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Preface

The maturation of the nuclear power industry, accompanied by a redirection in
emphasis from research and development to the large-scale installation of nuclear
power systems, has induced a corresponding change in the growing demand for
well-trained nuclear engineers. Earlier laboratory needs for research-oriented Ph.
D. reactor physicists have been largely replaced by industrial requirements for
more broadly trained nuclear engineers at the B. S. and M. S. levels who are
capable of designing, constructing, and operating large nuclear power systems.
Most universities are rapidly reorienting their own nuclear engineering programs in
response to these changes.

Of central importance in such programs are those introductory courses in
nuclear reactor analysis that first introduce the nuclear engineering student to the
basis scientific principles of nuclear fission chain reactions and lay a foundation for
the subsequent application of these principles to the nuclear design and analysis of
reactor cores. Although several excellent texts have been written on the subject of
nuclear reactor theory, we have found both the material and orientation of existing
treatments somewhat outdated for today’s nuclear engineering student. For ex-
ample, the availability of large fast digital computers has had a very strong
influence on the analytical techniques used in modern nuclear reactor design. In
most cases such modern methods of reactor analysis bear little resemblance to the
precomputer techniques of earlier years. And yet most existing texts on nuclear
reactor theory dwell quite heavily on these outdated techniques, stressing analytical
methods to the near exclusion of numerical techniques and digital computation.

Furthermore most introductory texts on nuclear reactor theory present a rather
narrow view of nuclear reactor analysis by concentrating only on the behavior of
the neutron population in the reactor core. However the neutronics analysis of a
reactor core cannot be divorced from other nonnuclear aspects of core analysis
such as thermal-hydraulics, structural design, or economic considerations. In any
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practical design study, the interplay between these various facets of reactor analysis
must be taken into account, and this should be reflected in modern nuclear
engineering education programs.

We have attempted to write a reactor analysis text more tailored to the needs of
the modern nuclear engineering student. In particular, we have tried to introduce
the student to the fundamental principles governing nuclear fission chain reactions
in a manner that renders the transition to practical nuclear reactor design methods
most natural. This goal has led to a very considerable emphasis on numerical
methods suitable for digital computation. We have also stressed throughout this
development the very close interplay between the nuclear analysis of a reactor core
and those nonnuclear aspects of core analysis, such as thermal-hydraulics or
materials studies, which play a major role in determining a reactor design. Finally,
we have included illustrations of the various concepts that we develop by consider-
ing a number of more practical problems arising in the nuclear design of various
types of power reactors.

The text has been organized into four parts. In Part 1 we present a relatively
elementary and qualitative discussion of the basic concepts involved in nuclear
fission chain reactions, including a brief review of the relevant nuclear physics and
a survey of modern power reactors. In Part 2 we develop in some detail a
particularly simple and useful model of nuclear reactor behavior by assuming that
the neutrons sustaining the fission chain reaction diffuse from point to point in the
reactor in such a way that their energy and direction ot motion can be ignored
(one-speed diffusion theory). In Part 3 we generalize this model to develop the
primary tool of nuclear reactor analysis, multigroup diffusion theory. In Part 4 we
illustrate these methods of nuclear reactor analysis by considering several impor-
tant applications in nuclear reactor design.

We include a wide variety of problems to further illustrate these concepts, since
we have learned by past experience that such problems are essential for and
adequate understanding of nuclear reactor theory. The degree of difficulty spanned
by the problems is enormous, ranging from simple formula substitution to prob-
lems requiring extensive outside reading by the student. Since most universities
have at their disposal large time-sharing computer systems, we have not hesitated
to include problems that require rudimentary programming experience as well as
access to digital computers. Also, since more and more nuclear engineering
programs have access to libraries of the more common reactor design computer
codes, we also include problems utilizing such codes. It is our hope that the volume
and variety of problems are sufficient to provide the instructor with the opportun-
ity to select those problems most appropriate to this particular needs.

The same broad scope also characterizes the material included in the text. We
have attempted to prepare a text suitable for a wide variety of students, including
not only senior-year B. S. or first-year M. S. nuclear engineering students, but for
students from other disciplines as well, such as electrical and mechanical engineer-
ing, physics, and chemistry, who desire an exposure to the principles underlying
nuclear reactor design and operation. Hence the text has been written with the
intent of providing suitable material for a student with only a modest background
in modern physics and applied mathematics, such as would be included in the
curriculum of most undergraduate engineering or seience students. To this end,
much of the early material is presented in an essentially self-contained fashion.
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However it is our intent that this text should also serve as a useful reference in
more advanced courses or for practicing engineers, and therefore we include more
advanced material when appropriate (particularly in later chapters). In such cases
we provide numerous references to supplement our treatment. Certainly the en-
tirety of the material presented would be overwhelming for a one- or even two-term
course. (We have distributed the material among three terms at Michigan.) Rather
we have sought to provide a text sufficiently flexible for a wide variety of
applications. Hence we do not apologize for the scope and occasionally more
rugged terrain covered by the text, since the instructor can always choose a less
demanding route by selecting an appropriate subset of this material.

The units employed in this text are the International System of Units (SI), their
derivatives, and several non-SI units (such as the electronvolt or the barn) which
are recognized by the International Organization for Standardization for use in
special fields. Unfortunately, the vast majority of nuclear engineering literature
published in the United States prior to 1975 makes use of British units. To assist
the reader in coordinating this literature with the SI units used in this text, we have
included brief tables of the appropriate conversion factors in Appendix I.

As with any text at this level, very little of the material presented has originated
with the authors, but rather has been accumulated and assimilated from an
enormous variety of sources, some published, many unpublished. We generally
attempt to present material in the fashion we have found most successful from our
own teaching experience, frequently sacrificing originality for effectiveness of
presentation. Throughout the text we attempt to acknowledge the sources of our
material.

However, we would particularly like to acknowledge the impact made upon this
work by several of our associates. In presentation, we have chosen to utilize the
very appealing pedagogical approach of P. F. Zweifel by introducing as much of
reactor analysis as possible within the one-speed diffusion approximation before
continuing to discuss neutron energy-dependence. Our attempts to relate the basic
concepts of nuclear reactor theory to practical reactor analysis have relied heavily
upon numerous discussions, lecture materials, admonitions, and advice of Harvey
Graves, Jr., to whom we are particularly grateful. We would also like to acknowl-
edge the assistance of a group of truly exceptional former students (and now
practicing nuclear engineers) including Thomas Craig, David Chapin, Lawrence
Emmons, Robert Grossman, Ronald Fleming, Robert McCredy, William Martin,
Philip Meyer, Sidney Karin, Russell Mosteller, William G. Price, Jr., Robert
Steinke, and Paul J. Turinsky, as well as scores of other students who have
suffered, sweated, and occasionally cursed their way through the many sets of
lecture notes which led to this text.

It is particularly important to acknowledge the considerable assistance provided
by other staff members at Michigan including A. Ziya Akcasu, David Bach, John
Carpenter, Chihiro Kikuchi, Glenn Knoll, John Lee, Robert Martin, Richard K.
Osborn, Fred Shure, and George C. Summerfield. Also we should acknowledge
that much of the motivation and inspiration for this effort originated at Caltech
with Harold Lurie and Noel Corngold and at Berkeley with Virgil Schrock. But,
above all, we would like to thank William Kerr, without whose continued en-
couragement and support this work would have never been completed.

We also wish to express our gratitude to Miss Pam Hale for her Herculean
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efforts (and cryptographic abilities) in helping prepare the various drafts and
manuscripts which led to this text.

James J. Duderstadt
Louis J. Hamilton

ANN ARBOR, MICHIGAN
FEBRUARY 1975
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1

An Introduction to
Nuclear Power
Generation

It has been more than three decades since the first nuclear reactor achieved a
critical fission chain reaction beneath the old Stagg Field football stadium at the
University of Chicago. Since that time an extensive worldwide effort has been
directed toward nuclear reactor research and development in an attempt to harness
the enormous energy contained within the atomic nucleus for the peaceful genera-
tion of power. Nuclear reactors have evolved from an embryonic research tool into
the mammoth electrical generating units that drive hundreds of central-station
power plants around the world today. The recent shortage of fossil fuels has made
it quite apparent that nuclear fission reactors will play a dominant role in meeting
man’s energy requirements for decades to come.

For some time electrical utilities have been ordering and installing nuclear plants
in preference to fossil-fueled units. Such plants are truly enormous in size, typically
generating over 1000 MWe (megawatts-electric) of electrical power (enough to
supply the electrical power needs of a city of 400,000 people) and costing more
than one billion dollars. It is anticipated that some 500 nuclear power plants
will be installed in the United States alone by the year 2000 with an electrical
generating capacity of about 500,000 MWe and a capital investment of more than
$600 billion,' with this pattern being repeated throughout the world. The motiva-
tion for such a staggering commitment to nuclear power involves a number of
factors that include not only the very significant economic and operational advan-
tages exhibited by nuclear plants over conventional sources of power, but their
substantially lower environmental impact and vastly larger fuel resources as well.”’

The dominant role played by nuclear fission reactors in the generation of
electrical power can be expected to continue well into the next century. Until at
least A.D. 2000, nuclear power will represent the only viable alternative to
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fossil-fueled plants for most nations.>> The very rapid increase in fossil-fuel costs
that has accompanied their dwindling reserves has led to a pronounced cost
advantage for nuclear plants which is expected to widen even further during the
next few decades.*® Of course, there are other longer-range alternatives involving
advanced technology such as solar power, geothermal power, and controlled
thermonuclear fusion. However the massive practical implementation of such
alternatives, if proven feasible, could probably not occur until after the turn of the
century since experience has shown that it takes several decades to shift the energy
industry from one type of fuel to another,? due both to the long operating lifetime
of existing power machinery and the long lead times needed to redirect manufac-
turing capability. Hence nuclear fission power will probably be the dominant new
source of electrical power during the productive lifetimes of the present generation
of engineering students.

I. NUCLEAR FISSION REACTORS

The term nuclear reactor will be used in this text to refer to devices in which
controlled nuclear fission chain reactions can be maintained. (This restricted
definition may offend that segment of the nuclear community involved in nuclear
fusion research, but since even a prototype nuclear fusion reactor seems several
years down the road, no confusion should result.) In such a device, neutrons are
used to induce nuclear fission reactions in heavy nuclei. These nuclei fission into
lighter nuclei (fission products), accompanied by the release of energy (some 200
MeV per event) plus several additional neutrons. These fission neutrons can then be
utilized to induce still further fission reactions, thereby inducing a chain of fission
events. In a very narrow sense then, a nuclear reactor is simply a sufficiently large
mass of appropriately fissile material (e.g., 2>U or #°Pu) in which such a controlled
fission chain reaction can be sustained. Indeed a small sphere of 2°U metal slightly
over 8 cm in radius could support such a chain reaction and hence would be
classified as a nuclear reactor.

However a modern power reactor is a considerably more complex beast. It must
not only contain a lattice of very carefully refined and fabricated nuclear fuel, but
must as well provide for cooling this fuel during the course of the chain reaction as
fission energy is released, while maintaining the fuel in a very precise geometrical
arrangement with appropriate structural materials. Furthermore some mechanism
must be provided to control the chain reaction, shield the surroundings of the
reactor from the intense nuclear radiation generated during the fission reactions,
and provide for replacing nuclear fuel assemblies when the fission chain reaction
has depleted their concentration of fissile nuclei. If the reactor is to produce power
in a useful fashion, it must also be designed to operate both economically and
safely. Such engineering constraints render the actual nuclear configuration quite
complex indeed (as a quick glance ahead to the illustrations in Chapter 3 will
indicate).

Nuclear reactors have been used for over 30 years in a variety of applications.
They are particularly valuable tools for nuclear research since they produce
copious amounts of nuclear radiation, primarily in the form of neutrons and
gamma rays. Such radiation can be used to probe the microscopic structure and
dynamics of matter (neutron or gamma spectroscopy).
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The radiation produced by reactors can also be used to transmute nuclei into
artificial isotopes that can then be used, for example, as radioactive tracers in
industrial or medical applications. Reactors can use the same scheme to produce
nuclear fuel from nonfissile materials. For example, 2*®U can be irradiated by
neutrons in a reactor and transmuted into the nuclear fuel 2°Pu. This is the process
utilized to “breed” fuel in the fast breeder reactors currently being developed for
commercial application in the next decade.

Small, compact reactors have been used for propulsion in submarines, ships,
aircraft, and rocket vehicles. Indeed the present generation of light water reactors
used in nuclear power plants are little more than the very big younger brothers of
the propulsion reactors used in nuclear submarines. Reactors can also be utilized as
small, compact sources of long-term power, such as in remote polar research
stations or in orbiting satellites.

Yet by far the most significant application of nuclear fission reactors is in large,
central station power plants. A nuclear power plant is actually very similar to a
fossil-fueled power plant, except that it replaces the coal or oil-fired boiler by a
nuclear reactor, which generates heat by sustaining a fission chain reaction in a
suitable lattice of fuel material. Of course, there are some dramatic differences
between a nuclear reactor and, say, a coal-fired boiler. However the useful quantity
produced by each is high temperature, high pressure steam that can then be used to
run turbogenerators and produce electricity. At the center of a modern nuclear
plant is the nuclear steam supply system (NSSS), composed of the nuclear reactor,
its associated coolant piping and pumps, and the heat exchangers (“steam genera-
tors”) in which water is turned into steam. (A further glance at the illustrations in
Chapter 3 will provide the reader with some idea of these components.) The
remainder of the power plant is rather conventional.

Yet we must not let the apparent similarities between nuclear and fossil-fueled
power plants overshadow the very significant differences between the two systems.
For example, in a nuclear plant sufficient fuel must be inserted into the reactor
core to allow operation for very long periods of time (typically one year). The
nuclear fuel cycle itself is extremely complex, involving fuel refining, fabrication,
reprocessing after utilization in the reactor, and eventually the disposal of radioac-
tive fuel wastes. The safety aspects of nuclear plants are also quite different, since
one must be concerned with avoiding possible radiological hazards. Furthermore
the licensing required by a nuclear plant before construction or operation demands
a level of sophisticated analysis totally alien to fossil-fueled plant design.

Therefore even though the NSSS contributes only a relatively modest fraction of
the total capital cost of a nuclear power plant (presently about 20%), it is of central
concern since it not only dictates the detailed design of the remainder of the plant,
but also the procedures required in plant construction and operation. Furthermore
it is the low fuel costs of the NSSS that are responsible for the economic
advantages presently enjoyed by nuclear power generation.

The principal component of the NSSS is, of course, the nuclear reactor itself. A
rather wide variety of nuclear reactors are in operation today or have been
proposed for future development. Reactor types can be characterized by a number
of features. One usually distinguishes between those reactors whose chain reactions
are maintained by neutrons with characteristic energies comparable to the energy
of thermal vibration of the atoms comprising the reactor core (thermal reactors)
and reactors in which the average neutron energy is more characteristic of the
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much higher energy neutrons released in a nuclear fission reaction (fast reactors).

Yet another common distinction refers to the type of coolant used in the reactor.
In the United States, and indeed throughout the world, the most popular of the
present generation of reactors, the light water reactor (LWR) uses ordinary water
as a coolant. Such reactors operate at very high pressures (approximately 70-150
bar) in order to achieve high operating temperatures while maintaining the water in
its liquid phase. If the water is allowed to boil in the core, the reactor is referred to
as a boiling water reactor (BWR), while if the system pressure is kept sufficiently
high to prevent bulk boiling (155 bar), the reactor is known as a pressurized water
reactor (PWR). Such reactors have benefited from a well-developed technology and
performance experience achieved in the nuclear submarine program.

A very similar type of reactor uses heavy water (D,O) either under high pressure
as a primary coolant or simply to facilitate the fission chain reaction. This
particular concept has certain nuclear advantages that allow it to utilize low-
enrichment uranium fuels (including natural uranium). It is being developed in
Canada in the CANDU series of power reactors and in the United Kingdom as
steam generating heavy water reactors (SGHWR).

Power reactors can also utilize gases as coolants. For example, the early MAG-
NOX reactors developed in the United Kingdom used low-pressure CO, as a
coolant. A particularly attractive recent design is the high-temperature gas-cooled
reactor (HTGR) manufactured in the United States which uses high-pressure
helium. Related gas-cooled reactors include the pebble-bed concept and the ad-
vanced gas cooled reactors (AGR) under development in Germany and the United
Kingdom, respectively.

All of the above reactor types can be classified as thermal reactors since their
fission chain reactions are maintained by low-energy neutrons. Such reactors
comprise most of the world’s nuclear generating capacity today, and of these the
LWR is most common. It is generally agreed that the LWR will continue to
dominate the nuclear power industry until well into the 1980s, although its market
may tend to be eroded somewhat by the successful development of the HTGR
or advanced heavy water reactors.

However as we will see in the next chapter, there is strong incentive to develop a
fast reactor which will breed new fuel while producing power, thereby greatly
reducing nuclear fuel costs. Such fast breeder reactors may be cooled by either
liquid metals [the liquid metal-cooled fast breeder reactor (LMFBR)] or by helium
[the gas-cooled fast breeder reactor (GCFR)]. Although fast breeder reactors are
not expected to make an appreciable impact on the nuclear power generation
market until after 1990, their development is actively being pursued throughout the
world today.

Numerous other types of reactors have been proposed and studied—some even
involving such exotic concepts as liquid or gaseous fuels. Although much of the
analysis presented in this text is applicable to such reactors, our dominant concern
is with the solid-fuel reactors cooled by either water, sodium, or helium, since these
will comprise the vast majority of the power reactors installed during the next
several decades.

II. ROLE OF THE NUCLEAR ENGINEER

The nuclear engineer will play a very central role in the development and
application of nuclear energy since he is uniquely characterized by his ability to
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assist in both the nuclear design of fission reactors and their integration into large
power systems. In the early days of the reactor industry a nuclear engineer was
usually regarded as a Ph. D.-level reactor physicist primarily concerned with
nuclear reactor core research and design. Today, however, nuclear engineers are
needed not only by research laboratories and reactor manufacturers to develop and
design nuclear reactors, but also by the electrical utilities who buy and operate the
nuclear power plants, and by the engineering companies who build the power
plants and service them during their operating lifetimes.

Hence an understanding of core physics is not sufficient for today’s nuclear
engineer. He must also learn how to interface his specialized knowledge of nuclear
reactor theory with the myriad of other engineering demands made upon a nuclear
power reactor and with a variety of other disciplines, including mechanical,
electrical, and civil engineering, metallurgy, and even economics (and politics), just
as specialists of these other disciplines must learn to interact with nuclear en-
gineers. In this sense, he must recognize that the nuclear analysis of a reactor is
only one facet to be considered in nuclear power engineering. To study and master
it outside of the context of these other disciplines would be highly inadvisable. In
the same sense, those electrical, mechanical, or structural engineers who find
themselves involved in various aspects of nuclear power station design (as ever
increasing numbers are) will also find some knowledge of nuclear reactor theory
useful in the understanding of nuclear components and interfacing with nuclear
design.

Future nuclear engineers must face and solve complex problems such as those
involved in nuclear reactor safety, environmental impact assessment, nuclear power
plant reliability, and the nuclear fuel cycle, which span an enormous range of
disciplines. They must always be concerned with the economic design, construc-
tion, and operation of nuclear plants consistent with safety and environmental
constraints. An increasing number of nuclear engineers will find themselves con-
cerned with activities such as quality assurance and component standardization as
the nuclear industry continues to grow and mature, and of course all of these
problems must be confronted and handled in the public arena.

III. SCOPE OF THE TEXT

Our goal 1n this text is to develop in detail the underlying theory of nuclear
fission reactors in a manner accessible to both prospective nuclear engineering
students and those engineers from other disciplines who wish to gain some
exposure to nuclear reactor engineering. In every instance we attempt to begin with
the fundamental scientific principles governing nuclear fission chain reactions and
then carry these fundamental concepts through to the level of realistic engineering
applications in nuclear reactor design. During this development we continually
stress the interplay between the nuclear analysis of a reactor core and the parallel
nonnuclear design considerations that must accompany it in any realistic nuclear
reactor analysis.

We must admit a certain preoccupation with nuclear power reactors simply
because most nuclear engineers will find themselves involved in the nuclear power
industry. This will be particularly apparent in the examples we have chosen to
discuss and the problems we have emphasized. However since our concern is
always with emphasis of fundamental concepts over specific applications, most of
the topics we develop have a much broader range of validity and would apply
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equally well to the analysis of other types of nuclear reactors. And although our
principal target is the prospective nuclear engineer, we would hope that engineers
from other disciplines would also find this text useful as an introduction to the
concepts involved in nuclear reactor analysis.

The present text develops in four progressive stages. Part 1 presents a very brief
introduction to those concepts from nuclear physics relevant to nuclear fission
reactors. These topics include not only a consideration of the nuclear fission
process itself, but also a consideration of the various ways in which neutrons, which
act as the carrier of the chain reaction, interact with nuclei in the reactor core. We
next consider from a qualitative viewpoint the general concepts involved in
studying nuclear chain reactions. Part 1 ends with an overview of nuclear reactor
engineering, including a consideration of the various types of modern nuclear
reactors, their principal components, and a qualitative discussion of nuclear reactor
design.

Parts 2-4 are intended to develop the fundamental scientific principles underly-
ing nuclear reactor analysis and to apply these principles for derivation of the most
common analytical tools used in contemporary reactor design. By way of illustra-
tion, these tools are then applied to analyze several of the more common and
significant problems facing nuclear engineers.

Part 2 develops the mathematical theory of neutron transport in a reactor. It
begins with the most general description based on the neutron transport equation
and briefly (and very qualitatively) reviews the standard approximations to this
equation. After this brief discussion, we turn quickly to the development of the
simplest nontrivial model of a nuclear fission reactor, that based upon one-speed
neutron diffusion theory. This model is used to analyze both the steady state and
time-dependent behavior of nuclear reactors, since although the model has very
limited validity in practical reactor analysis, it does illustrate most of the concepts
as well as the calculational techniques used in actual reactor design.

In Part 3, we develop the principal tool of modern nuclear reactor design, the
multigroup diffusion model. Particular attention is devoted to the calculation of the
multigroup constants appearing in these equations, as well as to the practical
numerical solution of the equations themselves.

In Part 4, we attempt to give an overview of the methods used in nuclear reactor
core design. In particular, we consider the application of the concepts and tools
developed in the earlier sections to a variety of problems faced by the nuclear
engineer, including criticality calculations, the determination of core power distri-
butions and thermal-hydraulics analysis, burnup and control studies, and fuel-
loading requirements. While certainly incomplete, we do feel that the problems we
have chosen to examine are representative of those encountered in nuclear reactor
design and serve to illustrate the concepts developed in the earlier chapters of the
text.

REFERENCES
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2

The Nuclear Physics of
Fission Chain Reactions

The primary objective in the design and operation of a nuclear reactor is the
utilization of the energy or radiation released by a controlled chain reaction of
nuclear fission events maintained within the reactor core. Such fission reactions
occur when a heavy atomic nucleus such as 2°U splits or fissions into two lighter
nuclei with an attendant release of both energy and radiation. Yet just how are
such fission reactions induced in a reactor? The rate at which such naturally
occurring heavy nuclei will fission on their own (spontaneous fission) is very slow. It
should also be apparent that one cannot simply smash two nuclei together to
induce such a reaction, since the large electrical charges of heavy nuclei would lead
to a very strong repulsion. A more attractive idea is to slam a neutral particle
(which doesn’t feel the nuclear charge) into a big, “overweight” nucleus and hope
that this splits it. An ideal candidate for the incident particle is the neutron. Indeed
experiments have shown that certain nuclei have an enormous appetite for
neutrons, but after swallowing them suffer a case of violent indigestion that results
in their fission. As an example of such a reaction, consider a neutron incident upon
a U nucleus:

Neutron +**3U—s fission products + more neutrons + energy.

The products of such a reaction (e.g., lighter nuclei, neutrons, and gammas) emerge
with very large kinetic energy (some 200 MeV) which is then converted into heat as
they slow down by banging into neighboring atoms in the reactor fuel. It is this
heat energy that one utilizes to produce steam and eventually electrical power in a
nuclear power plant.

Yet just as significantly the fission reaction kicks loose a few neutrons that may
then go on to induce more fission reactions. Hence we can use the neutrons to

10
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propagate a chain of fission reactions. In this sense, then, the neutron plays the role
of the chain carrier while the fission reactions supply the desired energy.

However there are other possible nuclear reactions a neutron can undergo that
do not lead to fission and hence are unproductive in nature. Indeed since there are
usually two or three neutrons emitted in each fission reaction, it should be apparent
that if each neutron resulted in another fission, the chain reaction would quickly
grow without bound. One such parasitic reaction involves the capture of the
neutron by a nucleus which then emits a gamma ray rather than fissioning.
Another possible reaction involves the neutron simply bouncing or scattering off of
a nucleus. After several such scattering reactions, the neutron might eventually leak
out of the uranium core of the reactor. Such processes remove neutrons from the
reactor and tend to inhibit the chain reaction.

Therefore one of the primary tasks of the nuclear engineer is to follow the
neutron “economy” in a nuclear reactor in order to monitor and control the
behavior of the fission chain reaction. That is, he must learn how to design the
reactor so that there is a balance between the production of neutrons in fission
reactions and the loss of neutrons due to capture or leakage. The study of such
processes is known as either nuclear reactor theory, nuclear reactor physics or
sometimes simply as neutronics. It is essentially the subject of this text.

However the achievement of a stable chain of fission reactions is only a part of
the responsibility of the nuclear engineer. In addition he must learn how to extract
and use the energy liberated in these fission reactions. This task involves the
subjects of heat transfer, fluid flow, structural and materials analysis, and power
systems analysis and interacts strongly with the nuclear analysis of a reactor core.
It is discussed in the latter chapters of the text.

We first turn our attention to a development of the fundamental concepts
involved in predicting the distribution of neutrons in a nuclear reactor in order to
understand and design a fission chain reaction system. We need to consider
essentially two different subjects: (a) the determination of the probabilities of
occurrence of various neutron-nuclear reactions and (b) the derivation and solu-
tion of an equation that uses these probabilities to determine the neutron density
and fission reaction rate in a nuclear reactor core.

The above discussion clearly indicates the importance of being able to determine
the rate at which various types of neutron-nuclear reactions occur within the
reactor. However it is important to keep in mind that there are enormous numbers
of neutrons (typically 10® per cm®) and even larger numbers of nuclei (10?2 per cm?)
in the reactor core. Hence we really need concern ourselves only with the average
behavior of the neutrons and nuclei in the reactor in a statistical sense. That is, we
wish to calculate the probabilities that various types of neutron—nuclear interactions
will occur. These reaction probabilities are expressed in terms of parameters called
nuclear cross sections.

These cross sections represent the fundamental data utilized by the nuclear
engineer in his analysis of a nuclear reactor, much in the same way that thermal or
structural data are used by the mechanical engineer or circuit device parameters
are used by the electrical engineer. Hence some familiarity with the physics
underlying the determination and behavior of such cross sections is necessary for
effective nuclear reactor analysis.

In this chapter we will review those aspects of nuclear physics that are particu-
larly relevant to the study of fission chain reactions. It should be stressed that this
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presentation is not intended to be complete. Indeed we would anticipate that most
engineering students will have had some exposure to modern atomic and nuclear
physics in earlier courses. (Students who find most of the material in this chapter to
be totally alien territory would be well advised to consult one of the several
excellent standard references on introductory nuclear physics'™ containing sub-
stantially more thorough discussions of these topics.) Unfortunately, however, most
conventional treatments of these subjects do not place sufficient emphasis on the
study of nuclear reactions in general, or neutron-nuclear reactions in particular, for
our purposes (although there are several notable exceptions®®).

We will begin with a brief introduction to spontaneous nuclear radioactive decay
as an example of a nuclear reaction. We then consider nuclear collision reactions
and introduce the concept of a nuclear cross section. Here we will devote particular
attention to a qualitative discussion of cross sections characterizing neutron-
nucleus reactions. Our final topic will be that of the nuclear fission reaction itself
and the radiation emanating from such reactions.

I. NUCLEAR REACTIONS

There are essentially two types of nuclear reactions of importance in the
study of nuclear reactors: (a) spontaneous disintegrations of nuclei and (b) reac-
tions resulting from the collision between nuclei and/or nuclear particles. An
example of the first type of reaction would be the radioactive decay of fission
products, since these are frequently unstable. Such disintegration reactions depend
only on the properties of an individual nucleus. The neutron-nucleus collision
events involved in the fission chain reaction are an example of the second type of
reaction. These collision reactions depend not only on the properties of the
colliding particles, for example, the neutron and the nucleus, but also the relative
velocity with which they strike one another.

Before diving off into a discussion of nuclear reactions, let us first introduce
some notation. We will denote the number of protons in an atomic nucleus by Z
(the atomic number), the number of neutrons by N, and the total number of
nucleons (protons plus neutrons) by 4 (the mass number). A specific nucleus will be
denoted by a symbol such as 4 X, where X is the chemical symbol for the atom of
interest. For example, 'H, '2C, and %;U are notations for three such nuclei. We will
refer to various species of nuclei as nuclides. Nuclei characterized by the same
atomic number Z but different mass numbers 4 are referred to as isotopes (e.g.,
23U, 23U, BU, and 38U). Since the nucleus is a quantum mechanical system, it
may be found in any of a number of possible energy states. The general notation
4 X refers to a nuclear ground state, while an asterisk is used to denote a nucleus in
an excited state, 4X*.Long lived excited states of nuclei are referred to as nuclear
isomers or isomeric states and are denoted by a superscript m (e.g., 115™In).

A. Radioactive Decay

Certain nuclei are unstable in the sense that they may spontaneously undergo
a transformation into a different nuclide, usually accompanied by the emission of
energetic particles. Such a spontaneous nuclear transformation is referred to as
radioactive decay. The three most common types of radioactive decay found in
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naturally occurring nuclides include alpha decay, in which the nucleus emits a
helium nucleus jHe; beta decay, which corresponds to the conversion of a neutron
in the nucleus into a proton, generally accompanied by the emission of an electron
and a neutrino; and gamma decay, the transition of a nucleus from one excited
state to a lower excited state with the accompanying emission of a photon.
However other types of radioactive decay are possible in a nuclear reactor since
many unstable nuclides are produced in fission which do not occur in nature. For
example, certain nuclei such as ${Kr may decay by emitting a neutron. (We will
later find that this particular type of decay process is extremely important for
reactor operation.)

The fundamental law describing radioactive decay is based on the experimental
observation that the probability that a nucleus will decay in a given time interval is
essentially constant, independent of the age of the nucleus or its environment,
dependent only on the type of the nucleus itself. Hence the time rate of change of
the number of original nuclei of a given type must be proportional to the number
of nuclei present at that time. Let us call the proportionality constant A. Then if
N (¢) is the number of original nuclei left at time ¢, we find

dN
- Z5=AN (). (2-1)

Here A is referred to as the radioactive decay constant characteristic of the nucleus
and has units of inverse time. If we initially have N, nuclei present, then at any
later time ¢ the number of nuclei present will be given by an exponential law:

N(f)=Nye™ ™. (2-2)
The rate at which nuclei are decaying is given by
Rate=AN,e M. (2-3)

From this time behavior, it is apparent that the probability that a given nucleus will
decay in a time interval ¢ to ¢+ dt is just

p(Ddi=Ae Mdr. (2-4)

Since radioactive decay is a statistical phenomenon, we cannot predict with any
certainty precisely when a given nucleus will decay. However we can calculate the
mean lifetime ¢t of the nucleus before decay using our expression for p(¢) from Eq.
(2-4)

—At

- [+ 9] [+ 9] 1
t=| dttp(f)=A t -. -

fo p(1) fo dire” = (2-5)
Hence on the average a given nucleus will decay after a time 1/A.

A closely related quantity is the length of time necessary for half of the original
number of nuclei present to decay away. Such a time T,,, is referred to as
radioactive half-life for the nucleus and can be calculated from its definition by
noting

N(T1/2)=N0/2=N0e‘”1/2, (2-6)
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or

In2 _ 0.693
Tip= =" (2-7)

It is common practice to tabulate such radioactive half-lives of various unstable
nuclei in preference to their mean lifetime 7 or decay constant A%

Yet another definition of some importance is that of the activity characterizing a
sample of radioactive material. This quantity is simply the total number of
disintegrations occurring per second AN (¢). Activities are usually measured in units
of curies, where one curie (Ci) is defined to be that quantity of radioactive nuclei
for which the number of disintegrations per second is 3.70x 10'°, (This is roughly
the activity of 1 g of radium.)

Actually it is more common and far more useful to regard the dependent
variable N(¢) as the atomic number density (# /cm?) of the nuclide of interest
rather than the total number of nuclei present in the sample. We will adhere to this
practice in our subsequent discussion.

Most radioactive decay processes are somewhat more complicated than those
described by Eq. (2-1). For example, the decaying nuclide may itself be produced
by some type of source, say, R(f) nuclei/cm®-sec. Then the nuclide balance
equation becomes

4V AN (1)+ R (). (2-8)
We can also write similar equations describing several nuclides, each of which
decays into another. Consider, by way of example, the radioactive decay chain:

A A,
X-> YﬁZ—)

Then the appropriate equations describing the number of nuclides of each type
present are

dN,
—dt—'= —AXNX-*-RX’

dN,

—a;— = —AYNY+>‘XNX+RY’ (2-9)
dN,

7= —}\ZNZ'FAYNY'F RZ’

where R, (?) is the production term for the X-nuclide, and so on. Since this is just a
system of linear first-order differential equations with constant coeificients, it can
easily be solved using standard techniques, and hence we will defer further
discussion to the problems at the end of the chapter.

Very similar considerations also hold for the transition of nuclei between
different excited states. Such states represent the quantum levels available to the
nucleus. We can again characterize the probability that the nucleus will “decay”
out of one excited state into a lower state by a decay constant A, and once again
also develop the concept of a mean lifetime for the excited state ¢. A useful related
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concept here is the uncertainty or width ' of the energy level characterizing the
excited state. This width is related to the mean lifetime of the state by the
Heisenberg uncertainty principle:

AtAE =h. (2-10)
Hence the width of the state can be expressed in terms of its decay constant by

T=AE=h/At=hA. (2-11)

B. Nuclear Collision Reactions

The study of nuclear collision reactions can be formulated in a manner very
similar to that used to describe chemical reactions. Indeed, the familar notation for
a chemical reaction

a+b—sc+d (2-12)

is frequently adopted to describe nuclear reactions. However since in nuclear
reactions, one particle is usually considered to be a projectile while the other
particle is taken as a target, one sometimes uses the more detailed notation

"\

a (b, c) d

J Nl oo
Projectile b a

Target

As an example, the reaction

(l,n + 233U—>233U +v,
would be written as

25U (n,7)%5U.

The general class of such reactions would be simply denoted as (n,y) reactions.
Nuclear reactions are generally accompanied by either the absorption or emis-

sion of energy. One can calculate the energy released by (or required for) a given

nuclear reaction by using the important result from the theory of relativity:

E=mc?, (2-13)

where c is the speed of light and m is the mass converted into energy in a reaction.
The appropriate quantity to use for the variable m that appears in this formula is
the mass difference between the interacting particles before and after the collision.
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For the reaction a(b,c)d we would calculate the reaction energy as
Q=[(Ma+Mb)—(Mc+Md)]c2' (2-14)

If Q0 >0, then we say the reaction is exothermic, which corresponds to a release of
energy in the reaction. If Q <0, then the reaction is said to be endothermic, and
energy must be supplied to the colliding nuclei in order to stimulate the reaction to
occur. Obviously, nuclear fission is an example of an exothermic reaction.

There are a wide variety of possible nuclear reactions. The reactions of most
interest in the analysis of a nuclear fission reactor involve interactions between
neutrons and nuclei and include

Nuclear fission (n,fission):

on+ %' X—%32X + 42X + neutrons + 200 MeV, (2-15)
Radiative capture (n,7y):

ImHEX (15X )* 1N+, (2-16)

Scattering (n,n) or (n,n’):

M+HEXsin+4X [elastic scattering (n,n)]
—on+(%2X)*  [inelastic scattering (n,n")] (2-17)
—Son+4X+y [inelastic scattering (n,n")]. -

We have already discussed the nuclear fission reaction. In radiative capture the
incident neutron is absorbed by the target nucleus to form a new nuclide of mass
number 4+ 1. As we will see later, this “compound” nucleus is formed in an
excited state. In a radiative capture reaction, it will eventually decay to its ground
state by emitting a high-energy photon, that is, a gamma ray. An alternative type of
capture reaction of some importance in reactor control is the (n,a) reaction which
occurs in 'IB, for example.

The third reaction of importance is scattering. In this reaction the neutron simply
scatters off of the nucleus (n,n), although in some cases, it may first combine with
the nucleus to form a compound nucleus for a short time before being reemitted
and will frequently leave the nucleus in an excited state from which it later decays
by gamma emission.

The importance of the fission reaction to nuclear reactor operation is obvious.
Both radiative capture and scattering are also extremely important since they
influence the neutron economy and hence the chain reaction. We will concentrate
specifically on neutron—nuclear reactions as we turn to a more quantitative treat-
ment of nuclear reactions of importance in fission chain reactions.

1. MICROSCOPIC CROSS SECTIONS

The probability that a neutron—-nuclear reaction will occur is characterized by
a quantity called a nuclear cross section. Let us first define this quantity operation-
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ally by considering a beam of neutrons, all traveling with the same speed and
direction, which is incident normally upon and uniformly across the face of a target
of material. If the target is sufficiently thin (say, one atomic layer thick), then no
nuclei in the target will be shielded by other nuclei from the incident neutron beam
(see Figure 2-1). In this case we would expect that the rate of neutron—-nuclear
reactions in the target will be proportional to both the incident neutron beam
intensity I (in units of number of neutrons/cm?-sec) and the number of target
atoms per unit area N, (# /cm?). If we call the constant of proportionality o, we
can write the rate at which reactions occur per unit area on the target as

Rate= R = o 1 N,
B P

We have indicated the units of each of these quantities since they imply that the
proportionality factor ¢ must have the units of an area.

If the incident neutrons and target nuclei could be visualized as classical
particles, 0 would quite naturally correspond to the cross sectional area presented
by each of the target nuclei to the beam. Hence o is known as the microscopic cross
section characterizing the probability of a neutron-nuclear reaction for the nucleus.
We might continue to think of o as the effective cross sectional area presented by
the nucleus to the beam of incident neutrons. Since the nuclear radius is roughly
10~!2 cm, the geometrical cross sectional area of the nucleus is roughly 10~2* cm?.
Hence we might expect that nuclear cross sections are of the order of 10724 cm?. In
fact microscopic cross sections are usually measured in units of this size called
barns (b). However this geometrical interpretation of a nuclear cross section can
frequently be misleading since o can be much larger (or smaller) than the geometri-
cal cross section of the nucleus due to resonance effects which, in turn, are a
consequence of the quantum mechanical nature of the neutron and the nucleus.
For example, the absorption cross section of '33Xe for slow neutrons is almost one
million times larger than its geometrical cross section.

N 4 nuclei/cm?
__é
%
"
—_— QN
0 ~0/<Q
I neutrons/cm?- sec QI\Q Q 9
— 1970
015 X0
o0 g
> OX0!
Q ZO° 310
Q 0~0
— 0Rg D
02000
Q

e

FIGURE 2-1. A monoenergetic neutron beam incident normally upon a thin target.
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We can give a slightly more formal definition of the microscopic cross section by
rearranging Eq. (2-18) to write

Number of reactions/nucleus /sec (R/N,) (2-19)
0’ = = . -
Number of incident neutrons/cm?/sec 1

In this sense, then, if the target has a total cross sectional area @, all of which is
uniformly exposed to the incident beam, then

o _ Probability per nucleus that a neutron (2-20)
@  in the beam will interact with it

Thus far we have been discussing the concept of a nuclear cross section in a
rather abstract sense without actually specifying the type of reaction we have in
mind. Actually such cross sections can be used to characterize any type of nuclear
reaction. We can define a microscopic cross section for each type of neutron—
nuclear reaction and each type of nuclide. For example, the appropriate cross
sections characterizing the three types of reactions we discussed earlier, fission,
radiative capture, and scattering, are denoted by o, o, and o, respectively. We can
also assign separate cross sections to characterize elastic scattering o, in which the
target nucleus remains in its ground state, and inelastic scattering o, in which the
target nucleus is left in an excited state. Since cross sections are related to
probabilities of various types of reactions, it is apparent that

o,=0,+0;,.

In a similar sense we can define the absorption cross section characterizing those
events in which a nucleus absorbs a neutron. There are a number of possible types
of absorption reactions including fission, radiative capture, (n,a) reactions, and so
on. (Actually one could argue that fission is not really an absorption reaction since
several neutrons are created in the fission reaction. It has become customary,
however, to treat fission as an absorption event and then add back in the fission
neutrons released in the reaction at another point, as we will see later.) Finally, we
can introduce the concept of the toral cross section o, characterizing the probability
that any type of neutron-nuclear reaction will occur. Obviously

o,=0,+0,=0.+o,*to;to +o,+ -
A schematic diagram® of the heirarchy of cross sections along with their conven-

tional notation is shown in Figure 2-2. Notice that in general one would define the
absorption cross section to characterize any event other than scattering

6,=0,— 0,

In a similar fashion, one occasionally defines a nonelastic cross section as any event
other than elastic scattering
6,.=0,— 0,

Thus far we have defined the concept of a microscopic cross section by
considering a beam of neutrons of identical speeds incident normally upon the
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o, (total)
o, (scattering)
' o, {absorption)
oe . . 0|n .
(elastic (inelastic
scattering) scattering)
g, (fission) G, 2 On,p 0+ (radiative

n, 3n On a capture)

FIGURE 2-2. Neutron cross section heirarchy.

surface of a target. However it is certainly conceivable that such cross sections will
vary, depending on the incident neutron speed (or energy) and direction. Indeed if
the microscopic cross section for various incident neutron energies is measured, a
very strong energy dependence of the cross section is found. The dependence of
neutron cross sections on the incident beam angle is usually much weaker and can
almost always be ignored in nuclear reactor applications. We will return later to
consider in further detail the dependence of cross sections on incident neutron
energy. First, however, it is useful to develop a quantity closely related to the
microscopic cross section, that of the macroscopic cross section.

2. MACROSCOPIC CROSS SECTIONS

Thus far we have considered a beam of neutrons incident upon a very thin
target. This was done to insure that each nucleus in the target would be exposed to
the same beam intensity. If the target were thicker, the nuclei deeper within the
target would tend to be shielded from the incident beam by the nuclei nearer the
surface since interactions remove neutrons from the beam. To account for such
finite thickness effects, let us now consider a neutron beam incident upon the
surface of a target of arbitrary thickness as indicated schematically in Figure 2-3.
We will derive an equation for the “virgin” beam intensity /(x) at any point x in
the target. By virgin beam we are referring to that portion of the neutrons in the
beam that have not interacted with target nuclei. Consider a differential thickness
of target between x and x + dx. Then since dx is infinitesimally thin, we know that
the results from our study of thin targets can be used to calculate the rate at which
neutrons suffer interactions in dx per cm? If we recognize that the number of
target nuclei per cm? in dx is given by dN, = N dx, where N is the number density
of nuclei in the target, then the total reaction rate per unit area in dx is just

dR=0l1dN ,=0Ndx. (2-21)
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FIGURE 2-3. A monoenergetic neutron beam incident normally on a thick target.
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Notice that, consistent with our prescription that any type of interaction will
deflower an incident neutron, we have utilized the total microscopic cross section o,
in computing dR.

We can now equate this reaction rate to the decrease in beam intensity between
x and x +dx

—dl(x)=—[I(x+dx)—1I(x)]=0,INdx. (2-22)

Dividing by dx we find a differential equation for the beam intensity 7 (x)
al _ _ NoI(x). (2-23)

If we solve this equation subject to an incident beam intensity of I, at x=0, we
find an exponential attenuation of the incident beam of the form

I(x)=I,exp(— No.x). (2-24)

The product of the atomic number density N and the microscopic cross section
6, that appears in the exponential term arises so frequently in nuclear reactor
studies that it has become customary to denote it by a special symbol:

3,=No,=[# /cm*|[cm?]=[cm~]. (2-25)

One refers to X, as the total macroscopic cross section characterizing the target
material. The term “macroscopic” arises from the recognition that X, characterizes
the probability of neutron interaction in a macroscopic chunk of material (the
target), whereas the microscopic cross section characterizes the probability of
interaction with only a single nucleus.

It should be noted that Z, is not really a “cross section” at all, however, since its
units are inverse length. A more appropriate interpretation can be achieved by
reexamining Eq. (2-22) and noting that the fractional change in beam intensity
occurring over a distance dx is just given by

_(j—di)_

—— =3, (2-26)
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Hence, it is natural to interpret 2, as the probability per unit path length traveled
that the neutron will undergo a reaction with a nucleus in the sample. In this sense
then

exp(—Z,x)= probability that a neutron moves a distance dx without
any interaction;

2,exp(—Z,x)dx= probability that a neutron has its first interaction in dx
= p(x)dx.

With this interaction probability, we can calculate the average distance a neutron
travels before interacting with a nucleus in the sample

o[ o 1
x=f0dxxp(x) =ztf0dxxexp(—ztx) -5 (2-27)

It is customary to refer to this distance as the neutron mean free path since it
essentially measures the average distance a neutron is likely to stream freely before
colliding with a nucleus.

The reader has probably noticed the similarity of this analysis to our earlier
treatment of radioactive decay. The spatial attentuation of a neutron beam passing
through a sample of material and the temporal decay of a sample of radioactive
nuclei are similar types of statistical phenomenon in which the probability of an
event occurring that removes a neutron or nucleus from the original sample
depends only on the number of neutrons or nuclei present at the position or time of
interest. It should be stressed that both the mean free path and the mean lifetime
for decay are very much average quantities. There will be statistical fluctuations
about these mean values.

If we recall that 2, is the probability per unit path length that a neutron will
undergo a reaction, while the neutron speed v is the distance traveled by the
neutron in a unit time, then evidently

v, = [ % ][cm‘ ]=[sec~!]= Frequency with which
reactions occur . (2-28)

This quantity is usually referred to as the collision frequency for the neutron in the
sample. Its reciprocal, [v=,] 7}, is therefore interpretable as the mean time between
neutron reactions.

Thus far our discussion has been restricted to total macroscopic® cross sections
that characterize the probability that a neutron will undergo any type of reaction.
We can generalize this concept by formally defining the macroscopic cross section
for any specific reaction as just the microscopic cross section for the reaction of
interest multiplied by the number density N characterizing the material of interest.
For example, the macroscopic fission cross section would be defined as

3= No,. (2-29)
In a similar fashion we can define

3,=No,, Z,=No, (2-30)
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Notice also that
=2 +2. (2-31)

It should be stressed that while one can formally define such macroscopic cross
sections for specific reactions, our earlier discussion of neutron penetration into a
thick target applies only to the total macroscopic cross section . We could not
extend this discussion, for example, to the calculation of the probability of neutron
penetration to a depth x prior to absorption by merely replacing Z, in Eq. (2-24) by
Z,, since it may be possible for the neutron to undergo a number of scattering
reactions before finally suffering an absorption reaction. We can calculate these
specific reaction probabilities only after a more complete consideration of neutron
transport in materials (Chapters 4 and 5).

The concept of a macroscopic cross section can also be generalized to homo-
geneous mixtures of different nuclides. For example, if we have a homogeneous
mixture of three different species of nuclide, X, Y, and Z, with respective atomic
number densities Ny, N,, and N, then the total macroscopic cross section
characterizing the mixture is given by

S,=NyoX+ NyoY+N,07Z, | (2-32)

where ¢;* is the microscopic total cross section for nuclide X, and so on. It should
be noted that such a prescription for determining the macroscopic cross section for
a mixture arises quite naturally from our interpretation of such cross sections as
probabilities of reactions.

As we mentioned earlier, all neutron-nuclear reaction cross sections (fission,
radiative capture, scattering, etc.) depend to some degree on the energy of the
incident neutron. If we denote the neutron energy by E, we acknowledge this
dependence by including a functional dependence on E in the microscopic cross
section o(F) and hence by inference also in the macroscopic cross section 2(E).

However the macroscopic cross section can depend on additional variables as
well. For example, suppose that the target material does not have a uniform
composition. Then the number density N will depend on the position r in the
sample, and hence the macroscopic cross sections themselves will be space-
dependent. In a similar manner, the number densities might depend on time—
suppose, for example, that the nuclide of interest was unstable such that its number
density was decaying as a function of time. Therefore in the most general case we
would write

3(r,E,1)=N (r,1)o(E) (2-33)

to indicate the explicit dependence of the macroscopic cross section on neutron
energy E, position r, and time ¢.

In summary then, nuclear cross sections can be used to characterize the probabil-
ity of various types of neutron—nuclear reactions occurring. They obviously will be
a very basic ingredient in any study of fission chain reactions. The determination
of such cross sections is the task of the nuclear physicist and involves both
experimental measurement and theoretical calculations. The enormous amount of
cross section information required for nuclear reactor analysis is gathered by
numerous nuclear research centers throughout the world. These cross section data
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are compiled, evaluated, and then organized into data sets to be used by nuclear
engineers. We will return in a later section to discuss in further detail such nuclear
cross section data sets. For convenience, however, we have included in Appendix A
a table of some of the more important cross sections characteristic of ‘“‘thermal”
neutrons—that is, of neutrons whose energies are comparable to the thermal energy
of atoms in a reactor core at room temperature, £=0.025 eV—which serves to
illustrate typical orders of magnitudes of these quantities.

EXAMPLE: As a specific illustration, let us calculate the mean free path for a
thermal neutron in graphite. According to the table in Appendix A, carbon is
nearly a pure scatterer with microscopic cross sections 6,=4.8 b and 6,=4.0x10"?
b. If we assume a mass density of 1.60 g/cm3, we can calculate the atomic
number density in graphite as N=.0803x 10** cm~3. Consequently the macro-
scopic scattering and absorption cross sections are

S.=Ng,=0.385cm™!, £ =Nog,=32%x10"*cm™},
and the total cross section is
2,=0385cm™ - Z.

The mean free path is therefore

A= El =2.6cm.

t

Notice how small the absorption cross section in graphite is compared to its
scattering cross section. Indeed since =_/=_=1.2 X 10, one can infer that a thermal
neutron in graphite will make some 1200 scattering collisions on the average before
being absorbed. This very low absorption cross section makes graphite an ideal
material for nuclear reactor applications.

C. Characteristics of Neutron-Nuclear Cross Sections

Before considering in detail the various types of neutron—nuclear reactions
significant in nuclear reactor analysis, it is useful to give a brief discussion of some
of the relevant physics underlying the behavior of these cross sections. There are
two aspects involved in the analysis of neutron cross sections:

(a) the kinematics of two-particle collisions and

(b) the dynamics of nuclear reactions.
The kinematics of two-body collisions, that is, the application of the laws of
conservation of momentum and energy to such collisions, should be very familiar
to the reader from introductory courses in mechanics or modern physics. However
consistent with our attempt to make this presentation as self-contained as possible,
and being well aware of the short half-life of this type of information in the fast
core memory of most students, we will review such kinematic calculations in
Section 2-1-D.

The dynamics of nuclear reactions is concerned with the fundamental physical
mechanisms involved in such collision events. The two mechanisms of most interest
in nuclear reactor applications are those of potential scattering, in which the
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neutron merely bounces off of the force field of the nucleus without actually
penetrating the nuclear surface, and compound nucleus formation, in which the
incident neutron is actually absorbed by the nucleus to form a new nucleus of mass
number 4 +1 which then decays by emitting a gamma, a neutron, or perhaps
fissioning.

We will give a brief discussion of both of these interaction mechanisms, and then
turn our attention to a specific survey of the various types of cross section behavior
encountered in the more common materials utilized in nuclear reactors.

1. MECHANISMS OF NEUTRON-NUCLEAR INTERACTION

The simplest type of nuclear reaction occurring in a nuclear reactor is
potential scattering, in which the neutron scatters elastically off the nuclear poten-
tial without ever penetrating the nucleus itself. This type of collision event is very
similar to that which would occur between two hard spheres (e.g., billiard balls),
and the cross section for such a reaction is essentially just the geometrical cross
section of the nucleus. Potential scattering cross sections are characterized by a
rather flat energy dependence from about 1 eV up to the MeV range.

Another common type of reaction encountered in a nuclear reactor is that in
which the incident neutron is first absorbed by the nucleus 2X to create a new
compound nucleus “%'X. This compound nucleus subsequently decays by emitting
an energetic particle. Compound nucleus formation occurs in many neutron—
nuclear reactions of interest to the reactor engineer, including fission, radiative
capture, and certain types of scattering.

That such a mechanism must be involved in these reactions can be inferred from
the relatively long times (at least on a nuclear time scale) for such events to occur.
Whereas it would take a slow neutron (traveling at 10° cm/sec) some 10~ 17 sec to
cross the nucleus, neutron-nuclear reactions such as fission occur on a time scale
of some 10~ !* sec—or some 1000 transit times. Hence the incident neutron must
first be absorbed by the original nucleus and rattle around a bit, distributing both
its kinetic energy and the additional binding energy supplied by the added neutron
to the other nucleons in the nucleus, before the compound nucleus finally decays.
The long lifetime of the compound nucleus implies that the disintegration process
is essentially independent of the original mode of formation; that is, the compound
nucleus lasts long enough to “forget” most of the characteristics of the incident
neutron (such as which direction it came from).

The formation of a compound nucleus actually corresponds to a so-called
resonance reaction, in which the incident neutron energy matches one of the energy
levels in the compound nucleus. To be more specific, consider a neutron incident
upon a nuclide £X:

o—~ Q — O

1 Ax (A x)"

As we will see later when we develop the topic of collision kinematics, the energy
available for such a reaction is the center of mass (CM) energy E,=(M/m+ M)E,
where m is the neutron mass, M is the nuclear mass, and E is the neutron kinetic
energy in the laboratory system. The actual energy of the excited level of the
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compound nucleus is much higher due to the additional binding energy of the
added neutron E,. If E .+ E, is very close to a nuclear energy level of the
compound nucleus 4 %X, one expects that the probability for compound nucleus
formation will be much larger than if E_+ E, does not “match” this energy level.
Hence we expect that the cross sections for such compound nuclear reactions will
exhibit sharp peaks or resonances at those neutron energies E for which this energy
matching occurs. By way of illustration, we have shown the resonance structure in
the low-energy cross section behavior of a number of nuclei in Figure 2-4.

1,000,000 |-

100,000 |~

10,000 [~

Cross section {b)

1000 I~

100 [—

l I I
0.001 0.01 0.1 1.0 10.0

Energy {(eV)

FIGURE 2-4. Low-energy cross section behavior of several important nuclides.?
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The second stage of a compound nucleus process is the decay of the compound
nucleus. This decay may occur in a variety of ways, as indicated schematically
below:

on+4X Resonance elastic scattering

1 A . .

n+(Z2X)* Inelastic scattering

nrax—>(*yx )y 7 ° &%) - (2-34)
4%l +y  Radiative capture

N

2X +52X +2-3 ¢n Fission

Since we have argued that the final disintegration mode is essentially independent
of the neutron absorption process which creates the compound nucleus, we might
expect that the cross section energy dependence for compound nucleus reactions
will exhibit certain similarities. These similarities will become apparent as we
consider in more detail the specific neutron-nuclear reactions of importance in
nuclear fission reactors.

2. A QUALITATIVE DISCUSSION OF NEUTRON CROSS SECTIONS
(a.) RADIATIVE CAPTURE

Radiative capture reactions are quite significant for reactor analysis since they
remove neutrons from the chain reaction. Such reactions proceed via compound
nucleus formation in which the incident neutron is first absorbed to form the
compound nucleus of mass number 4+ 1, and then this nucleus subsequently
decays by emitting a cascade of high-energy gammas. For this reason, the func-
tional dependence of the capture cross section on the neutron kinetic energy E
exhibits a resonance behavior at those energies at which the CM energy E_ plus the
neutron binding energy E, match an energy level of the compound nucleus. We
have shown this resonance situation schematically for neutron capture in #%U in
Figure 2-5. In particular, we have indicated the energy level diagram for the
compound nucleus 2*°U for one of the low lying resonances at E=6.67 eV. This
resonance has a very narrow width of 0.027 eV and an extremely high peak (several
thousand barns). The subsequent radiative decay of the compound **U nucleus is
usually a cascade process, with the new nucleus jumping down through a number
of energy levels accompanied by the emission of several gamma rays. Since the
excited levels are typically in the MeV range, the total energy of the emitted
gammas will be quite large.

For resonances (i.e., energy levels) which are spaced widely apart, it is possible to
describe the energy dependence of the absorption cross section by a very simple
expression known as the Breit—Wigner single-level resonance formula:'™*

FY E, 172 1 2 2-35
oy(Ec)=00_1:(Ec_) :}7’ _—f(Ec—EO)‘ (' )

Here E, is the energy at which the resonance occurs (that is, the energy E_ at which
E_.+ E, matches the energy level of the compound nucleus), T" is the so-called zotal
line width of the resonance that essentially characterizes the width of the energy
level and the full width at half-maximum (FWHM) of the resonance, while T is
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FIGURE 2-5.  An energy-level diagram of the capture resonance in U238 at E=6.67 eV.

the radiative line width essentially characterizing the probability that the compound
nucleus will decay via gamma emission. Here o, is the value of the total cross
section o (E) at the resonance energy E, and can be written in terms of the reduced
neutron wavelength X, at E, as

r (A+1)* T
0y=47 X2 = g=2.608%X10°———— g, 2-36
0 0 r 8 AZEO(CV) r 8 ( )
while g=(2J+1)/2(27+ 1) is a statistical spin factor given in terms of the nuclear
spin I and total spin J. I', is the neutron line width and varies in energy as

r,~EYV?. (2-37)

We have sketched the Breit-Wigner resonance shape versus the CM kinetic energy
E_ in Figure 2-6. It should be noted that since resonance absorption is primarily of
importance in heavy nuclei, one can usually approximate £~ E. For low energies
E<E,, the cross section behaves as essentially 1/E'/? or 1/v. For large energies
E > E,, the cross section drops off quite rapidly as £ ~3/2 It is also important to
note that such absorption cross sections are largest at low energies. (A list of
several of the lower lying resonances of #*®U is given in Table 8-2.) The energy
levels in heavy nuclei become relatively more closely spaced at higher energies.
Indeed for energies above roughly 1 keV in heavy nuclei such as 2%U, the
absorption resonances become so closely spaced that they cannot be resolved by
experimental measurements. The treatment of neutron absorption in such unre-
solved resonances is a very difficult but important task in nuclear reactor analysis.
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FIGURE 2-6. A single-level capture resonance.

(b.) NUCLEAR FISSION

Nuclear fission is yet another reaction that proceeds by compound nucleus
formation. Once again a compound nucleus is first formed by neutron absorption.
This compound nucleus then decays by fissioning into two lighter nuclei. Since the
mode of disintegration is relatively independent of the formation mechanism, we
might again expect the cross sections for nuclear fission to exhibit a resonance
structure very similar to that characterizing radiative capture. This is certainly the
case for fission cross sections characterizing nuclei such as ?**U, #*°U, and *°Pu.
However the fission cross sections for other heavy nuclei such as 2*?Th and 2**U
exhibit a somewhat different structure in that they are essentially zero until the
incident neutron energy exceeds a threshold of roughly an MeV. To understand
this latter behavior, we must examine in more detail the fission process itself, a task

we shall defer until Section 2-II.
(c.) SCATTERING

1.) Inelastic scattering

In an inelastic scattering reaction, the incident neutron is first absorbed by the
nucleus to form a compound nucleus. This nucleus then subsequently decays by
reemitting a neutron. However the final nucleus is left in an excited state. Such
reactions usually occur only for relatively high neutron energies, say above 10 keV,
since the neutron kinetic energy must exceed a certain threshold energy in order to
excite the first excited state of the compound nucleus. We have depicted this
reaction schematically in Figure 2-7.

Since much of the kinetic energy of the incident neutron may be converted into
the energy of excitation of the target nucleus, it is possible for a neutron to lose a
large amount of energy in an inelastic scattering reaction. It should be noted in
particular that kinetic energy is not conserved in such an inelastic reaction.

ii.) Elastic resonance scattering
A very similar compound nucleus reaction involves first the absorption of the
incident neutron, followed by the reemission of the neutron with the target nucleus
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FIGURE 2-7. A schematic of the energy-level diagram characterizing inelastic scattering.

returning to its ground state (see Figure 2-8). In contrast to inelastic scattering,
kinetic energy is conserved in elastic events. As one finds with most compound
nucleus reactions, there is again a resonance behavior in the corresponding scatter-
ing cross section. In this case, however, the cross section energy dependence is
somewhat different from that observed in radiative capture or fission. The cross
section may actually decrease before rising to a resonance maximum.

This structure arises because the process of resonance elastic scattering may
interfere (in a quantum mechanical sense) with potential scattering. The
appropriate modification of the Breit-Wigner formula to account for scattering
interference is

os(Ec) =0y

T, ( E,\'?
( °) 11 +02R 2 yanr? (2-38)

T E: +y? % Xo 1+y

resonance interference potential
scattering  scattering scattering

where R is the nuclear radius (given approximately by R~1.25x107'34'/3 cm).

iii.) Potential scattering

The simplest type of nuclear interaction is potential scattering, in which the
incident neutron scatters elastically off of the nuclear potential without penetrating
the nuclear surface. Such “billiard-ball” collisions are characterized by an essen-
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FIGURE 2-8.  The energy-level diagram for resonance elastic scattering,

tially energy-independent cross section o, which is of the order of magnitude of the
geometric cross section of the nucleus for intermediate energies, 47R 2.

(d) TOTAL NEUTRON CROSS SECTIONS

Recall that we defined the total cross section for neutron-nuclear reactions as
the sum of the cross sections for each type of reaction

o,=0,+o, +o+... (2-39)

Such cross sections can be measured by performing transmission experiments such
as those we used to operationally define the concept of a cross section. That is, one
shoots a monoenergetic beam of neutrons of energy E at a thin target and then
measures the fraction of the incident beam that penetrates the sample.

It 1s of interest to see if we can understand the energy dependence of total cross
sections in terms of the various different reactions and reaction mechanisms we
have discussed earlier. To be specific, let us consider the total cross section of a
common reactor material, graphite (‘2C), which is shown over the energy range
from 10~ 2eV to 10MeV in Figure 2-9. One can distinguish essentially five different
regions of cross section behavior for this material. For very low energies, the cross
section behaves as E ~'/2, At about 1073eV the cross section becomes very jagged
and irregular. These spikes in the cross section smooth out by an energy of 10~ eV,
and the cross section from this energy up to 10°eV is essentially constant. Above
10°eV the cross section begins to show a detailed structure once again, until it
eventually drops off above 107eV.
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FIGURE 2-9. The total scattering cross section of 'C.

In an effort to explain each of these different types of behavior, let us begin with
the smooth cross section variation for intermediate energies (region @). In this
energy range, the cross sections of most nuclei are dominated by potential scatter-
ing (except for heavy nuclei in which both resonance scattering and absorption
may be dominant effects because of low-lying energy states). The cross section
magnitude is essentially just the geometric area presented to the neutron by the
nucleus (~5b) and depends very little on neutron energy.

The jagged behavior in the MeV region corresponds to resonance reaction
mechanisms since now the incident neutron energy is comparable to that of the
lowest energy levels in the compound nucleus '}C. Since the nuclear energy levels
lie closer to the ground state for heavier nuclei, we would expect that such
resonance structure would appear at progressively lower energies for the heavier
nuclides. For example, we have already noted that a pronounced resonance occurs
in 28U at 6.67eV.

The falloff in the cross section at very high energies (region @) is easily
understandable in terms of the neutron wavelength

-9
N h__h_286x107° (240)
P V2mE VE (eV)
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Since this wavelength decreases with increasing neutron energy, it is apparent that
for sufficiently high energies, the probability of neutron interaction with the
nucleus will similarly decrease. Such very high energy behavior has little relevance
to nuclear reactor analysis, since neutrons in fission chain reactions rarely exceed
10MeV in energy.

The irregular, jagged behavior at low energies in region @ is also a wavelength
effect. For sufficiently small energies, the wavelength becomes comparable to the
interatomic spacing, and the neutron interacts not with a single nucleus but rather
with an aggregate of nuclei. If the material has a regular structure (such as the
crystalline structure of graphite), the neutron will be diffracted, just as X-rays are
diffracted when passing through a crystal. This is accompanied by a sensitive
energy dependence as the neutron wavelength becomes comparable to multiples of
the spacing between various crystal lattice planes. For sufficiently small energies,
the wavelength becomes so large that diffraction becomes impossible, and the cross
section becomes smoothly varying again.

There are two other important effects which influence the neutron cross section
behavior at very low energies (regions @ and @). If the neutron energy is less
than the chemical binding energy of atoms in the sample (~1eV), the neutron will
no longer be interacting with a free nucleus, but rather with an aggregate of bound
nuclei. It can interact and excite the internal modes of the sample, such as crystal
lattice vibrations or molecular rotations. For these low energies, the thermal motion
of the nuclei also becomes very important. If we recall that these thermal motions
are essentially characterized by the sample temperature 7 and that the atoms in
thermal equilibrium at this temperature are characterized by a thermal energy 24T,
where k is the Boltzmann constant, k=8.6173><10‘5eV/ °K, then for neutron
energies comparable to this thermal energy (at room temperature, £ =0.025¢V), the
motion of the nuclei must be considered. We will return in the next section to
discuss the modifications this requires in the neutron cross section. Suffice it to say
at this point that such considerations imply that for small neutron energies, the
cross section will behave as 1/E /2,

Similar features are found in most neutron cross sections of interest in reactor
analysis, although the particular energy regions in which such behavior arises will
vary from nuclide to nuclide. For example, we have summarized the characteristics
of nuclei of different mass numbers in Table 2-1.1°

We will return later from time to time to discuss more specific features of
neutron cross section behavior which are of particular significance for nuclear
reactor applications.

3. NUCLEAR DATA SETS

The key ingredient in all reactor calculations is a knowledge of the various
relevant neutron-nuclear cross sections. The complicated dependence of such cross
sections on neutron energy and angle of incidence, combined with the large
number of isotopes involved in nuclear reactor analysis implies that neutron cross
section data can be quite massive. Such data have been accumulated over the past
few decades by both experimental measurements and theoretical calculations. The
tabulation of these data has grown from a single volume, BNL-325!! (the so-called
“barn book™) in the 1950s to a six-volume set!? in the 1960s to the point where
nuclear data are most conveniently kept on magnetic tape or in computer memory.
(Although it should be mentioned that a new third edition'> of BNL-325 has
recently been issued.)
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TABLE 2-1 A Summary of Cross Section Behavior for Nuclei of Various Mass Number!®

Slow Epithermal Fast
neutrons neutrons neutrons
E<leV leV< E<.1MeV AMeV< E <20MeV

Separated resonances
Light —
nuclei Potential scattering
A<25 s . -
Resonance scattering, (n,2n), (n,p)
= -
Separated Overlapping Continuum
resonances resonances | resonances
Intermediate
nuclei Resonance scattering, radiative capture
25<A<80 -]
Potential scattering Inelastic scattering
el
Separated Overlapping Continuum
resonances resonances resonances
Heavy -
nuclei Radiative capture
A>80 ——

" Inelastic scattering, (n,2n)

Basic nuclear data appear in a wide variety of forms. For example, raw cross
section data are usually provided by a variety of experiments, each char-
acterized by a different degree of accuracy. Multiple sets of experimental data may
exist giving different values for the same cross sections. Data may be provided by
different theoretical calculations of varying accuracy. There are also numerous
gaps where no cross section measurement or theory is available or applicable. The
enormous volume of such varied nuclear data would overwhelm the nuclear
engineer in his efforts to extract those cross sections of relevance to his particular
needs.

Hence a number of years ago it was decided to consolidate and standardize all of
the cross section information into one data set. To this end the Evaluated Nuclear
Data File (ENDF)'* was established to consolidate, organize, and present these
data in a form convenient for nuclear applications. The ENDF system contains
both neutron and photon cross section data along with data-processing computer
programs which can manipulate the data into the most convenient form for the
user. These data are stored in three computer library systems:

(1) CSISRS (Cross Section Information Storage and Retrieval System): This
data set contains essentially unevaluated raw data from experimental
measurements.

(2) ENDF/A: This data set contains both complete and incomplete sets of
nuclear data as soon as they become available. For each isotope there
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may be more than one data set for a particular reaction, or there may be
none at all for certain reactions of interest.

(3) ENDF/B: The ENDF /B data set contains only complete, evaluated sets
of nuclear data presented in a form that can be most conveniently utilized
by the nuclear designer. Data for approximately 80 isotopes are included
for all significant neutron-induced reactions in the energy range 10~ °eV
to 20MeV. In particular, cross section data are provided for the reactions
(n,v), (n,fission), (n,p), (n,a), (n,n), (n,n’), (n,2p) and (n,2n), as well as
for the differential scattering cross sections (described in Section 2-1-D).

ENDF /B is therefore regarded as the standard source of nuclear data for use in
nuclear reactor analysis in the United States. (There are comparable data sets in
Europe and the Soviet Union.) The ENDF/B data set is continually being
reevaluated and updated as new cross section measurements become available.
Revised versions of the data set are issued at one- or two-year intervals.

The effort involved in preparing the ENDF/B set is enormous. It not only
involves collecting and organizing the massive amount of nuclear data available
from an enormous variety of sources, but evaluating these data, checking them for
consistency, filling in the gaps in the data using existing theories (or educated
guesses), testing the data against experimental measurements, and arranging the
data in a convenient form for use.

The actual data contained in the ENDF /B set are usually not contained in
tabular form, but rather in the form of numerous fitting parameters that can be
assembled by a processing code into a fully evaluated set of cross section data for
any material of interest. For example, the set contains resonance parameters such
as level widths, resonance energies, and cross sections at resonance rather than a
tabulated set of cross section data for various energies (which would require a
prohibitively large storage). The resonance cross section can then be generated
using these parameters in a Breit-Wigner type resonance formula.

We will return to discuss further details of how such data sets are manipulated
into the forms useful for reactor calculations when we have developed a more
complete understanding of the various methods used in nuclear reactor analysis. At
the end of this chapter we have provided a list of the most useful sources of current
neutron cross section data.'”

D. Some Generalizations of the Concept of the Cross Section

1. DIFFERENTIAL SCATTERING CROSS SECTIONS

Neutron cross sections provide a quantitative measure of the probability that
various types of neutron-nuclear reactions will occur. For example, we have
introduced ¢,(E) to characterize the probability that a neutron with kinetic energy
E incident upon a nucleus will be absorbed. Similar cross sections have been
introduced to describe reactions such as scattering.

It is frequently useful to introduce a generalization of the concept of a neutron
cross section characterizing the scattering reaction. In such reactions the incident
neutron will usually experience a change in both direction of motion and energy in
the scattering event. (Just imagine a billiard-ball collision.) The microscopic scatter-
ing cross section will describe the probability that such a scattering collision occurs.
However it provides no information about the change in neutron direction or
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energy that occurs in such a collision. This latter information is very important in
certain types of reactor studies. To characterize it, we must introduce the concept
of the differential scattering cross section.

Before we develop these generalizations, let us offer both an explanation and an
apology for the mathematical detail that follows. It has been our intent to keep the
level of mathematics in these introductory chapters as low as possible. Unfor-
tunately, however, to describe cross sections characterizing changes in neutron
energy and direction, one must utilize a bit of vector notation. Frequently students
tend to become somewhat intimidated by the notation customarily used to describe
the treatment of the direction of neutron motion. We wish to reassure the reader
that regardless of appearance, the actual level of mathematical analysis we will use
is very rudimentary and essentially includes only vector algebra with an added
dash of volume integration.

First we must introduce variables that characterize the motion of the incident
neutron. The natural choice would be the neutron velocity v. Then the cross section
we wish to define would describe the probability that a neutron incident with a
velocity v would be scattered by a nucleus to a new velocity v’.

However in reactor analysis it will be more convenient to describe the neutron
motion with slightly different variables. We will essentially decompose the neutron
velocity vector into two components, one variable characterizing the neutron speed
and a second variable for the neutron direction of motion. We use the kinetic
energy of the neutron E = mv? instead of the neutron speed itself. Then to specify
the direction of neutron motion, we introduce a unit vector £ in the direction of the
neutron velocity vector v:

Q=v/|v|= € sinfcosp+¢€, sinfsing + €, cosh. (2-41)

where we have chosen to represent this direction unit vector in spherical velocity-
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FIGURE 2-10. The neutron direction unit vector £ in spherical coordinates.
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space coordinates (#,¢) (see Figure 2-10). Notice that to describe the incident
neutron velocity we now specify both its energy E and its direction Q.

At this point it is convenient to consider how one integrates over these variables
(as we shall have cause to do later in this section). Suppose we wished to integrate
over all possible neutron velocities. This integration could then be performed in
either Cartesian or spherical velocity coordinates:

[af)= f_°° db, f_w do, f_°° dv, f(v) = fo " dov? fo i fo "4osino ). (2-42)

However we have defined the unit vector in the direction of the velocity vector v as
2. Hence we can identify the angular portion of the integration in Eq. (2-42) as just

the integration over this direction:
S

Lfﬁ Ej(;zwdcbj(;wsinadg. ‘ (2-43)

In this sense we see that the differential 4Q of the unit vector corresponds to a
differential solid angle

dQ=sinfdf do. (2-44)

One final modification is useful here. We will usually choose to work with the
neutron energy E rather than the neutron speed. Hence rather than choosing to
integrate functions of v over all neutron velocities, we will integrate functions of E
and  over all possible neutron energies and directions:

[d1(m)- fo “dE f4 "ds‘z 1(E, Q). (2-45)

So much for mathematical preliminaries. We will now proceed to introduce the
concept of a cross section that characterizes the probability that a neutron is
scattered from an initial energy E and direction of motion § to a final energy E’
and direction of motion ’. To make life simple, we will first do this for the
situation in which we are only interested in the change in neutron energy in
scattering. Imagine a beam of neutrons of incident intensity I, all of energy E,
incident upon a thin target of surface atomic density N,. Then the rate/cm? at
which neutrons will be scattered from their original energy E to a final energy E’ in
the range E’ to E'+ dE’ is proportional to the beam intensity 7, the target surface
density N,, and the differential range dE’ of final energies. We will define the
microscopic differential scattering cross section 6 (E— E') as the appropriate propor-
tionality parameter

Rate/cm?= o (E—E’)dE'IN,,. x % (2-46)
7,

Hence we find that ¢ (EF—E’) characterizes the probability that a scattering
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collision changes the original neutron energy from E to E’ in dE’. It is important to
notice that this differential scattering cross section is a “distribution” in the sense
that it is associated with a certain range of final energies, E’ to E’+ dE’. Hence its
dimensions are cm?/eV.

There is a very simple relationship between the differential scattering cross
section o (E—E’) and our earlier definition of the microscopic scattering cross
section o (E). If we recognize that the latter quantity is just related to the
probability that a neutron of energy E will suffer a scattering collision, regardless
of the final energy E’ to which it is scattered, then it is apparent that o (E) is just
the integral of the differential scattering cross section g (E—E’) over all final
energies E’

o(E)=[ “dE'0 (E—E)). (2-47)
0

Of course this relationship explains the origin of the term “differential.”

It should be mentioned that occasionally one encounters a somewhat differ-
ent notation for the differential scattering cross section which may be written as
do /dE. We find the convention of denoting differential cross sections by a multiple
variable argument [such as (E— E’)] to be more convenient for our purposes, and
hence will use this notation throughout.

We can similarly introduce the concept of a differential scattering cross section
describing the probability that a neutron scatters from an incident direction Qtoa
final direction €' in a very similar manner:

o (Q->®). N o /2(

Once again, o (R2—') is related to our earlier microscopic scattering cross section
by an integration over all final dire,c\tions

o (Q)= j dQ o (Q—Q)=0.. (2-48)

Two comments are useful here. First, it should be mentioned that the dependence
of the scattering cross section o (ﬂ) on the incident neutron direction is usually
ignored. Indeed very few microscopic scattering cross sections in reactor applica-
tions depend on the incident neutron direction because the nuclei in any macro-
scopic sample are usually randomly oriented, and thus any directional dependence
averages out when averaged over all possible nuclear orientations. (One could
imagine a sample in which most of the nuclei could be aligned—e.g., a ferromag-
netic material—but such situations can safely be ignored in reactor analysis.)

In this case, however, even though the differential scattering cross section
o (ﬂ—>ﬂ) will not depend on the incident neutron direction, it will depend on the
change in neutron direction. This is most conveniently expressed in terms of a
functional dependence on the angle through which the incident neutron is scattered
—the so-called scattering angle 8, or more conveniently, the cosine of this scattering
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FIGURE 2-11.  Definition of the scattering angle 4.

angle, py=cosd, which can be conveniently expressed as the dot product between
the unit direction vectors p,= Q- (Again, the dependence on azimuthal angle ¢
does not arise for materials in which the nuclei have a random orientation.) One
occasionally denotes this functional dependence by writing

0, (R>0)=0,(Q- Q) =0, o). (2-49)

We will continue to use the somewhat more formal notation by writing US(Q—>Q’),
even though we know that this differential cross section usually depends only on
Ko

Thus far we have developed the concept of differential scattering cross sections
that characterize the probability of scattering from one energy to another or one
direction to another. We can combine these concepts by defining a double differen-
tial scattering cross section that characterizes scattering from an incident energy £,
direction € to a final energy £’ in dE’ and Q in dQ

o (E—E’ Q). m /fn

Again, alternative notations are occasionally used such as o(E, Q>E’ Q) or
d%./dE ds.

We can again relate the double differential scattering cross section to the
differential scattering cross section or the scattering cross section by integration
over energy or angle:

o (E—>E’)= f4 A o (E—E’,Q-%), (2-50)

or

A

o (E, Q0= fo “dE’ 6 (E—E', -, (2-51)
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or

A

oS(E)=f4 dsz'fowdE’os(E_)E',s‘z_)s‘z'). (2-52)

The concept of a differential scattering cross section can also be applied to
macroscopic cross sections by merely multiplying by the atomic number density N:

2(E—>E, Q—)Q')E No(E—E’, Q—)Q')
S(E—E')=No(E—-E") (2-53)
2 (@)= No ()

Such differential cross sections are quite important in nuclear reactor analysis
since they determine the manner in which neutrons move about in a reactor core,
as well as the rate at which they leak out of the reactor. The measurement or
calculation of such cross sections can become quite involved, and the amount of
data necessary to adequately represent differential cross sections is usually rather
voluminous. Such data are contained in evaluated cross section files such as
ENDF/B, as well as in cross section compilations such as BNL-400.'¢

Although the calculation of such differential scattering cross sections is usually
formidable, there is one instance of considerable importance to nuclear reactor
analysis in which such cross sections can be calculated in a straightforward fashion
merely by using the laws of conservation of energy and momentum. This is the
situation in which neutrons scatter elastically from stationary nuclei. To prepare
the way for the calculation of such cross sections, let us first decompose the
differential scattering cross section into two factors:

o(E—>E")=0(E)P(E-E"). (2-54)
If we recall our earlier definition of the scattering cross section, o (E), then it

becomes apparent that we can identify

Probability that a neutron scattering with
initial energy F will emerge with a new energy
E’ in the interval £’ to E'+ dE".

P(E—>E")dE'=

We can explicitly calculate this quantity for the situation in which neutrons of
moderate energies (E < 1MeV) scatter elastically via potential scattering from
stationary nuclei of low mass number A.

2. KINEMATICS OF NEUTRON SCATTERING FROM
STATIONARY NUCLEI

The kinematics of any two-body collision process is simplified very con-
siderably when analyzed within the center-of-mass (CM) coordinate frame. We
have sketched the collision event before and after the collision in both the LAB
and CM coordinate frames in Figure 2-12. Here, lower-case notation corresponds
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Target Scattering
Neutron COM nucleus angle — LAB
system
O— ®—>— @ _____
m VL Vem M
LAB — Before LAB — After
Scattering
angle — CM
system
o= @ — | ——L—A
Ve
CM — Before CM — After
FIGURE 2-12.

Definition of collision coordinates in LAB and center-of-mass (CM) systems.

to the neutron and upper-case notation to the nucleus. The subscripts L and C refer
to LAB or CM frames, respectively.

The velocity of the CM frame is defined by

Yem= —(—;FI——M—S(va+ MV =15 (2-55)

where we have assumed that the initial nucleus velocity V, is zero and noted that
the nucleus—neutron mass ratio M /m is essentially just the nuclear mass number 4.
If we note that the neutron and nucleus velocities in the CM frame are given by

Ve=YL = VYem ™ A+1 B

1 (2-56)

Ve=—veu=-— va’

then it is apparent that the total momentum in the CM frame is zero, as it must be.

We can relate the total kinetic energies in the LAB and CM frames by
computing

0
LAB: E,_ = imo? + 1 377,

CM: Ec=imol+ i1 MVZi=1 uol. (2-57)
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where we have introduced the reduced mass u=mM /(m+ M). Hence we find the
important relation between the energy in the CM and the LAB frames as

Ee= 2 F~—F (2-58)
In particular it should be noted that the total energy in the CM system is always
less than that in the LAB system. The energy difference is taken up by the center of
mass motion itself.
Using conservation of momentum and energy, it is easy for one to demonstrate
that the magnitudes of the CM velocities do not change in the collision:

, A
v gyt

/ L (2-59)
Ve=Ve=irov

only their velocity vectors are rotated through the CM scattering angle §.. This fact
allows one to relate the scattering angles in the LAB and CM frames. Consider the
vector diagram in Figure 2-13 illustrating the velocities and scattering angles in
these two frames. ‘

If we note from this diagram that

vp sind; = vesinf,

(2-60)
v €08l = vyt vecosf,
then we can relate the scattering angles in the CM and LAB frames by
vesiné sinf
tanfy = v -f-v' cgsﬂ T —. (2-61)
LI ¢ — Feos O

This relationship is particularly useful since cross sections are usually calculated
in the CM frame, but are measured and used in the LAB frame. If we denote the
differential scattering cross sections characterizing scattering through angles 4, and
6 in the LAB and CM frames, o, () and o-\(0) respectively, we can use

0, (8,)sin B, db, = ocpy(8c) sin b db (2-62)

VCM

Vel = VS|

FIGURE 2-13.  Relation between the scattering angles in the LAB and CM frames.
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to relate the LAB and CM differential scattering cross sections by

3/2

(L + 2 cosf-+ 1)
A 4

o ()= ocm(fc) . (2-63)

1+Zcosﬁc

Returning to our vector diagram in Figure 2-13 and using the law of cosines, we
can find

2 2 12

cos (180° —6.) = Tocteny (2-64)
but using Eqgs. (2-55) and (2-59), we can rewrite this as
1/2mo? + A%+ 1+2Acosd
1/2mor _E'_ <. (2-65)
1/2mo? E (A +1)?
It is useful to introduce a parameter related to the nuclear mass number 4
_(A-1Y
(251 2

Then we can rewrite the final neutron energy after collision, E;= E’, in terms of the
incident neutron energy, E;=E as

(1+a)+(1—a)cosbc }Ei. (2:67)

Let us study this very important relation in more detail. First notice that it
implies that the energy transfer from the neutron to the nucleus is directly related
to the scattering angle in the CM frame. For example, if §.=0, then the neutron
would lose no energy (E;= E,). This corresponds, of course, to no collision at all (a
“miss”). The maximum energy loss occurs in a backscattering collision in which
0-=180°. In this case, E;=aFE,. Hence the maximum energy that a neutron can
lose in an elastic scattering collision with a stationary nucleus is (1 —a)E, For
example, in scattering collisions with hydrogen nuclei (4 =1), the neutron could
conceivably lose all of its energy, while in a collision with a heavy nucleus such as
238U it could lose at most 2% of its incident energy.

In summary, then, we have discovered two very important facts. First, a neutron
cannot gain energy in an elastic collision with a stationary nucleus (E; is always
less than E;). Second, the neutron cannot emerge from an elastic scattering collision
with an energy E; less than aF,.

We can now go one step further and actually calculate the scattering probability
distribution, P(E—E’), or in our present notation, P(E,—E;), for the case of
elastic scattering from stationary nuclei. First we note from our preceding discus-
sion that P (E,— E;) must vanish if the final energy E; does not fall within the range
afE; < E;< E;. To calculate P(E,— E)) in this range, we will utilize the relationship
Eq. (2-67).
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If we recall that there is a one-to-one relationship between the neutron energy
transfer and the scattering angle, we can infer that there must similarly be a
relationship between the probability of the neutron experiencing a given energy
transfer E,— E; and the probability that it will be scattered through a given
scattering angle f.. Yet the probability of scattering through an angle 8. into df
about 6 is just given by

P (8)27sinbedbe= M) 27 6ing b, (2-68)

O

Hence we can equate

ol
P(E—>E)dE,= - C—hz(i)ZwsinOC db. (2-69)

If we now differentiate Eq. (2-67)
E(1—a)sinf-db-

dE;= > , (2-70)
and substitute this into Eq. (2-69), we find the very important result
4mocpm(fc)
—_— < E;<E,
P(E—E)= (1-a)Eg,’ oE;< B L, (2-71)
0, otherwise

To complete the determination of P (E;— E;), we still need to know the differen-
tial scattering cross section in the CM frame. This knowledge must come from both
a consideration of quantum mechanics and the detailed nuclear physics of the
interaction. Fortunately, however, we can avoid such considerations since the CM
potential scattering cross sections characterizing neutrons of interest in reactor
applications (with energies E<10MeV) do not depend on 8. for light nuclei (say
A < 12). That is, the scattering in the CM frame is isotropic such that

05
OCM(BC) = 4 (2‘72)

Such behavior is known as “s-wave” scattering (a term which arises from quantum
mechanics) and is the most common form of elastic scattering in nuclear reactors.
For heavier nuclei, there will tend to be some mild angular dependence of oy (8c),
but since elastic scattering from such nuclei does not contribute appreciably to
neutron energy loss in most nuclear reactor types, we will confine our attention
here to s-wave elastic scattering from stationary nuclei. Then, using Eq. (2-72) in
Eq. (2-71), we find that the scattering probability distribution for elastic s-wave
scattering from stationary nuclei takes the form

1
P(E—>E)= (1-a)E;’
0, otherwise

E.<E.<E.
HES ES S (2-73)
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Notice in particular that the probability of scattering from an energy E, to a final
energy E; is independent of the final energy E;.

Using this probability distribution, we can compute the average final energy of a
neutron suffering an elastic scattering collision as

=_ B l+a
E= f dE,E,P (E,~E,) =( )Ei. (2-74)
ak; 2
Hence the average energy loss in such collisions is
E=Ei—E,=( 1'2"")Ei. (2-75)

For example, neutrons suffering scattering collisions in hydrogen (a=0) will lose
on the average half of their original energy in each collision. By way of contrast, in
a scattering collision with a 228U nucleus, they will lose on the average less than 1%
of their original energy.

We can now write the differential scattering cross section characterizing elastic
(s-wave) scattering from stationary nuclei by substituting Eq. (2-73) into Eq. (2-54)

o(E)
o(E~E)= (1-a)E,’
0, otherwise.

E,<E,<E, (2.76)

This is about as far as we can go in determining the explicit form of o (E,—E)
since the elastic scattering cross section o (E) itself depends on the details of the
nuclear potential and is generally obtainable only by measurement. Fortunately
o,(E) characterizing potential scattering is only weakly dependent on energy and
can frequently be taken as constant over a wide range of neutron energies.

Such elastic scattering plays a very important role in nuclear reactor behavior
since it tends to slow the fast fission neutrons down to thermal energies. However
inelastic scattering processes are also important, particularly in fast reactors where
neutron moderation by light isotopes is minimized. Since kinetic energy is not a
conserved quantity in an inelastic scattering collision (the nucleus is left in an
excited state), we can no longer use simple kinematical arguments to determine
P(E,—»E,) for such processes. Rather one must rely on measurements of the
differential scattering cross section or on nuclear models. Although such models
are useful for qualitative estimates of neutron scattering, most detailed reactor
studies simply use the measured cross section in essentially tabular form for the
various different energy transfer combinations E,— E;.

One final comment should be made concerning the “other half” of a scattering
event, namely the nuclear recoil. Although this is of little concern to the neutron
economist, it is of very considerable concern to the reactor designer since the recoil
energy of a nucleus suffering a collision with a fast neutron will be sufficient to rip
it completely out of its crystalline lattice. To be more specific, the average recoil
energy of a nucleus suffering an elastic scattering collision with a neutron is just
1(1 - a)E; [recall Eq. (2-75)]. For fast neutrons, this recoil energy will be in the keV
to low MeV range. Hence the recoiling nucleus will not only be torn out of its own
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lattice position by the collision, but will possess sufficient recoil energy to dislocate
other nuclei in the lattice, leading to significant radiation damage to the material.
This is an extremely important process in materials exposed to the high radiation
environment of a nuclear reactor core and must be taken into account in nuclear
reactor design. We will return to consider it in more detail in Chapter 11.

3. EFFECTS OF NUCLEAR MOTION

Thus far we have studied neutron cross section behavior under the assump-
tion that the target nuclei are at rest; but of course the nuclei are always in a state of
thermal motion. Fortunately the speeds characterizing nuclear motions are often
very much less than those of the neutrons, and for many purposes this nuclear
motion can be neglected entirely.

There are two instances in which such thermal motion of the nuclei must be
taken into account, however. If the neutron speeds are comparable to the nuclear
speeds, then of course one can no longer treat the nuclei as stationary. This will
occur when the neutron energy becomes comparable to the thermal energy of the
nuclei, that is v= ¥, =(kT/M)'/? or E=kT. Such a comparison indicates that for
neutron energies less than roughly leV, one must specifically account for the
thermal motion of the nuclei. As we mentioned earlier, such low-energy neutrons
are referred to as thermal neutrons. _

There is also a situation in which the effects of nuclear motion must be taken
into account even when the neutron speed is much larger than that of the nuclei.
This arises when considering processes in which the cross sections exhibit sharp
resonances. Since the width of these resonances may be quite narrow, much less
than 1eV in most cases of interest, even the modest speeds of nuclear thermal
motion can significantly affect the energy dependence of the neutron cross section
in the vicinity of the resonance. Such a phenomenon is known as the Doppler effect,
since it is closely akin to the familiar frequency shift that accompanies variations in
relative motions between source and receiver in sound propagation.

In this section we will first examine the effects of nuclear motion on neutron
cross section behavior for both thermal neutrons and cross section resonances. We
will then briefly discuss the modifications that occur in the differential scattering
cross section when the thermal motion of the nuclei is taken into account.

(a) THERMALLY AVERAGED INTERACTION RATES

Let us begin by considering an interaction between a neutron of velocity v
and a nucleus moving at a velocity V. If the atomic number density of such nuclei
is N, then the interaction frequency for such reactions is given by

[v—V]o(jv—V])N, (2-77)

where we have noted that it is the relative speed, |v—V|, that occurs in this
interaction frequency.

Of course not all of the nuclei in the target sample will be moving with the same
velocity V. In general they will have a distribution of velocities, and in fact, the
interaction frequency we are really interested in is the average of Eq. (2-77) over
these various nuclear velocities. Suppose we define the distribution of nuclear
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velocities

N (V)d*y = Number of target atoms/ cm?® with velocities (2-78)
Vin 4%V about V,

Then the probability of a neutron interaction per neutron per second with a
nucleus of any velocity is obtained by averaging Eq. (2-77) over 9U(V)

oNG (v)= f d*Vlv—V]a(jv=V]) 9L(V). (2-79)

Notice that we have essentially used this expression to define an averaged cross
section G(v) depending only on the neutron speed v. That is, we can write the
appropriately averaged cross section characterizing neutrons moving with a speed v
through a sample of nuclei with a velocity distribution 9 (V) as

5(v)= E}—v-fd3V|v—V|o(|v—V|)@L(V). (2-80)

It is important to remember that this is the cross section that would be measured in
an experiment (such as the transmission experiment we described earlier). No
experiment looks directly at the true neutron-nuclear reaction cross section, but
rather measures an average of o(Jv—V|) over the distribution of nuclear velocities.
The same is true for applications of such cross sections to nuclear reactor analysis.
Since any reactor is at a finite temperature, the nuclei comprising its core will be in
thermal motion, and hence one must take care to always use cross sections that
have been appropriately averaged over these nuclear velocities. Since this distribu-
tion function depends on the temperature characterizing the material of interest,
the “thermally averaged” cross sections will similarly depend on temperature.

It is useful to consider the application of this result to two particularly simple
examples of cross section behavior. We mentioned earlier that many nuclear cross
sections behave essentially as 1/v (e.g., below a capture resonance). If nuclear
motion is to be included, we would express such behavior as

o(jv—V])= IV_LV' (2-81)

If we substitute this form into Eq. (2-80) and note that the nuclear velocity
distribution function is normalized such that

f d*V 9V, T)= N, (2-82)

then we find the averaged cross section becomes just
- Y
6(v,T)= 5 (2-83)

Hence in this instance the observed cross section depends on neutron speed v in
exactly the same way as the true cross section depends on relative speeds.
Furthermore the observed cross section is independent of temperature.
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A second example of interest is that in which the cross section o(Jv—V]) is a very
slowly varying function of relative speed. Since the nuclear velocity distribution is
rather sharply peaked around V' =V, we can approximate Eq. (2-80) by neglecting
V in the relative speed in the integrand for neutron speeds v>> V. In this case, we
again find that

(0, T)=0(v) (2-84)

such that the true cross section and the observed cross section are again the same,
and the observed cross section is temperature-independent. This behavior is
frequently exhibited by the scattering cross section for many reactor materials.

It is also of interest to examine the behavior of the averaged cross section for
small neutron speeds v< V,,. Then we can replace |[v—V| by V in the integrand to
find

5(0.T) — —fd3V Vo(V)IU(V,T). (2-85)

Since the integral is now just a constant, independent of the neutron speed v, we
find that the behavior of (v, T) as the neutron speed v becomes very small is just

5 (v, T)~% as v—0. (2-86)

This explains the low-energy behavior we observed earlier in the total cross section
for graphite. Of course this result can be explained physically by simply recogniz-
ing that for small neutron velocities, the neutron appears to be essentially
stationary to the more rapidly moving nuclei. Hence the collision rate ceases to
depend on the neutron speed and depends only on the nuclear speed distribution
(i.e., the temperature of the scattering material).

Such averages over the thermal velocity distribution of the nuclei in a material
must always be performed in measuring or utilizing cross sections characterizing
thermal neutrons. However such an average is also extremely important in deter-
mining the correct effective cross sections to use when describing resonance
behavior.

Life could become exceedingly complex indeed if a detailed estimate of the
nuclear velocity distribution function 9 (V) were required, since this depends on
the complicated microscopic dynamics of atoms in the reactor (e.g., atomic
vibrations in crystalline lattices or atomic motions in liquids). Fortunately it is
sufficient for most purposes to represent the nuclear velocity distribution by the
Maxwell-Boltzmann distribution characterizing an ideal gas in thermal equilibrium
at a temperature 7:

3/2
N(V)= NM(V,T)= N( ;‘ZT) exp(— MV2/2kT). (2-87)

Then one can write the thermally averaged cross section as
5(0,T)= %fd3V|v—V|o(|v—V|)M(V,T). (2-88)

We will make use of this particular average in the next section.
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(b) THE DOPPLER EFFECT ON CROSS SECTION RESONANCE BEHAVIOR

We have seen that the actual or true cross section depends on the relative
speed between the neutron and the target nucleus. However since the nuclei
themselves are in thermal motion, this relative speed may be either greater or less
than the neutron speed. This difference in relative speeds gives rise to a “Doppler
shift” effect in resonance cross section behavior.

We can take account of this effect by merely substituting the Breit-Wigner
resonance cross section formulas into our expressions for the thermally averaged
cross sections in Eqgs. (2-80) or (2-88). For the purposes of this calculation it is
usually adequate to assume that the nuclear velocities are described by a Maxwell-
Boltzmann distribution M (V).

Now recall that the single-level Breit-Wigner formula for a capture resonance
gives the cross section

Ec— Ey\*
4(—5——3) +1| (2-89)

F-Y EO ]/2
GY(EC)=GOT(E_C) T

in terms of the center of mass energy E.. Our task is to express E in terms of the
nuclear velocity vector V and then perform the integration over nuclear velocities
indicated in the averaging formula Eq.(2-88). There is really nothing particularly
complicated about this task, except for a bit of vector algebra and the fact that the
integral that arises cannot be explicitly performed (rather, it must be performed
numerically or tabulated).

Since this manipulation is not particularly enlightening, we will only outline the
major steps here and refer the interested reader to more exhaustive treatments that
exist in numerous places throughout the literature.'®?! We begin by noting that for
the case of a Maxwell-Boltzmann distribution of target nuclei, one can partially
perform?® the integration over nuclear velocity V to rewrite Eq. (2-88) as

%) 2 5
v—v, v+,
EY(U,T)=——1—fdv,v,207(v,) exp —~u — exp ﬁ_(_—) ’
0

— 2 2 2
Vo oo 20y, 204,

(2-90)

where v, = |v— V| while vy, =(kT/m)"/% If we substitute the Breit-Wigner formula
(2-30) for o,(v,) into this integral, we find an exact expression for the averaged
cross section

EY(D,T)=

Og— —— —————— | —exp|—
r Vo thhv 1+y2 2Dt2h 20ch

FY 1 fwdvrvr (D - Dr)z (U + Dr)z
€X _
0

(2-91)

Here we have defined y =2(E-— E,)/T" where we recall that the CM energy is
E-=1pvl. However this is where we get stuck, because unfortunately this integral
cannot be evaluated analytically. Fortunately it is rather easy to compute the
integral numerically. However before discussing such calculations, it is useful to
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cast Eq. (2-91) into a slightly different form by defining the variables
x=2E—-Ey)/Tand { =T"/T, (2-92)

where T’ is the so-called Doppler width of the resonance

_(4EkT\'?
D:( y ) . (2-93)
Then one can write
I‘Y Eo 1/2
oy(E,T)=00T(—E") ¥({,x), (2-94)
where
o0 2 2
d v—uv, v+uo,
¥(t,x)=> Y | exp| - ) exp| - | (2:95)
2 142 202 202
-2E/T Y Uth Uth

In practice, the ¥({,x) would be calculated for each value of { and x of interest
using straightforward numerical integration techniques. To better understand the
implications of such calculations, we have sketched the thermally averaged capture
cross section as determined by Eq. (2-94) in Figure 2-14.

In particular, we have sketched the dependence of this cross section on energy
for several different temperatures 7. It should first be noted that as the temperature
T increases, the resonance broadens, while its peak magnitude decreases. For this
reason, one frequently refers to resonance cross sections that have been averaged
over the distribution of nuclear velocities as “Doppler-broadened” cross sections.

It should be stressed that we still have not introduced any additional assump-
tions or approximations into this derivation of the Doppler-broadened resonance
cross section form Eq. (2-94). And in several modern computer codes, Doppler-

g (ET)

FIGURE 2-14. Doppler-broadening of a resonance with increasing temperature.
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broadened cross sections are calculated directly from this expression.'”” However
there is an alternative approximate expression for the Doppler-broadened Breit—
Wigner resonance cross section first derived many years ago by Bethe and
Placzek!'® which is more commonly found in textbooks. If one introduces the
following approximations into ¥({,x):

(a) Neglect the second exponential in the integrand of ¥({, x).
(b) Replace v'— v, by (v"2— v'%)/2v'—which is equivalent to approximating

E.— E\'? E-—E
\/EC=\/E(1+ ) ~\/E[l+ SE } (2-96)
(c) Extend the lower limit of integration to y = — o0;
then one finds
(D~ ) TRl 2-97)
y X )~ X)) = ) -
Ve ] 4 1+ y?
while
F? E, /2
a,(E, T)~0°T (f) Y(§,x). (2-98)

The Bethe-Placzek cross section Eq. (2-98) is used very frequently in reactor
calculations and for convenience we have tabulated Y({,x) in Table 2-2. The
approximations used to obtain the Bethe—Placzek form break down for high-
temperature target distributions and for low energy resonances. For example, a
comparison for the 0.296 eV fission resonance of **Pu at T'=2000°C shows a
difference in broadening of 50% between the exact and approximate formula-
tions.?2

However since it is still traditional to utilize the Bethe—Placzek form in analyzing
resonance behavior, we will include a brief analytical study of its behavior along
with that of the exact expression. First notice that for low temperatures 7—0 we
can see from Egs. (2-92) and (2-93) that {—>o0. Hence the integrand of both ¥(¢, x)
and Y({,x) will vanish except in the neighborhood of y~x. We can therefore
replace y by x in the denominator of the integrands to write

§ 1 ® 9 1
V(¢ x)~Y(¢,x)~ exp| — 3 (x— 2= . (2-99
G~ ~s= o [ den[ —hx )= 5 @99)
Hence for low temperatures we arrive at the usual Breit-Wigner form
5 (50 =at (o) [af E2Ee) & h 2-100
E0=r () [{—) +1] (319

which is a comforting, although certainly expected, result.
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Tabulations of the Doppler Broadening Functions'
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0.04309
0.08384
0.12239
0.15889
0.19347
0.22624
0.25731
0.28679
0.31477
0.34135

0.04308
0.08379
0.12223
0.15854
0.19281
0.22516
0.25569
0.28450
0.31168
0.33733

0.04306
0.08364
0.12176
0.15748
0.19086
0.22197
0.25091
0.27776
0.30261
0.32557

0.04298 0.04267 0.04216
0.08305 0.08073 0.07700
0.11989 0.11268 0.10165
0.15331 0.13777 0.11540
0.18324 0.15584 0.11934
0.20968 0.16729 0.11571
0.23271 0.17288 0.10713
0.25245 0.17359 0.09604
0.26909 0.17052 0.08439
0.28286 0.16469 0.07346

0.04145
0.07208
0.08805
0.09027
0.08277
0.07042
0.05724
0.04566
0.03670
0.03025

0.04055
0.06623
0.07328
0.06614
0.05253
0.03880
0.02815
0.02109
0.01687
0.01446

0.03380
0.03291
0.01695
0.00713
0.00394
0.00314
0.00289
0.00277
0.00270
0.00266

0.01639
0.00262
0.00080
0.00070
0.00067
0.00065
0.00064
0.00064
0.00064
0.00063

The x Function
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0.00120
0.00458
0.00986
0.01680
0.02515
0.03470
0.04529
0.05674
0.06890
0.08165

0.00239
0.00915
0.01968
0.03344
0.04994
0.06873
0.08940
0.11160
0.13498
0.15927

0.00478 0.00951
0.01821 0.03573
0.03894 0.07470
0.06567 0.12219
0.09714 0.17413
0.13219 0.22694
0.16976 0.27773
0.20890 0.32442
0.24880 0.36563
0.28875 0.40075

0.01415 0.01865
0.05192 0.06626
0.10460 0.12690
0.16295 0.18538
0.21909 0.23168
0.26757 0.26227
0.30564 0.27850
0.33286 0.28419
0.35033 0.28351
0.35998 0.27979

0.02297
0.07833
0.14096
0.19091
0.22043
0.23199
0.23236
0.22782
0.22223
0.21729

0.04076
0.10132
0.12219
0.11754
0.11052
0.10650
0.10437
0.10316
0.10238
0.10185

0.05221
0.05957
0.05341
0.05170
0.05103
0.05069
0.05049
0.05037
0.05028
0.05022

'T. D. Beynon and L. S. Grant, Nucl. Sci. Eng. 17, 547 (1963).

At the other extreme, the high temperature limit 7— oo implies that {—0. In this

case we find

EY(E’ T)—)O’OT

Y

E 2

r (Eo)‘” ¢ &
e €X
E 2V _w1+y2

5"

Tp

§2x2
|~

- (E— Eo)2

|

(2-101)

which is a Gaussian shape characterized by the Doppler width Ty rather than the
“natural” line width T'. Hence as the temperature increases, the resonance broadens
out from its natural width to eventually approach a width that depends on the
temperature as T,
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One other observation is important. If the Bethe-Placzek form is examined in
greater detail, it becomes apparent that regardless of the temperature, the area
under the resonance remains constant. We can demonstrate this by simply integrat-
ing over the resonance

T
f dEa,(E,T)=ao—r’-f dx($, x). (2-102)
resonance resonance

However since the contribution to the integral from the “wings” of the resonance
(far-off resonance) are so small, we can approximately extend the range of
integration to * oo so that we can explicitly perform the integral to find

deo (E, T)_ool,f l+yf dx exp[ — H(x—y4*] =ol, T, (2:10)

a result which is temperature-independent.

It should be pointed out that such behavior is a consequence of the Bethe-
Placzek approximation. More generally, the area under the Doppler-broadened
resonance given by the exact expression Eq. (2-94) will in fact change with
temperature.?? However for the temperature range and resonances of interest in
most reactor applications, this change is relatively small, and one can essentially
assume that the area under the resonance is relatively insensitive to temperature
changes. This fact will prove of some importance in our later study of reactor
behavior, since it will imply that an increase in the temperature of the absorbing
material will increase the rate at which neutrons are absorbed in the resonance
range of the cross section.

Thus far we have only examined the effect of thermal nuclear motions on a
capture resonance. However we could of course have also substituted in our
expression for scattering cross sections in the vicinity of a resonance, Eq. (2-38),
into the expression for thermally averaged cross sections Eq. (2-88) and labored
through some algebra to again arrive at Doppler-broadened cross sections which
again involve integrals that cannot be performed explicitly. We will avoid the
agony of such manipulation and only state the result of such labors here:

T, oR
St x)+—x(§ x)+47R?, (2-104)

as(Ev’T)'_UO T

where we have defined another tabulated function?! x({,x) (see Table 2-2) to
characterize the interference term:

&, rep[ -3
x¢=o=| & poe . (2-105)

— o0

We will later utilize these expressions to study the absorption of neutrons in
nuclear reactors. Although we have consistently denoted the thermally averaged
cross sections with an over-bar, for instance, 6,(E,7T), we will usually omit this
notation in future discussions and simply regard all resonance cross sections as
having been Doppler-broadened.
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(c) DIFFERENTIAL SCATTERING CROSS SECTIONS WITH UPSCATTERING

We will now discuss the modifications necessary in our study of the differen-
tial scattering cross section characterizing elastic potential scattering when effects
of nuclear motion must be taken into account. Recall that in our earlier discussion
we found that the neutron could not gain energy in an elastic collision with a
stationary nucleus. It can only lose energy in such a collision. It is customary to
refer to such a process as “downscattering,” since the neutron will scatter down in
energy.

We can make this more explicit by considering a particularly simple example in
which an incident neutron scatters elastically from a stationary hydrogen nucleus
(a proton). Then the scattering probability distribution is just

I/E, E.<E,
P(E~E)="0" [

(2-106)
That is, the scattering probability is independent of the final energy E; and
vanishes for E; > E, (corresponding to upscattering in energy).

Let us now consider the situation in which the neutron suffers elastic scattering
collisions in a hydrogen gas at finite temperature 7 in which the nuclei are in
motion with a Maxwell-Boltzmann velocity distribution M (V, T). It is necessary to
repeat our earlier consideration of two-body kinematics to include the motion of
the target nucleus. One would then have to average the cross section characterizing
such scattering over the nuclear velocity distribution M (V,T), just as we did in the
previous sections. Since these tasks are rather tedious, we will simply note that the
results of such calculations®® are that for such a proton gas at temperature 7, the
differential scattering cross section is given by

% e\ [ <E

Eer T ° E.< E;
o, (Ei—Ep)= (2-107)

Wexp D e\ . E>E

E exp( T ) er T i~ E;

where the error function is defined by
erfx=—2— (“dre" (2-108)
Vo Jo

We have plotted P (E,— E;) for several incident neutron energies E, in Figure 2-15.
It should first be noted that unlike the situation in which the hydrogen nuclei were
initially at rest, the scattering probability now depends on the final energy E,.
Furthermore this probability is not zero for E;> E, for a finite temperature gas,
hence implying that it is possible for the neutron to gain energy in a scattering
collision. Such “upscattering” events are significant for incident neutron energies
up to about 10kT. Above this energy, the scattering probability begins to resemble
that characterizing stationary nuclei (i.e., a 7=0 hydrogen gas).
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E = 100 kT

1.0

P(E, > E,)

I .

1.5 2.0

E,/E,

FIGURE 2-15. The scattering probability distribution P (E,— E;) characterizing neutron scatter-
ing from a proton gas at temperature 7.

One could repeat this calculation for a free gas of arbitrary mass number A, but
the expressions for the scattering probability and differential scattering cross
section become quite complicated. Since there are also other effects important in
low-energy neutron scattering such as chemical binding and diffraction, we will
defer a more detailed discussion of thermal neutron cross section behavior until
Chapter 9. However even this brief discussion should indicate the importance of
accounting for the thermal motion of the target nuclei in measuring or using
low-energy neutron cross sections.

II. NUCLEAR FISSION

A. Fission Physics

The binding energy per nucleon in atomic nuclei reaches a maximum of
8.7MeV for nuclei mass numbers of about 50 (see Figure 2-16). Hence it is possible
to produce more tightly bound nuclei and thereby release energy by either fusing
together lighter nuclei (nuclear fusion) or inducing a heavy nucleus into fissioning
into two nuclei of intermediate mass number (nuclear fission). The observed
stability of heavy nuclei against spontaneous fission is due to the short-range
nuclear forces within the nucleus giving rise to a potential energy barrier that must
be overcome before the nucleus will fission. The size of this fission barrier is
typically 6-9 MeV in most heavy nuclei of interest. Hence to induce nuclear fission,
one must add a sufficient amount of energy to the heavy nucleus to overcome this
fission barrier.

This can be done in a variety of ways. One could simply slam an energetic
particle (with kinetic energy greater than the fission barrier) into the nucleus. An
example of such a reaction would be photofission, in which a high-energy gamma
strikes a heavy nucleus, thereby inducing fission. An alternative scheme would be
to let the heavy nucleus capture a neutron. Then the binding energy of the added
neutron itself might be sufficient to overcome the fission barrier and induce fission.

This later process can in fact occur in certain heavy nuclei such as 233U, U,
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FIGURE 2-16. Binding energy per nucleon versus mass number.

“¥pu, and *'Pu. Such nuclides that can be induced to fission with neutrons of
essentially zero kinetic energy (or of more relevance to nuclear reactor applications,
thermal neutrons having very small kinetic energies, at least compared to nuclear
energies) are referred to as fissile nuclides. We will see later that such fissile
nuclides represent the principal fuels used in fission chain-reacting systems.

With most heavy nuclides, the additional binding energy provided by a captured
neutron is not sufficient to push the heavy nucleus over the fission barrier.
Frequently, however, one can add a dash of extra energy to the neutron, for
instance by giving it a kinetic energy of an MeV or so, and this is sufficient to lift
the nucleus the rest of the way over the barrier to cause fission. Nuclides that can
be fissioned with such “fast” neutrons are referred to as fissionable. Examples are
232Th, 28U, and **°Pu (as well as fissile nuclei such as 2*U). Although such
fissionable nuclides do play an important role as nuclear fuels they are unable to
sustain by themselves a stable fission chain reaction and hence must always be
used in combination with a fissile nuclide such as 2°U or ?*°Pu.

There is also a small possibility that certain heavy nuclei will fission spon-
taneously via the barrier penetration mechanism familiar from quantum
mechanics. However the probability for such an event is quite low in most nuclides
of interest as nuclear fuels. For example, the half-life for spontaneous fission in
2381 is some 6.5 % 10'° years. However even this very slow spontaneous fission rate
can be of importance in nuclear systems, since even a few neutrons can be rapidly
multiplied to appreciable numbers in a growing chain reaction.

B. Fission Cross Sections

We noted earlier that nuclear fission is a process that proceeds via compound
nucleus formation, much as does radiative capture. Hence it is not surprising that
fission cross sections show considerable resonance structure. In Figure 2-17 we
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have shown the fission cross sections characterizing the principal fissile nuclides,
33y, U, and 2*°Pu, taken from ENDF/B-1V.

The indicated cross section behavior is very similar to that of radiative capture
cross sections. However this would be expected since we have seen that compound
nucleus formation via neutron absorption is essentially independent of the mode of
compound nucleus disintegration or decay, for example, via fission or gamma
emission. It is particularly important to note that the fission cross section is over
two orders of magnitude larger for low-energy or thermal neutrons than for
high-energy fast neutrons (above 1keV). The thermal neutron fission cross sections
are indeed enormous for these fissile isotopes, ranging up to thousands of barns in
magnitude. Such behavior will prove of very considerable importance in our later
studies of nuclear reactors.

We have also indicated the fission cross sections characterizing the principal
fissionable nuclides of interest, 23>Th, 23®U, and 2*°Pu (see Figure 2-18). This
cross section behavior is somewhat different than that characterizing fissile nuc-
lides since fissionable nuclides can only be fissioned by sufficiently high-energy
neutrons. This implies that their fission cross sections will have a threshold energy,
below which the cross section drops to zero. Even above this threshold energy
(roughly 1 MeV), the fission cross sections are quite low, being less than two barns.

When a neutron is absorbed by a fissile isotope such as 2°U, it may induce that
isotope to fission. Yet it is also possible that the compound nucleus formed by the
neutron absorption, *U*, might simply decay to its ground state by gamma
emission. The relative balance between the probability of fission and radiative
capture is an extremely important factor in nuclear reactor applications. We
characterize this balance by the capture-to-fission ratio, defined by

a=—L. (2-109)

242p, 7~

o e o e P

barn

G,

8 10

Neutron energy, Mev

FIGURE 2-18.  Fission cross sections of principal fissionable isotopes.'?
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This ratio depends not only on the isotope of interest, but as well on the incident
neutron energy E. It is plotted in Figure 2-19 for the three primary fissile nuclides.
It can be seen that most neutron absorption in such isotopes leads to fission events
(with the exception of a small range of a>1 for 2>U). It should be noticed that a
decreases quite appreciably above 0.1 MeV. This latter fact will prove to be of
considerable importance when we discuss the concept of a fast breeder reactor.

C. Nuclear Fission Reactions

A typical nuclear fission reaction such as
on +%33U—(35U*)fission reaction products (2-110)

spews out a variety of reaction products, including the fissioned nuclei or fission
products and several neutrons as well as numerous gammas, betas, and neutrinos.
And of course it also releases a very considerable amount of energy. Indeed a
glance at the binding energy per nucleon before and after the fission reaction from
Figure 2-16 suggests that energy on the order of 200 MeV will be released in each
fission reaction.

The fission fragment nuclei produced by the fission reaction are both highly
charged and highly energetic. They slow down via collisions with adjacent atoms,
losing energy and charge (picking up electrons) in the process. This is in fact the
principal mechanism by which the fission energy eventually appears as heat
generated in the fuel material. However these fission products are usually quite
unstable as well, being somewhat neutron-rich, and will subsequently decay,
usually via beta emission. The energy released in such radioactive decay reactions
can amount to as much as 4-5% of the total energy released in the fission reaction.
Since such “decay heat” will appear with an appreciable time delay corresponding
to the half-lives of the various nuclei involved, it can lead to difficulties unless
properly anticipated in fission reactor design.
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Yet just as significant as the energy released in the fission reaction is the fact that
several neutrons are also produced in the reaction. These neutrons can be used to
propagate a fission chain reaction. Most of these fission neutrons appear essentially
instantaneously (within 104 sec) of the fission event. These neutrons are referred
to as prompt. However a very few neutrons (less than 1%) appear with an
appreciable time delay from the subsequent decay of radioactive fission products.
Although only a very small fraction of the fission neutrons are delayed, these
delayed neutrons are vital for the effective control of the fission chain reaction.

The total number of neutrons (both prompt and delayed) released in a fission
reaction will vary. However in most nuclear applications we only need concern
ourselves with the average number of neutrons released per fission, which we
denote by ». This quantity will depend on both the nuclear isotope involved and
the incident neutron energy, generally tending to increase with increasing neutron
energy. We have shown »(E) as a function of energy for the principal fissile
isotopes in Figure 2-20.

The neutrons produced in the fission reaction emerge with a distribution of
energies, with the average fission neutron energy being roughly 2MeV. As with
other fission parameters, this distribution will depend on the nuclear isotope
involved, to a lesser degree on the incident neutron energy, and will differ for
prompt and delayed neutrons. To characterize this variation in fission neutron
energy, it is convenient to define the fission neutron energy spectrum, or more
simply, the fission spectrum, x(E), defined as

x(E)dE = Average number of fission neutrons emitted with
energy E in E to E + dFE per fission neutron. (2-111)

=l

v4¥9 = 2874 + 0138 E

v =2432 + 0.066 E(0 < E < 1)
= 2349 + 0.15E (E > 1)

v3=2482 + 0075 E{0< E< 1)
= 2412 + 0136 E (E > 1)

0 5 10 15
E {(MeV)

FIGURE 2-20.  Average neutron number per fission » as a function of energy®*
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FIGURE 2-21.  Fission spectrum for thermal neutron induced fission in 23°U.

A typical prompt neutron fission spectrum is shown in Figure 2-21. One can also
represent the fission spectrum by a simple empirical expression; for example, the
prompt neutron fission spectrum of 2*°U is given by

x(E)=0.453 ¢~ 'B6E5inh V2.29E . (2-112)

This proves useful in performing simple estimates of fission chain reaction be-
havior. However more elaborate studies would simply use the fission spectra
tabulated in a nuclear data set such as ENDF/B.

Because of the importance of delayed fission neutrons to nuclear reactor control,
it is useful to introduce a few related concepts useful for their description. By way
of example, consider a typical fission product decay scheme leading to the emission
of a delayed neutron as sketched in Figure 2-22. It should be noted in particular
that the decay sequence leading to the delayed neutron emission is first the beta
decay of ¥Br to ¥’Kr*, followed by the subsequent decay of ¥Kr* to *Kr via
neutron emission. The effective time delay of this process is controlled by the
beta-decay—in this case, the half-life is some 55 sec. We refer to the fission
fragment whose beta-decay yields a daughter nucleus which subsequently decays
via delayed neutron emission as a delayed neutron precursor. Of course a very large
number (at least 45) of different delayed neutron precursor isotopes will be
produced in a fission chain reaction. It has been customary (and found to be
adequate) in reactor analysis to group these precursors into six classes
characterized by approximate half-lives of 55, 22, 6, 2, 0.5, and 0.2-sec, respectively.
Each precursor group will contain a number of different isotopes. For example,
while the 55-sec precursor group is due almost entirely to one precursor, ¥ Br, there
are at least two major contributors, %Br and '*’I, to the 22-sec group. The
composition of the remaining groups are considerably more complex.
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FIGURE 2-22.  Decay of the *’Br delayed neutron precursor.

Since the relative isotopic yield pef fission will vary for different fuel isotopes,
the detailed characteristics of the precursor groups will similarly be isotope-
dependent. To this end, let us define:

A, =Decay constant ( S-decay) of ith precursor group

B;=Fraction of all fission neutrons (both prompt and delayed) emitted per
fission that appear from /th precursor group

B =2 ,B;=Total fraction of fission neutrons which are delayed.

In Table 2-3 we have listed the half-lives, relative yield fractions B;/f, and total
delayed neutron yields »,= v, for the precursor groups characterizing the principle
fissionable isotopes recommended by ENDF/B-1V?. Although dependent on the
fuel isotope, these data do not depend sensitively on the incident neutron energy
below about 4MeV and hence can be used for either thermal or fast reactor
analysis.

The energy spectrum of delayed fission neutrons is considerably lower than that
of prompt fission neutrons and again depends on both the delayed neutron group
and fissioning isotope. We have given a rough composite delayed neutron fission
spectrum in Figure 2-23 along with typical measured spectra for the 55-sec and
22-sec groups of 2*U. More detailed spectrum data can be found in the review
article of Cox.”

Actually there are additional processes that can contribute delayed neutrons to
the chain reaction. Photoneutron reactions (y,n) are particularly important in
reactors containing appreciable amounts of deuterium or beryllium. The decay
times of these processes are even longer than those characterizing delayed fission
neutrons (ranging up to 125 m).%’ However these photoneutrons can usually be
accounted for in reactor analysis by simply including one or more additional
groups of delayed neutrons such as those tabulated above. Furthermore one can
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TABLE 2-3 Delayed Neutron Yield and Half-Life Data?®

232Th: »4=0.0527+0.0040 n/f 23U »,=0.0074 +0.0004
Group T% (sec) Relative Yield Group T 1 (sec)  Relative Yield

1 56.030 0.034 1 55.110 0.086

2 20.750 0.150 2 20.740 0.274

3 5.740 0.155 3 5.300 0.227

4 2.160 0.446 4 2290 0317

5 0.571 0.172 5 0.546 0.073

6 0211 0.043 6 0221 0.023
2354; ,=0.01668 = 0.00070 n/ f 28y p,=0.0460+0.0025 n/f

Group T% (sec) Relative Yield Group T% (sec) Relative Yield

1 54.51 0.038 = 0.004 1 52.38 0.013
2 21.84 0.213+0.007 2 21.58 0.137
3 6.00 0.188+0.024 3 5.00 0.162
4 2,23 0.407+0.010 4 1.93 0.388
5 0.496 0.128+0.012 5 0.493 0.225
6 0.179 0.026 +0.004 6 0.172 0.075

23%Pu: »,=0.00645 +0.00040 n/ f 240Py: ,=0.0090 + 0.0009 n/ f

Group T ! (sec)  Relative Yield  Group T ! (sec)  Relative Yield

1 53.75 0.038 1 53.56 0.028

2 22.29 0.280 2 22.14 0.273

3 5.19 0.216 3 5.14 0.192

4 2.09 0.328 4 2.08 0.350

5 0.549 0.103 5 0.511 0.128

6 0.216 0.035 6 0.172 0.029

241py; py =0.0157£0.0015n/ f
Group T} (sec) Relative Yield

1 54.0 0.010
2 23.2 0.229
3 5.6 0.173
4 1.97 0.390
5 0.43 0.182
6 0.2 0.016
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also find delayed neutrons generated by neutron-absorption processes such as
certain (n,p) reactions, for example, '"0(n,p) "N, since "N decays by neutron
emission with a half-life of 4.165 sec.

The energy released in a nuclear fission reaction is distributed among a variety
of reaction products. We have classified these reaction products as to both range
and emission time, and have indicated the approximate percentage of the fission
energy (some 200 MeV) carried by each:

TABLE 2-4 Energy Release in Nuclear Fission

Reaction Product Energy (%) Range Time Delay

Kinetic energy of

fission fragments 80 <.0l cm instantaneous
Fast neutrons 3 10-100 cm instantaneous
Fission gamma energy 4 100 cm instantaneous
Fission product 8 decay 4 short delayed
Neutrinos 5 nonrecoverable delayed

Nonfission reactions

due to neutron
capture 4 100 cm delayed
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The majority of the fission energy appears as the kinetic energy of the fission
fragments and is deposited essentially at the point of fission in the nuclear fuel.
Note, however, that some of the fission energy appears as kinetic energy of
neutrons (3%) and gammas (4%) with relatively long ranges. This energy will be
distributed over the core of the reactor and adjacent material such as shielding. In
Figure 2-24 we have noted the types of emergent radiation.?®

Furthermore it should be noted that some 4% of the fission energy appears in the
form of heat generated by the decay of radioactive fission products. If the nuclear
reactor were to be suddenly shut down, this decay heat would continue to be
produced and would have to be removed; otherwise the reactor core temperature
would rise dramatically, causing fuel element melting and failure. The removal of
such decay heat is one of the most serious problems in reactor safety studies.
Notice also that a sizable amount of energy (as much as 20MeV per fission) may
be liberated by the high-energy gammas produced in radiative capture (n,7)
reactions.

It is customary to use an effective energy release per fission in determining the
portion of the total energy of fission that can be recovered by a coolant and hence
contributes to the thermal power output of the reactor. Although this energy will
vary somewhat with the type of reactor and the detailed core composition, it is
typically of the order of 192MeV. (A more detailed tabulation of useful energy
release per fission has been calculated using atomic mass data by James?® and is
given in Table 2-5.) Of this 192MeV, some 168 MeV appears as fission fragment
energy, while 7MeV appears as beta energy. These short-range contributions
deposit their energy in the nuclear fuel. If we also take into account the energy
deposited in the fuel (~7%) due to fast neutrons and gammas, we find that some
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97% of the recoverable fission energy is deposited directly in the fuel material. The
remainder is deposited in the coolant or structural materials by neutrons and
gamma radiation, with less than 1% typically being deposited in shielding due to
gamma radiation. Actually as we will see in Chapter 12, the energy deposited in
other regions of the reactor is usually reassigned to the fuel in order to simplify the
thermal analysis of the reactor.

TABLE 2-52¢ Effective Energy Released in Fission

The effective energy released in and following fission of the principal fissile isotopes by thermal
neutrons are:

B3Y. 190.0+0.5 MeV /i
B5U: 192.9+0.5 MeV /f
239Pu:  198.5+0.8 MeV /f
21py:  200.3+0.8 MeV/f

The effective energy released following fission of the major fissionable isotopes by 233U fission spectrum
neutrons are:

P2Th:  184.2+0.9 MeV /f
B4U: 1889 1.0 MeV/f
B6YU:  191.4+09 MeV/f
B8YU:  193.9+0.8 MeV/f
BINp:  193.6+ 1.0 MeV/f
28pu:  196.9+0.8 MeV /f

240py,. 1969+ 1.0 MeV /f
M2p,;: 2000+ 1.9 MeV/f

These values include all contributions except from neutrinos and very long-lived fission products.

D. Fission Fuels

Our previous discussion has indicated that there are a number of possibilities
available for fueling a fission chain-reacting system. In particular, we have noted
that the principal nuclides™ of concern in nuclear reactor applications are:

Fissile nuclides: 233U, 233U, #*°Puy, 2*!Pu

while those susceptible to fast neutron fission are:

Fissionable nuclides: 232Th, 238U, 240Py, 242Pu

Because of both the energy threshold that neutrons must exceed in order to induce
fission in fissionable nuclides and the relatively large value of a characterizing such
nuclides, only the first class of nuclides are capable of sustaining a fission chain
reaction. Of these isotopes, only 2*°U is found in nature—and then, only as 0.711%
of natural uranium (which is composed primarily of 3*U). Although reastors can
be fashioned out of natural uranium with even this low concentration of 2°U if one

tA bit of conventional notation?” for such nuclides remains as debris from the secrecy of the
atomic weapons program during World War II. Two-digit code numbers are used to identify
each isotope where the first digit is the atomic number minus 90 and the second digit is the last
digit of the mass number. Hence 233U is denoted as “25,” 28U as “28,” 23%Pu as “49,” and so on.
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is sufficiently clever, most present-day reactor types are fueled with uranium in
which the percentage of 2**U has been increased or enriched above its natural
value. As we will see later, such uranium enrichment is an extremely complicated
and expensive process.

There is yet another way to obtain fissile isotopes, however. It is found that when
certain nuclides absorb neutrons, they then undergo a sequence of radioactive
disintegrations that eventually result in the formation of a fissile isotope. The two
most important examples of such neutron transmutation reactions are:

BY(n,v)? U ‘i; 29N 2‘8 , 29py,

_)
23 min 3d

22T} n,v)*>Th A mp, B amy
22min 27d
Isotopes that can be transmitted into fissile nuclides via neutron capture are
referred to as fertile. The fertile isotopes of most interest are 2*U and »*?Th, which
are in abundant supply throughout the world.

Yet where does one find the neutrons necessary for this process? In a nuclear
reactor. Indeed since most present-day reactors are fueled with low-enrichment
uranium that may contain as high as 98% #3®U, such transmutation processes will
occur quite naturally as the fertile nuclei capture excess neutrons from the fission
chain reaction. The key parameter in such processes is the number of neutrons
produced in each fission reaction per neutron absorbed in the fuel nuclei. (Here we
" must remember that not all neutron absorptions in the fuel lead to fission—some
result in radiative capture.) We will define

n = Average number of neutrons produced per neutron
absorbed in fuel.

For a fuel composed of a single fissile isotope, we can write

n=vo;/6,=v/(1+a). (2-113)

Most fuels, however, contain a mixture of isotopes. In this case, we would use the
macroscopic fission and absorption cross sections characterizing each isotope to
write

2
=l (2-114)
s

The dependence of this very important quantity on energy E is shown for the
four principal fissile isotopes in Figure 2-25. It should be noted that n(FE) is
generally of the order of 2 for low-energy neutrons, but increases with energy
above 0.1MeV as the capture-to-fission ratio a falls off. If we are to attempt to
utilize the neutrons “left over” from the chain reaction to convert fertile isotopes
into fissile material, it is apparent that we require n(£) to be at least greater than 1,
since one neutron per fission is needed to sustain the chain reaction. Of course, a
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certain fraction of the fission neutrons will be absorbed in nonfuel materials, and
others will leak out of the reactor and be lost to the chain reaction. Nevertheless it
is apparent that n(E) is sufficiently greater than unity to enable appreciable
conversion using any of these isotopes.

Indeed it might even be possible to produce more fissile material than one
depletes in maintaining the fission chain reaction. For this to occur, one would
have to operate with fissile isotopes and neutron energies for which n(E) was
greater than two, since one neutron would be needed to maintain the chain
reaction, while one neutron would be used to produce a new fissile nucleus to
replace the one destroyed in the fission reaction. Any excess over this (and over the
number of neutrons lost to the chain reaction via nonproductive capture or
leakage) could then be used to produce or breed new fissile material.

It is apparent from Figure 2-25 that the most favorable situation for accomplish-
ing this would involve relatively fast neutrons in the 0.1-1 MeV range. The most
suitable fuel would be °Pu. Such is the motivation behind the development of the
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fast breeder reactor which operates with a chain reaction in a 2**Pu/?*U fuel
mixture maintained by fast neutrons in order to achieve this large value of 7.

However if we recall the energy dependence of the fission cross section itself, it is
apparent that it is more difficult to use fast neutrons to sustain the chain reaction,
since the cross sections for fast fission are some two orders of magnitude smaller
than those characterizing thermal neutrons. This suggests that it might be easier to
achieve a sustained chain reaction using slow neutrons, since then the probability
of fission is appreciably larger. Yet we must remember that the neutrons produced
in the fission reaction are quite energetic with average energies in the MeV range.
Hence in order to take advantage of the large fission cross sections for slow
neutrons, one must slow down the fast fission neutrons to thermal energies
(<1eV). As we will see in the next chapter, this can be accomplished rather easily
by using elastic scattering collisions. '
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PROBLEMS

2-1.

2-2,

2-3.

What target isotope must be used for forming the compound nucleus ?{Na when the
incident projectile is: (a) a neutron, (b) a proton, or (¢) an alpha particle?

A very important type of radioactive decay process in nuclear reactors is one in which
fission products decay by neutron emission since such processes strongly influence the
time behavior of the fission chain reaction. The slowest such decay process in most
reactors is one characterized by a decay constant of 0.0126 sec™!. Assuming that such
a process controls the rate at which one can decrease the power level of a reactor,
calculate the tire necessary to decrease the reactor power level from 3800 MW
(thermal) to 10 MW (thermal).

Consider an initially pure sample of radioactive material whose successive decay
products are themselves radioactive with differing half-lives. Write the isotopic rate
equations characterizing the concentration of various isotopes in the sample if the
decay chain is of the form 1-2—-53—4—...N. Solve this set of equations in a stepwise
fashion for the isotopic concentrations N,(), Ny(f),... In particular, determine the
long-time composition of the sample if the half-life of one of the 1sotopes 1s very much
longer than those characterizing other isotopes in the chain.

2-4. A fission product of very considerable importance in thermal reactor operation is

2-5.

135Xe, which has an enormous thermal absorption cross section of 2Xx 10° b ‘This
nuclide can be produced either directly as a fission product or by beta decay of *I, as
indicated by the radioactive chains below:

B 135CS
1351 - 135y e
~
T T +n 136Xe
fission fission

Write the rate equations describing the concentration of **I and !**Xe in a nuclear
reactor. Then assuming a constant production rate of these isotopes from fission and
transmutation rate by neutron capture, determine the steady-state or saturated con-
centration of **Xe.

The measured line width of the gamma-ray resonance of *’Fe is 3.4x107% eV,
Determine the lifetime of this excited state.
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%6,

2‘7‘

4

2-12.

2-13.

2-14.

2-15.

2-16.

2-17.

2-18.

2-19.
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Boron is a common material used to shield against thermal neutrons. Estimate the
thickness of boron required to attenuate an incident thermal neutron beam to 0.1% of
its intensity. (Use the thermal cross section data in Appendix A.)

Suppose we consider a beam of neutrons incident upon a thin target with an intensity
of 10'2 neutrons/cm2-sec. Suppose further that the total cross section for the nuclei in
this target is 4 b. Using this information, determine how long one would have to wait,
on the average, for a given nucleus in the target to suffer a neutron interaction.

. A free neutron is unstable against beta decay with a half-life of 11.7 m. Determine the

relative probability that a neutron will undergo beta-decay before being absorbed in
an infinite medium. Estimate this probability for a thermal neutron in H,O.

). Determine the number of scattering collisions a thermal neutron will experience on the

average before being absorbed in H,0, D,0, *®U, and cadmium, respectively.

. How many mean free paths thick must a shield be designed in order to attenuate an

incident neutron beam by a factor of 1000?

. Using the data from BNL-325, compute the mean free paths of neutrons with the

following energies in the specified materials: (a) 14 MeV neutrons in air, water, and
uranium (characteristic of thermonuclear fusion neutrons), (b) 1 MeV neutrons in air,
water, and uranium (fast breeder reactor neutrons), and (c) 0.05 eV neutrons in air,
water, and uranium (thermal reactor neutrons).

Determine the kinetic energy at which the wavelength of a neutron is comparable to:

(a) the diameter of a nucleus, (b) an atomic diameter, (c) the interatomic spacing in
graphite, and (d) the diameter of a nuclear reactor core. (Only rough estimates are
required.)

Suppose that the total cross section of rhodium has been measured and the following
values have been obtained for the resonance parameters of a well-isolated resonance at
Ey=1.26 eV: g,=5000b, '=0.156 eV, and 6,=5.5 b. Plot the value of the total cross
section for values of the energy between 0.2 and 40 eV. Calculate the thermal
absorption cross section and compare this with the measured value of 156 b. (Assume
that resonance scattering can be neglected.)

At higher energies, the differential elastic scattering cross section in the CM system
exhibits anisotropy (so-called “p-wave” scattering) of the form

A a,
oCM(Q ﬂl) = OCM(oc) = E(l + acosﬂc).

Plot the scattering probability P ( E,— E;) against final energies E; for this more general
cross section behavior for the three cases ¢ >0, a=0, and a<0. Give a phys1ca1
interpretation of your sketches.

Using the Maxwell-Boltzmann distribution M (V,T), calculate the most probable
energy of the nuclei characterized by such a distribution. Also calculate the average
thermal energy of these nuclei.

The partial widths of the first resonance in #**U at 549 eV are I',=.029 eV and
[',=.0018 eV. Plot the Doppler-broadened capture cross section at the temperature of
0°K, 20°C, and 1000°C. [Use the tabulated ¢/({,x) function.]

Show that the total area under a Doppler-broadened resonance is essentially inde-
pendent of temperature.

Using the differential scattering cross section characterizing a proton gas at tempera-
ture 7, compute the corresponding macroscopic scattering cross section Z(E). In
particular, determine the behavior of this cross section for low energies E.

A neutron is absorbed in a 23U nucleus at 1 =0. Describe a probable life history of the
resulting 26U and its successors on the assumption that it undergoes fission. Give
order of magnitude estimates of characteristic times at which various events occur.
Describe the various particles injected into the system as a result of this fission.
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2-20. Determine the fission-rate density necessary to produce a thermal power density of
400 kW /liter (typical of a fast breeder reactor core). Assume that the principal fissile
isotope is 2*°Pu.

2-21. An indium foil is counted at 5:00 p.m. Tuesday and found to yield 346,573 CPM in a
counter with a 50% efficiency for the 54-min In-116m activity. What is the probability
that none of these radioactive In-116m nuclei will remain in the foil at 2:00 p.m.
Thursday, the same week? (Note: In(1 — x)~ — x,x<1) [Victims working this problem

. can thank Dr. Ronald Fleming ]
£;22.‘\,Compute and plot the parameter n for uranium enriched in 2**U as a function of its
- “enrichment (atom percent 235U) at thermal neutron energies.



3

Fission Chain
Reactions and
Nuclear Reactors
--an Introduction

In order to sustain a stable fission chain reaction and thereby achieve a constant
production rate of fission energy, one must design a nuclear reactor in such a way
that the rates of neutron absorption and leakage are balanced by the rate of fission
neutron production. In this chapter we will develop a very simple model of nuclear
reactor behavior based on such a neutron balance principle in order to introduce a
number of the concepts involved in studying fission chain reactions. General
aspects of the design and operation of nuclear fission reactors can then be
understood in terms of this model, and the principal components of such systems
and their functions can be discussed (although, of course, the analysis and design
of these components will require more elaborate models developed in later chapters
of this text). We will be able to introduce and compare the various major types of
nuclear reactors being utilized for electrical power generation throughout the world
today. Finally the simple discussion in this chapter will allow us to outline the
principal design functions of the nuclear engineer in order to lay an appropriate
foundation for our further development of the more sophisticated methods re-
quired in modern nuclear reactor analysis.

I. THE MULTIPLICATION FACTOR AND NUCLEAR
CRITICALITY

A. The Multiplication Factor

In Chapter 2 we indicated that an essential idea involved in tapping the
energy released in nuclear fission was to use the fission neutrons from one fission
reaction to induce yet another reaction. In this way one could propagate a chain of

74
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such reactions by using the neutron as a chain carrier. It should be apparent that if
we wish to maintain a stable or steady-state chain reaction, that is, one that does
not grow or decay away with time, we must arrange things so that precisely one
neutron from each fission will induce another fission event. The remaining fission
neutrons will then either be absorbed in capture reactions or will leak out from the
system. We must design the nuclear reactor to achieve this very delicate balance
between fission reactions and neutron capture and leakage, as we indicate schema-
tically in Figure 3-1.

We can express this requirement in mathematical form. Since the neutrons play
the central role in maintaining the fission chain reaction, let us focus our attention
on them for a moment. A given neutron will be “born” in a fission event and will
then usually scatter about the reactor until it meets its eventual “death” in either an
absorption reaction or by leaking out of the reactor. Certain numbers of these
neutrons will be absorbed by fissile or fissionable nuclei and induce further fission,
thereby leading to the birth of new fission neutrons, that is, to a new “generation”
of fission neutrons. Suppose that we could somehow measure the number of
neutrons in two successive fission neutron generations. We would then define the
ratio of these numbers as the multiplication factor k characterizing the chain
reaction

Number of neutrons in one generation

k =Multiplication factor= . - — .
Number of neutrons in preceding generation

Actually since the number of fission neutrons in any generation is proportional to
the number of fission events spawning that generation (recall that each fission
reaction releases, on the average, » fission neutrons), we could have just as easily
defined k& using the number of fission events in each generation. However since we
are primarily concerned with monitoring the number of neutrons present in the
reactor in order to study the chain reaction, we will find it more convenient to use
the definition above.

Now notice that if k=1, the number of neutrons in any two consecutive fission
generations will be the same, and hence the chain reaction will be time-
independent. We refer to a system characterized by k=1 as being critical.

o 2-3 Fission \\(,/ Scattering
Fission-fragment neutrons@ S —._»@ &

nucleus €GB / \\ /
dig
N t \ (o
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nci ier
neutron adlatlve
capture
Capture b’
Leakage from
system

FIGURE 3-1. A simple schematic of a fission chain reaction.
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Obviously if we have been fortunate enough to have chosen just that reactor
configuration and composition so that the reactor is critical with k=1, then the
number of neutrons in the reactor will always remain the same.

By a similar argument, we can conclude that if k<1, the number of neutrons
decreases from generation to generation, and hence the chain reaction dies out. We
then refer to the system as being subcritical. Finally, if k>1, then the chain
reaction grows without bound as the number of neutrons in each successive
generation is larger. Such a system is said to be supercritical.

In summary:

k<1 subcritical
k=1 critical

k>1 supercritical.

Hence the primary objective of the nuclear engineer is to design the nuclear reactor
so that it is critical. One possible approach would be to choose a particular reactor
material composition and configuration, then calculate k for this choice, and if & is
not unity (and of course it usually won’t be on the first try), readjust the reactor
design until the criticality condition, k =1, is achieved.

Actually life is a bit more complicated than this. Some method has to be
provided by which the neutron population can be built up to appreciable levels in
the core (about 10° neutrons/cm?) to yield the required power generation. In
principle this could be done by merely inserting a source of neutrons into a critical
assembly. Then any source neutrons appearing in the reactor would tend to induce
fission reactions, thereby producing fission neutrons, which would have their
progeny maintained by the chain reaction. However most neutron sources are
sufficiently weak that it would take a very long time to build up an appreciable
neutron population in a reactor using this method. Instead one can simply make k
temporarily greater than unity so that the reactor is supercritical, say by withdraw-
ing some absorbing material to alter the balance between fission and absorption.
The neutron population in the reactor will then grow. Once the desired neutron
population has been reached, the reactor can be returned to critical, for example,
by reinserting the absorbing material. A very similar procedure can be used to
lower the neutron population in the reactor. The reactor is taken subcritical until
the desired neutron population is reached and then restored to critical once again.
Altering the multiplication factor k characterizing a reactor in this way is known as
nuclear reactor control. It is a very important aspect of nuclear reactor analysis.

It should now be apparent that the multiplication factor £ plays an extremely
important role in determining nuclear reactor behavior. The calculation of the
multiplication factor k£ characterizing a given reactor configuration and composi-
tion is one of the primary objectives of nuclear reactor analysis, and much of our
attention in this text will be devoted to developing various procedures for perform-
ing this calculation.

The definition of the multiplication constant k in terms of successive fission
neutron generations is sometimes known as the “life-cycle” point of view' because
of its similarity to biological population growth. This definition is a bit awkward,
however, since it is usually rather difficult to determine the neutron generation
time. For example, some neutrons may induce fission immediately after their birth
in a fission reaction. Others may first slow down to thermal energies before
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inducing fission. Some neutrons may not induce fission reactions at all, but will
instead be absorbed in nonproductive capture or leak out of the system.

A somewhat more practical definition of the multiplication factor k can be given
in terms of a neutron balance relation by defining

Rate of neutron production in reactor _ P (¢)

k (3-1)

Rate of neutron loss (absorption plus capture) in reactor  L(¢)

Here we have explicitly noted that the production and loss rates may change with
time (e.g., due to fuel consumption).

We will find the “neutron balance” definition of multiplication a somewhat more
useful concept, since it is consistent with the approach that we will use to develop
more elaborate models of nuclear reactor behavior in later chapters. In particular,
we can then define the neutron lifetime, /, in an unambiguous fashion as

N(¥) 30
=10 (3-2)
where N (¢) is the total neutron population in the reactor at a time ¢. This latter
approach is also particularly convenient for studying the time behavior of the
neutron population in a reactor.

B. Simple Kinetics of Chain Reactions

Imagine that we could somehow count the number of neutrons N (¢) in a
nuclear reactor at a time ¢. Then obviously the time rate of change of N (¢) is given
by

dN .
- Production rate — Loss rate= P (t) — L(¢). (3-3)

However if we use our definition of the multiplication factor k& as given by the
neutron balance relation, we can write

dN={P(’)

o | T !

T~ {LO=(k=DLE). (3-4)

To proceed further we can use our definition of the neutron lifetime / to write

av _ (k-1
dt /

N(9). (3-5)

If we assume that both k and / are time-independent (of course they will not be in
general), then we can solve this simple ordinary differential equation for the
neutron population at any time ¢, assuming that there are initially N, neutrons in
the reactor at time =0, to find

N(t)=N0exp[(1(—7l—)t}. (3-6)
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In particular, note that this very simple model of nuclear reactor kinetics agrees with
our earlier definition of reactor criticality in terms of k (see Figure 3-2). Yet this
model also tells us that the growth or decay of the neutron population in a reactor
obeys an exponential growth law. Such exponential growth is quite commonly
found in the study of population dynamics. Indeed the study of the *“neutron”
population in a reactor core is mathematically rather similar to the study of
biological populations, and hence the terminology of the latter field is frequently
adopted in reactor physics (e.g., generation, birth, life, death, virgin, daughter).

We will later find that the power level of a nuclear reactor is essentially
proportional to its neutron population. Hence we can also regard the time behavior
of the reactor power level as being exponential with a time constant or reactor
period T given by

T=—_. (3-7)

In particular it should be noted that as the multiplication factor k approaches
unity, the reactor period T approaches infinity which corresponds to a time-
independent neutron population or reactor power level.

However suppose that k is not equal to unity. Then how rapidly might we expect
the power level of the reactor to change? Suppose, for the sake of illustration, we
increased k to make the reactor ever so slightly supercritical by an amount of
k=1.001. Since the neutron lifetime in a typical power reactor is about 10™* sec,
we find this corresponds to a reactor period of T=0.1 sec. Hence in one second the
power level of the reactor will increase by a factor e'®=22,000. Thus it appears that
the reactor will respond very rapidly to changes in the multiplication factor. In fact,
if a power reactor did indeed respond this rapidly, then it would be difficult to

N(t)

o= k=0 _ _ gite

FIGURE 3-2. Time behavior of the number of neutrons in a reactor.
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control the reactor power level, for a 0.1% change in the multiplication factor is
rather common. Fortunately we have omitted something from this simple model
which tends to greatly increase the neutron lifetime / and hence 7, thereby slowing
down the reactor time response. This is the effect of delayed neutrons on the chain
reaction. However this is a tale for another time, so we will leave our study of
reactor kinetics with the promise of returning later to patch up this model in order
to provide a more optimistic picture of nuclear reactor time behavior.

C. A Formal Calculation of k: The Four-Factor Formula

Let us now turn our attention to the calculation of the multiplication factor
for, say, a pile of uranium that one wishes to make into a nuclear reactor. We
probably should add some coolant to remove fission heat and perhaps some
structural material to hold the core together. However we will assume that we can
treat these materials as intimately and homogeneously mixed so that the composi-
tion of the reactor is uniform.

Now to calculate k¥ we must determine the possible fate of neutrons in a given
fission generation. Fortunately this is rather easy to do since there are only two
possible alternative destinies available to the neutron. First it might leak out of the
reactor and be lost to the chain reaction. If it does not leak out, then it must
eventually be absorbed.' This absorption may correspond to a nonproductive
capture event in either the fuel or other materials, or the absorption may induce a
fission reaction, in which case a new fission neutron generation is produced. We
can represent these destinies schematically, as shown below:

Leak out of system Absorbed in junk

/ Radiative capture
Fission or
neutron or

m or

Absorbed in system

L Absorbed in fuel o
P, Fission

v new fission neutrons &

To make this more formal, suppose we define the probabilities for each of these
possible events as follows:

Probability that neutron will not leak out of system before
absorption

PNL

Conditional probability that if neutron is absorbed, it

Par . )
will be absorbed in the fuel

— Conditional probability that if neutron is absorbed in
f fuel, it will induce a fission reaction.

TOf course, yet a third alternative would be a decay of the neutron into a proton, electron, and
neutrino, but since the half-life for decay of a free neutron is 11.7 minutes, and the typical
neutron lifetime / in the reactor is less than 1073 sec, we can safely ignore this alternative.
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These latter two conditional probabilities are easily calculated. The conditional
probability for absorption in the fuel P, can be expressed simply as the ratio of
the macroscopic absorption cross sections for the fuel =, and for the fuel plus the
rest of the material in the core Z,. (We will usually indicate with a superscript the
material to which we are referring. The absence of the superscript will imply that
the macroscopic cross section is the total for all of the materials in the system.)
Thus we can write

EF

PAF_ s (3'8)

a

It should be kept in mind that this expression has been introduced only for the
situation in which the reactor has a uniform composition. Unfortunately for the
reactor analyst all modern reactors have nonuniform compositions varying from
point to point (e.g., due to fuel elements, coolant channels, support structure). In
this more general case one can still use Eq. (3-8) if the macroscopic cross sections
2, are regarded as spatial averages over the reactor. It should also be noted that we
have not yet specified the neutron energy at which these cross sections are to be
evaluated. Again, we will later find that the cross sections appearing in Eq. (3-8)
must be appropriately averaged over energy, just as they are over space.

It is customary in reactor terminology to refer to this probability as the thermal
utilization of the reactor and denote it by P,r=/f. This term arose in the early
analysis of thermal reactors in which essentially all fissions in the fuel were induced
by thermal neutrons. In this case the cross sections in f would be evaluated at
thermal neutron energies and would represent the effectiveness of the fuel in
competing with other materials in the reactor for the absorption of thermal
neutrons, that is, the effectiveness with which the reactor utilized the thermal
neutrons in the fuel. The expression in Eq. (3-8) actually applies to any type of
reactor. However we will fall in line with convention and refer to it as the thermal
utilization and denote it by “f.”

The conditional probability for inducing a fission reaction in the fuel can also be
expressed in terms of cross sections. In this case we simply take the ratio of the
fission cross section to that of the absorption cross section (due to both fission and
radiative capture) in the fuel material:

P_EE_EF_ (3-9)
TSP oF

We are now ready to utilize these probabilities to determine the multiplication
factor k. The general scheme is to play a game of “follow the neutron.” Suppose we
start with N, neutrons present in the reactor in a given fission generation. Then
with the help of the above probabilities and our diagram, we can compute the
number of neutrons in the next generation as:

Ny=vPPrePL N, (3-10)
or
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where we have recalled that n=w»(of/0f) is the number of fission neutrons
produced per absorption in the fuel. We can now use our definition of the
multiplication factor k as being the ratio of the number of neutrons in two
successive fission generations to write

N
k= 72 = nfPxL- (3-12)
1

The nonleakage probability Py, appearing in Eq. (3-12) and characterizing neutron
leakage from the core is much more difficult to compute. It will require more
elaborate mathematics (and in a realistic calculation, the use of a digital computer),
and hence we will defer a discussion of it until later.

As a momentary detour, however, suppose our reactor were of infinite extent.
Then since no neutrons could leak out, we immediately conclude that we must set
the nonleakage probability Py; = 1. The corresponding multiplication factor is then
known as the infinite medium multiplication factor and denoted by

k. =nf. (3-13)

Now of course no reactor is of infinite size. Nevertheless &k, is a useful parameter
in reactor analysis since it essentially characterizes the multiplication properties of
the material in the reactor as distinct from the geometry of the reactor core. Of
course since Py; <1 more generally for a finite reactor from which some neutron
leakage can occur, we must have k> 1 in order to have any chance of achieving a
critical chain reaction.

There are a couple of important modifications that must be introduced into this
simple development in order to understand how the present generation of so-called
“thermal” reactors works. We must account for the fact that the neutrons in a
nuclear reactor have a distribution of energies. As we saw in Chapter 2, the fission
neutrons are born at very high energies in the MeV range. However the fission
cross section is largest at very low energies—indeed, at those energies correspond-
ing to neutrons in thermal equilibrium with the reactor core at a temperature T,
e.g., for T=300°C, E=kT=0.05 eV. Hence it is obviously to our advantage to try
to slow down, or in the language of reactor physics, “moderate,” the fast fission
neutrons to take advantage of the fact that slow neutrons are more likely to induce
fission reactions. This can be accomplished rather easily, simply by letting the fast
neutrons collide with light nuclei, thereby losing some of their kinetic energy in
elastic scattering collisions. The lighter the nucleus involved, the more kinetic
energy per collision will be lost on the average by the neutron and hence the more
effective the slowing down or moderation. In fact the best nucleus to use is
hydrogen, which is fortunately quite commonly available in the form H,0O. Hence
if we just let the fast neutrons rattle around in water for a bit, they will quickly slow
down to the desired thermal energy. In this sense, we refer to water as a neutron
moderator. Numerous other materials can be used as moderators in nuclear
reactors, and we will discuss these in greater detail later.

The presence of such neutron moderation in a reactor suggests several modifica-
tions to our earlier calculation of the multiplication factor k. Suppose we first
modify our diagram of the various possible neutron destinies to take into account
neutron energy as shown in Figure 3-3. Now since most fissions will be induced by
thermal neutrons, we will regard f and n as being evaluated at thermal neutron
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FIGURE 3-3. Processes characterizing a neutron generation in a thermal reactor.

energies. For example, f would now refer to the ratio of thermal neutron absorp-
tions in the fuel to total thermal neutron absorptions and thereby become more
deserving of its designation as the “thermal” utilization. Similarly, 5 is now
identified as the average number of fission neutrons produced per absorption of a
thermal neutron in the fuel.

Then to account for processes that occur while the neutron is slowing down to
thermal energies, we will introduce two new quantities. We first define a factor that
takes account of the fact that, although most fissions will be induced in fissile
material by thermal neutrons, some fissions will be induced in both fissile and
fissionable material by fast neutrons. Hence we will scale up our earlier expression
for k by a fast fission factor e:

Total number of fission neutrons (from both fast and thermal fission)
Number of fission neutrons from thermal fissions

(3-14)

m
I
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The fast fission factor € is usually quite close to unity in a thermal reactor with
typical values ranging between e=1.03 and e=1.15.

The second factor we will introduce will characterize the possibility that the
neutron might be absorbed while slowing down from fission to thermal energies.
Since most absorptions occurring during the slowing down process correspond to
resonance capture in heavy nuclei such as U, we refer to this factor as the
resonance escape probability p:

Fraction of fission neutrons that manage to
p =slow down from fission to thermal energies (3-15)
without being absorbed.

Finally it is useful to modify our definition of the nonleakage probability to take
account of the fact that there will be two distinct phases of neutron leakage that
will require two rather different types of analysis in our later work. First the
neutron may leak out while slowing down. Indeed since the neutron mean free path
is relatively large for high energies, such fast neutron leakage may be quite
appreciable. A second leakage process may occur after the neutron has managed to
slow down to thermal energies. After slowing down, the neutron may continue to
scatter and eventually leak out before it has had an opportunity to be absorbed. To
take account of these two processes, we will break up our earlier nonleakage
probability as follows:

PyL=Ppn Prae (3-16)
where
P = Probability that fast neutron will not leak out
L (fast nonleakage)
P = Probability that thermal neutron will not leak out
TNL=

(thermal nonleakage).

If we now insert these new definitions into our earlier expressions (3-12) and
(3-13), we find that the infinite medium multiplication factor becomes

k = nfpe. (3-17)
This is known as the four-factor formula. Moreover one now writes
k = fpe PenpPraos | (3-18)
which is known, surprisingly enough, as the six-factor formula.

EXAMPLE: To more vividly illustrate these ideas, we can list the values of each
of the factors in the six-factor formula for a typical thermal reactor: n=1.65,
f=071, €=1.02, p=0.87, Pepy =0.97, Py =0.99=k = 1.04=k=1.00.

Hence provided we can calculate each of these factors, our criticality condition
k=1 can then be easily checked (in the above example we fudged up the
parameters a bit to yield a critical system). Of course, the calculation of these
factors is quite difficult in general. Indeed one cannot really separate the various
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conditional probabilities as was done in these formulas. Instead alternative schemes
based on iterative numerical methods must be used in practice to arrive at a
criticality condition.

Nevertheless the four-factor and six-factor formulas are quite useful because
they provide insight into the various mechanisms involved in nuclear fission chain
reactions and on rare occasions may actually be of use in making crude estimates
in nuclear design. They are also useful in illustrating the trends of parameter
variation in a core design.

For example, although n and € are essentially fixed once the fuel has been
chosen, the thermal utilization f and resonance escape probability p can be varied
considerably by changing the ratio of fuel density to moderator density. All of
these parameters can be varied by using a heterogeneous lattice of fuel elements
surrounded by moderator rather than a uniform, homogeneous mixture of fuel and
moderator.

One can also vary the nonleakage probabilities by simply making the reactor
core larger, or surrounding the reactor by a material with large scattering cross
section so that some of the neutrons leaking out will be scattered back into the
reactor. Actually when leakage is changed, there will be some change in the
parameters in the four-factor formula as well since these are actually averages over
the various neutron energies in the reactor, and this distribution of energies will
vary with the amount of leakage. Such considerations have given rise to a
somewhat different notation for the multiplication factor characterizing a finite
system which is occasionally referred to as the effective multiplication factor and
denoted by ki

Kett= K oo PenL PINL. (3-19)

There are other prescriptions for defining the multiplication factor. In particular we
will introduce one of these schemes later when we consider the analytical treatment
of the neutron energy dependence in more detail. However for now we will
continue to regard the multiplication factor as the ratio between either the number
of neutrons in two successive fission generations or the neutron production and
loss rates in the reactor.

We can use the six-factor formula for the multiplication factor to gain a bit more
insight into the goals of reactor design and operation. There are several ways to
adjust k in the initial design of the reactor. One could first regard the size of the
reactor as the design variable. Since the ratio of surface area to volume decreases as
the reactor geometry is enlarged, one can control the relative importance of the
leakage factors by adjusting the reactor size. For a given core composition (with k&
greater than 1, of course) there will be a certain critical size at which k=1. An
alternative way to achieve the same reduction in leakage is to surround the reactor
with a scattering material that acts as a neutron reflector. Most thermal reactor
cores are so large that leakage represents a rather small loss mechanism (typically
about 3% of the neutrons leak out from the core in large thermal reactors).

Usually the core size and geometry for a power reactor are dictated by thermal
considerations, for instance, the size of the core necessary to produce a given power
output while being provided with sufficient cooling so that the temperature of the
reactor materials will not become excessively high. The primary design variable at
the disposal of the nuclear engineer is the core composition. In particular he can
vary the composition (enrichment) and shape of the fuel, the ratio of fuel to
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moderator density, the type of moderator, coolant, and structural materials used, or
the manner in which reactor multiplication is controlled. One would refer to the
amount of fuel required to achieve a critical chain reaction as the critical mass of
fuel.

In reality, however, a nuclear reactor is always loaded with much more fuel than
is required merely to achieve k= 1. For example the LWR is typically loaded with
sufficent fuel to achieve a multiplication of about k= 1.25. This extra multiplication
is required for several reasons. First if the reactor is to operate at power for a
period of time, one must provide enough excess fuel to compensate for those fuel
nuclei destroyed in fission reactions during the power production. Since most
contemporary reactors are run roughly one year between refueling, a sizable
amount of excess fuel is needed to compensate for fuel burnup. A second
motivation arises from the fact that the multiplication of a reactor tends to
decrease as the reactor power level and temperature increase from ambient levels to
operating levels. Additional multiplication is needed to compensate for this effect.
Finally one must include enough extra multiplication to allow for reactor power
level changes. For example, we have seen that if we wish to increase the reactor
power level, we must temporarily adjust k& to a value slightly greater than 1 so that
the reactor is supercritical. The reactor can then be returned to critical when the
desired power level has been reached.

Of course when this excess multiplication is not being used, some mechanism has
to be provided to cancel it out to achieve reactor criticality. This is the function of
reactor control mechanisms. Such control is usually achieved by introducing into
the reactor core materials characterized by large absorption cross sections. They
will then tend to eat up the excess neutrons produced in the chain reaction. In
terms of our six-factor formula such absorbing materials lower the value of the
thermal utilization f, since they compete with the fuel for neutron absorption. A
variety of types of reactor control are used in power reactors. For example, the
neutron absorber might be fabricated into rods which can then be inserted into or
withdrawn from the reactor at will to vary multiplication. Sometimes the absorber
is fabricated directly into the fuel itself. Or it may be dissolved in the reactor
coolant. When such control absorbers are used to hold down the excess multiplica-
tion introduced to compensate for fuel burnup, one refers to them as shim control.
They may also be used to force the reactor subcritical in the case of an emergency;
then they are known as scram control. Finally they may just be used to regulate the
power level of the reactor; then they are referred to as maneuvering control
elements.

The ease with which such control elements can control the fission chain reaction
will depend on how rapidly the reactor responds to variations in multiplication.
Since fuel burnup occurs over very long periods of time (typically weeks or
months), a rapid response of shim control is not required—which is fortunate,
because rather large amounts of multiplication must be manipulated (typically
changes of 10-20% in k). The normal power variations in the reactor are due to
much smaller changes in multiplication (<0.1%) and are characterized by essen-
tially the reactor period 7T which in turn is proportional to the neutron lifetime /.
However we saw earlier that the lifetime of prompt fission neutrons was quite
short, typically about 10™* sec. The effective neutron lifetime is greatly increased
by the presence of delayed neutrons, however. We recall that about 0.7% of the
neutrons produced in fission are delayed anywhere from 0.6 to 80 sec since they
arise from fission product radioactive decay. Hence the effective neutron lifetime is
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actually the average of the prompt neutron lifetime and the average decay time of
these delayed neutrons, properly weighted, of course, by their relative yield frac-
tions. When this is taken into account, one finds that the effective neutron lifetime
is almost two orders of magnitude longer, / ;;~10"" seconds. Hence a multiplica-
tion of 0.1% would now correspond to a reactor period of T=10 seconds, well
within the control capability of a reactor control system.

D. Conversion and Breeding

If we recall our earlier expression for the multiplication factor k in Eq. (3-12),
it is evident that since the thermal utilization f and the nonleakage probability Py,
are both less than 1, we require 7 to be substantially greater than 1 if a critical
fission chain reaction is to be possible. Fortunately as we can see from Figure 2-25,
this condition is not only satisfied, but in fact for many energies one finds that
1 >2. Hence we in fact appear to have an extra neutron. This “bonus” neutron can
be put to good use if we recall that certain fertile isotopes can be transmuted into
fissile material via neutron capture. In particular, 22U can be transmuted into
239py, while 2*2Th can be transmuted into 2>*U. Hence if we load the core of a
reactor with such fertile material, we can use the extra neutron to produce a new
fissile fuel material. This process is frequently referred to as conversion, and nuclear
reactors whose principal job is to produce 2**Pu or 23*U are known as converter
reactors.

Actually all modern power reactors are converter reactors in a sense, although
this is not their primary function, since they contain substantial amounts of **U
which will be transmuted into 2*°Pu via neutron capture during normal operation.
For example, a LWR will contain a fuel mixture of roughly 3% 2**U and 97% 2**U
in a freshly loaded core. After a standard operating cycle (three years), this
fuel will contain roughly 1% 2**U and 1% ***Pu which can then be separated out of
the spent fuel and refabricated into fresh fuel elements for reloading (so-called
“plutonium recycling”).

These considerations suggest that it might in fact be possible to fuel a reactor
with 2*°Pu and #*®U and then produce directly the fuel (3*°Pu) needed for future
operation. Indeed it might even be possible to produce more 2*Pu than is
burned——that is, to “breed” new fuel. This is the essential idea behind the concept
of a breeder reactor.

To discuss this concept in more detail, it is useful to define the conversion ratio

Average rate of fissile atom production
"~ Average rate of fissile atom consumption

This quantity is also referred to as the breeding ratio (BR) if it is greater than one.
If we have conversion then, consuming N atoms of fuel during reactor operation
will yield CR:N atoms of the new fissile isotopes. For example, most modern
LWRs are characterized by a conversion ratio of CR=0.6. By way of contrast,
HTGRs are characterized by somewhat higher conversion ratios CR=0.8 and
hence are sometimes referred to as advanced converter reactors.

For breeding to occur we require that the conversion ratio be greater than unity,
CR=BR > 1. Of course for this to happen we must have >2 since slightly more
than one fission neutron is needed to maintain the chain reaction (some neutrons
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will leak out or be absorbed in parasitic capture) while one neutron will be needed
to replace the consumed fissile nucleus by converting a fertile into a fissile nucleus.

If we return to Figure 2-25 we can see that the only attractive breeding cycle for
low-energy (i.e., thermal) neutrons would involve 2**U, that is, the *?Th/?*U
process. To breed using 28U /23°Pu requires that we use fast neutrons with energies
greater than 100 keV. And of course this is the motivation behind the development
of the fast breeder reactor.

At this point, it is useful to digress a bit and discuss the average energy of the
neutrons sustaining the chain reaction in various types of nuclear reactors. As we
have seen, the energies of neutrons in a reactor span an enormous range, from 10
MeV (usually the maximum energy of fission neutrons) down to as low as 1073 eV
after having suffered a number of scattering collisions with nuclei and slowing
down. Furthermore the neutron cross sections depend sensitively on the neutron
energy. As the examples in Chapter 2 indicated, the general trend is for cross
sections to decrease with increasing energies. This feature is particularly true of
absorption cross sections such as capture or fission.

The fact that the fission cross section o; is largest at low energies implies that it is
easiest to maintain a fission chain reaction using slow neutrons. Hence early
nuclear reactors used low mass number materials such as water or graphite to slow
down or moderate the fast fission neutrons. Such moderating materials slow the
neutrons down to energies comparable to the thermal energies of the nuclei in the
reactor core. Reactors characterized by an average neutron energy comparable to
such thermal energies are referred to as thermal reactors. Such reactors require the
minimum amount of fissile material for fueling and are the simplest reactor types
to build and operate. Most nuclear power plants in this country and abroad utilize
thermal reactors.

However we have also seen that there is a very definite advantage in keeping the
neutron energy high, since the number of neutrons emitted per neutron absorbed in
the fuel n is largest for fast neutrons. Hence one can use the “extra” neutrons
available in a fission chain reaction maintained by fast neutrons to convert or
breed new fuel. However since o, is smaller, one also needs much more fuel to
sustain the chain reaction. Furthermore to keep the neutron energy high, one wants
to utilize only high mass-number materials in the core to keep neutron slowing
down to a minimum. Such reactors characterized by average neutron energies
above 100 keV are known as fast reactors. It is felt by many that fast reactors will
eventually replace the current generation of thermal power reactors because of
their ability to breed fuel.

To make some of these ideas a bit more precise, we have compared the
important nuclear parameters », 7, and o, for typical nuclear fuels at energies
characterizing both thermal and fast reactors. (To be more precise, these quantities
have been calculated by averaging the energy-dependent nuclear parameters »(E),
n(E), and o, E) over the neutron energy distributions found in typical LWRs and
LMFBRs.) One should first note that the fission cross sections in fast reactors are
some two orders of magnitude lower than those in thermal reactors. Hence even
though fast reactors exhibit considerably higher conversion ratios (typically, CR
=BR~1.2-1.5) due to a larger value of 7, their fissile inventory requirements may
run as much as several times those required by thermal reactors just to maintain a
critical chain reaction with fast neutrons. This table also indicates that while 2°U
will yield a slightly higher conversion ratio than ***Pu in thermal reactors, the use
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of 2°Pu does exhibit a sizable advantage in fast reactors since the capture-to-fission
ratio a® falls off quite markedly for large neutron energies. In Table 3-1 we have
only indicated the nuclear fission properties of 23U in fast reactors, since this
isotope is fissionable and hence contributes only a modest fraction of the fissions
occurring in thermal reactors (~2-5%) in contrast to its rather large contribution in
fast reactors (~20%).

TABLE 3-1 Energy-Averaged Fission Parameters Characterizing
Thermal and Fast Reactors

Thermal Reactor Fast Reactor
(LWR) (LMFBR)
23515 239p, 2517 239p, 238
v 24 2.9 2.6 3.1 2.6
] 2.0 1.9 2.1 2.6 0.3
54b) 280 790 1.9 1.8 0.06

We have mentioned only a few of the considerations involved in comparing the
nuclear behavior of thermal versus fast reactors. As we develop more sophisticated
methods of reactor analysis, we will return frequently to contrast the application of
these methods for thermal and fast systems.

II. AN INTRODUCTION TO NUCLEAR POWER REACTORS

A. Nuclear Power Plants

The schematic illustration® of a typical large nuclear power plant appears in
Figure 3-4. It is apparent from this illustration that the nuclear reactor itself is only
one of a great many components in such a plant. Actually aside from the nuclear
reactor and its associated coolant system, such power plants are remarkably similar
to large fossil-fuel fired plants. Only the source of the heat energy differs, that is,
nuclear fission versus chemical combustion. Hence most of the components of
large central-station power plants are common to both nuclear and fossil units.

A very crude diagram of the major components of an electrical power plant is
given in Figure 3-5. As we have sketched it in this diagram, the steam supply
system could be either a fossil-fuel fired boiler or a nuclear reactor and its
associated coolant loops.

All of the current large power plants operate on a steam cycle (a so-called
Rankine cycle) in which the heat generated by combustion or nuclear fission is
used to convert water into high-pressure, high-temperature steam. This steam is
then allowed to expand against the blades of a turbine. In this way the latent energy
of the steam is converted into the mechanical work of turning the turbine shaft.
This shaft is connected to a large electrical generator that converts the mechanical
turbine energy into electrical energy which can then be distributed to an electrical
power grid. The low-pressure steam leaving the turbine must then be recondensed
in a steam condensor into water so that it can be pumped back to the steam supply
system to complete the cycle. The condensor requires large quantities of ambient
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temperature cooling water which is usually obtained from artificial cooling ponds or
cooling towers.

This is of course a very oversimplified description of the major components of a
power plant, but it does serve to illustrate that these components are quite similar
for both nuclear and fossil-fueled stations. Actually as far as the steam cycle itself
is concerned, the primary difference between the two types of piant is that the
fossil-fueled boiler supplies slightly higher temperature, higher pressure steam,
thereby reducing the design requirements on the turbine (although it should be
mentioned that more advanced reactor types such as the HTGR supply system
steam at conditions quite comparable to those of modern fossil-fueled units). Of
course there are numerous other differences in the various subsystems of the plants,
as well as in their operation. However the major features of the plants, aside from
their steam supply system, are quite similar.

B. The Nuclear Steam Supply System (NSSS)

The NSSS consists essentially of three major components: (a) a nuclear
reactor supplying the fission heat energy, (b) several primary coolant loops and
primary coolant pumps that circulate a coolant through the nuclear reactor to
extract the fission heat energy, and (c) heat exchangers or steam generators that use
the heated primary coolant to turn feedwater into steam. Several very simplified
diagrams of NSSS components are given in Figure 3-5.

A variety of possible coolants can be used in the primary loops of the NSSS.
Indeed nuclear reactor types are usually characterized by the type of coolant they
use, such as LWRs or gas-cooled reactors. There are also a variety of possible
NSSS configurations. For example, one may actually produce the steam in the
reactor core itself. Or one may use a single-phase primary coolant such as water or
helium to transfer the fission heat energy to a heat exchanger where it is used to
produce steam (see Figure 3-5). In the liquid metal-cooled NSSS, an intermediate
coolant loop must be utilized to isolate the steam generator from the very high
induced radioactivity of the primary coolant loop passing through the reactor.

The most common coolant used in power reactors today is ordinary water, which
serves as both coolant and moderating material in the reactor. There are two major
types of LWR: pressurized water reactcrs (PWR) and boiling water reactors
(BWR). In a PWR the primary coolant is water maintained under very high
pressure (~155 bar) to allow high coolant temperatures without steam formation
within the reactor. The heat transported out of the reactor core by the primary
coolant is then transferred to a secondary loop containing the “working fluid” by a
steam generator. Such systems typically contain from two to four primary coolant
loops and associated steam generators.

In a BWR, the primary coolant water is maintained at a sufficiently low pressure
(~70 bar) for appreciable boiling and steam formation to occur within the reactor
core itself. In this sense the reactor itself serves as the steam generator, thereby
eliminating the need for a secondary loop and heat exchanger. In both the PWR
and BWR, the nuclear reactor itself and the primary coolant are contained in a
large steel pressure vessel designed to accomodate the high coolant pressures and
temperatures. In a PWR, this pressure vessel must be fabricated with thick steel
walls to contain the very high primary coolant pressures. By way of contrast, the
BWR pressure vessel need not be so thick, but must be much larger to contain both
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the nuclear reactor and steam moisture-separating equipment.

A very closely related class of reactors utilizes D,O as moderator and either D,0
or H,0 as primary coolant. The most common type of such heavy water reactors,
the CANDU-PHW, utilizes the pressure tube concept in which each coolant
channel in the reactor is designed to accommodate the primary system pressure
which is again kept high to prevent boiling. As with a PWR, the primary coolant
thermal energy is transferred via a steam generator to a secondary loop containing
light water as the working fluid. More recently, heavy water pressure tube reactors
have been designed (e.g., the CANDU-BLW or SGHWR) which produce H,O
steam directly in the core similar to a BWR.,

Yet another type of reactor uses gas coolants. Although CO, has been used as
the coolant in the MAGNOX class of natural uranium fueled, graphite moderated
reactors for many years in the United Kingdom, most present interest is directed at
HTGRs using helium under high pressure to cool a reactor fueled with enriched
uranium and moderated by graphite. The helium coolant is then passed through
steam generators to transfer the thermal energy on to a secondary loop containing
water as a working fluid. It should also be mentioned that such HTGRs have the
potential of being combined with gas turbines (rather than steam turbines), thereby
eliminating the steam cycle altogether.

Gas coolants have also been proposed for use in fast breeder reactors (GCFRs).
Because of the very high power densities required by such reactors, extremely high
coolant flow rates would be required. Nevertheless the rather large breeding ratios
(BR~ 1.5) achievable in the GCFR make it appear a very promising alternative to
other fast reactor designs.

The final class of nuclear reactors utilizes liquid metals such as sodium as a
primary coolant. Although sodium could be used in thermal reactors if alternative
moderation were provided, its primary advantages occur in fast breeder reactors
which require a primary coolant with low moderating properties and excellent
heat-transfer characteristics. The LMFBR NSSS actually uses two sodium loops. A
primary sodium loop is used to remove fission heat from the reactor; this coolant is
then passed through an intermediate heat exchanger in which it transfers its heat
energy to a secondary sodium loop, which, in turn, carries heat to a steam
generator. The intermediate loop isolates the steam generator from the radioactiv-
ity induced in the primary sodium coolant.

The NSSS of a modern nuclear power plant is completely contained within a
reactor containment structure designed to prevent the release of radioactivity to the
environment in the even of a gross failure of the reactor coolant system. This
nuclear island within the plant is usually fabricated out of steel-lined concrete and
contains not only the reactor itself (and its associated pressure vessel), but also the
primary coolant system including the primary pumps, steam generators, piping,
and auxiliary systems. A glance back at the schematic diagram of a nuclear power
plant in Figure 3-4 can quickly identify the containment building and the NSSS
contained within it.

C. The Nuclear Reactor Core

At the heart of the NSSS is the nuclear reactor. Far from being just a
relatively simple “pile” of fuel and moderator a la Fermi, a modern power reactor
is an enormously complicated system designed to operate under the most severe
conditions of temperature, pressure, and intense radiation. To introduce the general
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FIGURE 3-6. A large pressurized water reactor.*

components of a typical power reactor, we will consider the specific example of a
modern large PWR as illustrated in Figure 3-6.* The reactor proper consists of a
core containing the fuel, coolant channels, structural components, control elements,
and instrumentation systems. In this particular example, the core is a cylindrically
shaped lattice roughly 350 cm in diameter by 370 cm in height consisting of long
fuel assemblies or bundles. These assemblies consist of a large number of long,
narrow fuel rods or fuel elements, which are metallic tubes containing the nuclear
fuel in the form of ceramic pellets. Individual fuel elements and assemblies for such
a PWR are shown in Figure 3-7.

In the reactor core one induces and maintains the nuclear fission reactions that
produce the desired heat. The core itself is enclosed in a much larger container, a
reactor pressure vessel, designed to withstand the enormous pressures of the coolant
(up to 155 bar) as well as to isolate the reactor core from the remainder of the
NSSS. |

Most of our attention in this text will be directed at the nuclear analysis of the
reactor core itself, since this is the principal responsibility of the nuclear engineer.
However as we have mentioned earlier, we will try to develop this nuclear analysis
within the context of other considerations influencing the design of the nuclear
steam supply system.

Before we conclude this brief introduction to nuclear reactors, however, it is
useful to make a short list of the various components of nuclear reactor systems as
well as to introduce some of the standard nomenclature used in nuclear reactor
engineering.
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(1) Fuel: Any fissionable material. This can be either fissile material such as

)

3

33y, 25y, 2%Puy, or 2*'Pu or fissionable material such as 2*2Th, 238U, or
240py, Most modern power reactors utilize this fuel in a ceramic form—
either as an oxide such as UO,, a carbide such as UC, or a nitride, UN.
Fuel element: The smallest sealed unit of fuel. In an LWR or LMFBR
the fuel element is a metal tube containing ceramic pellets of fuel (such
as UQ,). (See Figure 3-7.) In an HTGR the fuel element can be regarded
as either a tiny (300 pm diameter) particle of uranium carbide coated
with pyrolytic graphite layers, or as a cylindrical fuel pin composed of
these fuel particles bound together with a graphite binder.

Fuel assembly or bundle: The smallest unit combining fuel elements into
an assembly. For example, in a LWR the fuel assembly is composed of
several hundred fuel elements fastened together at top and bottom with
coolant nozzle plates and with several spring clip assemblies along the
length of the fuel (see Figure 3-7). In an HTGR the fuel assembly is a
hexagonal block of graphite with holes into which the cylindrical fuel
pins are inserted. Fuel is usually loaded into a reactor core or replaced
one fuel assembly at a time. A typical power reactor core will contain
hundreds of such fuel assemblies.
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(4) Moderator: Material of low mass number which is inserted into the
reactor to slow down or moderate neutrons via scattering collisions.
Typical moderators include light water, heavy water, graphite, and
beryllium.

(5) Coolant: A fluid which circulates through the reactor removing fission
heat. The coolant can be either liquid, such as water or sodium, or
gaseous, such as helium or carbon dioxide. It may also serve a dual role
as both coolant and moderator, such as in the LWR.

(6) Coolant channel: One of the many channels through which coolant flows
in the fuel lattice. This may be an actual cylindrical channel in the fuel
assembly, as in the HTGR, or an equivalent channel associated with a
single fuel rod, as in a LWR.

(7) Structure: The geometry and integrity of the reactor core is maintained
by structural elements such as support plates, spacer grids, or the
metallic tubes used to clad the fuel in some reactor designs. The
structural materials may also serve a dual role by moderating neutrons
such as the graphite in an HTGR.

(8) Control elements: Absorbing material inserted into the reactor to control
core multiplication. Although most commonly regarded as movable rods
of absorber, control elements may also consist of fixed absorbers or
absorbing materials dissolved in the coolant. Common absorbing
materials include boron, cadmium, gadolinium, and hafnium.

(9) Reactor core: The total array of fuel, moderator, and control elements.

(10) Reactor blanket: In a breeder or high conversion reactor the core is
usually surrounded by a blanket of fertile material that more effectively
utilizes the neutrons leaking out of the core.

(11) Reflector: A material characterized by a low absorption cross section
used to surround the core in order to reflect or scatter leaking neutrons
back into the core.

(12) Shielding: The reactor is an intense source of radiation. Not only must
operating personnel and the public be shielded from this radiation, but
reactor components must as well be protected. Hence absorbing material
is introduced to attenuate both neutron and gamma radiation. Thermal
shielding is used to attenuate the emergent core radiation to levels that
do not result in significant heat generation and hence damage in reactor
components. Biological shielding reduces the radiation still further to
acceptable levels for operating personnel.

(13) Support structure: The support plates that serve to maintain the core
geometry.

(14) Reactor pressure vessel: The high pressure containment for reactor and
associated primary coolant system.

It is also useful to introduce at this point several quantities which are used to
describe reactor performance. The units in which these quantities are usually
expressed are denoted in brackets.

(1) Reactor thermal power [MW1t]: The total heat produced in the reactor
core.

(2) Plant electrical outputr [MWe]: Net electrical power generated by the
plant.
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Plant electrical output
(3) Net plant efficiency [%]: 2 Py

Reactor thermal power

Total energy generated over time period
(Plant rating) X (time)

(4) Plant capacity factor [%)]:

Average plant electrical power level

(5) Plant load factor [%]: Peak power level

Int ted electrical tput it
(6) Plant availability factor [%): ntegrated electrical energy output capacity

Total rated energy capacity for period

) ) Reactor thermal power
(7) Core power density [kW /liter]:

Total core volume

(8) Linear power density (kW /m]: Thermal heat generated per unit length of
coolant channel.

Reactor th |
(9) Specific power [kW /kg]: eactor thermal power

Total mass of fissionable material
(10) Fissile loading [kg]: Total mass of fissionable material.

Mass of fissile material
Mass of fissile and fertile material

(11) Fuel enrichment (%):

(12) Fuel burnup [Megawatt-days/metric ton uranium=MWD /TU]:

Energy generated in fuel during core residence
Total mass of fuel '

Fuel burnup

13) Fuel residence time: — - .
(13) (Specific power) X (capacity factor)
These are the more common terms used in characterizing nuclear plant perfor-
mance. We will introduce other more specific concepts and terminology later as we
develop the more detailed theory of nuclear reactor behavior.

III. NUCLEAR REACTOR DESIGN

A. General Design Functions of the Nuclear Engineer

The design of a large nuclear power plant is an enormously complex task and
involves the coordination of a remarkably diverse range of disciplines. Each major
component of the plant requires a separate and distinct design analysis and is
usually the responsibility of a specific engineering design team. For example, the
design of the reactor pressure vessel or steam generators is usually performed by
the reactor supplier, while the turbogenerator and switchgear design is the re-
sponsibility of the electrical equipment manufacturer. The coordination among
these different design projects is extremely important, however, since the designs
frequently interact to a very high degree.

The primary responsibility for the nuclear design of the reactor core rests with
the nuclear engineer. This design must be accomplished within numerous con-
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straints imposed on the reactor operation. The nuclear analysis and design of a
reactor core is highly dependent on other areas of core design, including thermal-
hydraulic design, structural analysis, economic performance, and so on. The
criteria for a design effort are quite varied, encompassing considerations of per-
formance, reliability, economics, and safety. These criteria are frequently contra-
dictory in nature, and hence require optimization.

The complete nuclear design of a given core configuration is performed many
times, initially to survey design parameters, identify constraints, then to refine the
design while interacting with other facets of the plant design, and finally, to
establish a reference design that provides a calculational base against which
optimization calculations can be compared.’

This design process is very similar to that utilized in other fields of engineering.
One first must attempt to define the various design constraints that include
considerations of system performance in terms of both system reliability and
economic performance and safety criteria. Next a preliminary design is proposed,
drawing on available information such as plants already in operation, experimental
mockups, and frequently, old-fashioned intuition. Such a design includes a set of
specifications involving quantities such as fuel enrichment, coolant flow rates and
temperatures, core configurations, reload patterns, and so on. A detailed analysis
of this preliminary design is then performed in order to evaluate its predicted
performance and ascertain whether it conforms to the constraints imposed on the
system. For example, one would want to calculate the core power and temperature
distribution, the pressure drop of the coolant as it passes through the core,
coolant-flow conditions, and the fuel lifetime. When possible, these calculations are
compared against experiments in order to validate the computational models used.
A detailed evaluation of the preliminary design will then lead to more detailed
designs and analyses as one attempts to optimize the tradeoff between system
performance and design constraints. As a final design is approached, one attempts
to define detailed system specifications.

The above procedures emphasize the importance of adequate models of a
nuclear reactor in order to carry out the required parameter and optimization
studies. These models must be realistic since nuclear reactors are fai too expensive
to be built without detailed and accurate design information. Unfortunately any
calculation sufficiently realistic to be of use in reactor design is far too complex to
be carried out by hand. Hence the digital computer plays a very key role in nuclear
reactor design.®

A key task of the nuclear reactor engineer is to develop models of nuclear
reactors that can then be analyzed on the computer. Such models result in large
computer programs or “codes” which can then be used by other nuclear engineers
in reactor design. Most of our emphasis in this text is on learning how to synthesize
such approximate models of reactor behavior and then cast them in a form suitable
for reactor design. In the language of nuclear engineering, then, this text should be
regarded as a primer on nuclear methods development.

A word of caution should be inserted here, however. In the early days of reactor
development it was hoped that one would eventually be able to accurately model
nuclear reactor behavior utilizing only fundamental principles and measured
nuclear data. However over the past three decades of reactor development ex-
perience it has become apparent that the accuracy of nuclear data and computa-
tionally feasible analytical methods are simply not sufficient to allow this.® Instead
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nuclear reactor analysis has relied heavily on that very basic ingredient utilized in
most other areas of engineering design known as the “enlightened fudge.” That is,
most nuclear analysis methods or computer codes contain empirical parameters
that have been adjusted or calibrated by comparing the predictions of the methods
with actual experimental measurements. While such empirical input is usually very
successful in yielding accurate nuclear design information with a minimum amount
of effort, the novice nuclear engineer should approach any existing nuclear analyti-
cal method or computer code with a high degree of skepticism, since methods
calibrated to work well for one range of parameters may fail miserably when
applied to new situations in which only limited experience is available.

The intimate relation between computers and reactor design cannot be over-
stressed. It is almost impossible for the present-day nuclear engineer to function
without a reasonable background in computer techniques (both in programing and
numerical analysis). Nevertheless the increasingly heavy reliance of the nuclear
reactor industry on elaborate computational models of reactor performance makes
it even more imperative that the nuclear engineer possess a very thorough
background in the fundamental physical and mathematical concepts underlying
these models, as well as a healthy dose of skepticism when he attempts to utilize
their predictions in reactor analysis.

B. Some Concluding Remarks

In these last three chapters we have attempted to introduce several simple but
important concepts involved in nuclear fission chain reactions. We have also
provided a brief overview of nuclear reactor systems and the function of the
nuclear engineer in the design of such systems. With this background we now turn
our attention to a development of the theory underlying the nuclear analysis of
fission reactors. We have seen that the neutron plays the central role as the chain
carrier perpetuating the chain reaction. The key problem of reactor theory, then, is
to determine the distribution of neutrons in a reactor core. This will not only allow
one to study the chain reaction process itself, but, as we will later find, since the
neutron density is proportional to the rate at which fission reactions occur and
hence proportional to the core power density, the neutron density is also the key to
the subsequent thermal and mechanical analysis of the reactor. As we have
mentioned earlier, there are essentially two aspects to this problem.

One must study the interaction of neutrons with matter—specifically, with the
nuclei that make up the matter. This amounts to either experimental or theoretical
determination of the probabilities that various neutron-nuclear interactions will
occur—that is, a determination of the appropriate neutron-nuclear cross sections.
This, however, is not the principal concern of the theory we will develop in this text
but is more properly the domain of the nuclear physicist. Hence we tend to take
microscopic cross section data as given (in a form to be discussed later), and turn
our attention instead to the manner in which these data are utilized in nuclear
reactor analysis.

Of comparable importance is the study of the transport or diffusion of neutrons
within a nuclear reactor core as they stream around inside the core, suffering
collisions with nuclei, occasionally being absorbed, inducing fission reactions, or
leaking out through the surface of the core. It is this latter study that will allow us
to develop models for calculating the distribution of neutrons within the reactor
core.
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Our theoretical approach is to begin with an essentially exact description of the
neutron density in the reactor based on the so-called neutron transport equation.
This equation, while relatively easy to derive, is extremely difficult to solve, and
hence we will be concerned with developing various approximations to it that lend
themselves more readily to practical application. We begin our actual study of
nuclear reactor theory by using the simplest such approximation, that in which the
neutron energy dependence is neglected by assuming all neutrons to be
characterized as having a single speed, and describing their transport from point to
point as a simple diffusion process. This very simple model suffices to develop most
of the concepts, as well as to illustrate most of the practical computational
techniques used in more detailed reactor analysis.

We next develop a more sophisticated model of the neutron density behavior
based on breaking up the range of neutron energies into intervals or “groups” and
then describing the diffusion of neutrons in each of these groups separately,
accounting for the transfer of neutrons between groups caused by scattering. Such
multigroup diffusion models are the principal tools used in modern reactor analysis,
and we consider them in some detail.

In the final section of the book we illustrate these models by applying them to
analyze several typical problems encountered in nuclear reactor design. In particu-
lar, we explore the relation between such nuclear analysis methods and the other
types of analysis required in nuclear reactor core design.
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PROBLEMS

(‘ 3-1_) What is the maximum value of the multiplication factor that can be achieved in any

3-2

N

3-5

3-6.

3-7

3-8

conceivable reactor design?
Using the alternative definition of the multiplication factor based on the concept of

neutron balance, repeat the derivation of the six-factor formula.

) A spherical reactor composed of 23U metal is operating in a critical steady state.

Discuss what probably happens to the multiplication of the reactor and why, if the
system is modified in the following ways (treat each modification separately, not
cumulatively): (a) the reactor is rapidly compressed to one-half its original volume, (b)
a large, fat reactor operator accidentally sits on the reactor, squashing it into an
ellipsoidal shape, (c) a thick sheet of cadmium is wrapped around the outside of the
reactor, (d) the reactor is suddenly immersed in a large container of water, (€) a source
of neutrons is placed near the reactor, (f) another identical reactor is placed a short
distance from the original reactor, and (g) one simply leaves the reactor alone for a
period of time.

One defines the doubling time for a breeder reactor as the amount of time required for
the original fissile loading of the reactor to double. Find an expression for the doubling
time #4 in terms of:: (a) the original fissile loading M, (b) the power level of the reactor
P =wF; where F; is the fission rate occurring in the reactor core, (c) and the breeding
ratio BR.

A detailed comparison of typical power reactor core parameters is given in Appendix
H. Choose one of the reactor types in this Appendix and perform the following
calculations: (a) verify that the average linear power density, power density, and
specific power given in the table are consistent with the core volume, thermal power
rating, and fuel loading, (b) determine the discharge fuel burnup when the capacity
factor of the nuclear unit is 80% and the fuel residence time is three years, (c)
determine a range for core height and core diameter and sketch a core cross-section for
one array of assemblies using the tabulated core data.

Calculate and plot k, as a function of enrichment from 0.7% 2**U to 100% 25U. Use
the thermal cross section data of Appendix A and assume p=¢=1.

Derive a relationship between the waste heat rejected from a plant of a given output
and the thermal efficiency of the plant. (Several years ago such waste heat was referred
to as “thermal pollution.” In a countermove, several of the more optimistic spokesmen
for the nuclear power industry coined the phrase “thermal enrichment.”) Using this
expression, estimate the waste heat rejected by: (a) a modern fossil-fuel plant, (b) a
LWR plant, (c) a HTGR plant, (d) an LMFBR plant, and (¢) a fusion reactor plant,
assuming that all of these plants are rated at 1000 MWe. Treat the efficiency of the
plant as that for an ideal (Carnot) heat engine.

Consider an infinitely large homogeneous mixture of U and a moderating material.
Determine the ratio of fuel-to-moderator density that will render this system critical for
the following moderators: (a) graphite, (b) beryllium, (c) water (H,0), and (d) heavy
water (D,0). Use the thermal cross section data given in Appendix A.

Modify the simple description of the time behavior of the neutron population in a
reactor given by Eq. (3-5) to account for the presence of a source in the reactor
producing S, neutrons per second. In particular, determine the time behavior of the
neutron population for each of the three cases: k<1, k=1, and &> 1.
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Neutron Transport

We now turn our attention to the central problem of nuclear reactor theory, the
determination of the distribution of neutrons in the reactor. For it is the neutron
distribution that determines the rate at which various nuclear reactions occur
within the reactor. Furthermore by studying the behavior of the neutron population
we will be able to infer the stability of the fission chain reaction. To determine the
distribution of neutrons in the reactor we must investigate the process of neutron
transport, that is, the motion of the neutrons as they stream about the reactor core,
frequently scattering off of atomic nuclei and eventually either being absorbed or
leaking out of the reactor. Most reactor studies treat the neutron motion as a
diffusion process. In effect one assumes that neutrons tend to diffuse from regions
of high neutron density to low neutron density, much as heat diffuses from regions
of high to low temperature, or even more analogously, as one gas of molecules
(corresponding to the neutrons) would diffuse through another (the nuclei) to
reduce spatial variations in concentration. ‘

Unfortunately, however, while the treatment of thermal conduction and gaseous
diffusion as diffusion processes is usually found to be quite accurate, the treat-
ment of neutron transport as a diffusion process has only limited validity. The
reason for this failure is easily understood when it is noted that in most diffusion
processes the diffusing particles are characterized by very frequent collisions that
give rise to very irregular, almost random, zigzag trajectories. However, we have
seen that the cross section for neutron-nuclear collisions is quite small (about 10724
cm?). Hence neutrons tend to stream relatively large distances between interactions
(recall that the mean free path characterizing fast neutrons is typically on the order
of centimeters). Furthermore, the dimensions characterizing changes in reactor core
composition are usually comparable to a neutron mfp (e.g., a reactor fuel pin is
typically about | cm in diameter).

103
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Hence one frequently requires a more accurate description of neutron transport
that takes into account the relatively long neutron mfp and neutron streaming.
Such a description has been borrowed from the kinetic theory of rarefied gases
(which are also characterized by long mfp)—more precisely, the kinetic theory of
gas mixtures. The fundamental equation describing dilute gases was first proposed
more than one century ago by Boltzmann, and even today the Boltzmann equation
remains the principal tool of the gas dynamicist." Its counterpart for the neutron
“gas,” the so-called neutron transport equation, is far younger (less than 40 years
old), far simpler (e.g., it is a linear equation in contrast to the Boltzmann equation,
which is nonlinear), but usually strikes far more terror in the hearts of fledgling
nuclear engineers who are intimidated by its frightening reputation within the
nuclear reactor community. Neutron transport theory has come to be associated
with a hideous plethora of impenetrable mathematics, unwieldy formulas, and
(eventually) the expenditure of enormous amounts of money on computer number-
crunching.

This is most unfortunate because the neutron transport equation is much simpler
to derive (requiring only the concept of neutron conservation plus a bit of
vector calculus) and to understand than the neutron diffusion equation that we
shall utilize in most of our development of reactor analysis. It is also a far more
fundamental and exact description of the neutron population in a reactor—indeed,
it is the fundamental cornerstone on which all of the various approximate methods
used in nuclear reactor analysis are based.

It does have one major drawback, however. It is usually very difficult to solve
the transport equation for any but the simplest modeled problems (and even these
require an inordinate amount of analytical work). However that is quite all right,
since it is not our intent to attack the transport equation head on. Rather the job of
the reactor analyst is to develop suitable (i.e., calculationally feasible and accurate)
approximations to it. Usually, however, only by comparing these various approxi-
mate theories to the transport equation from which they originated can one really
assess their range of validity.

There is another reason for including an introduction to the neutron transport
equation in even an elementary discussion of nuclear reactor analysis. Although
neutron diffusion theory is usually found adequate for reactor applications, it owes
its accuracy to various schemes that have been developed to “patch it up” using
results from more accurate transport equation solutions. For example, we will find
that the neutron diffusion equation is quite invalid near the boundary of a reactor,
or near a highly absorbing material such as a fuel rod or a control element.
Nevertheless we can continue to use diffusion theory to describe the reactor
provided we fudge it a bit by inserting so-called “transport corrections” into the
boundary conditions accompanying the diffusion equation.

So hopefully we have made a case for our inclusion of a very introductory
discussion of neutron transport theory within an elementary text. We would
caution the reader not to be intimidated by the notation or the apparent
strangeness of the equation we will develop. He should find it rather easy to
understand the derivation and interpretation of this equation.

Furthermore the effort he expends in understanding the material in this chapter
will provide him with a much deeper and more thorough understanding of the
approximate methods we will develop in later chapters.

With this strong note of encouragement, let us now add a qualification. We have
attempted to develop these later approximations in a manner independent of this
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chapter since we recognize that many nonnuclear engineers reading this text may
not really need (or care) to understand the limitations and ranges of validity of
nuclear analysis methods. Therefore if the reader is faint of heart in confronting the
transport equation, and strong in faith in being able to accept the rather heuristic
arguments necessary to develop these approximate theories (e.g., the neutron
diffusion equation) without recourse to the transport equation, or perhaps just
disinterested, he can proceed immediately to the development of neutron diffusion
theory in the next chapter.

The more formal discussion in this chapter will also serve to introduce the
standard numerical approximation schemes used to analyze the neutron behavior
in nuclear reactors. As in other areas of physical analysis, we will find that the
usual maxim applies: that the “brute force” numerical approach (i.e., discretize
everything in sight and slap in on a computer) is conceptually the simplest
approach to understand and computationally the most expensive calculation to
perform. The more elegant approximate methods require far less computational
effort but far more in the way of mental gymnastics in order to understand the
significance and reliability of their predictions.

I. INTRODUCTORY CONCEPTS

A. Neutron Density and Flux

Our ultimate goal is to determine the distribution of neutrons in a nuclear
reactor core. This requires accounting for the neutron motion about the core and
neutron interactions with nuclei in the core. We will begin by defining the neutron
density N (r,t) at any point r in the reactor core by

N (r,t)d’*r =expected number of neutrons in
d’r about r at a time 1. (4-1)

The word “expected” has been inserted into this definition to indicate that this will
be a statistical theory in which only mean or average values are calculated. (The
actual neutron density one would obtain from a series of measurements would
fluctuate about this mean value, of course.) The neutron density N(r,?) is of
interest because it allows us to calculate the rate at which nuclear reactions are
occurring at any point in the reactor. To understand this, let us suppose for
convenience that all the neutrons in the reactor have the same speed v. Now recall
that one can express the frequency with which a neutron will experience a given
neutron-nuclear reaction in terms of the macroscopic cross section characterizing
that reaction X and the neutron speed v as

v2 =interaction frequency. (4-2)

Hence we can define the reaction-rate density F(r,t) at any point in the system by
merely multiplying the neutron density N (r,#) by the interaction frequency v3:

expected rate at which
F(r,t)d*=03N (r,t)d* =interactions are occurring (4-3)

in d°r about r at time ¢.
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N(r, t)d3r

- Joe d3r

x FIGURE 4-1.  The neutron density N (r,).

For example, if we consider a thermal neutron density of N=10® cm™3 in a

graphite medium then using the total cross section tabulated in Appendix A of
3,=0.385 cm ™! and a corresponding neutron speed of 2.2 X 10° cm/sec, we would
find a reaction rate density of 8.47x10'? reactions/cm?®/sec. In this particular
case, most of these reactions would consist of scattering collisions.

These concepts can easily be extended to the case in which the neutron density is
different for various neutron energies £ by defining

expected number of neutrons in d°r
N (r,E,t)d’rdE = about r, energies in dE about E, at (4-4)
time ¢.

Notice that this “density” is defined with respect to both space and energy. One
can also generalize the concept of reaction rate density to include energy depen-
dence as

F(r,E,t)d*dE=v2(E)N(r,E,t)d’rdE. (4-5)

The product vN(r,?) arising in Egs. (4-3) and (4-5) occurs very frequently in
reactor theory, and therefore it is given a special name:

o(r,1) =N (r,1) = neutron flux [cm~*-sec™']. (4-6)

Although it will certainly prove convenient to work with ¢(r,¢) rather than N (r,¢)
(since then one does not have to worry about including the neutron speed v in the
reaction rate densities), the tradition in nuclear engineering of referring to this
quantity as the neutron “flux” is very misleading. For &(r,?) is not at all like the
fluxes encountered in electromagnetic theory or heat conduction, since these latter
fluxes are vector quantities, whereas ¢(r,f) is a scalar quantity. Actually the
“neutron current” J(r, ), which we shall introduce momentarily, corresponds more
closely to the conventional interpretation of a “flux.” To avoid unnecessary
confusion over this unfortunate convention, the student would probably do best at
this point to think of the neutron flux as simply a convenient mathematical variable
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(speed x density) to use in computing reaction rates:

F(r,E,t)=2(E)(r,E,1). (4-7)
A bit later we will introduce a physical interpretation of the neutron flux.

B. Angular Densities and Currents

The significance of the neutron density N (r,¢) or flux &é(r,¢) in determining
nuclear reaction rates leads us to search for an equation that describes these
quantities. Unfortunately there is no exact equation that is satisfied by N(r,¢) or
¢(r,1)—only approximate equations. To understand why, we must generalize the
concept of the neutron density somewhat.

First let us determine just which variables characterize the state of an individual
neutron. Certainly these include the neutron position r, energy E (or speed
v=(2E/m)'/?), and the time ¢ at which the neutron is observed. Yet notice that to
specify the state of the neutron, we must also give its direction of motion
characterized by the unit vector €=v/|v|. (Actually one could worry about
specifying other variables such as the neutron spin; but for reactor calculations, the
variables r, E, @, and ¢ provide a sufficient description of the state of the neutron.)

Let us now generalize the concept of density by defining the angular neutron
density that depends on all of these variables

expected number of neutrons in

n(r, E,Q,t)d3rdEdQEd r a.bogt r, 'ener'gy df?'abou.t E, (4-8)
moving in direction £ in solid
angle € at time ¢.

[The term “angular” arises from the fact that n(r, E,Q,t) depends on the velocity
spherical coordinate angles # and ¢ specifying the neutron direction @ (see Figure
4-2).] This is the most general neutron density function we need to define since it
happens that one can derive an essentially exact equation, the neutron transport
equation, for the angular neutron density n(r, E,$, ?).

However before deriving this equation, it is useful to introduce several other
definitions. We will first define the angular neutron flux in a manner similar to that
in which we earlier defined the neutron flux, simply by multiplying the angular
density by the neutron speed v:

o(rE,Q,0)=0vn(r, E,Q,1). (4-9)

A related concept is the angular current density, defined by
-»

i(r, E,Q,1)=vfn(r, E,Q,1)=Qo(r, E,Q,1). (4-10)

Notice that since € is a unit vector, the angular flux is actually nothing more than
the magnitude of the angular current density

il =1@le=e. (4-11)
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9>

X

FIGURE 4-2, The position and direction variables characterizing a neutron.

The angular current density has a useful physical interpretation. Consider a small
area dA at a point r. [Here we will use the convention that JA=¢€ dA where € is
the unit vector normal to the surface.] Then we can identify

expected number of neutrons passing

through an area dA4 per unit timeAwith (4-12)
energy E in dE, direction £ in {2

at time f.

i(rE,Q,0)-dAdEdQ =

We can also define an angular interaction rate
f(LEQ,0)=02(r, E)n(r, E,Q,1)=3(r,E)o(r, E,Q,1). (4-13)

All of these angle-dependent quantities can be related to our earlier definitions in
Section 4-1-A by simply integrating over the angular variables. For example:

N(r,E,t)=f dQn(r,E.Q,1) , (4-14)
47

\
AR

~

dA \gs
- / FIGURE 4-3.  Neutrons incident on a differential
/

element of area dA.
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or
N(r,t)=f°°dEN(r,E,t) =f°°dEf d@n(r,E,Q,1) . (4-15)
0 Y0 4m

Sometimes quantities such as N (r,t) and ¢(r;#) which do not depend on Q are
referred to as scalar or total densities and fluxes, to distinguish them from
n(r, E,2,t) and o(r, E,Q, ). We find this nomenclature cumbersome and will avoid
it in our development. .

Notice that if the angular density is independent of € (i.e., it is isotropic) then we
find that Eq. (4-14) demands the presence of a 47 normalization factor in the
angular density

n(,E,Q,0)= 2N (5, E, 1) (4-16)
More generally, however, n(r, E,Q,t) will have a directional dependence—
particularly if we are near a boundary or a source of neutrons, as a little

geometrical reasoning applied to Figure 4-4 should indicate.
In a similar fashion, we find

(v, E, f)= f4 dQe(r,E,Q,1) , (4-17)

and

o(r,1) = fo “dE¢(r,E,f) = fo “dE f4 dQer,E, Q1) . (4-18)

Finally, we can define the neutron current density J(r, E,t) in terms of the angular
current density j(r, E,,¢) as

J(r,E,1)= f dQjr,E,Q,1) , (4-19)
4z
and

J(r,0)= fo “dEN(r,E, 1) = fo “dE f4 aQjrE, Q1) . (4-20)

N
N

2 7

FIGURE 4-4. Anisotropies in the angular density n(r,E, ﬁ, t) near a boundary or
a neutron source.
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Notice that J(r,¢) is actually what would be referred to as the “flux” in other fields
of physics, since if we have a small area d4 at a position r, then

net rate at which neutrons pass

J(r, 1) dA=
(1) through a surface area dA.

(4-21)

The units of both J(r,7) and &(r,¢) are identical [cm~2-sec™!]. However J is a
vector quantity that characterizes the net rate at which neutrons pass through a
surface oriented in a given direction, whereas ¢ simply characterizes the toral rate
at which neutrons pass through a unit area, regardless of orientation. Such an
interpretation would suggest that J is a more convenient quantity for describing
neutron leakage or flow (e.g., through the surface of the reactor core), while ¢ is
more suitable for characterizing neutron reaction rates in which the total number of
neutron interactions in a sample (e.g., a small foil) is of interest. Although the
angular flux and current density are very simply related, we will find that there is
no simple analogous relationship between J and ¢. These concepts may appear a
bit confusing at first, but they will become more familiar after we have illustrated
their application in both our further theoretical development and the problems at
the end of the chapter.

A closely related concept is that of the partial current densities, J . (r,t) which
correspond to the total rates at which neutrons flow through a unit area from left
to right (J,) or right to left (J_). If we recall our earlier definition of j(r, E,,?),
then it becomes apparent that

Ji(r,t)=j;w dEj; . dQés-j(r,E,Q,t), (4-22)

where 27 * is merely a convenient notation to indicate that the angular integration
is performed only over directions with components along the surface normal 27 *)
or in the opposite direction (27 7). For example, if we choose to define the polar
coordinates that specify €2 along the normal to the surface, then in the integration
for J,, ¢ would range from O to 2=, while § would range only from 0 to = /2.

It is evident from this definition that

&, J(r,)=[J,(r,0)—J_(r,0). (4-23)

Hence J is sometimes referred to as the net current density, since it can be
constructed as the difference of the partial current densities.

/ J(r,t)

dA —_—

0

J () 4___1" v
—

FIGURE 4-5. Partial and total current densities.
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II. THE NEUTRON TRANSPORT EQUATION

We will now derive an exact equation for the angular neutron density in a
system by simply balancing the various mechanisms by which neutrons can be
gained or lost from an arbitrary volume ¥V within the system. That is, we will
consider mechanisms that will change the number of neutrons in this volume that
are characterized by a specific energy E and are traveling in a specific direction Q.
It is convenient to use a bit of vector calculus here, but hopefully this will not
obscure the simple physics behind this equation (which is just the mathematical
expression of a “count-the-neutrons” game).

To this end, consider any old arbitrary volume V. The number of neutrons in V'
with energy E in dE and traveling in a direction Q in dQ within this volume is just

[fn(r,E,Q,t)d‘3r]dEdQ.
V

(Since n(r, E, Q, 1), is a “density” in E and Q space, we must multiply it by dE and
dS? in order to get a number.) The time rate of change of this number, then, is
given by a balance relation

‘387 [f"(r’E’Q”)dB’]dEdQ=gain in ¥V —loss from V. (4-24)
v

If we assume that the arbitrary volume V is chosen not to depend on time, we can
bring the time differentiation inside the spatial integration

2 [fn(r,E,Q,t)d3r]dEdQ= ff’-ﬂd3r dEdQ. (4-25)
ar | Jy , Of

We will now classify the various ways that neutrons can appear or disappear from
V, and then we will try to write mathematical expressions for each of these -
mechanisms in terms of the angular density n(r, E,,1).

Gain mechanisms:

(D Any neutron sources in V (e.g., fissions).

@ Neutrons streaming into V' ' through the surface S.

® Neutrons of different E’, Q suffering a scattering collision in V that changes
E’, & into the E,Q of 1nterest

/ k/ Q
FIGURE 4-6.  An arbitrary volume V' with surface area S.

dS
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Loss mechanisms:

@ Neutrons leaking out through the surface S.

(® Neutrons in V suffering a collision. (It is obvious that an absorption interac-
tion removes a neutron from V; and since by definition a scattering collision
changes E, and since we are only keeping track of neutrons in V' with this
specific energy and direction, a scattering collision also amounts to a loss of
neutrons.)

We can now write a mathematical expression for each of these contributions. We
will work progressively from the easiest to the more difficult:
(D Source terms: If we define

, rate of source neutrons appearing
s(r,E, Q ,1)d ’dEdQ—m d°r about r, dE about E, and, (4-26)
d® about ©

then obviously
oE [ [ 5. E,Q,1)a% |aEd. (4-27)
4

[This term was really easy—we only needed to define a source density,

s(r, E, Q, t).]
(® Loss due to collisions in ¥: The rate at which neutrons suffer collisions at a

point r is
f,(rE,Q,0)=0Z(r,E)n(r,E,Q,1). (4-28)

Hence integrating this collision rate over the volume V, we find
® = [ / vE,(r,E)n(r,E,Q,t)d:‘r}dEdQ. (4-29)

() Gain due to neutrons scattering into dE about E, d© about € from other
energies £’ and directions Q' If we recall from Chapter 2 that the probability
of scattering from E’, Y to E,Q is given in terms of the double-differential
scattering cross section, then the rate at which neutrons scatter from E’, Q to
E,Qis

| [o=(E-E, Y Qn(r, £ Y. 1)d’r [dEaS. (4-30)
4

However we must consider contributions from any F ’,Q’. Hence
A = [fd3rf dfl’fwdE’u’Es(E’—)E,Q’—)ﬁ)n(r,E’,fZ’,t)}dEdQ. (4-31)
vV 4z 0

This is known as the inscattering term since it characterizes neutrons scattering
from other energies or directions into dEdS2.

(@@ Leakage into or from the volume ¥: We will combine these terms together and
calculate the net leakage through the surface S. If we use the concept of the
angular current density j(r, E,€2,7), we can write the rate at which neutrons of
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E,Q leak out of a piece of the surface, dS, as
j(r,E.Q,1)-dS=vQ@n(r, E,Q,1)-dS. (4-32)

Hence the leakage contribution over the entire surface area S is
@-Q = [ ds-ofin(r.E. Q). (4-33)
S
We can rewrite this in terms of a volume integral if we use Gauss’s theorem
[ds-A@= [ &rV-AQ), (4-34)
s v
to find
Uds-uﬁn(r,E,Q,t)]dEds‘hUd%v-us‘zn(r,E,Q,z)}dEdﬁ
s v
=Ud%s‘z-vn(r,E,s‘z,z)JdEds‘z. (4-35)
2

Here we have noted that
V-0Q=0Q-V (4-36)

since § does not depend on r.
If we now combine all of these terms such that

rate of change of number  _ D+O+Q-@-0 (4-37)

of neutrons in V'
then we find

fd%[%—rtz +vQ-Vn+oE,n(r,E,Q,t)
v

_ f *dE’ f dQvS (E'—E,Q—>Q)n 1, E" ¥, 0)—s(r,E,Q,1) |dEdR=0. (4-38)
0 4

T

However we now apply the fact that the volume V was quite arbitrarily chosen.
Hence the only way for the integral to vanish for any V is for its integrand to be
identically zero—that is,

f d3rf(r)=0 = f(r)=0. (4-39)

any V
Hence we arrive at a balance relation

% +oﬁ-Vn+vE,n(l',E,Q”)

—_-fdﬁ'fczE'v’Es(E’—)E,Q'——)Q)n(r,E',Q',t)+s(r,E,f2,t), (4-40)
4qr 0
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This is known as the neutron transport equation. Several general features of the
equation should be noted: First, it is a linear equation in the unknown dependent
variable n(r, E, Q ,t) with seven independent variables (r=x,y,z; E; Q=09, Pb;0).
Since it contains both derivatives in space and time as well as integrals over angle
and energy, it is known as an “integrodifferential” equation.

However the presence of the derivatives suggest that we must also specify
appropriate initial and boundary conditions for the angular density. Since only a
single time derivative appears in the equation, we can simply choose the initial
condition to be the specification of the initial value of the angular density for all
positions, energies, and directions:

Initial condition: n(r, E,2,0)= ny(r, E,Q), all 1, E, Q. (4-41)

The boundary conditions will depend on the particular problem of interest.
Suppose for purposes of illustration, that we consider the reactor to be surrounded
by an infinite vacuum so that if a neutron leaks out, it can never be scattered back
into the system. Actually to be more precise, we should also assume that the system
geometry is characterized by a nonreentrant surface such that a neutron streaming
out through the surface will never reenter the surface at another point (see Figure
4-7). Then our appropriate boundary condition would simply express the fact that
there can be no neutrons entering the system from the outside. That is, we require
the angular neutron density on the surface to vanish for all inward directions

n(r,E,Q,1)=0  if @-6,<0, forallr,on S, (4-42)

where r, denotes a point on the surface S. There are other possible boundary

conditions, but we will discuss these later.
It is convenient to rewrite the neutron transport equation along with its initial

and boundary conditions in terms of the angular flux

% +8-Vo+3,rE)p(rE,®,1)

o
= dfl'fwdE'ES(E'eE,Q’—)Q)qJ(r,E’,fl’,t)+s(r,E,Q,t), (4-43)

47 0
Initial condition: ¢(r, E, Q, 0) = o(r, E, Q), (4-44)

Boundary condition: ¢(r,E, Q,t) =0 if Q-és <0,

4-45
allr,on S. (4-45)

/

Reentrant surface Nonreentrant surface

FIGURE 4-7.  Examples of reentrant and nonreentrant surfaces.
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ds

jo}s

FIGURE 4-8. A free surface boundary.

EXAMPLE: Suppose we try to make this equation a little bit less abstract by
applying it to the special case in which there is plane symmerry, that is, where the
neutron flux depends only on a single spatial coordinate, say, x (as shown in Figure
4-9). Then the directional derivative ©-V reduces to

; (0.2 +0 2 +0 3 \ox)=0 2
0 V(p(x)—(Qx xt Sty )q)(x)—Qx ey (4-46)

For convenience, we will choose our angular coordinate system with its polar
coordinate axis in the x-direction. Then €, =cosf. The assumption of plane
symmetry also implies that there is no dependence on the azimuthal angle ¢. Hence

FIGURE 4-9. Coordinates characterizing plane
symmetry.
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the one-dimensional form of the transport equation becomes

1 g 9 5
E-gt-'i' cos ——-+ ,(p(x,E,o,t)

=fﬂdO’sina’fwdE’ES(E’—>E,0’—>0)<p(x,E’,0’,t)+ s(x,E,0,1). (4-47)
0 0

A final modification of the angular variable is useful. It is customary to rewrite this
equation in terms of a new variable, p=cosf. Note that as # ranges between 0 and
w, i ranges from 1 to — 1. Hence the usual form of the one-dimensional transport
equation is written as

1 d¢

+8
vat‘u

ox +2,9(x, E,u,1)

+1 oo
=f d#,f dE’ES(E,—)E,‘M’—)#)Q)(X,E’,,U"’t)+S(x’E’p"t)' (4’48)
-1 0

We can easily generalize Eq. (4-43) to include nuclear fission by including a
component in the source term to account for fission neutrons. The rate at which
neutrons with energy E’ and direction Q' induce fission events is just Z(E’)
o(r, E', Q1. If v(E') is the average number of fission neutrons produced by a
fission induced by a neutron of energy E’, then the total rate at which fission
neutrons are born at a position r is just :

s [ 7 dEv(EYZ(E e B, 0) (4-49)
47 0

These fission neutrons will have an energy distribution given by the fission
spectrum x(E). If we assume that they are emitted isotropically, then the fission
source term we should include in the transport equation is just

s(r,E,Q,1)= ( ) f dsy f oodE’.v(E’)Zf(E’)cp(r,E’,Q’,t). (4-50)
47 0

Actually we should qualify this argument a bit by admitting that we have assumed
all of the fission neutrons to appear instantaneously at the time of fission. Hence s;
is actually the source term corresponding to prompt fission neutrons. We will
develop the modifications necessary for delayed fission neutrons in Chapter 6.

The neutron transport equation provides an essentially exact description of the
neutron distribution within the reactor (at least, provided one is supplied with
appropriate cross section information). Its solution would yield the angular flux
o(r, E,Q,1) containing essentially all the information (actually considerably more)
we require concerning the nuclear behavior of the reactor. All we have to do is
solve this equation.

Yet notice that: (a) the neutron transport equation has seven independent
variables: x, y, z, 8, ¢, E, ¢, (b) the dependence of the macroscopic cross sections
on position r is extremely complicated because of the complex, nonuniform
structure of most reactor cores, and (c) as we have seen in Chapter 2, the cross
section dependence on energy is also extremely complicated including resonance
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structure, threshold effects, and so on. These considerations would immediately
suggest that any attempt to solve the transport equation for a realistic system will
involve heavy use of digital computers. Unfortunately no computer is sufficiently
large enough (yet) to solve this equation in the general form in which we have
derived it. This recognition implies that the major task of nuclear reactor analysis
will be to introduce suitable approximations to the neutron transport equation
which will allow us to solve it (at least on a computer), and yet still preserve enough
reality that we can obtain a useful description of the nuclear reactor.

We will begin our discussion of such approximations to the transport equation
by first briefly outlining the various “brute-force” procedures that can be used to
reduce this equation to a discretized form more suitable for digital computation.
We then will develop in a consistent fashion the principal approximations to the
transport equation (such as neutron diffusion theory) used in nuclear reactor
analysis.

III. DIRECT NUMERICAL SOLUTION OF THE TRANSPORT
EQUATION

Let us consider how one would attempt to solve the neutron transport
equation directly using the aid of a digital computer. First we must recognize that
digital computers are terrible at calculus (e.g., handling derivatives or integrals or
such). Their real talent is in solving very large systems of algebraic equations.
Hence our first task is to convert the transport equation into a system of algebraic
equations more suitable for a digital computer. This is accomplished by
“discretizing” each of the variables in the transport equation, that is, by replacing
functions of continuous variables by a discrete set of values at a discrete set of
points. The derivatives and integrals appearing in the transport equation must also
be replaced by a corresponding discrete representation. In this way one arrives at a
set of algebraic equations for the discrete representation of the dependent variable
(in our case, the neutron flux ).

The discretization of the transport equation—or, indeed, any such differential
equation—can be accomplished by using either discrete ordinates methods or
function expansions.”® To illustrate these approaches, suppose we have an equation
for a function, say f(x), which contains derivatives and integrals:

F(f(x),%,d—f .,fdx'f(x'),...)=o. (4-51)

dx2 yoo

In the discrete ordinate approach, one begins by representing the unknown f(x)
only by its values at a discrete set of points x; of the independent variable x. That
is, one first discretizes the domain of variation of x into a mesh of discrete points,
each of which is labeled by a subscript i. Then we replace f(x) by its value at each
of these meshpoints

F(x)=f(x)=f, i=1,...,N. (4-52)

(Of course, these values f; are still unknown.) Notice that what we have actually
done is to replace a function f(x) by a column vector f

f(x)= f=col(fi.fore s Sn ) (4-53)
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In this sense then, the system of algebraic equations we will arrive at for the
unknown components of f can be written as a matrix equation.

We must next replace the various operations in the original equation by their
discretized counterparts. For example, we would represent derivatives by finite
difference formulas such as

df

&SNS i) _ f—hier _ B
dx - B

= (4-54)

X T X x,—x_y Ax

x=x;

Integrals would be represented as sums or numerical quadrature formulas such as

N N

/ “dxf(0)= S wi(x)= 3w, (4-55)

i=1 i=1

where the w; are known as the quadrature weights. A thorough description of such
procedures can be found in any elementary textbook on numerical analysis,”®
although frequently it is more useful to derive such numerical approximations
directly for the specific equation under investigation (as we will have occasion to
do in Chapter 5). '

Such procedures lead eventually to a set of coupled algebraic equations for the
components f; that can be solved on a digital computer. Frequently these discrete
values of the unknown f(x) provide an adequate representation. However occa-
sionally one wishes to reconstruct the original unknown f(x) for all values of x
from the discrete values in f. Then one must interpolate between the point values f;
at x;, for example by using polynomials. (See Figure 4-10.)

An alternative way to arrive at a discrete representation of an equation is to
write the unknown function as an expansion in a finite number of known functions
(frequently polynomials). If we call these expansion functions p,(x), then we would
write

N
f(xy=2 fipi(x). (4-56)

=1

Hence once again we find that the function f(x) is represented by a vector
f(x)= col (fifofss- s Su )= S (4-57)

although in this case, the components of the vector are just the unknown expansion
coefficients f,. Notice that if we can determine these expansion coefficients, then we
can easily reconstruct the unknown function f(x) by merely using Eq. (4-56).
Interpolation is not required as it is with the discrete ordinates approach.

EXAMPLE: When the dependent variable ranges between —1 and +1, a very
convenient choice of expansion functions are the Legendre polynomials:

Py(x)=1,P,(x)=x,Py(x)=(3—x?)/2,... (4-58)

This choice of expansion functions is frequently used to represent the angular
dependence of the neutron flux in one-dimensional problems in which g=cos# is
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FIGURE 4-10. Discrete ordinate representation of a function.

the natural independent variable:

N
o(x, 1, E, )= X @ (x,E,t)P,(p).

=1

/
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(4-59)

(Here we might recall Eq. (4-48) as an example in which such an expansion would

prove suitable.)

There are a variety of techniques one can now use to obtain a set of algebraic
equations for the expansion coefficients from the original equation for f(x). For
example, it is frequently possible to substitute the expansion Eq. (4-56) into the
original equation, multiply by each of the expansion functions p,(x), integrate over
the independent variable x, and then use various properties of the p,(x) (such as the
property of orthogonality, which we will discuss later) to arrive at a set of algebraic
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equations for the f. One can also use more elaborate schemes such as the calculus
of variations or so-called weighted residual methods to arrive at the set of algebraic
equations. Since we will make only very limited use of such function expansions in
our elementary development of numerical analysis methods in this text, we will
refer the interested reader to several detailed descriptions®'® of these techniques for
more information.

A. Discretization of the Angular Dependence

Let us first consider how these techniques can be used to discretize the
direction variable @ in the neutron transport equation. In the discrete ordinate
approach,'! we would first represent the independent variable by a discrete set of

directions or rays ﬂ =1,...,N.
We then represent functlons of @ by only their values at each of these mesh
directions:

f(@)—f(R,)=f, n=1,...,N. (4-60)

In such a discrete ordinate treatment of angle, the integral over Q becomes a
summation:

III

f4 : é (4-61)

where the w, are appropriately chosen quadrature weights for the particular
numerical integration scheme used to handle the angular integrals. In this scheme,
the transport equation reduces to a coupled set of N equations of the form:

1 op,
ot

+ﬂ Vo, +2,¢,(r,E,t)

- 2 Wy [ AE S (E'>E, Qo) (B 1) +5,(1E ) (462)
n'=1 0

where n=1,..., N while

9u(r.E.)=9(r,E, R, 0). (4-63)
This set of equations is commonly referred to as the S, equations'"'> after early
one-dimensional treatments utilizing trapezoidal quadrature corresponding to treat-
ing the angular variation of the flux as N straight line segments.

One can also use functional expansions as an alternative scheme to discretize the
angular variables. In the general case, this corresponds to expanding the angular
dependence of the flux in a finite series of the spherical harmonics? Y,m(ﬂ)

Y,.(8,¢) familiar from quantum mechanics:'%!3

¢(LEQN=Y I ¢,0ENY,, Q). (4-64)

=0m=—1/

Then by substituting this expansion into the original transport equation, multiply-
ing by spherical harmonics of different order, Y,,(f2), and integrating over the
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angular variables, one can use orthogonality to obtain a coupled set of equations
for the expansion coefficients ¢, (r, E,?). Since this set of equations is rather
complicated when written out for general geometries, we will refer the interested
reader to other sources for the general form of the equations.>*

In one-dimension, an expansion in spherical harmonics corresponds to an
expansion in Legendre polynomials, P,( ), where p=cos#8:

N
o(xEpt)= D, (%)%(x,E,t)Pl(u)- (4-65)
=0

In this case the general form of the equations for the expansion coefficients is
somewhat simpler and can be written as

109,  (I+1) gy, I 9Py
——+ + +3,9,(x,E,t
v o QI+1) 9x | (2I+1) ox @ (5,0

= [ dE' 2 (E'>E)g(x, B\ ) +5/(x,0E),  (4-66)
0

where one defines the angular components of the differential scattering cross
section as

+1 A A
3, (E'>E)=2m f Ak E(ESE ) P (o), mo=-Q. (467)

This set of equations is known, naturally enough, as the Py, equations.>*

In the particular case in which the expansion in spherical harmonics is truncated
after two terms, that is N =1, the expansion for the angular flux takes the form:

A 1 3
o(rE Q1) =gt E) + 5= [ 91,(LE 1)@, + 9, (LE DD, + 9, (1 E, )L, ]
(4-68)

We will find in the next section that this P, approximation to the angular flux is
very closely related to neutron diffusion theory.

Hence we find that both discrete ordinate and functional expansion methods can
be used to discretize the angular variables, giving rise to the S, or P, equations
respectively. It might be mentioned that although the P, equations are used very
frequently in nuclear reactor analysis (indeed, we shall have occasion to use them
several times in our ensuing development), the higher order P, equations are rarely
used in practical calculations. Rather one usually relies on the discrete ordinate
approach if a more detailed treatment of the neutron directional dependence is
required.

B. Treatment of the Energy Variable

Very similar techniques can be used to discretize the energy variable E. Here,
however, the discrete ordinate approach is far more common than function
expansions. This can be easily understood when it is recognized that for the latter
technique to be effective, the expansion functions must bear some resemblance to



122 / THE ONE-SPEED DIFFUSION MODEL OF A NUCLEAR REACTOR

the actual functional dependence of the neutron flux on the independent variable.
The dependence of the angular flux on the neutron direction Q is usually rather
weak, hence a set of general functions such as the spherical harmonics will provide
an adequate description.

However, the neutron energy E spans an enormous range from 107 eV up to
107 eV. The dependence of the neutron distribution on energy is determined by
quite different processes in different regions of energy. For example, at high
energies the neutron energy dependence is dominated by the fission spectrum. At
intermediate energies, neutron slowing down and resonance absorption are the
dominant processes, while at low energies, neutron thermalization is important. To
expand the neutron flux in a set of functions that adequately describe all of these
processes is clearly hopeless. Indeed such function expansions are capable of
describing neutron energy behavior only for a restricted range of neutron energies
or a specific reactor type. (An example of such an expansion known as energy or
spectrum synthesis is given in Chapter 13.)

One must be careful even when applying the discrete ordinate approach to the
energy variable. The difficulties involved become quite apparent when the very
detailed dependence of the neutron cross sections on energy is recalled. It clearly
would be unthinkable simply to consider these cross sections tabulated at several
discrete points as an adequate representation of this detailed structure.

Instead one first breaks up the neutron energy range into intervals or so-called
energy groups:

(Don’t worry about the fact that these subscripts appear to run in the wrong
direction—towards decreasing energy. It turns out that this is a more convenient
labeling since neutrons tend to slow down in energy.) The neutron transport
equation (or diffusion equation) is then integrated over each energy group in order
to define appropriate average values of the various cross sections characterizing
each group. For example, one would define the absorption cross section
characterizing a group g as

[ aES (E)e(E)
3, =2 . (4-69)
[ dEq(E)
E,

8

Of course these are only formal definitions of the cross sections characterizing the
group, since the flux itself appears in their definition. However they do form the
basis for the practical calculation of these quantities since one can insert approxi-
mations to the flux in order to calculate the group cross sections Za,' If we apply
this scheme to the S, equations derived in the previous section, we find the
coupled set of equations for the group fluxes @g:

1 %7 5 g g g8 8 4 o8

;;_ ot +Qn'vq)n +2t,(pn = %wn'g Es,,'_,,, P +Sn’ (4'70)
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Such sets of equations are known as the multigroup equations (in this case, the
multigroup S, equations) and play a very important role in nuclear reactor analysis.
We will return in Chapter 7 to discuss their derivation in the case in which the
angular flux is treated within the diffusion approximation.

C. Treatment of Space and Time

The final step is to discretize the space and time variables. Although this can
be done using function expansions (more specifically, expansions in the spatial or
temporal modes of the system), such modal expansions are rarely used in general
studies (although they are occasionally used in certain types of specific calculations
in which the modes can be easily calculated). Instead one utilizes a direct discrete
ordinate treatment in most cases. First the spatial variables r=(x,y,z) are decom-
posed into an appropriate spatial mesh. The various derivative terms are then
replaced by finite difference equations defined on this mesh.

Finally the time variable is broken into discrete time steps, say #,,¢,,¢,,... and the
corresponding time derivatives are replaced by suitable difference formulas. The
detailed mesh structure and difference formulas one utilizes depends on the type of
problem one is investigating and will not be discussed here, since we will consider
such topics in much greater detail in later chapters.

D. Solution of the Discretized Equations

After using one scheme or another to discretize all of the variables in the
neutron transport equation, we are left with a large system of algebraic equations
for the components of the discretized representation of the flux, for example,
(X, 25, £, 2, 1), Such algebraic equations can then be solved using routine
numerical methods on a digital computer.

Unfortunately such a calculation becomes an immense undertaking if only a
“brute force” discretization of the transport equation is applied. For example,
consider “typical” mesh sizes of 100X 100X 100 space points, 10 energy groups,
and 10 angle points. Then for each time step we wish to calculate, we must solve
10® simultaneous algebraic equations—a rather formidable task, even on a modern
computer.

Hence the nuclear engineer cannot blindly depend on the computer to solve his
problem, but rather he must first rely on physical insight (rather than brute force
mathematics) to reduce the transport equation to more manageable form. He may
be able to eliminate one or more of the independent variables in the transport
equation. For example, one is usually interested in time-independent problems so
that the time variable can be ignored. Frequently the reactor geometry can be
modeled by a one- or two-dimensional calculation. The most useful class of
approximations to the transport equation eliminate the angular variable . The
most popular (and useful) scheme for accomplishing this is to introduce the
neutron diffusion approximation. Since neutron diffusion theory will constitute our
primary tool in our study of nuclear reactor behavior, just as it does for the nuclear
reactor industry, we will take some care in our derivation of the neutron diffusion
equation.
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IV. THE DIFFUSION APPROXIMATION

A. The Neutron Continuity Equation

For most reactor calculations, the details of the angular dependence of the
flux are not necessary, and we really only need to calculate the angle-integrated
flux:

¢>(r,E,t)=f4 dQo(r,E.Q,1), (4-71)

in order to calculate nuclear reaction rates and hence study the chain reaction (e.g.,
by calculating the multiplication factor k).

Surely we can formulate an equation for ¢(r, E,?) by simply integrating the
transport equation over angle. Let’s try and see what happens. That is, we will
integrate each term of the transport equation (4-43) over the direction variable Q:

, 1 9 . A .
fdn;—ay +deZQ-V<p +fdsz>:tq>
“«w O v @ v 0O

=fd(zfdﬁffdzs'ES(E'_>E,Q'_>Q)<p(r,E',Q',z)+f dQ s(r,E,Q,1).
47 az 0 @ 47 @

(4-72)

We can simplify each of these terms somewhat by the straightforward manipula-
tions indicated below:

_ 5199 13 s 193¢
®_f4"dﬂu ad v o L,,dﬂq) T (4-73)
® =f47d92tq> =2,f4”df2qo =36, (4-74)
® =fd§s(r,E,Q,t) =S(r,E,1). (4-75)
4n

Here we have used our earlier expression Eq. (4-16) for the neutron flux ¢ in terms
of the angular flux ¢ and also simply defined a source term S (r, E, ). To evaluate
the inscattering term (@) we first recall that 2(E'—> E, SZ’——)SZ) usually depends only
on the scattering angle cosine p,= €¥'- Q. This implies that

~ A A 1
[df5(E'EQ—8) =27 [ duyS(E'>E o) =S(E'>E), (476)
47 -1

where 2 (E’—>E) is just the “single” differential scattering cross section defined in
Eq. (2-46). Hence we can interchange the order of integrations over Q and & to
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write:

A w A A A A
@=f dﬂ’f dE’[fdQES(E’—»E,Q'—»Q) o(r,E', 1)
47 0 47

f “dE'S(E'—>E) f A o(r,E, Q1) (4-77)
0 47

[TdE (B> E)o(r E' ).
0

So far everything is straightforward; but unfortunately the last term (2) cannot be
evaluated in terms of ¢(r, E,¢). In fact we find that Q) must be evaluated in terms
of the neutron current J by using Eq. (4-19):

Q=[d® @Ve=V-[ dGQp=V-J(,E,0). (4-78)
47 4

If we now rewrite Eq. (4-72), it takes the form

d i ~
2 _aq; +V-J(rE, 1)+ Z(r, E )o(r, E, 1) = f dE'S(E’'>E)¢(r,E',t) + S (r,E,1).
0

(4-79)

This is known as the neutron continuity equation, since it is just the mathematical
statement of neutron balance.

It is important to note that this equation contains two unknowns, ¢(r, E,¢) and
J(r, E,t), unlike the neutron transport equation, which only contained one un-
known, the angular flux ¢(r, E,, t). Hence by removing the angular dependence
we have in the process introduced another unknown, J(r, E,¢), and hence we now
have an insoluble problem (i.e., one equation in two unknowns). The moral of this
story is that you don’t get something for nothing—that is, merely integrating out
the angular dependence doesn’t remove the complexities of the angular variation. It
just shifts them by demanding that one obtain yet another equation relating
o(r, E,t) and J(r, E,¢).

It is impossible to express J(r, E,¢) in terms of ¢(r,E,?) in a general and exact
manner. This is more apparent if we recall the definitions Eqgs. (4-17) and (4-19):

d)(r,E,t)Ej; dQo(r,E,Q,1), | (4-17)

J(r,E, )= f dQ¥Q(r,E,Q,1). (4-19)
47

It is obvious that these two quantities are entirely different functions, although they
can both be expressed in terms of an angular integral of the angular flux
o(r, E,Q,t). Hence there is no reason why one would expect these functions to be
simply related.

Undaunted by our failure to find a simple equation for ¢(r, E, t), suppose we shift
our attention instead to developing an equation for the current density J(r, E, ). By
comparing the definitions in Egs. (4-17) and (4-19) above, we are tempted to try



126 / THE ONE-SPEED DIFFUSION MODEL OF A NUCLEAR REACTOR

multiplying the transport equation by Q and then integrating once again over
angle. Actually since the direction variable €2 is a vector,

Q=¢,sinfcosp+¢€, sinfsing+¢,cosdh,

Q, Q, Q,

we should multiply the transport equation by each component separately and
integrate. For example, the £, component would yield

v 4z

4
@ @ ©)
= [ age, dfl’foodE’Es(E’aE,Q’—»Q)q)(r,E’,Q’,l)+f d0Q s(r,E,Q,1)
4q 4 0 24

A a A A A
f 99,1 % + [ 4000Vp+ [ 400,39
Gl 4ar

(4-81)

Each of these terms can be simplified in a manner similar to that used in deriving
the neutron continuity equation [Eq. (4-79)]:

13 n 1 9J,
Q=+ | dQ@Q.9= 5, (4-82)
@ =3[ d2Qe=3y, (4-83)
4
O =/ dQQsrEQ.)=S, (r,Er) (4-84)
:24

Now to handle the inscattering term (@), write

a9 9,25(5'65,Q'ﬁﬁ)](p(r,E',Q',z). (4-85)
4z

@ = dQ’f dE’[
4x 1]

Next we do something a bit sneaky. Since Q is a unit vector, we can write
Q- =1. We will insert this into Eq. (4-85) so that we can rewrite it as:

@ = f dE’ dﬁ'[ / dQQXQ’ES(E’aE,Q’—)Q)].qu)(r,Ef,Qf,,)' (4-86)
0 4 4n

Now we recall again that ES(E'—->E,Q'—>Q) depends only on the cosine of the
scattering angle p,='-Q. Thus we can write

@ =3[ ae' [ a@[ [ad Q93 (E-EX D) |QomE G, @8)
0 47 4 :

m

We will define

A A

dfQ Q3 (E'-E{ -0)=1 f4 dQQ-&s(E'-E{-Q)

a7

277' +1 ’ 1 ’
=5 [, oS (B> Ep) =3 (E'>E), (488)
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so that @ finally becomes

@ = [TdE'S,(E'~E) [ a@ Qe E Q.0 = [ dE'S, (E'~E)J, (5 E'1)
0 ! 47 0 l
(4-89)

We are almost finished. Thus far each of our terms has been expressed in terms of
the current density J,, except for the source term §,, which is a known term. But
wait! We still haven’t considered the streaming term:

o)

A quick glance at the integral term confirms our fears; once again the streaming
term has kicked out yet another new unknown. To see this more clearly, we can
combine these results along with similar results for &, and @, to write Eq. (4-81) as
an equation for the current density J:

d%2,0Ve=v- [ 40 Q. Qor.E Q.. (4-90)
4z

™

%%—‘tl-+v- a Qﬁ(p(r,E,Q,f)'*'EtJ(r’E”)
47

=foodE’Esl(E’—)E)J(r,E’,t)+Sl(r,E,t)- (4-91)
0

However just as with the neutron continuity equation [Eq. (4-79)], we find that
integrating over  yields one equation but two unknowns, J(r, E, ) and

I E,N=| dQQQe(r,E, Q1) (4-92)
4z

[Here we have taken the luxury of using a symbolic notation of writing two vectors
together, QQ. If this bothers you, just interpret this as a convenient notation for
taking each of the various combinations of components £,2,Q.Q,...,Q.Q,
separately to construct a quantity with nine components, IT, ,II_,...,II .. Such
quantities are referred to as tensors (or, in this case, dyadics), but we won’t need to
get so formal here.] It should be evident that we can get a new equation for
II(r, E, ) by multiplying the transport equation by QQ and integrating, but this new
equation will contain yet another unknown,

f d 008 (r,E, Q).
4

m

Hence all we are doing by multiplying by [Q]” and integrating is generating an
infinite set of coupled equations (which we can’t solve). [Incidently, it should be
apparent that the culprit is the “streaming” or “leakage” term -V which
contains a factor of € and hence generates the new unknowns in each equation.]

The only way to cut off this chain of equations is to introduce an approximation.
We shall do this by assuming that the angular flux is only weakly dependent on
angle, and in so doing, we will generate the neutron diffusion equation. However it
is useful to first discuss several simplifications that can frequently be introduced
into the neutron transport equation.
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B. Common Simplifications to the Neutron Transport Equation

1. THE ONE-SPEED APPROXIMATION

It is frequently convenient to suppress the neutron energy dependence by
assuming that one can characterize the neutrons by a single energy or speed. We
will find in Chapter 7 that if one chooses the appropriate effective cross sections,
such a representation will in fact frequently yield a reasonable description of the
reactor. However for now we will introduce the one-speed approximation in a rather
artificial manner by simply assuming that the neutron energy does not change in a
scattering collision. This can be inserted into the transport equation [Eq. (4-43)] in
a rather convenient manner by simply assuming a differential scattering cross
section of the form

S(E'—E,¥->Q)=3(E,¥->Q)§(E'~E), (4-93)
where 8 (E’' — E) is the Dirac 8-function defined by the property

[ axf(x)8(x=x)=f(x) (4-94)

for any sufficiently well-behaved function f(x). [See Appendix C for a more
detailed discussion of animals such as the 8-function.] Using this definition, the
inscattering term in Eq. (4-43) becomes

f dﬁ'f°°dE’ZS(E’AE,Q’—-)Q)(})(I',E"Q/,t) ___f dﬁ,ES(E,Q,—-)Q)(P(I',E,Q',I).
4w 0 4

(4-95)
Since all of the terms in the transport equation are now evaluated at the same

energy, we may as well eliminate the explicit dependence on energy to write the
one-speed neutron transport equation as

a A~ ~ ~ ~ A A A
% —a‘? +Q-Vo+S (D)o R,0)= f A = (@ -, &, ) +s(r,R,1). (4-96)
4n

This equation is still far too complicated to solve (even using brute force numerical
techniques) in realistic geometries. So we’ll introduce yet another simplification.

2. ISOTROPIC SOURCES AND SCATTERING

One major simplification that can be introduced into the transport equation
arises when one assumes both isotropic neutron sources

A 1
s(r,Q,0)= pp S(r,¢) (4-97)
and isotropic scattering (in the LAB system)

s (@ -f)=-13. (4-98)
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The assumption of isotropic neutron sources is usually not too restrictive since
most sources such as fission are indeed essentially isotropic. Unfortunately
although neutron scattering is usually isotropic in the CM system, it is far from
isotropic in the LAB system, particularly for low mass number scatterers such as
hydrogen. Undeterred by such physical considerations, we will assume for the
moment that isotropic scattering is present. Then the one-speed transport equation
simplifies still further to

a A A ES A ~
1% Ve +serd,n= EL A o(r, Q1) +

S(r,1)
v ot )

4ar

(4-99)

However even this equation is extremely difficult to solve in general.

3. OTHER SIMPLIFICATIONS

Thus far we have mutilated the energy and angular dependence of the
transport equation in the interest of mathematical expediency—and still have not
arrived at anything we can hope to solve (at least analytically). So in frustration we
now turn our attention to the remaining time and spatial variables. First we will
completely eliminate the time variable by agreeing to consider only steady-state
transport problems. Then Eq. (4-99) simplifies to

, S s S
Q'V(p+2t<p(r,9)=z;j; ds¥ p(r, )+ o —. (4-100)

Next, we will assume that the system under study has uniform composition such
that the cross sections do not depend on position. Finally we will simplify the
system geometry, for example, by considering only planar or spherical symmetry.
In the case of planar symmetry we arrive at a rather simple-looking equation

S (x)

9 5 2 (o / 4-101
past tw(x,u)—jf_l wolxp)+——. (4-101)

This equation can actually be solved analytically®—but only with rather sophisti-
cated mathematical techniques beyond the scope of this text. So even after a
number of rather questionable approximations, one arrives at an equation that can
still only be solved with great difficulty.

After this rather pessimistic glance at the difficulties involved in solving the
transport equation, let us remark that there is one very important class of transport
problems that can be solved exactly with only a minimal expenditure of effort—
those involving neutron transport in a purely absorbing medium.

4. NEUTRON TRANSPORT IN A PURELY ABSORBING MEDIUM

Frequently we are interested in neutron transport in a medium in which
scattering can be ignored. This might occur in a vacuum, for example (or more
realistically, a gas-filled region of a reactor). Or it might apply in a very highly
absorbing medium such as a fuel element or a control rod. In these cases, the
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transport equation becomes
QVo(r,E,Q)+3,(r,E)o(r, E,Q)=s(r, E,Q). (4-102)

We have omitted the time dependence here since it is rarely of relevance when such
transport problems are of interest.

This equation can be solved exactly for any source distribution since it can be
converted into a simple first-order differential equation. Consider first the case of
neutron transport in a vacuum in which 2, =0:

Q-Vo(r,E,Q)=s(r,E, Q). (4-103)

However Q-V is just the directional derivative in the direction Q. If we define a
variable R that measures distance along this direction (see Figure 4-11) then

5 9
2V>-—7, (4-104)

where R is measured in the —§ direction, and we find

dp A
R —s(r, E, Q). (4-105)

If we now integrate with respect to this variable, we find
A w A A
<p(r,E,SZ)=f dRs(r— RQ, E, Q). (4-106)
0

Notice that this expression simply equates the neutron angular flux at position r in
direction £ to the total number of source neutrons emitted in this £ (obtained by
integrating back along — ).

EXAMPLE: Consider an isotropic point source located at the origin (for con-
venience, we will suppress the energy dependence for this example). The math-

97
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FIGURE 4-11. Neutron transport in a vacuum,
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ematical representation for such a source is just
Q)= ——SO 6 4-107
s(r’ ) 47T (r)’ ( - )

where §(r—r’) is just the three-dimensional version of the Dirac §-function (see
Appendix C) defined by

fd3r’f(r’)8 (r—r)=f(r). (4-108)
Hence we find
. ©  §(r—R)
o(r,Q)= Sof dR — (4-109)
0

This still looks a bit strange. [Actually it can be shown that @(r, Q) vanishes unless
one is looking along the direction r, as one would expect from Figure 4-12.]
Suppose we compuie instead the neutron flux itself:

A A S oo A A
o) = [ dQer,Q)=-"1{ drR| dQ6(>x—RQ). (4-110)
47 4x 0 47

If we multiply the integrand by R?/R? we can identify a volume integration (in
spherical coordinates) over the dummy vector R:

So (., .8(t-R) S, [, 8(1-R)

Yet using the definition of & (r—r’) given by Eq. (4-108), we find that the flux
resulting from an isotropic point source at the origin is just

So
dqr?’

o(r)= (@-112)

that is, ¢ falls off with distance as 1/r? because of the ever increasing surface area
(47r?) over which the S, source neutrons/sec must be isotropically distributed.

<

/ FIGURE 4-12. A point source emitting neutrons
/ isotropicaily at the origin of an infinite medium.
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Now return to Eq. (4-102), which characterizes transport in a purely absorbing
medium. Suppose this medium is homogeneous, that is, =, is not a function of
position. Then we can use an integrating factor exp[2,r- ] to rewrite Eq. (4-102) as

Q0 Ve exp(Ear-ﬁ)]=sexp(2ar-Q). (4-113)

However we can integrate this equation just as we did Eq. (4-103) to find
o (1, E, Qexp(Z,r-§) = [ “dRs(r— R, E, Dexp[Z,(r— RY)- 9], (4-119)
0
or canceling out the integrating factor from both sides
A o0 A A
(rE Q)= [ dRs(r— R, E,D)exp(~Z,R). (4-115)
0

This solution again has a very plausible interpretation when it is recognized that
exp(— 2,R) is just the attenuation that would occur between the source point and
the observation point r. Notice that this immediately reduces to our vacuum result

for the case in which Z,=0.
We can also obtain an exact solution for the situation in which X, depends on
position. We need only use a slightly more complicated attenuation factor

exp(—2,R )—exp[ — a(r,r— RD)], (4-116)

where a(r,r’) is known as the optical thickness or optical depth of the media and is
defined by

R
a(r,r’)Ef dsEa(r——s%), R=r-r. (@-117)
0

Note that « is essentially a measure of the effective absorption between points r’
and r.

EXAMPLE: Consider once again our point source, only this time assume that it
is imbedded at the origin of an infinitely large medium characterized by a uniform
absorption cross section Z,. Then repeating our earlier analysis using Eq. (4-115)
yields

SO exp( - 2ar)

4qr?

o(r) , (4-118)

which is similar to our vacuum result, with the exception of an additional attenua-
tion factor exp(—Z,r) due to the absorption.

This very important result can be easily generalized to the situation in which the
source is located at an arbitrary point r' by merely shifting the coordinate system
origin to find

Soexp(—Z,[r—r'[)

4-119
drlr—r'|? ( )

¢(r)
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Source point __.—z*Field point

FIGURE 4-13, Coordinates characterizing a disturbed source s(r, E, ﬁ),

We can finally use this result to synthesize the neutron flux resulting from an
arbitrary distribution of isotopic sources, S (r), in an infinite absorbing medium as

o(r) = ] g SPEZITD ¢ ). (4-120)

dnlr—r?

C. The One-Speed Diffusion Equation

We now turn our attention toward the development of an approximate
description of neutron transport more amenable to calculation than the neutron
transport equation itself. To make life simple, we will first work within the
one-speed approximation represented by Eq. (4-96). Let us first note the explicit
forms taken by the neutron conservation equation and the corresponding equation
for the current density J in the one-speed case:

%%+V-J+Et¢(r,t)=25¢(r,t)+ S(r.0), (4-121)

%%_}I*V' [ 4% 9960, + 2300 = BEIE ) +S,(r). (4122)
4ar

Here we have noted explicitly the simplifications that occur in the inscattering term
when the one-speed approximation is introduced. More specifically,

f “dE'S(E'—E)(t, E',t) >Zb(r, 1), (4123)
and

fowdE ‘2, (E'>E)J(EN N —E J(n1). (4-124)
But

+1 A A
S, =2m [ duonZ @ -9) =RoZ, (4-125)
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where we have defined the average scattering angle cosine fi, as

_ A A 2 +1
M05<9'9>=§7:f_1 Ao poZ( o)

1 Nk 3 O . o A . o)
e f4 @ j; A Q3,0 9). (4-126)

As an aside, it should be noted that one can easily calculate i, for the case of
elastic scattering from stationary nuclei when s-wave scattering is present. For then
we know that in the CM system, ocp(8c) = 0,/4m. Hence if we use ocy(0c)dSc
=0.(0.)dQ,, we find

=22 i " sinfcdfccosf; Sep(6e)
= % fo "sinfccosf, di. (4-127)
But recall
1+ A cosfc
cosf = . (4-128)
\/A2+2A cosf.-+1

If we substitute this into Eq. (4-127) and perform the integration, we find the very
simple result

o _ 2
Ro= 2 (4-129)

Now that we have justified the forms of Eqgs. (4-121) and (4-122) let us consider
how we might eliminate the annoying appearance of the third unknown,
/ df Qﬁm(r,ﬂ,t). We will accomplish this by assuming that the angular flux is only
weakly dependent on angle. To be more specific, we will expand the angular flux in
angle as

P(r,Q2,0)=@u(r, 1) + @ (L) + 9, (LOD, + @, (L), + -+, (4-130)

and neglect all terms of higher than linear order in Q. Actually a slightly different
notation for the unknown functions gy, @,, ¢,,, ¢, is useful. Write Eq. (4-130) as

(p(l',ﬁ,[) ;%‘P-‘_ %[ngx-*_‘]ygy +JzQz]

~ L 3 30 )
= oe(nn)+ - J(no Q. (4-131)

Notice that we have labeled the unknown expansion coefficients as the flux and
current. That this notation is perfectly consistent can be seen by noting from Eq.
(4-131) that

0
So(r. O 1)= 1 B+ - J(r.1): 5 — ]
Lﬂdﬂ¢(r,9,1)—¢(r,t)4ﬂ f4ﬂd9+4wJ(r,t) m/ﬂ’sz o(r1),  (4-132)
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and

J 4990 2.0 =, Nas [ 209 + = [j () [ 908

+Jy(r,z)f4 dQQyQ+JZ(r,t)f.4 a0 Q.9 ] (4-133)

However one can easily demonstrate (see Problem 4-14) that the integral of the
product of any two components of  gives

n dr
fdszsz,.szj= 3 I ij=xp,z. (4-134)
4m 0 i#j
Hence
fdﬁ Qo(r,8,0)=J(r1). (4-135)
4a

Of course Egs. (4-132) and (4-135) are identical to our original definitions of the
flux and current earlier in Egs. (4-17) and (4-19).

We will now use the approximate form of the angular flux in Eq. (4-131) to
evaluate the second term in Eq. (4-122):

A A A aal 1 3 oA
v. 4wd Qo (r,Q, 1=V "dQQQ[I’;¢+4—WJ~QJ. (4-136)

Next note that the integral of the product of any odd number of components of Q
vanishes by symmetry:

f dQ QLA =0 if L,m, or n is odd. (4-137)
4z

If we use both Eqgs. (4-134) and Eq. (4-137) we can evaluate

V[ 46 §0¢=LVe(r,0). (4-138)

4

W

Hence by assuming that the angular flux depends only weakly on angle—more
specifically, that the angular flux is only linearly anisotropic—we have managed to
express the third unknown appearing in Eq. (4-122) in terms of the neutron flux
¢(r,r). We have now achieved our goal of obtaining a closed set of two equations
for two unknowns, ¢(r,t) and J(r, ):

L v+ 5,@e(0) =S (1) (@-139)
1 dJ
S t3 V¢+Ztr(r)J(r 1)=8,(r.?). (4-140)

We have noted here that
Z,(n)=Z2(r)—Z((r), (4-141)
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and defined the macroscopic transport cross section
2 (1) =2 (r) = RZ(r)- (4-142)

(We will comment on this definition in a moment.) These two equations are known
in nuclear reactor analysis as the P, equations (in the one-speed approximation)
since the approximation of linearly anisotropic angular dependence in Eq. (4-131)
in one-dimensional plane geometry is equivalent to expanding the angular flux in
Legendre polynomials in p=cos# and retaining only the /=0 and /=1 terms

P (X1, 1) = (X, 1) 3 Po(( ) +J (%, )3 P1( 1), (4-143)

hence the name P, approximation. Notice that this could be easily generalized to
obtain the P, approximation.

In principle we could now use the P, equations to describe the distribution of
neutrons in a nuclear reactor. However it is customary to introduce two more
approximations in order to simplify these equations even further. First we will
assume that the neutron source term s(r,$2,¢) is isotropic. This implies, of course,
that the source term S,(r,#) vanishes in the equation for the current density. As we
mentioned earlier, this approximation is usually of reasonable validity in nuclear
reactor studies.

As our second approximation, we will assume that we can neglect the time
derivative v~! 3J /9t in comparison with the remaining terms in Eq. (4-140). This
would imply, for example, that

LA s 4-144

1] "o Oy (4-144)
that is, that the rate of time variation of the current density is much slower than the
collision frequency v=,. Since v=, is typically of order 10° sec™! or larger, only an
extremely rapid time variation of the current would invalidate this assumption. We
will later find that such rapid changes are very rarely encountered in reactor
dynamics. Hence we are justified in rewriting Eq. (4-140) as

IVO(1,0)+ 2, (0I(1,1) =0. (4-145)

We can solve Eq. (4-145) for the neutron current density in terms of the neutron
flux

1
32.(r)

J(r,1)= — Vo(r,1). (4-146)

If we define the neutron diffusion coefficient D by
D(n)=[32,(0]'=[3(Z,— FZ,)] ", (4-147)
then we can rewrite Eq. (4-146) as
J(r,t)= — D (r)Vo(r,?). (4-148)

Hence we have found that in certain situations the neutron current density is
proportional to the spatial gradient of the flux. This very important relation arises
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quite frequently in other areas of physics where it is known as Fick’s law. It is also
occasionally referred to as the diffusion approximation.

Before we consider the physical implications of this relationship, let us use it to
simplify the P, equations. If we substitute this into Eq. (4-139) we find

1 9¢

S ar —V-D (r)Vo+Z,(r)é(r, )= S (r,1). (4-149)
This very important equation is known as the one-speed neutron diffusion equation,
and it will play an extremely significant role in our further studies of nuclear
reactors. We will discuss its solution in considerable detail in Chapter 5, and we
will use it as the basis of a very simple but very useful model of nuclear reactor
behavior.

Let us now return to consider the diffusion approximation [Eq. (4-148)] in more
detail. Notice that it implies that a spatial variation in the neutron flux (or density)
will give rise to a current of neutrons flowing from regions of high to low density.
Physically this is understandable since the collision rate in high neutron density
regions will be higher with the corresponding tendency for neutrons to scatter more
frequently away toward lower densities. The rate at which such diffusion occurs

o(y)

Jy)

Y

FIGURE 4-14. A schematic representation of Fick’s law.
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depends on the diffusion coefficient which, in turn, is inversely proportional to the

transport cross section ..
It is convenient to introduce the concept of a transport mean free path

ANe=(Z) 7 =(5- RZ) (4-150)

The transport mfp can be regarded as a corrected mfp accounting for anisotropies
in the scattering collision process. Since [i, is almost always positive—that is, biased
in the direction of forward scattering—the transport mfp A, will always be
somewhat larger than the actual mfp, A=(Z))~'. This essentially accounts for the
fact that neutrons experiencing forward scattering tend to be transported somewhat
further in a sequence of collisions than those being isotropically (or backward)
scattered.

Hence since D=, /3, we see that diffusion is also enhanced in a material with
pronounced forward scattering (e.g., hydrogen), although this of course also de-
pends on the magnitude of the macroscopic cross sections.

It is important to keep in mind that the diffusion approximation is actually a
consequence of four different approximations: (a) the angular flux can be
adequately represented by only a linearly anisotropic angular dependence [Eq.
(4-131)], (b) the one-speed approximation, (c) isotropic sources, and (d) the neutron
current density changes slowly on a time scale compared to the mean collision time
[Eq. (4-144)]. Actually only the first of these approximations is really crucial. The
remaining approximations can be relaxed provided we are willing to work with the
P, equations rather than the neutron diffusion equations (as one frequently is).

It is natural to ask when the angular flux is sufficiently weakly dependent on
angle so that the diffusion approximation is valid. More detailed studies of the
transport equation itself indicate that the assumption of weak angular dependence
is violated in the following cases: (a) near boundaries or where material properties
change dramatically from point to point over distances comparable to a mean free
path, (b) near localized sources, and (c) in strongly absorbing media. In fact strong
angular dependence can be associated with neutron fluxes having a strong spatial
variation. Usually if one is over several mean free paths from any sources or
boundaries in a weakly absorbing medium, the flux is slowly varying in space, and
diffusion theory is valid.

D. The Energy-Dependent Diffusion Equation

Let us now try to repeat this analysis for the case in which the neutron energy
dependence is retained. Again we will approximate

A ~_1_ i_ .0 -
q>(r,E,9,t)=4 ¢(r,E, 1)+ 2 J(r,E, 1) Q, (4-151)
so that we can evaluate

Vo(r,E, ). (4-152)

W=

v-[ af dfe(rE Q1=
4

If we now use this in the pair of Egs. (4-79) and (4-91), we arrive immediately at
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the energy-dependent P, equations

d o
L AV IS (B E )= [ dE S(EE)S( L) +S(ED), (4153)
0
19J . 1 ® e :
S §V¢+2t(r,E)J(r,E,t)=f dE'S, (E'>E)J(r,E',t)+S,(r, E,1).
0

(4-154)

Continuing our analogy with the derivation of the one-speed diffusion equation, we
will again assume: (a) isotropic source S; =0 (b) |J|~'3|J|/ < vZ(r, E) so that Eq.
(4-154) can be rewritten as

3 (r, E)J(r, E, 1) — fo “dE'S (E'~E)J(rE',t) = ~ %vd;(r, E,1). (4-155)

However we can now see a problem that appears to prevent a straightforward
generalization of Fick’s law to include energy dependence. For we cannot bring
J(r,E’,t) out of the scattering integral since it depends on the integration variable
E’.

Of course, if we were allowed to assume isotropic scattering in the LAB system,
then 2, (E’—E)=0 and we could find

1

J(l‘,E,t)% - —ﬁt(—l‘;E_)

Vo(r. E, 1). (4-156)

But the assumption of isotropic scattering is far too gross for most reactor
calculations.

We could proceed formally by merely defining an energy-dependent diffusion
coefficient

-1

I “dE'S, (E'~>E ), (r,E'1)

1
D(r,E)= 3 Z(r,E) T wED) , (4-157)
which would automatically yield
J(r,E,t)=—D(r,E)V¢(r,E,1). (4-158)

Of course, this approach is highly artificial because as defined in Eq. (4-157)
D (r, E) still depends on J(r, E, ).

One common procedure for avoiding this difficulty is to neglect the anisotropic
contribution to energy transfer in a scattering collision by setting

3, (E'-E)=3,(E)S(E'~E) (4-159)

so that
foodE’ ESI(E’—>E Wi(rE' )= pZ(EM;(r,E,t). (4-160)
0
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Then we find a natural generalization of the diffusion coefficient:
D(rE)=+[Z(nE) = RoZ,(r.E)] " (4-161)

Actually none of these derivations of an energy-dependent diffusion equation are
particularly satisfying because we have ignored the fact that in neutron transport
processes, spatial transport, directional changes, and energy changes are intimately
mixed. We can only provide a more satisfactory derivation of Eq. (4-158) after we
have discussed comparable approximations characterizing neutron energy transfer
in scattering collisions. Such a derivation must await our discussion of neutron
slowing down in Chapter 8.

For the present, we will simply assume that the generalization of Fick’s law to
include energy-dependence is given by Eq. (4-158) with an energy dependent
diffusion coefficient as defined by Eq. (4-161). If we now substitute this into Eq.
(4-153), we arrive at the energy-dependent diffusion equation

3
% ’a? —V-D(r,E)Vé+3,(r,E )b(, E, 1)
= “dE'S(E'—E)$(r,E',1) + S(r,E,1). (4-162)
0

This equation plays a very important role in nuclear reactor analysis since it is
frequently taken as the starting point for the derivation of the multigroup diffusion
equations. These latter equations represent the fundamental tool used in modern
nuclear reactor analysis.

E. Diffusion Theory Boundary Conditions

Since the neutron diffusion equation has derivatives in both space and time, it
is apparent that one must assign suitable boundary and initial conditions to
complete the specification of any particular problem. Since the diffusion equation
itself is only an approximation to the more exact transport equation, we might
suspect that we can use the transport theory boundary conditions as a guide in our
development of appropriate diffusion boundary conditions. It will suffice to con-
sider this development within the one-speed approximation.

Recall that the transport theory boundary conditions we discussed earlier were:

Initial condition: ¢(r, Q, 0) = (T, Q), (4-163)

Boundary condition: ¢(r,, Q,1)=0 for Q-é‘s <0, allr,on S. (4-164)

We can obtain the appropriate initial condition for the diffusion equation by
merely integrating the transport condition over angle to obtain:

Initial condition: ¢(r,0)=¢(r) (4-165)

The boundary conditions are a bit harder to come by. Actually we will require
several types of boundary condition, depending on the particular physical problem
of interest. We will group these boundary conditions into one of several classes:
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1. GENERAL MATHEMATICAL CONDITIONS ON THE FLUX

Although strictly speaking they are not boundary conditions, we should first
mention those mathematical properties that the function ¢(r,7) must exhibit in
order to represent a physically realizable neutron flux. For example, ¢(r, ) must be
a real function. Furthermore since both the neutron speed v and density N cannot
be negative, we must require that ¢(r,¢) be greater than or equal to zero. In most
cases we can also require that ¢(r,¢) be bounded. However we should add here that
one occasionally encounters pathological models of physical neutron sources that
cause ¢(r,¢) to diverge. An example would be the familiar point source. Another
situation is the so-called Milne problem, in which one studies the behavior of the
flux near a vacuum boundary fed by a source of infinite magnitude located at
infinity. There will also be certain symmetry conditions that we can place on ¢(r,?)
resulting from geometrical considerations, such as plane or axial symmetry. These
conditions will become more understandable as we consider specific examples later
in Chapter 5.

2. BOUNDARIES AT INTERFACES

Consider next an interface between two regions of differing cross sections.
Now clearly the correct transport boundary condition is that

@,(r, @, 0)= @, (r,R,1) for all @, (4-166)

where @, is the angular flux in region 1, while ¢, is the angular flux in region 2.
This condition ensures conservation of neutrons across the boundary and can
easily be derived directly from the transport equation.

Unfortunately we cannot satisfy this boundary condition exactly using diffusion
theory. At best, we can only ensure that angular moments of Eq. (4-166) are
satisfied. And since diffusion theory yields only the first two moments of the
angular flux, ¢(r,¢) and J(r,¢), at best we can demand

fdﬁqvl(rs,ﬁ,t)=f dQy(r, R, 1) = ¢,(r, 1) = b,(1,, 1), (4-167)
47 47
7 N
a
g

FIGURE 4-15.  An interface boundary.
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and

m

[ a00e(r, Q.0 = [ a0y, @.0)=d\(ru)=di(r,0).  (4-168)
47 4

Hence the interface diffusion theory boundary conditions are simply those corre-
sponding to continuity of flux and current density across the interface:

¢l(rs’ t) = ¢2(rs’ [)
—D\Vo¢,(r,t)= — D,V ¢,(r,,1). (4-169)
We will occasionally find it mathematically expedient to imagine an infinitestimally

thin source of neutrons S at an interface boundary. Then the interface boundary
conditions are modified to read:

¢ (s 1) = (15, 1)
& do(r 1) =&, Jy(r, 1) = S (1), (4-170)

where € is the unit normal to the surface.

3. VACUUM BOUNDARIES

Recall that our transport theory boundary condition was merely a mathemati-
cal statement that there could be no incoming neutrons at a free or vacuum
boundary

o(r,2,1)=0 for @-dS <0,

allr,on S. (4-171)

ds

9>

FIGURE 4-16. A vacuum boundary.
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Once again diffusion theory will only be able to approximate this boundary
condition. Notice in particular that the boundary condition is given only over half
of the range of solid angle (corresponding to incoming neutrons). Hence suppose
we again seek to satisfy the transport boundary condition in an “integral” sense by
demanding

98- Qo(r,@,0)= [ a0e-j@,Q.0=I_(r,n=0. @172
27~ 27~
where we have recognized that this integral condition is equivalent to demanding
that the inwardly directed partial current J_ vanish on the boundary.
Unfortunately diffusion theory is capable of only approximating even this
integral condition, since it cannot yield the exact form for J, . Indeed if we use the
P, approximation [(4-131)] for the angular flux, we find that the partial current
densities J, are approximated in diffusion theory by

Joen= [ 49600 @, n=q000)F D8 Ve(rr).  (4173)

27 *

Hence our diffusion theory approximation to the transport boundary condition
Eq. (4-171) is just

J_(1,1) = F (e, 1)+ 28, Vo(r, 1) =0. (4-174)

For convenience consider this boundary condition applied to a one-dimensional
geometry with the boundary at x = x,

_1 D d¢| _
J—(xs)— 4¢(xs)+ 2 dx x!—o
or
1 do| 1
#(x) dx|,~ 1D (@-17)

Notice that this relation implies that if we “extrapolated” the flux linearly beyond
the boundary, it would vanish at a point

X,=x,+2D=x+32A,.. (4-176)
For this reason, one frequently replaces the vacuum boundary condition
J_(x)=0, (4-177)
by the slightly simpler condition
¢(%,)=0, (4-178)

where X is referred to as the “extrapolated” boundary. More advanced transport
theory calculations of the extrapolated boundary indicate that one should choose

R, = x,+ 2, (4-179)
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J_(x,)
-

(x;)

’4 N ¢exact

=~

¢ (x)
\\

\ Linear extrapolation

N
N
~
X,

2, >

X

FIGURE 4-17. The behavior of approximate and exact representations of the neutron flux
near a vacuum boundary.

where the “extrapolation length” z, for plane geometries is given by
=0.7104A,. (4-180)

More complicated extrapolation length formulas can be derived for curved
boundaries,!* although they are rarely necessary since Eq. (4-180) suffices unless
the radius of curvature of the boundary is comparable to a mean free path.

It should be remembered that the true flux does nor vanish even outside the
boundary. The diffusion theory flux is a poor representation of the true flux near
the boundary (as we saw earlier, diffusion theory is not valid near a boundary).
The boundary conditions we have derived are intended to yield the proper flux
only in the interior of the reactor, that is, several mean free paths away from the
reactor boundary.

These boundary conditions complete our description of neutron transport within
the diffusion approximation. The neutron diffusion equation will play a very
fundamental role in our development of nuclear reactor analysis methods. We will
begin our study of nuclear reactor behavior using one-speed diffusion theory, since
while this description has only limited quantitative validity, it does allow us to
illustrate rather easily the principal concepts of nuclear reactor theory, as well as to
develop the mathematical techniques used in more sophisticated models. With this
background, we will then develop and apply the principal tool of the nuclear
reactor designer, multigroup diffusion theory.



NEUTRON TRANSPORT / 145

REFERENCES

10.

11.

W. G. Vincenti and C. H. Kruger, Jr., Introduction to Physical Gas Dynamics, Wiley,
New York (1965); K. Huang, Statistical Mechanics, Wiley, New York (1963).

P. F. Zweifel, Reactor Physics, McGraw-Hill, New York (1973).

A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors,
University of Chicago Press (1958). ’

G. L. Bell and S. Glasstone, Nuclear Reactor Theory, Van Nostrand, Princeton, N. J.
(1970).

. K. M. Case, F. de Hoffmann, and G. Placzek, Introduction to the Theory of Neutron

Diffusion, Vol. I, Los Alamos Scientific Laboratory Report (1953).

. K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading,

Mass., (1967); B. Davison, Neutron Transport Theory, Oxford University Press, (1958).
E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Wiley, New York (1966).
B. Carnahan, H. A. Luther, and J. O. Wilkes, Applied Numerical Methods, Wiley, New
York (1969).

W. M. Stacey, Jr., Modal Approximations: Theory and an Application to Reactor Physics,
M.LT. Press, Cambridge (1967).

M. Becker, The Principles and Applications of Variational Methods, M.I.T. Press,
Cambridge (1964).

G. 1. Bell and S. Glasstone, Nuclear Reactor Theory, Van Nostrand, Princeton, N. J.,

(1970), pp. 214-249.
12. L. I. Schiff, Quantum Mechanics, 3rd Edition, McGraw-Hill, New York (1968).
13. A. Messiah, Quantum Mechanics, Vol. 1., North-Holland, Amsterdam (1958).
14. Reactor Physics Constants, USAEC Document ANL-5800, 2nd Edition (1963).
15. K. D. Lathrop, Reactor Technol. 15, 107 (1972).

PROBLEMS

4-1

4-2

We have defined the angular neutron density n(r,E,®,7) in terms of the neutron
energy E and the direction of motion €, but one could as well define an angular
density that depends instead on the neutron velocity v, n(r,v,z). Calculate the
relationship between these two dependent variables.

Two thermal neutron beams are injected from opposite directions into a thin sample
of 2°U. At a given point in the sample, the beam intensities are 10'> neutrons/cm?-
sec from the left and 2 X 10'? neutrons/cm?-sec from the right. Compute: (a) the
neutron flux and current density at this point and (b) the fission reaction rate density
at this point.

Suppose that the angular neutron density is given by

n(r,Q) = :—:r(l —cosf),

where @ is the angle between € and the z-axis. If 4 is the area perpendicular to the
z-axis, then what is the number of neutrons passing through the area A per second:
(a) per unit solid angle at an angle of 45° with the z-axis, (b) from the negative z to
the positive z direction, (c) net, and (d) total?

In a spherical thermal reactor of radius R, it is found that the angular neutron flux
can be roughly described by

E ) sin(wr/R)

%o
¢(r,E,Q)=EEexp(—ﬁ .

Compute the total number of neutrons in the reactor.
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4-5

4-6

4-7

4-8

4-9

4-11
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Demonstrate that in an isotropic flux, the partial current density in any direction is
given by J, =¢/4.

One of the principal assumptions made in the derivation of the neutron transport
equation is that there are no external forces acting on the neutrons, that is, that the
neutrons stream freely between collisions. Suppose we were to relax this assumption
and consider such a force acting on the neutrons (say, a constant gravitational force
in the z-direction). Then we might expect additional terms to appear that involve this
force. Derive this more general transport equation.

Explain briefly whether or not the transport equation as we have derived it adequately
describes the spatial and angular distribution of neutrons: (a) in a flux of the order of
100/cm?-sec, (b) scattering in a single crystal, (c) passing through a thin pure
absorber, and (d) originating within a very intense nuclear explosion in which the
explosion debris are moving outward with very high velocities.

Develop the particular form of the transport equation in spherical and cylindrical
geometries. To simplify this calculation, utilize the one-speed form of the transport
equation (4-100) in which time dependence has been ignored.

An interesting model of neutron transport involves transport in a one-dimensional
rod. That is, the neutrons can move only to the left [say, described by an angular
density n_(x,E,t)] or to the right [n, (x,E,f)]. One need only consider forward
scattering events described by 2.} (E’— E) or backward scattering events described by
2. (E'>E). Perform the following: (a) derive the transport equations for n, and n_,
(b) make the one-speed approximation in this set of equations, that is,

Z(E)=Z(E)+ZJ(E)+Z7(E)=Z,+ 2] + 2,
S¥(E'»E)=3%8(E'—E),

and (c) describe the boundary and initial conditions necessary to complete the
specification of the problem if the rod is characterized by a length L.
Consider the following differential equation:

a¥ _ 3
) +x*f(x)=2x(4—x),

where f(x) is defined on the interval 0< x <4. Discretize this equation by first
breaking up the independent variable range into four segments of equal length. Next
use a finite-difference approximation to the d%/dx? term to rewrite the differential
equation as a set of algebraic equations for the discretized unknown f(x;)=f.. For
convenience, assume boundary conditions such that f(0)=0=f(4). Solve this set of
equations for the f; and then plot this solution against x using straight-line interpola-
tion.

Consider the steady-state one-speed transport equation assuming isotropic scattering
and sources in a one-dimensional plane geometry

9 2 p+1 ~ . S(x)
“a_(z +>3t<p(x,n)=7f_l dp'p(x,p) + ——.

Expand the solution to this equation in the first two Legendre polynomials
@ (x, 1) = @o(x) 3 Po( 1) + 91 (x)3 P1( ),
Po(p)=1,P\(p)=p.

Substitute this expansion into the transport equation, multiply by Py(u) and P,(p)
respectively, and integrate over u to obtain a set of equations for the unknown
expansion coefficients gy(x) and ¢,(x). (These are just the P, equations.)



4-12

4-13

4-14

4-15
4-16
4-17

4-18

4-19

4-20

4-23

4-24

4-25

4-26

NEUTRON TRANSPORT / 147

Use Simpson’s rule to write a numerical quadrature formula for the angular integral
f *ldug(x,p) for N equal mesh intervals.

Develop the multigroup form of the transport equation as follows: First break the
energy range 0 < £ <10 MeV into G intervals or groups. Now integrate each of the
terms in the transport equation, Eq. (4-43), over the energies in a given group, say
E, < E<XE,_,. (Remember that the group indexing runs backwards such that 0= E;
<Eg < E<E,_ < - E <E;=10MeV.) Now by defining the group fluxes as
the integral of the flux over each group, and the cross sections characterizing each
group as in Eq. (4-69), determine the set of G equations representing the transport
equation,

By writing out the components of the direction unit vector £ in polar coordinates,
demonstrate explicitly that

4 ..
d0Q, =0 and [ a0, =43 /.
4 4 0 inj

Demonstrate that [ ,,dQQ.Q7Q=0if /, m, or n is odd.

Verify Eq. (4-138) using the identity in Problem 4-15.

Explicitly demonstrate by integration that F,=2/3A4 for elastic scattering from
stationary nuclei when such scattering is assumed to be isotropic in the CM system.
Consider an isotropic point source emitting S, monoenergetic neutrons per second in
an infinite medium. Assume that the medium is characterized by an absorption cross
section Z,, but only by negligible scattering. Determine the rate at which neutron
absorptions occur per unit volume at any point in the medium.

Compute the neutron flux resulting from a plane source emitting neutrons isotropi-
cally at the origin of an infinite absorbing medium. Hint: Just represent the plane
source as a superposition of point sources.

In a laser-induced thermonuclear fusion reaction, a tiny pellet is imploded to super
high densities such that it ignites in a thermonuclear burn. In such a reaction some
10'7 14 MeV neutrons will be emitted essentially instantaneously (within 10~!! sec).
Compute the neutron flux at a distance of 1 m from the reaction as a function of time,
assuming that the chamber in which the reaction occurs is evacuated.

Compute the thermal neutron diffusion coefficients characterizing water, graphite,
and natural uranium. Then compute the extrapolation length z, characterizing these
materials.

Assuming that the diffusion approximation [Eq. (4-131)] is valid, compute the partial
current densities in the z direction defined by Eq. (4-22). Use the one-speed
approximation, -

Consider the time-dependent one-speed P, equations assuming isotropic sources and
plane symmetry. Eliminate the current density J(x,¢) to obtain one equation for the
neutron flux ¢(x,¢). Compare this equation with the one-speed neutron diffusion
equation and indicate what differences you might expect in solutions to the two
equations.

Try to construct solutions to the one-speed transport equation in an infinite sourceless
medium:

dp Z, ,+1 , ,
u—a;+2@(x,u)—7f_l dw o(x,p)

by seeking solutions of the form @(x,u)=x(p) exp(— x/») where » and x( r) are to be
determined.
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4-27 Consider the time-independent one-speed transport equation under the assumption of
isotropic sources and scattering

b
Q- Vop+36r,Q)= Z; f4 A0 o (. 0) + s4(;) .

By regarding the right-hand side of this equation as an effective source, use the result
[Eq. (4-120)] to derive an integral equation for the neutron flux ¢(r).
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The One-Speed
Diffusion Theory Model

In this chapter we will develop the one-speed diffusion model of neutron
transport. This model plays an extremely important role in reactor theory since it is
sufficiently simple to allow detailed calculations and also sufficiently realistic to
allow us to study many of the more important concepts arising in nuclear reactor
analysis. Of course any model characterizing all of the neutrons in a reactor by a
single speed (or energy) and treating their transport from point to point as a
diffusion process cannot be expected to yield accurate quantitative estimates.
Nevertheless if the cross sections appearing in this theory are properly chosen, one
can use the one-speed diffusion model to make preliminary design estimates.
Moreover many of the mathematical techniques we will use to solve and analyze
this model are in fact identical to those applied to the more sophisticated models
(e.g., multigroup diffusion theory) used in modern nuclear reactor design.

The rigorous mathematical derivation of the one-speed diffusion model from the
neutron transport equation has been given in Chapter 4. In this chapter we will give
a more heuristic physical derivation of the one-speed diffusion equation and then
apply this equation to study nuclear reactor behavior. The solution of the diffusion
equation draws upon many familiar topics from a field that has become known as
mathematical physics, including methods for solving boundary value problems
involving both ordinary and partial differential equations.!”® For most problems of
practical interest in nuclear reactor studies, one must employ methods from
numerical analysis as well to allow the solution of the diffusion equation on a
high-speed computer. We would expect that many of these topics (e.g., separation
of variables methods in the solution of partial differential equations or Gaussian
elimination for solving systems of algebraic equations) are already quite familiar to
the advanced undergraduate. However we will continue our effort to make this
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presentation as self-contained as possible by briefly reviewing such methods when
they arise (although numerous references will also be provided). Throughout this
development we would again caution the reader to avoid letting the smokescreen
generated by these various mathematical techniques obscure the fundamental
physical concepts governing the behavior of the neutron population in the reactor.

1. THE ONE-SPEED DIFFUSION EQUATION

A. Derivation of the Diffusion Equation

We will suppress the neutron energy dependence by assuming that all of the
neutrons can be characterized by a single kinetic energy. Such a one-speed (or
one-group) approximation greatly simplifies the mathematical study of nuclear
reactor behavior. Of course such an approximation is also highly suspect, particu-
larly in light of the fact that neutron energies typically encountered in a reactor
span a range from 1073 to 107 eV, and neutron cross sections depend sensitively on
energy over most of this range. We will later be able to show, surprisingly enough,
that if one regards the one-speed approximation as an average description and
chooses the appropriate average cross sections, then in fact the one-speed model
can actually be used to obtain a quantitative description of a nuclear reactor.

As yet a further justification for our exhaustive study of the one-speed approxi-
mation, we would remark that most energy-dependent theories (e.g., multigroup
diffusion theory) are solved by performing a sequence of one-speed calculations for
each successive energy group. Hence the methods we develop for analyzing our
one-speed model will later be extended directly to more sophisticated descriptions.

We will characterize the neutron distribution in the reactor by the neutron
density N (r,?) which gives the number of neutrons per unit volume at a position r
at time ¢. Actually we will find it more convenient to work with the neutron flux,
¢(r,t)=0vN (r,1), since then we can compute the rate at which various types of
neutron—-nuclear reactions occur per unit volume by merely multiplying the flux by
the corresponding macroscopic cross section. For example, the rate at which fission
reactions occur per cm? at a point r would be given by Z(r) ¢(r, ?).

We will derive an equation for the neutron flux by merely writing down a
mathematical statement of the fact that the time rate of change of the number of
neutrons in a given volume must be simply the difference between the rate at which
neutrons are produced in the volume and the rate at which they are lost from the
volume due to absorption or leakage.

FIGURE 5-1. A control volume for monitoring neutron
balance.
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To be more precise, consider an arbitrary volume ¥V of surface area S located
anywhere within the reactor. We will examine this “control” volume carefully to
determine how the neutron population within it changes. Evidently the total
number of neutrons in V' at a time ¢ can be obtained by simply integrating over the
volume

de3rN(r,z)= fd3r Lo(5,1). (5-1)

Hence the time rate of change of the number of neutrons in ¥ must be just

d| (431 _ (a1 22
dt[j;drv¢(r,t)} derU -

= Production in ¥ —absorption in V'

—net leakage from V. (5-2)

We can easily write down mathematical expressions for the gain and loss terms. If
we define a neutron source density S(r,¢), then

Production in ¥'= [ d* S (r.1). (5-3)
V

Since the absorption rate density at any point in V is just 2 (r) ¢(r,?), it is obvious
that the total rate of neutron loss due to absorption in V is just

Absorption in V= f d’r=,(r) o(r,1). (5-4)
v

The term describing neutron leakage out of or into ¥ is a bit more difficult. If
J(r,7) is the neutron current density, then the net rate at which neutrons pass out
through a small surface element S at position r, is J(r,,7)-dS. Hence the total net
leakage through the surface of V is just

Net leakage from V= fa’S-J(r,t). (5-5)
s .

Now we could combine all of these terms back into Eq. (5-2) as they stand, but first
it is convenient to convert Eq. (5-5) into a volume integral similar to the other
terms. The common way to convert such surface integrals into volume integrals is
to use Gauss’s theorem to write

[ds-3@.0= [a&rv-3(e,1). | (5-6)
s v
If we now substitute each of these mathematical expressions into Eq. (5-2), we find

) | |
fd3r[%a—f—s+za¢+v-J}=o. (5-7)
V
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But recall that we chose our volume .V to be arbitrary. That is, Eq. (5-7) must hold
for any volume V' that we would care to examine. However the only way this can
occur is if the integrand itself were to vanish. Hence we find we must require

l%2=—V~J—E o+ S. (5-8)
v of a

Of course this equation is still quite exact (aside from the one-speed approxima-
tion), but it is also quite formal since it contains two unknowns, ¢(r,) and J(r, ).
To proceed further, we need yet another relationship between these two variables.
Unfortunately there is no exact relationship between ¢(r,¢) and J(r,f). One must
resort to an approximate relation. Now it is well known from other fields of physics
such as gaseous diffusion that the current density is approximately proportional to
the negative spatial gradient of the density, or in our case, the flux. That is,
particles will tend to flow from regions of high to low density at a rate proportional
to the negative density gradient. Stated mathematically, one finds that

J(r,1)= — D (r)Vo(r, 1), (5-9)

where the constant of proportionality D (r) is known as the diffusion coefficient,
while Eq. (5-9) is referred to as Fick’s law. Of course to postulate such a
relationship between current density and flux implies nothing about its range of
validity. Indeed we do not even know what the diffusion coefficient D is. This
situation is very common in macroscopic descriptions of physics, and relationships
such as Eq. (5-9) are usually referred to as “transport laws” (not to be confused
with the transport equation—we are talking the language of the physicist now)
while the proportionality coefficients are known as “transport coefficients.” Ex-
amples are numerous and include Fourier’s law of thermal conduction (thermal
conductivity), Stokes’ law of viscosity (shear viscosity), Ohm’s law (electrical resis-
tivity), to name only a few. In all cases, one is forced to go to a microscopic
description in order to evaluate the transport coefficient and examine the range of
validity of the transport law.

However this is of course exactly what we did by deriving the diffusion approxi-
mation [Eq. (5-9)] from the neutron transport equation in Chapter 4. There we
found that

D=(3%,) ' =[3(Z~ BoZ)] (5-10)

where 1, is the average cosine of the scattering angle in a neutron scattering
collision. Furthermore, we found that Eq. (5-9) was valid provided it was used to
describe the neutron flux several mfp away from the boundaries or isolated
sources, the medium was only weakly absorbing, and provided the neutron current
was changing slowly on a time scale comparable to the mean time between
neutron—nuclei collisions. It is important to keep these limitations in mind as we
apply this approximation in nuclear reactor analysis.

Henceforth we will accept the diffusion approximation [Eq. (5-9)] as providing a
valid expression for the neutron current density in terms of the neutron flux. If we
substitute Eq. (5-9) into Eq. (5-8), we arrive at the one-speed neutron diffusion
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equation

i %‘i’ =V-D (r)Vp—Z,(r)o(r.1)+ S (r,1). (5-11)

This equation will form the basis of much of our further development of nuclear
reactor theory.

B. Initial and Boundary Conditions

We must augment this equation with suitable initial and boundary conditions.
Although these conditions have been developed in a more rigorous fashion from
neutron transport theory in Chapter 4, we will remotivate them here using plausible
physical arguments.

The appropriate initial condition involves specifying the neutron flux ¢(r,?) for
all positions r at the initial time, say ¢ =0:

Initial condition: ¢(r,0) =¢,(r), allr. (5-12)

The boundary conditions are a bit more complicated and depend on the type of
physical system we are studying. The principal types of boundary conditions we
will utilize include the following:

1. VACUUM BOUNDARY

At the outside boundary of a reactor, one would like to construct a boundary
condition corresponding to the fact that no neutrons can enter the reactor through
this surface from outside. Implicit in this fact is the assumption that the reactor is
surrounded by an infinitely large vacuous region. Of course no reactor is
surrounded by a vacuum, but rather by air, concrete, and a host of other materials.
It is frequently convenient to assume that the reflection of neutrons back into the
reactor from such materials is negligible so that nonreentrant boundary conditions
apply.

There is only one problem; diffusion theory is incapable of exactly representing
a nonreentrant boundary condition. The closest one can come would be to demand
that the inwardly directed partial current

1 D(r)
J—(rs)= Z¢(rs)+ ) es'vqb(rs) (5'13)

vanish on the boundary (clearly an approximation, since this expression for J_
already is approximate). Actually we really shouldn’t worry much about a consis-
tent free surface boundary condition within the diffusion approximation, for we
have already indicated that diffusion theory is not valid near the boundary anyway.
It can only be expected to hold several mfp inside the boundary.

Hence what we should really look for is a “fudged-up” boundary condition
which, although it may have little physical relevance at the boundary, does in fact
yield the correct neutron flux deep within the reactor where diffusion theory is
valid. More detailed transport theory studies indicate that the proper boundary
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condition to choose is one in which the diffusion theory flux ¢(r,7) vanishes at a
distance

2,=0.7104A,, (5-14)

outside of the actual boundary of the reactor. This extrapolated boundary is usually
denoted symbolically with a tilde. For instance, if the physical surface is at r, then
the flux will be taken to vanish on the extrapolated boundary ¢(f,,?) =0.

A side comment here is appropriate. For most reactor materials, A, is quite
small, usually being of the order of several centimeters or less. When it is
recognized that most reactor cores are quite large (several meters in diameter), then
it is understandable that one frequently ignores the extrapolation length z, and
simply assumes the flux vanishes on the true boundary.

Furthermore few realistic reactor geometries are surrounded by a free surface.
Rather they are surrounded by coolant flow channels or plenums, structural
materials, thermal shields or such. Hence while the concept of a free surface is
useful pedagogically for painting a picture of an idealized reactor geometry
surrounded by a vacuum of infinite extent, it is rarely employed in modern nuclear
reactor analysis.

2. INTERFACES (MATERIAL DISCONTINUITIES)

The structure of a nuclear reactor core is extremely complex, containing
regions of fuel, structural material, coolant, control elements, and so on. Hence
while one rarely encounters situations in which the material cross sections 2(r)
depend continuously on position, one frequently is faced with what might be
termed “sectionally uniform” cross sections that change abruptly across an inter-
face separating regions of differing material composition. Our usual procedure in
treating such discontinuities in material properties will be to solve the diffusion
equation in each region separately and then attempt to match these solutions at the
interface using appropriate boundary conditions.

Once again the diffusion equation is not strictly valid within several mfp of the
interface. However in this case one can argue that conservation of neutron
transport across the interface demands continuity of both the normal component of
the neutron current density J(r,?) and the neutron flux ¢(r,?).

This condition is occasionally modified to account for the physically fictitious
but mathematically expedient convenience of including an infinitesimally thin
neutron absorber or source at the interface. Then while the neutron flux is still
continuous across the interface, the normal component of the current experiences a
jump:

&-[I(r)=d(r7)]=S, (5-15)

where &, is the interface surface normal, while S would represent a source term (if
positive) or an absorption term (if negative). (See Figure 4-15.)

3. OTHER TYPES OF BOUNDARY CONDITIONS

It is frequently convenient to impose other types of boundary conditions
upon the neutron flux. For example, we know the flux must be nonnegative, real,
and finite. Actually in our mathematical modeling of neutron sources we will
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occasionally encounter a situation in which the neutron flux becomes singular at a
localized source (e.g., a point source). However since such sources are mathemati-
cal idealizations, this singular behavior doesn’t bother us, and in general we will
demand that the flux be finite away from such sources. This condition is particu-
larly useful in geometries in which certain dimensions are infinite.

We will also occasionally be able to use symmetry properties to discard physi-
cally irrelevant solutions of the diffusion equation. For example, in one-
dimensional slab geometries, we can choose the coordinate origin at the centerline
of the slab, and then use symmetry to eliminate solutions with odd parity [i.e.,
9(= )= = $(x)).

Other types of boundary conditions are encountered in practice. A very common
problem in reactor calculations involves the determination of the flux in a small
subregion of the reactor fuel lattice, a so-called unit cell repeated throughout the
lattice. For example, such a cell might contain a single fuel rod surrounded by
coolant (a fuel cell) or several fuel assemblies along with a control element (a
control cell). Since these unit cells are repeated in a regular fashion throughout the
core lattice, one can argue that there should be no net transfer of neutrons between
cells, that is, that the neutron current density J(r) vanish on the cell boundaries.
This is an example of a boundary condition on the current. In such cell calcula-
tions it is also frequently necessary to obtain a diffusion theory solution in the
vicinity of a strong absorber (e.g., a fuel rod or control element). The appropriate
boundary condition at the interface between the diffusing medium and the ab-
sorber is handled much like that characterizing a free surface. That is, one uses a
transport-corrected boundary condition on the flux or current to yield the proper
diffusion theory solution at a distance of several mfp from the interface. We will
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FIGURE §-2. Typical unit fuel and control cells.
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give explicit examples of such boundary conditions when we consider cell calcula-
tions in Chapter 10.

We should reemphasize that the application of neutron diffusion theory in
reactor analysis is successful in large part because the diffusion equation and its
boundary conditions have been modified using more exact transport theory correc-
tions. For example, D=[3(Z,— [,=,)] ! contains a correction to account for
anisotropic scattering. Furthermore the boundary conditions on the flux or current
at a free surface or adjacent to a highly absorbing region contain transport
corrections to yield the proper neutron flux deeper within the diffusing region.
Such transport corrections frequently yield diffusion theory estimates that are far
more accurate than one would normally expect, especially when we recall the
rather strong approximations required to derive the neutron diffusion equation.

C. A Summary of the One-Speed Diffusion Model

To summarize then, the model we will initially use to describe the neutron
population in a nuclear reactor consists of the neutron diffusion equation:
199 o 5 _
vl -D(r)Vo+Z,(r)¢(r,1)=S(r,1) (5-16)
along with suitable initial conditions:

&(r,0) = y(r), all r (5-17)

and boundary conditions:

(a) Free surface: ¢(f,,7)=0 [or J_(r,,1)=0]
(b) Interface: ¢ and normal component of J continuous across interface, (5-18)
(c) 0< ¢(r,1) < o0 (except in the neighborhood of localized sources).

Here the diffusion coefficient D=\ /3=[3(Z,— E,=,)] ' while the extrapolation
length characterizing a free surface boundary condition is z,=0.7104 A,..

The neutron diffusion equation [Eq. (5-16)] may be classified as an example of a
linear partial differential equation of the parabolic type.* This type of equation has
been thoroughly studied by mathematicians and physicists alike for years, since it
also describes processes such as heat condition, gas diffusion, and even a wave
function (notice, if we stick an “/” in front of the time derivative, we have
essentially just the Schrédinger equation familiar from quantum mechanics). As we
proceed to apply this equation to nuclear reactor analysis, we will review several of
the more popular schemes available for solving such equations.

In many cases we will deal with situations for which the medium in which the
neutrons are diffusing is uniform or homogeneous such that D and Z, do not

depend on position. Then the one-speed diffusion equation simplifies to

1 9¢ ) .

5 —a—t-—DV o+ 2,0(r,t)=S(r,1). (5-19)
The explicit form taken by this equation will depend on the specific coordinate
system in which we choose to express the spatial variable r. For convenience, we
have included the explicit forms taken by the Laplacian operator, V2, in the more
common coordinate systems in Appendix B.
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We will frequently consider situations in which the flux is not a function of time.
Then Eq. (5-19) becomes

— D V2(r)+ =Z,¢0(r)= S (r). (5-20)

This equation is known as the Helmholtz equation and is also a very familiar beast
in mathematical physics. It is useful to divide by — D to rewrite Eq. (5-20) as

S(r
Vo) - L o=~ (5-21)

where we have defined the neutron diffusion length L

Lsm: . (5-22)

We will later find that L is essentially a measure of how far the neutrons will
diffuse from a source before they are absorbed.

We now turn our attention to the application of this model to some important
problems in nuclear reactor theory. We will first study neutron diffusion in
“nonmultiplying” media—that is, media containing no fissile material. Then we
will turn to the study of the neutron flux in fissile material and begin our
investigation of nuclear reactor core physics.

II. NEUTRON DIFFUSION IN NONMULTIPLYING MEDIA

We will first apply Eq. (5-20) to study the diffusion of neutrons from a
steady-state source in a nonmultiplying medium. All of the mathematical tech-
niques we will use are standard methods which arise in the solution of ordinary or
partial differential equation boundary value problems and are discussed in any text
on mathematical physics or applied mathematics.!™

A. Elementary Solutions of the Diffusion Equation

1. PLANE SOURCE IN AN INFINITE MEDIUM

Perhaps the simplest problem in neutron diffusion theory is that of an
infinitely wide plane source located at the origin of an infinite, homogeneous
medium. The source is assumed to be emitting neutrons isotropically at a rate of S,
neutrons/cm?-sec. Since both the source plane and the medium are of infinite
extent, the neutron flux ¢(r)—>¢(x) can only be a function of the distance x from
the source plane. Hence the diffusion equation [Eq. (5-21)] reduces to the one-
dimensional form

& | S(x) S,
U O R R SR 1E) (5-23)
where we have mathematically modeled the source by a Dirac §-function. Hence
we just have an inhomogeneous ordinary differential equation to solve with a
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FIGURE 5-3. A plane source of neutrons in a infinite
medium,

slightly weird source. Note that if we restrict x #0, the source term disappears from
Eq. (5-23):
P Lym=0,  xr0 (5-24)
— — —¢(x)=0, x#0. -
dx? L?
Our approach will be to solve this homogeneous equation for x #0, and then use a
boundary condition at x =0 to “fix up” these solutions.

We could obtain this boundary condition directly by integrating Eq. (5-23) from
x=0—¢€ to x=0+ € across the source plane and then taking the limit as e—0 to
find

d d
—_ D..i + D_i
dx |, dx | _
[See Problem 5-2]. However we might also merely note that this is just a special
case of the more general interface boundary condition [Eq. (5-15)]. If we use the
symmetry of the geometry to assert that J (0*)=—J _(07)=J/(0), then our
boundary condition at the source plane becomes just

=J,(0")-J (07)=S,. (5-25)

lim_J %o 5-26
im =— -
lim J(x)=3 (5-26)
This source boundary condition makes sense physically, since it merely says that
the net neutron current at the origin on either side must be just half of the total
source strength.

We are not through with boundary conditions yet. Since we have a second-order
derivative, d?/dx?, we need another boundary condition. We will use the boundary
condition of finite flux as x—oo0.

Hence the mathematical problem to be solved is

d’¢ |

) F¢(x)=0, x>0,

with boundary conditions:

dp So
a Iim —D—=—
(2) x—0* dx 2 (5-27)

(b) lengo d(x) < 0.
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We will then use symmetry to infer the solution for x <0.
To solve this equation, we note the general solution

9(x)=A exp( — %)+ Bexp(%). (5-28)

Applying the boundary conditions, we find

(b)=B=0
=t 0(- ool 3))- 42
or
_ SoL
2D’
Hence our solution is
o(x) = ;%L exp(-7) x>0, (5-29)
and by symmetry we can infer
o(x)= % exp(—l)%), x <0. (5-30)

Hence the neutron flux falls off exponentially as one moves away from the source
plane with a characteristic decay length of L. As one might expect, the larger L
(i.e., the smaller X)), the less the neutron flux is attenuated as we move into the
medium. Notice also that the magnitude of the flux is proportional to the source.
That is, doubling the source strength will double the neutron flux ¢(x) at any
position x, but this should have been anticipated since the neutron diffusion
equation is linear and hence the principle of superposition holds.

The reader should be reminded that, while this solution may provide a reason-
able description of the neutron flux in a medium (provided it is not too highly
absorbing), it is certainly not valid within several mfp of the source plane itself.
Indeed more accurate transport theory studies®’ indicate that the neutron flux does
not look at all exponential near the source. In fact there are additional components
to the solution. Fortunately if absorption is not too strong, these transport theory
“transients” rapidly diminish as one moves several mfp away from the source
plane, and the simple exponential behavior predicted by diffusion theory is found,
with one mild modification. Transport theory predicts that the “relaxation length”
characterizing the exponential decay is not L=(D/Z,)"/? but rather is given by
the root of the transcendental expression

1+3L*= 3, |,
C1+3LES,h,

3L
2

S L+1
S L—1

In (5-31)

Fortunately if =,«Z, (as it must be for diffusion theory to be valid), one can
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A

¢ (x)

e

FIGURE 54. A comparison between the diffusion theory and transport theory solutions of the
plane source problem.

expand Eq. (5-31) to find
2
I 2 ( Ea) (2)
— |1+ Z| = |+ = | |-
\/_“—32“Ea 51 2, Z,

For example, in graphite =, =.385 cm™' while =,=.00032. Hence =,/S =8.3X
10~4, which implies that the correction to L given by higher terms in this expansion
(that is, by transport theory) is only about 0.03% in this material.

L= (5-32)

2. POINT SOURCE IN AN INFINITE MEDIUM

As a variation on this theme, let us repeat this calculation for the case of an
isotropic point source emitting S, neutrons/sec at the origin of an infinite medium.
Since the source is isotropic, there can be no dependence of the neutron flux on
angle. Hence the diffusion equation in spherical coordinates reduces to

1 d ,dp 1
FE’zﬁ“F‘i’(’):O’ r>0. (5-33)

We will use our previous problem as a guide, and seek solutions such that the
boundary conditions are

(a) 1in(1) dar¥] (r)=S,,

(b) ranolo ¢(r) < oco.

One can readily verify that the fundamental solutions to Eq. (5-33) are of the form
r~texp(*r/L); hence we are led to seek

exp(—r/L) B exp(r/L)

8(r)=4 (5-34)

Applying the boundary conditions, we find that (b) implies that we choose B =0,
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while (a) implies that 4 =S,/4w7D. Hence the solution is

Soexp(—r/L)
="4mp -

(5-35)

An interesting application of this result is to calculate the mean-square distance
to absorption in a nonmultiplying medium. Note the number of neutrons absorbed
between r and r+ dr is just

S —r/L
( °exi("D/ ))(4wr2dr)(2a) (5-36)

and thus the probability that the neutron is absorbed in dr is just
=1 _r "
p(r)dr=-G exp( . )dr. (5-37)
We can then calculate
= [Tdrrp(r)=6L2 (5-38)
0

Hence the neutron-diffusion length L has the interesting physical interpretation as
being 1/ V6 of the root mean square (rms) distance to absorption

L= %<r2> . (5-39)

That is, L measures the distance to which the neutron will diffuse (on the average)
away from the source before it is absorbed. It should be stressed that we have
calculated the rms distance from the source to the point of absorption, not the total
path length traveled by the neutron. This path length will be very much longer
since the neutron suffers a great many scattering collisions before it is finally
absorbed. For example, in graphite the thermal diffusion length is 59 cm. Hence

the rms distance to absorption from a point source is ((r*))'/2=V6 L =144 cm. If
we recall that the mfp characterizing thermal neutrons in graphite is 2.5 cm and
also recall that the average number of scattering collisions suffered by the neutron
before absorption is 1500, then it is apparent that the average path length or track

length traveled by the neutron is about 3700 c¢cm, considerably larger than V6 L.

One can actually use Eq. (5-39) to define the neutron diffusion length in
situations in which diffusion theory would not apply (e.g., strongly anisotropic
scattering or large absorption). Then one would first determine the flux ¢(r)
resulting from an isotropic point source using transport theory (or whatever
description is relevant) and then calculate L by using

[arrior)
G (5-40)

1
6
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where the integral is taken over all space.

The cylindrical geometry problem of a line source at the origin of an infinite
medium can be worked out in a very similar way. However to do so here would
“deprive” the reader of an opportunity to try his own hand at such diffusion theory
problems. Hence we have left the line source as an exercise in the problem set at
the end of the chapter. We will instead turn our attention to problems in finite
geometries.

3. FINITE SLAB GEOMETRIES

Let us now modify our isotropic plane source by assuming that it is imbedded
at the center of a slab of nonmultiplying material of width a surrounded on both
sides by a vacuum (see Figure 5-5). We will set up this problem in a manner very
similar to that for infinite plane geometry, except that we will add vacuum
boundary conditions on either end of the slab.

d’¢ |
E_F(P(x):()’ x 70,

with boundary conditions:

x—0% dx 2 ’ (5_41)

Here we have replaced the boundary condition at infinity by the vacuum boundary
condition—in this case, using an extrapolated boundary @/2=a/2+ z,. If we again
seek a general solution of the form of Eq. (5-28), then applying the boundary
condition (b) implies

o(3)-0=ro{- &) ool )0l

M~

~
A
\ A \\\ L.
x=—al2 x=0 x=al2 x

FIGURE 5-5. A plane source at the origin of a finite slab.
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Then boundary condition (a) implies

A=%(l+exp(—%))_l.

Our final solution is therefore

x —(a-x) [ (@—2x)
sL eXp(—Z)—eXp( aL ) _SL Smh[ 2Lx } 542
TTETTCD) e

This solution is sketched in Figure 5-5. It looks somewhat similar to the infinite
medium result [Eq. (5-29)], except for dropping off more rapidly near the
boundaries due to neutron leakage. We should caution the reader once again that
the solution is not valid within several mfp of the vacuum boundary (just as it is
not valid near the source plane at the origin).

A variant on the above problem involves replacing the vacuum by a material of
different composition than the slab itself (as sketched in Figure 5-6). The general
procedure for attacking such multiregion problems is to seek solutions of the
diffusion equation characterizing each region, and then match these solutions using
interface boundary conditions. Once again we can use geometrical symmetry to
allow us to restrict our attention to the range 0 < x < 0.

In region @ we will seek a solution of

d?*¢,
dx

[ 5]

—#¢,(x)=0, 0<x<2 (5-43)
1

where L, =\/D, /=, is the diffusion length characterizing region (7). Similarly in
region

d2¢2 1 a
— —¢,(x)=0, = < x< 00,
dx? L§¢2( )

\

NN
o

/ N5
\ %&

—2
FIGURE 5-6. A multiregion or reflected slab.
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Now we will need several boundary conditions. We can use our earlier conditions
[Eq. (5-27)]
. So
(@  lim Ji(0)=3
(b) dy(x) <0 as X—>00.

In addition we will use the interface conditions
a\_. (2
©  &(5)=%(%)
do,

@ n(&)=n(8) o -p | =-n

2a'x%

NIE

Using our earlier work as a guide, we can seek general solutions

o(x)=A4 cosh L + B, sinh 2 7 in region @
1

d,(x) =A2exp( - z;) + Bzexp( L_z) in region @

and apply the boundary conditions to find (after a bit of algebra)

B,=0, B,=— %_1_’
1
1 D chosh(zL )+D2Llsinh(5‘-1—l-)
TP o () DiLason () o
4, Shils exP( 2L2)
2 D,L; cosh(2L2)+D1Lzsinh(%l-)

We have sketched the form of this solution in Figure 5-6. Several features of this
solution are of some interest. Note that while the neutron flux is continuous across
the interface, the derivative of the flux is not. This later discontinuity is, of course,
a consequence of the fact that the diffusion coefficients in the two regions differ;
hence to obtain continuity of current J, we must allow a jump in d¢/dx across the
interface.

We have compared the solution for this problem with that obtained earlier for
the slab surrounded by a vacuum. It should be noted that the flux in the central
region falls off somewhat more slowly when the vacuum is replaced by a diffusing
material. This can be readily understood by noting that the material surrounding
the slab will tend to scatter neutrons back into the slab that would have otherwise
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been lost to the vacuum. Such materials used to reduce neutron leakage are known
as reflectors. Any material with a large scattering cross section and low absorption
cross section would make a suitable neutron reflector. For example, the water
channels surrounding LWR cores act as reflectors. In the HTGR, graphite blocks
are added to the top and bottom of the reactor core to serve as neutron reflectors.

A concept very closely related to that of neutron reflectors is the reflection
coefficient or albedo, defined as the ratio between the current out of the reflecting
region to the current into the reflecting region:

™. (5-45)

To make this concept more precise, suppose we want to attach a reflecting slab of
thickness a to a reactor core (or perhaps a medium with a neutron source in it such
as the slab geometry we have just considered). If we are given a current density
Ji,=J, entering the reflecting slab surface, which we locate at x=0 (see Figure
5-7) for convenience, then we can solve the diffusion equation characterizing the
reflecting region:

d2
;)—g - #¢(x)=0, 0<x<a (5-46)

subject to boundary conditions J _(0)=J,,, $(@)=0. We can then solve for the flux
¢(x) in the reflecting slab and use this solution to compute the albedo a as (see
Problem 5-11):

(5-47)

It is of interest to plot the albedo for the slab reflector versus slab thickness as
shown in Figure 5-8. For thin reflectors, very few of the neutrons are reflected and
hence the albedo is small. As the reflector becomes very thick, the albedo

7.0 //
J_(0) /
/
x=0 xX=a x FIGURE 5-7. The albedo problem.
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1.0

FIGURE 5-8. The albedo for a finite slab plotted
a versus slab thickness.

approaches an asymptotic limit dependent only upon the material properties D and
L:

a0, = ———, (5-48)

For example, the albedos characterizing infinitely thick reflectors of graphite, H,O,
and D,O are 0.93, 0.82, and 0.97 respectively.

The albedo can be used to replace the detailed solution in the reflecting region
by an equivalent boundary condition at the edge of the core using Eq. (5-45). That
is, if we use our earlier definitions of the partial current densities J ., then the
effective boundary condition on the flux in the region x <0 is just

1,4
¢ X

- ~%( 1“’). (5-49)

Used in this manner, the albedo becomes a very useful device for obtaining
boundary conditions for reactor core calculations.

One can continue this game of solving the diffusion equation in various one-
dimensional geometries indefinitely. As we mentioned earlier, it is simply an
exercise in ordinary differential equations. A variety of two- and three-dimensional
problems can also be studied. However since these latter problems involve partial
differential equations, we will defer their treatment until after we have introduced
the separation of variables approach for solving such equations in Section 5-111-C.
If we really want to get masochistic, we can remove some of the symmetry in our
earlier problems so that the original partial differential equation (5-20) would have
to be solved directly—for example, a point source set off-center in a sphere.
However there is very little in the way of new physics to be learned from such
exercises, Hence we will bypass further examples in favor of moving directly to
more general problems. In particular, we will study how our previous solutions for
plane and point sources can be used to determine the neutron flux resulting from
an arbitrary distribution of neutron sources.
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4. GENERAL DIFFUSION PROBLEMS

Recall that the neutron flux resulting from an isotropic point source of
strength S, located at the origin of an infinite medium was found to be

Soexp( - %)

o(r)= D (5-50)

Suppose this source was located at the point r’ instead. Then the flux could be
found by a simple coordinate translation as

(-)
exp| — —

4nD|r—r|

(5-51)

(P(l") =3y

Next suppose we have several point sources at positions r;, each of strength S,.
Then we can use the fact that the diffusion equation is linear to invoke the

principle of superposition and write
s ( r—ri| )

#0)= X — o (5-52)

Single point source

Several point sources

r

A)uted source FIGURE 5-9.  Superposition of several point sources.
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Finally suppose we have an arbitrary distribution of sources characterized by a
source density S (r). Then the flux resulting from this distributed source is just

E=q
exp
3 ’ . 5.5
¢(r) = fd Y m—— S(r) (5-53)
This is frequently rewritten as

o(r)= f d’r' G, (r,r)S(r), (5-54)
where

(-*2)
o)=L (5-55)
pulo 1) = 47D |r—r| )

is known as the point diffusion kernel for an infinite medium. [The expression kernel®
is a mathematical term used to denote a function of several variables (including the
variables of integration) in an integral of the form

f dx' K (x,x') f(x'). (5-56)

Here K (x,x") would be the known kernel, while f(x) might either be known [as the
source density S(r)] or unknown as the flux ¢ in the inscattering term of the
transport equation

[ afy [TdE s (B~ E ¥ Qo B Y1) (5-57)
4ar 0

where 2 (E'—>E, fl’—)fl) is known as the scattering kernel.]
As a second example of such kernels, consider the flux resulting from a plane

source at the origin
- SL - l_xl)
o(x) D exp( . (5-58)

If this had been located at x’, then the flux at a position x would be

o(x)= -2% exp( _Ix ;x’] ) (5-59)

Hence in general, for S— S (x')dx’, we find

o(x) = f_ de’[%exp( Sl )}S(x’)

= f_oo dx’ G,(x,x)S (x'), (5-60)
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where we have identified the plane source diffusion kernel for an infinite medium

ne Lo [ Ix—x’|)
G, ) = 5 exp - 2720, (5-61)

Once again we will allow the reader the privilege of deriving the line source
diffusion kernel. Actually both the plane source and line source kernels could have
been superimposed from the point source diffusion kernel.

Notice that these kernels all depend only on the difference in spatial coordinates,
that is, r—r’ or x — x’. Such displacement kernels arise because we have assumed an
infinite, homogeneous medium. For such infinite geometries we can use these
kernels to compute the neutron flux arising from any source distribution.

Unfortunately most geometries of interest are not uniform and are certainly not
infinite. Hence we must generalize this discussion to determine the diffusion
kernels characterizing other geometries and boundary conditions. Before attempt-
ing this generalization it is useful to step back a moment and try to obtain a general
mathematical perspective of just what problem it is that we really wish to solve.

Actually all we are doing is trying to solve an inhomogeneous differential
equation of the form

Me(x)=S(x), (5-62)

where M is a differential operator such as
=2 _ 1 (5-63)

(We will leave it as understood that one must also apply suitable boundary
conditions.) There are a variety of techniques available to solve such inhomo-
geneous problems. The approach we have been using thus far is known as the
Green’s function method:’

(a) GREEN’S FUNCTION METHODS

In this technique we first construct the solution to
Mo, (x)=38(x—x'). (5-64)

Then if we call ¢,(x)= G (x,x’) the “Green’s function” for the operator M, we find
that the general solution to Eq. (5-64) is just

o(x)= f dx' G (x,x") f(x). (5-65)
[Proof:
M= [dx' MG (x,x)f(x)=f(x)] (5-66)
d(x—x")

EXAMPLE: Consider

M= ( 5722 - $)¢(x)= - S—Dx—) (5-67)
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for an infinite medium, — o0 < x < + c0. Now define G by

d’%G 1 N 8(x—x)
2 G(x,x")= D . (5-68)
However we have just solved this for
: N L [x—x'
G (x,x)= G (x,x)= >h exp( - ——L—) (5-69)

Hence the plane source kernel is just the Green’s function for this operator, and we
find

o(x)= [~ ax’ Gy(x,x)S (x) (570)

It should not take much contemplation to convince the reader that this is just the
scheme we have been using to construct infinite medium solutions by first deter-
mining the appropriate diffusion kernel or Green’s function. The construction of
the Green’s function characterizing a finite geometry is not much more difficult,
although one can no longer simply solve for the flux resulting from a source
conveniently located at the origin, and then perform a coordinate translation to
arrive at the Green’s function. This latter complexity should be easily understood
when it is recognized that shifting the source “off-center” in a finite geometry will
destroy the symmetry of the problem. Hence one no longer finds a simple
displacement kernel form for the Green’s function. We will provide an alternative
scheme for constructing these kernels later in this section.

(b) VARIATION OF CONSTANTS

Perhaps a more familiar scheme for the solution of inhomogeneous differen-
tial equations is variation of constants,'® in which one first determines the linearly

independent solutions ¢ = of the homogeneous equation

Me¥) (x)=0, (5-71)

7

and a particular solution of the inhomogeneous equation
M¢pm(x) =S (x). (5-72)
Since none of these solutions are required to satisfy the boundary conditions
pertaining to the specific problem of interest, they are usually rather straightfor-
ward to find. Then one seeks the general solution to the problem as
$(x) = A 1¢orm(x) + A y0tor(X) + dpa(x) (5-73)
and applies the boundary conditions to determine the unknown coefficients of the

homogeneous solutions, 4, and A4,.

EXAMPLE: Consider a uniform source S(x)= S, in an infinite medium. Then

d’¢ So
i o(x)=— D’ (5-74)

1
L2
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with boundary conditions such that ¢(x)<co as x— = 0. The solutions to the
homogeneous equation are exp(* x/L), and the particular solution is obviously
¢(x)=S,L%/ D. Hence we will seek a general solution

X x\, SoL’
qb(x)=Aexp(——L-)+Bexp(+ Z)+ o (5-75)

Then applying the boundary conditions implies that both 4 and B must be zero,
and hence the solution is

S0L2

o(x)= (5-76)

Usually for the method of variation of constants to be of use in more general
problems, one must be able to guess ¢, (x) “by inspection.” Hence for most
problems, the Green’s function technique or the method we will describe next is
more convenient. ‘

(c) EIGENFUNCTION EXPANSION METHODS

One of the most powerful methods available for solving boundary value
problems is to seek the solution as an expansion in the set of normal modes or
eigenfunctions characterizing the geometry of interest. Rather than beginning with a
general description of this very important scheme, we will introduce it by consider-
ing a specific example.

EXAMPLE: We will attempt to determine the neutron flux resulting from an
arbitrary distributed source in a finite slab of width a. That is, we wish to solve

d*¢ S (x)

- - ( )__—

P X <

a a
-5 <x<%, (5-77)

subject to the vacuum boundary conditions:
a\_
@ o(3)=0
ay_
(b) <i>( - 5) =0.

Since we have taken the source S(x) to be arbitrary, we cannot assume symmetry
to restrict our attention to the range 0< x < a/2.

Our approach to solving this problem may at first seem a bit irrelevant. We begin
by considering a homogeneous problem very similar to Eq. (5-77):

ay
dx?

#(3)=0=v(-3)

Here B2 is just an arbitrary parameter—at least for the moment. Let us now solve
this associated homogeneous problem by noting the general solution

+ B3(x)=0, (5-78)

with boundary conditions:

¥(x)=A,cos Bx + A,sin Bx. (5-79)
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Our boundary conditions require

~ ~

¢(i%)=A,cos(£2£)iA2sin(%‘z). (5-80)

Adding and subtracting these equations, we find that we must simultaneously
require

Ba
A, cos( —2—-) =0,
and

Azsin(-Bzi)=0. (5-81)

How do we achieve this? Certainly we cannot set 4, and A4, equal to zero since
then we would have the “trivial” solution ¢(x)=0. Instead we must choose the
parameter B such that these conditions are satisfied. Of course there are many
values of B for which this will occur. For example, if we choose 4,=0, then any

B=B E%, n=1,3,5,... (5-82)

will give rise to a solution

1]J,,(x)=A,,COSWZTx, n=1,3,5,... (5-83)

which obviously satisfies both the differential equation [Eq. (5-78)] and the
boundary conditions. Alternatively, we could have chosen 4, =0, in which case

B=B Ei’g, n=2,4,6,... (5-84)

n

yields solutions

¢"(x)=A,,sin”—;I£, n=24,6,... (5-85)

Hence our homogeneous problem can be solved only for certain values of the
parameter B. One refers to the values of B? for which nontrivial solutions exist to
the homogeneous problem as eigenvalues:

2
Eigenvalues: B?= (%”) , n=12,... (5-86)

The corresponding solutions are referred to as the eigenfunctions of the problem:

3
=

A, cos(n——), n=1,35,... (58)

3
= =

Eigenfunctions: ,(x)=
A,,sin(——), n=2,4,6,...

ISY)
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The reader may have already encountered eigenvalue problems in a somewhat
different form:

Hy, =\, (5-88)

where ¢, is the eigenfunction corresponding to the eigenvalue A,. However by
comparing this form with Eq. (5-78), one can easily identify H=d?/dx?, A—>— B?,
and y,—y,(x).

Notice that in the example Eq. (5-78) we actually find two types of eigenfunc-
tions: the cosine functions corresponding to odd » and symmetric about the origin,
and the sine functions corresponding to even n and antisymmetric about the origin.
Had we restricted ourselves to symmetric sources S(x)=.S(— x), we could have
eliminated the antisymmetric solutions [Eq. (5-85)] from further consideration. We
have sketched the first few eigenfunctions for the slab geometry in Figure 5-10.

In acoustics these eigenfunctions would be identified as the normal modes or
natural harmonics of the system, and this terminology is frequently carried over to
reactor analysis. Notice that the A, are still undetermined and are, in fact,
arbitrary. These can be chosen in a number of ways, but for now we will just set
A, =1 for convenience.

So now this auxiliary problem has given us an infinite set of solutions v, (x).
What good are they? Well, they have a couple of very useful properties. First notice
that the product of any two of these functions will vanish when integrated over the
slab unless the functions are identical:

g 0, if m#n
f Dl (VD= F (5-89)
_a 2 :
2

This property is known as orthogonality and proves to be of very considerable
usefulness, as we will see in a moment.

The second property of the eigenfunctions y,(x) is that they form a complete set
in the mathematical sense that any reasonably “well-behaved”! function f(x) can
be represented as a linear combination of the y,(x):

o0

f)= 2 ¢, (x). (5-90)

n=1

l—’
N|g
Nifa;

FIGURE 5-10. The eigenfunctions for a slab geometry.
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Of course, such a representation is only of formal interest unless some scheme is
available for determining the expansion coefficients c,, but this is where orthogon-
ality comes in handy. Multiply Eq. (5-90) by ¢,,(x) and integrate over x to find
a a a
2 © 2 2
[ a@x¥n(Df )= D e[ qaxtm(a(0)=c, [ ,dx¥3(x)
2 2 2

n=1

or

a

2
=2 f %dx £, (x). (5-91)

Hence given any function f(x), we can evaluate the appropriate expansion
coefficients ¢,, by a simple integration. It should be mentioned that for the specific
example of a finite slab we have been considering, an eigenfunction expansion is
simply a Fourier series expansion and is probably already quite familar to most
students.! However, the properties of orthogonality and completeness characteriz-
ing such trigonometric functions also hold for much more general eigenfunc-

tion expansions.
With this background, we are finally ready to return to solve our original
boundary value problem. As we mentioned, the essential idea is to seek the solution

as an expansion in the eigenfunctions y,(x):

o0

()= 2 ¢, ¥, (x). (5-92)

n=1

We will also expand the source term in a similar fashion
o0
S(x)= Y s,¢,(x). (5-93)
n=1

Notice that since S (x) is known, we can use orthogonality to determine the source
expansion coefficients [as in Eq. (5-91)] as

a

5 = % f_zgdx S (x)4,(x) (5-94)
2

Of course since ¢(x) is unknown, we cannot determine the ¢, in a similar fashion,
but that is just what we can use the original equation [Eq. (5-77)] to accomplish. If
we substitute Egs. (5-92) and (5-93) into Eq. (5-77), we find

S KA B
ECnI: dx2 _P‘Pn]:_ﬁ § Sn‘Pn' (5'95)

n=1

However using Eq. (5-78), we can eliminate d3},/dx? to find

> (B4 L )o= 5 S s (5:96)

n=1
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Thus we are left with one equation for an infinite number of unknowns, the c,.
Fortunately orthogonality once again comes to our rescue. Multiply by y,,(x),
integrate over x, and use orthogonality to find

s" D sn Ea
¢, = / _ 5/ : (5-97)
g2y L 1+L7B!
n L2

Thus we find the flux for any source distribution as

o= 5 2 T g (598)

n=1

where y, (x) = cos(nwx /&), n odd and ¢, (x)=sin( nwx /d), n even.
We can rewrite this in a bit more familiar form if we substitute Eq. (5-94) into
Eq. (5-98) and rearrange things a bit:

3
, G ]
qb(x)—[gdx 2, I+ LB S(x")
2
= f 2 X Gy(x,X')S (). (5-99)

N |

Hence we have found an explicit representation of the plane diffusion kernel or
Green’s function for a finite slab as an eigenfunction expansion

Yo (X)) (x
Go(x,x")= az, 21 l(-i)Lzl(?z : (5-100)

Note in particular that the Green’s function for a finite geometry is no longer a
displacement kernel, that is, a function only of x—x’, as it was for infinite
geometries.

This intimate relationship between Green’s functions and eigenfunction ex-
pansions is actually a very general result. Suppose we consider the diffusion
equation characterizing any homogeneous geometry:

S (r)

Vip— —o(r)=— (5-101)

subject to the usual vacuum boundary conditions on the extrapolated boundary:

Boundary conditions: ¢(f,) =0, r; on surface.

As before, we first construct the eigenfunctions as the nontrivial solutions to the
associated homogeneous problem

VY, + BN, (r)=0,

(5-102)
Boundary condition: ¢, (F,) =0.
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One can demonstrate that these eigenfunctions are orthogonal in the sense that
[ &rdn @4, (0=0, n#m (5-103)
v

Since Eq. (5-102) is homogeneous, any solution ¢,(r) may be multiplied by a
constant. We will scale each , so that the eigenfunctions are normalized such that

fyd3r¢3 r=1. (5-104)

[Our earlier slab eigenfunctions i, (x) would be normalized if we multiplied them
by (2/d)'/.] The set of orthogonal and normalized eigenfunctions {y, (r)} is said to
be orthonormal. It can also be shown to be complete. Hence we can expand

¢(r)= 2 Ca¥n (1),
(5-105)
S (1)= 2 5,4 (r),

where

5, = fyd%'% (r)S (r).

If we substitute these expansions into Eq. (5-101), we can use orthogonality as
before to solve for

—S"/ Za 5-106
c, = . -
" 1+ L°B? (>-106)
Hence we find
¢(r)=fd3r’G(r,r’)S(r’), (5-107)
v
where
¥, (D, (r)
r)= 5-108
Z 1+ L’B? ( )

as a general result for any geometry (although the eigenfunctions or spatial modes
¢, (r) may be very hard to construct in practice).

B. Numerical Methods for Solving the Neutron Diffusion Equation

1. INTRODUCTION

Thus far we have confined our attention to neutron diffusion in homogeneous
(or perhaps regionwise homogeneous) media since in this case the one-speed
diffusion equation could be solved analytically. However in any realistic reactor
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calculation the heterogeneous nature of the core must be taken into account. One
not only must consider nonuniformities corresponding to fuel pellets, cladding
material, moderator, coolant, control elements, but spatial variations in fuel and
coolant densities due to nonuniform core power densities and temperature distribu-
tions as well. Such complexities immediately force one to discard analytical
methods in favor of a direct numerical solution of the diffusion equation. In fact
even when an analytical solution of the diffusion equation is possible, it is
frequently more convenient to bypass this in favor of a numerical solution,
particularly when the analytical solution may involve numerous functions that have
to be evaluated numerically in any event, or when parameter studies are required
that may involve a great many such solutions.

The general procedure is to rewrite the differential diffusion equation in finite
difference form and then solve the resulting system of difference equations on a
digital computer. It is perhaps easiest to illustrate this approach by a very simple
example (sufficiently simple, in fact, to enable analytical solution). Suppose we
wish to solve

d*¢
—D—+Z,¢(x)=S(x) (5-109)
dx?
subject to the boundary conditions characterizing a finite slab of width a:
¢(0)=¢(a)=0.
(For convenience we will ignore the extrapolation length.)

We first discretize the spatial variable x by choosing a set of N + 1 discrete points
equally spaced a distance A=a /N apart (for convenience).

A
| ] L (¢ | I | { | |
I | 77 Ll { | 2 1 L
Xp x4 X3 X1 X X4 XNy XN

We now want to rewrite Eq. (5-109) at each of these discrete points x;, but to do so
we need an approximation for d%¢/dx® Suppose we Taylor expand ¢ at x,,, in
terms of its value at the point x;:

_ do| A2 d%
¢i+l=¢(xi+l)=¢i+AEc' .+ 2 ax? i+ o
_ do | A2 d%
¢ =¢(x)=¢—A—- T e A (5-110)

If we add these expressions, we find

d?*¢ ~¢.~+1—2¢i+¢i—1
axt| A?

1

(5-111)

to within order A%, Hence if A is chosen sufficiently small, this three-point central
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difference formula should be a reasonable approximation to the value of d?¢/dx? at
the point x;.

If we now use this difference formula to write Eq. (5-109) at any mesh point x,,
we find

1

i1~ 20,10, .
—D( hd X )+2‘,¢,.=S., i=1,2,... (5-112)

where again we have defined S;=S(x;). We can rearrange this difference equation
to rewrite it as

D 2D D

Dy (22en)on 2 e
a2 #i- (A2 o) %7 a2 P (5-113)
el e St

a;i—1y a;; ii+1

or
4191t a, it a0, =S; (5-114)
i=1,....N—1

Hence we now have reduced Eq. (5-109) to a set of N —1 algebraic equations for
N+ 1 unknowns (¢g, 9, $,,...,¢x). If we add on the boundary conditions at either
end, say ¢,=0, ¢, =0, we can now imagine solving (or imagine the computer
solving) this set of algebraic equations. In this particular case, the system of
algebraic equations can be solved directly using Gaussian elimination.'! More
generally one must use iterative methods to solve the finite-difference equations.

This very simple example illustrates the two essential tasks involved in the
numerical solution of the diffusion equation: (a) derivation of the corresponding
difference equations and (b) formulation of a suitable algorithm for solving these
equations on a digital computer. The methods used will vary from problem to
problem. For example, whereas a direct solution of the difference equations [e.g.,
Eq. (5-114)] is possible for one-dimensional problems, iterative methods are re-
quired for two- and three-dimensional problems. Furthermore one generally desires
to work with nonuniform meshes in reactor calculations, to account for the fact
that the neutron flux may vary much more rapidly in certain regions than in others.

In this section we illustrate several of the techniques that are commonly applied
in reactor analysis to the derivation and solution of difference equations. However
just as in our earlier study of analytical techniques, we do not intend this
discussion to be a detailed discussion of numerical methods in nuclear reactor
calculations. Instead we refer the interested reader to the extensive literature on
this topic.!>"16

2. DERIVATION OF DIFFERENCE EQUATIONS FOR
ONE-DIMENSIONAL DIFFUSION PROBLEMS

We will now consider the more general form of the one-dimensional diffusion
equation in plane geometry

d

do
£ D (x) 2 +Z,(x)6(x)= S (x) (5-115)
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subject to boundary or interface conditions that we will leave arbitrary for the
moment. Actually we should remark here that this form of the diffusion equation is
even a bit too general for most reactor applications. One rarely encounters reactor
configurations in which the composition varies in a continuous way from point to
point [i.e.,, D(x) and Z,(x)]. Rather the system properties are assumed to be
essentially uniform in various subregions of the reactor core (or can be suitably
represented by spatially averaged or “homogenized” properties within each subre-
gion). Hence the far more common situation is one in which the diffusion equation
[Eq. (5-109)] with constant D; and Z,; must be solved in a number of regions j. We
will develop the difference equations for the general diffusion equation [Eq.
(5-115)}, however, since they are not really any more difficult to derive or solve,
and in certain cases they are useful in avoiding technical difficulties arising in less
general approaches (such as the handling of region interfaces).

As in our simple example we begin by setting up our discrete spatial mesh as
shown below, although we will now allow for nonuniform mesh spacing.

A, a, A, By
S\ TN
L Il | (L | | | (L 1 ]
f ] ™ ] ! T )] T =1
X9 Xy X3 X x; Xi+1 XN-1 XN

There are a variety of schemes that can be used to generate a difference equation
representation of Eq. (5-115) on this mesh. We have already considered a simple
problem in which a Taylor series expansion was used to derive a central difference
formula for d%¢/dx% A more common scheme is to integrate the original differen-
tial equation over an arbitrary mesh interval, and then to suitably approximate
these integrals (after an occasional integration by parts) using simple mean values
or difference formulas. By way of illustration, suppose we integrate Eq. (5-115)
over a mesh interval x; — A, /2 < x < x;+ 4, /2 surrounding the mesh point x;.

x;

A;
— X
2

!
|

“e

Let us choose the simplest scheme to approximate the integrals by expressing them
as the value of the integrand evaluated at the meshpoint x; times the integration
interval. For example,

Ai+l

2 LTS
f s, dxZ(x)e(x)= 2a1¢,.{ 5 + 5 l, (5-116)
NTg

A, Ay
de(x);S,.[—2—+ ) (5-117)



180 / THE ONE-SPEED DIFFUSION MODEL OF A NUCLEAR REACTOR

The derivative term requires a bit more work. First write

A.-+1

A.+l
X+ —— 3 _4_ aé _ d(j) 2 i
f N D(x)d D(x )dx . (5-118)

X——

— 2
2

To handle d¢/dx, we can use a simple two-point difference formula [which can be
derived by subtracting Egs. (5-110)1:

X + Ai+1
d_¢ =¢i+1_¢i ' | 2
dx x,A+A"2+l AL P ! e
x, = 2i
@ ~¢i_¢i—1 : | 2
dx xi_% A,‘ xf_, I xT
Furthermore we will use a centered average for D:
AV 1 _ A, 1
D\xi+ 50— |=5[Di+ Di]=Dy0, D x—7 =5[Dio1+ D ]=D;i .

(5-119)
Then we find that Eq. (5-118) can be written as

Bi+1 D, D,, D,, D,
X+ — _i ii—1 _ ii+1 ii—1 i+
f A; 2 dx D(x)d A ¢i—l ( Ai+l + ; )¢i+ A ¢i+l'

xX;— — !

2

(5-120)

If we now combine Egs. (5-116), (5-117), and (5-120), we arrive at a set of
difference equations very similar to our earlier results

@i D1t it A D1 =S (5-121)

where

D;+D,_, 1
BT i JA+A L,

(5-122)

D+ D; D+ D, 1
=2, +
‘ A A, TAVE WAV

i+1 i

D, + D 1
4Giv1= A A+A,,

i

Hence once again we have arrived at a set of N —1 three-point difference equations
for the N+ 1 unknown discretized fluxes, ¢y, ¢;,...,¢5. In the particular case in
which the mesh size A; is constant and the coefficients D (x) and Z,(x) do not
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depend on x, we return to our earlier results [Eq. (5-113)] derived via a Taylor
series expansion. Actually we should note that the coefficients g; depend only on a
single subscript, j. However double subscripting is useful, for we will rewrite these
algebraic equations as a matrix equation.

Our final task is to append to these equations two additional equations taking
into account the boundary conditions. Of course we could simply use the vacuum
extrapolated boundary conditions, ¢,=0, ¢, =0 as before (taking care to place the
mesh points x, and x, on these extrapolated boundaries). More general boundary
conditions (such as nonreentrant current) can be developed by taking the final two
difference equations in the set as

g oPot+ o191 =S
and
ay n—1Pnv—1F Ay nOn = Sy- (5-123)

Such sets of three-point difference equations are characteristic of one-
dimensional diffusion problems (indeed of any ordinary differential equation of
second order). The coefficients a; will depend upon the scheme used to derive the
difference equations. Fortunately if the mesh spacing A is small, these differences
will be insignificant in actual calculations. Since the spatial variation of the flux is
essentially characterized by the diffusion length L, one generally chooses a mesh
spacing A less than L.

Similar three-point difference equations will also arise in curvilinear geometries
with one-dimensional symmetry. For convenience we will assume regionwise uni-
form properties. Then in cylindrical coordinates, the diffusion equation becomes

d’¢ 1do
_Dli dr2 +7E +Ea¢(r)—S(r), (5-124)
while in spherical coordinates, we find
d’¢ 2do
—_— —_— ——— | = . -
D[ px + Pl Z0(r)=S(r) (5-125)

Hence we can derive difference equations corresponding to these geometries, using
either of the earlier techniques, to find for uniform mesh spacing!’

;b1 a0+ a0 19=S, (5-126)

where now

q,=2L2 43, (5-127)
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next task is the determination of a suitable prescription or algorithm for solving this
system of algebraic equations.

3. SOLUTION OF THREE-POINT DIFFERENCE EQUATIONS

Suppose we have developed an appropriate set of difference equations similar
to Eq. (5-121). We must now solve for the discretized fluxes ¢;. To be more explicit,
let’s first write out these equations in detail

apd, + apd,; =5,
ay ¢, + axpd, + ard, =S5,
a3ty + andstad, =S; (5-132)
Ay_N—2Pv—2tay_ v 1Pv-1 =Sy

It is useful to rewrite these equations in matrix form

all\aIZ\ 4 o
Ay Ay Tdy P, S,
\032\‘133\034 ®3 = S3
NN N - S
a3 Qa4 945 4
NN TN
hENR- bn-1 Sn-1
or
Aé=S, (5-133)

where 4 is an (N — 1) X(N — 1) matrix, and ¢ and S are (N — 1) dimension column
vectors. (For a short review of matrix algebra, the reader should refer to Appendix
F.) In particular the reader should note that the finite difference diffusion matrix 4
i1s tridiagonal. This feature arises only for such one-dimensional geometries in which
three-point difference equations arise. In two- and three-dimensional geometries,
more complicated matrix structures are encountered.

Notice that the solution of this set of algebraic equations is tantamount to
inverting the matrix 4 to find

p=4"'S. (5-134)

Such tridiagonal matrices can be inverted directly using Gaussian elimination (the
“forward elimination—backward substitution” method).'® The general scheme is to
subtract @;;_,/a;_,,_, times the (i—1)th row from the (i)th row to eliminate the
a;;_, element in the (/)th row. At each step, the (i)th row is then divided by its

diagonal element, and the procedure is continued. For example, we have indicated
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schematically the “forward elimination” on the first two equations in Eq. (5-132):

a a

ay, a, 0 - 1 — 0 - 1 — 0
ap an
- - a4
ay Aapn a3y - ) Gy a3 0 axy— a ax
a
— 0 1 4, O©
ap
a
N z sl o 1 o4, - (5-135)

X
o
=
hd

0 1 4, 0 ¢,
00 1 4 o, | =1 (5-136)
0 0 0 1 On_1 ay_)
where
a, , a
A= o+ ’ Al__xz
an,n+an,n—lAn—l all
Sn—-an,n—lan—l Sl (5-137)
a"_ an,n_an,n—lAn—l ’ al—z-l—l-
We can now substitute back up the matrix to find
Oy-1=_ys
dy_2=~Ax 2oy 1t ay_>
=—Ay oyt ay_ (5-138)

and so on.

Thus Gaussian elimination consisting of forward elimination and backward
substitution can be used to directly solve the difference equations [Egs. (5-132)].
This scheme is particularly important since it frequently appears as an integral part
of the iterative methods used in two- and three-dimensional diffusion problems.
For this reason it is useful to formalize Gaussian elimination a bit by noting that
what we have in fact accomplished by forward elimination is the factorization of
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the matrix 4 into a product of a lower (L) and upper ( U) triangular matrix:'

an 0 0 1 4, O

4 =1 % (ay,—auA4,) 0 0 1 4,

- 0 as, (@33~ asyA,) 0 0 1
L U (5-139)

Ae=LU¢=S. (5-140)

Up=L"'S=ga, (5-141)
followed by a backward substitution to invert U and solve for

'L's= (5-142)

I~
{
R

|-e
i
I

As an aside we should observe that while such methods for solving systems of
linear algebraic equations are most easily understood and analyzed (mathemati-
cally) in matrix notation, they are most easily programmed when written as a
simple algorithm such as Eq. (5-137). For example, one could simply construct a
loop to generate and store all 4, and a, using Eq. (5-137) and then evaluate all ¢,
using Eq. (5-138).

This algorithm for solving such sets of three-term equations (i.e., inverting
tridiagonal matrices) is easily programmed and executed on a digital computer.
The algorithm would also formally work for solving difference equations
characterizing two- or three-dimensional diffusion problems, however it then en-
counters some severe computing limitations. To visualize this more clearly, we will
now briefly comment on the numerical solution of multidimensional diffusion
equations.

4. DERIVATION OF
MULTIDIMENSIONAL DIFFERENCE EQUATIONS

Most detailed neutron diffusion calculations characterizing nuclear reactors
require either two- or three-dimensional treatments. Such details are particularly
important in studying power profiles in large reactors subject to nonuniform fuel
loading and depletion. Hence we now must consider the numerical solution of the
more general diffusion equation

—V-D(Ve+ Z,0)0(r) = S (7). (5-143)

Once again the geometry of interest is discretized into a mesh of cells such as the
rectangular grids illustrated in Figure 5-11. Perhaps the most general way to derive
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FIGURE 5-11.  Rectangular two- and three-dimensional grids

difference equations for the mesh is to integrate the diffusion equation [Eq. (5-143)]
over the spatial volume of a given mesh cell, using this to define the spatially
averaged cell properties. In general one can write?

1
7 fVid3r¢(r)E¢i, (5-144)
1

v fVid3r =060 =2, ¢, (5.145)

1 J
7 fVidf*r[ ~V-D (r)V]= L~ El Lo, (5-146)

1

‘I—/;fVid3rS(r)ESi, (5-147)

Here the sum is taken over the adjacent mesh point neighbors j=1,...,J where
J=2,4 or 6in 1-, 2-, or 3-dimensional Cartesian geometries, while

L;

J
> i, (5-148)
j=1

where the mesh coupling coefficients /; are determined by the particular mesh
geometry and finite-difference scheme one chooses. For example, in Cartesian
coordinates using essentially the approximation schemes represented by Egs. (5-
116) and (5-120), one would find

ly=Dy/ A (5-149)

if
where we define

_1 __distance between mesh
Dy=5(Di+ D)), A"f'_points iand . (>-130)

The difference equations representing Eq. (5-143) then take the form
J D,.j J Dij
e . F(j)j'f' 2 —2+Ea, ¢i=Si (5-151)
Jj=1 2y J=1 2

where / runs over all of the mesh points.
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5. ITERATIVE SOLUTION OF
MULTIDIMENSIONAL DIFFERENCE EQUATIONS

We now turn our attention to the solution of these difference equations. Our
first task is to cast the set of equations into matrix form. This requires first
assigning a single index to each mesh point. For example, in a two-dimensional
mesh we could label the mesh points as

(i))—k=i+(—1)(N=1).

For a two-dimensional problem, the matrix structure takes the following form-in
this case, for a five-by-four mesh point array

l
|
|
|
|
!
I
|
|
\

D. D. D. D D D D D

~ 7,2 7,6 7,2 7,6 7.8 7,12 7,8 7,12

—(-—22H- + + -7 = s)

( (A7,2)2)_( (A7,s)2)(2a7 (47,20 (A7) (A7 8)? (A7 12)? )( (A7.a)2)-( (A7.12)2)-(¢7) ( 7
(5-155)

Notice that the tridiagonal form we encountered in the one-dimensional case has
now been augmented by two additional side-band diagonals—as we might have
expected, since on closer examination we find the two-dimensional case yields a
five-point difference equation.

Similarly, assigning a single index to each mesh point of a three-dimensional
problem yields the matrix structure which corresponds to a seven-point difference

N\

Now let’s consider how we might solve such systems—that is, invert such
matrices. Since Gaussian elimination can be applied to any matrix (formally, at
least), we might first consider applying this technique to obtain a direct inversion.
Recall that for a one-dimensional diffusion equation, the forward elimination

(5-156)
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sweep reduced the original tridiagonal matrix to a form with only two diagonals,
while the backward substitution step completed the matrix inversion

Forward Backward
\ sweep substitution (5-157)

After a bit of examination, it becomes apparent that when a similar forward sweep
is conducted on the five-diagonal matrix characterizing two-dimensional problems,
the result is to fill in all of the zero entries between the main and outer diagonal.

N — \\ (5-158)

This implies that one will require considerably more computer memory to allow
such a direct inversion of the matrix. Such a direct algorithm is also rather
complicated to program and leads to problems resulting from computer round-off
error. For these reasons, it is far more efficient to use an iterative procedure to
invert such matrices when N is large, since such schemes attempt to preserve the
sparse structure of the original matrix in their operations.

Let’s illustrate the basic idea with a simple example: Suppose we wish to invert a
matrix A—that is, we wish to solve

A4¢=S5. (5-159)

We first compose 4 into its diagonal and off-diagonal elements

I
ng

- 3

§ _ _ § (5-160)

a
D '= * g=] (5-161)
- 33
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Hence suppose we use Eq. (5-160) to rewrite Eq. (5-159) first as
D¢=Bo+ S (5-162)

and then invert D to find

s

[Bel+D7'S. (5-163)

2:

Now is where the iterative philosophy comes in. Suppose we guess ¢ on the
right-hand side—call the guess ¢®—and then use it to calculate a new guess, ¢
as

2(1)=,Q_1_BQ(O)+,Q_I_§- (5-164)
We can continue this iteration, calculating the m + 1 guess as
(m+1) -1 (m) -1
¢ =D B¢ "+D 'S. (5-165)

Hopefully, then, as m becomes large, we converge to the true solution

™o, (5-166)

Hence the general idea behind such iterative schemes is to generate improved
guesses oOr iterates 2('") by solving the original system of equations in an approxi-
mate, but efficient, manner. We continue such an iterative process until two
successive iterates ¢ and ¢‘"* D are sufficiently close together, at which point
the iteration is stopped and ¢™*D is regarded as the solution. Notice that
throughout the iterative process, we maintain the sparse structure of the original
five-diagonal matrix 4, thereby significantly reducing storage and calculational
requirements.

The particular scheme we have presented is known as the Jacobi—Richardson or
Point-Jacobi method, and although it is a very simple scheme, it has the drawback
that it converges very slowly. The reader might very roughly think of the conver-
gence rate of such iterative processes as being determined by how big a chunk of
the original matrix he is willing to invert on each iteration. (More precisely, the
convergence rate is determined by the size of the matrix norm of D~'B.) In the
Point-Jacobi method, only a relatively small bit of the matrix, its main diagonal, is
inverted on each step and hence we might expect convergence to be slow. (As an
extreme example, one bites off a much bigger chunk in Gaussian elimination—the
whole matrix 4—and hence only a single iteration is needed.) One can accelerate
this convergence in several ways. First, one could attempt to invert a bigger chunk
of 4 on each iteration. It is also possible to use information about the next flux
iterate during an iterative step. Finally, one can extrapolate from earlier flux
iferates in order to more rapidly approach the true solution.

To understand how to improve the Jacobi iterative scheme, let’s write it out
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explicitly in terms of the algebraic system

apdi™ V| +apeiM+ ayps™ + e+ aeN” =S,

andi™  +|ape™ Y |+ O e andy =S,

\.

solving only for these —~
ay o™ +ay, 95" + aN3¢§m)+ S ayn oStV | =Sy
(5-167)
Hence we can solve for the m+ 1 flux iterate immediately as
1 N
m+1 m P —

=) 8- Ela,.j |, i=1,2,...,N. (5-168)

[ Jj=

*i

It should be noted here that the Jacobi scheme does not use all of the available
information during each iteration. For example, if the equations are solved in
sequence from /=1 to i= N, as they would be on a computer, then the solution of
the first equation yields ¢{™*"; but to find ¢{"*" using the second equation, ¢{™
is used rather than the improved estimate ¢{™*". Similarly, solving the third
equation for ¢{™*" makes use of ¢{™ and ¢{™ rather than ¢"*" and ¢{"*" which
are known. If these estimates are used as soon as they are generated, a more
efficient iterative scheme known as the Gauss--Seide! or successive relaxation method
is obtained. In this case, the system of equations in each iteration is solved as

m+1 m m
aydi™ V| +apes™ Hapesm+ o aeyY =1,

i 1 _
andt™ P+ apdt™ Y |+ apei™+ - +aneV =S,

1 1 _ 5-169
ay®1" "Vt ayuesm D+ ayed™ D |+ +asei =S, ( )
T A e e R T L) Al E R
and the solution is
ey 1 i—1 ) N -
+)_ 1
= 1 Si= Zaeimt = X a0
11 j=] j=l+l
From solution of From previous (5-170)

previous equations  (mth) iteration
in current (m+1)
iteration
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This can be rewritten in matrix form by decomposing A into the sum of an upper
and lower triangular matrix:

1FS
li
Hes

= 4

N . % (5-171)
N

Here L contains elements of the main diagonal and below it, while U contains
elements above the main diagonal. Now we write Eq. (5-159) as

Lo=Uo+S. (5-172)

The Gauss-Seidel scheme described above amounts to inverting L by forward
elimination, stepping row by row down the matrix. Hence our iterative scheme is

2(m+l)==—ly£(m)+!£-l£' (5_173)
The fact that the Gauss—Seidel method utilizes the latest iterate elements of ¢®*D
when solving successive equations yields a factor of two better in error reduction
per iteration than the Jacobi method.

It is possible to accelerate the convergence of the iteration scheme even further
by introducing an acceleration parameter to extrapolate the iterative flux estimate.
This procedure, known as the successive overrelaxation (SOR) method, can be
illustrated by considering how one utilizes the ¢™ iteration to determine the ¢+
estimate. The first step in the calculation of ${™*" is to compute the Gauss—Seidel
estimate, which we will label as ¢™*!/? for convenience.

i—1 N
¢i(m+ b = L Si— 2 ay¢§'m+l) - 2 ay‘b;‘m}
a;; j= 1/4 =i+ 1/4
. . . (5-174)
Gauss—Seidel From SOR in From SOR in
estimate current iteration previous iteration
[(m +1)st] [mth]

Now ¢* 1 is calculated as a linear combination of ¢, ™" *#’ and the previous SOR
iterate

¢’(m+1)=w¢'_(M+ i)+(1 __w)d,’('")_ (5-175)

Here the extrapolation or acceleration parameter « ranges between 1 and 2. Of
course for w=1 we return to the Gauss—Seidel method in which no extrapolation is
used. The iterative algorithm for each element can then be written as

i—1 N

m=215— FaemtV— 3T qoim|+(1-w)e™.  (5176)

j
a; j=1 j=i+1
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FIGURE 5-13.  Flux extrapolation in the SOR method?’

We have sketched in Figure 5-13 how the flux extrapolation can enhance conver-
gence to the true solution ¢.

The optimum value of w giving the maximum rate of convergence can be related
to characteristics of the original matrix 4. In certain cases one can achieve a
convergence rate as much as two orders of magnitude larger than the Jacobi
method. It should be noted, however, that the estimate used for w can strongly
affect the convergence rate of this method, and it frequently must be determined
by experience.

Very similar methods can be applied to three-dimensional diffusion problems. In
this case the diffusion matrix 4 has seven diagonal elements as indicated below

(5-177)

Again iterative methods are utilized in which the outer diagonal elements are
handled in a manner similar to those used in two-dimensional problems. However
there is some reduction in iterative convergence rates due to a loss of procedure
implicitness caused by the additional diagonal elements.

Such iterative algorithms for the solution of the finite difference equations
characterizing two- or three-dimensional diffusion problems are frequently referred
to as inner iterations. This terminology arises from the fact that in nuclear reactor
criticality calculations, the solution of the diffusion equation is itself imbedded in
yet another iterative scheme—the so-called outer or source iterations—necessary to
handle the presence of a fission term. We will study this latter scheme in Section
5-1V,
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6. NODAL METHODS

There are many instances in nuclear reactor analysis in which one requires a
full three-dimensional calculation of the neutron flux, for example, in core fuel
depletion or control rod ejection studies. Although a direct numerical solution of
the diffusion equation can be performed on a modern digital computer, it is
extremely expensive to do so, particularly when a series of such calculations would
be required for a parameter study. We desire a scheme for determining the
three-dimensional core flux distribution that avoids the large storage and execution
time requirements of a direct finite difference treatment of the diffusion equation.

Such a scheme is provided by so-called nodal methods.**** The general idea is to
decompose the reactor core into relatively large subregions or node cells in which
the material composition and flux are assumed uniform (or at least treated in an
average sense). One then attempts to determine the coupling coefficients
characterizing node cell to node cell leakage and then to determine the node cell
fluxes themselves.

To develop this approach in more detail, consider the neutron diffusion equation
in its general time-independent form given by Eq. (5-143). Now we know that we
can formally write the solution to this equation as

b(r) = f d% G (r,r')S(r), (5-178)

where G (r,1') is the diffusion kernel or Green’s function for the particular geometry
of interest that satisfies

~V-D(r)VG (r,r')+Z,(n)G (r,r')=S(r—r). (5-179)

Notice, in particular, that G (r,r’) can be interpreted physically as the flux resulting
at a position r from a unit point source at r'.

Of course we usually cannot construct G (r,r')—if we could, we would have
already solved our problem. But suppose we ignore this annoyance for the moment.
We will instead introduce the principal aspect of nodal methods by dividing the
reactor core (or, more typically, one quadrant or octant of the core, since some
symmetry is usually present) into N node cells as shown schematically in Figure

| -Node cell n

Node cell #'—_|

A AN EEN

FIGURE 5-14. Nodal cell division of 2 reactor core
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5-14. We now integrate Eq. (5-178) over the volume ¥V, of the nth node cell
[ drew=[ & [ Grr)s(r)
v, v,
N
=> f d3rf d¥ G (r,r)S(r). (5-180)

If we define the spatial averages over the nodal cells,

=1 3 -
=7 fynd ro(r), (5-181)
=1 [ g ]
S,= and rS(r), (5-182)
% [ & [ arGErsw)
K, =— 1 i : (5-183)
3./ ’
7 fyn‘d P S (1)
then we can rewrite Eq. (5-180) as
N
¢n= 2 Knn’Sn” (5'184)
n'=1
or in matrix form
¢=KS, (5-185)

where ¢ and S are N-dimension column vectors and K is an N X N matrix.
Notice that the matrix elements K . can be interpreted as the probability of a
neutron born in cell n’ diffusing to cell n. Hence K is referred to as the nodal
transfer matrix while K . are know as the nodal coupling coefficients.

Thus if we know K, we can easily determine the flux resulting from a given
source S by a single matrix multiplication. But of course we don’t know K since we
don’t know G (r,r’). The key to such nodal methods therefore lies in our ability to
approximate or guess the coupling coefficients K, ..

Of course from a formal point of view, if the number of nodal cells N is large,
the nodal method becomes equivalent to the finite difference scheme and hence
loses any calculational advantages. The real power of the nodal approach is
realized only when the number of node cells N is small, since then the cells are
large enough that they become coupled via neutron diffusion only to nearby
cells—that is, the transfer matrix K is sparse (i.e., it has many zero elements).
However choosing large node cells places the burden of the calculational effort on
an estimate of the coupling coefficients K,,,,..

The determination of these coefficients is usually accomplished in a most
empirical fashion (a nice way of saying they are fudged). Typically the K, are
determined by assuming a flat nodal source and uniform composition in each cell
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and allowing neutron transfer to only the six nearest neighbor cells. The transfer
coefficients are represented as linear combinations of several simple trial functions
(e.g., from one-dimensional slab geometry calculations). The blending coefficients
in this representation are then determined by comparison with more accurate finite
difference benchmark calculations and lots of experience, fiddling, and fudging.

If the transfer coefficients are properly chosen, then such nodal methods can be
extremely useful in generating three-dimensional flux distributions when only
limited accuracy is required. Unfortunately such empirical schemes for choosing
the K. are quite problem-sensitive and require a good deal of experience on the
part of the reactor analyst.

We will leave numerical methods for solving diffusion equations until later when
we must generalize these methods to account for fission processes and energy-
dependence. The above discussion has been an admittedly curse description of
numerical methods for solving differential equations. There is a vast literature on
this subject that provides the details of the methods we have so briefly outlined.!?-!¢
And perhaps the most valid argument for presenting only a brief sketch of such
numerical methods lies in the recognition that these topics are of such vital
importance to the practicing nuclear engineer, that he almost certainly will have
had or will take further courses on numerical analysis in any event.

III. ONE-SPEED DIFFUSION THEORY
OF A NUCLEAR REACTOR

A. Introduction

Thus far we have studied the diffusion of neutrons in nonmultiplying media
as described by one-speed diffusion theory. We now wish to apply this theory to
the study of nuclear reactors in which fissile material is present. Hence we must
determine how to include nuclear fission in the one-speed diffusion equation (5-16).

To this end, let us first recall the sequence of events involved in a fission chain
reaction. To be specific, we first consider the processes occurring in thermal
nuclear reactors (see Figure 5-15). Fission neutrons are born at high energies in the
MeV range. It is possible that such fast neutrons induce fission in either fissile
(*33%U or ®°Pu) or fissionable isotopes (?**U). It is far more likely that the fast
fission neutrons will be moderated to lower energies by elastic scattering collisions
with light moderator nuclei (e.g., |H or 2C). As the fission neutrons are slowed
down, they pass through energies comparable to the absorption resonances in
heavy nuclei such as 2*®U and hence experience an appreciable probability of being
absorbed. They may also leak out of the reactor core during this slowing down
process. In a thermal reactor, however, over 85-90% of the neutrons will manage to
slow down to thermal energies. They will then diffuse about the reactor core until
they either leak from the core or are absorbed. If they are absorbed in the fuel,
then they may induce a new fission, thereby repeating the cycle.

The processes involved in fast reactors are somewhat similar (see Figure 5-16). In
such reactors an effort is made to prevent the fission neutrons from slowing down
before they will have had a chance to induce fission. Low mass number material is
avoided to reduce the energy loss via elastic scattering. However some moderation
will occur, due both to elastic scattering from materials such as oxygen (remember,
most fast reactor fuels are oxides) as well as inelastic scattering from materials such
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FIGURE 5-15. A schematic of the various processes involved in a thermal reactor

as sodium. In particular there will be a tendency for some of the neutrons to slow
down to the energy range in which appreciable resonance absorption may occur,
although most of the fission reactions will be induced by neutrons with energies
above this range. Hence neutron moderation, leakage, and resonance absorption all
play an important role in fast reactor physics, just as they do with thermal reactors.

It should be evident that the various processes occurring during this sequence are
strongly energy dependent. We will apply our one-speed diffusion model to study
such processes, however. Our motivation is partly pedagogical since this model is
by far the simplest description of nuclear reactor behavior and allows us to
introduce many concepts of nuclear reactor analysis in the simplest possible
framework. However as we have noted earlier, the one-speed diffusion model can
also provide a very useful qualitative description of certain reactor types (notably
very thermal or very fast reactors) provided one uses the correct values for the
cross sections (2, 2, =, ) which appear in the model.

B. The Fission Source Term

We now direct our attention toward determining a way to include fission in
the one-speed diffusion equation. We will assume that diffusion, absorption, and
fission all occur at the same energy. Then a term to represent fissions can easily be
derived by noting that if Z¢(r, ) is the fission reaction rate density, then the rate at
which fission neutrons appear in the reactor—that is, the “fission source”—is given
by

Si(r,£)=vZ(r, ). (5-186)



198 / THE ONE-SPEED DIFFUSION MODEL OF A NUCLEAR REACTOR

107 L

/ @ e
108 F@n Scatter —— Leakage Fiann
105 ‘ I Fission‘T

E Resonance  —
absorption ~—— Breeding

104
103 -

FIGURE 5-16. Neutron processes involved in a fast reactor

If this is the only source of neutrons in the reactor,’ then the appropriate diffusion
equation becomes

L g-DYe+ 2000 =rE(0) (5-187)

Note here that we can identify the various components of the macroscopic
absorption cross section which appear in Eq. (5-187) as:

Ea —_ Eznoderator + E:tructure + Egoolant + Eguel

and

E;uel= Efyuel_*_ Eguel_ (5-188)

C. The Time-Dependent “Slab” Reactor

1. GENERAL SOLUTION

We will begin our study of nuclear reactor behavior as described by the
one-speed diffusion equation by considering a uniform slab of fissile material
characterized by cross sections £,, =, , and Z;. This unrealistic appearing “slab
reactor” is chosen to introduce many of the concepts of nuclear reactor analysis,
since its one dimensional geometry greatly facilitates the detailed solution of the
one speed diffusion equation.} The appropriate mathematical description of the

111

t Actually we should hedge here a bit. Equation (5-187) actually represents only “prompt
neutrons, that is, those born instantaneously in fission. The “delayed” neutrons arising from
fission product decay require a slightly different treatment. We will defer this modification until
Chapter 6.

! In this sense it is somewhat akin to the “vibrating string” or “simple harmonic oscillator”
problems in physics that also get beaten to death since they contain most of the interesting
physics—and yet are easy to solve.
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a =
2 2 FIGURE 5-17.  The slab reactor

neutron flux in such a reactor is

130 0% B
P Dg; +2,0(x, 1) =vZ(x,1), (5-189)
with initial condition: ¢(x,0)=¢y(x)=¢y( — x) (symmetric),

~

and boundary conditions: ¢(% ,t) =¢( — % ,t) =0.
Notice that we have assumed that our initial flux is symmetric. We will find later
that such an assumption will imply similar symmetry for all times, ¢(x,#)=
¢(— x,t). This will simplify our manipulations somewhat.

Unlike our earlier studies of time-independent neutron diffusion, we are now
faced with a partial differential equation to solve. There are a number of ways to
attack such equations, but perhaps the simplest is to use separation of variables'™
by seeking a solution of the form

¢(x, 1) =y(x)T'(2). (5-190)

If we substitute this form into Eq. (5-189) and divide by ¢/(x)T (¢), we find

1 dT _ o 4% _

TE=¢ DE +(v2f—23)¢(x) =constant= —A. (5-191)
Here we have noted that since we have a function only of x set equal to a function
only of ¢, both terms must in fact be equal to a constant. We have named this
constant —A. However A is as yet unknown.

Hence the separation of variables given by Eq. (5-190) has reduced the original
partial differential equation in two variables to two ordinary differential equations:

dTr :
-d—t = —)\T(t),
D—Z—zf + (S =S (x)= — %x,b(x). (5-192)
X

We can easily solve the time-dependent equation

T(t)=T(0)e ™, (5-193)
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where 7(0) is an initial value which must be determined later. To solve the
space-dependent equation, we must tack on the boundary conditions:

d
Dd—zf +(% + uzf—za)¢(x)=o,
x
ition: () =u(— &)= ]
Boundary condition: \p( > ) 11/( 2) 0. (5-194)

Here A is still to be determined. However we recall the eigenvalue problem

dz\bn

dx?
%(%)=%(—-§—)=0, (5-195)

+ BnZ‘Pn(x) =0’

has symmetric solutions (we are only interested in symmetric solutions since ¢(x)
is symmmetric):

eigenfunctions:  y,(x)=cos B,x
(5-196)

2
eigenvalues: Bn2=(naTW) , n=13,5,...

If we identify Eq. (5-194) as the same problem, it is apparent that we must choose
A=03,+oDB>—wZ,=A,, n=1,35,... (5-197)
These values of A, are known as the time eigenvalues of the equation, since they

characterize the time decay in Eq. (5-193). The general solution to Eq. (5-189) must
therefore be of the form

o(x,t)= 2 A, exp(—A,t)cos nzx ) (5-198)
ogd

This solution automatically satisfies the boundary conditions. To determine the A4,,
we use the initial condition to write

Initial condition: ¢(x,0) =¢y(x) = 2 A, cos na@ . (5-199)
oc’;d
Using orthogonality, we find

a

=2 i dx ¢o(x) cos 22X (5-200)
T d f_g %o a’ )
2

n

Thus we have found that the flux (for any symmetric initial distribution) can be
represented as a superposition of modes, each mode weighted by an exponential
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factor:

o(x,1)= z f dx’ o(x’) cos B, x" |exp(—A,, ) cos B, x, (5-201)
2

where the time eigenvalues A, are given by

A,=vZ,+vDB2— w3, B,= ”—&Z’- : (5-202)

n

Before we proceed to examine this solution in more detail, it is useful to make a
few comments about the separation of variables approach. First notice that the
separation parameter that arose was in fact identified as an eigenvalue. Thus
separation of variables is essentially equivalent to an eigenfunction expansion.
Indeed if we had the foresight to expand the spatial dependence of the flux in the
eigenfunctions for the slab (using symmetry to restrict this expansion to odd n),

b(x,0)= 2 T, (1) cos "2~ , (5-203)
odd

where we have noted that the expansion coefficients now must be time-dependent,
then we could have immediately arrived at an equation for the 7,

n

dr

~N\ T, (1) (5-204)

by substituting Eq. (5-203) into the original equation (5-189) and using the
orthogonality property of the eigenfunctions. This alternative approach is
frequently useful when encountering problems in which sources are present, be-
cause the separation of variables approach we have presented applies only to
homogeneous equations.

Finally, note that although we initially sought solutions y(x)7 (¢) which were
separable in x and ¢, these solutions were eventually superimposed to yield a
nonseparable function of space and time [cf. Eq. (5-201)]. Hence separation of
variables does certainly not imply a separable solution. Interestingly enough,
however, there is one very important situation in which such separability will occur,
that involving the behavior of the neutron flux for very long times.

2. LONG TIME BEHAVIOR

Notice that one can order B}< B;< -+ B?=(nw/a)*--- . Hence the time
eigenvalues must similarly be ordered such that A; <A; <Ag<A;<--- . This means
that the modes corresponding to larger n decay out more rapidly in time. If we wait
long enough, then only the fundamental mode remains:

¢(x,t)~A,exp(—A,t)cos B, x as 1—00. (5-205)

This implies that regardless of the initial shape of ¢4(x) the flux will decay into the
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o(x)

FIGURE 5-18. Time decay of higher order spatial
modes in the slab reactor

fundamental mode shape. Of course, we have implicitly assumed that 4, will not be
zero. The coefficient of the fundamental mode is just

A= % 2 dx' g ') cos (5-206)
-3

Since ¢y(x) must be nonnegative in the slab to represent a physically realizable
flux, then it is apparent that 4, >0.

Actually for sufficiently large 2, —A, may be positive corresponding to an
exponentially growing flux. However the same argument will hold since —A; > —A,
> .-+ . Hence regardless of whether the flux grows or decays, it will eventually
approach a “persistent” or fundamental cosine distribution.

It is customary to refer to the value of B? characterizing this mode as

X )
Bl= ( g ) = B} = geometric buckling. (5-207)

This nomenclature is used since B? is a measure of the curvature of the mode
shape ‘

BZ=—id2¢"
8 ‘Ibn dx2 .

(5-208)

Since there will be a larger current density J and hence leakage induced by a mode
with larger curvature or buckling, we might expect that the mode with least
curvature will persist in time the longest.

3. THE CRITICALITY CONDITION

Let us now see what is required to make the flux distribution in the reactor
time-independent—that is, to make the fission chain reaction steady-state. We will
define this situation to be that of reactor criticality:

Criticality = when a time-independent neutron flux can be sus-
tained in the reactor (in the absence of sources

other than fission).
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Notice that we have qualified this definition by specifically demanding that the flux
be time-independent in the absence of a source. As we have seen in Chapter 3 (and
will see later in the problem set at the end of this chapter), a source present in a
critical system will give rise to an increase in flux that is linear in time.

If we write out the general solution for the flux

o(x,t)=A,exp(—A,t)cos B,x+ >, A,exp(—A,t)cosB,x, (5-209)
n=3
n odd

it i1s evident that the requirement for a time-independent flux is just that the
fundamental time eigenvalue vanish

A\ =0=10(Z,—»Z,)+vDB2 (5-210)

since then the higher modes will have negative A, and decay out in time, leaving
just
¢(x,t)—> A, cos B, x #function of time. (5-211)

If we rewrite this “criticality condition” using the notation Bl= B2, then we find
we must require

—5— =B (5-212)
It has become customary to refer to
sz - za
—5— = B2= material buckling (5-213)

since it depends only on the material composition of the reactor core (whereas Bg2
depends only on the core geometry). Hence our criticality condition can be written
very concisely as

(material composition) B = B} (core geometry). (5-214)

Thus to achieve a critical reactor, we must either adjust the size (Bgz) or the core
composition (B_2) such that B2=B2. We also note

B)>B}=\, <0=  supercritical,
Bl=B}=\ =0= critical, (5-215)
B2l< Bg2 =A,;>0= subcritical.

In particular notice that by increasing the core size we decrease Bgz, while by
increasing the concentration of fissile material we increase =, and hence B?. Both
of these modifications would therefore tend to enhance core multiplication.

Yet recall that in Chapter 3 we expressed the criticality condition in terms of the
multiplication factor k. We can make the connection between these two criteria if
we write the time eigenvalue as

(5-216)

/2
A=0vZ,(1 +LZB;)(1 - —”—i—)

2p2
1+ LB
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Now recall that (v=) ! is the mean lifetime for a given neutron-nuclear reaction to
occur. Hence (v=,)~! must be just the mean lifetime of a neutron to absorption
(ignoring leakage—that is, in an infinite medium). Furthermore, we can identify

Fuel Fuel
v _ pEie 20

> - E;’uel Ea

=nf=k,, (5-217)

a

Now the only remaining task is to identify (1+ L?B})~!. Recall that the rate of
neutron leakage is given by

Leakage=fds-J=fd3rv-J= —fd3rDv2¢, (5-218)
rate S V V

where we have used both Gauss’s theorem and the diffusion approximation. Hence
we can write

d’rs
Rate of neutron absorption f v rad

Rate of neutron absorption plus leakage - f 2
14 3
s, f d¥e
_ v - 2232) . (5-219)
.| dre+DB}| d’ £
. fV ¢+ DB; fg, ¢
However we can identify this ratio as just |
- 1
Nonleakage probability= P, = — - (5-220)
~ 1+ LB}
Therefore we can interpret
1 1 \_ ,_neutron lifetime
=P — == o 5-221
(Uza)(l + LZBgZ) NL( v, ) in a finite reactor, ( )

since we have just reduced the lifetime to absorption in an infinite medium to take
account of neutron leakage. If we now combine Egs. (5-217) and (5-220), we find
that the multiplication factor k for this model becomes just

”Ef/za

_ (5-222)
1+ Lng2

k=nfPy =

Thus we can identify our fundamental time eigenvalue as just the inverse of the
reactor period

k—1
_}\1__._7_

1
T (5-223)
If we also recall from Eq. (5-202) that

A, =vD (B}~ Bj), (5-224)

m
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then it is apparent that the various forms of the criticality condition are indeed
equivalent:

M=0sBl=Blok=1. (5-225)

In particular notice that by using Py, =(1+ L?B})~" we can avoid the analysis of
the initial value problem and proceed directly to the criticality condition

v /2
== (5-226)
1+ LB}
We will return later to consider how these results can be applied to reactor
criticality studies, but first we will extend them to more general reactor geometries.

D. The Criticality Condition for More General Bare Geometries

Note that the only quantity characteristic of the reactor size or geometry that
appears in k or Py, is the geometric buckling, B2 For the case of a slab reactor of
width a we found BZ_(W /@)% We might suspect that for more general geometries
we need only replace this by the geometric buckling characterizing the specific
geometry under consideration. This suspicion is in fact easily verified, but only for
so-called “bare” geometries in which the reactor composition is uniform. For the
more complicated multiregion geometries, such as reactors composed of a core
surrounded by a reflecting material, one can no longer derive simple expressions
for Py, or k in terms of the reactor geometry and composition.

Consider, then, a bare reactor of uniform composition surrounded by a free
nonreentrant surface characterized by vacuum boundary conditions. If the reactor
is critical then the neutron flux must satisfy the steady-state diffusion equation

— D V2% +Z,¢(r) = vZ¢(r), (5-227)

subject to the boundary condition ¢(f))=0 for f, on the extrapolated surface. Of
course in general there will be no solution to this equation unless we have
happened to hit on just the right combination of composition and system size.

To see this more clearly, divide Eq. (5-227) by — D so that it can be written as

r2i—2,
V2¢ + ( —D— )¢(r) =0, (5-228)
boundary condition: o(F,)=0.

Sometimes Eq. (5-228) is written in a somewhat different form as

k.
V¢+( IE )¢(r) 0, (5-229)

boundary condition: o(F) =0.

Now notice that this equation is identical to that which generates the spatial
eigenfunctions for this geometry

VA, + BN, (r) =0, (5-230)
boundary condition: Y(F)=0.
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We know that this latter equation has nontrivial solutions y,(r) only for certain
values of the parameter B2, the eigenvalues B2. Hence by comparing Egs. (5-228)
and (5-230) we find that the steady-state diffusion equation for the flux ¢(r) will
only have nontrivial solutions when the core composition is such that (»Z;,—~2))/D
is equal to an eigenvalue B?, and then the flux ¢(r) will be given by the
corresponding eigenfunction i, (r).

However since there are an infinite number of possible eigenvalues B2, we might

be tempted to think that there are an infinite number of values (v=;—5,)/ D = B/}
for which the reactor is critical. However it should be recalled that in the case of a

slab geometry, only the lowest eigenvalue B}=(w/d)*= B} had a corresponding
eigenfunction y,(x) =coswx/d that was everywhere positive. The eigenfunctions or
spatial modes y,(x) corresponding to higher eigenvalues oscillated about zero. This
same feature also characterizes the eigenfunctions y,(r) of more general geometries.
Only the eigenfunction y,(r) corresponding to the smallest eigenvalue Bl is
everywhere nonnegative. Since the neutron flux can never be negative, it is
apparent that the only solution to the eigenvalue problem Eq. (5-230) physically
relevant is that corresponding to the smallest eigenvalue, BIZEB;. Hence for the
reactor to be critical we require

2, — 2
Bm2_=_(f—3)=Blzngz (5-231)
just as for the slab.
Thus we can continue to use Py =(1+L?B})~" and k=(»Z;/Z)(1+ L*B})!
for more general bare geometries provided we identify the geometric buckling Bg2
as the smallest eigenvalue B2 of the Helmhotz equation

Vi + Bl¢(r)=0 (5-232)

subject to the boundary conditions that ¢(r) vanish on the extrapolated boundary
of the reactor. The corresponding critical flux distribution ¢(r) is then given by the
fundamental eigenfunction ¢ ,(r), which is everywhere nonnegative.

It should be pointed out that although the Helmhotz equation (5-232) will
provide us with the flux shape in a critical reactor, it will tell us nothing about the
magnitude of the flux. Since it is a homogeneous equation, if ¢(r) is a solution, then
any multiple of ¢(r) is also a solution. Of course the magnitude of the flux was
determined for us by the initial condition ¢4(r) when we studied reactor criticality
by solving the full time-dependent diffusion equation (5-187). However this latter
approach is far too cumbersome to use in practice.

Instead we merely note that a critical reactor can operate at any flux level—at
least mathematically. (Of course one must provide for adequate core cooling,
shielding, etc., but these factors are extraneous to our present model of the reactor
so we won’t worry about them here.) Hence we will merely assume that the
magnitude of the flux is determined by the desired thermal power output of the
core. If the usable energy produced per fission event is w;, then the thermal energy
deposited in the core per unit volume per second is just given in terms of the fission
reaction rate density as

g(r) = w;Z(r). (5-233)
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This is just the local thermal power density at position r in the core. Hence the total
power generated by the core is just the integral of the power density over the core
volume

P= de3r w; Z0(r). (5-234)

This relation can be used to determine the magnitude of the flux in terms of the
core thermal power level.

Thus we now have developed a rather simple scheme to study the criticality of a
nuclear reactor—at least a bare, uniform reactor. The only mathematical effort
required is the solution of the Helmhotz equation characterizing the geometry of
interest for the geometric buckling Bg2 (the fundamental eigenvalue BY) and the
critical flux shape ¢(r) [the fundamental spatial eigenfunction y,(r)]. To illustrate
how these quantities are determined, we will consider a simple yet very important
example:

EXAMPLE: A Right Circular Cylindrical Core

The most common reactor core shape is that of a right circular cylinder of height
H and radius R. (Actually a sphere would be the more optimum geometry from the
aspect of minimizing neutron leakage, but spheres are very inconvenient geometries
to pass coolants through.) The appropriate form of the Helmholtz equation is then

10 3 3%
r or or ;2

+ B2¢(r,z)=0, (5-235)
subject to boundary conditions

¢(1€,z)=0=¢(r, + 121:)

Since this is a homogeneous partial differential equation, we can seek its solution
using separation of variables

¢(r,z)=R(r) Z(2).

Then if we substitute this form into Eq. (5-235), we arrive at two ordinary

X

(

FIGURE 5-19. Finite cylindrical reactor core
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differential equations

1d dR ;
7 d_ d_ +(12 %(r)=0, %(R )=O9 (5-2363.)
d*Z H
C+N2(2)=0 %(+7)—0, (5-236b)

where the separation constants a? and A? are constrained by the relationship
B2=a?+A2 Each of these equations represents a separate eigenvalue problem that
one can use to determine a and A (and hence B?). The eigenfunctions and
eigenvalues of the axial equation are well known to us

2
Z,(z)= COS(";Z), >\3=(%), n=1,3,... (5-237)

To construct the eigenfunctions of the radial Eq. (5-236a), we first identify its
general solution in terms of zeroth order Bessel functions (see Appendix D)

R (r)=AJ(ar) + CY(ar). (5-238)

Since Yy(ar)— oo as r—0, we must set C =0. Applying our boundary condition at
r=R, we find

R(R)=AJy(aR)=0=aR=1, (5-239)

where », are the zeros of J,. In particular, the smallest such zero is »,=2.405..
(kind of like # to a Bessel function). Hence we find the eigenfunctions and
eigenvalues generated by the radial equation (5-236a) are just

Ra(r) =Jo( p}"{ ) al=(v,/R)’, n=0,1,... (5-240)

Therefore, consistent with our prescription of seeking the smallest value of B? as
our geometric buckling, we find

Vo \? 2
B;=(—?) +( %), (5-241)
corresponding to a spatial flux shape
by
AJ cos( mz ) 5.242
8(r,2) = Ao 5 oo Z (5-242)

Since this is the geometry most frequently encountered in reactor design, it is
useful to calculate the normalization factor 4 in terms of the core power level P by
noting

3 H
P= de3r wZp(r) = wZ27A fo dr rJO( =z ) f - dz cos( r ) = — i

2 (5-243)



THE ONE-SPEED DIFFUSION THEORY MODEL / 209

Thus we find

A== V=nR*H. (5-244)

It should perhaps be mentioned that since reactor cores are fabricated from either
square- or hexagonally-shaped fuel assemblies, one can only approximate such
cylindrical geometries. However for most purposes one can assume the reactor core
is essentially a right circular cylinder.

One can proceed in a very similar manner to analyze other bare core geometries.
For convenience, we have tabulated the geometric buckling and critical flux profile
in other common geometries in Table 5-1.

TABLE 5-1 Geometric Bucklings and Critical Flux Profiles Characterizing Some
Common Core Geometries

Geometric Buckling Bg2 Flux profile
Slab %/% ( Z )2 cos =X
a a a
7
S
Infinite KAY s{r
Cylinder R AR
_—

Sphere

2
Paraliciepiped (5 H(F)+(F) wo(F) e F)oos( F)
ziyri;:fder (%)2+(%)2 J(,(V—..r)cos(%)

The reader should not be deceived into believing that such criticality calculations
are always so straightforward. For we must remember that the expression we have
derived for the nonleakage probability Py, =(1+ L*B2)~' holds only for uniform,
bare reactor geometries (i.e., single-region cores). As we will find later, it is no
longer possible to derive simple expressions for Py, or k in terms of the reactor
geometry and composition for multiregion (e.g., reflected) reactors.

These results can be used to determine the core geometry or composition that
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will yield a critical reactor. For example, if the material composition is specified,
one can compute the material buckling B2 in terms of the macroscopic cross
sections using Eq. (5-213). Then by using the criticality condition B2= B} (along
with Table 5-1), one can infer the core dimensions that will yield a critical system.

In the more usual situation the nuclear designer will be given B} (rather than B_)
since the core dimensions are determined by limitations on core thermal -perfor-
mance (and not nuclear considerations). That is, the core must be built a
sufficiently large size to avoid excessively high temperatures for a desired power
output. The nuclear designer must then determine the fuel concentration or loading
(.., B} that not only will result in a critical system, but will also allow the core to
operate at a rated power for a given time period.

EXAMPLE: As a specific example we will study the one-speed diffusion model
of a bare, homogeneous cylindrical reactor with material composition representa-
tive of that of a modern PWR such as described in Appendix H. We will use
“homogenized” number densities corresponding to a PWR core operating at full
power conditions and containing a concentration of 2210 ppm of natural boron (as
boric acid) dissolved in the water coolant for control purposes. The fuel is taken as
UO, enriched to 2.78% 23°U. In Table 5-2 we have listed the number densities and
microscopic one-speed cross sections for this core. (Here the cross sections are
actually averages over the neutron energy distribution in such a reactor core.)

TABLE 5-2  Number Density and Microscopic Cross Sections

Material N(1/b-cm) o,.(b) 0,(b) odb) v
H 2,748 1072 0.650 0.294 0 0
) 2.757% 102 0.260 1.78 %10~ 0 0
Zr 3.694% 1073 0.787 0.190 0 0
Fe 1.710x 1073 0.554 2.33 0 0
235y 1.909< 104 1.62 484.0 312.0 243
28y 6.592 %1073 1.06 2.11 0.638 2.84
135X e 0.000 1.21 2.36 X 10° 0 0
1B 1.001x 1073 0.877 341x1073 0 0

This data can be used to calculate the macroscopic cross sections tabulated in

Table 5-3. Here we have also included the relative absorption rates in each material
which serve as a measure of neutron balance within the core.

TABLE 5-3  Macroscopic Cross Sections

Material 2 (cm~1) S (em™1) vEcm™) Relative Absorption

H 1.79%10~2 8.08 %1073 0 0.053
o 7.16x10~3 490x10-6 0 0
Zr 291x1073 7.01x10~4 0 0.005
Fe 9.46x10~4 3.99x1073 0 0.026

B3y 3.08x104 9.24x1072 0.145 0.602

B8y 6.95%1073 1.39% 102 1.20x 1072 0.091
10g 8.77x10~6 3.41x10-2 0 0.223

3.62x1072 0.1532 0.1570 1.000
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It should be noted that the transport cross sections used in this example have
been artifically adjusted (reduced by almost an order of magnitude) to take some
account of fast neutron leakage which would normally not be described by a

one-speed model.
We can use these cross sections to calculate a number of important parameters

characterizing the PWR core:

Diffusion coefficient: D=9.21 cm

Infinite multiplication constant: ko=vZ/Z,=1025
Material buckling: BZ=(vZ,—Z,)/D=4.13x10"*cm™?

Extrapolation distance: A 2=0.71A,=19.6cm

Leakage fraction for a critical core: 1— Py, =0.025 (5-245)

Next we will compute the critical core dimensions. If we assume that the core
height is fixed at 370 cm by thermal considerations, then we can determine the
radius at which a core with such a composition will be critical. First calculate the
axial buckling B?

F4

2

B2=(1~) =6.00% 1075 cm 2. (5-246)
H

Then using Eq. (5-241), we can determine the radial buckling B?

r

va\2
bﬂ:(%) =B,—B?=353x10"%cm™2% (5-247)

Hence we can solve for the critical radius as

- (v N
R=(§~)—zo= 108 cm. (5-248)

(It should be noted that this is somewhat smaller than the radius of 180 c¢cm for a
typical PWR core. This illustrates the limitation of such a one-speed model for
obtaining quantitative estimates in reactor analysis.)

E. Reflected Reactor Geometries

To illustrate the complications that arise with multiregion core geometries, we
will return to our slab reactor and add a reflector of nonmultiplying material of
thickness b to either side (see Figure 5-20). For the purposes of this analysis we will
characterize the reactor core by superscript “C” and the reflector by “R.” Rather
than repeat our earlier analysis of the initial value problem for this geometry, we
will proceed directly to examine the time-independent diffusion equations that
must be satisfied by the fundamental mode flux shape. As in our earlier analysis of
the nonmultiplying reflected slab, we will seek a solution in each region of the
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\\R\ef\.e}@
O\

FIGURE 5-20. Reflected slab reactor

reactor and then use interface conditions to match these solutions. Hence we must
solve

d2¢C
Core: —DC— +(26-»2F)¢%(x)=0, O0<x<2,
dx’ 2 24
Rd2¢R R, R a a > (5_ 9)
. —DR—— = Z<x<5
Reflector: D ! +2¢ (x)=0, > X > + b,

subject to the set of boundary conditions:

@ #93)=e"(3)
o (3)-r(3
() ¢R(—‘2-’-+5)=0.

Note that we have used the reactor symmetry to narrow our attention to the range
of positive x. As we noted earlier in Section 5-III-D this problem will have no
solution unless we choose the proper combination of core composition and size.
We would anticipate that a criticality condition relating these core characteristics
would emerge in the course of our analysis.

The general approach, as always, is to determine the general solutions in the core
and reflector and then use the boundary conditions to determine the unknown
coefficients. In the core the general solution will be

¢“(x)=A cos Bx, (5-250)

where we have utilized the symmetry of the core to discard the sine term. Here the
material buckling characterizing the core is defined by

SE—-=€
C2— 4 f a
BY=— . (5-251)
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while in the reflector we will seek a solution satisfying the vacuum boundary
condition (¢)

¢®(x)=ARsinh (5-252)

g—+b~—x
LR |

where the reflector diffusion length LR=(DR/ Zf‘)zl. We now apply the interface
boundary conditions to find

BSa >
Accos(—m— ) = ARsinh('L),
LR

2
BSa R )
DCB,SACsin(—i—-) = %ARcosh(ZbE). (5-253)

Dividing these expressions, we can cancel A€ and 4R to find

BCa R N
DCBCtan| = )= 2 _ coth(L). (5-254)
i 2 LR LR

Notice that this equation represents a relation between reactor composition
(DSBS, DR, LR) and size (a,b) that must be satisfied if a solution to the steady-
state diffusion equations (5-249) is to exist. Hence this is just the reactor criticality
condition for this particular geometry. Admittedly, it doesn’t look anything like our
earlier condition, B,ﬁ = Bgz, that characterized a bare reactor. In fact the criticality
condition for a reflected reactor is transcendental-one cannot obtain an explicit
solution for the critical size or composition. Instead, either numerical or graphical
techniques must be used. The latter technique is more useful for our present
discussion. Rewrite Eq. (5-254) as

B,a Ba D®a b
2 BN T2 ) = 3pCr CO‘h(ﬁ). (5-255)

If we plot the LHS against (BSa/2), we can then determine the solution of this
transcendental equation graphically by noting where it intersects the value of the
RHS, as shown in Figure 5-21. {Actually since there will be many such intersec-
tions, we are only interested in the lowest value of (BSa/2).] From this graph we
notice that the critical value of BS must be such that

BS 2
——;—f— <Z o B,,?Q(%’-) (5-256)
in contrast to the bare (unreflected) core in which B,Sz=(7r / @)%. Hence we see that
the width a required for criticality is somewhat smaller when a reflector is added,
but we would expect this since a reflector is added primarily to reduce neutron
leakage. ’
It is conventional to define the difference between bare and reflected core
dimensions as the reflector savings §&:

8 = a (bare) — a (reflected). (5-257)



214 / THE ONE-SPEED DIFFUSION MODEL OF A NUCLEAR REACTOR
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2 2 2

FIGURE 5-21. Graphical solution for
reflected reactor criticality

For example, the reflector savings for our slab reactor can be written as

1 [ DBL® I3
o= EE tan— —R tanh( Z—E) . (5-258)

For a thick reflector 5> LR this simplifies to

C
5 %LR, (5-259)

i

which is essentially a measure of the maximum reflector savings that can be

realized.
Reflectors serve another function besides reducing neutron leakage. They tend to

flatten the flux and hence the power distribution in the reactor core. Unfortunately
one-speed diffusion theory is not adequate to describe this effect, which results in a
peaking of the thermal flux in the reflector region (see Figure 5-19), so we must
defer a further discussion of reflected cores until we have developed multigroup

diffusion theory.

IV. REACTOR CRITICALITY CALCULATIONS

A. Introduction

Let us now turn to the very important topic of determining the composition
or size of a reactor that will yield criticality. It should be apparent after the last
example that in most practical reactor designs one cannot simply determine the
geometric buckling for a core geometry and then use B2= Bg2 to arrive at critical-
ity.
One “brute force” procedure would be to determine the lowest time eigenvalue
of

=V D (Vs + (2, —vZ)e(r)= %¢(r), (5-260)

and then keep adjusting things until A=0. However this is rather awkward, and
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moreover would tend to introduce errors in an unnatural manner when we
generalize our analysis to include energy dependence.
Instead suppose we write our diffusion equation as

—V-DVo+Z,6(r) = v (1), (5-261)

boundary condition: (F)=0

(which, of course, is the steady-state equation we solved analytically in the earlier
simple examples). Unfortunately this equation has no solution in general—unless
we just happen to hit on the exact combination of core composition and geometry
such that the reactor is critical (a highly unlikely possibility on a computer).
What we can do is introduce an arbitrary parameter “k” into this equation as:

—V-DVo+3,0(r) = %vzﬁp(r). (5-262)

Then for some value of k, we assert that this equation will always have a solution.
The idea is to pick a core size and composition and solve the above equation while
determining k. If k should happen to be unity, we have chosen the critical size and
composition. If k71, however, we must choose a new size and composition and
repeat the calculation. As one might expect, k£ turns out to indeed be the multipli-
cation factor we defined earlier in Chapter 3, as we will demonstrate later.

We could give a formal mathematical proof that Eq. (5-262), or its generaliza-
tions will always have a solution for some &, but it is more convenient to simply
argue physically that since varying k will vary the effective fuel concentration
Ng—Ng/k, one can always achieve a critical system by making k sufficiently
small.

Sometimes a slightly different formulation is used in which one pretends that »,
the number of neutrons emitted per fission, is in fact variable. (Of course it isn’t,
but it is a useful device to regard it as adjustable for the moment.) Now physically
we know that there must be some value of », call it v, that will yield a nontrivial
solution to

—V-DVo+3,6=r.3, (5-263)

regardless of what composition or geometry we have chosen. Hence the idea is to
determine this v, then readjust composition and geometry until we have forced
v. (5-264)

Ve Vactual =

If we compare this approach to our earlier scheme in which we calculate k, it is
evident that

k=v/vc. (5-265)

From a mathematical point of view, each of these approaches introduces a new
parameter into the steady-state diffusion equation, either k or v, which can then
be regarded as an eigenvalue in a subsequent analysis. Once this eigenvalue has
been calculated, one can return and readjust composition and geometry in an effort
to force this eigenvalue to a desired value (e.g., k—1 or v—»). Hence the criticality
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calculation is converted into a sequence of eigenvalue problems for the criticality
eigenvalue (sometimes also called the multiplication eigenvalue).

Of course, in general there will be a set of criticality eigenvalues k, correspond-
ing to the eigenvalue problem represented by Eq. (5-262). For example, our earlier
analysis for the bare slab reactor indicated the existence of the set of eigenvalues:
k,=(»Z;/Z)(1+L*B})~"' where B}=(nm/d)’, n=1,2.... Only the largest such
eigenvalue (in this case, k) will correspond to an everywhere-nonnegative flux
distribution ¢(r) and hence to a critical reactor configuration. We will refer to the
largest criticality eigenvalue &, as the effective multiplication factor and denote it by
ks As we will see below, & can be identified as the multiplication factor & for the
reactor core defined earlier in terms of fission neutron generations in Chapter 3.

B. Numerical Criticality Searches

We have seen in Section 5-1I1 how one can obtain a criticality condition for a
bare, uniform reactor. Let us now see how the criticality search is conducted in
practical reactor calculations in which numerical methods must be used to solve the
one-speed diffusion equation. To simplify our manipulations, let us first rewrite the
criticality eigenvalue problem (5-262) in operator notation as

Mo = %Fd), (5-266)

where we identify

Moo= —V-D(r)Ve +Z,(r)e = Destruction operator
(leakage plus absorption)

Fo=pZ(r)e= Production operator
(fission)

We will leave the boundary conditions on ¢(r) as understood.

Of course in any numerical solution, finite-difference methods will lead to a
representation of the neutron diffusion equation (5-266) as a matrix eigenvalue
problem for the eigenvalue k& ~!. The solution of such eigenvalue problems can be
accomplished using a common technique from numerical analysis known as the
power method. We will introduce this scheme using physical arguments.

First notice that if we assumed that the “fission source” term S = F¢ on the RHS
of Eq. (5-266) was known, then the remaining part of the equation would be
effectively just the diffusion equation for the neutron flux resulting from this source
in a nonmultiplying medium. We presumably already know how to solve this
problem (cf. Section 5-1I), but we do not really know the fission source F¢ since it
involves ¢ itself. Hence we will do the next best thing and try to guess it by making
an initial estimate of

Sr)=Fp=S9(r), k=kO. (5-267)

We next solve for the flux ¢? resulting from this source estimate:

MW= —y-DVpV+3 ¢V = %S © (5-268)
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using our earlier procedures. With this solution, we can now explicitly calculate the
fission source resulting from this flux ¢ as

SW=FpM=p30W®, (5-269)

This can then be taken as a new estimate of the fission source and used to generate
a new flux, ¢?, and so on—provided we can also generate improved estimates of
k. That is, we can iteratively solve for an improved source estimate S ”* " from an
earlier estimate S by solving

e 1 o .
Mg+ = oS (5-270)
for $*D and then computing
S+ = e+ (5-271)

However we also need a prescription for generating improved estimates of k™.

This prescription can be obtained by returning to our original eigenvalue
problem (5-266). As n becomes large, we would anticipate that (if our fission source
iteration scheme really works), ¢*! will converge to the true eigenfunction ¢(r)
that satisfies Eq. (5-266). That is, for large n

(n+1) o, 1
M¢ —k(n+1)

Fo"+D, (5-272)
The convergence of ¢ to ¢(r) and k™ to k can be proven mathematically. It can
also be motivated physically by recognizing that if indeed we have adjusted k such
that a steady-state or self-sustaining flux profile were possible, then regardless of
the initial fission source estimate, successive fission neutron generations will
eventually fall into this distribution.

Now for finite n, it is highly unlikely that ¢®*D and k“*" will satisfy Eq.
(5-266) exactly. Nevertheless if we integrate Eq. (5-272) over all space, we should be
able to obtain a reasonable estimate for k" * 1 as

fd3rF¢('""')
kD = . (5-273)
fder¢(n+1)

However F¢"* 1D is just the (n+ 1)st estimate of the fission source, while we can use
Eq. (5-270) to write M¢™* Y in terms of the nth estimate of this source to find

[ars+im)
kD= (5-274)

7(% [a*rs)

We can now use this relationship to compute a new guess of k”*P from ¢"+V and
k.
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We should note that this prescription is quite consistent with our earlier in-
terpretation of k as the multiplication factor—that is, the ratio of the number of
neutrons in two consecutive fission generations—if we note that a factor of £
must be inserted in the denominator since [£®™]7'S ™ is in fact the effective fission
source that generates S+ D, _

We can now use Egs. (5-270), (5-271), and (5-274) as the basis of an iterative
algorithm to determine both k and ¢. For large n, we expect that ¢ will converge to
the fundamental eigenfunction of Eq. (5-266) corresponding to the largest eigen-
value k,, to which k™ converges. (Recall we have agreed to denote this largest
eigenvalue by k,.) In practice one continues this iteration until the error in k
and/or S decreases below some specified amount:

S(n)_ S(n— 1)
S(n)

(n) _ (n—1)
k k
k(n)

‘ <e.  (5-275)

<¢€ and/or max
r

Notice that by scaling the source term appearing in the diffusion equation (5-266)
by a factor of 1/k® in each iteration, we will prevent the rapid growth or decrease
of successive source iterates (causing possible overflow or underflow) in the event
that a number of iterations are required when k is not close to unity. That is,
dividing the source term by k¢ removes the dependence of the flux iterate ¢+
on n [at least as ¢"* D approaches the true solution).

This iterative scheme to determine the effective multiplication factor &, and the
corresponding flux ¢(r) is known as the power iteration or source iteration method.
The iterations themselves are known as outer or source iterations.

In addition to such outer or source iterations, one will also be required to
perform inner iterations to solve the diffusion problem

——S™, (5-276)

when two- or three-dimensional calculations are necessary. The general strategy
then takes the form sketched in Figure 5-22.

C. Source Extrapolation

Needless to say, there is strong incentive to perform as few iterations as
possible in converging to the desired accuracy. For that reason, one usually
attempts to accelerate the source iteration convergence by extrapolating ahead to a
new source guess. This is accomplished by introducing an extrapolation parameter
(much as is used in relaxation methods). For example, in a one-parameter extrapo-
lation, one would use as the source definition

W= gD 4 a(k_(ln_)p(p(")_ S(n—l)) (5-277)

where 0 < a < 1, A two-parameter extrapolation takes the form
SO = S(n—l)+a(k_(ln_)_F¢(n)_ S(n—-l)),‘_ﬁ(s(n—l)__ S(n—z)) (5-278)

where 1 € a € 2, 0< 8 <1 and can be chosen by using methods based on Cheby-
shev polynomial interpolation.
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FIGURE 5-22.  Calculation strategy for reactor criticality calculation

V. PERTURBATION THEORY

It is frequently of interest to compute the change in core multiplication
caused by a small change in the core geometry or composition. Fortunately if this
change or “perturbation” is sufficiently small, one does not have to repeat the
original criticality calculation, but instead can use well-known techniques of
perturbation theory to express the corresponding change in multiplication in terms
of the fluxes characterizing the unperturbed core.

By way of example, consider a very simple one-speed diffusion model of a bare,
homogeneous reactor in which the criticality relation is

sz/za

=—2 |, 5-279
1+ L%B? ( )
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Now suppose we were to uniformly modify or perturb the absorption cross section
to a new value

2=3,+6Z, (5-280)
where we will assume that the perturbation §Z, is small—that is,
83,<3,. (5-281)
Then the value of k&’ corresponding to the perturbed core can be written as

v /2 (1 62, ]

’

=— " % ~ —, 5-282
1+ L"?B? 2, 1+ L*B? ( )

where we have expanded &k’ in §2,/3, and have neglected all terms of higher than
first order in the perturbation (63,). This has allowed us to express the perturbed
multiplication factor k' in terms of the unperturbed multiplication k and the
perturbation §Z,.

These general features appear in applications of perturbation theory to more
general problems in nuclear reactor analysis in which the perturbations may be
localized or in which the multigroup diffusion equations are used as the basic
model of the core behavior. Although the general ideas are essentially as simple as
those in the example above, it is necessary to introduce a few mathematical
preliminaries. (For more details, the reader is referred to Appendix E.)

We will describe the multiplication of the core by the criticality eigenvalue
problem [Eq. (5-266)]:

Mé=—V-D (t)Ve(r) + =,(1)s(r) = —Ilzvzf(r)¢(r) = % Fo (5-283)

where we will leave it as understood that the solution of this equation, ¢(r), must
satisfy appropriate boundary conditions such as ¢(f,) =0 on the surface of the core.

Now suppose we define the inner product (f,g) between any two functions f(r)
and g(r) as

(f.g)= de3r (1) g(r), (5-284)

where f*(r) denotes the complex conjugate of f(r), and V is the core volume.
We can now use this inner product to define the operator M adjoint to the
operator M as that operator M T for which

(M.g)= (/. Mg) (5-285)

for every f(r) and g(r) satisfying the boundary conditions f(f,)=0=g (F,) .
We can use this definition to explicitly construct the adjoint of an operator.
Consider for example the operator Fe = p3;o which simply corresponds to multiply-
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ing a function by r=(r). If we write
(f:Fg)= [ drf*vicg= [ dr(vZ f)*g
4 4
=% £.8)=(F.g), (5-286)

where we have merely shuffled Z(r) around in the integral (noting that X, is real)
to identify

Fle=p3(r)e. (5-287)
Notice that in this case, F' and F are in fact identical. We refer to such operators
as being self-adjoint.

For a more complicated example, consider the spatial derivatives in the diffusion
operator M:

(f,V-DVg)= de3rf"V~DVg. (5-288)

Now if we use the vector identity
V-ab=aV-b+b-Va, (5-289)

we can rewrite this as
(f,v-DVg)=fd3rv-[f*Dvg]—fd3r[v1*-DVg]. (5-290)
v v

Using Gauss’s law, we can convert the first term into an integral over the surface:
fd3rv-[f*DVg]=fds-f*DVg. (5-291)
4 s

However since we require that f and g vanish on the surface, this term vanishes. If
we repeat this procedure we find we can rewrite

(f,V-DVg)= de3r[v-Dw]*g=(v-va,g). (5-292)

Hence we find that
V.DVie=V.DVo (5-293)

Thus we have again encountered a self-adjoint operator.

From these examples, it is apparent that the operator Me=—~V-.-DVo+3 o is
also self-adjoint, M "= M. We will continue to distinguish between the adjoint and
direct operators M T and M however, since for more general multigroup diffusion
calculations, M will not be self-adjoint (as we will find in Chapter 7). We will
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define the adjoint flux ¢ as the corresponding solution of
Miot= -}(—F’Qp*. (5-294)
(Although again we keep in mind that M= M and F'= F implies that ¢*=¢ for
the one-speed diffusion model of a reactor.)
To understand the application of these concepts, let us go back to the criticality

equation (5-283). Now suppose we were to perturb the macroscopic absorption
cross section, say by adding a localized absorber, to a new value

S/(1)=3,(r) + 8 Z,(r). (5-295)

We will assume that this perturbation § 2 (r) is small and attempt to calculate the
corresponding change in k as governed by the perturbed criticality problem

M'¢'= = Fg. (5-296)

Note here that the perturbation in the core absorption appears as a perturbation
O0M in the diffusion operator

M'=M+8M, SMo=83(r)e. (5-297)

To calculate the change in k, first take the scalar product of Eq. (5-296) with the
adjoint flux ¢' characterizing the unperturbed core, that is, satisfying Eq. (5-294),

(o', M¢') +(o",6M¢") = %(qb*, F¢'). (5-298)
Now using the definition Eq. (5-285) of the adjoint operator, we find
(o7, M¢")=(MTo%,¢")= ( %F T¢T,¢') = %(4)*, Fo'). (5-299)
Hence we find

( 11 )_ (of,6M¢’)

- = ; 5-300
(o7, Fo) (5-300)

K k)

We could now calculate 8k = k'’ — k. However it is far more convenient to define
the core reactivity

p=——, (5-301)

which essentially measures the deviation of the core multiplication from unity.
Then since the perturbation in reactivity is just

,_K=1_k=1_(1_1
Bo=p'—p= K21 k= =(___), (5-302)
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we can use Eq. (5-300) to find the change in reactivity due to the addition of an
absorption cross section 6 = (r)

(61,85,4)

-303
(o7, F¢) (-3%9)

Ap=

As it stands, this expression is still quite exact, but also still quite formal since it
involves the perturbed flux, ¢’, which we usually don’t know (and usually don’t
want to calculate).

However this is where the idea of “perturbation theory” comes in. For if the
perturbation § 2, is small, then presumably the corresponding perturbation in the
flux 8¢ =¢’ — ¢ is similarly small. Hence we can write

(¢7.62,0) (¢%,62,09) . (¢%,62,0)(0", Foo)

- 5-304
LR (GLF9 o Fo)’ .

Ap=

Then neglecting second and higher order quantities in the perturbation—that is,
using first order perturbation theory—we find

183,
_h0%9) . (5-305)

(¢, Fo)

]

Ap

Since the one-speed diffusion operator is self-adjoint, we know ¢t=¢, and hence
we find

de3r¢(r)’o‘Ea(r)¢(r)

Ap (5-306)

N de3r¢(r)VEf(r)¢(r) '

It should be noted that all of this analysis was exact until we neglected second-
order terms in Eq. (5-304). Thus, we have calculated a first-order estimate of the
reactivity change Ap due to introducing a localized absorber § Z,(r) in terms of the
unperturbed flux distribution.

EXAMPLE: Consider a bare slab reactor characterized by one-group constants
D, =,, and »=,. We will perturb this reactor by imagining that an additional
absorber is uniformly inserted in the region 0 < x < h. One might consider this to be
a model of a bank of control rods inserted to a depth 4 in the core. Of course to
allow the application of perturbation theory, we must assume this absorption to be

relatively small.
Hence our perturbation is

6Ea(x)={62a, 0<x<h
0, h<x<a.

(5-307)
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If we note that the unperturbed flux in this reactor is
¢(x)=osin =, (5-308)

then we compute the reactivity change due to an insertion of the absorber to a
depth 4 as:

n =71 (5-309)

It is customary to refer to the reactivity change due to such an absorber as the
“worth” of the absorber. (This concept will be defined more precisely in Chapter
14.) Hence the reactivity worth can be sketched for various insertion depths 4 as
shown in Figure 5-23.

It is also of interest to compute the “differential worth” defined as

d 83,
L [1 2mh } (5-310)

- sz, | % a
Note that the differential worth is at a maximum when the edge of the absorbing
region (e.g., the tip of the control rods) is in the region of largest flux in the center
of the core (see Figure 5-23). Such an analysis, while certainly of interest in
illustrating general trends, is of limited usefulness in detailed control studies
because of the highly absorbing nature of most control elements. Such elements
very strongly perturb the flux in their vicinity, hence invalidating the use of
perturbation theory. We will consider alternative methods required for computing
control rod worth in Chapter 14.

One can obtain more general expressions for the reactivity change induced by
perturbations in the core parameters. For example, if we were to simultaneously
perturb

S =5+8%, =, =5,+8%, D'=D+3éD, (5-311)

the corresponding reactivity change then would be

fd3r[(vazf—3za)¢2-—ap|V¢|2]
V
Ap=

(5-312)
f dr v2f¢2
%

The adjoint flux ¢'(r) has a rather interesting physical interpretation. Suppose we
imagine an absorber inserted into the reactor core at a point r, such that

83,(r)=ad (r—r,). (5-313)

Here a is the effective strength of the absorber. (If we were to imagine that the
d-function was, in fact, a mathematical idealization of an absorber of volume
V4, then a =32V, .) Now strictly speaking, perturbation theory should not be valid
for such a singular perturbation, but we will dismiss such concerns with a wave of
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the hand and use our earlier result to find the corresponding reactivity change as

de3r¢T(r)6 3,(r)e(r)

Ap= —
J, o mrnec)

= - 241 (0)é(ro). (5-314)

where we have denoted the denominator by a constant ¢ (since it is independent

of the perturbation). If we recognize that a¢(r,) is just the absorption rate at r,, we
then find

—Ap
a¢(l‘0)

¢'(rp) ~ (5-315)

is simply proportional to the change in reactivity per neutron absorbed at r, per
second. In this sense, then, the adjoint flux ¢'(r) is a measure of how effective an
absorber inserted at a position r is in changing the reactivity of the core. Evidently
if ¢T(r) is large at r, the core multiplication will be quite sensitive to the absorption
of neutrons at that point. Hence ¢'(r) is sometimes referred to as the neutron
importance or the importance function.

We can see this from a somewhat different perspective if we consider the flux
induced in a subcritical reactor by an arbitrary source S(r) as governed by

(M—F)¢=—V-DVo+(Z, - »S)o=S. (5-316)
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Consider the adjoint problem

(MT—FN)¢T=—-V-DVp'+(Z,—vZ)ptT= ST (5-317)

(Of course for one-speed diffusion theory, M = M7 is self-adjoint, but we will retain
the generality for a bit.) Notice that we have allowed the source S(r) appearing in
the adjoint equation to differ from that in Eq. (5-316).

Now suppose we multiply Eq. (5-316) by ¢ and integrate over r, then multiply
Eq. (5-317) by ¢ and integrate, and then subtract these two results to find

However by the definition of the adjoint M T— FT, the LHS is zero. Hence we find:

f dr o' (r)S (r)= f d% ST(r)e(r). (5-319)
Vv Vv

Since this must hold for any choice of S(r) and S¥(r), we will use it to our
advantage by specifying S(r) as a unit point source at ry:

S(r)=8(r—ry), (5-320)

and S(r) as the cross section =4(r) characterizing an imagined detector placed in
the core. Then we find

#1(r0) = [ dr ({0 (5-321)

Hence in this instance the adjoint flux is simply the response of a detector in the
core to a unit point source inserted at a position r,. Once again we find that ¢¥(r,)
is a measure of the importance of a neutron event (in this case, the production,
rather than the absorption, of a neutron) at a point ry, in contributing to the
response of a detector with cross section Z(r) (as opposed to reactivity).

For the simple one-speed diffusion model we have been studying, the adjoint
flux ¢(r) is identical to the flux itself. Hence perturbations affecting the creation or
destruction of neutrons will have the most pronounced affect in those regions in
which the flux is largest. This is not true, however, for the more general multigroup
diffusion model, as we will see in Chapter 7.
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PROBLEMS

5-1 Compare the derivation of the one-speed neutron diffusion equation with that for the

equation of thermal conduction, taking care to point out the assumptions and
approximations used in each case. Refer to any text on heat transfer such as those
listed at the end of Chapter 12.

5-2 By considering a plane source or absorber of neutrons located at the origin of an

infinite medium, derive the interface condition Eq. (5-15) on the neutron current
density by modeling the source term in the one-dimensional diffusion equation as
S6&(x) and then integrating this equation over an infinitesimal region about origin.

5-3 Compute the rms distance ((x2))!/? a neutron will travel from a plane source to

absorption using one-speed diffusion theory. Compare this result with the rms
distance to absorption in a strongly absorbing medium (in which neutron scattering
can be neglected). In particular, plot the rms distance to absorption in water in which
boron has been dissolved against the boron concentration to determine whether the
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5-4

5-5

5-6

5-7

5-8

59

5-10

5-11

5-12
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diffusion theory result for ((x2))!/2 ever approaches the result characterizing a purely
absorbing medium. (Use the thermal cross section data in Appendix A.)

It is possible to derive an expression for the relaxation or diffusion length L from the
one-speed transport equation characterizing a homogeneous medium

dop 2 4l , ,
ux+2t<p(x,u)—7f_l dp’ (x, ')

(we have assumed isotropic scattering for convenience). Seek a solution of the form
¢(x,p)=x(p)exp(—x/L) to this equation in order to eliminate the x-dependence.
The resulting homogeneous equation for x(pu) can be reduced to an algebraic
equation for L by eliminating { *ldux(u). By following this procedure, derive a
transcendental equation for the diffusion length L:

SL [SL+]1
T2 M sI=T T

Using the assumption that 2,«Z, expand L as a power series in Z,/3,, substitute
this expansion into the equation above, and evaluate the coefficients of the expansion
in order to derive Eq. (5-32) and obtain the transport corrections to the diffusion
length L=(D/Z,)"/>

Determine the neutron flux in a sphere of nonmultiplying material of radius R if an
isotropic point source of strength S, neutrons per second is placed at the center of the
sphere. Assume the sphere is surrounded by a vacuum.

The Milne problem: Imagine a diffusing medium in the half space x >0 with a source
of infinite magnitude at infinity such that the boundary condition on the flux is that
o(x)~ Syexp(x/ L) as x—c0. Perform the following calculations:

(a) Using one-speed diffusion theory and the boundary condition of zero reentrant
current, determine the flux in the medium.

(b) Repeat the solution of this problem using the extrapolated boundary concept.

(c) Determine the conditions under which these two boundary conditions might be
expected to yield similar results.

Consider a slab of nonmultiplying material with a plane source at its origin emitting

S, neutrons/cm?-sec. By solving this problem first with the condition of zero-

reentrant current and then extrapolated boundaries, compare the absorption rate in

the slab predicted by these two approaches. Also calculate the rate at which neutrons

leak from the slab in each case. ‘

Consider a thermal neutron incident on a slab-shaped shield of concrete 1 m in

thickness, and determine the probability that: (a) the neutron will pass through the

shield without a collision, (b) it will ultimately diffuse through the shield, and (¢) it

will be reflected back from the shield. (For convenience, treat the concrete as if it had

the composition of 10% H,0, 50% calcium, and 40% silicon.)

Consider an infinite nonmultiplying medium containing a uniformly distributed

neutron source. If one inserts an infinitesimally thin sheet of absorber at the origin,

determine the neutron flux throughout the medium.

Derive the expression given by Eq. (5-47) for the albedo characterizing a slab of

material of thickness a. In particular plot this albedo for a slab of water for various

thicknesses. (Use thermal cross section data.) Comment on the behavior of the albedo

as given by Eq. (5-47) for both very thin and very thick slabs.

One defines the blackness coefficient characterizing a region as

J(a)—J_(a)

A J+(a) ’
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where a denotes the surface of the region. Yet another useful parameter characterizing
interfaces is the ratio of the current density J to the flux at the interface

@
=)

Determine the relation between these parameters and the albedo, assuming that
diffusion theory can be used to describe the material adjacent to the region of interest.
(It should be remarked that one frequently uses these concepts to characterize very
highly absorbing regions such as fuel elements or control rods in which diffusion
theory will usually not be valid in the highly absorbing region.)

In reactor analysis it 1s frequently of interest to determine the neutron flux in a
so-called wunit fuel cell of the reactor, that is, a fuel element surrounded by a
moderator. As a model of such a cell characterizing a cylindrical fuel element,
consider a fuel pin of radius a surrounded by a moderator of thickness b. For reasons
that will become more apparent in Chapter 10, one assumes that the fission neutrons
that slow down to thermal energies appear as a source uniformly distributed over the
moderator—but not directly in the fuel, Furthermore it is assumed that there is no net
transfer of neutrons from cell to cell—that is, the neutron current vanishes on the
boundary of the cell (although the neutron flux will not vanish there).

Determine the neutron flux in this cell geometry. In particular, determine the
thermal utilization characterizing the cell by computing the fraction of those neutrons
slowing down that is absorbed in the fuel.

Consider a one-dimensional slab model of a fuel cell in which the center region
consists of the fuel, and the outer regions consist of a moderating material in which
neutrons slow down to yield an effective uniformly distributed source of thermal
neutrons S, neutrons/cm’-sec. Determine the neutron flux in this cell. In particular,
compute the so-called self-shielding factor f, defined as the ratio between the average
flux in the fuel to the average flux in the cell.

Consider two isotropic point sources located a distance a apart in an infinite
nonmultiplying medium. Determine the neutron flux and current density at any point
in a plane midway between the two sources.

Determine the infinite medium Green’s functions or diffusion kernels characterizing
cylindrical and spherical geometries.

By representing a plane source as a superposition of isotropic point sources, construct
the plane source kernel G, (x,x’) by using the point source kernel G, (r,r).

Obtain an expression for the plane source diffusion kernel characterizing a finite slab
of width a by solving for the neutron flux resulting from a unit plane source at a
position x’ in the slab. This can be most easily accomplished by seeking a separate
solution on either side of the source plane which satisfies the vacuum boundary
conditions at either end, and then matching these solutions at the source plane using
the interface condition of continuity of flux and a discontinuity in the current density
given by the source strength.

Consider a neutron source emitting a monodirectional beam of neutrons into an
infinite medium. Using one-speed diffusion theory, calculate the neutron flux in the
medium. For convenience, locate your coordinate system with its origin at the source
and align the x-axis along the source beam. Since the source is highly anisotropic, you
cannot apply diffusion theory directly. Rather, compute the distribution of first
scattering collisions of the source neutrons along the x-axis, and then assume that
each of these collisions acts in effect as an isotropic point source of neutrons for the
subsequent diffusion theory analysis (assuming that such scattering is isotropic).

Use the method of variation of constants to determine the flux in a finite slab that
contains a uniformly distributed neutron source.

Construct the spatial eigenfunctions of the Helmholtz equation in spherical geometry.
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Construct the spatial eigenfunctions of the Helmholtz equation in infinite cylindrical

geometry.

Construct the spatial eigenfunctions of the Helmholtz equation characterizing a

parallelepiped geometry.

Demonstrate explicitly that the eigenfunctions for the slab geometry are indeed

orthogonal.

Consider a slab of nonmultiplying material containing a uniformly distributed

neutron source. Determine the neutron flux in the slab: (a) by directly solving the

diffusion equation and (b) using eigenfunction expansions. Demonstrate that these
solutions are indeed equivalent.

Determine the neutron flux in a long parallelepiped column of nonmultiplying

material caused by a uniform source distributed across the face of the column. In

particular determine the spatial behavior of the flux far from the source plane.

Describe how one might measure the neutron diffusion length in the column by

studying the spatial behavior of the flux.

The objective of this problem is to write a computer code to calculate the flux in a

uniform nonmultiplying slab containing an arbitrary source distribution. Perform the

following steps:

(a) Derive the finite difference form of the appropriate one-speed diffusion equation
using vacuum boundary conditions. Use 30 mesh points and equal mesh spacing.

(b) Write the equations in matrix form, A¢=§.

(c) Derive the steps necessary to solve this equation using the simultaneous relaxation
method. (Gaussian elimination would be better, but less instructive.)

(d) Write the necessary computer program. Input should consist of slab thickness, D,
2, and S;. Output should include a tabulation of x;, ¢, and S;. Pay particular
attention to your convergence criterion and initial flux guess ¢ for the inner
iterations of the SR method.

(e) “Check out” your code by solving at least two problems with known analytical
solutions (e.g., cosine source or uniform source). Show how the inner iterations of
your program converge by plotting ¢{™ for various values of .

Repeat the analysis of the time-dependent slab reactor given in Section 5-3, but with

the addition of a plane source of neutrons of strength S, located at the origin of the

slab. In particular determine the long time behavior of the reactor when it is critical.

Determine the geometric buckling Bg2 and critical flux profile in the following bare

reactor geometries: (a) sphere, (b) infinite cylinder, and (c) parallelepiped.

We can define the power-peaking factor for a given reactor core as the ratio between

the maximum power density and the average power density in the core. Recognizing

that the power density is proportional to the neutron flux in the one-speed approxima-

tion, compute the power-peaking factor for three common geometries: (a) sphere, (b)

cube, and (c) finite cylinder.

A homogeneous one-speed bare reactor has a cylindrical configuration. Determine:

(a) the radius and length of the reactor as functions of the buckling so that the volume

of the critical reactor, and hence its mass, is a minimum and (b) the minimum volume

as a function of buckling.

‘Jezebel is a bare, fast, spherically shaped critical reactor constructed of pure **Pu

metal (density 15.4 g/cm?). Calculate the critical radius and critical mass of the
reactor using the one-group data: »=2.98, o;=1.85b, 0,=0.26 b, and ¢,,=6.8 b.
There has been considerable interest in the possibility of super heavy nuclei with mass
numbers 4 > 300. Such nuclei would be characterized by large values of » (~6-10).
Using the results of Problem 5-32, study the effect of varying » on the critical radius
and mass of a bare sphere of such material.

Two infinite slabs, each of thickness g in the x direction, are separated by an inner
region of thickness 24 and are bounded by vacuum on their outer surfaces. The slab
material is of composition to give k., =1.2 and thermal diffusion length of 50 cm.
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Determine the thickness a for criticality when: (a) inner region is vacuum and (b)
inner region is a medium with & =1 and same D and L as the outer slabs.

A bare spherical reactor is made with 2*U uniformly dispersed in graphite (p=1.7)
with an atomic ratio N/ N,s=10% For the cross section values given below, calculate
the critical size and mass of the reactor according to one-group diffusion theory. If the
reactor is modified by placing a cavity (vacuum) of half the total radius in its center,
find the critical size for this case. Recalculate the critical radius if the center void is
filled instead by a perfect absorber. Use as data: of =4.3 b, 6C=0.003 b, 62°=105 b,
0?*=584 b, and D=0.9 cm.

A bare spherical reactor is to be constructed of a homogeneous mixture of D,0O and
235U. The composition is such that for every uranium atom there are 2000 heavy water
molecules (i.e., Np,o/Nps=2000). Calculate: (a) the critical radius of the reactor
using one-speed diffusion theory (Data: 7*°=2.06, D, 5=0.87 cm, ZP:°=3.3x10"?
cm~ !, ¢P2°=0.001 b, and 62°=678 b.) and (b) the mean number of scattering
collisions made by a neutron during its lifetime in this reactor.

There is strong motivation to obtain as flat a power distribution as possible in a
reactor core. One manner in which this may be accomplished is to load a reactor with
a nonuniform fuel enrichment. To model such a scheme, consider a bare, critical slab
reactor as described by one-speed diffusion theory. Determine the fuel distribution
Ng(x) which will yield a flat power distribution P (x)=w;S{x)¢(x)=constant. For
convenience, assume that fuel only absorbs neutrons and that it does not significantly
scatter them. Also assume that all other materials in the core are uniformly distri-
buted.

A one-dimensional slab reactor system consists of three regions: vacuum for x <0; a
multiplying core for 0< x < a; and an infinite nonmultiplying reflector for x > a.
Calculate the core thickness a that will yield a critical system.

Suppose a cannot be made large enough to achieve criticality. Then determine the

flux at all points when an external source S, is uniformly distributed throughout the
reflector region x > a.
Consider a bare slab reactor with material composition such that =, = 0.066 cm ™
D=090, and »==0.070 cm~!. Modify the one-speed diffusion computer code
developed in Problem 5-27 so that you can calculate the width a that will yield
criticality.

One possible procedure is to guess an initial slab width @ and then perform a source
iteration calculation to determine k. To simplify the calculation, choose S O(x)=1.0
= constant. The integrated fission source that appears in the estimate of k™ given by
Eq. (5-274) can be performed using simple trapezoidal quadrature

N

j(.)ade(x)= Z (Si—+2—%—ﬂ)Ax

i=0

where Ax is the mesh spacing. Again use 30 mesh points and require a convergence
criterion on k™ of

PRV D)

ey <e=10"2

After each criticality calculation, readjust the slab width a and recalculate koy. After
several such calculations, plot k., against a to determine the critical slab width a*.
Compare this with the analytical expression for a*.

Investigate the convergence of the inner and outer iterations in the one-speed
diffusion code developed in Problem 5-39 for the following modifications:
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5-41
5-42

5-43

5-45

5-46

5-47
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(a) Use the outer iteration source S (x) as the initial estimate in the inner iterations.

(b) Determine the sensitivity of both inner and outer iterations to the convergence
criteria.

(c) Attempt to accelerate the outer iterations by source extrapolation.

Verify the general first-order perturbation theory result Eq. (5-312).

Why is the adjoint system introduced in developing the perturbation equations?

Hlustrate your answer with an example showing that only the use of the adjoint

system will yield the desired result.

Describe a reasonable experimental procedure by which one could measure the

variation of neutron importance within a reactor core.

Calculate the error in the critical mass of a bare homogeneous spherical reactor due to

a 1% error in k. Assume that only the core size would be adjusted to give criticality.

Calculate the relative worth of a control rod bank inserted axially into a cylindrical

reactor core.

Consider a critical bare slab reactor of thickness a which is composed of a homo-

geneous mixture of fuel and moderator. Estimate the reactivity change if a thickness

8x of the fuel-moderator mixture at a position x is replaced by pure moderator. What

8x at a distance from the centerline of x=0.4 a is required to give the same reactivity

change as a perturbation thickness 8x, at the center of the slab?

Variational methods can be used in a manner very similar to perturbation theory to

estimate the multiplication of a given core configuration using only crude guesses of

the flux in the core. For example, a useful variational expression for the multiplication

of a core described by a one-speed diffusion theory is

[dr o) Mo
i

[ aremrsn

k

Compare the accuracy of such a scheme for a slab of width a where the estimates of
the flux or “trial functions” ¢(x) are taken as simple quadratic polynomials that
vanish on the boundaries of the slab [i.e., ¢(x)=1—(2x/a)].
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Nuclear Reactor Kinetics

For a nuclear reactor to operate at a constant power level, the rate of neutron
production via fission reactions should be exactly balanced by neutron loss via
absorption and leakage. Any deviation from this balance condition will result in a
time-dependence of the neutron population and hence the power level of the
reactor. This may occur for a number of reasons. For example, the reactor operator
might desire to change the reactor power level by temporarily altering core
multiplication via control rod adjustment. Or there may be longer term changes in
core multiplication due to fuel depletion and isotopic buildup. More dramatic
changes in multiplication might be caused by unforeseen accident situations, such
as the failure of a primary coolant pump or a blocked coolant flow channel or the
accidental ejection of a control rod.

It is important that one be able to predict the time behavior of the neutron
population in a reactor core induced by changes in reactor multiplication. Such a
topic is known as nuclear reactor kinetics. However, we should recognize that the
core multiplication is never completely under the control of the reactor operator.
Indeed since multiplication will depend on the core composition, it will also
depend on other variables not directly accessible to control such as the fuel
temperature or coolant density distribution throughout the reactor, but these
variables depend, in turn, on the reactor power level and hence the neutron flux
itself. The study of the time-dependence of the related processes involved in
determining the core multiplication as a function of the power level of the reactor
is known as nuclear reactor dynamics and usually involves a detailed modeling of
the entire nuclear steam supply system. Although we briefly discuss several of the
more important “feedback” mechanisms involved in determining core multiplica-
tion later in this chapter, our dominant concern is with predicting the time
behavior of the neutron flux in the reactor for a given change in multiplication.
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The principal applications of such an analysis are not only to the study of
operating transients in reactors, but also to the prediction of the consequences of
accidents involving changes in core multiplication, and to the interpretation of
experimental techniques measuring reactor parameters by inducing time-dependent
changes in the neutron flux. One can roughly distinguish between two different
types of analysis depending on the time scale characterizing changes in the neutron
population or core properties. For example, one is interested in relatively short-
term changes possibly ranging from fractions of a second up to minutes in length
when analyzing normal changes in reactor power level (e.g., startup or shutdown)
or in an accident analysis. By way of contrast, changes in core composition due to
fuel burnup or isotope buildup usually occur over periods of days or months.
Needless to say, the analysis required for each class of time behavior is quite
different.

The reader will recall that we have already considered a particularly simple
example of nuclear reactor kinetics when we discussed the time behavior of the
neutron flux in a slab reactor model in Chapter 5. Although this earlier analysis
was useful for deriving the condition for reactor criticality, it is not valid for an
accurate description of nuclear reactor kinetics, since it assumed that all fission
neutrons appeared promptly at the instant of fission. As we demonstrate in the next
section, it 