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Preface 

THIS book ori~nated in a course of lectures held at 
Columbia University, New York, during the summer 

session of 1936. 
It is an elementary treatise throughout, based entirely on 

pure thermodynamics; however, it is assumed that the 
reader is familiar with the fundamental facts of ther
mometry and calorimetry, Here and there will be found 
short references to the statistical interpretation of thermo .. 
dynamics. 

As a guide in writing this book, the author used notes of 
his lectures that were taken by Dr. Lloyd Motz, of Columbia 
University, who also revised the final manuscript critically, 
Thanks are due him for his willing and intelligent col
laboration. 

E, FERMI 
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Introduction 

THERMODYNAMICS is mainly concerned with the 
transformations of heat into mechanical work and the 

opposite transformations of mechanical work into heat. 
Only in comparatively recent times have physicists recog

nized that heat is a form of energy that can be changed into 
other forms of energy. Formerly, scientIsts had thought 
that heat was some sort of fluid whose total amount was 
invariable, and had simply interpreted the heating of !l body 
and analogous processes as consisting of the transfer of this 
fluid from one body to another. It is, therefore, noteworthy 
that on the basis of this heat-fluid theory Carnot was able, 
in the year 1824, to arrive at a comparatively clear under
standing of the limitations involved in the transformation of 
heat into work, that is, of essentially what is now called the 
second law of thermodynamics (see Chapter III). 

In 1842, only eighteen years later, R. J. Mayer discovered 
the equivalence of heat and mechanical work, and made the 
first announcement of the principle of the conservation of 
energy (the first law of thermodynamics). 

We know today that the actual basis for the equivalence 
of heat and dynamical energy is to be sought in the kinetic 
interpretation, which reduces all thermal phenomena to the 
disordered motions of atoms and molecules. From this 
point of view, the study of heat must be considered as a 
special branch of mechanics: the mechanics of an ensemble 
of such an enormous number of particles (atoms or mole
cules) that the detailed description of the state and the 
motion loses importance and only average properties of large 
numbers of particles are to be considered. This branch of 
mechanics, called statistical mechanics, which has been de
veloped mainly through the work of Maxwell, Boltzmann, 
and Gibbs, has led to a very satisfactory understanding of 
the fundamental thermodynamical laws. 

ix 



x INTRODUCTION 

But the approach in pure thermodynamics is different. 
Here the fundamental laws are assumed as postulates based 
on experimental evidence, and conclusions are drawn from 
them without entering into the kinetic mechanism of the 
phenomena. This procedure has the advantage of being 
independent, to a great extent, of the simplifying assump
tions that are often made in statistical mechanical considera
tions. Thus, thermodynamical results are generally highly 
accurate. On the other hand, it is sometimes rather un
satisfactory to obtain results without being able to see in 
detail how things really work, so that in many respects it is 
very often convenient to complete a thermodynamical result 
with at least a rough kinetic interpretation. 

The first and second laws of thermodynamics have their 
statistical foundation in classical mechanics. In recent 
years Nernst has added a third law which can be inter .. 
preted statistically only in terms of quantum mechanical 
concepts. The last chapter of this book will concern itself 
with the consequences of the third law. 



CHAPTER I 

Thermodynamic Systems 

1. The state of a system and its transformations. The 
state of a system in mechanics is completely specified at a 
given instant of time if the position and velocity of each mass
point of the system are given. For a system composed of a 
number N of mass-points, this requires the knowledge of 
6N variables. 

In thermodynamics a different and much simpler concept 
of the state of a system is introduced. Indeed, to use the 
dynamical definition of state would be inconvenient, because 
all the systems which are dealt with in thermodynamics 
contain a very large number of mass-points (the atoms or 
molecules), so that it would be practically impossible to 
specify the 6N variables. Moreover, it would be unneces
sary to do so, because the quantities that are dealt with in 
thermodynamics are average properties of the system; 
consequently, a detailed knowledge of the motion of each 
mass-point would be superfluous. 

In order to explain the thermodynamic concept of the 
state of a system, we shall first discuss a few simple examples. 

A system composed of a chemically defined homogeneous 
fluid. We can make the following measurements on such a 
system: the temperature t, the volume V, and the pressure p. 
The temperature can be measured by placing a thermometer 
in contact with the system for an interval of time sufficient 
for thermal equilibrium to set in. As is well known, the 
temperature defined by any special thermometer (for 
example, a mercury thermometer) depends on the particular 
properties of the thermometric substance used. For the 
time being, we shall agree to URe the same kind of thermom
eter for all temperature measurements in order that these 
may all be comparable. 
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The geometry of our system is obviously characterized 
not only by its volume, but also by its shape. However, 
most thermodynamical properties are largely independent 
of the shape, and, therefore, the volume is the only geometri
cal datum that is ordinarily given. It is only in the cases 
for which the ratio of surface to volume is very large (for 
example, a finely grained substance) that the surface must 
also be considered. 

For a given amount of the substance contained in the 
system, the temperature, volume, and pressure are not 
independent quantities; they are connected by a relationship 
of the general form: 

J(p, V, t) = 0, (1) 

which is called the equation of state. Its form depends on 
the special properties of the substance. Anyone of the 
three variables in the above relationship can be expressed 
as a function of the other two by solving equation (1) with 
respect to the given variable. Therefore, the state of the 
system is completely determined by any two of the three 
quantities, p, V, and t. 

It is very often convenient to represent these two quanti
ties graphically in a rectangular system of co-ordinates. 
For example, we may use a (V, p) representation, plotting V 
along the abscissae axis and p along the ordinates axis. A 
point on the (V, p) plane thus defines a state of the system. 
The points representing states of equal temperature lie 
on a curve which is called an isothermal. 

A system composed of a chemically defined homogeneous 
solid. In this case, besides the temperature t and volume 
V, we may introduce the pressures acting in different 
directions in order to define the state. In most cases, 
however, the assumption is made that the solid is subjected 
to an isotropic pressure, so that only one value for the 
pressure need be considered, as in the case of a fluid. 

A system composed of a homogeneous mixture of several 
chemical compounds. In this case the variables defining the 
state of the system are not only temperature, volume, and 
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pressure, but also the concentrations of the different. chemical 
compounds composing the mixture. 

Nonhomogeneous systems. In order to define the state of a 
nonhomogeneous system, one must be able to divide it into a 
number of homogeneous parts. This number may be finite 
in some cases and infinite in others. The latter possibility, 
which is only seldom considered in thermodynamics, arises 
when the properties of the system, or at least of some of its 
parts, vary continuously from point to point. The state of 
the system is then defined by giving the mass, the chemical 
composition, the state of aggregation, the pressure, the 
volume, and the temperature of each homogeneous part. 

I t is obvious that these variables are not all independent. 
Thus, for example, the sum of the amounts of each chemical 
element present in the different homogeneous parts must be 
constant and equal to the total amount of that element 
present in the system. Moreover, the volume, the pressure, 
and the temperature of each homogeneous part having a 
given mass and chemical composition are connected by an 
equation of state. 

A system containing moving parts. In almost every 
system that is dealt with in thermodynamics, one assumes 
that the different parts of the system either are at rest or are 
moving so slowly that their kinetic energies may be neg
lected. If this is not the case, one must also specify the 
velocities of the various parts of the system in order to 
define the state of the system completely. 

It is evident from what we have said that the knowledge 
of the thermodynamical state alone is by no means sufficient 
for the determination of the dynamical state. Studying the 
thermodynamical state of a homogeneous fluid of given 
volume at a given temperature (the pressure is then defined 
by the equation of state), we observe that there is an infinite 
number of states of molecular motion that correspond to it. 
With increasing time, the system exists successively in all 
these dynamical states that correspond to the given thermo
dynamical state. From this point of view we may say 
that a thermodynamical state is the ensemble of all the 
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dynamical states through which, as a result of the molecular 
motion, the system is rapidly passing. This definition of 
state is rather abstract and not quite unique; therefore, 
we shall indicate in each particular case what the state 
variables are. 

Particularly important among the thermodynamical 
states of a system are the states of equilibrium. These 
states have the property of not varying so long as the 
external conditions remain unchanged. Thus, for instance, 
a gas enclosed in a container of constant volume is in 
equilibrium when its pressure is constant throughout and 
its temperature is equal to that of the environment. 

Very often we shall have to consider transformations of a 
system from an initial state to a final state through a 
continuous succession of intermediate states. If the state 
of the system can be represented on a (V, p) diagram, such a 
transformation will be represented by a curve connecting 
the two points that represent the initial and final states. 

A transformation is said to be reversible when the succes
sive states of the transformation differ by infinitesimals from 
equilibrium states. A reversible transformation can there
fore connect only those initial and final states which are 
states of equilibrium. A reversible transformation can be 
realized in practice by changing the external conditions so 
slowly that the system has time to adjust itself gradually 
to the altered conditions. For example, we can produce a 
reversible expansion of a gas by enclosing it in a cylinder 
with a movable piston and shifting the piston outward very 
slowly. If we were to shift the piston rapidly, currents 
would be set up in the expanding gaseous mass, and the 
intermediate states would no longer be states of equilibrium. 

If we transform a system reversibly from an initial state A 
to a final state B, we can then take the system by means of 
the reverse transformation from B to A through the same 
succession of intermediate states but in the reverse order. 
To do this, we need simply change the conditions of the 
environment very slowly in a sense opposite to that in the 
original transformation. Thus, in the case of the gas 
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discussed in the preceding paragraph, we may compress it 
again to its original volume and bring it back to its initial 
state by shifting the piston inward very slowly. The 
compression occurs reversibly, and the gas passes through 
the same intermediate states as it did during the expansion. 

During a transformation, the system can perform positive 
or negative external work; that is, the system can do work 
on its surroundings or the surroundings can do work on the 
system. As an example of this, we consider a body enclosed 
in a cylinder having a movable piston of area S at one 
end (Figure 1). If p is the pressure of the body against the 
walls of the cylinder, then pS is the force 
exerted by the body on the piston. If the 
piston is shifted an infinitesimal distance dh, ------ ------ t 
an infinitesimal amount of work, d~h 

dL = pSdh, (2) 

is performed, since the displacement is paral
lel to the force. But Sdh is equal to the in
crease, dV, in volume of the system. Thus, 
we may write1 : 

dL = pdV. (3) 

p 

Fig. 1. 

1 It is obvious that (3) is generally valid no matter what the shape of 
the container may be. Consider a body at the uniform pressure p, enclosed 
in an irregularly shaped container A (Figure 2). Consider now an infini
tesimal transformation of our system during which the walls of the con
tainer move from the initial position A to the final position B, thus permit
ting the body inside the container to expand. Let do be a surface element 
of the container, and let dn be the diaplacement of this element in the 
direction normal to the surface of the container. The work performed on 
the surface element du by the pressure p during the displacement of the 
container from the situation A to the situation B is obviously P dO' dn. 
The total amount of work performed during the infinitesimal transforma
tion is obtained by integrating the above expression over all-the surface 0' of 
the container; since p is a constant, we obtain: 

dL = p f du dn. 

It is now evident from the figure that the variation dV of the volume of the 
container is given by the surface integral, 

dV = J d,q dn. 

Comparing these two equations, we obtain (3). 
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I~'or a finit.e tranHfonnation, the work done by the system 
is obtained by integrating equation (3): 

L = IB pdV, (4) 

where the integral is taken over the entire transformation. 
When the state of the system can be represented on a 

B 

Fig. 2. 

(V, p) diagram, the work 
performed during a trans" 
formation has a simple 
geometrical representa" 
tion. We consider a trans" 
formation from an initial 
state indicated by the point 
A to a final state indicated 
by the point B (Figure 3). 
This transformation will be 
represented by a curve con" 
necting A and B the shape 

of which depends on the type 
of transformation considered. P 

The work done during this 
transformation is given by the 
integral 

L = (VB pdV, 
J~'A 

(5) 

where VA and VB are the vol
umes corresponding to the 
states A and B. This integral, 
and hence the work done, can 

B 

Fig. 3. 

be represented geometrically by the shaded area In the 
figure. 

Transformations which are especially important are those 
for which the initial and final states are the same. These are 
called cyclical transformations or cycles. A cycle, therefore, 
is a transformation which brings the system back to its 
initial state. If the state of the system can oe represented 
on a (V, p) diagram, then a cycle can be represented on 
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this diagram by a closed curve, such as the curve ABGD 
(Figure 4). 

The work, L, performed by the system during the cyclical 
transformation is given geometrically by the area enclosed 
by the curve representing the cycle. Let A and C be the 
points of minimum and maximum abscissa of our cycle, 
and let their projections on the V-axis be A' and G' , re
spectively. The work performed during the part ABC of the 
transformation is positive and equal to the area ABCC' A I A. 
The work performed during the rest of the transforma
tion, CDA, is negative and equal in amount to the area 
CC' A' ADG. The total amount of positive work done is 
equal to the difference between these two areas, and hence is 
equal to the area bounded by the cycle. 

It should be noted that the total p 
work done is positive because we B 

performed the cycle in a clockwise Oc 
direction. If the same cycle is per- A I 
formed in a counterclockwise direc- : D i 

I I 

tion, the work will again be given : : 
I I 

by the area bounded by the cycle, : : 
I I 

but this time it will be negative. : : 
A transformation during which A C v 

the system performs no external Fig. 4. 

work is called an isochore transformation. If we assume 
that the work dL performed during an infinitesimal 
element of the transformation is given, according to equa
tion (3), by pdV, we find for an isochore transformation 
dV = 0, or, by integration, V = a constant. Thus, an 
isochore transformation in this case is a transformation at 
constant volume. This fact justifies the name isocJwre. 
It should be noticed, however, that the concept of is 0 chore 
transformation is more general, since it requires that dL = 0 
for the given transformation, even when the work dL cannot 
be represented by equation (3). 

Transformations during which the pressure or the tem
perature of the system remains constant are called isobaric 
and isothermal transformationf;, re:-;p()(~j,ively. 
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2. Ideal or perfect gases. The equation of state of a 
system composed of a certain quantity of gas occupying 
a volume V at the temperature t and pressure p can be 
approximately expressed by a very simple analytical law. 
We obtain the equation of state of a gas in its simplest 
form by changing from the empirical scale of temperatures, 
t, used so far to a new temperature scale T. 

We define T provisionally as the temperature indicated 
by a gas thermometer in which the thermometric gas is kept 
at a very low constant pressure. T is then taken propor
tional to the volume occupied by the gas. It is well known 
that the readings of different gas thermometers under these 
conditions are largely independent of the nature of the 
thermometric gas, provided that this gas is far enough from 
condensation. We shall see later, however (section 9), 
that it is possible to define this same scale of temperatures T 
by general thermodynamic considerations quite independ
ently of the special properties of gases. 

The temperature T is called the absolute temperature. 
Its unit is usually chosen in such a way that the temperature 
difference between the boiling and the freezing points of 
water at one atmosphere of pressure is equal to 100. The 
freezing point of water corresponds then, as is well known, 
to the absolute temperature 273.l. 

The equation of state of a system composed of m grams 
of a gas whose molecular weight is M is given approximately 
by: 

m 
pV = MRT. (6) 

R is a universal constant (that is, it has the same value for all 
gases: R = 8.314 X 107 erg/degrees, or (see section 3) 
R = 1.986 cal/degrees). Equation (6) is called the equation 
of state of an ideal or a pPJrfect gas; it includes the laws of 
Boyle, Gay-Lussac, and Avogadro. 

No real gas obeys equation (6) exactly. An ideal sub
stance that obeys equation (6) exactly is called an ideal 
or a perfect gas. 
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For a gram-molecule (or mole) of a gas (that is, for a 
number of grams of a gas equal numerically to its molecular 
weight), we have m = M, so that (6) reduces to: 

pV = RT. (7) 

From (6) or (7) we can obtain the density p of the gas in 
terms of the pressure and the temperature: 

m Mp 
P=V=RT' (8) 

For an isothermal transformation of an ideal gas (trans
formation at constant temperature), we have: 

p V = constant, 

On the (V, p) diagram the isothermal transformations of an 
ideal gas are thus represented by equilateral hyperbolas 
having the V- and p-axes as asymptotes. 

We can easily calculate the work performed by the gas 
during an isothermal expansion from an initial volume VI 
to a final volume V 2. This is given (making use of (5) and 
(6» by: 

L= rV2 pdV = rn RT rV2 dV 
JVl M JVl V 

m V 2 

= MRT log VI 

m T PI = -R log-, 
M P2 

(9) 

where Pl and P2 are the initial and final pressures, respec
tively. For one mole of gas, we have: 

1 V2 RT 1 711 L = RT og-v = og-, 
1 P2 

(10) 

A mixture of several gases is governed by laws very similar 
to those whieh are obeyed by a chemically homogeneous 
gas. We shall call the partial p7'essure of a component of a 
mixture of gases the pl'm;t>ure which this component would 
exert if it alone filled the volume occupied by the mixture 
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at the same temperature as that of the mixture. We can 
now state Dalton's law for gas mixtures in the following 
form: 

The pressure exerted by a mixture of gases is equal to the 
sum of the partial pressures of all the components pre8ent 
in the mixture. 

This law is only approximately obeyed by real gases, but 
it is assumed to hold exactly for ideal gases. 

Problems 

1. Calculate the work performed by a body expanding from an 
initial volume of 3.12 liters to a final volume of 4.01 liters at the 
pressure of 2.34 atmospheres. 

2. Calculate the pressure of 30 grams of hydrogen inside a 
container of 1 cubic meter at the temperature of 18°0. 

3. Calculate the density and specific volume of nitrogen at the 
temperature of O°C. 

4. Calculate the work performed by 10 grams of oxygen 
expanding isothermally at 20°0 from 1 to .3 atmospheres of 
pressure. 



CHAPTER II 

The First Law of Thermodynamics 

3. The statement of the first law of thermodynamics. 
rhe first law of thermodynamics is essentially the statement 
)f the principle of the conservation of energy for thermo
:lynamical systems. As such, it may be expressed by stating 
Lhat the variation in energy of a system during any trans
formation is equal to the amount of energy that the system 
receives from its environment. In order to give a precise 
meaning to this statement, it is necessary to define the 
phrases "energy of the system" and "energy that the 
system receives from its environment during a transfor
mation." 

In purely mechanical conservative systems, the energy is 
equal to the sum of the potential and the kinetic energies, 
and hence is a function of the dynamical state of the system; 
because to know the dynamical state of the system is 
equivalent to knowing the positions and velocities of all the 
mass-points contained in the system. If no external forces 
are acting on the system, the energy remains constant. 
Thus, if A and B are two successive states of an isolated 
system, and U A and UB are the corresponding energies, then 

UA = UB • 

When external forces act on the system, U A need no 
longer be equal to VB' If - L is the work performed by the 
external forces during a trant::iformation from the initial 
state A to the final state B (+ L is the work performed by 
the system), then the dynamical principle of the conserva
tion of energy takes the form: 

Un - UA = -L. (11) 

From this equation it follows that the work, L, performed 
during the transformation depends only on the extreme 

11 
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states A and B of the transformation and not on the par
ticular way in which the transformation from A to B is 
performed. 

Let us assume now that we do not know the laws of 
interaction among the various mass-points of our dynamical 
system. Then we cannot calculate the energy of the system 
when it is in a given dynamical state. By making use of 
equation (11) , however, we can nevertheless obtain an 
empirical definition of the energy of our system in the 
following way: 

We consider an arbitrarily chosen state 0 of our system 
and, by definition, take its energy to be zero: 

Uo = O. (12) 

We shall henceforth refer to this state as the standard state 
of our system. Consider now any other state A; by apply
ing suitable external forces to our system, we can transform 
it from the standard state (in which we assume it to be 
initially) to the state A. Let LA be the work performed by 
the system during this transformation (-LA. is, as before, 
the work performed by the external forces on the system). 
Applying (11) to this transformation, and remembering (12), 
we find that 

(13) 

This equation can be used as the empirical definition of the 
energy U A. of our system in the state A. 

It is obviously necessary, if definition (13) is to have a 
meaning, that the work LA depend only on the states 0 and 
A and not on the special way in which the transformation 
from 0 to A is performed. We have already noticed that 
this property follows from (11). 1f one found experi
mentally that this property did not hold, it would mean 
either that energy is not conserved in our system, or that, 
besides mechanical work, other means of transfer of energy 
must be taken into account. 
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We shall assume for the present that the work performed 
by our mechanical system during any transformation 
depends only on the initial and final states of the trans
formation, so that we can use (13) as the definition of the 
energy. 

We can immediately obtain (11) from (13) as follows: A 
transformation between any two states A and B can always 
be performed as a succession of two transformations: first a 
transformation from A to the standard state 0, and then a 
transformation from 0 to B. Since the system performs 
the amounts of work -LA and +LB during these two 
transformations, the total amount of work performed 
during the transformation from A to B (which is independent 
of the particular way in which the transformation is per
formed) is: 

L = -LA + LB. 

From (13) and the analogous equation, 

UB = -LB' 

we obtain now: 

UB - UA = -L, 

which is identical with (11). 
We notice, finally, that the definition (13) of the energy is 

not quite unique, since it depends on the particular choice 
of the standard state O. If instead of 0 we had chosen a 
different standard state, 0', we should have obtained a 
different value, U:, for the energy of the state A. It 
can be easily shown, however, that U~ and rr A differ only 
by an additive constant. Indeed, the transformation from 
0' to A can be put equal to the sum of two transformations: 
one going from 0' to 0 and the other going from 0 to A. 
The work L: performed by the system in passing from 0' to 
A is thus equal to: 

L~ = Lo'(} + L,I) 
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where L010 is the work performed by the system in going 
from 0' to O. We have now: 

, L' UA = - A, 

so that 

which shows that the values of the energy based on the two 
definitions differ only by the constant LOlo, 

This indeterminate additive constant which appears in the 
definition of the energy is, as is well known, an essential 
feature of the concept of energy. Since, however, only 
differences of energy are considered in practice, the additive 
constant does not appear in the final results. 

The only assumption underlying the above empirical 
definition of the energy is that the total amount of work 
performed by the system during any transformation depends 
only on the initial and final states of the transformation. 
We have already noticed that if this' assumption is contra
dicted by experiment, and if we still do not wish to discard 
the principle of the conservation of energy, then we must 
admit the existence of other methods, besides mechanical 
work, by means of which energy can be exchanged between 
the system and its environment. 

Let us take, for example, a system composed of a quantity 
of water. We consider two states A and B of this system at 
atmospheric pressure; let the temperatures of the system in 
these two states be tA. and tB, respectively, with tA < tB' 
We can take our system from A to B in two different ways. 

First way: We heat the water by placing it over a flame 
and raise its temperature from the initial value tA to the 
final value tB • The external work performed by the 
system during this transformation is practically zero. It 
would be exactly zero if the change in temperature were not 
accompanied by a change in volume of the water. Ac
tually, however, the volume of the water changes slightly 



THE FIRST LAW OF THERMODYNAMICS 15 

during the transformation, so that a small amount of work is 
performed (see equation (3)). We shall neglect this small 
amount of work in our considerations. 

Second way : We raise the temperature of the water from 
tAo to tB by heating it by means of friction. To this end, we 
immerse a small set of paddles attached to a central axle in 
the water, and churn the water by rotating the paddles. 
We observe that the temperature of the water increases 
continuously as long as the paddles continue to rotate. 
Since the water offers resistance to the motion of the paddles, 
however, we must perform mechanical work in order to 
keep the paddles moving until the final temperature tB is 
reached. Corresponding to this considerable amount of 
positive work performed by the paddles on the water, there 
is an equal amount of negative work performed by the water 
in resisting the motion of the paddles. 

We thus see that the work performed by the system in 
going from the state A to the state B depends on whether 
we go by means of the first way or by means of the second 
way. 

If we assume that the principle of the conservation of 
energy holds for our system, then we must admit that the 
energy that is transmitted to the water in the form of the 
mechanical work of the rotating paddles in the second way 
is transmitted to the water in the first way in a nonmechani
cal form called heat. We are thus led to the fact that heat 
and mechanical work are equivalent; they are two different 
aspeets of the same thing, namely, energy. In what follows 
we shall group under the name of work electrical and 
magnetic work as well as mechanical work. The first two 
types of work, however, are only seldom considered in 
thermodynamics. 

In order to express in a more precise form the fact that 
heat and work are equivalent, we proceed as follows. 

We first enclose our system in a container with non-heat
conducting walls in order to prevent exchange of heat with 



16 THE FIRST LAW OF THERMODYNAMICS 

the environment.1 We assume, however, that work can be 
exchanged between the system and its environment (for 
example, by enclosing the system in a cylinder with non
conducting walls but with a movable piston at one end). 
The exchange of energy between the inside and the outside 
of the container can now occur only in the form of work, and 
from the principle of the conservation of energy it follows 
that the amount of work performed by the system during 
any transformation depends only on the initial and the 
final states of the transformation,2 

We can now use the empirical definition (13) of the energy 
and define the e~ergy U as a function of the state of the 
system only,3 Denoting by AU = UB - U A.. the variation 
in the energy of our system that occurs during a transfor
mation from the state A to the state B, we can write 
equation (11), which is applicable to our thermally insulated 
system, in the form: 

AU + L = O. (14) 

If our system is not thermally insulated, the left-hand side 
of (14) will in general be different from zero because there 
can then take place an exchange of energy in the form of 

1 We need only mention here that no perfect thermal insulators exist. 
Thermal insulation can be obtained approximately, however, by means of 
the well-known methods of Calorhnetry. 

2 It would be formally more exact, although rather abstract, to state the 
content of the preceding sentences as follows: 

Experiments show that there exist certain substances called thermal 
insulators having the following properties: when a system is completely 
enclosed in a thermal insulator in such a way that work can be exchanged 
between the inside and the outside, the amount of work performed by the 
system during a given transformation depends only on the initial and final 
states of the transformation. 

s It should be noticed here that if definition (13) of the energy of a state 
A of our system is to be applicable, it must be possible to transform the 
system from the standard state 0 to the state A while the system is ther
mally insulated. We shall show later (see section 13) that such a trans-
formation is not always possible without an exchange of heat. In such \ 
cases, however, the opposite transformation A -7 0 can always be per-
formed. The work performed by the system during this reverse transfor-
mation is -LA; we can therefore apply (13) to such cases also. 
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heat. We shall therefore replace (14) by the more general 
equation: 

~u + L = Q, (15) 

where Q is equal to zero for transformations performed on 
thermally insulated systems and otherwise, in general, is 
different from zero. 

Q can be interpreted physically as the amount of energy 
that is received by the system in forms other than work. 
This follows immediately from the fact that the variation 
in energy, D-.U, of the system must be equal to the total 
amount of energy received by the system from its environ
ment. But from (15) 

AU = -L + Q, 

and -L is the energy received in the form of work. Hence, 
Q stands for the energy received in all other forms. 

By definition, we shall now call Q the amount of heat 
received by the system during the transformation. 

For a cyclic transformation, equation (15) takes on a very 
simple form. Since the initial and final states of a cycle are 
the same, the variation in energy is zero: D-.U = O. Thus, 
(15) becomes: 

L = Q. (16) 

That is, the work performed by a system during a cyclic 
transformation is equal to the heat absorbed by the system. 

It is important at this point to establish the connection 
between this abstract definition of heat and its elementary 
calorimetric definition. The calorimetric unit of heat, the 
calorie, is defined as the quantity of heat required to raise 
the temperature of one gram of water at atmospheric 
pressure from 14°C to 15°C. Thus, to raise the temperature 
of m grams of water from 14°C to 15°C at atmospheric 
pressure, we require Tn calories of heat. Let D-.u o denote the 
variation in energy of one gram of water, and lc the work 
done as a result of its expansion when its temperature is 
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raised from 14°C to 15°C at atmospheric pressure. For m 
grams of water, the variation in energy and the work done 
are: 

Lc = mlc. (17) 

We now consider a system S which undergoes a transfor
mation. In order to measure the heat exchanged between 
the system and the surrounding bodies, we place the system 
in contact with a calorimeter containing m grams of water, 
initially at 14°C. We choose the mass of the water in such a 
way that after the transformation has been completed, the 
temperature of the water is 15°C. 

Since an ideal calorimeter is perfectly insulated thermally, 
the complex system composed of the system S and the 
calorimetric water is thermally insulated during the trans
formation. We may therefore apply equation (14) to this 
transformation. The total variation in energy is equal 
to the sum: 

AU = AUs + ,~.uc, 
where /lUs is the variation in energy of the system S, and 
/l U c is the variation in energy of the calorimetric water. 
Similarly, for the total work done, we have:. 

L = Ls + Lc. 

From (14) we have, then, 

or, by (17), 

t:..U s + t:.. U c + Ls + Lc = 0; 

t:..Us + Ls = -(.t:~.uc + Lc) 

- -m(t:..uc + lo). 

But from the definition (15), .6.Us + Ls is the aillount of 
heat Qs received by the system S. Thus, we have: 

(18) 
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We see from this that the amount of heat is proportional 
to m. 

On the other hand, in calorimetry the fact that m grams of 
calorimetric water have been heated from 14°C to 15°C 
means that m calories of heat have been transferred from 
the system S to the calorimeter; that is, that the system S 
has received -m calories, or that Qs, expressed in calories, 
is equal to -m. We see also, by comparison with '(18~, 
that the amount of heat, as given by the definition (15), is 
proportional to the amount when it is expressed in calories; 
the constant of proportionality is (6u o + lo). 

According to (15), heat is measured in energy units (ergs). 
The constant ratio between ergs and calories has been 
measured by many investigators, who have found that 

1 calorie = 4.185 X 107 ergs. (19) 

In what follows we shall generally express heat measure
ments in energy units. 

Equation (15), which is a precise formulation of the 
equivalence of heat and work, expresses the first law of 
thermodynamics. 

4. The application of the first law to systems whose 
states can be represented on a (V, p) diagram. We shall 
now apply the first law of thermodynamics to a system, 
such as a homogeneous fluid, whose state can be defined in 
terms of any two of the three variables V, p, and T. Any 
function of the state of the system, as, for example, its 
energy, U, will then be a function of the two variables 
which have been chosen to represent the state. 

In order to avoid any misunderstanding as to which are 
the independent variables when it is necessary to differ
entiate partially, we shall enclose the partial derivative 
symbol in a parenthesis and place the variable that is to 
be held constant in the partial differentiation at the foot 

of the parenthesis. Thus, (:~)v means the derivative of 
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U with respect to T, keeping V constant, when T and V 
are taken as the independent variables. Notice that the 

above expression is in general different from ( ~) .' because 

in the first case the volume is kept constant while in the 
second case the pressure is kept constant. 

We now consider an infinitesimal transformation of our 
system, that is, a transformation for which the independent 
variables change only by infinitesimal amounts. We apply 
to this transformation the first law of thermodynamics as 
expressed by equation (15). Instead of AU, L, and Q, we 
must now write dU, dL, and dQ, in order to point out the 
infinitesimal nature of these quantities. We obtain, then, 

dU + dL = dQ. (20) 

Since for our system, dL is given by (3), we have: 

dU + pdV = dQ. (21) 

If we choose T and V as our independent variables, U 
becomes a function of these variables, so that: 

dU = (au) dT + (au) dV, 
aT v aV 2' 

and (21) becomes: 

(:~)v dT + [(:~)T + P JdV = dQ. (22) 

Similarly, taking T and p as independent variables, we have: 

[(:~\ + p(:~)J dT + [(~~)T + p(~:)J dp = dQ. (23) 

Finally, taking V and p as independent variables, we obtain: 

(~~)v dp + [(:~)p + P J dV = dQ. (24) 

The thermal capacity of a body is, by definition, the ratio, 
dQ/dT, of the infinitesimal amount of heat dQ absorbed by 
the body to the infinitesimal increase in temperature dT 
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produced by this heat. In general, the thermal capacity 
of a body will be different according as to whether the body 
is heated at constant volume or at constant pressure. 
Let Cvand Cp be the thermal capacities at constant volume 
and at constant pressure, respectively. 

A simple expression for Cv can be obtained from (22). 
For an infinitesimal transformation at constant volume, 
dV = 0; hence, 

(25) 

Similarly, using (23), we obtain the following expression 
for Cp : 

(26) 

The second term on the right-hand side represents the 
effect on the thermal capacity of the work performed during 
the expansion. An analogous term is not present in (25), 
because in that case the volume is kept constant so that no 
expanSlOn occurs. 

The thermal capacity of one gram of a substance is called 
the specific heat of that substance; and the thermal capacity 
of one mole is called the molecular heat. The specific and 
molecular heats at constant volume and at constant pressure 
are given by the formulae (25) and (26) if, instead of taking 
an arbitrary amount of substance, we take one gram or 
one mole of the substance, respectively. 

5. The application of the :first law to gases. In the case 
of a gas, we can express the dependence of the energy on the 
state variables explicitly. We choose T and V as the 
independent variables, and prove first that the energy is a 
function of the temperature T only and does not depend 
on the volume V. This, like many other properties of 
gases, is only approximately true for real gases ,and is 
assumed to hold exactly for ideal gases. In section 14 we 
shall deduce from the second law of thermodynamics the 
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result that the energy of any body which obeys the equation 
of state, (7), of an ideal gas must be independent of the 
volume V. At this point, however, we shall give an experi
mental proof of this proposition for a gas; the experiment 
was performed by Joule. 

Into a calorimeter Joule placed a container having two 
chambers, A and B, connected by a tube (Figure 5). He 
filled the chamber A with a gas and evacuated B, the two 
chambers having first been shut off from each other by a 
stopcock in the connecting tube. Mter thermal equilibrium 
had set in, as indicated by a thermometer placed within the 
calorimeter, Joule opened the stopcock, thus permitting 
the gas to flow from A into B until the pressure everywhere 

--. 

A 

Fig. 5. 

in the container was the same. 
He then observed that there was 
only a very slight change in the 
reading of the thermometer. 
This meant that there had been 
practically no transfer of heat 
from the calorimeter to the cham
ber or vice versa. It is assumed 
that if this experiment could be 
performed with an ideal gas, 

there would be no temperature change at all. 
We now apply the first law to the above transformation. 

Since Q = 0, we have from equation (15) for the system 
(;omposed of the two chambers and the enclosed gas: 

AU + L = 0, 

where L is the work performed by the system and AU is the 
variation in energy of the system. Since the volumes of the 
two chambers A and B composing our system do not change 
during the experiment, our system can perform no external 
work, that is, L = 0. Therefore, 

AU = 0; 

the energy of the system, and, hence, the energy of the gas, 
do not change. 
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Let us now consider the process as a whole. Initially 
the gas occupied the volume A, and at the end of the process 
it filled the two chambers A and B; that is, the transforma
tion resulted in a change in volume of the gas. The experi
ment showed, however, that there was no resultant change 
in the temperature of the gas. Since there was no variation 
in energy during the process, we must conclude that a 
variation in volume at constant temperature produces no 
variation in energy. In other words, the energy of an ideal 
gas is afunction of the temperature only and not afunction of 
the volume. We may therefore write for the energy of an 
ideal gas: 

U = U(T). (27) 

In order to determine the form of this function, we make use 
of the experimental result that the specific heat at constant 
volume of a gas depends only slightly on the temperature; 
we shall assume that for an ideal gas the specific heat is 
exactly constant. In this section we shall always refer to 
one mole of gas; C y and C p will therefore denote the molecu
lar heats at constant volume and at constant pressure, 
respectively. 

Since U depends only on T, it is not necessary to specify 
that the volume is to be kept constant in the derivative in 
(25); so that, for an ideal gas, we may write: 

dU 
Cv = dT' (28) 

Since Cy is assumed to be constant, we can integrate at once, 
and we get: 

U=CvT+W, (29) 

where W is a constant of integration which represents the 
energy left in the gas at absolute zero temperature. 4 

4 This additive constant affects the final results of the calculations only 
when chemical transformations or changes of the states of aggregation 
of the substances are involved. (See, for example, Chapter VI.) In all 
other cases, one may place the additive constant equal to zero. 



24 THE FIRST LAW OF THERMODYNAMICS 

For an ideal gas, equation (21), which expresses the first 
law of thermodynamics for infinitesimal transformations, 
takes on the form: 

GvdT + pdV = dQ. (30) 

Differentiating the characteristic equation (7) for one mole 
of an ideal gas, we obtain : 

pdV + Vdp = RdT. (31) 

Substituting this in (30), we find: 

(CTT + R)dT - Vdp = dQ. (32) 

Since dp = 0 for a transformation at constant pressure, 
this equation gives us: 

Cp = (~~) p = Cv + R. (33) 

That is, the difference between the molecular heats of a gas 
at constant pressure and at constant volume is equal to the 
gas constant R. 

The same result may also be obtained from (26), (29), and 
(7). Indeed, for an ideal gas we have from (29) and (7): 

(au) = dU = CTT ; (av) = (~RT) = ~ 
aT p dT aT p aT p p p . 

Substituting these expressions in (26), we again obtain (33). 
It can be shown by an application of kinetic theory that: 

Gv = j R for a monatomic gas; and 
Cv = t R for a diatomic gas. (34) 

Assuming these values, which are in good agreement with 
experiment, we deduce from (33) that: 

C1' = t R for a monatomic gas; and 
C1' = t R for a diatomic gas. (35) 

If we place 

K - Cp _ Cv + R _ 1 + R (36) 
- Cv - Cv - Cv' 
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we also obtain: 

K = -i for a monatomic gas; and 
K = i for a diatomic gas. (37) 

6. Adiabatic transformations of a gas. A transformation 
of a thermodynamical system is said to be adiabatic if it is 
reversible and if the system is thermally insulated so that no 
heat can be exchanged between it and its environment 
during the transformation. 

We can expand or compress a gas adiabatically by enclos
ing it in a cylinder with non-heat-conducting walls and 
piston, and shifting the piston outward or inward very 
slowly. If we permit a gas to expand adiabatically, it does 
external work, so that L in equation (15) is positive. Since 
the gas is thermally insulated, Q = 0, and, hence, I1U must 
be negative. That is, the energy of a gas decreases during 
an adiabatic expansion. Since the energy is related to the 
temperature through equation (29), a decrease in energy 
means a decrease in the temperature of the gas also. 

In order to obtain a quantitative relationship between 
the change in temperature and the change in volume 
resulting from an adiabatic expansion of a gas, we observe 
that, since dQ = 0, equation (30) becomes: 

CvdT + pdV = O. 

Using the equation of state, p V = RT, we can eliminate p 
from the above equation and obtain: 

RT 
CvdT + -ydV = 0, 

or 

dT + ~ dV = 0 
T Cv V . 

Integration yields: 

R 
log T + Cy log V = constant. 
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Changing from logarithims to numbers, we get: 
B 

TVcv = constant. 

Making use of (36), we can write the preceding equation 
in the form.: 

TV.II:-1 = constant. (38) 

This equation tells us quantitatively how an adiabatic 
change in the volume of an ideal gas determines the change 
in its temperature. If, for example, we expand a diatomie 
gas adiabatically to twice its initial volume, we find from 
(38) (assuming, according to (37), that K = t) that the 
temperature is reduced in the ratio 1: 2°·4 = 1: 1.32. 

Using the equation of state, p V = RT, we can put equa
tion (38) of an adiabatic transformation in the following 
forms: 

p r = constant. (39) 

T --x=r = COIlMtallt. (40) 

p 
Equation (39) is to be compared with the equation, 

pV = constant, 

of an isothermal transformation. On the (V, p) diagram, 
the isothermals are a family of equilateral hyperbolae; t.he 
adiabatic lines represented by equation (39), are qualit.:l.
tively similar to hyperbolae, but they are steeper because 
K > 1. 

Isothermal and adiabatic curves are represented in 
Figure 6, the former by the solid lines and the latter by the 
dotted lines. 

An interesting and simple application of the adiabatic 
expansion of a gas is the calculation of the dependence of the 
temperature of the atmosphere on the height above sea 
level. The principal reason for this variation of tempera-
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ture with height above sea level is that there are convection 
currents in the troposphere which continually transport 
air from the lower regions to the higher ones and from the 
higher regions to the lower ones. When air from sea level 
rises to the upper regions of lower pressure, it expands. 
Since air is a poor conductor of heat, very little heat is 
transferred to OF from the expanding air, so that we may 
consider the expansion as taking place adiabatically. 
Consequently, the temperature of the rising air decreases. 
On the other hand, air from the upper regions of the atmos
phere suffers an adiabatic compression, and hence an 
increase in temperature, when it sinks to low regions. 

In order to calculate the 
change in temperature, we Po 1\ 

consider a column of air of unit \ \, 
cross section, and focus our 
attention on a slab, of height 
dh, having its lower face at a 
distance h above sea level. If 
p is the pressure on the lower 
face, then the pressure on the 
upper face will be p + dp, 
where dp is the change in pres
sure which is due to the weight 

I \ 
I \ 

\ ~ 
\ 

Fig. 6. 

of the air contained in the slab. If g is the acceleration of 
gravity and p is the density of the air, then the weight of the 
air in the slab is pgdh. Since an increase III height is 
followed by a decrease in pressure, we have: 

dp = - pgdh; (41) 

or, remembering (8), 

gM p 
dp = - Ii T dh , 

where M is the average molecular weight of air; M = 28.88. 
The logarithmic deri va ti ve of (40) gives us: 
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dT K - 1 dp 
'1'= ]{p' 

This, together with the previous equation, gives: 

Assuming 

dT K -lgM 
dh = - K R' (42) 

K - 7. 
- ,!", g = 980.665; M = 28.88; R = 8.214 X 107, 

we obtain: 

:r = - 9.8 X 10-5 degrees/em. 

= - 9.8 degrees/kilometer. 

This value is actually somewhat larger than the observed 
average decrease of temperature with altitude. The dif
ference is mainly owing to our having neglected the effect 
of condensation of water vapor in the expanding masses 
of air. 

Problems 

1. Calculate the energy variation of a system which performs 
3.4 X 108 ergs of work and absorbs 32 calories of heat. 

2. How many calories are absorbed by 3 moles of an ideal gas 
expanding isothermally from the initial pressure of 5 atmospheres 
to the final pressure of 3 atmospheres, at the temperature of OOe? 

3. One mole of a diatomic ideal gas performs a transformation 
from an initial state for which temperature and volume are, 
respectively, 291°K and 21,000 cc. to a final state in which 
temperature and volume are 305°K and 12,700 co. The trans
formation is represented on the (V, p) diagram by ~ straight line. 
To find the work performed and the heat absorbed by the system. 

4. A diatomic gas expands adiabatically to a volume 1.35 
times larger than the initial volume. The initial temperature is 
18°C. Find the final temperature. 



CHAPTER III 

The Second Law of Thermodynamics 

7. The statement of the second law of thermodynamics. 
The first law of thermodynamics arose as the result of the 
impossibility of constructing a machine which could create 
energy. The first law, however, places no limitations on the 
possibility of transforming energy from one form into 
another. Thus, for instance, on the basis of the first law 
alone, the possibility of transforming heat into work or 
work into heat always exists provided the total amount of 
heat is equivalent to the total amount of work. 

This is certainly true for the transformation of work into 
heat: A body, no matter what its temperature may be, 
can always be heated by friction, receiving an amount of 
energy in the form of heat exactly equal to the work done. 
Similarly, electrical energy can always be transformed into 
heat by passing an electric current through a resistance. 
There are very definite limitations, however, to the pos
sibility of transforming heat into work. If this were not 
the case, it would be possible to construct a machine which 
could, by cooling the surrounding bodies, transform heat, 
taken from its environment, into work. 

Since the supply of thermal energy contained in the soil, 
the water, and the atmosphere is practically unlimited, 
such a machine would, to all practical purposes, be equiva
lent to a perpetuum mobile, and is therefore called a per
petuum mobile of the second kind. 

The second law of thermodynamics rules out the pos
sibility of constructing a perpetuum mobile of the second 
kind. In order to give a precise statement of this law, we 
shall define what is meant by a source of heat of a given 
temperature. 

A body which is at the temperature t throughout and is 
29 
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conditioned in such a way that it can exchange heat but no 
work with its surroundings is called a source of heat of 
temperature t. As examples of this, we may consider 
bodies enclosed in rigid containers or bodies which undergo 
negligible variations of volume. A mass of water which is 
at the temperature t throughout may be taken as a source of 
heat since its volume remains practically constant. 

We can now state the second law of thermodynamics in 
the following form: 

A transformation whose only final result is to transform into 
work heat extracted from a source which is at the same tem
perature throughout is impossible.1 (Postulate of Lord 
Kelvin.) 

The experimental evidence in support of this law consists 
mainly in the failure of all efforts that have been made to 
construct a perpetuum mobile of the second kind. 

The second law can also be expressed as follows: 

A transformation whose only final result is to transfer heat 
from a body at a given temperature to a body at a higher tem
perature is impossible. (Postulate of Clausius.) 

Until now we have made use only of an empirical tem
perature scale. In order to give a precise meaning to the 
postulate of Clausius, we must first define what we mean 

1 An essential part of Lord Kelvin's postulate is that the transformation 
of the heat into work be the only final result of the process. Indeed it is 
not impossible to transform into work heat taken from a. source all ~t one 
temperature provided some other change in the state of the system is 
present at the end of the process. 

C~nsider, for example,.the isothermal expansion of an ideal gas that is 
kept ill thermal contact wIth a source of heat at the temperature ']'. Since 
the energy of the gas depends only on the temperature, and the temperature 
does not change during the process, we must have AU = O. From the 
first law, equation (15), we obtain, then, L = Q. That is the work L 
performed by the expanding gas is equal to the heat Q which it ahB~rb~ 
from the source. There is thus a complete transformation of heat Q into 
work L. This, however, is not a contradiction of Kelvin's po~t~late 
since the transformation of Q into L is not the only final reaul t of the prO(~eAH: 
At the ~nd. of the process, the gas occupies a volume larger than it did at 
the begmnmg. 
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when we say that one body is at a higher temperature than 
another 'body. If we bring two bodies at different temper
atures into thermal contact, heat flows spontaneously by 
conduction from one of these bodies to the other. By 
definition, we shall now say that the body away from which 
heat flows is at a higher temperature than the other body. 
With this understanding, we can now state the postulate of 
Clausius as follows: 

If heatflow8 by conduction from a body A to another body B, 
then a transformation whose only final result is to transfer 
heat from B to A is impossible. 

We must now prove the equivalence of the Clausius and 
the Kelvin postulates. To do this we shall prove that if the 
Clausius postulate were not valid, the Kelvin postulate 
would not be valid, and vice versa. 

Let us first suppose that Kelvin's postulate were not 
valid. Then we could perform a transformation whose 
only final result would be to transform completely into 
work a definite amount of heat taken from a single source 
at the temperature t 1 • By means of friction we could then 
transform this work into heat again and with this heat raise 
the temperature of a given body, regardless of what its 
initial temperature, t2 , might have been. In particular, we 
could take t2 to be higher than tt. Thus, the only final 
result of this process would be the transfer of heat from one 
body (the source at the temperature t1) to another body at a 
higher temperature, t2 • This would be a violation of the 
Clausius postulate. 

The second part of the proof of the equivalence of the 
two postulates requires first a discussion of the possibilities 
of transforming heat into work. We give this discussion 
in the next section. 

8. The Carnot cycle. Since, according to Kelvin's pos
tulate, it is impossible to transform into work heat taken 
from a source at a uniform temperature by a transformation 
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that leaves no other change in the systems involved in it, we 
need at least two sources at different temperatures hand t2 
in order to perform such a transformation. If we have two 
such sources, we can transform heat into work by the 
following process, which is called a Carnot cycle. 

Consider a fluid whose state can be represented on a 
(V, p) diagram, and consider two adiabatics and two iso
thermals corresponding to the temperatures tl and t2 • 

These four curves intersect each other in the four points A, 
B C and D as shown in Figure 7. Let AB and CD be the " , 
two isothermal lines having the temperatures t2 and t l , 

respectively. A C and BD are the two adiabatic lines. 
The reversible cyclic transfor
mation ABDCA is called a Car
not cycle. 

The following example will il
lustrate how a Carnot cycle can 
actually be performed. We en
close our fluid in a cylindrical 
container which has nonconduct-

v ing lateral walls and a noncon-
ducting piston at one end, so 

that heat can leave or enter the cylinder only through 
the other end (the base of the cylinder), which we take 
to be heat-conducting. Let tl and t2 be two sources of 
heat that are so large that their temperatures remain 
sensibly unaltered when any finite amounts of heat are 
added to or subtracted from them. Let t2 be larger than t I. 

We assume that initially the volume and the pressure of 
the fluid inside the cylinder are V A and PA, respectively, 
corresponding to the point A in Figure 7. Since this point 
lies on the isothermal corresponding to the temperature t2 , 
the temperature of the fluid is equal to t2 initially. If, 
therefore, we place the cylinder on the source t2 , no transfer 
of heat will occur (Figure 8, A). Keeping the cylinder on 
the source t2 , we raise the piston very slowly and thus 
increase the volume reversibly until it has reached the value 

Fig. 7. 
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VB (Figure 8, B). This part of the transformation is rep
resented by the segment AB of the isothermal t2 • The 
state of our system is now represented by the point B in 
Figure 7. 

We now place the cylinder on a thermal insulator and 
increase the volume very slowly until it has reached the 
value V D (Figure 8, D). Since the system is thermally 
insulated during this process, the process is represented in 
Figure 7 by the adiabatic segment BD. During this adia
batic expansion, the temperature of the fluid decreases 
from t2 to t l , and the state of the system is now given by 
the point D in Figure 7. 

I 
I 
I 
I __ ..1 __ 

WW 
A B 

I __ 1 __ 
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Placing the cylinder on the source t 1 , we now compress 
the fluid very slowly along the isothermal DC (Figure 7) 
until its volume has decreased to Va (Figure 8, C). Finally, 
we place the cylinder on the thermal insulator again and 
very slowly compress the fluid adiabatically along the 
segment CA until its temperature has increased to t2 • 

The system will now be at its initial state again, which is 
given by the point A in Figure 7 (Figure 8, A). 

During the isothermal expansion represented by the 
segment AB, the system absorbs an amount of heat Q2 
from the source t2 • During the isothermal compression 
represented by the segment DC, the system absorbs an 
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amount of heat - Ql from the source tl ; that is, it gives up 
an amount of heat Ql to the source t l . Thus, the total 
amount of heat absorbed.by the system during the cycle is 
Q2 - Ql. Let L be the amount of work done by the 
system during the transformation. This work is equal to 
the area bounded by the cycle in Figure 7. Making use of 
equation (16), which expresses the first law of thermo
dynamics for a cycle, we have: 

L = Q2 - Ql . (43) 

This equation tells us that only part of the heat that is 
absorbed by the system from the source at the higher 
temperature is transformed into work by the Carnot cycle; 
the rest of the beat, Ql, instead of being transformed into 
work, is surrendered to the source at the lower temperature. 

We define the efficiency of the Carnot cycle as the ratio, 

L Q2 - Ql 1 Ql 
1] = <22 = Q2 = - Qa' (44) 

of the work performed by the cycle to the heat absorbed at 
the high temperature source. 

Since the Carnot cycle is reversible, it can be carried out 
in the reverse direction. This can be done by performing 
all the transformations described above in the opposite 
sense. When this is done, the cycle absorbs the work L 
instead of producing it; and it absorbs the amount of heat 
Ql at the temperature tl and gives up the amount of heat 
Q2 at the temperature t2 • 

As a first application of the Carnot cycle, we shall com
plete the proof of the equivalence of the Clausius and the 
Kelvin postulates by showing that if the Clausius postulate 
.were not valid, Kelvin's postulate would not be valid either. 

Let us assume, in contradiction to Clausius' postulate, 
that it were possible to transfer a certain amount of heat 
Qa from a source at the temperature tl to a source at a 
higher temperature t2 in such a way that no other change ill 
the state of the system occurred. With the aid of a Carnot 
cycle, we could then absorb this amount of heat Q2 and 
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produce an amount of work L. Since the source at the 
temperature t2 receives and gives up the same amount of 
heat, it suffers no final change. Thus, the process just 
described would have as its only final result the transfor
mation into work of heat extracted from a source which is 
at the same temperature h throughout. This is contrary 
to the Kelvin postulate. 

9. The absolute thermodynamic temperature. In the 
preceding section we described a reversible cyclic engine, 
the Carnot cycle, which performs an amount of work L 
during each of its cycles by absorbing a quantity of heat Q2 
from a source at the temperature t2 and surrendering a 
quantity of heat Ql to a source at the lower temperature t1. 
We shall say that such an engine works between the tem
peratures tl and t2 • 

Consider now an engine working between the tempera
tures tl (lower) and t2 (higher). Let L be the work per
formed by the engine during each cycle, and let Q2 and Ql 
be the amounts of heat per cycle absorbed at the tempera
ture t2 and expelled at the temperature t1, respectively. 
This engine need not be a Carnot cycle; the only condition 
we impose on it is that it be cyclic: at the end of the process 
it must return to its initial state. 

We can easily show that if L > 0, that is, if the engine 
performs a positive amount of work, then Q2 > 0 and 
Ql > O. 

Let us assume first that Ql ~ O. This would mean that 
the engine absorbed an amount of heat Ql from the source tl 
during the cycle. We could then place the two sources in 
thermal contact and let heat flow spontaneously by con
duction from the hotter source t2 to the colder source tl 
until the latter had received exactly the same amount of 
heat as it had surrendered to the engine during the cycle. 
Since the source tl would thus remain unaffected, and the 
engine would be back in its initial state, the only final result 
of this process would be the transformation into work L of 
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heat absorbed from a single source which was initially at the 
same temperature t2 throughout. Since this is in contra
diction to Kelvin's postulate, we must have Ql > O. 

The proof that Q2 > 0 is now very simple. Since our 
engine reverts to its initial state after the cycle, we have 
from the first law (see equation (16»: 

L = Q2 - Ql. 

But L > 0 by assumption, and we have already proved 
that Ql > 0; hence, we must have Q2 > O. 

We consider now a second engine working between the 
same temperatures tl and t2 for which L', Q~, and Q~ are the 
quantities corresponding to L, Q2, and Ql for the first 
engine. We shall prove the following fundamental theorem: 

a. If the first engine is a reversible one,2 then, 

Q2 > Q~ 
Ql = Q~' 

b. If the second engine also is reversible, then, 

Q2 Q~ -=, 
Ql Ql 

(45) 

(46) 

In part (a) of the theorem, we make no assumption 
whatever about the second engine; thus, it mayor may not 
be reversible. 

If we apply equation (16) (the special form of the first 
law for a cycle) to our two engines, we see that the work 
performed by each engine during a cycle must be equal to 
the difference between the heat received from the source 
t2 and the heat given up at the source t 1 • Thus, we must 
have: 

(47) 

and 

L' = Q~ - Q~. (48) 

• 2 By a "reversible" engine we mean one which operates around a revers-
Ible cycle. 
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The ratio Q2/Q~ can certainly be approximated by a 
rational number to as high an accuracy as we may wish. 
We may therefore place 

Q2 N' 
Q~ = N' 

where Nand N' are positive integers. 

(49) 

We now consider a process consisting of N' cycles of the 
second engine and N reverse cycles of the first engine. 
This is a permissible process, since we have assumed that 
the first engine is reversible. When operated in the reverse 
sense, the first engine absorbs an amount of work L during 
each reverse cycle, giving up an amount of heat Q2 to the 
source t2 and absorbing an amount of heat Ql from the 
source t1 • 

The total work performed by the two engines during the 
complex process described above is: 

L total = N'L' - NL. 

The total amount of heat absorbed from the source t2 is: 

Q2, total = N' Q~ - NQ2; 

and the total amount of heat given up to the source tl is: 

Q1. total = N' Q~ - NQ1' 

From (47) and (48) we obtain immediately: 

Ltotal = Q2. total - Ql. total. 

But from (49) we deduce that: 

Q2, total = O. 

Hence, 

L tota1 = -Ql.total. 

(50) 

(51) 

Equation (50) states that the complete process produces 
no exchange of heat at the high tf':nperature t2 ; and equation 
(51) states that the heat absorbed from the source tl 
(equal to -Ql,total) is transformed into the work Ltota1 ' 



38 SECON:P LAW OF THERMODYNAMICS 

Since the complete process is composed of several cydc~ 
of each engine, both engines will come back t.o their initial 
states at the completion of the process. From this we H(~l~ 
that Ltotlll cannot be positive; for if it were posit.ive, tht· 
only final result of the complete process would be the tran~
formation into work, Ltotlll, of heat, -Ql,tntl.l, u,h:;;or\wd 
from a source which is at the temperature t 1 throughout. 
But this would contradict Kelvin's postulate. Hcn(~(!, Wl' 

must have: 

Ltotll1 ~ O. 

Because of equation (51), this inequality is equivalent to 

Ql,totlll ~ 0; 

and remembering the expression for Q1, total, we ootain: 

N'Q~ ~ NQ1. 

If we eliminate N' and N from this expression with t.he nid 
of equation (49), we get, since all the quantitie~ in (·!H) 
are positive, 

or 

which is identical with (45). 
In order to compete the proof of our fundamental tlwor(' Ill. 

we must show that if the second engine also is rever:-iihlt·, 
then the equality sign holds, as shown in equation (46). 

If we take the second engine to be reversible, we have, on 
interchanging the two engines and applying the inequality of 
part (a) of our theorem to the new arrangement, . 

Q~ > Q2 
Q~ = Ql' 

Both this inequality and (45) must hold in the prc&mt ea~p 
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because both engines are reversible. But these two in
equalities are compatible only if the equality sign holds. 

We can restate the theorem just proved as follows: 

If there are several cyclic heat engines, some oj which are 
reversible, operating around cycles between the same tem
peratures i l and t2 , all the reversible ones have the same effi
ciency, while the nonreversible ones have efficiencies which can 
never exceed the efficiency oj the reversible engines. 

We consider first two reversible engines. The fact that 
their efficiencies are equal follows immediately from (46) 
and the definition (44) of efficiency. 

If we have a reversible and a nonreversible engine, we 
obtain from the inequality (45): 

Ql < Q: 
Q2 = Q~' 

Hence, 

1 - Ql :::?: 1 - Q:. 
Q2 - Q~ 

Comparing this with equation (44), we see that the 
efficiency of the irreversible engine can never exceed that of 
the reversible one. 

Our fundamental theorem shows us that the ratio Q2/Ql 
has the same value for all reversible engines that operate 
between the same temperatures tl and t2 ; that is, this ratio 
is independent of the special properties of the engine, 
provided it is reversible: it depends only on the temperatures 
tl and t2 • We may therefore write: 

~: = j(tl , ~), (52) 

where j(tl, t2) is a universal function of the two tempera
tures t land t2 • 

We shall now prove that the function j(tl' t2) has the 
following property: 
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!(to, ts) 
j(h, ~) = !(to, tl) , 

(53) 

where to ft and ts are three arbitrary temperatures. 
Let A'l a~d As be two reversible cyclic engines which 

work between the temperatures to and tt and to and til, 
respectively. If Al absorbs an amount of heat Ql at the 
temperature ft and gives up an amount of heat Qo at the 
temperature to during a cycle, then from (52) we have: 

~: = j(ta, tl). 

Similarly, if AI absorbs an amount of heat QI at the 
temperature ts and gives up an amount of heat Qo at the 
temperature to (we assume, for the sake of simplicity, that 
the two engines are so chosen that they give up equal 
amounts of heat at the temperature to) during each cycle, 
then, 

~ = f(to, ~). 

Dividing this equation by the preceding one, we have: 

Q2 !(to, tt) 
Ql = !(to, t1) • 

(54) 

Consider now a complex process consisting of a direct 
cycle of the engine A 2 and a reverse cycle of the engine A 1 • 

This process is obviously a reversible cycle, since it consists 
of two separate reversible cycles. During the complex 
process no heat is exchanged at the temperature to, because 
the amount of heat Qo which is surrendered by the engine 
As at the temperature to is reabsorbed at that temperature 
by the engine A 1 operating in the reverse sense. However, 
at the temperature ts an amount of heat Qs is absorbed by 
As, and at the temperature tl an amount of heat Ql is 
expelled by the engine A 1 during the cycle. We may 
therefore consider A 1 and A 2, when working together in t.he 
manner described above, as forming a reversible cyclic 
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engine which operates between the temperatures tl and t2 • 
For this engine we have, by definition of the function f: 

~: = j(tl, ~). 
Comparing this equation with (54), we obtain (53). Q.E.D. 

Since the temperature to in the above discussion is 
arbitrary, we may keep it constant in all our equations; 
from this it follows that we may consider f(t o, t) as being a 
function of the temperature t ouly; we therefore place 

KjCto , t) = 8(t), (55) 

where K is an arbitrary constant. 
Making use of (55), we can now put (53) in the form.: 

Q2 = j(t 1_) = 8(t2) (56) 
Ql 1,"2 8(tl)' 

This equation tells us that f(t l , t2) is equal to the ratio of a 
function of the argument t2 to the same function of the 
argument tl • 

Since we have used an empirical temperature t, it is 
obviously impossible to determine the analytical form of 
the function (J(t). Since, however, our scale of tempera
tures is an arbitrary one, we can conveniently introduce a 
new temperature scale, using 0 itself as the temperature, 
instead of t. 

It should be noticed, however, that OCt) is not quite 
uniquely defined; it can be seen from (56) or (55) that O(t) is 
indeterminate to the extent of an arbitrary multiplicative 
constant factor . We are therefore free to choose the unit 
of the new temperature scale () in any way we see fit. The 
usual choice of this unit is made by placing the difference 
between the boiling temperature and the freezing tem
perature of water at one atmosphere of pressure equal to 
100 degrees. 

The temperature scale which we have just defined is 
called the absolute thermodynamic scale of temperature. 
It has the advantage of being independent of the special 
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properties of any thermometric substance; furthermore, all 
the thermodynamic laws take on a simple form when this 
scale of temperature is used. 

We shall now show that the absolute thermodynamic tem
perature 6 coincides· with the absolute temperature T intro
duced in section 2 with the aid of a gas thermometer. 

We consider a Carnot cycle performed by an ideal gas 
(for simplicity, we take one mole of gas). Let Tl and T2 be 
the temperatures (as measured by a gas thermometer) of 
the two isothermals of the Carnot cycle. (See Figure 7.) 
We first calculate the amount of heat Q2 absorbed at the 
temperature T2 during the isothermal expansion AB. 
Applying the first law, equation (15), to the transformation 
AB, and indicating by the subscripts A and B quantities 
that belong to the states A and B, we have: 

UB - UA + LAB = Q2, 

where LAB is the work performed during the isothermal 
expansion and can be calculated with the aid of equation (10) : 

LAB = RT210g ~:. 

We now make use of the fact that the energy of an ideal 
gas is a function of T only (see section 5). Thus, since A and 
B lie on the same isothermal, we must have VA = VB, so that 

Q2 = LAB = RT2 log ~: . 

In a similar fashion, we can prove that the amount of heat 
given up at the source T 1 during the isothermal compression 
represented by the segment DC is: 

Ql = RTl log ~: . 

Since the two points A and C lie on an adiabatic curve, we 
have, from (38): 

T VK-l T VK - 1 
1 C = 2 A ; 
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and similarly, 

T VK-l T VK - 1 
1 D = 2 B • 

Dividing this equation by the preceding one and extracting 
the (K - l)th root, we get: 

From this equation and the expressions for Q2 and Q1 , 
we obtain: 

Q2 T2 
Ql = T1 ' 

This equation shows us that the ratio Q2/Ql is equal to 
the ratio, T 2/T 1 , of the temperatures of the sources when 
these temperatures are expressed on the gas thermometer 
seale of temperature. But from (56) it follows that Q2/Ql 
is also equal to the ratio of the temperatures of the sources 
when these temperatures are expressed in units of the 
absolute thermodynamic scale. Hence, the ratio of the two 
temperatures on the absolute thermodynamic scale is 
equal to that ratio on the gas thermometer scale; that is, 
the two temperature scales are proportional. Since the 
units of temperature for both scales have been chosen equal, 
we eonclude that the two scales themselves are equal, 
that iH, 

B = T. (57) 

Sinee e and T are equal, we need no longer use two 
different letters to indicate them; henceforth, we shall 
always use the letter T to denote the absolute thermo
dynamie temperature. 

Using 11 in place of 0, we have from (56) for a reversible 
eycle between the temperatures Tl and T2 : 

(58) 
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And the efficiency (44) of a reversible engine becomes: 

(59) 

10. Thermal engines. We have already proved that no 
engine working between two temperatures can have a 
higher efficiency than a reversible engine working between 
the same two temperatures. Thus, (59) represents the 
highest possible efficiency that an engine working between 
the temperatures Tl and T2 can have. 

In most thermal engines the low temperature T 1 is the 
temperature of the environment, and is thus uncontrollable. 
It is therefore thermodynamically desirable to have the 
temperature T2 as high as possible. Of course, we must 
always bear in mind the fact that the actual efficiency is 
generally considerably lower than the maximum efficiency 
(59) because all thermal engines are far from being reversible. 

A Camot cycle operated in the reverse sense can be used 
to extract an amount of heat Ql from a source at the low 
temperature T 1 by absorbing an amount of work L. From 
(43) and (58) we easily deduce that: 

Ql = LT Tl T . 
2 - 1 

(60) 

On this principle we can construct a refrigerating machine 
using the temperature of the environment as the high 
temperature T 2. A Carnot cycle operated in the reverse 
sense could thus be used to extract the heat Q 1 from a body 
cooled to a temperature, T 1, lower than the temperature 
of the environment, T 2 • It is evident from (60) that the 
amount of work needed to extract a given quantity of heat 
Ql from a body which is at the temperature Tl becomes 
larger and larger as the temperature T 1 of the body decreases. 

As in the case of an ordinary thermal engine, the efficiency 
of a refrigerating machine is considerably lower than the 
thermodynamical efficiency (60) because irreversible proc
esses are always involved in refrigerating devices. 
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Problems 

1. One mole of a monatomic ga~ perlorms a Carnot cycle 
between the temperature~ 40ijo K and ~OOo K On the upper 
isothermal transformation, the initial volume is 1 liter and the 
final volume 5 liters. To find the work performea aurin~ a cycle, 
and the amounts of heat exchanged with the two source~, 

2. What is the maximum efficiency of a thermal en~ne 
working between an upper temperature of 40ijo C ana a lower 
temperature of l~o C1 

3. Find the minimum amount of work needea to erlract one 
calorie of heat from a body at the temperature of ijo F, when the 
temperature of the environment is W~O F. 



CHAPTER IV 

The Entropy 

11. Some properties of cycles. Let us consider a system 
S that undergoes a cyclic transformation. We suppose 
that during the cycle the system receives heat from or 
surrenders heat to a set of sources having the temperatures 
T 1, T 2, • •• , T 1\, Let the amounts of heat exchanged 
between the system and these sources be Ql, Q2, ... , Qn, 
respectively; we take the Q's positive if they represent heat 
received by the system and negative in the other case. 

We shall now prove that: 

(61) 

and that the equality sign holds in (61) if the cycle is 
reversible. 

In order to prove (61) we introduce, besides the n sources 
listed above, another source of heat at an arbitrary tem
perature To, and also n reversible cyclic engines (we shall 
take n Carnot cycles, el , C2 , ••• , en) operating between 
the temperatures T 1, T 2, ••• , Tn, respectively, and the 
temperature To. We shall choose the ith Carnot cycle, 
Ci, which operates between the temperatures Ti and To, 
to be of such a size that it surrenders at the temperature T, 
the quantity of heat Qi, that is, an amount equal to that 
absorbed by the system S at the temperature Ti • 

According to (58), the amount of heat absorbed by C i 
from the source To is: 

(62) 

We now consider a complex cycle consisting of one cycle 
of the system S and one cycle of each of the Carnot cycleH 

46 
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C 1, C 2, ••• , G 11 • The net exchange of heat at each of 
the sources T 1, T 2, ••• , T.. during the complex cycle is 
zero; the source T, surrenders an amount of heat Qdo the 
system S, but it receives the same amount of heat from the 
cycle C;.. The source To, on the other hand, loses an 
amount of heat equal to the sum of the amounts (given by 
(62)) absorbed by the Carnot cycles C1 , C2 , ••• , Cft . 
Thus, the source To surrenders altogether an amount of 
heat equal to 

n n Qi 
Qo = L Qi. 0 = To L T'. 

0=1 .=1 , 
(63) 

Hence, the net result of our complex cycle is that the 
system composed of Sand C 1, C 2, ••• , G.. receives an 
amount of heat Qo from the source To. But we have 
already seen that in a cyclic transformation the work 
performed is equal to the total heat received by the system. 
Thus, since S, Gl , G2 , ••• , eft return to their initial states 
at the end of the complex cycle, the only final result of the 
complex cycle is to transform into work an amount of heat 
received from a source at a uniform temperature To. If Qo 
were positive, this result would be in contradiction to 
Kelvin's postulate. It therefore follows that Qo ~ 0, or, 
from (63), 

which is identical with (61). 
If the cycle performed by S is reversible, we can describe 

it in the opposite direction, in which case all the Q. will 
change SIgn. Applying (61) to the reverse cycle, we 
obtain: 

or 
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Thus, if the cycle is reversible, this inequality, as well as 
(61), must be satisfied. This is possible only if the equality 
sign holds. For a reversible cycle, therefore, we must have: 

(64) 

This completes the proof of our theorem. 
In establishing (61) and (64), we assumed that the 

system exchanges heat with a finite number of sources 
Tl) T 2 , ••• ,Tn. It is important, however, to consider 
the case for which the system exchanges heat with a con
tinuous distribution of sources. In that case, the sums in 
(61) and (64) must be replaced by integrals extended over 
the entire cycle. 

Denoting by f the integral extended over a cycle and by 

dQ the infinitesimal amount of heat received by the system 
from a source at the temperature T, we have: 

f d$ ~ 0, (65) 

which is valid for all cycles, and 

i dQ _ 0 r T - , 

which is valid only for reversible cycles.1 

(66) 

12. The entropy. The property of a reversible cycle 
which is expressed by (66) can also be stated in the following 
form. Let A and B be two equilibrium states of a system S. 

1 In order to avoid misunderstandings as to the meaning of (65) and (66), 
we must point out that T represents the temperature of the source which 
surrenders the quantity of heat dQ, and is not necessarily equal to the 
temperature T' of the system (or of part of the system) which receives the 
heat dQ. Indeed, if the cycle is irreversible (relation (65), T' ~ T when 
dQis positive, because heat cannot flow from acolder body to a hotter body; 
and when dQ is negative, T' E; T. If the cycle is reversible, however 
(equation (66», we must always have T' = T, because an exchange of heat 
between two bodies at different temperatures is not reversible. In (66) 
we may therefore take T to be the temperature of the source and also the 
temperature of the part of the system that receives the heat dQ. 
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Consider a reversible transformation which takes the system 
from its initial state A to the final state B. In most cases 
many reversible transformations from A to B will be pos-

Fig. 9. 

sible. For example, if the state 
of the system can be repre
sented on a (V, p) diagram, 
any continuous curve connect
ing the two points A and B (rep
resenting the initial and final 
states of the system) corre-
sponds to a possible reversible 

v transformation from A to B. 
In Figure 9, three such trans-

formations are shown. 
Consider now the integral: 

18 dQ 

A T 

extended over a reversible transformation from A to B 
(dQ is the amount of heat absorbed reversibly by the system 
at the temperature T). We shall prove that the above 
integral is the same for all reversible transformations from 
A to B; that is, that the value of the integral Jor a reversible 
transformation depends only on the extreme I 

states A and B of the transformation and not QB 
on the transformation itself. 

In order to prove this theorem, we must JI 
show that if I and II are two reversible A 
transformations from A to B (in Figure 

Fig. 10. 

lO, the states are represented as points and the transfor
mations as lines merely as a visual aid to the proof), then, 

( (1/ dQ) = ( (/I dQ) , 
JA T I JA T II 

(67) 

where the two integrahl are taken along the paths I and II, 
respectively. 

Consider the cyclic transformation A I B II A. This is a 
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reversible cycle, since it is made up of two reversible trans
formations. We may therefore apply (66) to it, so that 

1. dQ _ 0 
YAIBIIA T - . 

This integral can be split into the sum of two integrals: 

(lB dQ) ( fA dQ) 
A T I + JB T II = O. 

The second integral in this expression is equal to - (i B d~) II' 
because in the transformation from B to A along II, dQ 
takes on the same values, except for sign, as it does in the 
transformation f:[,:om A to B along II. Hence we obtain 
(67), and thus prove our theorem. 

The property expressed by (67) enables us to define a 
new function of the state of a system. This function, 
which is called the entropy and is of utmost importance in 
thermodynamics, is defined in the following way: 

We arbitrarily choose a certain equilibrium state 0 of our 
system and call it the standard state. Let A be some other 
equilibrium state, and consider the integral: 

SeA) = fA dQ 
)0 T 

(68) 

taken over a reversible transformation. We have already 
seen that such an integral depends only on the states 0 and 
A and not on the particular reversible transformation 
from 0 to A. Since the standard state 0 is fixed, however, 
we may say that (68) is a function of the state A only. 
We shall call this function the entropy of the state A. 2 

2 The necessity of restricting this definition of the entropy to equilibrium 
s.tates only arises from the fact that the transformation from 0 to A must 
be reversible; that is, it must be a succession of equilibrium states. Hence 
it follows from continuity considerations that the initial and final states 
o and A must also be equilibrium states. 

In many cases, however, it is possible to define the entropy even for 
non-equilibrium states. Let us consider, for example, a system composed 
of several homogeneous parts at different temperatures and pressures. 
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Consider now two equilibrium states A and B, and let 
SeA) and S(B), respectively, be the entropies of these 
states. We shall show that: 

S(B) - SeA) = 18 dQ, 
.-1 T 

(69) 

where the integral is taken over a reversible transformation 
from state A to state B. 

In order to prove this, we note that the integral on the 
right-hand side of (69) has the same value for all reversible 
transformations from A to B. We may therefore choose a 
particular transformation consisting of two successive 
reversible transformations: first a reversible transformation 
from A to the standard state 0 and then a reversible 
transformation from 0 to B. Thus, the integral in (69) 
can be written as the sum of two integrals: 

18 d~ = fa dQ + (a dQ. (70) 
.1 1 }.1 T Jo T 

We have by the definition (68): 

S(B) = flJ dQ, 
Jo T 

since the transformation from 0 to B IS reversible. We 
have further: 

1° dQ l.1 dQ - = - - = - SeA). 
A ToT 

Substituting these two values for the integrals on the 
right-hand side of (70), we obtain (60). Q.E.D. 

The definition (68) of the entropy requires the arbitrary 
choice of a standard state O. We can easily prove that if, 
instead of 0, we choose a different Rtandard state 0', then 

Let eaeh part, however, have a uniform tempcrut,mc and pressure. If tho 
different parts are ill dirc(·t eont:wt with e!wh other, the system will evi
dently not be in equilibrium. Hime hoat will flow from the hottel' to the 
colder parts, and the differelj(~ci'! of pressure will !!:ive risc t,o motion. If, 
however, we enclose eaeh part in a thermally insulating rigid eon to.iner, our 
system will be in equilibrium, and we shall be able to determine it!! en
tropy, 
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the new value, S'(A), which we find for the entropy of the 
state A differs from the old one, SeA), only by an additive 
constant. 

If we take 0' as the new standard state, we have, by 
definition, 

S'CA) = e· dQ, 
}o' T 

where the integral is extended over a reversible transforma
tion from 0' to A. By applying (69) to thig integral, we 
find that 

S'(A) = SeA) - S(O'), 

or 

SeA) - S'CA) = S(O'). (71) 

Since the new standard state 0' is fixed, however, S (0') is a 
constant (that is, it is independent of the variable state A). 
Thus (71) shows that the difference between the entropies 
of state A obtained with two different standard states, 0 
and 0', is a constant. 

The entropy is thus defined except for an additive con
stant. This indeterminacy will not trouble us when we are 
dealing with entropy differences; in several problems, 
however, the additive constant in the entropy plays an 
important role. We shall see later how the third law of 
thermodynamics completes the definition of the entropy and 
also enables us to determine the entropy constant (see 
Chapter VIII). 

Both from (68) and from (69) it follows, if we consider an 
infinitesimal reversible transformation during which the 
entropy varies by an amount dB and the system receives an 
amount of heat dQ at the temperature T, that 

dS = d$. (72) 

That is, the variation in entropy during an infinitesimal 
reversible transformation is obtained by dividing the amount 
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of heat absorbed by the system by the temperature of the 
system. 

The entropy of a system composed of several parts is very 
often equal to the sum of the entropies of all the parts. 
This is true if the energy of the system is the sum of the 
energies of all the parts and if the work performed by 
the system during a transformation is equal to the sum of 
the amounts of work performed by all the parts. Notice 
that these conditions are not quite obvious and that in 
some cases they may not be fulfilled. Thus, for example, 
in the case of a system composed of two homogeneous 
substances, it will be possible to express the energy as the 
sum of the energies of the two substances only if we can 
neglect the surface energy of the two substances where they 
are in contact. The surface energy can generally be 
neglected only if the two substances are not very finely 
subdivided; otherwise, it can playa considerable role. 

Let us assume for the sake of simplicity that our system 8 

is composed of only the two partial systems 81 and 82. We 
suppose that the energy U of 8 is equal to the sum of the 
energies Uland U 2 of 81 and 82: 

U = U1 + U2 ; 

and that the work L performed by s during a transformation 
is equal to the sum of Ll and £2, that is, to the sum of the 
work performed by 81 and 82, respectively: 

L = Ll + L2 _ 

From these assumpt.ions and from (15) it follows that the 
heat Q received by the syntem 8 during a transformation 
can be written as the sum, 

Q = QI + Q2, 

of the amounts of heat received by the two parts. This 
, , enables us to split the integral (68), which defines the 

entropy, into the lmm: 
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SeA) = (A dQ = (A dQ1 + fA dTQ2, 
Jo T Jo T Jo 

of two integrals which define the entropies of the two partial 
systems 81 and 82.3 

When the conditions for its validity are fulfilled, this 
additivity of entropy enables us in several cases to define 
the entropy of a system even though the system is not in a 
state of equilibrium. This is possible if we can divide the 
given system into a number of parts each of which alone 
is in a state of equilibrium. We can then define the entropy 
of each of these parts and, by definition, place the entropy 
of the total system equal to the sum of the entropies of all 
the parts.4 

13. Some further properties of the entropy. Consider 
two states A and B of a system. We have from (69): 

f B dQ 
S(B) - SeA) = A T' 

provided the integral is taken over a reversible transforma
tion from A to B. If, however, the integral is taken from 
A to B over an irreversible transformation, the preceding 
equation no longer holds. We shall show in that case that 
we have, instead, the inequality 

S(E) - SeA) ;:;; 1B d~. (73) 

In order to show this, we take our 8YH-d B tern from A to B along an irreversible 
transformation, I, and back to A again 
along a reversible transformation R (see 

A R Figure 11). I and R together form an ir-
Fig. 11. reversible cycle A I BRA. If we apply 

(65) to this irreversible cycle, we obtain: 

3 It should be noticed that if the standard state 0 and the state A of the 
total system are given, the corresponding states of the two parts that 
compose the total system are known. These states of the two partial 
systems have been indicated by the same letters 0 and A 

4 It can easily be proved that all the properties already shown to apply 
to the entropy apply also to this generalized definition. 
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Since (69) can be applied to the reversible transformation, 
R, from B to A, we have: 

( (A dQ) Ju T II = SeA) - S(B). 

Substituting this in the preceding inequality, we obtain: 

o ~ (i B d~\ - [S(B) - SeA)], 

so that, for the general case of any type of transformation 
from A to B, we have: 

iB d~ ~ S(B) - SeA), 

which is identical with (73). Q.E.D. 
For a completely isolated system, (73) takes on a very 

simple form. Since for sueh a system dQ = 0, we now find 
that: 

S(B) ~ S(A); (74) 

that is, for any transform.ation occ'urring in an iBolated system, 
the entropy of the final state can '(/.Cllfr be less than that of the 
initial state. If the tram;format.ion is rever~ible, the 
equality Sig,ll holdH in (74), and the syst.em suffers no ehange 
in entropy. 

It should be eleaTly Undel'Htood tImt the l'e~iUlt (74) 
applies only to isoiat('d sYHLemH. '1'huR, it. h-l possible with 
the aid of an ext.erIlal sys(,(~m t.o reduce tho ent.ropy of a 
body. The ent.ropy of both syst.ems t~Lkcn t.ogether, 
however, emmot. deerease. 

When an isolated systpm is in the state of maximum 
entropy consist.ent wit.h itH Pl\(,l'gy, it. (,:Ull10t. u]l(lcrgo any 
further tranHformatiol1 i>eealiHe allY tmnsfol'mnt,ioll would 
result in a deerea~e of ('11 t.ropy. ThuH, tlil' sfllt(~ of'm.aximum 
entropy is the most stah/I' staff' fill' all isolatl'd .~!lI,:ll'm. The 
fact that all Hpollt.alleO\l:-; t.l'all:-;fol'mut.jollH ill all ilmiated 
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system proceed in such a direction as to increase the entropy 
can be conveniently illustrated by two simple examples. 

As the first example, we consider the exchange of heat by 
thermal conduction between two parts, A 1 and A 2, of a 
system. Let T 1 and T 2 be the temperatures of these two 
parts, respectively, and let Tl < T". Since heat :Bows by 
conduction from the hotter body to the colder body, the 
body A 2 gives up a quantity of heat Q which is absorbed by 
the body A 1. Thus, the entropy of A 1 changes by an 
amount Q/Tl' while that of A2 changes by the amount 
-Q/T'I.' The total variation in entropy of the complete 
system is, accordingly, 

Q Q 
T1 - T2' 

Since Tl < T'l.I this variation is obviously positive, so that 
the entropy of the entire system has been increased. 

As a second example, we consider the production of heat 
by friction. This irreversible process also results in an 
increase of entropy. The part of the system that is heated 
by friction receives a positive amollllt of heat and its entropy 
increases. Since the heat comes from work and not from 
another part of the system, this increase of entropy is not 
compensated by a decrease of entropy in another part of 
the system. 

The fact that the entropy of an isolated system can never 
decrease during any transformation has a very clear inter
pretation from the statistical point of view. Boltzmann 
has proved that the entropy of a given state of a thermo
dynamical system is connected by a simple relationship 
to the probability of the state. 

We have already emphasized the difference between the 
dynamical and thermodynamical concepts of the state of a 
system. To define the dynamical state, it is necessary to 
have the detailed knowledge of the position and motion of 
all the molecules that compose the system. The thermo-

. dynamical state, on the other hand, is defined by giving 
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only a small number of parameters, such as the temperature, 
pressure, and so forth. It follows, therefore, that to the 
same thermodynamical state there corresponds a large 
number of dynamical states. In statistical mechanics, 
criteria are given for assigning to a given thermodynamical 
state the number 7r of corresponding dynamical states. 
(See also section 30.) This number 7r is usually called the 
probability of the given thermodynamical state, although, 
strictly speaking, it is only proportional to the probability 
in the usual sense. The latter can be obtained by dividing 7r 

by the total number of possible dynamical states. 
We shall now assume, in accordance with statistical 

considerations, that in an isolated system only those 
spontaneous transformations occur which take the system 
to states of higher probability, so that the most stable 
state of such a system will be the state of highest probability 
consistent with the given total energy of the system. 

We see that this assumption establishes a parallelism 
between the properties of the probability 7r and the entropy 
S of our system, and thus suggests the existence of a func
tional relationship between them. Such a relationship was 
actually established by Boltzmann, who proved that 

8 = k log 7[', (75) 

where Ie is a constant called the Boltzmann Constant and is 
equal to the ratio, 

R 
A' 

of the gas constant R to Avogadro's number A. 

(76) 

Without giving a proof of (75), we can prove, assuming 
the exi~tence of a funetional relationship between Sand 7r, 

S = I(-,r), (77) 

that the entropy is proportional to the logarithm of the 
probability. 

Consider 11 system composed of two parts l and let 8 1 and 
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8 2 be the entropies and '11"1 and '11"2 the probabilities of the 
states of these parts. We have from (77): 

81 = j(71"1); 82 = f(71"2). 

But the entropy of the total system is the sum of the two 
entropies: 

8 = 8 1 + 8 2 ; 

and the probability of the total system is the product of 
the two probabilities, 

7r = 71"1 71"2 • 

From these equations and from (77) we obtain the 
following: 

[(11"111"2) = [(7r1) + [(71"2)' 

The function f must accordingly obey the functional 
equation: 

J(xy) = [(x) + fey). (78) 

This property of f enables us to determine its form. Since 
(78) is true for all values of x and y, we may take y = 1 + E, 

where E is an infinitesimal of the first order. Then, 

fex + XE) = fex) + J(l + E). 

Expanding both sides by Taylor's theorem and neglecting 
all terms of an order higher than the first, we have: 

fex) + xEf'(x) = f(x) + J(l) + Ef'(l). 

For E = 0, we findl(l) = o. Hence, 

xf'(x) = 1'(1) = k, 

where k represents a constant, or: 

k 
f'(x) = -. 

x 

Integrating, we obtain: 

f(x) = k log x + const. 
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Remembering (77), we finally have: 

S = k log 'IT" + const. 

We ~an place the constant of integration equal to zero. 
This is permissible because the entropy is indeterminate 
to the extent of an additive constant. We thus finally 
obtain (75). 

Of course, it should be clearly understood that this 
constitutes no proof of the Boltzmann equation (75), since 
we have not demonstrated that a functional relationship 
between Sand 7r exists, but have merely made it appear 
plausible. 

14. The entropy of systems whose states can be repre
sented on a (V, p) diagram. For these systems the state is 
defined by any two of the three variables, p, V, and T. 
If we choose T and V as the independent variables (the 
state varia-bles), the heat dQ received by the system during 
an infinitesimal transformation as a result of which T and V 
change by amounts dT and dV is given by the differential 
expression (22) 

dQ = (~) dT + [(~i!) + pJ dV. aT v aV T 
(79) 

From this a.nd (72) we obtain: 

dS = ~ = ~(~~\d1' + ~[(~~)T + 1)JdV. (80) 

These two differential expressions for dQ and dS differ in 
one very import.ant respect. We know from the general 
theory that there cxiHt,s a funet.ion S of the stat.e of the 
sYHt.cm. In our case, S will therefore be a function of the 
variableH T a.nd V, \vhieh define the state of the system: 

S = SeT, V). (81) 

The differentia] r.xprcHHioll on the right-hand sidc of (80) is 
Uwrdore the different.ial of a function of the t\\'o independent 
varinhleH '1' and V. 
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In general, a differential expression of two independent 
variables x and y, such as: 

dz = M(x, y)dx + N(x, y)dy, ,,(82) 

is said to be a perfect differential if it is the differential of a 
function of x and y. We may accordingly say that (80) is a 
perfect differential of the independent variables T and V. 

It is well known that if dz is a perfect differential, then M 
and N must satisfy the following equation: 

&M(x, y) = aN(x, y) (83) 
&y ax 

When this condition is fulfilled, it is possible to integrate 
(82) and thus find a function which satisfies that equation. 

F Otherwise, no such function ex
ists, and dz cannot be considered 
as being the differential of some 
function of x and y; then, the in
tegral of (82) along a path con
necting two points on the (x, y) 

Fig. 12. 
v plane depends not only on these 

two points (the limits of the in
tegral) but also on the path joining them. 

As regards the two differential expressions (79) and (80), 
we have already noticed that dB is a perfect differential. 
If we consider two states A and B on the (V, p) diagram 
connected by two different reversible transformations I and 
II (see Figure 12), and integrate dS along the two paths I 
and II, we get the same result in both cases, namely, 
S(B) - SeA). If, on the other hand, we integrate dQ 
along these two different paths, we obtain two results, 
Ql and Q2, which in general are not equal. This can be 
easily verified by applying the first law of thermodynamics, 
(15), to the two transformations I and II. On doing this, 
we find that: 

Qr· = V(B) - V(A) + Ll 
QII = V(B) - U(A) + LII . 
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Taking the difference of these two expressions, we obtain: 

Qr - Qrr = Ll - Ll1 . 

Lr and LTI are given by the areasAIBB'A'A andAIIBB' A' A, 
respectively. Since the difference between these two areas 
is equal to the area AlBIIA, it follows that Lr - LII and, 
therefore, Qr - Q11 also, are, in general, different from zero. 
Thus, (79) is not a perfect differential, and no function Q 
of the sta.te of the system can be found. It should be 
not.iced that if a heat fluid really existed, as had been 
assumed before modern thermodynamics was developed, a 
function Q of the state of the system could be found. 

Let us consider, as an example of the preceding con
siderations, the expressions for dQ and dS for one mole of an 
ideal gas. From (30) we have: 

dQ = CvdT + pdV, 

or, on eliminating p with the aid of the equation of state, 
pV = RT, 

RT 
dQ = CvdT + V dV. (84) 

This expression is not a perfect differential, and one can 
immediately verify that the condition (83) is not fulfilled. 

From (8<1) /l,nd (72) we obtain: 

dS = <i9 = Cv dT + R dV 
T TV' 

(85) 

Sinee the ('(m<iition (83) iH now fulfilled, this expression is a 
lwrfe('t diff('f(~nt.iaL 

On intl'grating (8.5), we obtain: 

s = Cv log T + U log V + a, (86) 

where a iJ-\ fl. eon:-;tant of int.cgrat,ion. This additive constant 
remains uncict.ennilled in aeeordanec with the definition 
(liS) of the entropy. (Rep, hm\'C'vN, Rcetion 32.) 

\Vc ClW t.ran:-;form the exprct-;;.;ion (Sli) for the entropy of 
one mole of an ideal gat-; by introducing in place of V its 
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value V = RT /p obtained from the equation of state. 
Remembering (33), we obtain: 

S = Cp log T - R log p + a + R log R. (87) 

Returning to the general case of any substance whose 
state can be defined by the variables T and V, we obtain 
the expression (80) for the differential of the entropy. 
The condition (83), when applied to this expression, gives: 

a~(~ :~) = a~ [~(:~ + p)], 
where we have omitted the subscripts V and T because in 
all these formulae we shall always use V and T as the 
independent variables. If we perform the partial differ
entiations indicated in the preceding equation and collect 
terms, we obtain the important result: 

(au) = T(ap ) _ p. (88) 
aV T aT v 

As an application of (88), we shall use it to show that the 
energy U of a substance which obeys the equation of state 
p V = RT is a function of the temperature only and does not 
depend on the volume. We have already seen that this was 
experimentally verified by Joule; it is interesting, however, 
to obtain this result as a direct consequence of the equation 
of state. 

Substituting the expression p = RT /V in (88), we find 
that: 

(au) = T ~ (RT) _ RT 
aV T aT V V 

= 0, 

which proves5 that U does not depend on V. 
If we choose T, p or p, V instead of T, V as the inde-

& Notice that this result is not quite independent of the Joule experiment 
described in section 5. Indeed, the proof of the identity between the gas 
thermometer temperature T and the thermodynamic temperature (j given in 
section 9 was based on the res ul ts of the Joule experiment. 
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pendent variables, we obtain two other equations which are 
substantially equivalent to (88). Thus, if we take T and p 
as the state variables, dQ is given by (23). Since dS = dQ/T 
is a perfect differential, we easily obtain, with the aid of (83) : 

(au) = _ (av) _ T (av) ap T p ap T aT p 
(89) 

Similarly, taking p and Vas the independent variables, we 
obtain from (24) and (83): 

T = [(au) + pJ (aT) _ (au) (aT) (90) 
aV p ap v op v aV p' 

15. The Clapeyron equa- P 
tion. In this section we shall 
apply equation (88) to a sat
urated vapor, that is, to a 
system composed of a liquid 
and its vapor in equilibrium. 

We consider a liquid en
closed in a cylinder with a 
piston at one end. The space 
between the surface of the 
liquid and the face of the pis
ton will be filled with satu-

L,V 
'----------v 

Fig. 13 

rated vapor at a pressure p which depends only on the 
temperature of the vapor and not on its volume. 

The isothermals for this liquid-vapor system in a (V, p) 
representation are obtained as follows: Keeping the tem
perature constant, we increase the volume of the vapor by 
raising the piston. As a result of this, some of the liquid 
will evaporate in order to keep the pressure of the vapor 
unchanged. Thus, as long as enough liquid is left, an 
increase in the volume of the system leaves the pressure 
unchanged. Therefore, the isothermal for a mixture of a 
liquid and its vapor in equilibrium is a line of constant 
pressure, and hence parallel to the V-axis, as shown in the 
region within the dotted line in Figure 13. 
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When the volume has been increased to such an extent 
that all the liquid has evaporated, a further increase in 
volume will result, as shown in Figure 13, in a decrease in 
pressure just as in the case of a gas. 

If we now compress our system, still keeping the tem
perature constant, the pressure will increase until it becomes 
equal to the pressure of the saturated vapor for the given 
temperature. At this point, a further decrease in volume 
does not produce an increase in the pressure; instead, some 
of the vapor condenses and the pressure remains unchanged 
(the horizontal stretch of the isothermal). 

When the volume has been reduced to such an extent 
that the substance is completely in the liquid state, a further 
compression produces a very large increase in pressure, 
because liquids have a very low compressibility. This 
part of the isothermal will therefore be very steep, as shown 
in the figure. 

In Figure 13 several isothermals of the kind just discussed 
have been drawn for various values of the temperature 
(lines a, b, c, and d). It can be seen from the figure that 
the length of the horizontal stretch of the isothermal 
(that is, the volume interval for which the liquid and vapor 
can coexist in equilibrium at a given temperature) decreases 
with increasing temperature until for the isothermal ee it 
reduces to an infinitesimal length (that is, to a horizontal 
point of inflection). This isothermal ee is called the critical 
isothermal, and its temperature T c is called the critical 
temperature. The volume V c and the pressure pc cor
responding to the horizontal point of inflection are called 
the critical volume and the critical pressure; the state cor
responding to V c, pc, T c is called the critical state (or 
critical point) of the system. 

The isothermals for temperatures above the critical 
temperature are monotonic decreasing functions which have 
no discontinuities. For very large temperatures, they go 
over into equilateral hyperbolae, because the properties of 
the substance in the range of very high temperatures become 
more and more similar to those of an ideal gas. 
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The dotted line in the figure and the critical isothermal ee 
divide the (V, p) plane into four sections: the section 
marked L, which corresponds to the liquid state; the section 
marked L, V, which corresponds to the mixture of the liquid 
and the saturated vapor; the section V which corresponds 
to the nonsaturated vapor; and the section G, which corre
sponds to the gas. 

We shall now apply (88) to the liquid-vapor system 
represented by region L, V of the (V, p) plane in Figure 13. 
In this region the pressure and the densities of the liquid 
and the vapor depend only on the temperature. Let Vi and 
V2 be the specific volumes (that is, the volumes per unit 
mass, or the inverse of the densities) of the liquid and the 
vapor, respectively; and let 'I.li and U2 be their specific 
energies (that is, the energies per unit mass). The quanti
ties p, VI, V2, Ut, and 1(,2 are all functions of the temperature 
only. If m is the total mass of the substance, and mi and 
1n2 are the masses of the liquid and vapor parts, respectively, 
then, 

Similarly, the total volume and the total energy of the 
system are: 

v = rn I VI (T) + m2v2(T) 

U = 'llb11l1(T) + ?n2U2(T). 

We now consider an isothermal transformation of our 
system whieh causes an amount din of the substance to pass 
from the liquid state to the vapor state, and which results 
in a change dV of the total volume and a change dU of the 
total energy of the sYRtem. At the end of the tranRforma
tion there will then be present (ml - dm) grams of liquid 
and (1n2 + dm) grams of vapor, so that the total volume 
will be equal to: 

V + dV = ('lnl - dm)vl(T) + (m2 + dm)v2(T) 

= V + {v2(7'). - vl(T) }dm, 

or 
(91) 
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Similarly, the total energy will change by an amount 

dU= {U2(T) -ul(T)}dm. (92) 

From the first law, equation (21), we have: 

or 

dQ = dU + pdV 

= dm{u2 - Ul + P(V2 - th)}, 

dQ 
- = U2 - Ul + P(V2 - Vl) = A. 
dm 

(93) 

Equation (93) is the expression for the amount of heat 
that is needed to vaporize one gram of liquid at constant 
temperature; it is called the latent heat of vaporization, A. 
The value of A is different for different liquids, and it also 
depends on the temperature. For water at the boiling 
temperature and standard pressure, A = 540 cal./gm. 

Since (91) and (92) refer to isothermal transformations, 
the ratio dU j dV gives us: 

(au) ~(T) - ul(T) 
oV T = v2(T) - vI(T) , 

or, using (93): 

(:~)T = V2 A VI - p. 

If we compare this equation with (88) and write dpjdT 

insteBd of (:~ )v' which we may do because the pressure is a 

function of T only for our system, we find that: 

dp A 
dT = T(V2 - VI)· 

(94) 

This is called Clapeyron' 8 equation. 
As an example of the application of Clapeyron's equation, 

we shall calculate the ratio dpjdT for water vapor at the 
boiling temperature and at standard pressure. We have: 
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x == 540 cal./gm. = 2260 X 107 ergs/gm.; 

Vz = 1677; VI = 1.043; T = 373.1. 

Substituting these values in (94), we get: 

~~ = 3.62 X 1040 dynes/cm.2 degrees = 2.7 em. Hg/degrees. 

An approximate value for dp/dT can be obtained from 
Clapeyron's equation by assuming that VI is negligible as 
compared to V2, and then calculating V2 by assuming that 
the vapor satisfies the equation of state of an ideal gas. 

For one gram of vapor, we have, from equation (6) : 

R 
PV2 = .M T, (95) 

where M is the molecular weight of the vapor. Equation 
(94) now becomes: 

(96) 

or 
d log 1) XM 

d'l' - 1'-,],2' (97) 

For water vapor at the boiling temperature, this formula 
gives dp/dT = 3.5n X 10"; this is in very good agreement 
with the value 3.02 X 10-1 obtained from the exact cal
culation. 

If the heat of vaporization h is assumed to be constant 
over a wide range of tempt~ra.tures, we can integrate (97) 
and obtain: 

or 

XM 
log l' = - NT + eom;tant, 

).u 

P = const. (~-liT (98) 

This formula shows ill n. rough way how the vapor pressure 
depends on the t(~rnp(·ratul"(,. 
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We have derived Clapeyron's equation for a liquid-vapor 
system, but the same formula can be applied to any change 
of state of a substance. As an example of this, we shall 
apply Clapeyron's equation to the melting of a solid. A 
solid subjected to a given pressure melts at a sharply defined 
temperature which varies with the pressure applied to the 
solid. Hence, for a solid-liquid system the pressure for 
which the solid state and the liquid state can coexist iIi. 
equilibrium is a function of the temperature. We shall 
now use (94) to calculate the derivative of this function. 
The quantities :\., !h, and V2 in this case represent the heat of 
fusion and the specific volumes of the solid and the liquid, 
respectively. 

If we take the melting· of ice as an example, we havtl: 
A = 80 cal./gm. = 335 X 107 ergs/gm., VI = 1.0907 cm.a/ 
gm., V2 = 1.00013 cm.s/gm., T = 273.1. Substituting these 
values in (94), we obtain: 

:~ = -1.35 X 108 dynes/cm.2 degrees = -134 atm./degrees. 

That is, an increase in pressure of 134 atmospheres lowers the 
melting point of ice by 1°, 

It should be noticed, in particular, that the melting point 
of ice decreases with increasing pressure. In this respect 
water behaves differently from the way in which most 
substances behave; in the majority of cases, the melting 
point increases with increasing pressure. This anomalous 
behavior of water is due to the fact that ice is less dense than 
water, whereas in most other cases the solid is denser than 
the liquid. 

The fact that the melting point of ice is lowered by pres
sure is of considerable importance in geophysics because this 
phenomenon is responsible for the motion of glaciers. 
When the mass of ice encounters a rock on the glacier bed, 
the high pressure of the ice against the rock lowers the 
melting point of the ice at that point, causing the ice to 
melt on one side of the rock. It refreezes again immediately 
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after the pressure is removed. In this way the mass of ice 
is able to flow very slowly around obstacles. 

16. The Van der Waals equation. The characteristic 
equation of an ideal gas represents the behavior of real gases 
fairly well for high temperatures and low pressures. How
ever, when the temperature and pressure are such that the 
gns is ncar condensation, important deviations from the 
laws of ideal gases are observed. 

Among the numerous equations of state that have been 
introduced to represent the behavior of real gases, that of 
Van der Waals is especially int.eresting beeause of its 
simplicity nnd becausc it. sttt.isfaetorily deRcribes the behavior 
of many substances over a wiele range of temperatures and 
pressures. 

Van der 1;Vaals derived his equation from considerations 
based on kinctio theory, tn,king into aeeount to a first 
approximation the Rize of a moleeule alld t.he eohesive forces 
between moleeulcs. His equation of ::;t.n,te (written for one 
mole of 8ub::;tUIlec) iR: 

(p + a/V2)(V - b) = RT, (99) 

wh(~re a and bare eha.raeterist ie C(HlHt.nnt.H for a given 
substa.nee. For a. = b = 0, (DB) wdupmi t.o the ehur
acter.istie equation of an ideal gas. Thn term b represent.s 
the cfTed. nrisillg from t.he finit.e :-;ize of the molcellll~H, and 
the term a/V~ represents the effeet. of t.he molemtln,r cohesive 
forees. 

In Figure 14 l'Iome isotherma.ls calculated from the Van 
del' 'VaalH equat.ion of stat.e have been dmwn. If we 
compare Uwnt with the isot.hermal!; of Figure 18, we sec 
tha.t t.he two set.s possesl'! many similar features. In hoth 
eases there exist.s :til isothermal having It horizontal point of 
in£ledioll e. This i:-; t.l!p {,I'iti('n.l isotlwrmal; aIHl the point 
of infl<'c,tiol1 is Ow crit.ic'ILl point. The isothennuis above 
the trit,i('al tt~llIp('mtlln' show n similar hdutvior in both 
figurl's. Ilow('\'t'[" Cite isot IlPI'llluis below t.lw eritienl 
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temperature exhibit differences. The Van der Waals 
isothermals are continuous curves with a minimum and a 
maximum, whereas the isothermals of Figure 13 have two 
angular points and are horizontal in the region where the 
Van der Waals isothermals take on their maxima and 
minjma. 

The reason for the qualitatively different behavior of the 
two sets of isothermals in the region marked L, V in Figure 
13 is that the points on the horizontal stretch of the iso
thermals in Figure 13 do not correspond to homogeneous 
states, because along this stretch the substance splits into a 
liquid and a vapor part. If we compress a nonsaturated 

p 

~----------------v 

vapor isothermally until we 
reach the saturation pressure, 
and then reduce the volume 
still further, condensation of 
part of the vapor generally oc
curs without further increase 
in pressure. This corresponds 
to the isothermals of Figure 
13. However, if we compress 
the vapor very gently and 
keep it free of dust particles, 
we can reach a pressure con-Fig. 14 
siderably higher than the sat

uration pressure before condensation sets in. When this 
situation is realized, we say that the vapor is supersatu
rated. The supersaturated states, however, are labile; any 
slight disturbance may produce condensation, causing the 
system to pass over into a stable state characterized by a 
liquid and a vapor part. 

The labile states are important for our discussion because 
they illustrate the possibility of the existence of homogene
ous states in the region of the saturated vapor . We assume 
that these labile states are represented by the part BCDEF 
of the Van der Waals isothermal ABCDEFG (Figure 15), 
whereas the horizontal stretch BF of the discontinuous 
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isothermal ABHDIFG represents the stable liquid-vapor 
states. If it were possible to realize all the labile states on 
the Van der Waals isothermal, one could pass by a con
tinuous isothermal process from the vapor represented by 
the part FG of the isothermal to the liquid represented 
by the part BA. 

Given a Van der Waals isothermal, we may now wish to 
determine what the pressure of the saturated vapor is when 
its temperature is equal to that of the given isothermal; Of, 

geometrically speaking, how high above the V -axis we must 
draw the horizontal stretch BF which corresponds to the 
liquid-vapor state. We shall prove that this distance must 
be such that the areas BCDH and DIF E are equal. 

In order to prove this, 

~------------------v 
Fig. 15 

we first show that the work P 
performed by a system dur
ing a reversible isothermal 
cycle is always zero. From 
(16) we see that the work 
performed during a cycle is 
equal to the heat absorbed 
by the system. But for a 
reversible cycle, (66) holds; 
and since in our C:1He the 
cycle is isothermal, we may 
remove liT from under the integral sign in (66). Equa
tion (66) now tells us that t.he total heat absorbed, and, 
hence, the total work done during the cycle, is zero. 

We shall now COllHider t.he reversibly isothermal cycle 
BCDEli'IDHB (Figure 15). The work performed during 
t.his cycle, as measured by its area, must vanish.. But 
DEF'I D iH deHcribed in a clockwise direction so that its 
area is posit.ive, whereas BCDHB, which is described in a 
counterelockwise dircetion, has a negat.ive area. Since the 
total aret\ of the eyde BCDEFIDHB is zero, the absolute 
values of the areaH of the two cycles BCDHB and DEFID 
must be equal. Q.E.D. 
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The objection might be raised against the above demon
stration that since the area of the isothermal cycle BCDHB 
is obviously non-vanishing, it is not true that the work 
performed during a reversible isothermal cycle is always 
zero. The answer to this objection is that the cycle 
BCDHB is not reversible. 

In order to see this, we should notice that the point D 
on our diagram represents two different states, depending 
on whether we consider it as being a point on the Van der 
Waals isothermal BCDEF or a point on the liquid-vapor 
isothermal BHDIF. Although the volume and pressure 
represented by D are the same in both cases, in the case of 
the Van der Waals isothermal, D represents a labile homo
geneous state, whereas in the case of the liquid-vapor 
isothermal, D represents a stable nonhomogeneous state 
composed of a liquid and vapor part. "When we perform 
the cycle BCDHB, we pass from th'e state D on the Van 
der Waals isothermal to the state D on the liquid-vapor 
isothermal. Since the liquid-vapor state D is more 
stable than the Van der Waals state D, this step is irre
versible because it could not occur spontaneously in the 
opposite direction. Thus, the entire cycle BCDHB is 
irreversible, and therefore its area need not vanish. 

The critical data To, V c , and p. of a substance can be 
expressed in terms of the constants a and b which appear in 
the Van der Waals equation of the substance. 

The Van der Waals equation (99), when p and T are given, 
is an equation of the third degree in V. In general, there
fore, there are three different roots of V for given values of 
T and p. The critical isothermal, T = T c , however, has a 
horizontal point of inflection at P = pc, V = V c ; that is, 
there is a third-order contact at V = Vo between the 
critical isothermal and the horizontal line p = Po. Hence, 
it follows that the cubic equation for V which is obtained by 
placing p = Pc and T = To in (99) has a triple root V = V c • 

This cubic equation can be written in the form: 

PcV 3 - (pcb + RT.)V2 + aV - ab = O. 
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Since V c is a triple root of this equation, the left-hand side 
must be of form pc(V - Vat Hence, we find, by compari
son, that: 

If we solve these three equations for V e, pc, and T e, we 
obtain the equations: 

Vo = 3b; (100) 

which express the critical data in terms of the constants 
a and b. 

It is worth noticing that if we take Fe', .(J\, and Tc as the 
units of volume, pressure, and temperature, respectively, 
the Van der Waals equation assumes the same form for all 
substances. Placing 

~r= ~, 
and making use of (100), we obtain from (99): 

(~p 2.) ('1'1 _ 1) = ~ ~r. + "'t)2 3 3 (101) 

Since this equation contains only numerical constants, it is 
the same for all substances. The states of various sub
stances whieh are defined by the same values of !+, '1\ and. ~J 
are called corresponding states, and (101) is often called 
"Van del' Waals' equation of corrc;;;ponding states." 

In section 14 we showed that, if a sulmtanee obeys the 
equation of stat.e, p V = UT, of an ideal gas, we can deduce 
thermodynamieally t.hat its ellcrgy depends on the tem
perature only and not on the volumc. This re:-mlt is true 
only for ideal ga;;;cs. For real gases, U depends also on the 
volume. 

From (99) we deduce that: 

NT a 
p = 'iF _ b - V2; (102) 
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this together with (88) gives: 

a 
- V2' 

If we integrate this equation with respect to V (keeping T 
constant), we obtain: 

u= - ; +J(T), (103) 

since the constant of integration need be constant with 
respect to V only but may still be a function of T. The 

term - ; in (103) represents the potential energy of the 

cohesive forces between the molecules. 
f( T) cannot be further determined by means of thermo

dynamics alone; its determination requires some data on 
the specific heats. Let us assume, for example, that the 
molecular heat at constant volume, Cv , is constant. From 
(25) and (103) we obtain, then, 

Cv = (:~)v = reT). 

Integrating, we get: 

J(T) = CvT + w, 

where w is a constant. Equation (103) now becomes: 

a 
U = CvT - V+ w. (104) 

With this expression for the energy, we can easily calcu
late the entropy of one mole of a Van der Waals gas. From 
(72), (21), (102), and (104), we obtain: 
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dQ 1 
dB = - = - (dU + pdV) T T 

= ~ (CvdT + ;J dV) + ~ ( V R~ b - ;2) dV 

dT dV 
= CV'F + R V _ b' 

75 

or, on integrating, 

S = Cv log T + R log (V - b) + const. (105) 

Notice the similarity of this formula to (86), which is the 
expression for the entropy of an ideal gas. 

In section 6 we defined an adiabatic transformation as a 
reversible transformation during which the system is 
thermally insulated. Thus, along an adiabatic transforma
tion dQ = 0, so that from (72), dE = dQ/T = 0, or S == 
const. That is, if a system suffers an adiabatic transforma
tion, its entropy remains constant. For this reasoD, 
adiabatic transformations are sometimes called isoentropic. 

The equation of an adiabatic transformation of a Van der 
Waals gas is immediately obtained from (105) by taking the 
entropy constant. This gives: 

Cv log T + lliog (V - b) = const. 

or 
1/ 

T(V - b)I7V = (~om.;t. (106) 

This equation for the adiahatieH of a Van der Waals gas is 
very similar to equation (38) for the adiabatics of an ideal 
gas. 

Problems 

1. What iA the entropy variHtioll of 1,000 grams of water when 
miRed from freezing to boiling temperature? (AH8ume a constant 
spcdfic hrat = 1 (·al./gm. <I(~g.) 
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2. A body obeys the equation of state: 

p V1.2 = 109Tl.l 

A measurement of its thermal capacity inside a container having 
the constant volume 100 liters shows that under these conditions, 
the thermal capacity is constant and equal to 0.1 cal.jdeg. Ex
press the energy and the entropy of the system as functions of 
T and V. 

3. The boiling point of ethyl alcohol (C2H sO) is 78.3°0; the heat 
of vaporization is 855 joulesjgm. Find dpjdT at the boiling 
point. 



CHAPTER V 

Thermodynamic Potentials 

17. The free energy. In a purely mechanical system the 
external work L performed during a transformation is 
equal to minus the variation, flU, of its energy. That is, 

L = -I::.U. (107) 

For thermodynamical systems there is no such simple 
relationship between the work performed and the variation 
in energy because energy can be exchanged between the 
system and its environment in the form of heat. We have, 
instead, the first law of thermodynamics (15), which we 
can write in the form: 

L = -I::.U + Q. (108) 

Many transformations of thermodynamical systems occur 
while the systems are in thermal contact with the environ
ment, so that an exchange of heat between the system and 
the environment can take place. In that case L may be 
larger or smaller than -flU, depending on whether the sys
tem absorb~ heat from or gives up heat to the environment. 

We suppose now that our sYHtem s is in thermal contact 
with an environment whieh is at a eom,t::mt temperature T 
throughout, and we consider a transformation of our system 
from an. initial state A to a final state B. Applying the 
inequality (73) to this transformation, we have: 

111 (~9 ~ S(B) - SeA). 

Since the system rc(~eives heat only from a source whose 
temperature iH eOI1:.;t.ant, we may remove liT from under 
the integral Hign, and we find that 

i ll 

Q = A dQ ~ T[BeR) - SeA)}. (109) 

77 
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We thus obtain an upper limit to the amount of heat 
which the system can receive from the environment. If the 
transformation from A to B is reversible, the equality sign 
holds in (73) and therefore in (109) also. In this case (109) 
gives exactly the amount of heat received by the system 
during the transformation. 

From (108) and (109) we obtain, on putting AU = U(B) 
- U(A): 

L ;;a; U(A) - D(B) + T{S(B) - S(A)}. (110) 

This inequality places an upper limit on the amount of work 
that can be obtained during the transformation from A to B. 
If the transformation is reversible, the equality sign holds, 
and the work performed is equal to the upper limit. 

Let us suppose now that the temperatures of the initial 
and final states, A and B, are the same and equal to the 
temperature Tof the environment. We define a function F 
of the state of the system as follows: 

F = U - TE. (111) 

In terms of this function F, which is called the free energy 
of the system, we can write (110) in the form: 

L ;;a; F(A) - F(B) = -AF. (112) 

In (112), also, the equality sign holds if the transformation 
is reversible. 

The content of equation (112) can be stated in words as 
follows: 

If a system suffers a reversible transformation from an 
initial state A to a final state B both of which states have a 
temperature equal to that of the environment, and if the 
system exchanges heat with the environment only, during 
the transformation, the work done by the system during 
the transformation is equal to the decrease in the free 
energy of the system. If the transformation is irreversible, 
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the decrease in the free energy of the system is only an 
upper limit on the work performed by the system.1 

By comparing (112) with (107), which is true for purely 
mechanical systems only, we see that the free energy, in 
thermodynamical systems which can exchange heat with 
their environments, plays a role analogous to that played 
by the energy for mechanical systems. The main difference 
is that in (107) the equality sign always holds, whereas in 
(112) the equality sign holds only for reversible trans
formations. 

We now consider a system that is dynamically (not 
thermally) insulated from its environment in the sense 
that any exchange of energy in the form of work between 
the system and its environment is impossible. The system 
can then perform only isochore transformations. 

If the pressure at any instant of time is the same for all 
the parts of the system, and work can be performed by the 
system only as an effect of the forces exerted by this pressure 
on the walls, then the system is dynamically insulated when 
it is enclosed inside a container with invariable volume. 
Otherwise the dynamical insulation might require more 
complicated devices. 

We assume that, although our system is dynamically 
insulated, it is in thermal contact with the environment and 
that its temperature is equal to the temperature T of the 
environment. For any transformation of our system, we 
have L = 0; we obtain thus from (112): 

o ~ peA) - FCB), 
or 

PCB) ~ F(A). (113) 

1 This result is very of ton stntod UR follows: 
When a system unril1rglles nil iHothermal transformation, the work L 

performed hy it can never cx('('pc\ minus thll variation, Aft', of its free energy; 
it is equul to -;;,.F if the tru.nsfl)rmntioll is reverHible. 

Our result is more ~cneml beeltuse it holds not only for isothermal 
transformations but alw for tranHformat.ions during ",hidl the system 
assumes temperatures diffen~lIt from T in the intermediate f:!tates, provided 
only that the cxehangc of 1H'ltt (lCI'ms solely with tho environment which 
is at the f:!ILmo krnperntul"e T thrllllf,!;h(Jut" 
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That is, if a system is in thermal contact with the environ
ment at the temperature T, and if it is dynamically isolated 
in such a way that no external work can be performed or 
absorbed by the system, the free energy of the system cannot 
increase during a transformation. 

A consequence of this fact is that, if the free energy is a 
minimum, the system is in a state of stable equilibrium; this is 
so because any transformation would produce an increase 
in the free energy, and this would be in contradiction to 
(113). In the case of mechanical systems, stable equilib
rium exists if the potential energy is a minimum. Since 
the condition for stable equilibrium of a thermodynamical 
system enclosed in a rigid container and having the tem
perature of the environment is that the free energy be a 
minimum, the free energy is often called the "thermody
namic potential at constant volume." Notice, however, 
that, strictly speaking, the condition for the validity of 
(113) is not only that the volume of the container be 
constant but also that no external work be performed by 
the system. If the system is at a uniform pressure, how
ever, the two conditions are equivalent. 

We now consider an isothermal transformation, I, of a 
system at the temperature T from a state A to a state B, 
and also an isothermal transformation, II, between two 
states A' and B' at a temperature T + dT. A' is obtained 
from A by an infinitesimal transformation during which the 
temperature is raised by an amount dT while no external 
work is done. If the system is at a uniform pressure 
throughout, this can be realized if the volumes of A and A' 
are equal (isochore transformation). Similarly, during the 
infinitesimal transformation from B to B' no work is to be 
performed. 

Let L and L + dL be the maximum amounts of work 
that can be obtained from the transformations I and II, 
respectively. We have, then 

L = F(A) - F(B) (114) 

L + elL = F(A') - FCB'), 
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or 
dL dF(A) dF(B) 
dT = -(I'l' - -----aT' (115) 

whcre WP denote hy dF(A) and dF(B), respectively, F(A') 
F(A) and FCB') - F(B). But we have: 

peA) = ('(A) - TS(A), 

or, taking the difT{·l'pnt.ials of hoth sides, 

dF(..1) := rtf '(A) - TdS(A) - dTS(A). (116) 

Kiu('c no work b performed in t.he transformation from 
A to A', the mnount. of heat l'(w('iYed by the system during 
this illfinitpHimal trnn~formati()n is, tl<'('ording to (15), 

dQ.A. = d('(A); 

and, from (72), 

dS(A) = d~.~ = drr~~) 

Equation (11H) now giv(~s: 

~!::(A) = -8( ,1) :.7; ~~~~~) _ ~iA) 
ri'J' ,- . T T' 

l-\imilarly 7 W(~ obtaitl: 

dF(B) .. _ -- ..... (l)) _,~ F(B) _ ~i!!) 
Ii'!' .. - '1) - 'I' 'I'. 

From (114) and (115) w(' tbm.; find: 

(117) 

wlwl't~ flU '" U(}n ...... U(A) is the variat.ion III energy 
rpi'-iuUillg from tit(: transformatioll from A to B. Equat.ion 
(117) is (':lIll'd Ow i:wc/i()tC of Flln't lIlI.!! and hat; many 
ul'idul HI)pli('ati(JIli'-i. 

At, thiH point. Wp shall dpl'iw a mdul cxpreKHion for the 
pn'K:-:un' of a KYKt(,1Il wh()i'-i(~ Ktat(~ {'all lw f(~pl'('KeIlt,ed on a 
(V, 1'1 diag;ram. Lpt, w.; c'()IlKid('1' :tn illfillit.('~imal, iso
t.herm:d, n'\,('l':-:ihl(~ t I':lllsfol'llwj·ioll whidl eh:mges the 
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vo~ume of the sy~tem by an amount dV. We can apply to 
thIS transformatlOll equation (112) with the equality sign 
because the transformation is reversible. Since: 

1J = 1)dV, and tlF. = (:~)T dV, 

we have, from (112), 

pdV = _(oF) dV 
oV T ' 

or 

(118) 

We conclude this section by giving the expression for the 
free energy of one mole of an ideal gas. This is immediately 
obtainedfromcquntions (111), (29), and (86): 

F = CyT + W - T(Cv log T + R log V + a). (119) 

If we use (87) instead of (86), we obtain the equivalent 
formula: 

F = CyT + W - T(Cp log T - Rlogp + a + RlogR). (120) 

18. The thermodynamic potential at constant pressure. 
In many thermodynamical transformations the pressure 
and the temperature of the system do not change but, 
instead, remain equal to the pressure and the temperature 
of the environment during the course of the transformation. 
Under such circumstances it is possible to define a function 
cp of the state of the system which has the following prop
erty: if the funetion cp is a minimum for a given set of 
v:alues of the pressure and the temperature, then the system 
will be in equilibrium at the given pressure and temperature. 

We consider an isothermal, isobaric transformation at the 
constant temperature T and the constant preSS1lre p which 
takes our system from a state A to a state B. If V(A) and 
V(B) are the initial and final volumes occupied by the 
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system, then the work performed during the transformation 
18: 

L = p[V(B) - YeA)]. 

Since the transformation is isothermal, we may apply 
equation (112) to it; on doing this, we obtain: 

pV(B) - pV(A) ~ F(A) - FCB). 

We now define a new function q, of the state of the system 
as follows: 

q, = F + pV = U - TS + pV. (121) 

In terms of q" the preceding inequality now becomes: 

<PCB) ~ <peA). (122) 

The function q, is called the thermodynamic potential at 
constant pressure. It follows from (122) that in an isobaric, 
isothermal transformation of a system, the thermodynamic 
potential at constant pressure can never increase. 

We may therefore say that if the temperature and the 
pressure of a system are kept constant, the state of the system 
jor which the thermodynamic potential cP is a minimum is a 
state of stahle equilibrium. The reason for this is that if <P 
is a minimum, any spontaneous change in the state of the 
system would have the effect of increasing q,: but this would 
be in contradiction to the inequality (122). 

The following properties of q, for systems whose states 
can be represented on a (V, p) diagram are sometimes 
useful. 

If we choose T and p as the independent variables and 
differentiate (121) with respect to p, we find that: 

( O<Jl) = (oU) _ T(OS) + p (oV) + V 
op T ap 7' ap T ap T • 

But from the definition of the entropy and from the first 
law, we have for a reversible transformation: 

dQ = TdS = dU + pdV; 
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or, in our case, for an isothermal change of pressure: 

T(:!)T = (~~)T + P(~~)T' 
Hence, we find that: 

( &.;(1) = V. 
&p T 

(123) 

Similarly, differentiating (121) with respect to T, we can 
show that: 

( &.;(1) = -So 
aT p 

(124) 

As a.l example of the usefulness of the potential ell, we shall 
empk y it to derive Clapeyron's equation, which we have 
already derived in section 15 by a different method. 

W'e consider a system composed of a liquid and its satu
rated vapor enclosed in a cylinder and kept at a constant 
temperature and pressure. If U 1 , U 2 , S 1 , S 2 , and V 1, V 2 

are the energies, entropies, and volumes of the liquid and 
the vapor parts, respectively, and U, S, and V are the 
corresponding quantities for the total system, then, 

so that, from (121), 

U = V 1 + U2 

S = SI + 82 

V = VI + V 2, 

.;(I = .;(II + .;(12) 

where CPl and 4>2 are the potentials of the liquid and vapor 
parts, respectively. 

Let ml and m2 be the masses of the liquid part and the 
vapor part, respectively, and let Ul, 81, VI, and 'PI and 
U2 , 82 , V2 , and CP2 be the specific energies, entropies, volumes, 
and thermodynamic potentials of the liquid and the vapor. 
We have, then, 

.;(11 = m1C{l1 

~ = m2C{l2. 
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We know from the general properties of saturated vapors 
that all the specific quantities Ul , U2, 81, 82, VI , and V2 

a.nd the pressure p are functions of the temperature only. 
Hence, l{J1 and CP2 are functions of T only, and we may write: 

cP = 1n11()1(T) + rn2'P2(T). 

We start with the system in equilibrium and perform an 
isothermal transformation, keeping the pressure constant 
so that only tnl and rlh can vary. Let rnl be increased by an 
amount dml as a result of this transformation. Then, 
since ml +?n2 = om = const., m2 will decrease by an amount 
drn.t. The thermodynamic potential will now be given by 
the expression: 

(ml + dml)"'1 + (rn2 - dml)'P2 = CI> + dml(I/'1 - 1()2)' 

Since the system was initially in a state of equilibrium, Cf? 
mu~t have been a minimum initially. From this and from 
the above equation it follows that: 

I() 1 = 1/'2 , 

or 
(U2 - 'UI) - T(S2 - 81) + P(V2 - VI) = o. 

Differentiating with respect, to T, we find that: 

d d () ciT (U2 - 'U1) - T ([1' (S2 - .IlI) - 82 - 81 

+ tl/~ (V2 - VI) + p..! (V2 - VI) = O. 
d7' dT 

But 

T d.Il _ d·u + dv 
tiT - dT 1) dT . 

Hence, the preceding equation reduces to: 

- ('~2 - '~l) + (~~ (t'2 - VI) = o. 

But (''\2 - 81) is the variat.ion in entropy when one gram of 
liquid is vaporized at (~onstant temperature; hence, it is 
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equal to AIT, where A is the heat of vaporization of the 
substance. We thus obtain the Clapeyron equation: 

dp _ }.. 
dT - T(V2 - Vi) . 

We shall now write down the expression for the thermo
dynamic potential at constant pressure for one mole of an 
ideal gas. From (121), (120), the equation of state, 
p V = RT, and (33), we obtain: 

<P = CpT + W - T(Cp log T - R log p + a + R log R). (125) 

19. The phase rule. When a system consists of only a 
single homogeneous substance, it is said to consist of only 
one phase. If a heterogeneous system is composed of 
several parts each of which is homogeneous in itself, the 
system is said to consist of as many phases as there are 
homogeneous parts contained in the system. 

As an example of a system composed of only one phase, we 
may consider a homogeneous liquid (not necessarily a 
chemically pure substance; solutions may also be considered), 
a homogeneous solid, or a gas. 

The following are some examples of systems that consist 
of two phases: a system composed of water and water vapor; 
a saturated solution of salt in water with some of the solid 
salt present; a system composed of two immiscible liquids; 
and so forth. In the first example, the two phases are: a 
liquid phase composed of water, and a gaseous phase 
composed of the water vapor. In the second example, the 
two phases are: the salt-water solution, and the solid salt. 
In the third example, the two phases are the two liquids. 

All the specific properties of a phase (that is, all the prop
erties referred to a unit mass of the substance constituting 
the phase: for example, the density, the specific heat, and 
so forth) depend on the temperature T, the pressure p, 
and the chemical constitution of the phase. 

In order to define the chemical constitution of a phase, we 
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must give the percentage of each chemically defined sub
stance present in the phase. 

Strictly speaking, one could state that if the percentage of 
each chemical element (counting the total amount of the 
element, both free and chemically bound to other elements) 
were known, the percentage of the different compounds 
that could be formed with the given elements would be 
determined by the given temperature T and pressure p of 
the phase. Indeed, it is well known from the laws of 
chemistry that for any given temperature, pressure, and 
relative concentrations of the various elements present, 
chemical equilibrium will always be reached within the 
phase. We may therefore say that a phase is a homo
geneous mixture of all the possible chemical compounds 
which can be formed from the chemical elements present in 
the phase, and that the percentage of each compound 
present is completely determined by T, p, and the relative 
concentrations of all the elements in the phase. 

Consider, for example, a gaseous phase consisting of 
definite concentrations of hydrogen and oxygen at a given 
temperature and pressure. 'The most abundant molecules 
formed from hydrogen and oxygen are H 2 , O2 , and H 20 
(for the sake of simplicity, we neglect the rarer molecules 
H, 0, 0 3 , and I-L02). The number of water molecules 
which will be formed in our gaseous mixture at a given 
temperature and pressure is uniquely determined, and hence 
the constitution of the gaseous mixture also, by the con
centrations of the hydrogen and the oxygen only. Strictly 
speaking, we may therefore say that the independent com
ponents of a phase are the ehcmieal elements contained in 
the phase (each element is to be counted as an independent 
component whether it is present in its elementary form or in 
chemical combinat.ion with other elements). However, it is 
known from chemieal considerations that under certain condi
tions many ehemieal equilibria are realized only after a period 
of time that is cxeeedingly long as compared to ordinary time 
intervals. ThuH, if we have a gaseous mixture of H2 and O2 
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at normal temperature and pressure, chemical equilibrium is 
reached when a large amount of the hydrogen and the 
oxygen combine to form water vapor. But the reaction 

2H2 + O2 = 2H20 

proceeds so slowly under normal conditions that practically 
no combination of hydrogen and oxygen takes place in a 
reasonably short period of time. Of course, the reaction 
would take place much more rapidly if the temperature 
were high enough or if a suitable catalyzer were present. 

We see from the preceding discussion that in all cases for 
which we have a chemical compound that is formed or dis
sociated at an extremely slow rate, we may consider the 
compound itself (and not its constituent elements) as a 
practically independent component of the phase. If, for 
example, we have a gaseous phase consisting of hydrogen, 
oxygen, and water vapor at such a low temperature that 
practically no water is either formed or dissociated, we shall 
say that our phase contains the three independent com
ponents O2 , H 2 , and H 20 (and not only the two com
ponents hydrogen and oxygen); the chemical constitution 
of the phase is then determined by the masses of O2 , H 2 , 

and H 20 per unit mass of the phase. 
It is clear from the above considerations that the number 

of independent components can be either larger or smaller 
than the total number of chemical elements present. In the 
previous example we had three independent components 
(H2' O2, and H 20) instead of only two (H and 0). On the 
other hand, if water vapor alone is present, we can neglect 
its dissociation into hydrogen and oxygen and consider the 
phase as consisting of only one component, the water, and 
not of two. 

Consider now a system composed of f phases and of n 
independent components. Let milo be the mass of the kth 
component present in the ith phase. Then the distribution 
of the components among the various phases can be con
veniently described by the array: 
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mll , m21, '" , m/1 

(126) 

At a given temperature and pressure, the condition for 
equilibrium of our system is that the thermodynamic 
potential cP be a minimum. This condition gives rise to a 
set of relations among the quantities (126). 

We shall assume that the surface energy of our system is 
negligible, so that <P can be put equal to the sum of the 
thermodynamic potentials of all the phases: 

cP = CPt + <P2 + .. , + <Pt. (127) 

The function cP, depends on T, p, and the masses mil, 
mi2, ... , m'n of the various components in the ith phase: 

(128) 

The form of this function depends on the special prop
erties of the ith phase. We notice, however, that <1>., 
considered as a function of the n variables mil, mi2, '" , 
min, is homogeneous of the first degree. Indeed, if we 
change mil , m,2, ... , min by the same factor K, we do not 
alter the constitution of our phase (since it depends only on 
the ratios of the m's), but increase the total mass of the 
phase by the factor K. Thus, CPi becomes multiplied by 
the same factor K. 

If our system is to be in equilibrium at a given tem
perature and pressure, <I> must be a minimum. This means, 
analytically, that if we impose on our system an infinitesimal 
transformation at constant temperature and pressure, the 
resulting variation in <I> must vanish. We consider a 
transformation as a re~ult of which an amount 5m (to be 
considered as an infinitesimal of the first order) of the kth 
Jomponent is transferred fmm the ith to the jth phase, all 
the other components and phases remaining unaffected. 
Then, milo becomes mik - om, and mile becomes milo + om. 
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In the variation of <P, only <Pi and <Pi will change. Thus, we 
obtain as the minimum condition: 

or 

ael>. aCPj 
-=- (129) 

Since a similar equation must hold for any two phases and 
for anyone of the components, we obtain altogether the 
n(f - 1) equations of equilibrium: 

- ----- = ael>, 

acI>l ael>2 ael>, -=-=-.-=-
aml2 am22 am/2 

(130) 

We notice that these equations depend only on the 
chemical constitution of each phase and not on the t.otal 
amount of substance present in the phase. Indeed, sill(~e 

(128) is a homogeneous function of the first degree in the 
m's, its derivative with respect to anyone of the tn's iR 
homogeneous of zero degree;"that is, its derivatives depend" 
only on the ratios of mil, mi2, ... ,min' From the array 
(126), we see that there are (n - l)f such ratios (the n - 1 
ratios of the n variables contained in a column of (126) 
determine the constitution of one phase). Besides these 
(n - l)f variables, we also have the variables T and p in 
(130). We thus have a total of 2 + (n - l)fvariables. 

The difference, v, between this number and the number, 
n(f - 1), of equations (130) is the number of the (n - 1)f 
+ 2 variables which can be chosen arbitrarily, the re
maining variables then being determined by the equations 
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(130). We t.herefore call v the degree of variability or the 
number of degrees cffrcedom of the system. We have: 

v = {n - l)f + 2 - (f - l)n, 

or 

v=2+n-f· (131) 

This equation, whieh was derived by Gibbs, expresses the 
pha.se rule. It SHYS that a system composed of f phases and 
n independent components has a degree of variability 
v = 2 + n - f. By "degree of variability" is meant the 
number of variables (we take as our variables T, p, and the 
vn,riables that determine the constitutions of all the phases) 
t.hat ('an be chosen arbitrarily. 

To H.\'oi<l misinterpretations, one should notice that only 
the ('ompmiition and not the total amount of each phase is 
('onsidcl'ed, because thermodynamic equilibrium between 
two phase:'; dependfol only on the constitutions and not on 
the t.otal nmount:'l of the two phases present, as shown by 
(12U). A few examples will illustrate how the phase rule 
is to 1)t~ applied. 

Example 1. A syst.em composed of a chemically defined 
homog(ml'ou~ fluid. We have only one phase (f = 1) and 
one c'omponent (n = 1). From (131) we obtain, then, 
v = 2. Th\l~, we ('an, if we wish, choose the two variables, 
')1 and 1', arbit.rarily; but we then hH,ve no further possibility 
of varying t.he con::;titutioJl, sinee our substance is a chemi
eally dpfiupd eompound. (N ot,icc that the total amount of 
H\lb~t :llH'C, aH we have already stated, is not counted as a 
deg;I'(,l~ of freedom.) 

B::rample :3. A homogeneous system composed of two 
thplllit'ally <ipf-iIlPd {.!;a~('~. lIere we have one phase (f = 1) 
and two illliPlwn<ient, eomponcnts (n = 2). From (131) it 
folh)wH that. l' = :.3. IrHlet'li, we mny freely choose T, p, and 
the rat in of Ule t.wo components that determines the com
p()~itioll of the mixt.Ill'{~. 

i!:;rumplc;3. Water in equilibrium with its saturnted 
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vapor. Here we have two phases, liquid and vapor, and 
only one component, so that f = 2 and n = 1. Thus, we 
must have v = 1. We can choose only the temperature 
arbitrarily, and the pressure will then be equal to the 
pressure of the saturated vapor for the given temperature. 
Since there is only one component, we obviously have no 
freedom of choice in the composition of the two phases. 
Notice also in this example that for a given temperature 
we can have equilibrium between arbitrary amounts of 
water and water vapor provided the pressure is equal to the 
saturation pressure. However, the amounts of water and 
water vapor are not counted as degrees of freedom. 

p D 

';)i~t:S (b~ 
.... B 

------p ----------- b--

T 
Fig. 16 

Example 4. A system composed of a definite chemical 
compound in three different phases: solid, liquid, and vapor, 
as, for example, ice, water, and water vapor. We have 
here one component and three phases: n = 1, f = 3. We 
therefore find from (131) that v = O. This means that 
there is no freedom of choice of the variables at all: the 
three phases can coexist only for a fixed value of the tem
perature and a fixed value of the pressure. 

This fact can be illustrated with the aid of the diagram in 
Figure 16, in which temperatures and pressures are plotted 
as abscissae and ordinates, respectively. 

The curve AB represents the pressure of the saturated 
water vapor plotted against the temperature. When the 
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values of T and p correspond to a point on this curve, water 
and water vapor can coexist. If, keeping the temperature 
constant, we increase the pressure, equilibrium between the 
water and the vapor no longer exists, and all the substance 
condenses into the liquid phase. If, instead, we decrease the 
pressure, all the substance evaporates. Hence, for points 
above the curve AB we have water, and for points below it 
we have vapor, as indicated in the figure. 

The curve A C is analogous to AB, but it corresponds to 
the pressure of the saturated vapor in contact with ice and 
not with liquid water. Above the curve AC ice is stable, 
and below it vapor is stable. 

Since water and vapor can coexist along AB, and ice and 
vapor can coexist along AC, it is necessary that the point 
on the diagram corresponding to the values of T and p for 
which ice, water, and vapor coexist lie on both curves; that 
iH, that this point coincide with the point of inter
section A of the two curves. We see now that the 
three phases can coexist only for a definite value of the 
temperature and the pressure. · 

The point A is called the triple point because it is the 
intersection not only of the water-vapor curve and the ice
vapor curve but also of the ice-water curve AD. These 
three curves divide the T, p plane into three regions that 
represent the ranges of stability of vapor, ice, and water; 
the t.riple point is at the boundary of the three regions. 

The triple point of water is at T = 0.0075°C and p = 
0.00602 atm. Sinee t.he pressure at the triple point is less 
than atmoHpheric pl'eR8nrC, the horizontal line p = 1 atm. 
(the dotted line on the dittgram) intersect.s the three regions 
ice, liquid, and vapor. The intersection of the dotted line 
with the curve AD corresponds to a temperature equal to 
the freezing point f of water at atmospheric pressure (O°C). 
The int.erHcet.ion l, with the curve AB corresponds to the 
boiling temperat.ure of water at atmospheric pressure 
(lOOO( '). 

For some HubKtaneefl the pressure at the triple point is 
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higher than one atmosphere. For these substances the 
dotted hrizontalline corresponding to atmospheric pressure 
lies below the triple point and passes, therefore, directly 
from the solid to the vapor region without intersecting the 
liquid region. At atmospheric pressure these substances 
do not liquefy but vaporize directly from the solid phase 
(sublimation); they can exist in the liquid phase only at 
sufficiently high pressures. 

20. Thermodynamics of the reversible electric cell. In 
all previous applications of the laws of thermodynamics, we 
have generally considered systems that could perform only 
mechanical work. But, as we have already seen in section 
3, mechanical and electrical work obey the same thermo
dynamical laws; they are thermodynamically equivalent. 
The reason for this is that there are processes which ean 
transform mechanical work completely into electrical 
energy, and vice versa. 

As an example of a system which can perform electrical 
work, we shall study in this section the reversible eleetro
lytic cell. Bya "reversible electrolytic celF' we mean a cell 
such that a reversal of the direction of the current flowing 
through it causes the chemical reactions taking place in it to 
proceed in the opposite sense. A reversible cell can always 
be brought back to its initial state by reversing the flow of 
current through it. 

Let v be the electromotive force of the cell. The electri('[Ll 
work performed by the cell when we permit an amount e of 
electricity to flow through it is: 

L = ev. (132) 

Of course, the cell actually performs this amount of work 
only if we keep just a very small amount of current flowing 
through it, that is, if we make sure that the process oceur:;.; 
reversibly. Otherwise, some energy will be transformed 
into heat inside the cell as a result of the Joule effect. 

Let U(T) be the energy of our cell before any electricity 
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has flowed through it. We assume that U(T) depends only 
on the t.emperature because we assume that the volume of 
our cell is practicaJly invariable (that it is an isochore cell), 
and consequently neglect any possible effects which the 
pressure may have on the energy. 

We now consider the state of the cell after a quantity e of 
electrieity has flowed through it. The flow of electricity 
through the cell results in certain chemical changes within 
the cell, and the amount of substance which is chemically 
transformed is proportional to e. Thus, the energy of the 
cell 'will no long;er be equal to V(T) but will be changed by 
an amount proportional to c. Denoting by UCT, e) the new 
energy of tho cell, we have thus: 

U(T, e) = U(T) - eu(T), (133) 

where u(T) is the decrease in the energy of the cell when a 
unit quantity of electrieity flows through it. 

"V\re now apply the Van't Hoff isochore (117) to the iso
thermal tranHformation from the initial state before any 
eleetrieit.y has flowed through the cell (energy = U(T)) to 
the final stat,e after the amount e has flowed through 
(energy given by (133)). From (133) we have for the 
variation in energy: 

D,,(l = -(meT) 

The work perform('d iH giwm by (132). Substituting In 

(117) and dividing both Hides hy e, we obtain: 

'I, d 11 
11 - (ir = u. (134) 

This equation, whidl is (~alle(l t.he equ.ation of Helmholtz, 
cst.abliHlws :1, I'elat.iol1ship bet.ween the electromotive force v 
and the elH~rgy 'II. We lIot.i(~e that if no heat were ex
ehunged bet.ween Uw (~ell and its environment, we should 
expc(~t. to find I' = u. Tlw extra. term Tdv/dT in (134) 
rcpn'Herl1s t.he efTed. of t.he heat. that is absorbed (or given 
out.) hy tbe (,('11 from the environment when the electric 

current. flows. 
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We can also obtain (134) directly without using the 
Van't Hoff isochore. Let us connect the cell to a variable 
condenser having a capacity C. The amount of electricity 
absorbed by the condenser is: 

e = Cv(T). 

We now consider C and T as the variables which define the 
state of the system composed of the cell and the condenser. 
If we change the capacity of the condenser by an amount 
de by shifting the plates of the condenser, the system 
performs a certain amount of work because of the attraction 
between the plates. This amount of work is2: 

dL = ! dCV2(T). 

The energy of our system is the sum of the energy (133) 
of the cell, 

U(T) - eu(T) = U(T) - Cv(T)u(T), 

and the energy of the condenser, tCv2( T). From the first 
law of thermodynamics (15), we find that the heat absorbed 
by the system in an infinitesimal transformation during 
which T and C change by amounts dT and dC is: 

dQ = dU + dL = d[U(T) - Cv(T)u(T) + ~Cv2(T)] + tdCv2(T) 

[ dU du dv dV] 
= dT dT - Cv dT - Cu dT + Cv dT 

+ dC[v2 - uv]. 

The differential of the entropy is, therefore, 

dQ dT[dU du dv dV] dC 2 
dB = T = T dT - Cv dT - Cu dT + Cv dT + T [v - uvJ. 

2 This formula is obtained as follows: The energy of an isolated con
denser is le2jC. If we change C, the work done is equal to minus the varia
tion in energy, that is, 

dL = -d(!~) = ~dC 
2 C 2C2 ' 

where e is kept constant because the condenser is isolated. Since e = CIJ, 
we obtain the formula used in the text. 
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Since dS must be a perfect differential, we have: 

dU du dv dv 
o dT - CVd}f - CUd}f + CVJ!j 0 v2 - uv 

oC T = aT -T-

If we perform the differentiations indicated and remember 
that U, u, and v are functions of T only, we immediately 
obtain (134). 

Problems 

1. With the aid of the phase rule discuss the equilibrium. of a 
saturated solution and the solid of the dissolved substance. 

2. How many degrees of freedom has the system composed of a 
certain amount of water and a certain amount of air? (Neglect 
the rare gases and the carbon dioxide contained in air.) 

3. The electromotive force of a reversible electric cell, as a 
function of the temperature, is: 

0.924 + 0.0015 t + 0.0000061 t2 volts, 

t being the temperature in °C. Find the heat absorbed by the 
cell when one coulomb of electricity flows through it isothermally 
at a temperature of 180 C. 



CHAPTER VI 

Gaseous Reactions 

21. Chemical equilibria in gases. Let us consider a gas
eous system composed of a mixture of hydrogen, oxygen, 
and water vapor. The components of this system can 
interact chemically with each other according to the follow
ing chemical reaction: 

2H2 + O2 +2 2H20. 

The symbol p means that the reaction can proceed from 
left to right (formation of water) or from right to left (dis
sociation of water). Indeed, it is well known from the laws 
of chemistry that for any given temperature and pressure a 
state of equilibrium is reached for which the total amount of 
water vapor present remains unchanged, so that apparently 
water vapor is neither being formed nor dissociated. The 
actual state of affairs that exists at this equilibrium point is 
such that the reaction indicated above is proceeding at 
equal rates in both directions, so that the total amount of 
H20 present remains constant. If we subtract some water 
vapor from the system after equilibrium has set in, the 
reaction from left to right will proceed with greater speed 
than the one from right to left until a sufficient amount of 
additional H20 has been formed to establish a new state of 
equilibrium. If we add some water vapor, the reaction 
from right to left becomes preponderant for a certain length 
of time. Chemical equilibria in gaseous systems arc 
regulated by the law of mass action. 

We write the equation of a chemical reaction in the 
general form: 

n1A1 + n2Aa + ... + nrAr p mlB 1 + m2B2 + ... + maBa, (135) 
98 
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where A l, A 2, ••• ,A,. are the symbols for the molecules 
reacting on one side and B l , B 2 ," • ,Be the symbols for 
those reacting on the other side. The quantities n], n2, 
. . . , and ml, m2, ... are the integer coefficients of the 
reaction. We shall designate the concentrations of the 
different substances expressed in moles per unit volume by 
the symbols [All, [A 2], ••• ,and [Btl, [B 2], •••• We can 
now state the law of mass action as follows: 

lVhen equilibrium is reached in a chemical reaction, the 
expression 

[Alt! [A 2t 2 ••• [Al'r _ K(T) 
(Bl]"'1 [B21m2 ••• lBe]m, -

is afu;nction afike temperature only. 

(136) 

The quantity KeT) can assume quite different values for 
different chemical reactions. In some cases it will be very 
small, and the equilibrium will be shifted toward the right
hand side; that is, when equilibrium has been reached for 
such cases, the concentrations of the molecules on the 
right-hand side are much larger than those of the molecules 
on the left-hand side. If, instead, K(T) is large, the 
oppo~ite situation exists. 

It is instruct.ive to give a very simple kinetic proof of the 
law of mass action. The chemical equilibrium of the re
action (135) might conveniently be called "kinetic equilib
rium," because even after the equilibrium conditions have 
been realized, reactions among the molecules continue to 
take place. At equilibrium, however, the number of 
reactions that take plaee per unit time from left to right in 
(135) is oCIual to the number taking place per unit time from 
right to left, so that the two opposing effects compensate 
each other. We shall therefore calculate the number of 
reactions that occur per unit time from left to right and set 
this equal to the corre~ponding number of reactions pro
ceeding in the opposit.e direetion. 

A reaction from left to right can occur as a result of a 
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multiple collision involving nl molecules A 1, n2 molecules 
A 2 , •• " nr molecules Ar • The frequency of such multiple 
collisions is obviously proportional to the n1th power of 
[A 1], to the n 2th power of [A 2], ••• , to the nrth power of 
[A r], that is, to the product: 

[AJ"l [A2J"2 ••• [Ar]"r. 

Thus, the frequency of reactions from left to right must 
also be proportional to this expression. Since the tem
perature determines the velocities of the molecules, the 
proportionality factor, K' (T), will be a function of the 
temperature. For the frequency of reactions from left to 
right, we obtain, then, the expression: 

Similarly, for the frequency of the reactions in the oppo
site direction, we find: 

K"(T) [B1]m1 [B2]m2 '" [Ba]m,. 

At equilibrium these two frequencies must be equal: 

K'(T) [AJn1 [A 2]"2 ••• [Art r = K"(T) [Br]m1 [B2]m2 •• , [B.lm" 

or 

This is identical with the law of mass action (136) if we place 

K"(T) 
K(T) = K'(Tr 

This simple kinetic argument gives us no information 
about the function K(T). We shall now show that by 
applying thermodynamics to gaseous reactions we can not 
only prove the law of mass action independently of kinetic 
considerations, but can also determine the dependence of 
K(T) on the temperature. 
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22. The Van't Hoff reaction box. The equilibria of gase
ous reactions can be treated thermodynamically by assum
ing the existence of ideal semipermeable membranes en
dowed with the following two properties: (1) A membrane 
semipermeable to the gas A is completely impermeable to 
all other gases. (2) When a membrane semipermeable to 
the gas A separates two volumes, each containing a mixture 
of A and some other gas, the gas A flows through the 
membrane from the mixture in which its partial pressure is 
higher to the one in which its partial pressure is lower. 
Equilibrium is reached when the partial pressures of the 
gas A .on both sides of the membrane have become equal. 

Notice that a gas can flow spontaneously through a 
semipermeable membrane from a region of lower total 
pressure toward a region of higher total pressure, provided 
that the partial pressure of the gas that passes through the 
membrane is higher in the region of lower total pressure 
than in the region of higher total pressure. Thus, if a 
membrane semipermeable to hydrogen separates a box con
taining hydrogen at one atmosphere of pressure from a box 
containing oxygen at two atmospheres, hydrogen will flow 
through the membrane even though the total pressure on 
the other side is twice as large. 

We should notice, finally, that in reality no ideal semi
permeable membranes exist. The best approximation of 
such a membrane is a hot palladium foil, which behaves 
like a semipermeable membrane for hydrogen. 

In order to study the equilibrium conditions for the 
chemical reaction (135), we shall first describe a process by 
which the reaction can be performed isothermally and 
reversibly. This can be done with the aid of the so-called 
Van't Hoff' reaction box. 

This box is a large container in which great quantities of 
the gases AI, A 2, ••• and B 1, B 2, ••• are in chemical 
equilibrium at the temperature T. On one side of the box 
(the left side in Figure 17) is a row of r windows, the kth 
one of which, counting from the top down, is semipermeable 
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to the gas A k , while on the other side (the right-hand side of 
Figure 17, where we have assumed that r = 8 = 2) is a 
row of s windows semipermeable in the same order to the 
gases B1I B 2 , ••• ,B.. On the outside of these windows 
are attached some cylinders with movable pistons, as shown 
in the figure. 

We shall now describe a reversible, isothermal trans
formation of our system and calculate directly the work L 
performed by the system during this transformation. 
According to the results of section 17, however, L must be 
equal to the free energy of the initial state minus that of 
the final state of the transformation. By comparing these 
two expressions for L, we shall obtain the desired result. 

We start with oUr system initially in a state for which the 
pistons in the cylinders, B I on the right-hand side of the 

Fig. 17. 

box are in contact with the windows, so that these cylinders 
have zero volumes, while the pistons in the r cylinders, A, 
on the left are in such a position that the kth cylinder 
contains nk moles of the gas Ak (see Figure 18) at a con
centration equal to the concentration, [A k ], of this gas inside 
the box; the partial pressures of the gas on both sides of the 
semipermeable membrane are therefore equal, and a state of 
equilibrium exists. 

The reversible transformation from the initial to the final 
state can be performed in the following two steps: 

Step 1. Starting from the initial state (Figure 18), we 
shift the pistons in the cylinders on the left-hand side of the 
box very slowly inward until all the gases contained in these 
cylinders have passed through the semipermeable mem
branes into the large box. At the end of this process, the 
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system will be in the intermediate state that is shown in 
Figure 18. 

We assume that the content of the large box is so great 
that the relative change in concentrations resulting from 
this inflow of gases is negligible. The concentrations of the 
gases A during this process, therefore, remain practically 
constant and equal in order to [A d, [A 2j •.. [Ar]. 

The work L per
formed by the system 
during this step is evi
dently negative because 
work must be done on 
the pistons against the 
pressures of the gases. 
In the first cylinder the 
pressure remains con-
stant and equal to the 
partial pressure P I of the 
gas A 1 inside the box, 
while the volume of the 

Initial state 

lntermedl'atestate 

Final state 
Fig. 18. 

cylinder changes from 
the initial volume V l to 
the final volume O. The 
work is equal to the 
product of the constant 
pressure P I and the vari
ation in volume, that is, 
Pl(O - VI) = - PIVI . 
Since the cylinder, in
itially, contained nl 
moles, we have, from the equation of state, PI VI = nIRT. 
The work is thus equal to -nIR'T. Summing the work for 
all the cylinders on the left, we obtain: 

T 

Lr = - U71 r: ni . 
i=1 

Step 2. Starting from the intermediate state, we now 
shift the pitltOIl8 in the s cylinders on the right-hand side 
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of the box (they are initially in contact with the windows) 
very slowly outward. Since the bottom of the kth cylinder, 
counting from the top down, is semipermeable to the gas 
Bk , this cylinder will absorb the gas BTc during the process 
and its concentration in the cylinder will be equal to that of 
the gas inside the large box, that is, equal to [BTc]' We shift 
the pistons outward until the cylinders, in the order from 
the top one down, contain m1, m 2, ••• , ma moles of the 
gases B l , B 2 , ••• ,Ba, respectively. 

We thus reach the final state of our transformation shown 
on the right in Figure 18. Here the cylinders A have their 
pistons touching the windows so that their volumes are 
zero, while the pistons in the cylinders B are so placed 
that the kth cylinder, counting from the top down, contains 
mTc moles of the gas BTc at a concentration equal to the 
concentration, [Bk], of that gas inside the box. The gases 
B l , B 2 , ••• , B. in the cylinders and box are thus in equilib
rium. through the semipermeable bottoms of the cylinders. 
The work performed by the system during this second 
step will obviously be positive. 

This work Lrr can be calculated in the same way as in 
Step 1. We find: 

• 
Ln = RT Lm;. 

i-1 

The total work performed during the entire transforma
tion is the sum of Lr and Lu , that is, 

(137) 

This work is equal to the difference between the free 
energy of the initial state and that of the final state. To 
calculate this difference, we note that the content of the 
large box is the same in the initial and final states. Indeed, 
in going from one state to the other, we first introduced into 
the large box n1 moles of AI, n2 moles of A 2, ••• , nr moles 
of Ar (Step 1), and then extracted ml moles of B l , m2 moles 
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of B2 , ••• , ma moles of Ba. But according to the chemical 
equation (135), the substances introduced into the large 
box are equivalent to the substances withdrawn. More
over, since the temperature and volume of the large box do 
not change, the chemical equilibrium of the gases in the 
box readjusts itself in such a way that the initial and 
final states of these gases are identical. The only difference 
between the initial and final states of the system is in the 
contents of the cylinders. Therefore, the difference be
tween the free energies of the two states is equal to the 
difference between the free energy of the gases A contained 
in the cylinders A in the initial state and the free energy of 
the gases B contained in the cylinders B in the final state. 

The free energy of the nl moles of A 1 in the first cylinder 
(initial state) can be calculated as follows: The volume 
occupied by one mole of the gas is evidently equal to the 
inverse of the concentration [A l ]. The free energy of one 
mole of Al is then obtained from (119) by substituting in 
that equation lirA d for the volume V of one mole. Since 
we have nl moles of AI, the free energy of this gas is: 

ndCVlT + WI - T(CVI log T - R log [Ad + al), 

where On , WI, and al are the molecumr heat and the energy 
and entropy constants for the gas AI. Using similar 
notations for A 2 , ••• , A r , we find for the free energy of the 
gases A contained initially in the cylinders A the expression: 

l' 

L n .. ICViT + Wi - T(CYi log T - R log [Ai] + a.)} ,-1 
The free energy of the gases B in the cylinders B at 

the end of the process is similarly given by: 
8 

:Emi (C~iT + l-V; - T(C~jlogT - R log [B j ] + a;) I, 
i=1 

where C~i' W;, and a; are the molecular heat and the 
energy and entropy constants for the ga~ B j • 
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The difference between these two expressions must be 
equal to the work L given by (137). We thus have: 

(
8 r) r 

RT t; mi - t.; ni = f-t n, {CVi~+ Wi - T(CVi log T 

8 

- R log [Ai] + a,;) 1- L mi (C~iT 
i-I 

+ W~ - T(C~i log T - R log [B j ] 

+ a;) (138) 

Dividing by RT and passing from logarithms to numbers, 
this equation redu~es to: 

[A ]"1 [A ]n2 [A In" II ~ mj(R+C 'Vi -a' j)- ; n,(lHcv.-a,,} 
1 l!' • • r = e ~i-l i-I 

[Bl]"'l [B2]"'2 • • • [B.]",' 

r 8 

~ n,Wi- ~ mjW'j 

1 1 (139) 
Xe RT 

The right-hand side of this equation is a function of T 
only. Thus, equation (139) not only proves the law of mass 
action (136), but it also gives the form of the function 
K(T) explicitly. 

We shall discuss the formula (139) in section 24. In the 
next section we shall give another proof of the same formula. 

23. Another proof of the equation of gaseous equilibria. 
In this section we shall derive equation (139) by using the 
result obtained in section 17 that the states of equilibrium 
of a system at a given temperature and volume are those for 
which the free energy is a minimum. 

We consider a mixture of the gases A l, • • • ,A rand 
B l , ••• 1 B8 at the temperature T enclosed in a container of 
fixed volume V and reacting chemically in accordance with 
equation (135). When a quantity of the gases inside the 
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container takes part in the chemical reaction, the con
centrations of the various gases present change;· as a result 
of this, the free energy of the mixture changes also. We 
shall now obtain the equilibrium condition for the chemical 
reaction by making the free energy a minimum. To do 
this, we must first obtain the expression for the free energy 
of a mixture of gases of given concentrations. 

Dalton's law (see section 2) states that the pressure of a 
mixture of (ideal) gases is the sum of the partial pressures 
of the components of the mixture (the partial pressure of a 
component is the pressure that this component would 
exert if it alone occupied the total space occupied by the 
mixture). This law indicates that each component is 
unaffected by the presence of the other components and so 
retains its own properties in the mixture. We shall now 
generalize Dalton's law by assuming that in a mixture of 
ideal gases the energy and the entropy also are equal to 
the sums of the energies and entropies (partial energies and 
partial entropies) whieh each component would have if it 
alone occupied the total volume occupied by the mixture 
at the same temperature as that of the mixture. 

From the definitions (111) and (121) of the free energy 
and the thermodynamic potential at constant pressure, it 
follows now immediately that for a mixture of ideal gases 
these quantities are equal, respeetively, to the sum of the 
partial free energies and the sum of the partial thermo
dynamic potentials at constant pressure of the components 
of the mixture. 

With these assumptions we can now write down the ex
pression for the free energy of our mixture of gases. The 
free energy of one mole of the gas A 1 is given, as in the 
preceding seet.ion, by the expression: 

GVlT + WI - T{Cv1 log T - Il log [Ad + al). 

Since tho concentration of A 1 in the volume V is [A 1], 
there arc present altogether V[A 1] moles of the gas AI. 
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The partial free energy of this component of our mixt\lre is, 
therefore: 

V[A1]{CVlT + WI - T(Cvtiog T - R log [AI] + al)}. 

The free energy of the total system is obtained by summing 
up the partial free energies of all the components in our 
mixture. On doing this, we obtain for the total free energy 
the expression: 

r 

F = V L: [A.] I CviT + Wi - T(CVi log T - R log [Ai] + at:)} 
i-I 

8 

+ V L [Bi] {C~iT + w; - T(C~ilog T - R log [Bi ] + a;)} (140) 
;=1 

We consider now an infinitesimal reaction of the type 
(135) (that is, a reaction in which an infinitesimal amount of 
substance is transformed). If the reaction proceeds from 
the left to the right of (135), infinitesimal amounts of the 
gases AI, A21 ... ,Ar disappear and infinitesimal amounts 
of the gases BI, B2 , ••• , Be are formed. The fractions of 
moles of the gases AI, A 2 , ••• ,Ar that disappear are 
proportional to the coefficients nI, n2, ... , nr , respectively; 
and the fractions of moles of the gases B 1, B 2, •• • , B" that 
are produced as a result of the transformation are propor
tional to the numbers mI, m2, ... I m., respectively. Con
sequently, the concentrations fA 1], fA 2], .'., and IB d, 
[B 2], ••• undergo the variations: 

-E?h, -E1l1!, "', -Enr ; 

where E is the infinitesimal constant of proportionality. 
If F is to be a minimum for our state, the variation in F 

resulting from the infinitesimal reaction must vanish. 
Since this variation can be calculated as though it were a 
differential, we have: 

aF aF aF aF 
fJF = - a[AI] Enl - a[A2] E1l1! - ••• - afAr] enr + a[B1] Eml 

aF aF + a[B2] Em2 + ... + a[B.] Em. = O. 
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Dividing this equation by E V, and replacing the derivatives 
by their values as calculated from (140), we obtain the 
following equation: 

r 

- ~ n, fCviT + Wi - T(CVi log T - R log [A;] + ai) + RTI .-1 
• 

+ l: mj {C~iT + W~ - T(C~i log T - Rlog [Bil +a~) + RT} =0. 
i-1 

I t is immediately evident that this equation and equation 
(138) are identical. The equilibrium equation can thus be 
obtained at once in the same way as in the preceding section. 

24. Discussion of gaseous equilibria; the principle of 
Le Chatelier. From (136) and (139) we can obtain the 
explicit form of the function K(T), which appears on the 
right-hand side of (136). [K(T) is sometimes called the 
constant of the law of mass action; of course, it is a constant 
only if the temperature is constant.] Comparing (136) 
and (139), we obtain: 

~ ~ (R+C'Yj-fl'jh"j- ~ (R+CYi-a;>".} 
K(T) = e ~i-l £=1 

~(~ I~Vin.- ~ e'Yj,/lj) -~l;( ~ n.W,- ~ miW1i) 
X T i-I j=1 r £=1 j=1 (141) 

In order to discuss the way in which K(T) depends on the 
tempcro.ture, we first define the heat of reaction H of the 
chemical reaction (135). We cOllf'lider a mixture of the 
gases A and B at constant volume and at a fixed temperature. 
Let these gases react according to equation (135), so that 
n1, n2, ..• , nr moles of the gases AI, A 2 , ••• , A r , re
spectively, interact and give riKe to ml , m2, ... ,me moles 
of the gases B 1, B 2 , ••• , B. ,respectively. The heat H 
developed by the system during this isothermal process is 
called t.he heat of reaction at constant volume. The reaction 
is said to he exother'mal or endothermal, depending on whether 
heat iH given out or absorbed by the sYKtcm when the 
reaction proceed:'! from the left to the right in equation (135). 
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Since the reaction takes place at constant volume, no 
work is performed by the system. Therefore, the heat 
absorbed by the system (= -H) is equal, according to the 
first law (15), to the variation 11 U in energy of the system: 

H = -flU. 

Remembering that the energy of one mole of AI, for 
example, is equal to Cv1T + Wl , and that the numbers of 
moles of the gases A 1 , A 2, • • • ,A rand B 1 , B 2, •• • ,B 8 

increase by the amounts -nl, -n2, ... , -nr and ml , 
m2, ... ,ma , respectively, as a result of the reaction, we 
find that the variation in energy associated with (135) is 
given by the expression: 

8 r 

aU = L mj(C~iT + W;) - L niCCvi T + Wi). 
j-1 i-I 

The heat of reaction is thus: 
r 8 

H = :E ni(CViT + Wi) - :E mi(C~iT + W;). (142) 
i-1 i-1 

Taking the logarithmic derivative of (141), we obtain: 
r 8 r 8 

d log KeT) ~ CVin. - ~ C~imi ~ Win. - ~ w; mj 

dT = RT + RT2 

From this equation and (142), we now find that: 
., 

d log K(T) H 
dT - RT2' (143) 

It is clear from this equation, which was derived by 
Helmholtz,! that K(T) is an increasing or a decreasing 
function of T, depending on whether the heat of reaction is 
positive or negative; K(T) increases with the temperature 
for exothermal reactions and decreases with increasing 
temperature for endothermal reactions. 

• 1 This equation can also be derived directly by applying the Van't Hoff 
lSochore (117) to a process similar to that described in section 22. 
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One can easily see from (136) that an increase in K(T) 
means a change of the equilibrium conditions in the direction 
of increasing concentrations of the gases A and decreasing 
concentrations of the gases B, that is, a shift of the equilib
rium from the right to the left of equation (135). A 
decrease of K(T), on the other hand, means that the equilib
rium is shifted from the left to the right of that equation. 

The effect which a change in the external conditions has 
on the equilibrium of a chemical reaction can best be sum
marized by the Le Chatelier principle. This principle, which 
enables one to determine without calculations the direction 
in which a change in the external conditions tends to shift 
the equilibrium of a thermodynamical system, states the 
following: 

If the external conditions of a thermodynamical system are 
altered, the equilibrium of the system will tend to move in such a 
direction as to oppose the change in the external conditions. 

A few examples will serve to make the meaning of this 
statement clear. We have already shown that if the reac
tion (135) is exothermal, then an increase in the temperature 
shifts the chemical equilibrium toward the left-hand side of 
equation (135). Since the reaction from left to right is 
exothermal, the displacement of the equilibrium toward the 
left results in the absorption of heat by the system and thus 
opposes the rise in temperature. 

As a second example of the application of Le Chatelier's 
principle, we shall study the effect that a change in pressure 
(at constant temperature) has on the chemical equilibrium 
of the reaction (135) . We notice that if the reaction (135) 
proceeds from left to right, then the number of moles in our 
gaseous system changes; if 

nl + n2 + ... + nr < ml + m2 + " . + ma , (144) 

the number of moles increases, and if the opposite inequality 
holds, the number of moles decreases. If we suppose that 
the inequality (144) applicH, then a dbplacement of the 
equilibrium toward the right will inereaHc the preRsurc, and 
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vice versa. From Le Chatelier's principle we must expect, 
therefore, that an increase in the pressure of our gaseous 
mixture will shift the equilibrium toward the left, that is, in 
such a direction as to opPbse the increase in pressure. (In 
general, an increase in pressure will displace the equilibrium 
in such a direction as to decrease the number of moles in the 
system, and vice versa.) This result can be obtained 
directly from the law of mass action (136) as follows: 

If we increase the pressure of our system while keeping the 
temperature constant, the concentrations of the components 
of our gaseous mixture increase. If the chemical equilib
rium were not affected, the concentrations of all the 
components would be increased by the same factor, and, 
assuming (144) to hold, we should expect the left-hand side 
of (136) to decrease. But since the expression on the right
hand side of (136) remains constant, the left-hand side 
cannot decrease. Hence, the equilibrium must be shifted 
toward the left in order to keep the left-hand side of (136) 
constant. 

We may conclude this section by stating that, in general, 
low pressures favor dissociation processes while high 
pressures favor combination processes. 

Problems 

1. For a chemical reaction of the type: 

2A = A2 

the equilibrium constant K(T) of the law of mass action at the 
temperature of 18° C is 0.00017. The total pressure of the 
gaseous mixture is 1 atmosphere. Find the percentage of dis
sociated molecules. 

2. Knowing that the heat of reaction for the reaction considered 
in problem 1 is 50,000 cal./mole, find the degree of dissociation 
at 19° C and 1 atm. 



CHAPI'ER VII 

The Thermodynamics of Dilute Solutions 
25. Dilute solutions. A solution is said to be dttute 

when the amount of solute is small compared to the amount 
of solvent. In this section we shall develop the funda
mental principles of the thermodynamics of dilute solutions. 

Let us consider a solution composed of No moles of solvent 
and N 1, N 2, •• , , No moles of the several dissolved sub
stances A 1 , A 2, • •• ,A (J ,respectively. If our solution is 
very dilute, we must have: 

Nl «No; N2 «No; ... ; N(J« No. (145) 

Our first problem will be to find the expressions for the 
energy, the volume, the entropy, and so forth, of our dilute 
solution. A straightforward application of the thermo
dynamic equations will then yield all the other properties 
of the dilute solution. 

We consider first the energy U of our solution. Let u 
be the energy of a fraction of the solution containing one 
mole of solvent. This fraction of the solution will contain 
N d No moles of the solute A I, N 2/ N 0 moles of the solute 
A2 , 0.0, Nu/No moles of the solute Ago Its energy will 
be a function of T, p, and the quantities NdNo, N2/No, 
.00 ,Ng/N 0 ; that is, 

U = U (T, p, ~> ~> ... ,~:). (146) 

Since the entire solution contains No moles of solvent, its 
energy U is No times brger than (146) j that is, 

U - Nou (r p Nt '!~ ... No) (147) 
- "No'No' 'No' 

We now make use of the fact that, since our solution is 
dilute, the ratios Nt/No, NdNo,···, Nu/No are very 

113 
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small. We assume, therefore, that it is possible to develop 
the function (146) in powers. of these ratios and to neglect 
all powers above the first. If we do this, we obtain: 

U = Uo(T, p) + ~~ul(T, p) + ~:%(T, p) + ... + ~: uo(T, p). 

Substituting this expression in (147), we find that: 
U = NOU{j(T, p) + N1Ul(T, p) + ... + Noua(T, p) 

(148) 

It should be noted that although the various terms in the 
expression (148) for U are formally quite similar, the first 
term is much larger than all the others because of the 
inequalities (145). 

By a similar process of reasoning, we can show that, to 
the same order of approximation, the volume can be written 
as: 

g 

= L N,Vi(T, p). (149) 
i=O 

We must now obtain the expression for the entropy of our 
solution. To do this, we consider an infinitesimal reversible 
transformation during which T and p change by the infini
tesimal amounts dT and dp, while the quantities No, 
N 1 , ••• ,Nfl do not vary. The change in entropy resulting 
from this transformation is: 

dS = d~ = ~(dU + pdV) 

= tN. dUi + pdVi (150) 
.=0' T . 

Since dS is a perfect differential for all values of the N's, 
the coefficient of each N in (150) must be a perfect differen
tial. If we integrate these perfect differentials, we obtain a 
set of functions sa(T, p), sl(T, p), ... ,saCT, p) such that: 

ds.(T, p) = dUi ~ pdVi (151) 
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If we now integrate (150), we obtain the expression for 
the entropy: 

II 

S = ~ N.s.(T, p) + C(No, Nt, ... ,No). (152) 
,-0 

The constant of integration C, which is constant only with 
respect to T and p, depends on the N's; we have put this in 
evidence in (152). We can determine the value of this 
constant as follows: 

Since no restriction has been placed on the manner in 
which T and p may vary, the expression (152) for S still 
applies if we choose p so small and T so large that the entire 
solution, including all the solutes, vaporizes. Our system 
will then be completely gaseous, and for such a system we 
already know that the entropy is equal to the sum of the 
partial entropies of the component gases (see section 23). 
But the entropy of one mole of a gas at the partial pressure 
p$ and having the molecular heat Cpi is (see equation (87)): 

epilog T - R log Pi + a; + R log R. (153) 

Hence, for our mixture of gases we have (since the partial 
pressure Pi of the substance A: is equal to pNd(N 0 + ... + 
No), where p is the total pressure): 

S = t N i (c pi log T - R log p -- - -___ }Ii --- ._. -- + ai + R log R) .-0 No + ... + No 
u 

= :E N'(CI,dog T - R log p + fl, + R log m .-0 
II N. 

- R :E Ni log ---~-----. 
i-O No + ... + No 

If we compare this with (152), which applies to our 
gaseous mixture also, we find that: 

8. = Cpilog T - R log p + a. + R log R, 

and 
~ N· 

C(No, N1 , ••• ,No) = -R L Ni log -N--+ -'-+--- N . 
i-O o· . . 0 

(154) 

But the constant C(No ,N l , ••• ,No) does not depend on 
T or p. Its value (154) therefore applies not only to the 
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gaseous mixture, but also to the original solution. Hence, 
(152) becomes: 

S = to Nis.(T, p) - R to No log No + Nl ~' ... + N
Q

' (155) 

It is convenient to simplify the last term of (155) by 
taking the inequalities (145) into account. By neglecting 
terms of an order higher than the first in the small quantities 
N 1 , N 2, ••• N (J , we :find that: 

No log N + Nl ~o ... + N = No log N 1 
o 0 1 + ~ + ... +N(J 

No No 

= No( -~; -~: - ... -~:) 
= -Nl - N2 - '" - No, 

and that: 

N. N. 
N.log No + Nl + ... + N

Q 
= N. log No (for i ~ 1). 

Hence, 
U "N. 

S = Noso(T, p) + L Ni/si(T, p) + R} - R L Ndog~. 
i-l i-1 No 

Instead of the functions 8, we now introduce the new 
functions: 

O"o(T, p) = sa(T, p) 

O"l(T, p) = s1(T, p) + R 

u2(T, p) = s2(T, p) + R 
....................... 
uoCT, p) = s,iT, p) + R. (156) 

We have, then: 
Q fl N. 

S = L NiO"i(T, p) - R L Ni log ~. (157) 
i-O i-1 No 

(Notice the difference in the limits of the two summations.) 
Although the quantities Ui, Vi, and <Ti are, strictly speak-
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ing, functions of T and p, changes in these quantities result
ing from variations in the pressure are very small, in general, 
so that u" v" Ui, for all practical purposes, can be con
sidered as being functions of T only.1 

In the theory of dilute solutions we shall always make use 
of these approximations. We shall therefore write (148), 
(149), and (157) as follows: 

o 
U = L: Niu.(T) 

i-O 

.-0 
g g N· 

S = L: N i(1i(T) - R L: N, log N'. (158) 
.-0 .-1 0 

With these expressions for U, V, and S, we can imme
diately write down the formulae for the free energy F and 
the thermodynamic potential<p (see equations (111) and 
(121)). We have: 

o 0 N. 
= t.; Ndi(T) + RT t.; N. log N:' (159) 

where 

(160) 

1 To consider Vi as being independent of p is equivalent to neglecting 
the small compressibility of liquids. Similarly, u; is very nearly inde
pendent of Pi indeed, if we compress a liquid isothermally, we know from 
experiment that only a negligible amount of heat is developed. The work 
also is negligible because of the small change in volume. It follows, 
then, from the first law, that the variation in energy is very small. In 
order to show that (T, also is practically independent of p, we observe, 
with the aid of (156) and (151), that: 

:;i = :;i = ~(~;i + P :~.). 
Since u, and Vi are practically independent of p, the partial derivatives 
on the right-hand side are negligible. Hence, (arr./ap) is very small, and 
(T;. thus depends practically on T alone. 
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and 
g g N· 

cp = &; Ni[Ui(T) - TU'i(T) + pv.(T)] + RT f.; N,log N: 

o g N. 
= &; Nil!.(T) + pv.(T)} + RT t.; N. log N;' (161) 

26. Osmotic pressure. In dealing with solutions, we 
shall call a semipermeable membrane a membrane that is 
permeable to the solvent and impermeable to the solutes. 
Semipermeable membranes for aqueous solutions are often 
found in nature. For example, the membranes of living 
cells are very often semipermeable. A very convenient 
artificial semipermeable membrane is a thin layer of copper 
ferrocyanide imbedded in a wall of porous material. 

t 
h 

~ 

Fig. 19. 

When a solution is separated from the pure 
solvent by a semipermeable membrane, a 
difference of pressure between the solution 
and the pure solvent exists at equilibrium. 
This can be shown by the following simple 
experiment. 

Into a container with semipermeable walls 
we place a solution of sugar in water. 
Through the top wall of the container we 
insert a vertical tube, as shown in Figure 19, 

where the semipermeable walls of the container have been 
indicated by dotted lines. The height of the meniscus in 
this tube serves to indicate the pressure of the solution 
inside the container; We now dip the container in a bath 
of pure water, and observe that the meniscus inside the tube 
rises above the level of the water bath. This indicates 
that some water has passed from the bath into the solution. 
Equilibrium is reached when the meniscus in the tube is at a 
certain height h above the level of the water bath, showing 
that the pressure in the solution is higher than the pressure 
in the pure water. The difference in pressure is called the 
osmotic pressure of the solution. If we neglect the small 
difference between the density of water and the density of 
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the solution, the osmotic pressure is equal to the pressure 
exerted by the liquid column h, and is given by the product: 

Height, h, X Density X Acceleration of Gravity. 

To obtain the expression for osmotic pressure thermo
dynamically, we make use of the general result that the 
work done by a system during an isothermal reversible 
transformation is equal to minus the variation of the free 
energy. We consider the system represented in Figure 20. 
A cylindrical container is divided into two parts by a semi
permeable membrane EF parallel to the bases AB and CD 
of the container. The part of the container on the left is 
filled with a solution composed of No moles of solvent and 
N 1 , N 2, • • • , N (J moles of several dissolved substances. 
The right-hand part of the A E C 
container is completely filled "r-------..,I'-------i 

with N~ moles of pure : Pure 

solvent. Solution :~ 
Since the membrane sep- : 

I Solvent arating the two parts of I 
I 

the container is permeable .B·I...-------::!F:-------ID 

to the pure solvent, there 
will be a flow of the pure 

Fig. 20. 

solvent through the membrane in both directions. When 
these two flows become equal, the system will be in 
equilibrium, and there will then be a difference of pressure 
between the left-hand part of the container and the right
hand part. This difference of pressure P is equal to the 
osmotic pressure. 

Vve assume now that the semipermeable membrane is 
movable, and we consider an infinitesimal transformation of 
our system during which the membrane is shifted an infini
tesimal distance toward the right, so that the volume on the 
left increases by an amount dV and the volume on the right 
decreases by the same amount. Since the pressure exerted 
on the left face of the membrane by the solution is larger 
by an amount P than the pressure exerted on the right face 
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of the membrane by the pure solvent, the work done by the 
system is PdV. 

During the motion of the membrane, a certain amount 
(dNo moles) of the solvent flows from the right-hand side 
of the container into the solution on the left-hand side, thus 
diluting the solution. The volumes V and V' of the solution 
and the pure solvent, respectively, prior to the transforma
tion are, according to the second of equations (158): 

v = Novo + N1vl + ... + No'L'o 

v' = N~vo. (162) 

If No increases by an amount dN 0 , we have from the first 
equation2 : 

dV = vodNo ; 

and the work done by the system. is, therefore, 

PvodNo. (163) 

The free energy of the solution is given by (159), and is 
equal to: 

Nofo + Nlh + ... + Nofo + RT( Ndog~~ + ... + No log ~:). 

The free energy of the pure solvent is obtained from this 
formula by replacing No by N~ and putting N 1 = N 2 = 
... = No = O. This gives: 

N~fo. 

The total free energy of our system is equal to the sum of 
these two: 

ION 
F = (No + No}fo + Ndl + ... + Nofo + RT L Ni log "1./. 

i-l .LV 0 

2 Since N6 decreases by an amount dN 0 , we have dV' = -Vo dN 0 so 
that the total volume remains unchanged. ' 
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Since No and N~ change by amounts dNo and -dNo , 
respectively, as a result of the transformation, the variation 
in F is given by 

dF = aF dNo _ aF dNo 
aNa aNb 

{ RT n '\ 
= fa - -N L Ni~dNo - fodNo 

o ;=1 ) 

RT g 

= --dNo LN;. 
No ;=1 

The negative of this quantity must be equal to the work 
(163) because the transformation is reversible. Thus: 

RT Y 
PvodNa = -N dNa L N;, 

o ;=1 

or 
n 

PvoN 0 = RT L Ni . (164) 
;=1 

NoVo, which is the volume occupied by No moles of pure 
solvent, differs very little from the volume V of the dilute 
solution (see (145) and the first of equations (162)). Neg
lecting this small difference3 and replacing Novo by V in 
(164), we obtain: 

Y 

PV = RT L N;, (165) 
i"""l 

or 
RT 

P = V (Nt + N2 + ... + No). (166) 

The above expression for the osmotic pressure of a solu
tion bears a very dose resemblance to the equation of state 
of a gas. Equation (166) can be stated as follows: 

3 It is immediately scen that thiH approximation conHists in disregarding 
terms contltining the squares of the cone en tratiolls of the solutes, and is 
therefore consistent with all the ILPPl'OximationH already made in the theory 
of dilute solutions. 
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The osmotic pressure of a dilute solution is equal to the. 
pressure exerted by an ideal gas at the same temperat'ure ana 
occupying the same volume as the solution and containing Q 

number of moles equal to the number of moles of the solute~ 

dissolved in the solution. 

This simple thermodynamical result can be easily inter
preted from the point of view of the kinetic theory. We 
consider a container divided into two parts by a semi
permeable membrane with pure solvent in each part. 
Since the solvent can pass freely through the semipermeable 
membrane, the pressure on both sides of the membrane will 
be the same. N ow let us dissolve some substances in one 
part and not in the other. Then the pressure on the side 
of the membrane facing the solution will be increased by the 
impacts against it of the molecules of the dissolved sub
stances, which cannot pass through the membrane and 
which move about with a velocity that depends on T. The 
larger the number of molecules dissolved and the higher the 
temperature, the larger will be the number of impacts per 
unit time and, hence, the greater the osmotic pressure. 

It can be shown from kinetic theory that tl;.e velocities of 
the molecules of the dissolved substances are not affected by 
the molecules' being in solution, but are equal to the veloci
ties that they would have if they were in a gaseous stat.e. 
Therefore, both the number and the intensity of the impacts 
of the molecules of the dissolved substances agaim;t the 
membrane are equal to the number and intensity of the 
impacts that one expects for a gas. The pressures exerted 
in both cases are therefore equal. 

In order to calculate the osmotic pressure with the aid of 
(166), it is necessary to know the total number of moles of 
the dissolved substances in the solution. If no chemical 
change takes place in the solutes as a result of their being in 
solution, this number can be calculated immediately from 
the knowledge of the molecular weights of the solutes and the 
percentage by weight of these substances present in the 
solution. For example, a normal solution, that is, a solution 
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containing 1 mole of solute per liter of water, has, at 15°0, 
an osmotic pressure: 

R X 288.1 7 dynes 
Pnormul = ---- = 2.4 X 10 --2- = 23.7 atm. 

1000 em. 

In many cases, however, a chemical transformation takes 
place when a substance is dissolved, so that the number of 
moles of the substance in the solution need not be the same 
as the number of moles before the substance is dissolved. 
The most important example of this is that of an electrolyte 
dissolved in water. When, for example, NaCI is dissolved 
in water, almost all the NaCI molecules dissociate into Na+ 
and CI- ions. The number of molecules in the solution is 
thus about twice the number one would expect to find if no 
dissociation occurred. Some electrolytes, of course, dis
sociate iuto more than two ions. For strong electrolytes, 
the disRoeiation is practically complete even when the 
solution is not very dilute. For the case of weak electro
lytes, on the other hand, chemieal equilibrium sets in 
between the dis8oeiation of the electrolyte into ions and the 
recombination of these ions. The dissociation in this case, 
therefore, is generally ineomplete. 

27. Chemical equilibria in solutions. We have already 
seen that the law of mass action (136) applies to chemical 
reactions taking plaee in gaseous systems. We shall now 
derive a corresponding hw for chemicall'eactions occurring 
in solutions. 

Let..:lo represent n moleeule of the solvent and AI, ... ,Ar 
and B 1, •.. ,Bo represent the molecules of the solutes. 
\Ve assume that a ehclnieal reaetion defined by the equation: 

can take place among these RllbRtance:·;, If no ~ 0, the 
sol vcn t abo takeR part. in t.he readion; whereas if no = 0, 
only t.he solllt.es n'IU't, aIllong themselves. 

JUt.;!, as ill /-Icd ion 2:~, WP shall require t.hnt. \vhen ehemieal 
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equilibrium is reached, the free energy shall be a minimum.4 

The free energy of the solution is given, according to (159), 
by: 

r 8 

F = foNo + :l: fiN. + L f;N; 
i-I i=1 

{ 
r N 8 N'} + RT L Ni log N i + 2: N; log Ni , (168) 

i=1 0 ;=1 0 

where Ii and I; are the functions of T for the dissolved 
substances Ai and Bi which correspond to the functions 
11, ... ,Ig appearing in equation (159), and No, N i , and 
N; are the numbers of moles of the solvent and the dis
solved substances Ai and Bi , respectively. 

Just as in section 23, we now consider an infinitesimal 
isothermal reaction of the type (167) as a result of which 
No, N 1, ••• , NT and N~, ... N~ change by the amounts: 

respectively, where e is an infinitesimal constant of pro
portionality. Since F is a minimum at equilibrium, its 
variation must vanish when the system is in a state of 
equilibrium. We thus have: 

of r of 8 aF 
of = -eno--eL ni - +eLmi-, = o. 

aNo ;'=1 aN( i=1 aNi 

Dividing by e and calculating the derivatives with the aid of 
equation (168) (thel's are functions of T only and therefore 
do not vary during an isothermal transformation), we find, 
on neglecting all terms proportional to the small quantities 
N./No and N;/No: 

r { Ni} o = - nofo - ~ ni 1.: + RT + RT log N 
.=1 0 

8 { N'} + ~ mi f; + RT + RT log Ni 
1-1 0 

4 Since the variations in volume of a solution are always very small, it is 
immaterial whether we consider the equilibrium condition at constant 
volume or at constant pressure. 
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or 

8 r 

1: mjU; + RT) - L n.(J. + RT) - nafo 
= i-=1 i-I 

RT 

The right-hand side of this equation is a function of T 
only. If we place it equal to log K(T), K being a convenient 
function of the temperature, we finally obtain: 

(169) 

This equation is the expression of the law of mass action for 
chemical equilibria in solutions. 

The discussion of (169) for the case where the solvent does 
not take part in the reaction (that is, when no = 0 in (167» 
is the same as the discussion of the law of mass action for 
gases (see section 24). It follows, in particular, from 
equation (169) that if we dilute the solution, the equilibrium 
is shifted in the direction of increasing dissociation. Of 
course, in this case we have no simple way of determining 
the form of K (T), as we did in the case of gases. We know 
only that K(T) is a function of the temperature. 

As a particularly important example of the case for which 
the solvent participates in the chemical reaction, we consider 
the reaction: 

(170) 

that is, the dissociation of waLer into hydrogen and hydroxyl 
ions (the hydrolysis of water). Let [H+] and [OH-] be the 
concentrations of the hydrogen and the hydroxyl ions 
(numbers of moles per ce.). If we cOI1Hider a cubic centi
meter of water, '\'C have No = ls-. Hence, the ratios of 
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the number of moles of [H+] and [OH-] to the number of 
moles of water are, respectively, 18[H+] and 18[OH-]. 
Applying equation (169) to the reaction (170), we thus 
find: 

1 
182 [H+] [OR] = K(T), 

or 

[H+][OH-] = 182~(T) = K'(T), (171) 

where K'(T) is a new function of the temperature only. 
We see from this equation that the product of the con

centrations of the hydrogen and the hydroxy I ions in water 
is a constant when the temperature is constant.5 At room 
temperature, this product is approximately equal to 10-14 

when the concentrations are expressed in moles per liter; 
that is, 

(172) 

In pure water, the concentrations of H + and OH - are 
equal, so that for this case we have from (172): 

[H+] = [011] = 10-7• 

If we add some acid to the water, there is an increase of 
[H+], and, since the product (172) must remain constant, a 
corresponding decrease of [OH-]. 

The opposite occurs if a base is added to the water. It is 
usual to indicate the acidity of a water solution by the 
symbol: 

pH = -Log [H+]. (173) 

(Log stands for the logarithm to the base 10; [H+] is ex
pressed as before in moles per liter.) Thus, pH = 7 means a 

& From the law of mass action applied to the reaction (171), one would 
expect the ratio [H+][OH-1/[H20] to be a function of T only. Since the 
denominator is practically constant, however, the numerator also must 
be a function of T only in accordance with equation (171). We sec thus 
that (171) is essentially equivalent to the law of mass action in its usual 
form. 
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neutral reaction; pH < 7 indicates acidity; and pH > 7 
indicates a basic reaction. 

The above discussion of chemical equilibria in solutions is 
incomplete, since no account has been taken of the electro
static forces between ions. It has been shown by Debye and 
HUckel that such forces are often of importance and may 
affect the chemical reaction considerably. A discussion of 
this point, however, lies beyond the scope of this book. 

28. The distribution of a solute between two phases. 
Let A and B be two immiscible liquids (as, for example, 
water and ethyl ether) in contact. Let C be a third sub
stance soluble both in A and in B. If we diRsolve a certain 
amount of C in the liquid A, the substance C diffuses 
through the surface that separates A and B; and after a 
short time, C will be in solution in both liquids. The 
concentration of C in the liquid B will continue to increase, 
and the concentration of C in A will decrease until equilib
rium is reached between the two solutions. 

Let N A and NB be the numbers of moles of the two 
solvents A and B, and let NI and N~ be the numbers of 
moles of the solute C dissolved in A and B, respectively. 
The thermodynamie potential, <P, of our system will be the 
sum of the potentials of the two solutions. 

We have first a solution of NI moles of C dissolved in NA. 
moles of the liquid 11. The thermodynamic potent.ial at 
constant pressure of this t-:olution is, aceording to (161): 

<I>A = NA UAT) + 1)V.1(T) I + Nd!t(7') + pVl(T) I 
NI + RTNllog NA' (174) 

where J..I' /1, V,I, and VI eonespond to fo, 11, Vo, and Vl of 
the general formula, (Hit). 

Second, \\'C have a :-;olution whieh contains NB moles of 
the solvellt B alld N; molet-: of the solute C. Its thermo
dynamic potelltial iH gi yell by: 

<'fl/l = NulfiT) + IJ1Ju(7') I + N;U;(T) + 11V;(T)} 
I 

+ RTN; 10K ~> (175) 
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where the quantities fB' f~, VB, and v~ correspond to 
/0 ,f1' Vo, and Vl of (161). 

The thermodynamic potential cJI of the complete system 
18: 

(176) 

For a given temperature and pressure, the equilibrium 
condition is that cJI be a minimum. 

We consider an infinitesimal transformation of our system 
as a result of which an amount dN 1 of C passes from the 
liquid B into the liquid A. N 1 and N~ will change by 
amounts dN l and -dNl , respectively, and the variation in 
if? will be given by: 

aifl 8cJ? 
dNl - -dNl -,. 

aNl aNl 

If ~ is to be a minimum, this expression must vanish. 
Dividing by dN, we thus obtain the equation: 

-=-,. 
aNl aNl 

(177) 

Using (176), (175), and (174), we obtain the equilibrium 
condition: 

beT) + 13'IhCT) + RT log ;~ + RT 

= !~(T) + 13v~(T) + RT log Z: + RT, 

or 
Nl 
N It , (2')-ftCl')+p [111'(2')-"1(2') I 

~ = 6 R2' - K(T 13) (178) 
N~ - " 
NB 

where the function K(T, p) depends only on the temperature 
and pressure and not on the concentrations. 

Equation (178) expresses the following law: 

When two dilute solutions of the same solute in two different 
immiscible solvents are in contact and in equilibrium, the ratio 
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of the concentrations of the two solutions at a given temperature 
and pressure is constant. 

A problem analogous to the preceding one is the following: 
A solution of a gas dissolved in a liquid is in contact with 

the gas itself; to find the relationship between the pressure 
of the gas and the concentration of the solution for which 
the system is in equilibrium at a given temperature. 

Let No and N 1 be the numbers of moles of the liquid sol~ 
vent and the gaseous solute in the solution, respectively; 
and let N~ be the number of moles of gas in the gaseous 
phase. Since variations in volume of the solution are 
practically negligible as compared with variations in volume 
of the gaseous phase, we can neglect the term p V in the 
expression for the thermodynamic potential of the solution 
and identify this potential with the free energy of the 
solution. According to (159), this is: 

Nofo(T) + Nt!l(T) + RTNdog ~:- (179) 

The thermodynamic potential of the gaseous phase is 
obtained from (125) by multiplying it by the number, N~, 
of moles of gas: 

N~ [CpT + W - T(C1J log T - n log 11 + a + R log R)]. (180) 

Adding (179) and (180), we obtain the thermodynamic 
potential 4> of the tota.! HYRtem. Just as in the preceding 
problem, we obtain equation (177) as the condition for 
equilibrium. Suh.,tituting the explicit expressions for the 
derivatives in (177), we ohtain as the condition for equili
brium the follmving equation: 

+ w - 7'(C,. log T - R lop; p + a + R lo~ R); 
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Of, dividing by RT and passing from logarithms to numbers, 
we find that: 

1 N 1 CpT+W-T( Op log T+a+R log R)-h (T)-RT 

- _ = e RT 
pNo 

= K(T), (181) 

where K(T) is a function of the temperature alone. 
Equation (181) expresses the following law: 

The concerdration of a solution of a gas dissolved z'n a 
liquid at a given temperature is proportional to the pressure of 
the gas above the solution. 

It can be proved in a similar fashion that if there is a 
mixture of several gases above a liquid, the concentration of 
each gas in solution is proportional to its partial pressure in 
the mixture above the liquid. The constant of propor
tionality in each case depends on the temperature as well as 
on the nature of the solvent and of the particular gas 
considered. 

29. The vapor pressure, the boiling point, and the freez
ing point of a solution. The vapor pressure, the boiling 
point, and the freezing point for a solution are not the same 
as for the pure solvent. This fact is very important from a 
practical point of view, because, as we shall show in this 
section, the changes in the boiling and freezing points, at 
least for dilute solutions, are proportional to the molecular 
concentrations of the solutes. The observation of these 
changes affords, therefore, a very convenient method of 
determining the molecular concentration of the solution. 

We shall assume that the solutes are nonvolatile. In 
that case, the vapor of the solution will contain only pure 
vaporized solvent. We shall assume further that, when 
the solution freezes, only the pure solidified solvent separates 
out, leaving all the solute still in solution. 

We can now show, from very simple considerations, that 
the vapor pressure for a solution at a given temperature is 
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lower than that for the pure solvent at the same tem
perature. To this end, we consider the apparatus shown in 
Figure 21. It consists of a rectangular-shaped tube in 
which the pure solvent and the solution are separated from 
each other on the lower side by a semipermeable membrane 
at B. The levels A and C of the pure solvent and the 
solution, respectively, will not be at the same height because 
of the osmotic prcsurc; the level C of the solution will be 
higher. Since the dissolved substance is nonvolatile, the 
region in the tube above A and C will be filled with the 
vapor of the pure solvent 'Only. 

We first wait until equilibrium is established; t.he vapor 
pressure in the immediate neighborhood of the meniseus A 
will then be that of a Raturateci vapor 
in equilibrium \vith its liquid pha;.;C' , 

Ik1por of' solvent 

and the vapor pressure ate will be -..---t---1 C' 
that of a saturated va.por in cquilih- i 
rium with a solution. It, is evident 1 
that the pre~surc::-; at A and at Care J 
not equal, since A alld C are at dif- . A I-..A----'--- 1-- . .D 
ferent height.s in t.he vapor. Rill('(~ e 
lies higher thnn A, the vapor pn';.;;.;mc 
at C is lower than that :It, :\ ; t·hat. i;.;, 
the pressure of t,he vapor ah()\'(~ tIl(' 

~ .... _." - '" _" I 
.• - ... 1_ .... -'-:-:--
So/vent B Solub'rJ1l 

Fig. 21. 

solution is lower than t.he vapor p\"(';';;';llJ'(~ ah()\'(~ Ow p\ln~ 
solvent. 

To caicuin.tc 1,hi;.; diff(,l'(,ll('(~ in P)'{':";';1II'(', D.p, quall1 i1 al in'I),. 
we notice that it. iH pqual to I hp prPH;';IlI'P (':'\('I't('d b)' :1 ('olUltln 

of vapor of hpight Ii. If 1" i:-; II \(~ d('I\;.;i Iy of llw \':\ po!,) alld 
g is the uc('ekrat ion of gra\'i 1 ~'. w(' ha \'P : 

.).11 ' pi ha, 

On the ot.hel' hand, t.lH~ pn';';;';11I'P ('X('1'1 "d Ily t 11(' liqlli(1 
column CD iH pq\laJ t.o I II(' 0;'; tll II I it' ))1'(,,-::-;111'1' /1 of 11)(' :-:01111 inll. 

If p is the dpll:-;ity of t lip P1ll'(' :-;()\WIlI, Wi' Ita \'t~ flirt h., 
osmotic prc::-;:-;\lW (Il('/.dl'cting Ilw ditTl,!'t'II('1" hpi \\'1'('1\ I hI' 
density of t.he solutioll alld t.hnl of t.ll(~ pun' :-;0\\'('111, :llld aI:.:!) 
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neglecting the density of the vapor as compared to that of 
the liquid) : 

or 

p = p hg. 

Dividing the first equation by the second, we obtain: 

l:!.p _ p' 
p - p' 

p' Vo 
l:!.p = P- = P-" 

p Vo 

where Vo and v~ are the volumes occupied by one mole of 
the pure solvent in the liquid phase and in the vapor phase, 
respectively (that is, Vo and v~ are inversely proportional to 
p and p', respectively). Replacing the osmotic pressure P 
by the expression (165), and assuming, for the sake of 
simplicity, that there IS only one solute present in the 
solution, we obtain: 

RTNl 
/lp = -, -, 

Vo No 
(182) 

which is the expression for the difference between the vapor 
pressure of the solution and that of the pure solvent. 

The fact that the vapor pressure for a solution is lower 
than that for the pure solvent is directly related to the fact 
that the boiling point of a solution is higher than that of 
the pure solvent. The reason for this is that the boiling 
point is the· temperature at which the vapor pressure is 
equal to one atmosphere. Consider a pure solvent at the 
belling point; its vapor pressure is equal to one atmosphere. 
If we now dissolve some substance in this solvent, keeping 
the temperature constant, the vapor pressure will fall below 
one atmosphere. Hence, in order to bring the pressure back 
to its original value of one atmosphere, we must raise the 
temperature of the solution. With the aid of equation 
(182) and Clapeyron's equation, one can easily derive an 
expression for the variation of the boiling point of a solution. 
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Instead of doing this, however, we shall calculate both the 
decrease in the vapor pressure and the increase in the boil
ing point of a solution by a direct method. 

We consider a dilute solution composed of No moles of 
solvent and Nl moles of a solute in equilibrium with the 
vapor of the pure solvent. Let N~ be the number of moles 
of solvent contained in the vapor phase. From (148), 
(149), (155), and (121), we obtain for the thermodynamic 
potential ~601 of the solution: 

41601 = NOl{Jo(T, p) + Nl<{)l(T, p) + RTNl10g~> 
where 

cpo(T, p) = Uo - Tua + pVo , and <()l = Ul - TO'l + PVl. 

Let q:;~(T, p) be the thermodynamic potential of one mole 
of vapor of the solvent. The thermodynamic potential of 
the N~ moles of the vapor phase is, then: 

q,VRP = N~<{)~ (T, p); 

and the thermodynamic potential of the total system is: 

~ = ~sol + q,ve,p = Narpo(T, p) + N1<{)l(T, p) + RTN1log ~; 
+ N~<{)~(T, p). (183) 

The equilibrium condition is that Cll be a minimum at 
constant temperature and pressure. We must therefore 
have d~ = 0 for an infinitesimal, isothermal, isobaric 
transformation. If dNo moles of the solvent are transferred 
from the vapor phase to the solution as a result of such a 
transformation (that is, if N a and N~ vary by the amounts 
dNa and -dNa, respectively), then we must have: 

dq, = dNo a4> _ dNa aq, = 0 
aNo aN~' 

or 
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Replacing the derivatives in this equation by their 
explicit expressions as calculated from (183), we obtain: 

f{)o(T, p) - RT ~: = f{)~(T, p), 

or 

tpo(T, p) - tp~(T, p) = RT ~:. (184) 

This equation expresses the relationship between the tem
perature and the vapor pressure of our solution. 

Let po be the pressure of the saturated vapor of the pure 
solvent at the temperature T. T and po will satisfy equa
tion (184) if we place N 1 = 0 in that equation, because in 
that case no solute is present. Thus: 

f{)o(T, Po) - tp~(T, po) = o. (185) 

When Nl moles of solute are dissolved in the solvent, the 
pressure p of the vapor becomes: 

p = po + I:l.p, 

where I1p is a small quantity. Expanding the left-hand 
side of (184), in powers of Ap up to terms of the first order, 
we :find that: 

RT Nl _ (T) '(T) + A {af()QCT, po) oip~(T, PO)} - - f{)o ,po - f{)o ,po ~p - -.-~-

~ ~ o~ 

= ~P {Of()OCT, po) _ otp~(T, Po)}. 
apo apo 

(186) 

Since CPo is the thermodynamic potential of one mole of pure 
solvent, we obtain from (123) : 

otpo(T, po) 
~ = va, 
upo 

where Vo is the volume of one mole of solvent; and, similarly, 

arp~( T, Po) I 

!l = Va, 
vpo 



THERMODYNAMICS OF DILUTE SOLUTIONS 135 

where v~ is the volume of one mole of vapor of the pure 
solvent. Substituting these expressions in (186), we have: 

. A RT Nl 
up = - , -. (187) 

Vo - Vo No 

Since the volume, v~, of one mole of vapor is larger than 
the volume, Vo, of one mole of liquid solvent, Ap is negative; 
this means that the pressure of the vapor of the solution is 
lower than that of the pure solvent. If Va is negligible as 
compared to v~, which we assumed to be the case in the 
derivation of equation (182), equation (187) becomes 
identical with (182). (The minus sign means that the vapor 
pressure of the solution is lower than that of the pure 
solvent.) 

We have deduced the expression for the decrease in the 
vapor pressure from equation (184). With the aid of the 
same equation and by a method analogous to the one just 
used, we can also calculate the change in the boiling point 
of a solution. 

We consider a solution whose temperature is such that 
the pressure p of its vapor is equal to one atmosphere. Let 
To be the boiling point of the pure solvent and T = To + AT 
the boiling point of the solution. Since the vapor pressure 
at the boiling point is equal to the atmospheric pressure, p, 
it follows that the vapor pressure of the pure solvent at the 
temperature To is equal to p. Since N 1 = 0 for the pure 
solvent, we find, with the aid of (184), that: 

!pO (To , p) - IP~(To, p) = o. (188) 

Applying (184) to the solution, we obtain: 

IPoCTa + AT, p) - IP~(To + AT, p) = RT Z~· 
Developing the left-hand side of the preceding equation 

in powers of AT, and dropping all terms above the first, we 
obtain, with the aid of (188), the following equation: 

flT{aIPo(To, p) _ aIP~(Ta, p)} = RTo Nt. 
aTa aTo No 
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From (124) we have: 

otpo(To, p) • 
--'---='""-"- = - 0'0 

oTo ' 
atp~(To, p) , 
...;....;..~:...:...;.. = - 0'0 

aTo ' 

where 0'0 and O'~ are the entropies of one mole of solvent in the 
liquid and vapor phases, respectively. From the preceding 
two equations, we now obtain: 

~T{O'~ - O'o} = RTo ~~. (189) 

Let A be the heat of vaporization of one mole of solvent. 
If we permit one mole of the solvent to vaporize at the boll

A. 
ing point, To, the amount of heat absorbed is A, and To 

is the change in entropy. Hence, 

1 A 
0'0 - 0'0 = To' 

Substituting this in equation (189), we obtain: 

~T = RT~Nl 
A No' 

(190) 

This is the expression for the difference between the 
boiling point of the solution and the boiling point of the 
pure solvent. Since AT > 0, the boiling point of the solu
tion is higher than that of the pure solvent. We see also 
from the equation that the change in the boiling point is 
proportional to the molecular concentration of the solution. 

APJ an example, we shall apply the above equation to a 
normal solution of some substance in water. For such a 
solution, we have: 

N _ 1000. 
o-lS' 

R = 1.986 caloriesj 

A = 540 X 18 calories; 

To = 373.eK. 



THERMODYNAMICS OF DILUTE SOLUTIONS 137 

(We can express both R and A in calories in equation (190) 
because their ratio is obviously dimensionless.) Substitut
ing these values in equation (190), we find that: 

!::.T = 0.51 degrees. 

The same formula (190) can also be used to calculate the 
change in the freezing point of a solution. The only 
difference is that, instead of having a vapor phase, we have a 
solid phase. A. in that case represents the heat absorbed 
by one mole of the solvent in passing isothermally from 
the liquid to the solid state at the freezing point. This 
heat is negative and equal to - A./, where A' is the heat of 
fusion of one mole of the solvent. For the case of freezing, 
(190) becomes, therefore, 

AT = - R:~ ~:. (191) 

From this equation we see that the freezing point of a 
solution is lower than that of the pure solvent; the decrease 
is proportional to the molecular concentration of the 
solution. 

In the case of a normal solution in water, for which 

1000 
Nl = 1; No = 18; A' = 80 X 18 calories; 

R = l.986 caloriet:l; To = 273.1°, 

we find that: 
!::.T = -1.85 degrees. 

It should be noticed that in all these formulae N 1 rep
resents the actual number of moles of substance present in 
the solution. For electrolytic solutions, therefore, each ion 
must be considered as an independent molecule. Thus, for 
the case of very strong electrolytes (having a high degree of 
dissociation), N 1 is obtained by multiplying the number of 
moles of solute by the number of ions into which a single 
molecule of the solute dissociates when in solution. 
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Problems 

1. Calculate the osmotic pressure and the variation in the 
boiling and freezing points of a solution containing 30 grams of 
NaCl per liter of water. 

2. A solution of sugar (C6H1206) in water and a solution of 
NaCI in water have the same volume and the same osmotic 
pressure. Find the ratio of the weights of sugar and of sodium 
chloride. 

3. D~cuss with the aid of the phase rule the equilibrium of a 
solution and the vapor of the solvent. 

4. The concentration of a saturated solution (the ratio of the 
number of moles of the solute to the number of moles of the 
solvent) is a function of the temperature. Express the logarith" 
mic derivative of this function in terms of the temperature and 
the heat of solution. (Assume that the laws of dilute solutions 
can be applied also to the saturated solution. The formula can 
be obtained by appl~ng a method analogous to that used for 
deriving Clapeyron's equation.) 



CHAPTER VIII 

The Entropy Constant 

30. The N ernst theorem. We have already seen that the 
definition of the entropy given by (68): 

S(A) = lA d$, 

where 0 is an arbitrarily chosen initial state, is incomplete 
because the arbitrariness in the choice of the initial state 
introduces an undetermined additive constant in the defini
tion. As long as we deal only with differences of the 
entropy, this incompleteness is of no consequence. We have 
already found, however, that cases arise (for example, in 
dealing with gaseous equilibria, Chapter VI) for which the 
knowledge of this constant becomes important. In this 
chapter we shall introduce and discuss a principle that will 
enable us to determille the additive constant appearing in 
the definition of the entropy. This principle, which was 
discovered by Nernst, is often referred to as the third law of 
thermodynamics or as N ernst' 8 theorem. 

In the form in which it was originally stated by Nernst, 
this theorem applied only to condensed systems, but it has 
since then been extended to apply to gaseous systems also. 
We may state this theorem in the following form: 

The entropy of every system at absolute zero can always be 
taken equal to zero. 

Since we have defined only differences of entropy between 
any two states of a system, the above statement of Nemst's 
theorem must be interpreted physically as meaning that all 
possible states of a system at the temperature T = 0 have 
the same entropy. It is therefore obviously convenient to 
choose one of the states of the system at T = 0 as the 

139 
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standard state 0 introduced in section 12; this will permit us 
to set the entropy of the standard state equal to zero. 

The entropy of any state A of the system is now defined, 
including the additive constant, by the integral: 

SeA) = fA dQ, (192) 
JT~O T 

where the integral is taken along a reversible transformation 
from any state at T = 0 (lower limit) to the state A. 

In this book we shall assume Nernst's theorem as a pos
tulate; a few words concerning its theoretical basis, however, 
will serve to demonstrate its plausibility. 

We have seen that a thermodynamical state of a system is 
not a sharply defined state of the system, because it cor
responds to a large number of dynamical states. This 
consideration led to the Boltzmann relation (75): 

S = k log 11", 

where 'If" is called the probability of the state. Strictly 
speaking, 'If" is not the probability of the state, but is actually 
the number of dynamical states that correspond to the given 
thermodynamical state. This seems at first sight to give 
rise to a serious difficulty, since a given thermodynamical 
state corresponds to an infinite number of dynamical states. 
This difficulty is avoided in classical statistical mechanics by 
the following device: 

The dynamical states of a system form an Cl:)21 array, 
where f is the number of degrees of freedom of the system; 
each state can therefore be represented by a point in a 
2f-dimensional space, which is called the phase space of the 
system. Instead of an exact representation of the dynamical 
state, however, which could be given by designating the 
precise position in the phase space of the point representing 
the state, the following approximate representation is 
introduced: 

The phase space is divided into a number of very small 
cells all of which have the same hyper-volume 1"; the state is 
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then characterized by specifying the cell to which the point 
representing the state belongs. Thus, states whose rep
resentative points all lie in the same cell are not considered 
as being different. This representation of the state of a 
system would evidently become exact if the cells were made 
infinitesimal. 

The cell representation of the dynamical states of a system 
introduces a discontinuity in the concept of the state of a 
system which enables us to calculate 1r by the methods of 
combinatory analysis, and, hence, with the aid of the 
Boltzmann relation, to give a statistical definition of the 
entropy. It should be noticed, however, that the value of 'Jr, 

and therefore the value of the entropy also, depends on the 
arbitrarily chosen size of the cells; indeed, one finds that, if 
the volume of the cells is made vanishingly small, both 7r 

and 8 become infinite. It can be shown, however, that if 
we change 7, 7r is altered by a factor. But from the Boltz
mann relation, S = k log 1r, it follows that an undetermined 
factor in 7r gives rise to an undetermined additive constant 
in S. We see from the foregoing considerations that the 
classical statistical mechanics cannot lead to a determina
tion of the entropy constant. 

The arbitrariness associated with 1r, and therefore with 
the entropy also, in the classical picture can be removed by 
making use of the principles of the quantum. theory. The 
reason for this is that the quantum theory introduces a 
discontinuity quite naturally into the definition of the 
dynamical state of a system (the discrete quantum states) 
without having to make use of the arbitrary division of the 
phase space into cells. It can be shown that this discon
tinuity is equivalent, for statistical purposes, to the division 
of the phase space into cells having a hyper-volume equal 
to hi, where h is Planck's constant (h = 6.55 X 10-27 cm.2 

gm. sec.-1) and! is the number of degrees of freedom of the 
system. We may note here, without entering into the 
details, which lie outside the scope of this book, that in a 
statistical theory based consistently on the quantum theory 
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all indeterminacy in the definition of 7r, and therefore in the 
definition of the entropy also, disappears. 

According to the Boltzmann relation, the value of 1r 

which corresponds to S = 0 is 7r = 1. Statistically inter
preted, therefore, Nernst's theorem states that to the 
thermodynamical state of a system at absolute zero there cor
responds only one dynamical state, namely, the dynamical 
state of lowest energy compatible with the given crystalline 
structure or state of aggregation of the system. 

The only circumstances under which Nernst's theorem 
might be in error are those for which there exist many 
dynamical states of lowest energy. But even in this case, 
the number of such states must be enormously largel if 
deviations from the theorem are to be appreciable. Al
though it is not theoretically impossible to conceive of such a 
system, it seems extremely unlikely that such systems 
actually exist in nature. We may therefore assume that 
Nernst's theorem is generally valid. 

We shall now develop some of the consequences of 
Nernst's theorem. 

31. Nemst's theorem applied to solids. We consider a 
solid body which is heated (at constant pressure, for ex
ample) until its temperature increases from the absolute 
zero to a certain value, T. Let C(T) be its thermal capacity 
(at constant pressure) when its temperature is T. Then, 
if the temperature changes by an amount dT, the body will 
absorb an amount of heat dQ = C(T)dT. The entropy of 
the body at the temperature T is therefore given (see 
equation (192» by: 

(193) 

We can obtain the first consequence of Nernst's theorem 
from equation (193): we observe that if the thermal 
capacity, C(O), at absolute zero were different from zero, 

1 Of the order of eN, where N is the number of molecules in the system. 
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the integral (193) would diverge at the lower limit. We 
must therefore have: 

C(O) = O. (194) 

This result is in agreement with the experiments on the 
specific heats of solids. 

We shall limit ourselves here, for the sake of simplicity, 
to the consideration of solid chemical elements, and perform 
the calculations for one gram atom of the element. Figure 
22 is a graphical representation of the general way in which 
the atomic heats of solids depend on the temperature as 
found empirically. One can see from the figure that the 
a.tomic heat actually vanishes at absolute zero. At higher 
temperatures, C(T) approaches a limiting value which is 
very nearly the same for all solid C(T) 
elements and which lies very 

3R 

close to the value 3R. Since 
this limiting value is practically 
attained at room temperature, 
this result is an expression of 
the well-known law of Dulong 
and Petit, which can be stated 
as follows: 

~--------------~T 
Fig. 22. 

All solid elements at room temperature have the same atomic 
heat which 'is equal to 3R (that is, the product: specific heat X 
atO'l'~ic weight is the same for all solids and is equal to 3R). 

A theoretical formula for the specific heats of solid ele
ments which is in very good agreement with experiment, 
was d~rived by Debye on the basis of the quantum theory. 
The Debye expression can be written in the form: 

CCT) = 3RD([) ' (195) 

where e is a characteristic constant of the substance, which 
has the dimensions of a temperature; it is call~d the Debye 
temperature. D represents the following functIOn: 
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1 3 
3 {e x3 dx 1 ( ) 

D(~) = 12~ Jo eX _ 1 - el/~ _ 1 . 196 

Since D(~) approaches the limit 1 for large values of ~, 
it follows from (195) that the atomic heat for high tem
peratures tends to the limit 3R, as required by the law of 
Dulong 'and Petit. 

For small values of ~, we may replace the upper limit of 
the integral in (196) by infinity, and we may neglect the 
second term in that expression because that term becomes 
an infinitesimal of a very high order for infinitesimal values 
of~. For ~ ~ 0, we therefore obtain: 

(197) 

From this asymptotic expression for D(~), we obtain the 
following expression for the atomic heat in the limit of low 
temperatures: 

() 1211"4 R 3 
CT = TeaT + .... (198) 

We see from this expression that at low temperatures the 
atomic heat is proportional to the cube of the temperature. 
This consequence of the Debye theory is in good agreement 
with experiment. 

Using the Debye formula, we can calculate the entropy 
of a gram atom of our substance by substituting (195) in 
(193). On doing this, we find that: 

T 

S = (T G(T) dT = 3R e D(!) dT = 3R 16 D(~) ~. (199) 
Jo T Jo e T 0 ~ 

Replacing D(~) in (199) by its explicit expression, we 
find that2 : 

2 The following integral formulae are used: 

1 ~ 
(W D(~) d~ = 12 {'" ~2d~ {f :J?dx _ 3 {OJ t2 

)0 ~ )0 )0 If" - 1 Jo el/~ - 1 • 
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= 3R log T + 4R - 3R log e + ... , (200) 

where the last formula is valid for T » 9, that is, in the 
range of temperatures for which the law of Dulong and 
Petit holds. 

With the aid of Nernst's theorem, we shall now discuss 
the transformation of a solid from one crystalline form to 
another. .As an example, we shall consider the transforma
tion frem grey to white tin. Grey tin is the stable form at 
low temperatures and white tin is stable at high tempera
tures. The transition temperature, To, is equal to 19°0 or 
292°K. 

The transformation of tin from one of these allotropic 
forms to the other is analogous in many respects to the 
melting of a solid. Thus, for example, a certain amount of 
heat is absorbed by the tin in passing from the grey to the 
white form. This heat of transformation, Q, is equal to 
535 calories per gram-atom at the transition temperature. 

Although grey tin is the stable form below the transition 
temperature, white tin can exist in a labile form down to the 
lowest temperatures. It is therefore possible to measure 
the specific heats of both grey and white tin all the way from 
the lowest temperatures to the transition temperature. 
The atomic heats of the two forms are not equal; the atomic 

or, interchanging the order of integration in the double integral, and intro
ducing 1/~ as a new variable in the second integral, we obtain: 

lo w d~ 1~ :x;3dz l w 100 :x;3dx 1} [CO dx DW-=12 -- .e2 d.e+12 -- ~2d~-3 --
o ~ 0 e;t; - 1 0 ' ~ e;t; - 1 0 .!.. e;t; - 1 

w w 

;; :x;3dx --1 1) 
= 4w3 r --'- - Jog (1 - e '" • Jo eX -l 

For large values of w, we obtain the following asymptotic expression: 

DW - = - + log w + .... In'" d.e 4 

o .e 3 
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heat of grey tin at a given temperature is less than that of 
white tin at the same temperature. 

The transformation from white to grey tin is nonreversible 
at temperatures below the transition temperature (since 
the grey form is stable below the transition temperature, a 
spontaneous transformation can occur only from the white 
to the grey form). At the transition temperature, how
ever, the transformation between the two forms is reversible. 

If Bl(To) and S2(To) are the entropies at the transition 
temperature of one gram-atom of grey and white tin, 
respectively, then, applying (69) to the reversible, isother
mal transformation from grey to white tin, we obtain: 

S2(To) - Sl(To) = - = -. l white dQ Q 
grey To To 

(201) 

If we indicate the atomic heats of grey and white tin by 
C1(T) and C2(T), respectively, we can express Sl(To) and 
S2(To), with the aid of equation (193), as follows: 

SiTo) = [TD C2(T) dT. (202) 
Jo T 

We thus obtain from (201) the equation: 

Q = To{l TO C2<:) dT _ l TO Cl~) dT}, (203) 

which expresses the heat of transformation, Q, of the 
process in terms of the transition temperature To and the 
atomic heats of the two forms of tin. 

In order to test the validity of equation (203), we shall 
perform the two integrations indicated numerically. The 
results of the numerical integrations are: 

(To C2(T) dT = 12.30 cal. . 
Jo T degrees' 

(TO C1(T) dT = 10.53 cal. . 
)0 T degrees 

Since To = 292, we obtain from (203): 
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Q = 292 (12.30 - 10.53) = 517 cal. 

The good agreement between this value and the experi
mental value, Q = 535 calories, can be taken as strong 
evidence in support of Nernst's theorem. The small 
difference between the two values can be accounted for by 
the experimental errors. 

32. The entropy constant of gases. In section 14 we 
calculated the entropy of one mole of an ideal gas (see 
equation (86)) and found that: 

S = Cv log T + R log V + a. 

The undetermined additive constant a which appears in this 
expression is called the entropy constant of the gas. 

If we could apply Nernst's theorem directly to the 
formula (86) for the entropy, we could hope to determine a 
from the condition that the entropy S must vanish at 
T = O. If we attempt to do this, however, we see that the 
term Cv log T on the right-hand side of (86) becomes 
infinite, and we obtain an infinite value for the entropy 
constant. 

The reason for this apparent failure of Nernst's theore:m. 
for ideal gases is that we assumed, as one of the properties 
of an ideal gas, that the specific heat Cv is a constant; we 
have already shown (at the beginning of the preceding 
section) that this is incompatible with Nernst's theorem.. 

One way out of this difficulty could be sought in the fact 
that no real substance behaves even approximately like an 
ideal gas in the neighborhood of absolute zero: all gases 
condense for sufficiently low temperatures. It is therefore 
physically not permissible to apply (86) to a gas in the 
neighborhood of T = O. 

But quite apart from this consideration, it follows from 
quantum mechanics that, even for an ideal gas (defined as a 
gas whose molecules have a negligible size and do not exert 
forces on each other), the specific heat at very low tem
peratures decreases in such a way as to vanish in the neigh-
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borhood of T = O. Thus, even for an ideal gas as defined 
above, (86) can be applied only if the temperature is not 
too low. 

By statistical methods and also by a straightforward 
application of Nernst's theorem, it is possible to calculate 
the entropy of an ideal gas for all temperatures. In the 
limit of high temperatures, the entropy takes the form (86), 
with the constant a, instead of being undetermined, ex
pressed as a function of the molecular weight and the other 
molecular constants of the gas. 

The simplest case is that of a monatomic gas, for which 
the entropy of one mole is given by: 

3 (27rMR)~we~ ( 3 5) 
S = R l2 l0g T + log V + log h3 A 4 ' (204) 

where M is the atomic weight; h is Planck's constant 
(= 6.55 X 10-27 C. G. S. units); A is Avogadro's number 
(= 6.03 X 1023); and w is a small integer that is called the 
statistical weight of the ground state of the atom. The value of 
w for different atoms is obtained from the quantum theory; 
we shall give the value of w for all the examples considered 
here. e is the base of the natural logarithms. 

Formula (204) was first obtained by Tetrode and Sackur. 
In order to show that (204) can be put in the form (86), we 
must take (34) into account. On doing this, we obtain 
for the entropy constant of one mole of a monatomic gas 
the expression: 

3 5 

- R 1 (27rMR)~we~ 
a - og h3 A4 

= R( -5.65 + ~ log M + log w). (205) 

We can also write the entropy of an ideal monatomic gas in a 
form corresponding to (87): 

(206) 



THE ENTROPY CONSTANT 149 

We cannot give a proof of these formulae in this book; we 
shall therefore limit ourselves to some examples showing the 
applications of these formulae. As a first example, we shall 
consider the problem of calculating the vapor pressure for a 
solid monatomic substance. 

Let p be the vapor pressure of the substance at the tem
perature T. Keeping the temperature (and the pressure) 
constant, we vaporize one mole of the substance by increas
ing the volume very slowly. During this process, the body 
absorbs from the environment an amount of heat, A, equal 
to the heat of vaporization (per mole, not per gram). Since 
the vaporization of the one mole of substance occurs 
reversibly, the change in entropy during the transforma
tion is: 

A 
Svapor - Saolid = T' 

Using the approximate expression (200) for the entropy of 
the solid and the formula (206) for the entropy of the vapor, 
we obtain: 

3 5 5) 
{5 (27T'M)7JR7Jwe7J 

R 2 log T - log p + log hS A 4 - 3R log T 

A 
- 4R + 3R log e = T' 

or, passing from logarithms to numbers, 
3 5 A 

(27r Mf'I R7Jwe3 1 - BT 
p= -e 

eih3A4 v'T 
(207) 

This formula should be compared with (98), which was 
obtained from Clapeyron's equation. The factor l/VT in 
(207) arises from our having taken into account the de
pendence of the heat of vaporization on the temperature. 
We see that the factor of proportionality, which remained 
undetermined in (98), has now been completely determined 
in (207) by the use of Nernst's theorem and the Sackur
Tetrode formula for the entropy of a gas. 
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Since in many cases we have to deal with the vaporization 
of a liquid and not of a solid, (207) cannot be used in general. 
As an example of the vaporization of a liquid, we shall 
consider the vaporization of one mole of mercury, because 
this element has a monatomic vapor. 

The boiling point of mercury is 630oK. This means that 
the vapor pressure of saturated mercury vapor at 6300 K is 
equal to one atmosphere. 

We shall now calculate the entropy of one mole of mercury 
at T = 6300 K and p = 1 atmosphere by two different 
methods and compare the two results. 

Method 1. The Sackur-Tetrode formula (206) applied to 
our case (the atomic weight of mercury is 200.6) gives: 

S = 191 X 107• 

Method 2. We start with one mole of solid mercury at 
a.bsolute zero. Its entropy, according to Nernst's theorem, 
is zero. We then heat the one mole of mercury, keeping 
the pressure equal to one atmosphere, until its temperature 
has reached the melting point, T melting = 234.2°K. During 
this process the entropy of the mercury increases; its value 
for T = 234.2°K can be calculated with the aid of (193): 

1243.2 CCT) 
Ssolid (243.2) = 0 rr- dT, 

where C(T) is the atomic heat at constant pressure of 
mercury. The above integral can be calculated numeri
cally by using the experimentally determined values of 
C(T). On doing this, we obtain: 

Ssolid(243.2) = 59.9 X 107• 

We now let the mole of mercury melt at atmospheric 
pressure. During this process, the body absorbs reversibly 
an amount of heat equal to the heat of fusion for one mole of 
mercury (2330 X 107 ergs/mole). The change in entropy 
resulting from this is therefore obtained by dividing the 
heat of fusion by the melting point; that is, the change in 
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entropy is equal to 2330 X 107/243.2 = 9.9 X 107• The 
total entropy of the mole of mercury is now: 

Sliquid(243.2) = 59.9 X 107 + 9.9 X 107 = 69.8 X 107• 

Next we heat the liquid mercury and raise its temperature 
from the melting point to the boiling point. During this 
process, the entropy changes by the amount: 

° ° 1680 Gl(T) Sliquid (630 ) - SliqUid (243.2 ) = -T dT, 
243.2 

where Gl(T) is the atomic heat at constant pressure. Using 
the experimental values of Gl(T) , we can evaluate this 
integral numerically. Its value is 26.2 X 107• Adding 
this to the value of the entropy of the liquid mercury at the 
melting point, we find that: 

SUquid(6300) = 69.8 X 107 + 26.2 X 107 = 96.0 X 107• 

We finally permit the mole of liquid mercury to vaporize 
at atmospheric pressure. As a result of this, the mercury 
at the temperature T = 6300 absorbs an amount of heat 
equal to the heat of vaporization of one mole of mercury 
(59,300 X 107 ergs/mole). The change in entropy is 
therefore equal to 59,300 X 107/630 = 94 X 107, and we 
finally obtain for the entropy of the mole of mercury vapor 
at the boiling temperature: 

S = 96 X 107 + 94 X 107 = 190 X 107• 

This is in excellent agreement with the value found directly 
from the Sackur-Tetrode formula. 

The result which we have just obtained may be taken as 
an experimental proof of the expression for the entropy of a 
monatomic gas. Similar calculations have been performed 
for argon and carbon, and in these cases also very satis
factory agreement was found. 

33. Thermal ionization of a gas: the thermionic effect. 
In Chapter VI we established the law of mass action (equa
tion (139» for chemical equilibria in gaseous systems. The 
constant coefficient (the factor which does not contain the 
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temperature) on the left-hand side of equation (139) con
tains the entropy constants of gases that take part in the 
reaction. The knowledge of the entropy constants enables 
us, therefore, to calculate this coefficient completely. 

Since we gave the expression for the entropy constant of a 
gas only for monatomic gases, we must choose, as an ex
ample, a reaction in which only monatomic gases take part. 
It is evident that no reaction of this kind can be found in 
chemistry. We shall therefore consider the following 
nonchemical process. 

When a gas, such, for example, as an alkali vapor, is 
heated to a very high temperature, some of its atoms 
become ionized; that is, they lose one of their electrons, and 
are thus changed into ions. If, for example, we denote by 
Na, Na+, and e sodium atoms, sodium ions, and electrons, 
respectively, the process may be represented by the reaction: 

Na+±Na++e. (208) 

It is found that, at any given temperature, this ionization 
reaction reaches a state of thermal equilibrium which is 
quite analogous to the chemical equilibrium for ordinary 
chemical reactions. ! 

In sodium vapor at very high t~mperatures, we actually 
have a mixture of three different gases: 

Neutral sodium, Na, having a concentration [NaJ; sodium 
ions, Na+, having a concentration [Na+]; and an electron 
gas (a gas composed of free electrons), having a concen
tration [e]. 

Each of these three substances behaves like a monatomic 
gas; we may therefore apply the general results, in partic
ular, equation (139), of the theory of chemical equilibria 
in gaseous systems to the ionization process (208). 

Since all the gases in the mixture are monatomic, we must 
use the first of the expressions (34) for the molecular heats 
of the gases. The entropy constants can be found with the 
aid of equation (205); and the statistical weights '" are 
equal to 2, 1, and 2 for neutral sodium, sodium ions, and 
electrons, respectively . We place M = 23, the atomic 
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weight of sodium, and neglect the very small difference 
between the masses of sodium atoms and sodium ions, so 
that we may also place M equal to the atomic weight of the 
sodium ions. The atomic weight of the electrons (that is, 
t.he mass of the electrons divided by T\ of the mass of 
oxygen) is 1~1c = rho. Let us finally denote by W 
(= 4.91 X 10-12 ergs/mole) the energy needed to ionize all 
the atoms in one mole of sodium vapor. We have, then, 

L rnj lV j - L 11; Wi = WionR + lt7cl,,~tr"". - ll'lltoms = W. 

Making all the necessary substitutions in equation (139), 
we finally obtain, as the eondition for thermal equilibrium 
in the thermal ionization of sodium vapor, the following 
equation: 

[Nal } ~A1 3 lV 
I T-2 RT 

[Na+ffP] = (27rM •. R)"j C 

This formula ran be put into a more convenient form as 
follows: Let x be the degree of ionization, that is, the 
fraction of atoms that arc ionized: 

[Nn.+] 
.r = [Ntif+ [Nil':]; 

and let 12. = [N aJ + [N a + 1 be the total concentration of the 
sodium (atoms + i<.ms). We have, then, 

[Na +] = ?IX; [Na] = 1/(1 - x). 

Since there iH obviously one electron present for each sodium 
ion, we have: 

H = [Nail = 'It X , 

and we finally obtain: 

a 20,1](10 

= 3.9 X 10-9 T~ lo----:r-', (209) 

The degree of ionization rnn be calculated from this formula. 
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Equation (209), which was first derived by M. N. Saha, 
has found several important applications in the physics of 
stellar atmospheres. 

As a further application of the Sackur-Tetrode formula, 
we shall obtain the expression for the density of an electron 
gas which is in equilibrium with a hot metal surface. When 
a metal is heated to a sufficiently high temperature, it gives 
off a continuous stream of electrons. If we heat a block of 
metal containing a cavity, the electrons coming from the 
metal will fill the cavity until a state of equilibrium is 
reached, when as many electrons will be reabsorbed per 
unit time by the metal as are emitted. We propose to 
calculate the equilibrium concentration of the electrons 
inside the cavity as a function of the temperature. 

Let N be the number of moles of electrons inside the 
cavity of volume V. The entropy of these electrons is 
obtained from (204) by multiplying that expression by N 
and replacing V in it by V IN, since V IN is the volume 
occupied by one mole of the electron gas. Making use of 
(34) and (29), we obtain for the energy of the electrons: 

U = N(iRT + W), 

where W is the energy needed to extract one mole of electrons 
from the metal. 

For the free energy of the electron gas, we now obtain the 
expreSSIOn: 

F., = N(jRT + W) - NRTI -flog T + log ~ 
3 5) 

+ log (21r~~!l~~ell- ~ 
h3 A 4 J ' 

where we have put Me = 1,;80 = the atomic weight of the 
electrons, and w for the electrons = 2. 

The free energy F of our complete system is the sum of 
the previous expression and the free energy F M of the metal: 
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F = F" + N [t RT + W - RT I! log T + log V - log N 

+ log 2(2.. !A~)~ ef }]. (210) 

The condition for equilibrium is that F be a minimum for a 
given temperature and volume. Assuming that F M is 
independent3 of N, we thus obtain: 

o = ~~ = ~ RT + W - RT 1 ~ log T + log V - log N 

+ 1 2(211"MeR)~ ei } + RT 
og h3 A4 . 

Passing from logarithms to numbers, we obtain the equation: 

(211) 

which gives, as required, the concentration of the electron 
gas within the cavity. 

Problems 

1. Calculate the degree of dissociation of sodium vapor at a 
temperature of 4,000° K and a pressure of 1 cm. of mercury. 
(Take into account not only the pressure due to the sodium atoms, 
but also the contribution of the ions and the electrons.) 

2. Find the relation between the Debye temperature e and 
the temperature for which the atomic heat of a solid element is 
equal to 3R/2. {Apply graphical or numerical methods.} 

3 The experimental basis for this assumption is that the electrons inside a. 
metal do not contribute to the specific heat of the metal i the specific heat is 
completely accounted for by the motion of the atoms. For a rigorous 
jUtltification of this assumption, see any treatise on the theory of metals. 
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airfoil theory, entry conditions, turbulent flow in pipes, and the boundary layer, determining 
drag from measurements of pressure and velocity, etc. "Will be welcomed by all students 
of aerodynamics," NATURE. Unabridged, unaltered. An Engineering SOCiety Monograph, 1934. 
Index. 226 figures, 28 photographic plates illustrating flow patterns. xvi + 31lPP. 5% x S. 

S375 Paperbound $2.00 

SUPERSONIC AERODYNAMICS, E, R. C. Miles. Valuable theoretical Introduction to the super· 
sonic domain, with emphasis on mathematical toolS and principles, for practicing aerody· 
namlcists and advanced stUdents in aeronautical engineering. Covers fundamental theory, 
divergence theorem and principles of Circulation, compressible flow and Helmholtz laws, the 
Prandtl·Busemann graphic method for 2·dimensional flow, oblique shock waves, the Taylor· 
Maccoll method for cones in supersonic flaW, the Chaplygin method for 2·dlmensional flow, etc. 
Problems range from practical engineering problems to development of theoretical results. 
"Rendered outstanding by the unprecedented scope of its contents .•• has undoubtedly filled 
a vital gap," AERONAUTICAL ENGINEERING REVIEW. Index. 173 problems, answers. 106 dla' 
grams. 7 tables. xii + 255pp, 5% x 8. S214 Paperbound $1.45 

HYDRAULIC TRANSIENTS, G, R. Rich. The best text In hydraulics ever printed in English. , • 
by one of America's foremost engineers (former Chiei Design Engineer for T.V.A.). Provides 
a tranSition from the basic differential equations of hydraulic transient theory to the 
arithmetic intergratlon computation required by practiCing engineers. Sections cover Water 
Hammer, Turbine Speed Regulation, Stability ot Governing, Water·Hammer Pressures In Pump 
Discharge Lines~ lhe Differential and Restricted Orifice Surge Tanks! The Normalized Surge 
Tank Charts of \;alame and Gaden, Navigation Locks, Surges in Power \;anals-Tldal Harmonics, 
etc. Revised and enlarged. Author's prefaces. Index. XIV + 409pp. 5% x 81h. 

S116 Paperbound $2.50 

HYDRAULICS AND ITS APPLICATIONS, A. H. Gibson. Excellent comprehensive textbook for the 
student and thorough practical manual for the profeSSional worker, a work of great stature 
in Its area. Half the book Is devoted to theory and half to applications and practical prob· 
lems met in the field. Covers modes of motion of a fluid, critical velocity, viscous flow, eddy 
formation, Bernoulli's theorem, flow in converging passages, vortex motion, form of effluent 
streams, notches and weirs, skin friction, losses at valves and elbows, siphons, erosIon of 
channels, jet propulSion, waves of oscillation, and over 100 similar topics. Final chapters 
(nearly 400 pages) cover more than 100 kinds of hydraulic machinery. Pelton wheel, speed 
regulators, the hydraulic ram, surge tanks, the scoop wheel, the Venturi meter, etc. A 
special chapter treats methods of testing theoretical hypotheses: scale models of rivers, 
tidal estuaries, siphon spillways, etc. 5th revised and enlarged (1952) edition. Index. Ap· 
pendix. 427 photographs and diagrams. 95 examples, answers. xv + 813pp. 6 x 9. 

S791 Clothbound $8.00 
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FLUID MECHANICS FOR HYDRAULIC ENGINEERS) H. Rouse. Standard work that gives a coherent 
picture of fluid mechanics from the point of view of the hydraulic engineer. Based on courses 
given to civil and mechanical engineering students at Columbia and the California Institute 
of Technology, this work covers every basic principle, method, equation, or theory of 
Interest to the hydraulIc engineer. Much of the material, diagrams, charts, etc., in this 
self-contained text are not duplicated elsewhere. Covers Irrotatlonal motion, conformal map· 
ping, problems In laminar motion, fluid turbulence flow around immersed bodies, transporta· 
tlon of sediment, general charcteristics of wave phenomena, gravity waves in open channels, 
etc. Index. Appendix of physical properties of common fluids. Frontispiece + 245 figures and 
photographs. xvi + 422pp. 5% x 8. 5729 Paperbound $2.25 

WATERHAMMER ANALYSIS, John Parmakian. Valuable exposition of the graphical method of 
solving waterhammer problems by Assistant Chief Designing Engineer U.S. Bureau of 
Reclamation. Discussions of rigid and elastic water column theory, velocity of waterhammer 
waves, theory of graphical waterhammer analysis for gate operation, cloSings, openings, 
rapid and slow movements, etc., waterhammer In pump discharge caused by power failure, 
waterhammer analysis for compound pipes, and numerous related problems. "With a concise 
and lucid style, clear printing, adequate bibliography and graphs for approximate solutions 
at the project stage, it fills a vacant place in waterhammer literature," WATER POWER. 
43 problems. Bibliography. Index. 113 Illustrations. xiv + 161pp. 5% x SSh. 

51061 Paperbound $1.&5 

AERODYNAMIC THEORY: A GENERAL REVIEW OF PROGR&SS, William F. Durand, editor-In-chief. 
A monumental Joint effort by the world's leading authorities prepared under a grant of 
the Guggenheim Fund for the Promotion of Aeronautics.. Intended to provide the stud.ant 
and aeronautic designer with the theoretical and experimental background of aeronautics. 
Never equalled for breadth, depth, reliability. Contains discussions of special mathematical 
topics not usually taught In the engineering or technical courses. Also. an extended two-part 
treatise on Fluid Mechanics, discussions of aerodynamics of perfect fluids analyses of 
experiments with wind tunnels, applied airfoil theory, the non·liftlng system '0'1 the airplane, 
the air propeller, hydrodynamics of boats and floats, the aerodynamics of cooling, etc. 
ContributIng experts Include Munk, Giacomelli, Prandtl, Toussaintt Von Karman, Klempere':z 
among others. Unabridged republication. 6 volumes bound as 3. otal of 1,012 figures, 1" 
plates. Total of 2,186pp. Bibliographies. Notes. Indices. 5% x S. 

S328·S33D Clothbound, The Set $17.50 

APPLIED HYDRO- AND AERO MECHANICS, L. Prandtl and O. G. TletJens. Presents, for the most 
part, methods which will be valuable to engineers. Covers flow rn pipes, boundary layers, 
airfoil theory, entry conditions, turbulent flow in pipes, and the boundary layer, determining 
drag from measurements of pressure and velocitY, etc. "Will be welcomed by all students 
of aerodynamics," NATURE. Unabridged, unaltered. An Engineering Society Monograph, 1934. 
Index. 226 figures, 28 photographic plates illustrating flow patterns. xvi + 31lPP. 5~ x S. 

5375 Paperbound $1.85 

SUPERSONIC AERODYNAMICS, E. R. C. Miles. Valuable theoretical Introduction to the super· 
soniC domain, with emphaSIS on mathematical tools and principles, for practicing aerody
namlcists and advanced. students In aeronautical engineering. Covers fundamental theory, 
divergence theorem and prinCiples of Circulation, compressible flow and Helmholtz laws, the 
Prandtl·Busemann graphic method for 2·dimensional flow, oblique shock waves, the Taylor· 
Maccoll method for cones in supersonic flow, the Chaplygin method for 2-dimensional flow, etc. 
Problems range from practical engineering problems to development of theoretical results. 
"Rendered outstanding by the unprecedented scope of its contents •.• has undoubtedly filled 
a vital gap," AERONAUTICAL ENGINEERING REVIEW. Index. 173 problems, answers. 106 dia
grams. 7 tables. xii + 255pp. 5% x 8. S214 Paperbound $1.45 

HYDRAULIC TRANSIENTS, G. R. Rich. The best text in hydraulics ever printed in English ••• 
by one of America's foremost engineers (former Chief DeSign Engineer for T.V.A.). Provides 
a transition from the basic differential equations of hydraulic transient theory to the 
arithmetic intergration computation required by practicing engineers. Sections cover Water 
Hammer, Turbine Speed Regulation, Stability of Governing, Water·Hammer Pressures in Pump 
Discharge Lines, The Differential and Restricted Orifice Surge Tanks The Normalized Surge 
Tank Charts of Calame and Gaden, Navigation Locks, Surges in Power CanalS-Tidal Harmonics, 
etc. Revised and enlarged. Author's prefaces. Index. xiv + 409pp. 5% x Slh. 

S116 Paperbound $2.50 

HYDRAULICS AND ITS APPLICATIONS, A. H. Gibson. Excellent comprehensive textbook for the 
~tu!ient and thoroulh practlcal manual for the professional worker, a work of great stature 
In Its are.!!. Half the book IS devoted to theory and half to applications and practical prob· 
lems ":let In the fi~ld. Covers modes ~f motion ~f a fluid, critical velocity, viscous flow, eddy 
forma~lon, BernoullI's theorem, flow In convergIng passages, vortex motion, form of effluent 
streal\ls, n.otches and weirs, skin friction, losses at valves and elbows, Siphons, erosion of 
channels, Jet propulSion, waves of OSCillation, anel over 100 similar topics. Final chapters 
(nearly 400 pages) cover more than 100 kinds of hydraulic machinery: Pelton wheel speed 
regulators, the hydraulic ram surge tanks, the scoop wheel, the Venturi meter,' etc. A 
special chal?ter treats methods of testing theoretical hypotheses: scale models of rivers, 
tidal. estuaries, siphon splllwa},s, etc. 5th revised and enlarged (1952) edition. Index. Ap
pendiX. 427 photographs and diagrams. 95 examples, answers. xv + 813pp. 6 x 9. 

S791 Clothbound $8.00 
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GASEOUS CONDUCTORS: THEORY AND ENGINEERING APPLICATIONS, J. D. Coblne. An indis. 
pe!1sable te:<t and reference to gaseous c~ndL!ction phenomena, with the engineering view. 
pomt prevailing throughout. Studies the kinetic theory of gases Ionization emission phe. 
n.omen~; g!"s ~re!lkdown, spark c~aracter!stics, glow, and discharges; engineering applica. 
tl,ons In circUit Interrupters, rectifiers, light sources, etc. Separate detailed treatment of 
high pressure arcs (SUits); low pressure arcs (Langmuir and Tonks). Much more "Well 
organized, clear,. straightforward," Tonks. Review of SCientific Instruments. Index. ·Blbliog. 
raphy. 83 practice problems. 7 appendices. Over 600 figures. 58 tables. xx + 606pp. 
5% x 8. 5442 Paperbound, $3.25 

INTRODUCTION TO THE STATISTICAL DYNAMICS OF AUTOMATIC CONTROL SYSTEMS V V Solo. 
dovnlkov. First English publication of text·reference covering important branch of automatic 
control systems-random signals; in Its .or!ginal edition, this. was the first comprehensive 
treatment. Examl!1es freq~ency characteristics, transfer functions, stationary random proc. 
esses, determination of mmlmum mean-squared error, of transfer function for a finite period 
of observation, much more. Translation edited by J. B. Thomas, L. A. Zadeh. Index Blbliog. 
raphy. Appendix. xxii + 308pp. 5%. x 8. 5420 Paperbou'nd $2.35 

TENSORS FOR CIRCUITS, Ga~riel ~ron. ~ bold!y or,lginal method of analyzing engineering prob. 
lems, at center of sharp diSCUSSion Since first mtroduced, now definitely proved useful in 
such areas as electrical and structural networks on automatic computers. Encompasses a 
great vari~~y of specific pr~blems by t'!leans of a relatively few symbolic equations. "Power 
and fleXibility ..• becommg more Widely recognized," Nature. Formerly "A Short Course 
In Tensor Analysis." New introduction by B. Hoffmann. Index. Over 800 diagrams. xix + 
250pp. 5% x 8. S534 Paperbound $2.00 

SELECTED PAPERS ON SEMICONDUCTOR MICROWAVE ELECTRONICS, edltild by Sumner N. Levine 
and Richard R. Kurzrok. An invaluable collection of important papers dealing with one of 
the most remarkable devolopments in solid-state electronics-the use of the p·n junction 
to achieve amplification and frequency conversion of microwave frequencies. Contents, 
General Survey (3 introductory papers by W. E. Danielson, R. N. Hall, and M. Tenzer); Gen· 
eral Theory of Nonl inear Elements (3 articles by A. van der Ziel, H. E. Rowe, and Manley 
and Rowe)i. Device Fabrication and Characterization (3 pieces by Bakanowski, erannal and 
Uhlir, by McCotter, Walker and Fortini, and by S. T. Eng); Parametric Amplifiers ana Fre· 
quency Multipliers (13 articles by Uhlir, Heffner and Wade, Matthaei, P. K. Tlen, van der 
Ziel, Engelbrecht, Currie and. Gould, Uenohara, Leeson and :Weinreb, and others); and Tunnel 
Diodes (4 papers by L. Esakl, H. S. Sommers, Jr., M. 1::. Hanes, and Yarlv and Cook). Intra· 
duction. 295 Figures. xiii + 286pp. 61/2 x 91/4. 51126 Paperbound $2.50 

THE PRINCIPLES OF ELECTROMAGNETISM APPLIED TO ELECTRICAL MACHINES, B. Hague. A 
conCise, but complete, summary of the baSic principles of the magnetiC field and its appli· 
cations, with particular reference to the kind of phenomena which occur in electrical rna· 
chines. Part I, General Theory-magnetic field of a current, electromagnetic field passing 
from air to iron, mechanical forces on linear conductors, etc. Part II: Application of theory 
to the solution of electromechanical problems-the magnetic field and mechanical forces 
in non-salient pole machinery, the field within slots and between salient poles, and the 
work of Rogowski, Roth, and Strutt. Formery titled "Electromagnetic Problems in Electrical 
Engineering." 2 appendices. Index. Bibliography in notes. 115 figures. xlv + 359pp. 5% x 81/2. 

S246 Paperbound $2.25 

Mechanical engineering 

DESIGN AND USE OF INSTRUMENTS AND ACCURATE MECHANISM, T. N. Whitehead. For the 
instrument designer, engineer; how to combine necessary mathematical abstractions with 
Independent observation of actual facts. Partial contents: instruments & their parts, theory 
of errors, systematic errors, probability, short period errors, erratiC errors, design preciSion, 
kinematiC, semi kinematic design, stiffness, planning of an instrument, human factor, etc. 
Index. 85 photos, diagrams. xii + 288pp. 53/e x 8. 5270 Paperbound $2.00 

A TREATISE ON GYROSTATICS AND ROTATIONAL MOTION: THEORY ANa APPLICATIONS, Andrew 
Gray. Most detailed, thorough book in English, generally considered definitive study. Many 
problems of all sorts in full detail, or step-by-step summary. Classical problems of Bour, 
Lattner, etc.; later ones of great physical interest. Vibrating systems of gyrostats, earth 
as a top, calculation of path of axis of a top by elliptic integra.ls, motion of unsymmetrical 
top, much more. Index. 160 i lIus. 550pp. 5% x 8. 5589 Paperbound $2.75 

MECHANICS OF THE GYROSCOPE, THE DYNAMICS OF ROTATION, R. F. Delmel, Professor of 
Mechanical Engineering at Stevens Institute of Technology. Elementary general treatment 
of dynamics of rotation, with special appl ication of gyroscopic phenomena. No knowledge 
of vectors needed. Velocity of a moving curve, acceleration to a point, general equations of 
motion, gyroscopic horizon, free gyro, motion of discs, the damped gyro, 103 similar 
topiCS. Exercises. 75 figures. 208pp. 5¥e x 8. S66 Paperbound $1.75 
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STRENGTH OF MATERIALS, J. P. Den Hartog. Distinguished text prepared for M.I.T. courSe, ideal 
as introduction, refresher, reference, or self·study text. Full clear treatment of elementary 
material (tension, torsion, bending, compound stresses, deflection of beams, etc.), plus mUChh 
advanced material on engineering methods of great practical value: full treatment of t e 
Mohr circle, lucid elementary discussions of the theory of the center of shear and the "Myoso· 
tis" method of calculating beam deflections, reinforced concrete, plastic defor!,"ations, photo· 
elasticity, etc. In all sections, both general principles and concrete applications are given. 
Index. 186 figures (160 others In problem section). 350 problems, all with answers. List of 
formulas. viii + 323pp. 5% x 8. 5755 Paperbound $2.00 

PHOTOELASTICITY: PRINCIPLES AND METHODS. H. T. Jessop, F. C. Harris. For t~e engineer, 
for specific problems of stress analysis. Latest time·saving methods of ch~cklng. calcula
tions in 2·dimensional design problems, new techniques for stresses in 3 dimensions, and 
lucid description of optical systems Llsed in practical photoelasticlty. Useful suggestions 
and hints based on on-the·job experience included. Partial contents: strained and stress· 
strain relations, circular disc under thrust along diameter, rectangular block with square 
hole under vertical thrust, simply supported rectangular beam under central concentrated 
load, etc. Theory held to minimum, no advanced mathematical training needed. Index. 164 
Illustrations. viii + 184pp. 61/a x 9114. S720 Paperbound $2.00 

APPLIED ELASTICITY, J. Prescott. Provides the engineer with the theory of e!asticlty usually 
lacking In books on strength of materials, yet concentrates on those portIOns useful .for 
immediate application. Develops every important type of elasticity problem from t~eoretlcal 
principles. Covers analysis of stress, relations between stress and strain, the empirical basis 
of elasticity, thin rods under tension or thrust, Saint Venant's theory, transverse oscillations 
of thin rods, stability of thin plates, cylinders with thin walls, vibrations of rotatll)g disks, 
elastic bodies in contact, etc. "Excellent and Important contribution to the subject, not 
merely in the old matter which he has presented in new and refreshing form, but also in. the 
many original investigations here published for the first time," NATURE. Index. 3 Appendixes. 
vi + 672pp. 5% x 8. S726 Paperbound $3.25 

APPLIED MECHANICS FOR ENGINEERS, Sir Charles Inglis, F.R.S. A representative survey of 
the many and varied engineering questions which can be answered by statics and dynamics. 
The author, one of first and foremost adherents of "structural dynamics," presents distlnc· 
tlve illustrative examples and clear, concise statement of principles-directing the dis· 
cussion at methodology and specific problems. Covers fundamental principles of rigid·body 
statics, graphic solutions of static problems, theory of taut wires, stresses in frameworks, 
particle dynamics, kinematics, simple harmonic motion and harmoniC analysis, two·dimen
sional rigid dynamics, etc. 437 illustrations. xii + 404pp. 5% x 8112. 51119 Paperbound $2.00 

THEORY OF MACHINES THROUGH WORKED EXAMPLES, G. H. Ryder. Practical mechanical 
engineering textbook for graduates and advanced undergraduates, as well as a good refer
ence work for practicing engineers. Partial contents: Mechanisms, Velocity and Accelera
tion (Including discussion of Klein's Construction for Piston Acceleration), Cams, Geometry 
of Gears, Clutches and Bearings, Belt and Rope Drives, Brakes, Inertia Forces and Couples, 
General Dynamical Problems, Gyroscopes, linear and Angular Vibrations, Torsional Vibrations, 
Transverse Vibrations and Whirling Speeds (Chapters on vibrations considerably enlarged 
from previous editions). Over 300 problems, many fully worked out. Index. 195 line illus· 
tratlons. Revised and enlarged edition. viii + 280pp. 5% x 8314. S980 Clothbound $5.00 

THE KINEMATICS OF MACHINERY: OUTLINES OF A THEORY OF MACHINES, Franz Reuleaux. 
The claSSic work In the kinematics of machinery. The present thinking about the subject 
has all been shaped in great measure by the fundamental principles stated here by Reuleaux 
almost 90 years ago. While some details have naturally been superseded, his basic viewpoint 
has endured; hence, the book is still an excellent text for basic courses in kinematics and 
a standard reference work for active workers in the Ii ald. Covers such topics as: the nature 
of the machine problem, phoronomic propOSitions, pairs of elements, incomplete kinematic 
chains, kinematic notation and analysis, analyses of chamber·crank trains, chamber-wheel 
trains, constructive elements of machinery, complete machines, etc., with main focus on 
controlled movement in mechanisms. Unabridged republication of original edition, translated 
by Alexander B. Kennedy. New introduction for this edition by E. S. Ferguson. Index. 451 
Illustrations. xxiv + 622pp. 5318 x 81/2. S1124 Paperbound $3.00 

ANALYTICAL MECHANICS OF GEARS, Earle Buckingham. Provides a solid foundation upon 
which logical design practices and design data can be constructed. Originally arising out 
of investigations of the ASME Special Research Committee on Worm Gears and the Strength 
of Gears, the book covers conjugate gear·tooth action, the nature of the contact and result
ing gear-tooth profiles. of: spur, internal, helical, spiral, worm, bevel, and hyp'oid or skew 
bevel .gears. A!so: fnc~lonai heat of operation and. its diSSipation, friction losses, etc., 
dynamiC loads In operation, and related matters. Familiarity with this book is still regarded 
as a necessary prerequiSite to work in modern gear manufacturing. 263 figures. 103 tables. 
Index. x + 546pp. 5% x 8l12. 51073 Paperbound $2.75 
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Optical design, lighting 

THE. SCI~NTlFIC BASIS QF ILLUMINATlN.G ENGINEERING, Patry Moon, Professor of Electrical 
Engme~nng, ~.I.'T. BaSIC, comp~ehenslve study. Complete coverage of the fundamental 
theoretlc~1 pnnc!ples together With. .the elements of design, vision, and color with which 
the lighting ~n~lneer tl!ust be fan:llilar. Valuable as a text as well as a reference source 
to .the practicing engmeer. ~artlal contents:. Spectroradlometric Curve, Luminous Flux, 
Radiation from Gaseous-Conductl.on Source~, R~dlation from Incandescent Sources, Incandes
cent Lamps, ~eas~rement. of Light, illumination from Point Sources and Surface Sources, 
Elel!lents of Lighting Design .. 7. Appendlce~. Unabridged and corrected republication, with 
additions. New preface containing conversion tables of radiometric and photometric con
ce~~. Index. 707-item bibliography. 92-item bibliography of author's articles. 183 problems. 
xxiII + 608pp. 5% x 81/2. S242 Paperbound $2_85 

OPTICS AND OPTICAL INSTRUMENTS: AN INTRODUCTION WITH SPECIAL REFERENCE TO 
PRACTICAL A:PPpCATlON~, B. K. Johnson. An inval.uable guide to baSic practical applications 
of optical pnnclples, which shows how to set up Inexpensive working models of each of the 
four m~in types of optica! Instrumen~s-telescope.s, microscopes, photographiC lenses, optical 
projectmg syste~s. ExplainS In deta!1 the m~st Important experiments for determining their 
accuracy, resolving power, angular field of view, amounts of aberration all other necessary 
facts about the instruments. Formerly "Practical Optics." Index. 234' diagrams. AppendiX. 
224pp. 5% x 8. S642 Paperbound $1.75 

APPLIED OPTICS A~D OPTICAL DESIGN, A. E. Conrady. With publication of vOl. 2, standard 
work for ~eslgners In optiCS I.s now c~mplete for first time. Only work of its kind In English; 
only detailed .work for practical deSigner and self·taught. Requires, for bulk of work, no 
math above tng. Step-by·step exposition, from fundamental concepts of geometrical physical 
optics, to systematic study, d.esign, of almost all types of optical systems. Vol. 1,' all ordi
nary ray-tracing methods; primary aberrationsj necessary higher aberration for design of 
telescopes, low-power microscopes, photographic equipment. Vol. 2: (Completed from author's 
notes by R. Klngslake, Dir. Optical DeSign, Eastman Kodak.) Special attention to high-power 
microscope, anastigmatic photographic objectives. "An indispensable work," J., Optical Soc. 
of Amer. "As a practical guide this book has no rival," Transactions, Optical Soc. Index. 
Bibliography. 193 diagrams. 852pp. 61fax 91/4. Vol. 1 5366 Paperbound $3.50 

VOl. 2 S612 Paperbound $2.95 

Miscellaneous 

THE MEASUREMENT OF POWER SPECTRA FROM THE POINT OF VIEW OF COMMUNICATIONS 
ENGINEERING, R. B. Blackman, J. W. Tukey. This pathfinding work, reprinted from the "Bell 
System Technical Journal," explains various ways of getting practically useful answers in 
the measurement of power spectra, using results from both transmission theory and the 
theory of statistical estimation. Treats: Autocovarlance Functions and Power Spectra; Direct 
Analog Computation; Distortion, Noise, Heterodyne Filtering and Pre-whitening; Aliasing; 
Rejection Filtering and Separation; Smoothing and Decimation Procedures; Very Low Fre
quencies; Transversal Filtering; much more. An appendix reviews fundamental Fourier tectJ
niques. Index of notation. Glossary of terms. 24 figures. XII tables. Bibliography_ General 
Index. 192pp. 5% x 8. S507 Paperbound $1.85 

CALCULUS REFRESHER FOR TECHNICAL MEN, A. Albert Klaf. This book is unique in English 
as a refresher for engineers, techniCians, students who either wish to brush up their 
calculus or to clear up uncertainties. It is not an ordinary text, but an examination of 
most important aspects of integral and differential calculus In terms of the 756 questions 
most likely to occur to the technical reader. The first part of this book covers simple differ
ential calculus, with constants, variables, functions, increments, derivatives, differentiation, 
logarithms, curvature of curves, and similar topics. The second part covers fundamental 
Ideas of integration, inspection, substitution, transformation, reduction, areas and volumes, 
mean value, successive and partial integration, double and triple integration. Practical 
aspects are stressed rather than theoretical. A 50-page section illustrates the application 
of calculus to speCific problems of civil and nautical engineering, electricity, stress and 
strain, elastiCity, industrial engineering, and similar fields.-756 questions answered. 566 
problems, mostly answered. 36 pages of useful constants, formulae for ready reference. 
Index . .y + 431pp. 53/8 x 8. T370 Paperbound $2.00 

METHODS IN EXTERIOR BALLISTICS, Forest Ray Moulton. Probably the best introduction to 
the mathematics of projectile motion. The ballistics theories propounded were coordinated 
with extensive proving ground and wind tunnel experiments conducted by the author and 
others for the U.S. Army. Broad in scope and clear in expOSition, it gives the beginnings 
of the theory used for moder~-day· projectile, long-range miSSile, and satellite motion. Six 
main divisions: Differential Equations of Translatory Motion of a projectile; Gravity and the 
Resistance Function; Numerical Solution of Differential Equations; Theory of Differential 
Variations; Validity of Method of Numerical Integration; and Motion of a Rotating Projectile. 
Formerly titled: "New Methods in Exterior Ballistics." Index. 38 diagrams, viii + 259pp. 
5% x 81/2. S232 Paperbound $1.75 
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LOUD SPEAKERS: THEORY, PERFORMANCE, TESTING AND DESIGN, N. W. McLachlan. Most com· 
prehensive coverage of theory, practice of loud speaker design, testing; classic reference, 
study manual in field. First 12 chapters deal with theory, for readers mainly concerned with 
math. aspects; last 7 chapters wi II interest reader concerned with testing, design. Partial 
contents: principles of sound propagation, fluid pressure on vibrators, theory of moving. 
coli principle, transients, driving mechanisms, response curves, design of horn type moving 
coli speakers, electrostatic speakers, much more. Appendix. Bibliography. Index. 165 illustra· 
tlons, charts. 41lpp. 534 x 8. 5588 Paperbound $2.25 

MICROWAVE TRANSMISSION, J. C. Slater. First text dealing exclusively with microwaves, 
brings together pOints of view of field, circuit theory, for graduate student in physics, 
electrical engineering, microwave technician. Offers valuable pOint of view not in most 
later studies. Uses Maxwell's equations to study electromagnetic field, important In this 
area. Partial contents: infinite line with distributed parameters, impedance of terminated 
line, plane waves, reflections, wave guides, coaxial line, composite transmission lines, 
impedance matching, etc. Introduction. Index. 76 iIIus. 319pp. 5% x 8. 

8564 Paperbound $1.50 

MICROWAVE TRANSMISSION DESIGN DATA, T. Moreno. Originally claSSified, now rewritten 
and enlarged (14 new chapters) for public release under auspices of Sperry Corp. Material 
of Immediate value or reference use to radio engineers, systems deSigners, applied physicists, 
etc. Ordinary transmission line theory; attenuation; capacity; parameters of coaxial lines; 
higher modes; flexible cables; obstacles, discontinuities, and injunctions; tunable wave 
guide impedance transformers; effects of temperature and humidity; much more. "Enough 
theoretical discussion is included to allow use of data without previous background," 
Electronics. 324 circuit diagrams, figures, etc. Tables of dielectrics, flexible cable, etc:! 
data. Index. ix + 248pp. 5¥a x 8. S459 Paperbound $1.6:1 

RAYLEIGH'S PRINCIPLE AND ITS APPLICATIONS TO ENGINEERING, G. Temple & W. Bickley. 
Rayleigh's princIple developed to provide upper and lower estimates of true value of funda
mental period of a vibrating system, or condition of stability of elastic systems. Illustrative 
examples; rigorous proofs in special chapters. Partial contents: Energy method of discussing 
Vibrations, stability. Perturbation theory, whirling of uniform shafts. Criteria of elastic sta
bllil:)'. Application of energy method. Vibrating systems. Proof, accuracy, successive approxi· 
mations, application of Rayleigh's principle. SynthetiC theorems. Numerical, graphical methods. 
Equilibrium configurations, Ritz's method. Bibliography. Index. 22 figures. ix + 156pp. 5% x 8. 

S307 Paperbound '$1.85 

EUSTICITY, PLASTICITY AND STRUCTURE OF MATTER, R. Houwlnk. Standard treatise on 
rheological aspects of different technically important solids such as crystals, resins, textiles, 
rubber, clay, many others. Investigates general laws for deformations; determines divergences 
from these laws for certain substances. Covers general physical and mathematical aspects 
of plastiCity, elasticity, viscosity. Detailed examination of deformations, internal structure 
of matter in relation to elastiC and plastiC behavior, formation of solid matter from a fluid, 
conditions for e1astic and plastiC behavior of matter. Treats glass, asphalt, gutta percha, 
balata, proteins, baker's dough, lacquers, sulphur, others. 2nd revised, enlarged edition. 
Extensive revised bibliography in over 500 footnotes. Index. Table of symbols. 214 figures. 
xviii + 368pp. 6 x 9lf4. S385 Paperbound $2.45 

THE SCHWARZ·CHRISTOFFEL TRANSFORMATION AND ITS APPLICATIONS: A SIMPLE EXPOSITION, 
Miles Walker. An important book for engineers showing how this valuable tool can be em· 
ployed in practical situations. Very careful, clear presentation covering numerous concrete 
engineering problems. Includes a thorough account of conjugate functions for engineers
useful for the begi.llner and for review. Applications to such problems as: Stream·lines round 
a corner, electric conductor in air·gap, dynamo slots, magnetized poles, much more. Formerly 
"Conjugate Functions for Engineers." Preface. 92 figures, several tables. Index. Ix + 116pp. 
5% x 81J2. 81149 Paperbound $1.25 

THE LAWS OF THOUGHT, George BoDie. This book founded symbolic logic some hundred years 
ago. It Is the 1st Significant attempt 10 apply logic to all aspects of human endeavour. 
Partial contents: derivation of laws, signs & laws, interpretations, eliminations, conditions 
of a perfect method, analysis, Aristotelian logiC, probability, and similar topiCS. xviii + 
424pp. 534 x 8. S28 Paperbound $2.00 

SCIENCE AND M~TH~D, Henri ~oincare. Procedure of scientific discovery, methodology, experi. 
ment, Ide.a·germlnatlOn-th~ Intellectual processes by Which discoveries come Into being. 
Most Significant and most interesting aspe~ts of development application of Ideas. Chapters 
cover selection of facts, chance, mathematical reasoning mathematics and logic' Whitehead 
Russell, Cantor; the new mechaniCS, etc. 288pp. 5% x 8.' 'S222 Paperbound $1.35 

FAMOUS BRIDGES OF THE WORLD, D. B. Steinman. An up·to-the-minute revised edition of a 
book that explains the fascinating drama of how the world's great bridges came to be built. 
The author, designer of the famed Mackinac bridge, discusses bridges from all periods and 
all parts of the world, explaining their various types of construction, and describing the 
problems their builders faced. Although primarily for youngsters, this cannot fail to interest 
readers of all ages. 48 illustrations in the text. 23 photographs. 99pp. 61A1 x 91/4. 

Tl61 Paperbound $1.00 
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BOOKS EXPLAINING SCIENCE AND MATHEMATICS 

General 

WHAT IS SCIENCE?, Norman Campbell. This excellent introduction explains scientific method, 
role of mathematics, types of scientific laws. Contents: 2 aspects of science, science & 
nature, laws of science, discovery of laws, explanation of laws, measurement & numerical 
laws, applications of science. 192pp. 5¥s x 8. S43 Paperbound $1.25 

THE COMMON SENSE OF THE EXACT SCIENCES, W. K. Clifford. Introduction by James Newman, 
edited by Karl Pearson. For 70 years this has been a guide to classical sCientific and 
mathematical thought. Explains with unusual clarity basic concepts, such as extension of 
meaning of symbols, characteristics of surface boundaries, properties of plane figures, 
vectors, Cartesian method of determining position, etc. Long preface by Bertrand Russell. 
Bibliography of Clifford. Corrected, 130 diagrams redrawn. 249pp. 53/8 x 8. 

T61 Paperbound $1.60 

SCIENCE THEORY AND MAN, Erwin Schriidinger. This is a complete and unabridged reissue 
of SCIENCE AND THE HUMAN TEMPERAMENT plus an additional essay: "What is an Elementary 
Particle?" Nobel laureate SchrOdinger discusses such topics as nature at scientific method, 
the nature of science, chance and determinism, science and society conceptual models for 
physical entities, elementary particles and wave mechanics. Presentation is popular and may 
be followed by most people with little or no scientific training. "Fine practical preparation 
for a time when laws of nature, human institutions ..• are undergoing a critical examina
tion without parallel," Waldemar Kaempffert, N. Y. TIMES. 192pp. 5:Ya x 8. 

T 428 Paperbound $1.35 

FADS AND FALLACIES IN THE NAME OF SCIENCE, Martin Gardner. Examines various cults, 
quack systems, frauds, delusions which at various times have masqueraded as science. 
Accounts of hollow·earth fanatics like Symmes; Velikovsky and wandering planets; Hoer· 
biger; Bellamy and the theory of multiple moons; Charles Fort; dowsing pseudoscientific 
methods for finding water, ores, oil. Sections on naturopathy, iridiagnosls, zone therapy, 
food fads, etc. Analytical accounts of Wilhelm Reich and orgone sex energy; L. Ron Hubbard 
and Dianetics; A. Korzybski and General Semantics; many others. Brought up to date to 
Include Bridey Murphy, others. Not just a collection of anecdotes, but a fair, reasoned 
appraisal of eccentric theory. Formerly titled IN THE NAME OF SCIENCE. Preface. Index. 
x + 384pp. 5% x 8. T394 Paperbound $1.50 

A DOVER SCIENCE SAMPLER, edited by George Barkin. 54·page book, sturdily bound, contain· 
ing excerpts from over 20 Dover books, explaining science. Edwin Hubble, George Sarton, 
Ernst Mach, A. d'Abro, Galileo, Newton, others, discussing island universes, SCientific truth, 
biological phenomena, stability in bridges, etc. Copies limited; no more than 1 to a customer, 

FREE 

POPULAR SCIENTIFIC LECTURES, Hermann von Helmholtz. Helmholtz was a superb expositor 
as well as a scientist of genius in many areas. The seven essays in this volume are models 
of clarity, and even today they rank among the best general descriptions of their subjects 
ever written. "The Physiological Causes of Harmony in Music" was the first significant physio· 
logical explanation of musical consonance and dissonance. Two essays, "On the Interaction 
of Natural Forces" and "On the Conservation of Force," were of great importance in the 
history of sCiencer for they firmly established the principle of the conservation of energy. 
Other lectures inc ude "On the Relation of Optics to Painting," "On Recent Progress in the 
Theory of Vision," "On Goethe's Scientific Researches," and "On the Origin and Significance 
of Geometrical Axioms." Selected and edited with an introduction by Professor Morris Kline. 
xii + 286pp. 53/8 x 8112. T799 Paperbound $1.45 

BOOKS EXPLAINING SCIENCE AND MATHEMATICS 

Physics 

CONCERNING THE NATURE OF THINGS, Sir William Bragg. Christmas lectures delivered at 
the Royal SOCiety by Nobel laureate. Why a spinning ball travels in a curved track; how 
uranium is transmuted to lead, etc. Partial contents: atoms, gases, liquids, crystals, metais, 
etc. No scientific background needed; wonderful for Intelligent child. 32pp. of photos, 57 
figures. xii + 232pp. 53/a x 8. T31 Paperbound $1.50 

THE RESTLESS UNIVERSE, Max Born. New enlarged version of this remarkably readable 
account by a Nobel laureate. Moving from sub·atomic particles to universe, the author 
explains in very simple terms the latest theories of wave mechanics. Partial contents: air 
and its relatives, electrons & ions, waves & particles, electronic structure of the atom, 
nuciear physics. Nearly 1000 illustrations, including 7 animated sequences. 325pp. 6 x 9. 

T 412 Paperbound $2.00 
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FROM EUCLID TO EDDINGTDN: A STUDY OF THE CONCEPTIONS OF THE EXTERNAL ~ORLD, 
Sir Edmund Whittaker. A foremost British scientist traces the gevelopment ~f th~ones of 
natural philosophy from the western rediscovery of Euclid to Eddington, Einstein, DIrac, eted• 
The inadequacy of claSSical physics is contrasted with present day attempts to understan 
the physical world through rela'tivity, non-Euclidean geof1)etry, space curvature, wave me· 
chanlcs, etc. 5 major divisions of examination: Space; TIme and ~ovement; the Concepts 
of Classical Physics; the Concepts of Quantum Mechanics; the EddIngton Universe. 212pP. 
5% x 8. T491 Paperbound $1.35 

PHYSICS THE PIONEER SCIENCE, L. W. Taylor. First thorough text to pla~e, al! Importa~t 
Physical' phenomena in cultural-historical framework; remains. best work .of I~S kind. ExpOSI
tion of physical laws, theories· developed chronologically, WIth great hIstorical, III~stra:lv~ 
experiments diagrammed, described, worked out mathematically. Excellen~ phYSICS ex 
for self-studY as well as class work. Vol. 1: Heat Sound: motion, acceleratIon, gravitation, 
conservation of energy, heat engines, rotation, heat, mecha~lcal energy't. etc_ O~1~ "IIUS. 
407pp. 5% x S. Vol. 2: Light, Electricity: images, le~ses, prisms, magne Ism, !11 saw, 
dynamos, telegraph, quantum theory, decline of mechanIcal view of nature, etc. Blbllography_ 
13 table appendix. Index. 551 iIIus. 2 color plates. 50Spp. 5% x 8. 5565 P b d $225 Vol. 1 aper oun • 

Vol. 2 5566 Paperbound $2.25 
The set $4.50 

A SURVEY OF PHYSICAL THEORY, Max Planck_ One of the greatest scientists of al! time, 
creator of the quantum revolution in physics, writes in non-technl~al terms of hIS o~n 
discoveries and those of other outstanding creators of modern phYSICS. Planck wrote thIS 
book when science had just crossed the threshOld of the new physiCS, and he communicates 
the excitement felt then as he discusses electromagnetic theories, statistical methods, evolu
tion of the concept of light, a step-by-step description of how he developed his own momen
tous theory, and many more of the basic ideas behind modern physics. Formerly "A Survey 
of Physics." Bibliography. Index. 128pp. 5% x 8. S650 Paperbound $1.15 

THE ATOMIC NUCLEUS, M. Korsunsky. The only non-technical comprehensive account of the 
atomic nucleus In English. For college physics students, etc. Chapters cover: Radioactivity, 
the Nuclear Model of the Atom, the Mass of AtomiC Nuclei, the Disintegration of Atomic 
Nuclei, the Discovery of the Positron, the Artificial Transformation of Atomic Nuclei, Artifi
Cial Radioactivity, Mesons, the Neutrino, the Structure of Atomic Nuclei and Forces Acting 
Between Nuclear Particles, Nuclear Fission, Chain Reaction, Peaceful Uses, Thermoculear 
Reactions. Slightly abridged edition. Translated by G. Yankovsky. 65 figures. Appendix includes 
45 photographic illustrations. 413 pp. 53/8 x 8. 51052 Paperbound $2.00 

PRINCIPLES OF MECHANICS SIMPLY EXPLAINED, Morton Mott-Smith. Excellent, highly readable 
introduction to the theories and discoveries of classical physics. Ideal for the layman who 
desires a foundation which will enable him to understand and appreCiate contemporary devel
opments In the physical sciences. Discusses: DenSity, The law of Gravitation, Mass and 
Weight, Action and Reaction, Kinetic and Potential Energy, The law of Inertia, Effects of 
Acceleration, The Independence of Motions, Galileo and the New Science of Dynamics, 
Newton and the New Cosmos, The Conservation of Momentum, and other topics. Revised 
edition of "This Mechanical World." Illustrated by E. Kosa, Jr. Bibliography and Chronology. 
Index. xiv + 171pp. 5% x 8:112. n067 Paperbound $1.35 

THE CONCEPT OF ENERGY SIMPLY EXPLAINED, Morton Matt-Smith. Elementary, non-technical 
exposition which traces the story of man's conquest of energy, with particular emphasiS on 
the developments during the nineteenth century and the first three decades of our own 
century. Discusses man's earlier efforts to harness energy, more recent experiments and 
discoveries relating to the steam engine, the engine indicator, the motive power of heat, the 
prinCiple of excluded perpetual motion, the bases of the conservation of energy, the concept 
of !lntropy, the Internal combustion engine, mechanical refrigeration, and many other related 
tOPICS. Also much biographical material. Index. Bibliography. 33 illustrations. ix + 215pp. 
5% x 8112. nOll Paperbound $1.25 

HEAT AND ITS WORKINGS, Morton Mott-Smith. One of the best elementary introductions to the 
theory and ~ttributes of heat, covering such matters as the laws governIng the effect of heat 
on solids, lIquids and gases, the methods by which heat is measured, the conversion of a 
substance from .~ne form to a~other ,through heating and cooling, evaporation, the effects of 
pressure on bOllrng and freeZing pOints, and the three ways in which heat is transmitted 
(conduction, convection" radiation). Also brief notes on major experiments and discoveries. 
Concis~, but complete, It prese.nts. all the essential facts about the subject in readable style. 
WIll gIve the layman and begInnIng student a first· rate background in this major topic In 
phYSics. Index. Bibliography. 50 illustrations. x + 165pp. 5¥a x 8112. T978 Paperbound $1.15 

THE STORY OF ATOMIC THEDRY AND ATOMIC ENERGY, J. G. Feinberg. Wider range of facts 
on physical theory, cultural implications, than any other similar source. Completely non
technical. Begins with first atomic theory, 600 B.C., goes through A-bomb, developments to 
1959. Avogadro, Rutherford, Bohr, Einstein, radioactive decay, binding energy, radiation 
danger, future benefits of nuciear power, dozens of other topiCS told in lively related 
informal manner. Particular stress on European atomic research. "beserves special mention 
.•• authgritative .. " Saturday Review. Formerly "The Atom Slory." New chapter to 1959. 
Index. 34 IllustratIons. 251pp. 5% x 8. T625 Paperbound $1.60 
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THE STRANGE STORY OF THE QUANTUM, AN ACCOUNT FOR THE GENERAL READER OF THE 
GROWTH OF IDEAS UNDERLYING OUR PRESENT ATOMIC KNOWLEDGE, B. Hoffmann. Presents 
lucidly and expertly, with barest amount of mathematics, the problems and theories which 
led to modern quantum physics. Dr. Hoffmann begins with the closing years of the 19th 
century, when certain trifling discrepancies were noticed, and with illuminating analogies 
and examples takes you through the brilliant concepts of Planck, Einstein, Pauli, de Broglie, 
Bohr, Schroedinger, Heisenberg, Dirac, Sommerfeld, Feynman, etc. This edition Includes a 
new, long postscript carrying the story through 1958. "Of the books attempting an account 
of the history and contents of our modern atomic physics which have come to my attention, 
this is the best," H. Margenau, Yale University, in "American Journal of Physics." 32 tables 
and line illustrations. Index. 275pp. 53/a x 8. T518 Paperbound $1.75 

THE EVOLUTION OF SCIENTIFIC THOUGHT FROM NEWTON TO EINSTEIN, A. d'Abro. Einstein's 
special and general theories of relativity, with their historical implications, are analyzed in 
non·technical terms. Excellent accounts of the contributions of Newton, Riemann, Weyl, 
Planck, Eddington, Maxwell, Lorentz and others are treated in terms of space and time, 
equations of electromagnetics, finiteness of the universe, methodology of science. 21 dla· 
grams. 482pp. 53/8 x 8. T2 Paperound $2.25 

THE RISE I.~F THE NEW PHYSICS, A. d'Abro. A half-million word exposition, formerly tItled 
THE DECLh~E OF MECHANISM, for readers not versed in higher mathematics. The only thor
ough explanation, In everyday language, of the central core of modern mathematIcal physical 
theory, treating both classical and modern theoretical physics, and presenting in terms 
almost anyone can understand the equivalent of 5 years of study of mathematical physics. 
SCientifically Impeccable coverage of mathematical-physical thought from the Newtonian 
system up through the electronic theories of Dirac and Heisenberg and Fermi's' statistics. 
Combines both history and exposition; provides a broad yet unified and detailed view, with 
constant comparison of classical and modern views on phenomena and theories. "A must for 
anyone doing serious study in the physical sciences," JOURNAL OF THE FRANKLIN INSTITUTE. 
"Extraordinary faculty .•. to explain ideas and theories of theoretical physics In the lan
guage of daily life," ISIS. First part of set covers philosophy of SCience, drawing upon the 
practice of Newton, Maxwell, Poincare, Einstein, others, discussing modes of thought, experi
ment, interpretations of causality, etc. In the second part, 100 pages explain grammar and 
vocabulary of mathematics, with discussions of functions, groups, series, Fourier series, etc. 
The remainder Is devoted to concrete, detailed coverage of both classical and quantum 
phYSics, explaining such topics as analytic mechanics, Hamilton's prinCiple, wave theory of 
light, electromagnetic waves, groups of transformations, thermodynamics, phase rule, Brownian 
movement, kinetics, special relativity, Planck's original quantum theory, Bohr's atom, 
Zeeman effect, Broglie's wave mechanics, Heisenberg's uncertainty, Elgen-values, matrices, 
scores of other important topiCS. Discoveries and theories are covered for sucti men as Alem· 
bert, Born, Cantor, Debye, Euler, Foucault, Galois, Gauss, Hadamard, Kelvin r Kepler, Laplace, 
Maxwell, Pauli, Rayleigh, Volterra, Weyl, Young, more than 180 others. Inoexed. 97 illustra
tions. ix + 982pp. 5:Va x 8. T3 Volume 1, Paperbound $2.25 

T4 Volume 2, Paperbound $2.211 

SPINNING TOPS AND GYROSCOPIC MOTION, John Perry. Well-known classic of science still 
unsurpassed for lucid, accurate, delightful exposition. How quaSi-rigidity is induced in flexible 
and fluid bodies by rapid motions; why gyrostat falls, top rises; nalure and effect on climatic 
conditions of earth's precessional movement; effect of internal fluidity on rotatin~ bodies, 
etc. Appendixes describe practical uses to which gyroscopes have been put In ShiPS, com
passes, monorail transportation. 62 figures. 128pp. 53/a x 8. T416 Paperbound $1.25 

THE UNIVERSE OF LIGHT, Sir William Bragg. No scientific training needed to read Nobel 
Prize winner's e~pansion of his Royal Institute Christmas lccture~. Insight Inlo nature of 
light, methods and philosophy of science. Explains lenses, reflection, color, resonance, 
polariZation, x-rays, the spectrum, Newton's work with prisms, Huygens' with polarization, 
Crookes' with cathode ray, etc. leads inlo clear slatement 01 2 rOdJor historical theories 
of light, corpuscle and wave. Dozens of experiments you can do. 199 illus., including 2 
full-page color plates. 293pp. 53/H x B. S538 Paperbound $1.85 

THE STORY OF X-RAYS FROM RONTGEN TO ISOTOPES, A. R. Bleich. Non-technical history of 
x-rays, their scientific explanation, their applications in medicine, industry, research, and 
art, and their effect on the individual and hiS descendants. Includes amusing early reactions 
to Rontgen's discovery, cancer therapy, detections of art and stamp forgeries, potential 
risks to patient and operator, etc. Illustrations show x·rays of flower structure, the gall 
bladder, gears with hidden defects, etc. Original Dover putJlication. Glossary. Bibliography. 
Index. 55 photos and figures. xiv + 186pp. 53/~ x 8. T662 Paperbound $1.50 

ELECTRONS, ATOMS, METALS AND ALLOYS, Wm. Hume-Rothery. An introductory· level explana
tion of the application of the electroniC theory to the struclure and properties ot metals 
and alloys, taking into account the new theoretical work done by mathematical phYSicists, 
Material presented in dialogue-form between an "Old Metallurgist" and a "Young Scientist." 
Their discussion falls into 4 main parts: the nature of an atOIn, the nature of a metal, 
the nature of an alloy, and the structure of the nucleus. They cover such topiCS as the 
hydrogen atom, electron waves,. wave mechanics, Brillouin zones, co·valent bo",ds, radio
activity and natural disintegratIOn, fundamental particles, structure and fission of the 
nucleus,etc. Revised, enlarged edition. 177 illustrations. SutJject and name Indexes. 407pp. 
5 % x 81/2. S 1046 Pa pe rbou nd $2.25 
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TEACH YOURSELF MECHANICS, P. Abbott. The lever, centre of gravity, parallelogram of force, 
friction, acceleration, Newton's laws of motion, machines, specific gravity, gas, liquid 
pressure, much more. 280 problems, solutions. Tables. 163 i!lus. 271pp. 67/8 x 41f4. 

Clothbound $2.00 

MATTER & MOTION, James Clerk Maxwell, This excellent exposition begins with simple par
ticles and proceeds gradually to phYSical systems beyond complete analysis: motion, force, 
properties of centre of mass of material system, work, energy, graVitation, etc. Written with 
all Maxwell's original insights and clarity. Notes by E. Larmor. 17 diagrams. 178pp. 5% x 8. 

S188 Paperbound $1.35 

SOAP BUBBLES, THEIR COLOURS AND THE FORCES WHICH MOULD THEM, C. V. Boys. Only com
plete edition, half again as much material as any other. Includes Boys' hints on performing 
his experiments, sources of supply. Dozens of lucid experiments show complexities of 
liquid films, surface tenSion, etc_ Best treatment ever written. Introduction. 83 illustrations. 
Color plate. 202pp. 5% x 8. T542 Paperbound 95~ 

MATTER & LIGHT, THE NEW PHYSICS, L. de Broglie. Non·technical papers by a Nobel laureate 
explain electromagnetic theory, relativity, matter, light and radiation, wave mechanics, 
quantum physics, philosophy of science. Einstein, Planck, Bohr, others explained so easily 
that no mathematical 'training is needed for all but 2 of the 21 chapters. Unabridged. Index. 
300pp. 53/a x 8. T35 Paperbound $1.85 

SPACE AND TIME, Emile Borel. An entirely non-technical introduction to relativity, by world
renowned mathematician, Sorbonne professor. (Notes on basic mathematics are included 
separately.) This book has never been surpassed for Insight, and extraordinary clarity of 
thought, as it presents scores of examples, analogies, arguments, illustrations, which ex
plain such topics as: difficulties due to motion; graVitation a force of inertia; geodesic 
lines; wave-length and difference of phase; x-rays and crystal structure; the special theory 
of relativity; and much more. Indexes. 4 appendixes. 15 figures. xvi + 243pp. 5% x 8. 

T592 Paperbound $1.45 

BOOKS EXPLAINING SCIENCE AND MATHEMATICS 
Astronomy 

THE FRIENDLY STARS, Martha Evans Martin. This engaging survey of stellar lore and science 
is a well-known classiC, which has introduced thousands to the faSCinating world of stars 
and other celestial bodies. Descriptions of Capella, Sirius, Arcturus, Vega, I'olaris, etc.-all 
the important stars, with informative discussions of rising and setting of stars, their num
ber, names, brightness, distances, etc. in a non-technical, highly readable style. Also: 
double stars, constellations, clusters-concentrating on stars and formations visible to the 
naked eye. New edition, revised (1963) by D. H. Menzel, Director Harvard Observatory. 23 
diagrams by Prof. Ching-Sung Yu. Foreword by D. H. Menzel and W. W. Morgan. 2 Star 
Charts. Index. xii + 147pp. 5% x 81/2. Tl099 Paperbound $1.00 

AN ELEMENTARY SURVEY OF CELESTIAL MECHANICS, Y. Ryabov. Elementary exposition of 
gravitational theory and celestial mechanics. Historical introduction and coverage of basic 
principles, including: the elliptiC, the orbital plane, the 2- and 3-body problems, the dis
covery of Neptune, planetary rotation, the length of the day, the shapes of galaxies satel
lites (detailed treatment of Sputnik I), etc. First American reprinting of successful Russian 
popular exposition. Elementary algebra and trigonometry helpful, but not necessary; presenta
tion chiefly verbal. Appendix of theorem proofs. 58 figures. 165pp. 5% x 8. 

T756 Paperbound $1.25 

THE SKY AND ITS MYSTERIES, E. A. Beet. One of most lucid books on mysteries of universe; 
deals with astronomy from earliest observations to latest theories of expansion of uMlverse, 
source of stellar energy, birth of planets, origin of moon craters, possibility of life on 
other planets. Discusses effects of sunspots on weather; distances, ages of several stars; 
master plan of universe; methods and tools of astronomers; much more. "Eminently readable 
book," London Times. ExtenSive bibliography. Over 50 diagrams. 12 full-page plates, fold-out 
star map. Introduction. Index. 51/4 x 71/2. T627 Clothbound $3.50 

THE REALM OF THE NEBULAE, E. Hubble. One of the great astronomers of our time records 
his formulation of the concept of "island universes," and its impact on astronomy. Such 
topics are covered as the velocity-distance relation; classification, nature, distances, general 
field of nebulae; cosmological theories; nebulae in the neighborhood of the Milky Way. 39 
photos of nebulae, nebulae clusters, spectra of nebulae, and velOCity distance relations 
shown by spectrum comparison. "One of the most progressive lines of astronomical re
search," The Times (London). New introduction by A. Sandage. 55 illustrations. Index. iv + 
201pp. 5% x 8. S455 Paperbound $1_50 
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OUT OF THE SKY, H. H. Nininger. A non·technical but comprehensive introduction to "me. 
teoritics", the young science concerned with all aspects of the arrival of matter from 
outer space. Written by one of the world's experts on meteorites, this work shows how 
despite difficulties of observation and sparseness of data, a considerable body of knowledge 
has arisen. It d~fi.nes fl]eteor~ a~d !l1eteorites; studies fireball ~Iusters and processions, 
meteorite compositIOn, s.lze, distribution, showers, explosions, ongins, craters, and muc~ 
more. A true connecting link between astronomy ano geology. More than 175 photos 22 other 
Illustrations. References. Bibliography of author's publications on meteorites. Index. viii + 
336pp. 5% x 8. T519 Paperbound $1.85 

SATELLITES AND SCIENTIFIC RESEARCH, D. King-Hele. Non-technical account of the manmade 
satellites and the discoveries they have yielded up ~o the autumn of 1961. Brings together 
information hitherto published only in hard·to-get scientific journals. Includes the life history 
of a typical satellite, methods of tracking, new information on the shape of the earth zones 
of radiation, etc. Over 60 diagrams and 6 photographs. Mathematical appendix. Bibliography 
of over 100 items. Index. xii + lS0pP. 53/a x 8112. 1703 Paperbound $2.00 

BOOKS EXPLAINING SCIENCE AND MATHEMATICS 

Mathematics 

CHANCE, LUCK AND STATISTICS: THE SCIENCE OF CHANCE, Horace C. Levinson. Theory of 
probability and science of statistics in simple, non·technical language. Part I deals with 
theory of probability, covering odd superstitions in regard to "luck," the meaning of bet
ting odds, the law of mathematical expectation, gambling, and applications in poker, rou
lette, lotteries, dice, bridge, and other games of chance. Part /I discusses the misuse of 
statistics, the concept of statistical probabilities, normal and skew frequency distributions, 
and statistiCS applied to various fields-birth rates, stock speculation, insurance rates, adver
tising, etc. "Presented In an easy humorous style which I conSider the best kind of exposi
tory writing," Prof. A. C. Cohen, Industry Quality Control. Enlarged revised edition. Formerly 
titled "The SCience of Chance." Preface and two new appendices by the author. Index. xiv 
+ 365pp. 5% x 8. 11007 Paperbound $1.85 

PROBABILITIES AND LIFE, Emile Borel. Translated by M. Baudin. Non-technical, highly read· 
able introduction to the results of probability as applied to everyday situations. Partial con· 
tents: Fallacies About Probabilities Concerning Life After Death; Negligible Probabilities and 
the Probabilities of Everyday Life; Events af Small Probability; APplication of Probabilities 
to Certain Problems of Heredity; Probabilities of Deaths, Diseases, and ACCidents; On 
Paisson's Formula. Index. 3 Appendices of statistical studies and tables. vi + 87pp. 5% 
x 8l/:z. 1121 Paperbound $1.00 

GREAT IDEAS OF MODERN MATHEMATICS: THEIR NATURE AND USE, JagJlt Singh. Reader with 
only high schaol math will understand main mathematical Ideas of modern physics, astron
omy, genetiCS, psychology, evolution, etc., better than many who use them as tools, but 
comprehend little of their basic structure. Author uses his wide knowledge of non·mathe· 
matical fields in brilliant exposition of differential equations, matrices, group theory, lagle, 
statistics, problems of mathematical foundations, imaginary numbers, vectors, etc. Original 
publication. 2 appendices. 2 Indexes. 65 IIlustr. 322pp. 5:Ya x 8. S587 Paperbound $1.75 

MATHEMATICS IN ACTION, O. G. Sutton. Everyone with a I:ommand of high school algebra 
will find this book one of the finest possible introductions to the ,lppllcatlon of mathematics 
to physical theory. Ballistics, numerical analYSIS, waves and wavelike phenomena, Fourier 
series, group concepts, fluid flow and aerodynamics, statistical measures, and meteorology 
are discussed with unusual cl.uity. Some calculus and differential equations theory is 
developed by the author for the reader's help In the moro difficult sections. 88 figures. 
Indu. viii + 236pp. HlJ x 8. T440 Clothbound $3.90 

THE FOURTH DIMENSION SIMPLY EXPLAINED, edited by H. P. Mannini. 22 essays, originally 
Scientific American contest entri()!', that usc a minimum of mathematics to explain aspects 
of 4·dimensional geoll1etry: analof:uc5 to 3·dlmnnslon<l1 space, 4·dlll1cnsional absurdities and 
curiosities (such as rcmoving the content~; of an CII:(( without puncturing Its shell), possible 
measurements and form~, etc. IntroductIOn by the editor. Only book of Its sort on a truly 
elementary level, oxcellent introduction to advanced works. B2 figures. 251pp_ 5% x S. 

HU Paperbound $1.35 
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BOOKS EXPLAINING SCIENCE AND MATHEMATICS 

Engineering, technology, applied science etc. 
TEACH YOURSELF ELECTRICITY, C. W. Wilman. Electrical reSistance, inductance, capacitance, 
magnets, chemical effects of current, alternating currents, generators and motors trans· 
formersl rectifiers, much more. 230 questions, answers, worked examples. List of units. 115 
iIIus. 1~4pp. 6¥8 x 4114. Clothbound $2.00 

ELEMENTARY METALLURGY AND METALLOGRAPHY, A. M. Shrager. Basic theory and descriptions 
of most of the fundamental manufacturing processes involved In metallurgy. Partial 
contents: the structure of metals; slip, plastiC deformation, and recrystalization; iron o~e 
and production of pig iron; chemistry involved In the metallurgy of iron and steel; baSIC 
processes such as the Bessemer treatment, open·hearth process, the electric arc furnace 
-with advantages and disadvantages of each; annealing, hardening, and tempering steel; 
copper, aluminum, magnesium, and their alloys. For freshman engineers, advanced stud~nts 
In technical high SChOOlS, etc. Index. Bibliography. 177 diagrams. 17 tables. 284 questions 
and problems. 27·page g ossa))'. Ix + 389pp. 5% x 8. 5138 Paperbound $2.25 

BASIC ELECTRICITY, Prepared by tile Bureau of Naval Personnel. Originally a training course 
text for U.S. Navy personnel, this book provides thorough coverage of the basic theory of 
electricity and Its applications. Best book of its kind for either broad or more limited 
studies of electrical fundamentals ••. for classroom use or home study. Part 1 provides 
a more limited, coverage of theory: fundamental concepts, batteries, the simple ,circuit, 
D.C. series and parallel circuits, conductors and wiring techniques, A.C. electriCity, inductance 
and capaCitance, etc. Part 2 appli es theory to the structure of electrical machines-genera· 
tors, motors, transformers, magnetiC amplifiers. Also deals with more complicated Instru· 
ments, synchros, servo·mechanisms. The conclUding chapters cover electrical drawings and 
blueprints, wiring diagrams, technical manuals, and safety education. The book contains 
numerous questions for the stUdent, with answers. Index and six appendices. 345 iIIustra· 
tions. x + 448pp. 6402 x 91/4, 5973 Paperbound $3.00 

BASIC ELECTRONICS, prepared by the U.S. Navy Training Publications Center. A thorough 
and comprehensive manual on the fundamentals of electronics. Written clearly, it is equally 
useful for self·study or course work for those with a knowledge of the principles of basic 
electricity. Partial contents: Operating Principles of the Electron Tube; Introduction to 
TranSistors; Power Supplies for Electronic Equipment; Tuned Circuits; Electron-Tube Ampli· 
fiers; Audio Power Amplifiers; OSCillators; Transmitters; Transmission Lines; Antennas and 
Propagation; Introduction to Computers; and related topiCS. Appendix. Index. Hundreds of 
illustrations and diagrams. vi + 471pp. 6¥2 x 9¥4. 51076 Paperbound $2.75 

BASIC THEORY AND APPLICATION OF TRANSISTORS, Prepared by the U.S. Department of the 
Army. An introductory manual prepared for an army training program. One of the finest 
available surveys of theory and application of tranSistor design and operation. Minimal 
knowledge of physics and theory of electron tubes required. Suitable for textbook use, 
course supplement, or home study. Chapters: Introduction; fundamental theory of transistors; 
transistor amplifier fundamentals; parameters, equivalent circuits, and characteristic curves; 
bias stabilization; transistor analysis and comparison using characteristic curves and charts; 
audio amplifiers; tuned amplifiers; wide·band amplifiers; oscillators; pulse and switching 
Circuits; modulation, mixing, and demodulation; and additional semiconductor devices. 
Unabridged, corrected edition. 240 schematiC drawings, photographs, wiring diagrams, etc. 
2 Appendices. Glossary. Index. 263pp. 6¥2 x 91/4. 5380 Paperbound $1.25 

TEACH YOURSELF HEAT ENGINES, E. De Ville. Measurement of heat, development of steam and 
internal combustion engines, efficiency of an engine, compression·ignitlon engines, production 
of steam, the ideal engine, much more. 318 exercises, answers, worked examples. Tables. 
76 IIlus. 220pp. 6¥8 x 41/4. Clothbound $2.00 

BOOKS EXPLAINING SCIENCE AND MATHEMATICS 
Miscellaneous 

ON THE SENSATIONS OF TONE, Hermann Helmholtz. This Is an unmatched coordination of 
suc~ fields as acous~ical physics, physiology, experiment, history of music. It covers the 
entire gamut of mUSical tone. Partial contents: relation of musical science to acoustics 
physical vs. ~hYSiologiCal acoustics, composition of vibration, resonance, analYSiS of tones 
by sympathetiC resonan~e, beats, chor~s, tonality, consonant chords, discords, progreSSion 
of parts, etc. 33 appendixes discuss various aspects of sound, physics, acoustics, music, etc. 
Tran;llated by A. J. Ellis. New introduction by Prof. Henry Margenau of Yale. 68 figures. 43 
mUSical passages analyzed. Over 100 tables. Index. xix + 576pp. 61fs x 9¥4. 

5114 Paperbound $3.00 
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THE NATURE OF LIGHT AND COLOUR IN THE OPEN AIR, M. Minnaert. Why is falling snow 
sometimes black? What causes mirages, the fata morgana, multiple suns and moons in the 
sky? How are shadows formed? Prof. Minnaert of the University of Utrecht answers these and 
si~i1ar questions in ~ptics, light, colour, for non·specialists. Particularly valuable to nature, 
sCience students, painters, photographers. Translated by H. M. Kremer'Priest, K. Jay. 202 
illustrations, including 42 photos. xvi + 362pp. 53/a x 8. Tl96 Paperbound $2.00 

THE PHYSICS OF MUSIC, Alexander Wood. Introduction for musIcians to the Physical aspect 
of sound. No scientific training necessary to understand concepts, etc. Wealth of material 
on origin and development of instruments, physical principles involved in the production of 
their sounds, pitch, intensity and loudness, mechanism of the ear, dissonance and canso· 
nance, sound reproduction and recordings, concert halls, etc. Extensively revised by Dr. 
J. M. Bowsher. Indices. Bibliography. 16 plates. 114 illustrations. 27Dpp. 51/8 x 81/a. 

T322 Paperbound $2.25 

GREAT IDEAS AND THEORIES OF MODERN COSMOLOGY, Jagjit Singh. The theories of Jeans 
Eddington, Milne, Kant, Bondi, Gold, Newton, Einstein, Gamow, Hoyle, Dirac, Kuiper, Hubble' 
Weizsiicker and many others on such cosmological questions as the origin of the universe' 
space and time, planet formation, "continuous creation," the birth, life, and death of the 
stars, the origin of the galaxies, etc. By the author of the popular "Great Ideas of Modern 
Mathematics." A gifted popularizer of SCience, he makes the most difficult abstractions 
crystal·clear even to the most non·mathematlcal reader. Index. xii + 276 pp. 53/a x BlA:!. 

T925 Paperbound $1.85 

PIONEERS OF SCIENCE, O. Lodge. Eminent scientlst·expositor's authoritative, yet elementary 
survey of great scientific theories. Concentrating on Individuals-Copernicus, Brahe, Kepler, 
Galileol Descartes, Newton, Laplace! Herschel, Lord KelVin, and other scientists-the author 
presents their discoveries in histOrical order adding biographical material on each man and 
full, specifiC explanations of their achievements. The clear and complete treatment of the 
post·Newtonian astronomers Is a feature seldom found In other books on the subject. Index. 
120 Illustrations. xv + 404pp. 53/8 x 8. T716 Paperbound $1.65 

BIOGRAPHY OF SCIENTISTS 
ISAAC NEWTON: A BIOGRAPHY, Louis Trenchard More. The definitive biography of Newton, his 
life and work. Presents Newton as a living man, with a critical, objective analysis of his char· 
acter as well as a careful survey of his manifold accomplishments, SCientific, theological, etc. 
The author, himself a professor of physics, has made full use of all of Newton's published 
works and all material in the Portsmouth Collection of Newton's personal and unpublished 
papers. The text includes numerous letters by Newton and his acquaintances, and many other 
of his papers-some translated from Latin to English by the author. A universally·esteemed 
work. Unabridged republication. 1 full-page plate. Index. xiii + 675pp. 5% x 8lA:!. 

T579 Paperbound $2.50 

PIERRE CURIE, Marie Curle. Mme. Curie, Nobel Prize winner, creates a memorable portrait of 
her equally famous husband and his lifelong scientific researches. She brings to life the 
determined personality of a great scientist at work. Her own autobiographical notes, inCluded 
in this volume, reconstruct her own work on radiation which resulted in the isolation of radium. 
"A delightful boo". It marks one of the lew Instances in which the proverbially humdrum life 
of the student of physical science, together with the austere idealS! has been made Intelll· 
gible," New York Times. Unabridged reprint. Translated by Charlo te and Vernon Kellogg. 
Introduction by Mrs. Wm. Brown Meloney. 8 halftones. viii + 120pp. 5% x 81/2. 

Tl99 Paperbound $1.00 

THE BOOK OF MY LIFE (DE VITA PROPRIA L1BER), Jerome Cardan. The remarkable autobiography 
of an Important Renaissance mathematician, physiCian, and scientist, who at the same lime 
was a paranOid, morbid, superstitious man, consumed with ambition and self·love (and sell· 
pity). These chronicles of hiS fortunes and misfortunes make absorbing reading, giving us an 
extremely insightful view of a man's reactions and sensations-the first psycnologlcal auto· 
biography. Through his eyes we can also see the superstitions and beliefs of an age, Renals· 
sance medical practices, and the problems that concerned a trained mind in the 16th century. 
Unabridged republication of onginal English edition, translated by Jean Stoner. Introduction. 
Notes. i:I!bliography. xviii + 331pp. 5"/8 x 1!1/2. T345 Paperbound $1.60 

THE AUTOBIOGRAPHY OF CHARLES DARWIN, AND SELECTED LETTERS edited by FranciS 
Darwin. Darwin's own record of his early life; the historic voyage aboard the "Beagle"; 
the furor surrounding evolution, and his replies; reminiscences of his son. Letters to 
Henslow, Lyell, Hooxer, Huxley, Wallace, Kingsley, etc. and thoughts on religion and 
vivisection. We see how he revolutionized geology with his concept of ocean subsidence; 
how his great books on variation of plants and animals, primitive man, the expression of 
emotion among primates, plant ferlilization, carnivorous plants, protective coloration, etc., 
came into being. Appendix. Index. 365pp. 5"/0 x 8. T479 Paperbound $2.00 
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PHILOSOPHY OF SCIENCE AND MATHEMATICS 

FOUNDATIONS OF SCIENCE: THE PHILOSOPHY OF THEORY AND EXPERIMENT, N. R. Campbell. 
A critique of the most fundamental concepts of science in general and physics in particular. 
Examines why certain propositions are accepted without ques1:ion, demarcates science from 
philosophy, clarifies the understanding of the tools of science. Part One analyzes the pre· 
suppositions of scientific thought: existence of the material world, nature of scientific 
lawsi multipl1cation of probabilities, etc.: Part Two covers the nature of experiment and the 
appl cation of mathematics: conditions for measurement, relations between numerical laws 
and theories, laws of error, etc. An appendix covers problems arising from relativity, force, 
motion, space, and time. A classic in its field. Index. xiii + 565pp. 5% x 8%. 

S372 Paperbound $2.95 

THE NATURE OF PHYSICAL THEORY, P. W. Bridgman. Here is how modern physics looks to a 
highly unorthodox physicist-a Nobel laureate. Pointing Ollt many absurdities of science, and 
demonstrating the inadequacies of various physical theories, Dr. Bridgman weighs and ana· 
Iyzes the contributions of Einstein, Bohr, Newton, Heisenberg, and many others. This Is a 
non·technical consideration of the correlation of science and reality. Index. xi + 138pp. 
5% x 8. S33 Paperbound $1.25 

THE VALUE OF SCIENCE, Henri Poincare. Many of the most mature ideas of the "last scientific 
universalist" covered with charm and vigor for both the beginning student and the advanced 
worker. Discusses the nature of scientific truth, whether order is innate in the universe 
or Imposed upon It by man, logical thought versus intuition (relating to math, through the 
works of Weierstrass, Lie, Klein} Riemann), time and space (relatiVity} psychological time, 
simultaneity), Hertz's concept or force, interrelationship of mathematical physics to pure 
math, values within disciplines of Maxwell, Carnot, Mayer, Newton~ Lorentz, etc. Index. 
ill + 147pp. 5% x 8. ::>469 Paperbound $1.35 

SCIENCE AND HYPOTHESIS, Henri Poincare. Creative psychology in science. How such con· 
cepts as number, magnitude, space, force, classical mechanics were developed, and how the 
modern scientist uses them In his thought. HypothesiS In physics, theories of modern 
physics. Introduction by Sir James Larmor. "Few mathematicians have had the breadth of 
vision of Polncar6, and none is his superior in the gift of clear exposition," E. T. Bell. 
Index. 272pp. 5% x 8. S221 Paperbound $1.35 

PIIILOSOPHY AND THE PHYSICISTS, L. S. Stebbing. The philosophical aspects of modern 
s~ience examined In terms of a lively critical attack on the Ideas of Jeans and Eddington. 
Discusses the task of SCience, causality, determinism, probability, consciousness, the relation 
of the world of phYSiCS to that of everyday experience. Probes the philosophical significance 
of the Planck·Bohr concept of discontinuous energy levels, the inferences to be drawn from 
Heisenberg's Uncertainty PrinCiple, the implications of "becoming" involved in the 2nd law 
of thermodynamics, and other problems posed by the discarding of Laplacean determinism. 
285pp. 5% x 8. T480 Paperbound $1.65 

THE PHILOSOPHICAL WRITINGS OF PEIRCE, edited by Justus Buchler. (Formerly published as 
THE PHILOSOPHY OF PEIRCE.) This is a carefully balanced exposition of Peirce's complete 
system, written by Peirce himself. It covers such matters as scientific method, pure chance 
vs. law, symbolic logiC, theory of Signs, pragmatism, experiment, and other topiCS. Intro· 
duction by Justus Buchler, Columbia University. xvi + 368pp. 5% x 8. 

T217 Paperbound $2.00 

LANGUAGE, TRUTH AND LOGIC, A. Ayer. A clear introduction to the Vienna and Cambridge 
schools of logical Positivism. It sets up speCific tests by which you can evaluate validity of 
Ideas, etc. Contents: Function of philosophy, elimination of metaphYSics, nature of analysis, 
a priori, truth and probability, etc. lOth printing. "I should like to have written it myself," 
Bertrand Russell. Index. 160pp. 5¥s x 8. no Paperbound $1.25 

MATHEMATICS AND SCIENCE: LAST ESSAYS (DERNIERES PENSEES), Henri Polncar6. Translated 
by J. W. Bolduc. A posthumous volume of articles and lectures by the great French mathe· 
rnatlcian, philosopher, scientist. Here are nine pieces, never before translated into English, 
on such subjects as The Evolution of Laws, Space and Time Space and 3 Dimensions, The 
Logic of infinity in Mathematics (discussing Russell's 1heory of types), Mathematics and Logic, 
The. Quantum Theory and its Modern Applications, Relationship Between Matter and Ether, 
EthiCS and SCience and The Moral Alliance. First English translation of Dernieres Pensees. 
New index. viii + 128pp. 5% x 8¥2. S1101 Paperbound $1.25 

THE PSYCHOLOGY OF INVENTION IN THE MATHEMATICAL FIELD, J. Hadamard. Where do Ideas 
come from? What role does the unconscious play? Are ideas best developed by mathematical 
reasoning, word reasoning, visualization? What are the methods used by Einstein, POincare, 
Galton, Riemann? How can these techniques be applied by others? Hadamard, one of the 
world's leading mathematicians, discusses these and other questions. xiii + 145pp. 53,i1 x 8. 

n07 Paperbound $1.25 
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EXPERIMENT AND THEORY IN PHYSICS, Max Born. A Nobel laureate examines the nature and 
value of the counterclaims of experiment and theory in physics. Synthetic versus analytical 
scientific advances are analyzed in the work of Einstein, Bohr, Heisenberg, Planck, Eddington, 
Milne, and others by a fellow partiCipant. 44pp. 5% x 8. 5308 Paperbound 75¢ 

THE PHILOSOPHY OF SPACE AND TIME, H. Reichenbach. An Important landmark in the develop
ment of the empiricist conception of geometry, covering the problem of the foundations of 
geometry, the theory of time, the consequences of Einstein's relativity, including: relations 
between theory and observations; coordinate and metrical properties of space; the psycholog
Ical problem of visual intuition of non·Euclidean structures; and many other important topics 
in modern science and philosophy. The majority of ideas require only a knowledge of inter
mediate math. Introduction by R. Carnap. 49 figures. Index. xviii + 29Spp. 5% x 8. 

5443 Paperbound $2.00 

OBSERVATION AND INTERPRETATION IN THE PHILOSOPHY OF PHYSICS: WITH SPECIAL REFER
ENCE TO QUANTUM MECHANICS, Edited by S. Korner. A collection of papers by philosophers 
and physicists arising out of a symposium held at Bristol, England in 1957 under the auspices 
of the Colston Research Society. One of the most important contributions to the philosophy 
of science in recent years. The discussions center around the adequacy or Inadequacy of 
quantum mechanics in Its orthodox formulations. Among the contributors are A. J. AYer, 
D. Bohm, K. Popper, F. Bopp, S. Korner, J. P. Vigier, M. Polanyi, P. K. Feyerabend, W. C. 
Kneale. W. B. Gallie, G. RyJe, Sir Charles Darwin, and R. B. Braithwaite. xlv + 218pp. 
53/11 x 8¥..!. S131 Paperbound $1.60 

SPACE AND TIME IN CONTEMPORARY PHYSICS, AN INTRODUCTION TO THE THEORY OF RELA
TIVITY AND GRAVITATION, Moritz SChlick. Exposition of the theory of relativity by the 
leader of the famed "Vienna Circle." Its essential purpose is to describe the physical 
doctrines of speCial and general relativity with particular reference to their philosophical 
significance. Explanations of such topics as the geometrical relativity of space, the CDn· 
nection with inertia and graVitation, the measure·determination of the space·time continuum, 
the finite universe, etc., with their philosophical ramifications. Index. )(ii + 89pp. 5% x 8112. 

n008 Paperbound $1.00 

SUBSTANCE AND FUNCTION & EINSTEIN'S THEORY OF RELATIVITY, Ernst Cassirer. Two books 
bound as one. Cassirer establishes a philosophy of the exact sciences that takes into can· 
sideration newer developments In mathematiCS, and also shows historical connections. Partial 
contents: Aristotelian logic, Mill's analysis, Helmholtz & Kronecker, Russell & cardinal num
bers, Euclidean vs. non·Euclldean geometry, Einstein's relativity. Bibliography. Index. xxi + 
465pp. 5% x 8. T50 Paperbound $2.25 

PRINCIPLES OF MECHANICS, Heinrich Hertz. This las1 work by the great 19th century 
phYSicist is not only a claSSic, but of great interest in the IDgic of science. Creating a new 
system of mechanics based upon space, time, and mass, It returns to axiomatic analysis, 
to understanding of the formal or structural aspects of science, taking into account logiC, 
observation, and a priori elements. Of great historical importance to Poincare, carnaPj Ein
stein, Milne. A 20-page introduction by H. S. Cohen, Wesleyan University, analyzes the mpll
cations of Hertz's thought and the logic of science. Bibliography. 13·page introduction by 
Helmholtz. xlii + 274pp. 53/8 x 8. S316 Clothbound $3.50 

S317 Paperbound $1.85 

THE ANALYSIS OF MATTER, Bertrand Russell. How do our senses concord with the new 
physics? This volume covers such topics as logical analysis of physics, prerelatlvity physics, 
causality, scientific inference, phYSICS and perception, special and general relativity, Weyl's 
theory, tensors, invariants and their physical interpretation, periodicity and qualitative series. 
"The most thorough treatment of the subject that has yet been published," THE NATION. 
Introduction by l. E. Denonn. 422pp. 5% x 8. T231 Paperbound $1.95 

FOUNDATIONS OF GEOMETRY, Bertrand Russell. Analyzing basic problems in the overlap area 
between mathematics and philosophy, Nobel laureate Russell examines the nature of geo
metrical knowledge, the nature of geometry, and the application of geometry to space. 
It covers the history of non· Euclidean geometry, philosophiC interpretations of geometry
especially Kant-projective and metrical geometry. This Is most interesting as the solution 
offered in 1897 by a great mind to a problem still curren!. New introduction by Prof. Morris 
Kline of N. Y. University. xii + 201pp. 53/8 x 8. 5232 Clothbound $3.25 

S233 Paperbound ,1.75 

IDENTITY AND REALITY, Emile Meyerson. Called by Einstein a "brilliant study in the theory 
of knowledge," this book by the renowned Franco·German thinker is a major treatise In 
the philosophy of science and epistemology. Thorough, critical Inquiries Into causality, scien
tific laws, conservation of matter and energy, the unity of matter, Carnot's prinCiple, the 
irrational, the elimination of time. Searches out the solutions of epistemological questions 
that form the bases of the scientific method. Authorized translation by Kate Loewenberg. 
Author's prefaces. Editor's preface. Appendices. Index. 495pp. 53h x 81f2. 

TSS Paperbound $2.25 

ESSAYS IN EXPERIMENTAL LOGIC, John Dewey. This stimulating series of essays touches upon 
the relationship between inquiry and experience, dependence of knowledge upon thought, 
character of logiC; judgments of practice, data and meanings, stimuli of thought, etc. Index. 
viii + 444pp. 53/8 x 8. T73 Paperbound $2.25 
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GEOLOGY, GEOGRAPHY, METEOROLOGY 
PRINCIPLES OF STRATIGRAPHY, A. W. Grabau. Classic of 20th century geology, unmatched In 
scope and comprehensiveness. Nearly 600 pages cover the structure and origins of every kind 
of sedimentary, hydrogenlc, oceanic, pyroclastic, atmoclastic, hydroclastic, marine hydroclastic, 
and bioclastiC rock; metamorphism; erosion; etc. Includes also the constitution of the atmos
phere; morphology of oceans, rivers, glaciers; volcanic activities; faults and earthquakes; and 
fundamental principles of paleontology (nearly 200 pages). New introduction by Prof. M. Kay, 
Columbia U. 1277 bibliographical entries. 264 diagrams. Tables, maps, etc. Two volume set. 
Total of xxxii + 1185pp. 5% x 8. S686 Vol I Paperbound 12.50 

S687 Vol II Paperbound 2.50 
The set 5.00 

TREATISE ON SEDIMENTATION, William H. Twenhofel. A milestone in the history of geology, 
this two-volume work, prepared under the auspices of the United States Research CounCil, 
contains practically everything known about sedimentation up to 1932. Brings together all 
the findings of leading American and foreign geologists and geogr(.phers and has never 
been surpassed for completeness, thoroughness of description, or accuracy of detail. Vol. 1 
discusses the sources and production of sediments, their transportation, depOSition, diagene
sis, and lithification. Also modification of sediments by organisms and topographical, climatic, 
etc. conditions which contribute to the alteration of sedimentary processes. 220 pages deal 
with products of sedimentation: minerals, limestones, dolomites, coals, etc. Vol. 2 continues 
the examination of products such as gypsum and saline reSidues, silica, strontium, manga
nese, etc. An extensive exposition of structures, textures and colors of sediments: stratifica
tion, cros~ ·lamination, ripple mark, oolitic and pisolitic textures, etc. Chapters on environ
ments or realms of sedimentation and field and laboratory techniques are also included. 
Indispensable to modern-day geologists and students. Index. List of authors cited. 17;:13-
Item bibliography. 121 diagrams. Total of xxxiii + 926pp. 53/8 x 81/2. 

Vol. I: 5950 Paperbound $2.50 
Vol. 11: S951 Paperbound $2.50 

Two volume set Paperbound $5.00 

THE EVOLUTION OF THE IGNEOUS ROCKS, N. L. Bowen. Invaluable serious introduction applies 
techniques of physics and chemistry to explain igneous rock diversity in terms of chemical 
compOSition and fractional crystallization. Discusses liquid Immiscibility in silicate magmas, 
crystal sorting, liquid lines of descent, fractional resorption of complex minerals, petrogenesis, 
etc. Of prime importance to geologists & mining engineers, also to physicists, chemists 
working with high temperatures and pressures. "Most important," TIMES, London. 3 indexes. 
263 blbl iographic notes. 82 figures. xvlil + 334pp. 5% x 8. S311 Paperbound $2.25 

INTERNAL CONSTITUTION OF THE EARTH, edited by BenD Gutenberg. Completely revised. 
Brought up-tO-date, reset. Prepared for the National Research Council this is a complete & 
thorough coverage of such topiCS as earth origins, continent formation, nature & behavior 
of the earth's core, petrology of the crust, cooling forces in the core, seismic & earthquake 
material, gravity, elastic constants, strain characteristics and similar topics. "One is filled 
with admiration •.. a high standard ... there is no reader who will not learn something 
from this book," London, Edinburgh, Dublin, Philosophic Magazine. Largest bibliography in 
print: 1127 claSSified items. Indexes. Tables of constants. 43 diagrams. 439pp. 6l1s x 9114. 

S414 Paperbound $3.00 

HYDROLOGY, edited by Oscar E. Meinzer. Prepared for the National Research Council. De
tailed complete reference library on preCipitation, evaporation, snow, snow surveying, 
glaciers, lakes, Infiltration, soli moisture, ground water, runoff, drought, physical changes 
produced by water, hydrology of limestone terranes, etc. Practical in application, especially 
valuable for engineers. 24 experts have created "the most up-to-date, most complete 
treatment of the subject," AM. ASSOC. of PETROLEUM GEOLOGISTS. Bibliography. Index. 165 
Illustrations. xi + 712pp. 6l1s x 91/4. S191 Paperbound $3.50 

SNOW CRYSTALS, W. A. Bentley and W. J. Humphreys. Over 200 pages of Bentley's famous 
microphotographs of snow flakes-the product of painstaking, methodical work at his JeriCho, 
Vermont studio. The pictures, which also include plates of frost, glaze and dew on vegeta
tion, spider webs, windowpanes; sleet; graupel or soft hail, were chosen both for their 
scientific Interest and their aesthetic qualities. The wonder of nature's diversity is exhibited 
in the intricate, beautiful patterns of the snow flakes. Introductory text by W. J. Humphreys. 
Selected bibliography. 2,453 illustrations. 224pp. 8 x lOV4. T287 Paperbound $2.95 

PHYSICS OF THE AIR, W. J. Humphreys. A very thorough coverage of classical materials and 
theories in meteorology ..• written by one of this century's most highly respected physical 
meteorologists. Contains the standard account in I:.nglish of atmospheric optiCS. 5 main 
sections: Mechanics and Thermodynamics of the Atmosphere, Atmospheric Electricity and 
Auroras, Meteorological Acoustics, Atmospheric OptiCS, and Factors of Climatic Control. 
Under these headi!1gs1 topics covered are: theoretical relations between temperature, pres
sur.B, and volume In lhB atmosphere; composition, pressure, and density; circulation; evapo
ration and condensation; fog, clouds, thunderstorms, lightning; aurora polaris; principal ice
age theories; etc. New preface by Prof. Julius London. 226 illustrations. Index. xviii + 
676pp. 5% x 8l12. S1044 Paperbound $3.00 
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URANIUM PROSPECTING, H. L. Barnes. For immediate practical US", professional geologist con. 
siders uranium ores, geological occurrences, field conditions, all aspects of highly profitable 
occupation. Index. Bibliography. x + 117pp. 5:Vs x 8. T309 Paperbound $1.00 

SELECTED PAPERS IN THE THEORY OF THERMAL CONVECTION: WITH SPECIAL APPLICATION 
TO THE EARTH'S PLANETARY ATMOSPHERE, Edited by Barry Saltzman. An indispensable vol. 
ume for anyone interested In the motions of the earth's atmosphere. 25 basic theoretical 
papers on thermal convection by major sCientists, past and present: Helmholtz, Overbeck, 
Jeffreys, Rayleigh, G. I. Taylor, Chandrasekhar, A. R. Low, Rossby, Davies, Charney, Eady, 
Phillips, Pellew and Southwell, Elbert, Fjortoft, and H.-L. Kuo. Bibliography. x + 461pp. 
611a x 9114. S171 Paperbound $3.00 

THE FOUNDERS OF GEOLOGY, Sir Archibald Gelkie. Survey of the high moments and the work 
of the major figures of the period in which the main foundations of modern geology were 
laid-the latter half of the 18th century to the first half of the 19th. The developments In 
the science during this era centering around the lives and accomplishments of the great 
contributors: Palissy, Guettard, Demarest, Pallas, Lehmann, Filchsel. Werner, Hutton, Play· 
fair, Sir James Hall, Cuvier, Lyell, Logan, Darwin, Agassiz, Nicol, and others. Comprehensive 
and readable. Index. xi + 486pp. 53/8 x 81(2. T352 Paperbound $2.25 

THE BIRTH AND DEVELOPMENT OF THE GEOLOGICAL SCIENCES F. D. Adams. Most thorough 
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