


QED



ALIX G. MAUTNER
MEMORIAL LECTURES



QED

THE STRANGE THEORY OF
LIGHT AND MATTER

RICHARD P. FEYNMAN

With a new introduction by A. Zee

PRINCETON UNIVERSITY PRESS

PRINCETON AND OXFORD



Copyright © 1985 by Richard P. Feynman
New introduction by A. Zee Copyright © 2006 by Princeton University Press Requests for
permission to reproduce material from this work should be sent to Permissions, Princeton

University Press Published by Princeton University Press,
41 William Street, Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press,
3 Market Place, Woodstock, Oxfordshire OX20 1SY

All Rights Reserved

First printing, 1985
First Princeton Science Library Edition, 1988

Expanded Princeton Science Library Edition, with a new introduction by A. Zee, 2006

Library of Congress Control Number 2005934342
ISBN-13: 978-0-691-12575-6 (paperback) ISBN-10: 0-691-12575-9 (paperback) ISBN-13:

978-0-691-12717-0 (cloth) ISBN-10: 0-691-12717-4 (cloth) This book has been composed
in Linotron Baskerville Printed on acid-free paper. ∞

pup.princeton.edu

Printed in the United States of America

7 9 10 8 6



Contents

Introduction to the 2006 Edition by A. Zee vii

Foreword by Leonard Mautner xxi

Preface by Ralph Leighton xxiii

Acknowledgment xxv

1. Introduction 3

2. Photons: Particles of Light 36

3. Electrons and Their Interactions 77

4. Loose Ends 124

Index 153



A unique example of one of Feynman’s famous diagrams, inscribed
and signed by Feynman himself; image appears courtesy of Jay M.
Pasacho�, Field Memorial Professor of Astronomy at Williams
College, for whom the diagram was drawn in the front pages of his
�rst-edition copy of QED.



Introduction to the 2006 Edition

The story of how we came to know light makes for one gripping
drama, complete with twists and turns and reversals of fortune.

The photon is the most visible of all elementary particles: place
yourself in a dusty room with one small window open on a sunny
day and watch a multitude of the little buggers hurrying across the
room. Newton quite naturally thought that light consisted of a
stream of particles (“corpuscles”), but already he had some doubts;
even in the seventeenth century, the di�raction of light could be
readily observed. Eventually, di�raction and other phenomena
appeared to show without doubt that light is an electromagnetic
wave. That monument of nineteenth-century physics, Maxwell’s
equations of electromagnetism, formulated light entirely as a wave.
Then Einstein came along and explained the photoelectric e�ect by
postulating light as the sum of little packets (“quanta”) of energy.
Thus were the word “photon” and the quantum theory of light born.
(Here I will not digress and recall Einstein’s famous discomfort with
quantum mechanics, even though he helped at its birth.)
Meanwhile, from the 1920s through the 1940s physicists worked
out the quantum behavior of matter (“atoms”) thoroughly. Thus, it
was all the more puzzling that the quantum behavior of light and its
interaction with electrons resisted the e�orts of the best and the
brightest, notably Paul Dirac and Enrico Fermi. Physics had to wait
for three young men—Feynman, Schwinger, and Tomonoga—�lled
with optimism and pessimism, as the case may be, from their
experiences in World War II, to produce the correct formulation of
quantum electrodynamics, aka QED.



Richard Feynman (1918–1988) was not only an extraordinary
physicist, but also an extraordinary �gure, a swash-buckling
personality the likes of which theoretical physics has not seen before
or hence. Occasionally theoretical physicists will while away an idle
moment comparing the contributions of Feynman and Schwinger,
both nice Jewish boys from New York and almost exact
contemporaries. This senseless discussion serves no purpose, but it is
a fact that while Julian Schwinger was a shy and retiring person
(but rather warm and good-hearted behind his apparent
remoteness), Dick Feynman was an extreme extrovert, the stu� of
legends. With his bongo drums, showgirls, and other trappings of a
carefully cultivated image enthusiastically nurtured by a legion of
idolaters, he is surely the best-loved theoretical physicist next to
Einstein.

The brilliant Russian physicist Lev Landau famously had a
logarithmic scale for ranking theoretical physicists, with Einstein on
top. It is also well known that Landau moved himself up half a step
after he formulated the theory of phase transitions. I have my own
scale, one of fun, on which I place theoretical physicists I know
either in person or in spirit. Yes, it is true: most theoretical
physicists are dull as dishwater and rank near minus in�nity on this
logarithmic scale. I would place Schrödinger (about whom more
later) on top, but Feynman would surely rank close behind. I can’t
tell you where I land on my own scale, but I do try to have as much
fun as possible, limited by the amount of talent and resources at my
disposal.

But what fun Feynman was! Early in my career, Feynman asked
me to go to a nightclub with him. One of Feynman’s colleagues told
me that the invitation showed that he took me seriously as a
physicist, but while I was eager to tell Feynman my thoughts about
Yang-Mills theory, he only wanted my opinion on the legs of the
dancing girls on stage. Of course, in the psychology of hero worship,
nobody gives two hoots about some bozo of a physicist who plays



drums and likes showgirls. So all right, my scale is really fun times
talent—Landau’s scale with fun factored in, with the stock of
Einstein falling and that of Landau rising (he played some good
pranks until the KGB got him).

Now some thirty years after that night club visit, I felt honored
that Ingrid Gnerlich of Princeton University Press should ask me to
write an introduction to the 2006 edition of Feynman’s famous book
QED: The Strange Theory of Light and Matter. First a confession: I had
never read QED before. When this book came out in 1985 I had just
�nished writing my �rst popular physics book, Fearful Symmetry,
and I more or less adopted a policy of not reading other popular
physics books for fear of their in�uencing my style. Thus, I read the
copy Ingrid sent me with fresh eyes and deep appreciation. I
enjoyed it immensely, jotting down my thoughts and critiques as I
went along.

I was wrong not to have read this book before, because it is not a
popular physics book in the usual sense of the phrase. When Steve
Weinberg suggested in 1984 that I write a popular physics book and
arranged for me to meet his editor in New York, he gave me a useful
piece of advice. He said that most physicists who wrote such books
could not resist the urge of explaining everything, while the lay
reader only wanted to have the illusion of understanding and to
catch a few buzzwords to throw around at cocktail parties.

I think that Weinberg’s view, though somewhat cynical, is largely
correct. Witness the phenomenal success of Hawking’s A Brief
History of Time (which I have not read in accordance with the policy
I mentioned earlier). One of my former colleagues here at the
University of California, a distinguished physicist who now holds a
chair at Oxford, once showed me a sentence from that book. The
two of us tried to make sense of it and failed. In contrast, I want to
assure all the puzzled readers that every sentence in this book,
though seemingly bizarre to the max, makes sense. But you must
mull over each sentence carefully and try hard to understand what



Feynman is saying before moving on. Otherwise, I guarantee that
you will be hopelessly lost. It is the physics that is bizarre, not the
presentation. After all, the title promises a “strange theory.”

Since Feynman was Feynman, he chose to go totally against the
advice Weinberg gave me (advice which I incidentally also did not
follow completely; see my remark below regarding group theory). In
the acknowledgment, Feynman decried popular physics books as
achieving “apparent simplicity only by describing something
di�erent, something considerably distorted from what they claim to
be describing.” Instead, he posed himself the challenge of describing
QED to the lay reader without “distortion of the truth.” Thus, you
should not think of this book as a typical popular physics book.
Neither is it a textbook. A rare hybrid it is instead.

To explain what kind of book this is, I will use Feynman’s own
analogy, somewhat modi�ed. According to Feynman, to learn QED
you have two choices: you can either go through seven years of
physics education or read this book. (His �gure is a bit of an
overestimate; these days a bright high-school graduate with the
proper guidance could probably do it in less than seven years.) So
you don’t really have a choice, do you? Of course you should choose
to read this book! Even if you mull over every sentence as I suggest
you do, it should not take you seven weeks, let alone seven years.

So how do these two choices di�er? Now comes my version of
the analogy: a Mayan high priest announces that for a fee he could
teach you, an ordinary Joe or Jane in Mayan society, how to
multiply two numbers, for example 564 by 253. He makes you
memorize a 9-by-9 table and then tells you to look at the two digits
farthest to the right in the two numbers you have to multiply,
namely, 4 and 3, and say what is in the 4th row and 3rd column of
the table. You say 12. Then you learn that you should write down 2
and “carry” 1, whatever that means. Next you are to say what is in
the 6th row and 3rd column, namely, 18, to which you are told to
add the number you are carrying. Of course, you’d have to spend



another year learning how to “add.” Well, you get the idea. This is
what you would learn after paying tuition at a prestigious
university.

Instead, a wise guy named Feynman approaches you saying,
“Shh, if you know how to count, you don’t have to learn all this
fancy stu� about carrying and adding! All you’ve got to do is to get
a hold of 564 jars. Then you put into each jar 253 pebbles. Finally,
you pour all the pebbles out onto a big pile and count them. That’s
the answer!”

So you see, Feynman not only teaches you how to multiply, but
also gives you a deep understanding of what the high priests and
their students, those people soon to have Ph.D.s from prestigious
universities, are doing! On the other hand, if you learn to multiply
Feynman’s way, you couldn’t quite apply for a job as an accountant.
If your boss asked you to multiply big numbers all day long, you
would be exhausted, and the students who went to High Priest
University would leave you in the dust.

Having written both a textbook (Quantum Field Theory in a
Nutshell, henceforth referred to as Nutshell) and two popular physics
books (including Fearful Symmetry, henceforth Fearful), I feel that I
am quite quali�ed to address your concerns about what kinds of
books to read. (By the way, Princeton University Press, the publisher
of this book, publishes both Nutshell and Fearful.)

Let me divide the readers of this introduction into three classes:
(1) students who may be inspired by this book to go on and master
QED, (2) intelligent laypersons curious about QED, and (3)
professional physicists like myself.

If you are in class 1, you will be so incredibly inspired and �red
up by this book that you will want to rush out and start reading a
textbook on quantum �eld theory (and it might as well be Nutshell!)
By the way, these days QED is considered a relatively simple
example of a quantum �eld theory. In writing Nutshell, I contend
that a truly bright undergrad would have a good shot at



understanding quantum �eld theory, and Feynman would surely
agree with me.

But as in the analogy, reading this book alone will in no way turn
you into a pro. You have to learn what Feynman referred to as the
“tricky, e�cient way” of multiplying numbers. In spite of Feynman’s
proclaimed desire to explain everything from scratch, he noticeably
runs out of steam as he goes on. For example, on page 89 and in
�gure 56, he merely describes the bizarre dependence of P(A to B)
on the “interval I” and you just have to take his word for it. In
Nutshell, this is derived. Similarly for the quantity E(A to B)
described in the footnote on page 91.

If you are in class 2, persevere and you will be rewarded, trust
me. Don’t rush. Even if you only get through the �rst two chapters,
you will have learned a lot. Why is this book so hard to read? We
could go back to the Mayan analogy: it is as if you are teaching
someone to multiply by telling him about jars and pebbles, but he
doesn’t even know what a jar or a pebble is. Feynman is bouncing
around telling you about each photon carrying a little arrow, and
about how you add up these arrows and multiply them, shrinking
and rotating them. It is all very confusing; you can’t a�ord even the
slightest lapse in attention. Incidentally, the little arrows are just
complex numbers (as explained in a footnote on page 63), and if
you already know about complex numbers (and jars and pebbles),
the discussion might be less confusing. Or perhaps you are one of
those typical lay readers described by Weinberg, who are satis�ed
with “the illusion of understanding something.” In that case, you
may be satis�ed with a “normal” popular physics book. Again the
Mayan analogy: a normal popular physics book would burden you
neither with 9-by-9 tables and carrying, nor with jars and pebbles. It
might simply say that when given two numbers, the high priests
have a way of producing another number. In fact, editors of popular
physics books insist that authors write like that in order not to scare
away the paying public (more below).



Finally, if you are in class 3, you are in for a real treat. Even
though I am a quantum �eld theorist and know what Feynman is
doing, I still derived great pleasure from seeing familiar phenomena
explained in a dazzlingly original and unfamiliar way. I enjoyed
having Feynman explain to me why light moves in a straight line or
how a focusing lens really works (on page 58: “A ‘trick’ can be
played on Nature” by slowing light down along certain paths so the
little arrows all turn by the same amount!).

Shh. I will tell you why Feynman is di�erent from most physics
professors. Go ask a physics professor to explain why, in the
re�ection of light from a pane of glass, it su�ces to consider
re�ection from the front surface and the back surface only. Very few
would know the answer (see page 104). It is not because physics
professors lack the knowledge, but because it has never even
occurred to them to ask this question. They simply study the
standard textbook by Jackson, pass the exam, and move on.
Feynman is the pesky kid who is forever asking why, WHY, WHY!

With three classes of readers (the aspiring student, the intelligent
layperson, the pro), there are also three categories of physics books
(not in one-to-one correspondence): textbooks, popular books, and
what I might call “extra-di�cult popular physics books.” This book
is a rare example of the third category, in some sense intermediate
between a textbook and a popular book. Why is this third category
so thinly populated? Because “extra-di�cult popular physics books”
scare publishers half to death. Hawking famously said that every
equation halves the sale of a popular book. While I do not deny the
general truth of this statement, I wish that publishers would not be
so easily frightened. The issue is not so much the number of
equations, but whether popular books could contain an honest
presentation of di�cult concepts. When I wrote Fearful, I thought
that to discuss symmetry in modern physics it would be essential to
explain group theory. I tried to make the concepts accessible by the
use of little tokens: squares and circles with letters inside them. But



the editor compelled me to water the discussion down repeatedly
until there was practically nothing left, and then to relegate much of
what was left to an appendix. Feynman, on the other hand, had the
kind of clout that not every physicist-writer would have.

Let me return to Feynman’s book with its di�cult passages. Many
of the readers of this book will have had some exposure to quantum
physics. Therefore, they may be legitimately puzzled, for example,
by the absence of the wave function that �gures so prominently in
other popular discussions of quantum physics. Quantum physics is
puzzling enough—as a wit once said, “With quantum physics, who
needs drugs?” Perhaps the reader should be spared further head
scratching. So let me explain.

Almost simultaneously but independently, Erwin Schrödinger and
Werner Heisenberg invented quantum mechanics. To describe the
motion of an electron, for example, Schrödinger introduced a wave
function governed by a partial di�erential equation, now known as
the Schrödinger equation. In contrast, Heisenberg mysti�ed those
around him by talking about operators acting on what he called
“quantum states.” He also famously enunciated the uncertainty
principle, which states that the more accurately one were to
measure, say, the position of a quantum particle, the more uncertain
becomes one’s knowledge of its momentum, and vice versa.

The formalisms set up by the two men were manifestly di�erent,
but the bottom-line result they obtained for any physical process
always agreed. Later, the two formalisms were shown to be
completely equivalent. Today, any decent graduate student is
expected to pass from one formalism to the other with facility,
employing one or the other according to which one is more
convenient for the problem at hand.

Six years later, in 1932, Paul Dirac suggested, in a somewhat
rudimentary form, yet a third formalism. Dirac’s idea appeared to be
largely forgotten until 1941, when Feynman developed and
elaborated this formalism, which became known as the path integral



formalism, or sum over history formalism. (Physicists sometimes
wonder whether Feynman invented this formalism completely
ignorant of Dirac’s work. Historians of physics have now established
that the answer is no. During a party at a Princeton tavern, a
visiting physicist named Herbert Jehle told Feynman about Dirac’s
idea, and apparently the next day Feynman worked out the
formalism in real time in front of the awed Jehle. See the 1986
article by S. Schweber in Reviews of Modern Physics.)

It is this formalism that Feynman tries hard to explain in this
little book. For example, on page 43, when Feynman adds all those
arrows, he is actually integrating (which of course is calculus jargon
for summing) over the amplitudes associated with all possible paths
the photon could follow in getting from point S to point P. Hence
the term “path integral formalism.” The alternative term “sum over
history” is also easy to understand. Were the rules of quantum
physics relevant to a�airs on the macroscopic human scale, then all
alternative histories, such as Napoleon triumphing at Waterloo or
Kennedy dodging the assassin’s bullet, would be possible, and each
history would be associated with an amplitude that we are to sum
over (“summing over all those little arrows”).

It turns out that the path integral, regarded as a function of the
�nal state, satis�es the Schrödinger equation. The path integral is
essentially the wave function. Hence the path integral formalism is
completely equivalent to the Schrödinger and Heisenberg
formalisms. In fact, the one textbook that explains this equivalence
clearly was written by Feynman and Hibbs. (Yes, Feynman has also
authored textbooks—you know, those boring books that actually tell
you how to do things e�ciently, like “carrying” and “adding.” Also,
yes, you guessed correctly that Feynman’s textbooks are often
largely written by his coauthors.)

Since the Dirac-Feynman path integral formalism is completely
equivalent to the Heisenberg formalism, it most certainly contains
the uncertainty principle. So Feynman’s cheerful dismissal of the



uncertainty principle on pages 55 and 56 is a bit of an exaggeration.
At the very least, one can argue over semantics: what did he mean
by saying that the uncertainty principle is not “needed”? The real
issue is whether or not it is useful.

Theoretical physicists are a notoriously pragmatic lot. They will
use whichever method is the easiest. There is none of the
mathematicians’ petulant insistence on rigor and proof. Whatever
works, man!

Given this attitude, you may ask, which of the three formalisms—
Schrödinger, Heisenberg, or Dirac-Feynman—is the easiest? The
answer depends on the problem. In treating atoms, for example, as
the master himself admits on page 100, the Feynman diagrams “for
these atoms would involve so many straight and wiggly lines that
they’d be a complete mess!” The Schrödinger formalism is much
easier by a long shot, and that is what physicists use. In fact, for
most “practical” problems the path integral formalism is almost
hopelessly involved, and in some cases downright impossible to use.
I once asked Feynman about one of these apparently impossible
cases and he had no answer. Yet, beginning students using the
Schrödinger formalism easily solve these apparently impossible
cases!

Thus, which formalism is best really depends on the physics
problem, so that theoretical physicists in one �eld—atomic physics,
for example—might favor one formalism, while those in another—
such as high energy physics—might prefer a di�erent formalism.
Logically then, it may even happen that, as a given �eld evolves and
develops, one formalism may emerge as more convenient than
another.

To be speci�c, let me focus on the �eld I was trained in, namely,
high energy, or particle, physics, which is also Feynman’s main
�eld. Interestingly, in particle physics the path integral formalism
for a long time ran a distant third in the horse race between the
three formalisms. (By the way, nothing says that there could be only



three. Some bright young guy could very well come up with a
fourth!) In fact, the path integral formalism was so unwieldy for
most problems that by the late 1960s it almost fell into complete
obscurity. By that time, quantum �eld theory was almost exclusively
taught using the canonical formalism, which is merely another word
for the Heisenberg formalism, but the very word “canonical” should
tell you which formalism was held in the highest esteem. To cite just
one case history I happen to know well, I had never heard of the
path integral during my student days, even though I went to two
reasonably reputable universities on the East Coast for my
undergraduate and graduate studies. (I mention the East Coast
because, for all I know, the path integral could have been taught
intensively in an eastern enclave in Los Angeles.) It was not until I
was a postdoc at the Institute for Advanced Study that I, as well as
most of my colleagues, was �rst alerted to the path integral
formalism by a Russian paper. Even then, various authorities
expressed doubts about the formalism.

Ironically, it was Feynman himself who was responsible for this
deplorable state of a�airs. What happened was that students easily
learned the “funny little diagrams” (such as those on page 116)
invented by Feynman. Julian Schwinger once said rather bitterly
that “Feynman brought quantum �eld theory to the masses,” by
which he meant that any dullard could memorize a few “Feynman
rules,” call himself or herself a �eld theorist, and build a credible
career. Generations learned Feynman diagrams without
understanding �eld theory. Heavens to Betsy, there are still
university professors like that walking around!

But then, almost incredibly—and perhaps this is part of the
Feynman mystique that gave his career an almost magical aura—in
the early 1970s, starting largely with that Russian paper I just
mentioned, the Dirac-Feynman path integral made a roaring
comeback. It quickly became the dominant way to make progress in
quantum �eld theory.



What makes Feynman such an extraordinary physicist is that this
“battle for the hearts and minds” I just described was between the
crowd using Feynman diagrams versus a younger crowd using
Feynman path integrals. I hasten to add that the word “battle” is a
bit strong: nothing prevents a physicist from using both. I did, for
one.

I believe that my recent textbook Nutshell is one of the few that
employ the path integral formalism right from the beginning, in
contrast to older textbooks that favor the canonical formalism. I
started the second chapter with a section titled “The professor’s
nightmare: a wise guy in the class.” In the spirit of all those
apocryphal stories about Feynman, I made up a story about a wise-
guy student and named him Feynman. The path integral formalism
was derived by the rather Zen procedure of introducing an in�nite
number of screens and drilling an in�nite number of holes in each
screen, thus ending up with no screen. But as in the Mayan
priesthood analogy, after this Feynmanesque derivation, I had to
teach the student how to actually calculate (“carry” and “add”) and
for that I had to abandon the apocryphal Feynman and go through
the detailed Dirac-Feynman derivation of the path integral
formalism, introducing such technicalities as “the insertion of 1 as a
sum over a complete set of bras and kets.” Technicality is what you
do not get by reading Feynman’s books!

Incidentally, in case you are wondering, the bras have nothing to
do with the philandering Dick Feynman. They were introduced by
the staid and laconic Paul Dirac as the left half of a bracket. Dirac is
himself a legend: I once sat through an entire dinner with Dirac and
others without him uttering more than a few words.

I chuckled a few times as Feynman got in some sly digs at other
physicists. For example, on page 132 he dismissively referred to
Murray Gell-Mann, the brilliant physicist and Feynman’s friendly
rival at Caltech, as a “great inventor.” Going somewhat against his
own carefully cultivated wise-guy image, he then deplored on page



135 the general decline of physicists’ knowledge of Greek, knowing
full well that Gell-Mann not only coined the neologism “gluon” but
is also an accomplished linguist.

I also liked Feynman’s self-deprecatory remarks, which are part
and parcel of his image. On page 149, when Feynman speaks of
“some fool physicist giv[ing] a lecture at UCLA in 1983,” some
readers might not realize that Feynman is speaking of himself!
Although this is indeed part of the image, I �nd it refreshing as we
theoretical physicists become increasingly hierarchical and pompous
in our time. The Feynman whom I knew—and I emphasize that I did
not know him well—surely would not like this trend. Afterall, he
once caused a big fuss trying to resign from the National Academy
of Sciences.

Referring back to the three classes of potential readers I described
above, I would say that those in classes 2 and 3 will enjoy this book
enormously, but the book was secretly written for those in class 1. If
you are an aspiring theoretical physicist, I urge you to devour this
book with all the �ery hunger you feel in your mind, and then go on
to learn from a quantum �eld theory textbook how to actually
“carry.”

Surely you can master quantum �eld theory. Just remember what
Feynman said: “What one fool can understand, another can.” He
was referring to himself, and to you!

A. ZEE



Foreword

The Alix G. Mautner Memorial Lectures were conceived in honor of
my wife Alix, who died in 1982. Although her career was in English
literature, Alix had a long and abiding interest in many scienti�c
�elds. Thus it seemed �tting to create a fund in her name that
would support an annual lecture series with the objective of
communicating to an intelligent and interested public the spirit and
achievements of science.

I am delighted that Richard Feynman has agreed to give the �rst
series of lectures. Our friendship goes back �fty-�ve years to our
childhood in Far Rockaway, New York. Richard knew Alix for about
twenty-two years, and she long sought to have him develop an
explanation of the physics of small particles that would be
understandable to her and to other non-physicists.

As an added note, I would like to express my appreciation to
those who contributed to the Alix G. Mautner Fund and thus helped
make these lectures possible.

LEONARD MAUTNER
Los Angeles, California
May 1983



Preface

Richard Feynman is legendary in the world of physics for the way
he looks at the world: taking nothing for granted and always
thinking things out for himself, he often attains a new and profound
understanding of nature’s behavior—with a refreshing and elegantly
simple way to describe it.

He is also known for his enthusiasm in explaining physics to
students. After turning down countless o�ers to give speeches at
prestigious societies and organizations, Feynman is a sucker for the
student who comes by his o�ce and asks him to talk to the local
high school physics club.

This book is a venture that, as far as we know, has never been
tried. It is a straightforward, honest explanation of a rather di�cult
subject—the theory of quantum electrodynamics—for a
nontechnical audience. It is designed to give the interested reader
an appreciation for the kind of thinking that physicists have resorted
to in order to explain how Nature behaves.

If you are planning to study physics (or are already doing so),
there is nothing in this book that has to be “unlearned”: it is a
complete description, accurate in every detail, of a framework onto
which more advanced concepts can be attached without
modi�cation. For those of you who have already studied physics, it
is a revelation of what you were really doing when you were making
all those complicated calculations!

As a boy, Richard Feynman was inspired to study calculus from a
book that began, “What one fool can do, another can.” He would



like to dedicate this book to his readers with similar words: “What
one fool can understand, another can.”

RALPH LEIGHTON
Pasadena, California
February 1985
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QED



1

Introduction

Alix Mautner was very curious about physics and often asked me to
explain things to her. I would do all right, just as I do with a group
of students at Caltech that come to me for an hour on Thursdays,
but eventually I’d fail at what is to me the most interesting part: We
would always get hung up on the crazy ideas of quantum
mechanics. I told her I couldn’t explain these ideas in an hour or an
evening—it would take a long time—but I promised her that
someday I’d prepare a set of lectures on the subject.

I prepared some lectures, and I went to New Zealand to try them
out—because New Zealand is far enough away that if they weren’t
successful, it would be all right! Well, the people in New Zealand
thought they were okay, so I guess they’re okay—at least for New
Zealand! So here are the lectures I really prepared for Alix, but
unfortunately I can’t tell them to her directly, now.

What I’d like to talk about is a part of physics that is known,
rather than a part that is unknown. People are always asking for the
latest developments in the uni�cation of this theory with that
theory, and they don’t give us a chance to tell them anything about
one of the theories that we know pretty well. They always want to
know things that we don’t know. So, rather than confound you with
a lot of half-cooked, partially analyzed theories, I would like to tell
you about a subject that has been very thoroughly analyzed. I love
this area of physics and I think it’s wonderful: it is called quantum
electrodynamics, or QED for short.



My main purpose in these lectures is to describe as accurately as I
can the strange theory of light and matter—or more speci�cally, the
interaction of light and electrons. It’s going to take a long time to
explain all the things I want to. However, there are four lectures, so
I’m going to take my time, and we will get everything all right.

Physics has a history of synthesizing many phenomena into a few
theories. For instance, in the early days there were phenomena of
motion and phenomena of heat; there were phenomena of sound, of
light, and of gravity. But it was soon discovered, after Sir Isaac
Newton explained the laws of motion, that some of these apparently
di�erent things were aspects of the same thing. For example, the
phenomena of sound could be completely understood as the motion
of atoms in the air. So sound was no longer considered something in
addition to motion. It was also discovered that heat phenomena are
easily understandable from the laws of motion. In this way, great
globs of physics theory were synthesized into a simpli�ed theory.
The theory of gravitation, on the other hand, was not
understandable from the laws of motion, and even today it stands
isolated from the other theories. Gravitation is, so far, not
understandable in terms of other phenomena.

After the synthesis of the phenomena of motion, sound, and heat,
there was the discovery of a number of phenomena that we call
electrical and magnetic. In 1873 these phenomena were synthesized
with the phenomena of light and optics into a single theory by
James clerk Maxwell, who proposed that light is an electromagnetic
wave. So at that stage, there were the laws of motion, the laws of
electricity and magnetism, and the laws of gravity.

Around 1900 a theory was developed to explain what matter was.
It was called the electron theory of matter, and it said that there
were little charged particles inside of atoms. This theory evolved
gradually to include a heavy nucleus with electrons going around it.

Attempts to understand the motion of the electrons going around
the nucleus by using mechanical laws—analogous to the way



Newton used the laws of motion to �gure out how the earth went
around the sun—were a real failure: all kinds of predictions came
out wrong. (Incidentally, the theory of relativity, which you all
understand to be a great revolution in physics, was also developed
at about that time. But compared to this discovery that Newton’s
laws of motion were quite wrong in atoms, the theory of relativity
was only a minor modi�cation.) Working out another system to
replace Newton’s laws took a long time because phenomena at the
atomic level were quite strange. One had to lose one’s common
sense in order to perceive what was happening at the atomic level.
Finally, in 1926, an “uncommon-sensy” theory was developed to
explain the “new type of behavior” of electrons in matter. It looked
cockeyed, but in reality it was not: it was called the theory of
quantum mechanics. The word “quantum” refers to this peculiar
aspect of nature that goes against common sense. It is this aspect
that I am going to tell you about.

The theory of quantum mechanics also explained all kinds of
details, such as why an oxygen atom combines with two hydrogen
atoms to make water, and so on. Quantum mechanics thus supplied
the theory behind chemistry. So, fundamental theoretical chemistry
is really physics.

Because the theory of quantum mechanics could explain all of
chemistry and the various properties of substances, it was a
tremendous success. But still there was the problem of the
interaction of light and matter. That is, Maxwell’s theory of
electricity and magnetism had to be changed to be in accord with
the new principles of quantum mechanics that had been developed.
So a new theory, the quantum theory of the interaction of light and
matter, which is called by the horrible name “quantum
electrodynamics,” was �nally developed by a number of physicists
in 1929.

But the theory was troubled. If you calculated something roughly,
it would give a reasonable answer. But if you tried to compute it



more accurately, you would �nd that the correction you thought
was going to be small (the next term in a series, for example) was in
fact very large—in fact, it was in�nity! So it turned out you couldn’t
really compute anything beyond a certain accuracy.

By the way, what I have just outlined is what I call a “physicist’s
history of physics,” which is never correct. What I am telling you is
a sort of conventionalized myth-story that the physicists tell to their
students, and those students tell to their students, and is not
necessarily related to the actual historical development, which I do
not really know!

At any rate, to continue with this “history,” Paul Dirac, using the
theory of relativity, made a relativistic theory of the electron that
did not completely take into account all the e�ects of the electron’s
interaction with light. Dirac’s theory said that an electron had a
magnetic moment—something like the force of a little magnet—that
had a strength of exactly 1 in certain units. Then in about 1948 it
was discovered in experiments that the actual number was closer to
1.00118 (with an uncertainty of about 3 on the last digit). It was
known, of course, that electrons interact with light, so some small
correction was expected. It was also expected that this correction
would be understandable from the new theory of quantum
electrodynamics. But when it was calculated, instead of 1.00118 the
result was in�nity—which is wrong, experimentally!

Well, this problem of how to calculate things in quantum
electrodynamics was straightened out by Julian Schwinger, Sin-Itiro
Tomonaga, and myself in about 1948. Schwinger was the �rst to
calculate this correction using a new “shell game”; his theoretical
value was around 1.00116, which was close enough to the
experimental number to show that we were on the right track. At
last, we had a quantum theory of electricity and magnetism with
which we could calculate! This is the theory that I am going to
describe to you.



The theory of quantum electrodynamics has now lasted for more
than �fty years, and has been tested more and more accurately over
a wider and wider range of conditions. At the present time I can
proudly say that there is no signi�cant di�erence between experiment
and theory!

Just to give you an idea of how the theory has been put through
the wringer, I’ll give you some recent numbers: experiments have
Dirac’s number at 1.00115965221 (with an uncertainty of about 4
in the last digit); the theory puts it at 1.00115965246 (with an
uncertainty of about �ve times as much). To give you a feeling for
the accuracy of these numbers, it comes out something like this: If
you were to measure the distance from Los Angeles to New York to
this accuracy, it would be exact to the thickness of a human hair.
That’s how delicately quantum electrodynamics has, in the past �fty
years, been checked—both theoretically and experimentally. By the
way, I have chosen only one number to show you. There are other
things in quantum electrodynamics that have been measured with
comparable accuracy, which also agree very well. Things have been
checked at distance scales that range from one hundred times the
size of the earth down to one-hundredth the size of an atomic
nucleus. These numbers are meant to intimidate you into believing
that the theory is probably not too far o�! Before we’re through, I’ll
describe how these calculations are made.

I would like to again impress you with the vast range of
phenomena that the theory of quantum electrodynamics describes:
It’s easier to say it backwards: the theory describes all the
phenomena of the physical world except the gravitational e�ect, the
thing that holds you in your seats (actually, that’s a combination of
gravity and politeness, I think), and radioactive phenomena, which
involve nuclei shifting in their energy levels. So if we leave out
gravity and radioactivity (more properly, nuclear physics), what
have we got left? Gasoline burning in automobiles, foam and
bubbles, the hardness of salt or copper, the sti�ness of steel. In fact,



biologists are trying to interpret as much as they can about life in
terms of chemistry, and as I already explained, the theory behind
chemistry is quantum electrodynamics.

I must clarify something: When I say that all the phenomena of
the physical world can be explained by this theory, we don’t really
know that. Most phenomena we are familiar with involve such
tremendous numbers of electrons that it’s hard for our poor minds to
follow that complexity. In such situations, we can use the theory to
�gure roughly what ought to happen and that is what happens,
roughly, in those circumstances. But if we arrange in the laboratory
an experiment involving just a few electrons in simple circumstances,
then we can calculate what might happen very accurately, and we
can measure it very accurately, too. Whenever we do such
experiments, the theory of quantum electrodynamics works very
well.

We physicists are always checking to see if there is something the
matter with the theory. That’s the game, because if there is
something the matter, it’s interesting! But so far, we have found
nothing wrong with the theory of quantum electrodynamics. It is,
therefore, I would say, the jewel of physics—our proudest
possession.

The theory of quantum electrodynamics is also the prototype for
new theories that attempt to explain nuclear phenomena, the things
that go on inside the nuclei of atoms. If one were to think of the
physical world as a stage, then the actors would be not only
electrons, which are outside the nucleus in atoms, but also quarks
and gluons and so forth—dozens of kinds of particles—inside the
nucleus. And though these “actors” appear quite di�erent from one
another, they all act in a certain style—a strange and peculiar style
—the “quantum” style. At the end, I’ll tell you a little bit about the
nuclear particles. In the meantime, I’m only going to tell you about
photons—particles of light—and electrons, to keep it simple.



Because it’s the way they act that is important, and the way they act
is very interesting.

So now you know what I’m going to talk about. The next question
is, will you understand what I’m going to tell you? Everybody who
comes to a scienti�c lecture knows they are not going to understand
it, but maybe the lecturer has a nice, colored tie to look at. Not in
this case! (Feynman is not wearing a tie.)

What I am going to tell you about is what we teach our physics
students in the third or fourth year of graduate school—and you
think I’m going to explain it to you so you can understand it? No,
you’re not going to be able to understand it. Why, then, am I going
to bother you with all this? Why are you going to sit here all this
time, when you won’t be able to understand what I am going to say?
It is my task to convince you not to turn away because you don’t
understand it. You see, my physics students don’t understand it
either. That is because I don’t understand it. Nobody does.

I’d like to talk a little bit about understanding. When we have a
lecture, there are many reasons why you might not understand the
speaker. One is, his language is bad—he doesn’t say what he means
to say, or he says it upside down—and it’s hard to understand.
That’s a rather trivial matter, and I’ll try my best to avoid too much
of my New York accent.

Another possibility, especially if the lecturer is a physicist, is that
he uses ordinary words in a funny way. Physicists often use ordinary
words such as “work” or “action” or “energy” or even, as you shall
see, “light” for some technical purpose. Thus, when I talk about
“work” in physics, I don’t mean the same thing as when I talk about
“work” on the street. During this lecture I might use one of those
words without noticing that it is being used in this unusual way. I’ll
try my best to catch myself—that’s my job—but it is an error that is
easy to make.

The next reason that you might think you do not understand
what I am telling you is, while I am describing to you how Nature



works, you won’t understand why Nature works that way. But you
see, nobody understands that. I can’t explain why Nature behaves in
this peculiar way.

Finally, there is this possibility: after I tell you something, you
just can’t believe it. You can’t accept it. You don’t like it. A little
screen comes down and you don’t listen anymore. I’m going to
describe to you how Nature is—and if you don’t like it, that’s going
to get in the way of your understanding it. It’s a problem that
physicists have learned to deal with: They’ve learned to realize that
whether they like a theory or they don’t like a theory is not the
essential question. Rather, it is whether or not the theory gives
predictions that agree with experiment. It is not a question of
whether a theory is philosophically delightful, or easy to
understand, or perfectly reasonable from the point of view of
common sense. The theory of quantum electrodynamics describes
Nature as absurd from the point of view of common sense. And it
agrees fully with experiment. So I hope you can accept Nature as
She is—absurd.

I’m going to have fun telling you about this absurdity, because I
�nd it delightful. Please don’t turn yourself o� because you can’t
believe Nature is so strange. Just hear me all out, and I hope you’ll
be as delighted as I am when we’re through.

How am I going to explain to you the things I don’t explain to my
students until they are third-year graduate students? Let me explain
it by analogy. The Maya Indians were interested in the rising and
setting of Venus as a morning “star” and as an evening “star”—they
were very interested in when it would appear. After some years of
observation, they noted that �ve cycles of Venus were very nearly
equal to eight of their “nominal years” of 365 days (they were
aware that the true year of seasons was di�erent and they made
calculations of that also). To make calculations, the Maya had
invented a system of bars and dots to represent numbers (including
zero), and had rules by which to calculate and predict not only the



risings and settings of Venus, but other celestial phenomena, such as
lunar eclipses.

In those days, only a few Maya priests could do such elaborate
calculations. Now, suppose we were to ask one of them how to do
just one step in the process of predicting when Venus will next rise
as a morning star—subtracting two numbers. And let’s assume that,
unlike today, we had not gone to school and did not know how to
subtract. How would the priest explain to us what subtraction is?

He could either teach us the numbers represented by the bars and
dots and the rules for “subtracting” them, or he could tell us what
he was really doing: “Suppose we want to subtract 236 from 584.
First, count out 584 beans and put them in a pot. Then take out 236
beans and put them to one side. Finally, count the beans left in the
pot. That number is the result of subtracting 236 from 584.”

You might say, “My Quetzalcoatl! What tedium—counting beans,
putting them in, taking them out—what a job!”

To which the priest would reply, “That’s why we have the rules
for the bars and dots. The rules are tricky, but they are a much more
e�cient way of getting the answer than by counting beans. The
important thing is, it makes no di�erence as far as the answer is
concerned: we can predict the appearance of Venus by counting
beans (which is slow, but easy to understand) or by using the tricky
rules (which is much faster, but you must spend years in school to
learn them).”

To understand how subtraction works—as long as you don’t have
to actually carry it out—is really not so di�cult. That’s my position:
I’m going to explain to you what the physicists are doing when they
are predicting how Nature will behave, but I’m not going to teach
you any tricks so you can do it e�ciently. You will discover that in
order to make any reasonable predictions with this new scheme of
quantum electrodynamics, you would have to make an awful lot of
little arrows on a piece of paper. It takes seven years—four
undergraduate and three graduate—to train our physics students to



do that in a tricky, e�cient way. That’s where we are going to skip
seven years of education in physics: By explaining quantum
electrodynamics to you in terms of what we are really doing, I hope
you will be able to understand it better than do some of the
students!

Taking the example of the Maya one step further, we could ask
the priest why �ve cycles of Venus nearly equal 2,920 days, or eight
years. There would be all kinds of theories about why, such as, “20
is an important number in our counting system, and if you divide
2,920 by 20, you get 146, which is one more than a number that
can be represented by the sum of two squares in two di�erent
ways,” and so forth. But that theory would have nothing to do with
Venus, really. In modern times, we have found that theories of this
kind are not useful. So again, we are not going to deal with why
Nature behaves in the peculiar way that She does; there are no good
theories to explain that.

What I have done so far is to get you into the right mood to listen
to me. Otherwise, we have no chance. So now we’re o�, ready to
go!

We begin with light. When Newton started looking at light, the
�rst thing he found was that white light is a mixture of colors. He
separated white light with a prism into various colors, but when he
put light of one color—red, for instance—through another prism, he
found it could not be separated further. So Newton found that white
light is a mixture of di�erent colors, each of which is pure in the
sense that it can’t be separated further.

(In fact, a particular color of light can be split one more time in a
di�erent way, according to its so-called “polarization.” This aspect
of light is not vital to understanding the character of quantum
electrodynamics, so for the sake of simplicity I will leave it out—at
the expense of not giving you an absolutely complete description of
the theory. This slight simpli�cation will not remove, in any way,



any real understanding of what I will be talking about. Still, I must
be careful to mention all of the things I leave out.)

When I say “light” in these lectures, I don’t mean simply the light
we can see, from red to blue. It turns out that visible light is just a
part of a long scale that’s analogous to a musical scale in which
there are notes higher than you can hear and other notes lower than
you can hear. The scale of light can be described by numbers—
called the frequency—and as the numbers get higher, the light goes
from red to blue to violet to ultraviolet. We can’t see ultraviolet
light, but it can a�ect photographic plates. It’s still light—only the
number is di�erent. (We shouldn’t be so provincial: what we can
detect directly with our own instrument, the eye, isn’t the only thing
in the world!) If we continue simply to change the number, we go
out into X-rays, gamma rays, and so on. If we change the number in
the other direction, we go from blue to red to infrared (heat) waves,
then television waves, and radio waves. For me, all of that is “light.”
I’m going to use just red light for most of my examples, but the
theory of quantum electrodynamics extends over the entire range I
have described, and is the theory behind all these various
phenomena.

Newton thought that light was made up of particles—he called
them “corpuscles”—and he was right (but the reasoning that he
used to come to that decision was erroneous). We know that light is
made of particles because we can take a very sensitive instrument
that makes clicks when light shines on it, and if the light gets
dimmer, the clicks remain just as loud—there are just fewer of
them. Thus light is something like raindrops—each little lump of
light is called a photon—and if the light is all one color, all the
“raindrops” are the same size.

The human eye is a very good instrument: it takes only about �ve
or six photons to activate a nerve cell and send a message to the
brain. If we were evolved a little further so we could see ten times
more sensitively, we wouldn’t have to have this discussion—we



would all have seen very dim light of one color as a series of
intermittent little �ashes of equal intensity.

You might wonder how it is possible to detect a single photon.
One instrument that can do this is called a photomultiplier, and I’ll
describe brie�y how it works: When a photon hits the metal plate A
at the bottom (see Figure 1), it causes an electron to break loose
from one of the atoms in the plate. The free electron is strongly
attracted to plate B (which has a positive charge on it) and hits it
with enough force to break loose three or four electrons. Each of the
electrons knocked out of plate B is attracted to plate C (which is also
charged), and their collision with plate C knocks loose even more
electrons. This process is repeated ten or twelve times, until billions
of electrons, enough to make a sizable electric current, hit the last
plate, L. This current can be ampli�ed by a regular ampli�er and
sent through a speaker to make audible clicks. Each time a photon
of a given color hits the photomultiplier, a click of uniform loudness
is heard.

If you put a whole lot of photomultipliers around and let some
very dim light shine in various directions, the light goes into one
multiplier or another and makes a click of full intensity. It is all or
nothing: if one photomultiplier goes o� at a given moment, none of
the others goes o� at the same moment (except in the rare instance
that two photons happened to leave the light source at the same
time). There is no splitting of light into “half particles” that go
di�erent places.



FIGURE 1. A photomultiplier can detect a single photon. When a photon strikes plate A, an
electron is knocked loose and attracted to positively charged plate B, knocking more electrons
loose. This process continues until billions of electrons strike the last plate, L, and produce an
electric current, which is ampli�ed by a regular ampli�er. If a speaker is connected to the
ampli�er, clicks of uniform loudness are heard each time a photon of a given color hits plate A.

I want to emphasize that light comes in this form—particles. It is
very important to know that light behaves like particles, especially
for those of you who have gone to school, where you were probably
told something about light behaving like waves. I’m telling you the
way it does behave—like particles.

You might say that it’s just the photomultiplier that detects light
as particles, but no, every instrument that has been designed to be
sensitive enough to detect weak light has always ended up
discovering the same thing: light is made of particles.

I am going to assume that you are familiar with the properties of
light in everyday circumstances—things like, light goes in straight
lines; it bends when it goes into water; when it is re�ected from a
surface like a mirror, the angle at which the light hits the surface is
equal to the angle at which it leaves the surface; light can be
separated into colors; you can see beautiful colors on a mud puddle
when there is a little bit of oil on it; a lens focuses light, and so on. I
am going to use these phenomena that you are familiar with in
order to illustrate the truly strange behavior of light; I am going to
explain these familiar phenomena in terms of the theory of quantum
electrodynamics. I told you about the photomultiplier in order to
illustrate an essential phenomenon that you may not have been
familiar with—that light is made of particles—but by now, I hope
you are familiar with that, too!

Now, I think you are all familiar with the phenomenon that light
is partly re�ected from some surfaces, such as water. Many are the
romantic paintings of moonlight re�ecting from a lake (and many
are the times you got yourself in trouble because of moonlight
re�ecting from a lake!). When you look down into water you can
see what’s below the surface (especially in the daytime), but you



can also see a re�ection from the surface. Glass is another example:
if you have a lamp on in the room and you’re looking out through a
window during the daytime, you can see things outside through the
glass as well as a dim re�ection of the lamp in the room. So light is
partially re�ected from the surface of glass.

Before I go on, I want you to be aware of a simpli�cation I am
going to make that I will correct later on: When I talk about the
partial re�ection of light by glass, I am going to pretend that the
light is re�ected by only the surface of the glass. In reality, a piece of
glass is a terrible monster of complexity—huge numbers of electrons
are jiggling about. When a photon comes down, it interacts with
electrons throughout the glass, not just on the surface. The photon
and electrons do some kind of dance, the net result of which is the
same as if the photon hit only the surface. So let me make that
simpli�cation for a while. Later on, I’ll show you what actually
happens inside the glass so you can understand why the result is the
same.

Now I’d like to describe an experiment, and tell you its surprising
results. In this experiment some photons of the same color—let’s
say, red light—are emitted from a light source (see Fig. 2) down
toward a block of glass. A photomultiplier is placed at A, above the
glass, to catch any photons that are re�ected by the front surface. To
measure how many photons get past the front surface, another
photomultiplier is placed at B, inside the glass. Never mind the
obvious di�culties of putting a photomultiplier inside a block of
glass; what are the results of this experiment?



FIGURE 2. An experiment to measure the partial re�ection of light by a single surface of glass.
For every 100 photons that leave the light source, 4 are re�ected by the front surface and end up
in the photomultiplier at A, while the other 96 are transmitted by the front surface and end up in
the photomultiplier at B.

For every 100 photons that go straight down toward the glass at
90°, an average of 4 arrive at A and 96 arrive at B. So “partial
re�ection” in this case means that 4% of the photons are re�ected
by the front surface of the glass, while the other 96% are
transmitted. Already we are in great di�culty: how can light be
partly re�ected? Each photon ends up at A or B—how does the
photon “make up its mind” whether it should go to A or B?
(Audience laughs.) That may sound like a joke, but we can’t just
laugh; we’re going to have to explain that in terms of a theory!
Partial re�ection is already a deep mystery, and it was a very
di�cult problem for Newton.

There are several possible theories that you could make up to
account for the partial re�ection of light by glass. One of them is
that 96% of the surface of the glass is “holes” that let the light
through, while the other 4% of the surface is covered by small
“spots” of re�ective material (see Fig. 3). Newton realized that this
is not a possible explanation.1 In just a moment we will encounter a
strange feature of partial re�ection that will drive you crazy if you
try to stick to a theory of “holes and spots”—or to any other
reasonable theory!

Another possible theory is that the photons have some kind of
internal mechanism—“wheels” and “gears” inside that are turning in
some way—so that when a photon is “aimed” just right, it goes
through the glass, and when it’s not aimed right, it re�ects. We can
check this theory by trying to �lter out the photons that are not
aimed right by putting a few extra layers of glass between the
source and the �rst layer of glass. After going through the �lters, the
photons reaching the glass should all be aimed right, and none of
them should re�ect. The trouble with that theory is, it doesn’t agree



with experiment: even after going through many layers of glass, 4%
of the photons reaching a given surface re�ect o� it.

Try as we might to invent a reasonable theory that can explain
how a photon “makes up its mind” whether to go through glass or
bounce back, it is impossible to predict which way a given photon
will go. Philosophers have said that if the same circumstances don’t
always produce the same results, predictions are impossible and
science will collapse. Here is a circumstance—identical photons are
always coming down in the same direction to the same piece of
glass—that produces di�erent results. We cannot predict whether a
given photon will arrive at A or B. All we can predict is that out of
100 photons that come down, an average of 4 will be re�ected by
the front surface. Does this mean that physics, a science of great
exactitude, has been reduced to calculating only the probability of an
event, and not predicting exactly what will happen? Yes. That’s a
retreat, but that’s the way it is: Nature permits us to calculate only
probabilities. Yet science has not collapsed.

FIGURE 3. One theory to explain partial re�ection by a single surface involves a surface made up
mainly of “holes” that let light through, with a few “spots” that re�ect the light.

While partial re�ection by a single surface is a deep mystery and
a di�cult problem, partial re�ection by two or more surfaces is
absolutely mind-boggling. Let me show you why. We’ll do a second
experiment, in which we will measure the partial re�ection of light
by two surfaces. We replace the block of glass with a very thin sheet
of glass—its two surfaces are exactly parallel to each other—and we
place the photomultiplier below the sheet of glass, in line with the
light source. This time, photons can re�ect from either the front
surface or the back surface to end up at A; all the others will end up
at B (see Fig. 4). We might expect the front surface to re�ect 4% of



the light and the back surface to re�ect 4% of the remaining 96%,
making a total of about 8%. So we should �nd that out of every 100
photons that leave the light source, about 8 arrive at A.

FIGURE 4. An experiment to measure the partial re�ection of light by two surfaces of glass.
Photons can get to the photomultiplier at A by re�ecting o� either the front surface or the back
surface of the sheet of glass; alternatively, they could go through both surfaces and end up hitting
the photomultiplier at B. Depending on the thickness of the glass, 0 to 16 photons out of every
100 get to the photomultiplier at A. These results pose di�culties for any reasonable theory,
including the one in Figure 3. It appears that partial re�ection can be “turned o�” or “ampli�ed”
by the presence of an additional surface.

What actually happens under these carefully controlled
experimental conditions is, the number of photons arriving at A is
rarely 8 out of 100. With some sheets of glass, we consistently get a
reading of 15 or 16 photons—twice our expected result! With other
sheets of glass, we consistently get only 1 or 2 photons. Other sheets
of glass have a partial re�ection of 10%; some eliminate partial
re�ection altogether! What can account for these crazy results?
After checking the various sheets of glass for quality and uniformity,
we discover that they di�er only slightly in their thickness.

To test the idea that the amount of light re�ected by two surfaces
depends on the thickness of the glass, let’s do a series of
experiments: Starting out with the thinnest possible layer of glass,
we’ll count how many photons hit the photomultiplier at A each
time 100 photons leave the light source. Then we’ll replace the layer
of glass with a slightly thicker one and make new counts. After
repeating this process a few dozen times, what are the results?

With the thinnest possible layer of glass, we �nd that the number
of photons arriving at A is nearly always zero—sometimes it’s 1.



When we replace the thinnest layer with a slightly thicker one, we
�nd that the amount of light re�ected is higher—closer to the
expected 8%. After a few more replacements the count of photons
arriving at A increases past the 8% mark. As we continue to
substitute still “thicker” layers of glass—we’re up to about 5
millionths of an inch now—the amount of light re�ected by the two
surfaces reaches a maximum of 16%, and then goes down, through
8%, back to zero—if the layer of glass is just the right thickness,
there is no re�ection at all. (Do that with spots!)

With gradually thicker and thicker layers of glass, partial
re�ection again increases to 16% and returns to zero—a cycle that
repeats itself again and again (see Fig. 5). Newton discovered these
oscillations and did one experiment that could be correctly
interpreted only if the oscillations continued for at least 34,000
cycles! Today, with lasers (which produce a very pure,
monochromatic light), we can see this cycle still going strong after
more than 100,000,000 repetitions—which corresponds to glass that
is more than 50 meters thick. (We don’t see this phenomenon every
day because the light source is normally not monochromatic.)

So it turns out that our prediction of 8% is right as an overall
average (since the actual amount varies in a regular pattern from
zero to 16%), but it’s exactly right only twice each cycle—like a
stopped clock (which is right twice a day). How can we explain this
strange feature of partial re�ection that depends on the thickness of
the glass? How can the front surface re�ect 4% of the light (as
con�rmed in our �rst experiment) when, by putting a second
surface at just the right distance below, we can somehow “turn o�”
the re�ection? And by placing that second surface at a slightly
di�erent depth, we can “amplify” the re�ection up to 16%! Can it
be that the back surface exerts some kind of in�uence or e�ect on
the ability of the front surface to re�ect light? What if we put in a
third surface?



FIGURE 5. The results of an experiment carefully measuring the relationship between the
thickness of a sheet of glass and partial re�ection demonstrate a phenomenon called
“interference,” As the thickness of the glass increases, partial re�ection goes through a repeating
cycle of zero to 16%, with no signs of dying out.

With a third surface, or any number of subsequent surfaces, the
amount of partial re�ection is again changed. We �nd ourselves
chasing down through surface after surface with this theory,
wondering if we have �nally reached the last surface. Does a photon
have to do that in order to “decide” whether to re�ect o� the front
surface?

Newton made some ingenious arguments concerning this
problem,2 but he realized, in the end, that he had not yet developed
a satisfactory theory.

For many years after Newton, partial re�ection by two surfaces
was happily explained by a theory of waves,3 but when experiments
were made with very weak light hitting photomultipliers, the wave
theory collapsed: as the light got dimmer and dimmer, the
photomultipliers kept making full-sized clicks—there were just
fewer of them. Light behaved as particles.

The situation today is, we haven’t got a good model to explain
partial re�ection by two surfaces; we just calculate the probability
that a particular photomultiplier will be hit by a photon re�ected
from a sheet of glass. I have chosen this calculation as our �rst
example of the method provided by the theory of quantum
electrodynamics. I am going to show you “how we count the
beans”—what the physicists do to get the right answer. I am not
going to explain how the photons actually “decide” whether to
bounce back or go through; that is not known. (Probably the



question has no meaning.) I will only show you how to calculate the
correct probability that light will be re�ected from glass of a given
thickness, because that’s the only thing physicists know how to do!
What we do to get the answer to this problem is analogous to the
things we have to do to get the answer to every other problem
explained by quantum electrodynamics.

You will have to brace yourselves for this—not because it is
di�cult to understand, but because it is absolutely ridiculous: All
we do is draw little arrows on a piece of paper—that’s all!

Now, what does an arrow have to do with the chance that a
particular event will happen? According to the rules of “how we
count the beans,” the probability of an event is equal to the square
of the length of the arrow. For example, in our �rst experiment
(when we were measuring partial re�ection by the front surface
only), the probability that a photon would arrive at the
photomultiplier at A was 4%. That corresponds to an arrow whose
length is 0.2, because 0.2 squared is 0.04 (see Fig. 6).

In our second experiment (when we were replacing thin sheets of
glass with slightly thicker ones), photons bouncing o� either the
front surface or the back surface arrived at A. How do we draw an
arrow to represent this situation? The length of the arrow must
range from zero to 0.4 to represent probabilities of zero to 16%,
depending on the thickness of the glass (see Fig. 7).

We start by considering the various ways that a photon could get
from the source to the photomultiplier at A. Since I am making this
simpli�cation that the light bounces o� either the front surface or
the back surface, there are two possible ways a photon could get to
A. What we do in this case is to draw two arrows—one for each way
the event can happen—and then combine them into a “�nal arrow”
whose square represents the probability of the event. If there had
been three di�erent ways the event could have happened, we would
have drawn three separate arrows before combining them.



FIGURE 6. The strange feature of partial re�ection by two surfaces has forced physicists away
from making absolute predictions to merely calculating the probability of an event. Quantum
electrodynamics provides a method for doing this—drawing little arrows on a piece of paper. The
probability of an event is represented by the area of the square on an arrow. For example, an
arrow representing a probability of 0.04 (4%) has a length of 0.2.

FIGURE 7. Arrows representing probabilities from 0% to 16% have lengths of from 0 to 0.4.

Now, let me show you how we combine arrows. Let’s say we
want to combine arrow x with arrow y (see Fig. 8). All we have to
do is put the head of x against the tail of y (without changing the
direction of either one), and draw the �nal arrow from the tail of x
to the head of y. That’s all there is to it. We can combine any
number of arrows in this manner (technically, it’s called “adding
arrows”). Each arrow tells you how far, and in what direction, to
move in a dance. The �nal arrow tells you what single move to make
to end up in the same place (see Fig. 9).

FIGURE 8. Arrows that represent each possible way an event could happen are drawn and then
combined (“added”) in the following manner: Attach the head of one arrow to the tail of another
—without changing the direction of either one—and draw a “�nal arrow” from the tail of the
�rst arrow to the head of the last one.



Now, what are the speci�c rules that determine the length and
direction of each arrow that we combine in order to make the �nal
arrow? In this particular case, we will be combining two arrows—
one representing the re�ection from the front surface of the glass,
and the other representing the re�ection from the back surface.

Let’s take the length �rst. As we saw in the �rst experiment
(where we put the photomultiplier inside the glass), the front
surface re�ects about 4% of the photons that come down. That
means the “front re�ection” arrow has a length of 0.2. The back
surface of the glass also re�ects 4%, so the “back re�ection” arrow’s
length is also 0.2.

FIGURE 9. Any number of arrows can be added in the manner described in Figure 8.

To determine the direction of each arrow, let’s imagine that we
have a stopwatch that can time a photon as it moves. This
imaginary stopwatch has a single hand that turns around very, very
rapidly. When a photon leaves the source, we start the stopwatch.
As long as the photon moves, the stopwatch hand turns (about
36,000 times per inch for red light); when the photon ends up at the
photo-multiplier, we stop the watch. The hand ends up pointing in a
certain direction. That is the direction we will draw the arrow.

We need one more rule in order to compute the answer correctly:
When we are considering the path of a photon bouncing o� the front
surface of the glass, we reverse the direction of the arrow. In other
words, whereas we draw the back re�ection arrow pointing in the
same direction as the stopwatch hand, we draw the front re�ection
arrow in the opposite direction.



Now, let’s draw the arrows for the case of light re�ecting from an
extremely thin layer of glass. To draw the front re�ection arrow, we
imagine a photon leaving the light source (the stopwatch hand starts
turning), bouncing o� the front surface, and arriving at A (the
stopwatch hand stops). We draw a little arrow of length 0.2 in the
direction opposite that of the stopwatch hand (see Fig. 10).

FIGURE 10. In an experiment measuring re�ection by two surfaces, we can say that a single
photon can arrive at A in two ways—via the front or back surface. An arrow of length 0.2 is
drawn for each way, with its direction determined by the hand of a “stopwatch” that times the
photon as it moves. The front re�ection watch” that times the photon as it arrow moves. The
“front re�ection” arrow is drawn in the direction opposite to that of the stopwatch hand when it
stops turning.

To draw the back re�ection arrow, we imagine a photon leaving
the light source (the stopwatch hand starts turning), going through
the front surface and bouncing o� the back surface, and arriving at
A (the stopwatch hand stops). This time, the stopwatch hand is
pointing in almost the same direction, because a photon bouncing
o� the back surface of the glass takes only slightly longer to get to A
—it goes through the extremely thin layer of glass twice. We now
draw a little arrow of length 0.2 in the same direction that the
stopwatch hand is pointing (see Fig. 11).

Now let’s combine the two arrows. Since they are both the same
length but pointing in nearly opposite directions, the �nal arrow has
a length of nearly zero, and its square is even closer to zero. Thus,
the probability of light re�ecting from an in�nitesimally thin layer
of glass is essentially zero (see Fig. 12).



FIGURE 11. A photon bouncing o� the back surface of a thin layer of glass takes slightly longer
to get to A. Thus, the stopwatch hand ends up in a slightly di�erent direction than it did when it
timed the front re�ection photon. The “back re�ection” arrow is drawn in the same direction as
the stopwatch hand.

FIGURE 12. The �nal arrow, whose square represents the probability of re�ection by an
extremely thin layer of glass, is drawn by adding the front re�ection arrow and the back
re�ection arrow. The result is nearly zero.

When we replace the thinnest layer of glass with a slightly thicker
one, the photon bouncing o� the back surface takes a little bit
longer to get to A than in the �rst example; the stopwatch hand
therefore turns a little bit more before it stops, and the back
re�ection arrow ends up in a slightly greater angle relative to the
front re�ection arrow. The �nal arrow is a little bit longer, and its
square is correspondingly larger (see Fig. 13).

As another example, let’s look at the case where the glass is just
thick enough that the stopwatch hand makes an extra half turn as it
times a photon bouncing o� the back surface. This time, the back
re�ection arrow ends up pointing in exactly the same direction as
the front re�ection arrow. When we combine the two arrows, we get
a �nal arrow whose length is 0.4, and whose square is 0.16,
representing a probability of 16% (see Fig. 14).

If we increase the thickness of the glass just enough so that the
stopwatch hand timing the back surface path makes an extra full
turn, our two arrows end up pointing in opposite directions again,
and the �nal arrow will be zero (see Fig. 15). This situation occurs
over and over, whenever the thickness of the glass is just enough to



let the stopwatch hand timing the back surface re�ection make
another full turn.

FIGURE 13. The �nal arrow for a slightly thicker sheet of glass is a little longer, due to the
greater relative angle between the front and back re�ection arrows. This is because a photon
bouncing o� the back surface takes a little longer to reach A, compared to the previous example.

FIGURE 14. When the layer of glass is just thick enough to allow the stopwatch hand timing the
back re�ecting photon to make an extra half turn, the front and back re�ection arrows end up
pointing in the same direction, resulting in a �nal arrow of length 0.4, which represents a
probability of 16%.



FIGURE 15. When the sheet of glass is just the right thickness to allow the stopwatch hand timing
the back re�ecting photon to make one or more extra full turns, the �nal arrow is again zero,
and there is no re�ection at all.

If the thickness of the glass is just enough to let the stopwatch
hand timing the back surface re�ection make an extra ¼ or ¾ of a
turn, the two arrows will end up at right angles. The �nal arrow in
this case is the hypoteneuse of a right triangle, and according to
Pythagoras, the square on the hypoteneuse is equal to the sum of
the squares on the other two sides. Here is the value that’s right
“twice a day”— 4% + 4% makes 8% (see Fig. 16).

Notice that as we gradually increase the thickness of the glass,
the front re�ection arrow always points in the same direction,
whereas the back re�ection arrow gradually changes its direction.
The change in the relative direction of the two arrows makes the
�nal arrow go through a repeating cycle of length zero to 0.4; thus
the square on the �nal arrow goes through the repeating cycle of
zero to 16% that we observed in our experiments (see Fig. 17).

FIGURE 16. When the front and back re�ection arrows are at right angles to each other, the
�nal arrow is the hypoteneuse of a right triangle. Thus its square is the sum of the other two
squares—8%.



FIGURE 17. As thin sheets of glass are replaced by slightly thicker ones, the stopwatch hand
timing a photon re�ecting o� the back surface turns slightly more, and the relative angle between
the front and back re�ection arrows changes. This causes the �nal arrow to change in length, and
its square to change in size from 0 to 16% back to 0, over and over.

I have just shown you how this strange feature of partial
re�ection can be accurately calculated by drawing some damned
little arrows on a piece of paper. The technical word for these
arrows is “probability amplitudes,” and I feel more digni�ed when I
say we are “computing the probability amplitude for an event.” I
prefer, though, to be more honest, and say that we are trying to �nd
the arrow whose square represents the probability of something
happening.

Before I �nish this �rst lecture, I would like to tell you about the
colors you see on soap bubbles. Or better, if your car leaks oil into a
mud puddle, when you look at the brownish oil in that dirty mud
puddle, you see beautiful colors on the surface. The thin �lm of oil
�oating on the mud puddle is something like a very thin sheet of
glass—it re�ects light of one color from zero to a maximum,
depending on its thickness. If we shine pure red light on the �lm of
oil, we see splotches of red light separated by narrow bands of black



(where there’s no re�ection) because the oil �lm’s thickness is not
exactly uniform. If we shine pure blue light on the oil �lm, we see
splotches of blue light separated by narrow bands of black. If we
shine both red and blue light onto the oil, we see areas that have
just the right thickness to strongly re�ect only red light, other areas
of the right thickness to re�ect only blue light; still other areas have
a thickness that strongly re�ects both red and blue light (which our
eyes see as violet), while other areas have the exact thickness to
cancel out all re�ection, and appear black.

To understand this better, we need to know that the cycle of zero
to 16% partial re�ection by two surfaces repeats more quickly for
blue light than for red light. Thus at certain thicknesses, one or the
other or both colors are strongly re�ected, while at other
thicknesses, re�ection of both colors is cancelled out (see Fig. 18).
The cycles of re�ection repeat at di�erent rates because the
stopwatch hand turns around faster when it times a blue photon
than it does when timing a red photon. In fact, that’s the only
di�erence between a red photon and a blue photon (or a photon of
any other color, including radio waves, X-rays, and so on)—the
speed of the stopwatch hand.



FIGURE 18. As the thickness of a layer increases, the two surfaces produce a partial re�ection of
monochromatic light whose probability �uctuates in a cycle from 0% to 16%. Since the speed of
the imaginary stopwatch hand is di�erent for di�erent colors of light, the cycle repeats itself at
di�erent rates. Thus when two colors such as pure red and pure blue are aimed at the layer, a
given thickness will re�ect only red, only blue, both red and blue in di�erent proportions (which
produce various hues of violet), or neither color (black). If the layer is of varying thicknesses,
such as a drop of oil spreading out on a mud puddle, all of the combinations will occur. In
sunlight, which consists of all colors, all sorts of combinations occur, which produce lots of colors.

When we shine red and blue light on a �lm of oil, patterns of red,
blue, and violet appear, separated by borders of black. When
sunlight, which contains red, yellow, green, and blue light, shines
on a mud puddle with oil on it, the areas that strongly re�ect each
of those colors overlap and produce all kinds of combinations which
our eyes see as di�erent colors. As the oil �lm spreads out and
moves over the surface of the water, changing its thickness in
various locations, the patterns of color constantly change. (If, on the
other hand, you were to look at the same mud puddle at night with
one of those sodium streetlights shining on it, you would see only
yellowish bands separated by black—because those particular
streetlights emit light of only one color.)

This phenomenon of colors produced by the partial re�ection of
white light by two surfaces is called iridescence, and can be found
in many places. Perhaps you have wondered how the brilliant colors
of hummingbirds and peacocks are produced. Now you know. How
those brilliant colors evolved is also an interesting question. When
we admire a peacock, we should give credit to the generations of
lackluster females for being selective about their mates. (Man got
into the act later and streamlined the selection process in peacocks.)

In the next lecture I will show you how this absurd process of
combining little arrows computes the right answer for those other
phenomena you are familiar with: light travels in straight lines; it
re�ects o� a mirror at the same angle that it came in (“the angle of
incidence is equal to the angle of re�ection”); a lens focuses light,



and so on. This new framework will describe everything you know
about light.

1 How did he know? Newton was a very great man: he wrote, “Because I can polish
glass.” You might wonder, how the heck could he tell that because you can polish glass, it
can’t be holes and spots? Newton polished his own lenses and mirrors, and he knew what
he was doing with polishing: he was making scratches on the surface of a piece of glass
with powders of increasing �neness. As the scratches become �ner and �ner, the surface of
the glass changes its appearance from a dull grey (because the light is scattered by the
large scratches), to a transparent clarity (because the extremely �ne scratches let the light
through). Thus he saw that it is impossible to accept the proposition that light can be
a�ected by very small irregularities such as scratches or holes and spots; in fact, he found
the contrary to be true. The �nest scratches and therefore equally small spots do not a�ect
the light. So the holes and spots theory is no good.

2 It is very fortunate for us that Newton convinced himself that light is “corpuscles,”
because we can see what a fresh and intelligent mind looking at this phenomenon of partial
re�ection by two or more surfaces has to go through to try to explain it. (Those who
believed that light was waves never had to wrestle with it.) Newton argued as follows:
Although light appears to be re�ected from the �rst surface, it cannot be re�ected from
that surface. If it were, then how could light re�ected from the �rst surface be captured
again when the thickness is such that there was supposed to be no re�ection at all? Then
light must be re�ected from the second surface. But to account for the fact that the
thickness of the glass deter-mines the amount of partial re�ection, Newton proposed this
idea: Light striking the �rst surface sets o� a kind of wave or �eld that travels along with
the light and predisposes it to re�ect or not re�ect o� the second surface. He called this
process “�ts of easy re�ection or easy transmission” that occur in cycles, depending on the
thickness of the glass.

There are two di�culties with this idea: the �rst is the e�ect of additional surfaces—
each new surface a�ects the re�ection—which I described in the text. The other problem is
that light certainly re�ects o� a lake, which doesn’t have a second surface, so light must be
re�ecting o� the front surface. In the case of single surfaces, Newton said that light had a
predisposition to re�ect. Can we have a theory in which the light knows what kind of
surface it is hitting, and whether it is the only surface?

Newton didn’t emphasize these di�culties with his theory of “�ts of re�ection and
transmission,” even though it is clear that he knew his theory was not satisfactory. In
Newton’s time, di�culties with a theory were dealt with brie�y and glossed over—a
di�erent style from what we are used to in science today, where we point out the places
where our own theory doesn’t �t the observations of experiment. I’m not trying to say
anything against Newton; I just want to say something in favor of how we communicate
with each other in science today.

3 This idea made use of the fact that waves can combine or cancel out, and the
calculations based on this model matched the results of Newton’s experiments, as well as
those done for hundreds of years afterwards. But when instruments were developed that



were sensitive enough to detect a single photon, the wave theory predicted that the
“clicks”of the photo-multiplier would get softer and softer, whereas they stayed at full
strength—they just occurred less and less often. No reasonable model could explain this
fact, so there was a period for a while in which you had to be clever: You had to know
which experiment you were analyzing in order to tell if light was waves or particles. This
state of confusion was called the “wave-particle duality” of light, and it was jokingly said
by someone that light was waves on Mondays, Wednesdays, and Fridays; it was particles
on Tuesdays, Thursdays, and Saturdays, and on Sundays, we think about it! It is the
purpose of these lectures to tell you how this puzzle was �nally “resolved.”



2

Photons: Particles of Light

This is the second in a series of lectures about quantum
electrodynamics, and since it’s clear that none of you were here last
time (because I told everyone that they weren’t going to understand
anything), I’ll brie�y summarize the �rst lecture.

We were talking about light. The �rst important feature about
light is that it appears to be particles: when very weak
monochromatic light (light of one color) hits a detector, the detector
makes equally loud clicks less and less often as the light gets
dimmer.

The other important feature about light discussed in the �rst
lecture is partial re�ection of monochromatic light. An average of
4% of the photons hitting a single surface of glass is re�ected. This is
already a deep mystery, since it is impossible to predict which
photons will bounce back and which will go through. With a second
surface, the results are strange: instead of the expected re�ection of
8% by the two surfaces, the partial re�ection can be ampli�ed as
high as 16% or turned o�, depending on the thickness of the glass.

This strange phenomenon of partial re�ection by two surfaces can
be explained for intense light by a theory of waves, but the wave
theory cannot explain how the detector makes equally loud clicks as
the light gets dimmer. Quantum electrodynamics “resolves” this
wave-particle duality by saying that light is made of particles (as
Newton originally thought), but the price of this great advancement
of science is a retreat by physics to the position of being able to



calculate only the probability that a photon will hit a detector,
without o�ering a good model of how it actually happens.

In the �rst lecture I described how physicists calculate the
probability that a particular event will happen. They draw some
arrows on a piece of paper according to some rules, which go as
follows:

—GRAND PRINCIPLE: The probability of an event is equal to the square
of the length of an arrow called the “probability amplitude.” An
arrow of length 0.4, for example, represents a probability of 0.16,
or 16%.

—GENERAL RULE for drawing arrows if an event can happen in
alternative ways: Draw an arrow for each way, and then combine
the arrows (“add” them) by hooking the head of one to the tail of
the next. A “�nal arrow” is then drawn from the tail of the �rst
arrow to the head of the last one. The �nal arrow is the one
whose square gives the probability of the entire event.

There were also some speci�c rules for drawing arrows in the case
of partial re�ection by glass (they can be found on pages 26 and
27).

All of the preceding is a review of the �rst lecture.
What I would like to do now is show you how this model of the

world, which is so utterly di�erent from anything you’ve ever seen
before (that perhaps you hope never to see it again), can explain all
the simple properties of light that you know: when light re�ects o�
a mirror, the angle of incidence is equal to the angle of re�ection;
light bends when it goes from air into water; light goes in straight
lines; light can be focused by a lens, and so on. The theory also
describes many other properties of light that you are probably not
familiar with. In fact, the greatest di�culty I had in preparing these
lectures was to resist the temptation to derive all of the things about
light that took you so long to learn about in school—such as the
behavior of light as it goes past an edge into a shadow (called



di�raction)—but since most of you have not carefully observed such
phenomena, I won’t bother with them. However, I can guarantee
you (otherwise, the examples I’m going to show you would be
misleading) that every phenomenon about light that has been
observed in detail can be explained by the theory of quantum
electrodynamics, even though I’m going to describe only the
simplest and most common phenomena.

We start with a mirror, and the problem of determining how light
is re�ected from it (see Fig. 19). At S we have a source that emits
light of one color at very low intensity (let’s use red light again).
The source emits one photon at a time. At P, we place a
photomultiplier to detect photons. Let’s put it at the same height as
the source—drawing arrows will be easier if everything is
symmetrical. We want to calculate the chance that the detector will
make a click after a photon has been emitted by the source. Since it
is possible that a photon could go straight across to the detector,
let’s place a screen at Q to prevent that.

Now, we would expect that all the light that reaches the detector
re�ects o� the middle of the mirror, because that’s the place where
the angle of incidence equals the angle of re�ection. And it seems
fairly obvious that the parts of the mirror out near the two ends
have as much to do with the re�ection as with the price of cheese,
right?

Although you might think that the parts of the mirror near the
two ends have nothing to do with the re�ection of the light that
goes from the source to the detector, let us look at what quantum
theory has to say. Rule: The probability that a particular event
occurs is the square of a �nal arrow that is found by drawing an
arrow for each way the event could happen, and then combining
(“adding”) the arrows. In the experiment measuring the partial
re�ection of light by two surfaces, there were two ways a photon
could get from the source to the detector. In this experiment, there
are millions of ways a photon could go: it could go down to the left-



hand part of the mirror at A or B (for example) and bounce up to
the detector (see Fig. 20); it could bounce o� the part where you
think it should, at G; or, it could go down to the right-hand part of
the mirror at K or M and bounce up to the detector. You might think
I’m crazy, because for most of the ways I told you a photon could
re�ect o� the mirror, the angles aren’t equal. But I’m not crazy,
because that’s the way light really goes! How can that be?

FIGURE 19. The classical view of the world says that a mirror will re�ect light where the angle of
incidence is equal to the angle of re�ection, even if the source and the detector are at di�erent
levels, as in (b).



FIGURE 20. The quantum view of the world says that light has an equal amplitude to re�ect
from every part of the mirror, from A to M.

To make this problem easier to understand, let’s suppose that the
mirror consists of only a long strip from left to right—it’s just as
well that we forget, for a moment, that the mirror also sticks out
from the paper (see Fig. 21). While there are, in reality, millions of
places where the light could re�ect from this strip of mirror, let’s
make an approximation by temporarily dividing the mirror into a
de�nite number of little squares, and consider only one path for
each square—our calculation gets more accurate (but harder to do)
as we make the squares smaller and consider more paths.

FIGURE 21. To calculate more easily where the light goes, we shall temporarily consider only a
strip of mirror divided into little squares, with one path for each square. This simpli�cation in no
way detracts from an accurate analysis of the situation.

Now, let’s draw a little arrow for each way the light could go in
this situation. Each little arrow has a certain length and a certain
direction. Let’s consider the length �rst. You might think that the
arrow we draw to represent the path that goes to the middle of the
mirror, at G, is by far the longest (since there seems to be a very
high probability that any photon that gets to the detector must go
that way), and the arrows for the paths at the ends of the mirror
must be very short. No, no; we should not make such an arbitrary
rule. The right rule—what actually happens—is much simpler: a
photon that reaches the detector has a nearly equal chance of going
on any path, so all the little arrows have nearly the same length.
(There are, in reality, some very slight variations in length due to
the various angles and distances involved, but they are so minor
that I am going to ignore them.) So let us say that each little arrow
we draw will have an arbitrary standard length—I will make the
length very short because there are many of these arrows
representing the many ways the light could go (see Fig. 22).



FIGURE 22. Each way the light can go will be represented in our calculation by an arrow of an
arbitrary standard length, as shown.

Although it is safe to assume that the length of all the arrows will
be nearly the same, their directions will clearly di�er because their
timing is di�erent—as you remember from the �rst lecture, the
direction of a particular arrow is determined by the �nal position of
an imaginary stopwatch that times a photon as it moves along that
particular path. When a photon goes way o� to the left end of the
mirror, at A, and then up to the detector, it clearly takes more time
than a photon that gets to the detector by re�ecting in the middle of
the mirror, at G (see Fig. 23). Or, imagine for a moment that you
were in a hurry and had to run from the source over to the mirror
and then to the detector. You’d know that it certainly isn’t a good
idea to go way over to A and then all the way up to the dectector; it
would be much faster to touch the mirror somewhere in the middle.

FIGURE 23. While the length of each arrow is essentially the same, the direction will be di�erent
because the time it takes for a photon to go on each path is di�erent. Clearly, it takes longer to go
from S to A to P than from S to G to P.

To help us calculate the direction of each arrow, I’m going to
draw a graph right underneath my sketch of the mirror (see Fig.
24). Directly below each place on the mirror where the light could
re�ect, I’m going to show, vertically, how much time it would take
if the light went that way. The more time it takes, the higher the
point will be on the graph. Starting at the left, the time it takes a
photon to go on the path that re�ects at A is pretty long, so we plot
a point pretty high up on the graph. As we move toward the center



of the mirror, the time it takes for a photon to go the particular way
we’re looking at goes down, so we plot each successive point lower
than the previous one. After we pass the center of the mirror, the
time it takes a photon to go on each successive path gets longer and
longer, so we plot our points correspondingly higher and higher. To
aid the eye, let’s connect the points: they form a symmetrical curve
that starts high, goes down, and then goes back up again.

FIGURE 24. Each path the light could go (in this simpli�ed situation) is shown at the top, with a
point on the graph below it showing the time it takes a photon to go from the source to that point
on the mirror, and then to the photomultiplier. Below the graph is the direction of each arrow,
and at the bottom is the result of adding all the arrows. It is evident that the major contribution
to the �nal arrow’s length is made by arrows E through I, whose directions are nearly the same
because the timing of their paths is nearly the same. This also happens to be where the total time
is least. It is therefore approximately right to say that light goes where the time is least.

Now, what does that mean for the direction of the little arrows?
The direction of a particular arrow corresponds to the amount of
time it would take a photon to get from the source to the detector
following that particular path. Let’s draw the arrows, starting at the



left. Path A takes the most time; its arrow points in some direction
(Fig. 24). The arrow for path B points in a di�erent direction
because its time is di�erent. At the middle of the mirror, arrows F,
G, and H point in nearly the same direction because their times are
nearly the same. After passing the center of the mirror, we see that
each path on the right side of the mirror corresponds to a path on
the left side whose time is exactly the same (this is a consequence of
putting the source and the detector at the same height, and path G
exactly in the middle). Thus the arrow for path J, for example, has
the same direction as the arrow for path D.

Now, let’s add the little arrows (Fig. 24). Starting with arrow A,
we hook the arrows to each other, head to tail. Now, if we were to
take a walk using each little arrow as a step, we wouldn’t get very
far at the beginning, because the direction from one step to the next
is so di�erent. But after a while the arrows begin to point in
generally the same direction, and we make some progress. Finally,
near the end of our walk, the direction from one step to the next is
again quite di�erent, so we stagger about some more.

All we have to do now is draw the �nal arrow. We simply
connect the tail of the �rst little arrow to the head of the last one,
and see how much direct progress we made on our walk (Fig. 24).
And behold—we get a sizable �nal arrow! The theory of quantum
electrodynamics predicts that light does, indeed, re�ect o� the
mirror!

Now, let’s investigate. What determines how long the �nal arrow
is? We notice a number of things. First, the ends of the mirror are
not important: there, the little arrows wander around and don’t get
anywhere. If I chopped o� the ends of the mirror—parts that you
instinctively knew I was wasting my time �ddling around with—it
would hardly a�ect the length of the �nal arrow.

So where is the part of the mirror that gives the �nal arrow a
substantial length? It’s the part where the arrows are all pointing in
nearly the same direction—because their time is almost the same. If



you look at the graph showing the time for each path (Fig. 24), you
see that the time is nearly the same from one path to the next at the
bottom of the curve, where the time is least.

To summarize, where the time is least is also where the time for
the nearby paths is nearly the same; that’s where the little arrows
point in nearly the same direction and add up to a substantial
length; that’s where the probability of a photon re�ecting o� a
mirror is determined. And that’s why, in approximation, we can get
away with the crude picture of the world that says that light only
goes where the time is least (and it’s easy to prove that where the
time is least, the angle of incidence is equal to the angle of
re�ection, but I don’t have the time to show you).

So the theory of quantum electrodynamics gave the right answer
—the middle of the mirror is the important part for re�ection—but
this correct result came out at the expense of believing that light
re�ects all over the mirror, and having to add a bunch of little
arrows together whose sole purpose was to cancel out. All that
might seem to you to be a waste of time—some silly game for
mathematicians only. After all, it doesn’t seem like “real physics” to
have something there that only cancels out!

Let’s test the idea that there really is re�ection going on all over
the mirror by doing another experiment. First, let’s chop o� most of
the mirror, and leave about a quarter of it, over on the left. We still
have a pretty big piece of mirror, but it’s in the wrong place. In the
previous experiment the arrows on the left side of the mirror were
pointing in directions very di�erent from one another because of the
large di�erence in time between neighboring paths (Fig. 24). In this
experiment I am going to make a more detailed calculation by
taking intervals on that left-hand part of the mirror that are much
closer together—�ne enough that there is not much di�erence in
time between neighboring paths (see Fig. 25). With this more
detailed picture, we see that some of the arrows point more or less
to the right; the others point more or less to the left. If we add all



the arrows together, we have a bunch of arrows going around in
what is essentially a circle, getting nowhere.

FIGURE 25. To test the idea that there is really re�ection happening at the ends of the mirror
(hut it is just cancelling out), we do an experiment with a large piece of mirror that is located in
the wrong place for re�ection from S to P. This piece of mirror is divided into much smaller
sections, so that the timing from one path to the next is not very di�erent. When all the arrows
are added, they get nowhere: they go in a circle and add up to nearly nothing.

But let’s suppose we carefully scrape the mirror away in those
areas whose arrows have a bias in one direction—let’s say, to the
left—so that only those places whose arrows point generally the
other way remain (see Fig. 26). When we add up only the arrows
that point more or less to the right, we get a series of dips and a
substantial �nal arrow—according to the theory, we should now
have a strong re�ection! And indeed, we do—the theory is correct!
Such a mirror is called a di�raction grating, and it works like a
charm.

Isn’t it wonderful—you can take a piece of mirror where you
didn’t expect any re�ection, scrape away part of it, and it re�ects!1

FIGURE 26. If only the arrows with a bias in a particular direction—such as to the right—are
added, while the others are disregarded (by etching away the mirror in those places), then a



substantial amount of light re�ects from this piece of mirror located in the wrong place. Such an
etched mirror is called a di�raction grating.

The particular grating that I just showed you was tailor-made for
red light. It wouldn’t work for blue light; we would have to make a
new grating with the cut-away strips spaced closer together because,
as I told you in the �rst lecture, the stopwatch hand turns around
faster when it times a blue photon compared to a red photon. So the
cuts that were especially designed for the “red” rate of turning don’t
fall in the right places for blue light; the arrows get kinked up and
the grating doesn’t work very well. But as a matter of accident, it
happens that if we move the photomultiplier down to a somewhat
di�erent angle, the grating made for red light now works for blue
light. It’s just a lucky accident, a consequence of the geometry
involved (see Fig. 27).

If you shine white light down onto the grating, red light comes
out at one place, orange light comes out slightly above it, followed
by yellow, green, and blue light—all the colors of the rainbow.
Where there is a series of grooves close together, you can often see
colors—for example, when you hold a phonograph record (or better,
a videodisc)—under bright light at the correct angles. Perhaps you
have seen those wonderful silvery signs (here in sunny California
they’re often on the backs of cars): when the car moves, you see
very bright colors changing from red to blue. Now you know where
the colors come from: you’re looking at a grating—a mirror that’s
been scratched in just the right places. The sun is the light source,
and your eyes are the detector. I could go on to easily explain how
lasers and holograms work, but I know that not everyone has seen
these things, and I have too many other things to talk about.2



FIGURE 27. A di�raction grating with grooves at the right distance for red light also works for
other colors, if the detector is in a di�erent place. Thus it is possible to see di�erent colors
re�ecting from a grooved surface—such as a phonograph record—depending on the angle.

So a grating shows that we can’t ignore the parts of a mirror that
don’t seem to be re�ecting; if we do some clever things to the
mirror, we can demonstrate the reality of the re�ections from all
parts of the mirror and produce some striking optical phenomena.

FIGURE 28. Nature has made many types of di�raction gratings in the form of crystals. A salt
crystal re�ects X-rays (light for which the imaginary stopwatch hand moves extremely fast—
perhaps 10,000 times faster than for visible light) at various angles, from which can be
determined the exact arrangement and spacings of the individual atoms.

More importantly, demonstrating the reality of re�ection from all
parts of the mirror shows that there is an amplitude—an arrow—for
every way an event can happen. And in order to calculate correctly
the probability of an event in di�erent circumstances, we have to
add the arrows for every way that the event could happen—not just
the ways we think are the important ones!

Now, I would like to talk about something more familiar than
gratings—about light going from air into water. This time, let’s put
the photomultiplier underwater—we suppose the experimenter can
arrange that! The source of light is in the air at S, and the dectector
is underwater, at D (see Fig. 29). Once again, we want to calculate
the probability that a photon will get from the light source to the
detector. To make this calculation, we should consider all the ways
the light could go. Each way the light could go contributes a little
arrow and, as in the previous example, all the little arrows have
nearly the same length. We can again make a graph of the time it
takes a photon to go on each possible path. The graph will be a



curve very similar to the one we made for light re�ecting o� a
mirror: it starts up high, goes down, and then back up again; the
most important contributions come from the places where the
arrows point in nearly the same direction (where the time is nearly
the same from one path to the next), which is at the bottom of the
curve. That is also where the time is the least, so all we have to do is
�nd out where the time is least.

FIGURE 29. Quantum theory says that light can go from a source in air to a detector in water in
many ways. If the problem is simpli�ed as in the case of the mirror, a graph showing the timing
of each path can be drawn, with the direction of each arrow below it. Once again, the major
contribution toward the length of the �nal arrow comes from those paths whose arrows point in
nearly the same direction because their timing is nearly the same; once again, this is where the
time is least.



It turns out that light seems to go slower in water than it does in
air (I will explain why in the next lecture), which makes the
distance through water more “costly,” so to speak, than the distance
through air. It’s not hard to �gure out which path takes the least
time: suppose you’re the lifeguard, sitting at S, and the beautiful girl
is drowning, at D (Fig. 30). You can run on land faster than you can
swim in water. The problem is, where do you enter the water in
order to reach the drowning victim the fastest? Do you run down to
the water at A, and then swim like hell? Of course not. But running
directly toward the victim and entering the water at J is not the
fastest route, either. While it would be foolish for a lifeguard to
analyze and calculate under the circumstances, there is a
computable position at which the time is minimum: it’s a
compromise between taking the direct path, through J, and taking
the path with the least water, through N. And so it is with light—the
path of least time enters the water at a point between J and N, such
as L.

FIGURE 30. Finding the path of least time for light is like �nding the path of least time for a
lifeguard running and then swimming to rescue a drowning victim: the path of least distance has
too much water in it; the path of least water has too much land in it; the path of least time is a
compromise between the two.

Another phenomenon of light that I would like to mention brie�y
is the mirage. When you’re driving along a road that is very hot, you
can sometimes see what looks like water on the road. What you’re
really seeing is the sky, and when you normally see sky on the road,
it’s because the road has puddles of water on it (partial re�ection of



light by a single surface). But how can you see sky on the road when
there’s no water there? What you need to know is that light goes
slower through cooler air than through warmer air, and for a mirage
to be seen, the observer must be in the cooler air that is above the
hot air next to the road surface (see Fig. 31). How it is possible to
look down and see the sky can be understood by �nding the path of
least time. I’ll let you play with that one at home—it’s fun to think
about, and pretty easy to �gure out.

FIGURE 31. Finding the path of least time explains how a mirage works. Light goes faster
through warm air than through cool air. Some of the sky appears to be on the road because some
of the light from the sky reaches the eye by coming up from the road. The only other time sky
appears to be on the road is when water is re�ecting it, and thus a mirage appears to be water.

In the examples I showed you of light re�ecting o� a mirror and
of light going through air and then water, I was making an
approximation: for the sake of simplicity, I drew the various ways
the light could go as double straight lines—two straight lines that
form an angle. But we don’t have to assume that light goes in
straight lines when it is in a uniform material like air or water; even
that is explainable by the general principle of quantum theory: the
probability of an event is found by adding arrows for all the ways
the event could happen.

So for our next example, I’m going to show you how, by adding
little arrows, it can appear that light goes in a straight line. Let’s put
a source and a photomultiplier at S and P, respectively (see Fig. 32),
and look at all the ways the light could go—in all sorts of crooked
paths—to get from the source to the detector. Then we draw a little
arrow for each path, and we’re learning our lesson well!



FIGURE 32. Quantum theory can be used to show why light appears to travel in straight lines.
When all possible paths are considered, each crooked path has a nearby path of considerably less
distance and therefore much less time (and a substantially di�erent direction for the arrow).
Only the paths near the straight-line path at D have arrows pointing in nearly the same direction,
because their timings are nearly the same. Only such arrows are important, because it is from
them that we accumulate a large �nal arrow.

For each crooked path, such as path A, there’s a nearby path
that’s a little bit straighter and distinctly shorter—that is, it takes
much less time. But where the paths become nearly straight—at C,
for example—a nearby, straighter path has nearly the same time.
That’s where the arrows add up rather than cancel out; that’s where
the light goes.

It is important to note that the single arrow that represents the
straight-line path, through D (Fig. 32), is not enough to account for
the probability that light gets from the source to the detector. The
nearby, nearly straight paths—through C and E, for example—also
make important contributions. So light doesn’t really travel only in a
straight line; it “smells” the neighboring paths around it, and uses a
small core of nearby space. (In the same way, a mirror has to have
enough size to re�ect normally: if the mirror is too small for the
core of neighboring paths, the light scatters in many directions, no
matter where you put the mirror.)



Let’s investigate this core of light more closely by putting a
source at S, a photomultiplier at P, and a pair of blocks between
them to keep the paths of light from wandering too far away (see
Fig. 33). Now, let’s put a second photo-multiplier at Q, below P, and
assume again, for the sake of simplicity, that the light can get from
S to Q only by paths of double straight lines. Now, what happens?
When the gap between the blocks is wide enough to allow many
neighboring paths to P and to Q, the arrows for the paths to P add
up (because all the paths to P take nearly the same time), while the
paths to Q cancel out (because those paths have a sizable di�erence
in time). Thus the photomultiplier at Q doesn’t click.

But as we push the blocks closer together, at a certain point, the
detector at Q starts clicking! When the gap is nearly closed and
there are only a few neighboring paths, the arrows to Q also add up,
because there is hardly any di�erence in time between them, either
(see Fig. 34). Of course, both �nal arrows are small, so there’s not
much light either way through such a small hole, but the detector at
Q clicks almost as much as the one at P! So when you try to squeeze
light too much to make sure it’s going in only a straight line, it
refuses to cooperate and begins to spread out.3



FIGURE 33. Light travels in not just the straight-line path, but in the nearby paths as well. When
two blocks are separated enough to allow for these nearby paths, the photons proceed normally to
P, and hardly ever go to Q.

FIGURE 34. When light is restricted so much that only a few paths are possible, the light that is
able to get through the narrow slit goes to Q almost as much as to P, because there are not
enough arrows representing the paths to Q to cancel each other out.

So the idea that light goes in a straight line is a convenient
approximation to describe what happens in the world that is
familiar to us; it’s similar to the crude approximation that says when
light re�ects o� a mirror, the angle of incidence is equal to the
angle of re�ection.

Just as we were able to do a clever trick to make light re�ect o�
a mirror at many angles, we can do a similar trick to get light to go
from one point to another in many ways.

First, to simplify the situation, I’m going to draw a vertical
dashed line (see Fig. 35) between the light source and the detector
(the line means nothing; it’s just an arti�cial line) and say that the
only paths we’re going to look at are double straight lines. The
graph that shows the time for each path looks the same as in the
case of the mirror (but I’ll draw it sideways, this time): the curve
starts at A, at the top, and then it comes in, because the paths in the



middle are shorter and take less time. Finally, the curve goes back
out again.

FIGURE 35. Analysis of all possible paths from S to P is simpli�ed to include only double straight
lines (in a single plane). The e�ect is the same as in the more complicated, real case: there is a
time curve with a minimum, where most of the contribution to the �nal arrow is made.

Now, let’s have some fun. Let’s “fool the light,” so that all the
paths take exactly the same amount of time. How can we do this?
How can we make the shortest path, through M, take exactly the
same time as the longest path, through A?

Well, light goes slower in water than it does in air; it also goes
slower in glass (which is much easier to handle!). So, if we put in
just the right thickness of glass on the shortest path, through M, we
can make the time for that path exactly the same as for the path
through A. The paths next to M, which are just a little longer, won’t
need quite as much glass (see Fig. 36). The nearer we get to A, the
less glass we have to put in to slow up the light. By carefully
calculating and putting in just the right thickness of glass to
compensate for the time along each path, we can make all the times
the same. When we draw the arrows for each way the light could
go, we �nd we have succeeded in straightening them all out—and
there are, in reality, millions of tiny arrows—so the net result is a
sensationally large, unexpectedly enormous �nal arrow! Of course
you know what I’m describing; it’s a focusing lens. By arranging
things so that all the times are equal, we can focus light—we can



make the probability very high that light will arrive at a particular
point, and very low that it will arrive anywhere else.

FIGURE 36. A “trick” can be played on Nature by slowing down the light that takes shorter
paths: glass of just the right thickness is inserted so that all the paths will take exactly the same
time. This causes all of the arrows to point in the same direction, and to produce a whopping
�nal arrow—lots of light! Such a piece of glass made to greatly increase the probability of light
getting from a source to a single point is called a focusing lens.

I have used these examples to show you how the theory of
quantum electrodynamics, which looks at �rst like an absurd idea
with no causality, no mechanism, and nothing real to it, produces
e�ects that you are familiar with: light bouncing o� a mirror, light
bending when it goes from air into water, and light focused by a
lens. It also produces other e�ects that you may or may not have
seen, such as the di�raction grating and a number of other things. In
fact, the theory continues to be successful at explaining every
phenomenon of light.

I have shown you with examples how to calculate the probability
of an event that can happen in alternative ways: we draw an arrow
for each way the event can happen, and add the arrows. “Adding
arrows” means the arrows are placed head to tail and a “�nal
arrow” is drawn. The square of the resulting �nal arrow represents
the probability of the event.

In order to give you a fuller �avor of quantum theory, I would
now like to show you how physicists calculate the probability of
compound events—events that can be broken down into a series of



steps, or events that consist of a number of things happening
independently.

An example of a compound event can be demonstrated by
modifying our �rst experiment, in which we aimed some red
photons at a single surface of glass to measure partial re�ection.
Instead of putting the photomultiplier at A (see Fig. 37), let’s put in
a screen with a hole in it to let the photons that reach point A go
through. Then let’s put in a sheet of glass at B, and place the
photomultiplier at C. How do we �gure out the probability that a
photon will get from the source to C?

We can think of this event as a sequence of two steps. Step 1: a
photon goes from the source to point A, re�ecting o� the single
surface of glass. Step 2: the photon goes from point A to the
photomultiplier at C, re�ecting o� the sheet of glass at B. Each step
has a �nal arrow—an “amplitude”(I’m going to use the words
interchangeably)—that can be calculated according to the rules we
know so far. The amplitude for the �rst step has a length of 0.2
(whose square is 0.04, the probability of re�ection by a single
surface of glass), and is turned at some angle—let’s say, 2 o’clock
(Fig. 37).

To calculate the amplitude for the second step, we temporarily
put the light source at A and aim the photons at the layer of glass
above. We draw arrows for the front and back surface re�ections
and add them—let’s say we end up with a �nal arrow with a length
of 0.3, and turned toward 5 o’clock.



FIGURE 37. A compound event can be analyzed as a succession of steps. In this example, the
path of a photon going from S to C can be divided into two steps: 1) a photon gets from S to A,
and 2) the photon gets from A to C. Each step can be analyzed separately to produce an arrow
that can be regarded in a new way: as a unit arrow (an arrow of length 1 pointed at 12 o’clock)
that has gone through a shrink and turn. In this example, the shrink and turn for Step 1 are 0.2
and 2 o’clock; the shrink and turn for Step 2 are 0.3 and 5 o’clock. To get the amplitude for the
two steps in succession, we shrink and turn in succession: the unit arrow is shrunk and turned to
produce an arrow of length 0.2 turned to 2 o’clock, which itself is shrunk and turned (as if it
were the unit arrow) by 0.3 and 5 o’clock to produce an arrow of length 0.06 and turned to 7
o’clock. This process of successive shrinking and turning is called “multiplying” arrows.

Now, how do we combine the two arrows to draw the amplitude
for the entire event? We look at each arrow in a new way: as
instructions for a shrink and turn.

In this example, the �rst amplitude has a length of 0.2 and is
turned toward 2 o’clock. If we begin with a “unit arrow”—an arrow
of length 1 pointed straight up—we can shrink this unit arrow from
1 down to 0.2, and turn it from 12 o’clock to 2 o’clock. The
amplitude for the second step can be thought of as shrinking the
unit arrow from 1 to 0.3 and turning it from 12 o’clock to 5 o’clock.

Now, to combine the amplitudes for both steps, we shrink and
turn in succession. First, we shrink the unit arrow from 1 to 0.2 and
turn it from 12 to 2 o’clock; then we shrink the arrow further, from
0.2 down to three-tenths of that, and turn it by the amount from 12
to 5—that is, we turn it from 2 o’clock to 7 o’clock. The resulting



arrow has a length of 0.06 and is pointed toward 7 o’clock. It
represents a probability of 0.06 squared, or 0.0036.

Observing the arrows carefully, we see that the result of shrinking
and turning two arrows in succession is the same as adding their
angles (2 o’clock + 5 o’clock) and multiplying their lengths (0.2 *
0.3). To understand why we add the angles is easy: the angle of an
arrow is determined by the amount of turning by the imaginary
stopwatch hand. So the total amount of turning for the two steps in
succession is simply the sum of the turning for the �rst step plus the
additional turning for the second step.

Why we call this process “multiplying arrows” takes a bit more
explanation, but it’s interesting. Let’s look at multiplication, for a
moment, from the point of view of the Greeks (this has nothing to
do with the lecture). The Greeks wanted to use numbers that were
not necessarily integers, so they represented numbers with lines.
Any number can be expressed as a transformation of the unit line—
by expanding it or shrinking it. For example, if Line A is the unit
line (see Fig. 38), then line B represents 2 and line C represents 3.

Now, how do we multiply 3 times 2? We apply the
transformations in succession: starting with line A as the unit line, we
expand it 2 times and then 3 times (or 3 times and then 2 times—
the order doesn’t make any di�erence). The result is line D, whose
length represents 6. What about multiplying 1/3 times 1/2? Taking
line D to be the unit line, now, we shrink it to 1/2 (line C) and then
to 1/3 of that. The result is line A, which represents 1/6.

FIGURE 38. We can express any number as a transformation of the unit line through expansion
or shrinkage. If A is the unit line, then B represents 2 (expansion), and C represents 3
(expansion). Multiplying lines is achieved through successive transformations. For example,



multiplying 3 by 2 means that the unit line is expanded 3 times and then 2 times, producing the
answer, an expansion of 6 (line D). If D is the unit line, then line C represents 112 (shrinkage),
line B represents 113 (shrinkage), and multiplying 112 by 113 means the unit line D is shrunk to
112, and then to 113 of that, producing the answer, a shrinkage to 1/6 (line A).

Multiplying arrows works the same way (see Fig. 39). We apply
transformations to the unit arrow in succession—it just happens that
the transformation of an arrow involves two operations, a shrink and
turn. To multiply arrow V times arrow W, we shrink and turn the
unit arrow by the prescribed amounts for V, and then shrink it and
turn it the amounts prescribed for W—again, the order doesn’t make
any di�erence. So multiplying arrows follows the same rule of
successive transformations that work for regular numbers.4

FIGURE 39. Mathematicians found that multiplying arrows can also be expressed as successive
transformations (for our purposes, successive shrinks and turns) of the unit arrow. As in normal
multiplication, the order is not important: the answer, arrow X, can be obtained by multiplying
arrow V by arrow W or arrow W by arrow V.

Let’s go back to the �rst experiment from the �rst lecture—partial
re�ection by a single surface—with this idea of successive steps in
mind (see Fig. 40). We can divide the path of re�ection into three
steps: 1) the light goes from the source down to the glass, 2) it is
re�ected by the glass, and 3) it goes from the glass up to the
detector. Each step can be considered as a certain amount of
shrinking and turning of the unit arrow.



FIGURE 40. Re�ection by a single surface can be divided into three steps, each with a shrink
andlor turn of the unit arrow. The net result, an arrow of length 0.2 pointed in some direction, is
the same as before, but our method of analysis is more detailed now.

You’ll remember that in the �rst lecture, we did not consider all
of the ways the light could re�ect o� the glass, which requires
drawing and adding lots and lots of little tiny arrows. In order to
avoid all that detail, I gave the impression that the light goes down
to a particular point on the surface of the glass—that it doesn’t
spread out. When light goes from one point to another, it does, in
reality, spread out (unless it’s fooled by a lens), and there is some
shrinkage of the unit arrow associated with that. For the moment,
however, I would like to stick to the simpli�ed view that light does
not spread out, and so it is appropriate to disregard this shrinkage. It
is also appropriate to assume that since the light doesn’t spread out,
every photon that leaves the source ends up at either A or B.

So: in the �rst step there is no shrinking, but there is turning—it
corresponds to the amount of turning by the imaginary stopwatch
hand as it times the photon going from the source to the front
surface of the glass. In this example, the arrow for the �rst step ends
up with a length of 1 at some angle—let’s say, 5 o’clock.

The second step is the re�ection of the photon by the glass. Here,
there is a sizable shrink—from 1 to 0.2—and half a turn. (These
numbers seem arbitrary now: they depend upon whether the light is
re�ected by glass or some other material. In the third lecture, I’ll



explain them, too!) Thus the second step is represented by an
amplitude of length 0.2 and a direction of 6 o’clock (half a turn).

The last step is the photon going from the glass up to the
detector. Here, as in the �rst step, there is no shrinking, but there is
turning—let’s say this distance is slightly shorter than in step 1, and
the arrow points toward 4 o’clock.

We now “multiply” arrows 1,2, and 3 in succession (add the
angles, and multiply the lengths). The net e�ect of the three steps—
1) turning, 2) a shrink and half a turn, and 3) turning—is the same
as in the �rst lecture: the turning from steps 1 and 3—(5 o’clock
plus 4 o’clock) is the same amount of turning that we got then when
we let the stopwatch run for the whole distance (9 o’clock); the
extra half turn from step 2 makes the arrow point in the direction
opposite the stopwatch hand, as it did in the �rst lecture, and the
shrinking to 0.2 in the second step leaves an arrow whose square
represents the 4% partial re�ection observed for a single surface.

In this experiment, there is a question we didn’t look at in the
�rst lecture: what about the photons that go to B—the ones that are
transmitted by the surface of the glass? The amplitude for a photon
to arrive at B must have a length near 0.98, since 0.98 * 0.98 =
0.9604, which is close enough to 96%. This amplitude can also be
analyzed by breaking it down into steps (see Fig. 41).

The �rst step is the same as for the path to A—the photon goes
from the light source down to the glass—the unit arrow is turned
toward 5 o’clock.

The second step is the photon passing through the surface of the
glass: there is no turning associated with transmission, just a little
bit of shrinking—to 0.98.



FIGURE 41. Transmission by a single surface can also be divided into three steps, with a shrink
and/or turn for each step. An arrow of length 0.98 has a square of about 0.96, representing a
probabilty of transmission of 96% (which, combined with the 4% probability of re�ection,
accounts for 100%) of the light).

The third step—the photon going through the interior of the glass
—involves additional turning and no shrinking.

The net result is an arrow of length 0.98 turned in some
direction, whose square represents the probability that a photon will
arrive at B—96%.

Now let’s look at partial re�ection by two surfaces again.
Re�ection from the front surface is the same as for a single surface,
so the three steps for front surface re�ection are the same as we saw
a moment ago (Fig. 40).

Re�ection from the back surface can be broken down into seven
steps (see Fig. 42). It involves turning equal to the total amount of
turning of the stopwatch hand timing a photon over the entire
distance (steps 1, 3, 5, and 7), shrinking to 0.2 (step 4), and two
shrinks to 0.98 (steps 2 and 6). The resulting arrow ends up in the
same direction as before, but the length is about 0.192 (0.98 * 0.2 *
0.98), which I approximated as 0.2 in the �rst lecture.



FIGURE 42. Re�ection from the back surface of a layer of glass can be divided into seven steps.
Steps 1,3,5, and 7 involve turning only; steps 2 and 6 involve shrinks to 0.98, and step 4 involves
a shrink to 0.2. The result is an arrow of length 0.192—which was approximated as 0.2 in the
�rst lecture—turned at an angle that corresponds to the total amount of turning by the imaginary
stopwatch hand.

In summary, here are the rules for re�ection and transmission of
light by glass: 1) re�ection from air back to air (o� a front surface)
involves a shrink to 0.2 and half a turn; 2) re�ection from glass back
to glass (o� a back surface) also involves a shrink to 0.2, but no
turning; and 3) transmission from air to glass or from glass to air
involves a shrink to 0.98 and no turning in either case.

Perhaps it is too much of a good thing, but I cannot resist
showing you a cute further example of how things work and are
analyzed by these rules of successive steps. Let us move the detector
to a location below the glass, and consider something we didn’t talk
about in the �rst lecture—the probability of transmission by two
surfaces of glass (see Fig. 43).

Of course you know the answer: the probability of a photon to
arrive at B is simply 100% minus the probability to arrive at A,
which we worked out beforehand. Thus, if we found the chance to
arrive at A is 7%, the chance to arrive at B must be 93%. And as the
chance for A varies from zero through 8% to 16% (due to the
di�erent thicknesses of glass), the chance for B changes from 100%
through 92% to 84%.



FIGURE 43. Transmission by two surfaces can be broken down into �ve steps. Step 2 shrinks the
unit arrow to 0.98, step 4 shrinks the 0.98 arrow to 0.98 of that (about 0.96); steps 1,3, and 5
involve turning only. The resulting arrow of length 0.96 has a square of about 0.92, representing
a probability of transmission by two surfaces of 92% (which corresponds to the expected 8%
re�ection, which is right only “twice a day”). When the thickness of the layer is right to produce
a probability of 16% re�ection, with a 92%) probability of transmission, 108%) of the light is
accounted for! Something is wrong with this analysis!

That is the right answer, but we are expecting to calculate all
probabilities by squaring a �nal arrow. How do we calculate the
amplitude arrow for transmission by a layer of glass, and how does
it manage to vary in length so appropriately as to �t with the length
for A in each case, so the probability for A and the probability for B
always add up to exactly 100%? Let us look a little into the details.

For a photon to go from the source to the detector below the
glass, at B, �ve steps are involved. Let’s shrink and turn the unit
arrow as we go along.

The �rst three steps are the same as in the previous example: the
photon goes from the source to the glass (turning, no shrinking); the
photon is transmitted by the front surface (no turning, shrinking to
0.98); the photon goes through the glass (turning, no shrinking).

The fourth step—the photon passes through the back surface of
the glass—is the same as the second step, as far as shrinks and turns
go: no turns, but a shrinkage to 0.98 of the 0.98, so the arrow now
has a length of 0.96.



Finally, the photon goes through the air again, down to the
detector—that means more turning, but no further shrinking. The
result is an arrow of length 0.96, pointing in some direction
determined by the successive turnings of the stopwatch hand.

An arrow whose length is 0.96 represents a probability of about
92% (0.96 squared), which means an average of 92 photons reach B
out of every 100 that leave the source. That also means that 8% of
the photons are re�ected by the two surfaces and reach A. But we
found out in the �rst lecture that an 8% re�ection by two surfaces is
only right sometimes (“twice a day”)—that in reality, the re�ection
by two surfaces �uctuates in a cycle from zero to 16% as the
thickness of the layer steadily increases. What happens when the
glass is just the right thickness to make a partial re�ection of 16%?
For every 100 photons that leave the source, 16 arrive at A and 92
arrive at B, which means 108% of the light has been accounted for
—horrifying! Something is wrong.

We neglected to consider all the ways the light could get to B! For
instance, it could bounce o� the back surface, go up through the
glass as if it were going to A, but then re�ect o� the front surface,
back down toward B (see Fig. 44). This path takes nine steps. Let’s
see what happens successively to the unit arrow as the light goes
through each step (don’t worry; it only shrinks and turns!).

First step—photon goes through the air—turning; no shrinking.
Second step—photon passes through the glass—no turning, but
shrinking to 0.98. Third step—photon goes through the glass—
turning; no shrinking. Fourth step—re�ection o� the back surface—
no turning, but shrinking to 0.2 of 0.98, or 0.196. Fifth step—
photon goes back up through the glass—turning; no shrinking. Sixth
step—photon bounces o� front surface (it’s really a “back” surface,
because the photon stays inside the glass)—no turning, but shrinking
to 0.2 of 0.196, or 0.0392. Seventh step—photon goes back down
through glass—more turning; no shrinking. Eighth step—photon
passes through back surface—no turning, but shrinking to 0.98 of



0.0392, or 0.0384. Finally, the ninth step—photon goes through air
to detector—turning; no shrinking.

FIGURE 44. Another way that light could be transmitted by two surfaces must be considered in
order to make the calculation more accurate. This path involves two shrinks of 0.98 (steps 2 and
8) and two shrinks of 0.2 (steps 4 and 6), resulting in an arrow of length 0.0384 (rounded o� to
0.04).

The result of all this shrinking and turning is an amplitude of
length 0.0384—call it 0.04, for all practical purposes—and turned at
an angle that corresponds to the total amount of turning by the
stopwatch as it times the photon going through this longer path.
This arrow represents a second way that light can get from the
source to B. Now we have two alternatives, so we must add the two
arrows—the arrow for the more direct path, whose length is 0.96,
and the arrow for the longer way, whose length is 0.04—to make
the �nal arrow.

The two arrows are usually not in the same direction, because
changing the thickness of the glass changes the relative direction of
the 0.04 arrow to the 0.96 arrow. But look how nicely things work
out: the extra turns made by the stopwatch timing a photon during
steps 3 and 5 (on its way to A) are exactly equal to the extra turns it
makes timing a photon during steps 5 and 7 (on its way to B). That
means when the two re�ection arrows are cancelling each other to
make a �nal arrow representing zero re�ection, the arrows for
transmission are reinforcing each other to make an arrow of length



0.96 + 0.04, or 1—when the probability of re�ection is zero, the
probability of transmission is 100% (see Fig. 45). And when the
arrows for re�ection are reinforcing each other to make an
amplitude of 0.4, the arrows for transmission are going against each
other, making an amplitude of length 0.96 — 0.04, or 0.92—when
re�ection is calculated to be 16%, transmission is calculated to be
84% (0.92 squared). You see how clever Nature is with Her rules to
make sure that we always come out with 100% of the photons
accounted for!5

FIGURE 45. Nature always makes sure 100% of the light is accounted for. When the thickness is
right for the transmission arrows to accumulate, the arrows for re�ection oppose each other;
when the arrows for re�ection accumulate, the arrows for transmission oppose each other.

Finally, before I go, I would like to tell you that there is an
extension to the rule that tells us when to multiply arrows: arrows
are to be multiplied not only for an event that consists of a
succession of steps, but also for an event that consists of a number
of things happening concomitantly—independently and possibly
simultaneously. For example, suppose we have two sources, X and



Y, and two detectors, A and B (see Fig. 47), and we want to
calculate the probability for the following event: after X and Y each
lose a photon, A and B each gain a photon.

FIGURE 46. Yet other ways the light could re�ect should be considered for a more accurate
calculation. In this �gure, shrinks of 0.98 occur at steps 2 and 10; shrinks of 0.2 occur at steps
4, 6, and 8. The result is an arrow with a length of about 0.008, which is another alternative for
re�ection, and should therefore be added to the other arrows which represent re�ection (0.2 for
the front surface and 0.192 for the back surface).

In this example, the photons travel through space to get to the
detectors—they are neither re�ected nor transmitted—so now is a
good time for me to stop disregarding the fact that light spreads out
as it goes along. I now present you with the complete rule for
monochromatic light travelling from one point to another through
space—there is nothing approximate here, and no simpli�cation.
This is all there is to know about monochromatic light going
through space (disregarding polarization): the angle of the arrow
depends on the imaginary stopwatch hand, which rotates a certain
number of times per inch (depending on the color of the photon);
the length of the arrow is inversely proportional to the distance the
light goes—in other words, the arrow shrinks as the light goes
along.6



FIGURE 47. If one of the ways a particular event can happen depends on a number of things
happening independently, the amplitude for this way is calculated by multiplying the arrows of
the independent things. In this case, the �nal event is: after sources X and Y each lose a photon,
photomultipliers A and B make a click. One way this event could happen is that a photon could
go from X to A and a photon could go from Y to B (two independent things). To calculate the
probability for this “�rst way, the arrows for each independent thing—X to A and Y to B—are
multiplied to produce the amplitude for this particular way. (Analysis continued in Fig. 48.)

Let’s suppose the arrow for X to A is 0.5 in length and is pointing
toward 5 o’clock, as is the arrow for Y to B (Fig. 47). Multiplying
one arrow by the other, we get a �nal arrow of length 0.25, pointed
at 10 o’clock.



FIGURE 48. The other way the event described in Figure 47 could happen—a photon goes from
X to B and a photon goes from Y to A—also depends on two independent things happening, so
the amplitude for this “second way” is also calculated by multiplying the arrows of the
independent things. The “�rst way” and “second way” arrows are ultimately added together,
resulting in the �nal arrow for the event. The probability of an event is always represented by a
single �nal arrow—no matter how many arrows were drawn, multiplied, and added to achieve
it.

But wait! There is another way this event could happen: the
photon from X could go to B, and the photon from Y could go to A.
Each of these subevents has an amplitude, and these arrows must
also be drawn and multiplied to produce an amplitude for this
particular way the event could happen (see Fig. 48). Since the
amount of shrinkage over distance is very small compared to the
amount of turning, the arrows from X to B and Y to A have
essentially the same length as the other arrows, 0.5, but their
turning is quite di�erent: the stopwatch hand rotates 36,000 times
per inch for red light, so even a tiny di�erence in distance results in
a substantial di�erence in timing.

The amplitudes for each way the event could happen are added
to produce the �nal arrow. Since their lengths are essentially the
same, it is possible for the arrows to cancel each other out if their
directions are opposed to each other. The relative directions of the
two arrows can be changed by changing the distance between the
sources or the detectors: simply moving the detectors apart or
together a little bit can make the probability of the event amplify or
completely cancel out, just as in the case of partial re�ection by two
surfaces:7

In this example, arrows were multiplied and then added to
produce a �nal arrow (the amplitude for the event), whose square is
the probability of the event. It is to be emphasized that no matter
how many arrows we draw, add, or multiply, our objective is to
calculate a single �nal arrow for the event. Mistakes are often made
by physics students at �rst because they do not keep this important
point in mind. They work for so long analyzing events involving a



single photon that they begin to think that the arrow is somehow
associated with the photon. But these arrows are probability
amplitudes, that give, when squared, the probability of a complete
event.8

In the next lecture I will begin the process of simplifying and
explaining the properties of matter—to explain where the shrinking
to 0.2 comes from, why light appears to go slower through glass or
water than through air, and so on—because I have been cheating so
far: the photons don’t really bounce o� the surface of the glass; they
interact with the electrons inside the glass. I’ll show you how
photons do nothing but go from one electron to another, and how
re�ection and transmission are really the result of an electron
picking up a photon, “scratching its head,” so to speak, and emitting
a new photon. This simpli�cation of everything we have talked
about so far is very pretty.

1 The areas of the mirror whose arrows point generally to the left also make a strong
re�ection (when the areas whose arrows point the other way are erased). It’s when both
left-biased and right-biased areas re�ect together that they cancel out. This is analogous to
the case of partial re�ection by two surfaces: while either surface will re�ect on its own, if
the thickness is such that the two surfaces contribute arrows pointing in opposite
directions, re�ection is cancelled out.

2 I can’t resist telling you about a grating that Nature has made: salt crystals are sodium
and chlorine atoms packed in a regular pattern. Their alternating pattern, like our grooved
surface, acts like a grating when light of the right color (X-rays, in this case) shines on it.
By �nding the speci�c locations where a detector picks up a lot of this special re�ection
(called di�raction), one can determine exactly how far apart the grooves are, and thus how
far apart the atoms are (see Fig. 28). It is a beautiful way of determining the structure of all
kinds of crystals as well as con�rming that X-rays are the same thing as light. Such
experiments were �rst done in 1914. It was very exciting to see, in detail, for the �rst time
how the atoms are packed together in di�erent substances.

3 This is an example of the “uncertainty principle”: there is a kind of “complementarity”
between knowledge of where the light goes between the blocks and where it goes
afterwards—precise knowledge of both is impossible. I would like to put the uncertainty
principle in its historical place: When the revolutionary ideas of quantum physics were �rst
coming out, people still tried to understand them in terms of old-fashioned ideas (such as,
light goes in straight lines). But at a certain point the old-fashioned ideas would begin to
fail, so a warning was developed that said, in e�ect, “Your old-fashioned ideas are no damn



good when …” If you get rid of all the old-fashioned ideas and instead use the ideas that
I’m explaining in these lectures—adding arrows for all the ways an event can happen—
there is no need for an uncertainty principle!

4 Mathematicians have tried to �nd all the objects one could possibly �nd that obey the
rules of algebra (A + B = B + A, A * B = B*A, and so on). The rules were originally
made for positive integers, used for counting things like apples or people. Numbers were
improved with the invention of zero, fractions, irrational numbers—numbers that cannot
be expressed as a ratio of two integers—and negative numbers, and continued to obey the
original rules of algebra. Some of the numbers that mathematicians invented posed
di�culties for people at �rst—the idea of half a person was di�cult to imagine—but
today, there’s no di�culty at all: nobody has any moral qualms or discomforting gory
feelings when they hear that there is an average of 3.2 people per square mile in some
regions. They don’t try to imagine the 0.2 people; rather, they know what 3.2 means: if
they multiply 3.2 by 10, they get 32. Thus, some things that satisfy the rules of algebra can
be interesting to mathematicians even though they don’t always represent a real situation.
Arrows on a plane can be “added” by putting the head of one arrow on the tail of another,
or “multiplied” by successive turns and shrinks. Since these arrows obey the same rules of
algebra as regular numbers, mathematicians call them numbers. But to distinguish them
from ordinary numbers, they’re called “complex numbers.” For those of you who have
studied mathematics enough to have come to complex numbers, I could have said, “the
probability of an event is the absolute square of a complex number. When an event can
happen in alternative ways, you add the complex numbers; when it can happen only as a
succession of steps, you multiply the complex numbers.” Although it may sound more
impressive that way, I have not said any more than I did before—I just used a di�erent
language.

5 You’ll notice that we changed 0.0384 to 0.04 and used 84% as the square of 0.92, in
order to make 100% of the light accounted for. But when everything is added together,
0.0384 and 84% don’t have to be rounded o�—all the little bits and pieces of arrows
(representing all the ways the light could go) compensate for each other and keep the
answer correct. For those of you who like this sort of thing, here is an example of another
way that the light could go from the light source to the detector at A—a series of three
re�ections (and two transmissions), resulting in a �nal arrow of length 0.98 * 0.2 * 0.2 *
0.2 * 0.98, or about 0.008—a very tiny arrow (see Fig. 46). To make a complete
calculation of partial re�ection by two surfaces, you would have to add in that small
arrow, plus an even smaller one that represents �ve re�ections, and so on.

6 This rule checks out with what they teach in school—the amount of light transmitted
over a distance varies inversely as the square of the distance—because an arrow that
shrinks to half its original size has a square one-fourth as big.

7 This phenomenon, called the Hanbury-Brown-Twiss e�ect, has been used to
distinguish between a single source and a double source of radio waves in deep space, even
when the two sources are extremely close together.

8 Keeping this principle in mind should help the student avoid being confused by things
such as the “reduction of a wave packet” and similar magic.



3

Electrons and Their Interactions

This is the third of four lectures on a rather di�cult subject—the
theory of quantum electrodynamics—and since there are obviously
more people here tonight than there were before, some of you
haven’t heard the other two lectures and will �nd this lecture almost
incomprehensible. Those of you who have heard the other two
lectures will also �nd this lecture incomprehensible, but you know
that that’s all right: as I explained in the �rst lecture, the way we
have to describe Nature is generally incomprehensible to us.

In these lectures I want to tell you about the part of physics that
we know best, the interaction of light and electrons. Most of the
phenomena you are familiar with involve the interaction of light
and electrons—all of chemistry and biology, for example. The only
phenomena that are not covered by this theory are phenomena of
gravitation and nuclear phenomena; everything else is contained in
this theory.

We found out in the �rst lecture that we have no satisfactory
mechanism to describe even the simplest of phenomena, such as
partial re�ection of light by glass. We also have no way to predict
whether a given photon will be re�ected or transmitted by the glass.
All we can do is calculate the probability that a particular event will
happen—whether the light will be re�ected, in this case. (This is
about 4%, when the light shines straight down on a single surface of
glass; the probability of re�ection increases as the light hits the glass
at more of a slant.)



When we deal with probabilities under ordinary circumstances,
there are the following “rules of composition”: 1) if something can
happen in alternative ways, we add the probabilities for each of the
di�erent ways; 2) if the event occurs as a succession of steps—or
depends on a number of things happening “concomitantly”
(independently)—then we multiply the probabilities of each of the
steps (or things).

In the wild and wonderful world of quantum physics,
probabilities are calculated as the square of the length of an arrow:
where we would have expected to add the probabilities under
ordinary circumstances, we �nd ourselves “adding” arrows; where
we normally would have multiplied the probabilities, we “multiply”
arrows. The peculiar answers that we get from calculating
probabilities in this manner match perfectly the results of
experiment. I’m rather delighted that we must resort to such
peculiar rules and strange reasoning in order to understand Nature,
and I enjoy telling people about it. There are no “wheels and gears”
beneath this analysis of Nature; if you want to understand Her, this
is what you have to take.

Before I go into the main part of this lecture, I’d like to show you
another example of how light behaves. What I would like to talk
about is very weak light of one color—one photon at a time—going
from a source, at S, to a detector, at D (see Fig. 49). Let’s put a
screen in between the source and the detector and make two very
tiny holes a few millimeters apart from each other, at A and B. (If
the source and detector are 100 centimeters apart, the holes have to
be smaller than a tenth of a millimeter.) Let’s put A in line with S
and D, and put B somewhere to the side of A, not in line with S and
D.

When we close the hole at B, we get a certain number of clicks at
D—which represents the photons that came through A (let’s say the
detector clicks an average of one time for every 100 photons that
leave S, or 1%). When we close the hole at A and open the hole at B,



we know from the second lecture that we get nearly the same
number of clicks, on average, because the holes are so small. (When
we “squeeze” light too much, the rules of the ordinary world—such
as light goes in straight lines—fall apart.) When we open both holes
we get a complicated answer, because interference is present: If the
holes are a certain distance apart, we get more clicks than the
expected 2% (the maximum is about 4%); if the two holes are a
slightly di�erent distance apart, we get no clicks at all.

FIGURE 49. Two tiny holes (at A and B) in a screen that is between a source S and a detector D
let nearly the same amount of light through (in this case 1%) when one or the other hole is open.
When both holes are open, “interference”, occurs: the detector clicks from zero to 4% of the time,
depending on the separation of A and B—shown in Figure 51 (a).

One would normally think that opening a second hole would
always increase the amount of light reaching the detector, but that’s
not what actually happens. And so saying that the light goes “either
one way or the other” is false. I still catch myself saying, “Well, it
goes either this way or that way,” but when I say that, I have to
keep in mind that I mean in the sense of adding amplitudes: the
photon has an amplitude to go one way, and an amplitude to go the
other way. If the amplitudes oppose each other, the light won’t get
there—even though, in this case, both holes are open.

Now, here’s an extra twist to the strangeness of Nature that I’d
like to tell you about. Suppose we put in some special detectors—
one at A and one at B (it is possible to design a detector that can tell
whether a photon went through it)—so we can tell through which
hole(s) the photon goes when both holes are open (see Fig. 50).



Since the probability that a single photon will get from S to D is
a�ected only by the distance between the holes, there must be some
sneaky way that the photon divides in two and then comes back
together again, right? According to this hypothesis, the detectors at
A and B should always go o� together (at half strength, perhaps?),
while the detector at D should go o� with a probability of from zero
to 4%, depending on the distance between A and B.

FIGURE 50. When special detectors are put in at A and B to tell which way the light went when
both holes are open, the experiment has been changed. Because a photon always goes through one
hole or the other (when you are checking the holes), there are two distinguishable �nal
conditions: 1) the detectors at A and D go o�, and 2) the detectors at B and D go o�. The
probability of either event happening is about 1 %. The probabilities of the two events are added
in the normal way, which accounts for a 2% probability that the detector at D goes o�—shown
in Figure 51(b).

Here’s what actually happens: the detectors at A and B never go
o� together—either A or B goes o�. The photon does not divide in
two; it goes one way or the other.

Furthermore, under such conditions the detector at D goes o� 2%
of the time—the simple sum of the probabilities for A and B (1% +
1%). The 2% is not a�ected by the spacing between A and B; the
interference disappears when detectors are put in at A and B!

Nature has got it cooked up so we’ll never be able to �gure out
how She does it: if we put instruments in to �nd out which way the
light goes, we can �nd out, all right, but the wonderful interference
e�ects disappear. But if we don’t have instruments that can tell



which way the light goes, the interference e�ects come back! Very
strange, indeed!

To understand this paradox, let me remind you of a most
important principle: in order to correctly calculate the probability of
an event, one must be very careful to de�ne the complete event clearly
—in particular, what the initial conditions and the �nal conditions
of the experiment are. You look at the equipment before and after
the experiment, and look for changes. When we were calculating the
probability that a photon gets from S to D with no detectors at A or
B, the event was, simply, the detector at D makes a click. When a
click at D was the only change in conditions, there was no way to
tell which way the photon went, so there was interference.

When we put in detectors at A and B, we changed the problem.
Now, it turns out, there are two complete events—two sets of �nal
conditions—that are distinguishable: 1) the detectors at A and D go
o�, or 2) the detectors at B and D go o�. When there are a number
of possible �nal conditions in an experiment, we must calculate the
probability of each as a separate, complete event.

To calculate the amplitude that the detectors at A and D go o�,
we multiply the arrows that represent the following steps: a photon
goes from S to A, the photon goes from A to D, and the detector at D
goes o�. The square of the �nal arrow is the probability of this
event—1%—the same as when the hole at B was closed, because
both cases have exactly the same steps. The other complete event is
the detectors at B and D go o�. The probability of this event is
calculated in a similar way, and is also the same as before—about
1%.

If we want to know how often the detector at D goes o� and we
don’t care whether it was A or B that went o� in the process, the
probability is the simple sum of the two events—2%. In principle, if
there is something left in the system that we could have observed to
tell which way the photon went, we have di�erent “�nal states”



(distinguishable �nal conditions), and we add the probabilities—not
the amplitudes—for each �nal state1.

I have pointed out these things because the more you see how
strangely Nature behaves, the harder it is to make a model that
explains how even the simplest phenomena actually work. So
theoretical physics has given up on that.

We saw in the �rst lecture how an event can be divided into
alternative ways and how the arrow for each way can be “added.”
In the second lecture, we saw how each way can be divided into
successive steps, how the arrow for each step can be regarded as the
transformation of a unit arrow, and how the arrows for each step
can be “multiplied” by successive shrinks and turns. We are thus
familiar with all the necessary rules for drawing and combining
arrows (that represent bits and pieces of events) to obtain a �nal
arrow, whose square is the probability of an observed physical
event.

It is natural to wonder how far we can push this process of
splitting events into simpler and simpler subevents. What are the
smallest possible bits and pieces of events? Is there a limited
number of bits and pieces that can be compounded to form all the
phenomena that involve light and electrons? Is there a limited
number of “letters” in this language of quantum electrodynamics
that can be combined to form “words” and “phrases” that describe
nearly every phenomenon of Nature?



FIGURE 51. When there are no detectors at A or B, there is interference—the amount of light
varies from zero to 4% (a). When there are detectors at A and B that are 100% reliable, there is
no interference—the amount of light reaching D is a constant 2% (b). When the detectors at A
and B are not 100% reliable (i.e., when sometimes there is nothing left in A or in B that can be
detected), there are now three possible �nal conditions—A and D go o�, B and D go o�, and D
goes o� alone. The �nal curve is thus a mixture, made up of contributions from each possible
�nal condition. When the detectors at A and B are less reliable, there is more interference
present. Thus the detectors in case (c) are less reliable than in case (d). The principle regarding
interference is: The probability of each of the di�erent possible �nal conditions must be
independently calculated by adding arrows and squaring the length of the �nal arrow; after that,
the several probabilities are added together in the normal fashion.

The answer is yes; the number is three. There are only three basic
actions needed to produce all of the phenomena associated with
light and electrons.

Before I tell you what these three basic actions are, I should
properly introduce you to the actors. The actors are photons and
electrons. The photons, particles of light, have been discussed at
length in the �rst two lectures. Electrons were discovered in 1895 as
particles: you could count them; you could put one of them on an
oil drop and measure its electric charge. It gradually became
apparent that the motion of these particles accounted for electricity
in wires.



Shortly after electrons were discovered it was thought that atoms
were like little solar systems, made up of a central, heavy part
(called the nucleus) and electrons, which went around in “orbits,”
much like the planets do when they go around the sun. If you think
that’s the way atoms are, then you’re back in 1910. In 1924 Louis
De Broglie found that there was a wavelike character associated
with electrons, and soon afterwards, C. J. Davisson and L. H.
Germer of the Bell Laboratories bombarded a nickel crystal with
electrons and showed that they, too, bounced o� at crazy angles
(just like X-rays do), and that these angles could be calculated from
De Broglie’s formula for the wavelength of an electron.

When we look at photons on a large scale—much larger than the
distance required for one stopwatch turn—the phenomena that we
see are very well approximated by rules such as “light travels in
straight lines,” because there are enough paths around the path of
minimum time to reinforce each other, and enough other paths to
cancel each other out. But when the space through which a photon
moves becomes too small (such as the tiny holes in the screen),
these rules fail—we discover that light doesn’t have to go in straight
lines, there are interferences created by two holes, and so on. The
same situation exists with electrons: when seen on a large scale,
they travel like particles, on de�nite paths. But on a small scale,
such as inside an atom, the space is so small that there is no main
path, no “orbit”; there are all sorts of ways the electron could go,
each with an amplitude. The phenomenon of interference becomes
very important, and we have to sum the arrows to predict where an
electron is likely to be.

It’s rather interesting to note that electrons looked like particles
at �rst, and their wavish character was later discovered. On the
other hand, apart from Newton making a mistake and thinking that
light was “corpuscular,” light looked like waves at �rst, and its
characteristics as a particle were discovered later. In fact, both
objects behave somewhat like waves, and somewhat like particles.



In order to save ourselves from inventing new words such as
“wavicles,” we have chosen to call these objects “particles,” but we
all know that they obey these rules for drawing and combining
arrows that I have been explaining. It appears that all the “particles”
in Nature—quarks, gluons, neutrinos, and so forth (which will be
discussed in the next lecture)—behave in this quantum mechanical
way.

So now, I present to you the three basic actions, from which all
the phenomena of light and electrons arise.

—ACTION #1: A photon goes from place to place.
—ACTION #2: An electron goes from place to place.
—ACTION #3: An electron emits or absorbs a photon.

Each of these actions has an amplitude—an arrow—that can be
calculated according to certain rules. In a moment, I’ll tell you those
rules, or laws, out of which we can make the whole world (aside
from the nuclei, and gravitation, as always!).

Now, the stage on which these actions take place is not just
space, it is space and time. Until now, I have disregarded problems
concerning time, such as exactly when a photon leaves the source
and exactly when it arrives at the detector. Although space is really
three-dimensional, I’m going to reduce it to one dimension on the
graphs that I’m going to draw: I will show a particular object’s
location in space on the horizontal axis, and the time on the vertical
axis.

The �rst event I am going to draw in space and time—or space-
time, as I might inadvertently call it—is a baseball standing still
(See Fig. 52). On Thursday morning, which I will label as T0, the
baseball occupies a certain space, which I will label as X0. A few
moments later, at T1, it occupies the same space, because it’s
standing still. A few moments later, at T2, the baseball is still at X0.
So the diagram of a baseball standing still is a vertical band, going
straight up, with baseball all over it inside.



FIGURE 52. The stage on which all actions in the universe take place is space-time. Usually
consisting of four dimensions (three for space and one for time), space-time will be represented
here in two dimensions—one for space, in the horizontal dimension, and one for time, in the
vertical. Each time we look at the baseball (such as at time T3), it is in the same place. This
produces a “band of baseball” going straight up, as time goes on.

What happens if we have a baseball drifting in the weightlessness
of outer space, going straight toward a wall? Well, on Thursday
morning (T0) it starts at X0 (see Fig. 53), but a little bit later, it’s not
in the same place—it has drifted over a little bit, to X1 As the
baseball continues to drift, it creates a slanted “band of baseball” on
the diagram of space-time. When the baseball hits the wall (which is
standing still and is therefore a vertical band), it goes back the other
way, exactly where it came from in space (X0), but to a di�erent
point in time (T6).

FIGURE 53. A baseball drifting directly toward a wall at right angles and then bouncing back to
its original location (shown below the graph) is moving in one dimension and appears as a



slanted “band of baseball.” At times T1 and T2, the baseball is getting closer to the wall; at T3 it
hits the wall, and begins to go back.

As for the time scale, it is most convenient to represent the time
not in seconds, but in much smaller units. Since we will be dealing
with photons and electrons, which move very rapidly, I am going to
have a 45° angle represent something going the speed of light. For
example, for a particle moving at the speed of light from X1T1 to
X2T2,the horizontal distance between X1 and X2 is the same as the
vertical distance between T1 and T2 (see Fig. 54). The factor by
which time is stretched out (to make a 45° angle represent a particle
going the speed of light) is called c, and you’ll �nd c’s �ying around
everywhere in Einstein’s formulas—they are the result of the
unfortunate choice of the second as the unit of time, rather than the
time it takes light to go one meter.

Now, let’s look at the �rst basic action in detail—a photon goes
from place to place. I will draw this action as a wiggly line from A
to B for no good reason. I should be more careful: I should say, a
photon that is known to be at a given place at a given time has a
certain amplitude to get to another place at another time. On my
space-time graph (see Fig. 55), the photon at point A—at X1 and T1

—has an amplitude to appear at point B—X2 and T2. The size of this
amplitude I will call P(A to B).

FIGURE 54. The time scale I will use in these graphs will show particles going at the speed of
light to be travelling at a 45-degree angle through space-time. The amount of time it takes light to



go 30 centimeters—from X1 to X2 or from X2 to X1—is about one-billionth of a second.

FIGURE 55. A photon (represented by a wavy line) has an amplitude to go from a point A in
space-time to another point, B. This amplitude, which I will call P(A to B), is calculated from a
formula that depends only on the di�erence in location—(X2 – X1)—and the di�erence of the
time—(T2 – T1). In fact, it’s a simple function that is the inverse of the di�erence of their squares
—an “interval,” I, that can be written as (X2 – X1)2 – (T2 – T1)2.

There is a formula for the size of this arrow, P(A to B). It is one of
the great laws of Nature, and it’s very simple. It depends on the
di�erence in distance and the di�erence in time between the two
points. These di�erences can be expressed mathematically2 as (X2 –
X1) and (T2 – T1).

The major contribution to P(A to B) occurs at the conventional
speed of light—when (X2 – X1 is equal to (T2 – T1)—where one
would expect it all to occur, but there is also an amplitude for light
to go faster (or slower) than the conventional speed of light. You
found out that in the last lecture that light doesn’t go only in
straight lines; now, you �nd out that it doesn’t go only at the speed
of light!

It may surprise you that there is an amplitude for a photon to go
at speeds faster or slower than the conventional speed, c. The
amplitudes for these possibilities are very small compared to the
contribution from speed c; in fact, they cancel out when light travels
over long distances. However, when the distances are short—as in
many of the diagrams I will be drawing—these other possibilities
become vitally important and must be considered.



So that’s the �rst basic action, the �rst basic law of physics—a
photon goes from point to point. That explains all about optics;
that’s the entire theory of light! Well, not quite: I left out
polarization (as always), and the interaction of light with matter,
which brings me to the second law.

FIGURE 56. When light goes at the speed C, the “interval,” I, equals zero, and there is a large
contribution in the 12 o’clock direction. When I is greater than zero, there is a small contribution
in the three o’clock direction inversely proportional to I; when I is less than zero, there is a similar
contribution in the nine o’clock direction. Thus light has an amplitude to go faster or slower than
speed C, but these amplitudes cancel out over long distances.

The second action fundamental to quantum electrodynamics is:
An electron goes from point A to point B in space-time. (For the
moment we will imagine this electron as a simpli�ed, fake electron,
with no polarization—what the physicists call a “spin-zero”
electron. In reality, electrons have a type of polarization, which
doesn’t add anything to the main ideas; it only complicates the
formulas a little bit.) The formula for the amplitude for this action,
which I will call E(A to B) also depends on (X2 – X1 and (T2 – T1 (in
the same combination as described in note 2) as well as on a
number I will call “n,” a number that, once determined, enables all
our calculations to agree with experiment. (We will see later how
we determine n’s value.) It is a rather complicated formula, and I’m
sorry that I don’t know how to explain it in simple terms. However,
you might be interested to know that the formula for P(A to B)—a
photon going from place to place in space-time—is the same as that



for E(A to B)—an electron going from place to place—if n is set to
zero.3

The third basic action is: an electron emits or absorbs a photon—
it doesn’t make any di�erence which. I will call this action a
“junction,” or “coupling.” To distinguish electrons from photons in
my diagrams, I will draw each electron going through space-time as
a straight line. Every coupling, therefore, is a junction between two
straight lines and a wavy line (see Fig. 58). There is no complicated
formula for the amplitude of an electron to emit or absorb a photon;
it doesn’t depend on anything—it’s just a number! This junction
number I will call j—its value is about –0.1: a shrink to about one-
tenth, and half a turn.4

Well, that’s all there is to these basic actions—except for some
slight complications due to this polarization that we’re always
leaving out. Our next job is to put these three actions together to
represent circumstances that are somewhat more complicated.

FIGURE 57. An electron has an amplitude to go from point to point in space-time, which I will
call “E(A to B).” Although I will represent E(A to B) as a straight line between two points (a), we
can think of it as the sum of many amplitudes (b)—among them, the amplitude for the electron
to change direction at points C or C on a “two-hop” path, and the amplitude to change direction
at D and E on a “three-hop” path—in addition to the direct path from A to B. The number of
times an electron can change direction is anywhere from zero to in�nity, and the points at which
the electron can change direction on its way from A to B in space-time are in�nite. All are
included in E (A to B).



FIGURE 58. An electron, depicted by a straight line, has a certain amplitude to emit or absorb a
photon, shown by a wavy line. Since the amplitude to emit or absorb is the same, I will call either
case a “coupling.” The amplitude for a coupling is a number that I will call j; it is about –0.1 for
the electron (this number is sometimes called the “charge”).

For our �rst example, let’s calculate the probability that two
electrons, at points 1 and 2 in space-time, end up at points 3 and 4
(see Fig. 59). This event can happen in several ways. The �rst way is
that the electron at 1 goes to 3—computed by putting 1 and 3 into
the formula E(A to B), which I will write as E(1 to 3)—and the
electron at 2 goes to 4—computed by E(2 to 4). These are two
“subevents” happening concomitantly, so the two arrows are
multiplied to produce an arrow for this �rst way the event could
happen. Therefore we write the formula for the “�rst-way arrow” as
E(1 to 3) * E(2 to 4).

FIGURE 59. To calculate the probability that electrons at points 1 and 2 in space-time end up at
points 3 and 4, we calculate the “�rst way” arrow for 1 going to 3 and 2 going to 4 with the



formula for E(A to B); then we calculate the “second way” arrow for 1 going to 4 and 2 going to
3 (a “crossover”). Finally, we add the “�rst way” and “second way” arrows to arrive at a good
approximation of the �nal arrow. (This is true for the fake, simpli�ed “spin zero” electron. Had
we included the polarization of the electron, we would have subtracted—rather than added—the
two arrows.)

Another way this event could happen is that the electron at 1
goes to 4 and the electron at 2 goes to 3—again, two concomitant
subevents. The “second-way arrow” is E(1 to 4) * E(2 to 3), and we
add it to the “�rst-way” arrow.5

This is a good approximation for the amplitude of this event. To
make a more exact calculation that will agree more closely with the
results of experiment, we must consider other ways this event could
happen. For instance, for each of the two main ways the event can
happen, one electron could go charging o� to some new and
wonderful place and emit a photon (see Fig. 60). Meanwhile, the
other electron could go to some other place and absorb the photon.
Calculating the amplitude for the �rst of these new ways involves
multiplying the amplitudes for: an electron goes from 1 to the new
and wonderful place, 5 (where it emits a photon), and then goes
from 5 to 3; the other electron goes from 2 to the other place, 6
(where it absorbs the photon), and then goes from 6 to 4. We must
remember to include the amplitude that the photon goes from 5 to
6. I’m going to write the amplitude for this way the event could
happen in a high-class mathematical fashion, and you can follow
along: E(1 to 5)*j*E(5 to 3) * E(2 to 6)*j*E(6 to 4) * P(5 to 6)—a lot
of shrinking and turning. (I’ll let you �gure out the notation for the
other case, where the electron at 1 ends up at 4, and the electron at
2 ends up at 3.)6



FIGURE 60. Two “other ways” the event in Fig. 59 could happen are: a photon is emitted at 5
and absorbed at 6 for each case. The �nal conditions of these alternatives are the same as for the
other cases—two electrons went in, and two electrons came out—and these results are
indistinguishable from the other alternatives. Therefore the arrows for these “other ways” must be
added to the arrows in Fig. 59 to arrive at a better approximation of the �nal arrow for the
event.

But wait: positions 5 and 6 could be anywhere in space and time
—yes, anywhere—and the arrows for all of those positions have to
be calculated and added together. You see it’s getting to be a lot of
work. Not that the rules are so di�cult—it’s like playing checkers:
the rules are simple, but you use them over and over. So our
di�culty in calculating comes from having to pile so many arrows
together. That’s why it takes four years of graduate work for the
students to learn how to do this e�ciently—and we’re looking at an
easy problem! (When the problems get too di�cult, we just put
them on the computer!)

I would like to point out something about photons being emitted
and absorbed: if point 6 is later than point 5, we might say that the
photon was emitted at 5 and absorbed at 6 (see Fig. 61). If 6 is
earlier than 5, we might prefer to say the photon was emitted at 6
and absorbed at 5, but we could just as well say that the photon is
going backwards in time! However, we don’t have to worry about
which way in space-time the photon went; it’s all included in the
formula for P(5 to 6), and we say a photon was “exchanged.” Isn’t it
beautiful how simple Nature is!7

Now, in addition to the photon that is exchanged between 5 and
6, another photon could be exchanged—between two points, 7 and



8 (see Fig. 62). I’m too tired to write down all the basic actions
whose arrows have to be multiplied, but—as you may have noticed
—every straight line gets an E(A to B), every wavy line gets a P(A to
B), and every coupling gets a j. Thus, there are six E(A to B)’s, two
P(A to B)’s, and four j’s—for every possible 5, 6, 7, and 8! That makes
billions of tiny arrows that have to be multiplied and then added
together!

FIGURE 61. Since light has an amplitude to go faster or slower than the conventional speed of
light, the photons in all three examples above can be thought of as being emitted from point 5 and
absorbed at point 6, even though the photon in example (b) is emitted at the same time that it is
absorbed, and the photon in (c) is emitted later than it is absorbed—a situation in which you
might have preferred to say that it was emitted by 6 and absorbed by 5; otherwise, the photon
would have to go backwards in time! As far as calculating (and Nature) is concerned, it’s all the
same (and it’s all possible), so we simply say a photon is “exchanged” and plug the locations in
space-time into the formula for P(A to B).

FIGURE 62. Yet another way the event in Fig. 59 could happen is that two photons could be
exchanged. Many diagrams of this way are possible (as we will see in more detail later); one of



them is shown here. The arrow for this way involves all possible intermediate points 5, 6, 7, and
8, and is calculated with great di�culty. Because j is less than 0.1, the length of this arrow is
generally less than 1 part in 10,000 (because there are four couplings involved) compared to the
“�rst way” and “second way” arrows in Fig. 59 that contained no j’s.

It appears that calculating the amplitude for this simple event is a
hopeless business, but when you’re a graduate student you’ve got to
get your degree, so you keep on going.

But there is hope for success. It is found in that magic number, j.
The �rst two ways the event could happen had Space no j’s in the
calculation; the next way had j*j, and the last way we looked at had
j*j*j*j. Since j*j is less than 0.01, it means the length of the arrow
for this way is generally less than 1% of the arrow for the �rst two
ways; an arrow with j*j*j*j in it is less than 1% of 1%—one part in
10,000—compared to the arrows that have no j. If you’ve got
enough time on the computer, you can work out the possibilities
that involve j6—one part in a million—and match the accuracy of
the experiments. That’s how the calculations of simple events are
made. That’s the way it works; that’s all there is to it!

Let’s look at another event now. We begin with a photon and an
electron, and we end with a photon and an electron. One way this
event can happen is: a photon is absorbed by an electron, the
electron continues on a bit, and a new photon comes out. This
process is called the scattering of light. When we make the diagrams
and calculations for scattering, we must include some peculiar
possibilities (see Fig. 63). For example, the electron could emit a
photon before absorbing one (b). Even more strange is the possibility
(c) that the electron emits a photon, then travels backwards in time to
absorb a photon, and then proceeds forwards in time again. The
path of such a “backwards-moving” electron can be so long as to
appear real in an actual physical experiment in the laboratory. Its
behavior is included in these diagrams and the equation for E(A to
B).



FIGURE 63. The scattering of light involves a photon going into an electron and a photon coming
out—not necessarily in that order, as seen in example (b). The example in (c) shows a strange
but real possibility: the electron emits a photon, rushes backwards in time to absorb a photon,
and then continues forwards in time.

The backwards-moving electron when viewed with time moving
forwards appears the same as an ordinary electron, except it’s
attracted to normal electrons—we say it has a “positive charge.”
(Had I included the e�ects of polarization, it would be apparent
why the sign of j for the backwards-moving electron appears
reversed, making the charge appear positive.) For this reason it’s
called a “positron.” The positron is a sister particle to the electron,
and is an example of an “anti-particle.”8

This phenomenon is general. Every particle in Nature has an
amplitude to move backwards in time, and therefore has an anti-
particle. When a particle and its anti-particle collide, they annihilate
each other and form other particles. (For positrons and electrons
annihilating, it is usually a photon or two.) And what about
photons? Photons look exactly the same in all respects when they
travel backwards in time—as we saw earlier—so they are their own
anti-particles. You see how clever we are at making an exception
part of the rule!

I’d like to show you what this backwards-moving electron looks
like to us, as we move forwards in time. With a sequence of parallel
lines to aid the eye, I’m going to divide the diagram into blocks of



time, T0 to T10 (see Fig. 64). We start at T0 with an electron moving
toward a photon, which is moving in the opposite direction. All of a
sudden—at T3—the photon turns into two particles, a positron and
an electron. The positron doesn’t last very long: it soon runs into the
electron—at T5, where they annihilate and produce a new photon.
Meanwhile, the electron created earlier by the original photon
continues on through space-time.

FIGURE 64. Looking at example (c) from Fig. 63 going only forwards in time (as we are forced
to do in the laboratory), from T0 to T3 we see the electron and photon moving toward each other.
All of a sudden, at T3 the photon “disintegrates” and two particles appear—an electron and a
new kind of particle (called a “positron”) which is an electron going backwards in time and
which appears to move toward the original electron (itself!). At T5 the positron annihilates with
the original electron to produce a new photon. Meanwhile, the electron created by the earlier
photon continues forwards in space-time. This sequence of events has been observed in the
laboratory, and is included automatically in the formula for E(A to B) without any modi�cation.

The next thing I would like to talk about is an electron in an
atom. In order to understand the behavior of electrons in atoms, we
have to add one other feature, the nucleus—the heavy part at the
center of an atom that contains at least one proton (a proton is a
“Pandora’s Box” that we will open in the next lecture). I will not
give you the correct laws for the behavior of the nucleus in this
lecture; they are very complicated. But in this case, where the
nucleus is quiet, we can approximate its behavior as that of a
particle with an amplitude to go from one place to another in space-
time according to the formula for E(A to B), but with a much higher
number for n. Since the nucleus is so heavy compared to an



electron, we can deal with it approximately here by saying that it
stays in essentially one place as it moves through time.

The simplest atom, called hydrogen, is a proton and an electron.
By exchanging photons, the proton keeps the electron nearby,
dancing around it (see Fig. 65).9 Atoms that contain more than one
proton and the corresponding number of electrons also scatter light
(atoms in the air scatter light from the sun and make the sky blue),
but the diagrams for these atoms would involve so many straight
and wiggly lines that they’d be a complete mess!

FIGURE 65. An electron is kept within a certain range of distance to the nucleus of an atom by
photon exchanges with a proton (a “Pandora’s Box” that we will look into in Chapter 4). For
now, the proton can be approximated as a stationary particle. Shown here is a hydrogen atom,
consisting of a proton and an electron exchanging photons.

FIGURE 66. The scattering of light by an electron in an atom is the phenomenon that accounts
for partial re�ection in a layer of glass. The diagram shows one way this event can happen in a
hydrogen atom.



Now, I’d like to show you a diagram of an electron in a hydrogen
atom scattering light (see Fig. 66). As the electron and the nucleus
are exchanging photons, a photon comes from outside the atom, hits
the electron and is absorbed; then a new photon is emitted. (As
usual, there are other possibilities to be considered, such as the new
photon is emitted before the old photon is absorbed.) The total
amplitude for all the ways an electron can scatter a photon can be
summed up as a single arrow, a certain amount of shrink and turn.
(Later, we will call this arrow “S.”) This amount depends on the
nucleus and the arrangement of the electrons in the atoms, and is
di�erent for di�erent materials.

Now, let’s look again at the partial re�ection of light by a layer of
glass. How does it work? I talked about light being re�ected from
the front surface and the back surface. This idea of surfaces was a
simpli�cation I made in order to keep things easy at the beginning.
Light is really not a�ected by surfaces. An incoming photon is
scattered by the electrons in the atoms inside the glass, and a new
photon comes back up to the detector. It’s interesting that instead of
adding up all the billions of tiny arrows that represent the
amplitude for all the electrons inside the glass to scatter an
incoming photon, we can add just two arrows—for the “front
surface” and “back surface” re�ections—and come out with the
same answer. Let’s see why.

To discuss re�ection by a layer from our new point of view we
must take into account the dimension of time. Previously, when we
talked about light from a monochromatic source, we used an
imaginary stopwatch that times a photon as it moves—the hand of
this stopwatch determined the angle of the amplitude for a given
path. In the formula for P(A to B) (the amplitude for a photon to go
from point to point) there is no mention of any turning. What
happened to the stopwatch? What happened to the turning?

In the �rst lecture I simply said that the light source was
monochromatic. To correctly analyze partial re�ection by a layer,



we need to know more about a monochromatic light source. The
amplitude for a photon to be emitted by a source varies, in general,
with the time: as time goes on, the angle of the amplitude for a
photon to be emitted by a source changes. A source of white light—
many colors mixed together—emits photons in a chaotic manner:
the angle of the amplitude changes abruptly and irregularly in �ts
and starts. But when we construct a monochromatic source, we are
making a device that has been carefully arranged so that the
amplitude for a photon to be emitted at a certain time is easily
calculated: it changes its angle at a constant speed, like a stopwatch
hand. (Actually, this arrow turns at the same speed as the imaginary
stopwatch we used before, but in the opposite direction—see Fig.
67.)

FIGURE 67. A monochromatic source is a beautifully constructed apparatus that emits a photon
in a very predictable way: the amplitude for a photon to be emitted at a certain time rotates
counterclockwise as time moves forwards. Thus the amplitude for the source to emit a photon at a
later time has a lesser angle. It will be assumed that all the light emitted from the source goes at
speed c (since the distances are large).

The rate of turning depends on the color of the light: the amplitude
for a blue source turns nearly twice as fast as that for a red source,



just as before. So the timer we used for the “imaginary stopwatch”
was the monochromatic source:—in reality, the angle of the
amplitude for a given path depends on what time the photon is
emitted from the source.

Once a photon has been emitted, there is no further turning of
the arrow as a photon goes from one point to another in space-time.
Although the formula P(A to B) says that there is an amplitude for
light to go from one place to another at speeds other than c, the
distance from the source to the detector in our experiment is
relatively large (compared to an atom), so the only surviving
contribution to P(A to B)’s length that counts comes from speed c.

To begin our new calculation of partial re�ection, let’s start by
de�ning the event completely: the detector at A makes a click at a
certain time, T. Then, let’s divide the layer of glass into a number of
very thin sections—let’s say, six (see Fig. 68a). From the analysis we
did in the second lecture in which we found that nearly all the light
is re�ected from the middle of a mirror, we know that although
each electron is scattering light in all directions, when all the arrows
for each section are added, the only place where they don’t cancel
out is where light goes straight down to the middle of the section
and scatters in one of two directions—straight back up to the
detector or straight down through the glass. The �nal arrow for the
event will thus be determined by adding the six arrows representing
the scattering of light from the six middle points—X1 to X6—
arranged vertically throughout the glass.

All right, let’s calculate the arrow for each of these ways the light
could go—via the six points, X1 to X6. There are four steps involved
in each way (which means four arrows will be multiplied):

—STEP #1: A photon is emitted by the source at a certain time.
—STEP #2: The photon goes from the source to one of the points in

the glass.
—STEP #3: The photon is scattered by an electron at that point.



—STEP #4: A new photon makes its way up to the detector.

FIGURE 68. We begin our new analysis of partial re�ection by dividing a layer of glass into a
number of sections (here, six), and looking at the various ways the light could go from the source
to the glass and back up to the detector at A. The only important points in the glass (where the
amplitudes for scattering light don’t cancel out) are located at the middle of each section; X1 to
X6 are shown in (a) at their physical location inside the glass, and in (b) as vertical lines on the
space-time graph. The event whose probability we are calculating is: the detector at A makes a
click at a certain time, T. Thus the event appears as a point (where A and T intersect) on the
space-time graph.

For each of the ways the event can happen, four steps must occur in succession, so four arrows
have to be multiplied. The steps are shown in (b): 1) a photon leaves the source at a certain time
(the arrows at T1 to T6 represent the amplitude to do that for six di�erent times); 2) the photon
goes from the source to one of the points in the glass (the six alternatives are depicted as wavy
lines going up to the right); 3) an electron at one of the points scatters a photon (shown as short,



wide vertical lines); and 4) a new photon goes to the detector and arrives at the appointed time, T
(shown as a wavy line going up to the left). The amplitudes for steps 2, 3, and 4 are the same for
the six alternatives, while the amplitudes for step 1 are di�erent: compared to a photon scattered
by an electron at the top of the glass (at X1), a photon scattered deeper in the glass—at X2, for
example—must leave the source earlier, at T2.

When we are �nished multiplying the four arrows for each alternative, the resulting arrows,
shown in (c), are shorter than those in (b); each has been turned 90° (in accordance with the
scattering characteristics of electrons in glass). When these six arrows are added together in
order, they form an arc; the �nal arrow is its chord. The same �nal arrow can be obtained by
drawing two radius arrows, shown in (d), and “subtracting” them (turning the “front surface”
arrow around in the opposite direction and adding it to the “back surface” arrow). This shortcut
was used as a simpli�cation in the �rst lecture.

We will say the amplitudes for steps 2 and 4 (a photon goes to or
from a point in the glass) involve no shrinking or turning, because
we can assume that none of the light gets lost or spread out between
the source and the glass or between the glass and the detector. For
step 3 (an electron scatters a photon) the amplitude for scattering is
a constant—a shrink and a turn by a certain amount, S—and is the
same everywhere in the glass. (This amount is, as I mentioned
before, di�erent for di�erent materials. For glass, the turn of S is
90°.) Therefore, of the four arrows to be multiplied, only the arrow
for step 1—the amplitude for a photon to be emitted from the
source at a certain time—is di�erent from one alternative to the
next.

The time at which a photon would have to have been emitted to
reach the detector A at time T (see Fig. 68b) is not the same for the
six di�erent paths. A photon scatterd by X2 would have to have been
emitted slightly earlier than a photon scattered by X1 because that
path is longer. Thus the arrow at T2 is turned slightly more than the
arrow at T1 because the amplitude for a monochromatic source to
emit a photon at a certain time rotates counterclockwise as time
goes on. The same goes for each arrow down to T6: all six arrows
have the same length, but they are turned at di�erent angles—that
is, they are pointing in di�erent directions—because they represent
a photon emitted by the source at di�erent times.



After shrinking the arrow at T1 by the amounts prescribed in steps
2, 3 and 4—and turning it the 90° prescribed in step 3—we end up
with arrow 1 (see Fig. 68c). The same goes for the arrows 2 through
6. Thus arrows 1 through 6 are all the same (shortened) length, and
are turned relative to each other in exactly the same amount as the
arrows at T1 through T6.

Next, we add arrows 1 to 6. Connecting the arrows in order from
1 to 6, we get something like an arc, or part of a circle. The �nal
arrow forms the chord of this arc. The length of the �nal arrow
increases with the thickness of the glass—thicker glass means more
sections, more arrows, and therefore more of a circle—until half a
circle is reached (and the �nal arrow is its diameter). Then the
length of the �nal arrow decreases as the thickness of the glass
continues to increase, and the circle becomes complete to begin a
new cycle. The square of this length is the probability of the event,
and it varies in the cycle of zero to 16%.

There is a mathematical trick we can use to get the same answer
(see Fig. 68d): If we draw arrows from the center of the “circle” to
the tail of arrow 1 and to the head of arrow 6, we get two radii. If
the radius arrow from the center to arrow 1 is turned 180°
(“subtracted”), then it can be combined with the other radius arrow
to give us the same �nal arrow! That’s what I was doing in the �rst
lecture: these two radii are the two arrows I said represented the
“front surface” and “back surface” re�ections. They each have the
famous length of 0.2.10

Thus we can get the correct answer for the probability of partial
re�ection by imagining (falsely) that all re�ection comes from only
the front and back surfaces. In this intuitively easy analysis, the
“front surface” and “back surface” arrows are mathematical
constructions that give us the right answer, whereas the analysis we
just did—with the space-time drawing and the arrows forming part
of a circle—is a more accurate representation of what is really going



on: partial re�ection is the scattering of light by electrons inside the
glass.

Now, what about the light that goes through the layer of glass?
First, there is an amplitude that the photon goes straight through
the glass without hitting any electrons (see Fig. 69a). This is the
most important arrow in terms of length. But there are six other
ways a photon could reach the detector below the glass: a photon
could hit X1 and scatter the new photon down to B; a photon could
hit X2 and scatter the new photon down to B, and so on. These six
arrows all have the same length as the arrows that formed the
“circle” in the previous example: their length is based on that same
amplitude of an electron in the glass to scatter a photon, S. But this
time, all six arrows point in the same direction, because the length
of all six paths that involve one scattering is the same. The direction
of these minor arrows is at right angles to the main arrow for
transparent substances such as glass. When the minor arrows are
added to the main arrow, they result in a �nal arrow that has the
same length as the main arrow, but is turned in a slightly di�erent
direction. The thicker the glass, the more minor arrows there are,
and the more the �nal arrow is turned. That’s how a focusing lens
really works: the �nal arrows for all the paths can be made to point
in the same direction by inserting extra thicknesses of glass into the
shorter paths.



FIGURE 69. The largest amplitude for light that is transmitted through the layer of glass to the
detector at B comes from the part that represents no scattering by the electrons inside the glass,
shown in (a). To this arrow we add six small arrows that represent the scattering of light from
each of the sections, represented by points X1 to X6. These six arrows have the same length
(because the amplitude for scattering is the same anywhere in the glass) and point in the same
direction (because the length of each path from the source through any point X to B is the same).
After adding the small arrows to the large one, we �nd the �nal arrow for the transmission of
light through a layer of glass is turned more than what we would have expected if the light came
only directly. For this reason it appears to us that light takes longer to go through glass than it
takes to go through a vacuum or through air. The amount of turning by the �nal arrow caused by
the electrons in a material is called the “index of refraction.”

For transparent materials, the little arrows are at right angles to the main arrow (they actually
curve around when we include double and triple scatterings, keeping the �nal arrow from being
longer than the main arrow: Nature always has it worked out so we never get more light out than
we put in). For materials that are partially opaque—that absorb light to an extent—the little
arrows point toward the main arrow, resulting in a �nal arrow that is signi�cantly shorter than
expected, shown in (b). This shorter �nal arrow represents a reduced probability of a photon
being transmitted through partially opaque material.

The same e�ect would appear if photons went slower through
glass than through air: there would be extra turning of the �nal
arrow. That’s why I said earlier that light appears to go slower
through glass (or water) than through air. In reality, the “slowing”
of the light is extra turning caused by the atoms in the glass (or



water) scattering the light. The degree to which there is extra
turning of the �nal arrow as light goes through a given material is
called its “index of refraction.”11

For substances that absorb light, the minor arrows are at less than
right angles to the main arrow (see Fig. 69b). This causes the �nal
arrow to be shorter than the main arrow, indicating that the
probability of a photon going through partially opaque glass is
smaller than through transparent glass.

Thus it is that all the phenomena and the arbitrary numbers
mentioned in the �rst two lectures—such as partial re�ection with
an amplitude of 0.2, the “slowing” of light in water and glass, and
so on—are explained in more detail by just the three basic actions—
three actions that do, in fact, explain nearly everything else, too.

It is hard to believe that nearly all the vast apparent variety in
Nature results from the monotony of repeatedly combining just
these three basic actions. But it does. I’ll outline a bit of how some
of this variety arises.

We may start with photons (see Fig. 70). What is the probability
that two photons, at points 1 and 2 in space-time, go to two
detectors, at points 3 and 4? There are two main ways this event
could happen and each depends on two things happening
concomitantly: the photons could go directly—P(1 to 3)*P(2 to 4)—
or they could “cross over”—P(1 to 4)*P(2 to 3). The resulting
amplitudes for these two possibilities are added, and there is
interference (as we saw in the second lecture), making the �nal
arrow vary in length, depending on the relative location of the
points in space-time.

What if we make 3 and 4 the same point in space-time (see Fig.
71)? Let’s say both photons end up at point 3, and see how this
a�ects the probability of the event. Now we have P(1 to 3)*P(2 to 3)
and P(2 to 3)*P(1 to 3), which result in two identical arrows. When
added, their sum is twice the length of either one, and produces a
�nal arrow whose square is four times the square of either arrow



alone. Be-cause the two arrows are identical, they are always “lined
up.” In other words, the interference doesn’t �uctuate according to
the relative separation between points 1 and 2; it is always positive.
If we didn’t think about the always positive interference of the two
photons, we should have thought that we would get twice the
probability, on average. Instead, we get four times the probability
all the time. When many photons are involved, this more-than-
expected probability increases even further.

FIGURE 70. Photons at points 1 and 2 in space-time have an amplitude to arrive at points 3 and
4 in space-time that is approximated by considering two main ways the event could happen: P(1
to 3) * P(2 to 4) and P(1 to 4) * P(2 to 3), shown above. Depending on the relative locations of
points 1, 2, 3, and 4, there are varying degrees of interference.

FIGURE 71. When points 4 and 3 are made to converge, the two arrows—P(1 to 3) * P(2 to 3)
and P(2 to 3) * P(1 to 3)—are identical in length and direction. When they are added they
always “line up” and form an arrow with twice the length of either arrow alone, with a square
four times as large. Thus photons tend to go to the same point in space-time. This e�ect is
magni�ed even more by more photons. This is the basis of a laser’s operation.



This results in a number of practical e�ects. We can say that
photons tend to get into the same condition, or “state” (the way the
amplitude to �nd one varies in space). The chance that an atom
emits a photon is enhanced if some photons (in a state that the atom
can emit into) are already present. This phenomenon of “stimulated
emission” was discovered by Einstein when he launched the
quantum theory proposing the photon model of light. Lasers work
on the basis of this phenomenon.

FIGURE 72. If two electrons (with the same polarization) try to go to the same point in space-
time, the interference is always negative because of the e�ects of polarization: the two identical
arrows—E(1 to 3) * E(2 to 3) and E(2 to 3) * E(1 to 3)—are subtracted to make a �nal arrow
of no length. The aversion of two electrons to occupy the same place in space-time is called the
“Exclusion Principle,” and accounts for the great variety of atoms in the universe.

If we made the same comparison with our fake, spin-zero
electrons, the same thing would happen. But in the real world,
where electrons are polarized, something very di�erent happens: the
two arrows, E(1 to 3) * E(2 to 4) and E(1 to 4) * E(2 to 3), are
subtracted—one of them is turned 180° before they are added.
When points 3 and 4 are the same, the two arrows have the same
length and direction and thus cancel out when they are subtracted
(see Fig. 72). That means electrons, unlike photons, do not like to go
to the same place; they avoid each other like the plague—no two
electrons with the same polarization can be at the same point in
space-time—it’s called the “exclusion principle.”



This exclusion principle turns out to be the origin of the great
variety of chemical properties of the atoms. One proton exchanging
photons with one electron dancing around it is called a hydrogen
atom. Two protons in the same nucleus exchanging photons with
two electrons (polarized in opposite directions) is called a helium
atom. You see, the chemists have a complicated way of counting:
instead of saying “one, two, three, four, �ve protons,” they say,
“hydrogen, helium, lithium, beryllium, boron.”

There are only two states of polarization available to electrons, so
in an atom with three protons in the nucleus exchanging photons
with three electrons—a condition called a lithium atom—the third
electron is farther away from the nucleus than the other two (which
have used up the nearest available space), and exchanges fewer
photons. This causes the electron to easily break away from its own
nucleus under the in�uence of photons from other atoms. A large
number of such atoms close together easily lose their individual
third electrons to form a sea of electrons swimming around from
atom to atom. This sea of electrons reacts to any small electrical
force (photons), generating a current of electrons—I am describing
lithium metal conducting electricity. Hydrogen and helium atoms do
not lose their electrons to other atoms. They are “insulators.”

All the atoms—more than one hundred di�erent kinds—are made
up of a certain number of protons exchanging photons with the
same number of electrons. The patterns in which they gather are
complicated and o�er an enormous variety of properties: some are
metals, some are insulators, some are gases, others are crystals;
there are soft things, hard things, colored things, and transparent
things—a terri�c cornucopia of variety and excitement that comes
from the exclusion principle and the repetition again and again and
again of the three very simple actions P(A to B), E(A to B), and j. (If
the electrons in the world were unpolarized, all the atoms would
have very similar properties: the electrons would all cluster



together, close to the nucleus of their own atom, and would not be
easily attracted to other atoms to make chemical reactions.)

You might wonder how such simple actions could produce such a
complex world. It’s because phenomena we see in the world are the
result of an enormous intertwining of tremendous numbers of
photon exchanges and interferences. Knowing the three
fundamental actions is only a very small beginning toward
analyzing any real situation, where there is such a multitude of
photon exchanges going on that it is impossible to calculate—
experience has to be gained as to which possibilities are more
important. Thus we invent such ideas as “index of refraction” or
“compressibility” or “valence” to help us calculate in an
approximate way when there’s an enormous amount of detail going
on underneath. It’s analogous to knowing the rules of chess—which
are fundamental and simple—compared to being able to play chess
well, which involves understanding the character of each position
and the nature of various situations—which is much more advanced
and di�cult.

The branches of physics that deal with questions such as why iron
(with 26 protons) is magnetic, while copper (with 29) is not, or why
one gas is transparent and another one is not, are called “solid-state
physics,” or “liquid-state physics,” or “honest physics.” The branch
of physics that found these three simple little actions (the easiest
part) is called “fundamental physics”—we stole that name in order
to make the other physicists feel uncomfortable! The most
interesting problems today—and certainly the most practical
problems—are obviously in solid-state physics. But someone said
there is nothing so practical as a good theory, and the theory of
quantum electrodynamics is de�nitely a good theory!

Finally, I would like to return to that number 1.00115965221,
the number that I told you about in the �rst lecture that has been
measured and calculated so carefully. The number represents the
response of an electron to an external magnetic �eld—something



called the “magnetic moment.” When Dirac �rst worked out the
rules to calculate this number, he used the formula for E(A to B) and
got a very simple answer, which we will consider in our units as 1.
The diagram for this �rst approximation of the magnetic moment of
an electron is very simple—an electron goes from place to place in
space-time and couples with a photon from a magnet (see Fig. 73).

FIGURE 73. The diagram for Dirac’s calculation of the magnetic moment of an electron is very
simple. The value represented by this diagram will be called 1.

After some years it was discovered that this value was not exactly
1, but slightly more—something like 1.00116. This correction was
worked out for the �rst time in 1948 by Schwinger as j*j divided by
2 pi, and was due to an alternative way the electron can go from
place to place: instead of going directly from one point to another,
the electron goes along for a while and suddenly emits a photon;
then (horrors!) it absorbs its own photon (see Fig. 74). Perhaps
there’s something “immoral” about that, but the electron does it! To
calculate the arrow for this alternative, we have to make an arrow
for every place in space-time that the photon can be emitted and
every place it can be absorbed. Thus there will be two extra E(A to
B)’s, a P(A to B) and two extra j’s, all multiplied together. Students
learn how to do this simple calculation in their elementary quantum
electrodynamics course, in their second year of graduate school.



FIGURE 74. Laboratory experiments show that the actual value of the magnetic moment of an
electron is not 1, but a little bit more. This is because there are alternatives: the electron can emit
a photon and then absorb it—requiring two extra E(A to B)’s, a P(A to B), and two extra j’s.
Schwinger calculated the adjustment that takes this alternative into account to be j*j divided by 2
pi. Since this alternative is indistinguishable experimentally from the original way the electron can
go—an electron starts at point 1 and ends up at point 2—the arrows for the two alternatives are
added, and there is interference.

But wait: experiments have measured the behavior of an electron
so accurately that we have to consider still other possibilities in our
calculations—all the ways the electron can go from place to place
with four extra couplings (see Fig. 75). There are three ways the
electron can emit and absorb two photons. There’s also a new,
interesting possibility (shown at the right of Fig. 75): one photon is
emitted; it makes a positron-electron pair, and—again, if you’ll hold
your “moral” objections—the electron and positron annihilate,
creating a new photon that is ultimately absorbed by the electron.
That possibility also has to be �gured in!

It took two “independent” groups of physicists two years to
calculate this next term, and then another year to �nd out there was
a mistake—experimenters had measured the value to be slightly
di�erent, and it looked for awhile that the theory didn’t agree with
experiment for the �rst time, but no: it was a mistake in arithmetic.
How could two groups make the same mistake? It turns out that
near the end of the calculation the two groups compared notes and
ironed out the di�erences between their calculations, so they were
not really independent.



FIGURE 75. Laboratory experiments became so accurate that further
alternatives, involving four extra couplings (over all possible intermediate
points in space-time), had to be calculated, some of which are shown
here. The alternative on the right involves a photon disintegrating into a
positron-electron pair (as described in Fig. 64), which annihilates to
form a new photon, which is ultimately absorbed by the electron.

The term with six extra j’s involves even more possible ways the
event can happen, and I’ll draw a few of them for you now (see Fig.
76). It took twenty years to get this extra accuracy �gured into the
theoretical value of the magnetic moment of an electron. Meanwhile
the experimenters made even more detailed experiments and added
a few more digits onto their number—and the theory still agreed
with it.



FIGURE 76. Calculations are presently going on to make the theoretical value even more
accurate. The next contribution to the amplitude, which represents all possibilities with six extra
couplings, involves something like 70 diagrams, three of which are shown here. As of 1983, the
theoretical number was 1.00115965246, with an uncertainty of about 20 in the last two digits;
the experimental number was 1.00115965221, with an uncertainty of about 4 in the last digit.
This accuracy is equivalent to measuring the distance from Los Angeles to New York, a distance
of over 3,000 miles, to within the width of a human hair.

So, to make our calculations we make these diagrams, write
down what they correspond to mathematically, and add the
amplitudes—a straightforward, “cookbook” process. Therefore, it
can be done by machines. Now that we have super-duper
computers, we have begun to compute the term with eight extra j’s.
At the present time the theoretical number is 1.00115965246;
experimentally, it’s 1.00115965221, plus or minus 4 in the last
decimal place. Some of the uncertainty in the theoretical value
(about 4 in the last decimal place) is due to the computer’s rounding
o� numbers; most of it (about 20) is due to the fact that the value
for j is not exactly known. The term for eight extra j’s involves
something like nine hundred diagrams, with a hundred thousand
terms each—a fantastic calculation—and it’s being done right now.

I am sure that in a few more years, the theoretical and
experimental numbers for the magnetic moment of an electron will
be worked out to still more places. Of course, I am not sure whether
the two values will still agree. That, one can never tell until one
makes the calculation and does the experiments.

And so we have come full circle to the number I chose to
“intimidate” you with at the beginning of these lectures. I hope you
understand the signi�cance of this number much better now: it
represents the extraordinary degree to which we’ve been constantly
checking that the strange theory of quantum electrodynamics is
indeed correct.

Throughout these lectures I have delighted in showing you that
the price of gaining such an accurate theory has been the erosion of
our common sense. We must accept some very bizarre behavior: the



ampli�cation and suppression of probabilities, light re�ecting from
all parts of a mirror, light travelling in paths other than a straight
line, photons going faster or slower than the conventional speed of
light, electrons going backwards in time, photons suddenly
disintegrating into a positron-electron pair, and so on. That we must
do, in order to appreciate what Nature is really doing underneath
nearly all the phenomena we see in the world.

With the exception of technical details of polarization, I have
described to you the framework by which we understand all these
phenomena. We draw amplitudes for every way an event can happen
and add them when we would have expected to add probabilities
under ordinary circumstances; we multiply amplitudes when we
would have expected to multiply probabilities. Thinking of
everything in terms of amplitudes may cause di�culties at �rst
because of their abstraction, but after a while, one gets used to this
strange language. Underneath so many of the phenomena we see
every day are only three basic actions: one is described by the
simple coupling number, j; the other two by functions—P(A to B)
and E(A to B)—both of which are closely related. That’s all there is
to it, and from it all the rest of the laws of physics come.

However, before I �nish this lecture, I would like to make a few
additional remarks. One can understand the spirit and character of
quantum electrodynamics without including this technical detail of
polarization. But I’m sure you’ll all feel uncomfortable unless I say
something about what I’ve been leaving out. Photons, it turns out,
come in four di�erent varieties, called polarizations, that are related
geometrically to the directions of space and time. Thus there are
photons polarized in the X, Y, Z, and T directions. (Perhaps you
have heard somewhere that light comes in only two states of
polarization—for example, a photon going in the Z direction can be
polarized at right angles, either in the X or Y direction. Well, you
guessed it: in situations where the photon goes a long distance and
appears to go at the speed of light, the amplitudes for the Z and T



terms exactly cancel out. But for virtual photons going between a
proton and an electron in an atom, it is the T component that is the
most important.)

In a similar manner, an electron can be in one of four conditions
that are also related to geometry, but in a somewhat more subtle
manner. We can call these conditions 1, 2, 3, and 4. Calculating the
amplitude for an electron going from point A to point B in space-
time becomes somewhat more complicated, because we can now ask
questions such as, “What is the amplitude that an electron liberated
in condition 2 at the point A arrives in condition 3 at the point B?”
The sixteen possible combinations—coming from the four di�erent
conditions an electron can start in at A and the four di�erent
conditions it can end up in at B—are related in a simple
mathematical way to the formula for that E(A to B) I told you about.

For a photon, no such modi�cation is necessary. Thus a photon
polarized in the X direction at A will still be polarized in the X
direction at B, arriving with the amplitude P(A to B).

Polarization produces a large number of di�erent possible
couplings. We could ask, for example, “What is the amplitude that
an electron in condition 2 absorbs a photon polarized in the X
direction and thereby turns into an electron in condition 3?” All the
possible combinations of polarized electrons and photons do not
couple, but those that do, do so with the same amplitude 7, but
sometimes with an additional turn of the arrow by some multiple of
90°.

These possibilities for the di�erent kinds of polarization and the
nature of the couplings can all be deduced in a very elegant and
beautiful manner from the principles of quantum electrodynamics
and two further assumptions: 1) the results of an experiment are not
a�ected if the apparatus with which you are making experiments is
turned in some other direction, and 2) it also doesn’t make any
di�erence if the apparatus is in a spaceship moving at some
arbitrary speed. (This is the principle of relativity.)



This elegant and general analysis shows that every particle must
be in one or another class of possible polarizations, which we call
spin 0, spin 1/2, spin 1, spin 3/2, spin 2, and so on. The di�erent
classes behave in di�erent ways. A spin 0 particle is the simplest—it
has just one component, and is not e�ectively polarized at all. (The
fake electrons and photons that we have been considering in this
lecture are spin 0 particles. So far, no fundamental spin 0 particles
have been found.) A real electron is an example of a spin 1/2
particle, and a real photon is an example of a spin 1 particle. Both
spin 1/2 and spin 1 particles have four components. The other types
would have more components, such as spin 2 particles, with ten
components.

I said that the connection between relativity and polarization is
simple and elegant, but I’m not sure I can explain it simply and
elegantly! (It would take me at least one additional lecture to do it.)
Although the details of polarization are not essential to
understanding the spirit and character of quantum electrodynamics,
they are, of course, essential to the correct calculation of any real
process, and often have profound e�ects.

In these lectures we have been concentrating on relatively simple
interactions between electrons and photons at very small distances,
in which only a few particles are involved. But I would like to make
one or two remarks about how these interactions appear in the
larger world, where very, very large numbers of photons are being
exchanged. On such a large scale, the calculation of arrows gets very
complicated.

There are, however, some situations that are not so di�cult to
analyze. There are circumstances, for example, where the amplitude
to emit a photon by a source is independent of whether another
photon has been emitted. This can happen when the source is very
heavy (the nucleus of an atom), or when a very large number of
electrons are all moving the same way, such as up and down in the
antenna of a broadcasting station or going around in the coils of an



electromagnet. Under such circumstances a large number of photons
are emitted, all of exactly the same kind. The amplitude of an
electron to absorb a photon in such an environment is independent
of whether it or any other electron has absorbed other photons
before. Therefore its entire behavior can be given by just this
amplitude for an electron to absorb a photon, which depends only
on the electron’s position in space and time. Physicists use ordinary
words to describe this circumstance. They say the electron is moving
in an external �eld.

Physicists use the word “�eld” to describe a quantity that
depends on position in space and time. Temperatures in the air
provide a good example: they vary according to where and when
you make your measurements. When we take polarization into
account, there are more components to the �eld. (There are four
components—corresponding to the amplitude to absorb each of the
di�erent kinds of polarization (X, Y, Z, T) the photon might be in—
technically called the vector and scalar electromagnetic potentials.
From combinations of these, classical physics derives more
convenient components called the electric and magnetic �elds.)

In a situation where the electric and magnetic �elds are varying
slowly enough, the amplitude for an electron to travel over a very
long distance depends on the path it takes. As we saw earlier in the
case of light, the most important paths are the ones where the
angles of the amplitudes from nearby paths are nearly the same. The
result is that the particle doesn’t necessarily go in a straight line.

This brings us all the way back to classical physics, which
supposes that there are �elds and that electrons move through them
in such a way as to make a certain quantity least. (Physicists call
this quantity “action” and formulate this rule as the “principle of
least action.”) This is one example of how the rules of quantum
electrodynamics produce phenomena on a large scale. We could
expand in many directions from here, but we have to limit the scope
of these lectures somewhere. I just wanted to remind you that the



e�ects that we see on a large scale and the strange phenomena we
see on a small scale are both produced by the interaction of
electrons and photons, and are all described, ultimately, by the
theory of quantum electrodynamics.

1 The complete story on this situation is very interesting: if the detectors at A and B are
not perfect, and detect photons only some of the time, then there are three distinguishable
�nal conditions: 1) the detectors at A and D go o�; 2) the detectors at B and D go o�, and
3) the detector at D goes o� alone, with A and B unchanged (they are left in their initial
state). The probabilities for the �rst two events are calculated in the way explained above
(except that there will be an extra step—a shrink for the probability that the detector at A
[or B] goes o�, since the detectors are not perfect). When D goes o� alone, we can’t
separate the two cases, and Nature plays with us by bringing in interference—the same
peculiar answer we would have had if there were no detectors (except that the �nal arrow
is shrunk by the amplitude that the detectors do not go o�). The �nal result is a mixture,
the simple sum of all three cases (see Fig. 51). As the reliability of the detectors increases,
we get less interference.

2 In these lectures, I am plotting a point’s location in space in one dimension, along the
x-axis. To locate a point in three-dimensional space, a “room” has to be set up, and the
distance of the point from the �oor and from each of two adjacent walls (all at right angles
to each other) has to be measured. These three measurements can be labeled Xl Y1 and Z1.
The actual distance from this point to a second point with measurements X2, Y2, Z2 can be
calculated using a “three-dimensional Pythagorean Theorem”: the square of this actual
distance is

(X2 – X1)2 + (Y2 – Y1)2 + (Z2 – Z1)2.

The excess of this over the time di�erence, squared—

(X2 – X1)2 + (Y2 – Y1)2 + (Z2 – Z1)2 – (T2 – T1)2

—is sometimes called “the Interval,” or I, and is the combination that Einstein’s theory of
relativity says that P(A to B) must depend on. Most of the contribution to the �nal arrow
for P(A to B) is just where you would expect it—where the di�erence in distance is equal to
the di�erence in time (that is, when I is zero). But in addition; there is a contribution when
I is not zero, that is inversely proportional to I: it points in the direction of 3 o’clock when I
is more than zero (when light is going faster than c), and points toward 9 o’clock when I is
less than zero. These later contributions cancel out in many circumstances (see Fig. 56).

3 The formula for E(A to B) is complicated, but there is an interesting way to explain
what it amounts to. E(A to B) can be represented as a giant sum of a lot of di�erent ways
an electron could go from point A to point B in space-time (see Fig. 57): the electron could
take a “one-hop �ight,” going directly from A to B; it could take a “two-hop �ight,”
stopping at an intermediate point C; it could take a “three-hop �ight,” stopping at points D
and E, and so on. In such an analysis, the amplitude for each “hop”—from one point F to



another point G—is P(F to G), the same as the amplitude for a photon to go from a point F
to a point G. The amplitude for each “stop” is represented by n2, n being the same number
I mentioned before which we used to make our calculations come out right.

The formula for E(A to B) is thus a series of terms: P(A to B) [the “one-hop” �ight] +
P(A to C)*n2*P(C to B) [“two-hop” �ights, stopping at C] + P(A to D)*n2*P(D to E) *
n2*P(E to B) [“three-hop” �ights, stopping at D and E] + … for all possible intermediate
points C, D, E, and so on.

Note that when n increases, the nondirect paths make a greater contribution to the �nal
arrow. When n is zero (as for the photon), all terms with an n drop out (because they are
also equal to zero), leaving only the �rst term, which is P(A to B). Thus E(A to B) and P(A
to B) are closely related.

4 This number, the amplitude to emit or absorb a photon, is sometimes called the
“charge” of a particle.

5 Had I included the e�ects of the polarization of the electron, the “second-way” arrow
would have been “subtracted”—turned 180° and added. (More on this comes later in this
lecture.)

6 The �nal conditions of the experiment for these more complicated ways are the same
as for the simpler ways—electrons start at points 1 and 2 and end up at points 3 and 4—so
we cannot distinguish between these alternatives and the �rst two. Therefore we must add
the arrows for these two ways to the two ways just previously considered.

7 Such an exchanged photon that never really appears in the initial or �nal conditions of
the experiment is sometimes called a “virtual photon.”

8 Dirac proposed the reality of “anti-electrons” in 1931; in the following year, Carl
Anderson found them experimentally and called them “positrons.” Today, positrons can be
easily made (for example, by making two photons collide with each other) and kept for
weeks in a magnetic �eld.

9 The amplitude for the photon exchange is (–j) * P(A-B) * j—two couplings and the
amplitude for a photon to go from place to place. The amplitude for a proton to have a
coupling with a photon is –j.

10 The radius of the arc evidently depends on the length of the arrow for each section,
which is ultimately determined by the amplitude S that an electron in an atom of glass
scatters a photon. This radius can be calculated using the formulas for the three basic
actions for the multitude of photon exchanges involved and summing up the amplitudes. It
is a very di�cult problem, but the radius has been calculated for relatively simple
substances with considerable success, and the variation of the radius from substance to
substance is fairly well understood using these ideas of quantum electrodynamics. It must
be said, however, that no direct calculation from �rst principles for a substance as complex
as glass has ever actually been done. In such cases, the radius is determined by experiment.
For glass, it has been determined from experiment that the radius is approximately 0.2
(when the light shines directly onto the glass at right angles)

11 Each of the arrows for re�ection by a section (that form a “circle”) has the same
length as each of the arrows that make the �nal arrow from transmission appear to turn
more. Thus there is a relationship between the partial re�ection of a material and its index
of refraction.



It appears that the �nal arrow has become longer than 1, which means that more light
comes out through the glass than went into it! It looks that way because I disregarded the
amplitudes for a photon to go down to one section, a new photon to scatter up to another
section, and then a third photon to scatter back down through the glass—and other, more
complicated possibilities—which result in the little arrows curving around and keeping the
length of the �nal arrow between 0.92 and 1 (so the total probability of light being
re�ected or transmitted by the layer of glass is always 100%).



4

Loose Ends

I am going to divide this lecture into two parts. First, I am going to
talk about problems associated with the theory of quantum
electrodynamics itself, supposing that all there is in the world is
electrons and photons. Then I will talk about the relation of
quantum electrodynamics to the rest of physics.

The most shocking characteristic of the theory of quantum
electrodynamics is the crazy framework of amplitudes, which you
might think indicates problems of some sort! However, physicists
have been �ddling around with amplitudes for more than �fty years
now, and have gotten very used to it. Furthermore, all the new
particles and new phenomena that we are able to observe �t
perfectly with everything that can be deduced from such a
framework of amplitudes, in which the probability of an event is the
square of a �nal arrow whose length is determined by combining
arrows in funny ways (with interferences, and so on). So this
framework of amplitudes has no experimental doubt about it: you can
have all the philosophical worries you want as to what the
amplitudes mean (if, indeed, they mean anything at all), but
because physics is an experimental science and the framework
agrees with experiment, it’s good enough for us so far.

There is a set of problems associated with the theory of quantum
electrodynamics that has to do with improving the method of
calculating the sum of all the little arrows—various techniques that
are available in di�erent circumstances—that take the graduate



students three or four years to master. Since they are technical
problems, I am not going to discuss them here. It’s just a matter of
continuously improving the techniques for analyzing what the
theory really has to say in di�erent circumstances.

But there is one additional problem that is characteristic of the
theory of quantum electrodynamics itself, which took twenty years
to overcome. It has to do with ideal electrons and photons and the
numbers n and j.

FIGURE 77. When we calculate the amplitude for an electron to go from point to point in space-
time, we use the formula for E(A to B) for the direct path. (Then we make “corrections” that
include one or more photons being emitted and absorbed.) E(A to B) depends on (X2 – X1), (T2 –
T1) and n, a number we stick into the formula to make the answer come out right. The number n
is called the “rest-mass” of an “ideal” electron, and cannot be measured experimentally because
the rest-mass of a real electron, m, includes all the “corrections.” There is a certain di�culty in
calculating the n to be used in E(A to B), that took twenty years to overcome.

If electrons were ideal, and went from point to point in space-
time only by the direct path (shown at the left in Fig. 77), then there
would be no problem: n would simply be the mass of an electron
(which we can determine by observation), and j would simply be its
“charge” (the amplitude for the electron to couple with a photon). It
can also be determined by experiment.

But no such ideal electrons exist. The mass we observe in the
laboratory is that of a real electron, which emits and absorbs its own
photons from time to time, and therefore depends on the amplitude
for coupling, j. And the charge we observe is between a real electron



and a real photon—which can form an electron-positron pair from
time to time—and therefore depends on E (A to B), which involves n
(see Fig. 78). Since the mass and charge of an electron are a�ected
by these and all other alternatives, the experimentally measured
mass, m, and the experimentally measured charge, e, of the electron
are di�erent from the numbers we use in our calculations, n and j.

FIGURE 78. The experimentally measured amplitude for an electron to couple with a photon, a
mysterious number, e, is a number determined by experiment that includes all the “corrections”
for a photon going from point to point in space-time, of which two are shown here. When
calculating, we need a number, j, that does not include these corrections, but includes only the
photon going directly from point to point. A di�culty exists with computing this j that is similar
to the di�culty in computing the value of n.

If there were a de�nite mathematical connection between n and j
on the one hand, and m and e on the other, there would still be no
problem: we would simply calculate what values of n and j we need
to start with in order to end up with the observed values, m and e.
(If our calculations didn’t agree with m and e, we would jiggle the
original n and j around until they did.)

Let’s see how we actually calculate m. We write a series of terms
that is something like the series we saw for the magnetic moment of
the electron: the �rst term has no couplings—just E (A to B)—and
represents an ideal electron going directly from point to point in
space-time. The second term has two couplings and represents a
photon being emitted and absorbed. Then come terms with four, six,



and eight couplings, and so on (some of these “corrections” are
shown in Fig. 77).

When calculating terms with couplings, we must consider (as
always) all the possible points where couplings can occur, right
down to cases where the two coupling points are on top of each
other—with zero distance between them. The problem is, when we
try to calculate all the way down to zero distance, the equation
blows up in our face and gives meaningless answers—things like
in�nity. This caused a lot of trouble when the theory of quantum
electrodynamics �rst came out. People were getting in�nity for
every problem they tried to calculate! (One should be able to go
down to zero distance in order to be mathematically consistent, but
that’s where there is no n or j that makes any sense; that’s where the
trouble is.)

Well, instead of including all possible coupling points down to a
distance of zero, if one stops the calculation when the distance
between coupling points is very small—say, 10-30 centimeters,
billions and billions of times smaller than anything observable in
experiment (presently 10-16 centimeters)—then there are de�nite
values for n and j that we can use so that the calculated mass comes
out to match the m observed in experiments, and the calculated
charge matches the observed charge, e. Now, here’s the catch: if
somebody else comes along and stops their calculation at a di�erent
distance—say, 10-40 centimeters—their values for n and j needed to
get the same m and e come out di�erent!

Twenty years later, in 1949, Hans Bethe and Victor Weisskopf
noticed something: if two people who stopped at di�erent distances
to determine n and j from the same m and e then calculated the
answer to some other problem—each using the appropriate but
di�erent values for n and j—when all the arrows from all the terms
were included, their answers to this other problem came out nearly
the same! In fact, the closer to zero distance that the calculations for
n and j were stopped, the better the �nal answers for the other



problem would agree! Schwinger, Tomonaga, and I independently
invented ways to make de�nite calculations to con�rm that it is true
(we got prizes for that). People could �nally calculate with the
theory of quantum electrodynamics!

So it appears that the only things that depend on the small
distances between coupling points are the values for n and j—
theoretical numbers that are not directly observable anyway; everything
else, which can be observed, seems not to be a�ected.

The shell game that we play to �nd n and j is technically called
“renormalization.” But no matter how clever the word, it is what I
would call a dippy process! Having to resort to such hocus-pocus
has prevented us from proving that the theory of quantum
electrodynamics is mathematically self-consistent. It’s surprising that
the theory still hasn’t been proved self-consistent one way or the
other by now; I suspect that renormalization is not mathematically
legitimate. What is certain is that we do not have a good
mathematical way to describe the theory of quantum
electrodynamics: such a bunch of words to describe the connection
between n and j and m and e is not good mathematics.1

There is a most profound and beautiful question associated with
the observed coupling constant, e—the amplitude for a real electron
to emit or absorb a real photon. It is a simple number that has been
experimentally determined to be close to –0.08542455. (My
physicist friends won’t recognize this number, because they like to
remember it as the inverse of its square: about 137.03597 with an
uncertainty of about 2 in the last decimal place. It has been a
mystery ever since it was discovered more than �fty years ago, and
all good theoretical physicists put this number up on their wall and
worry about it.)

Immediately you would like to know where this number for a
coupling comes from: is it related to pi, or perhaps to the base of
natural logarithms? Nobody knows. It’s one of the greatest damn
mysteries of physics: a magic number that comes to us with no



understanding by man. You might say the “hand of God” wrote that
number, and “we don’t know how He pushed His pencil.” We know
what kind of a dance to do experimentally to measure this number
very accurately, but we don’t know what kind of a dance to do on a
computer to make this number come out—without putting it in
secretly!

A good theory would say that e is the square root of 3 over 2 pi
squared, or something. There have been, from time to time,
suggestions as to what e is, but none of them has been useful. First,
Arthur Eddington proved by pure logic that the number the
physicists like had to be exactly 136, the experimental number at
that time. Then, as more accurate experiments showed the number
to be closer to 137, Eddington discovered a slight error in his earlier
argument, and showed by pure logic again that the number had to
be the integer 137! Every once in a while, someone notices that a
certain combination of pi’s and e’s (the base of the natural
logarithms), and 2’s and 5’s produces the mysterious coupling
constant, but it is a fact not fully appreciated by people who play
with arithmetic that you would be surprised how many numbers you
can make out of pi’s and e’s and so on. Therefore, throughout the
history of modern physics, there has been paper after paper by
people who have produced an e to several decimal places, only to
have the next round of improved experiments disagree with it.

Even though we have to resort to a dippy process to calculate j
today, it’s possible that someday a legitimate mathematical
connection between j and e will be found. That would mean that; is
the mysterious number, and from it comes e. In such a case there
would doubtless be another batch of papers that tell us how to
calculate j “with our bare hands,” so to speak, proposing that j is 1
divided by 4 * pi, or something.

That exposes all the problems associated with quantum
electrodynamics.



When I planned these lectures, I intended to concentrate only on
the part of physics that we know very well—to describe it fully and
to say no more. But now that we’ve come this far, being a professor
(which means having the habit of not being able to stop talking at
the right time), I cannot resist telling you something about the rest
of physics.

First, I must immediately say that the rest of physics has not been
checked anywhere nearly as well as electrodynamics: some of the
things I’m going to tell you are good guesses, some are partly
worked-out theories, and others are pure speculation. Therefore this
presentation is going to look like a relative mess, compared to the
other lectures; it will be incomplete and lacking in many details.
Nevertheless, it turns out that the structure of the theory of QED
serves as an excellent basis for describing other phenomena in the
rest of physics.

I’ll begin by talking about protons and neutrons, which make up
the nuclei of atoms. When protons and neutrons were �rst
discovered it was thought that they were simple particles, but very
soon it became clear that they were not simple—simple in the sense
that their amplitude to go from one point to another could be
explained by the formula E (A to B), but with a di�erent number for
n stuck in. For example, the proton has a magnetic moment that, if
calculated in the same way as for the electron, should be close to 1.
But in fact, experimentally it comes out completely crazy—2.79!
Therefore it was soon realized that something’s going on inside the
proton that is not accounted for in the equations of quantum
electrodynamics. And the neutron, which should have no magnetic
interaction at all if it is really neutral, has a magnetic moment of
about –1.93! So it was known for a long time that something �shy is
going on inside the neutron as well.

There was also the problem of what holds the neutrons and
protons together inside the nucleus. It was realized right away that
it could not be the exchange of photons, because the forces holding



the nucleus together were much stronger—the energy required to
break up a nucleus is much greater than that required to knock an
electron away from an atom in the same proportion that an atomic
bomb is more destructive than dynamite: exploding dynamite is a
rearrangement of the electron patterns, while an exploding atomic
bomb is a rearrangement of the proton-neutron patterns.

To �nd out more about what holds the nuclei together, many
experiments were made in which protons with higher and higher
energies were smashed into nuclei. It was expected that only
protons and neutrons would come out. But when the energies
became su�ciently large, new particles came out. First there were
pions, then lambdas, and sigmas, and rhos, and they ran out of the
alphabet. Then came particles with numbers (their masses), such as
sigma 1190 and sigma 1386. It soon became clear that the number
of particles in the world was open-ended, and depended on the
amount of energy used to break apart the nucleus. There are over
four hundred such particles at present. We can’t accept four hundred
particles; that’s too complicated!2

Great inventors like Murray Gell-Mann nearly went crazy trying
to �gure out the rules by which all these particles behave, and in
the early 1970s they came up with the quantum theory of strong
interactions (or “quantum chromo-dynamics”), whose main actors
are particles called “quarks.” All of the particles made of quarks
come in two classes: some, like the proton and neutron, are made
out of three quarks (and go by the horrible name of “baryons”);
others, such as the pions, are made of a quark and an anti-quark
(and are called “mesons”).

Let me make a table of the fundamental particles as they appear
today (see Fig. 79). I’ll begin with the particles that go from point to
point according to the formula E(A to B)—modi�ed by the same
kind of polarization rules as an electron—called “spin 1/2” particles.
The �rst of these particles is the electron, and its mass number is
0.511 in units that we use all the time, called MeV.3



FIGURE 79. Our list of all the particles in the world begins with “spin 1/2” particles: the electron
(with a mass of 0.511 MeV), and two “�avors” of quarks, d and u (both with a mass of about
10 MeV). Electrons and quarks have a “charge”—that is, they couple with photons in the
following amounts (in terms of the coupling constant, –j): –1, –1/3, and +2/3.

Under the electron I will leave a space (to be occupied later), and
under that I will list two types of quarks—the d and the u. The mass
of these quarks is not exactly known; a good guess is around 10
MeV for each one. (The neutron is slightly heavier than the proton,
which seems to imply—as you will see in a moment—that the d
quark is somewhat heavier than the u quark.)

Next to each particle I will list its charge, or coupling constant, in
terms of –j, the number for couplings with photons with its sign
reversed. This makes the charge for the electron –1, consistent with
a convention started by Benjamin Franklin that we’ve been stuck
with ever since. For the d quark the amplitude to couple with a
photon is –1/3, and for the u quark it is +2/3. (Had Benjamin
Franklin known about quarks, he might have at least made the
charge of an electron -3!)

Now, the charge of a proton is +1, and a neutron’s charge is
zero. With some �ddling about with the numbers, you can see that a
proton—made of three quarks—must be two u’s and a d, while a
neutron—also made of three quarks—must be two d’s and a u (see
Fig. 80).



FIGURE 80. All particles made of quarks come in one of only two possible classes: those made of
a quark and an anti-quark, and those made of three quarks, of which the proton and the neutron
are the most common examples. The charge of the d and u quarks combine to make +1 for the
proton and zero for the neutron. The fact that the proton and neutron are made of charged
particles going around inside them gives a clue as to why the proton has a magnetic moment
higher than 1, and why the supposedly neutral neutron has a magnetic moment at all.

What holds the quarks together? Is it the photons going back and
forth? (Because a d quark has a charge of –1/3 and a u quark has a
charge of +2/3, quarks, as well as electrons, emit and absorb
photons.) No, these electrical forces are far too weak to do that.
Something else has been invented to go back and forth and hold
quarks together; something called “gluons.”4 Gluons are an example
of another type of particle called “spin 1” (as are photons); they go
from point to point with an amplitude determined by exactly the
same formula as for photons, P(A to B). The amplitude for gluons to
be emitted or absorbed by quarks is a mysterious number, g, that is
much larger than j (see Fig. 81).



FIGURE 81. “Gluons” hold quarks together to make protons and neutrons, and indirectly
account for the fact that protons and neutrons hold themselves together in the nucleus of an
atom. Gluons hold quarks together with forces much stronger than electrical forces. The coupling
constant of gluons, g, is much larger than j, which makes the calculation of terms with couplings
in them much more di�cult: the best accuracy that can be hoped for so far is only 10%.

The diagrams we make of quarks exchanging gluons are very
similar to the pictures we draw for electrons exchanging photons
(see Fig. 82). So similar, in fact, that you might say that the
physicists have no imagination—that they just copied the theory of
quantum electrodynamics for the strong interactions! And you’re
right: that’s what we did, but with a little twist.

FIGURE 82. The diagram of one way that two quarks can exchange a gluon is so similar to a
diagram of two electrons exchanging a photon that you might think the physicists just copied the
theory of quantum electrodynamics for the “strong interactions” holding the quarks inside protons
and neutrons. Well, they did—almost.

The quarks have an additional type of polarization that is not
related to geometry. The idiot physicists, unable to come up with
any wonderful Greek words anymore, call this type of polarization
by the unfortunate name of “color,” which has nothing to do with
color in the normal sense. At a particular time, a quark can be in
one of three conditions, or “colors”—R, G, or B (can you guess what
they stand for?). A quark’s “color” can be changed when the quark
emits or absorbs a gluon. The gluons come in eight di�erent types,
according to the “colors” they can couple with. For example, if a red
quark changes to green, it emits a red-antigreen gluon—a gluon that
takes the red from the quark and gives it green (“antigreen” means



the gluon is carrying green in the opposite direction). This gluon
could be absorbed by a green quark, which changes to red (see Fig.
83). There are eight di�erent possible gluons, such as red-antired,
red-antiblue, red-antigreen, and so on (you’d think there’d be nine,
but for technical reasons, one is missing). The theory is not very
complicated. The complete rule of gluons is: gluons couple with
things having “color”—it just requires a little bookkeeping to keep
track of where the “colors” go.

FIGURE 83. Gluon theory di�ers from electrodynamics in that gluons couple with things that are
“colored” (in one of three possible conditions—“red,” “green,” and “blue”). Here, a red u quark
changes to green by emitting a red-antigreen gluon that is absorbed by a green d quark changing
to red. (If the “color” is being carried backwards in time, it takes the pre�x “anti.”)

There is, however, an interesting possibility created by this rule:
gluons can couple with other gluons (see Fig. 84). For instance, a
green-antiblue gluon meeting a red-antigreen gluon results in a red-
antiblue gluon. Gluon theory is very simple—you just make the
diagram and follow the “colors.” The strengths of the couplings in
all the diagrams is determined from the coupling constant for
gluons, g.

Gluon theory is really not a great deal di�erent in form from
quantum electrodynamics. How, then, does it compare with
experiment? For example, how does the observed magnetic moment
of the proton compare with the value calculated from the theory?

The experiments are very accurate—they show the magnetic
moment to be 2.79275. At the very best, the theory can only come



up with 2.7 plus or minus 0.3—if you’re su�ciently optimistic
about the accuracy of your analysis—an error of 10% which is
10,000 times less accurate than experiment! We have a simple,
de�nite theory that is supposed to explain all the properties of
protons and neutrons, yet we can’t calculate anything with it,
because the mathematics is too hard for us. (You can guess what I’m
working on, and I’m not getting anywhere.) The reason we can’t
calculate to any great accuracy is because the coupling constant for
gluons, g, is so much larger than for electrons. Terms with two, four,
and even six couplings are not just minor corrections to the main
amplitude; they represent considerable contributions that can’t be
ignored. Thus there are arrows from so many di�erent possibilities
that we haven’t been able to organize them in a reasonable way to
�nd out what the �nal arrow is.

FIGURE 84. Since gluons are themselves “colored,” they can couple to each other. Here a green-
antiblue gluon couples with a red-antigreen gluon to form a red-antiblue gluon. Gluon theory is
easy to understand—you just follow the “colors.”

In books it says that science is simple: you make up a theory and
compare it to experiment; if the theory doesn’t work, you throw it
away and make a new theory. Here we have a de�nite theory and
hundreds of experiments, but we can’t compare them! It’s a
situation that has never before existed in the history of physics.
We’re boxed in, temporarily, unable to come up with a method of
calculation. We’re snowed under by all the little arrows.

Despite our di�culties in calculating with the theory, we do
understand some things qualitatively about quantum



chromodynamics (strong interactions of quarks and gluons). The
objects made of quarks that we see are “colored” neutral: groups of
three quarks contain one quark of each “color,” and quark-antiquark
pairs have an equal amplitude to be red-antired, green-antigreen, or
blue-antiblue. We also understand why quarks can never be
produced as individual particles—why, no matter how much energy
is used to hit a nucleus against a proton, instead of seeing individual
quarks come out, we see a jet of mesons and baryons (quark-
antiquark pairs and groups of three quarks).

Quantum chromodynamics and quantum electrodynamics aren’t
all there is to physics. According to them, a quark cannot change its
“�avor”: once a u quark, always a u quark; once a d quark, always a
d quark. But Nature behaves di�erently, sometimes. There is a form
of radioactivity that happens slowly—the kind that people worry
about leaking out of nuclear reactors—called beta decay, which
involves a neutron changing into a proton. Since a neutron consists
of two d’s and a u-type quark while a proton is made of two u’s and
a d, what really happens is that one of the neutron’s d-type quarks
changes into a u-type quark (see Fig. 85). Here’s how it happens: the
d quark emits a new thing like a photon called a W, which has a
coupling with an electron and with another new particle called an
anti-neutrino, a neutrino going backwards in time. The neutrino is
another spin 1/2 type particle (like the electron and the quarks), but
it has no mass and no charge (it does not interact with photons). It
also does not interact with gluons; it only couples with the W (see
Fig. 86).



FIGURE 85. When a neutron disintegrates into a proton (a process called “beta decay”), the only
thing that changes is the “�avor” of one quark—from d to u—with an electron and an anti-
neutrino coming out. This process happens relatively slowly, so an intermediate particle (called a
“W-intermediate-boson”) with a very high mass (about 80,000 MeV) and a charge of –1 was
proposed.

The W is a spin 1 type particle (like the photon and the gluon),
that changes the “�avor” of a quark and takes away its charge—the
d, charged –1/3, changes into a u, charged +2/3, a di�erence of –1.
(It doesn’t change the quark’s “color.”) Because the W- takes away a
charge of –1 (and its anti-particle, the W+, takes away a charge of
+1), it can also couple with a photon. Beta decay takes much
longer than the interactions of photons and electrons, so it is
thought that the W must have a very high mass (about 80,000
MeV), unlike the photon and gluon. We have not been able to see
the W by itself because of the very high energy required to knock
loose a particle with such a very high mass.5

There is another particle, which we could think of as a neutral W,
called Z0. The Z0 does not change the charge of a quark, but does
couple with a d quark, a u quark, an electron, or a neutrino (see Fig.
87). This interaction has the misleading name of “neutral currents,”
and caused a lot of excitement when it was discovered a few years
ago.



FIGURE 86. The W couples with the electron and neutrino on the one hand, and the d and u
quark on the other.

The theory of W’s is nice and neat if you allow for a three-way
coupling between the three types of W’s (see Fig. 88). The observed
coupling constant for W’s is much the same as that for the photon—
in the neighborhood of j. Therefore the possibility exists that the
three W’s and the photon are all di�erent aspects of the same thing.
Stephen Weinberg and Abdus Salam tried to combine quantum
electrodynamics with what’s called the “weak interactions”
(interactions with W’s) into one quantum theory, and they did it.
But if you just look at the results they get you can see the glue, so to
speak. It’s very clear that the photon and the three W’s are
interconnected somehow, but at the present level of understanding,
the connection is di�cult to see clearly—you can still see the
“seams” in the theories; they have not yet been smoothed out so
that the connection becomes more beautiful and, therefore,
probably more correct.



FIGURE 87. When there is no change in the charge of any of the particles, the W also has no
charge (it is called Z0 in this case). Such interactions are called “neutral currents.” Two
possibilities are shown here.

FIGURE 88. A coupling between a W-1, its anti-particle (a W+1, and a neutral W (Z0) is
possible. The coupling constant for W’s is in the neighborhood of j, suggesting that W’s and
photons may be di�erent aspects of the same thing.

So there you are: quantum theory has three main types of
interaction—the “strong interactions” of quarks and gluons, the
“weak interactions” of the W’s, and the “electrical interactions” of
photons. The only particles in the world (according to this picture)
are quarks (in “�avors” u and d with three “colors” each), gluons
(eight combinations of R, G, and B), W’s (charged ± 1 and 0),
neutrinos, electrons, and photons—about twenty di�erent particles
of six di�erent types (plus their anti-particles). That’s not so bad—
about twenty di�erent particles—except that’s not all.

As nuclei were hit with protons of higher and higher energies,
new particles kept coming out. One such particle was the muon,
which is in every way exactly the same as the electron, except that
its mass is much higher—105.8 MeV, compared to 0.511 for the
electron, or about 206 times heavier. It’s just as if God wanted to try
out a di�erent number for the mass! All of the properties of the



muon are completely describable by the theory of electrodynamics
—the coupling constant j is the same and E(A to B) is the same; you
just put in a di�erent value for n.6

Because the muon has a mass about 200 times higher than the
electron, the “stopwatch hand” for a muon turns 200 times more
rapidly than that of an electron. This has enabled us to test whether
electrodynamics still behaves according to the theory at distances
200 times smaller than we’ve been able to test before—although
these distances are still more than eighty decimal places larger than
the distances at which the theory alone might run into trouble with
in�nities (see footnote on p. 129).

FIGURE 89. In the process of bombarding nuclei with protons of higher and higher energy, new
particles appear. One of these particles is the muon, or heavy electron. The theory describing the
muon’s interactions is exactly the same as for the electron, except that you just put in a higher
number for n into E(A to B). The magnetic moment of a muon should be slightly di�erent than
that of an electron because of two particular alternatives: when the electron emits a photon that
disintegrates into an electron-positron or muon-antimuon pair, the disintegration creates a pair
that is close to or much heavier in mass than the electron. On the other hand, when the muon
emits a photon that disintegrates into a muon-antimuon or positron-electron pair, this pair is close
to or much lighter in mass than the muon. Experiments con�rm this slight di�erence.

We have learned that an electron can couple with a W (see Fig.
85). When a d-quark changes into a u-quark, emitting a W, can the
W then couple with a muon instead of an electron? Yes (see Fig.
90). And what about the anti-neutrino? In the case of the W
coupling with a muon, a particle called a mu-neutrino takes the
place of the ordinary neutrino (which we will now call an electron
neutrino). So now our table of particles has two additional particles



next to the electron and the neutrino—the muon and the mu-
neutrino.

What about the quarks? Very early on, particles were known that
had to be made of heavier quarks than u or d. Thus a third quark,
called s (for “strange”) was included in the list of fundamental
particles. The s quark has a mass of about 200 MeV, compared to
about 10 MeV for the u and d quarks.

FIGURE 90. The W has an amplitude to emit a muon instead of an electron. In this case a mu-
neutrino takes the place of an electron-neutrino.

For many years we thought that there were just three “�avors” of
quarks—u, d, and s—but in 1974 a new particle called a psi-meson
was discovered that could not be made out of the three quarks.
There was also a very good theoretical argument that there had to
be a fourth quark, coupled to the s quark by a W in the same way
that the u and d quark are coupled (see Fig. 91). The “�avor” of this
quark is called c, and I haven’t got the guts to tell you what c stands
for, but you may have read it in the newspaper. The names are
getting worse and worse!

This repetition of particles with the same properties but heavier
masses is a complete mystery. What is this strange duplication of the
pattern? As Professor I. I. Rabi said of the muon when it was
discovered, “Who ordered that?”



Recently another repetition of the list has begun. As we go to
higher and higher energies, Nature seems to keep piling on these
particles as if to drug us. I have to tell you about them because I
want you to see how apparently complicated the world really looks.
It would be very misleading if I were to give you the impression that
since we’ve solved 99% of the phenomena in the world with
electrons and photons, that the other 1% of the phenomena will
take only 1% as many additional particles! It turns out that to
explain that last 1%, we need ten or twenty times as many
additional particles.

FIGURE 91. Nature seems to be repeating the spin 1/2 particles. In addition to the muon and
mu-neutrino, there are two new quarks—s and c—that have the same charge but higher masses
than their counterparts in the next column.

So here we go again: with even higher energies used in the
experiments, an even heavier electron, called the “tau,” has been
found; it has a mass of about 1,800 MeV, heavy as two protons! A
tau-neutrino has also been inferred. And now a funny particle has
been found implying a new “�avor” of quark—this time it’s “b,” for
“beauty,” and it has a charge of –1/3 (see Fig. 92). Now, I want you
to become high-class, fundamental theoretical physicists for a



moment, and predict something: a new �avor of quark will be
found, called__ (for “____”), with a charge of__, a mass of__ MeV—and
we certainly hope it’s true that it’s there!7

FIGURE 92. Here we go again! Another repetition of the spin 1/2 particles has begun at even
higher energies. This repetition will be complete if a particle with the right properties to imply the
existence of a new �avor of quark is found. Meanwhile, preparations are underway to look for
the beginning of yet another repetition at even higher energies. What causes these repetitions is a
complete mystery.

Meanwhile, experiments are being done to see if the cycle repeats
yet again. At the present time machines are being built to look for
an even heavier electron than the tau. If the mass of this supposed
particle is 100,000 MeV, they won’t be able to produce it. If it is
around 40,000 MeV, they might make it.

Mysteries like these repeating cycles make it very interesting to
be a theoretical physicist: Nature gives us such wonderful puzzles!
Why does She repeat the electron at 206 times and 3,640 times its
mass?

I’d like to make one last remark to make things absolutely
complete about the particles. When a d quark coupling to a W
changes into a u quark, it also has a small amplitude to change into
a c quark instead. When a u quark goes to a d quark, it also has a



small amplitude to change into an s quark, and an even smaller
amplitude to change into a b quark (see Fig. 93). Thus the W
“screws things up” a little bit and allows quarks to change from one
column of the table to another. Why the quarks have these relative
proportions for their amplitude to change to another type of quark
is utterly unknown.

FIGURE 93. A d quark has a small amplitude to change into a c quark instead of a u quark, and
an s quark has a small amplitude to change into a u quark instead of a c quark, with the
emission of a W in both cases. Thus the W seems to be able to change a quark’s �avor from one
column of the table to another (see Fig. 92).

So that’s everything about the rest of quantum physics. It’s a
terrible mix-up, and you might say it’s a hopeless mess physics has
got itself worked into. But it has always looked like this. Nature has
always looked like a horrible mess, but as we go along we see
patterns and put theories together; a certain clarity comes and
things get simpler. The mess I just showed you is much smaller than
the mess I would have had to make ten years ago, telling you about
the more than four hundred particles. And think about the mess at
the beginning of this century, when there was heat, magnetism,
electricity, light, X-rays, ultraviolet rays, indices of refraction,
coe�cients of re�ection and other properties of various substances,
all of which we have since put together into one theory, quantum
electrodynamics.



I would like to emphasize something. The theories about the rest
of physics are very similar to the theory of quantum
electrodynamics: they all involve the interaction of spin 1/2 objects
(like electrons and quarks) with spin 1 objects (like photons, gluons,
or W’s) within a framework of amplitudes by which the probability
of an event is the square of the length of an arrow. Why are all the
theories of physics so similar in their structure?

There are a number of possibilities. The �rst is the limited
imagination of physicists: when we see a new phenomenon we try
to �t it into the framework we already have—until we have made
enough experiments, we don’t know that it doesn’t work. So when
some fool physicist gives a lecture at UCLA in 1983 and says, “This
is the way it works, and look how wonderfully similar the theories
are,” it’s not because Nature is really similar; it’s because the
physicists have only been able to think of the same damn thing, over
and over again.

Another possibility is that it is the same damn thing over and
over again—that Nature has only one way of doing things, and She
repeats her story from time to time.

A third possibility is that things look similar because they are
aspects of the same thing—some larger picture underneath, from
which things can be broken into parts that look di�erent, like
�ngers on the same hand. Many physicists are working very hard
trying to put together a grand picture that uni�es everything into
one super-duper model. It’s a delightful game, but at the present
time none of the speculators agree with any of the other speculators
as to what the grand picture is. I am exaggerating only slightly
when I say that most of these speculative theories have no more
deep sense to them than your guess about the possibility of a t
quark, and I guarantee you that they are no better at guessing the
mass of a t quark than you are!

For example, it appears that the electron, the neutrino, the d
quark, and the u quark all go together—indeed, the �rst two couple



with the W, as do the last two. At present it is thought that a quark
can only change “colors” or “�avors.” But perhaps a quark could
disintegrate into a neutrino by coupling with an undiscovered
particle. Nice idea. What would happen? That would mean protons
are unstable.

Somebody makes up a theory: The proton is unstable. They make
a calculation and �nd that there would be no protons in the
universe anymore! So they �ddle around with the numbers, putting
a higher mass into the new particle, and after much e�ort they
predict that the proton will decay at a rate slightly less than the last
measured rate the proton has been shown not to decay at.

When a new experiment comes along and measures the proton
more carefully, the theories adjust themselves to squeeze out from
the pressure. The most recent experiment showed that the proton
doesn’t decay at a rate that is �ve times slower than what was
predicted in the last stand of the theories. What do you think
happened? The phoenix just rose again with a new modi�cation of
the theory that requires even more accurate experiments to check it.
Whether the proton decays or not is not known. To prove that it
does not decay is very di�cult.

In all of these lectures I did not discuss gravitation. The reason is,
gravitational in�uence between objects is extremely small: it is a
force that is weaker by 1 followed by 40 zeros than the electrical
force between two electrons (perhaps it’s 41 zeros). In matter,
nearly all of the electrical forces are spent holding the electrons
close to the nucleus of their atom, creating a �nely balanced
mixture of pluses and minuses that cancel out. But with gravitation,
the only force is attraction, and it keeps adding and adding as there
are more and more atoms until at last, when we get to these
ponderously large masses that we are, we can begin to measure the
e�ects of gravity—on planets, on ourselves, and so on.

Because the gravitational force is so much weaker than any of the
other interactions, it is impossible at the present time to make any



experiment that is su�ciently delicate to measure any e�ect that
requires the precision of a quantum theory of gravitation to explain
it.8 Even though there is no way to test them, there are,
nevertheless, quantum theories of gravity that involve “gravitons”
(which would appear under a new category of polarizations, called
“spin 2”), and other fundamental particles (some with spin 3/2).
The best of these theories is not able to include the particles that we
do �nd, and invents a lot of particles that we don’t �nd. The
quantum theories of gravity also have in�nities in the terms with
couplings, but the “dippy process” that is successful in getting rid of
the in�nities in quantum electrodynamics doesn’t get rid of them in
gravitation. So not only have we no experiments with which to
check a quantum theory of gravitation, we also have no reasonable
theory.

Throughout this entire story there remains one especially
unsatisfactory feature: the observed masses of the particles, m.
There is no theory that adequately explains these numbers. We use
the numbers in all our theories, but we don’t understand them—
what they are, or where they come from. I believe that from a
fundamental point of view, this is a very interesting and serious
problem.

I’m sorry if all this speculation about new particles confused you,
but I decided to complete my discussion of the rest of physics to
show you how the character of those laws—the framework of
amplitudes, the diagrams that represent the interactions to be
calculated, and so on—appears to be the same as for the theory of
quantum electrodynamics, our best example of a good theory.

Note Added in Proofreading, November 1984:

Since these lectures were given, suspicious events observed in
experiments make it appear possible that some other particle or
phenomenon, new and unexpected (and therefore not mentioned in
these lectures), may soon be discovered.



Note Added in Proofreading, April 1985:

At this moment, the “suspicous events” mentioned above appear to
be a false alarm. The situation no doubt will have changed again by
the time you read this book. Things change faster in physics than in
the book publishing business.

 

1 Another way of describing this di�culty is to say that perhaps the idea that two points
can be in�nitely close together is wrong—the assumption that we can use geometry down
to the last notch is false. If we make the minimum possible distance between two points as
small as 10-100 centimeters (the smallest distance involved in any experiment today is
around 10-16 centimeters), the in�nities disappear, all right—but other inconsistencies
arise, such as the total probability of an event adds up to slightly more or less than 100%,
or we get negative energies in in�nitesimal amounts. It has been suggested that these
inconsistencies arise because we haven’t taken into account the e�ects of gravity—which
are normally very, very weak, but become important at distances of 10-33 cm.

2 Although many particles come out of the nucleus in high-energy experiments, in low-
energy experiments—in more normal conditions—the nuclei are found to contain only
protons and neutrons.

3 An MeV is very small—appropriate to such particles—about 1.78 * 10-27 grams.
4 Notice the names: “photon” comes from the Greek word for light; “electron” comes

from the Greek word for amber, the beginning of electricity. But as modern physics has
progressed, the names of the particles have shown a deteriorating interest in classical
Greek until we make up such words as “gluons.” Can you guess why they’re called
“gluons?” in fact, d and u stand for words, but I don’t want to confuse you—a d quark is no
more “down” than a u quark is “up.” Incidentally, the d-ness or u-ness of a quark is called
its “�avor.”

5 After these lectures were given, high enough energies were achieved to produce a W
by itself, and its mass was measured to be very close to the value predicted by the theory.

6 The magnetic moment of a muon has been measured very accurately—it has been
found to be 1.001165924 (with an uncertainty of 9 in the last digit), while the value for
the electron is 1.00115965221 (with an uncertainty of 3 in the last digit). You might be
curious as to why the magnetic moment of the muon is slightly higher than that of the
electron. One of the diagrams we drew had the electron emitting a photon that
disintegrates into a positron-electron pair (see Fig. 89). There is also a small amplitude that
the emitted photon could make a muon-antimuon pair, which is heavier than the original
electron. This is unsymmetrical, because when the muon emits a photon, if that photon
makes a positron-electron pair, that pair is lighter than the original muon. The theory of
quantum electrodynamics accurately describes every electrical property of the muon as well
as the electron.



7 Since these lectures were given, some evidence has been found for the existence of a t
quark with a very high mass—around 40,000 MeV.

8 When Einstein and others tried to unify gravitation with electrodynamics, both
theories were classical approximations. In other words, they were wrong. Neither of these
theories had the framework of amplitudes that we have found to be so necessary today.
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Nature, 84; nuclear, 8, 77; optical, 49; that QED theory describes, 7; radioactive, 8;
simplest, 82; of sound, 4

philosophical worries, 124
phonograph record, 48
photographic plates, 13
photomultiplier, 14
photon, 14, 36; bouncing, 28–29; detecting a single, 14; divides, 80; emitted, 143;

exchanges, 95, 100, 107, 113–14, 136; front re�ection, 29; identical, 19; incoming, 101;
model of light, 112; re�ecting, 30–31; relation to W’s, 142; virtual, 95, 120

physical: event, observed, 83; location, 105; world, 8
physicist(s), theoretical, 129, 147–48
physics: classical, 123; is probabilistic, 19; liquid-state, 114; nuclear, 8; quantum, 55, 78,

148; solid-state, 114; students of, 9, 75; theoretical, 82
pions, 132
points, coupling, 127–28
polarization, 13, 120; of electrons, 120; of photons, 120
positron, 98
positron-electron pair, 116–17, 119, 143
predictions, absolute, 25
probability(ies): amplitude, 33, 37; calculating, 78; essential in quantum physics, 19; of an

event, 37, 63; as the square of an amplitude, 24, 37
proton(s), 131; exchanging photons, 113; and neutrons, theory of, 138; observed magnetic

moment of, 138; stability of, 150
proton-neutron patterns, 132
psi-meson, 145
Pythagoras, 31
Pythagorean Theorem, three-dimensional, 89

QED, 4
quantum chromodynamics, 132, 139
quantum electrodynamics theory: accuracy of, 7; experiments to test, 8; shocking

characteristic of, 124; structure of, 131; unsatisfactory feature of, 151
quantum mechanical behavior, 85



quantum mechanics, ideas of, 3, 5, 40
quantum physics, 55, 78, 148
quantum theory, 7, 39, 50, 53; calculating probabilities in, 24; of electricity and

magnetism, 7; of gravity, 151; of strong interactions, 132
quark(s), 132; b, 148; c, 148; “color” of, 136; coupling to a W, 148; d, 133–41, 145, 148,

150; exchanging gluons, 136; “�avor” of, 135; heavier, 144; isolated individual, 139; s,
145, 148; t, 147, 150; u, 133–41, 144, 148, 150

quark-antiquark pairs, 139

Rabi, I. I., 145
radio waves, 13, 34, 75
radioactive phenomena, 8, 144
radius arrow, 106
rays: gamma, 13; ultraviolet, 149; X-, 13
reactions, chemical, 114
reduction, of a wave packet, 76
re�ection: arrow, 28–32, 71; back, 29; front, 28; front surface, 66; partial, 16–25, 36, 47,

64, 66, 69, 72, 75, 77, 100–110; surface, 31, 60
re�ective material, 18
refraction, 49
relativistic theory of the electron, 6
relativity: Einstein’s theory of, 5, 87, 89; principle of, 121
renormalization, 128
repetition of particles, 145
rho meson, 132
rules: that fail, 85; peculiar, 78; for quantum calculations, 37

s quark, 145, 148
Salam, Abdus, 142
salt crystal, 48–49
scattering, 100, 105–107
Schwinger, Julian, 6, 15, 116, 128
sigma particle, 132
soap bubbles, 33
sodium: atoms, 48; streetlights, 35
solar systems, 84
sound, phenomena of, 4
space, three-dimensional, 89
space-time, 85–86, 99, 110; drawing, 107; graph, 88, 105
spin, 121
spin 1 particles, 135, 140
spin 1/2 particles, 133, 140, 146–47, 149
spin 2 particles, 122
spin 3/2 particles, 151
spin-zero: electrons, 112; particles, 93



square: absolute, 63; of an amplitude, 37
steps, successive, 64, 67, 82
stopwatch, imaginary, 27, 101–102
subevents: concomitant, 93; simpler, 83
successive: steps, 64, 67, 82; transformations, 62, 63; turnings, 69; turns, 63
surface(s): back, 105, 107; front, 105, 107; grooved, 48–49; re�ection, 31; partial re�ection

by two or more, 19; transmission through, 17

t quark, 147, 150
tau, mass of, 146
television waves, 13
theory(ies): Dirac’s, 6; electron, 4; gluon, 137–38; of gravitation, 4; of gravity, quantum,

151; of holes and spots, 18; of the interaction of light and matter, 6; Maxwell’s, 5;
quantum, see quantum theory; of quantum electrodynamics, see quantum
electrodynamics theory; of quantum mechanics, 5; relativistic, 6; of relativity, 5, 87, 89;
similarity of various, 149; speculative, 150; of strong interactions, 138; uni�cation of,
150; of W’s, 141; wave, 23, 26; of weak and electromagnetic fórces, 142

time: curve, 57; di�erence, 88–89; path of least, 52; scale, 87–88; on the vertical axis, 86
Tomonaga, Sin-Itiro, 6, 128
transformations, successive, 62–63
transmission: arrows, 71; through a surface, 17
transparent materials, 108, 110, 113
turn(s): half, 29–30, 65; successive, 63

u quark, 133–41, 144, 148, 150
ultraviolet light, 13, 149
uncertainty principle, 55–56
understanding, 8–10
uni�cation of theories, 150
uni�ed theory of weak and electromagnetic interaction, 142

value(s): of j, 91; of m and e, 127
Venus, 11
virtual photon, 95, 120

W(s), 139–45, 148, 150; couplings, 141–42, 144, 148; mass of, 140; and photon
interrelation, 142; types of, 141

water, light’s speed in, 51
wave(s): electromagnetic, 4; packet, reduction of a, 76; radio, 13, 34, 75; television, 13
wave theory, 23, 36; of partial re�ection, 22
wavelike character of electrons, 84
wave-particle duality, 23, 37
Weinberg, Stephen, 142
Weisskopf, Victor, 128
white light, 35, 102
world: complex, 114; physical, 8



X-rays, 13, 34, 49, 84, 149

yellowish bands, 35

Z particle, 141
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