between
Voc and Vcmc. In steady state, Voc is constant because the applied voltages VCM and VCSBIAS
are both dc voltages and because the switched-capacitor integrator operates in a negative feed-
back loop. After Voc becomes constant, C1 does not transfer charge onto C2 when 𝜙2 is high.
This condition is satisfied if the charge on C1 when 𝜙1 is high is the same when 𝜙2 is high, or

Q(𝜙1) = C1(VCM − VCSBIAS) = Q(𝜙2) = C1(Voc − Vcmc) (12.67)

This equation reduces to
VCM − Voc = VCSBIAS − Vcmc (12.68)

If VCSBIAS equals the nominal bias voltage required at the CMC input and if |acmc|≫ 1, Vcmc
is about constant with Vcmc ≈ VCSBIAS. Then (12.68) reduces to

Voc ≈ VCM (12.69)

as desired. For the op amp of Fig. 12.2, bias voltage VCSBIAS could be generated by passing
a current equal to |ID3| + |ID4| through a diode-connected copy of M5 connected to −VSS,
as shown in Fig. 12.22b. The copies of M3 and M4 have the same source and gate connec-
tions as in the op amp and duplicate the currents |ID3| and |ID4| that flow in Fig. 12.2. The



884 Chapter 12 ▪ Fully Differential Operational Amplifiers

(a)

VocVoc

VCM

Vcmc = VCMC + vcmc

VCSBIAS

C1

C2

2

+

–

+

–
acmcvcmc

ϕ

1ϕ

2ϕ

1ϕ

VBIAS

VCSBIAS

VDD

(b)

–VSS

Copy of M3

Copy of M5

Copy of M4

∣ID3∣ + ∣ID4∣

Figure 12.22 (a) CM half-circuit for Fig. 12.21. (b) Replica bias circuit for generating VCSBIAS for the
differential op amp of Fig. 12.2.

voltage VCSBIAS is the gate voltage of the copy of M5. Since this bias circuit uses copies
or replicas of the transistors in the op amp to generate VCSBIAS, this technique is referred to as
replica biasing.

An advantage of this CMFB approach is that the op-amp output voltage swing is not limited
by this CM-sense circuit because it consists only of passive elements (capacitors) and switches.
(If a switch is constructed of n-channel and p-channel transistors in parallel driven by clock 𝜙

and its inverse, respectively, it can pass any signal that falls between the power-supply voltages
if VDD + VSS > Vtn + |Vtp|.10) In practice, an MOS transistor is not an ideal switch. It must
have a W∕L that is large enough to give a sufficiently low drain-source resistance when it is
on. However, when each transistor turns off, charge from its channel and charge associated
with its gate overlap capacitance transfer onto its drain and source nodes. Therefore, the MOS
transistors acting as switches will transfer charge onto C1. Let ΔQ represent the net charge
transferred onto C1 each clock period. Including the effect of this charge, (12.67) becomes

C1(VCM − VCSBIAS) = C1(Voc − Vcmc) + ΔQ (12.70)

or

VCM − Voc = VCSBIAS − Vcmc +
ΔQ
C1

(12.71)
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Comparing (12.71) with (12.68) shows that ΔQ∕C1 introduces an offset in Voc, making Voc
differ from VCM when VCSBIAS = Vcmc. If VCM was chosen to maximize the op-amp output
swing, a shift in Voc will reduce the op-amp output swing. The magnitude of the charge
transferred by each switch transistor increases with its width W [since the gate-channel and
overlap capacitances are proportional to W as shown in (1.187) and (2.45)], so a trade-off
exists between low switch on-resistance and small charge transfer. From (12.71), increasing
C1 reduces the effect of the transferred charge on Voc, but increasing C1 increases the capacitive
loading at the op-amp outputs when 𝜙2 is high.

12.6 Fully Differential Op Amps
Some fully differential op amps are presented in this section. The singled-ended counterpart of
each op amp was covered in previous chapters (low-frequency operation in Chapter 6 and com-
pensation in Chapter 9). The two-stage op amp will be covered first, followed by single-stage
op amps.

12.6.1 A Fully Differential Two-Stage Op Amp

A fully differential two-stage op amp is shown in Fig. 12.23. Compared to its single-ended
counterpart in Fig. 6.16, two differences are the addition of M9–M10, which is a copy
of the common-source stage M6–M7, to generate the second output, and the removal of
the gate-to-drain connection on M3 to give a symmetric input stage. The input stage is a
complementary version of the differential stage in Fig. 12.2. The CMC input is the gate
of tail current source M5. If the voltage at the gate of M5 changes, the magnitudes of the
drain currents in M1–M4 change by equal amounts. Therefore, Vds3 and Vds4 change by
equal amounts. These voltage changes are amplified by the common-source stages M6–M7
and M9–M10 to cause equal changes in output voltages Vo1 and Vo2, which changes Voc.
Therefore, the CM output voltage can be controlled by a CMFB loop that connects to the
gate of M5.

VDD

–VSS

Vcmc

VB1

VB2

VB1

M7M5

Vi1

Vo1
Vi2

Vo2

M1

M4 M6

M2

M3M9

M10

C C

Figure 12.23 A fully differential two-stage CMOS op amp.
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In Fig. 12.23, two Miller compensation capacitors C are connected across the symmetric
second stages. These capacitors compensate both the DM and CM half-circuits, which are
shown in Fig. 12.24. Although not shown, any of the approaches described in Chapter 9 for
eliminating the right-half-plane zero associated with feedforward through the compensation
capacitor could be used here.

The DM half-circuit of Fig. 12.24a is a cascade of two common-source amplifiers with
active loads. The low-frequency DM gain is

adm0 =
vod

vid
= −gm2(ro2||ro4)gm6(ro6||ro7) (12.72)

The Miller-compensated second stage can be modeled by the circuit of Fig. 9.21 with
R1 = ro2||ro4, gm = gm6, R2 = ro6||ro7, C1 = C1d, and C2 = C2d. (The input capacitance C1d
of the second stage and load capacitance C2d of the second stage are not shown explicitly
in Fig. 12.24a.) Therefore, the poles p1d and p2d of the DM half-circuit are given by (9.32)
and (9.33). Assume that the op amp is operating in a feedback loop, the feedback factor fdm
for the DM feedback loop is frequency-independent, and the right-half-plane zero has been
eliminated. Then to achieve a 45∘ phase margin, the magnitude of the DM loop gain should
be unity at the frequency |p2d|. Since |gain|× frequency is constant from |p1d| to |p2d| due to
the one-pole roll-off there, we can write

|adm0 fdmp1d| = 1 ⋅ |p2d| (12.73)

(a)
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Figure 12.24 (a) DM
half-circuit and (b) CM
half-circuit for the op amp of
Fig. 12.23.
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Substituting (12.72), (9.32), and (9.33) in (12.73) gives

gm2

C
fdm ≈

gm6

C2d
(12.74)

assuming that the DM load capacitance C2d and the compensation capacitor C are much larger
than the internal node capacitance C1d. If the other values are known, the compensation capac-
itor is determined by (12.74).

The CM half-circuit is shown in Fig. 12.24b. The first stages of the CM and DM half-circuits
are different, but the second stages are identical. To focus on the CMFB loop, we will assume
vic = 0. (Nonzero vic will be considered later.) In the CM half-circuit, the first stage consists
of common-source M5h with common-gate M2 and active load M4. As in Fig. 12.14b, M5h is
one half of M5, with (W∕L)5h = (W∕L)5∕2 and ID5h = ID5∕2. The first stage is followed by the
common-source second stage, M6–M7. The low-frequency CMC gain is

acmc0 =
voc

vcmc
≈ gm5h[(ro2gm2ro5h)||ro4]gm6(ro6||ro7) (12.75)

Capacitance associated with the source of cascode M1 introduces a pole px in the CMC gain.
If |px| is much larger than the magnitude of the nondominant pole |p2c| in (9.33) from the
Miller-compensated second stage, pole px can be ignored, and the gain acmc can be approxi-
mated as having two poles that are given by (9.32) and (9.33). These poles can be different
than the poles in the DM gain for two reasons. First, the output load capacitances in the DM
and CM half-circuits can be different; and second, the output resistances of the first stages
in the half-circuits can be different. The zero due to feedforward is the same as for DM gain
and can be eliminated as described in Chapter 9. To simplify the following analysis, we will
assume that all poles and zeros in the CMFB loop other than the two poles associated with
the Miller compensation can be ignored. To achieve a 45∘ phase margin, the magnitude of the
CMFB loop gain should fall to unity at |p2c|. Therefore,

|acmc0acms0p1c| = 1 ⋅ |p2c| (12.76)

where acms0 is the low-frequency gain through the CM-sense circuit

acms0 =
vcmc

voc
|𝜔=0, CMFB loop open =

vcms

voc
|𝜔=0, CMFB loop open (12.77)

Substituting (12.75), (9.32), and (9.33) in (12.76) and using R1 ≈ ro2gm2ro5h gives

gm5h

C
|acms0| ≈ gm6

C2c
(12.78)

assuming that the CM load capacitance C2c and the compensation capacitor C are much larger
than the internal node capacitance C1c. The compensation capacitor required for the CMFB
loop can be found from (12.78).

Ideally, the compensation capacitor values calculated in (12.74) and (12.78) would be equal,
and the CMFB and DM loops would each have a phase margin of 45∘. In practice, these values
are rarely equal. If the value of C is chosen to be the larger of the values given by (12.74) and
(12.78), one feedback loop will have a phase margin of 45∘, and the other loop will have a phase
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margin larger than 45∘ and will be overcompensated. A drawback of overcompensation is that
the unity-gain frequency of the loop gain and the closed-loop bandwidth are smaller than they
would be if the loop were optimally compensated. If the larger C is required to compensate the
DM feedback loop, using that compensation capacitor will overcompensate the CMFB loop.
Since the CMFB ideally operates on only dc signals, reducing its bandwidth may be acceptable.
(See Section 12.8 for more on this topic.) If the larger C is required to compensate the CMFB
feedback loop, using that compensation capacitor will overcompensate the DM loop. However,
reducing the bandwidth of the DM feedback loop by overcompensation is usually undesirable
because this loop operates on the DM input signal, which may have a wide bandwidth.

An alternative to using the larger C value that optimally compensates the CMFB loop but
overcompensates the DM loop is the following. The value of C that gives a 45∘ phase margin in
the DM loop from (12.74) can be used if gm5h is scaled down to satisfy (12.78). This approach
gives a 45∘ phase margin for both feedback loops without sacrificing bandwidth in the DM
loop. Scaling of gm5h = gm5∕2 could be achieved by reducing (W∕L)5, but such scaling would
reduce the CM input range of the op amp because decreasing (W∕L)5 increases |Vov5|. Another
solution is to split M5 into two parallel transistors, one that has its gate connected to a bias
voltage and the other with its gate connected to CMC, as described in Section 12.4.2 and
Fig. 12.15. A drawback of this approach is that reducing gm5h reduces |acmc0|, as can be seen
in (12.75).

Ignoring limitations imposed by the CM-sense circuit, we see that each op-amp output of
Fig. 12.23 can swing until a transistor in the second stage enters the triode region. The maxi-
mum value of Vo1 is VDD − |Vov7|, and its minimum value is −VSS + Vov6. Therefore, the peak
differential output voltage is

Vod(peak) = Vo1(max) − Vo2(min) = Vo1(max) − Vo1(min) = VDD − |Vov7| − (−VSS + Vov6)

= VDD + VSS − Vov6 − |Vov7| (12.79)

The CM input range of the op amp is limited in the positive direction by the tail current
source, which transitions from active to triode when |Vds5| = |Vov5|; therefore, we want

VIC < VDD − |VGS1| − |Vov5| (12.80)

The lower limit of the CM input range occurs when input transistor M1 (or M2) enters the
triode region, so

VIC > −VSS + VGS6 + Vt1 (12.81)

◼ EXAMPLE
Modify the single-ended two-stage op amp from the example in Section 6.3.5 and the first
example in Section 9.4.3 into a fully differential op amp. It will be used in the feedback circuit
shown in Fig. 12.25, which represents the connections in a switched-capacitor circuit when one
clock is high (assuming the switches are ideal). The capacitor values are CS = 2 pF,CF = 5 pF,
and CL = 2 pF. Design for 1 V peak output swing and phase margins of 45∘ or greater in the
DM and CMFB loops. Use VDD = VSS = 1.65 V, and design for a CM output voltage of 0 V.

First we will design the devices to satisfy the bias and low-frequency requirements. Then
we will compensate the amplifier. Using the device sizes and bias currents from the example
in Section 6.3.5, we have

(W∕L)1 = (W∕L)2 = 77 (W∕L)3 = (W∕L)4 = 4 (W∕L)5 = 25

(W∕L)6 = (W∕L)9 = 16 (W∕L)7 = (W∕L)10 = 50
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Figure 12.25 A fully differential op amp with capacitive load and feedback.

with Ldrwn = 1 μm, |ID1| = |ID2| = 100 μA, and ID6 = 400 μA. In that example, these values
gave a calculated dc gain of adm0 = −7500 and a simulated gain of adm0 = −6200.

For CMFB, we will use two differential pairs as shown in Fig. 12.26. Since the input stage
of Fig. 12.23 is the complement of the op amp of Fig. 12.2, the CMFB circuit of Fig. 12.26
is the complement of the circuit of Fig. 12.19 to allow control of the op-amp tail current ID5
through a current mirror formed by M5 and M25. Also, the CM-sense output Vcms is taken from
the drains of M21 and M24, which makes the gain acms negative. This inversion is needed here
to give negative feedback in the CMFB loop because the CMC gain acmc is positive at low
frequencies in this two-stage op amp. We choose M25 to be matched to M5 so they form a
unity-gain current mirror. Since the desired tail current is |ID5| = 200 μA, we want

|ID25| = ID26 = ID27 = 200 μA

VDD

Vcmc = Vcms

Icms

–VSS
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M7 M25M5
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Figure 12.26 A fully differential two-stage CMOS op amp using the CMFB scheme from Fig. 12.19.
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Therefore, each transistor M21–M24 nominally carries 100 μA of drain current. These tran-
sistors must remain active over the entire range of the op-amp output swing. For a differential
output voltage of 1 V peak, each op-amp output (Vo1 or Vo2) must swing ±0.5 V. From (3.161),
the transistors in a differential pair remain active as long as the magnitude of the differential
input voltage is less than

√
2Vov. Therefore, we want√

2Vov = 0.5 V

or Vov = 0.35 V for M21–M24. From (1.157), we get(W
L

)
21

=
(W

L

)
22

=
(W

L

)
23

=
(W

L

)
24

=
2ID21

k′n(Vov21)2
= 2(100)

(194)(0.35)2
= 8.4

The only remaining device sizes to be determined are for matched transistors M26 and M27.
Each device acts as a current source carrying 200 μA. For those transistors to act as current
sources, they should always be active. Focusing on M26, we want Vov26 < Vds26(min). To deter-
mine Vds26(min), consider an extreme case when M21 just turns off as Vo1 swings down to its
lowest value. In this case, M22 carries 200 μA, and

Vgs22(max) = Vt22 +

√
2ID22(max)

k′n(W∕L)22
= Vt22 +

√
2(200)

194(8.4)
= Vt22 + 0.5 V

The gate voltage of M22 is VCM = 0. Therefore, the minimum source-body voltage for M22,
which is the minimum drain-source voltage of M26, is

Vsb22(min) = Vds26(min) = Vs22(min) − (−VSS) = VCM − Vgs22(max) + VSS

= 0 − (0.5 + Vt22) + 1.65 = 1.15 − Vt22 (12.82)

Since Vsb22 is not zero, the threshold voltage of M22 is given by (1.140) as

Vt22 = Vtn0 + 𝛾

[√
Vsb22 + 2𝜙f −

√
2𝜙f

]
(12.83)

Using the data in Table 2.4, (1.141), and (2.28), we calculate |𝜙f | = 0.33 V and 𝛾 = 0.28 V1∕2

[assuming Vsb22 is small and using NA + Nsi as the effective substrate doping in (1.141)]. Solv-
ing (12.82) and (12.83) gives Vt22 = 0.67 V, Vs22(min) = −1.17 V, and

Vsb22(min) = Vds26(min) = 1.15 − Vt22 = 1.15 − 0.67 = 0.48 V

If we chose Vov26 = 0.38 V (to allow for a −0.1 V shift in VCM), then(W
L

)
26

=
2ID26

k′n(Vov26)2
= 2(200)

(194)(0.38)2
≈ 14

Also, (W∕L)27 = 14 since M26 and M27 are matched.
In the first example in Section 9.4.3, a compensation capacitor of 3.2 pF provided a 45∘

phase margin for a feedback factor of unity and a 5 pF load. The DM half-circuits for this
example with the independent voltage sources Vs1 and Vs2 set to zero are shown in Fig. 12.27a.
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Figure 12.27 (a) DM half-circuits for Figs. 12.25 and 12.26. (b) The upper DM half-circuit in (a) with
the feedback loop broken.

Here, we have assumed that CL is much larger than the input capacitance of the CM-sense
devices M21–M24. The two feedback networks connect between the two half-circuits in this
negative feedback circuit. The feedback factor is less than one because it is set by the capacitive
divider formed by CF and CS. Also, the feedback networks affect the capacitive loading at the
outputs. The upper DM half-circuit of Fig. 12.27a is redrawn in Fig. 12.27b with the feedback
loop broken. Here, capacitor Cidh is the capacitance looking into the gate of M1 in the DM
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half-circuit, which is the same as the capacitance looking into the gate of M2. Looking into
the gate of M2, we see Cgs2 and overlap capacitance Cgd2 increased by the Miller effect as in
(7.5); therefore,

Cidh = Cgs2 + Cgd2(1 − adm1) ≈
2
3

CoxW2L2 + ColW2(1 − adm1)

= 2
3

(
4.43

fF
μm2

)
(77 μm)(0.82 μm) +

(
0.35

fF
μm

)
(77 μm)(1 + 137) = 3.9 pF

Here, we used L2 = 1 μm − 2Ld = 0.82 μm and adm1 = −gm2(ro2||ro4) = −137 for the
low-frequency gain of the first stage. These values follow from the example in Section 6.3.5.
The total capacitive load from the output to ground in the DM half-circuit is

C2d = CL +
CF(CS + Cidh)
CF + CS + Cidh

= 2 + 5(2 + 3.9)
5 + 2 + 3.9

= 4.7 pF (12.84)

Here, we have assumed that CL is much larger than the junction capacitance and other parasitic
capacitances at the op-amp output. The DM feedback factor is

fdm =
vfb∕2

vod∕2

|||||loop broken

=
CF

CF + CS + Cidh
= 5

5 + 2 + 3.9
= 0.459 (12.85)

Substituting (12.84), (12.85), and values for gm2 = gm1 and gm6 from the first example in
Section 9.4.3 into (12.74), we have

C ≈
gm2

gm6
C2d fdm = 1.0

1.55
(4.7 pF)(0.459) = 1.39 pF (12.86)

This compensation capacitor gives a 45∘ phase margin in the DM half-circuit (ignoring the
right-half-plane zero).

The CM half-circuits are shown in Fig. 12.28a with the source voltages Vs1 and Vs2
set to zero. Only the upper CM half-circuit is shown in detail. The capacitive feedback
networks connect between the two CM half-circuits. A simplified drawing of the upper
CM half-circuit is shown in Fig. 12.28b. The key simplification here is that capacitor CF ,
which was connected to the input of the lower CM half-circuit (which is the gate of M1) in
Fig. 12.28a, now connects to the gate of M2. This change does not affect the CM analysis
because the elements and signals in the two CM half-circuits are identical.

In the CM half-circuit in Fig. 12.28b, there are two feedback loops. One loop is the CMFB
loop that includes the CM-sense block. We will refer to this loop as loop #1. This loop is
a negative feedback loop, since there are three inverting stages in the loop: actively loaded
common-source stages M5h and M6, and the inverting CM-sense circuit. The magnitude of the
low-frequency gain in this loop is large because each common-source stage provides signifi-
cant voltage gain. The other feedback loop goes through the op amp from vic to voc and then
back from voc to the input vic through the capacitive divider formed by CF and CS, and it will
be called loop #2. Here, loop #2 is a positive feedback loop because it contains two inverting
gain stages. This feedback loop is stable, however, because the loop gain in loop #2, which is
the product of the forward gain a′cm and the feedback factor through the capacitive divider, has
a magnitude that is less than one at all frequencies. The forward gain a′cm in this loop, which is
a′cm = voc∕vic with the CMFB (loop #1) active, has a magnitude that is less than unity due to
the presence of the CMFB loop (loop #1), which works to force voc ≈ 0. (See Problem 12.27.)
To explain this low gain, first consider the CM half-circuit with loop #1 disabled. In this case,
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for CM sense

CM half-circuit
for CM sense

Other CM half-circuit
for op amp (M1, M3, ... M10)

(b)

C
M2
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ro4

ro7

CL
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voc

vcmc

CS

CF

CM half-circuit
for CM sense
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Loop #2

Loop #1

Figure 12.28 (a) CM half-circuits for Figs. 12.25 and 12.26. (b) The upper CM half-circuit in
(a) simplified.
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(c)

C
M2

M5h

M6ro4

ro7

C2c

vic = 0
voc

vcmc

CM half-circuit
 for CM sense

Figure 12.28 (c) CM half-circuit in (b), focusing on the CMFB loop (loop #1).

if vic is nonzero, Id2 changes, which changes Vgs6 and produces a nonzero voc. When the CMFB
loop #1 is enabled, this loop senses any nonzero voc and adjusts Vcmc to produce a change in
Id5 that counteracts the change in Id2 to give voc ≈ 0.

The magnitude responses of the loop gains for these two loops are plotted in Fig. 12.29,
ignoring any zeros and poles other than the dominant and nondominant poles, p1c and p2c,
associated with the Miller-compensated gain stage of Fig. 12.28b. Here, loop #1 is assumed
to be compensated so that its unity-gain frequency is equal to |p2c|, which gives a 45∘ phase
margin. Since loop #2 is stable, we need only focus on the stability and compensation of the
high-gain CMFB loop (loop #1).

∣T ∣ (dB)

∣TCMFB∣ = ∣Tloop1∣

∣p1∣ ∣p2 ∣

∣Tloop2 ∣

ω0 dB

Figure 12.29 Plots of the
loop gains for the two
feedback loops in the CM
half-circuit of Fig. 12.28b.

This CMFB loop is shown in Fig. 12.28c. Here, the lumped load capacitance C2c includes
the output loading due to CL and the capacitive feedback network, including the capacitance
Cich looking into the gate of M2 in Fig. 12.28b. This capacitance is smaller than Cidh because
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M2 has a large source degeneration resistance (ro5h) that provides local CM feedback. This
feedback increases the impedance (decreases the capacitance) looking into the gate of M2.
Also, this feedback reduces the magnitude of the voltage gain from the gate to the drain of
M2, which decreases the Miller input capacitance due to Cgd2. Therefore, assuming Cich ≪ CS,
we find

C2c = CL +
CF(CS + Cich)
CF + CS + Cich

≈ CL +
CFCS

CF + CS
= 2 + 5(2)

5 + 2
= 3.43 pF

Here, we also assumed that CL is much larger than the input capacitance of the CM-sense
half-circuit. To use (12.78) to calculate the compensation capacitor that gives a 45∘ phase
margin in the CMFB loop, we must find the dc small-signal gain through the CM-sense circuit.
In Fig. 12.26, Icms flows through diode-connected M25; therefore,

vcmc = −
icms

gm25
(12.87)

if ro25 ≫ 1∕gm25. A small-signal version of (12.56) is icms = gm22voc = gm21voc. Using this
expression and (12.87), the gain acms at low frequency is

|acms0| = |vcmc||voc| ||||CMFB loop open
=
|vcmc||icms| |icms||voc| ||||CMFB loop open

=
gm21

gm25
=

2ID21

Vov21

2|ID25||Vov25|
=

2(100)
0.35

2(200)
0.5

= 0.71 (12.88)

Solving (12.78) for a 45∘ phase margin in the CMFB loop, using (12.88) and the value of
gm6 from the first example in Section 9.4.3, gives

C =
gm5h

gm6
|acms0|C2c =

(gm5∕2)
gm6

|acms0|C2c

=

2(200 μA)
0.5 V

1
2

1.55 mA∕V
(0.71)(3.43 pF) = 0.63 pF (12.89)

From (12.86) and (12.89), a larger compensation capacitor is required to compensate the DM
loop than the CMFB loop. Therefore, using C = 1.39 pF will give phase margins of 45∘ for
the DM feedback loop and greater than 45∘ for the CMFB loop, which is acceptable.

To verify this design, SPICE simulations of this op amp were carried out with C = 1.39 pF
in series with RZ = 758 Ω, which was found to eliminate the right-half-plane zero in the first
example in Section 9.4.3. The SPICE models are based on the data in Table 2.4. The phase
margins of the DM and CMFB loops were simulated using techniques developed for fully
differential circuits.11 The DM feedback loop has a simulated phase margin of 43∘ and
unity-gain frequency of 53 MHz. The CMFB loop has a simulated phase margin of 62∘
and unity-gain frequency of 24 MHz. Thus, the CMFB loop is overcompensated. Changing
the compensation capacitor to 0.63 pF, which is the value calculated from (12.89) to give a
45∘ phase margin in the CMFB loop, we find the simulated phase margin of the CMFB loop
changes to 41∘, but the DM phase margin drops to an unacceptably low 29∘. These simulation
results verify that the formulas in this section give a reasonable estimate for the compensation
capacitor.◼
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In the previous example, the op-amp output swing is limited by the linear input range of
the CMFB circuit. The output swing could be increased by using either a switched-capacitor
or resistive-divider CM detector.

An alternative CMFB approach for the op amp of Fig. 12.23 is to connect the gate of M5 to
a dc bias voltage and to use the gates of M3–M4 as the CMC input. In this case, the first gain
stage of the CM half-circuit in Fig. 12.28c consists of common-source M4 with a cascoded
active load.

12.6.2 Fully Differential Telescopic-Cascode Op Amp

A fully differential cascode op amp is shown in Fig. 12.30. Compared to its single-ended
complementary counterpart, which is the first stage in Fig. 6.29a, the main difference is that
diode connections are removed from transistors M3 and M3A. Also, the gates of cascode tran-
sistors M1A–M4A are connected to bias voltages here. The op-amp outputs are taken from
the drains of M1A and M2A. The resulting circuit is symmetric, with each output loaded by
a cascoded current source. One CMFB approach is to set the currents through M3–M4 by
connecting their gates to a dc bias voltage (set by a diode-connected transistor that is the
input of a current mirror) and use the gate of M5 as the CMC input. In this case, the mag-
nitude of the low-frequency CMC gain |acmc0| can be large since M1–M2 and M1A–M2A pro-
vide two levels of NMOS cascoding, and M3A–M4A provide one level of PMOS cascoding.
This cascoding increases the output resistance, but the two levels of NMOS cascoding intro-
duce high-frequency poles in acmc(s).

An alternative CMFB approach is to set the current through M5 by connecting its gate to
a dc bias voltage and use the gates of M3 and M4 as the CMC input. This approach has one
level of cascoding in the CMC gain path, which introduces one high-frequency pole in acmc(s).
Here, however, the amplifying devices in the CMFB loop are p-channel M3 and M4, which have

M3

M3A

M1A

M4A

M2A

M2M1

M5

–VSS

VBB2

VBB1

VDD

VBIAS

Vcmc

Vi1 Vi2

Vo1 Vo2

M4

Figure 12.30 A fully differential CMOS
telescopic-cascode op amp.
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lower mobility and fT than n-channel M5 if they have the same channel lengths and overdrive
voltages.

The DM and CMFB feedback loops are compensated by the load capacitances at the op-amp
outputs. The phase margin of the CMFB loop can be changed without changing the load capac-
itance, by splitting the transistor(s) that connect to the CMC input into parallel transistors, as
described in Section 12.4.2 and shown in Fig. 12.15.

12.6.3 Fully Differential Folded-Cascode Op Amp

A fully differential folded-cascode op amp is shown in Fig. 12.31. Compared to its
single-ended counterpart shown in Fig. 6.27b, the main difference is that the diode connec-
tions on M3 and M3A have been eliminated. The resulting circuit is symmetric, and the outputs
are taken from the drains of M1A and M2A.

To satisfy KCL, the sum of the currents flowing through M3, M4, and M5 must equal the
sum of the drain currents flowing through M11 and M12. To satisfy KCL with all transistors
active and to accurately set Voc, CMFB is used. The CMC input could be taken as the gate of
M5, the gates of M3–M4, or the gates of M11–M12, as shown in Fig. 12.31. With this last option,
the CMFB loop contains fewer nodes than the other two cases, and the gain acmc is provided
by common-source n-channel transistor M11 (or M12), which has a larger gm than p-channel
M3 (or M4) if (W∕L)11 ≈ (W∕L)3 because k′n > k′p and ID11 > |ID3|.

The DM and CMFB feedback loops are compensated by the capacitances at the op-amp
outputs.

The folded-cascode op amp with active cascodes that is shown in Fig. 6.39 can also be
converted to a fully differential op amp.12 As for the folded-cascode op amp, there are three
choices for the CMC input.

M3

M3A M4A

M5

M1

M1A M2A

M4

M2

M11 M12

VDD

–VSS

Vo2

Vi1 Vi2

Vo1

Vcmc

VBB4

VBB3

VB1

VB2

Figure 12.31 A fully differential CMOS folded-cascode op amp.
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12.6.4 A Differential Op Amp with Two Differential Input Stages

The fully differential op amps presented above have two input terminals that accept one differ-
ential input. Those op amps can be used in the amplifier, integrator, and differentiator shown
in Fig. 12.32. To implement a fully differential non-inverting gain stage with a very large input
impedance, an op amp with four input terminals is needed. Two inputs connect to the feed-
back networks, and the other two inputs connect to the differential signal source, as shown in
Fig. 12.33. Assuming the magnitudes of the op-amp gains from vid1 and vid2 to vod are large,
negative feedback forces vid1 ≈ 0 and vid2 ≈ 0. The two pairs of inputs are produced by two
source-coupled pairs, as shown for a two-stage op amp in Fig. 12.34. The two source-coupled
pairs, M1–M2 and M1X–M2X , share a pair of current-source loads. Assuming the input pairs
are matched, the differential small-signal voltage gain is the same from either input; therefore,

vod = adm(vid1 + vid2) (12.90)

The CM input range for the op amp must be large enough to include the full range of the
input signals, Vs1 and Vs2, because they connect directly to op-amp inputs. In this op amp, the
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+
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+
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Figure 12.32 Fully differential
(a) inverting gain stage, (b) integrator,
and (c) differentiator.
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Figure 12.33 (a) An op amp
with two pairs of inputs. (b) A
noninverting fully differential
feedback amplifier.
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I1 I1

I2 I2
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M9

CC RZ

+
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CCRZ

+

–
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Figure 12.34 A simplified schematic of a two-stage op amp with two pairs of inputs.

CMFB loop could adjust either I1 or I2 by controlling the gate voltages of the transistors that
generate those currents.

12.6.5 Neutralization

In a fully differential op amp, a technique referred to as capacitive neutralization can be used to
reduce the component of the op-amp input capacitance due to the Miller effect (see Chapter 7).
Reducing the input capacitance increases the input impedance, which is desirable. Neutraliza-
tion is illustrated in Fig. 12.35a. The gate-to-drain overlap capacitances are shown explicitly
for M1 and M2. First, ignore the neutralization capacitors Cn. Then the DM capacitance looking
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2
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2
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Figure 12.35 (a) An example of capacitive neutralization. (b) Using transistors M21 and M22 in cutoff
to implement the neutralization capacitors.

into either op-amp input (with respect to ground) is

Cidh = Cgs1 + Cgd1(1 − adm1) (12.91)

where adm1 is the low-frequency DM gain from the gate to drain of M1:

adm1 =
vd1

(vid∕2)
||||𝜔=0

(12.92)

Because the op amp is balanced, the low-frequency voltage gain across each capacitor Cn is
−adm1. Therefore, when Cn is included, the capacitance in (12.91) becomes

Cidh = Cgs1 + Cgd1(1 − adm1) + Cn(1 + adm1) (12.93)

If Cn = Cgd1, (12.93) reduces to

Cidh = Cgs1 + 2Cgd1 (12.94)
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which is less than the value in (12.91) if |adm1| > 1. The Miller effect on Cgd1 is canceled
here when Cn = Cgd1 because the gain across Cn is exactly the opposite of the gain across
Cgd1. To set Cn = Cgd1, matched transistors M21 and M22 can be used to implement the Cn
capacitors, as shown in Fig. 12.35b.13,14 These transistors operate in the cutoff region because
VGD1 < Vt1, and VGD2 < Vt2 since M1 and M2 operate in the active region. The capacitance
Cn is the sum of the gate-to-drain and gate-to-source overlap capacitances. Setting Cn = Cgd1
gives

Cgd1 = ColW1 = Cn = Cgd21 + Cgs21 = 2ColW21 (12.95)

where Col is the overlap capacitance per unit width. Therefore, if W21 = W1∕2, Cn = Cgd1.
Precise matching of Cn and Cgd1 is not crucial here. For example, if Cn is slightly larger than
Cgd1, the capacitance Cidh will be slightly less than the value in (12.94). A drawback of this
technique is that junction capacitances associated with M21 and M22 increase the capacitances
at the nodes where their sources and drains are connected, reducing the magnitude of the
non-dominant pole associated with those nodes.

12.7 Unbalanced Fully Differential Circuits1,2

In practice, every fully differential circuit is somewhat imbalanced, due to mismatches intro-
duced by imperfect fabrication. When mismatches are included, the models and analysis of
fully differential circuits become more complicated because the mismatches introduce inter-
action between the CM and DM signals. The DM-to-CM and CM-to-DM cross-gain terms, as
defined in Section 3.5.4, are

Adm−cm =
voc

vid

||||vic=0
(12.96)

Acm−dm =
vod

vic

||||vid=0
(12.97)

These cross gains are zero if a circuit is perfectly balanced and nonzero otherwise, as shown
in Section 3.5.4. In a feedback circuit such as the inverting amplifier of Fig. 12.32a, imbalance
in the op amp or in the feedback network generates nonzero cross-gain terms.

◼ EXAMPLE
Compute the small-signal gains for the inverting amplifier shown in Fig. 12.32a. For sim-
plicity, assume the op amp is balanced, has infinite input impedance, and has zero output
impedance, adm → −∞ and a′cm = −0.1. (This a′cm is the CM gain, including the effect of the
CMFB loop.) The resistors across the op amp are matched with R3 = R4 = 5 kΩ, but the resis-
tors that connect to the signal source are mismatched with R1 = 1.01 kΩ and R2 = 0.99 kΩ.
Therefore, the only imbalance in this circuit stems from the mismatch between R1 and R2.

We will analyze this circuit using coupled half-circuits, which were introduced in the
section 3.5.6.9. The two coupled half-circuits are shown in Fig. 12.36. The circuits are
coupled by the nonzero resistor mismatch

ΔR = R1 − R2 = 0.02 kΩ

The resistance R in the figure is the average value of the mismatched resistors

R =
R1 + R2

2
= 1 kΩ
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Figure 12.36 Coupled (a) DM and (b) CM half-circuits for the gain stage in Fig. 12.32a with a balanced
op amp and mismatch in the feedback network.

Letting adm → −∞ in the DM half-circuit gives

vod

2
= −

R3

R

(vsd

2
− iRc

ΔR
2

)
(12.98)

Analysis of the CM half-circuit gives

voc = −
R3

R

(
vsc −

iRd

2
ΔR
2

)
1

1 +
[

R + R3

(−a′cm)R

] (12.99)

From these equations and the coupled half-circuits, exact input-output relationships could be
found. However, for small mismatches, the approximate method described in “Small-Signal
Characteristics of Unbalanced Differential Amplifiers” in Chapter 3 simplifies the analysis and
provides sufficient accuracy for hand calculations. The key simplification in the approximate
analysis is that the currents iRd and iRc are estimated from their respective half-circuit, ignoring
mismatch effects. If the mismatch is ignored in Fig. 12.36a (i.e., if ΔR = 0), then

iRd

2
≈

îRd

2
=

vsd

2R
(12.100)

since vid∕2 = 0 (because adm → −∞). Ignoring resistor mismatch in Fig. 12.36b, we find

iRc ≈ îRc =
vsc

R + R3

⎛⎜⎜⎜⎜⎝
1 +

R3

R
⋅

1

1 +
[

R + R3

(−a′cm)R

]
⎞⎟⎟⎟⎟⎠

(12.101)
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Using (12.101) in (12.98) gives

vod

2
= −

R3

R

⎧⎪⎪⎨⎪⎪⎩
vsd

2
− vsc

ΔR
2(R + R3)

⎛⎜⎜⎜⎜⎝
1 +

R3

R
⋅

1

1 +
[

R + R3

(−a′cm)R

]
⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

(12.102)

Substituting (12.100) into (12.99) gives

voc = −
R3

R

(
vsc − vsd

ΔR
4R

) 1

1 +
[

R + R3

(−a′cm)R

] (12.103)

From (12.102),

Adm =
vod

vsd

||||vsc=0
= −

R3

R
= −5

1
= −5

Acm−dm =
vod

vsc

||||vsd=0
=

R3

R
ΔR

(R + R3)

⎛⎜⎜⎜⎜⎝
1 +

R3

R
⋅

1

1 +
[

R + R3

(−a′cm)R

]
⎞⎟⎟⎟⎟⎠

= 5
1
⋅

0.02
(1 + 5)

⎛⎜⎜⎜⎜⎝
1 + 5

1
⋅

1

1 +
[

1 + 5
0.1(1)

]
⎞⎟⎟⎟⎟⎠
= 0.018

From (12.103),

Acm =
voc

vsc

||||vsd=0
= −

R3

R
1

1 +
[

R + R3

(−a′cm)R

] = −5
1
⋅

1

1 +
[

1 + 5
0.1(1)

] = −0.082

Adm−cm =
voc

vsd

||||vsc=0
=

R3

R
ΔR
4R

1

1 +
[

R + R3

(−a′cm)R

] = 5
1

0.02
4(1)

1

1 +
[

1 + 5
0.1(1)

] = 0.00041

The resistor mismatch causes nonzero cross-gain terms in the closed-loop amplifier. Exact
analysis of this circuit gives essentially the same gain values as above.◼

A model for an op amp with mismatch (but assuming infinite input impedance and zero
output impedance, for simplicity) is shown in Fig. 12.37. The equations corresponding to this
model are

vod = admvid + acm−dmvic + acmc−dmvcmc (12.104)

voc = acmvic + adm−cmvid + acmcvcmc (12.105)
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Figure 12.37 A simple
small-signal model of a fully
differential amplifier including
cross-gain terms, assuming
infinite input impedance and zero
output impedance.

The cross-gain terms acm−dm, adm−cm, and acmc−dm are zero when the op amp is perfectly
balanced. If the CM-sense circuit is not perfectly balanced, its output vcms, which ideally is
proportional to the CM output, contains a component that depends on the DM output:

vcms = acmsvoc + adm−cmsvod (12.106)

Also, vcmc = vcms when the CMFB loop is closed.
To illustrate the effect of feedback on the open-loop op-amp gains, consider the inverting

amplifier of Fig. 12.32a with a balanced feedback network (R1 = R2 and R3 = R4) but with
imbalances in the op amp. The circuit could be analyzed exactly to find the closed-loop gains,
but the analysis is difficult. Therefore, we will use the approximate, coupled half-circuit anal-
ysis that was used in the last example. The coupled DM and CM half-circuits are shown in
Fig. 12.38. The imbalances in the op amp are modeled by the acm−dm, adm−cm, and acmc−dm
controlled sources in Fig. 12.38, based on (12.104) and (12.105). To simplify the analysis, we
will assume that the CM-sense circuit is balanced (i.e., adm−cms = 0). Under this assumption,
(12.106) reduces to

vcmc = vcms = acmsvoc (12.107)

Substituting (12.107) in (12.104) and (12.105) gives

vod = admvid + acm−dmvic + acmc−dmacmsvoc (12.108)

voc = acmvic + adm−cmvid + acmcacmsvoc (12.109)



12.7 Unbalanced Fully Differential Circuits 905

+

–

+

– +

–
+

–

+

–
acm-dm

acmc-dm

(a)

DM: R3

R1

vid

2
admvsd

2

vid

2

vod

2

vic

2

vcmc

2

+

–

+

– +

–
+

–

acmvic+

–
vsc

voc

vic

adm-cmvid

acmcvcmc

(b)

CM: R3

R1

Figure 12.38 Coupled (a) DM
and (b) CM half-circuits for the
gain stage of Fig. 12.32a with
an unbalanced op amp and a
balanced feedback network.

To carry out the approximate analysis, each half-circuit is first analyzed with the cou-
pling between the half-circuits eliminated. Then the results of these analyses are used to
find the closed-loop cross gains. The coupling in the DM half-circuit is eliminated by setting
acm−dm = 0 and acmc−dm = 0. With these changes, analysis of Fig. 12.38a gives

v̂id = −
R3

R1
⋅

1

1 +
R1 + R3

(−adm)R1

vsd

adm
(12.110)

Similarly, the coupling in the CM half-circuit is eliminated by setting adm−cm = 0. With this
coupling eliminated, analysis of Fig. 12.38b gives

v̂ic =
v̂oc

a′cm
= −

R3

R1
⋅

1

1 +
R1 + R3

(−a′cm)R1

vsc

a′cm
(12.111)

where
a′cm =

acm

1 + (−acmcacms)
(12.112)
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Assuming v̂id ≈ vid, v̂ic ≈ vic, and v̂oc ≈ voc, (12.110) and (12.111) can be used in (12.108) to
give

vod = −
R3

R1
⋅

1

1 +
R1 + R3

(−adm)R1

vsd +
a′cm−dm

1 +
(−adm)R1

R1 + R3

R3

R3 + R1

1 +
(−a′cm)R1

R1 + R3

vsc (12.113)

where
a′cm−dm = acm−dm + a′cmacmsacmc−dm (12.114)

This gain has two components. The first term is acm−dm, which is the CM-to-DM gain of the
op amp. The second term is the product of three gains: (1) a′cm, which is the gain from vic
to voc including the effect of the CMFB loop; (2) acms, which is the CM-sense gain from voc
to vcms = vcmc; and (3) acmc−dm, which is the gain from vcmc to vod (due to mismatch in the
op amp). Therefore, the second term in (12.114) is the gain through an indirect path from vic
to vod.

Again assuming v̂id ≈ vid, v̂ic ≈ vic, and v̂oc ≈ voc, (12.110) and (12.111) can be used in
(12.109) to give

voc =

a′cmR3

R1 + R3

1 +
(−a′cm)R1

R1 + R3

vsc +
a′dm−cm

1 +
(−a′cm)R1

R1 + R3

R3

R1 + R3

1 +
(−adm)R1

R1 + R3

vsd (12.115)

where
a′dm−cm =

adm−cm

1 + (−acmcacms)
(12.116)

Equations 12.113 and 12.115 relate the DM and CM source and output voltages for the feed-
back amplifier. The open-loop-gain and cross-gain terms in (12.108) and (12.109) have been
modified by the feedback. To allow simplification of these gain terms, define

Tdm =
(−adm)R1

R1 + R3
(12.117)

Tcm =
(−a′cm)R1

R1 + R3
(12.118)

Tcmfb = −acmcacms (12.119)

which are the loop gains around the DM, CM, and CMFB loops, respectively. Using
(12.117)–(12.119), the closed-loop gain terms in (12.113) can be written as

Adm =
vod

vsd

||||vsc=0
= −

R3

R1
⋅

1

1 + 1
Tdm

≈ −
R3

R1
(12.120)

where |Tdm|≫ 1 has been used, and

Acm−dm =
vod

vsc

||||vsd=0
=

a′cm−dm

(
R3

R3 + R1

)
(1 + Tdm)(1 + Tcm)

(12.121)
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As |Tdm| increases, |Acm−dm| decreases. Therefore, |Tdm|≫ 1 is desired to reduce the magni-
tude of the closed-loop CM-to-DM cross gain. The (1 + Tcm) term has little effect here since
(12.112) usually gives |a′cm|≪ 1; therefore, (1 + Tcm) ≈ 1.

Using (12.116)–(12.119), the closed-loop gain terms in (12.115) can be written as

Acm =
voc

vsc

||||vsd=0
=

a′cmR3

R1 + R3

1 + Tcm
≈

a′cmR3

R1 + R3
(12.122)

where (1 + Tcm) ≈ 1 has been used, and

Adm−cm =
voc

vsd

||||vsc=0
=

a′dm−cm

1 + Tcm

R3

R1 + R3

1 + Tdm

=
adm−cm

R3

R1 + R3

(1 + Tcmfb)(1 + Tdm)(1 + Tcm)
(12.123)

As |Tdm| or |Tcmfb| increases, |Adm−cm| decreases. Therefore, the DM and CMFB loops work
to reduce the closed-loop DM-to-CM cross gain. Again, the (1 + Tcm) term has little effect
here since |1 + Tcm| ≈ 1.

The analysis in this section shows how the closed-loop cross-gain terms for the feedback
amplifier of Fig. 12.32a are affected by imbalances in the op amp and feedback network.
In practice, the imbalances are usually caused by random mismatches between components,
and the effect of such mismatches on circuit performance is often evaluated through SPICE
simulations.

12.8 Bandwidth of the CMFB Loop
Ideally, a fully differential circuit processes a DM input signal and produces a purely DM
output signal. The closed-loop bandwidth required for the DM gain is set by the bandwidth
of the DM signal. For example, consider the differential gain stage of Fig. 12.32a. To avoid
filtering the signal, the closed-loop bandwidth of the DM gain must be larger than the highest
frequency in the applied DM input signal. Since the closed-loop bandwidth is approximately
equal to the unity-gain frequency of the DM loop gain (or return ratio), this unity-gain fre-
quency should be about equal to the required closed-loop bandwidth. However, the unity-gain
frequency required for the CMFB loop is not so easily determined. Consider a fully differen-
tial feedback circuit that is linear and perfectly balanced. If no ac CM signals are present
in the circuit, the ac CM output voltage will be zero, and the CM output voltage is con-
stant. In such a case, the bandwidth of the CMFB loop is unimportant since it only operates
on dc signals.

In practice, there are many sources of ac CM signals. For example, an ac CM sig-
nal can be present in the signal source, or CM noise can be introduced by coupling
from a noisy power supply. Furthermore, even when the signal source is purely dif-
ferential, an ac CM signal can be created by circuit imbalance that causes DM-to-CM
conversion. Regardless of the source of an ac CM signal, the CMFB works to sup-
press the ac CM output signal and give a CM output voltage that is about constant.
Suppression of the ac CM output component is important for two reasons. First, if the
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vn

voc
vcmc

vcm = 0

–

acmc

an

acms

Σ

Σ

Figure 12.39 A model for the CMFB
loop with injected noise vn.

CM output varies, the DM output swing must be reduced to allow for the CM output
swing. Second, if two feedback amplifiers are cascaded, any ac CM output voltage from
the first amplifier is a CM input voltage for the second amplifier, and any imbalance
in the second amplifier will convert some of its CM input voltage into a DM output
voltage.

To see how the CMFB suppresses the ac CM output signal, consider the small-signal block
diagram in Fig. 12.39. Here, vn is a CM disturbance (for example, an ac signal on the power
supply). The signal vcm, which is the small-signal component of the applied dc voltage VCM ,
is zero. Also, an is the voltage gain from the CM disturbance to the CM output voltage when
the CMFB loop is disabled. That is,

an =
voc

vn

||||no CMFB
=

voc

vn

||||vcmc=0
(12.124)

When the CMFB is active, the small-signal gain from vn to voc becomes

An =
voc

vn

||||with CMFB
=

an

1 + acms(−acmc)
(12.125)

The CMFB gives |An|≪ |an| at frequencies where |acms(−acmc)|≫ 1. Therefore,|acms(−acmc)|≫ 1 is desired at frequencies where a significant ac CM output voltage
would be generated without CMFB. One possible objective is to satisfy this condition over
the bandwidth of DM input signal, or equivalently to make the unity-gain frequencies of the
DM and CMFB loops about equal.15 While desirable, this goal can be difficult to achieve in
practice because the CMFB loop often includes more transistors and has more nondominant
poles than the DM loop. In any case, suppression of spurious CM signals is an important
consideration in determining the required bandwidth of the CMFB loop in practical fully
differential amplifiers.
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12.9 Analysis of a CMOS Fully Differential Folded-Cascode Op
Amp
In this section, we analyze an example fully differential folded-cascode op amp. The particular
op amp considered here is similar to an op amp used in an analog-to-digital converter that uses
switched-capacitor gain stages.16

The core of the op amp is shown in Fig. 12.40. The op amp is a complementary version of
the folded-cascode op amp shown in Fig. 12.31. Transistors M1–M2 form the NMOS input dif-
ferential pair. NMOS transistors are used here because they have larger k′ than PMOS devices
and therefore yield larger gm for the same device dimensions and currents. Transistors M3–M5
and M11–M12 act as current sources. Transistors M1A, M2A, M3A and M4A are cascode devices
that boost the output resistance and also the dc voltage gain of the op amp. Finally, M6 is a
transistor that does not appear in Fig. 12.31. The gate of M6 is the CMC input. The CM-sense
circuit, which will be described later, connects to the CMC node.

The op amp makes repeated use of unit transistors to assure good matching, accurate ratios
of W∕L values, and process insensitivity, as described in Section 6.3.3 [see the paragraph after
(6.68)]. Multiple unit transistors are connected either in parallel to increase the W∕L or in
series to decrease the W∕L. The unit transistor has W = 40 μm and L = 0.4 μm.

The bias circuits for the op amp of Fig. 12.40 are shown in Fig. 12.41. The nodes BiasA
through BiasD of the bias circuit connect to the nodes with the same labels in the op amp of
Fig. 12.40.

The dimensions of the transistors in Figures 12.40 and 12.41 are given in Tables 12.1 and
12.2, respectively. In these tables, m is a factor that multiplies the W∕L of a unit transistor

VDD

M12M11

M1A M2A

M3A M4A

M3 M4
M5M6

M1 M2

CMC

Vi1
Vi2

BiasB

BiasA

BiasC

BiasD

Vo1 Vo2

Figure 12.40 Folded-cascode op-amp circuit.
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M31

M26 M32

M28
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M29M24

M27M23

BiasB

BiasE

BiasC

BiasD

VDD

M25

M30

BiasA

M21

IBIAS

M22

Figure 12.41 Bias circuit for the op amp.

Table 12.1 Op-Amp Transistor Data: Unit Transistor Has W = 40 μm, L = 0.4 μm, and
Leff = 0.3 μm

M1,M2 M1A,M2A M3,M3A,M4,M4A M5,M6 M11,M12

m (W∕L scale factor) 10 24 12 10 44

Calculated |ID|(mA) 2.0 2.4 2.4 2.0 4.4

Simulated |ID|(mA) 2.01 2.40 2.40 2.05,1.97 4.41

Table 12.2 Bias-Circuit Transistor Data: Unit Transistor Has W = 40 μm, L = 0.4 μm,
and Leff = 0.3 μm

M21,M22,M25,M26,M31,M32 M23 M24,M27 M28 M29,M30 M33

m (W∕L scale factor) 2 1∕3 3 1∕9 1 1∕14

Calculated |ID|(mA) 0.20 0.20 0.20 0.20 0.20 0.20

Simulated |ID|(mA) 0.20 0.20 0.20 0.20 0.20 0.20

to give the aspect ratio of a transistor. For example, m = 10 for M1 (i.e., m1 = 10), which
means that M1 consists of ten unit transistors connected in parallel. Therefore, (W∕L)1 = 10 ⋅
[W∕L of a unit transistor]. For M23, m23 = 1∕3, which means that M23 consists of three unit
transistors connected in series. Therefore, (W∕L)23 = (1∕3) ⋅ [W∕L of a unit transistor].
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The bias circuit consists of three branches: M21–M24, M25–M30, and M31–M33. The bias
circuit makes extensive use of the Sooch cascode current mirror, which was described in the
section 4.3.5.2 and shown of Fig. 4.12. For simplicity, first consider transistors M21–M26. The
topology here is the PMOS counterpart of the Sooch current mirror of Fig. 4.12b. Input bias
current IBIAS flows through the left-hand branch that contains M21–M24. Since M21–M22 and
M25–M26 are all identical, these transistors form a 1:1 current mirror, so IBIAS flows through
M25–M26 and then through M27–M30. Since M21–M22 and M31–M32 are identical, IBIAS also
flows through M31–M33. The value of IBIAS is 0.2 mA.

In the following analysis, we will ignore the body effect for simplicity and assume
the square-law equations describe the transistor operation. Typical process parameters
𝜆n = 0.15 V−1, 𝜆p = 0.17 V−1, k′n = 170 μA/V, k′p = 45 μA/V, and Vtn = −Vtp = 0.50 V are
used. For simplicity, ΔW is assumed negligible (i.e., ΔW = 0), and Leff = 0.3 μm will be
used for transistors with L = 0.4 μm. The supply voltage for the op amp is VDD = 2 V.

12.9.1 DC Biasing

The gates of M11–M12 and M1A–M2A in the op amp are biased by voltages BiasB and BiasC,
respectively, developed in the bias circuit. M11 and M12 mirror the current flowing in M21, with
a current gain of

ID11

ID21
=

ID12

ID21
=

(W∕L)11

(W∕L)21
=

m11

m21
=

(W∕L)12

(W∕L)21
=

m12

m21
= 44

2
= 22 (12.126)

Here we have used the fact that the ratio of transistor W∕L values is equal to the ratio of the
corresponding m values when unit devices are used. Therefore,

ID11 = ID12 = 22IBIAS = 22(0.2 mA) = 4.4 mA (12.127)

Transistors M27–M30 form the input branch of a NMOS Sooch cascode current mirror with
three output branches: cascode mirrors M3–M3A and M4–M4A, and simple current source M5.
Transistor M5 mirrors the current flowing in M30 with a current gain of

ID5

ID30
=

m5

m30
= 10

1
(12.128)

Hence
ID5 = 10ID30 = 10(0.2 mA) = 2.0 mA (12.129)

Transistors M3 and M4 mirror the current flowing in M30 with a current gain of

ID3

ID30
=

ID4

ID30
=

m3

m30
=

m4

m30
= 12

1
(12.130)

so
ID3 = ID4 = 12ID30 = 12(0.2 mA) = 2.4 mA (12.131)

The M31–M33 branch is included to generate a dc voltage at node BiasE. This voltage is
used to bias nodes in the switched-capacitor feedback application, which is described later in
this section.

In the bias circuit of Fig. 12.41, the drain current of each transistor is 0.2 mA. In the op
amp, the drain currents range from 2.0 mA to 4.4 mA. Lower current is used in the bias circuit
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to reduce power dissipation there. While low-power dissipation in the bias circuit is desir-
able, the impedances associated with the bias nodes BiasA–BiasE increase as the current IBIAS
decreases. The device dimensions are scaled based on the drain currents. Two transistors will
have the same Vov if they have the same ratios of drain current to W∕L, or the same current
densities (as defined in Section 6.3.3). The W∕L values in the bias circuit were chosen to make
the VDS of each transistor in the op amp greater than its Vov so it operates in the active (or
saturation) region with high output resistance as explained in Section 4.3.5.2.

Calculated and simulated drain currents are given in Tables 12.1 and 12.2.
To estimate the output voltage swing of the op amp, the voltages VBiasC and VBiasD at nodes

BiasC and BiasD, respectively, are needed. To find BiasD, we first find the voltage at node
BiasA, VBiasA:

VBiasA = VGS30 = Vt30 + Vov30 (12.132)

where

Vov30 =

√
2(ID30)

k′n(W∕L)30
=

√
2(0.2 mA)

(170 μA∕V2)(40∕0.3)
= 0.13 V (12.133)

Therefore,
VBiasA = VGS30 = Vt30 + Vov30 = (0.50 + 0.13) V = 0.63 V (12.134)

Now we will find VBiasD. Using KVL,

VBiasD = VGS30 + VDS28 (12.135)

The drain currents in M27 and M28 are equal:

ID27 = ID28 (12.136)

Since M27 operates in the active or saturation region and M28 operates in the triode region,
(12.136) can be rewritten as

k′n
2

(W
L

)
27
(VGS27 − Vt27)2 =

k′n
2

(W
L

)
28

[
2(VGS28 − Vt28)VDS28 − V2

DS28

]
(12.137)

Using KVL,
VGS28 = VDS28 + VGS27 (12.138)

Substituting (12.138) into (12.137) and using Vt27 = Vt28 yields

k′n
2

(W
L

)
27
(VGS27 − Vt27)2 =

k′n
2

(W
L

)
28

[
2(VDS28 + VGS27 − Vt27)VDS28 − V2

DS28

]
(12.139)

Dividing both sides by k′n∕2 and replacing VGS27 − Vt27 with Vov27 gives(W
L

)
27
(Vov27)2 =

(W
L

)
28

[
2(VDS28 + Vov27)VDS28 − V2

DS28

]
(12.140)

The unknowns in (12.140) are VDS28 and Vov27. The overdrive voltage Vov27 is

Vov27 =

√
2(ID27)

k′n(W∕L)27
=

√
2(0.2 mA)

(170 μA∕V2)(40∕0.3)(3)
= 0.077 V (12.141)
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Substituting this overdrive voltage and W∕L values from Table 12.2 into (12.140) gives

VDS28 = 0.33 V (12.142)

Finally, substituting (12.134) and (12.142) into (12.135) gives

VBiasD = 0.63 V + 0.33 V = 0.96 V (12.143)

A similar analysis could be carried out to find the voltage at node BiasC. However, an
alternative approach is used next to find this voltage. First we find the voltage at node BiasB,
VBiasB, which is VSG21 below VDD:

VBiasB = VDD − VSG21 (12.144)

A component of VSG21 is

|Vov21| =
√

2|ID21|
k′p(W∕L)21

=

√
2(0.2 mA)

(45 μA∕V2)(40∕0.3)(2)
= 0.18 V (12.145)

Hence
VSG21 = |Vt21| + |Vov21| = (0.50 + 0.18) V = 0.68 V (12.146)

Using KVL,
VBiasC = VBiasB − VSG23⊕24 + VSG24 (12.147)

Here, the symbol ⊕ means “in series with.” Therefore, VSG23⊕24 is the gate-to-source voltage
of a transistor M23⊕24 that is equivalent to M23 in series with M24. The aspect ratio of this
equivalent transistor M23⊕24 can be found by adding the lengths of the series transistors, after
scaling to match their W values:(W

L

)
23⊕24

= 1
3

(W
L

)
u
⊕

3
1

(W
L

)
u
= 3

9

(W
L

)
u
⊕

3
1

(W
L

)
u
= 3

10

(W
L

)
u

(12.148)

Hence

|Vov23⊕24| =
√

2|ID23⊕24|
k′p(W∕L)23⊕24

=

√
2(0.2 mA)

(45 μA∕V2)(40∕0.3)(3∕10)
= 0.47 V (12.149)

The overdrive voltage for M24, which is active, is

|Vov24| =
√

2|ID24|
k′n(W∕L)24

=

√
2(0.2 mA)

(45 μA∕V2)(40∕0.3)(3)
= 0.15 V (12.150)

Using (12.144), (12.145), (12.147), (12.149), and (12.150), the voltage at node BiasC is

VBiasC = VBiasB − VSG23⊕24 + VSG24

= VDD − VSG21 − (|Vt23⊕24| + |Vov23⊕24|) + (|Vt24| + |Vov24|)
= [2.0 − 0.68 − (0.50 + 0.47) + (0.50 + 0.15)] V = 1.0 V (12.151)
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12.9.2 Low-Frequency Analysis

The low-frequency DM gain of the op amp can be found using the DM half-circuit of Fig. 12.42
and is given by

adm0 = −gm1 × Rodh (12.152)

where Rodh is the output resistance of the DM half-circuit. This resistance is the parallel com-
bination of the resistance looking into the drain of M1A and the resistance looking into the
drain of M3A. It is given by

Rodh ≈ [ro1Agm1A(ro11||ro1)]||(ro3Agm3Aro3) (12.153)

We now compute transconductance values that will be used in this section:

gm1 =
√

2k′n(W∕L)1ID1

=
√

2(170 × 10−6)[10(40∕0.3)]0.002
A
V

= 30 mA∕V (12.154)

gm1A =
√

2k′p(W∕L)1A|ID1A|
=
√

2(45 × 10−6)[24(40∕0.3)]0.0024
A
V

= 26 mA∕V (12.155)

VDD

M11

M1A

M3A

M3

M1

BiasB
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BiasD
Vid

2 CL

Vod

2

Figure 12.42 DM half-circuit for the op amp.
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gm3 = gm3A =
√

2k′n(W∕L)3AID3

=
√

2(170 × 10−6)[12(40∕0.3)]0.0024
A
V

= 36 mA∕V (12.156)

gm6 =
√

2k′n(W∕L)6ID6

=
√

2(170 × 10−6)[10(40∕0.3)]0.002
A
V

= 30 mA∕V (12.157)

gm11 =
√

2k′p(W∕L)11|ID11|
=
√

2(45 × 10−6)[44(40∕0.3)]0.0044
A
V

= 48 mA∕V (12.158)

The output resistances, using ro = 1∕(|ID|𝜆), are

ro1 = 1
(2.0 mA)(0.15 V−1)

= 3330 Ω (12.159)

ro1A = 1
(2.4 mA)(0.17 V−1)

= 2450 Ω (12.160)

ro3 = ro3A = 1
(2.4 mA)(0.15 V−1)

= 2780 Ω (12.161)

ro5 = ro6 = 1
(2.0 mA)(0.15 V−1)

= 3330 Ω (12.162)

ro11 = 1
(4.4 mA)(0.17 V−1)

= 1340 Ω (12.163)

Plugging values into (12.153) and (12.152) gives

Rodh ≈ [ro1Agm1A(ro11||ro1)]||(ro3Agm3Aro3)

= [2450(0.026)(1340||3330)]||[2780(0.036)2780] Ω

= (60.9 k)||(278 k) Ω = 50.0 kΩ (12.164)

and
adm0 = −gm1 × Rodh ≈ −0.030 × 50.0 k = −1500 (12.165)

The CM half-circuit is shown in Fig. 12.43. The transistor labeled “1∕2 ⋅ M5” is half of M5:
that is, it has half the W, half the drain current, and the same L as M5. Therefore, “1∕2 ⋅ M5” has
half the transconductance of M5 and twice the output resistance of M5. Similarly, the transistor
labeled “1∕2 ⋅ M6” is half of M6. The CM gain of the op amp is the gain of the half-circuit from
vic to voc with vcmc = 0:

acm0 =
voc

vic

||||vcmc=0
= −

gm1

1 + gm1Rt
⋅ Roch ≈ − 1

Rt
⋅ Roch (12.166)

This gain is the product of the transconductance of M1 degenerated by resistance Rt and the
output resistance of the CM half-circuit, Roch. Here Rt is the resistance looking down into
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Figure 12.43 CM half-circuit for the op amp, for finding the CM and CMC gains.

the drains of “1∕2 ⋅ M5” and “1∕2 ⋅ M6”; therefore, Rt is the parallel connection of the output
resistances of “1∕2 ⋅ M5” (= 2ro5) and “1∕2 ⋅ M6” (= 2ro6). The approximation in (12.166) is
based on the assumption that gm1Rt ≫ 1. Resistance Roch is the parallel combination of the
resistance looking into the drain of M1A and the resistance looking into the drain of M3A in the
CM half-circuit. Hence

Roch ≈ [ro1Agm1A(ro11||Ro(M1))]||(ro3Agm3Aro3)

≈ [ro1Agm1A(ro11)]||(ro3Agm3Aro3)

= [2450(0.026)1340]||[2780(0.036)2780] Ω

= (85.0 k)||(278 k) Ω = 65.3 kΩ (12.167)

where Ro(M1) ≈ ro1gm1[(2ro5)||(2ro6)] is the resistance looking into the drain of M1. The
assumption Ro(M1) ≫ ro11 was used in (12.167), which yields ro11||Ro(M1) ≈ ro11. Substi-
tuting values into (12.166) gives

acm0 ≈ − 1
Rt

⋅ Roch = − 1
(2ro5)||(2ro6)

⋅ Roch (12.168)

= − 1
(2 ⋅ 3330)||(2 ⋅ 3330)

⋅ (65.3 k) = − 1
3330

⋅ (65.3 k) = −19.6

The CM-sense circuit consists of four capacitors and six switches and is shown in Fig. 12.44.
This switched-capacitor network was described in Section 12.5.4 and shown previously in
Fig. 12.21. Here, the switches, which are implemented with MOS transistors in practice, are
drawn as ideal switches for simplicity. For a purely CM output, the gain of the CM-sense circuit
in Fig. 12.44 is close to unity, so vcmc ≈ voc. The CMC node of the CM-sense circuit connects
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Figure 12.44 The switched-capacitor CM-sense
network. Ca = Cb = 0.1 pF.

to the gate of M6 in the op amp, which is also labeled CMC in Figure 12.40. The CM sense
network and the op amp form a negative feedback loop that forces the CM output voltage of
the op amp to approximately equal the voltage VBiasE, which is generated in Fig. 12.41 and is
about 0.9 V.

The CMC gain of the op amp is the gain from vcmc to voc with vic = 0. It can be found using
the CM half-circuit in Fig. 12.43:

acmc0 =
voc

vcmc

||||vic=0
= −

gm6

2
× Roch (12.169)

where Roch is the output resistance of the CM half-circuit as given by (12.167). Substituting
values into (12.169) yields

acmc0 = −
gm6

2
× Roch ≈ −

(0.030
2

)
(65.3 k) (12.170)

= −980

The low-frequency DM, CM, and CMC gains calculated above and from SPICE simulations
are listed in Table 12.3. Reasons for the differences between calculated and simulated val-
ues include short-channel effects (the transistor behavior deviates from the simple square-law
equations on which our small-signal formulas are based), errors in ro (λn and λp are not con-
stant in practice and depend on VDS), body effect (which was ignored in the calculations), and
approximations used to simplify the calculations.

The output voltage swing of the op amp is now estimated. Consider the output swing of Vo1
in Fig. 12.40. The upper swing limit occurs when M1A enters the triode region. This occurs
when the gate-to-drain voltage of M1A equals a threshold voltage. Thus, using (12.151), the
upper swing limit of Vo1 is

Vo1(max) = VBiasC + |Vt1A| = 1.0 V + 0.50 V = 1.50 V (12.171)

The lower swing limit of Vo1 occurs when M3A enters the triode region. This occurs when the
gate-to-drain voltage of M3A equals a threshold voltage. Using (12.143), the lower swing limit

Table 12.3 Calculated and Simulated Op-Amp Gains

Calculated Simulated|adm0| 1500 1280|acm0| 19.6 20.5|acmc0| 980 660
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of Vo1 is
Vo1(min) = VBiasD − Vt3A = 0.96 V − 0.50 V = 0.46 V (12.172)

Therefore, the peak-to-peak output swing of Vo1 is

Vo1,pp = Vo1(max) − Vo1(min) = 1.50 V − 0.46 V = 1.04 V (12.173)

if the CMFB circuit biases Vo1 midway between the swing limits. In that case, the peak-to-peak
differential output swing, which is twice the swing of either Vo1 or Vo2, is

Vod,pp = 2Vo1,pp = 2(1.04) V = 2.08 V (12.174)

Simulation gives a differential output swing of 2.4 V.
The common-mode input range (CMIR) of the op amp is the range of CM input voltage over

which the transistors associated with the input differential pair remain in the active or saturation
region. The lower limit of the CMIR occurs when the CM input voltage forces either M5 or M6
into the triode region. Since M5 and M6 have equal drain currents and aspect ratios, they both
enter the triode region when VDS5 = VDS6 = Vov5. The corresponding CM input voltage is

VIC(min) = VGS1 + Vov5 = Vt1 + Vov1 + Vov5

= Vt1 +

√
2(ID1)

k′n(W∕L)1
+

√
2(ID5)

k′n(W∕L)5

= 0.50 V +

√
2(2.0 mA)

(170 μA∕V2)(40∕0.3)(10)
+

√
2(2.0 mA)

(170 μA∕V2)(40∕0.3)(10)

= 0.50 V + 0.13 V + 0.13 V = 0.76 V (12.175)

The upper limit of the CMIR occurs when the CM input voltage forces either M1 or M2 into
the triode region. Since M1 and M2 are matched with equal drain currents, they both enter the
triode region when the CM input voltage is a threshold voltage above the voltage at the drain
of M1 or M2. Considering M1, its drain voltage is also the voltage at the source of M1A, VS1A.
Therefore, using (12.151),

VIC(max) = VS1A + Vt1 = VBiasC + VSG1A + Vt1

= VBiasC + |Vt1A| + |Vov1A| + Vt1

= VBiasC + |Vt1A| +
√

2|ID1A|
k′p(W∕L)1A

+ Vt1 (12.176)

= 1.0 V + 0.50 V +

√
2(2.4 mA)

(45 μA∕V2)(40∕0.3)(24)
+ 0.50 V = 2.2 V

From (12.175) and (12.176), the CMIR is from 0.76 to 2.2 V. The bias circuit generates VBiasE
= 0.9 V. As described in the next subsection, this voltage sets the CM input voltage of the op
amp to 0.9 V, which falls within the CMIR of the op amp. The CMIR for this folded-cascode
op amp is fairly large. The CMIR for a folded-cascode op amp is usually larger than the
CMIR for a telescopic-cascode op amp designed in the same CMOS technology, due to the
“folded” topology.
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The input-referred noise of the op amp can be found by considering a DM half-circuit, sum-
ming the contributions of the device noise-current generators to the output current when the
output node is shorted to small-signal ground, and then referring the output noise to the op-amp
input. These calculations are carried out next. Flicker noise is ignored for simplicity here.

Figure 12.45 shows the DM small-signal half-circuit including a noise generator for each
transistor. Here, the output is shorted to ground to allow calculation of the output noise current.
For simplicity, let ro → ∞ for all transistors and ignore all capacitors. The drain currents of
M1, M3, and M11 all flow into the short at the output. Therefore, noise in these currents directly
contributes to the noise in the output current io1. However, M1A and M3A do not contribute to
the output noise current. To understand why, first consider M3A. Using superposition, consider
only the noise-voltage source connected to its gate. The drain current of M3A is the product
of this noise voltage and the transconductance of M3A degenerated by the resistance ro3. With

ro3 → ∞, the degenerated transconductance is zero, and therefore v2
i3A does not contribute

to the noise in the output current io1. Similarly, M1A does not contribute to the noise in the
output current. Therefore, the total noise current at the output is the sum of the noise-current
contributions from M1, M3, and M11 in Fig. 12.45:

i2o1

Δf
= g2

m1

v2
i1

Δf
+ g2

m11

v2
i11

Δf
+ g2

m3

v2
i3

Δf
(12.177)

Using the thermal-noise voltage expression from (11.68a),

v2
i

Δf
= 4kT

2
3

1
gm

(12.178)

M11

M1A

M3A

v2
i3

v2
i3A

v2
i1A

v2
i11

vod

v

v2
i1

M3

M1
id

2

io1

2
= 0

Figure 12.45 DM small-signal half-circuit of the op amp showing the noise-voltage generators.
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for each noise-voltage generator, the total output noise current in (12.177) can be written:

i2o1

Δf
= g2

m14kT
2
3

1
gm1

+ g2
m114kT

2
3

1
gm11

+ g2
m34kT

2
3

1
gm3

(12.179)

At T = 300∘K, 4kT = 1.66 × 10−16 V-C. Substituting 4kT and gm values into (12.179) and
evaluating gives

i2o1

Δf
= (3.32 + 5.32 + 3.98) × 10−22 A2∕Hz = 12.6 × 10−22 A2∕Hz (12.180)

Referring this output noise current to an equivalent noise voltage veqH at the input of the DM
half-circuit yields

v2
eqH

Δf
=

i2o1

Δf
⋅

1

g2
m1

= 12.6 × 10−22 A2∕Hz ⋅
1

(30 mA∕V)2
= 1.40 × 10−18 V2∕Hz (12.181)

Analysis of the other DM half-circuit yields the same input-referred noise, and the noise volt-
ages in each half-circuit are uncorrelated. Therefore, the total equivalent input-noise voltage
for the fully differential op amp, veqT , is

v2
eqT

Δf
= 2

v2
eqH

Δf
= 2 × 1.40 × 10−18 V2∕Hz = 2.80 × 10−18 V2∕Hz (12.182)

or √√√√v2
eqT

Δf
=
√

2.80 × 10−18 V2∕Hz = 1.67
nV√
Hz

(12.183)

SPICE simulation gives 1.9 nV/
√

Hz. The flicker noise could be included in the above calcu-
lations using the formulas in Chapter 11.

12.9.3 Frequency and Time Responses in a Feedback Application

The DM gain of the op amp is frequency dependent due to poles and zeros caused by the
capacitances associated with the transistors in the op amp. Hand calculation of the frequency
response is possible, but the result is often inaccurate since the poles and zeros depend on
device and parasitic capacitances. Therefore, the frequency response of the op-amp gain is
usually simulated. Also, the op amp is always used in feedback, and the stability of the feed-
back loops, under the loading imposed in part by the passive feedback elements, is a key issue.
Therefore, the magnitude and phase responses of the return ratio of each feedback loop are
of interest. The feedback loops will be considered later in this section for the feedback circuit
that is described next.

Figure 12.46 shows the op amp used in a fully differential switched-capacitor application.
The operation of this circuit is similar to that of the single-ended switched-capacitor gain stage
of Fig. 6.8a, and it uses the clocks shown in Fig. 6.8b. Ideally, this circuit provides a voltage
gain during 𝜙1 of −C1∕C2. In practice, the MOS transistors act as switches, and the switches
are designed so that their resistance when on (and in the triode region) is small enough to be
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Figure 12.46 Switched-capacitor amplifier that uses the op amp in Fig. 12.40. The CM-sense circuitry
is not shown.
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C1
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CL

CL Figure 12.47 The switched-
capacitor amplifier of Fig. 12.46
when phase 𝜙1 is high.

ignored. The ideal value of the CM input and output voltages is VBiasE, which is the voltage
at node BiasE, and VBB is the CM value of the input sources Vs1 and Vs2. When 𝜙1 is high,
the circuit is redrawn in Fig. 12.47. (The CM input and output voltages of the op amp are the
same in Fig. 12.46, but they could be different. The CM input voltage must fall within the
CM input range, and the CM output voltage is usually chosen to maximize output swing.
Sometimes two different bias voltages are used to independently optimize these voltages.)
Here, switches driven by the 𝜙1 clock are short circuits, and switches driven by 𝜙2 are open
circuits. An op amp can appear in the feedback configuration in Fig. 12.47 in many applica-
tions, such as a switched-capacitor gain stage and a switched-capacitor integrator, which is
shown in Fig. 6.10a.

Because node BiasE connects to switches in Fig. 12.46, its voltage can experience signif-
icant transients after switching. If other bias voltages were produced by the same branch in
Fig. 12.41 that generates VBiasE, significant transients could also be introduced in these other
bias voltages. To avoid this problem, the branch of Fig. 12.41 that generates VBiasE generates
no other bias voltages.
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Figure 12.48 The feedback
circuit in Fig. 12.47, with resistors
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For the feedback circuit of Fig. 12.47, the stability of the DM and CM feedback loops is
considered next, using a combination of simulations and calculations. The return ratio is used
to investigate stability. In the following, C1 = C2 = 1 pF, and the value of the load capacitance
CL varies.

The return ratio can be simulated using an extension of the technique described in
Problem 8.33, which allows exact simulation of the return ratio when a controlled source is
not accessible.11 For example, with the feedback broken at the X marks in Fig. 12.48, the
quantities ′

v,dm and ′
i,dm are simulated, and then these quantities are combined to calculate

the return ratio dm using the equation in Problem 8.33.
For the return-ratio simulation, a dc path to each op-amp input is provided by each resistor

RBIG in Fig. 12.48. A very large resistance, RBIG = 1 × 1012 Ω, is used that has little effect on
the simulation results at frequencies where 𝜔 ≫ 1∕(RBIGC1). The dc voltage at each op-amp
input is VBiasE, which is developed at node BiasE in the bias circuit of Fig. 12.41. Without these
resistors, the dc op-amp input voltages are undefined, and therefore, SPICE would not be able
to simulate the circuit. In normal operation, one plate of each switched capacitor is alternately
connected to BiasE or an op-amp input, as shown in Fig. 12.46. This switching makes the dc
voltage at the op-amp inputs equal the voltage VBiasE.

The simulated magnitude and phase responses of the return ratio for the DM feedback loop
are plotted in Fig. 12.49. Here, the load capacitance in the DM half-circuit is CL = 2 pF. The
phase margin is 72∘, and the gain margin (GM) is 38 dB. The frequency fr where the magnitude
of the return ratio is unity is 390 MHz.

For comparison to simulation, the DM return ratio will now be calculated. The feedback
circuit of Fig. 12.47 is shown in Fig. 12.50a with two capacitors Cia added; these capacitors
model the op-amp input impedance. The corresponding DM small-signal half-circuit is shown
in Fig. 12.50b, where the op-amp output port is modeled simply by a transconductance gm1
and resistance Rodh [based on (12.165)]. This model ignores all poles and zeros except the pole
associated with the RC time constant at the op-amp output node.

If the feedback is broken at the X in Fig. 12.50b and the input voltage Vsd∕2 is set to zero
for calculation of the DM return ratio, the total load capacitance from the op-amp output to
ground is

CLeff = CL +
C2(C1 + Cia)
C2 + C1 + Cia

(12.184)
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Figure 12.49 Simulated DM return ratio for CL = 2 pF. (a) Magnitude and (b) phase responses.

Here the capacitors in the CM-sense block are ignored for simplicity; in practice, they are small
compared to the capacitors C1,C2, and CL. The right-most term in (12.184) is the capacitance
associated with C2 in series with the parallel connection of C1 and Cia. Based on a simulation
of the input impedance of the op amp (by applying an ac voltage across the op-amp input,
measuring the op-amp input current, and then computing the input capacitance), Cia ≈ 2.58 pF.
Capacitance Cia is the sum of Cgs1 and Cgd1 increased by the Miller effect. Substituting values
into (12.184) gives

CLeff = CL +
C2(C1 + Cia)
C2 + C1 + Cia

= 2 pF + 1(1 + 2.58)
1 + 1 + 2.58

pF = 2.72 pF (12.185)

For comparison, the DM return ratio can be calculated with the feedback loop broken in
the simplified circuit of Fig. 12.50b. Following Section 8.8, the calculated return ratio is

dm(𝜔) = gm1Rodh ⋅
1

1 + j𝜔RodhCLeff
⋅

C2

C2 + C1 + Cia
(12.186)
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The pole here is −1∕(RodhCLeff), due to the RC time constant at the op-amp output of
Fig. 12.50b. Here CLeff is the effective output load capacitance with the loop broken, as given
by (12.184). At dc, (12.186) reduces to

dm0 = dm(𝜔 = 0) = gm1Rodh ⋅ 1 ⋅
C2

C2 + C1 + Cia
(12.187)

At high frequencies [𝜔 ≫ 1∕(RodhCLeff)], (12.186) reduces to

dm(𝜔) ≈ gm1 ⋅
1

j𝜔CLeff
⋅

C2

C2 + C1 + Cia
(12.188)

The unity-gain frequency 𝜔r of the return ratio [i.e., the frequency where |dm(𝜔r)| = 1]
can be found using (12.185) and (12.188):

𝜔r ≈
gm1

CLeff
⋅

C2

C2 + C1 + Cia
= 0.030

2.72 × 10−12
⋅

1
1 + 1 + 2.58

rad∕s

= 2.4 Grad∕s = 2𝜋(380 MHz) (12.189)

This calculated unity-gain frequency is in good agreement with the simulated value of
390 MHz.

The DM return ratio in (12.186), which is based on the simplified op-amp model of
Fig. 12.50b, would give a phase margin of at least 90∘, since dm(𝜔) has only one pole that
will introduce at most −90∘ of phase shift at 𝜔r. However, poles and zeros associated with
internal nodes in the op amp, along with the dominant pole −1∕(RodhCLeff), contribute to the
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return-ratio magnitude and phase responses at high frequencies. Therefore, the return ratio
may have unacceptable gain or phase margin due to these poles and zeros. In practice, CL,
which is a significant component of CLeff in (12.185), is chosen to ensure good gain and phase
margins for the CM and DM feedback loops.

For the DM feedback loop of Fig. 12.47 with CL = 1 pF, the phase margin is 65∘, and
the gain margin is 35 dB. The frequency where the magnitude of the return ratio is unity is
fr = 550 MHz.

For the DM feedback loop of Fig. 12.47 with CL = 0 pF, the capacitance CLeff is dominated
by capacitors C1,C2, and Cia. The phase margin is 55∘, and the gain margin is 31 dB. The
frequency where the magnitude of the return ratio is unity is fr = 810 MHz.

Note that as CL increases, the phase margin increases, and the unity-gain frequency of the
DM return ratio (𝜔r = 2𝜋fr) decreases. This is as expected, since increasing CL increases CLeff,
which reduces the magnitude of the dominant pole in the return ratio without affecting the other
poles and zeros.

The low-frequency closed-loop DM gain is given by

Acl0,dm =
vod

vsd
= A∞ ⋅

dm0

1 +dm0
(12.190)

from (8.209). The direct feedthrough d = 0 for this circuit, due to the capacitive feedback
elements that are open circuits at dc and hence block signal feedthrough at dc. The ideal
closed-loop gain is A∞ = −C1∕C2 = −1. Using the simulated value of dm0 in (12.190) yields

Acl0,dm = A∞ ⋅
dm0

1 +dm0
= −1 ⋅

280
1 + 280

= −0.996 (12.191)

SPICE simulation agrees exactly with this closed-loop gain. The simulated −3 dB bandwidth
of the closed-loop gain is 630 MHz with CL =2 pF.

The CM return ratio can be simulated11 by breaking the feedback at the X marks in
Fig. 12.48, simulating the quantities ′

v,cm and ′
i,cm, and then combining these quantities

to calculate the CM return ratio cm using the equation in Problem 8.33. There are two CM
feedback loops of Fig. 12.48. One includes the CM sense circuit and the gain from the op-amp
CMC input to the op-amp CM output voltage. The other includes the feedback elements
C1 and C2 and the CM gain from the op-amp CM input voltage to the op-amp CM output
voltage. When the feedback is broken at the X marks in Fig. 12.48, both of these CM loops
are broken.11 The simulated CM return ratio is shown in Fig. 12.51 for CL = 2 pF. The phase
margin is 76∘, and the gain margin is 41 dB. So the CM loop is stable with good margins for
CL = 2 pF. The unity-gain frequency for this return ratio is 420 MHz.

The CM return ratio differs from the DM return ratio because the small-signal half-circuits
differ; points of symmetry are open circuits for CM signals but are small-signal grounds for
DM signals. For example, the node between the two Cia capacitors of Fig. 12.50a is a ground
for DM signals but an open circuit for CM signals. Differences between the return ratios can be
seen by comparing Figs. 12.49 and 12.51. For example, a left-half-plane zero exists in the CM
return ratio at about 60 MHz. It causes the magnitude response to flatten and the phase response
to increase. It was determined through simulations that this zero is related to the nonzero output
impedances in the bias circuit at the BiasC and BiasD nodes. When the impedance at nodes
BiasC and BiasD was decreased by connecting a large capacitor from those bias nodes to
ground, the effect of the zero was not visible in the magnitude or phase response, and the
general shape of the CM return-ratio response resembled the plots in Fig. 12.49. With these
bypass capacitors, the CM return-ratio phase margin is 54∘, and the gain margin is 16 dB.
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Figure 12.51 Simulated CM return ratio for CL = 2 pF. (a) Magnitude and (b) phase responses.

The step responses of the DM op-amp output voltage Vod for three values of CL are plotted
in Fig. 12.52. The ideal output Vod is also shown, ideally, Vod is the differential input inverted
since the closed-loop DM gain is −C1∕C2 = −1. The overshoot/ringing in the step response
increases as CL decreases (and the phase margin decreases). As the phase margin decreases,
the poles of the closed-loop transfer function move toward the j𝜔 axis. (In a two-pole system,
the closed-loop poles will be on the j𝜔 axis when the phase margin is zero. In that case, the step
response contains a sinusoid in steady state.) In switched-capacitor applications, the output of
the op amp must settle to its final value within one-half clock period. For example, the output
voltage of the op amp of Fig. 12.46 must settle during the time when clock 𝜙1 is high. The
settling time is usually found by applying a step input. Then the settling time is measured from
the time the input changes until the output voltage remains within a specified band around its
steady-state value. For the step responses in Fig. 12.52, the 1 percent settling times (the time
until the output remains within 1 percent of the final output voltage) are 1.67 ns for CL = 2 pF,
1.35 ns for CL = 1 pF, and 1.37 ns for CL = 0 pF.



Problems 927

Time (ns)

V
od

(V
)

0.2

0.1

0.0

0 2 4 6

CL = 2 pF

CL = 1 pF

CL = 0 pF
Ideal Vod

Figure 12.52 Step responses
(Vod versus t) for CL = 0, 1, and
2 pF. The ideal output is plotted
with a dashed line. The input is
a −0.2 V step applied at
t = 0.4 ns.

Equation 12.189 shows that 𝜔r can be increased by increasing gm1, by decreasing CLeff (by
decreasing some or all of the capacitances that contribute to it), or by increasing the term
C2∕(C2 + C1 + Cia), which is sometimes called the feedback factor. Assuming a constant
phase margin, if 𝜔r increases, the closed-loop −3 dB bandwidth increases, and the settling
time of the step response decreases. Also, if the phase margin is larger than required, 𝜔r could
be increased (and the phase margin decreased) by increasing the magnitude of the dominant
pole. This can be achieved by reducing CL.

During slewing, a large voltage appears between op-amp inputs and causes one of the input
transistors (M1 or M2) in Fig. 12.40 to turn off while the other remains on. In that case, the sum
of the drain currents from M5 and M6 flows through the input transistor that is on. This causes
a current change in both M1 and M2 of magnitude Islew = (ID5 + ID6)∕2; this current flows
from the op-amp outputs and through the differential load. The op-amp inputs are not virtually
shorted during slewing because one of the op-amp input transistors is off, and thus the op-amp
operation is highly nonlinear. Therefore, the total load capacitance from each op-amp output
to ground is equal to CLeff as given in (12.184). The differential load capacitance between the
two op-amp outputs will be half of CLeff, since two CLeff capacitors are in series between the
two op-amp outputs. Therefore, the DM output slew rate is

dVod

dt
=

Io(max)
CLeff

2

=
Islew

CLeff

2

=

ID5 + ID6

2
CLeff

2

=

4.0
2

mA

2.72 pF

2

= 1.47
V
ns

(12.192)

assuming all current-source transistors remain in the active region during slewing. A SPICE
simulation gives a slew rate of 1.2 V/ns.

PROBLEMS
12.1 What are the swing limits for each output

of the differential amplifier of Fig. 12.2? Use |Vov| =
0.2 V for all transistors and Vtn = −Vtp = 0.6 V.
Assume VDD = VSS = 2.5 V, Vic = 0, and 𝛾 = 0. Also
assume that the common-mode feedback circuit does

not limit the output swing. What value of VOC gives
the largest symmetric differential output swing? What
is the peak value of Vod in this case?

12.2 Repeat 12.1 for the two-stage op amp of
Fig. 12.23. Assume that switched-capacitor CMFB is
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used, which does not limit the output swing. Use the
data in Problem 12.1.

12.3 A balanced fully differential circuit dis-
plays only odd-order nonlinearity. Use SPICE to
verify this fact for the op amp in the example in
Section 12.6.1.

(a) Either use SPICE to find the distortion in
the output waveform for a low-frequency differential
sinusoidal input, or use SPICE to plot the dc transfer
characteristic Vod versus Vid and verify that the char-
acteristic is odd.

(b) Repeat (a) with a 1 percent mismatch between
W1 and W2. Observe that even-order nonlinearity now
exists.

12.4 For the op amp of Fig. 12.2, use the device
data and operating point from the first example in
Section 12.4.1. Assume all transistors operate in the
active region.

(a) Find the element values in the two models for
the output ports of Fig. 12.7.

(b) Find the element values in the two models for
the input ports of Fig. 12.6. (The elements are capac-
itors.) Use Cgs = 180 fF and Cgd = 20 fF.

12.5 For the op amp of Fig. 12.2, use the data
from Problem 12.4, except use ID5 = 100 μA and|Vov| = 0.1 V for all transistors. Assume all transis-
tors operate in the active region with Cgs = 180 fF and
Cgd = 20 fF.

(a) Find the element values in the two models for
the output ports of Fig. 12.7.

(b) Find the element values in the two models for
the input ports of Fig. 12.6. (The elements are capac-
itors.)

(c) Calculate the common-mode control gain
acmc.

12.6 .(a) For the op amp of Problem 12.5, calcu-
late a′

cm. Assume that the CMFB scheme in Fig. 12.17
is used and that acms = 1. Recall that a′

cm = voc∕vic

when the CMFB loop is active.

(b) Use SPICE to plot |a′
cm| from 100 Hz to

100 MHz.

12.7 Repeat Problem 12.5c when the gates of
M3 and M4 are the CMC input, and the gate of M5

connects to a bias voltage.

12.8 The op amp of Problem 12.5 is con-
nected in feedback, as shown in Fig. 12.32a. The
CMFB is as described in Problem 12.6. Compute the
low-frequency closed-loop gains Adm = vod∕vsd and
Acm = voc∕vsc if R1 = R2 = R3 = R4 = 100 MΩ.

12.9 Calculate the DM output slew rate dVod∕dt
for the op amp of Fig. 12.2. Assume ID5 = 200 μA and

a 5 pF capacitor is connected from each op-amp output
to ground.

12.10 Calculate the CM output slew rate dVoc∕dt
for the op amp of Fig. 12.2. Assume ID5 = 200 μA and
a 5 pF capacitor is connected from each op-amp output
to ground.

12.11 Compute the output slew rate dVod∕dt for
the op amp in the example in Section 12.6.1. Use the
bias currents from the example and C = 1.39 pF.

12.12 For this problem, use the op amp of
Fig. 12.23 and the CMFB scheme in Fig. 12.17. Use
the complement of the amplifier of Fig. 12.16b as the
CM-sense amplifier, modified to give a negative dc
gain. Assume the source followers in Fig. 12.17 have
a low-frequency gain of 0.95 and Rcs = 15 kΩ. Use
the transistor and op-amp operating-point data given
in the example in Section 12.6.1.

(a) Design the CM-sense amplifier so that the
total low-frequency gain acms0 = voc∕vcms = −0.71,
which is the same value as in the example in
Section 12.6.1.

(b) With this CMFB circuit, what are the swing
limits for each op-amp output voltage (Vo1 and Vo2)?
Assume that the biasing current source in each source
follower in Fig. 12.17 is implemented with a NMOS
transistor, and the current-source and source-follower
transistors operate with VGS = 0.8 V and Vov = 0.2 V.
For simplicity, assume VGS is constant and take
𝛾 = 0.

(c) What value of VCM gives the largest symmetric
output swing?

(d) Verify that this CMFB circuit works correctly
by running a SPICE simulation. Use the value of VCM

from part (c).

12.13 Compute the op-amp CM and DM load
capacitances for the output loading in Fig. 12.53a,b.
Assume the inverting voltage buffers of Fig. 12.53b
are ideal.

12.14 .(a) For the amplifier of Fig. 12.16b, esti-
mate the pole associated with the RC time constant
at the Vcms output node. Assume |ID25| = 0.4 mA,
Vov23 = 0.2 V, and VOC = VCM . Ignore all capacitances
except Cgs23 in parallel with a fixed capacitance of
90 fF. Take Leff = 0.8 μm. Use the data in Table 2.3.

(b) Repeat (a), except use |ID25| = 0.1 mA.

(c) Compare the results in (a) and (b). Explain the
difference.

12.15 A differential amplifier with local CMFB
is shown in Fig. 12.54. Use |Vov| = 0.2 V for all
transistors, Vtn = −Vtp = 0.6 V, ID5 = 200 μA,
VAn = 10 V, |VAp| = 20 V, and 𝛾 = 0. Assume
VDD = VSS = 2.5 V and Vic = 0.
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(a)

Vo1

Vo2

6 pF

7 pF

7 pF

Op amp

(b)

Vo1

Vo2

–1

–1
5 pF

5 pF

3 pF

3 pF

Op amp

Figure 12.53 Output load networks for Problem 12.13.

VDD

M1 M2

M4

M5

M3

Vo1

Vi1

Vo2

Vi2

VBIAS

–VSS

20 kΩ 20 kΩ

Figure 12.54 A differential amplifier with local
common-mode feedback.
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VDD

M1 M2

M4M3

Vo1

Vi1

Vo2

Vi2

VBIAS

–VSS

Figure 12.55 A differential amplifier without a
tail current source.

(a) What is the dc common-mode output voltage
of this amplifier?

(b) Compute the low-frequency gains adm and acm.
Compare these gains with the gains calculated in the
first example in Section 12.4.1.

12.16 A differential amplifier that does not use a
tail current source is shown in Fig. 12.55.

(a) Compute the low-frequency gains adm and acm.
For all transistors, drain currents are 100 μA and|Vov| = 0.2 V. Also, VAn = 10 V, and |VAp| = 20 V.

(b) Compare these gains with the gains calculated
in the first example in Section 12.4.1.

12.17 .(a) For the op amp of Fig. 12.2, assume the
CM and DM load capacitances are CLc = CLd = 2 pF.
Calculate the frequencies at which |adm(j𝜔)| = 1 and|acmc(j𝜔)| = 1, ignoring other capacitors. Use |Vov| =
0.25 V for all transistors, Vtn = −Vtp = 0.6 V, ID5 =
200 μA, VAn = 20 V, |VAp| = 25 V, and 𝛾 = 0.

(b) Calculate the unity-gain frequencies in part (a)
if CLc = 2 pF and CLd = 4 pF.

VCM

Vcms

Rcs

Rcs

Vo1

Vo2

C1

+

× 1
–

Op amp

Figure 12.56 Circuit for Problem 12.18.

(c) The unity-gain frequency for the CMC gain
can be made equal to the DM unity-gain frequency in
part (b) by splitting M5 as shown in Fig. 12.15. How
should the 200 μA current be split between M51 and
M52? Assume Vov51 = Vov52 = 0.25 V.

12.18 For the CM-detector of Fig. 12.56, find
acms(s) = vcms(s)∕voc(s), assuming the CM-sense
amplifier is ideal with unity gain. Then find acms(s)
when a capacitor Ccs is connected in parallel with each
resistor Rcs. What is the effect of the Ccs capacitors?

12.19 A NMOS transistor is operating in the tri-
ode region. Find a formula for its transconductance
gm = 𝜕Id∕𝜕Vgs. Compare it with gm in the active region
at the same dc drain current. Which is larger?

12.20 For the fully differential circuit of
Fig. 12.32a, assume the op amp is ideal, with Ri = ∞,
Ro = 0, adm = −∞, and acm = 0. Find the closed-loop
gains Adm = vod∕vsd, Acm = voc∕vsc, Adm−cm = voc∕vsd,
and Acm−dm = vod∕vsc, under the following conditions.

(a) R1 = R2 = 1 kΩ and R3 = R4 = 5 kΩ.



Problems 931

(b) R1 = 1.01 kΩ, R2 = 0.99 kΩ, and R3 = R4 =
5 kΩ.

12.21 For the circuit in Problem 12.20a, the
applied source voltage is a single-ended signal with
Vs1 = 0.2 V sin(100t) and Vs2 = 0. Assume a CMFB
loop forces VOC = 0. What are Vo1(t), Vo2(t), Vod(t),
and Voc(t)? What are Vi1(t), Vi2(t), Vid(t), and Vic(t)?

12.22 The op amp in Problem 12.4 is used with
the CMFB scheme shown in Fig. 12.17. The circuit
is perfectly balanced except that the CM-sense resis-
tors are mismatched with the upper resistor Rcs1 =
10.1 kΩ and the lower resistor Rcs2 = 9.9 kΩ. Assume
the source followers and the CM-sense amplifier are
ideal with gains of unity.

(a) Compute the gains acms and adm−cms in
(12.106).

(b) Compute the low-frequency op-amp gains
vod∕vid, voc∕vic, vod∕vic, and voc∕vid with the CMFB
active.

(c) Use SPICE to simulate these gains.

12.23 A fully differential op amp with CMFB
is shown in Fig. 12.57. For M1, M1C, M2, and
M2C, use W∕L = (64 μm)∕(0.8 μm). For M3–M4,
M26–M27 and M11, W∕L = (96 μm)∕(1.4 μm). For
M21–M24, W∕L = (6 μm)∕(0.8 μm). For M14, M25,
and M52, W∕L = (16 μm)∕(0.8 μm). For M13, W∕L =
(1.4 μm)∕(0.8 μm). Take VCM = −0.65 V.

VDD = +1.65V

IDC = 100 μA

–VSS = –1.65V

VCM

Vo2Vo1

Vi2

M23

M51 M25

M24

M27

M21 M22

M2

M13

Vi1 M1

M52M14

M26M4M3M12
M11

M2CM1C

Figure 12.57 Circuit for Problem 12.23.

(a) Choose W values for M12 and M51 so that|ID13| = 20 μA. Use L = 0.8 μm for M51 and L =
1.4 μm for M12.

(b) Use SPICE to find the low-frequency op-amp
gains vod∕vid, voc∕vic, vod∕vic, and voc∕vid with the
CMFB active.

(c) Calculate the output slew rate dVod∕dt if a 4
pF capacitor is connected from each op-amp output to
ground.

(d) What is the differential output voltage swing
of this op amp? Assume Vic = VCM , and ignore the
body effect for this calculation.

(e) Repeat (b) when the input transistors are mis-
matched with W1 = 63 μm and W2 = 65 μm. (Note:
With mismatch, the op-amp offset voltage is not zero.)

(f) Repeat (b) when the load transistors are mis-
matched with W3 = 95 μm and W4 = 97 μm.

12.24 The feedback circuit of Fig. 12.58 is a
switched-capacitor circuit during one clock phase.
Assume the op amp is the folded-cascode op amp of
Fig. 12.31.

(a) Calculate the DM and CM output load
capacitances, considering only the capacitances in
Fig. 12.58.

(b) If the op-amp bias currents are |ID3| = |ID4| =
100 μA and |ID5| = ID11 = ID12 = 200 μA, calculate
the DM output slew rate dVod∕dt.
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Vod

Vs1

Vs2

+ –

– +
+

–

+

–

+

–

1.5 pF

1 pF

1 pF

0.5 pF

 1.5 pF 0.5 pF
Figure 12.58 Circuit for Problem
12.24.

(c) If all transistors have |Vov| = 0.15 V and
VDD = VSS = 2 V, what is the maximum peak differen-
tial output swing? Assume VBB3 and VBB4 are chosen
to give maximum swing.

12.25 In the switched-capacitor CMFB scheme
of Fig. 12.21, C1 = 0.1 pF and C2 = 0.5 pF.

(a) With VCSBIAS = −1 V, VOC = VCM = 0.5 V. If
VCSBIAS changes to −1.1 V, what is the new value of
VOC? Assume |acmc|≫ 1.

(b) Ignoring all capacitors except C1 and C2, what
are the CM and DM output load capacitors when the
𝜙1 switches are on and the 𝜙2 switches are off?

(c) Repeat (b) when the 𝜙2 switches are on and
the 𝜙1 switches are off.

12.26 A current-mirror op amp is shown in
Fig. 12.59. Assume all NMOS transistors are matched
and all PMOS transistors are matched. Use |Vov| =
0.2 V for all transistors, Vtn = −Vtp = 0.6 V, ID5 =
200 μA, VAn = 10 V, |VAp| = 20 V, and 𝛾 = 0. Assume
VDD = VSS = 1.65 V and Vic = 0.

(a) Calculate the model parameters in Fig. 12.7a.
Assume the gates of M5, M7, and M9 connect to bias
voltages.

VDD

–VSS

VB1 VB2

Vi2 Vo1Vi1Vo2

M3 M6M4

M1

M5 M7

M2

M9

M8

Figure 12.59 A fully
differential current-mirror op
amp.

(b) If the CMC input is the gate of M5 and the
gates of M7 and M9 connect to a bias voltage, compute
acmc.

(c) If the CMC input connects to the gates of M7

and M9 and the gate of M5 connects to a bias voltage,
compute acmc.

(d) What are the output swing limits for each out-
put? What value of VOC gives the maximum symmet-
ric output swing?

12.27 Find the low-frequency value of a′
cm for the

two-stage op amp in the example in Section 12.6.1.
Use the data in that example. Recall that a′

cm = voc∕vic

when the CMFB loop is active.

12.28 Assume that the CMFB circuit in the
example in Section 12.6.1 is changed so that
the CM-sense amplifier has a low-frequency gain|acms0| = 2.5. Determine the compensation capacitor
C needed in the op amp to assure that the CMC and
DM feedback loops in the example have a phase mar-
gin of 45∘ or larger.

12.29 Neutralization capacitors Cn are to be
added to cancel the Miller effect on Cgd1 and Cgd2 in
the two-stage op amp in the example in Section 12.6.1.
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(a) Show how the Cn capacitors should be con-
nected in the op amp. What value of Cn should be
used?

(b) If these capacitors are constructed from MOS
transistors operating in the cutoff region, what type of
transistor and what device dimensions should be used?

12.30 Modify the CMFB schematic of Fig. 12.26
to inject currents at the drains of M1 and M2, in a
manner similar to that shown in Fig. 12.18. Give a
set of bias current values on the schematic. Assume
ID3 = ID4 = 150 μA and ID6 = ID9 = 400 μA.

12.31 A fully differential op amp with mismatch
is connected in the feedback circuit of Fig. 12.32a
with R1 = R2 = 10 kΩ and R3 = R4 = 40 kΩ. The op
amp model is shown in Fig. 12.37, where adm = −181,
acm = −2.89, acmc = −226, adm−cm = 8.95, acm−dm =
0.15, and acmc−dm = 11.6. If the gain of the CMFB
circuit is acms = 0.76, find the closed-loop gains
Adm = vod∕vsd, Acm = voc∕vsc, Adm−cm = voc∕vsd, and
Acm−dm = vod∕vsc.

12.32 For the op amp of Fig. 12.40, what is the
common-mode input range (CMIR) if only M1 and M2

are changed to low-threshold devices with threshold
voltages Vt1 = Vt2 = 0.3 V?

12.33 For the op amp of Fig. 12.40, what are
the output voltage swing limits of Vo1 and Vo2 if the
threshold voltages of only M1A,M2A,M3A, and M4A are
changed to Vt1A = Vt2A = −0.3 V and Vt3A = Vt4A =
0.3 V?

12.34 For the feedback circuit of Fig. 12.46, the
capacitor values are C1 = C2 = 4 pF and CL = 6 pF.

The op amp is the folded-cascode amplifier of
Fig. 12.40 with low-frequency gain adm0 = 1280 and
gm1 = 30 mA/V.

(a) What is the low-frequency value of the
differential-mode return ratio?

(b) What is the approximate unity-gain frequency
of the differential-mode return ratio?

12.35 For the feedback circuit of Fig. 12.46
using the op amp in Fig. 12.40, the capacitor val-
ues are C1 = C2 = 4 pF and CL = 6 pF. What is the
differential-mode output slew rate?

12.36 For the feedback circuit of Fig. 12.46,
C1 = C2 = 4 pF. The op amp is the folded-cascode
amplifier of Fig. 12.40 with low-frequency gain
adm0 = 1280 and gm1 = 30 mA/V. What value of CL

will give 𝜔r = 1.0 Grad/s for the unity-gain frequency
of the differential-mode return ratio?

12.37 If W∕L is doubled for M1 = M2 (i.e., m1 =
m2 = 20), what is the new low-frequency DM op-amp
gain adm0 for the op amp of Fig. 12.40? Assume the
bias conditions and operating regions do not change.

12.38 Calculate the spectrum of the input-
referred 1∕f voltage noise for the op amp of
Fig. 12.40. Use (11.69) with Kf = 4.8 × 10−25 V2-F
for NMOS devices and Kf = 8.3 × 10−26 V2-F for
PMOS devices. Use Cox = 6.9 × 10−15 F∕(μm)2.

12.39 Calculate the spectrum of the
input-referred thermal noise voltage for the op amp
in Fig. 12.40 if W∕L is doubled for M1 = M2 (i.e.,
m1 = m2 = 20). Assume the bias conditions and oper-
ating regions are not changed.
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Index
Abrupt junction, 4–5
Active cascode, 214–216

current-source load, 572–574
op amp, 489–491, 695

Active-device parameter summary, 74–76
Active level shift, 466, 467
Active load, 287, 443, 578

common-emitter amplifier, 288–296
common-mode rejection ratio, 303–309
common-source amplifier, 288–296
complementary, 288–291
current-mirror, 296–309
depletion, 291–293
diode-connected, 293–296
enhancement, 295
large-signal analysis, 296–298
motivation, 287–288
offset voltage, 343–348
small-signal analysis, 298–303

Active region, MOS transistor, 46
Advanced bipolar integrated-circuit

fabrication, 95–98, 110–111
All-npn class B output stage, 392–394
Amplifier:

characteristic, 463
common-mode feedback loop, 296–297,

873–878
current, 594
fully differential, 860–865, 873
ideal noiseless, 846
operational, see Operational amplifier
switched-capacitor, 428–434, 921
transconductance, 595
transresistance, 592, 593
voltage, 589
wideband, 293, 527, 530, 607, 651, 805

Amplifier stages:
Class A, 364
Class AB, 379, 399, 729, 732
Class B, 381–385
common-base configuration, 186–189,

191–195
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common-collector-common-collector
configuration, 206–209

common-collector-common-emitter
configuration, 206–209

common-collector configuration, 195–198
common-drain configuration, 198–200
common-emitter configuration, 178–182,

201–204
common-gate configuration, 189–194
common-source configuration, 182–186,

204–205
Darlington configuration, 206–209
multiple-transistor, 206
single-transistor, 177–178

Analog multipliers:
complete four-quadrant multiplier,

755–756
defined, 747
emitter-coupled pair, 748–750
four-quadrant, 752
Gilbert multiplier, see Gilbert multiplier

Anneal, 90
Avalanche breakdown, 7, 8, 21, 23, 50, 73
Avalanche noise, 787–790
Average power, 360, 361

Balanced circuit, 857
Balanced differential amplifier, 228–235,

860–865
Balanced modulator, 756–760
Band-gap referenced bias circuits:

in bipolar, 328–334
in CMOS, 334–338
curvature compensated, 331

Bandwidth of feedback amplifiers, 657–659
Base-charging capacitance, 28–29
Base-collector capacitance, 31
Base-diffused resistors, 121
Base diffusion, 89
Base-emitter capacitance, 31–34, 99
Base-emitter voltage temperature coefficient,

11, 327
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Base resistance, 31, 101–103
Base transit time, 28
Base transport factor, 13–14
Base width, 13
Beta, see Current gain
Beta helper, current mirror with:

bipolar, 269–270
defined, 269
MOS, 270

Bias current, 437
Bias reference circuit:

band-gap, 328–338
bootstrap, 319
current routing, 342
low-current, 309–315
proportional to absolute temperature, 334
self-biased, 319–327
start-up circuit, 320–323
supply-insensitive, 315–327
temperature-insensitive, 327
threshold-referenced, 319
VBE-referenced, 318, 323
voltage routing, 341–342
VT-referenced, 326–327

BiCMOS, 156–157
amplifier, 255, 581, 651, 853
cascode, 214
Darlington, 209, 254, 850–851
output stage, 396, 418
technology, 156–158

Bilateral amplifier, 176
Bipolar cascode, 210–211
Bipolar emitter-coupled pair, 233–234
Bipolar transistor:

advanced technology, 98, 110–111
analog multipliers, see Analog multipliers
band-gap referenced bias circuits,

328–334
base-charging capacitance, 28–29
base resistance, 31, 101–103
base transit time, 28
beta helper, 269–270
breakdown voltage, 21–24, 89
cascode current mirror, 272–274
in CMOS technology, 148, 155–156
collector-base capacitance, 105–107
collector-base resistance, 31
collector series resistance, 92, 103–105
collector-substrate capacitance, 107–108
collector voltage, 14–16

current gain, 24–26, 108–109
current-mirror matching, 338–340
cutoff region, 150
degeneration, 270–271
differential amplifier, 505–508
diffusion profile, 94
emitter-base capacitance, 108
fabrication, 91–98
forward-active region, 9–14, 46
frequency response, 35–38
heterojunction, 157, 159
input resistance, 29–30
inverse-active region, 16–21
large-signal models, 9
lateral, 144
noise, 790–791, 802–805
noise generators, 813–818
offset voltage, 343–345
output characteristics, 15–16
output resistance, 30
parameter summary (functional), 74–75
parameter summary (numerical), 109,

111, 116, 118
parasitic capacitance, 31–35, 110, 114,

120
peaking current source, 313–314
saturation current, 18, 100–101, 328
saturation region, 16–21
self-aligned structure, 97
sign convention, 9
simple current mirror, 263–265
small-signal equivalent circuit, 30, 31
small-signal model, 26
SPICE model parameters, 166–167
transconductance, 26–28
triple-diffused, 89
Widlar current source, 309–311, 316–317
Wilson current mirror, 283–286

Bird’s beak, 145, 267, 448
Blackman’s impedance formula, 640, 642,

644, 646
Body effect in MOS transistors, 41, 54,

143
Body transconductance, 54–55
Boltzmann approximation, 9
Bootstrap bias technique, 319
Breakdown, 7

junction, 7–8
in MOSFETs, 50
in superbeta transistors, 129
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Breakdown voltage:
base-emitter, 23
bipolar transistor, 21–24
collector-base, 21, 89
common-emitter, 21
drain-substrate, 50
junction-diode, 7, 8
MOS transistor, 50
superbeta transistors, 129
Zener diode, 8

Built-in potential, 2
Buried layer, 92
Burst noise, 787, 788, 790, 791

Capacitance:
base-charging, 28–29
base-collector, 31, 100
base-emitter, 31–34, 99
channel-substrate, 142
collector-base, 99
collector-substrate, 31, 32, 34, 99,

107–108
depletion region, 5–7, 31, 55, 56, 106,

144, 544
drain-body, 55
gate-body, 56
gate-drain, 52
gate-source, 52
intrinsic gate-source, 146
junction, 146–147
load, 666
overlap, 56, 146
sidewall, 147
source-body, 55

Capacitive neutralization, 899–901
Capacitors:

in bipolar integrated circuits, 119
lateral, 154–155
in MOS integrated circuits, 152–155
MOS transistors, 153
noise in, 799
poly-poly, 150
vertical, 150, 153–154

Capture range, 761, 770
Cascade voltage-amplifier frequency

response, 537–541
Cascode configuration, 210, 467, 489

active, 214–216, 489
bipolar, 210–211
MOS form, 211–214

Cascode current mirror, 272, 731
bipolar, 272–274
MOS, 275–282

Cascode current-source load, 570–572
Cascode frequency response, 541–548
Channel-length modulation, 44, 53
Circuit noise calculations:

bipolar transistor, 802–805
equivalent input noise, 805–807
independent noise generators, 801
minimum detectable signal, 805–807
MOS transistor, 807–812, 833–840
noise spectral density, 800
resistors, 800–801

Class AB input stage, 729
Class AB output stage, 399

common-drain configuration, 399–401,
408–410

common-source configuration, 401–410
parallel common-source configuration,

410–415
Class A output stage, 364, 378, 608
Class B output stage, 378

all-npn, 392–394
overload protection, 397–399
power output and efficiency of, 381–385
practical realizations of, 385–392
quasi-complementary, 394–397
transfer characteristic of, 378–381

Clipping, 358, 360, 379
Closed-loop gain, 422, 586, 634, 735, 736

block diagram, 637
computation, 637–640
controlled source, 635
dependent source, 636
direct feedthrough, 635
feedback amplifier formula, 634–635

Closed-loop impedance formula:
Blackman’s impedance formula, 640–642
port impedance, 640–641
super-source follower, 642–644
Wilson current source, 644–646

Clubhead, 121
CMFB, see Common-mode feedback
CMIR, see Common-mode input range
CMOS operational amplifier:

folded-cascode, 695, 909–911
fully differential, 857, 885, 889, 897
gain and phase of, 682
with single-ended output, 443, 467
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CMOS operational amplifier: (Continued)
single-stage, 693–695
telescopic-cascode, 693, 896
two-stage, 684, 685, 687–690

CMOS output stage, 399
common-drain configuration, 399–401,

408–410
common-source configuration, 401–410
parallel common-source configuration,

410–415
CMOS square-law circuit, 778
CMOS technology, 47, 131–155

band-gap referenced bias circuits in,
334–338

CMRR, see Common-mode rejection ratio
Collector-base capacitance, 99, 105–107
Collector-base resistance, 31
Collector-series resistance, 33, 103–105
Collector-substrate capacitance, 31, 32, 34,

99, 107–108
Collector voltage, on large-signal model,

14–16
Common-base configuration, 186–189,

527
input resistance, 191–193
output resistance, 193–195

Common-base frequency response, 527,
529–530

Common-base stage noise performance,
828–829

Common-base transistor connection, 22
Common centroid geometry, 460, 461
Common-collector-common-collector

(CC-CC) configuration, 206–209
Common-collector-common-emitter

(CC-CE) configuration, 206–209
Common-collector configuration, 195–198
Common-drain configuration, 198–200,

521–524, 624–626
class AB output stage, 399–401
and common-source configurations,

408–410
Common-emitter amplifier:

complementary load, 288–291
depletion load, 291–293
diode-connected, 293–296

Common-emitter breakdown voltage, 21
Common-emitter-common-base

configuration, see Cascode
configuration

Common-emitter configuration, 178–182,
499, 505

with emitter degeneration, 201–204
Common-emitter frequency response, 499,

507
Common-emitter output stage, 607
Common-gate configuration, 189–191,

527
input resistance, 191–193
output resistance, 193–195

Common-gate frequency response, 527, 530
Common-mode control (CMC) gain, 868,

885, 909, 917
Common-mode feedback (CMFB), 233,

296–297, 865–867
bandwidth, 907–908
at low frequencies, 867–871
stability and compensation, 871–873
using resistive divider and amplifier,

873–878
using switched capacitors, 882–885
using transistors in triode region, 880–882
using two differential pairs, 878–880

Common-mode gain, 227, 511–513, 867,
873

Common-mode half-circuit, 232, 245, 866,
867, 892–894, 902, 905, 915, 916

Common-mode input range (CMIR),
438–439, 451–453, 467, 473–474, 476,
918

Common-mode input resistance, 233
Common-mode rejection ratio (CMRR),

228, 233, 240, 439, 450–451, 480,
482–488

of active-load stage, 303–309
frequency response, 512

Common-mode return ratio, 925, 926
Common-mode-to-differential-mode gain,

227, 243
Common-source amplifier, 185, 499, 509

complementary load, 288–291
depletion load, 291–293
diode-connected load, 293–296
with source degeneration, 204–205

Common-source-common-gate
configuration, see Cascode
configuration

Common-source configuration:
and common-drain configuration,

408–410
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with error amplifiers, 401–407
parallel, 410–415

Common-source frequency response, 499,
509

Compensation:
of amplifiers, 657
capacitance, 442
capacitor, 630, 725
by feedback zero, 719–723
methods, 676–681
of MOS amplifiers, 681–692
of NE5234 op amp, 700
nested Miller method, 696–705
single-stage CMOS op amps, 693–695
theory, 671–676

Complementary load, 288–291
Complementary MOS (CMOS), 40, 47,

131–132, 155–156
Complementary output stage, 378
Composite pnp, 394, 396
Conductivity, 83
Constant doping densities, 1
Copper, 160
Correlation, 798, 808, 810, 812
Critical field, 7, 61
Crossover distortion, 380, 381, 384, 387,

394, 404
Crossunder, 121
Current amplifier, 595
Current buffers:

common-base amplifier, 529–530
common-gate amplifier, 530
frequency response of, 527–529

Current crowding, 33, 102
Current density, 448
Current-feedback pair, 619, 719, 824
Current gain:

dependence on operating conditions,
24–26, 113

forced, 17
forward, 13
inverse, 19
npn transistor, 108–109
pnp transistor, 113
short-circuit, 181
small-signal, 29
small-signal high-frequency, 36, 37
temperature coefficient, 24

Current mirror, 259
with beta helper, 269–270

bipolar transistor, 338–340
cascode, 272–282
common-mode rejection ratio, 303–309
current routing, 342
with degeneration, 270–272
gain error, 262
general properties, 259, 261–263
high-swing cascode, 278
input voltage, 262
large-signal analysis, 296–298
load, 296–309, 548–549
MOS transistor, 340–343
output resistance, 262, 264, 267, 268, 270,

271, 275, 276, 282, 285
replica biasing, 259–261
simple, 263–268
small-signal analysis, 298–303
Sooch cascode, 280–281
voltage routing, 341–342
Wilson, 283–287, 630, 644–646

Current-mirror load, frequency response of,
548–549

Current references, see References
Current routing, 342
Current source, 309–311

active-cascode, 572–574
cascode, 570–572
Peaking, 313–315
Widlar, 309–313, 316–317, 319

Cutoff, 46

Darlington configuration, 206–209, 417,
630, 850

Deadband, 379, 387, 394
Degeneration:

common-emitter amplifier with, 201
common-source amplifier with, 204
bipolar current mirror with, 270–271
MOS current mirror with, 272

Depletion load, 291–293
Depletion-mode, MOS transistor, 47,

132–134, 148
Depletion region:

capacitance, 5–7, 31, 55, 56, 106, 544
collector-base, 15, 92
of pn junction, 1–8

Deviation from ideality in real op amps,
436–437

common-mode input range, 438–439
common-mode rejection ratio, 439
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Deviation from ideality in real op amps
(Continued)

equivalent circuit, 442–443
frequency response, 442
input bias current, 437
input offset current, 437–438
input offset voltage, 438
input resistance, 441–442
output resistance, 442
power-supply rejection ratio, 440–441

Die, 94
Dielectric isolation, 127, 128
Differential amplifier, 221, 225–228,

425–426
bipolar emitter-coupled pair, 233–234
common-mode gain of, 511–513
device mismatch effects in, 235–242
MOS source-coupled pair, 234–235
perfectly balanced, 228–233
pole-zero doublet in, 574–575
replica biasing, 475, 476
small-signal analysis of, 225–228
unbalanced, 243–250

Differential-mode (DM):
feedback loop, 872, 888, 925
output slew rate, 927
return ratio, 922–924
small-signal half-circuit, 919

Differential-mode gain, 227, 693, 866
ac half-circuit, 505, 506
bipolar, 505–508
MOS, 508–511

Differential-mode half-circuit, 230, 245,
864–866, 887, 891, 902, 905, 914

Differential-mode input resistance, 233,
234

Differential-mode-to-common-mode gain,
227, 243, 900–901

Differential pair:
bipolar transistor, 219
CMFB using, 878–880
common-mode rejection ratio, 303–309
with current-mirror load, 296–309,

548–549
emitter-coupled pair, 219–221
emitter degeneration, 221–222
large-signal analysis, 296–298
MOS-transistor source-coupled pair,

222–225
noise performance, 830–832

small-signal analysis, 225–228
with current-mirror load, 296–309

Differential signal source, 861, 864, 865, 898
Differential-to-single-ended conversion, 303,

304
Differentiator, 427–428, 898
Diffused-layer sheet resistance, 85–87
Diffused resistors, 119, 150

base and emitter, 119–121
base pinch resistors, 121–122

Diffusion constant, 11, 12
Diffusion current, 11
Diffusion of impurities, 83
Diffusion profile of a bipolar transistor, 94,

101
Diode:

junction, 125–127
Zener, see Zener diode

Diode-connected load, 293–296
Diode-connected MOS transistor, 265
Distortion, 356, 358–359

crossover, 379–380
reduction by negative feedback, 585,

587–589
in source follower, 370–374

Dominant pole, 504, 506, 509, 531–532,
535, 537, 539, 540, 548, 571

compensation, root locus for, 718–719
magnitude of, 673, 677

Dominant zero, see Weighted zero-value
time constants

Doublet, see Pole-zero doublets
Doping, 82
Double-diffused npn transistors, 98
Double-diffused pnp transistors, 130–131
Drain current, in weak inversion, 67–70
Drift, emitter-coupled pair, 238–239
Driver stage, 358, 366, 385, 389, 390, 409

Early effect, 16, 21, 273
Early voltage, 16, 30, 44, 53, 265, 268
Ebers-Moll equations, 19, 20
Economics of IC fabrication, 160–166
Effective channel length, 44, 143–145
Effective channel width, 145–146
Efficiency:

Class A, 364
Class B, 378, 381–385, 394
emitter-follower, 359–366

Electrical noise, 781
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Electromigration, 160
Elementary statistics, 250–253
Emitter-base capacitance, 108
Emitter-coupled multivibrator, 773
Emitter-coupled pair, 219, 748–750,

829–830
bipolar, 233–234
emitter degeneration, effect of, 221–222
input offset current, 235–236, 239–240
input offset voltage, 235–236
offset voltage drift, 238–239
small-signal analysis, 225–228, 242
transfer characteristics, 219–221

Emitter degeneration, 270, 622
common-emitter amplifier with, 201–204
emitter-coupled pair with, 221–222

Emitter-diffused resistors, 121
Emitter-follower, 195–198

drive requirements, 366
frequency response of, 515–520
noise performance, 829–830
output stage, 355–356, 607
power output and efficiency, 359–366
small-signal properties, 195, 196,

366–368
terminal impedances, 517
transfer characteristics of, 356–359

Emitter injection efficiency, 13
Emitter resistance, 33
Enhancement load, 294–295
Enhancement-mode, MOS transistor, 39–40,

131–132, 134
Epitaxial growth, 89–90
Epitaxial resistor, 122–124
Equivalent circuit of an op amp at low

frequency, 442–443
Equivalent input noise generators, 812–813

bipolar transistor, 813–818
MOS transistor, 818–820

Equivalent input noise resistance, 814
Equivalent input noise signal, 805–807
Equivalent input shot noise current, 815
Equivalent noise bandwidth, 841
Error amplifiers, common-source

configuration with, 401–407
Etching, 88

Fabrication of integrated circuits, 81
Feedback, 422, 423, 585

characteristic, 463

common mode, 233, 296–297
configurations, 589
effect on distortion, 587–589
effect on gain sensitivity, 587
effect on noise, 820–827
effect on terminal impedances, 590, 595,

600, 604
frequency and time responses in, 920–927
gain and bandwidth in, 657–659
ideal analysis, 585–587, 821
latchup, 156
loading, effect of, 595
local, 233, 273, 620, 695, 867, 895, 929
local series-series feedback, 622–624
local series-shunt feedback, 624–626
loop gain, 413, 421–422, 586
modeling input and output ports in,

646–649
on noise performance, 820–821
on pole-zero doublet, 734–736
practical, 821–827
practical configurations, 595
return ratio, see Return ratio
series-series, 595, 602–611
series-shunt, 589–592, 611–617, 821, 822
shunt-series, 594–595, 617–620
shunt-shunt, 592–594, 596–601, 823
single-stage, 620–626
table of relationships, 621
voltage regulator, 626–632

Feedback-zero compensation, 719–723
Feedforward, 409, 681–683, 685, 689, 700
Fermi-Dirac distribution function, 9
Field-effect transistor, see MOS transistor
Field region, 132
First-order phase-locked loop, 764
Flicker, 786–787, 790, 791, 793, 798–799,

819, 837, 843
Flicker noise, 786–787, 790, 791, 793, 798,

799, 819, 837, 843
Flicker noise corner frequency, 791
Folded-cascode op amp, 467–471, 694, 897,

909–911
DC biasing, 911–913
frequency and time responses, in

feedback, 920–927
low-frequency analysis, 914–920

Forced current gain, 17
Forward-active region, 9–14, 26, 46, 115,

179, 356, 357
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Fourier analysis, 784
Four-quadrant analog multipliers, 752
Free-running frequency, 761, 770
Frequency response:

active-cascode current-source load,
572–574

bipolar transistor, 35–38, 57
cascade voltage-amplifier, 537–541
cascode, 541–548
cascode current-source load, 570–572
of CMRR, 512
common-base, 527, 529–530
common-emitter, 505
common-emitter cascode, 541
common-gate, 527, 530
common-mode gain, 511–513
common-source, 509
common-source cascode, 541
current buffers, 527–529
of current mirror, 260, 267
differential-mode gain, 505–511
of differential pair with current-mirror

load, 301, 548–549
dominant-pole approximation, 531–532
emitter follower, 515–520
Miller effect, 499–505
of MOS amplifiers, 681–692
MOS transistor, 57–59
multistage amplifier, 531
operational amplifier, 442
pole-zero doublets, 565–575
short-circuit time constants, 549–553
single stage, 499–505
single-stage CMOS op amps, 693–695
source follower, 521–524
super-source-follower, 524–527
vs. time response, 563–565
of voltage buffers, 513–515
weighted zero-value time constants,

554–563
zero-value time constant analysis,

532–537
Full-power bandwidth, 733, 734
Full shot noise, 790
Fully differential amplifiers, 857–860

cross gains, 901
Fully differential op amps, 885

balanced differential amplifiers,
860–865

DC biasing, 911–913

folded cascode, 897, 909–911
frequency and time responses, in

feedback, 920–927
low-frequency analysis, 914–920
neutralization, 899–901
properties of, 857–860
telescopic cascode, 896–897, 918
with two differential input stages,

898–899
two-stage, 885–896

Gain-bandwidth product, 658
Gain margin, 663, 666
Gain sensitivity with feedback, 587
Gate-drain capacitance, 52
Gate-source capacitance, 52
Gate-source voltage, MOS transistor, 48
Gaussian distribution, 238, 250–253, 783
Generation, 82
Gilbert multiplier, 747

as analog multiplier, 752–755
balanced modulator, 756–760
dc analysis of, 750–752
phase detector, 756–760

g-parameters, 617, 618
Graded junction, 6
Guard ring, 156

Half circuit:
of balanced amplifier, 230–232, 863
coupled, 247
independent, 244
of unbalanced amplifier, 245, 246

Harmonic distortion, 372
Heavily saturated device, 17
Heterojunction, 157, 159
High-level injection, 38, 113
High-swing cascode, 278
High-voltage integrated-circuit fabrication,

91–95
Homojunction, 157
Hot carriers, 50
h-parameter, 611–613
Hybrid-π model, 30, 53, 186, 190

Ideal feedback analysis, 585–587
Ideal noiseless amplifier, 846
Impact ionization, 73, 214
Impurity concentration, 82
Inductors, noise in, 799
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Input resistance, 29–30, 53
operational amplifier, 441–442, 444–445

Instability in amplifiers, 707
gain margin, 661–666
Nyquist criterion, 659–661
phase margin, 661–666
root locus, 705–723
super-source follower, 666–671

Instantaneous power, 360–365, 383
Integrated circuit:

advanced bipolar fabrication, 95–98, 110
biasing, 259
BiCMOS technology, 156–158
bipolar transistor, 790–791
body-effect parameter, 143
capacitors, 124, 125, 150
channel length, 143–145
channel width, 145–146
cost considerations, 163–166
current mirrors, 259
depletion devices, 148
dielectric isolation, 127, 128
diffused-layer sheet resistance, 85–87
double-diffused pnp transistors, 130–131
electrical noise, 781
electrical resistivity of silicon, 82–83
epitaxial and epitaxial pinch resistors,

122–124
epitaxial growth, 89–90
fabrication, 81
fabrication yield, 161–163
frequency response, see Frequency

response
fully differential op amps, 885–899
heterojunction, 157, 159
high-voltage bipolar fabrication, 91–95
interconnect delay, 160
intrinsic gate-source capacitance, 146
ion implantation, 90
junction capacitance, 146–147
junction diodes, 125–127, 789–790
local oxidation, 90, 91
mixed-signal, 226
MOS integrated circuits, 131–134
MOS transistors, 129–130, 791–798
n-channel MOS transistor, 135–147
neutralization, 899–901
noise, 781
npn transistors, 99–111
op amps, 424–425, 857, 885

output stages, 355
overlap capacitance, 146
packaging, 163
passive components, 118–119, 150–156
p-channel MOS transistor, 148
phase-locked loop, 771–775
photolithography, 87–89
pnp transistors, 111–119
polysilicon, 90–91
resistors, 119–122, 150–152
solid-state diffusion, 83–85
superbeta transistors, 128–129
thin-film resistors, 131
threshold voltage, 137–142
Zener diodes, 124–126

Integrator, 427–428
continuous-time, 436
switched-capacitor, 434–436

Interconnect delay, 160
Internal amplifier:

defined, 428
switched-capacitor amplifier, 428–434
switched-capacitor integrator, 434–436

Intrinsic carrier concentration, 2, 82
Intrinsic gate-source capacitance, 146
Inverse-active region of bipolar transistors,

16–21, 46
Inverse current gain, 19
Inversion, 40
Inverting amplifier, 423–425
Ion implantation, 88, 90
Isolation diffusion, 92–93
I-V characteristic, for junction diode, 7, 8

Junction breakdown, 7–8, 50
Junction capacitance, 146–147
Junction diodes, 125–127

noise, 789–790

KCL, see Kirchoff’s current law
Kirchoff’s current law (KCL), 189, 211, 245,

269, 285, 300, 469, 503, 557, 666
Kirchoff’s voltage law (KVL), 189, 246,

276, 557, 860
Kirk effect, 26, 38
KVL, see Kirchoff’s voltage law

Large-signal model:
breakdown voltages, 21–24
collector voltage on, 14–16
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Large-signal model: (Continued)
current gain, 24–26
differential pair, 296–298
in forward-active region, 9–14
inverse-active region, 16–21
NMOS transistor, 46
saturation region, 16–21

Latchup in CMOS, 155–156, 355
Lateral bipolar transistor, 150
Lateral pnp transistor, 112–119, 387, 394
Layout, 459–461
Leakage current, 7, 19, 20

collector base, 20
Level shifting, 198, 200, 467
Lifetime of minority carriers, 12
Lightly doped region, 4
Line regulation, 628
Load capacitance, 666
Load impedance, 570
Load line, 359, 361, 363–365, 383, 384
Load regulation, 628
Local feedback, 233, 273, 620, 695, 867,

895, 929
series-series, 622–624
series-shunt, 624–626

Local oxidation, 90, 91
Lock range, 761, 768–771
Logarithmic amplifier, 426, 427
Loop gain, 413, 421–422, 586

magnitude, 663
poles and zeros of, 711

Low-current biasing:
bipolar peaking current source, 313–314
bipolar Widlar current source, 309–311
MOS peaking current source, 314–315
MOS Widlar current source, 312–313

Low-level injection, 10, 113
Low-permittivity dielectric, 160

Matching in transistor current mirrors,
338–343

Metal-oxide-semiconductor field-effect
transistors (MOSFETs), see MOS
transistor

Miller capacitance, 501, 507, 510, 676, 680,
895

Miller compensation, 696–705, 725
Miller effect, 681, 892

bipolar differential amplifier, 505–508
MOS differential amplifier, 508–511

single-stage voltage amplifiers and,
499–505

Miller multiplication, 678
Minimum detectable signal (MDS), 805–807
Minority-carrier lifetime, 12
Mismatch effects in differential amplifiers,

235
Moat, 96
Moat etch, 127
Mobility, 83
Mobility degradation, 66
Model selection for IC analysis, 174–175
Moderate inversion, 70
Modulator, 756–760
Monolithic resistors, 798
MOS transistor:

active-cascode operational amplifiers,
489–491

active region, 46
amplifier with level shifting, 462–465
beta helper, 270
bipolar integrated-circuit design, 129–130
bipolar transistors, 149–150
bird’s beak, 145, 267, 448
body effect, 54, 143
body transconductance, 54–55
breakdown voltage, 156
capacitors, 152–155
cascode, 211–214
cascode current mirror, 275–282
channel-length modulation, 44
common-mode input range, 451–453
common-mode rejection ratio, 450–451
compensation, 681–692
complementary MOS (CMOS), 40, 47,

131–132
critical field, 61
current density, 448
current-mirror matching, 340–343
cutoff region, 46
degeneration, 272
depletion devices, 148
depletion mode, 47, 148, 291–293
differential amplifier, 508–511
diode connected, 265
drain current, 67–70
effective channel length, 44, 143–145
effective channel width, 145–146
enhancement-mode, 39, 131–132
fabrication, 131–134
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field-effect transistor, 42
field region, 132
flicker noise, 793
folded-cascode operational amplifiers,

467–471
frequency response, 57–59
gate current flows, 794
gate-source and gate-drain capacitance, 52
gate-source voltage, 48
hot carriers, 50
impact ionization, 73
input admittance, 796
input resistance, 53, 444–445
inversion, 40
junction breakdown, 50
large-signal model, 46
layout considerations, 459–461
mobility, 43
mobility degradation, 66, 138
moderate inversion, 70
n-channel, 39, 135–148
noise, 791–798, 807–812, 837, 848
noise generators, 818–820
offset voltage, 345–348, 446–450
ohmic region, 45
open-circuit voltage gain, 444–445
operational amplifier, 443
output resistance, 53, 444–445
output stages, 399
output swing, 446
overdrive, 48, 185, 458–459
oxide breakdown, 50
parameter summary (functional), 75–76
parameter summary (numerical), 136–139
parasitic elements, 55–56
p-channel, 40, 148
peaking current source, 314–315
power-supply rejection ratio, 453–458
punchthrough, 50
resistors, 150–152
saturation region, 45, 46, 52
short-channel effects, 60–66
shot noise, 793
silicon gate, 133
simple current mirror, 265–268
small-signal model, 50–59
source-coupled pairs, 222–225, 234–235
source follower, 198–200
SPICE model parameters, 166–167
strong inversion, 66

substrate current, 73–74
telescopic-cascode operational amplifiers,

471–475
thermally induced gate noise, 797–798
thermal noise, 791–793
threshold temperature dependence, 48–49
threshold voltage, 41, 133, 135
transconductance, 51–52, 64–66
transfer characteristic, 39–46
triode region, 45
velocity saturation, 60–64
voltage limitations, 49–50
weak inversion, 66, 185
Widlar current source, 312–313, 317
Wilson current mirror, 286–287

Motivation, active load, 287–288
Multiplier circuits, 747
Multistage amplifier frequency response,

531
cascade voltage-amplifier, 537–541
cascode connection, 541–548
current-mirror load, 548–549
dominant-pole approximation, 531–532
short-circuit time constants, 549–553
weighted zero-value time constants,

554–563
zero-value time constant analysis,

532–537

Narrowbanding, 671, 676, 719
n-channel designation, 39
n-channel MOS transistor, 135–137

body-effect parameter, 143
channel length, 143–145
channel width, 145–146
intrinsic gate-source capacitance, 146
junction capacitance, 146–147
overlap capacitance, 146
threshold voltage, 137–142

Negative feedback (NFB), 585, see also
Feedback

on distortion, 587–589
loop, 476

NE5234 op amp, 700–701, 724–725, 734
Nested Miller compensation, 696–705
Neutralization, 899–901
NMOS, 39, 68, 69

device characteristics, 45
large-signal model for, 46
transfer characteristics, 69
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Noise:
amplitude distribution, 783
avalanche, 787–790
bandwidth, 840–845
bipolar transistor, 790–791, 802–805,

813–818
burst, 787, 788
in capacitors and inductors, 799
circuit calculations, 799–801
common-base stage, 828–829
differential pair, 830–832
in diodes, 781
in direct-coupled amplifiers, 843
emitter follower, 829–830
equivalent input, 805–807
1/f, see Flicker
feedback, effect of, 820–827
figure, 845–848
flicker, 786–787, 790, 791, 793, 798–799,

819, 837, 843
full shot, 790, 815
effect of ideal feedback on, 821
junction diode, 789–790
minimum detectable signal, 805–807
models, 789
MOS transistor, 791–798, 807–812,

818–820, 837
operational amplifier, 836–840, 919
popcorn, 787
effect of practical feedback on, 821–827
in resistors, 798–799
shot, 781–784, 791, 793
spectral density, 782, 800
super-source follower, 833–836
temperature, 849
thermal, 785–786, 790–793, 795
thermally induced gate noise 797–798,

808–812
white, 782, 785
in Zener diodes, 787, 788

Noise figure, 845–848
Noise temperature, 849
Nondominant pole, 504, 506, 510, 549, 571,

681
Noninverting amplifier, 425
Nonlinear analog operations, 426–427
Nonlinear function synthesis, 775–777
Nonlinearity, 357, 367, 368, 372, 387, 394,

413, 415, 752
Nonoverlapping clock signals, 429, 435

charge-transfer phase, 429
input sample phase, 429

Normal distribution, see Gaussian
distribution

npn transistors, integrated-circuit, 99–100
advanced oxide-isolated, 110–111
base resistance, 101–103
collector-base capacitance, 105–107
collector series resistance, 103–105
collector-substrate capacitance, 107–108
current gain, 108–109
device parameters, 109–110
emitter-base capacitance, 108
saturation current, 100–101

Nyquist criterion, 659–661, 707, 715, 737
Nyquist diagram, 660–661

Offset current, 437–438
emitter-coupled pair, 235–236, 239–240

Offset voltage, 438, 446
differential pair with active load,

343–348
emitter-coupled pair, 235–239
emitter-coupled pair with active load,

343
random, 450
source-coupled pair, 240–242
systematic, 446–450

Ohmic region, 45
Open-circuit time constants, see Zero-value

time constants
Open-circuit voltage gain, 176, 444–445
Open-loop gain, 422, 734–736
Operational amplifier:

active-cascode, 489–491, 695
amplifier with level shifting, 462–465
bipolar, 728–729
with cascodes, 465–467
closed-loop gain of, 735, 736
CMOS, 443, 693–695
common-mode input range, 438–439,

451–453
common-mode rejection ratio, 439,

450–451
compensation, 671
compensation capacitance, 442
deviations from ideality, 436–437
differential amplifier, 425–426
differentiator, 427–428
effect of overdrive voltages, 458–459
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equivalent circuit, 442–443
feedback, 422–423
feedback characteristic, 463
folded-cascode, 467–471, 694, 897,

909–911
frequency response, 442
fully differential op amps, 857–860
input bias current, 437
input resistance, 441–442, 444–445
integrator, 427–428
internal amplifier, 428–436
inverting amplifier, 423–425
layout considerations, 459–461
with Miller compensation, 702, 703
MOS, 443, 465–471, 489–491, 729–733
noise, 836–840
noninverting amplifier, 425
nonlinear analog operations, 426–427
offset current, 437–438
offset drift, 438
offset voltage, 438, 446–450
open-circuit voltage gain, 444–445
open-loop gain of, 734–736
output amplifiers, 428
output resistance, 442, 444–445
output swing, 446, 469, 472–476
power-supply rejection ratio, 440–441,

453–458
random offset voltage, 450
replica biasing, of tail current source,

475–488
settling time, 433
with single-ended outputs, 421
slew rate, 442, 723, 725–733
small-signal characteristics, 444
supply capacitance, 456–458
systematic offset voltage, 446–450
telescopic-cascode, 471–475, 693
two-stage, 725–728

Oscillation, 657, 707, 721
Output amplifiers, 428
Output resistance, 30, 53

of current mirror, 262, 264, 267, 268, 270,
271, 275, 276, 282, 285

operational amplifier, 442, 444–445
Output stage, 355

all-npn, 392–395
BiCMOS, 396, 418
Class A, 364, 378, 608
Class AB, 379, 399

Class B, see Class B output stage
CMOS, 399–415
combined common-drain common-source,

408–410
common-drain configuration, 399–401
common emitter, 607
common-source configuration, 401–407
common-source, with error amplifiers,

401–407
complementary, 378
Darlington, 417
emitter follower, 355–368
overload protection, 397–399
parallel common-source configuration,

410–415
push-pull, see Class B output stage
quasi-complementary, 394–397, 401, 404,

408
709 op amp, 385
741 op amp, 387
short-circuit protection, 397
source follower, 368–378, 400
super source follower, 374–378

Output swing, 446, 469, 472–476
Overdrive, 48, 185, 458–459
Overlap capacitance, 146
Overload protection, 397–399
Oxidation, 87, 90
Oxide breakdown, 50

Packaging considerations, 163
Parallel common-source configuration,

410–415
Parasitic elements:

bipolar transistor, 31–35, 99
MOS transistor, 55–56, 146

Passive components:
in bipolar integrated circuits, 118–119
capacitors, 152–155
diffused resistors, 119–122
epitaxial and epitaxial pinch resistors,

122–124
integrated-circuit capacitors, 124, 125
junction diodes, 125–127
latchup, in CMOS technology, 155–156
in MOS technology, 150
noise in, 798–799
resistors, 150–152
Zener diodes, 124–126

p-channel MOS (PMOS), 40, 148
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Peaking current source:
bipolar, 313–314
MOS, 314–315

Permittivity, 3
Phase detector, 756–760, 770–773
Phase-locked loop (PLL):

basic concepts, 760–762
block diagram of, 761, 762
capture range, 761, 770
first-order loop, 764
integrated circuit, 766, 771–775
in locked condition, 762–768
lock range, 761, 768–771
loop bandwidth, 763, 767
root locus, 763, 766
second-order loop, 766, 767

Phase margin, 661–676, 681, 687–695,
700–705, 718, 721, 727, 737, 872, 876,
886–897, 922–927

Photolithography, 87–89
Photomask, 88
Photoresist, 87, 88
Pinch-off in MOSFETs, 43, 44
Pinch resistors:

base region, 121–122
epitaxial, 122–124

Plane junction breakdown, 22
PLL, see Phase-locked loop
PMOS, output stage, 396
pn junction depletion region, 1–4

capacitance, 5–7
example of, 4–5
junction breakdown, 7–8

pnp transistors, integrated-circuit, 111–112
lateral, 112–115
substrate, 115–119

Pole splitting, 678, 680, 696, 722
Pole-zero doublets:

active-cascode current-source load,
572–574

cascode current-source load, 570–572
defined, 565
differential amplifier with mismatch,

574–575
effect of feedback on, 734–736
effect on settling time, 565–570

Poly-poly capacitors, 150–151
Polysilicon, 90–91, 96, 133, 150–151
Popcorn noise, 787
Power conversion efficiency, 361

Power hyperbola, 362
Power output:

Class A, 364
Class B, 381–385
Emitter-follower, 359–366

Power-supply rejection ratio (PSRR),
440–441

MOS op amp, 453–456
and supply capacitance, 456–458

Practical realizations, of class B
complementary output stages, 385–392

Predeposition, 85, 87
Probability-density function, 783, 784
Probability distribution, 250
Proportional to absolute temperature

(PTAT), 334
Protection of output stages, 397–399
Punchthrough, 50, 129
Push-pull output stage, 378

all-npn, 392–394
overload protection, 397–399
power output and efficiency of, 381–385
practical realizations of, 385–392
quasi-complementary, 394–397
transfer characteristic of, 378–381

Quasi-complementary output stages,
394–397, 401, 404, 408

Random offset voltage, 450
Reciprocity condition, 20
Recombination, 10–12, 82
References:

low-current biasing, 309–315
supply-insensitive biasing, 315–327
temperature-insensitive biasing, 327–338

Regulated cascode, see Active cascode
Regulator, 626
Replica biasing, 259–261, 687, 839–840,

884
of tail current source, 475–488
of input-stage level shifter, 462–465

Resistivity, 82–83
Resistor:

base-diffused, 120
base-pinch, 121–122
diffused, 150
emitter-diffused, 121
epitaxial, 122–124
MOS device, 151–152
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noise model, 798–799
polysilicon, 150–151
well, 148

Return ratio, 632–649
closed-loop gain, 634–640
closed-loop impedance formula, 640–646
common-mode, 925–926
differential-mode, 922–925
simulation, 655, 922
stability analysis, 736–737
summary, 646

Reverse-active region, see Inverse-active
region of bipolar transistors

Reverse injection, 13
Reverse transfer impedance, 604
Right half-plane (RHP) zero, 682, 683,

685–686, 700, 711, 712
Rise time, 563–564
Root locus, 658, 699, 705

construction, rules for, 708–718
for dominant-pole compensation, 718–719
for feedback-zero compensation, 719–723
for three-pole transfer function, 705–708

Root locus rules, 708–718

Saturation current, 18
of bipolar transistor, 18, 100–101, 328

Saturation region:
of bipolar transistor, 16–21, 179
of MOSFET, 45, 46

Scattering-limited velocity, 60–61, 138
Second-harmonic distortion, 373–374, 416
Second-order phase-locked loop, 766, 767
Self-aligned structure, 97
Self-biasing, 319–327
Sensitivity to power-supply voltage, 316
Series-series feedback, 595

ac analysis, 610–611
bias calculation, 607–610
commercial integrated circuit, 607
input impedance, 607
nonideal networks, 602
output impedance, 607
reverse transfer impedance, 604
two-port theory, 604, 605
z-parameter representation, 602–604, 606,

607
Series-series triple, 607, 610, 620
Series-shunt feedback, 589–592, 821, 822

equivalent circuit, 615

example, 615–617
h-parameter representation, 611–613
op amp circuit, 614

Sheet resistance, 85–87
Short-channel effects in MOS transistors, 60

mobility degradation, 66
transconductance, 64–65
transition frequency, 66
velocity saturation, 60–64

Short-circuit current gain, 181
Short-circuit protection, 397
Short-circuit time-constants, 549–553,

668–671, 694
Short-circuit transconductance, 176
Shot noise, 781–784, 791, 793
Shunt-series feedback, 594–595, 617–620
Shunt-shunt feedback, 592–594, 596–601,

823
Signal-to-noise ratio, 859
Silane, 89
Silicide, 98, 151
Silicon dioxide, 87, 88
Silicon-gate MOS technology, 133
Silicon nitride, 90
Silicon tetrachloride, 89
Single-ended inverting amplifiers, 858
Single-stage feedback, 620

local series-series, 622–624
local series-shunt, 624–626

Single-stage frequency response, 499
Single-stage voltage-amplifier:

bipolar differential amplifier, 505–508
and Miller effect, 499–505
MOS differential amplifier, 508–511

Single-transistor amplifier stages, 177–178
common-base configuration, 186–189,

191–195
common-collector configuration, 195–198
common-drain configuration, 198–200
common-emitter configuration, 178–182,

201–204
common-gate configuration, 189–194
common-source configuration, 182–186,

204–205
Slew rate, 442, 570, 723–725

in bipolar op amps, 728–729
effect on sinusoidal signals, 733–734
in fully differential folded-cascode op

amp, 927
improvement, 725–733
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Slew rate (Continued)
in MOS op amps, 729–733
in two-stage op amps, 725–728

Small-signal model:
for balanced differential amplifiers,

860–865
base-charging capacitance, 28–29
bipolar transistor, 26
body transconductance, 54–55
collector-base resistance, 31
of emitter-follower, 366–368
equivalent circuit, 30, 31
frequency response, 35–38, 57–59
gate-drain capacitance, 52
gate-source capacitance, 52
input resistance, 29–30, 53
MOS transistor, 50–59
output resistance, 30, 53
parasitic elements in, 31–35, 55–56
transconductance, 26–28, 51–52

Solid-state diffusion, 83–85
Sooch cascode, 280–282
Source-coupled pair, 222

input offset voltage, 240–242
MOS, 234–235
offset voltage drift, 242
small-signal analysis, 225–228, 243
transfer characteristics, 222–225

Source degeneration, 204–205, 272
Source follower, 198–200, 521, 625

distortion, 370–374
frequency response of, 521–524
output stage, 368
small-signal properties, 198, 199
super, 216–219, 642–644, 666–671,

833–836
transfer characteristics, 368–370

Space-charge region, see Depletion region
Spectral density of noise, 782, 791, 800,

804
SPICE-generated transfer curve, 387, 389
SPICE model, 539, 666, 895
SPICE parameter summary, 166–167
Spot noise figure, 846–847
Square-law characteristic of MOSFETs, 58
Square-law circuit, 778
Square-law model, 792
Start-up circuit, 320–323
Step coverage, 157
Step response, 563, 926

Stress migration, 160
Strong inversion, MOS transistor, 66
Substitutional impurities, 83–84
Substrate contact, 156
Substrate current in MOSFETs, 73–74
Substrate pnp transistors, 115–119
Subthreshold conduction, 138, see also

MOS transistor; Weak inversion, MOS
transistor

Summing node, 435, 585
Summing-point constraints, 424–426
Superbeta transistors, 128–129
Super source follower, 216–219, 642–644

frequency response of, 524–527
noise performance, 833–836
stability of, 666–671
transfer characteristics of, 374–378

Supply-insensitive biasing, 315–316
other voltage standards, 317–319
self-biasing, 319–327
Widlar current sources, 316–317

Surface mobility, 43
Sustaining voltage, 21
Switched-capacitor amplifier, 428–434,

921
parasitic insensitive, 433, 920

Switched-capacitor common-mode
feedback, 882–885, 916

Switched-capacitor filter, 434–435
Switched-capacitor integrator, 434–436
Symmetry:

mirror, 459
translational, 460

Systematic offset voltage, 446–450

Tail current source, 219, 222
Telescopic-cascode op amp, 471–475, 693,

896–897
Temperature coefficient:

of band-gap reference, 328, 330, 332, 335,
336

of base-emitter voltage, 14, 323, 327
of bias reference circuits, 323, 332
of bipolar transistor current gain, 24
effective, 332
of integrated-circuit resistors, 124
of threshold voltage, 49
of Zener diodes, 125, 126

Temperature dependence, of bipolar
transistor current gain, 24
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Temperature-insensitive biasing, 327
band-gap-referenced bias circuits,

328–338
Theory of compensation, 671–676
Thermally induced gate noise, 797–798
Thermal noise, 785–786, 791–793, 798, 799
Thin-film resistors, 131, 798
Third-harmonic distortion, 373–374, 416
Three-pole basic amplifier, 672, 673
Three-pole transfer function, root locus for,

705–708
Threshold-referenced bias circuit, 319
Threshold voltage of MOS transistors, 41,

133, 135
Threshold voltage temperature dependence,

48–49
Time constant, 37

open circuit, 549
short circuit, 549–553
zero value, 532–537

Time response, 563–565
T model, 187, 190
Transconductance

bipolar transistor, 26–28, 51–52
MOS transistor, 51–52, 64–66, 70–72

Transconductance amplifier, 595
Transfer characteristic:

Class B stage, 378–381
common-emitter amplifier, 178
emitter-coupled pair, 219–221
emitter-coupled pair with emitter

degeneration, 221–222
emitter follower, 356–359
MOS transistor, 39–46
source-coupled pair, 222–225
source follower, 368–370
super source follower, 374–378

Transition frequency fT, 35, 51, 57
MOS transistor, 66, 70–72

Transit time, 28
Transresistance amplifier, 592, 593
Triode region, 45
Triple-diffused bipolar transistor, 89
Tunneling, 8, 125
Two-port representation, 175–177, 595, 619,

620
Two-stage MOS operational amplifiers:

amplifier with level shifting, 462–465
with cascodes, 465–467
common-mode input range, 451–453

common-mode rejection ratio, 450–451
input resistance, 444–445
layout considerations, 459–461
offset voltage, 446–450
open-circuit voltage gain, 444–445
output resistance, 444–445
output swing, 446
overdrive, 458–459
power-supply rejection ratio, 453–458

Unbalanced fully differential circuits,
243–250, 901–907

Uniform-base transistor, 9
Unilateral amplifier, 177
Unit devices, 264, 267, 450
Unity-gain feedback configuration, 425,

673–675, 678, 699, 700, 723

VBE-referenced bias circuit, 320, 323
VCO, see Voltage-controlled oscillator
Velocity saturation, 60–64
Virtual ground, 425
Voltage amplifier, 589, 592, see also

Single-stage voltage-amplifier
Voltage buffers

emitter follower, 515–520
frequency response of, 513–515
source follower, 521–524
super-source-follower, 524–527

Voltage-controlled oscillator, 760, 763, 770,
773–775, 778

Voltage-dependent charge, 5
Voltage gain, 170

open-circuit, 181, 184, 444–445
Voltage references, see References
Voltage regulator, 626

circuit diagram, of monolithic, 629
line regulation, 628
load regulation, 628–632
regulator amplifier of, 631
series regulator, 626, 627

Voltage routing, 341–342
VT-referenced bias circuit, 326–327

Wafer, 82
Wafer fab cost, 163
Weak inversion, MOS transistor, 66

drain current in, 67–70
transconductance in, 70–72
transition frequency in, 70–72
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Weighted zero-value time constants,
554–563

Well, 47, 132
Well contact, 156
White noise, 782
Wideband amplifier, 527, 607, 651, 719,

805
Widlar current source

bipolar, 309–311, 316–317
MOS, 312–313, 317

Wilson current mirror, 630, 644–646
bipolar, 283–286
MOS, 286–287

Yield considerations, 161–163
y-parameters, 596

Zener breakdown, 8
Zener diode, 8, 124–125, 318, 626, 628

base-emitter breakdown voltage, 23
noise, 787, 788

Zener diode temperature coefficient, 125, 126
Zener-referenced bias circuit, 628
Zero-value time constant analysis, 532–549,

668–671
weighted, 554–563

z-parameters, 602–604, 606, 607
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