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Preface to the Seventh Edition

This book was originally conceived as a text for students in their final year reading for an honors

degree in engineering that included turbomachinery as a main subject. It was also found to be a

useful support for students embarking on postgraduate courses at masters level. The book was writ-

ten for engineers rather than for mathematicians, although some knowledge of mathematics will

prove most useful. Also, it is assumed from the start that readers will have completed preliminary

courses in fluid mechanics. The stress is placed on the actual physics of the flows and the use of

specialized mathematical methods is kept to a minimum.

Compared to the sixth edition, this new edition has had a large number of changes made in

terms of presentation of ideas, new material, and additional examples. In Chapter 1, following the

definition of a turbomachine, the fundamental laws of flow continuity, the energy and entropy

equations are introduced as well as the all-important Euler work equation. In addition, the proper-

ties of working fluids other than perfect gases are covered and a steam chart is included in the

appendices. In Chapter 2, the main emphasis is given to the application of the “similarity laws,” to

dimensional analysis of all types of turbomachine and their performance characteristics. Additional

types of turbomachine are considered and examples of high-speed characteristics are presented.

The important ideas of specific speed and specific diameter emerge from these concepts and their

application is illustrated in the Cordier Diagram, which shows how to select the machine that will

give the highest efficiency for a given duty. Also, in this chapter the basics of cavitation are exam-

ined for pumps and hydraulic turbines.

The measurement and understanding of cascade aerodynamics is the basis of modern axial tur-

bomachine design and analysis. In Chapter 3, the subject of cascade aerodynamics is presented in

preparation for the following chapters on axial turbines and compressors. This chapter was

completely reorganized in the previous edition. In this edition, further emphasis is given to com-

pressible flow and on understanding the physics that constrain the design of turbomachine blades

and determine cascade performance. In addition, a completely new section on computational meth-

ods for cascade design and analysis has been added, which presents the details of different numeri-

cal approaches and their capabilities.

Chapters 4 and 5 cover axial turbines and axial compressors, respectively. In Chapter 4, new

material has been added to give better coverage of steam turbines. Sections explaining the numer-

ous sources of loss within a turbine have been added and the relationships between loss and effi-

ciency are further detailed. The examples and end-of-chapter problems have also been updated.

Within this chapter, the merits of different styles of turbine design are considered including the

implications for mechanical design such as centrifugal stress levels and cooling in high-speed and

high temperature turbines. Through the use of some relatively simple correlations, the trends in tur-

bine efficiency with the main turbine parameters are presented.

In Chapter 5, the analysis and preliminary design of all types of axial compressors are covered.

Several new figures, examples, and end-of-chapter problems have been added. There is new cover-

age of compressor loss sources and, in particular, shock wave losses within high-speed rotors are

explored in detail. New material on off-design operation and stage matching in multistage compres-

sors has been added, which enables the performance of large compressors to be quantified.
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Several new examples and end-of-chapter problems have also been added that reflect the new mate-

rial on design, off-design operation, and compressible flow analysis of high-speed compressors.

Chapter 6 covers three-dimensional effects in axial turbomachinery and it possibly has the most

new features relative to the sixth edition. There are extensive new sections on three-dimensional

flows, three-dimensional design features, and three-dimensional computational methods. The sec-

tion on through-flow methods has also been reworked and updated. Numerous explanatory

figures have been added and there are new worked examples on vortex design and additional end-

of-chapter problems.

Radial turbomachinery remains hugely important for a vast number of applications, such as tur-

bocharging for internal combustion engines, oil and gas transportation, and air liquefaction. As jet

engine cores become more compact there is also the possibility of radial machines finding new

uses within aerospace applications. The analysis and design principles for centrifugal compressors

and radial inflow turbines are covered in Chapters 7 and 8. Improvements have been made relative

to the fifth edition, including new examples, corrections to the material, and reorganization of some

sections.

Renewable energy topics were first added to the fourth edition of this book by way of the Wells

turbine and a new chapter on hydraulic turbines. In the fifth edition, a new chapter on wind turbines

was added. Both of these chapters have been retained in this edition as the world remains increas-

ingly concerned with the very major issues surrounding the use of various forms of energy. There

is continuous pressure to obtain more power from renewable energy sources and hydroelectricity

and wind power have a significant role to play. In this edition, hydraulic turbines are covered in

Chapter 9, which includes coverage of the Wells turbine, a new section on tidal power generators,

and several new example problems. Chapter 10 covers the essential fluid mechanics of wind tur-

bines, together with numerous worked examples at various levels of difficulty. In this edition, the

range of coverage of the wind itself has been increased in terms of probability theory. This allows

for a better understanding of how much energy a given size of wind turbine can capture from a nor-

mally gusting wind. Instantaneous measurements of wind speeds made with anemometers are used

to determine average velocities and the average wind power. Important aspects concerning the cri-

teria of blade selection and blade manufacture, control methods for regulating power output and

rotor speed, and performance testing are touched upon. Also included are some very brief notes

concerning public and environmental issues, which are becoming increasingly important as they,

ultimately, can affect the development of wind turbines.

To develop the understanding of students as they progress through the book, the expounded the-

ories are illustrated by a selection of worked examples. As well as these examples, each chapter

contains problems for solution, some easy, some hard. See what you make of them—answers are

provided in Appendix F!
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CHAPTER

1Introduction: Basic Principles

Take your choice of those that can best aid your action.
Shakespeare, Coriolanus

1.1 Definition of a turbomachine
We classify as turbomachines all those devices in which energy is transferred either to, or from, a con-

tinuously flowing fluid by the dynamic action of one or more moving blade rows. The word turbo or

turbinis is of Latin origin and implies that which spins or whirls around. Essentially, a rotating blade

row, a rotor or an impeller changes the stagnation enthalpy of the fluid moving through it by doing

either positive or negative work, depending upon the effect required of the machine. These enthalpy

changes are intimately linked with the pressure changes occurring simultaneously in the fluid.

Two main categories of turbomachine are identified: first, those that absorb power to increase

the fluid pressure or head (ducted and unducted fans, compressors, and pumps); second, those that

produce power by expanding fluid to a lower pressure or head (wind, hydraulic, steam, and gas tur-

bines). Figure 1.1 shows, in a simple diagrammatic form, a selection of the many varieties of turbo-

machines encountered in practice. The reason that so many different types of either pump

(compressor) or turbine are in use is because of the almost infinite range of service requirements.

Generally speaking, for a given set of operating requirements one type of pump or turbine is best

suited to provide optimum conditions of operation.

Turbomachines are further categorized according to the nature of the flow path through the pas-

sages of the rotor. When the path of the through-flow is wholly or mainly parallel to the axis of

rotation, the device is termed an axial flow turbomachine (e.g., Figures 1.1(a) and (e)). When the

path of the through-flow is wholly or mainly in a plane perpendicular to the rotation axis, the

device is termed a radial flow turbomachine (e.g., Figure 1.1(c)). More detailed sketches of radial

flow machines are given in Figures 7.3, 7.4, 8.2, and 8.3. Mixed flow turbomachines are widely

used. The term mixed flow in this context refers to the direction of the through-flow at the rotor

outlet when both radial and axial velocity components are present in significant amounts.

Figure 1.1(b) shows a mixed flow pump and Figure 1.1(d) a mixed flow hydraulic turbine.

One further category should be mentioned. All turbomachines can be classified as either impulse

or reaction machines according to whether pressure changes are absent or present, respectively, in

the flow through the rotor. In an impulse machine all the pressure change takes place in one or

more nozzles, the fluid being directed onto the rotor. The Pelton wheel, Figure 1.1(f), is an example

of an impulse turbine.

1Fluid Mechanics and Thermodynamics of Turbomachinery. DOI: http://dx.doi.org/10.1016/B978-0-12-415954-9.00001-2
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The main purpose of this book is to examine, through the laws of fluid mechanics and thermo-

dynamics, the means by which the energy transfer is achieved in the chief types of turbomachines,

together with the differing behavior of individual types in operation. Methods of analyzing the flow

processes differ depending upon the geometrical configuration of the machine, whether the fluid

can be regarded as incompressible or not, and whether the machine absorbs or produces work. As

far as possible, a unified treatment is adopted so that machines having similar configurations and

function are considered together.

1.2 Coordinate system
Turbomachines consist of rotating and stationary blades arranged around a common axis, which

means that they tend to have some form of cylindrical shape. It is therefore natural to use a

(c) (d)

(e) (f)

Impeller

Volute

Vaneless diffuser

Outlet diffuser

Flow direction

(a) (b)

Rotor blades
Outlet vanes

Flow

Draught tube
or diffuser

FlowFlow

Guide vanes

Rotor blades

Outlet vanes
Flow

FlowFlow

Runner bladesGuide vanes

Draught tube

WheelNozzle

Inlet pipe

Flow

Jet

FIGURE 1.1

Examples of turbomachines. (a) Single stage axial flow compressor or pump, (b) mixed flow pump, (c) centrifugal

compressor or pump, (d) Francis turbine (mixed flow type), (e) Kaplan turbine, and (f) Pelton wheel.
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cylindrical polar coordinate system aligned with the axis of rotation for their description and analy-

sis. This coordinate system is pictured in Figure 1.2. The three axes are referred to as axial x, radial

r, and tangential (or circumferential) rθ.
In general, the flow in a turbomachine has components of velocity along all three axes, which

vary in all directions. However, to simplify the analysis it is usually assumed that the flow does not

vary in the tangential direction. In this case, the flow moves through the machine on axi-symmetric

stream surfaces, as drawn on Figure 1.2(a). The component of velocity along an axi-symmetric

stream surface is called the meridional velocity,

cm 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2x 1 c2r

q
(1.1)

cm

cx

cr

r

Axis of rotation

Hub

Casing

Blade

Flow stream
surfaces

(a)

(b) (c)

x

m

rθ

cm

U

c

w
cθ

wθα
β

r

rθ

cθ

Ω

U = Ωr

Hub

Casing

FIGURE 1.2

The coordinate system and flow velocities within a turbomachine. (a) Meridional or side view, (b) view along

the axis, and (c) view looking down onto a stream surface.
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In purely axial flow machines the radius of the flow path is constant and, therefore, referring to

Figure 1.2(c) the radial flow velocity will be zero and cm5 cx. Similarly, in purely radial flow

machines the axial flow velocity will be zero and cm5 cr. Examples of both of these types of

machines can be found in Figure 1.1.

The total flow velocity is made up of the meridional and tangential components and can be

written

c5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2x 1 c2r 1 c2θ

q
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2m 1 c2θ

q
(1.2)

The swirl, or tangential, angle is the angle between the flow direction and the meridional

direction:

α5 tan21ðcθ=cmÞ (1.3)

Relative velocities
The analysis of the flow-field within the rotating blades of a turbomachine is performed in a frame

of reference that is stationary relative to the blades. In this frame of reference the flow appears as

steady, whereas in the absolute frame of reference it would be unsteady. This makes any calcula-

tions significantly easier, and therefore the use of relative velocities and relative flow quantities is

fundamental to the study of turbomachinery.

The relative velocity w is the vector subtraction of the local velocity of the blade U from the

absolute velocity of the flow c, as shown in Figure 1.2(c). The blade has velocity only in the tan-

gential direction, and therefore the components of the relative velocity can be written as

wθ 5 cθ 2U;wx 5 cx;wr 5 cr (1.4)

The relative flow angle is the angle between the relative flow direction and the meridional

direction:

β5 tan21ðwθ=cmÞ (1.5)

By combining Eqs. (1.3), (1.4), and (1.5) a relationship between the relative and absolute flow

angles can be found:

tan β5 tan α2U=cm (1.6)

Sign convention
Equations (1.4) and (1.6) suggest that negative values of flow angles and velocities are possible. In

many turbomachinery courses and texts, the convention is to use positive values for tangential

velocities that are in the direction of rotation (as they are in Figure 1.2(b) and (c)), and negative

values for tangential velocities that are opposite to the direction of rotation. The convention

adopted in this book is to ensure that the correct vector relationship between the relative and abso-

lute velocities is applied using only positive values for flow velocities and flow angles.
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Velocity diagrams for an axial flow compressor stage
A typical stage of an axial flow compressor is shown schematically in Figure 1.3 (looking radially

inwards) to show the arrangement of the blading and the flow onto the blades.

The flow enters the stage at an angle α1 with a velocity c1. This inlet velocity is set by whatever

is directly upstream of the compressor stage: an inlet duct, another compressor stage or an inlet

guide vane (IGV). By vector subtraction the relative velocity entering the rotor will have a magni-

tude w1 at a relative flow angle β1. The rotor blades are designed to smoothly accept this relative

flow and change its direction so that at outlet the flow leaves the rotor with a relative velocity w2

at a relative flow angle β2. As shown later in this chapter, work will be done by the rotor blades on

the gas during this process and, as a consequence, the gas stagnation pressure and stagnation tem-

perature will be increased.

By vector addition the absolute velocity at rotor exit c2 is found at flow angle α2. This flow

should smoothly enter the stator row which it then leaves at a reduced velocity c3 at an absolute

angle α3. The diffusion in velocity from c2 to c3 causes the pressure and temperature to rise further.

Following this the gas is directed to the following rotor and the process goes on repeating through

the remaining stages of the compressor.

The purpose of this brief explanation is to introduce the reader to the basic fluid mechanical

processes of turbomachinery via an axial flow compressor. It is hoped that the reader will follow

the description given in relation to the velocity changes shown in Figure 1.3 as this is fundamental

to understanding the subject of turbomachinery. Velocity triangles will be considered in further

detail for each category of turbomachine in later chapters.

U

U

Uc1

w1

β1

α1

c2

c3

w2

β2

α2

α3

StatorRotor

FIGURE 1.3

Velocity triangles for an axial compressor stage.
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EXAMPLE 1.1

The axial velocity through an axial flow fan is constant and equal to 30 m/s. With the notation

given in Figure 1.3, the flow angles for the stage are α1 and β2 are 23� and β1 and α2 are 60�.
From this information determine the blade speed U and, if the mean radius of the fan is

0.15 m, find the rotational speed of the rotor.

Solution
The velocity components are easily calculated as follows:

wθ1 5 cx tan β1 and cθ1 5 cx tan α1

‘Um 5 cθ1 1wθ1 5 cxðtan α1 1 tan β1Þ5 64:7 m=s

The speed of rotation is

Ω5
Um

rm
5 431:3 rad=s or 431:33 30=π5 4119 rpm

1.3 The fundamental laws
The remainder of this chapter summarizes the basic physical laws of fluid mechanics and thermo-

dynamics, developing them into a form suitable for the study of turbomachines. Following this, the

properties of fluids, compressible flow relations and the efficiency of compression and expansion

flow processes are covered.

The laws discussed are

i. the continuity of flow equation;

ii. the first law of thermodynamics and the steady flow energy equation;

iii. the momentum equation;

iv. the second law of thermodynamics.

All of these laws are usually covered in first-year university engineering and technology

courses, so only the briefest discussion and analysis is given here. Some textbooks dealing compre-

hensively with these laws are those written by Çengel and Boles (1994), Douglas, Gasiorek and

Swaffield (1995), Rogers and Mayhew (1992), and Reynolds and Perkins (1977). It is worth

remembering that these laws are completely general; they are independent of the nature of the fluid

or whether the fluid is compressible or incompressible.

1.4 The equation of continuity
Consider the flow of a fluid with density ρ, through the element of area dA, during the time interval

dt. Referring to Figure 1.4, if c is the stream velocity the elementary mass is dm5 ρcdtdA cosθ,
where θ is the angle subtended by the normal of the area element to the stream direction.
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The element of area perpendicular to the flow direction is dAn5 dA cosθ and so dm5 ρcdAndt. The

elementary rate of mass flow is therefore

d _m5
dm

dt
5 ρcdAn (1.7)

Most analyses in this book are limited to one-dimensional steady flows where the velocity and

density are regarded as constant across each section of a duct or passage. If An1 and An2 are the

areas normal to the flow direction at stations 1 and 2 along a passage respectively, then

_m5 ρ1c1An1 5 ρ2c2An2 5 ρcAn (1.8)

since there is no accumulation of fluid within the control volume.

1.5 The first law of thermodynamics
The first law of thermodynamics states that, if a system is taken through a complete cycle during

which heat is supplied and work is done, thenI
ðdQ2 dWÞ5 0 (1.9)

where
H
dQ represents the heat supplied to the system during the cycle and

H
dW the work done by

the system during the cycle. The units of heat and work in Eq. (1.9) are taken to be the same.

During a change from state 1 to state 2, there is a change in the energy within the system:

E2 2E1 5

ð2
1

ðdQ2 dWÞ (1.10a)

where E5U1 ð1=2Þmc2 1mgz.

For an infinitesimal change of state,

dE5 dQ2 dW (1.10b)

c

c · dt
θ

Stream lines

dAn

dA

FIGURE 1.4

Flow across an element of area.
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The steady flow energy equation
Many textbooks, e.g., Çengel and Boles (1994), demonstrate how the first law of thermodynamics

is applied to the steady flow of fluid through a control volume so that the steady flow energy equa-

tion is obtained. It is unprofitable to reproduce this proof here and only the final result is quoted.

Figure 1.5 shows a control volume representing a turbomachine, through which fluid passes at a

steady rate of mass flow _m, entering at position 1 and leaving at position 2. Energy is transferred

from the fluid to the blades of the turbomachine, positive work being done (via the shaft) at the

rate _Wx. In the general case positive heat transfer takes place at the rate _Q, from the surroundings

to the control volume. Thus, with this sign convention the steady flow energy equation is

_Q2 _Wx 5 _m ðh2 2 h1Þ1
1

2
ðc22 2 c21Þ1 gðz2 2 z1Þ

� �
(1.11)

where h is the specific enthalpy, 1=2c2, the kinetic energy per unit mass and gz, the potential

energy per unit mass.

For convenience, the specific enthalpy, h, and the kinetic energy, 1=2c2, are combined and the

result is called the stagnation enthalpy:

h0 5 h1
1

2
c2 (1.12)

Apart from hydraulic machines, the contribution of the g(z22 z1) term in Eq. (1.11) is small and

can usually be ignored. In this case, Eq. (1.11) can be written as

_Q2 _Wx 5 _mðh02 2 h01Þ (1.13)

The stagnation enthalpy is therefore constant in any flow process that does not involve a work

transfer or a heat transfer. Most turbomachinery flow processes are adiabatic (or very nearly so)

and it is permissible to write _Q5 0. For work producing machines (turbines) _Wx . 0, so that

_Wx 5 _W t 5 _mðh01 2 h02Þ (1.14)

For work absorbing machines (compressors) _Wx , 0, so that it is more convenient to write

_Wc 52 _Wx 5 _mðh02 2 h01Þ (1.15)

1

m

m2

Control
volume

Q

Wx

FIGURE 1.5

Control volume showing sign convention for heat and work transfers.
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1.6 The momentum equation
One of the most fundamental and valuable principles in mechanics is Newton’s second law of

motion. The momentum equation relates the sum of the external forces acting on a fluid element to

its acceleration, or to the rate of change of momentum in the direction of the resultant external

force. In the study of turbomachines many applications of the momentum equation can be found,

e.g., the force exerted upon a blade in a compressor or turbine cascade caused by the deflection or

acceleration of fluid passing the blades.

Considering a system of mass m, the sum of all the body and surface forces acting on m

along some arbitrary direction x is equal to the time rate of change of the total x-momentum of the

system, i.e.,

X
Fx 5

d

dt
ðmcxÞ (1.16a)

For a control volume where fluid enters steadily at a uniform velocity cx1 and leaves steadily

with a uniform velocity cx2, then X
Fx 5 _mðcx2 2 cx1Þ (1.16b)

Equation (1.16b) is the one-dimensional form of the steady flow momentum equation.

Moment of momentum
In dynamics useful information can be obtained by employing Newton’s second law in the form

where it applies to the moments of forces. This form is of central importance in the analysis of the

energy transfer process in turbomachines.

For a system of mass m, the vector sum of the moments of all external forces acting on the sys-

tem about some arbitrary axis A�A fixed in space is equal to the time rate of change of angular

momentum of the system about that axis, i.e.,

τA 5m
d

dt
ðrcθÞ (1.17a)

where r is distance of the mass center from the axis of rotation measured along the normal to the

axis and cθ the velocity component mutually perpendicular to both the axis and radius vector r.

For a control volume the law of moment of momentum can be obtained. Figure 1.6 shows the

control volume enclosing the rotor of a generalized turbomachine. Swirling fluid enters the control

volume at radius r1 with tangential velocity cθ1 and leaves at radius r2 with tangential velocity cθ2.

For one-dimensional steady flow,

τA 5 _mðr2cθ2 2 r1cθ1Þ (1.17b)

which states that the sum of the moments of the external forces acting on fluid temporarily occupy-

ing the control volume is equal to the net time rate of efflux of angular momentum from the control

volume.
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The Euler work equation
For a pump or compressor rotor running at angular velocity Ω, the rate at which the rotor does

work on the fluid is

_Wc 5 τAΩ5 _mðU2cθ2 2U1cθ1Þ (1.18a)

where the blade speed U5Ωr.
Thus, the work done on the fluid per unit mass or specific work is

ΔWc 5
_Wc

_m
5

τAΩ
_m

5U2cθ2 2U1cθ1 . 0 (1.18b)

This equation is referred to as Euler’s pump or compressor equation.

For a turbine the fluid does work on the rotor and the sign for work is then reversed. Thus, the

specific work is

ΔWt 5
_Wt

_m
5U1cθ1 2U2cθ2 . 0 (1.18c)

Equation (1.18c) is referred to as Euler’s turbine equation.

Note that, for any adiabatic turbomachine (turbine or compressor), applying the steady flow

energy equation, Eq. (1.13), gives

ΔWx 5 ðh01 2 h02Þ5U1cθ1 2U2cθ2 (1.19a)

Alternatively, this can be written as

Δh0 5ΔðUcθÞ (1.19b)

Equations (1.19a) and (1.19b) are the general forms of the Euler work equation. By considering

the assumptions used in its derivation, this equation can be seen to be valid for adiabatic flow for

any streamline through the blade rows of a turbomachine. It is applicable to both viscous and invis-

cid flow, since the torque provided by the fluid on the blades can be exerted by pressure forces or

frictional forces. It is strictly valid only for steady flow but it can also be applied to time-averaged

unsteady flow provided the averaging is done over a long enough time period. In all cases, all of

the torque from the fluid must be transferred to the blades. Friction on the hub and casing of a

τA, Ω

Flow direction

A A

r2r1

cθ2

cθ1

FIGURE 1.6

Control volume for a generalized turbomachine.
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turbomachine can cause local changes in angular momentum that are not accounted for in the Euler

work equation.

Note that for any stationary blade row, U5 0 and therefore h05 constant. This is to be expected

since a stationary blade cannot transfer any work to or from the fluid.

Rothalpy and relative velocities
The Euler work equation, Eq. (1.19), can be rewritten as

I5 h0 2Ucθ (1.20a)

where I is a constant along the streamlines through a turbomachine. The function I was first intro-

duced by Wu (1952) and has acquired the widely used name rothalpy, a contraction of rotational

stagnation enthalpy, and is a fluid mechanical property of some importance in the study of flow

within rotating systems. The rothalpy can also be written in terms of the static enthalpy as

I5 h1
1

2
c2 2Ucθ (1.20b)

The Euler work equation can also be written in terms of relative quantities for a rotating frame

of reference. The relative tangential velocity, as given in Eq. (1.4), can be substituted in

Eq. (1.20b) to produce

I5 h1
1

2
ðw2 1U2 1 2UwθÞ2Uðwθ 1UÞ5 h1

1

2
w2 2

1

2
U2 (1.21a)

Defining a relative stagnation enthalpy as h0;rel 5 h1 ð1=2Þw2, Eq. (1.21a) can be simplified to

I5 h0;rel 2
1

2
U2 (1.21b)

This final form of the Euler work equation shows that, for rotating blade rows, the relative stag-

nation enthalpy is constant through the blades provided the blade speed is constant. In other words,

h0,rel5 constant, if the radius of a streamline passing through the blades stays the same. This result

is important for analyzing turbomachinery flows in the relative frame of reference.

1.7 The second law of thermodynamics—entropy
The second law of thermodynamics, developed rigorously in many modern thermodynamic text-

books, e.g., Çengel and Boles (1994), Reynolds and Perkins (1977), and Rogers and Mayhew

(1992), enables the concept of entropy to be introduced and ideal thermodynamic processes to be

defined.

An important and useful corollary of the second law of thermodynamics, known as the

Inequality of Clausius, states that, for a system passing through a cycle involving heat exchanges,I
dQ

T
# 0 (1.22a)
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where dQ is an element of heat transferred to the system at an absolute temperature T. If all the

processes in the cycle are reversible, then dQ5 dQR, and the equality in Eq. (1.22a) holds true, i.e.,I
dQR

T
5 0 (1.22b)

The property called entropy, for a finite change of state, is then defined as

S2 2 S1 5

ð2
1

dQR

T
(1.23a)

For an incremental change of state

dS5mds5
dQR

T
(1.23b)

where m is the mass of the system.

With steady one-dimensional flow through a control volume in which the fluid experiences a

change of state from condition 1 at entry to 2 at exit,ð2
1

d _Q

T
# _mðs2 2 s1Þ (1.24a)

Alternatively, this can be written in terms of an entropy production due to irreversibility, ΔSirrev:

_mðs2 2 s1Þ5
ð2
1

d _Q

T
1ΔSirrev (1.24b)

If the process is adiabatic, d _Q5 0, then

s2 $ s1 (1.25a)

If the process is reversible as well, then

s2 5 s1 (1.25b)

Thus, for a flow undergoing a process that is both adiabatic and reversible, the entropy will

remain unchanged (this type of process is referred to as isentropic). Since turbomachinery is usu-

ally adiabatic, or close to adiabatic, an isentropic compression or expansion represents the best pos-

sible process that can be achieved. To maximize the efficiency of a turbomachine, the irreversible

entropy production ΔSirrev must be minimized, and this is a primary objective of any design.

Several important expressions can be obtained using the preceding definition of entropy. For a

system of mass m undergoing a reversible process dQ5 dQR5mTds and dW5 dWR5mpdv. In the

absence of motion, gravity, and other effects the first law of thermodynamics, Eq. (1.10b) becomes

Tds5 du1 pdv (1.26a)

With h5 u1 pv, then dh5 du1 pdv1 vdp, and Eq. (1.26a) then gives

Tds5 dh1 vdp (1.26b)
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Equations (1.26a) and (1.26b) are extremely useful forms of the second law of thermodynamics

because the equations are written only in terms of properties of the system (there are no terms

involving Q or W). These equations can therefore be applied to a system undergoing any process.

Entropy is a particularly useful property for the analysis of turbomachinery problems. Any

increase of entropy in the flow path of a machine can be equated to a certain amount of “lost

work” and thus a loss in efficiency. The value of entropy is the same in both the absolute and rela-

tive frames of reference (see Figure 1.9) and this means it can be used to track the sources of ineffi-

ciency through all the rotating and stationary parts of a machine. The application of entropy to

account for lost performance is very powerful and will be demonstrated in later chapters.

1.8 Bernoulli’s equation
Consider the steady flow energy equation, Eq. (1.11). For adiabatic flow, with no work transfer,

ðh2 2 h1Þ1
1

2
ðc22 2 c21Þ1 gðz2 2 z1Þ5 0 (1.27)

If this is applied to a control volume whose thickness is infinitesimal in the stream direction

(Figure 1.7), the following differential form is derived:

dh1 cdc1 gdz5 0 (1.28)

If there are no shear forces acting on the flow (no mixing or friction), then the flow will be isen-

tropic and, from Eq. (1.26b), dh5 vdp5 dp/ρ, giving

1

ρ
dp1 cdc1 gdz5 0 (1.29a)

Fluid density, ρ

Fixed datum

Z
Z + dZ

2

1

c
c + dc

p + dp

p

Stream
flow

FIGURE 1.7

Control volume in a streaming fluid.
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Equation (1.29a) is often referred to as the one-dimensional form of Euler’s equation of motion.

Integrating this equation in the stream direction we obtainð2
1

1

ρ
dp1

1

2
ðc22 2 c21Þ1 gðz2 2 z1Þ5 0 (1.29b)

which is Bernoulli’s equation. For an incompressible fluid, ρ is constant and Eq. (1.29b) becomes

1

p
ðp02 2 p01Þ1 gðz2 2 z1Þ5 0 (1.29c)

where the stagnation pressure for an incompressible fluid is p0 5 p1 ð1=2Þρc2.
When dealing with hydraulic turbomachines, the term head, H, occurs frequently and describes

the quantity z1 p0/(ρg). Thus, Eq. (1.29c) becomes

H2 2H1 5 0 (1.29d)

If the fluid is a gas or vapor, the change in gravitational potential is generally negligible and

Eq. (1.29b) is then ð2
1

1

ρ
dp1

1

2
ðc22 2 c21Þ5 0 (1.29e)

Now, if the gas or vapor is subject to only small pressure changes the fluid density is sensibly

constant and integration of Eq. (1.29e) gives

p02 5 p01 5 p0 (1.29f)

i.e., the stagnation pressure is constant (it is shown later that this is also true for a compressible

isentropic process).

1.9 The thermodynamic properties of fluids
The three most familiar fluid properties are the pressure p, the temperature T and the density ρ. We

also need to consider how other associated thermodynamic properties such as the internal energy u,

the enthalpy h, the entropy s, and the specific heats Cp and Cv change during a flow process.

It is known from studies of statistical thermodynamics that in all fluid processes involving a

change in pressure, an enormous number of molecular collisions take place in an extremely short

interval which means that the fluid pressure rapidly adjusts to an equilibrium state. We can thus

safely assume that all the properties listed above will follow the laws and state relations of classical

equilibrium thermodynamics. We will also restrict ourselves to the following pure and homogenous

substances: ideal gases, perfect gases, and steam.

Ideal gases
Air is a mixture of gases but, in the temperature range 160�2100 K, it can be regarded as a pure

substance. Within this temperature range air obeys the ideal gas relationship:

p5 ρRT or pv5RT (1.30)

where R5Cp 2Cv is the gas constant.
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The value of the gas constant R for any ideal gas is equal to a Universal Gas Constant

R05 8314 J/kmol divided by the molecular weight of the gas. In this book many of the problems

concern air so it is useful to evaluate a value for this gas mixture which has a molecular weight

M5 28.97 kg/kmol.

Rair 5
8314

28:97
5 287 J=kg K

For air under standard sea-level conditions, the pressure pa 5 1:01 bar and the temperature

Ta 5 288 K. Thus, the density of air under standardized sea-level conditions is

ρa 5
pa

RTa
5

1:013 105

2873 288
5 1:222 kg=m3

All gases at high temperatures and at relatively low pressures conform to the ideal gas law.

An ideal gas can be either a semi-perfect gas or a perfect gas.

In a semi-perfect gas, the specific heat capacities are functions of temperature only:

Cp 5
@h

@T

� �
p

5
dh

dT
5 CpðTÞ and Cv 5

@u

@T

� �
p

5
du

dT
5CvðTÞ

Over large temperature differences, air and many other common gases should be treated as

semi-perfect gases. The variation in the values of Cp and γ for air are shown in Figure 1.8. Note

that γ5Cp=Cv is the ratio of the specific heats, which is a particularly important parameter in com-

pressible flow analysis (see Section 1.10).
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Cp
C
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K
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200

γ γ

Temperature (K )

FIGURE 1.8

Variation of gas properties with temperature for dry air .

(Data from Rogers and Mayhew, 1995)
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Perfect gases
A perfect gas is an ideal gas for which Cp, Cv, and γ, are constants. Many real gases can be treated

as perfect gases over a limited range of temperature and pressure. In the calculation of expansion

or compression processes in turbomachines the normal practice is to use weighted mean values for

Cp and γ according to the mean temperature of the process. Accordingly, in the problems in this

book values have been selected for Cp and γ appropriate to the gas and the temperature range. For

example, in air flow at temperatures close to ambient the value of γ is taken to be 1.4.

Note that the entropy change for a perfect gas undergoing any process can be calculated from

the properties at the start and end of the process. Substituting dh5CpdT and pv5RT into

Eq. (1.26b) gives:

Tds5CPdT 2RT dp=p

This equation can be integrated between the start state (1) and end state (2) of a process:

ð2
1

ds5Cp

ð2
1

dT

T
2R

ð2
1

dp

p

‘s2 2 s1 5Cp ln
T2

T1
2R ln

p2

p1
(1.31)

EXAMPLE 1.2

a. A quantity of carbon dioxide undergoes an isentropic process. Initially the pressure

p1 5 120 kPa and the temperature T15 120�C. Finally, at the end of the process, the pressure

p25 100 kPa. Determine the final temperature T2.

b. Heat is now supplied to the gas at constant volume and the temperature rises to 200�C.
Determine how much heat is supplied per unit mass of the gas, the final pressure, and the

specific entropy increase of the gas due to the heat transfer.

Consider CO2 to be a perfect gas with R5 189 J=kg K and γ5 1:30.

Solution
a. From Eq. (1.31), with s25 s1

CplnðT2=T1Þ5Rlnðp2=p1Þ from which you can find:

T2 5 T1
p2

p1

� �ðγ21Þ=γ
5 3933 0:95885 376:8 K

b. Applying the first law of thermodynamics to a system, Eq. (1.10b):

Q5ΔU5CvΔT ; T3 5 473 K ‘Q5CvðT3 2 T2Þ5
R

γ2 1
ðT3 2 T2Þ
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‘Q5
189

0:3
ð96:2Þ5 60:6 kJ=kg

At constant volume, from

pv5RT ;
p3

p2
5

T3

T2
‘p3 5 1003

473

376:8
5 125:5 kPa

The increase in entropy, from Eq. (1.31) is given by:

Δs5CP ln
T3

T2

� �
2R ln

p3

p2

� �
5

γR
γ2 1

ln
T3

T2

� �
2R ln

p3

p2

� �

‘Δs5
1:33 189

0:3
ln

473

376:8

� �
2 189 ln

125:5

100

� �
5 142:9 J=kg K

Steam
Steam is the gaseous phase of water formed when pure water is boiled. When steam is in the two-

phase region, where liquid and gaseous water coexist, it is known as wet steam. Steam turbines use

the expansion of high-pressure steam to generate power. They typically operate close to or within

the two-phase region, where the ideal gas law is highly inaccurate. No simple formulae apply and

it is necessary to use tabulations of property values obtained by experiment and compiled as steam

tables or steam charts to determine the effects of a change of state.

The thermodynamic properties of steam were the subject of many difficult investigations by

groups of scientists and engineers over many years. An interesting summary of the methods used

and the difficulties encountered are given in a paper by Harvey and Levelt Sengers (2001). The lat-

est state-of-the-art account of the thermodynamic properties of water was adopted by the

International Association for the Properties of Water and Steam (IAPWS) (Wagner and Pruss

(2002)). The properties calculated from the current IAPWS standards for general and scientific use

are distributed in a computer program by the National Institute of Standards and Technology

(NIST) Standard Reference Data Program (Harvey, Peskin and Klein (2000)). These properties are

also available via a free online calculator and in tabulated form (National Institute of Standards and

Technology (2012)).

As well as steam tables the most immediate aid for performing calculations (although less accu-

rate) is the Mollier diagram. This shows the enthalpy h (kJ/kg) plotted against entropy s (kJ/kg K)

for various values of pressure p (MPa). A small, single-page Mollier chart is shown in Appendix E,

but poster size charts can be obtained which, of course, enable greater accuracy.

Commonly used thermodynamic terms relevant to steam tables
i. Saturation curve

This is the boundary between the different phases on a property diagram. Saturated liquid

refers to a state where all the water is in the liquid phase and saturated vapor refers to a state

where all the water is in the gaseous phase. The two-phase region lies between the liquid and

vapor saturation curves. Note that within the two-phase region temperature and pressure are no
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longer independent properties. For example, at 1 bar pressure, when water is boiling, all the

liquid and gas is at 100�C.
ii. Quality or dryness fraction

This applies within the two-phase region and is the ratio of the vapor mass to the total mass

of liquid and vapor. The value of any intensive property within the two-phase region is the

mass weighted average of the values on the liquid and vapor saturation curves at the same

pressure and temperature. Hence, the quality or dryness fraction can be used to specify the

thermodynamic state of the steam.

For example, consider a quantity of wet steam at a state with dryness fraction x. The

specific enthalpy of the steam at this state will be given by:

h5 ð12 xÞhf 1 xhg (1.32)

where hf is the enthalpy on the liquid saturation curve, and hg is the enthalpy on the vapor

saturation curve, both at the same temperature and pressure of the wet steam. The above

approach can be used for other intensive properties, such as u, v, s.

iii. Degree of superheat of steam.

When steam is heated at constant pressure in the gaseous phase it will be at a higher

temperature than the corresponding saturation temperature. The temperature difference between the

steam temperature and the saturation temperature at the same pressure is the degree of superheat.

iv. The Triple Point and the Critical Point.

The triple point for water is the unique temperature and pressure where all three phases

coexist: ice, liquid water, and steam. The critical point is the state where the liquid and vapor

saturation curves meet at the highest temperature and pressure possible in the two-phase region.

1.10 Compressible flow relations for perfect gases
The Mach number of a flow is defined as the velocity divided by the local speed of sound. For a

perfect gas, such as air over a limited temperature range, the Mach number can be written as

M5
c

a
5

cffiffiffiffiffiffiffiffiffi
γRT

p (1.33)

Whenever the Mach number in a flow exceeds about 0.3, the flow becomes compressible, and

the fluid density can no longer be considered as constant. High power turbomachines require high

flow rates and high blade speeds and this inevitably leads to compressible flow. The static and stag-

nation quantities in the flow can be related using functions of the local Mach number and these are

derived later.

Starting with the definition of stagnation enthalpy, h0 5 h1 ð1=2Þc2, this can be rewritten for a

perfect gas as

CpT0 5CpT 1
c2

2
5CpT 1

M2γRT
2

(1.34a)
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Given that γR5 (γ2 1)CP, Eq. (1.34a) can be simplified to

T0

T
5 11

γ2 1

2
M2 (1.34b)

The stagnation pressure in a flow is the static pressure that is measured if the flow is brought

isentropically to rest. From Eq. (1.26b), for an isentropic process dh5 dp/ρ. If this is combined

with the equation of state for a perfect gas, p5 ρRT, the following equation is obtained:

dp

p
5

Cp

R

dT

T
5

dT

T

γ
γ2 1

(1.35)

This can be integrated between the static and stagnation conditions to give the following com-

pressible flow relation between the stagnation and static pressure:

p0

p
5

T0

T

� �γ=ðγ21Þ
5 11

γ21

2
M2

� �γ=ðγ21Þ
(1.36)

Equation (1.35) can also be integrated along a streamline between any two arbitrary points 1

and 2 within an isentropic flow. In this case, the stagnation temperatures and pressures are related:

p02

p01
5

T02

T01

� �γ=ðγ21Þ
(1.37)

If there is no heat or work transfer to the flow, T05 constant. Hence, Eq. (1.37) shows that, in

isentropic flow with no work transfer, p025 p015 constant, which was shown to be the case for

incompressible flow in Eq. (1.29f).

Combining the equation of state, p5 ρRT with Eqs. (1.34b) and (1.36) the corresponding rela-

tionship for the stagnation density is obtained:

ρ0
ρ

5 11
γ21

2
M2

� �1=ðγ21Þ
(1.38)

Arguably the most important compressible flow relationship for turbomachinery is the one for

nondimensional mass flow rate, sometimes referred to as capacity. It is obtained by combining

Eqs. (1.34b), (1.36), and (1.38) with continuity, Eq. (1.8):

_m
ffiffiffiffiffiffiffiffiffiffiffi
CPT0

p

Anp0
5

γffiffiffiffiffiffiffiffiffiffiffi
γ2 1

p M 11
γ21

2
M2

� �21
2

γ11
γ21

� �
(1.39)

This result is important since it can be used to relate the flow properties at different points

within a compressible flow turbomachine. The application of Eq. (1.39) is demonstrated in

Chapter 3.

Note that the compressible flow relations given previously can be applied in the relative frame

of reference for flow within rotating blade rows. In this case relative stagnation properties and rela-

tive Mach numbers are used:

p0;rel

p
;
T0;rel

T
;
ρ0;rel
ρ

;
_m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT0;rel

p
Ap0;rel

5 f ðMrelÞ
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Figure 1.9 shows the relationship between stagnation and static conditions on a temperature�
entropy diagram, in which the temperature differences have been exaggerated for clarity. This

shows the relative stagnation properties as well as the absolute properties for a single point in a

flow. Note that all of the conditions have the same entropy because the stagnation states are defined

using an isentropic process. The pressures and temperatures are related using Eq. (1.36).

EXAMPLE 1.3

Air flows adiabatically and at high subsonic speed through a duct. At a station which we

will call A, flow measurements indicate that the velocity cA is 250 m/s, the static temperature TA
is 315 K and the static pressure pA is 180 kPa. Determine the values of the stagnation

temperature T0A, the Mach number MA the stagnation pressure p0A and the stagnation density

ρA. If the duct cross-sectional area is 0.1 m2, calculate the air mass flow rate. For air take

R5 287 J=kg K and γ5 1:4:

Solution
From Eq. (1.34a)

T0A 5 TA 1
c2A
2Cp

5 346 K

From Eq. (1.33)

MA 5
cAffiffiffiffiffiffiffiffiffiffiffi
γRTA

p 5 0:703

From Eq. (1.36)

p0A 5 pA 11
γ21

2
M2

A

� � γ
γ215 250 kPa

T

s

p01

p = p1
T1

T01

s1

c 2/(2Cp)

w 2/(2Cp)

1

01

p01,rel
01,rel

T01,rel

FIGURE 1.9

Relationship between stagnation and static quantities on a temperature�entropy diagram.
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From Eq. (1.38)

ρ0A 5 ρA 11
γ21

2
M2

A

� � 1
γ21

where ρA 5
pA

RTA
5 1:991 kg=m3

‘ρ0A 5 2:52 kg=m3

Here, it will be obvious that the stagnation density can be evaluated more directly using the

gas law:

ρ0A 5
p0A

RT0A
5 2:52 kg=m3

There are also two ways to evaluate the air mass flow rate. Using Eq. (1.8)

_m5 ρAAAcA 5 1:993 0:13 2505 49:8 kg=s

Alternatively, from Eq. (1.39) or Table C.1,

_m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CPT0A

p

p0AAA

5 f ð0:703Þ5 1:1728

‘ _m5 1:17283
p0AAAffiffiffiffiffiffiffiffiffiffiffiffiffi
CPT0A

p 5 49:7 kg=s

Note that Appendix C includes tabulated results for Eqs. (1.34), (1.36), (1.38), and (1.39).

Choked flow
For subsonic flow, as flow speed and Mach number increase, the mass flow per unit area increases.

This is because, from Eq. (1.8), the mass flow per unit area is _m=A5 ρc and as Mach number rises,

the flow speed c increases more rapidly than the density ρ reduces. However, this is not true for

supersonic flow and, above M5 1, as flow speed and Mach number increase, the mass flow per

unit area decreases. There is, therefore, a maximum mass flow per unit area which occurs at

sonic conditions (M5 1). This maximum can be readily observed by plotting out the nondimen-

sional mass flow function given in Eq. (1.39) for a Mach number range from 0 to 2 using a fixed

value of γ.
An important consequence of this is that the mass flow through any turbomachinery compo-

nent reaches a maximum once M5 1 across the section of minimum flow area. The flow is said

to be choked and it is not possible to increase the mass flow further (without changing the inlet

stagnation conditions). The section of minimum flow area is known as the throat and the size

of the throat is a critical design parameter since it determines the maximum mass flow that can

pass through a transonic turbomachine. Under choked conditions, because pressure waves in the

flow travel at M5 1, changes to the flow downstream of the throat cannot have any effect on

the flow upstream of the throat.

Choking is considered in further detail for compressor and turbine blade rows within Sections

3.5 and 3.6, respectively.
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1.11 Definitions of efficiency
A large number of efficiency definitions are included in the literature of turbomachines and most

workers in this field would agree there are too many. In this book only those considered to be

important and useful are included.

Efficiency of turbines
Turbines are designed to convert the available energy in a flowing fluid into useful mechanical

work delivered at the coupling of the output shaft. The efficiency of this process, the overall effi-

ciency η0, is a performance factor of considerable interest to both designer and user of the turbine.

Thus,

η0 5
mechanical energy available at coupling of output shaft in unit time

maximum energy difference possible for the fluid in unit time

Mechanical energy losses occur between the turbine rotor and the output shaft coupling as a

result of the work done against friction at the bearings, glands, etc. The magnitude of this loss as a

fraction of the total energy transferred to the rotor is difficult to estimate as it varies with the size

and individual design of turbomachine. For small machines (several kilowatts) it may amount to

5% or more, but for medium and large machines this loss ratio may become as little as 1%. A

detailed consideration of the mechanical losses in turbomachines is beyond the scope of this book

and is not pursued further.

The isentropic efficiency ηt or hydraulic efficiency ηh for a turbine is, in broad terms,

ηtðor ηhÞ5
mechanical energy supplied to the rotor in unit time

maximum energy difference possible for the fluid in unit time

Comparing these definitions it is easily deduced that the mechanical efficiency ηm, which is sim-

ply the ratio of shaft power to rotor power, is

ηm 5 η0=ηtðor η0=ηhÞ (1.40)

The preceding isentropic efficiency definition can be concisely expressed in terms of the work

done by the fluid passing through the turbine:

ηtðor ηhÞ5
actual work

ideal ðmaximumÞ work 5
ΔWx

ΔWmax

(1.41)

The actual work is unambiguous and straightforward to determine from the steady flow energy

equation, Eq. (1.11). For an adiabatic turbine, using the definition of stagnation enthalpy,

ΔWx 5 _Wx= _m5 ðh01 2 h02Þ1 gðz1 2 z2Þ
The ideal work is slightly more complicated as it depends on how the ideal process is defined. The

process that gives maximum work will always be an isentropic expansion, but the question is one of

how to define the exit state of the ideal process relative to the actual process. In the following para-

graphs the different definitions are discussed in terms of to what type of turbine they are applied.
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Steam and gas turbines
Figure 1.10(a) shows a simplified Mollier diagram representing the expansion process through an

adiabatic turbine. Line 1�2 represents the actual expansion and line 1�2s the ideal or reversible

expansion. The fluid velocities at entry to and exit from a turbine may be quite high and the corre-

sponding kinetic energies significant. On the other hand, for a compressible fluid the potential

energy terms are usually negligible. Hence, the actual turbine rotor specific work is

ΔWx 5 _Wx= _m5 h01 2 h02 5 ðh1 2 h2Þ1 1

2
ðc21 2 c22Þ

There are two main ways of expressing the isentropic efficiency, the choice of definition

depending largely upon whether the exit kinetic energy is usefully employed or is wasted. If the

exhaust kinetic energy is useful, then the ideal expansion is to the same stagnation (or total)

pressure as the actual process. The ideal work output is, therefore, that obtained between state

points 01 and 02s,

ΔWmax 5 _Wmax= _m5 h01 2 h02s 5 ðh1 2 h2sÞ1
1

2
ðc21 2 c22sÞ

The relevant adiabatic efficiency, η, is called the total-to-total efficiency and it is given by

ηtt 5ΔWx=ΔWmax 5 ðh01 2 h02Þ=ðh01 2 h02sÞ (1.42a)

If the difference between the inlet and outlet kinetic energies is small, i.e., ð1=2Þc21Dð1=2Þc22, then
ηtt 5 ðh1 2 h2Þ=ðh1 2 h2sÞ (1.42b)
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FIGURE 1.10

Enthalpy�entropy diagrams for the flow through an adiabatic turbine and an adiabatic compressor. (a)

Turbine expansion process and (b) compression process.
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An example where the exhaust kinetic energy is not wasted is from the last stage of an aircraft gas

turbine where it contributes to the jet propulsive thrust. Likewise, the exit kinetic energy from one

stage of a multistage turbine where it can be used in the following stage provides another example.

If, instead, the exhaust kinetic energy cannot be usefully employed and is entirely wasted, the

ideal expansion is to the same static pressure as the actual process with zero exit kinetic energy.

The ideal work output in this case is that obtained between state points 01 and 2s:

ΔWmax 5 _Wmax= _m5 h01 2 h2s 5 ðh1 2 h2sÞ1
1

2
c21

The relevant adiabatic efficiency is called the total-to-static efficiency ηts and is given by

ηts 5ΔWx=ΔWmax 5 ðh01 2 h02Þ=ðh01 2 h2sÞ (1.43a)

If the difference between inlet and outlet kinetic energies is small, Eq. (1.43a) becomes

ηts 5 ðh1 2 h2Þ= h1 2 h2s 1
1

2
c21

� �
(1.43b)

A situation where the outlet kinetic energy is wasted is a turbine exhausting directly to the sur-

roundings rather than through a diffuser. For example, auxiliary turbines used in rockets often have

no exhaust diffusers because the disadvantages of increased mass and space utilization are greater

than the extra propellant required as a result of reduced turbine efficiency.

By comparing Eqs. (1.42) and (1.43) it is clear that the total-to-static efficiency will always be

lower than the total-to-total efficiency. The total-to-total efficiency relates to the internal losses

(entropy creation) within the turbine, whereas the total-to-static efficiency relates to the internal

losses plus the wasted kinetic energy.

EXAMPLE 1.4

A steam turbine receives 10 kg/s of superheated steam at 20 bar and 350�C which then expands

through the turbine to a pressure of 0.3 bar and a dryness fraction of 0.95. Neglecting any

changes in kinetic energy, determine

a. the change in enthalpy of the steam in its passage through the turbine

b. the increase in entropy of the steam

c. the total-to-total efficiency of the turbine.

d. the power output of the turbine

Solution
A small Mollier diagram for steam is shown in Appendix E. This can be used to verify the

enthalpy and entropy values for the expansion given below.

T�C h kJ/kg s kJ/kg K

Inlet Steam at 20 bar 350 3140 6.96

Saturated Liquid at 0.3 bar 69.1 289.3 0.944

Saturated Vapor at 0.3 bar 69.1 2624.5 7.767
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a. First determine the specific enthalpy and entropy at exit from the steam turbine (state 2).

Using Eq. (1.32) for a dryness fraction of 0.95:

h2 5 0:95hg 1 0:05hf 5 0:953 2624:51 0:053 289:35 2510 kJ=kg

s2 5 0:95sg 1 0:05sf 5 0:953 7:7671 0:053 0:9445 7:43 kJ=kg K

Δh0 5 630 kJ=kg

b. Δs 5 0:47 kJ=kg K

c. The efficiency of the turbine expansion process is

ηtt 5
h01 2 h02

h01 2 h02s
5

630

790
5 0:797

Note that h02s 5 2350 kJ=kg is the enthalpy where p5 0.3 bar and s5 6.96 kJ/kg K.

d. The power output is _W 5 _mðh01 2 h02Þ5 103 630 5 6:3 MW

Hydraulic turbines
The turbine hydraulic efficiency is a form of the total-to-total efficiency expressed previously.

The steady flow energy equation (Eq. 1.11) can be written in differential form for an adiabatic

turbine as

d _Wx 5 _m dh1
1

2
dðc2Þ1 gdz

� �

For an isentropic process, Tds5 05 dh2 dp/ρ. The maximum work output for an expansion to

the same exit static pressure, kinetic energy, and height as the actual process is, therefore,

_Wmax 5 _m

ð2
1

1

ρ
dp1

1

2
ðc21 2 c22Þ1 gðz1 2 z2Þ

� �

For an incompressible fluid, the maximum work output from a hydraulic turbine (ignoring fric-

tional losses) can be written

_Wmax 5 _m
1

ρ
ðp1 2 p2Þ1

1

2
ðc21 2 c22Þ1 gðz1 2 z2Þ

� �
5 _mgðH1 2H2Þ

where gH5 p=ρ1 ð1=2Þc2 1 gz and _m5 ρQ.
The turbine hydraulic efficiency, ηh, is the work supplied by the rotor divided by the hydrody-

namic energy difference of the fluid, i.e.,

ηh 5
_Wx

_Wmax

5
ΔWx

g½H1 2H2�
(1.44)
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Efficiency of compressors and pumps
The isentropic efficiency, ηc, of a compressor or the hydraulic efficiency of a pump, ηh, is broadly
defined as

ηcðor ηhÞ5
useful ðhydrodynamicÞ energy input to fluid in unit time

power input to rotor

The power input to the rotor (or impeller) is always less than the power supplied at the coupling

because of external energy losses in the bearings, glands, etc. Thus, the overall efficiency of the

compressor or pump is

ηo 5
useful ðhydrodynamicÞ energy input to fluid in unit time

power input to coupling of shaft

Hence, the mechanical efficiency is

ηm 5 ηo=ηcðor ηo=ηhÞ (1.45)

For a complete adiabatic compression process going from state 1 to state 2, the specific work

input is

ΔWc 5 ðh02 2 h01Þ1 gðz2 2 z1Þ

Figure 1.10(b) shows a Mollier diagram on which the actual compression process is represented

by the state change 1�2 and the corresponding ideal process by 1�2s. For an adiabatic compressor

in which potential energy changes are negligible, the most meaningful efficiency is the total-to-

total efficiency, which can be written as

ηc 5
ideal ðminimumÞ work input

actual work input
5

h02s 2 h01

h02 2 h01
(1.46a)

If the difference between inlet and outlet kinetic energies is small, ð1=2Þc21Dð1=2Þc22 then

ηc 5
h2s 2 h1

h2 2 h1
(1.46b)

For incompressible flow, the minimum work input is given by

ΔWmin 5 _Wmin= _m5 ðp2 2 p1Þ=p1 1

2
ðc22 2 c21Þ1 gðz2 2 z1Þ

� �
5 g H2 2H1½ �

For a pump the hydraulic efficiency is therefore defined as

ηh 5
_Wmin

_Wc

5
g½H2 2H1�

ΔWc

(1.47)
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EXAMPLE 1.5

A hydraulic pump delivers 0:4 m3=s of water against a head of 6.0 m. If the efficiency of the

pump is known to be 85%, how much power is needed to drive the pump?

Solution
From Eq. (1.47)

ηh 5
gΔH

ΔWc

‘ΔWc 5 gΔH=ηh 5
9:813 6

0:85
5 69:25 J=kg

‘P5 ρQΔWc 5 103 3 0:43 69:255 27:7 kW

1.12 Small stage or polytropic efficiency
The isentropic efficiency described in the preceding section, although fundamentally valid, can be

misleading if used for comparing the efficiencies of turbomachines of differing pressure ratios.

Now, any turbomachine may be regarded as being composed of a large number of very small

stages, irrespective of the actual number of stages in the machine. If each small stage has the same

efficiency, then the isentropic efficiency of the whole machine will be different from the small

stage efficiency, the difference depending upon the pressure ratio of the machine. This perhaps

rather surprising result is a manifestation of a simple thermodynamic effect concealed in the

expression for isentropic efficiency and is made apparent in the following argument.

Compression process
Figure 1.11 shows an enthalpy�entropy diagram on which adiabatic compression between pres-

sures p1 and p2 is represented by the change of state between points 1 and 2. The corresponding

reversible process is represented by the isentropic line 1 to 2s. It is assumed that the compression

process may be divided into a large number of small stages of equal efficiency ηp. For each small

stage the actual work input is δW and the corresponding ideal work in the isentropic process is

δWmin. With the notation of Figure 1.11,

ηP 5
δWmin

δW
5

hxs 2 h1

hx 2 h1
5

hys 2 hx

hy 2 hx
5?

Since each small stage has the same efficiency, then ηp 5 ðΣδWmin=ΣδWÞ is also true.

From the relation Tds5 dh2 vdp, for a constant pressure process, (@h/@s)p15 T. This means

that the higher the fluid temperature, the greater is the slope of the constant pressure lines on the

Mollier diagram. For a gas where h is a function of T, constant pressure lines diverge and the slope

of the line p2 is greater than the slope of line p1 at the same value of entropy. At equal values of T,

constant pressure lines are of equal slope as indicated in Figure 1.11. For the special case of a

271.12 Small stage or polytropic efficiency



perfect gas (where Cp is constant), Cp(dT/ds)5 T for a constant pressure process. Integrating this

expression results in the equation for a constant pressure line, s5CplogT1 constant.

Returning now to the more general case, since

ΣdW 5 fðhx 2 h1Þ1 ðhy 2 hxÞ1?g5 ðh2 2 h1Þ

then

ηP 5 ½ðhxs 2 h1Þ1 ðhys 2 hsÞ1?�=ðh2 2 h1Þ

The adiabatic efficiency of the whole compression process is

ηc 5 ðh2s 2 h1Þ=ðh2 2 h1Þ

Due to the divergence of the constant pressure lines

fðhxs 2 h1Þ1 ðhys 2 hxÞ1?g. ðh2s 2 h1Þ

i.e.,

ΣδWmin .Wmin

Therefore,

ηP . ηc

Angles equal

s

h

2s

ys

y

Xs

X

1

p 2

p 1

p

2

FIGURE 1.11

Compression process by small stages.
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Thus, for a compression process the isentropic efficiency of the machine is less than the small

stage efficiency, the difference being dependent upon the divergence of the constant pressure lines.

Although the foregoing discussion has been in terms of static states it also applies to stagnation

states since these are related to the static states via isentropic processes.

Small stage efficiency for a perfect gas
An explicit relation can be readily derived for a perfect gas between small stage efficiency, the

overall isentropic efficiency and the pressure ratio. The analysis is for the limiting case of an infini-

tesimal compressor stage in which the incremental change in pressure is dp as indicated in

Figure 1.12. For the actual process the incremental enthalpy rise is dh and the corresponding ideal

enthalpy rise is dhis.

The polytropic efficiency for the small stage is

ηP 5
dhis

dh
5

vdp

CpdT
(1.48)

since for an isentropic process Tds5 05 dhis2 vdp. Substituting v5RT/p into Eq. (1.48) and using

Cp5 γR/(γ2 1) gives

dT

T
5

ðγ2 1Þ
γηP

dp

p
(1.49)

Integrating Eq. (1.49) across the whole compressor and taking equal efficiency for each infini-

tesimal stage gives

T2

T1
5

p2

p1

� �ðγ21Þ=ηPγ
(1.50)

h

s

p

p + dp

dh
dhis

FIGURE 1.12

Incremental change of state in a compression process.
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Now the isentropic efficiency for the whole compression process is

ηc 5 ðT2s 2 T1Þ=ðT2 2 T1Þ (1.51)

if it is assumed that the velocities at inlet and outlet are equal.

For the ideal compression process put ηp5 1 in Eq. (1.50) and so obtain

T2s

T1
5

p2

p1

� �ðγ21Þ=γ
(1.52)

which is equivalent to Eq. (1.37). Substituting Eqs. (1.50) and (1.52) into Eq. (1.51) results in the

expression

ηc 5
p2

p1

� �ðγ21Þ=γ
2 1

" #,
p2

p1

� �ðγ21Þ=ηPγ
2 1

" #
(1.53)

Values of “overall” isentropic efficiency have been calculated using Eq. (1.53) for a range of

pressure ratio and different values of ηp; these are plotted in Figure 1.13. This figure amplifies the

observation made earlier that the isentropic efficiency of a finite compression process is less than

the efficiency of the small stages. Comparison of the isentropic efficiency of two machines of dif-

ferent pressure ratios is not a valid procedure since, for equal polytropic efficiency, the compressor

with the higher pressure ratio is penalized by the hidden thermodynamic effect.

EXAMPLE 1.6

An axial flow air compressor is designed to provide an overall total-to-total pressure ratio of 8

to 1. At inlet and outlet the stagnation temperatures are 300 and 586.4 K, respectively.

Determine the overall total-to-total efficiency and the polytropic efficiency for the compres-

sor. Assume that γ for air is 1.4.

Solution
From Eq. (1.46), substituting h5CpT, the efficiency can be written as

ηC 5
T02s 2 T01

T02 2 T01
5

ðp02=p01Þðγ21Þ=γ 2 1

T02=T01 2 1
5

81=3:5 2 1

586:4=3002 1
5 0:85

From Eq. (1.50), taking logs of both sides and rearranging, we get

ηp 5
γ2 1

γ
lnðp02=p01Þ
lnðT02=T01Þ

5
1

3:5
3

ln 8

ln 1:9547
5 0:8865
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Turbine polytropic efficiency
A similar analysis to the compression process can be applied to a perfect gas expanding through an

adiabatic turbine. For the turbine the appropriate expressions for an expansion, from a state 1 to a

state 2, are

T2

T1
5

p2

p1

� �ηpðγ21Þ=γ
(1.54)

ηt 5 12
p2

p1

� �ηpðγ21Þ=γ" #,
12

p2

p1

� �ðγ21Þ=γ" #
(1.55)

The derivation of these expressions is left as an exercise for the student. “Overall” isentropic

efficiencies have been calculated for a range of pressure ratios and polytropic efficiencies, and

these are shown in Figure 1.14. The most notable feature of these results is that, in contrast with a

compression process, for an expansion, isentropic efficiency exceeds small stage efficiency.

Reheat factor
The foregoing relations cannot be applied to steam turbines as vapors do not obey the perfect gas

laws. It is customary in steam turbine practice to use a reheat factor RH as a measure of the ineffi-

ciency of the complete expansion. Referring to Figure 1.15, the expansion process through an
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FIGURE 1.13

Relationship between isentropic (overall) efficiency, pressure ratio, and small stage (polytropic) efficiency for a

compressor (γ5 1.4).
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Turbine isentropic efficiency against pressure ratio for various polytropic efficiencies (γ5 1.4).
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FIGURE 1.15

Mollier diagram showing expansion process through a turbine split up into a number of small stages.
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adiabatic turbine from state 1 to state 2 is shown on a Mollier diagram, split into a number of small

stages. The reheat factor is defined as

RH 5 ½ðh1 2 hxsÞ1 ðhx 2 hysÞ1?�=ðh1 2 h2sÞ5 ðΣΔhisÞ=ðh1 2 h2sÞ

Due to the gradual divergence of the constant pressure lines on a Mollier chart, RH is always

greater than unity. The actual value of RH for a large number of stages will depend upon the posi-

tion of the expansion line on the Mollier chart and the overall pressure ratio of the expansion. In

normal steam turbine practice the value of RH is usually between 1.03 and 1.08.

Now, since the isentropic efficiency of the turbine is

ηt 5
h1 2 h2

h1 2 h2s
5

h1 2 h2

ΣΔhis
3

ΣΔhis

h1 2 h2s

then

ηt 5 ηPRH (1.56)

which establishes the connection between polytropic efficiency, reheat factor and turbine isentropic

efficiency.

1.13 The inherent unsteadiness of the flow within turbomachines
It is a less well-known fact often ignored by designers of turbomachinery that turbomachines can

only work the way they do because of flow unsteadiness. This subject was discussed by Dean

(1959), Horlock and Daneshyar (1970), and Greitzer (1986). Here, only a brief introduction to an

extensive subject is given.

In the absence of viscosity, the equation for the stagnation enthalpy change of a fluid particle

moving through a turbomachine is

Dh0

Dt
5

1

ρ
@p

@t
(1.57)

where D/Dt is the rate of change following the fluid particle. Eq. (1.57) shows us that any change

in stagnation enthalpy of the fluid is a result of unsteady variations in static pressure. In fact, with-

out unsteadiness, no change in stagnation enthalpy is possible and thus no work can be done by the

fluid. This is the so-called “Unsteadiness Paradox.” Steady approaches can be used to determine

the work transfer in a turbomachine, yet the underlying mechanism is fundamentally unsteady.

A physical situation considered by Greitzer (1986) is the axial compressor rotor as depicted in

Figure 1.16a. The pressure field associated with the blades is such that the pressure increases from

the suction surface (S) to the pressure surface (P). This pressure field moves with the blades and is

therefore steady in the relative frame of reference. However, for an observer situated at the point�

(in the absolute frame of reference), a pressure that varies with time would be recorded, as shown
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in Figure 1.16b. This unsteady pressure variation is directly related to the blade pressure field via

the rotational speed of the blades,

@p

@t
5Ω

@p

@θ
5U

@p

r@θ
(1.58)

Thus, the fluid particles passing through the rotor experience a positive pressure increase with

time (i.e., @p/@t. 0) enthalpies are increased.

PROBLEMS
1. a. Air flows adiabatically through a long straight horizontal duct, 0.25 m diameter, at a

measured mass flow rate of 40 kg/s. At a particular section along the duct the measured

values of static temperature T5 150�C and static pressure p5 550 kPa. Determine the

average velocity of the airflow and its stagnation temperature.

b. At another station further along the duct, measurements reveal that the static temperature

has dropped to 147�C as a consequence of wall friction. Determine the average velocity

and the static pressure of the airflow at this station.

Also determine the change in entropy per unit of mass flow between the two stations.

For air assume that R5 287 J/(kg K) and γ5 1:4.
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FIGURE 1.16

Measuring the unsteady pressure field of an axial compressor rotor: (a) pressure measured at point� on the

casing, (b) fluctuating pressure measured at point�.
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2. Nitrogen gas at a stagnation temperature of 300 K and a static pressure of 2 bar flows

adiabatically through a pipe duct of 0.3 m diameter. At a particular station along the duct

length the Mach number is 0.6. Assuming the flow is frictionless, determine

a. the static temperature and stagnation pressure of the flow;

b. the mass flow of gas if the duct diameter is 0.3 m.

For nitrogen gas take R5 297 J=ðkg KÞ and γ5 1:4.

3. Air flows adiabatically through a horizontal duct and at a section numbered (1) the static

pressure p15 150 kPa, the static temperature T15 200�C and the velocity c15 100 m/s. At a

station further downstream the static pressure p25 50 kPa and the static temperature

T25 150�C. Determine the velocity c2 and the change in entropy per unit mass of air. For air

take R5 287 J/(kg K) and γ5 1:4.

4. For the adiabatic expansion of a perfect gas through a turbine, show that the overall

efficiency ηt and small stage efficiency ηp are related by

ηt 5 ð12 εηpÞ=ð12 εÞ
where ε5 r(12γ)/γ, and r is the expansion pressure ratio, γ is the ratio of specific heats. An

axial flow turbine has a small stage efficiency of 86%, an overall pressure ratio of 4.5 to 1

and a mean value of γ equal to 1.333. Calculate the overall turbine efficiency.

5. Air is expanded in a multistage axial flow turbine, the pressure drop across each stage being

very small. Assuming that air behaves as a perfect gas with ratio of specific heats γ, derive
pressure�temperature relationships for the following processes:

a. reversible adiabatic expansion;

b. irreversible adiabatic expansion, with small stage efficiency ηp;
c. reversible expansion in which the heat loss in each stage is a constant fraction k of the

enthalpy drop in that stage;

d. reversible expansion in which the heat loss is proportional to the absolute temperature T.

Sketch the first three processes on a T, s diagram. If the entry temperature is 1100 K and the

pressure ratio across the turbine is 6 to 1, calculate the exhaust temperatures in each of the

first three cases. Assume that γ is 1.333, that ηp5 0.85, and that k5 0.1.

6. Steam at a pressure of 80 bar and a temperature of 500�C is admitted to a turbine where it

expands to a pressure of 0.15 bar. The expansion through the turbine takes place adiabatically

with an isentropic efficiency of 0.9 and the power output from the turbine is 40 MW. Using a

Mollier chart and/or steam tables determine the enthalpy of the steam at exit from the turbine

and the flow rate of the steam.

7. A multistage high-pressure steam turbine is supplied with steam at a stagnation pressure

of 7 MPa and a stagnation temperature of 500�C. The corresponding specific enthalpy is

3410 kJ/kg. The steam exhausts from the turbine at a stagnation pressure of 0.7 MPa, the

steam having been in a superheated condition throughout the expansion. It can be

assumed that the steam behaves like a perfect gas over the range of the expansion and

that γ5 1.3. Given that the turbine flow process has a small-stage efficiency of 0.82,

determine
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a. the temperature and specific volume at the end of the expansion;

b. the reheat factor.

The specific volume of superheated steam is represented by pv5 0.231(h2 1943), where p is

in kPa, v is in m3/kg, and h is in kJ/kg.

8. A 20 MW back-pressure turbine receives steam at 4 MPa and 300�C, exhausting from the last

stage at 0.35 MPa. The stage efficiency is 0.85, reheat factor 1.04, and external losses 2% of

the actual isentropic enthalpy drop. Determine the rate of steam flow. At the exit from the

first stage nozzles, the steam velocity is 244 m/s, specific volume 68.6 dm3/kg, mean

diameter 762 mm, and steam exit angle 76� measured from the axial direction. Determine the

nozzle exit height of this stage.

9. Steam is supplied to the first stage of a five-stage pressure-compounded steam turbine at a

stagnation pressure of 1.5 MPa and a stagnation temperature of 350�C. The steam leaves the

last stage at a stagnation pressure of 7.0 kPa with a corresponding dryness fraction of 0.95.

By using a Mollier chart for steam and assuming that the stagnation state point locus is a

straight line joining the initial and final states, determine

a. the stagnation conditions between each stage assuming that each stage does the same

amount of work;

b. the total-to-total efficiency of each stage;

c. the overall total-to-total efficiency and total-to-static efficiency assuming the steam enters

the condenser with a velocity of 200 m/s;

d. the reheat factor based upon stagnation conditions.

10. Carbon dioxide gas (CO2) flows adiabatically along a duct. At station 1 the static pressure

p15 120 kPa and the static temperature T15 120�C. At station 2 further along the duct the

static pressure p25 75 kPa and the velocity c25 150 m/s.

Determine

a. the Mach number M2;

b. the stagnation pressure p02;

c. stagnation temperature T02;

d. the Mach number M1.

For CO2 take R5 188 J/(kg K) and γ5 1.30.

11. Air enters the first stage of an axial flow compressor at a stagnation temperature of 20�C and at a

stagnation pressure of 1.05 bar and leaves the compressor at a stagnation pressure of 11 bar. The

total-to-total efficiency of the compressor is 83%. Determine, the exit stagnation temperature of

the air and the polytropic efficiency of the compressor. Assume for air that γ5 1:4.
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CHAPTER

2Dimensional Analysis: Similitude

If you have known one you have known all.
Terence, Phormio

2.1 Dimensional analysis and performance laws
The widest comprehension of the general behavior of all turbomachines is, without doubt, obtained

from dimensional analysis. This is the formal procedure whereby the group of variables represent-

ing some physical situation is reduced to a smaller number of dimensionless groups. When the

number of independent variables is not too great, dimensional analysis enables experimental rela-

tions between variables to be found with the greatest economy of effort. Dimensional analysis

applied to turbomachines has two further important uses: (a) prediction of a prototype’s perfor-

mance from tests conducted on a scale model (similitude), and (b) determination of the most

suitable type of machine, on the basis of maximum efficiency, for a specified range of head, speed,

and flow rate. Several methods of constructing nondimensional groups have been described by

Douglas, Gasiorek, and Swaffield (1995) and Shames (1992), among other authors. The subject of

dimensional analysis was made simple and much more interesting by Taylor (1974) in his compre-

hensive account of the subject and this approach is the one adopted in this book.

Adopting the simple approach of elementary thermodynamics, a control surface of fixed shape,

position, and orientation is drawn around the turbomachine (Figure 2.1). Across this boundary, fluid

flows steadily, entering at station 1 and leaving at station 2. As well as the flow of fluid, there is a

flow of work across the control surface, transmitted by the shaft either to or from the machine. All

details of the flow within the machine can be ignored and only externally observed features such as

shaft speed, flow rate, torque, and change in fluid properties across the machine need be consid-

ered. To be specific, let the turbomachine be a pump (although the analysis could apply to other

classes of turbomachine) driven by an electric motor. The speed of rotation Ω can be adjusted by

altering the current to the motor; the volume flow rate Q can be independently adjusted by means

of a throttle valve. For fixed values of the set Q and Ω, all other variables, such as torque, τ, and
head, H, are thereby established. The choice of Q and Ω as control variables is clearly arbitrary

and any other pair of independent variables such as τ and H could equally well have been chosen.

The important point to recognize is that there are, for this pump, two control variables.

If the fluid flowing is changed for another of different density, ρ and viscosity, μ, the perfor-

mance of the machine will be affected. Note also that, for a turbomachine handling compressible

fluids, other fluid properties are important and these are discussed later.
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So far we have considered only one particular turbomachine, namely a pump of a given size.

To extend the range of this discussion, the effect of the geometric variables on the performance

must now be included. The size of machine is characterized by the impeller diameter, D, the shape

can be expressed by a number of length ratios, l1/D, l2/D, etc., and the surface finish can be charac-

terized by a representative roughness length, e.

2.2 Incompressible fluid analysis
The performance of a turbomachine can be expressed in terms of the control variables, geometric

variables, and fluid properties. Take as an example a hydraulic pump. It is convenient to regard the

net energy transfer, gH; the efficiency; η; and the power supplied, P, as dependent variables and to

write the three functional relationships as

gH5 f1 Q;Ω;D; ρ;μ; e;
l1

D
;
l2

D
; . . .

� �
(2.1a)

η5 f2 Q;Ω;D; ρ;μ; e;
l1

D
;
l2

D
; . . .

� �
(2.1b)

P5 f3 Q;Ω;D; ρ;μ; e;
l1

D
;
l2

D
; . . .

� �
(2.1c)

For a family of geometrically similar machines, the shape parameters, l1/D and l2/D are constant

and may be omitted. Dimensional analysis1 can then be applied to determine the dimensionless

Control surface

Control volume

Throttle valve
(1)

(2)
Motor

FIGURE 2.1

Turbomachine considered as a control volume.

1This is the approach used to reduce the experimental variables in a fluid mechanical problem (and in other areas, as

well) to the minimum number of nondimensional parameters. It is explained at some length in elementary textbooks

such as Franzini and Finnemore (1997) and White (2011).
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groups that are needed to describe dynamic similarity. The number of dimensionless groups

required can be found using Buckingham’s π-theorem (Buckingham, 1914). This theorem states

that for M independent variables and N dimensions, there must be at least M2N nondimensional

groups. In this case, for 6 variables ðQ;Ω;D; ρ;μ; eÞ and 3 dimensions (mass, length, time), there

must be 62 35 3 independent nondimensional groups. However, the form of the nondimensional

groups required is not obvious and consideration of the physics is necessary. For a pump, the selec-

tion of ρ, Ω, and D as common factors avoids the appearance of special fluid terms (e.g., μ, Q) in
more than one group and allows gH, η, and P to be made explicit. Hence, the three relationships in

Eqs. (2.1a�c) can be reduced to the following easily verified forms:

Energy transfer coefficient, sometimes called head coefficient:

ψ5
gH

ðΩDÞ2 5 f4
Q

ΩD3
;
ρΩD2

μ
;
e

D

� �
(2.2a)

Efficiency, which is already nondimensional:

η5 f5
Q

ΩD3
;
ρΩD2

μ
;
e

D

� �
(2.2b)

Power coefficient:

P̂5
P

ρΩ3D5
5 f4

Q

ΩD3
;
ρΩD2

μ
;
e

D

� �
(2.2c)

The nondimensional group Q/(ΩD3) is a volumetric flow coefficient. In nonhydraulic flow turbo-

machines, an alternative to Q/(ΩD3) that is frequently used is the velocity (or flow) coefficient

Φ5 cm/U, where U is the mean blade speed and cm the average meridional velocity. Since

Q5 cm 3 flow area~ cmD
2 and U ~ΩD

then

Q

ΩD3
~

cm

U
5Φ

Both of these nondimensional groups are usually referred to as a flow coefficient, Φ.
The nondimensional group ρΩD2/μ is a form of Reynolds number, denoted Re. Physically,

Reynolds number represents the ratio between the inertial forces and the viscous forces within

a fluid flow. For low viscosity fluid moving at high velocity, the Reynolds number is high;

conversely for slow moving fluid with high viscosity, the Reynolds number is low. It is found

experimentally that provided Re. 23 105, the effects of Re on the performance of turboma-

chines is small. This is true because at high Re, the viscous boundary layers on the blades of a

turbomachine are generally turbulent and very thin. They, therefore, have little impact on the

global flow field. Efficiency is the variable that can be most affected by Reynolds number and

typically η will rise up to a few per cent as Re increases an order of magnitude. Note that for

turbomachines handling water, the kinematic viscosity, ν5μ/ρ, is very small and, therefore,

the corresponding Reynolds number is always high and its effects may be ignored to a first

approximation.
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The effects of surface finish are captured by the nondimensional group, e=D, called the rough-

ness ratio or relative roughness. At high Reynolds numbers, greater surface roughness tends to

increase skin friction losses and thus reduce the efficiency. The effects at lower Reynolds numbers

are more complex as the boundary layers may be laminar or undergoing transition to turbulence. If

it is assumed that both the surface finish effects are small and that the Reynolds numbers are high,

the functional relationships for geometrically similar hydraulic turbomachines are:

ψ5 f4ðQ=ΩD3Þ (2.3a)

η5 f5ðQ=ΩD3Þ (2.3b)

P̂5 f6ðQ=ΩD3Þ (2.3c)

This is as far as the reasoning with dimensional analysis alone can be taken; the actual form of

the functions f4, f5, and f6 must be ascertained by experiment.

One relation between ψ, Φ, η, and P̂ may be immediately stated. For a pump, the net hydraulic

power, PN, equals ρQgH, which is the minimum shaft power required in the absence of all losses.

As shown in Chapter 1, we define pump efficiency as η5PN=P5 ρQgH=P, where P is the actual

power to drive the pump. Therefore,

P5
1

η
Q

ΩD3

� �
gH

Ω2D2
ρΩ3D5 (2.4)

Thus, f6 may be derived from f4 and f5 since P̂5Φψ=η. For a turbine, the net hydraulic power

supplied to it, PN, is clearly greater than the actual power output from the machine and the effi-

ciency η5P=PN. By reasoning similar to that provided for the pump, we can see that for a turbine

P̂5Φψη.

2.3 Performance characteristics for low-speed machines
The operating condition of a turbomachine will be dynamically similar at two different rotational

speeds if all fluid velocities at corresponding points within the machine are in the same direction

and proportional to the blade speed. In other words, the flow is dynamically similar if the stream-

line patterns relative to the blades are geometrically similar. When two flow fields are dynamically

similar, then all the dimensionless groups are the same. As shown by Eqs. (2.3a�c), for an incom-

pressible flow machine (one in which M, 0.3 everywhere) operating at high Reynolds number,

dynamic similarity is achieved once the flow coefficient is the same. Thus, the nondimensional pre-

sentation of performance data has the important practical advantage of collapsing results into a sin-

gle curve that would otherwise require a multiplicity of curves if plotted dimensionally.

Evidence in support of the foregoing assertion is provided in Figure 2.2, which shows experi-

mental results obtained by one author (at the University of Liverpool) on a simple centrifugal labo-

ratory pump. Within the normal operating range of this pump, 0.03,Q/(ΩD3), 0.06, very little

systematic scatter is apparent, which might be associated with a Reynolds number effect, for the

range of speeds 2500#Ω# 5000 rpm. For smaller flows, Q/(ΩD3), 0.025, the flow became

unsteady and the manometer readings of uncertain accuracy, but nevertheless, dynamically similar
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conditions still appear to hold true. At high flow rates there is a systematic deviation away from

the “single-curve” law at higher rotational speeds. This effect is due to cavitation, a high-speed

phenomenon of hydraulic machines caused by the release of vapor bubbles at low pressures, which

is discussed later in this chapter. It will be clear at this stage that under cavitating flow conditions,

dynamical similarity is not possible.

The nondimensional results shown in Figure 2.2 have, of course, been obtained for a particular

pump. They would also be approximately valid for a range of different pump sizes so long as all

these pumps are geometrically similar and cavitation is absent. Thus, neglecting any change in per-

formance due to change in Reynolds number, the dynamically similar results in Figure 2.2 can be

applied to predicting the dimensional performance of a given pump for a series of required speeds.

Figure 2.3 shows such a dimensional presentation. It will be clear from the preceding discussion

that the locus of dynamically similar points in the H�Q field lies on a parabola since H varies as

Ω2 and Q varies as Ω.

EXAMPLE 2.1

A model centrifugal pump with an efficiency of 88% is tested at a rotational speed of 3000 rpm

and delivers 0.12 m3/s of water against a head of 30 m. Using the similarity rules given above,

determine the rotational speed, volume flow rate, and power requirement of a geometrically sim-

ilar prototype at eight times the scale of the model and working against a head of 50 m.

Solution
From the similarity laws, for the same head coefficient,

Hp=ðΩ2
pD

2
pÞ5Hm=ðΩ2

mD
2
mÞ

5.0

4.0

3.0

2.0

1.0

0.02 0.04 0.06
Flow coefficient, Q/(WD3)

Key: 2500 rpm
3500
4500
5000

H
ea

d 
co

ef
fic

ie
nt

gH

W
2 D

2
Note: gH m2/s2

          W rev/s
          Q m2/s
          D m

Observe deterioration in
performance at high speeds
(effect is due to cavitation)

FIGURE 2.2

Dimensionless head�volume characteristic of a centrifugal pump.
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where subscript m is for the model and p for the prototype. Hence,

Ωp 5Ωm

Dm

Dp

� �
Hp

Hm

� �1
2

5 30003
1

8
3

50

30

� �1
2

5 484:1 rpm

Operating at the same volumetric flow coefficient,

Qp

ΩpD3
p

5
Qm

ΩmD3
m

Qp 5Qm

Ωp

Ωm

Dp

Dm

� �3
5 0:123

484:1

3000
3 83 5 9:914 m3=s

Finally, the power for the prototype can be determined assuming the efficiency is the same as

the model:

Pp 5
ρgQpHp

ηp
5 ð103 3 9:813 9:9143 50Þ=0:885 5:5263 106 5 5:536 MW

2.4 Compressible flow analysis
The application of dimensional analysis to compressible flow increases, not unexpectedly, the com-

plexity of the functional relationships obtained in comparison with those already found for

8.0

6.0

4.0

2.0

0.2 0.4 0.6 0.8

Volumetric flow rate, Q, dm3/s

0

H
ea

d,
 H

m

Loci of dynamically
similar conditions

W = 4500 rpm

W = 3500 rpm

W = 2500 rpm

FIGURE 2.3

Extrapolation of characteristic curves for dynamically similar conditions at Ω5 3500 rpm.
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incompressible fluids. Even if the fluid is regarded as a perfect gas, in addition to the previously

used fluid properties, two further characteristics are required; these are a01, the stagnation speed of

sound at entry to the machine, and γ, the ratio of specific heats Cp/Cν. In the following analysis,

the compressible fluids under discussion are either perfect gases or dry vapors approximating in

behavior to a perfect gas.

Another choice of variables is preferred when appreciable density changes occur across the

machine. Instead of volume flow rate Q, the mass flow rate _m is used; likewise for the head change

H, the isentropic stagnation enthalpy change Δh0s is employed. The choice of this last variable is a

significant one for, in an ideal and adiabatic process, Δh0s is equal to the work done per unit mass

of fluid. Since heat transfer from the casings of turbomachines is, in general, of negligible magni-

tude compared with the flux of energy through the machine, temperature on its own may be safely

excluded as a fluid variable. However, temperature is an easily observable characteristic and, for a

perfect gas, can be easily introduced by means of the equation of state, p/ρ5RT.

The performance parameters Δh0s, η, and P, for a turbomachine handling a compressible flow,

can be expressed functionally as

Δh0s; η;P5 f ðμ;Ω;D; _m; ρ01; a01; γÞ (2.5)

Because ρ0 and a0 change through a turbomachine, the values of these fluid variables are

selected at inlet, denoted by subscript 1. Equation (2.5) expresses three separate functional relation-

ships, each of which consists of eight variables. Again, selecting ρ01, Ω, and D as common factors,

each of these three relationships may be reduced to five dimensionless groups:

Δh0s

Ω2D2
; η;

P

ρ01Ω
3D5

5 f
_m

ρ01ΩD3
;
ρ01ΩD

2

μ
;
ΩD
a01

; γ
� �

(2.6a)

The group ΩD/a01 can be regarded as a blade Mach number because ΩD is proportional to blade

speed. Since this appears as an independent variable on the right-hand side of the equation, it can be

used to rewrite the preceding relationships in terms of the inlet stagnation speed of sound a01:

Δh0s

a201
; η;

P

ρ01a
3
01D

2
5 f

_m

ρ01a01D2
;
ρ01a01D

μ
;
ΩD
a01

; γ
� �

(2.6b)

For a machine handling a perfect gas, a different set of functional relationships is often more

useful. These may be found either by selecting the appropriate variables for a perfect gas and work-

ing through again from first principles or, by means of some rather straightforward transformations,

rewriting Eq. (2.6b) to give more suitable groups. The latter procedure is preferred here as it pro-

vides a useful exercise. As an example, consider an adiabatic compressor handling a perfect gas.

The isentropic stagnation enthalpy rise can be written as Cp(T02s2 T01) for a perfect gas. As shown

in Chapter 1, the isentropic relationship between temperature and pressure is given by

T02s

T01
5

p02

p01

� �ðγ21Þ=γ

The isentropic stagnation enthalpy rise can therefore be written as

Δh0s 5CpT01½ðp02=p01Þðγ21Þ=γ 2 1� (2.7)
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Since Cp5 γR/(γ2 1) and a201 5 γRT01; then a201 5 ðγ2 1ÞCpT01 and thus,

Δh0s

a201
5

Δh0s

ðγ2 1ÞCpT01
5

1

ðγ2 1Þ
p02

p01

� �ðγ21Þ=γ
2 1

" #
5 f ðp02=p01; γÞ

Using the equation of state, p/ρ5RT, the nondimensional mass flow can be more conveniently

expressed as

m̂5
_m

ρ01a01D2
5

_mRT01
p01

ffiffiffiffiffiffiffiffiffiffiffiffi
γRT01

p
D2

5
_m
ffiffiffiffiffiffiffiffiffiffiffiffi
γRT01

p

D2p01γ

The power coefficient can also be rewritten as

P̂5
P

ρ01a
3
01D

2
5

_mCpΔT0

ðρ01a01D2Þa201
5 m̂

CpΔT0

a201
5

m̂

ðγ2 1Þ
ΔT0

T01

Collecting together these newly formed nondimensional groups and inserting them in Eq. (2.6b)

leads to a simpler and more useful functional relationship:

p02

p01
; η;

ΔT0

T01
5 f

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
γRT01

p

D2p01
;

ΩDffiffiffiffiffiffiffiffiffiffiffiffi
γRT01

p ;Re; γ
� �

(2.8)

A key advantage of Eq. (2.8) over Eq. (2.6b) is that the nondimensional groups are in terms of

inlet and exit stagnation temperatures and pressures, which are parameters that are readily measured

for a turbomachine. For a machine handling a single gas, γ can be dropped as an independent vari-

able. If, in addition, the machine operates only at high Reynolds numbers (or over a small speed

range), Re can also be dropped. Equation (2.8) can then be written with just two nondimensional

groups on the right-hand side:

p02

p01
; η;

ΔT0

T01
5 f

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
D2p01

;
ΩDffiffiffiffiffiffiffiffiffiffiffiffi
γRT01

p
 !

(2.9a)

In this equation, the nondimensional group, _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
=D2p01 is often referred to as the flow

capacity, introduced in Section 1.10 of Chapter 1. This is the most widely used form of nondi-

mensional mass flow, although the forms in Eqs (2.6b) and (2.8) are also valid. For machines

of a known size and fixed working fluid, it has become customary, in industry at least, to delete

γ, R, Cp, and D from Eq. (2.9a) and similar expressions. Under these conditions, Eq. (2.9a)

becomes

p02

p01
; η;

ΔT0

T01
5 f

_m
ffiffiffiffiffiffiffi
T01

p

p01
;

Ωffiffiffiffiffiffiffi
T01

p
� �

(2.9b)

Note that by omitting the diameter D and gas constant R, the independent variables on the

right-hand side of Eq. (2.9b) are no longer dimensionless.

For a given turbomachine, Eq. (2.9b) is sometimes expressed in terms of corrected flow and

corrected speed. These are the mass flow and speed that would be measured if the machine was

operating at standard sea-level atmospheric pressure and temperature, pa and Ta.

46 CHAPTER 2 Dimensional Analysis: Similitude



The corrected mass flow and corrected speed are defined as

_m
ffiffiffi
θ

p

δ
and

Ωffiffiffi
θ

p

where

θ5
T01

Ta
and δ5

p01

pa

The functional relationships in Eq. (2.9b) can then be rewritten as

p02

p01
; η;

ΔT0

T01
5 f

_m
ffiffiffi
θ

p

δ
;
Ωffiffiffi
θ

p
 !

(2.9c)

Note that the parameters on the right-hand side are no longer nondimensional. The units of the

first parameter are kg/s and that of the second are rad/s. To nondimensionalize these parameters,

they can be normalized by their values at the design point.

Equations (2.9a�c) show that two variables are required to fix the operating point of a com-

pressible flow machine. This compares to the one variable needed to fix the operating point of an

incompressible flow machine, Eqs. (2.3a�c). In all cases, for dynamic similarity, the streamline

pattern relative to the blades must be geometrically similar. In an incompressible flow machine, it

is enough just to fix the relative inlet angle to the blades (via the flow coefficient). In a compress-

ible flow machine, the streamline pattern within the blade rows also depends on the variation of

density through the blade passages. Therefore, a second parameter is needed to fix the flow Mach

numbers and thus fix the variation of density.

Similarly to the incompressible case, the performance parameters, p02/p01, η, and ΔT0/T01 are

not entirely independent and it is straightforward to write an equation relating the three. For a com-

pressor, the isentropic efficiency is defined in Chapter 1 and can be written as

ηc 5
Δh0s

Δh0
5

ððp02=p01Þγ=ðγ21Þ 2 1Þ
ΔT0=T01

(2.10a)

The corresponding isentropic efficiency for a turbine is

ηt 5
Δh0

Δh0s
5

ΔT0=T01

½ðp01=p02Þðγ21=γÞ 2 1�
(2.10b)

where p01=p02 is the overall total pressure ratio of the turbine.

Flow coefficient and stage loading
In compressible flow machines, the flow coefficient, Φ, is an important parameter for design and

analysis. It is defined in the same way as given earlier for incompressible machines, i.e., Φ5 cm/U,

where U is the mean blade speed and cm the average meridional velocity. However, in the com-

pressible case, the flow coefficient alone cannot be used to fix the operating condition of a

472.4 Compressible flow analysis



machine. This is because the flow coefficient is also a function of the nondimensional parameters

given in Eq. (2.9a). It is straightforward to show this via the following algebraic manipulation:

ϕ5
cm

U
5

_m

ρ01A1U
5

_mRT01
p01A1U

~
_mOðCpT01Þ
D2p01

3
OðCpT01Þ

U
5 f

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
D2p01

;
ΩDffiffiffiffiffiffiffiffiffiffiffiffi
γRT01

p
 !

Note that the nondimensional mass flow, _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
=D2p01 is distinct from a flow coefficient

because it does not involve the blade speed.

The stage loading, ψ, is another key design parameter for all nonhydraulic turbomachines. It is

defined as

ψ5
Δh0

U2
(2.11)

This parameter is similar in form to the head coefficient ψ used in hydraulic machines

(Eq. (2.2a)), but there are subtle differences. Most importantly, stage loading is a nondimensional

form of the actual specific stagnation enthalpy change, whereas the head coefficient is a nondimen-

sional measure of the maximum, or isentropic, work that a hydraulic machine can achieve. Note

that the stage loading can be related to the nondimensional parameters in Eq. (2.9a) as follows:

ψ5
Δh0

U2
5

CpΔT0

CpT01U2
3

CpT01

U2
5

ΔT0

T01

�
U

OðCpT01Þ

 !2

5 f
_mOðCpT01Þ
D2p01

;
ΩD

OðγRT01Þ

( )

Thus, the stage loading is also fixed once both the nondimensional mass flow and the nondi-

mensional blade speed (or blade Mach number) are fixed. In many cases, the stage loading is used

in place of the power coefficient ΔT0/T0 given in Eq. (2.9a).

2.5 Performance characteristics for high-speed machines
Compressors
The performance (or characteristic) map of a high-speed compressor is essentially a graphical

representation of the functional relationships given in Eq. (2.9b). Figure 2.4 shows a performance

map for a transonic fan and Figure 2.5 shows a performance map for a high-speed multistage axial

compressor. In both cases, the pressure ratio across the machine is plotted as a function of

_m
ffiffiffiffiffiffiffi
T01

p
=p01 for several fixed values of Ω=

ffiffiffiffiffiffiffi
T01

p
, which is the usual method of presentation.

Figures 2.4 and 2.5 also show contours of compressor isentropic efficiency on the same axes.

Each of the constant speed curves on the compressor characteristic terminate at the instability

line (often referred to as the surge or stall line). Beyond this point, the operation is unstable. A dis-

cussion of the phenomena of surge and stall is included in Chapter 5. At high speeds and low pres-

sure ratios, the constant speed curves become vertical. In these regions of the characteristic, no

further increase in _m
ffiffiffiffiffiffiffi
T01

p
=p01 is possible since the Mach number across a section of the machine

has reached unity and the flow is choked.

A compressor is able to operate anywhere below and to the right of the surge line. However, it

is usually constrained to a single operating line, which is set by the flow area downstream of the

compressor. A single operating line is shown in Figure 2.4. The design operating line is usually
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specified so that it passes as close as possible to the point of peak compressor efficiency. However,

its exact position is a matter of judgment for the compressor designer. The term stall margin is

often used to describe the relative position of the operating line and the surge line. There are sev-

eral ways of defining the surge margin (SM) and a fairly simple one often used is

SM5
ðprÞs 2 ðprÞo

ðprÞo
(2.12)

where (pr)o is a pressure ratio at a point on the operating line at a certain corrected speed Ω=
ffiffiffiffiffiffiffi
T01

p
and (pr)s is the corresponding pressure ratio on the surge line at the same corrected speed. With

this definition a surge margin of 20% would be typical for a compressor used within a turbojet

engine. Several other definitions of stall margin and their merits are discussed by Cumpsty (1989).

Turbines
Figure 2.6 shows a typical high-speed axial turbine characteristic. The behavior of turbines is very

different to that of compressors and this is reflected in the way the characteristic has been pre-

sented. Turbines are able to operate with a high-pressure ratio across each stage because the
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Characteristic map of a transonic fan for a civil aircraft jet engine.

(Based on data from Cornell, 1975)
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boundary layers on the surfaces of the turbine blades are accelerating and therefore stable. The

high-pressure ratios soon lead to choking in the turbine stator blades and therefore a fixed nondi-

mensional mass flow through the machine. Once the turbine stators are fully choked, the operating

point is independent of Ω=
ffiffiffiffiffiffiffi
T01

p
because the rotation of the blades has virtually no influence on

either the turbine pressure ratio or the nondimensional mass flow rate.

As shown by Figure 2.6, it is more revealing to plot the flow capacity and turbine efficiency as

a function of the turbine pressure ratio rather than the other way around, since it is usually the pres-

sure ratio across a turbine that is specified and, for a high-speed case, there is limited variation in

_m
ffiffiffiffiffiffiffi
T01

p
=p01 for different values of Ω=

ffiffiffiffiffiffiffi
T01

p
.

EXAMPLE 2.2

The compressor with the performance map shown in Figure 2.5 is tested at sea level on a sta-

tionary test bed on a day when the atmospheric temperature and pressure is 298 K and 101 kPa,

respectively. When running at its design operating point, the mass flow rate through the com-

pressor is measured as 15 kg/s and the rotational speed is 6200 rpm. Determine the mass flow

rate and rotational speed when the compressor is operating at the design operating point during

high altitude cruise with an inlet stagnation temperature of 236 K and an inlet stagnation pres-

sure of 10.2 kPa.
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Performance map of a 10-stage high-speed axial compressor.

(Adapted from Cline et al., 1983)

50 CHAPTER 2 Dimensional Analysis: Similitude



The design pressure ratio of the compressor is 22. Using the compressor characteristic in

Figure 2.5, determine the compressor isentropic and polytropic efficiency at the design point.

Hence calculate the required power input at the cruise condition. Assume throughout for air that

γ5 1.4 and Cp5 1005 J/kg/K.

Solution
At cruise and during the test the compressor is operating at its design nondimensional operating

point. Therefore, all the nondimensional performance parameters of the compressor will be the

same at both conditions.
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The nondimensional mass flow is

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
γRT01

p

D2p01

� �
cruise

5
_m
ffiffiffiffiffiffiffiffiffiffiffiffi
γRT01

p

D2p01

� �
test

Since there is no change in the dimensions of the compressor or in the gas properties of the

working fluid, this reduces to

_m
ffiffiffiffiffiffiffi
T01

p

p01

� �
cruise

5
_m
ffiffiffiffiffiffiffi
T01

p

p01

� �
test

During the test, the compressor is stationary and therefore the inlet air stagnation temperature

and pressure are equal to the atmospheric static temperature and pressure. The mass flow at

cruise is thus

_mcruise 5
p01ffiffiffiffiffiffiffi
T01

p
� �

cruise

3
_m
ffiffiffiffiffiffiffi
T01

p

p01

� �
test

5
10:2ffiffiffiffiffiffiffiffi
236

p 3
153

ffiffiffiffiffiffiffiffi
298

p

101
5 1:70 kg=s

Similarly for the nondimensional speed,

Ω
OT01

" #
cruise

5
Ω

OT01

" #
test

and thus,

Ωcruise 5OT01;cruise 3
Ω

OT01

" #
test

5O2363
6200

O298

" #
5 5520 rpm

From, Figure 2.5, at 100% speed and a pressure ratio of 22, ηc 5 0:81.

T02

T01
5

ðp02=p01Þðγ21Þ=γ 2 1

ηc
1 15

221=3:5 2 1

0:81
1 15 2:751

From Eq. (1.50), the polytropic efficiency is given by

ηp 5
γ2 1

γ
lnðp02=p01Þ
lnðT02=T01Þ

5
1

3:5

lnð22Þ
lnð2:751Þ 5 0:873

As expected, the polytropic efficiency is significantly higher than the isentropic efficiency at

this pressure ratio. The input power to the compressor at the cruise condition can be found using

the fact that the nondimensional power coefficient ΔT0/T0 is unchanged between the two

conditions:

ΔT0

T01
5

T02

T01
2 15 1:751

Pcruise 5 ½ _mCpΔT0�cruise 5 ½ _mCpT01�cruise ΔT0
T01

5 1:703 10053 2363 1:7515 706 kW
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2.6 Specific speed and specific diameter
The turbomachine designer is often faced with the basic problem of deciding what type of machine

will be the best choice for a given duty. At the outset of the design process, some overall require-

ments of the machine will usually be known. For a hydraulic pump, these would include the head

required, H, the volume flow rate, Q, and the rotational speed, Ω. In contrast, if a high-speed gas

turbine was being considered, the initial specification would probably cover the mass flow rate, _m,
the specific work, Δh0, and the preferred rotational speed, Ω.

Two nondimensional parameters called the specific speed, Ωs, and specific diameter, Ds, are often

used to decide upon the choice of the most appropriate machine (see Balje (1981)). The specific

speed is derived from the nondimensional groups defined in Eqs. (2.3a�c) in such a way that the

characteristic diameter D of the turbomachine is eliminated. The value of Ωs gives the designer a

guide to the type of machine that will provide the normal requirement of high efficiency at the design

condition. Similarly, the specific diameter is derived from these groups by eliminating the speed, Ω.
Consider a hydraulic turbomachine with fixed geometry. As shown by Eq. (2.3b), there will be

a unique relationship between efficiency and flow coefficient if Reynolds number effects are negli-

gible and cavitation absent. If the maximum efficiency η5 ηmax occurs at a unique value of flow

coefficient Φ5Φ1 and corresponding unique values of ψ5ψ1 and P̂5 P̂1; it is possible to write

Q

ΩD3
5Φ1 5 constant (2.13a)

gH

Ω2D2
5ψ1 5 constant (2.13b)

P

ρΩ3D5
5 P̂1 5 constant (2.13c)

It is a simple matter to combine any pair of these expressions in such a way as to eliminate the

diameter. For a pump, the customary way of eliminating D is to divide Φ1=2
1 by ψ3=4

1 . Thus, at the

operating point giving maximum efficiency,

Ωs 5
Φ1=2
1

ψ3=4
1

5
ΩQ1=2

ðgHÞ3=4
(2.14)

where Ωs is called the specific speed. The term specific speed is justified only to the extent that Ωs

is directly proportional to Ω. It is sometimes referred to as a shape factor since its value charac-

terizes the shape of the machine required.

In the case of a hydraulic turbine, the power specific speed Ωsp is often used and it is defined by

Ωsp 5
P̂
1=2

1

ψ5=4
1

5
ΩðP=ρÞ1=2
ðgHÞ5=4

(2.15)

There is a simple connection between Ωs and Ωsp. By dividing Eq. (2.15) by Eq. (2.14), we

obtain, for a hydraulic turbine,

Ωsp

Ωs

5
ΩðP=ρÞ1=2
ðgHÞ5=4

ðgHÞ3=4
ΩQ1=2

5
P

ρgQH

� �1=2
5

ffiffiffi
η

p
(2.16)
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Similarly to specific speed, to form the specific diameter, any pair of expressions in Eqs. (2.13a�c)

can be used to eliminate the speed, Ω. In the case of a pump, we divide ψ1/4 by Φ1/2. Thus,

Ds 5
ψ1=4
1

Φ1=2
1

5
DðgHÞ1=4
Q1=2

(2.17)

Equations (2.14), (2.15), and (2.17) are dimensionless. It is always safer and less confusing to cal-

culate specific speed and specific diameter in one or another of these forms rather than dropping the

factors g and ρ, which would make the equations dimensional and any values of specific speed or spe-

cific diameter obtained using them would then depend upon the choice of the units employed. The

dimensionless forms of Ωs (and Ωsp) and Ds are the only ones used in this book. Another point arises

from the fact that the rotational speed, Ω, can be expressed in rad/s, rev/s or rpm, and therefore,

although Ωs is dimensionless, numerical values of specific speed are sometimes specified in rev/s

rather than rad/s. In this book, unless otherwise stated, the speed of rotation is taken to be in rad/s.

The concept of specific speed just described is illustrated in Figure 2.7. This shows contours of

Ωs plotted as a function of flow coefficient, Φ, and head coefficient, ψ, using Eq. (2.14). Also plot-

ted on the same axes are typical characteristics of three types of hydraulic pumps. This plot demon-

strates how for a given type of machine, one value of Ωs passes through the operating point of peak

efficiency. In other words, once the specific speed is known, the machine type giving peak effi-

ciency can be determined. Figure 2.7 also shows how a low specific speed suits radial machines,

since these tend to give a high pressure change to a low mass flow rate. In contrast, axial flow

stages with widely spaced blades are suited to high specific speed applications because they impart

a small pressure change to a large mass flow rate.
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Contours of specific speed showing characteristics of various pump types.
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Given that specific speed is defined at the point of maximum efficiency of a turbomachine, it

becomes a parameter of great importance in selecting the type of machine required for a given

duty. The maximum efficiency condition replaces the condition of geometric similarity, so that any

alteration in specific speed implies that the machine design changes. Broadly speaking, each differ-

ent class of machine has its optimum efficiency within its own fairly narrow range of specific

speed. Figure 2.8 shows the ranges of specific speed appropriate to different types of turbomachine.

Once the specific speed at the design condition is found, a well-designed machine selected using

Figure 2.8 should give the maximum possible design efficiency.

EXAMPLE 2.3

a. A hydraulic turbine with a runner outside diameter of 4.31 m operates with an effective head,

H, of 543 m at a volume flow rate of 71.5 m3/s and produces 350 MW of shaft power at a

rotational speed of 333 rpm. Determine the specific speed, the specific diameter, and effi-

ciency of this turbine.
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b. Another geometrically and dynamically similar turbine with a runner 6.0 m diameter is to be

built to operate with an effective head of 500 m. Determine the required flow rate, the

expected power output, and the rotational speed of the turbine.

Solution
a. Note: All speeds are first converted to rad/s; therefore, Ω5 3333π/305 34.87 rad/s.

Using Eq. (2.14), the specific speed is

Ωs 5ΩQ1=2=ðgHÞ3=4 5 34:873 71:50:5

ð9:813 543Þ0:75 5 0:473 rad

Using Eq. (2.17), the specific diameter is

Ds 5
DðgHÞ1=4
Q1=2

5
4:313 ð9:813 543Þ1=4

71:41=2
5 4:354

For the turbine, the net hydraulic power is

Pn 5 ρgQH5 98103 71:53 5435 380:93 106 5 380:9 MW

The turbine efficiency is

η5 350=380:95 0:919

b. Transposing Eq. (2.17), we can find the volume flow rate:

Q5 ðD=DsÞ2ðgHÞ1=2 5 ð6=4:354Þ2ð9:813 500Þ1=2 5 133 m3=s

and the power output is

P5 ηρgQH5 0:9193 98103 1333 5005 599:5 MW

We can determine the rotational speed in rpm from Eq. (2.14) as

Ω5ΩsðgHÞ3=4=Q1=2 5 0:4733
30

π
3 ð9:813 500Þ3=4=1331=2 5 229:6 rpm

The Cordier diagram
A rough but useful guide to the selection of the most appropriate type and size of compressor,

pump, or fan for a given duty and optimum efficiency is obtained by means of the Cordier diagram,

Figure 2.9. Although the method was originally devised by Cordier (1953), further details are more

readily accessed from the work of Csanady (1964) and, with some added elaboration, by Lewis

(1996). Figure 2.9 shows, on the right-hand side, the recommended ranges for various types of tur-

bomachines for which the method applies. It must be mentioned that the line presented is, in fact, a

mean curve based upon results obtained from a large number of machines, so it represents a fairly

broad spread of results on either side of the line. For many designs, it would be possible to diverge

from the line and still obtain high-performance pumps, fans, or compressors.
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Following Lewis, an interesting and useful alternative presentation of the Cordier diagram can

be made with ordinates Φ and ψ from the relationships already given. From Eqs (2.14) and (2.17),

we can derive the flow coefficient, Φ, and stage loading coefficient, ψ, as

Φ5 1=ðΩsD
3
s Þ (2.18)

ψ5 1=ðΩ2
sD

2
s Þ (2.19)

By introducing the Cordier line data into these last two equations and replotting this informa-

tion, a new and more definite shape of the optimum machine curves results, shown in Figure 2.10.

The new curve is clearly divided into two main parts with centrifugal pumps operating at a fairly

constant head coefficient at roughly ψ5 0.1 over a flow coefficient range of 0.001#Φ# 0.04 and

axial machines operating with a wide range of stage loading coefficients, 0.005#ψ# 0.05 and also

a wide range of Φ. Casey, Zwyssig, and Robinson (2010) show that the shape of the Cordier line

and the two distinct parts of the curve in Figure 2.10 are caused by the variation in centrifugal

effects in the different compressor types: In radial machines, almost all the pressure change is due

to the centrifugal effects generated by a change in flow radius, whereas these effects are absent in

axial machines (see Chapter 7).
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Cordier diagram for machine selection.
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Mixed-flow machines are stuck in between axials and radials with quite a narrow range of both

ψ and Φ. However, in some cases, mixed-flow machines are the crucial choice. Lewis (1996) points

out that applications that require a high mass flow at a high pressure ratio, such as gas cooled

nuclear reactors and hovercraft lift fans, are ideally suited for mixed-flow fans rather than a single-

stage axial compressor. Recently, mixed-flow turbomachinery has found application in specialist

domestic appliances. Figure 2.11 shows a mixed-flow fan used for air movement.

EXAMPLE 2.4

The mixed-flow fan shown in Figure 2.11 is designed to provide a pressure rise of 450 Pa to air

at a volume flow rate of 27 L/s. The impeller design rotational speed is 8300 rpm and its tip

diameter is 90 mm.

Calculate the specific speed and specific diameter of the fan and mark the location of the

design on the Cordier line in Figure 2.9. Also determine the design flow coefficient and head

coefficient. Assuming that the required flow rate and pressure rise cannot be changed, estimate

the rotational speed that would be needed for an axial flow fan to be suitable for the design.

Take air density to be 1.21 kg/m3.
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FIGURE 2.10

Chart of ψ versus Φ for various pumps and fans.
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Solution
The specific speed can be calculated from the design specification, as follows:

Ωs 5
ΩQ1=2

ðgHÞ3=4
5

ΩQ1=2

ðΔp=ρÞ3=4
5

83003π=303
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
273 1023

p

ð450=1:21Þ0:75 D1:69 rad

Similarly, the specific diameter can be calculated:

Ds 5
DðgHÞ1=4
Q1=2

5
DðΔp=ρÞ1=4

Q1=2
5

0:093 ð450=1:21Þ:25ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
273 1023

p D2:41

Marking these values on Figure 2.9, it is clear that the design lies close to the Cordier line

and that a mixed-flow device is most suitable. The design flow coefficient and head coefficient,

using Eqs (2.18) and (2.19), are

Φ5
Q

ΩD3
5

1

ðΩsD3
s Þ

5
1

1:693 2:413
5 0:042

ψ5
Δp=ρ
Ω2D2

5
1

ðΩ2
sD

2
s Þ

5
1

1:692 3 2:412
5 0:060

For an axial machine to be suitable, Figures 2.8 and 2.9 suggest that the specific speed must

be increased to a value of around 3 or higher. With a fixed flow and pressure rise, the specific

speed is proportional to the rotational speed. Therefore, a specific speed greater than 3 requires a

rotational speed:

Ω2 $Ω1

Ωs2

Ωs1

5 83003
3

1:69
5 14700 rpm

FIGURE 2.11

Mixed flow impeller used for efficient air movement.

(With kind permission of Dyson Ltd.)
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Compressible specific speed
Specific speed as defined in Eq. (2.14) has mostly been applied to the design and selection of low-

speed and hydraulic turbomachines. However, the notion of specific speed can equally be applied

to a compressible flow machine, and it is particularly useful for determining whether an axial or a

radial flow machine is best for a particular requirement. As described in Baskharone (2006), the

application of the important concept of specific speed to compressible turbomachines has to be

modified because of the large variation in the values of volume flow rate, Q, as well as the particu-

lar meaning of the head, H. The specific speed when applied to high-speed turbomachines is there-

fore expressed in terms of parameters appropriate to compressible flow:

Ωs 5Ω
_m

ρe

� �1=2
ðΔh0sÞ23=4 (2.20)

Note that in Eq. (2.20), the isentropic specific work, Δh0s, is used rather than the actual specific

work, Δh0. In the case of a compressor, this makes sense since the isentropic specific work can be

determined from the required pressure ratio p02/p01 using Eq. (2.7). The required pressure ratio is

likely to be known at the outset of the design process, whereas the actual specific work input

depends on the compressor efficiency, which in general will not be known. In the case of a turbine,

the actual specific work is more likely to be a known requirement. The efficiency can be estimated

or the isentropic work approximated to be equal to the actual work required.

Equation (2.20) also requires the density of the working fluid at exit ρe. This can be estimated

from ρe 5 pe=RTe, with pe and Te taken as the isentropic static pressure and temperature at exit

from the machine. Other definitions are sometimes used, but this is the simplest and any extra

uncertainty introduced is likely to be small and will have no effect on the preferred type of machine

selected.

EXAMPLE 2.5

An air turbine is required for a dentist’s drill. For the drill bit to effectively abrade tooth enamel,

the turbine must rotate at high speed, around 300,000 rpm. The turbine must also be very small

so that it can be used to access all parts of a patient’s mouth and an exit air flow rate in the

region of 10 L/min is required for this. The turbine is to be driven by supply air at a pressure of

3 bar and a temperature of 300 K.

Calculate the specific speed of the turbine and use this to determine the type of machine

required. Also estimate the power consumption of the turbine and account for how this power is

used.

Solution
Putting the quantities into standard SI units,

the rotational speed; Ω5 300; 0003π=305 10; 000π rad=s

the exit volume flow rate; _m=ρe 5Qe 5 10=ð10003 60Þ5 0:000167 m3=s

60 CHAPTER 2 Dimensional Analysis: Similitude



The isentropic specific work can be estimated assuming an isentropic expansion through the

turbine. Treating air as a perfect gas with γ5 1.4 and Cp5 1005 J/kg/K,

Δh0s 5CpT01 12 ðp02=p01Þðγ21Þ=γ
h i

5 10053 3003 12
1

3

� �0:4=1:4" #
5 81:29 kJ=kg

The specific speed can now be calculated from the information provided using Eq. (2.20):

Ωs 5
ΩQ1=2

ðgHÞ3=4
5Ω

_m

ρe

� �1=2
ðΔh0sÞ23=4 5

10; 0003π3 0:0001671=2

ð81; 290Þ3=4
D0:084 rad

Using the plot of machine type versus specific speed presented in Figure 2.8, it is immedi-

ately apparent that the only kind of turbine suitable for this very low specific speed is a Pelton

wheel. In fact, all modern high-speed dentist drills use Pelton wheels and a photograph of a typi-

cal impeller from one is shown in Figure 2.12.

The power used by the turbine can be approximated from the mass flow rate and the specific

isentropic work output. Using a typical value for the exit air density, this gives

P5 _mΔh0s 5 ρeQeΔh0sD1:163 0:0001673 81; 2905 15:7W

The majority of this power will be dissipated as heat through friction in the bearings, losses

in the Pelton wheel, and friction with the tooth. This heat dissipation is the reason why an appre-

ciable amount of cooling water is required for modern high-speed dentist drills!

2.7 Cavitation
Cavitation is the boiling of a liquid at normal temperature when the static pressure is made suffi-

ciently low. It may occur at the entry to pumps or at the exit from hydraulic turbines in the vicinity

of the moving blades. The dynamic action of the rotor blades causes the static pressure to reduce

FIGURE 2.12

Pelton Wheel Turbine Impeller from a High Speed Dental Drill, Tip Diameter 10 mm.

(With kind permission of Sirona Dental)
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locally in a region that is already normally below atmospheric pressure and cavitation can com-

mence. The phenomenon is accentuated by the presence of dissolved gases that are released with a

reduction in pressure.

For the purpose of illustration, consider a centrifugal pump operating at constant speed and capac-

ity. By steadily reducing the inlet pressure head, a point is reached when streams of small vapor bub-

bles appear within the liquid and close to solid surfaces. This is called cavitation inception and

commences in the regions of lowest pressure. These bubbles are swept into regions of higher pressure

where they collapse. This condensation occurs suddenly, the liquid surrounding the bubbles either hit-

ting the walls or adjacent liquid. The pressure wave produced by bubble collapse (with a magnitude

on the order of 400 MPa) momentarily raises the pressure level in the vicinity and the action ceases.

The cycle then repeats itself and the frequency may be as high as 25 kHz (Shepherd, 1956). The

repeated action of bubbles collapsing near solid surfaces leads to the well-known cavitation erosion.

The collapse of vapor cavities generates noise over a wide range of frequencies—up to 1 MHz

has been measured (Pearsall, 1972), i.e., so-called white noise. Apparently the collapsing smaller

bubbles cause the higher frequency noise, and the larger cavities the lower frequency noise. Noise

measurement can be used as a means of detecting cavitation (Pearsall, 1967). Pearsall and McNulty

(1968) have shown experimentally that there is a relationship between cavitation noise levels and

erosion damage on cylinders and conclude that a technique could be developed for predicting the

occurrence of erosion.

Up to this point, no detectable deterioration in performance occurs. However, with further

reduction in inlet pressure, the bubbles increase both in size and number, coalescing into pockets of

vapor that affects the whole field of flow. This growth of vapor cavities is usually accompanied by

a sharp drop in pump performance as shown conclusively in Figure 2.2 (for the 5000 rpm test

data). It may seem surprising to learn that, with this large change in bubble size, the solid surfaces

are much less likely to be damaged than at inception of cavitation. The avoidance of cavitation

inception in conventionally designed machines can be regarded as one of the essential tasks of both

pump and turbine designers. However, in certain recent specialized applications, pumps have been

designed to operate under supercavitating conditions. Under these conditions, large size vapor bub-

bles are formed, but bubble collapse takes place downstream of the impeller blades. An example of

the specialized application of a supercavitating pump is the fuel pumps of rocket engines for space

vehicles, where size and mass must be kept low at all costs. Pearsall (1973) has shown that the

supercavitating principle is most suitable for axial flow pumps of high specific speed and has sug-

gested a design technique using methods similar to those employed for conventional pumps.

Pearsall (1973) was one of the first to show that operating in the supercavitating regime was

practicable for axial flow pumps, and he proposed a design technique to enable this mode of opera-

tion to be used. A detailed description was published in Pearsall (1972), and the cavitation perfor-

mance was claimed to be much better than that of conventional pumps. Some further details are

given in Chapter 7.

Cavitation limits
In theory, cavitation commences in a liquid when the static pressure is reduced to the vapor pres-

sure corresponding to the liquid’s temperature. However, in practice, the physical state of the liquid

will determine the pressure at which cavitation starts (Pearsall, 1972). Dissolved gases come out of
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solution as the pressure is reduced, forming gas cavities at pressures in excess of the vapor pres-

sure. Vapor cavitation requires the presence of nuclei—submicroscopic gas bubbles or solid non-

wetted particles—in sufficient numbers. It is an interesting fact that in the absence of such nuclei, a

liquid can withstand negative pressures (i.e., tensile stresses)! Perhaps the earliest demonstration of

this phenomenon was that performed by Reynolds (1882) before a learned society. He showed how

a column of mercury more than twice the height of the barometer could be (and was) supported by

the internal cohesion (stress) of the liquid. More recently Ryley (1980) devised a simple centrifugal

apparatus for students to test the tensile strength of both plain, untreated tap water in comparison

with water that had been filtered and then deaerated by boiling. Young (1989) gives an extensive

literature list covering many aspects of cavitation including the tensile strength of liquids. At room

temperature, the theoretical tensile strength of water is quoted as being as high as 1000 atm

(100 MPa)! Special pretreatment (i.e., rigorous filtration and pre-pressurization) of the liquid is

required to obtain this state. In general, the liquids flowing through turbomachines will contain

some dust and dissolved gases and under these conditions negative pressure does not arise.

A useful parameter is the available suction head at entry to a pump or at exit from a turbine.

This is usually referred to as the net positive suction head, NPSH, defined as

Hs 5 ðpo 2 pvÞ=ðρgÞ (2.21)

where po and pv are the absolute stagnation and vapor pressures, respectively, at pump inlet or at

turbine outlet.

To take into account the effects of cavitation, the performance laws of a hydraulic turbomachine

should include the additional independent variable Hs. Ignoring the effects of Reynolds number, the

performance laws of a constant geometry hydraulic turbomachine are then dependent on two groups

of variable. Thus, the efficiency,

η5 f ðϕ;ΩssÞ (2.22)

where the suction specific speed Ωss5ΩQ1/2/(gHs)
3/4, determines the effect of cavitation, and

Φ5Q/(ΩD3), as before.

It is known from experiments made by Wislicenus (1965) that cavitation inception occurs for an

almost constant value of Ωss for all pumps (and, separately, for all turbines) designed to resist cavi-

tation. This is because the blade sections at the inlet to these pumps are broadly similar (likewise,

the exit blade sections of turbines are similar) and the shape of the low-pressure passages influ-

ences the onset of cavitation.

Using the alternative definition of suction specific speed Ωss5ΩQ1/2/(gHs)
3/4, where Ω is the

rotational speed in rad/s, Q is the volume flow in m3/s, and gHs is in m2/s2. Wislicenus showed that

Ωss 5 3:0 ðradÞ (2.23a)

for pumps, and

Ωss 5 4:0 ðradÞ (2.23b)

for turbines.

Pearsall (1967) describes a supercavitating pump with a cavitation performance much better

than that of conventional pumps. For this pump, suction specific speeds Ωss up to 9.0 were readily

obtained and, it was claimed, even better values might be possible but at the cost of reduced head
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and efficiency. It is likely that supercavitating pumps will be increasingly used in the search for

higher speeds, smaller sizes, and lower costs.

PROBLEMS
1. A fan operating at 1750 rpm at a volume flow rate of 4.25 m3/s develops a head of 153 mm

measured on a water-filled U-tube manometer. It is required to build a larger, geometrically

similar fan that will deliver the same head at the same efficiency as the existing fan but at a

speed of 1440 rpm. Calculate the volume flow rate of the larger fan.

2. An axial flow fan 1.83 m diameter is designed to run at a speed of 1400 rpm with an average

axial air velocity of 12.2 m/s. A quarter scale model has been built to obtain a check on the

design and the rotational speed of the model fan is 4200 rpm. Determine the axial air velocity

of the model so that dynamical similarity with the full-scale fan is preserved. The effects of

Reynolds number change may be neglected. A sufficiently large pressure vessel becomes

available in which the complete model can be placed and tested under conditions of complete

similarity. The viscosity of the air is independent of pressure and the temperature is

maintained constant. At what pressure must the model be tested?

3. The water pump used to generate the plot shown in Figure 2.2 has an impeller diameter of

56 mm. When tested at a speed of 4500 rpm, the head�volume flow rate characteristic

produced can be approximated by the equation

H5 8:62 5:6Q2

where H is in meters and Q in dm3/s. Show that, provided viscous and cavitation effects are

negligible, the characteristic of all geometrically similar pumps may be written in

dimensionless form as

ψ5 0:121ð12 4460Φ2Þ
where ψ is the dimensionless head coefficient, gH/Ω2D2, Φ is the flow coefficient, Q/ΩD3,

and Ω is expressed in rad/s. Show that this result is consistent with Figure 2.2, where Ω is

expressed in rev/s.

4. A water turbine is to be designed to produce 27 MW when running at 93.7 rpm under a head

of 16.5 m. A model turbine with an output of 37.5 kW is to be tested under dynamically

similar conditions with a head of 4.9 m. Calculate the model speed and scale ratio. Assuming

a model efficiency of 88%, estimate the volume flow rate through the model. It is estimated

that the force on the thrust bearing of the full-size machine will be 7.0 GN. For what thrust

must the model bearing be designed?

5. Derive the nondimensional groups that are normally used in the testing of gas turbines and

compressors. A compressor has been designed for normal atmospheric conditions (101.3 kPa

and 15�C). To economize on the power required, it is being tested with a throttle in the entry

duct to reduce the entry pressure. The characteristic curve for its normal design speed of
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4000 rpm is being obtained on a day when the ambient temperature is 20�C. At what speed
should the compressor be run? At the point on the characteristic curve at which the mass

flow would normally be 58 kg/s, the entry pressure is 55 kPa. Calculate the mass flow rate

during the test.

6. Describe, with the aid of sketches, the relationship between geometry and specific speed for

pumps.

a. A model centrifugal pump with an impeller diameter of 20 cm is designed to rotate at

1450 rpm and to deliver 20 dm3/s of freshwater against a pressure of 150 kPa. Determine

the specific speed and diameter of the pump. How much power is needed to drive the

pump if its efficiency is 82%?

b. A prototype pump with an impeller diameter of 0.8 m is to be tested at 725 rpm under

dynamically similar conditions as the model. Determine the head of water the pump must

overcome, the volume flow rate, and the power needed to drive the pump.

7. A hydraulic turbine is to be installed where the net head is 120 m and the normal available

flow rate is 1.5 m3/s. A 48 pole synchronous generator is available (to operate with a 60 Hz

electrical system) and has an adequate power capacity matching the turbine. Determine

a. the rotational speed and the electrical power that can be delivered if the system efficiency

(turbine and generator) is 85%;

b. the power specific speed of the turbine;

What type of turbine is being used in this application?

8. A hydraulic turbine running at 160 rpm, discharges 11 m3/s and develops 2400 kW at a net

head of 25 m. Determine

a. the efficiency of the turbine;

b. the speed, flow rate, and power output of this turbine when running under a net head of

40 m assuming homologous conditions and the same efficiency.

9. A hydraulics engineer is planning to utilize the water flowing in a stream, normally able to

provide water at a flow rate of 2.7 m3/s, and a head of 13 m for power generation. The

engineer is planning to use a 2.0 m diameter turbine operating at a rotational speed of

360 rpm and at a hoped for efficiency of 88%.

a. Determine the likely power developed by the turbine, the specific speed and specific

diameter, and the most suitable type of turbine for this duty.

b. The engineer then decides, first of all, to test a geometrically similar model turbine with a

diameter of 0.5 m (operating at the same specific speed and specific diameter as the

prototype) and with a head of 4.0 m. Determine, for the model, the volume flow rate, the

rotational speed, and the power.

10. A single-stage axial flow gas turbine is to be tested in a “cold rig” so as to simulate the

design-point operation. The two sets of operating conditions are:

1. Design—point operation of turbine

Stage—inlet total pressure, p01 5 11 bar

Stage—inlet total temperature, T01 5 1400 K

Stage—exit total pressure, p02 5 5:0 bar
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Speed of rotation, N5 55,000 rpm

Stage efficiency, ηt 5 87%

Mass flow rate _m5 3:5 kg=s
2. Cold—rig operation

Stage—inlet total pressure, p01ðcrÞ 5 2:5 bar

Stage—inlet total temperature, T01ðcrÞ 5 365 K

For both sets of conditions, assume that the axial velocity across the stage remains constant.

Determine

a. the stage—exit total temperature T02ðcrÞ;
b. the power output in the cold rig.

Assume that the average specific heat ratio for both operating conditions is given by

γ5 1:36.
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CHAPTER

3Two-Dimensional Cascades

Let us first understand the facts and then we may seek the causes.
Aristotle

3.1 Introduction
The design and performance prediction of axial flow compressors and turbines has been based, in

the main, upon measurements of the flow-through two-dimensional cascades of blades. However,

to an increasing extent, computational fluid dynamic (CFD) methods are now being used to simu-

late cascade testing. The flow within a turbomachine is, in general, unsteady and three dimensional.

For cascade analysis, the flow across individual blade rows is treated as two dimensional and

steady. This approach is appropriate for many compressor and turbine designs and the derived flow

characteristics obtained from cascade tests have usually been found to be satisfactory, although

laborious to collect.

Reviews of the many types of cascade tunnels, which includes low-speed, high-speed, intermittent

blowdown, suction tunnels, are available in the literature, e.g., Sieverding (1985), Baines, Oldfield,

Jones, Schulz, King, and Daniels (1982), and Hirsch (1993). The range of Mach numbers in axial

flow turbomachines can be considered to extend from M5 0.1 to 2.5:

i. low speed, operating in the range 20�60 m/s;

ii. high speed, for the compressible flow range of testing.

A typical low-speed, continuous running cascade tunnel is shown in Figure 3.1(a). This linear

cascade of blades comprises a number of identical blades, equally spaced and parallel to one

another. Figure 3.1(b) shows the test section of a cascade facility for transonic and moderate super-

sonic inlet velocities. The upper wall is slotted and equipped for suction, allowing operation in the

transonic regime. The flexible section of the upper wall allows for a change of geometry so that a

convergent�divergent nozzle can be formed, allowing the flow to expand to supersonic speeds

upstream of the cascade.

It is most important that the flow across the central region of the cascade blades (where the

flow measurements are made) is a good approximation to two-dimensional flow and that the flow

repeats (i.e., is periodic) across several blade pitches. This effect could be achieved by employing

a large number of long blades, but then an excessive amount of power would be required to oper-

ate the tunnel. With a tunnel of more compact size, aerodynamic difficulties become apparent

and arise from the tunnel wall boundary layers interacting with the blades. In particular, and as

illustrated in Figure 3.2(a), the tunnel wall boundary layer merges with the end blade boundary
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layer, and as a consequence, this blade usually stalls, resulting in a nonuniform flow across the

cascade.

In a compressor cascade, the rapid increase in pressure across the blades causes a marked

thickening of the wall boundary layers and produces an effective contraction of the flow, as

depicted in Figure 3.3. A contraction coefficient, used as a measure of the boundary layer growth

through the cascade, is defined by ρ1c1 cos α1/(ρ2c2 cos α2). Carter et al. (1950) quoted values of

0.9 for a good tunnel dropping to 0.8 in normal high-speed tunnels and even less in bad cases.

These are values for compressor cascades; with turbine cascades higher values can be expected,

since the flow is accelerating and therefore the boundary layers will not be thickened.

Because of the contraction of the main through-flow, the theoretical pressure rise across a com-

pressor cascade, even allowing for losses, is never achieved. This will be evident since a contrac-

tion (in a subsonic flow) accelerates the fluid, which is in conflict with the diffuser action of the

cascade.

To counteract these effects, it has been customary (in Great Britain) to use at least seven blades

in a compressor cascade, each blade having a minimum aspect ratio (blade span/chord length) of 3.
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FIGURE 3.1

Compressor cascade wind tunnels: (a) conventional low speed, continuous running cascade tunnel and (b)

transonic/supersonic cascade tunnel.

((a) Adapted from Carter, Andrews, and Shaw, 1950 and (b) adapted from Sieverding, 1985)
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With seven blades, suction is desirable in a compressor cascade, but it is not usual in a turbine

cascade. In the United States, much lower aspect ratios have been commonly employed in compres-

sor cascade testing, the technique being the almost complete removal of tunnel wall boundary

layers from all four walls using a combination of suction slots and perforated end walls to which

End blade stalled
(a) Finite cascade without
      suction

(b) Finite cascade with
      suction applied

Wall boundary layer

FIGURE 3.2

(a) Flow entering cascade without boundary layer control causes end blade stalling: (b) Application of suction

to bottom wall boundary layer results in a more uniform flow without blade stall.

(Adapted from Carter et al., 1950)
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FIGURE 3.3

Contraction of streamlines due to boundary layer thickening.

(Adapted from Carter et al., 1950)
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suction is applied. Figure 3.2(b) illustrates the effective application of suction to produce a more

uniform flow-field.

For axial flow machines of high hub�tip radius ratios, radial velocities are negligible and the

flow may be described as two dimensional. The flow in the cascade is then likely to be a good

model of the flow in the machine. With lower hub�tip radius ratios, the blades of a turbomachine

will normally have an appreciable amount of twist along their length and a varying space�chord

ratio. In such cases, a number of cascade test measurements can be applied to cover the design of

the blade sections at a number of radial locations. However, it should be emphasized that, in all

cases, the two-dimensional cascade is a simplified model of the flow within a turbomachine,

which in reality can include various three-dimensional flow features. For sections of a turboma-

chine where there are separated flow regions, leakage flows or significant spanwise flows, the

cascade model will not be accurate and careful consideration of the three-dimensional effects is

required. Further details of three-dimensional flows in axial turbomachines are given in

Chapter 6.

3.2 Cascade geometry
A cascade blade profile can be conceived as a curved camber line upon which a profile thickness

distribution is symmetrically superimposed. In Figure 3.4, two blades of a compressor cascade are

shown together with the notation needed to describe the geometry. Several geometric parameters

that characterize the cascade are:

i. the stagger angle, ξ, the angle between the chord line and the reference direction;1

ii. the space�chord ratio, s/l (in American practice the solidity, σ5 l/s, is more frequently used);

iii. the camber angle, θ;
iv. the blade inlet angle, α0

1;

v. the blade outlet angle, α0
2.

Further parameters that are needed to describe the cascade blade shape include its camber line

shape, thickness distribution, the radii at the leading and trailing edges, and the maximum thickness

to chord ratio, tmax/l.

The camber angle, θ, is the change in angle of the camber line between the leading and trailing

edges that equals α0
1 2α0

2 in the notation of Figure 3.4. For circular arc camber lines, the stagger

angle is ξ5 ð1=2Þðα0
1 1α0

2Þ. The change in angle of the flow is called the deflection, ε5α1 2α2,

and in general this will be different to the camber angle due to flow incidence at the leading edge

and deviation at the trailing edge. The incidence is the difference between the inlet flow angle and

the blade inlet angle:

i5α1 2α0
1 (3.1)

1Throughout this book, all fluid and blade angles are measured from this reference direction, which is a line perpendicu-

lar to the cascade front (this is the axial direction, when the blades are in an annular arrangement).
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The deviation is the difference between the exit flow angle and the blade exit angle:

δ5α2 2α0
2 (3.2)

Compressor blade profiles
The modern approach in compressor design is to use blade profiles designed by the so-called

prescribed velocity distribution (PVD) method. In this approach, the designer will select a blade

surface velocity distribution and a computational method determines the aerofoil thickness and cur-

vature variation required to achieve the desired aerodynamics. Despite this, many blade designs are

still in use based upon geometrically prescribed profiles. The most commonly used geometric fami-

lies are the American National Advisory Committee for Aeronautics (NACA) 65 Series, the British

C Series, and the double circular arc (DCA) or biconvex blade.

The NACA 65 Series blades originated from the NACA aircraft wing aerofoil and were

designed for approximately uniform loading. Figure 3.5 compares the profiles of the most widely

used blade sections drawn at a maximum thickness to chord ratio of 20%, for the purpose of clarity.

In fact, the maximum t/l ratios of compressor blade sections are nowadays normally less than 10%
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FIGURE 3.4

Compressor cascade and blade notation.
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and often a value of 5% is used because of the superior high Mach number performance that can

be achieved with thinner blades. The NACA 65 Series has its maximum thickness at 40%, whereas

the C Series is at 30% and the DCA Series is at 50%. These differences have a marked effect on

the velocity distributions measured around the blades surfaces. Aerofoils with the maximum thick-

ness near the leading edge and, consequently, with a well rounded leading edge have a wide operat-

ing range but a poorer high speed performance than blades with a sharp leading edge and the

maximum thickness point further back.

The exact details of the different profiles are very well documented, e.g., Mellor (1956),

Cumpsty (1989), Johnson and Bullock (1965), Aungier (2003), and it is not thought useful or nec-

essary to reproduce these in this book.

The actual blade shape is defined by one of these profile shapes superimposed on a camber line.

This can be a simple circular arc although, as shown by Aungier (2003), a parabolic arc allows a

more flexible style of blade loading. The blade profile is laid out with the selected scaled thickness

distribution plotted normal to the chosen camber line. Correlations for the performance of the dif-

ferent styles of compressor aerofoil are discussed within Section 3.5 later in this chapter.

Turbine blade profiles
The shape of turbine blades is less critical than it is in a compressor cascade. However, the designer

still needs to exercise some care in the selection of blades to attain good efficiency with highly

loaded blade rows. Nowadays, the process of specifying blade row geometry (blade shape, flow

angles, and space�chord ratio) is accomplished by computational methods but, ultimately, the

designs still need to be backed up by cascade tests. Figure 3.6 shows a photograph of a typical

high-speed turbine cascade that is used to represent the aerofoils of a conventional low-pressure

turbine within an aero engine. The blade profiles illustrate the high turning and the contraction

of the passage flow area within a turbine blade row.
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FIGURE 3.5

Thickness distributions for various compressor blade profiles.
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During the early design phase of a turbine, or when cascade results are unavailable,

one-dimensional calculations and correlation methods can be used to estimate the blade row

performance of turbine blade rows. These are discussed within Section 3.6.

3.3 Cascade flow characteristics
The fluid approaches the cascade from far upstream2 with velocity c1 at an angle α1 and leaves far

downstream of the cascade with velocity c2 at an angle α2 as shown in Figure 3.7. The aims of a

cascade test are to measure the deviation angle, δ, and to characterize the losses generated within

the flow as it is passes through the blade passages.

Deviation arises through inviscid and viscous effects. The flow mechanisms are different for

compressors and turbines and they will be described in detail later. Essentially though, the flow

is unable to follow the blade angle precisely, such that it is underturned and thus leaves the

trailing edge at a slightly different angle to the blade exit angle. Cascade losses arise from the

growth of the boundary layers on the suction and pressure surfaces of the blades. These bound-

ary layers combine at the blade trailing edge where they form the blade wake. As a result, a

local defect in stagnation pressure is created. As the flow moves downstream the wake widens,

as shown in Figure 3.7, and becomes less intense. In addition, cascades operating at high Mach

numbers have losses due to shock waves and shock�boundary layer interaction at the blade

surfaces.

The deviation and loss for a cascade are measured (or computed) at a range of conditions,

because as well as determining the design performance, it is important to check the tolerance to

changes in the inlet flow conditions, i.e., to show good off-design behavior. Note that cascade tests

can be made on both rotor and stator blades. For rotors, the absolute velocities in the cascade are

equivalent to the relative velocities that would be present in the actual machine.

FIGURE 3.6

A cascade of high-speed turbine aerofoils.

(Courtesy of the Whittle Laboratory)

2Far upstream, usually implies an indefinite distance of 1/2 to 1 chord upstream of the leading edge at a location where

the influence of the cascade static pressure field on the flow is negligible, similarly for far downstream.
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Streamtube thickness variation
When considering the flow through the blade passage of a compressor cascade, it is often assumed

that the mean streamtube thickness remains constant. However, this may not be true because the

rapid increase in pressure of the flow through the blades can cause a marked thickening of the end

wall boundary layers resulting in an effective contraction of the flow as already indicated in

Figure 3.3. This effect can be countered by the use of suction to remove the end wall boundary

layers.

In general, for all flows, the conservation of mass flow rate per blade passage is

_m5 ρ1c1H1s cos α1 5 ρ2c2H2s cos α2 (3.3)

where Hs is the projected frontal area of the control volume, Aa. The parameter H1s cos α1 is the

flow area measured perpendicular to the inlet flow direction. This is the area perceived by the flow

and is therefore referred to as the true flow area. This is an important factor when compressible

flow is considered.

Velocity variation c2
across blade spacing

Suction
surface

Pressure
surface

Wake

Axis x

y

s

s

c1

c2

α1

α2

FIGURE 3.7

The flow through a blade cascade and the formation of the wakes.

(From Johnson and Bullock, 1965)
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It is useful to define an axial velocity density ratio (AVDR), i.e.,

AVDR5 ðρ2cx2Þ=ðρ1cx1Þ5H1=H2 (3.4)

Equation (3.4) can be used in relating flow properties at the different positions along the mean

streamtube. Note that AVDR is the inverse of the contraction coefficient described in the introduc-

tion. In compressors AVDR. 1 due to the thickening boundary layers, but in turbine cascades

AVDR may be less than 1 due to the possible thinning of the boundary layers in accelerating flow.

Cascade performance parameters
For a known AVDR, as just defined, the primary aerodynamic input data for a cascade test are:

i. the inlet flow angle, α1;

ii. the inlet Mach number, M1;

iii. the blade Reynolds number, Re5 ρ1c1l=μ, where l is the blade chord.

The data from cascade traverses are used to provide the following parameters for use in the

design and performance prediction of axial flow compressors and turbines:

i. exit flow angle, α2;

ii. stagnation pressure loss, Yp, or an energy loss coefficient, ζ .

The performance characteristics of a cascade can therefore be expressed by the following func-

tional relationships:

α2 5 fnðM1;α1;ReÞ; Yp 5 fnðM1;α1;ReÞ; or ζ5 fnðM1;α1;ReÞ
The exit flow angle, α2, is a critical performance parameter because it determines the work

transfer within a turbomachinery stage. If we revisit the Euler work equation from Chapter 1,

Δh05Δ(Ucθ), it is clear that the work input or output from a turbomachine will depend on the

exit flow angles since cθ5 c sin α.
The stagnation pressure loss coefficient is an overall measure of the aerodynamic losses through

the blade row. Generally, it is defined as

Yp 5 loss of stagnation pressure4reference ðdynamicÞ pressure
The aerodynamic losses in a cascade blade row translate into efficiency losses within a real

turbomachine with the same blade shapes. The sources of losses can include:

i. boundary layers on the blades;

ii. flow separation;

iii. shock waves in the flow.

If no shock waves are present, most of the “loss” due to irreversibility is confined to a narrow

wake downstream of the trailing edge as shown in Figure 3.7.

For compressors, the total pressure loss coefficient is based on reference inlet conditions, i.e.,

Yp 5 ðp01 2 p02Þ=ðp01 2 p1Þ (3.5)
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A Mollier diagram with the pressures and salient points for a compressor blade cascade is

shown in Figure 3.8(a).

For turbines, the total pressure loss coefficient is based on reference exit conditions, i.e.,

Yp 5 ðp01 2 p02Þ=ðp01 2 p2Þ (3.6)

In this case the reference dynamic pressure is the dynamic pressure at exit if the flow were isen-

tropic. Other variations of the turbine loss coefficient are used in the literature and Horlock (1966)

gives a comprehensive list of the definitions possible.

An alternative loss parameter is sometimes used for turbines, called the energy loss coefficient, ζ,
which measures the lost kinetic energy relative to the isentropic exit kinetic energy:

ζ5 ðc22is 2 c22Þ=c22is; where 0:5c22is 5 h01 2 h2s (3.7)

Figure 3.8(b) is a Mollier diagram3 indicating the pressures and enthalpies for the flow through

a turbine cascade blade row.

The two definitions of loss coefficient yield numerical values that are almost identical at low

Mach numbers, but their values rapidly diverge as M2 increases with Yp. ζ .
A primary objective of a compressor blade is to produce a rise in static pressure as well as a

deflection of the flow angle. A relevant performance parameter is, therefore, the static pressure rise

coefficient. For compressible flow this is usually defined as

Cp 5 ðp2 2 p1Þ=ðp01 2 p1Þ (3.8a)

and for incompressible flow

Cp 5 ðp2 2 p1Þ= 1

2
ρc21

� �
(3.8b)

Flow measurements are made usually across either one or two blade pitches of the varying

values of stagnation and static pressures, p02 and p2, and the values of α2. Mass-averaged values of
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FIGURE 3.8

Mollier diagrams for the flow through: (a) a compressor blade cascade and (b) a turbine blade cascade.

3The enthalpy changes for the turbine and compressor cascades are drawn roughly equal only for expediency. In fact,

the turbine enthalpy drop will be three or four times larger than the enthalpy rise in the compressor blade row.

78 CHAPTER 3 Two-Dimensional Cascades



the performance parameters are then derived from these flow measurements. For example, the mass

flow rate is given by

_m5

ðs
0

ρcH cos α dy5

ðs
0

ρcx H dy (3.9)

A mean value of the air angle α2 can be found from integrals of tangential and axial momentum

across the pitch:

tan α2 5

ðs
0

ρcxcy dy=
ðs
0

ρc2x dy (3.10)

Finally, the mass-averaged stagnation pressure loss coefficient is

Yp 5

ðs
0

fðp01 2 p02Þ=ðp01 2 p1Þgρcx dy=
ðs
0

ρcx dy (3.11)

Figure 3.9 shows representative traverse results of Yp and α2 for a compressor cascade together

with the mass-averaged values of these parameters. The odd-looking “kinks” in the plot of α2 are

caused by the variation in the gradient of p02 across the wake and the response of a yaw meter used

in measuring flow direction. Further details are given in a paper by Dixon (1978).

Note: From this point onward, all parameters, e.g., α2, Yp, are taken as having been

mass-averaged according to the formulae just outlined.
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Typical traverse results for a compressor cascade.
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Blade surface velocity distributions
The details of the flow and velocity variations within the blade passages are not required to derive

the cascade performance metrics. However, blade surface velocity (and pressure) distributions are

used to show whether a blade achieves the velocity distributions intended in the design, and they

are helpful for understanding the way a cascade blade performs. In particular, the velocity variation

on the blade suction surface can give an indication of imminent flow separation, which would lead

to reduced turning and high loss. The relationship between surface velocity distribution and blade

performance is discussed further in Section 3.5.

3.4 Analysis of cascade forces
Lift and drag coefficients are frequently referred to in the general literature and in many later

parts of this book, especially with regard to low-speed fans and wind turbines. However, with

the advent of much higher blade speeds in compressors and turbines, the effects of compress-

ibility have become complicated matters and their usage has almost vanished. Instead, it is

now common practice just to use flow deflection and nondimensional total pressure loss in

calculating performance, as described previously. This section is included for completeness,

but it should be remembered that the material is, strictly speaking, only applicable to low-

speed turbomachines.

Consider a portion of a compressor blade cascade, as shown in Figure 3.10. The forces X and Y

exerted by a unit depth of blade upon the fluid are exactly equal and opposite to the forces exerted

by the fluid upon the blade. A control surface is drawn with end boundaries far upstream and

downstream of the cascade and with side boundaries coinciding with the median streamlines.
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FIGURE 3.10

Forces and velocities in a compressor blade cascade.
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The momentum equation is applied in the x and y directions assuming constant axial velocity,

cx, gives the force components:

X5 ðp2 2 p1Þs (3.12)

Y 5 ρscxðcy1 2 cy2Þ (3.13a)

and

Y 5 ρsc2xðtan α1 2 tan α2Þ (3.13b)

Equations (3.12) and (3.13b) are valid only for incompressible flow with total pressure losses in

the cascade but with no change in axial velocity.

Lift and drag forces
A mean velocity cm is defined by

cm 5 cx=cos αm (3.14)

where αm is itself defined by

tan αm 5
1

2
ðtan α1 1 tan α2Þ (3.15)

Considering unit depth of a cascade blade, a lift force L acts in a direction perpendicular to cm
and a drag force D in a direction parallel to cm. Figure 3.11 shows L and D as the reaction forces

exerted by the blade upon the fluid.

Experimental data are often presented in terms of lift and drag when, in fact, the data could be

of more use in the form of tangential force and total pressure loss. The lift and drag forces will

now be resolved in terms of the axial and tangential forces. Referring to Figure 3.12,

L5X sin αm 1 Y cos αm (3.16)

D5 Y sin αm 2X cos αm (3.17)

There is an immediate connection between the drag force D and the mass-averaged stagnation

pressure loss coefficient, Yp. If we consider a unit blade length, the force deficit acting over the

c1

c1cm
αm

αm

c2
c2

cx

D

L

FIGURE 3.11

Lift and drag forces exerted by a unit span of a cascade blade upon the fluid.
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span as a result of the total pressure losses is sΔp0, where Δp05 p012 p02 for the cascade. The

drag is the force component shown in Figure 3.12, which is

D5 sΔp0 cos αm (3.18)

This is a result of fundamental importance, but it is only applicable to incompressible flows.

Clearly, the drag force D5 0 when Δp05 0. From Eqs (3.17) and (3.18), the drag force is

D5 cos αmðY tan αm 2XÞ5 sΔp0 cos αm (3.19)

Rearranging the above equation, we obtain X

X5 Y tan αm 2 sΔp0 (3.20)

Substituting Eq. (3.20) into Eq. (3.16), we find

L5 sin αmðY tan αm 2 sΔp0Þ1 Y cos αm 5 Y sec αm 2 sΔp0 sin αm (3.21)

Substituting for Y using Eq. (3.13b), the lift becomes

L5 ρsc2xðtan α1 2 tan α2Þsec αm 2 sΔp0 sin αm (3.22)

Lift and drag coefficients
These coefficients are normally defined in terms of incompressible flow parameters. The lift coeffi-

cient is conventionally defined as

CL 5 L=
1

2
ρc2ml

� �
(3.23)

where cm5 cx/cos αm and l5 blade chord. The drag coefficient, similarly, is defined as

CD 5D=
1

2
ρc2ml

� �
(3.24a)
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FIGURE 3.12

Axial and tangential forces exerted by unit span of a blade upon the fluid.
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Using the following incompressible definition of stagnation pressure loss coefficient,

ζ5Δp0=
1

2
ρc2m

� �
(3.24b)

and substituting for D with Eq. (3.18) then using Eq. (3.24b), we find

CD 5
sΔp0 cos αm

1=2ρc2ml
5

sζ1=2ρc2m cos αm

1=2ρc2ml
5

s

l
ζ cos αm (3.25)

Again, we can write CL in a more convenient form. From Eq. (3.22),

CL 5 ½ρsc2xðtan α1 2 tan α2Þsec αm 2 sΔp0 sin αm�=
1

2
ρc2ml

� �

Therefore,

CL 5 2
s

l
cos αmðtan α1 2 tan α2Þ2CD tan αm (3.26a)

Within the normal range of operation of the flow through a cascade, values of CD are very

much less than those of CL. Thus, the approximation is occasionally found to be useful, i.e.,

L

D
5

CL

CD

5
2

ζ
ðtan α1 2 tan α2Þ (3.26b)

Circulation and lift
Note: The classical analysis of the lift developed by a single isolated aerofoil is based upon the

ideal case, when D5 0, and the flow is incompressible, i.e., ρ is constant.

The Kutta�Joukowski theorem states that the lift force L is

L5Γρc (3.27)

where c is the relative velocity between the aerofoil and the fluid at infinity and Γ is the circulation

about the aerofoil. This theorem is of fundamental importance in the development of the theory of

aerofoils (Glauert, 1959).

With the assumption that stagnation pressure losses are absent, the lift force per unit span of a

blade in cascade, using Eq. (3.22), becomes

L5 ρsc2xðtan α1 2 tan α2Þsec αm 5 ρscmðcy1 2 cy2Þ (3.28)

Now the circulation is the contour integral of velocity around a closed curve. For the cascade

blade, the circulation is

Γ5 sðcy1 2 cy2Þ (3.29)
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Combining Eqs (3.28) and (3.29),

L5Γρcm (3.30)

As the spacing between the cascade blades is increased without limit (i.e., s-N), the inlet

and outlet velocities to the cascade, c1 and c2, become equal in magnitude and direction.

Thus, c15 c25 cm and Eq. (3.30) becomes the same as the theorem of Kutta�Joukowski stated

previously for an isolated aerofoil.

3.5 Compressor cascade performance
Within compressor blades, the flow is moving from a low static pressure at inlet toward a higher

static pressure at exit. The fundamental difficulty in compressors is getting the flow to negotiate

this pressure rise without generating high loss or separating. The axial compressor designer must

choose an appropriate level of blade loading, such that the flow can achieve the required pressure

rise, while not overdesigning the compressor, such that there are too many blades. In addition, com-

pressors are required to perform satisfactorily over a range of operating conditions and the designer

must produce a blade geometry that can tolerate variations in the operating point.

This section describes the key phenomena present in compressor cascades that determine their

design and performance. It also presents some research into the aerodynamics of compressor blades

and the correlations that these past studies have established.

Compressor loss and blade loading
Many experimental investigations have confirmed that the efficient performance of compressor cas-

cade blades is limited by the growth and separation of the blade surface boundary layers. One of

the aims of cascade research is to establish the generalized loss characteristics and stall limits of

conventional blades. This task is made difficult because of the large number of factors that can

influence the growth of the blade surface boundary layers, including surface velocity distribution,

blade Reynolds number, inlet Mach number, free-stream turbulence and unsteadiness, and surface

roughness. However, the analysis of experimental data have led to several correlation methods that

enable the first-order behavior of the blade losses and fluid deflection to be predicted with suffi-

cient accuracy for many engineering purposes.

The correlations of Lieblein (1959) and Johnson and Bullock (1965) are based on observations that

high levels of velocity diffusion on the surfaces of compressor blades tend to produce thick boundary

layers and eventual flow separation. Lieblein showed that in the region of minimum loss, the wake

thickness and consequently the loss in total pressure are primarily related to the diffusion in velocity

on the suction surface of the blade. He reasoned that the boundary layer on the suction surface of

conventional compressor blades contributes the largest share of the blade wake, and, therefore, the

suction-surface velocity distribution becomes the main factor in determining the total pressure loss.

A typical velocity distribution is shown in Figure 3.13 derived from surface pressure measure-

ments on a compressor cascade blade operating in the region of minimum loss. From this it is

clear that the fall in velocity on the suction surface is high and much greater than the overall
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change, i.e., cmax;s 2 c2cc1 2 c2: Lieblein defined a term to quantify this diffusion on the suction

surface, which he called the local diffusion factor,

DFloc 5 ðcmax;s 2 c2Þ=cmax;s (3.31)

Since the local diffusion factor was relatively hard to determine, Lieblein, Schwenk, and

Broderick (1953) developed the much used diffusion factor (DF) based on a theoretical surface

velocity distribution similar to those actually measured on the NACA 65 Series and the

British C4 Series cascades. This parameter requires knowledge of only the inlet and exit

velocities from the blade and the pitch�chord ratio and is therefore very useful for prelimi-

nary design purposes:

DF5 ð12 c2=c1Þ1
cθ1 2 cθ2

2c1

� �
s

l
(3.32)

The first term on the right-hand side, 12 c2/c1, represents the mean deceleration of the flow.

The second term, (cθ12 cθ2)/2c1, represents the flow turning. The pitch�chord ratio, s/l, is impor-

tant as this determines how well the flow is guided by the blades. A low value implies lower pres-

sure gradients across the blade passages required to turn the flow and, hence, less diffusion.

Lieblein showed that the loss in a blade row increases rapidly as the flow starts to separate, which

occurs when the diffusion factor exceeds about 0.6. Typically, a well-designed blade with moderate

loading will operate with a diffusion factor around 0.45. Although it was developed using just a

small range of compressor blade designs operating at a minimum loss condition, the diffusion

factor is widely applied to a range of compressor designs, both compressible and incompressible,

for preliminary design purposes.

Another, even simpler, measure of the overall amount of diffusion through a compressor blade

row is known as the De Haller number, c2/c1. This parameter, first proposed in De Haller (1953),
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Typical velocity distribution on a compressor cascade blade (at or near minimum loss condition).
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is still often used to limit the maximum pressure rise across a compressor blade row. De Haller’s

rule recommends that:

c2=c1 $ 0:72 (3.33)

Fluid deviation
The flow leaving a compressor blade does not follow the blade camber line at the trailing edge.

This deviation arises partly because the flow is diffusing within the blade passages. This means

that the streamlines are diverging and therefore the flow is not moving in a single direction. This

effect is exacerbated by the spacing of the blades because the flow is guided less by the blades

when they are further apart. The deviation is further increased by viscous effects since any bound-

ary layer growth on the blade surfaces will generate a blockage that modifies the effective blade

shape.

Howell (1945a, b) and Carter (1950) developed an empirical relationship between the nominal

deviation, δ�, occurring at the nominal (design) incidence angle i�, and the blade geometry:

δ � 5mθðs=lÞn (3.34)

where n� 0.5 for compressor cascades and n� 1 for compressor inlet guide vanes (these can be

considered as turbine blades because they accelerate the flow). Equation (3.34) is now widely

referred to as Carter’s rule. It demonstrates that the deviation increases with pitch�chord ratio and

blade camber. The value of m depends upon the precise shape of the camber line and the blade

stagger. A typical correlation for m in a compressor cascade is

m5 0:23ð2a=lÞ2 1α�
2=500 (3.35)

where the maximum camber of the blade is at distance a from the leading edge.

Deviation increases further as the incidence changes from the nominal condition and

any flow separation will cause a rapid increase in deviation. An example of the detailed

variation of exit angle with incidence and inlet Mach number is shown later, in

Figure 3.20.

EXAMPLE 3.1

At its design operating point, a cascade has an inlet flow velocity of 150 m/s at an angle of 50�

and an exit flow velocity of 114 m/s at an angle of 30�. Calculate the diffusion factor, DF, and

the De Haller number if the pitch/chord ratio is 0.85. If the blade has a circular arc camber line

and operates with 3� of incidence, find the deviation and the blade camber using Carter’s rule.

Solution

DF5 ð12 c2=c1Þ1
cθ1 2 cθ2

2c1

� �
s

l
5 12

114

150

� �
1

150 sin 50� 2 114 sin 30�

23 150

� �
0:85
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.DF5 0:241 0:1933 0:855 0:404

The De Haller number,

c2=c1 5 114=1505 0:76

The above values are reasonable for a compressor blade at design.

Carter’s deviation rule for a compressor blade is δ�5mθðs=lÞ0:5
This can be written as α�

2 2α0
2 5mðα0

1 2α0
2Þðs=lÞ0:5

The parameter m can be estimated directly from Eq. (3.35). For a circular arc blade, a/l5 0.5

and the exit flow angle is known,

m5 0:23ð2a=lÞ2 1α�
2=5005 0:233 11 30=5005 0:29

The inlet metal angle is α0
1 5α1 2 i5 502 35 47�

The deviation equation can now be rearranged to find the exit metal angle:

α0
2 5

α�
2 2α0

1m
ffiffiffiffiffiffi
s=l

p
12m

ffiffiffiffiffiffi
s=l

p 5
302 473 0:293

ffiffiffiffiffiffiffiffiffi
0:85

p

12 0:293
ffiffiffiffiffiffiffiffiffi
0:85

p 5 23:8�

Hence, the deviation and camber are δ� 5α�
2 2α0

2 5 302 23:85 6:2�

θ5α0
1 2α0

2 5 472 23:85 23:2�

Incidence effects
Figure 3.14 shows a schematic of the flow around a compressor blade for different incidence

conditions as well as the corresponding surface velocity distributions for a compressor cascade.

At the design point of a compressor blade, the inlet flow angle is almost parallel to the camber

line at the leading edge (i.e., the inlet blade angle). Hence, there is close to zero incidence and

the surface pressure distribution for the blade should be smooth and continuous. In this case,

almost all the deflection, or turning, of the flow is achieved via the camber of the blades. As

the incidence is increased, the flow impinges on the blade pressure surface, and the flow on

the suction surface must rapidly accelerate around the leading edge then decelerate to a speed

comparable with the mainstream flow. This leads to very high local diffusion close to the front

of the blade and sometimes what is referred to as a leading edge spike on the blade suction

surface. The diffusion can cause boundary layer transition and, thus, higher blade losses, and at

very high incidences the flow will separate, leading to stall. With positive incidence, the blade

loading is higher and the flow deflection increased. Some of the turning can be thought of as

being due to the blade camber, and some due to the incidence. At negative incidence, the flow

accelerates around the leading edge onto the pressure surface. The pressure distributions on the

front of the suction and pressure surfaces swap and the diffusion on the pressure surface is

increased. The flow deflection is reduced and the loading is low. At very high values of nega-

tive incidence, the diffusion becomes so high that the flow can separate on the pressure

surface.
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The tolerance of the compressor blades to incidence variations is critical to enable stable and

efficient off-design operation of a compressor. When a compressor operates at mass flow rates

or rotational speeds that are away from the design point, the blades will be subject to incidence

variations, as detailed in Chapter 5. Typically, a compressor blade needs to tolerate at least 6 5�

variation of incidence without stalling, although the exact requirements will depend on the
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FIGURE 3.14

Effect of incidence on the surface velocity distributions around a compressor blade: (a) design incidence, (b)

positive incidence, and (c) negative incidence.
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application. As shown later, the variations in incidence that can be tolerated by a compressor

aerofoil reduce as the inlet Mach number increases.

Incompressible cascade analysis
Many studies of compressor cascades are carried out at low speed, where compressibility effects

can be neglected. This enables several simplifications to be made. In incompressible flow with con-

stant axial velocity, the Lieblein diffusion factor in Eq. (3.32) can be rewritten as

DF5 12
cos α1

cos α2

� �
1

s

l

cos α1

2
ðtan α1 2 tan α2Þ (3.36)

Thus, once the inlet and exit flow angles are fixed, a required level of diffusion factor can be

used to set the pitch�chord ratio.

Lieblein (1965) developed a correlation between local diffusion factor and the wake momentum

thickness to chord ratio, θ2/l, at the reference incidence (midpoint of working range) for a range of

compressor blades. The wake momentum thickness, with the parameters of the flow model in

Figure 3.16, is defined as

θ2 5
ðs=2
2s=2

ðc=cmaxÞð12 c=cmaxÞdy (3.37)

Figure 3.16 shows the full blade wake in the exit plane of the cascade. Using Newton’s second

law of motion, we now equate the total loss in momentum due to friction with the drag force. This,

of course, includes the boundary layers on both blade surfaces. Using Eq. (3.18), we get

D5 s Δp0 cos αm 5 θ2ρc22 (3.38)

where θ25 θs1 θp, i.e., the sum of the momentum thicknesses on the pressure and suction surfaces

at the trailing edge plane.

cmax c

0
y

s
2– s

2

δsδp

FIGURE 3.15

Blade wake downstream of the exit of a compressor blade cascade.

893.5 Compressor cascade performance



From the definition of drag coefficient, Eq. (3.24a) combined with Eq. (3.38), it can be shown that

CD 5 ζðs=1Þcos αm 5 2ðθ2=lÞcos2 αm=cos
2 α2 (3.39)

This equation provides a useful link between the drag coefficient and the wake momentum

thickness.

Lieblein’s correlation of momentum thickness to chord ratio with the local diffusion factor is

plotted in Figure 3.17. This curve represents the equation

θ2
l
5 0:004= 11 1:17 ln ð12DFlocÞ½ � (3.40)

where DFloc is as defined in Eq. (3.31). Equations (3.39) and (3.40) provide a simple relationship

between the blade stagnation pressure loss coefficient and the suction-surface velocity distribution.

Note that the practical limit of efficient operation corresponds to a local diffusion factor of around 0.5.

EXAMPLE 3.2

A low-speed compressor cascade is to be tested with a flow inlet angle, α15 55�, and a flow

exit angle, α25 30�. The expected design value of the local diffusion ratio, DFloc, is 0.4. Find

a safe value for the pitch�chord ratio if the maximum value of the diffusion factor, DF, is

assumed to be 0.6. Using Eqs (3.26), (3.39), and (3.40), determine values for ζ , CD, and CL.
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Blade wake downstream of the exit of a compressor blade cascade.
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Solution
Using Eq. (3.33) with DF5 0.6, the maximum allowable pitch�chord ratio is

s

l
#

2 cos α1=cos α2 2 0:8

cos α1ðtan α1 2 tan α2Þ
5

23 0:5736=0:8662 0:8

0:57363 ð1:42812 0:5774Þ 5 1:075

From Eq. (3.40), θ2/l5 0.004/[11 1.17 ln(12 0.4)]5 0.01.

From Eq. (3.39), CD5 2(θ2/l)cos
2 αm/cos

2 α2, where tan αm 5 ð1=2Þðtan α1 1 tan α2Þ5 1:00275:
Therefore, αm5 45.08�, and

CD 5 23 0:013 cos2 45:08=cos2 305 0:013

From Eq. (3.25), the loss coefficient,

ζ5CD

. s

l
cos αm 5 0:013=ð1:0753 cos 45Þ5 0:017

From Eq. (3.26a), CL5 2s/l cos αm(tan α12 tan α2)2CD tan αm; therefore,

CL 5 23 1:0753 cos 45:083 ðtan 552 tan 30Þ2 0:0133 tan 45:085 1:28
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Mean variation of wake momentum thickness�chord ratio with suction-surface local diffusion factor at

reference incidence condition.

(Adapted from Lieblein, 1959.)
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Effects of Mach number
When flow velocities through a cascade are such that Mach numbers are above 0.3, the flow can

no longer be treated as incompressible. The peak Mach number on the surface of a conventional

compressor blade is significantly higher than the inlet Mach number. If the inlet Mach number

exceeds about 0.7, the flow over the blade will become transonic, leading to performance deteriora-

tion. Figure 3.18 shows the surface Mach number distribution around a compressor aerofoil in a

cascade at low incidence for different levels of inlet Mach number. Once the local Mach number

on the suction surface exceeds 1, additional losses arise due to the presence of shock waves. In

addition, the rapid pressure rise across the shock waves leads to thicker boundary layers and there-

fore greater viscous losses. The higher diffusion on the suction surface at high inlet Mach number

means that the blade boundary layers are likely to separate at modest levels of positive incidence.

In practice, the effects of high inlet Mach numbers are alleviated by using very thin blades and

low camber. These features help to make the peak suction-surface Mach number not much higher

than the inlet Mach number. As shown in Chapter 5, such blades can be used for highly efficient

transonic compressor rotors with relative inlet Mach numbers up to 1.5.

Figure 3.19 is a diagram showing the mean-line flow through a high-speed compressor cascade.

For any cascade, given the inlet angle, α1, the inlet Mach number, M1, and the exit Mach number,

M2, it is possible to calculate the exit angle, and thus the deviation, if the cascade loss coefficient,
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FIGURE 3.18

Variation of surface Mach number with inlet Mach number for a C4 compressor blade at low incidence
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Mean-line analysis of compressible flow through a compressor cascade.
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Yp, is known. This is done using the one-dimensional compressible flow relations for the flow

through the cascade. The ratio of stagnation to static pressure and the nondimensional mass flow

are both functions of inlet Mach number:

p01

p1
5 11

γ21

2
M2

1

� �γ=ðγ21Þ
(from Eq.(1.36))

_m

ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p

sH1cos α1p01
5QðM1Þ (from Eq.(1.39))

From the definition of loss coefficient, Yp (Eq. (3.5)), the cascade stagnation pressure ratio can

be found:

p02

p01
5 12 Yp 12

p1

p01

� �
(3.41)

For a stationary blade row, T015 T02. Thus, the nondimensional mass flow at exit from the cas-

cade can be written:

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT02

p

H2s cos α2p02
5QðM2Þ5QðM1Þ3

H1

H2

3
p01

p02
3

cos α1

cos α2

Assuming the AVDR of the cascade is equal to 1, then H1=H2 5 1; and the preceding can be

written in the following form to give the flow exit angle:

cos α2 5
QðM1Þ
QðM2Þ

3
p01

p02
3 cos α1 (3.42)

Combining Eqs (3.41) and (3.42) gives the exit angle in terms of the inlet conditions, the loss

coefficient, and the exit Mach number. Equally, the preceding expression can be used to find the

exit Mach number or the loss coefficient in terms of the other quantities.

The effect of negative incidence at a high inlet Mach number can be demonstrated using an

analysis similar to that presented previously to find when a compressor cascade will choke.

Consider a compressor cascade with a minimum flow area, A�, as pictured in Figure 3.20. This

minimum flow area is usually referred to as the throat of the blade passage. Applying conservation

of mass between the inlet and the throat,

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p

H1s cos α1p01
5QðM1Þ5

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p

A � P�
0

p�0
p01

3
A�

H1s cos α1

(3.43)

When the flow chokes in the blade passage, the Mach number at the throat is unity and, therefore,

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p

A � P�
0

5Qð1Þ5 constant

In the best case, there will be little loss in stagnation pressure between inlet and the throat and

p�0 5 p01. In this case, Eq. (3.43) can be simplified to give the inlet flow angle at which choking occurs:

cos α1 5
Qð1Þ
QðM1Þ

A�

H1s
(3.44)
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All the terms on the right-hand side of Eq. (3.44) are constant except Q(M1). This equation

shows that, as the inlet Mach number increases, the cosine of the inlet angle when choking occurs

decreases (and thus the actual angle increases). Therefore, the amount of negative incidence possi-

ble before choking occurs is reduced as the inlet Mach number increases. To avoid choking either

the inlet angle must be increased or the inlet Mach number reduced.
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To conclude this section, Figure 3.14 shows typical variations in loss coefficient and exit angle

for a compressor cascade as a function of the inlet incidence angle and inlet Mach number. The

exact form of these plots will depend on the detailed cascade geometry, and they can only be deter-

mined by a series of cascade tests or detailed numerical analysis. However, the trends shown are

seen in all compressor blades. For a given inlet Mach number, there is a range of incidence for

which the cascade is low loss and low deviation. Outside this range, both the loss and deviation

rise rapidly. The variation of a compressor blade row loss coefficient with incidence is often

referred to as a loss bucket or a loss loop. The results plotted in Figure 3.14 clearly show that as

Mach number increases the tolerance of the cascade to incidence is reduced. The reduced tolerance

to positive incidence occurs due to the greater suction-surface diffusion present at higher inlet

Mach numbers. The reduced tolerance to negative incidence occurs due to choking of the cascade

blade passage. It is only at low inlet Mach numbers that diffusion on the pressure surface can limit

the performance at negative incidence.

3.6 Turbine cascades
There is a fundamental difference between the flow in turbine cascades and that in compressor

cascades that needs emphasizing. In turbine blade rows, the pressure is falling and the flow is

accelerating. This means that

i. the boundary layers are much more stable and remain attached to the blades;

ii. the blades can accept a much higher loading without the danger of boundary layer

separation;

iii. the flow deflection in a turbine blade row can be greater than 120�;
iv. the ratio of exit to inlet velocity, c2/c1, can be between 2 and 4;

v. the diffusion factor on the suction surface, DF, is typically only about 0.15, so there is no

danger of boundary layer separation except at very low values of Reynolds number.

Figure 3.21 shows a sketch of the flow through an axial flow turbine cascade with the corre-

sponding surface velocity distribution. This illustrates many of the features described previously

and it is worth noting the rapid reduction in flow area through the cascade, which is what generates

the high acceleration along the streamtube. The high acceleration and low levels of diffusion

throughout the flow-field lead to turbine cascades having a wide range of low loss performance.

This is in contrast to compressor cascades, which have a rather narrow range. This is also the basic

reason why the pressure drop across turbine blades can be much higher than the pressure rise across

compressor blades and why there are far fewer turbine stages than compressor stages in a turbojet

engine.

Turbine loss correlations
A number of approaches have been made to predict the total pressure loss coefficients and flow

deviation angles to the geometry of the turbine cascade and the incoming flow. A detailed account

of the different methods and comparison of results found have been given by Horlock (1966),

Dunham and Came (1970), Kacker and Okapuu (1981), Craig and Cox (1971), and others. In the
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following account, it seems reasonable to limit the discussion to just two of the more prominent

methods, namely,

i. the correlation of Ainley and Mathieson (1951);

ii. the correlation of Soderberg (1949).

Before embarking on the details of these correlations, it seems only fair to mention that so far

as their accuracy goes that Soderberg’s method is adequate for making rapid estimates of turbine

efficiency (which is dealt with in Chapter 4) and, according to Horlock (1966), can give efficien-

cies within 63%. However, these correlations are now quite dated and are not expected to be accu-

rate for modern, highly loaded transonic turbine blade rows. Nowadays, correlations may be used

during the preliminary design of turbines, but detailed cascade testing or computational analysis

would always be applied to accurately determine the blade losses.

Correlation of Ainley and Mathieson
Ainley and Mathieson (1951) (A&M) reported a way of estimating the performance of an axial flow

turbine, which has been widely used. The method determines the total pressure loss and gas efflux

angle for each row of a turbine stage at a single reference diameter (the mean of the blade row inner

c /c2
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c2

c1

α1

α2

FIGURE 3.21

Flow through an axial flow turbine cascade.
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and outer diameters) and under a wide range of inlet conditions. Dunham and Came (1970) gathered

together details of several improvements to the method, which gave better performance prediction

than the original method, particularly for small turbines. When the blading is competently designed,

the revised method has been found to give reliable predictions of efficiency to within 62%.

According to A&M’s method, the total pressure loss in a turbine is composed of three parts:

i. a profile loss;

ii. a secondary loss;

iii. a tip clearance loss

and all of these are needed to determine the overall performance of a turbine stage.

In the following analysis, we are concerned only with the profile loss, since this is the compo-

nent relevant to turbine cascades. The other two components of turbine loss, which require fairly

extensive descriptions, are considered in Chapter 4.

The profile loss coefficient, defined by Eq. (3.6), is determined initially at zero incidence

(i5 0). At any other incidence, the profile loss ratio Yp/Yp(i50) is assumed to be defined by a unique

function of the incidence ratio i/is as shown in Figure 3.22, where is is the stalling incidence, which

is defined as the incidence where the profile loss ratio Yp=Ypði50Þ 5 2:0.
Next, A&M correlated the profile losses of turbine blade rows against space�chord ratio s/l,

fluid outlet angle α2, blade maximum thickness�chord ratio tmax/l, and blade inlet angle. The varia-

tion of Yp(i50) against the space�chord ratio s/l is shown in Figure 3.23(a) for nozzle blade rows

and in Figure 3.23(b)for impulse blading, both at various flow outlet angles.

For the sort of blading normally employed (intermediate between nozzle blades and impulse

blades), the zero incidence total pressure loss coefficient devised by A&M is

Ypði50Þ 5 Ypðα150Þ 1
α1

α2

� �2

Ypðα15α2Þ 2 Ypðα150Þ
� �( )

tmax=l

0:2

� �α1=α2

(3.45)
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FIGURE 3.22

Variation of profile loss with incidence for typical turbine blading.

(Adapted from Ainley and Mathieson, 1951.)

973.6 Turbine cascades



All the values of Yp are taken at the same space�chord ratio and outlet flow angle.

Equation (3.45) includes a correction for the effect of the thickness�chord ratio and is valid in

the range 0.15# tmax/l# 0.25. If the actual blade has a tmax/l greater or less than the limits

quoted, A&M recommended that the loss should be taken as equal to a blade having tmax/l either

0.25 or 0.15.

A feature of the losses given in Figure 3.23 is that, compared with the impulse blades, the noz-

zle blades have a much lower total pressure loss coefficient. This observation confirms the results

shown in Figure 3.24, that flows in which the mean pressure is falling always have a lower loss

coefficient than flows in which the mean pressure is constant or increasing.

0.08

0.04

0 0.2 0.4 0.6 0.8 1.0 1.2

40°

50°
40°

60°

55°

65°

0.08

0.12

0.16

0.20

0.04

0 0.2

P
ro

fil
e 

lo
ss

 c
oe

ffi
ci

en
t, 

Y
p

P
ro

fil
e 

lo
ss

 c
oe

ffi
ci

en
t, 

Y
p

0.4 0.6
Pitch–chord

Pitch–chord

(b)

(a)

0.8 1.0 1.2

α2= 80°

α 2
=70°

70°

60°

FIGURE 3.23

Profile loss coefficients of turbine nozzle and impulse blading at zero incidence: (a) nozzle blades, α15 0 and
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(Adapted from Ainley and Mathieson, 1951.)
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Reynolds number correction
A&M obtained their data for a mean Reynolds number of 23 105 based on the mean chord and

exit flow conditions from the turbine state. They recommended that, for lower Reynolds numbers,

down to 53 104, a correction be made to stage efficiency according to the rough rule

ð12 ηttÞ~Re21=5

Soderberg’s correlation
A relatively simple method of estimating turbine blade row losses is to assemble the performance

data on the overall efficiencies from a wide variety of turbines and from this determine the individual

blade row stagnation pressure losses. Such a system was developed by Soderberg (1949) from a large

number of tests performed on steam turbines and on cascades and extended to fit data obtained from

small turbines with very low aspect ratio blading (small height�chord). Soderberg’s method was

intended only for turbines conforming to the standards of “good design,” discussed later.

Horlock (1960) critically reviewed several widely used methods of obtaining design data for

turbines. His paper confirms the claim made for Soderberg’s correlation that, although based on rel-

atively few parameters, its accuracy is comparable with the best of the other methods available at

the time. Soderberg found that with the optimum space�chord ratio (using Zweifel’s criterion),
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Variation in profile loss with incidence for typical turbine cascade blades.

(Adapted from Ainley, 1948.)
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turbine blade losses could be correlated with space�chord ratio, blade aspect ratio, blade

thickness�chord ratio, and Reynolds number.

For turbine blade rows operating at the optimum load coefficient, with a Reynolds number

of 105 and aspect ratio, H/b5 blade height/axial chord, of 3, the “nominal” loss coefficient,

ζ� (defined by Eq. (3.7)) is a simple function of the fluid deflection angle, ε5α1 1α2, for a given

thickness�chord ratio (tmax/l):

ζ� 5 0:041 0:06
ε

100

� �2
(3.46)

where ε is in degrees. Values of ζ� are drawn in Figure 3.25 as a function of deflection angle ε for

several ratios of tmax/l.

This expression fits the Soderberg curve (for tmax/l5 0.2) quite well with ε# 120� but is less

accurate at higher deflections. For turbine rows operating at zero incidence, which is the basis

of Soderberg’s correlation, the fluid deflection is little different from the blading deflection since,

for turbine cascades, deviations are usually small. If the aspect ratio H/b is larger or less than 3,

a correction to the nominal loss coefficient ζ� is made as follows: for nozzle rows,

11 ζ1 5 ð11 ζ�Þð0:9931 0:021b=HÞ (3.47a)

and for rotors,

11 ζ1 5 ð11 ζ�Þð0:9751 0:75b=HÞ (3.47b)

where ζ1 is the energy loss coefficient at a Reynolds number of 105.

A further correction can be made if the Reynolds number is different from 105. As used in this

section, the Reynolds number is based upon exit velocity c2 and the hydraulic diameter Dh at the

throat section, defined by

Re5 ρ2c2Dh=μ
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Soderberg’s correlation of the turbine blade loss coefficient with fluid deflection.

(Adapted from Horlock, 1960.)

100 CHAPTER 3 Two-Dimensional Cascades



where for a cascade geometry, Dh5 2sH cos α2/(s cos α21H). (Note: Hydraulic diame-

ter5 43 flow area4perimeter.)

The Reynolds number correction is

ζ2 5
105

Re

� �1=4

ζ1 (3.48)

Soderberg’s method of loss prediction can be used to estimate turbine efficiencies over a wide

range of Reynolds numbers and aspect ratios when additional corrections are included to allow for

tip leakage and disk friction. The method has been shown to be useful by Lewis (1996) and by

Sayers (1990).

Mach number effects on loss
Figure 3.26 shows plots of how the various components of loss coefficient, ζ , vary with exit Mach

number, M2, for a typical high-speed turbine cascade, taken fromMee et al. (1992). This plot

demonstrates how the loss coefficient of a turbine blade rises rapidly as M2 approaches and exceeds

unity. This rise in loss is not accounted for in the previous correlations, which do not include func-

tions of Mach number. It is partly caused by the shock waves, but it is also due to mixing and the
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Variation of loss coefficient with Mach number for a turbine cascade at a Reynolds number of 13 106.

(From Mee et al., 1992.)
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complex trailing edge flow pattern. This pattern generates a low-pressure region at the trailing

edge, causing a drag force to act on the blade. This region is investigated in detail within

Sieverding, Richard, and Desse (2003).

The Zweifel criterion
For turbine cascade blades, there is an optimum space�chord ratio that gives a minimum overall

loss. Figure 3.27 illustrates the way the velocity distribution varies around the surface of a turbine

blade in a cascade at three values of space�chord ratio. If the spacing between the blades is made

small, the fluid receives the maximum amount of guidance from the blades, but the friction losses

will be large. On the other hand, with the same blades spaced well apart, friction losses are small

but, because of poor fluid guidance, the losses resulting from flow separation are high. These con-

siderations led Zweifel (1945) to formulate his criterion for the optimum space�chord ratio of tur-

bine blades having large deflection angles. Essentially, Zweifel’s criterion is simply that the ratio of

an “actual” to an “ideal” tangential blade loading has an approximately constant value for minimum

losses. The tangential blade loads are obtained from the real and ideal pressure distributions on

both blade surfaces, as described here.

Figure 3.28 indicates a typical pressure distribution around one blade in an incompressible tur-

bine cascade, curves P and S corresponding to the pressure (or concave) side and suction (convex)

side, respectively. The pressures are projected parallel to the cascade front so that the area enclosed

between the curves S and P represents the actual tangential blade load:

Y 5 _mðcy1 1 cy2Þ (3.49)

To give some idea of blade load capacity, the real pressure distribution is compared with an

ideal pressure distribution giving a maximum load Yid without risk of fluid separation on the S sur-

face. The conditions for this ideal load are fulfilled by p01 acting over the whole P surface and p2
acting over the whole S surface. With this pressure distribution, the ideal tangential load is

Yid 5 ðp01 2 p2ÞbH (3.50)

c/c2

1.0
1.2

Axial distance

Low s /b

High s /b Optimum blade
spacing  

FIGURE 3.27

Optimum space�chord ratio for a turbine cascade.
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where b is the axial chord of the blade. For incompressible, loss-free flow, ðp01 2 p2Þ5 ð1=2Þρc22:
If the axial velocity is also constant (i.e., AVDR5 1), then the mass flow, _m5 ρHscx, and the ratio

of actual to ideal blade force is given by

Z5 Y=Yid 5
_mðcy1 1 cy2Þ
ðp01 2 p2ÞbH

5
ρHsc2xðtan α1 1 tan α2Þ
1=2ρc2x sec2 α2bH

This can be simplified to give

Z5 Y=Yid 5 2ðs=bÞcos2 α2ðtan α1 1 tan α2Þ (3.51)

Zweifel found from a number of experiments on turbine cascades that at low Mach numbers,

for minimum losses, the value of Z was approximately 0.8. Thus, for specified inlet and outlet

angles, the optimum space�axial chord ratio is

s=b5 0:4=½cos2 α2ðtan α1 1 tan α2Þ� (3.52)

This shows that highly turning turbine blades, i.e., large (tan α11 tan α2), need to have a low

pitch�axial chord ratio, whereas highly accelerating blades that have a high exit angle, i.e., small

cos2 α2, can be spaced further apart.

According to Horlock (1966), Zweifel’s criterion accurately predicts optimum space�chord

ratio for the data of A&M only for outlet angles of 60�70�. At other outlet angles, the criterion

gives a less accurate estimate of optimum space�axial chord ratio, a conclusion supported by

Aungier (2003). For modern blade designs, higher values of Z are common, particularly in the low-

pressure turbines of jet engines, where there is a need to minimize the overall turbine weight and

thus reduce the number of aerofoils required. Japikse and Baines (1994) suggest that the value of

Zweifel’s coefficient used may be in excess of 1 in such cases.

For compressible flow turbine cascades, the assumptions used in deriving Eq. (3.51) are no longer

valid and the compressible value of Z must be derived from Eqs (3.49) and (3.50), i.e.,

Z5 Y=Yid 5
_mðcy1 1 cy2Þ
ðp01 2 p2ÞbH

(3.53)
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FIGURE 3.28

Typical pressure distribution around a low-speed turbine cascade blade.
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The optimum value of Z, as just defined, is found to decrease as the exit Mach number rises.

This reduction occurs because the ideal dynamic pressure (p012 p2) increases rapidly with Mach

number leading to a larger ideal blade force. For high Mach numbers, the coefficient can be evalu-

ated using compressible flow relations as demonstrated in Example 3.4.

EXAMPLE 3.3

A two-dimensional linear turbine cascade operates in air with an inlet flow angle of 22� and an

inlet Mach number of 0.3. The exit Mach number is measured as 0.93 with an exit flow angle of

61.4�. Calculate the ratio of inlet stagnation pressure to exit static pressure and determine the

cascade stagnation pressure loss coefficient. If, for this operating condition, the Zweifel loading

coefficient required for the cascade is 0.6, determine the pitch to axial chord ratio for the blades.

Solution
Applying continuity from inlet to exit of the cascade,

_m
ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p
Hs cos α1p01

5QðM1Þ5
_m

ffiffiffiffiffiffiffiffiffiffiffi
cpT02

p
Hs cos α2p02

3
cos α2

cos α1

3
p02

p01

For a cascade, the stagnation temperature is constant, and thus, T025 T01. Rearranging the pre-

ceding equation allows the stagnation pressure ratio to be found by using compressible flow tables:

p02

p01
5

QðM1Þ
QðM2Þ

3
cos α1

cos α2

5
0:6295

1:2756
3

cosð22�Þ
cosð61:4�Þ 5 0:9559

The ratio of inlet stagnation to exit pressure is found from

p01

p2
5

p02

p2
3

p01

p02
5

1

0:57213 0:9559
5 1:829

The cascade loss coefficient can then be determined:

Yp 5
p01 2 p02

p01 2 p2
5

12 p02=p01
12 p2=p01

5
12 0:9559

12 1:82921
5 0:0973

The Zweifel coefficient can be expressed in terms of nondimensional groups that are each a

function of Mach number. By expressing the Zweifel coefficient in this way, the compressible

flow tables can then be used to evaluate each of the parameters required:

Z5
_mðcy1 1 cy2Þ
ðp01 2 p2ÞbH

5
_m

ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p
Hs cos α1p01

3
c1 sin α1=

ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p
1 c2 sin α2=

ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p	 

3Hs cos α1

ð12 p2=p01ÞbH
The Zweifel coefficient is then simplified to the following function of the blade pitch to axial

chord ratio, the inlet and exit Mach numbers and the flow angles:

Z5QðM1Þ3
c1=

ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p
3 sin α1 1 c2=

ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p
3 sin α2

	 

3 cos α1

ð12 p2=p01Þ
3

s

b
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Rearranging this equation to find the pitch to axial chord ratio gives

s

b
5

ð12 p2=p01ÞZ
QðM1Þ3 c1=

ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p
3 sin α1 1 c2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpT01 3 sin α2

p	 

3 cos α1

Putting in the values and using the compressible flow tables where needed,

s

b
5

ð12 1:82921Þ3 0:6

0:62953 ½0:18813 sinð22�Þ1 0:54313 sinð61:4�Þ�3 cosð22�Þ 5 0:851

Flow exit angle
For turbine blades, the low amount of diffusion on the suction surface together with the thin bound-

ary layers imply that the flow exit angle is much closer to the metal angle at the trailing edge than

for a compressor cascade blade. (i.e., a small deviation angle). However, accurate prediction of

the exit angle is extremely important because the downstream flow area, Hs cos α2, varies rather

rapidly with the exit angle α2.

At high Mach numbers, the flow exit angle can be determined from compressible flow relation-

ships. Figure 3.29 shows the flow through a choked turbine cascade. When the blade throat is

choked the mass average, Mach number across the throat is unity, in which case (referring to

Eq. (1.39)):

_m
ffiffiffiffiffiffiffiffiffi
cpT0

p
Hop�o

5Qð1Þ (3.54)

where o is the minimum distance at the blade throat, as shown in Figure 3.29, and p�o is the stagna-

tion pressure at that location. Once the flow is choked, conditions upstream of the throat are fixed

and independent of the downstream pressure.

Downstream of the cascade, the flow area is s cos α2 and the Mach number is M2,

_m
ffiffiffiffiffiffiffiffiffi
cpT0

p
Hs cos α2po2

5QðM2Þ (3.55)

hence, by combining the preceding two equations,

cos α2 5
Qð1Þ
QðM2Þ

3
p�0
p02

3
o

s
(3.56)

If the losses downstream of the throat are small, then p02 � p�0, so

cos α2 5
Qð1Þ
QðM2Þ

3
o

s
(3.57)

In particular, when M25 1, then α25 cos21(o/s).
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Figure 3.30 indicates how the angle α2 varies from subsonic to supersonic flow. For sub-

sonic flows, the exit angle varies very little with Mach number. For supersonic exit flows,

Q(M2),Q(1) and it follows from Eq. (3.60) that α2 decreases. This is known as supersonic

deviation. As shown by Figure 3.30, further deviation is observed in experimental measure-

ments. This additional deviation relative to the theory is caused by stagnation pressure losses

downstream of the throat, p02 , p�0 and the blockage caused by the growth of boundary layers

on the blade surfaces.

Turbine limit load
Turbines frequently operate with supersonic exit flows and at such conditions shock waves emanate

from the trailing edge. One branch of the shock wave propagates downstream, but the other branch

reflects off the suction surface of the adjacent blade. The configuration of these shock waves is

shown in Figure 3.31 using a Schlieren photograph of the flow in a transonic turbine cascade at a

downstream Mach number, M25 1.15.

The back pressure of a turbine cascade can be lowered until the axial velocity component of the

exit flow is equal to the sonic speed. This condition is called the limit load and it is the point where

l s

o

Throat
M = 1

α2

M2

s cos α2

FIGURE 3.29

Flow through a choked turbine cascade.
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The variation of exit flow angle with exit Mach number for a transonic turbine cascade.

FIGURE 3.31

Schlieren photograph of flow in a highly loaded transonic turbine cascade with an exit Mach number of 1.15.

(From Xu, 1985.)
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information (i.e., pressure waves) cannot travel upstream and no further increase in exit Mach num-

ber is possible. At limit load, Mx,lim5M2,lim cos α2,lim5 1.0, which implies that

M2;lim 5
1

cos α2;lim
(3.58)

Conservation of mass means that

_m
ffiffiffiffiffiffiffiffiffi
cpT0

p
Hs cos α2;lim p02

5QðM2;limÞ5
_m

ffiffiffiffiffiffiffiffiffi
cpT0

p
Hop�o

3
p�o
p02

3
0

s cos α2;lim

Given that the throat is choked, as in Eq. (3.54),

_m

ffiffiffiffiffiffiffiffiffiffiffi
cpT

Hop�o

s
5Qð1Þ

so that

QðM2;limÞ5Qð1Þ3 p�o
p02

3
o

s cos α2;lim
(3.59)

Equations (3.58) and (3.59) can be solved simultaneously to enable both M2,lim and α2,lim to be

determined. Typically, the range of maximum exit Mach number is 1.4,M2,lim, 2.0.

3.7 Cascade computational analysis
Rather than use cascade tests or correlations, computational methods are regularly applied to deter-

mine blade loading, surface velocity distributions, losses, and deviation. This section briefly out-

lines the key aspects of computational methods used for blade section analysis and some of the

results they can produce. Further consideration of computational methods is presented in Chapter 6,

including some presentation of three-dimensional CFD. However, it should be emphasized that the

intention in this book is only to provide a general understanding of the capability of such methods

and how they are used in turbomachinery design and analysis. Good references for further details

are Stow (1989) and Denton and Dawes (1999).

Calculation geometry
Computational methods that perform the role of a cascade test are known as “blade-to-blade

methods” since they compute the flow-field between adjacent blade sections on an unwrapped mer-

idional�tangential (m-rθ) streamsurface.4 As discussed in Section 3.3, for cascade testing, the

streamtube thickness does not necessarily remain constant through the blade passages and most

modern blade-to-blade methods can accommodate an AVDR that is not equal to unity. Such meth-

ods are often referred to as quasi-three-dimensional (Q3D) since they are accounting for the 3D

effects of streamtube divergence or convergence.

4In purely axial-flow cases, the flow domain will be an unwrapped axial�tangential (x�rθ) plane. See Figure 1.2 for dia-

grams defining the turbomachinery coordinate system.
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A typical computational mesh for a blade-to-blade method is shown in Figure 3.32. Note that in

this case the mesh is for an inviscid calculation that does not resolve the boundary layers on the

blade surfaces. The exact form of the mesh depends on the type of method used and the resolution

required. Some meshes have regular, rectangular topology with fairly constant cell size, as in the

case shown, whereas there are also methods that use triangular meshes with huge variations in cell

size. In all cases, the mesh is only one cell thick and it represents a streamtube, so there can be no

flow perpendicular to the plane of the mesh (into or out of the page).

Method types
The main task of a computational method is to determine, for each cell within a mesh, the flow

properties that are compatible with the boundary conditions. Different numerical solvers take differ-

ent approaches and include varying assumptions and simplifications. However, they are, in general,

simply applying the fundamental laws of continuity, the steady flow energy equation, conservation

of momentum, and the second law of thermodynamics, as presented in Chapter 1.

A technique known as a panel (or vortex) method assumes two-dimensional incompressible,

inviscid flow. The method places vortices at a series of points on the blade pressure and suction

surfaces. The strengths of the vortices are set such that there is no flow into or out of the blade sur-

faces. The flow at any point in the blade passages is then the linear sum of the influence of all of

the vortices. This type of method is fairly limited for turbomachinery use since it is only applicable

to incompressible, inviscid flow with uniform inflow.
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FIGURE 3.32

Calculation mesh for a blade-to-blade computation of a compressor cascade.
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A potential flow method is applicable to isentropic flow through a cascade. It essentially solves

a form of the compressible continuity equation on a mesh, subject to constant stagnation enthalpy,

isentropic relations, and the requirement for flow to leave a blade section trailing edge smoothly.

They can be used for compressible flow cases provided there are no strong shock waves, but they

cannot give any indication of blade losses. Potential flow methods such as Whitehead and Newton

(1985) are still in use today to design turbine blade sections because they are very fast and the

neglected viscous effects are usually small.

An Euler method treats each cell in a computational mesh as a control volume. It iteratively

solves the equations for conservation of mass, momentum, and energy for each of these control

volumes. A large number of iterations can be required to reach a converged, steady solution, which

increases the run time, but typically Euler methods only take a minute or so on a modern computer.

An Euler method can be used for compressible flow, but it does not include viscous effects. To

account for boundary layers, a Navier�Stokes method can be used, which includes viscous terms

in the momentum equation. Alternatively a coupled inviscid method and boundary layer solver can

be used. In this, an Euler, or similar method, is used for the inviscid mainstream flow and a bound-

ary layer solver is used to compute the development of the viscous boundary layers on the blade

surface. Information is shared between these computations to account for the blockage of the

boundary layer and the effects of the mainstream flow pressure distribution on the boundary layer

parameters. A coupled method that is widely used today for blade section analysis and design is

described in Giles and Drela (1987).

Note that many of the above methods can work in an “inverse” (or “design”) mode as well as

the standard “analysis” mode. In analysis mode, the geometry is fixed, analogous to a cascade test.

In the inverse mode, the user prescribes a surface velocity distribution, which the code then aims to

achieve by manipulating the blade section geometry.

Boundary conditions
Figure 3.32 indicates the different types of domain boundary in a blade-to-blade computation. A

fundamental assumption for a cascade is that the flow is the same in all blade passages.

Therefore, all flow properties should repeat along the periodic boundaries and this can be pre-

scribed as a boundary condition. On solid blade surfaces, there can be no flow into or out of the

surface and thus the velocity normal to any surface is zero and this is specified as another bound-

ary condition.

The inlet and exit boundary conditions are specified to match the required cascade operating

point. As discussed in Section 3.3, the performance of a cascade can be expressed by functional

relationships of the form

α2 5 fnðM1;α1;ReÞ; Yp 5 fnðM1;α1;ReÞ
The boundary conditions must therefore be sufficient to fix the Mach number, inlet flow angle,

and Reynolds number. For incompressible methods, the Mach number is irrelevant, and for inviscid

(or isentropic) methods, the Reynolds number can also be omitted. Hence, there are fewer boundary

conditions required for potential flow and panel methods.

In Euler and Navier�Stokes methods, the inlet stagnation pressure p01, the inlet stagnation

temperature T01, and the inlet angle α1 are usually specified, along with the exit static pressure p2.
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This is equivalent to how a cascade experiment is set up (see Figure 3.1): the inlet conditions p01
and T01 are set by the wind tunnel fan, the inlet angle α1 is set by the angle between the cascade

axis and the test section, and the exit static pressure is fixed by the ambient pressure downstream

of the cascade. If viscous effects are modeled, the Reynolds number is also set, either directly, or

by specifying the fluid viscosity and the geometry scale.

Transonic effects
Euler methods and Navier�Stokes methods can handle transonic flow and strong shock waves,

although the accuracy of their predictions is limited by the resolution of the computational mesh.

A shock wave will tend to be “smeared out” over a number of cells and the associated aerodynamic

effects will not be accurately resolved. Figure 3.33 shows Mach number contours for a coupled

inviscid method and boundary layer solver applied to a C4 compressor cascade operating with an

inlet Mach number of 0.8 (This is the same condition and geometry as used in the surface Mach

number plot in Figure 3.18). The figure shows a shock wave clearly captured on the blade suction

surface. It also indicates the streamlines at the edge of the blade boundary layers that form

the blade wake. This shows how in compressor blades the viscous effects can create significant

blockage, which leads to an effect on the inviscid flow-field.

FIGURE 3.33

Contours of Mach number from a coupled inviscid and boundary layer computation of a C4 compressor

cascade operating at low incidence with an inlet Mach number of 0.8.
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Viscous effects
Inviscid methods cannot give an estimation of losses, but they can still be useful as they will

calculate the blade surface velocity distribution, the blade loading and the diffusion levels on the

surfaces. As discussed in Section 3.5, the state of the boundary layers and blade losses correlate

with local diffusion levels. Inviscid methods can therefore be used to determine whether

acceptable diffusion levels are maintained and what operating points lead to high diffusion.

Figure 3.34 shows an example comparison between measured and computed surface velocity distri-

butions around a turbine stator for a quasi-three-dimensional Euler method.

Methods that model viscous effects do not necessarily determine them accurately. There are

several complex physical phenomena that may need to be modeled in the blade boundary layers

such as laminar flow, transition to turbulence, turbulent flow, separation, and reattachment. A

Navier�Stokes method requires models for turbulence and transition as well as a large number of

mesh points close to any surfaces to resolve the flow gradients in the boundary layers. Denton and

Dawes (1999) state that at high Reynolds number a Navier�Stokes solution should predict viscous

losses accurate to within 10%, but at lower, transitional, Reynolds numbers the losses may be in

error by 50%. In this case, a coupled inviscid and boundary layer method is more accurate and can

provide a more detailed prediction of the boundary layer parameters. In applications where there

are significant Reynolds number and transitional effects, such as low-pressure turbines for jet

engines, coupled inviscid and boundary layer solvers have been shown to be accurate in reprodu-

cing cascade test results, see Stow (1989).

In all cases, a computational method user should be careful to ensure that all the relevant

physics are sufficiently reproduced in their solver, that the method has been adequately calibrated,

and that it has been applied correctly using a suitable mesh and appropriate boundary conditions.
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FIGURE 3.34

Comparison of surface Mach number distribution between an inviscid Euler solver and experiment for a high-

pressure turbine stator.

(Adapted from Bry, 1989.)
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It should then be possible to quickly generate useful cascade results (e.g., in the form shown in

Figure 3.14 or 3.25) with a known level of accuracy.

PROBLEMS
1. Experimental compressor cascade results suggest that the stalling lift coefficient of a

low-speed cascade blade may be expressed as

CL

c1

c2

� �3

5 2:2

where c1 and c2 are the entry and exit velocities, respectively. Find the stalling inlet angle for

a compressor cascade of space�chord ratio unity if the outlet air angle is 30�.

2. Show, for a low-speed turbine cascade, using the angle notation of Figure 3.28, that the lift

coefficient is

CL 5 2ðs=lÞðtan α1 1 tan α2Þcos αm 1CD tan αm

where tan αm 5 ð1=2Þðtan αm 2 tan α1Þ and CD 5 drag=ðð1=2Þρc2mlÞ: A cascade of turbine

nozzle vanes has a blade inlet angle α0
1 of 0

�, a blade outlet angle α0
2 of 65.5

�, a chord length l

of 45 mm and an axial chord b of 32 mm. The flow entering the blades is to have zero

incidence and an estimate of the deviation angle based upon similar cascades is that δ will be

about 1.5� at low outlet Mach number. If the blade load ratio Z defined by Eq. (3.55) is

to be 0.85, estimate a suitable space�chord ratio for the cascade. Determine the drag and

lift coefficients for the cascade given that the profile loss coefficient is

λ5Δp0=
1

2
ρc22

� �
5 0:035

3. a. Show that the pressure rise coefficient Cp 5Δp=ðð1=2Þρc21Þ of an incompressible

compressor cascade is related to the total pressure loss coefficient ζ by the following

expression:

Cp 5 12 ðsec2 α2 1 ζÞ=sec2 α1

ζ5Δp0=
1

2
ρc2x

0
@

1
A

where α1, α25 flow angles at cascade inlet and outlet.

b. Determine a suitable maximum inlet flow angle of a low-speed compressor cascade having

a space�chord ratio 0.8 and α25 30� when the diffusion factor DF is limited to 0.6. The

definition of diffusion factor that should be used is the Lieblein formula (1959):

DF5 12
cos α1

cos α2

� �
1

s

l

� � cos α1

2
ðtan α1 2 tan α2Þ
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c. The stagnation pressure loss derived from flow measurements on this cascade is 149 Pa when

the inlet velocity c1 is 100 m/s at an air density ρ of 1.2 kg/m3. Determine the values of

i. pressure rise and

ii. drag and lift coefficients.

4. A low-speed compressor has stator vanes that are to have an inlet flow angle of 45� and an

exit flow angle of 25�.
a. Calculate the pitch�chord ratio of the stators assuming a Lieblein diffusion factor of 0.45.

Using Lieblein’s diffusion factor reaching 0.6 as a criterion, and assuming that the exit

flow angle remains constant, determine the incidence that corresponds to the blade stalling.

b. Use Carter’s deviation correlation to estimate the required metal exit angle given that a

parabolic arc camber line is employed with maximum camber at 40% chord. (Note that

some iteration is needed.)

5. Use γ5 1.4, R5 287 J/kg/K1 and cp5 1005 J/kg/K in this question.

a. A two-dimensional compressor cascade operates in air. The inlet metal angle of the blades

is 55� and the exit metal angle is 37�. When the flow is at zero incidence with an inlet

Mach number of 0.65, the exit Mach number is 0.44, and the stagnation pressure loss

coefficient is given by

Yp 5
p01 2 p02

p01 2 p1
5 0:038

Determine the exit flow angle and give two reasons why this is greater than the exit

metal angle.

b. Find the blade pitch-to-chord ratio needed such that DF5 0.45 when the cascade is at the

operating point described in part (a).

c. Assuming that the exit flow angle and loss remain constant, estimate the new value of DF

when the incidence of the flow is increased to 5� while maintaining an inlet Mach number

of 0.65. Use the pitch-to-chord ratio found in part (b).

d. If the cascade throat width to pitch ratio o/s is 0.6, determine the incidence of the flow

onto the blades at which the cascade will choke with an inlet Mach number of 0.65.

Assume that there is no loss upstream of the cascade throat.

6. A high-speed air turbine cascade is estimated to have an AVDR of 0.97. At inlet the Mach

number is 0.22 and the flow angle is 30�. The blades turn the flow through 100� and at exit

the flow is just sonic. Take γ to be 1.4.

a. Determine the stagnation pressure loss coefficient based on exit conditions and the energy

loss coefficient, ζ.
b. Estimate ζ using the Soderberg correlation for this cascade, Eq. (3.46), assuming an aspect

ratio of 3. Compare with the value found in (a) and explain why the correlation might be

expected to underestimate the loss in this case.

c. Neglecting streamtube contraction and the stagnation pressure loss downstream of the

throat, estimate the opening-to-pitch ratio of the cascade.

7. A two-dimensional compressor cascade is tested in air with an inlet stagnation pressure of

1 bar and an inlet stagnation temperature of 300 K. For an inlet Mach number of 0.75 and an
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inlet flow angle of 50�, the exit flow angle is measured as 15.8�. Determine the mass flow rate

per unit frontal area. Assuming the flow is isentropic, calculate the exit Mach number and the

static pressure ratio across the cascade.

8. A compressor blade design tested in a cascade is found to choke with an inlet Mach number of

0.9 when the inlet flow angle is 52�. If the ratio of the throat area to the frontal area, A�/H1s,

for the cascade is 0.625, calculate the loss of stagnation pressure between the far upstream and

the throat and express this as a loss coefficient. Comment on what could cause this loss.

9. A turbine cascade operates in air with an inlet angle of 45� from the axial direction. The ratio

of inlet stagnation pressure to exit static pressure is 2.6 and the inlet Mach number is 0.3.

a. If the stagnation pressure loss coefficient, Yp, is measured to be 0.098, calculate the exit

Mach number and show that the exit angle is 67.7�. It can be assumed that the blade height

is constant through the cascade and that the growth of sidewall boundary layers is

negligible.

b. The opening-to-pitch ratio of the cascade is 0.354. For the operating point described in part

(a), show that approximately two-thirds of the total loss in stagnation pressure occurs

downstream of the throat.

c. The exit static pressure from the cascade is lowered until limit load is achieved. The exit

Mach number at this condition is measured to be 1.77. Given that the stagnation pressure

loss upstream of the throat is unchanged, determine the new overall stagnation pressure

loss coefficient for the cascade.
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CHAPTER

4Axial-Flow Turbines: Mean-Line
Analysis and Design

Power is more certainly retained by wary measures than by daring counsels.
Tacitus, Annals

4.1 Introduction
The modern axial-flow turbine developed from a long line of inventions stretching back in time to

the aeolipile of Heron (aka Hero) of Alexandria around 120 BC. Although we would regard it as a

toy it did demonstrate the important principle that rotary motion could be obtained by the expansion

of steam through nozzles. Over the centuries, many developments of rotary devices took place with

wind and water driven mills, water driven turbines, and the early steam turbine of the Swedish engi-

neer Carl de Laval in 1883. The main problems of the de Laval turbines arose from their enormous

rotational speeds, the smallest rotors attained speeds of 26,000 rpm and the largest had peripheral

speeds in excess of 400 m/s. Learning from these mistakes, Sir Charles Parsons in 1891 developed a

multistage (15 stages) axial-flow steam turbine, which had a power output of 100 kW at 4800 rpm.

Later, and rather famously, a Parsons steam turbine rated at 1570 kW was used to power a 30 m long

ship, Turbinia, at what was regarded as an excessive speed at a grand review of naval ships at

Spithead, England, in 1897. It outpaced the ships ordered to pursue it and to bring order to the

review. This spectacular dash at once proved to all the capability and power of the steam turbine and

was a turning point in the career of Parsons and for the steam turbine. Not long after this most capital

ships of the major powers employed steam turbines rather than old-fashioned piston engines.

From this point, the design of steam turbines evolved rapidly. By 1920, General Electric was

supplying turbines rated at 40 MW for generating electricity. Significant progress has since been

made in the size and efficiency of steam turbines with 1000 MW now being achieved for a single

shaft plant. Figure 4.1 shows the rotor of a modern double-flow low-pressure turbine with this

power output.

The development of the axial-flow turbine is tied to the history of the aircraft gas turbine but

clearly depended upon the design advances made previously in the field of steam turbines. In this

chapter, the basic thermodynamic and aerodynamic characteristics of axial-flow turbines are pre-

sented. The simplest approach to their analysis is to assume that the flow conditions at a mean radius,

called the pitchline, represent the flow at all radii. This two-dimensional (2D) analysis can provide a

reasonable approximation to the actual flow, provided that the ratio of blade height to mean radius is
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small. However, when this ratio is large, as in the final stages of an aircraft or a steam turbine, a

more elaborate three-dimensional (3D) analysis is necessary. Some elementary 3D analyses of the

flow in axial turbomachines of low hub-to-tip ratio, e.g., rh/rt� 0.4, are discussed in Chapter 6. One

further assumption required for the purposes of mean-line analysis is that the flow is invariant along

the circumferential direction (i.e., there are no significant “blade-to-blade” flow variations).

For turbines, the analysis is presented with compressible flow effects in mind. This approach is

then applicable to both steam and gas turbines provided that, in the former case, the steam condi-

tion remains wholly within the vapor phase (i.e., superheat region).

The modern axial-flow turbine used in aircraft engines now lies at the extreme edge of tech-

nological development; the gases leaving the combustor can be at temperatures of around

1600�C or more whilst the material used to make turbine blades melt at about 1250�C. Even
more remarkable is the fact that these blades are subjected to enormous centrifugal forces and

bending loads from deflecting the hot gases. The only way these temperature and stress levels

can be sustained is by an adequate cooling system of high pressure (HP) air supplied from the

final stage compressor. In this chapter, a brief outline of the basic ideas on centrifugal stresses

FIGURE 4.1

Large low-pressure steam turbine.

(With kind permission of Siemens Turbines)
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and some of the methods used for blade cooling is given. Figure 4.2 shows the three shaft

axial-flow turbine system of a Rolls Royce Trent turbofan engine.

4.2 Velocity diagrams of the axial turbine stage
The axial turbine stage comprises a row of fixed guide vanes or nozzles (often called a stator row)

and a row of moving blades or buckets (a rotor row). Fluid enters the stator with absolute velocity

c1 at angle α1 and accelerates to an absolute velocity c2 at angle α2 (Figure 4.3). All angles are

measured from the axial (x) direction. The sign convention is such that angles and velocities as

drawn in Figure 4.3 will be taken as positive throughout this chapter. From the velocity diagram,

the rotor inlet relative velocity w2, at an angle β2, is found by subtracting, vectorially, the blade

speed U from the absolute velocity c2. The relative flow within the rotor accelerates to velocity w3

at an angle β3 at rotor outlet; the corresponding absolute flow (c3, α3) is obtained by adding, vecto-

rially, the blade speed U to the relative velocity w3.

When drawing the velocity triangles, it is always worth sketching the nozzle and rotor rows

beside them, as shown in Figure 4.3. This helps to prevent errors, since the absolute velocities are

Combustor

High-pressure turbine
Low-pressure turbine

Intermediate-pressure turbine

FIGURE 4.2

Turbine module of a modern turbofan jet engine.

(With kind permission from Rolls-Royce plc)
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roughly aligned with the inlet and exit angles from the nozzle row and the relative velocities are

aligned with the rotor row. Note that, within an axial turbine, the levels of turning are very high

and the flow is turned through the axial direction in both the rotors and nozzles.

4.3 Turbine stage design parameters
Three key nondimensional parameters are related to the shape of the turbine velocity triangles and

are used in fixing the preliminary design of a turbine stage.

Design flow coefficient
This was introduced in Chapter 2. It is strictly defined as the ratio of the meridional flow velocity

to the blade speed, φ5 cm/U, but in a purely axial-flow machine, φ5 cx/U. The value of φ for a

stage determines the relative flow angles. A stage with a low value of φ implies highly staggered

blades and relative flow angles close to tangential. High values imply low stagger and flow angles

closer to axial. For a fixed geometry and fixed rotational speed, the mass flow through the turbine

increases with increasing φ. This follows from the continuity equation for steady flow, which can

be written for the turbine stage as

_m5 ρ1Ax1cx1 5 ρ2Ax2cx2 5 ρ3Ax3cx3 5 ρAxφU (4.1)

c1

c2

c3

w2

w3

α1

β2

β3

α2

α3

Nozzle row

Rotor row U

U

U
b

S

FIGURE 4.3

Turbine stage velocity diagrams.
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Stage loading coefficient
The stage loading is defined as the ratio of the stagnation enthalpy change through a stage to the

square of the blade speed, ψ5Δh0/U
2. In an adiabatic turbine, the stagnation enthalpy change is equal

to the specific work, ΔW, and for a purely axial turbine with constant radius, we can use the Euler

work equation (Eq. (1.19b)) to writeΔh05UΔcθ. The stage loading can, therefore, be written as

ψ5
Δcθ

U
(4.2)

where Δcθ represents the change in the tangential component of absolute velocity through the rotor.

Thus, high stage loading implies large flow turning and leads to highly “skewed” velocity triangles

to achieve this turning. Since the stage loading is a nondimensional measure of the work extraction

per stage, a high stage loading is desirable because it means fewer stages are needed to produce a

required work output. However, as shown in later sections of this chapter, the stage loading is lim-

ited by the effects that high stage loadings have on efficiency.

Stage reaction
The stage reaction is defined as the ratio of the static enthalpy drop in the rotor to the static

enthalpy drop across the stage. Thus,

R5
h2 2 h3

h1 2 h3
(4.3a)

Taking the flow through a turbine as nearly isentropic the equation of the second law of thermo-

dynamics, Tds5 dh2 dp/ρ, can be approximated by dh5 dp/ρ, and ignoring compressibility

effects, the reaction can thus be approximated as

R � p2 2 p3

p1 2 p3
(4.3b)

The reaction, therefore, indicates the drop in pressure across the rotor compared to that for the

stage. However, as a design parameter, the reaction is more significant since it describes the asym-

metry of the velocity triangles and is, therefore, a statement of the blade geometries. As will be

shown later, a 50% reaction turbine implies velocity triangles that are symmetrical, which leads to

similar stator and rotor blade shapes. In contrast, a zero reaction turbine stage implies little pressure

change through the rotor. This requires rotor blades that are highly cambered, that do not accelerate

the relative flow greatly, and low cambered stator blades that produce highly accelerating flow.

4.4 Thermodynamics of the axial turbine stage
The work done on the rotor by unit mass of fluid, the specific work, equals the stagnation enthalpy

drop incurred by the fluid passing through the stage (assuming adiabatic flow). From the Euler

work (Eq. (1.19a)), we can write

ΔW 5 _W= _m5 h01 2 h03 5Uðcθ2 1 cθ3Þ: (4.4)
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In Eq. (4.4), the absolute tangential velocity components (cθ) are added, so as to adhere to the

agreed sign convention of Figure 4.3. As no work is done in the nozzle row, the stagnation enthalpy

across it remains constant and

h01 5 h02 (4.5)

In an axial turbine, the radial component of velocity is small. Writing h0 5 h1 ð1=2Þðc2x 1 c2θÞ
and using Eq. (4.5) in Eq. (4.4), we obtain

h02 2 h03 5 ðh2 2 h3Þ1
1

2
ðc2θ2 2 c2θ3Þ1

1

2
ðc2x2 2 c2x3Þ5Uðcθ2 1 cθ3Þ

hence

ðh2 2 h3Þ1
1

2
ðcθ2 1 cθ3Þ ðcθ2 2UÞ2 ðcθ3 1UÞ½ �1 1

2
c2x2 2 c2x3
� �

5 0

It is observed from the velocity triangles of Figure 4.3 that cθ22U5wθ2, cθ31U5wθ3, and

cθ21 cθ35wθ21wθ3. Thus,

ðh2 2 h3Þ1
1

2
w2
θ2 2w2

θ3

� �
1

1

2
c2x2 2 c2x3
� �

5 0

This equation can be reduced to

h2 1
1

2
w2
2 5 h3 1

1

2
w2
3 or h02;rel 5 h03;rel (4.6)

Thus, the relative stagnation enthalpy, h0;rel 5 h1 ð1=2Þw2, remains unchanged through the rotor

of a purely axial turbomachine. It is assumed that no radial shift of the streamlines occurs in this

flow. In some modern axial turbines, the mean flow may have a component of radial velocity, and

in this case the more general form of the Euler work equation must be used to account for changes

in the blade speed perceived by the flow, see Eq. (1.21a). It is then the rothalpy that is conserved

through the rotor,

h2 1
1

2
w2
2 2

1

2
U2

2 5 h3 1
1

2
w2
3 2

1

2
U2

3 or I2 5 I3 (4.7)

where U2 and U3 are the local blade speeds at inlet and outlet from the rotor, U25 r2Ω and

U35 r3Ω. Within the rest of this chapter, the analysis presented is directed at purely axial turbines

that have a constant mean flow radius and therefore a single blade speed.

A Mollier diagram showing the change of state through a complete turbine stage, including the

effects of irreversibility, is given in Figure 4.4.

Through the nozzles, the state point moves from 1 to 2 and the static pressure decreases from p1
to p2. In the rotor row, the absolute static pressure reduces (in general) from p2 to p3. It is important

to note that all the conditions contained in Eqs (4.4)�(4.6) are satisfied in the figure.

4.5 Repeating stage turbines
Aeroengine and power generation applications require turbines with high-power output and high

efficiency. To achieve this, an axial turbine with multiple stages is required. In these multistage

axial-flow turbines, the design is often chosen to have identical, or at least very similar, mean
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velocity triangles for all stages. To achieve this, the axial velocity and the mean blade radius must

remain constant throughout the turbine. To allow for the reduction in fluid density that arises as the

flow expands through the turbine, the blade height must be continuously increasing between blade

rows. Figure 4.5 shows the arrangement of a multistage turbine within an aeroengine showing the

increasing blade height and the constant mean radius.

For the velocity diagrams to be the same, the flow angles at exit from each stage must be equal

to those at the inlet. The requirements for a repeating stage can therefore be summarized as

cx 5 constant; r5 constant; α1 5α3:

3ss
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2s

01

1

02

02rel 03rel

p 03
,re
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2
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FIGURE 4.4

Mollier diagram for a turbine stage.
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FIGURE 4.5

General arrangement of a repeating six-stage turbine.
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Note that a single-stage turbine can also satisfy these conditions for a repeating stage. Stages

satisfying these requirements are often referred to as normal stages.

For this type of turbine, several useful relationships can be derived relating the shapes of the

velocity triangles to the flow coefficient, stage loading, and reaction parameters. These relation-

ships are important for the preliminary design of the turbine.

Starting with the definition of reaction,

R5
h2 2 h3

h1 2 h3
5 12

h1 2 h2

h01 2 h03
(4.8)

Note that h012 h035 h12 h3 since the inlet and exit velocities for the stage are equal. Through

the stator no work is done, so the stagnation enthalpy stays constant across it. Given that the axial

velocity is also constant, this gives

h1 2 h2 5 ðh01 2 h02Þ1 1

2
c22 2 c21
� �

5
1

2
c2x tan2 α2 2 tan2 α1

� �
(4.9)

From the definition of stage loading,

h01 2 h03 5U2ψ (4.10)

Substituting these in the equations for the reaction (4.3) and by applying the definition of flow

coefficient for a purely axial turbine, φ5 cx/U, the following is obtained:

R5 12
φ2

2ψ
tan2α2 2 tan2α1

� �
(4.11)

This is true whether or not the exit angle from the stage equals the inlet angle. It shows how the

three nondimensional design parameters are related to the flow angles at inlet and exit from the tur-

bine nozzle. In a repeating stage turbine, this relationship can be further simplified, since the stage

loading can be written as follows:

ψ5
Δcθ

U
5

cxðtan α2 1 tan α3Þ
U

5φðtan α2 1 tan α1Þ (4.12)

Substituting this into Eq. (4.11), we obtain

R5 12
φ
2
ðtan α2 2 tan α1Þ (4.13a)

This can be combined with Eq. (4.12) to eliminate α2. Adding 23Eq. (4.13a) to Eq. (4.12)

gives the following relationship among stage loading, flow coefficient, and reaction:

ψ5 2ð12R1φ tan α1Þ (4.14)

This is a very useful result. It also applies to repeating stages of compressors. It shows that, for

high stage loading, ψ, the reaction, R, should be low and the interstage swirl angle, α15α3, should

be as large as possible. Equations (4.13a) and (4.14) also show that, once the stage loading, flow

coefficient, and reaction are fixed, all the flow angles, and thus the velocity triangles, are fully

specified. This is true since Eq. (4.14) gives α1, and α2 then follows from Eq. (4.13a). The other
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angles of the velocity triangles are then fixed from the repeating stage condition, α15α3, and the

relationship between relative and absolute flow angles is

tan β2 5 tan α2 2
1

φ
; tan β3 5 tan α3 1

1

φ
(4.15)

Note that by combining Eq. (4.15) with Eq. (4.13a), another useful equation for the reaction can

be formed in terms of the relative flow angles,

R5
φ
2
ðtan β3 2 tan β2Þ (4.13b)

In summary, to fix the velocity triangles for a repeating stage a turbine designer can fix φ, ψ,
and R or φ, ψ, and α1 (or indeed any independent combination of three angles and parameters).

Once the velocity triangles are fixed, key features of the turbine design can be determined, such as

the turbine blade sizes and the number of stages needed. The expected performance of the turbine

can also be estimated. These aspects of the preliminary design are considered further in Section 4.7.

The choice of the velocity triangles for the turbine (i.e., the choice of φ, ψ, and R) is largely

determined by best practice and previous experience. For a company that has already designed and

tested many turbines of a similar style, it will be very challenging to produce a turbine with very

different values of φ, ψ, and R that has as good a performance as its previous designs.

4.6 Stage losses and efficiency
In Chapter 1, various definitions of efficiency for complete turbomachines were given. For a tur-

bine stage, the total-to-total efficiency is

ηu 5
actual work output

ideal work output when operating to same back pressure
5

h01 2 h03

h01 2 h03ss

The slope of a constant pressure line on a Mollier diagram is (@h/@s)p5 T, obtained from

Eq. (1.28). Thus, for a finite change of enthalpy in a constant pressure process, ΔhDTΔs (and

Δh0DT0Δs). The total-to-total efficiency can therefore be rewritten as

ηtt 5
h01 2 h03

h01 2 h03ss
5

h01 2 h03

ðh01 2 h03Þ1 ðh03 2 h03ssÞ
5 11

h032h03ss

h012h03

� �21

D 11
T03ðs32s3ssÞ
h012h03

� �21

(4.16)

As shown by Figure 4.4, the entropy change across the whole stage, s3 2 s3ss, is the sum of the

entropy increase across the nozzle row, s2 2 s2s 5 s3s 2 s3ss, and the entropy increase across the

rotor row, s3 2 s3s. These increases in entropy represent the cumulative effects of irreversibility

through the stator and rotor. Nondimensional enthalpy “loss” coefficients can be defined in terms

of the exit kinetic energy from each blade row (Eq. (3.7)). For the nozzle row,

h2 2 h2s 5
1

2
c22ζN
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Hence, the entropy change through the stator in terms of the enthalpy loss coefficient is

s2 2 s2sD
h2 2 h2s

T2
5

ð1=2Þc22ζN
T2

(4.17a)

For the rotor row,

h3 2 h3s 5
1

2
w2
3ζR

The entropy change through the rotor in terms of the enthalpy loss coefficient is then

s3 2 s3sD
h3 2 h3s

T3
5

ð1=2Þw2
3ζR

T3
(4.17b)

Substituting Eqs (4.17a) and (4.17b) into Eq. (4.16) gives

ηttD 11
T03

T3

ζNc22T3=T21w2
3ζR

� �
2ðh012h03Þ

� �21

(4.18a)

When the exit velocity is not recovered (in Chapter 1, examples of such cases are quoted), a

total-to-static efficiency for the stage is used,

ηts 5
h01 2 h03

h01 2 h3ss
5

h01 2 h03

h01 2 h03 1 ðh03 2 h3Þ1 h3 2 h3ss
D 11

0:5c231T3ðs32s3ssÞ
h012h03

� �21

.ηtsD 11
ζNc22T3=T21w2

3ζR1c23
2ðh012h03Þ

� �21
(4.19a)

Equations (4.18a) and (4.19a) are applicable to all turbine stages. For a repeating (or normal)

stage, the inlet and exit flow conditions (absolute velocity and flow angle) are identical, i.e.,

c15 c3 and α15α3. In this case, h01 2 h03 5 h1 2 h3. If, in addition, the interstage absolute Mach

number is fairly low, T03=T3D1, the total-to-total efficiency and the total-to-static efficiency can

be written as

ηttD 11
ζRw2

31ζNc22T3=T2
2ðh12h3Þ

� �21

(4.18b)

ηtsD 11
ζRw2

31ζNc22T3=T21c21
2ðh12h3Þ

� �21

(4.19b)

For incompressible flow turbines, and other cases where the static temperature drop through the

rotor is not large, the temperature ratio T3/T2 can be set equal to unity resulting in the more conve-

nient approximations:

ηttD 11
ζRw2

31ζNc22
2ðh12h3Þ

� �21

(4.18c)

ηtsD 11
ζRw2

31ζNc221c21
2ðh12h3Þ

� �21

(4.19c)
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So that estimates can be made of the efficiency of a proposed turbine stage, as part of the pre-

liminary design process, some means of determining the loss coefficients, ζN and ζR, are required.

Several methods for doing this are available with varying degrees of complexity. The blade row

method proposed by Soderberg (1949) and reported by Horlock (1966), although old, is still useful

despite its simplicity, see Eq. (3.46). Ainley and Mathieson (1951) developed a semiempirical

method based on profile loss coefficient data for nozzle blades (with 100% expansion) and impulse

blades (with 0% expansion), see Eq. (3.45). Full details of both these methods are given in

Section 3.6.

It should be remembered that loss coefficients based on cascade testing or 2D computational

fluid dynamics (CFD) represent only the 2D loss of the aerofoils and in a real turbine, various 3D

effects also contribute to the loss. These 3D effects, described in further detail below, include the

tip leakage jet, the mixing of any coolant flows, and the secondary flows on the turbine end walls.

These effects are significant and can contribute more than 50% of the total losses.

Further preliminary methods of predicting the efficiency of axial-flow turbines have been

devised, such as those of Craig and Cox (1971), Kacker and Okapuu (1982), and Wilson (1987).

Also various proprietary methods are used within industry that are generally semiempirical methods

based on previous test results for turbine stages of a similar design. In addition, CFD can be used

to estimate efficiency. However, although CFD can often accurately predict trends in efficiency,

absolute performance levels are elusive even with the latest 3D methods. In addition, CFD can only

be applied once detailed turbine rotor and stator geometries have been created. It is therefore more

applicable later in the design process, see Chapter 6. Advanced computational methods have not

yet replaced preliminary design methods and these are still essential to converge as closely as pos-

sible to an optimum configuration before carrying out detailed design refinements using CFD.

Turbine loss sources
As stated in Chapter 1, wherever there is irreversible entropy creation within the flow path of a tur-

bomachine, there is a loss in the available work. A loss source is therefore any flow feature that

leads to entropy creation. Entropy is created by irreversible processes that involve viscous friction,

mixing between flows of different properties, heat transfer across a finite temperature difference, or

nonequilibrium changes like shock waves. In a turbine stage, there are numerous loss sources and

they can each be quantified by the entropy they generate. The total loss is then the cumulative sum

of the entropy increases, which can be used to determine a single blade row loss coefficient, as

used in mean-line analysis, and applied in Eqs (4.16)�(4.19) above. However, in many cases it is

very difficult to determine the entropy generation associated with a particular loss source, and loss

coefficients are generally based on values derived from testing a similar machine combined with

correlations.

A detailed description of all of the different loss mechanisms in turbomachinery is given by

Denton (1993), and this reference is strongly recommended. Here the aim is to give a brief over-

view of the principal loss sources in turbines and their relative importance.

The losses in a turbine can be categorized as 2D or 3D. The 2D loss sources are those that

would be present in a cascade test of a turbine blade row with infinite span (i.e., no endwall

effects). The 3D losses are the additional losses that arise when the turbine stage is operating in a

realistic rotating arrangement.
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2D loss sources are made up of (a) the blade boundary layers, (b) trailing edge mixing, (c) flow

separation, and (d) shock waves.

The loss in the blade boundary layers can be thought of as lost work expended against viscous

shear within the boundary layers. Its magnitude depends on the development of the boundary layer

and, in particular, on the blade surface pressure distribution and where transition from laminar to

turbulent flow occurs. Boundary layer loss typically accounts for over 50% of the 2D loss in sub-

sonic turbines. For incompressible flow, Denton (1993) shows that the total loss in a boundary layer

can be determined using

ζ te 5
δe

s cos α2

; (4.20)

where δe 5
Ð s=2
2s=2 c=cmax½12 ðc=cmaxÞ2�dy is the boundary layer energy thickness at the trailing edge

and cmax is the local velocity at the edge of the boundary layer.

The trailing edge mixing loss is the loss that arises from the mixing of the suction surface and

pressure surface boundary layers with the region of flow just behind the trailing edge. This loss is

significant, typically about 35% of the total 2D loss in subsonic turbines, and rising to around 50%

in supersonic cases, see Figure 3.26. Note that for incompressible cases, the combined boundary

layer loss and trailing edge loss can be accounted for by the wake momentum thickness, θ2, as
shown in Eq. (3.38),

ζ5
2θ2

s cos α2

Combining this with Eq. (4.20) shows that the ratio of loss in a boundary layer to the total loss

within the wake after mixing is given by δe/2θ2.
Flow separation loss exists when the boundary layer detaches from the blade surface and a large

region of reduced kinetic energy flow forms downstream. This loss is difficult to quantify, but a

well-designed turbine should never exhibit large-scale 2D flow separation, so it can generally be

neglected. Separation close to the trailing edge is included in the trailing edge mixing loss.

Shock loss occurs when the turbine blade passage is choked and the exit Mach number is above

about 0.9. The loss caused by shock waves in a turbine passage is not as great as might be

expected. For a normal shock wave, with a preshock Mach number, M1, it can be shown, see

National Advisory Committee for Aeronautics Report 1135 (1953), that the entropy generation is

given by

Δs

cv
5 ln

2γM2
1 2 γ1 1

γ1 1

� �
2 γ ln

ðγ1 1ÞM2
1

ðγ2 1ÞM2
1 1 2

� �
(4.21)

If the above is expanded as a power series, it is found that the entropy creation varies approxi-

mately as the cube of ðM2
1 2 1Þ, which is relatively small up to Mach numbers of about 1.4. In tur-

bine passages the shock waves are usually oblique, reducing the losses further. As shown in

Figure 3.26, shock loss accounts for about 30% or less of the total 2D loss above an exit Mach

number of 1.

3D loss sources can be separated into (a) tip leakage flows, (b) endwall (or secondary) flows,

and (c) coolant flows.
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In all turbomachines, a clearance gap exists between the rotating blades and the stationary cas-

ing. Tip leakage is the passage of flow from the pressure surface to the suction surface of the blade

through this clearance gap. The leakage flow leads to a reduction in the work done by a turbine

rotor because the mass flow rate through the blade passage is reduced. It also leads to a loss in effi-

ciency. First, the leakage flow increases its entropy through viscous effects and mixing as it passes

through the leakage path above the blade tip. Second, when the leakage flow emerges at the suction

side it mixes with the main flow, creating a further entropy rise. These losses are demonstrated in

Bindon (1989) and various models exist to determine the leakage mass flow rate and the loss gener-

ated. Tip leakage loss rises rapidly with the size of clearance gap and typically a 1% increase of

clearance gap to blade height will incur a loss of 2�3% of efficiency. It is, therefore, more detri-

mental in small turbine stages that have relatively large clearance gaps. Note that stator rows also

suffer from leakage losses if they have clearance flow paths.

Endwall loss is a large, complex subject and an area of active research. It encompasses all of

the loss arising on the hub and casing surfaces, both inside and outside of the blade rows. Endwall

loss is very difficult to isolate and predict, but typically it accounts for about 30% of the total loss

in a turbine stage, see Denton (1993). The flow close to the annulus walls is determined by second-

ary flows in the blade passage, which are driven by the incoming endwall boundary layers and the

turning in the blade passage, see Chapter 6.

Loss from coolant flows is only applicable to high-temperature cooled gas turbine stages, see

Section 4.14. The overall effect must be considered in terms of the thermodynamics of the complete

gas turbine system. Cooling is applied to increase the turbine entry temperature, which raises the cycle

efficiency and work output. However, the cooling process itself is highly irreversible. Entropy is cre-

ated by heat transfer from the mainstream flow, by the passage of the coolant through convoluted pas-

sages and by the mixing of the coolant with the mainstream flow. The last of these processes has a

significant impact on the turbine stage efficiency. The coolant flow is injected into the blade passages

at an angle through holes or slots and has quite different stagnation temperature and pressure to the

mainstream flow. Various models have been developed that enable this mixing loss to be quantified,

see Denton (1993), but accurately predicting the efficiency impact is still challenging.

Steam turbines
The above efficiency analysis and discussion of loss sources also applies to steam turbines. The

main difference to keep in mind for steam turbines is that the working fluid cannot be approxi-

mated as an ideal gas and steam tables or a Mollier chart for steam (Appendix E) have to be used.

As a result, the changes in properties through a steam turbine stage can be much greater than

through a gas turbine stage. Equations (4.18a) and (4.19a) are still valid for a steam turbine stage,

and for modern designs, typically 88%, ηtt, 93%, but in a multistage turbine the loss coefficients

can vary significantly between the front and rear stages, see McCloskey (2003, chap. 8). In cases

where only the inlet and exit conditions to a multistage steam turbine are known it is more appro-

priate to use the overall isentropic efficiency. This can be related to an equivalent small-stage (or

polytropic) efficiency, using the reheat factor, as shown in Eq. (1.56),

ηtt 5
h01 2 h02

h01 2 h02s
5 ηpRH
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where h01 is the stagnation enthalpy of the steam at the turbine inlet temperature and pressure, h02
is the stagnation enthalpy of the steam at the exit temperature and pressure, and h02s is the stagna-

tion enthalpy of the steam at the exit pressure and the inlet entropy.

In addition to the loss sources described previously, steam turbines suffer additional losses due to

moisture in the working fluid. Water droplets form when steam crosses the saturation line into the two-

phase region on the steam chart, see Appendix E. For a steam turbine in a power station, the overall

efficiency typically drops by about 1% for every 1% of wetness in the final stages. This has led to tur-

bine designs in which moisture levels in the exhaust are limited to around 10% (Hesketh & Walker,

2005). Steam turbines also suffer particularly from leakage losses and surface roughness effects. There

are multiple leakage paths in steam turbines, such as over the rotor tips, the stator shrouds, and through

various seals. Some surface roughness arises in manufacture, but it is rapidly worsened by the particle

erosion and blade surface deposits that can occur when operating with steam. However, since the oper-

ating temperatures are lower than gas turbines, steam turbines do not have cooled blades and, therefore,

avoid the additional losses and complexity required by blade cooling.

EXAMPLE 4.1

A low-pressure steam turbine within a power station has an entry temperature of 450�C and an

entry pressure of 30 bar. At exit from the turbine, the condenser pressure is 0.06 bar and due to

the effects of moisture, the turbine isentropic efficiency is given by ηt 5 0:92 y, where y is the

wetness fraction of the steam at turbine exit (and y5 12 x, where x is the dryness fraction).

1. Find the net work output from the turbine per kg of steam and determine the turbine polytro-

pic efficiency assuming a reheat factor of 1.02.

2. The turbine consists of repeating stages designed with zero reaction, a flow coefficient of 0.8

and axial flow at inlet to each stage. If it rotates at 3000 rpm and has a mean radius of 0.9 m,

determine the number of stages, the absolute flow angle at nozzle exit, and the relative angle

at rotor inlet.

Use the following table of properties for water and steam:

Specific Enthalpy (kJ/kg) Specific Entropy (kJ/kg K) Temperature (�C)

Saturated liquid at 0.06 bar 151.5 0.521 36.16 (state f)
Saturated vapor at 0.06 bar 2566.6 8.329 36.16 (state g)
30 bar, 450�C 3344.8 7.086 (state 1)

Solution
1. For the turbine, using Eq. (1.32), with wetness fraction y2,

ηLPT 5
h1 2 h2

h1 2 h2s
5

h1 2 ½y2hf 1 ð12 y2Þhg�
h1 2 h2s

5 0:92 y2

Hence we need the value of h2s. We know that s2s 5 s1 and therefore can find y2s, i.e.,

y2s 5
Sg 2 S2s

Sg 2 Sf
5

Sg 2 S1

Sg 2 Sf
5

8:3292 7:086

8:3292 0:521
5 0:1592:

‘ h2s 5 y2shf 1 ð12 y2sÞhg 5 0:15923 151:51 ð12 0:1592Þ3 2566:65 2182:1 kJ=kg
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Rearranging the above equation for ηLPT gives the exit wetness fraction

y2 5
0:9ðh1 2 h2sÞ2 ðh1 2 hgÞ
ðhg 2 hfÞ1 ðh1 2 h2sÞ

5
0:9ð3344:82 2182:1Þ2 ð3344:82 2566:6Þ
ð3344:82 2182:1Þ1 ð2566:62 151:5Þ 5 0:07497

Hence we can find the actual enthalpy at exit,

h2 5 y2hf 1 ð12 y2Þhg 5 0:074973 151:51 ð12 0:07497Þ3 2566:65 2385:5 kJ=kg

The net work output per kg of steam is then simply

ΔWLPT 5 h1 2 h2 5 3344:82 2385:55 959:3 kJ=kg

Note that a less accurate answer could be obtained using a steam chart.

The polytropic efficiency,

ηp 5
ηt
RH

5
h1 2 h2

h1 2 h2s

1

RH

5
959:3

3344:82 2182:1
3

1

1:02
5 0:809

2. From Eq. (4.14), using the fact that R5 0 and α15 0,

ψ5 2ð12R1φ tan α1Þ5 2

The number of stages required,

nstage $
ΔWLPT

ψU2
5

959:33 103

23 ð0:93 100π2Þ 5 5:999.nstage 5 6

The flow angles are found using Eqs (4.12) and (4.15),

φðtan α2 1 tan α1Þ5ψ.tan α2 5ψ=φ5 2=0:85 2:5: ‘α2 5 68:2�

tan β2 5 tan α2 2 1=φ.tan α2 5 2:52 1=0:85 1:25: ‘β2 5 51:3�

4.7 Preliminary axial turbine design
The process of choosing the best turbine design for a given application involves juggling several

parameters that may be of equal importance, for instance, rotor stress, weight, outside diameter,

efficiency, noise, durability, and cost, so that the final design lies within acceptable limits for each

parameter. In consequence, a simple presentation can hardly do justice to the real problem of an

integrated turbine design. However, a consideration of how the preliminary design choices affect

the turbine basic layout and the efficiency can provide useful guidance to the designer.

As demonstrated earlier in the chapter, the main goal in the preliminary stage design of a tur-

bine is to fix the shapes of the velocity triangles, either by setting the flow angles or by choosing

values for the three dimensionless design parameters, φ, ψ, and R. If we now consider matching the

overall (dimensioned) requirements of the turbine to the velocity triangle parameters, the general

layout of the turbomachine can also be determined.
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Number of stages
First, from the specification of the turbine, the design will usually have a known mass flow rate of

the working fluid and a required power output. This enables the specific work output of the turbine

to be calculated according to ΔW 5 _W= _m. The specific work per stage can be determined from the

stage loading and the blade speed and, thus, the required number of stages can be found as

nstage $
_W

_mψU2
(4.22)

An inequality is used in Eq. (4.22) since the number of stages must be an integer value. The

result shows how a large stage loading can reduce the number of stages required in a multistage

turbine. It also shows that a high blade speed, U, is desirable. However, this is usually constrained

by a stress limit, because centripetal loadings and vibration rise rapidly with rotor speed, see later

in this chapter. In some cases, aerodynamic or acoustic considerations may limit the maximum

blade speed. For example, if a turbine is required to operate with transonic flow, the blade speed

may be constrained by the need to limit the maximum flow Mach number.

Blade height and mean radius
Given that the axial velocity remains constant throughout each stage, i.e., cx15 cx25 cx35 cx, then

the continuity equation for the turbine, Eq. (4.1), reduces to

ρ1Ax1 5 ρ2Ax2 5 ρ3Ax3 5 constant (4.23)

If the mass flow rate through the machine is specified the annulus area, Ax, can be determined

from the continuity equation combined with the flow coefficient:

Ax 5
_m

ρφU
� 2π3 rmH (4.24)

This equation is only approximate since it assumes the mean radius is exactly midway between

the hub and tip, i.e., rm5 (rt1 rh)/2. To be precise, the mean radius should be the radius that

divides the annulus into two equal areas, i.e., r2m 5 ðr2t 1 r2hÞ=2. However, for high hub-to-tip radius

ratios these definitions of mean radius are equivalent. In all cases, an accurate expression for the

annulus area is given by

Ax 5π3 r2t 12
rh

rt

� �2
$ %

(4.25)

This equation is useful for determining the annulus area if the hub-to-tip radius ratio required for the

turbine is known or if the casing diameter is set by the need to fit the machine in with other components.

Often, the mean radius will be fixed by the need to rotate at a particular rotational speed (e.g.,

for mains electricity, Ω5 50 Hz5 3000 rpm) and using a known blade speed, rm5U/Ω. The span-

wise height required for the blades can then be determined from

rt 2 rh 5H � _m

ρφU2π3 rm
(4.26)
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In compressible gas turbines, the inlet stagnation conditions and the inlet Mach number may be

known. This then fixes the inlet annulus area via the mass flow function:

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
Ax cos α1p01

5QðM1Þ (4.27)

The area found from this can then be used with Eq. (4.24) or (4.25) to find the blade span. For

the subsequent, downstream stage, the stagnation temperature and pressure can be found from the

following relationship for the stage loading and pressure ratio:

T03

T01
5 12

ψU2

CpT01
;

p03

p01
5

T03

T01

� �ηpγ=ðγ21Þ
(4.28)

Note that the polytropic efficiency is used here since this is more appropriate for calculating

changes in properties across a single stage. The Mach number at inlet to the downstream stage can

then be found from the velocity using the following compressible flow relationship (included in the

compressible flow tables):

c3ffiffiffiffiffiffiffiffiffiffiffiffi
CpT03

p 5M3

ffiffiffiffiffiffiffiffiffiffiffi
γ2 1

p
11

γ21

2
M2

3

� �21=2

(4.29)

The new annulus area is then determined from Eq. (4.27) and, given the fact that the mean radius is

constant, the blade span can be found. This process can be repeated for subsequent stages, enabling the

general arrangement of the entire turbine to be determined in terms of the size and number of stages.

Number of aerofoils and axial chord
The number of aerofoils in each turbine row and the chord lengths of the vanes and blades can also

be estimated during the preliminary design. The aspect ratio of a blade row is the height, or blade

span, divided by the axial chord, H/b. A suitable value of this is set by mechanical and manufacturing

considerations and will vary between applications. For jet engine, core turbines aspect ratios between

1 and 2 are usual, but low-pressure turbines and steam turbines can have much higher values, as dem-

onstrated in Figures 4.1 and 4.2. To find the ratio of blade pitch to axial chord, s/b, the Zweifel crite-

rion for blade loading can be applied, as detailed in Chapter 3. Equations (3.51) and (3.52) show

how, given the turbine velocity triangles, the pitch to axial chord ratio can be found from an optimum

value of Zweifel coefficient. For a known axial chord, knowing s/b fixes the number of aerofoils.

4.8 Styles of turbine
Often, if the stage loading and flow coefficient are fixed by the overall requirements of the turbine

and the principal design constraints, only one parameter remains that the designer has the freedom

to change in the preliminary design. The classification of different styles of turbine design is most

conveniently described by the reaction, because this relates to the turbine blade geometries. There

are two extremes: zero reaction, where the rotor and stator shapes are very different, and 50% reac-

tion, where the rotor and stator shapes are symmetric. The advantages and disadvantages of both

these styles are discussed below.
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Zero reaction stage
Walker and Hesketh (1999) summarize the advantages of low reaction as enabling a high stage

loading with low interstage swirl, low thrust on the rotor, robust rotor blades, and lower tip leakage

flows (due to a low-pressure drop across the rotor). However, they also point out that low reaction

can lead to boundary layer separation from the highly cambered rotor blades and they show how

the increased stage loading almost invariably leads to lower efficiency. Low reaction designs are

regularly applied in steam turbines, where their advantages are most beneficial and they enable a

reduction in the total number of stages required, but they are not currently used in gas turbines.

From the definition of reaction, when R5 0, Eq. (4.3) indicates that h25 h3 and, thus, all the

enthalpy drop occurs across the stator. From Eq. (4.13b), we can show that

R5
φ
2
ðtan β3 2 tan β2Þ.β2 5β3

Since the axial velocity is constant, this means that the relative speed of the flow across the

rotor does not change. The Mollier diagram and velocity triangles corresponding to these conditions

are sketched in Figure 4.6. From this it is also clear that, since h02rel5 h03rel and h25 h3 for R5 0,

it follows that w25w3. It will be observed in Figure 4.6 that, because of irreversibility, there is a

pressure drop through the rotor row. The zero reaction stage is not the same thing as an impulse

stage; in the latter case there is, by definition, no pressure drop through the rotor. The Mollier dia-

gram for an impulse stage is shown in Figure 4.7, where it is seen that the enthalpy increases

through the rotor. As shown by Eq. (4.3a) this means that the reaction is negative for the impulse

turbine stage when account is taken of the irreversibility.

50% Reaction stage
Havakechian and Greim (1999) summarize the advantages of 50% reaction designs as symmetrical

velocity triangles leading to similar blade shapes and reduced cost, low turning and highly

3ss
3s

h
1

U

2s

02rel
03rel

3

s

2W3

W2

β2
β3

C3

C2

= =

FIGURE 4.6

Velocity diagram and Mollier diagram for a zero reaction turbine stage.
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accelerating passages leading to lower losses, an expansion split into two steps leading to subsonic

Mach numbers, and improved performance over a range of operating conditions. However, they

concede that 50% reaction designs lead to increased turbine part count relative to low reaction

designs since, for low interstage swirl, roughly twice as many stages are needed. Also, the greater

expansion through the rotors increases the thrust on the rotor bearings and increases leakage losses.

50% reaction designs are very common in gas turbines, where the requirement for maximum effi-

ciency is paramount. In gas turbines higher stage loadings are achieved by increasing the interstage

swirl angle, α1. In steam turbines, both 50% reaction and low reaction designs are regularly applied

and the two approaches remain competitive.

3s

h

1

2s, 3ss

02rel

03rel

P2= P3
3

s

2

FIGURE 4.7

Mollier diagram for an impulse turbine stage.
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FIGURE 4.8

Velocity diagram and Mollier diagram for a 50% reaction turbine stage.
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The symmetrical velocity diagram for the 50% reaction case is shown in Figure 4.8. With

R5 0.5, from Eq. (4.13a) combined with Eq. (4.15), it is found that

R5 12
φ
2
ðtan α2 2 tan α1Þ.15φ tan β2 1

1

φ
2 tan α1

� �
.β2 5α1 5α3

Similarly, it can be shown that β35α2 as well, proving that the velocity triangles are indeed

symmetric. Figure 4.8 has been drawn with the same values of cx, U, and ΔW as in Figure 4.6 (the

zero reaction case) to emphasize the difference in flow geometry between the 50% reaction and

zero reaction stages.

EXAMPLE 4.2

A low-pressure turbine within a turbofan jet engine consists of five repeating stages. The turbine

inlet stagnation temperature is 1200 K and the inlet stagnation pressure is 213 kPa. It operates

with a mass flow of 15 kg/s and generates 6.64 MW of mechanical power. The stator in each tur-

bine stage turns the flow from 15� at stator inlet to 70� at stator outlet. The turbine mean radius

is 0.46 m and the rotational shaft speed is 5600 rpm.

1. Calculate the turbine stage loading coefficient and flow coefficient. Hence, show that the

reaction is 0.5 and sketch the velocity triangles for one complete stage.

2. Calculate the annulus area at inlet to the turbine. Use this to estimate the blade height and

the hub-to-tip radius ratio for the stator in the first turbine stage.

Take γ5 1.333, R5 287.2 J/kg K, and Cp5 1150 J/kg K.

Solution
1. The mean blade speed can be calculated from the mean radius and angular speed:

U5 rmΩ5 0:463
5600

60
3 2π5 269:8 m=s

The stage loading can then be determined from the power and mass flow:

ψ5
Δh0

U2
5

Power=ð _m=nstageÞ
U2

5
6:643 106

153 53 269:82
5 1:217

The flow coefficient follows from Eq. (4.12):

φ5
ψ

ðtan α2 1 tan α1Þ
5

1:217

ðtan 70� 1 tan 15�Þ 5 0:403

The reaction can then be determined by rearranging Eq. (4.14):

R5 12
ψ
2
1φ tan α1 5 12

1:217

2
1 0:4 tan 15� 5 0:5

Velocity triangles (symmetrical, since R5 0.5) are as follows:
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c1

15°
Stator

Rotor

c3= c1
α3= α1

U

c3

w3

15°
70°

c2

w215°

70°

U

U

2. To calculate the inlet area, we first determine the Mach number from the inlet velocity then

use the compressible mass flow function:

c1ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p 5
φU=cos α1ffiffiffiffiffiffiffiffiffiffiffiffi

CpT01
p 5

0:4033 269:8

cos 15�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11503 1200

p 5 0:0958

From compressible flow tables (γ5 1.333),

M1 5 0:166; ð _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
Þ=Ap01 5Qð0:166Þ5 0:3781

Ax 5
A

cos α1

5
_m

ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
Qð0:166Þp01

1

cos 15�
5

15
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11503 1200

p

0:37813 2133 103 3 0:9659
5 0:227 m2

In this case, given the low inlet Mach number, it would also be valid to calculate the den-

sity using the inlet stagnation pressure and temperature then apply the continuity equation

(4.24). Once the area is found, the blade height and hub-to-tip radius ratio can be determined.

For the blade height,

H5
Ax

2πrm
5

0:227

2π3 0:46
5 0:0785

which implies that H5 78.2 mm. For the hub-to-tip ratio,

HTR5
rm 2H=2

rm 1H=2
5

0:462 0:0785=2

0:461 0:0785=2
5 0:843
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4.9 Effect of reaction on efficiency
Consider the problem of selecting an axial turbine design for which the mean blade speed, U, the

stage loading, ψ (or ΔW/U2), and the flow coefficient, φ (or cx/U), have already been selected. The

only remaining parameter required to completely define the velocity triangles is R or the interstage

swirl angle, α1, since from Eq. (4.14),

ψ5 2ð12R1φ tan α1Þ

For different values of R the velocity triangles can be constructed, the loss coefficients deter-

mined, and ηtt, ηts calculated. In Shapiro, Soderberg, Stenning, Taylor, and Horlock (1957),

Stenning considered a family of turbines each having a flow coefficient cx/U5 0.4, blade aspect ratio

H/b5 3, and Reynolds number Re5 105, and calculated ηtt, ηts for stage loading factors ΔW/U2

of 1, 2, and 3 using Soderberg’s correlation. The results of this calculation are shown in Figure 4.9

as presented by Shapiro et al. (1957).

In the case of total-to-static efficiency, it is at once apparent that this is optimized, at a

given blade loading, by a suitable choice of reaction. When ΔW/U25 2, the maximum value

of ηts occurs with approximately zero reaction. With lighter blade loading, the optimum ηts is

obtained with higher reaction ratios. When ΔW/U2. 2, the highest value of ηts attainable

without rotor relative flow diffusion occurring is obtained with R5 0. Note that these results

relate only to the 2D blading efficiency and make no allowance for losses due to tip clearance

and endwall flow.

0.9

0.8

0.7

0.6
1.0 0.5 0

Reaction

ηts

ΔW

U 2
= 1

cx /U = 0.4
H /b = 3.0
Re = 105

ΔW

U 2
= 2

ΔW

U 2
= 3

FIGURE 4.9

Influence of reaction on total-to-static efficiency with fixed values of stage loading factor.

140 CHAPTER 4 Axial-Flow Turbines: Mean-Line Analysis and Design



EXAMPLE 4.3

Verify that the peak value of the total-to-static efficiency ηts shown in Figure 4.9 occurs at a

reaction of 50% for the curve marked ΔW/U25 1 and estimate its value using Soderberg’s

correlation.

Solution
From Eq. (4.19c),

1

ηts
5 11

ζRw2
3 1 ζNc22 1 c21
2ΔW

As ΔW/U25 1 and R5 0.5, from ψ5 2(12R1φ tan α1), α15 0 and from Eq. (4.15),

tan β3 5
1

φ
5 2:5; and therefore; β3 5 68:2�

The velocity triangles are symmetrical, so that α25β3. Also, θR5 θN5α25 68.2�; therefore

ζ5 0:043 ð11 1:53 0:6822Þ5 0:0679

1

ηts
5 11

2ζw2
3 1 c2x
2U2

5 11 ζφ2 sec2 β3 1
1

2
φ2

5 11φ2ðζ sec2 β3 1 0:5Þ
5 11 0:42 3 ð0:06793 2:69282 1 0:5Þ
5 11 0:163 ð0:492351 0:5Þ

Therefore,

ηts 5 0:863

This value appears to be close to the peak value of the efficiency curve ΔW/U25 1.0 in

Figure 4.9. Note that it is almost expected that the peak total-to-static efficiency would be at a

reaction of 50% for a stage loading of 1, because this is where there is no interstage swirl, and

thus for a fixed axial velocity, the exit kinetic energy will be minimized. If the total-to-total effi-

ciency was considered, this would not be greatly affected by the choice of reaction. However,

the maximum value of ηtt is found, in general, to decrease slightly as the stage loading factor

increases, see Section 4.12.

4.10 Diffusion within blade rows
Any diffusion of the flow through turbine blade rows is particularly undesirable and must, at the

design stage, be avoided at all costs. This is because the adverse pressure gradient (arising from the

flow diffusion), coupled with large amounts of fluid deflection (usual in turbine blade rows), makes

boundary layer separation more than merely possible, with the result that large-scale losses arise.

A compressor blade row, on the other hand, is designed to cause the fluid pressure to rise in
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the direction of flow, i.e., an adverse pressure gradient. The magnitude of this gradient is strictly

controlled in a compressor, mainly by having a fairly limited amount of fluid deflection in each

blade row.

It was shown previously that negative values of reaction indicated diffusion of the rotor relative

velocity (i.e., for R, 0, w3,w2). A similar condition that holds for diffusion of the nozzle absolute

velocity is that, if R. 1, c2, c1.

If we consider Eq. (4.13), this can be written as

R5 11
φ
2
ðtan α3 2 tan α2Þ

Thus, when α35α2 the reaction is unity (also c25 c3). The velocity diagram for R5 1 is shown

in Figure 4.10 with the same values of cx, U, and ΔW used for R5 0 and R5 1=2. It will be appar-

ent that if R exceeds unity, then c2, c1 (i.e., nozzle flow diffusion).

EXAMPLE 4.4

A single-stage gas turbine operates at its design condition with an axial absolute flow at entry

and exit from the stage. The absolute flow angle at nozzle exit is 70�. At stage entry, the total

pressure and temperature are 311 kPa and 850�C, respectively. The exhaust static pressure is

100 kPa, the total-to-static efficiency is 0.87, and the mean blade speed is 500 m/s.

Assuming constant axial velocity through the stage, determine

1. the specific work done;

2. the Mach number leaving the nozzle;

3. the axial velocity;

4. the total-to-total efficiency;

5. the stage reaction.

Take Cp5 1.148 kJ/(kg �C) and γ5 1.33 for the gas.

Solution
1. From Eq. (4.19a), total-to-static efficiency is

ηts 5
h01 2 h03

h01 2 h3ss
5

ΔW

h01½12 ðp3=p01Þðγ21Þ=γ�

w2

w3

c3

c2

U α2

α3

= =

FIGURE 4.10

Velocity diagram for 100% reaction turbine stage.

142 CHAPTER 4 Axial-Flow Turbines: Mean-Line Analysis and Design



Thus, the specific work is

ΔW 5 ηtsCpT01½12 ðp3=p01Þðγ21Þ=γ�
5 0:873 11483 11233 ½12 ð1=3:11Þ0:248�5 276 kJ=kg

2. At nozzle exit, the Mach number is

M2 5 c2=ðγRT2Þ1=2

and it is necessary to solve the velocity diagram to find c2 and, hence, to determine T2. As

cθ3 5 0; ΔW 5Ucθ2

cθ2 5
ΔW

U
5

2763 103

500
5 552 m=s

c2 5
cθ2

sin α2

5 588 m=s

Referring to Figure 4.1, across the nozzle h01 5 h02 5 h2 1 ð1=2Þc22, thus,

T2 5 T01 2
1

2
c22=Cp 5 973 K

Hence, M25 0.97 with γR5 (γ2 1)Cp

3. The axial velocity, cx5 c2 cos α25 200 m/s

4. ηu 5
ΔW

h01 1 h3ss 2 ð1=2Þc23
� �

After some rearrangement,

1

ηu
5

1

ηts
2

c23
2ΔW

5
1

0:87
2

2002

23 2763 103
5 1:0775

Therefore, ηtt5 0.93

5. Using Eq. (4.13a), the reaction is

R5 12
φ
2
ðtan α2 2 tan α1Þ

‘R5 12
ð200=500Þ

2
tan 70� 5 0:451

4.11 The efficiency correlation of Smith (1965)
All manufacturers of steam and gas turbines keep large databases of measured efficiency of axial-

flow turbine stages as functions of the duty parameters (flow coefficient, φ, and stage loading coeffi-

cient, ψ). Smith (1965) devised a widely used efficiency correlation based upon data obtained from

70 Rolls-Royce aircraft gas turbines, such as the Avon, Dart, Spey, Conway, and others, including

the special four-stage turbine test facility at Rolls-Royce, Derby, England. The data points and
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efficiency curves found by him are shown in Figure 4.11. It is worth knowing that all stages tested

were constant axial velocity, the reactions were between 0.2 and 0.6 and the blade aspect ratio (blade

height to chord ratio) was relatively large, between 3 and 4. Another important factor to remember

was that all efficiencies were corrected to eliminate tip leakage loss so that, in actual operation, the

efficiencies would be higher than those expected for the equivalent real turbines. The tip leakage

losses (which can be very large) were found by repeating tests with different amounts of tip clearance

and extrapolating the results back to zero clearance to get the desired result.

Every turbine was tested over a range of pressure ratios to find its point of maximum efficiency

and to determine the corresponding values of ψ and φ. Each point plotted in Figure 4.11 represents
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FIGURE 4.11

Smith chart for turbine stage efficiency.

(Smith, 1965, with Permission from the Royal Aeronautical Society and its Aeronautical Journal)
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just one test turbine at its best efficiency point and the value of its efficiency is shown adjacent to

that point. Confirmatory tests made by Kacker and Okapuu (1982) and others have shown the use-

fulness of the chart in preliminary turbine design.

Smith developed a simple theoretical analysis to explain the shape of the efficiency curves. He

argued that the losses in any blade row were proportional to the average absolute kinetic energy,

ð1=2Þðc21 1 c22Þ, for that row. For R5 0.5, Smith defined a factor, fs, as the ratio of the shaft work

output to the sum of the mean kinetic energies within the rotor and stator. Thus,

fs 5
Δh0

c21 1 c22
5

Δh0=U2

ðc21=U2Þ1 ðc22=U2Þ (4.30)

Following the reasoning of Smith it is helpful to nondimensionalize the velocity triangles for

the complete stage, assuming R5 0.5, as shown in Figure 4.12. It will be observed that

tan α15 tan β25 (ψ2 1)/2φ and tan α25 tan β35 (ψ1 1)/2φ. Solving for the nondimensionalized

velocities in terms of ψ and φ, we find

c2

U
5

w3

U
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 1

ψ11

2

� �2
s

and

c1

U
5

w2

U
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 1

ψ11

2

� �2
s

Substituting into Eq. (4.30), we obtain

fs 5
ψ

φ2 1 ððψ11Þ=2Þ2 1φ2 1 ððψ21Þ=2Þ2 5
2ψ

4φ2 1ψ2 1 1
(4.31)

From this expression the optimum stage work coefficient, ψ, for a given flow coefficient, φ, can
be found by differentiating with respect to ψ:

@fs
@ψ

5
2ð4φ2 1ψ2 1 1Þ
ð4φ2 1ψ2 1 1Þ 5 0

U/U = 1.0

w3/U

w2/U

c2/U

c1/U
= c3/U

α2

β2

α1
β3

εR εS

φ

ψ

ψ – 1
2

ψ – 1
2

FIGURE 4.12

Dimensionless velocity triangles for a 50% reaction turbine stage.
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From this expression, the optimum curve is easily derived as

ψopt 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4φ2 1 1

q
(4.32)

Figure 4.13 is a carpet plot of ψ versus φ for various values of fs. Superimposed on this plot is

the locus of the optimum curve defined by Eq. (4.32). It has been noted that this curve tends to fol-

low the trend of the optimum efficiency of the Rolls-Royce efficiency correlation given in

Figure 4.13. It has been reported by Lewis (1996) that a more accurate representation of the opti-

mum can be picked out from the Rolls-Royce data as

ψopt exp 5 0:65
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4φ2 1 1

q
(4.33)

It is worth knowing that Lewis (1996) developed Smith’s method of analysis to include the

blade aerodynamics and blade loss coefficients adding further insight into the method.

4.12 Design point efficiency of a turbine stage
In this section, the performance of a turbine stage in terms of its efficiency is calculated for several

types of design, i.e., 50% reaction, zero reaction, and zero exit flow angle, using the loss correlation

method of Soderberg described in Chapter 3. The results are most usefully presented in the form of

carpet plots of the stage loading coefficient, ψ, and flow coefficient, φ.

Total-to-total efficiency of 50% reaction stage
In a multistage turbine the total-to-total efficiency is the relevant performance criterion, the kinetic

energy at stage exit being recovered in the next stage. After the last stage of a multistage turbine or
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FIGURE 4.13

Smith’s kinetic energy coefficient fs and the optimum stage loading, ψopt, plotted against the stage loading

coefficient and flow coefficient for a turbine stage.
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a single-stage turbine, the kinetic energy in the exit flow would be recovered in a diffuser or used

for another purpose (e.g., as a contribution to the propulsive thrust).

From Eq. (4.18c), where it has already been assumed that c15 c3 and T35 T2, we have

1

ηu
5 11

ζRw2
3 1 ζNc22

� �
2ΔW

where ΔW5ψU2 and, for a 50% reaction, w35 c2 and ζR5 ζN5 ζ:

w2
3 5 c2x sec

2 β3 5 c2xð11 tan2 β3Þ
Therefore,

1

ηu
5 11

ζφ2

ψ
ð11 tan2 β3Þ5 11

ζφ2

ψ
11

11ψ
2φ

� �2
" #

as tan β35 (ψ1 1)/2φ and tan β25 (ψ2 1)/2φ.
From these expressions combined with Soderberg’s correlation given in Eq. (3.46), the perfor-

mance chart, shown in Figure 4.14, was derived for specified values of ψ and φ. From this chart it

can be seen that the peak total-to-total efficiency, ηtt, is obtained at very low values of φ and ψ. As
indicated in a survey by Kacker and Okapuu (1982), most aircraft gas turbine designs operate with

flow coefficients in the range, 0.5#φ# 1.5, and values of stage loading coefficient in the range,

0.8#ψ# 2.8.
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Design point total-to-total efficiency and deflection angle contours for a turbine stage of 50% reaction.
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Total-to-total efficiency of a zero reaction stage
The degree of reaction will normally vary along the length of the blade depending upon the type of

design specified. The performance for R5 0 represents a limit, lower values of reaction are possible

but undesirable as they would give rise to large losses in efficiency. For R, 0, w3,w2, which

means the relative flow decelerates across the rotor.

Referring to Figure 4.6, for zero reaction β25β3, and from Eq. (4.15)

tan α2 5 1=φ1 tan β2 and tan α3 5 tan β3 2 1=φ

Also, ψ5ΔW=U2 5φðtan α2 1 tan α3Þ5φðtan β2 1 tan β3Þ5 2φ tan β2; therefore,

tan β2 5
ψ
2φ

Thus, using the preceding expressions,

tan α2 5
ðψ=2Þ1 1

φ
and tan α3 5

ðψ=2Þ2 1

φ

From these expressions, the flow angles can be calculated if values for ψ and φ are specified.

From an inspection of the velocity diagram,

c2 5 cx sec α2; hence; c22 5 c2xð11 tan2 α2Þ5 c2x ½11 ðψ=211Þ2=φ2�
w3 5 cx sec β3; hence;w2

3 5 c2xð11 tan2 β3Þ5 c2x ½11 ðψ=2φÞ2�
Substituting these expressions into Eq. (4.20),

1

ηtt
5 11

ζRw2
3 1 ζNc22
2ψU2

1

ηu
5 11

1

2ψ
ζR φ2 1

ψ
2

� �2
" #

1 ζN φ2 1 11
ψ
2

� �2
" #( )

The performance chart shown in Figure 4.15 was derived using these expressions. This is simi-

lar in its general form to Figure 4.14 for a 50% reaction, with the highest efficiencies being

obtained at the lowest values of φ and ψ, except that higher efficiencies are obtained at higher

values of the stage loading but at reduced values of the flow coefficient.

Total-to-static efficiency of stage with axial velocity at exit
A single-stage axial turbine will have axial flow at exit and the most appropriate efficiency is usu-

ally total to static. To calculate the performance, Eq. (4.21) is used:

1

ηts
5 11

ζRw2
3 1 ζNc22 1 c21
2ΔW

5 11
φ2

2ψ
ζR sec2 β3 1 ζN sec2 α2 1 1
� �

With axial flow at exit, c15 c35 cx, and from the velocity diagram, Figure 4.16,

tan β3 5U=cx; tan β2 5 tan α2 2 tan β3
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sec2 β3 5 11 tan2 β3 5 11 1=φ2

sec2 α2 5 11 tan2 α2 5 11 ðψ=φÞ2

Therefore,

1

ηts
5 11

1

2φ
ζRð11φ2Þ1 ζNðψ2 1φ2Þ1φ2
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Design point total-to-total efficiency and rotor flow deflection angle for a zero reaction turbine stage.
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Velocity diagram for a turbine stage with axial exit flow.
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Specifying φ and ψ, the unknown values of the loss coefficients, ζR and ζN, can be derived

using Soderberg’s correlation, Eq. (3.50), in which

εN 5α2 5 tan21ðψ=φÞ and εR 5β2 1β3 5 tan21ð11φÞ1 tan21½ðψ2 1Þ=φ�
From these expressions the performance chart, Figure 4.17, was derived.

An additional limitation is imposed on the performance chart because of the reaction, which

must remain greater than or, in the limit, equal to zero. From Eq. (4.14) for zero interstage swirl,

ψ5 2ð12RÞ
Thus, at the limit, R5 0, and the stage loading coefficient, ψ5 2.

4.13 Stresses in turbine rotor blades
Although this chapter is primarily concerned with the fluid mechanics and thermodynamics of turbines,

some consideration of stresses in rotor blades is needed as these can place restrictions on the allowable

blade height and annulus flow area, particularly in high temperature, high stress situations. Only a very

brief outline is attempted here of a very large subject, which is treated at much greater length by

Horlock (1966), in texts dealing with the mechanics of solids, e.g., Den Hartog (1952) and Timoshenko

(1956), and in specialized discourses, e.g., Japiske (1986) and Smith (1986). The stresses in turbine
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Total-to-static efficiency contours for a stage with axial flow at exit.
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blades arise from centrifugal loads, from gas bending loads, and from vibrational effects caused by non-

constant gas loads. Although the centrifugal stress produces the biggest contribution to the total stress,

the vibrational stress is very significant and thought to be responsible for fairly common vibratory

fatigue failures (Smith, 1986). The direct and simple approach to blade vibration is to “tune” the blades

so that resonance does not occur in the operating range of the turbine. This means obtaining a blade

design in which none of its natural frequencies coincides with any excitation frequency. The subject is

complex and interesting, but outside of the scope of the present text.

Centrifugal stresses
Consider a blade rotating about an axis O as shown in Figure 4.18. For an element of the blade of

length dr at radius r, at a rotational speed Ω, the elementary centrifugal load dFc is given by

dFc 52Ω2rdm

dr

Fc+ dFc

Fc

o
Ω

r

FIGURE 4.18

Centrifugal forces acting on rotor blade element.
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where dm5 ρmAdr and the negative sign accounts for the direction of the stress gradient (i.e., zero

stress at the blade tip to a maximum at the blade root),

dσc

ρm
5

dFc

ρmA
52Ω2rdr

For blades with a constant cross-sectional area, we get

σc

ρm
5Ω2

ðrt
rh

rdr5
U2

t

2
12

rh

rt

� �2
" #

(4.34a)

A rotor blade is usually tapered both in chord and in thickness from root to tip, such that the

area ratio At/Ah is between 1/3 and 1/4. For such a blade taper, it is often assumed that the blade

stress is reduced to two-thirds of the value obtained for an untapered blade. A blade stress taper

factor can be defined as

K5
stress at root of tapered blade

stress at root of untapered blade

Thus, for tapered blades

σc

ρm
5

KU2
t

2
12

rh

rt

� �2
" #

(4.34b)

Values of the taper factor K quoted by Emmert (1950) are shown in Figure 4.19 for various

taper geometries.

Typical data for the allowable stresses of commonly used alloys are shown in Figure 4.20 for

the “1000-h rupture life” limit with maximum stress allowed plotted as a function of blade tempera-

ture. It can be seen that, in the temperature range 900�1100 K, nickel or cobalt alloys are likely to

be suitable and for temperatures up to about 1300 K molybdenum alloys would be needed.
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FIGURE 4.19

Effect of tapering on centrifugal stress at blade root.

(Adapted from Emmert, 1950)
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Further detailed information on one of the many alloys used for gas turbines blades is shown in

Figure 4.21. This material is Inconel, a nickel-based alloy containing 13% chromium, 6% iron,

with a little manganese, silicon, and copper. Figure 4.21 shows the influence of the “rupture life”

and also the “percentage creep,” which is the elongation strain at the allowable stress and tempera-

ture of the blade. To enable operation at high temperatures and for long life of the blades, the creep

strength criterion is the one usually applied by designers.

An estimate of the average rotor blade temperature Tb can be made using the approximation

Tb 5 T2 1 0:85w2
2=ð2CpÞ (4.35)

that is, 85% temperature recovery of the inlet relative kinetic energy.

EXAMPLE 4.5

Combustion products enter the first stage of a gas turbine at a stagnation temperature and pres-

sure of 1200 K and 4.0 bar. The rotor blade tip diameter is 0.75 m, the blade height is 0.12 m,

and the shaft speed is 10,500 rev/min. At the mean radius the stage operates with a reaction of

50%, a flow coefficient of 0.7, and a stage loading coefficient of 2.5.

Assuming the combustion products are a perfect gas with γ5 1.33 and R5 287.8 kJ/kg K,

determine:

1. the relative and absolute flow angles for the stage;

2. the velocity at nozzle exit;

3. the static temperature and pressure at nozzle exit assuming a nozzle efficiency of 0.96 and

the mass flow;
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FIGURE 4.20

Maximum allowable stress for various alloys (1000-h rupture life).

(Adapted from Freeman, 1955).
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4. the rotor blade root stress assuming the blade is tapered with a stress taper factor K of 2/3

and the blade material density is 8000 kg/m2;

5. the approximate mean blade temperature;

6. taking only the centrifugal stress into account suggest a suitable alloy from the information

provided that could be used to withstand 1000 h of operation.

Solution
1. The stage loading is

ψ5Δh0=U
2 5 ðwθ3 1wθ2Þ=U5φðtan β3 1 tan β2Þ

From Eq. (4.13b), the reaction is

R5φðtan β3 2 tan β2Þ=2
Adding and subtracting these two expressions, we get

tan β3 5 ðψ=21RÞ=φ and tan β2 5 ðψ=22RÞ=φ
Substituting values of ψ, φ, and R into the preceding equations, we obtain

β3 5 68:2�; β2 5 46:98�

and for similar triangles (i.e., 50% reaction),

α2 5β3 and α3 5β2

2. At the mean radius, rm5 (0.75�0.12)/25 0.315 m, the blade speed is Um5Ωrm5 (10,500/30)

3π3 0.3155 1099.63 0.3155 346.36 m/s. The axial velocity cx5φUm5 0.53 346.36

5 242.45 m/s and the velocity of the gas at nozzle exit is c25 cx/cos α25 242.45/

cos 68.25 652.86 m/s.

3. To determine the conditions at nozzle exit, we have

T2 5 T02 5
1

2
c22=Cp 5 12002 652:862=ð23 1160Þ5 1016:3 K

The nozzle efficiency is

ηN 5
h01 2 h2

h01 2 h2s
5

12 ðT2=T01Þ
12 ðp2=p01Þðγ21Þ=γ

Therefore,

p2

p01

� �ðγ21Þ=γ
5 12

12 ðT2=T01Þ
ηN

5 12
12 ð1016:3=1200Þ

0:96
5 0:84052

and

p2 5 43 0:8400524:0303 5 1:986 bar

The mass flow is found from the continuity equation:
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_m5 ρ2A2cx2 5
p2

RT2

� �
A2cx2

therefore,

_m5
1:9863 105

287:83 1016:3

� �
3 0:23753 242:455 39:1 kg=s

4. For a tapered blade, Eq. (4.34b) gives

σc

ρm
5

2

3
3

412:32

2
12

0:51

0:75

� �2
" #

5 30; 463:5 m2=s2

where Ut5 1099.63 0.3755 412.3 m/s.

The density of the blade material is taken to be 8000 kg/m3 and so the root stress is

σc 5 80003 30; 463:55 2:4373 108 N=m2 5 243:7 MPa

5. The approximate average mean blade temperature is

Tb 5 1016:31 0:853 ð242:45=cos 46:975Þ2=ð23 1160Þ5 1016:31 46:265 1062:6 K

6. The data in Figure 4.20 suggest that, for this moderate root stress, cobalt or nickel alloys

would not withstand a lifespan of 1000 h to rupture and the use of molybdenum would be

necessary. However, it would be necessary to take account of bending and vibratory stresses

and the decision about the choice of a suitable blade material would be decided on the out-

come of these calculations.

Inspection of the data for Inconel 713 cast alloy, Figure 4.21, suggests that it might be a

better choice of blade material as the temperature�stress point of the preceding calculation is

to the left of the line marked creep strain of 0.2% in 1000 h. Again, account must be taken of

the additional stresses due to bending and vibration.

Design is a process of trial and error; changes in the values of some of the parameters can

lead to a more viable solution. In this case (with bending and vibrational stresses included), it

might be necessary to reduce one or more of the values chosen, e.g., the rotational speed, the

inlet stagnation temperature, and the flow area.

Note: The combination of values for ψ and φ at R5 0.5 used in this example was selected

from data given by Wilson (1987) and corresponds to an optimum total-to-total efficiency of

91.9%.

4.14 Turbine blade cooling
In the gas turbine industry, there has been a continuing trend towards higher turbine inlet tempera-

tures to give increased specific thrust (thrust per unit air mass flow) and to allow the specific fuel

consumption to be reduced. The highest allowable gas temperature at entry to a turbine with

uncooled blades is 1000�C while, with a sophisticated blade cooling system, gas temperatures up to
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about 1800�C are possible, depending on the nature of the cooling system. Such high temperatures

are well in excess of the melting point of the leading nickel-based alloys from which the blades are

cast.

Various types of cooling system for gas turbines have been considered in the past and a number

of these are now in use. In the Rolls-Royce Trent engines (Rolls-Royce, 2005), the HP turbine

blades, nozzle guide vanes, and seal segments are cooled internally and externally using cooling air

from the final stage of the HP compressor. This cooling air is itself at a temperature of over 700�C
and at a pressure of 3.8 MPa. The hot gas stream at the turbine inlet is at a pressure of over

3.6 MPa so the pressure margin is quite small and maintaining that margin is critical to the lifespan

of the engine. Figure 4.22 illustrates a high-pressure turbine rotor blade, sectioned to show the intri-

cate labyrinth of passages through which the cooling air passes before part of it is vented to the

blade surface via the rows of tiny holes along and around the hottest areas of the blade. Ideally,

the air emerges with little velocity and forms a film of cool air around the blade surface (hence, the

term film cooling), insulating it from the hot gases. This type of cooling system enables turbine
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Properties of Inconel 713 Cast Alloy.

(Adapted from Balje, 1981)
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entry temperatures up to 1800 K to be used. Figure 4.23 shows the way the cooling air is used to

cool HP nozzle guide vanes in a modern jet engine.

The cooling system performance can be quantified using the cooling effectiveness defined as

ε5
T0g 2 Tb

T0g 2 T0c
(4.36)

where T0g is the stagnation temperature of the hot gas stream, Tb is the blade metal temperature,

and T0c is the coolant stagnation temperature. A typical value for ε is around 0.6. Equation (4.36)

can be used to look at the effect of changes in the cooling system on the blade metal temperature.

As shown by Figure 4.21, relatively small changes in the blade metal temperature will lead to large

changes in the creep life of the component.

A rising thermodynamic penalty is incurred with blade cooling systems as the turbine entry tem-

perature rises due to the energy required to pressurize the air bled off from the compressor and the

viscous and mixing losses incurred. Figure 4.24 is taken from Wilde (1977) showing how the net

turbine efficiency decreases with increasing turbine entry temperature. Several in-service gas tur-

bine engines for that era are included in the graph. Wilde did question whether turbine entry tem-

peratures .1600 K could really be justified in turbofan engines because of the effect on the

internal aerodynamic efficiency and specific fuel consumption. However, turbine entry tempera-

tures continue to rise and experience continues to show the important operational advantage of

using complex blade cooling systems.

Blade
cooling air

FIGURE 4.22

Cooled HP turbine rotor blade showing the cooling passages.

(Courtesy of Rolls-Royce plc)
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4.15 Turbine flow characteristics
An accurate knowledge of the flow characteristics of a turbine is of considerable practical impor-

tance as, for instance, in the matching of flows between a compressor and turbine of a jet engine.

Figure 4.25, after Mallinson and Lewis (1948), shows a comparison of typical characteristics for

one, two, and three stages plotted as turbine overall pressure ratio p01/p0e against a mass flow coef-

ficient _mð ffiffiffiffiffiffiffi
T01

p Þ=p01. There is a noticeable tendency for the characteristic to become more ellipsoi-

dal as the number of stages is increased. At a given pressure ratio the mass flow coefficient, or

“swallowing capacity,” tends to decrease with the addition of further stages to the turbine. One of

the earliest attempts to assess the flow variation of a multistage turbine is credited to Stodola

(1945), who formulated the much used “ellipse law.” The curve labeled multistage in Figure 4.25

is in agreement with the “ellipse law” expression

_mð
ffiffiffiffiffiffiffi
T01

p
Þ=p01 5 k½12ðp0e=p01Þ2�1=2 (4.37)

where k is a constant.

This expression has been used for many years in steam turbine practice, but an accurate estimate

of the variation in swallowing capacity with pressure ratio is of even greater importance in gas tur-

bine technology. Whereas, the average condensing steam turbine, even at part-load, operates at

very high-pressure ratios, some gas turbines may work at rather low-pressure ratios, making flow

matching with a compressor a more difficult problem.

Note that, when the pressure ratio across a single-stage turbine exceeds about 2, the turbine sta-

tor blades choke and the flow capacity becomes constant. Beyond this point the turbine behaves
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Turbine flow characteristics
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much the same as a choked nozzle and the performance is fairly independent of the turbine rota-

tional speed. For multistage turbines, the choking pressure ratio increases as more stages are added.

Flow characteristics of a multistage turbine
Several derivations of the ellipse law are available in the literature. The derivation given here is a

slightly amplified version of the proof given by Horlock (1958). A more general method has been

given by Egli (1936), which takes into consideration the effects when operating outside the normal

low loss region of the blade rows.

Consider a turbine comprising a large number of normal stages, each of 50% reaction; then,

referring to the velocity diagram of Figure 4.26(a), c15 c35w2 and c25w3. If the blade speed is

maintained constant and the mass flow is reduced, the fluid angles at exit from the rotor (β3) and

nozzles (α2) will remain constant and the velocity diagram then assumes the form shown in

Figure 4.26(b). The turbine, if operated in this manner, will be of low efficiency, as the fluid direc-

tion at inlet to each blade row is likely to produce a negative incidence stall. To maintain high effi-

ciency, the fluid inlet angles must remain fairly close to the design values. It is therefore assumed

that the turbine operates at its highest efficiency at all off-design conditions and, by implication,

the blade speed is changed in direct proportion to the axial velocity. The velocity triangles are simi-

lar at off-design flows but of different scale.

Now the work done by unit mass of fluid through one stage is U(cθ21 cθ3) so that, assuming a

perfect gas,

CpΔT0 5CpΔT 5Ucxðtan α2 1 tan α3Þ
and, therefore,

ΔT ~ c2x

(a) Design flow

c2 w3

c3w2

U

(b) Reduced flow

c2

w3
c3w2

U

FIGURE 4.26

Change in turbine stage velocity diagram with mass flow at constant blade speed.
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Denoting design conditions by subscript d, then

ΔT

ΔTd
5

cx

cxd

� �2
(4.38)

for equal values of cx/U.

From the continuity equation, at off-design, _m5 ρAxcx 5 ρ1Ax1cx1, and at design,

_md 5 ρdAxcxd 5 ρ1Ax1cx1, hence,

cx

cxd
5

ρd
ρ

cx1

cx1d
5

ρd
ρ

_m

_md

(4.39)

Consistent with the assumed mode of turbine operation, the polytropic efficiency is taken to be

constant at off-design conditions and, from Eq. (1.50), the relationship between temperature and

pressure is, therefore,

T=pηpðγ21Þ=γ 5 constant

Combined with p/ρ5RT, the above expression gives, on eliminating p, ρ/Tn5 constant, hence,

ρ
ρd

5
T

Td

� �n
(4.40)

where n5 γ/[ηp(γ2 1)]2 1.

For an infinitesimal temperature drop, Eq. (4.38) combined with Eqs. (4.39) and (4.40) gives,

with little error,

dT

dTd
5

cx

cxd

� �2

5
Td

T

� �2n _m

_md

� �
(4.41)

Integrating Eq. (4.41),

T2n11 5
_m

_md

� �
T2n11
d 1K

where K is an arbitrary constant.

To establish a value for K, it is noted that if the turbine entry temperature is constant Td5 T1
and T5 T1 also. Thus, K5 11 ð _m1 _mdÞ2

� �
T2n11
1 and

T

T1

� �2n11

2 15
_m

_md

� �2
Td

T1

� �2n11

2 1

" #
(4.42)

Equation (4.42) can be rewritten in terms of pressure ratio since T=T1 5 ðp=plÞηpðγ21Þ=γ. As

2n1 15 2γ/[ηp(γ2 1)]2 1, then

_m

_md

5
12ðp=p1Þ22ηpðγ21Þ=γ

12ðpd=p1Þ22ηpðγ21Þ=γ

( )1=2

(4.43a)
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With ηp5 0.9 and γ5 1.3, the pressure ratio index is about 1.8; thus, the approximation is often

used:

_m

_md

5
12ðp=p1Þ2
12ðpd=p1Þ2

 �1=2

(4.43b)

which is the ellipse law of a multistage turbine.

PROBLEMS
1. Show, for an axial-flow turbine stage, that the relative stagnation enthalpy across the rotor

row does not change. Draw an enthalpy�entropy diagram for the stage labeling all salient

points. Stage reaction for a turbine is defined as the ratio of the static enthalpy drop in the

rotor to that in the stage. Derive expressions for the reaction in terms of the flow angles and

draw velocity triangles for reactions of 0.0, 0.5, and 1.0.

2. a. An axial-flow turbine operating with an overall stagnation pressure of 8�1 has a

polytropic efficiency of 0.85. Determine the total-to-total efficiency of the turbine.

b. If the exhaust Mach number of the turbine is 0.3, determine the total-to-static efficiency.

c. If, in addition, the exhaust velocity of the turbine is 160 m/s, determine the inlet total

temperature.

Assume for the gas that Cp5 1.175 kJ/(kg K) and R5 0.287 kJ/(kg K).

3. The mean blade radii of the rotor of a mixed flow turbine are 0.3 m at inlet and 0.1 m at

outlet. The rotor rotates at 20,000 rev/min and the turbine is required to produce 430 kW. The

flow velocity at nozzle exit is 700 m/s and the flow direction is at 70� to the meridional

plane. Determine the absolute and relative flow angles and the absolute exit velocity if the

gas flow is 1 kg/s and the velocity of the through-flow is constant through the rotor.

4. In a Parson’s reaction turbine, the rotor blades are similar to the stator blades but with the

angles measured in the opposite direction. The efflux angle relative to each row of blades is

70� from the axial direction, the exit velocity of steam from the stator blades is 160 m/s, the

blade speed is 152.5 m/s, and the axial velocity is constant. Determine the specific work done

by the steam per stage. A turbine of 80% internal efficiency consists of 10 such stages as just

described and receives steam from the stop valve at 1.5 MPa and 300�C. Determine, with the

aid of a Mollier chart, the condition of the steam at outlet from the last stage.

5. Values of pressure (kPa) measured at various stations of a zero reaction gas turbine stage, all

at the mean blade height, are shown in the following table:

Stagnation Pressure Static Pressure

Nozzle entry 414 Nozzle exit 207

Nozzle exit 400 Rotor exit 200

The mean blade speed is 291 m/s, inlet stagnation temperature 1100 K, and the flow angle

at nozzle exit is 70� measured from the axial direction. Assuming the magnitude and direction
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of the velocities at entry and exit of the stage are the same, determine the total-to-total

efficiency of the stage. Assume a perfect gas with Cp5 1.148 kJ/(kg �C) and γ5 1.333.

6. In a certain axial-flow turbine stage, the axial velocity cx is constant. The absolute velocities

entering and leaving the stage are in the axial direction. If the flow coefficient cx/U is 0.6 and

the gas leaves the stator blades at 68.2� from the axial direction, calculate

a. the stage loading factor, ΔW/U2;

b. the flow angles relative to the rotor blades;

c. the degree of reaction;

d. the total-to-total and total-to-static efficiencies.

The Soderberg loss correlation, Eq. (3.46), should be used.

7. a. Sketch the velocity triangles for a repeating stage turbine with 50% reaction. Show that

the ratio of the exit velocity from the stator c2 to the rotor blade speed U is given by

c2

U
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 1

ψ11

2

� �2
s

where φ is the flow coefficient and ψ is the stage loading.

b. The total-to-total efficiency for an axial turbine stage is given by the following relationship:

ηtt 5 12
0:04

ψ
c2

U

� �2
1

w3

U

� �2� �

where w3 is the relative velocity at exit from the rotor. Using the result from part (a)

shows that a repeating stage turbine with 50% reaction and a flow coefficient of 0.5 have

maximum efficiency when the stage loading is equal to
ffiffiffi
2

p
. For this design, determine the

total-to-total efficiency and the total-to-static efficiency of the stage. Also calculate the

flow angles at inlet and exit from the turbine stator.

c. The repeating stage design parameters in part (b) are used in a four-stage air turbine. The

turbine is to have a mass flow rate of 25 kg/s and a power output of 3.5 MW. The

rotational speed is 3000 rpm and the density of the air at the inlet is 1.65 kg/m3.

Determine the mean radius of the turbine, the flow velocity at inlet and the height of the

stator blades in the first stage.

8. A steam turbine stage of high hub�tip ratio is to receive steam at a stagnation pressure and

temperature of 1.5 MPa and 325�C, respectively. It is designed for a blade speed of 200 m/s

and the following blade geometry was selected:

Nozzles Rotor

Inlet angle (�) 0 48

Outlet angle (�) 70.0 56.25

Space�chord ratio (s/l) 0.42 �
Blade length�axial chord ratio (H/b) 2.0 2.1

Maximum thickness�axial chord 0.2 0.2
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The deviation angle of the flow from the rotor row is known to be 3� on the evidence of

cascade tests at the design condition. In the absence of cascade data for the nozzle row, the

designer estimated the deviation angle from the approximation 0.19θs/l, where θ is the blade

camber in degrees. Assuming the incidence onto the nozzles is 0, the incidence onto the rotor

is 1.04�, and the axial velocity across the stage is constant, determine

a. the axial velocity;

b. the stage reaction and loading factor;

c. the approximate total-to-total stage efficiency on the basis of Soderberg’s loss correlation,

assuming Reynolds number effects can be ignored;

d. by means of a steam chart the stagnation temperature and pressure at stage exit.

9. a. A single-stage axial-flow turbine is to be designed for zero reaction without any absolute

swirl at rotor exit. At the nozzle inlet, the stagnation pressure and temperature of the gas

are 424 kPa and 1100 K, respectively. The static pressure at the mean radius between the

nozzle row and rotor entry is 217 kPa and the nozzle exit flow angle is 70�. Sketch an

appropriate Mollier diagram (or a T�s diagram) for this stage allowing for the effects of

losses and sketch the corresponding velocity diagram. Hence, using Soderberg’s

correlation to calculate blade row losses, determine for the mean radius

i. the nozzle exit velocity;

ii. the blade speed;

iii. the total-to-static efficiency.

b. Verify for this turbine stage that the total-to-total efficiency is given by

1

ηtt
5

1

ηts
2

φ
2

� �2

where φ5 cx/U. Hence, determine the value of the total-to-total efficiency. Assume for

the gas that Cp5 1.15 kJ/(kg K) and γ5 1.333.

10. a. Prove that the centrifugal stress at the root of an untapered blade attached to the drum of

an axial-flow turbomachine is given by

σc 5πρmN
2Ax=1800;

where ρm5 density of blade material, N5 rotational speed of drum, in rpm, and Ax5 area

of the flow annulus.

b. The preliminary design of an axial-flow gas turbine stage with stagnation conditions at

stage entry of p015 400 kPa, T015 850 K, is to be based upon the following data

applicable to the mean radius:

i. flow angle at nozzle exit, α25 63.8�;
ii. reaction, R5 0.5;

iii. flow coefficient, cx/Um5 0.6;

iv. static pressure at stage exit, p35 200 kPa;

v. estimated total-to-static efficiency, ηts5 0.85.

vi. Assuming that the axial velocity is unchanged across the stage, determine

the specific work done by the gas;
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the blade speed;

the static temperature at stage exit.

c. The blade material has a density of 7850 kg/m3 and the maximum allowable stress in the

rotor blade is 120 MPa. Taking into account only the centrifugal stress, assuming

untapered blades and constant axial velocity at all radii, determine for a mean flow rate of

15 kg/s

i. the rotor speed (rev/min);

ii. the mean diameter;

iii. the hub�tip radius ratio.

For the gas assume that Cp5 1050 J/(kg K) and R5 287 J/(kg K).

11. The design of a single-stage axial-flow turbine is to be based on constant axial velocity with

axial discharge from the rotor blades directly to the atmosphere. The following design values

have been specified:

Mass flow rate 16.0 kg/s

Initial stagnation temperature, T01 1100 K

Initial stagnation pressure, p01 230 k N/m2

Density of blading material, ρm 7850 kg/m3

Maximum allowable centrifugal stress at blade root 1.73 108 N/m2

Nozzle profile loss coefficient, Yp5 (p012p02)/(p022p2) 0.06

Taper factor for blade stressing, K 0.75

In addition, the following may be assumed:

Atmospheric pressure, p3 102 kPa

Ratio of specific heats, γ 1.333

Specific heat at constant pressure, Cp 1150 J/(kg K)

In the design calculations, values of the parameters at the mean radius are as follows:

Stage loading coefficient, ψ5ΔW/U2 1.2

Flow coefficient, φ5 cx/U 0.35

Isentropic velocity ratio, U/c0 0.61

where c0 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðh01 2 h3ssÞ

p
. Determine

i. the velocity triangles at the mean radius;

ii. the required annulus area (based on the density at the mean radius);

iii. the maximum allowable rotational speed;

iv. the blade tip speed and the hub�tip radius ratio.

12. Draw the velocity triangles for a repeating stage of an axial turbine that has a blade speed of

200 m/s, a constant axial velocity of 100 m/s, a stator exit angle of 65�, and no interstage
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swirl. Assuming that the working fluid is air, calculate the stage loading coefficient and the

degree of reaction of the machine.

13. Determine the total-to-total efficiency of a low speed axial turbine stage that at the design

condition has a stator exit flow angle of 70�, zero swirl at inlet and exit, constant axial

velocity, and 50% reaction. Assume that the kinetic energy loss coefficient of both the stator

blades and the rotor blades is 0.09.
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CHAPTER

5Axial-Flow Compressors and Ducted
Fans

A solemn, strange and mingled air, ’t was sad by fits, by starts was wild.
W. Collins, The Passions

5.1 Introduction
The idea of using a form of reversed turbine as an axial compressor is as old as the reaction turbine

itself. It is recorded by Stoney (1937) that Sir Charles Parsons obtained a patent for such an

arrangement as early as 1884. However, simply reversing a turbine for use as a compressor gives

efficiencies that are, according to Howell (1945), less than 40% for machines of high pressure ratio.

Parsons actually built a number of these machines (ca. 1900), with blading based upon improved

propeller sections. The machines were used for blast furnace work, operating with delivery pres-

sures between 10 and 100 kPa above atmospheric pressure. The efficiency attained by these early,

low-pressure compressors was about 55%; the reason for this low efficiency is now attributed to

blade stall. A high pressure ratio compressor (550 kPa delivery pressure) was also built by Parsons

but is reported by Stoney to have “run into difficulties.” The design, comprising two axial compres-

sors in series, was abandoned after many trials, the flow having proved to be unstable (presumably

due to compressor surge). As a result of low efficiency, axial compressors were generally aban-

doned in favor of multistage centrifugal compressors with their higher efficiency of 70�80%.

It was not until 1926 that any further development on axial compressors was undertaken, when

Griffith outlined the basic principles of his aerofoil theory of compressor and turbine design. The

subsequent history of the axial compressor is closely linked with that of the aircraft gas turbine and

has been recorded by Cox (1946) and Constant (1950). The work of the team under Griffith at the

Royal Aircraft Establishment, Farnborough, led to the conclusion (confirmed later by rig tests) that

efficiencies of at least 90% could be achieved for “small” stages, i.e., low-pressure ratio stages.

The early difficulties associated with the development of axial-flow compressors stemmed

mainly from the fundamentally different nature of the flow process compared with that in axial-

flow turbines. In the axial turbine, the flow relative to each blade row is accelerated, whereas in

axial compressors, it is decelerated. It is now widely known that although a fluid can be rapidly

accelerated through a passage and sustain a small or moderate loss in total pressure the same is not

true for a rapid deceleration. In the latter case, large losses would arise as a result of severe stall

caused by a large adverse pressure gradient. So as to limit the total pressure losses during flow
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diffusion it is necessary for the rate of deceleration (and turning) in the blade passages to be

severely restricted. (Details of these restrictions are outlined in Chapter 3 in connection with the

correlations of Lieblein and Howell.) It is mainly because of these restrictions that axial compres-

sors need to have many stages for a given pressure ratio compared with an axial turbine, which

needs only a few. Thus, the reversed turbine experiment tried by Parsons was doomed to a low

operating efficiency.

The performance of axial compressors depends on their usage category. Carchedi and Wood

(1982) described the design and development of a single-shaft 15-stage axial-flow compressor that

provided a 12:1 pressure ratio at a mass flow of 27.3 kg/s for a 6 MW industrial gas turbine. The

design was based on subsonic flow and the compressor was fitted with variable stagger stator

blades to control the position of the low-speed surge line. In the field of aircraft gas turbines, how-

ever, the engine designer is more concerned with maximizing the work done per stage while retain-

ing an acceptable level of overall efficiency. Increased stage loading almost inevitably leads to

some aerodynamic constraint. This constraint is more severe at increased Mach number, when

shock-induced boundary layer separation or increased losses can arise from poor diffusion of the

flow. Wennerstrom (1990) outlined the history of highly loaded axial-flow compressors with spe-

cial emphasis on the importance of reducing the number of stages and the ways that improved per-

formance can be achieved. Since about 1970, a significant and special change occurred with

respect to one design feature of the axial compressor and that was the introduction of low aspect

ratio blading. It was not at all obvious why blading of large chord would produce any performance

advantage, especially as the trend was to try to make engines more compact and lighter by using

high aspect ratio blading. Wennerstrom (1989) reviewed the increased usage of low aspect ratio

blading in aircraft axial-flow compressors and reported on the high loading capability, high effi-

ciency, and good range obtained with this type of blading. One early application was an axial-flow

compressor that achieved a pressure ratio of 12.1 in only five stages, with an isentropic efficiency

of 81.9% and an 11% stall margin. The blade tip speed was 457 m/s and the flow rate per unit fron-

tal area was 192.5 kg/s/m2. It was reported that the mean aspect ratio ranged from a “high” of 1.2

in the first stage to less than 1.0 in the last three stages. A related later development pursued by the

US Air Force was an alternative inlet stage with a rotor mean aspect ratio of 1.32 that produced, at

design, a pressure ratio of 1.912 with an isentropic efficiency of 85.4% and an 11% stall margin. A

maximum efficiency of 90.9% was obtained at a pressure ratio of 1.804 and lower rotational speed.

The flow within an axial-flow compressor is exceedingly complex, which is one reason why

research and development on compressors has proliferated over the years. In the following sections,

a simplified approach is taken so that students can grasp the essentials.

5.2 Mean-line analysis of the compressor stage
Most of the analysis in this chapter is simplified (as it was for axial turbines) by considering the

variation in the flow along a mean radius through the machine. Significant spanwise variations are

neglected and the parameters determined using this type of analysis are those representative of

average conditions. This approach is appropriate for initial design and performance calculations of

a compressor, and it is more accurate if the blade height is small compared with the mean radius.
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In addition, as for axial turbines, the flow is assumed to be invariant in the circumferential direc-

tion, with negligible spanwise (radial) velocities. The 3D flow effects that occur within axial turbo-

machines are considered in Chapter 6.

To illustrate the layout of an axial compressor, Figure 5.1 shows a sectional drawing of the core

compression system of the Rolls-Royce Trent family of gas turbine engines. This consists of an

eight-stage intermediate pressure compressor and a six-stage high-pressure compressor. A compres-

sor stage is defined as a rotor blade row followed by a stator blade row. The rotor blades are fixed

to the rotor drum and the stator blades are fixed to the outer casing. The blades upstream of the first

rotor row are inlet guide vanes. These are not considered to be a part of the first stage and are trea-

ted separately. Their function is quite different from the other blade rows since, by directing the

flow away from the axial direction, they act to accelerate the flow rather than diffuse it. Note that

the first three sets of stator vanes in the intermediate pressure compressor have variable settings.

This enables the inlet angles to the rotor blades to be modified giving greater operating range at

low rotational speeds (see Section 5.9).

5.3 Velocity diagrams of the compressor stage
The velocity diagrams for the stage are given in Figure 5.2, and the convention is adopted through-

out this chapter of accepting all angles and swirl velocities in this figure as positive. As for axial

turbine stages, a normal compressor stage is one where the absolute velocities and flow directions

Intermediate-pressure
compressor

High-pressure
compressor

FIGURE 5.1

Section of the compression system of a gas turbine engine.

(Courtesy of Rolls-Royce plc)
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at stage outlet are the same as at stage inlet. The flow from a previous stage (or from the guide

vanes) has a velocity c1 and direction α1; subtracting vectorially the blades speed U gives the inlet

relative velocity w1 at angle β1 (the axial direction is the datum for all angles). Relative to the

blades of the rotor, the flow is turned to the direction β2 at outlet with a relative velocity w2. By

vectorially adding the blade speed U onto w2 gives the absolute velocity from the rotor, c2 at angle

α2. The stator blades deflect the flow toward the axis, and the exit velocity is c3 at angle α3. For

the normal repeating stage in a multistage compressor, c35 c1 and α35α1. In Figure 5.2, it is

noted that both the relative velocity in the rotor and the absolute velocity in the stator decrease. As

shown later in this chapter, this diffusion of kinetic energy in the rotor and stator rows significantly

influences the stage efficiency.

5.4 Thermodynamics of the compressor stage
The specific work done by the rotor on the fluid, from the steady flow energy equation (assuming

adiabatic flow) and momentum equation is

ΔW 5 _Wp= _m5 h02 2 h01 5Uðcθ2 2 cθ1Þ (5.1)

Rotor blade row

U

U

U

Stator blade row

w1

w2

c1

c2

c3

cx1

cx2

cx3

cθ1

cθ2

wθ1

wθ2

β1

β2 α2

α1

α3

FIGURE 5.2

Velocity diagrams for a compressor stage.
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In Chapter 1, it was shown that the Euler work equation can be written as h0,rel2U25 constant.

For axial machines where there is no radial shift of the streamlines across the rotor (i.e., U15U2),

then h0;rel 5 h1 ð1=2Þw2 is constant in the rotor. Thus,

h1 1
1

2
w2
1 5 h2 1

1

2
w2
2 (5.2)

Across the stator, h0 is constant, and

h2 1
1

2
c22 5 h3 1

1

2
c23 (5.3)

The compression process for the complete stage is represented on a Mollier diagram in

Figure 5.3, which is generalized to include the effects of irreversibility.

5.5 Stage loss relationships and efficiency
From Eqs (5.1) and (5.3) the actual work performed by the rotor on unit mass of fluid is

ΔW5 h032 h01. Referring to Figure 5.3, the reversible or minimum work required to attain the

same final stagnation pressure as the real process is

ΔWmin 5 h03ss 2 h01 5 ðh03 2 h01Þ2 ðh03 2 h03ssÞ

2
1 2

3c

2
1 2

2c

2
1 2

2w

2
1 2

1w

2
1 2

1c

h

s

02
03

03s
03ss

3ss

01rel

2s
2

3
3s

01

1

p 02,re
lp 01

,re
l

p 3

p 2

p 01

p 1

p 02
p 03

02rel

FIGURE 5.3

Mollier diagram for an axial compressor stage.
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Applying the equation for the second law of thermodynamics, Tds5 dh2 dp/ρ, along the curve

of constant pressure, p5 p03, the approximation that Δh5 TΔs can be used such that

ΔWminDΔW 2 T03Δsstage

where Δsstage is the total entropy change through the stage such that Δsstage5Δsrotor1Δsstator.

The total-to-total efficiency of the compressor stage can, therefore, be written as

ηtt 5
ΔWmin

ΔW
D12

T03Δsstage

h03 2 h01
(5.4)

Note also that the total-to-static efficiency, as defined in Chapter 1, is given by

ηts 5
h3ss 2 h01

h03 2 h01
D

h03 2 h01 2 ðh03 2 h3ssÞ
h03 2 h01

D12
0:5c23 1 T3Δsstage

h03 2 h01
(5.5)

Therefore, to determine the efficiency of the stage, we need to determine the entropy changes

through the rotor and stator. This can be done by using the loss coefficients, Yp,rotor and Yp,stator,

which are defined as

Yp;rotor 5
p01;rel 2 p02;rel

p01;rel 2 p1

and

Yp;stator 5
p02 2 p03

p02 2 p2
(5.6)

Consider the process of a perfect gas passing through the rotor at constant relative stagnation

enthalpy, h01,rel (i.e., U15U2). The second law of thermodynamics, T ds5 dh2 dp/ρ, can be writ-

ten for this process as

T01;relΔsrotorD
Δp0;rotor

ρ01;rel

where

Δp0;rotor 5 p01;rel 2 p02;rel (5.7)

Using the equation of state, p5 ρRT, this can be written as

ΔsrotorD
RΔp0;rotor

p01;rel
5RYp;rotorð12 p1=p01;relÞ (5.8)

Note that the negative sign in the T ds equation disappears since the relative stagnation pressure

is decreasing through the rotor, giving an increase in entropy. Also note that a key advantage of

using entropy here is that it is independent of the frame of reference in which it is evaluated. The

entropy change through the stator is found similarly to that for the rotor, and the total entropy

change through the stage is simply the sum of the two. In terms of the loss coefficients,

Δsstage 5Δsrotor 1ΔsstatorDR½Yp;rotorð12 p1=p01;relÞ1 Yp;statorð12 p2=p02Þ� (5.9)
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Hence, the total-to-total efficiency can be written as

ηttD12
ðγ2 1Þ

γ
½Yp;rotorð12 p1=p01;relÞ1 Yp;statorð12 p2=p02Þ�

12 T01=T03
(5.10)

For a low-speed machine, where the flow is incompressible as well as the density being con-

stant, it can be assumed that temperature changes throughout the stage are negligible. Applying the

second law equation, T ds5 dh2 dp/ρ, for the flow through the rotor and the stator then gives

TΔsrotorD
Δp0;rotor

ρ
5

1

2
w2
1Yp;rotor

and

TΔsstatorD
Δp0;stator

ρ
5

1

2
c22Yp;stator (5.11)

Thus, by combining Eqs (5.4) and (5.11), the efficiency can be expressed for a low-speed

machine as

ηttD12
TΔsstage

h03 2 h01
5 12

Δp0;rotor 1Δp0;stator

ρðh03 2 h01Þ
(5.12a)

or as

ηttD12
0:5ðw2

1Yp;rotor 1 c22Yp;statorÞ
h03 2 h01

(5.12b)

Compressor loss sources
In a compressor stage, there are numerous loss sources that cause entropy creation. It is the sum of

all the entropy creation in a blade row that determines the loss coefficients, Yp,rotor and Yp,stator,

which are used in mean-line analysis to determine the efficiency in Eqs (5.10) and (5.12b). The dis-

cussion of the various loss sources for turbines given in Section 4.6 is, in general, also applicable

to compressors. There are, however, some key differences that are covered later.

The loss sources can be categorized as 2D and 3D. The possible 2D loss sources are the same

as for turbines: (i) the blade boundary layers, (ii) trailing edge mixing, (iii) flow separation, and

(iv) shock waves. The total 2D loss for a compressor can be determined through cascade tests or

2D computational methods (see Chapter 3), but there are no general correlations that can be applied

to all cases. All compressor blades will suffer from boundary layer and trailing edge mixing loss,

and Section 3.5 shows how these losses are strongly dependent on the blade surface pressure distri-

bution. Well-designed compressor blades should not suffer from flow separation losses at their

design operating conditions. However, at off-design conditions, when the diffusion levels on the

blade surfaces become too high, the flow can separate leading to excessive loss and possible stall

or surge (see Section 5.11). Shock wave losses are only present in compressor stages with super-

sonic inlet flow and these are discussed further in Section 5.10.
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The main 3D loss sources in a compressor are (i) end wall loss, and (ii) tip leakage loss.

However, in practice, it is difficult to isolate these loss sources as they interact strongly and the

total 3D loss is often simply described as loss due to secondary flow.

Annulus boundary layers rapidly build up on the hub and casing of a compressor. As shown later

in Section 5.9, these boundary layers are thicker than in a turbine due to the adverse pressure gradi-

ents they are exposed to. They are swept across the blade passage by the pressure difference between

the pressure and the suction surfaces, leading to a complex and extensive 3D flow field. These end

wall flows cause loss through viscous shear and through mixing with the mainstream flow in the

blade passages. In addition, they interact with the boundary layers on the blade surfaces, potentially

causing further loss. There have been several attempts to model and predict the loss caused by com-

pressor end wall flow, see Koch and Smith (1976) for a more successful example. However, because

the end wall boundary layers are large and the flow field is particular to each compressor stage, test

results or advanced 3D computational methods are nowadays used to determine end wall loss.

The flow through the clearance gap above the tips of compressor rotor blades interacts with the

end wall flow and the flow in the passage creating further loss through mixing and shear. The leak-

age flow also causes blockage, reducing the overall flow capacity of the compressor stage and,

more seriously, reduces the stable operating range, see Freeman (1985). The aim is always to mini-

mize the clearance gap to improve the stability margin and to reduce the losses, but the minimum

clearance is usually determined by manufacturing and mechanical considerations.

Leakage flows are not only found in the rotor tip gaps. Stator blades are often cantilevered from

the compressor casing to minimize weight. This leads to a clearance gap at the stator hub. The

leakage flow that arises can help relieve high diffusion at the stator hub, but it also adds to block-

age and loss. In addition, leakage flows arise from any gaps or seals that are present in the real

geometry of a compressor.

The 3D flows described earlier will typically contribute 50% or more of the losses within a

compressor (the other 50% coming from the 2D loss). They also lead to reduced flow capacity due

to the additional blockage, reduced work input, and more limited operating range. They need to be

accounted for in the preliminary design by using average loss coefficients for the whole flow field

and by factoring the velocity triangle parameters appropriately such that they represent the average

flow conditions.

Note that 3D effects and secondary flows are covered in detail in Chapter 6. Further details of

compressor loss sources can be found in Koch and Smith (1976) and Denton (1993).

5.6 Mean-line calculation through a compressor rotor
Calculation of the flow through a row of rotor blades is similar to that through a stationary cascade, as

described in Chapter 3. The minor complication is the use of relative rather than absolute properties.

Compressible case
Consider the transonic compressor rotor shown in Figure 5.4. The velocity triangle at inlet has been

scaled so that it is a Mach number triangle, which is often a useful transformation for high-speed

stages.
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If the conditions at inlet to the rotor are known, the nondimensional mass flow rate at inlet can

be determined from compressible flow tables:

_m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT01;rel

p
A1np01;rel

5
_m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT01;rel

p
Hs cos β1p01;rel

5QðM1;relÞ

where A1n is the area normal to the flow at inlet, and the projected frontal area of the rotor (or

annulus area) is Hs and taken to be constant through the rotor. To find the conditions at exit, the

nondimensional mass flow rate at exit can be written in terms of the preceding, using the fact that

through a rotor blade with constant mean radius, T01,rel5 T02,rel:

QðM2;relÞ5
_m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT02;rel

p
Hs cos β2p02;rel

5QðM1;relÞ3
p01;rel

p02;rel
3

cos β1

cos β2

(5.13)

The ratio of relative total pressures can be determined from the rotor loss coefficient. Using the

definition given in Eq. (5.6),

p02;rel

p01;rel
5 12 Yp;rotorð12 p1=p01;relÞ (5.14)

Once the exit relative Mach number and flow angle from the rotor blade are known, the other

properties at exit from the rotor can be determined (via compressible flow relations and the velocity

triangle) in order to fully specify the conditions at inlet to the stator. This is demonstrated in

Example 5.1.

β2

β1

s. cos β1

s. cos β2

M2,rel

M2

M1

M1,rel
U

s

U/√(γRT1)

U/√(γRT2)

FIGURE 5.4

Mean-line flow through a high-speed compressor rotor.
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Incompressible case
In the low speed, incompressible case the equivalent calculations are more straightforward. The

continuity equation reduces to

ρHs cos β1w1 5 ρHs cos β2w2.
w2

w1

5
cos β1

cos β2

(5.15)

The loss in relative total pressure through the rotor can be related to the loss coefficient, since

p01;rel 5 p02;rel 1 ð1=2Þρw2
1Yp;rotor. The static pressure at rotor exit can, therefore, be found as

follows:

p2 5 p02;rel 2
1

2
ρw2

2 5 p01;rel 2
1

2
ρðw2

1Yp;rotor 1w2
2Þ (5.16)

Once the exit static pressure is known all other quantities at rotor exit can be found since the

density is fixed and the velocities are known.

EXAMPLE 5.1

A single-stage transonic compressor operates with axial flow at inlet. The inlet absolute stagna-

tion temperature is 288 K and the inlet absolute stagnation pressure is 101 kPa. The relative flow

angle at inlet to the rotor is 45� and the inlet relative Mach number is 0.9.

a. Calculate the rotor blade speed and the inlet relative stagnation pressure.

b. The mean radius and the mass flow rate per unit annulus area are constant through the rotor.

If the rotor loss coefficient is 0.068 and the rotor exit relative Mach number is 0.5, find the

rotor exit relative flow angle and determine the static pressure ratio across the rotor.

c. Show that the absolute stagnation temperature and pressure at entry to the stator are 322 K

and 145 kPa, respectively. Determine the total-to-total isentropic efficiency of the compressor

stage if the stagnation pressure loss coefficient for the stator is 0.04.

Solution
a. T015 288 K, p015 101 kPa. Given that the flow is axial at inlet, the absolute inlet Mach

number can be calculated (using the Mach number triangles shown in Figure 5.4):

M1 5M1;rel cos 45
� 5 0:9=

ffiffiffi
2

p
5 0:6364

The inlet static temperature can be calculated from the inlet Mach number and inlet stag-

nation temperature as follows:

T1 5 T01ð11ðγ21ÞM2
1=2Þ21 5 266:4 K

The blade speed can then be determined from the inlet Mach number triangle and the fact

that the relative inflow angle is 45�:

U5M1

ffiffiffiffiffiffiffiffiffiffiffi
γRT1

p
5 0:6343

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:43 287:153 266:4

p
5 208:3 m=s
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The blade relative stagnation pressure can be found from compressible flow tables:

p01;rel 5
p01 3 p1=p01
p1=p01;rel

5
1013 0:7614

0:5913
5 130 kPa

Note that p15 1013 0.76145 76.9 kPa.

b. To relate the conditions across the rotor, first calculate the ratio of relative stagnation

pressures:

Yp 5
12 p02;rel=p01;rel
12 p1=p01;rel

;which implies that
p02;rel

p01;rel
5 12 Ypð12 p1=p01;relÞ

Therefore,

p02;rel

p01;rel
5 12 0:0683 ð12 0:5913Þ5 0:9722

Applying continuity across the rotor,

_m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT01;rel

p
Ax cos β1p01;rel

5QðM1;relÞ5
_m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT02;rel

p
Ax cos β2p02;rel

3
cos β2

cos β1

3
p02;rel

p01;rel

Therefore,

cos β2 5
QðM1;relÞ
QðM2;relÞ

3 cos β1 3
p01;rel

p02;rel

This is true since T02,rel5 T01,rel (constant radius) and _m=Ax is constant. Putting in the

values from the question and using the compressible flow tables:

cos β2 5
Qð0:9Þ
Qð0:5Þ 3 cos 45� 3

1

0:9722
5

1:2698

0:9561
3

1ffiffiffi
2

p 3
1

0:9722
5 0:9659

which implies that β2 5 15�.
The static pressure ratio is then determined from the various ratios just derived:

p2

p1
5

p2=p02;rel 3 p02;rel=p01;rel
p1=p01;rel

5
0:84303 0:9722

0:5913
5 1:386

Note that p25 0.84303 0.97223 1305 106.6 kPa.

c. To calculate the conditions at stator inlet, apply the exit Mach number triangle from the rotor

(as shown in Figure 5.4) to convert the properties from the relative to absolute frame of refer-

ence. Using the compressible flow tables, the static temperature and relative velocity at rotor

exit can be found:

T2 5
T1 3 T2=T02;rel

T1=T01;rel
5

266:43 0:9524

0:8606
5 294:8 K ðsince T02;rel 5 T01;relÞ

W2 5M2;rel

ffiffiffiffiffiffiffiffiffiffiffi
γRT2

p
5 0:53

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:43 287:153 294:8

p
5 172:1 m=s
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The velocity triangle can be used to find the absolute flow Mach number, which is needed

to determine the absolute stagnation quantities:

M2 5
c2ffiffiffiffiffiffiffiffiffiffiffi
γRT2

p 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW2 cos 15

�Þ2 1 ðU2W2 sin 15�Þ2
q

ffiffiffiffiffiffiffiffiffiffiffi
γRT2

p 5 0:6778

It then follows that

T02 5 T2½11 ðγ2 1ÞM2
2=2�5 321:9 K

p02 5 p2ð11ðγ21ÞM2
2=2Þγ=ðγ21Þ 5 145 kPa

The overall stage efficiency can now be calculated, using Eqs (5.4) and (5.8):

ηtt 5
T02s 2 T01

T02 2 T01
5 12

T02 2 T02s

T02 2 T01
5 12

T02ðΔsrotor 1ΔsstatorÞ=Cp

T02 2 T01

which implies that

Δsrotor 5RYp 12
p1

p01;rel

� �
5 287:153 0:0683 ð12 76:9=130Þ5 7:98 J=kg K

and

Δsstator 5RYp 12
p2

p02

� �
5 287:153 0:043 ð12 106:6=145Þ5 3:04 J=kg K

Thus,

ηtt 5 12
321:93 ð7:981 3:04Þ=1005

321:92 288
5 0:896

This is a realistic efficiency value for a single-stage transonic compressor.

5.7 Preliminary compressor stage design
By fixing the stage loading ψ, the flow coefficient φ, and the reaction R, the velocity triangles at

the design condition are specified. However, as well as fixing the velocity triangles such that the

compressor will achieve the required pressure rise with high efficiency, it is critically important for

a compressor that it operates with an adequate stability margin. As will be explained later in this

chapter, if too much pressure rise is demanded of a compressor it can become unstable and enter

an unacceptable operating regime (stall or surge). The choice of the velocity triangle parameters is

therefore a compromise between the best performance at the design condition and the sufficient

operating range.

Many axial compressors are multistage devices and, for simplicity, repeating stages are initially

assumed in which the velocity triangles for all stages are similar, the mean radius is constant, and
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the axial velocity through the machine is constant. In such machines, the flow coefficient, stage

loading, and reaction are the same in every stage.

Note that this section only briefly covers the main preliminary design considerations and the

associated mean-line analysis. If further details are needed, complete descriptions of the compressor

design process can be found in Gallimore (1999) and Calvert and Ginder (1999).

Stage loading
The blades of a compressor behave like diffusers, each row of rotors and stators slowing down the

local relative velocity (see Chapter 3). The amount of diffusion possible is limited, because if too

much diffusion is demanded, the flow will separate from the blades leading to compressor stall or

surge. DeHaller (1953) proposed that the relative velocity at exit from a blade row should be at

least 72% of the inlet relative velocity for satisfactory performance. This is equivalent to limiting

the pressure rise across each blade row and the maximum stage loading possible.

The stage loading ψ for a normal, or repeating, stage can be written as

ψ5
h03 2 h01

U2
5

Δcθ

U
5

cθ2 2 cθ1

U
5φðtan α2 2 tan α1Þ (5.17a)

Referring to the velocity triangles in Figure 5.2, it is clear that cθ15U2wy1 and cθ25U2wθ2.

Thus, this equation can be rewritten as

ψ5φðtan β1 2 tan β2Þ (5.17b)

or,

ψ5 12φðtan α1 1 tan β2Þ (5.17c)

where φ5 cx/U is the flow coefficient.

The choice of stage loading at the compressor design point is critical. A value that is too low

will lead to an excessive number of compressor stages to achieve a required pressure ratio. A value

that is too high will limit the operating range of the compressor and increase the number of aero-

foils needed to remove the risk of flow separation. As shown in Chapter 3, Lieblein’s diffusion fac-

tor, DF, is a useful parameter for determining the blade pitch�chord ratio needed for

acceptable performance. Based on Eq. (3.32), this can be written for a compressor rotor as

DF5 12
w2

w1

� �
1

Δcθ

2w1

s

l
(5.18)

A larger stage loading requires more flow turning Δcθ and, therefore, to maintain an

acceptable level of diffusion, the pitch�chord ratio of the blades must be reduced. This leads to a

higher number of aerofoils, which tends to increase profile losses due to the higher wetted area and

also leads to problems at high Mach numbers since the increased number of aerofoils will increase

the likelihood of choking. For these reasons, pitch-to-chord ratios are typically in the range of

0.8�1.2 and the stage loading is limited to values around 0.4. However, more advanced compressor

designs for aeroengines, where the need to reduce the number of stages is most pressing, may have

higher stage loadings. A recent study by Dickens and Day (2011), looking at highly loaded axial

compressors with stage loadings up to 0.75, shows that higher stage loading is possible but it
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inevitably leads to greater blade losses and, in particular, significant extra loss is generated by the

blade pressure surface boundary layers.

Flow coefficient
From Eq. (5.17b), ψ5φ (tan β12 tan β2), which shows that for a fixed stage loading, as the flow

coefficient increases, the flow turning required reduces. Hence, the diffusion through the blades is

found to reduce as flow coefficient increases. Equally, for a fixed level of diffusion, the stage load-

ing can increase as the flow coefficient rises. This suggests that a high flow coefficient is benefi-

cial. In addition, higher values of flow coefficient correspond to higher inlet mass flow per unit

area, which is a significant advantage as it implies a smaller diameter machine for a given mass

flow.

However, in axial compressors, stage performance is often limited by Mach number effects and,

for a fixed level of blade speed, high values of flow coefficient will lead to higher relative Mach

number and potentially greater losses from choking and shock waves. Another disadvantage of a

higher flow coefficient design concerns the tolerance of the compressor to nonuniform inflow.

Compressors need to remain stable in the event of a disturbance in the inlet flow, and lower flow

coefficient designs are found to absorb fluctuations more readily than high flow coefficient designs.

The reasons for this are detailed in Smith (1958).

As a result of these considerations, typical values of φ used in designs are between 0.4 and 0.8

and often, for initial designs, 0.5 is chosen.

Reaction
The general definition of R for a compressor is the ratio of the rotor static enthalpy rise to the stage

static enthalpy rise:

R5 ðh2 2 h1Þ=ðh3 2 h1Þ (5.19)

From Eq. (5.2), h2 2 h1 5 ð1=2Þðw2
1 2w2

2Þ: For normal stages (c15 c3), h32 h15 h032 h015U

(cθ22 cθ1). Substituting into Eq. (5.19),

R5
w2
1 2w2

2

2Uðcθ2 2 cθ1Þ
5

ðwθ1 1wθ2Þðwθ1 2wθ2Þ
2Uðcθ2 2 cθ1Þ

(5.20)

where it is assumed that cx is constant across the stage. From Figure 5.2, cθ25U2wθ2 and

cθ15U2wθ1 so that cθ22 cθ15wθ12wθ2. Thus,

R5 ðwθ1 1wθ2Þ=ð2UÞ5 1

2
φðtan β1 1 tan β2Þ (5.21)

An alternative useful expression for the reaction can be found in terms of the fluid outlet angles

from each blade row in a stage. With wθ15U2 cθ1, Eq. (5.21) gives

R5
1

2
1 ðtan β2 2 tan α1Þφ=2 (5.22)
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Eliminating β2 between Eqs (5.22) and (5.17c) gives an equation in ψ, φ, and R and the inter-

stage swirl angle, α1

ψ5 2ð12R2φ tan α1Þ (5.23)

Equation (5.23) is identical to Eq. (4.14) derived for turbines, except for the sign convention.

This equation shows that a higher reaction tends to reduce the stage loading, which is good for a

compressor. However, stages having 50% reaction are widely used as the adverse (retarding) pres-

sure gradient through the rotor rows and stator rows are equally shared. A 50% reaction also means

that the rotor and stator blades will have similar shapes. Parametric design studies, as presented in

Cumpsty (1989), suggest that the reaction is not such a critical parameter in determining compres-

sor efficiency. However, Dickens and Day (2011) show that for stages with high stage loading,

high reaction is required to achieve optimum efficiency. This appears to be necessary to reduce the

pressure rise across the stator row which is more susceptible than the rotor to large separations. In

many cases, though, the reaction is not a free design variable since it is determined by other factors.

For example, in a design where the stage loading and flow coefficients have already been chosen,

if the inlet swirl angle α1 is fixed, by having either an axial inlet flow or an inlet guide vanes, then

the reaction must also be fixed (as indicated by Eq. (5.23)).

If R5 0.5, then α15 β2 from Eq. (5.22), and the velocity diagram is symmetrical. The stage

enthalpy rise is equally distributed between the rotor and the stator rows.

If R. 0.5, then β2.α1 and the velocity diagram is skewed to the right as shown in Figure 5.5(a).

The static enthalpy rise in the rotor exceeds that in the stator (this is also true for the static pressure

rise).

If R, 0.5, then β2,α1 and the velocity diagram is skewed to the left as shown in

Figure 5.5(b). Clearly, the stator enthalpy (and pressure) rise exceeds that in the rotor.

In advanced compressor designs, particularly in jet engine compressors, high reaction is com-

mon and values between 0.5 and 0.8 are typical.

Interstage swirl
From Eq. (5.23), it can be seen that introducing positive swirl between the stages helps reduce stage

loading. Positive swirl also reduces the relative inlet Mach number at inlet to the rotor. Therefore,

advanced multistage compressors, particularly those within gas turbines, will often have an inter-

stage swir1 angle of around 20�30�.

Blade aspect ratio
Once ψ, φ, and R are fixed at the design condition, the number of stages for a multistage compres-

sor can be determined (see Example 5.3). Given a mass flow and blade speed, the mean radius of

the compressor and the blade heights can also be calculated, using the calculations shown in

Chapter 4. The overall compressor length and the number of blades can then be estimated by

choosing suitable values of aspect ratio, H/l, for each blade row.

The choice of aspect ratio is important as this influences the blade losses and the stage stability

margin. Lower aspect ratios will tend to have greater losses due to increased wetted area and the

build up of boundary layers. However, as shown in Koch (1997), lower aspect ratios tend to give
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higher surge margin. This is why modern multistage compressors have lower aspect ratio values

than might be expected, and 1�2 is typical.

The choice of aspect ratio, combined with the blade height, fixes the blade chord, l. The pitch-

to-chord ratio, s/l, is determined by Eq. (5.18) combined with a choice of an acceptable level of

diffusion factor, DF. With the blade chord known this then sets the number of blades in each row.

Example 5.2 shows how this is done in practice for a low-speed compressor stage.

The overall compressor length depends on the axial gaps between blade rows. These will be set

to limit the vibration and noise generated by rotor�stator interaction and spaces between the rows

of about half an axial chord are typical.

EXAMPLE 5.2

A low-speed single-stage rig is required to simulate a repeating stage of an air compressor with

a flow coefficient of 0.5, a stage loading of 0.45 and 25� of preswirl at stage inlet. The motor

that will drive the rig runs at 500 rpm. The aspect ratio of the rotor blade is to be 1.3 and its

hub-to-tip radius ratio is 0.8.

a. If the Reynolds number needs to be 33 105, determine the mean radius for the rig, the rotor

blade height and the motor power required. Use the following definition of Reynolds number

based on midspan rotor chord:

Re5
ρcxl
μ

;where μ5 1:83 1025 kg=ms and ρ5 1:2 kg=m3

β2

β2

α1

α1

U

U
(b) R < 50%

β2< α1

(a) R > 50%
β2> α1

FIGURE 5.5

Asymmetry of velocity diagrams for reactions greater (a) greater than 50%, and (b) less than 50%.
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b. Calculate the stage reaction, the rotor relative flow angles, and the stator inlet flow angle. If

the Lieblein diffusion factor for the rotor at the design point cannot exceed 0.55 and for the

stator cannot exceed 0.5, determine the number of rotor and stator blades required. Assume

that the stator aspect ratio is 1.5.

c. Confirm that the rig is low speed by estimating the rotor tip relative Mach number.

Solution
a. Use the hub-to-tip ratio to relate the mean radius to the blade height:

rh

rt
5

rm 2H=2

rm 1H=2
5 0:8 ‘0:2rm 5 0:9H .rm 5 4:5H

Expressing the Re in terms of H:

Re5
ρcxl
μ

5
ρφrmΩl

μ
5

ρφrmΩH
μðH=lÞ 5

4:5ρφΩH2

μðH=lÞ

‘H5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðH=lÞRe
4:5ρφΩ

s
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:83 1025 3 1:33 33 105

4:53 1:23 0:53 1003π=6

s
5 0:223 m

.rm 5 4:5H5 4:53 0:2235 1:003 m

The motor power can be found from the stage loading and the rig mass flow:

_W 5 _mΔh0 5 _mψU2

‘ _W 5 ð2πrmHρcxÞψðrmΩÞ2 5 ð2πρrmHφrmΩÞψðrmΩÞ2 5 2πρφψHr4mΩ
3

_W 5 2π3 1:23 0:53 0:453 0:2233 1:0034 3 ð100π=6Þ3 5 54:96 kW

This power requirement is reasonable for a large low-speed rig. The large blade size

(0.223 m span) would enable high resolution measurements to be made at the correct Re

number.

b. From Eq. (5.23):

ψ5 2ð12R2φ tan α1Þ.R5 12ψ=22φ tan α1 5 12 0:45=22 0:5 tan 25� 5 0:542

tan β1 5
1

φ
2 tan α1 5

1

0:5
2 tan 25�.β1 5 56:9�

From Eq (5.17b):

tan β2 5 tan β1 2
ψ
φ
5 1:53372

0:45

0:5
.β2 5 32:4�

tan α2 5
1

φ
2 tan β2 5

1

0:5
2 tan 32:4�.α2 5 53:8�
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For the rotor, the pitch-to-chord ratio is found from Eq. (3.36), which is the incompress-

ible version of Eq. (5.18),

DF5 12
cos α1

cos α2

� �
1

s

l

cos α1

2
ðtan α1 2 tan α2Þ

This must be applied to the relative angles of the rotor:

s

l
5 2

cos β1

cos β2

2 11DF

� �
=cos β1ðtan β1 2 tan β2Þ

s

l
# 2

cos 56:9

cos 32:4
2 11 0:55

� �
=cos 56:9ðtan 56:92 tan 32:4Þ5 0:801

The inequality is used so that the DF used is a maximum. The number of rotor blades is

then,

Zrotor 5
2πrm
s

5
2πðH=lÞrm=H

s=l
.Zrotor $

2π3 1:33 4:5

0:801
5 45:87 ‘Zrotor 5 46

For the stator,

s

l
5 2

cos α2

cos α3

2 11DF

� �
=cos α2ðtan α2 2 tan α3Þ

s

l
# 2

cos 53:8

cos 25
2 11 0:5

� �
=cos 53:8ðtan 53:82 tan 25Þ5 0:571

The number of stator blades is then,

Zstator 5
2πrm
s

5
2πðH=lÞrm=H

s=l
.Zstator $

2π3 1:53 4:5

0:571
5 74:3 ‘Zstator 5 75

c. The rotor relative Mach number is given by

M1;rel 5
w1ffiffiffiffiffiffiffiffiffiffiffi
γRT1

p 5
cx=cos β1ffiffiffiffiffiffiffiffiffiffiffi

γRT1
p 5

φrΩ
cos β1

ffiffiffiffiffiffiffiffiffiffiffi
γRT1

p

Assuming the flow angles are the same at the tip, this will simply scale with the radius.

Hence, the tip relative Mach number is

M1t;rel 5
φrmΩ

cosβ1

ffiffiffiffiffiffiffiffiffiffiffi
γRT1

p rt

rm
5

0:53 1:0033 ð100π=6Þ
cos 56:9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:43 2873 288

p 5

4:5
5 0:16

This will be close to the highest Mach number in the rig, and therefore the flow can be

treated as incompressible throughout.
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5.8 Off-design performance
As mentioned previously, it is critical for a compressor stage to have adequate stable operating

range. A characteristic map for a single-stage high-speed compressor is shown in Figure 2.4. The

design operating point will typically be at 100% speed, at the condition where the design pressure

ratio is achieved with sufficient margin to the instability (or surge) line. As the compressor moves

off-design at fixed rotational speed, the nondimensional mass flow is either increased or decreased

from the design value. If the mass flow is reduced, the incidence onto the blades increases and the

stage moves toward instability. At increased mass flow the incidence decreases becoming negative,

and the blade passages may become choked. The effects of incidence on compressor blade aerody-

namics are covered in Section 3.5.

For a low-speed compressor, the operation is independent of rotational speed, and there is no

risk of the flow choking. As shown in Chapter 2, the performance characteristic can be presented

as a single curve relating stage loading ψ to flow coefficient φ. Horlock (1958) considered how the

off-design performance of a low-speed repeating compressor stage is influenced by the choice of

design parameters. He made a simplification, based on cascade data, that that the fluid outlet angles

β2 for the rotor and α1(5α3) for the stator do not change appreciably over a range of incidence.

This assumption is expected to be valid, since the flow should broadly be aligned with the exit

metal angles of the blade rows, but it neglects any variations in flow deviation.

The simplification can be written, for a given compressor stage, as

tan α1 1 tan β2 5 t5 constant (5.24)

Inserting this expression into Eq. (5.17c) gives

ψ5 12φt (5.25a)

An inspection of Eqs (5.24) and (5.25a) suggests that, provided t is positive, the stage stagnation

enthalpy rise, ψ, increases as the flow coefficient, φ, is reduced, when running at constant rotational

speed.

Writing ψ5ψd and φ5φd for conditions at the design point, then

ψd 5 12φdt (5.25b)

Hence, the values of ψd and φd chosen for a particular stage design determines the value of t. It

is instructive to learn how off-design test results obtained from a compressor stage compare with

this simplified performance model. Test results for a low-speed compressor stage were obtained by

Howell (1945) in the early days of axial-flow compressor design but they are still valid for our pur-

pose. Figure 5.6 shows the variation of the stage loading coefficient ψ plotted against the flow coef-

ficient φ. The design point for this stage is actually at about φ5 0.80, which corresponds to the

maximum efficiency condition. At this flow coefficient, the relative flow angles are β15 45.8� and

β25 12.2�. From these data we can derive a value for t5 tan α11 tan β2. Now,

tan α1 5 1=φ2 tan β1 5 1=0:82 tan 45:8� 5 0:2217

Hence,

t5 tan α1 1 tan β1 5 0:22171 0:21665 0:4383
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Substituting for t in Eq. (5.25b), the theoretical relationship is found:

ψ5 12 0:438φ
which is plotted in Figure 5.6. The comparison of the measured results with the theoretical result

clearly demonstrates that there is a fault in the assertion that the flow outlet angle from a blade row

does not change.

Figure 5.7 shows velocity triangles for a compressor stage operating at the design point and at a

reduced, off-design flow coefficient. In this, the effects of deviation have been included, and it can be

seen that the rotor deviation reduces the tangential flow velocity at rotor exit, cθ2, and the (upstream)

stator deviation increases the rotor inlet tangential flow velocity, cθ1. Hence, the stage loading, from

Eq. (5.17a), ψ5 ðcθ2 2 cθ1Þ=U, is expected to be significantly reduced by the effects of deviation, as is

evident in Figure 5.6. The impact on performance is more pronounced at very low flow coefficients,

where the high incidence can also lead to flow separations and increased 3D effects.

5.9 Multistage compressor performance
For preliminary design and analysis purposes, a multistage compressor is thought of as a series of

single-stage compressors, each performing as it would in isolation. However, to understand the per-

formance of a real machine, the behavior of the overall system must be considered in more detail.

This is particularly important to understand the off-design operation.

Overall pressure ratio and efficiency
It is possible to apply some of the earlier analysis to the determination of the overall pressure ratio

of a multistage compressor. A possible procedure requires the calculation of pressure and
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FIGURE 5.6

Compressor stage performance: comparison of simplified analysis with measured performance.
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temperature changes for a single stage, the stage exit conditions enabling the density at entry to the

following stage to be found. This calculation can be repeated for each stage in turn until the

required final conditions are satisfied. However, for a compressor made up of repeating stages,

operating at its design point, it is possible to apply a simple compressible flow analysis for all the

stages at once. This is described in Example 5.3.

EXAMPLE 5.3

A multistage axial compressor is required for compressing air at 293 K, through a pressure ratio

of 5:1. Each stage is to be a 50% reaction and the mean blade speed of 275 m/s, flow coefficient

0.5, and stage loading factor 0.3 are taken, for simplicity, as constant for all stages. Determine

the flow angles and the number of stages required if the polytropic efficiency is 88.8%. Take

Cp5 1.005 kJ/(kg �C) and γ5 1.4 for air.

Solution
From Eq. (5.17b), the stage load factor can be written as

ψ5φðtan β1 2 tan β2Þ
From Eq. (5.21), the reaction is

R5
φ
2
ðtan β1 1 tan β2Þ

Solving for tan β1 and tan β2 gives

tan β1 5 ðR1ψ=2Þ=φ
and

tan β2 5 ðR2ψ=2Þ=φ

Stator Rotor

U

U

U

β1

β2

α2

α3= α1

c1

c2

c3

w1

w2

Design φ  

Reduced φ  

FIGURE 5.7

Velocity triangles showing a compressor stage operating off-design
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Calculating β1 and β2 and observing for R5 0.5 that the velocity diagram is symmetrical,

β1 5α2 5 52:45�

and

β2 5α1 5 35�

Writing the stage load factor as ψ5CpΔT0/U
2, the stage stagnation temperature rise is

ΔT0 5ψU2=Cp 5 0:33 2752=10055 22:5�C

It is reasonable here to take the stage efficiency as equal to the polytropic efficiency since the

stage temperature rise of an axial compressor is small. Denoting compressor inlet and outlet con-

ditions by subscripts 1 and e, respectively, from Eq. (1.50),

T0e

T01
5 11

nΔT0

T01
5

p0e

p01

� �ðγ21Þ=ηpγ

where n is the required number of stages. Thus,

n5
T01

ΔT0

p0e

p01

� �ðγ21Þ=ηpγ
2 1

" #
5

293

22:5
51=3:11 2 1
h i

5 8:86

A suitable number of stages is therefore 9.

The overall efficiency is found from Eq. (1.53):

ηtt 5
p0e

p01

� �ðγ21Þ=γ
2 1

" #,
p0e

p01

� �ðγ21Þ=ηpγ
2 1

" #
5 51=3:5 2 1
h i.

51=3:11 2 1
h i

5 86:3%

Note that the total-to-total efficiency is significantly lower than the polytropic (or small stage)

efficiency. This difference is to be expected, as shown in Chapter 1. It is more usual in compres-

sor design and analysis to quote polytropic efficiencies, as these are independent of the pressure

ratio of the multistage machine and therefore a fairer way to compare the losses.

Off-design operation and stage matching
The operating line of a multistage compressor describes the off-design variation of pressure ratio

with nondimensional mass flow for a given exit configuration. For example, most compressors when

tested will be connected to a downstream throttle, and it is the size of this throttle that determines the

test operating line. The operating line that the compressor runs on when in normal use is the working

line and this should pass through the design operating point on the compressor characteristic. It is

possible to determine the working line of a compressor, provided the exit configuration is known.

Consider a multistage compressor connected to a downstream nozzle (or throttle), which is

choked. In this case, the nondimensional mass flow through the nozzle will be fixed,

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0e

p
ANp0e

5Qð1Þ5Constant
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where e denotes conditions at exit from the compressor and AN is the choked nozzle area. The com-

pressor inlet nondimensional mass flow can be expressed in terms of the exit nondimensional mass

flow as follows,

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
D2p01

5
_m

ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0e

p
ANp0e

AN

D2

p0e

p01

ffiffiffiffiffiffiffi
T01

T0e

r
(5.26a)

Using the definition of polytropic efficiency to relate the stagnation temperature ratio to the

stagnation pressure ratio, this can be simplified to

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
D2p01

5C
p0e

p01

� �12ðγ21=2γηpÞ
(5.26b)

which is the equation of the operating line on the compressor characteristic. The constant, C,

depends on the exit nozzle area ratio, AN/D
2, and it can be determined for the working line by the

requirement for this to pass through the design point on the compressor characteristic. In Example

5.4, the working line for a 10-stage high-speed compressor is determined using Eq. (5.26b) and the

results are plotted on Figure 5.8.

It is essential for multistage compressors to operate satisfactorily at part speed, for example dur-

ing startup or at low-power settings. This situation is complicated in a multistage machine because

different stages in the compressor operate at different conditions simultaneously. The front stages
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Characteristic of a high-speed 10-stage compressor showing the working line calculated in Example 5.4.
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of the compressor will tend to operate toward stall at part speed because the mass flow rate is

reduced and the incidence of the flow onto the rotor blades increased (as demonstrated in Example

5.4). Rear stages, on the other hand, tend to operate toward choke because the annulus area

decrease that occurs through the compressor is specified for the design pressure ratio. At part speed,

when the pressure ratio is low, the density in the rear stages is also low, leading to high axial veloc-

ity relative to the design condition and possible choking. This variation in operating point between

the front and the rear stages is described as a stage matching problem. It can be relieved by bleed-

ing off some air from the middle stages and by using variable stator blades to correct the incidence

onto the rotor blades in the front stages (see Figure 5.1).

EXAMPLE 5.4

At the design operating point, the 10-stage air compressor represented in Figure 2.5, rotates at

100% speed and has a stagnation pressure ratio of 23. The compressor is operated with a fixed

area downstream throttle that is always choked.

a. Using the data on the characteristic, determine the design polytropic efficiency. Assuming

that this polytropic efficiency is constant (a fairly accurate simplification in this case), deter-

mine the working line of the compressor and plot this on the characteristic.

b. If the flow coefficient of the first compressor stage is 0.6 at the design point, calculate the

flow coefficient for the first stage when operating on the working line at 80% speed. What

would be the effect of this change in flow coefficient on the incidence onto the rotor blades?

Solution
a. At the design point the compressor isentropic efficiency is 81% (see Figure 2.5)

T0e

T01
5 11

1

ηc

p0e

p01

� �ðγ21Þ=γ
2 1

" #
5 11

1

0:81
230:4=1:4 2 1
h i

5 2:789

From Eq. (1.50):

ηp 5
γ2 1

γ
lnðp0e=p01Þ
lnðT0e=T01Þ

5
0:4

1:4

ln 23

ln 2:789
5 0:873

Applying Eq. (5.26b) to the design point (taking the nondimensional mass flow here as

1),

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
D2p01

5C
p0e

p01

� �12 γ21
2γηp

5C3 23120:4=23 1:43 0:873.C5 1=230:8363 5 0:07263

It is now possible to calculate the various operating points on the working line. For exam-

ple, if we look at the 95%, 90%, 80%, and 70% speed lines, we expect pressure ratios around

17, 12, 7, and 5, respectively. The corresponding normalized nondimensional mass flows are

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
D2p01

5C
p0e

p01

� �12 γ21
2γηp

5 0:07263
p0e

p01

� �0:8363
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0:072633 170:8363 5 0:7765; 0:072633 120:8363 5 0:5803

0:072633 70:8363 5 0:3697; 0:072633 50:8363 5 0:2790

The above points are plotted on Figure 5.8. Note that the working line is close to being a

straight line. This is because the exponent in Eq. (5.26b), 12 ðγ2 1Þ=2γηp, is close to unity.

b. At 80% speed on the working line, the normalized nondimensional mass flow rate is 0.36.

As shown in Chapter 2,

φ5
cx

U
~

_m
ffiffiffiffiffiffiffi
T01

p

p01

�
Ωffiffiffiffiffiffiffi
T01

p

‘
φ80%

φ100%

5
_m

ffiffiffiffiffiffiffi
T01

p

p01

�
Ωffiffiffiffiffiffiffi
T01

p
� �

80%

�
_m

ffiffiffiffiffiffiffi
T01

p

p01

�
Ωffiffiffiffiffiffiffi
T01

p
� �

100%

5
0:36

80

�
1

100
5 0:45

.φ80% 5 0:45φ100% 5 0:453 0:65 0:27

Hence, the flow coefficient in the front stage reduces from 0.6 down to 0.27 as the com-

pressor moves down the working line from 100% speed to 80% speed. This reduction in flow

coefficient would correspond to a large increase in incidence onto the front rotors leading to

possible flow separation and stall. Variable stator vanes would be required for the first few

stages to limit this incidence increase at reduced speed and thereby maintain sufficient oper-

ating range.

Stage stacking
Suppose that, the performance of a multistage compressor is required, but the compressor has not

been tested and therefore the overall performance characteristics are not available. Given the blade

speed and inlet flow conditions, the performance of the first stage could be determined using its

single-stage performance characteristic. This would enable the inlet conditions to the second stage

to be determined, which can be used to determine its operating point and performance. The process

can be repeated throughout a multistage compressor to build up the overall performance character-

istics. This approach is known as stage stacking and various automated methods have been devel-

oped for this purpose, e.g., Howell and Calvert (1978). These methods require single-stage

characteristics for each of the stages, which can be derived from measured single-stage characteris-

tics or from empirical correlations based on the mean-line analysis of the individual compressor

stages, as done by Wright and Miller (1991).

Estimation of the compressor surge margin is critical, but the prediction of when a multistage

compressor becomes unstable remains notoriously difficult. In the preliminary design phase, the

performance of similar machines can be used for calibration. For example, if a similar design of

compressor stage was found to stall when the diffusion factor exceeded 0.6, then this diffusion fac-

tor value could be used to estimate where stall occurs in the new design. Within the stage stacking

methods, the stall conditions of the individual stages are used to determine the stall margin of the

overall machine. However, this approach is problematic since in practice part of a compressor can

be stalled when overall the compressor operation is stable.
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Annulus wall boundary layers
In multistage axial compressors, the annulus wall boundary layers rapidly thicken through the first

few stages and the axial velocity profile becomes increasingly nonuniform. This effect is illustrated

in Figure 5.9, from the experimental results of Howell (1945), which shows axial velocity traverses

through a four-stage compressor. Over the central region of the blade, the axial velocity is higher

than the mean value based on the through-flow. The mean blade section (and most of the span)

will, therefore, do less work than is estimated from the velocity triangles based on the mean axial

velocity. In theory, it would be expected that the tip and root sections would provide a compensa-

tory effect because of the low axial velocity in these regions. Due to the end wall and tip leakage

flows no such work increase actually occurs, and the net result is that the work done by the whole

blade is below the design figure. Howell (1945) suggested that the stagnation enthalpy rise across a

stage could be expressed as

h03 2 h01 5λUðcθ2 2 cθ1Þ
where λ is a work done factor. For multistage compressors, Howell recommended for λ a mean

value of 0.86. Other workers have suggested that λ should be high at entry (0.96) where the annu-

lus wall boundary layers are thin, reducing progressively in the later stages of the compressor

(0.85).

Smith (1970) commented upon the rather pronounced deterioration of compressor performance

implied by the example given in Figure 5.9 and suggested that things are not as bad as suggested.

Figure 5.10(a) shows the axial velocity distributions through a 12-stage axial compressor. This does

illustrate that rapid changes in velocity distribution still occur in the first few stages, but the profile
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Axial velocity profiles in a compressor.

(Howell. 1965, courtesy of the Institution of Mechanical Engineers)
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settles down to a fairly constant shape thereafter. This phenomenon has been referred to as ultimate

steady flow, which Horlock (2000) described as “a stage deeply embedded in the compressor where

an axial equilibrium state is reached.”

Smith also provided curves of the spanwise variation in total temperature, Figure 5.10(b), which

shows the way losses increase from mid passage toward the annulus walls. An inspection of this

figure shows also that the excess total temperature near the end walls increases in magnitude and

extent as the flow passes through the compressor. Work on methods of predicting annulus wall

boundary layers in turbomachines and their effects on performance have been actively pursued in

many countries. Horlock (2000) reviewed several approaches to end wall blockage in axial compres-

sors, i.e., Khalid et al. (1999), Smith (1970), Horlock and Perkins (1974). It is worth noting that

although these approaches can give estimates of the increase in blockage and loss across a blade row

they have now been superseded by advanced computational methods that can simulate multiple

stages of compressor with end wall boundary layers, tip clearance flows, and other leakage paths.

5.10 High Mach number compressor stages
As introduced in Chapter 3, the performance of compressor blades deteriorate once the relative inlet

Mach number exceeds about 0.7, because the relative Mach numbers within the blade passages
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exceeds unity and extra losses are generated by shock waves and thicker boundary layers.

Furthermore, high Mach numbers reduce the operating range of a compressor because the flow

becomes more sensitive to changes in inlet angle.

However, there are two key advantages of high Mach number compressor stages. Firstly, high

relative Mach numbers in a compressor imply a high mass flow per unit area, which leads to a

more compact (lower diameter) machine for a given mass flow. Secondly, high Mach numbers are

caused by high blade speeds, which enable greater work input to the flow and, hence, higher pres-

sure ratios. Using the definitions of stage loading and polytropic efficiency, the stage pressure ratio

for a compressor can be written as

p03

p01
5

ψU2

CpT01
11

� �γηp=ðγ21Þ
(5.27)

This shows that high stage pressure ratios can be achieved by high blade speeds combined with

high stage loading and efficiency. In modern transonic compressors, rotor inlet relative Mach num-

bers of up to 1.7 are now used and single-stage pressure ratios greater than 2 are possible.

Calvert and Ginder (1999) detail the design of transonic compressor stages. They also describe

the evolution of modern transonic compressors and the major advances that have been made.

Transonic compressor stages are currently used within the single-stage fans of high bypass ratio jet

engines, in multistage fans within low bypass ratio engines and in the front stages of multistage

compressors. The fan of a civil jet engine is a particularly important component as it produces over

80% of the thrust of a modern civil aircraft engine. High mass flow per unit area is needed to mini-

mize the engine size, and inlet relative Mach numbers are around 1.4 at the tip. Polytropic efficien-

cies above 90% are typical and current design pressure ratios are between 1.6 and 1.8.

To alleviate the effects of high relative Mach numbers in transonic compressors, very thin

blades are used to reduce their blockage and typically the thickness-to-chord ratio of the blades is

only a few percent. In addition, to reduce the peak Mach number on the blade surface, the blades

have very low camber, with only a few degrees of turning. As a result, the blade sections toward

the tip of a high-speed compressor resemble sharp, thin, and almost flat plates.

Figure 5.11 shows the flow pattern within a high-speed compressor rotor blade with a supersonic

inlet relative Mach number. As the operating point of the compressor changes, the position of the

passage shock varies. When the flow is fully choked, the shock moves rearward so that it is fully

swallowed within the blade passage. At lower mass flow rates, when the compressor is closer to stall,

the shock structure is expelled from the front of the blade passage. The operating point correspond-

ing to peak efficiency usually occurs when the shock wave is close to the blade leading edge.

It is interesting to understand how the shock pattern in Figure 5.11 leads to a very high work

input into the flow passing through the compressor. Consider the velocity triangles at inlet and exit

from the compressor rotor. Across the passage shock wave, as drawn in Figure 5.11, the flow does

not turn significantly, but the density rises sharply. Hence, the relative velocity downstream of the

shock will be much lower than upstream. Assuming the blade speed and relative flow angles are

the same at rotor inlet and exit, the velocity triangles show that the turning of the flow in the abso-

lute frame is purely a result of the flow slowing down in the relative frame. In contrast, a low-

speed compressor rotor achieves a work input to the flow by turning the flow in both the relative

and the absolute frames of reference.
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A normal shock wave in a supersonic compressor rotor leads to a rise in entropy in the flow, as

given by Eq. (4.21), which can be expressed as a loss coefficient using Eq. (5.8) as

Yp;shock 5
12 expð2Δsshock=RÞ

ð12 p1=p01;relÞ
D

Δsshock

Rð12 p1=p01;relÞ
(5.28a)

which can be expressed as a function of the inlet relative Mach number, M1,rel and γ. This function
is plotted in Figure 5.12 for air as well as the corresponding variation of shock static pressure ratio,

given by

p2

p1
5 11

2γ
γ1 1

ðM2
1;rel 2 1Þ (5.28b)
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This shows that the pressure rise delivered by a normal shock wave is high, whereas the shock

loss itself is surprisingly low up to inlet relative Mach numbers of 1.5. However, it should be noted

that the shock wave also generates loss indirectly through interaction with the blade boundary

layers, which are thickened by the shock static pressure rise, and in some cases the flow can sepa-

rate. Provided this risk of separation is avoided, a shock wave is a highly efficient way to compress

flow, as demonstrated by the high efficiencies of modern transonic compressors.

5.11 Stall and surge phenomena in compressors
A noticeable feature of any compressor performance map, such as Figure 5.8, is the surge line.

This line denotes the limit to stable operation, and it is traditionally referred to as a surge line, even

though the instability that occurs may be surge or stall. It can be reached by reducing the mass

flow (with a throttle valve), whereas the rotational speed is maintained constant.

When a compressor goes into surge the effects are usually quite dramatic. Generally, an increase in

noise level is experienced, indicative of a pulsation of the air flow and of mechanical vibration.

Commonly, a small number of predominant frequencies are superimposed on a high background noise.

The lowest frequencies are usually associated with what is termed a Helmholtz-type of resonance of

the flow through the machine, with the inlet and/or outlet volumes. The higher frequencies are known

to be due to rotating stall and are of the same order as the rotational speed of the impeller.
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Variation of static pressure ratio and loss for a normal shock wave.
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Rotating stall is a phenomenon of axial compressor flow that has been the subject of many

detailed experimental and theoretical investigations. An early detailed survey of the phenomenon

was given by Emmons, Kronauer, and Rocket (1959). Briefly, when a blade row (usually the rotor

of a compressor) reaches the “stall point,” the blades, instead of all stalling together as might be

expected, stall in separate patches and these stall patches, moreover, travel around the compressor

annulus (i.e., they rotate).

The stall patches must propagate from blade to blade has a simple physical explanation.

Consider a portion of a blade row, as illustrated in Figure 5.13, to be affected by a stall patch. This

patch must cause a partial obstruction to the flow that is deflected on both sides of it. Thus, the

incidence of the flow onto the blades on the right of the stall cell is reduced, but the incidence to

the left is increased. As these blades are already close to stalling, the net effect is for the stall patch

to move to the left; the motion is then self-sustaining.

There is a strong practical reason for the wide interest in rotating stall. Stall patches traveling

around blade rows load and unload each blade at some frequency related to the speed and number

of the patches. This frequency may be close to a natural frequency of blade vibration and there is

clearly a need for accurate prediction of the conditions producing such a vibration. Several cases of

blade failure due to resonance induced by rotating stall have been reported, usually with serious

consequences to the whole compressor.

It is possible to distinguish between surge and propagating stall by the unsteadiness, or other-

wise, of the total mass flow. The characteristic of stall propagation is that the flow passing through

the annulus, summed over the whole area, is steady with time; the stall cells merely redistribute the

flow over the annulus. Surge, on the other hand, involves an axial oscillation of the total mass

flow, a condition highly detrimental to efficient compressor operation.

The point a compressor enters stall or surge still cannot be predicted reliably, even with the

most advanced computational methods. However, the understanding of the mechanisms leading to

stall and surge have been improved significantly through extensive research.

One early physical explanation of the breakdown of the flow in a compressor is given by Horlock

(1958). Figure 5.14 shows a constant rotor speed compressor characteristic (C) of pressure ratio plotted

against flow coefficient. A second set of curves (T1, T2, etc.) are superimposed on this figure showing

the pressure loss characteristics of the throttle for various fixed throttle positions. The intersection of

curves T with compressor curve C denotes the various operating points of the combination. A state of

flow stability exists if the throttle curves at the point of intersection have a greater (positive) slope than

FIGURE 5.13

Model illustrating mechanism of stall cell propagation: partial blockage due to stall patch deflects flow,

increasing incidence to the left and decreasing incidence to the right.
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the compressor curve. That this is so may be illustrated as follows. Consider the operating point at the

intersection of T2 with C. If a small reduction of flow should momentarily occur, the compressor will

produce a greater pressure rise and the throttle resistance will fall. The flow rate must, of necessity,

increase so that the original operating point is restored. A similar argument holds if the flow is tempo-

rarily augmented, so that the flow is completely stable at this operating condition.

If, now, the operating point is at point U, unstable operation is possible. A small reduction in

flow will cause a greater reduction in compressor pressure ratio than the corresponding pressure

ratio across the throttle. As a consequence of the increased resistance of the throttle, the flow will

decrease even further and the operating point U is clearly unstable. By inference, neutral stability

exists when the slopes of the throttle pressure loss curves equal the compressor pressure rise curve.

Tests on low-pressure ratio compressors appear to substantiate this explanation of instability.

However, for high rotational speed multistage compressors this argument does not seem sufficient

to describe surging. With high speeds no stable operation appears possible on constant speed curves

of positive slope and surge appears to occur when this slope is zero or even a little negative. A

more complete understanding of surge in multistage compressors is possible only from a detailed

study of the individual stages’ performance and their interaction with one another.

Casing treatment
It was discovered in the late 1960s that the stall of a compressor could be delayed to a lower mass

flow by a suitable treatment of the compressor casing. Given the right conditions this can be of

great benefit in extending the range of stall-free operation. Numerous investigations have since

been carried out on different types of casing configurations under widely varying flow conditions

to demonstrate the range of usefulness of the treatment.

Greitzer, Nikkanen, Haddad, Mazzawy, and Joslyn (1979) observed that two types of stall could

be found in a compressor blade row, namely, “blade stall” and “wall stall.” Blade stall is, roughly

speaking, a 2D type of stall where a significant part of the blade has a large wake leaving the blade

suction surface. Wall stall is a stall connected with the boundary layer on the outer casing.
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Figure 5.15 illustrates the two types of stall. Greitzer et al. found that the response to casing treat-

ment depended conspicuously upon the type of stall encountered.

The influence of a grooved casing treatment on the stall margin of a model axial compressor

rotor was investigated experimentally. Two rotor builds of different blade solidities, σ (chord�
space ratio), but with all the other parameters identical were tested. Greitzer et al. emphasized that

the motive behind the use of different solidities was simply a convenient way to change the type of

stall from a blade stall to a wall stall and that the benefit of casing treatment was unrelated to the

amount of solidity of the blade row. The position of the casing treatment insert in relation to the

rotor blade row is shown in Figure 5.16(a) and the appearance of the grooved surface used is illus-

trated in Figure 5.16(b). The grooves, described as “axial skewed” and extending over the middle

44% of the blade, have been used in a wide variety of compressors.

As predicted from their design study, the high-solidity blading (σ5 2) resulted in the production

of a wall stall, while the low-solidity (σ5 1) blading gave a blade stall. Figure 5.17 shows the

results obtained for the four conditions tested. The most important difference in performance is the

change in the stall point with and without the casing treatment. It can be seen that with the grooved

casing a substantial change in the range of φ occurred with the high-solidity blading. However, for

the low-solidity blading there is only a marginal difference in range. The shape of the performance

curve is also significantly affected for the high-solidity rotor blades, with a substantial increase in

the peak pressure rise brought about by the grooved casing treatment.
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FIGURE 5.15

Compressor stall inception.

(Adapted from Greitzer et al., 1979)
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Casing treatment has not been widely adopted in the aircraft engine industry because of the

efficiency penalty that it often causes. Smith and Cumpsty (1984) made an extensive series

of experimental investigations to try to discover the cause for this loss in compressor efficiency.

At the simplest level, it was realized that the slots provide a route for fluid to pass from

the pressure surface to the suction surface allowing a small proportion of the flow to be recircu-

lated. The approaching boundary layer fluid tends to have a high absolute swirl and is, therefore,

suitably orientated to enter the slots. Normally, with a smooth wall the high swirl would cause

energy to be wasted but, with the casing treatment, the flow entering the slot is turned and

reintroduced back into the main flow near the blade’s leading edge with its absolute swirl direc-

tion reversed. The reentrant flow has, in effect, flowed upstream along the slot to a lower

pressure region.

Control of flow instabilities
Important and dramatic advances have been made in recent years in the understanding and control-

ling of surge and rotating stall. Both phenomena are now regarded as the mature forms of the natu-

ral oscillatory modes of the compression system (see Moore and Greitzer, 1986). The flow model

they considered predicts that an initial disturbance starts with a very small amplitude but quickly

grows into a large amplitude form. Thus, the stability of the compressor is equivalent to the stabil-

ity of these small amplitude waves that exist just prior to stall or surge (Haynes, Hendricks, &

Epstein, 1994). Only a few of the many papers written on the understanding of these unstable flows

and the application of control to suppress instability are cited here.

Epstein, Ffowcs Williams, and Greitzer (1989) first suggested that surge and rotating stall

could be prevented by using active feedback control to damp the hydrodynamic disturbances

while they were still of small amplitude. Active suppression of surge was subsequently demon-

strated on a centrifugal compressor by Ffowcs Williams, and Huang (1989), also by Pinsley,

Guenette, Epstein, and Greitzer (1991) and on an axial compressor by Day (1993). Shortly after

this, Paduano et al. (1993) demonstrated active suppression of rotating stall in a single-stage

low-speed axial compressor. By damping the small amplitude waves rotating about the annulus

prior to stall, they increased the stable flow range of the compressor by 25%. The control

scheme adopted comprised a circumferential array of hot wires just upstream of the compressor

and a set of 12 individually actuated vanes upstream of the rotor used to generate the rotating

disturbance structure required for control. Haynes et al. (1994), using the same control scheme

as Paduano et al., actively stabilized a three-stage, low-speed axial compressor and obtained an

8% increase in the operating flow range. Gysling and Greitzer (1995) employed a different strat-

egy using aeromechanical feedback to suppress the onset of rotating stall in a low-speed axial

compressor.

Further methods of active and passive control to prevent stall or surge continue to be exten-

sively researched and new technologies, such as microdevices, are being applied to this purpose.

However, there is still very limited adoption of control within commercially available compressors

and even casing treatment is used in only a few jet engine compressor designs. Further application

of these technologies in the future will be realized only if their robustness and reliability can match

that of existing compressor components.
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5.12 Low speed ducted fans
In essence, these widely used fans are simply low-speed single-stage compressors with a low pres-

sure (and temperature) rise, so that much of the foregoing theory of this chapter is valid for this

class of machine. However, because of the high space�chord ratio used in many of these fans, a

simplified theoretical approach based on isolated aerofoil theory is often used. This method can be

of use in the design of ventilating fans in which aerodynamic interference between adjacent blades

can be assumed negligible. Attempts have been made to extend the scope of isolated aerofoil theory

to less widely spaced blades by the introduction of an interference factor; for instance, the ratio k

of the lift force of a single blade in a cascade to the lift force of a single isolated blade. As a guide

to the degree of this interference, an exact mathematical solution obtained by Weinig (1935) and

used by Wislicenus (1947) for a row of thin flat plates is of value and is shown in Figure 5.18.

This illustrates the dependence of k on space�chord ratio for several stagger angles. The rather pro-

nounced effect of stagger for moderate space�chord ratios should be noted as well as the asymp-

totic convergence of k toward unity for higher space�chord ratios.

Two simple types of axial-flow fan are shown in Figure 5.19 in which the inlet and outlet flows

are entirely axial. In the first type (a), a set of guide vanes provides a contra-swirl and the flow is

restored to the axial direction by the rotor. In the second type (b), the rotor imparts swirl in the

direction of blade motion and the flow is restored to the axial direction by the action of outlet

straighteners (or outlet guide vanes). The theory and design of both these types of fan have been

investigated by Van Niekerk (1958) who was able to formulate expressions for calculating the opti-

mum sizes and fan speeds using blade element theory.
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Note that the analysis in this section uses cartesian (x and y) coordinates in order to be consis-

tent with the low-speed cascade analysis presented in Section 3.4.

Lift and drag coefficients
For a low-speed fan the stage loading factor may be expressed in terms of the lift and drag coeffi-

cients for the rotor. From Figure 3.12, replacing αm with βm, the tangential blade force on the mov-

ing blades per unit span is

Y 5 L cos βm 1D sin βm 5 L cos βm 11
CD

CL

tan βm

� �

where tan βm 5 ð1=2Þðtan β1 1 tan β2Þ:
Now CL 5 L=ðð1=2Þρw2

mlÞ; hence, substituting for L,

Y 5
1

2
ρc2x lCL sec βmð11 tan βmCD=CLÞ (5.29)
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The work done by each moving blade per second is YU and is transferred to the fluid through

one blade passage during that period. Thus, YU5 ρscx(h032 h01).

Therefore, the stage loading factor may now be written as

ψ5
h03 2 h01

U2
5

Y

ρscxU
(5.30a)

Substituting Eq. (5.29) in Eq. (5.30a), the final result is

ψ5 ðφ=2Þ sec βmðl=sÞðCL 1CD tan βmÞ (5.30b)

In Chapter 3, the approximate analysis indicated that maximum efficiency is obtained when the

mean flow angle is 45�. The corresponding optimum stage loading factor at βm5 45� is

ψopt 5 φ=
ffiffiffi
2

p� 	
ðl=sÞðCL 1CDÞ (5.31)

Since CD{CL in the normal low loss operating range, it is permissible to drop CD from

Eq. (5.31).

Blade element theory
A blade element at a given radius can be defined as an aerofoil of vanishingly small span. In

fan design theory, it is commonly assumed that each such element operates as a 2D aerofoil,

behaving completely independently of conditions at any other radius. Now the forces impressed

upon the fluid by unit span of a single stationary blade have been considered in some detail

already, in Chapter 3. Considering an element of a rotor blade dr, at radius r, the elementary

axial and tangential forces, dX and dY, respectively, exerted on the fluid are, referring to

Figure 3.12,

dX5 ðL sin βm 2D cos βmÞdr (5.32)

dY 5 ðL cos βm 1D sin βmÞdr (5.33)

where tan βm 5 ð1=2Þftan β1 1 tan β2g and L, D are the lift and drag on unit span of a blade.

Writing tan γ5D/L5CD/CL,

dX5 Lðsin βm 2 tan γ cos βmÞdr

Introducing the lift coefficient CL 5 L=ðð1=2Þρw2
mlÞ for the rotor blade (cf. Eq. (3.23)) into the

preceding expression and rearranging,

dX5
ρc2xlCL dr

2 cos2 βm

3
sinðβm 2 γÞ

cos γ
(5.34)

where cx5wm cos βm.
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The torque exerted by one blade element at radius r is r dY. If there are Z blades, the elementary

torque is

dτ5 rZ dY 5 rZLðcos βm 1 tan γ sin βmÞdr
after using Eq. (5.33). Substituting for L and rearranging,

dτ5
ρc2xlZCLr dr

2 cos2 βm

3
cosðβm 2 γÞ

cos γ
(5.35)

Now the work done by the rotor in unit time equals the product of the stagnation enthalpy rise

and the mass flow rate; for the elementary ring of area 2πr dr,

Ωdτ5 ðCpΔT0Þd _m (5.36)

where Ω is the rotor angular velocity and the element of mass flow, d _m5 ρcx2πr dr.
Substituting Eq. (5.35) into Eq. (5.36),

CpΔT0 5CpΔT 5CL

UCxl cosðβm 2 γÞ
2s cos2 βm cos γ

(5.37)

where s5 2πr/Z. Now the static temperature rise equals the stagnation temperature rise when the

velocity is unchanged across the fan; this, in fact, is the case for both types of fan shown in

Figure 5.19.

The increase in static pressure of the whole of the fluid crossing the rotor row may be found by

equating the total axial force on all the blade elements at radius r with the product of static pressure

rise and elementary area 2πr dr, or

Z dX5 ðp2 2 p1Þ2πr dr
Using Eq. (5.34) and rearranging,

p2 2 p1 5CL

ρc2xl sinðβm 2 γÞ
2s cos2 βm cos γ

(5.38)

Note that, so far, all these expressions are applicable to both types of fan shown in Figure 5.19.

Blade element efficiency
Consider the fan type shown in Figure 5.19(a) fitted with guide vanes at inlet. The pressure rise

across this fan is equal to the rotor pressure rise, p22 p1, minus the drop in pressure across the

guide vanes, pi2 p1. The ideal pressure rise across the fan is given by the product of density and

CpΔT0. Fan designers define a blade element efficiency as

ηb 5 fðp2 2 p1Þ2 ðpi 2 p1Þg=ðρCpΔT0Þ (5.39)

The drop in static pressure across the guide vanes, assuming frictionless flow for simplicity, is

pi 2 p1 5
1

2
ρðc21 2 c2xÞ5

1

2
ρc2y1 (5.40)
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Now, since the change in swirl velocity across the rotor is equal and opposite to the swirl pro-

duced by the guide vanes, the work done per unit mass flow, CpΔT0 is equal to Ucy1. Thus, the sec-

ond term in Eq. (5.39) is

ðpi 2 p1Þ=ðρCpΔT0Þ5 cy1=ð2UÞ (5.41)

Combining Eqs (5.37), (5.38), and (5.41) in Eq. (5.39) then,

ηb 5 ðcx=UÞtanðβm 2 γÞ2 cy1=ð2UÞ (5.42a)

The foregoing exercise can be repeated for the second type of fan having outlet straightening

vanes, and assuming frictionless flow through the “straighteners,” the rotor blade element efficiency

becomes

ηb 5 ðcx=UÞtanðβm 2 γÞ1 cy2=ð2UÞ (5.42b)

Some justification for ignoring the losses occurring in the guide vanes is found by observing

that the ratio of guide vane pressure change to rotor pressure rise is normally small in ventilating

fans. For example, in the first type of fan,

ðpi 2 p1Þ=ðp2 2 p1Þ5
1

2
ρc2y1

� �
=ðρUcy1Þ5 cy1=2ðUÞ

the tangential velocity cy1 being rather small compared with the blade speed U.

Lift coefficient of a fan aerofoil
For a specified blade element geometry, blade speed, and lift�drag ratio, the temperature and pres-

sure rises can be determined if the lift coefficient is known. An estimate of lift coefficient is most

easily obtained from 2D aerofoil potential flow theory. Glauert (1959) showed, for isolated aero-

foils of small camber and thickness, that

CL 5 2π sin α (5.43a)

where α is the angle between the flow direction and the line of zero lift of the aerofoil. For an iso-

lated, cambered aerofoil Wislicenus (1947) suggested that the zero lift line may be found by joining

the trailing edge point with the point of maximum camber, as depicted in Figure 5.20(a). For fan

blades experiencing some interference effects from adjacent blades, the modified lift coefficient of

a blade may be estimated by assuming that Weinig’s results for flat plates (Figure 5.18) are valid

for the slightly cambered, finite thickness blades, and

CL 5 2πk sin α (5.43b)

When the vanes overlap (as they may do at sections close to the hub), Wislicenus suggested

that the zero lift line may be obtained by the line connecting the trailing edge point with the maxi-

mum camber of that portion of blade that is not overlapped, Figure 5.20(b).

The extension of both blade element theory and cascade data to the design of complete fans

was discussed in considerable detail by Wallis (1961).
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PROBLEMS
(Note: In questions 1�4, 6 and 8 take R5 287 J/kg �C and γ5 1.4.)

1. An axial-flow compressor is required to deliver 50 kg/s of air at a stagnation pressure of

500 kPa. At inlet to the first stage, the stagnation pressure is 100 kPa and the stagnation

temperature is 23�C. The hub and tip diameters at this location are 0.436 and 0.728 m. At the

mean radius, which is constant through all stages of the compressor, the reaction is 0.50 and the

absolute air angle at stator exit is 28.8� for all stages. The speed of the rotor is 8000 rev/min.

Determine the number of similar stages needed, assuming that the polytropic efficiency is 0.89

and that the axial velocity at the mean radius is constant through the stages and equal to 1.05

times the average axial velocity.

2. Derive an expression for the degree of reaction of an axial compressor stage in terms of the

flow angles relative to the rotor and the flow coefficient. Data obtained from early cascade tests

suggested that the limit of efficient working of an axial-flow compressor stage occurred when

a relative Mach number of 0.7 on the rotor is reached;

the flow coefficient is 0.5;

Camber line

Zero lift line

Maximum camber

Zero lift line

(a)

(b)

FIGURE 5.20

Method suggested by Wislicenus (1947) for obtaining the zero lift line of cambered aerofoils.

209Problems



the relative flow angle at rotor outlet is 30� measured from the axial direction;

the stage reaction is 50%.

Find the limiting stagnation temperature rise obtained in the first stage of an axial

compressor working under these conditions and compressing air at an inlet stagnation

temperature of 289 K. Assume the axial velocity is constant across the stage.

3. Each stage of an axial-flow compressor is of 0.5 reaction and has the same mean blade speed

and the same flow outlet angle of 30� relative to the blades. The mean flow coefficient is

constant for all stages at 0.5. At entry to the first stage, the stagnation temperature is 278 K,

the stagnation pressure is 101.3 kPa, the static pressure is 87.3 kPa, and the flow area is

0.372 m2. Using compressible flow analysis determine the axial velocity and the mass flow

rate. Determine also the shaft power needed to drive the compressor when there are six stages

and the mechanical efficiency is 0.99.

4. A 16-stage axial-flow compressor is to have a pressure ratio of 6.3. Tests have shown that a

stage total-to-total efficiency of 0.9 can be obtained for each of the first six stages and 0.89

for each of the remaining 10 stages. Assuming constant work done in each stage and

similar stages find the compressor overall total-to-total efficiency. For a mass flow rate of

40 kg/s determine the power required by the compressor. Assume an inlet total temperature

of 288 K.

5. At a particular operating condition an axial-flow compressor has a reaction of 0.6, a flow

coefficient of 0.5, and a stage loading, defined as Δh0/U
2 of 0.35. If the flow exit angles

for each blade row may be assumed to remain unchanged when the mass flow is throttled,

determine the reaction of the stage and the stage loading when the air flow is reduced by

10% at constant blade speed. Sketch the velocity triangles for the two conditions.

Comment upon the likely behavior of the flow when further reductions in air mass flow

are made.

6. A high-pressure axial compressor for a jet engine rotates at 15,000 rpm with an overall

stagnation pressure ratio of 8.5. The mass flow rate of air through the compressor is 16 kg/s

and the stagnation conditions at inlet are 200 kPa and 450 K. The polytropic efficiency is 91%.

a. If the mean radius is 0.24 m and this is constant throughout the compressor, calculate the

total-to-total isentropic efficiency of the compressor and show that, for the stage loading

to be less than 0.4 in all stages, eight stages are required.

b. The compressor is designed with repeating stages and zero inlet swirl. If the inlet axial

Mach number is 0.52, calculate the mean flow coefficient and sketch the velocity triangles

for one stage. Show that the blade height at exit from the compressor is about 7.8 mm.

7. At the design operating point, the stage characteristics of a low-speed compressor are as

follows:

Reaction 0.5

Flow coefficient 0.4

Stage loading 0.4
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Assuming constant axial velocity across the stage and equal absolute velocities at

inlet and outlet, determine the exit relative flow angle from the rotor and the exit absolute

flow angle from the stator. At an off-design condition, the flow coefficient is reduced to

0.3. Assuming that the deviation from the rotor and stator are unchanged from the

design condition, determine the new stage loading. If instead, the deviations from both the

rotor and the stator increase by 3�, determine the new stage loading at the off-design

condition.

8. Air enters an axial-flow compressor with a stagnation pressure and temperature of 100 kPa

and 293 K, leaving at a stagnation pressure of 600 kPa. The hub and tip diameters at entry to

the first stage are 0.3 and 0.5 m. The flow Mach number after the inlet guide vanes is 0.7 at

the mean diameter (0.4 m). At this diameter, which can be assumed constant for all the

compressor stages, the reaction is 50%, the axial velocity to mean blade speed ratio is 0.6,

and the absolute flow angle is 30� at the exit from all stators. The type of blading used for

this compressor is designated “free vortex” and the axial velocity is constant for each stage.

Assuming isentropic flow through the inlet guide vanes and a small stage efficiency of 0.88,

determine

a. the air velocity at exit from the inlet guide vanes at the mean radius;

b. the air mass flow and rotational speed of the compressor;

c. the specific work done in each stage;

d. the overall efficiency of the compressor;

e. the number of compressor stages required and the power needed to drive the compressor;

f. consider the implications of rounding the number of stages to an integer value if the

pressure ratio must be maintained at 6 for the same values of blade speed and flow

coefficient.

9. The compressor represented in Figure 5.8 has a mean blade speed of 350 m/s when operating

at its design point. At the design point, all 10 stages of the compressor can be treated as

repeating stages with a flow coefficient of 0.5 and a reaction of 0.6.

Take the inlet stagnation temperature to be 300 K, γ5 1.4 and Cp5 1005 J/kg K.

a. Find the stage loading and the interstage swirl angle that applies to all the stages at the

design point.

b. When operating on the working line at 90% speed, estimate the flow coefficients for the

first stage and the last stage (for the last stage assume that the nondimensional mass flow

is equal to that at compressor exit). Assuming the interstage swirl angles are unchanged

from the design point, find the rotor relative inlet angles for the first and last stages at this

condition. Hence, determine the change in incidence from the design point, for the last

stage rotor and the first stage rotor.

c. The swirl angle at inlet to the first stage can be adjusted by a variable guide vane. Find

the inlet swirl angle required at 90% speed to give the same incidence onto the first stage

rotor as at the design point.

10. A transonic fan used in a jet engine operates with axial flow at inlet and a flow coefficient of

0.5. The rotor inlet relative Mach number is 1.6 and this is equal to the Mach number just

211Problems



upstream of the passage normal shock wave. The relative flow angles at inlet and exit from

the rotor are equal and there is no change in flow radius.

a. Using Eqs (4.21) and (5.28a), determine the rotor loss coefficient if all of the loss is shock

loss. Check this using Figure 5.12.

b. The following equation relates the relative Mach number downstream of the passage

shock wave to the upstream relative Mach number:

M2;rel 5
11ðγ21=2ÞM2

1;rel

γM2
1;rel2ðγ21=2Þ

" #1=2

Referring to the velocity triangles in Figure 5.11, use the above equation to determine

the stage loading of the fan stage.

c. Show that the stagnation temperature ratio across the fan stage can be written as:

T02

T01
5

U2ψ
CpT01

1 15
2ðγ2 1ÞM2

1;rel sin
2 β1

21 ðγ2 1ÞM2
1;rel

ψ1 1

By combining the above result with the rotor loss coefficient, determine the rotor

alone total-to-total efficiency and the stagnation pressure ratio across the rotor.

Note: In the following problems on low-speed axial-flow fans the medium is air for

which the density is taken to be 1.2 kg/m3.

11. a. The volume flow rate through an axial-flow fan fitted with inlet guide vanes is 2.5 m3/s

and the rotational speed of the rotor is 2604 rev/min. The rotor blade tip radius is 23 cm

and the root radius is 10 cm. Given that the stage static pressure increase is 325 Pa and

the blade element efficiency is 0.80, determine the angle of the flow leaving the guide

vanes at the tip, mean, and root radii.

b. A diffuser is fitted at exit to the fan with an area ratio of 2.5 and an effectiveness of 0.82.

Determine the overall increase in static pressure and the air velocity at diffuser exit.

12. The rotational speed of a four-bladed axial-flow fan is 2900 rev/min. At the mean radius of

16.5 cm, the rotor blades operate at CL5 0.8 with CD5 0.045. The inlet guide vanes produce

a flow angle of 20� to the axial direction and the axial velocity through the stage is constant

at 20 m/s. For the mean radius, determine

a. the rotor relative flow angles;

b. the stage efficiency;

c. the rotor static pressure increase;

d. the size of the blade chord needed for this duty.

13. A diffuser, fitted to the axial fan in the previous problem, has an efficiency of 70% and an

area ratio of 2.4. Assuming that the flow at entry to the diffuser is uniform and axial in

direction, and the losses in the entry section and the guide vanes are negligible, determine

a. the static pressure rise and the pressure recovery factor of the diffuser;

b. the loss in total pressure in the diffuser;

c. the overall efficiency of the fan and diffuser.
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CHAPTER

6Three-Dimensional Flows in Axial
Turbomachines

It cost much labour and many days before all these things were brought to perfection.
Defoe, Robinson Crusoe

6.1 Introduction
In Chapters 4 and 5, the fluid motion through the blade rows of axial turbomachines was assumed

to be two-dimensional in the sense that radial (i.e., spanwise) velocities did not exist. This assump-

tion is not unreasonable for axial turbomachines of high hub�tip ratio. However, with hub�tip

ratios less than about 4/5, radial velocities through a blade row may become appreciable, the conse-

quent redistribution of mass flow (with respect to radius) seriously affecting the outlet velocity pro-

file (and flow angle distribution). The temporary imbalance between the strong centrifugal forces

exerted on the fluid and radial pressures restoring equilibrium is responsible for these radial flows.

Thus, to an observer traveling with a fluid particle, radial motion will continue until sufficient fluid

is transported (radially) to change the pressure distribution to that necessary for equilibrium. The

flow in an annular passage in which there is no radial component of velocity, whose streamlines lie

in circular, cylindrical surfaces and which is axisymmetric, is commonly known as radial equilib-

rium flow.

An analysis called the radial equilibrium method, widely used for design calculations in axial

compressors and turbines, is based upon the assumption that any radial flow that may occur is com-

pleted within a blade row, the flow outside the row then being in radial equilibrium (Smith, 1966).

Figure 6.1 illustrates the nature of this assumption. The other assumption, that the flow is axisym-

metric, implies that the effect of the discrete blades is not transmitted to the flow.

6.2 Theory of radial equilibrium
Consider a small element of fluid of mass dm, shown in Figure 6.2, of unit depth and subtending

an angle dθ at the axis, rotating about the axis with tangential velocity, cθ, at radius r. The element

is in radial equilibrium so that the pressure forces balance the centrifugal forces:
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ðp1 dpÞðr1 drÞdθ2 prdθ2 p1
1

2
dp

� �
drdθ5 dmc2θ=r

Writing dm5 ρrdθdr and ignoring terms of the second order of smallness, this equation

reduces to

1

ρ
dp

dr
5

c2θ
r

(6.1)

If the swirl velocity cθ and density are known functions of the radius, the radial pressure varia-

tion along the blade length can be determined as

ptip 2 proot 5

ðtip
root

ρc2θ
dr

r
(6.2a)

dr
p + dp

p+   d
p

Mass/unit depth = ρrdθdr

p

dθ

Velocity = cθ

r

1
2

p+   dp
1

2

FIGURE 6.2

Fluid element in radial equilibrium (cr5 0).

Casing

Hub
Streamlines

Axis

FIGURE 6.1

Radial equilibrium flow through a rotor blade row.
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For an incompressible fluid,

ptip 2 proot 5 ρ
ðtip
root

c2θ
dr

r
(6.2b)

The stagnation enthalpy is written as (with cr5 0)

h0 5 h1
1

2
c2x 1 c2θ
� �

(6.3)

therefore,

dh0

dr
5

dh

dr
1 cx

dcx

dr
1 cθ 1

dcθ

dr
(6.4)

The thermodynamic relation Tds5 dh2 (1/ρ)dp can be similarly written as

T
ds

dr
5

dh

dr
2

1

ρ
dp

dr
(6.5)

Combining Eqs (6.1), (6.4), and (6.5), eliminating dp/dr and dh/dr, the radial equilibrium

equation may be obtained as

dh0

dr
2 T

ds

dr
5 cx

dcx

dr
1

cθ

r

d

dr
ðrcθÞ (6.6a)

If the stagnation enthalpy h0 and entropy s remain the same at all radii, dh0/dr5 ds/dr5 0, then

Eq. (6.6a) becomes

cx
dcx

dr
1

cθ

r

d

dr
ðrcθÞ5 0 (6.6b)

Equation (6.6b) will hold for the flow between the rows of an adiabatic, reversible (ideal) turbo-

machine in which rotor rows either deliver or receive equal work at all radii. Now if the flow is

incompressible, instead of Eq. (6.3) use p0 5 p1 ð1=2Þ=ρðc2x 1 c2θÞ to obtain

1

ρ
dp0

dr
5

1

ρ
dp

dr
1 cx

dcx

dr
1 cθ

dcθ

dr
(6.7)

Combining Eqs (6.1) and (6.7), we obtain

1

ρ
dp0

dr
5 cx

dcx

dr
1

cθ

r

d

dr
ðrcθÞ (6.8)

Equation (6.8) clearly reduces to Eq. (6.6b) in a turbomachine in which equal work is delivered

at all radii and the total pressure losses across a row are uniform with radius.

Equation (6.6b) may be applied to two sorts of problem: the design (or indirect) problem, in

which the tangential velocity distribution is specified and the axial velocity variation is found, or

the direct problem, in which the swirl angle distribution is specified, the axial and tangential veloci-

ties being determined.
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6.3 The indirect problem
Free-vortex flow
This is a flow where the product of radius and tangential velocity remains constant (i.e., rcθ5K, a

constant). The term vortex free might be more appropriate as the vorticity (to be precise we mean

axial vorticity component) is then zero.

Consider an element of an ideal inviscid fluid rotating about some fixed axis, as indicated in

Figure 6.3. The circulation Γ is defined as the line integral of velocity around a curve enclosing an

area A, or Γ 5
H
cds. The vorticity at a point is defined as the limiting value of circulation δΓ

divided by area δA, as δA becomes vanishingly small. Thus, vorticity, ω5 dΓ /dA.
For the element shown in Figure 6.3, cr5 0 and

dΓ 5 ðcθ 1 dcθÞðr1 drÞdθ2 cθrdθ5
dcθ

dr
1

cθ

r

� �
rdθ dr

ignoring the product of small terms. Thus, ω5 dΓ/dA5 (1/r)d(rcθ)/dr. If the vorticity is zero,

d(rcθ)/dr is also zero and, therefore, rcθ is constant with radius.

Putting rcθ5 constant in Eq. (6.6b), then dcx/dr5 0 and so cx5 a constant. This information

can be applied to the incompressible flow through a free-vortex compressor or turbine stage,

enabling the radial variation in flow angles, reaction, and work to be found.

Compressor stage
Consider the case of a compressor stage in which rcθ15K1 before the rotor and rcθ25K2 after the

rotor, where K1 and K2 are constants. The work done by the rotor on unit mass of fluid is

ΔW 5Uðcθ2 2 cθ1Þ5ΩrðK2=r2K1=rÞ5 constant

Thus, the work done is equal at all radii.

cθ + dcθ

r + dr

r

cθ

dθ

FIGURE 6.3

Circulation about an element of fluid.
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The relative flow angles (Figure 5.2) entering and leaving the rotor are

tan β1 5
U

cx
2 tan α1 5

Ωr2K1=r

cx

tan β2 5
U

cx
2 tan α2 5

Ωr2K2=r

cx

in which cx15 cx25 cx for incompressible flow.

In Chapter 5, reaction in an axial compressor is defined by

R5
static enthalpy rise in the rotor

static enthalpy rise in the stage

For a normal stage (α15α3) with cx constant across the stage, the reaction was shown to be,

from Eq. (5.21),

R5
cx

2U
ðtan β1 1 tan β2Þ

Substituting values of tan β1 and tan β2 into Eq. (5.21), the reaction becomes

R5 12
k

r2
(6.9)

where

k5 ðK1 1K2Þ=ð2ΩÞ
It will be clear that, as k is positive, the reaction increases from root to tip. Likewise, from

Eq. (6.1) we observe that as c2θ=r is always positive (excepting cθ5 0), so static pressure increases

from root to tip. For the free-vortex flow rcθ5K, the static pressure variation can be shown to be

p/ρ5 constant2K2/(2r2) upon integrating Eq. (6.1).

EXAMPLE 6.1

An axial-flow compressor stage is designed to give free-vortex tangential velocity distributions

for all radii before and after the rotor blade row. The tip diameter is constant and 1.0 m; the hub

diameter is 0.9 m and constant for the stage. At the rotor tip, the flow angles are as follows:

absolute inlet angle, α15 30�;
relative inlet angle, β15 60�;
absolute outlet angle, α25 60�;
relative outlet angle, β25 30�.

Determine

a. the axial velocity;

b. the mass flow rate;

c. the power absorbed by the stage;
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d. the flow angles at the hub;

e. the reaction ratio of the stage at the hub;

given that the rotational speed of the rotor is 6000 rev/min and the gas density is 1.5 kg/m3, which

can be assumed constant for the stage. It can be further assumed that stagnation enthalpy and

entropy are constant before and after the rotor row for the purpose of simplifying the calculations.

Solution
a. The rotational speed, Ω5 2πN/605 628.4 rad/s. Therefore, blade tip speed,

Ut5Ωrt5 314.2 m/s, and blade speed at hub, Uh5Ωrh5 282.5 m/s. From the velocity dia-

gram for the stage (e.g., Figure 5.2), the blade tip speed is

Ut 5 cxðtan 60� 1 tan 30�Þ5 2:309cx

Therefore, cx5 136 m/s, constant at all radii because the flow is a free vortex.

b. The rate of mass flow, _m5πðr2t 2 r2hÞρcx 5πð0:52 2 0:452Þ1:53 1365 30:4 kg=s
c. The power absorbed by the stage,

_We5 _mUtðcθ2t 2 cθ1tÞ
5 _mUtcxðtan α2t 2 tan α1tÞ
5 30:43 314:23 136ð

ffiffiffi
3

p
2 1=

ffiffiffi
3

p
Þ

5 1:5 MW

d. At inlet to the rotor tip,

cθ1t 5 cx tan α1 5 136=
ffiffiffi
3

p
5 78:6 m=s

The absolute flow is a free vortex, rcθ5 constant. Therefore, cθ1h5 cθ1t(rt/rh)5
78.63 0.5/0.455 87.3 m/s. At outlet to the rotor tip,

cθ2t 5 cx tan α2 5 1363
ffiffiffi
3

p
5 235:6 m=s

Therefore, cθ2h5 cθ2t(rt/rh)5 235.63 0.5/0.455 262 m/s. The flow angles at the hub are

tan α1 5 cθ1h=cx 5 87:3=1365 0:642

tan β1 5Uh=cx 2 tan α1 5 1:436

tan α2 5 cθ2h=cx 5 262=1365 1:928

tan β2 5Uh=cx 2 tan α2 5 0:152

Thus, α15 32.75�, β15 55.15�, α25 62.6�, β25 8.64� at the hub.
e. The reaction at the hub can be found by several methods. With Eq. (6.9),

R5 12 k=r2

and noticing that, from symmetry of the velocity triangles,

R5 0:5 at r5 rt; then k5 0:5r2t
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Therefore,

Rh 5 12 0:5ð0:5=0:45Þ2 5 0:382

The velocity triangles will be asymmetric and similar to those in Figure 5.5(b).

The simplicity of the flow under free-vortex conditions is, superficially, very attractive to the

designer and many compressors have been designed to conform to this flow. Figure 6.4 illustrates

the variation of fluid angles and Mach numbers of a typical compressor stage designed for free-

vortex flow. Characteristic of this flow are the large fluid deflections near the inner wall and high

Mach numbers near the outer wall, both effects being deleterious to efficient performance. A fur-

ther serious disadvantage is the large amount of rotor twist from root to tip, which adds to the diffi-

culty of blade manufacture.

Many types of vortex design have been proposed to overcome some of the disadvantages set by

free-vortex design and several of these are compared by Horlock (1958). Radial equilibrium solu-

tions for the work and axial velocity distributions of some of these vortex flows in an axial com-

pressor stage follow.
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FIGURE 6.4

Variation of fluid angles and Mach numbers of a free-vortex compressor stage with radius.

(Adapted from Howell, 1945)
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Forced vortex
This is sometimes called solid-body rotation because cθ varies directly with r. At entry to the rotor

assume h01 is constant and cθ15K1r.

With Eq. (6.6b),

d

dr

c2x1
2

� �
52K1

d

dr
ðK1r

2Þ

and, after integrating,

c2x1 5 constant2 2K2
1r

2 (6.10)

After the rotor cθ25K2r and h022 h015U(cθ22 cθ1)5Ω(K22K1)r
2. Thus, as the work distri-

bution is nonuniform, the radial equilibrium equation in the form Eq. (6.6a) is required for the flow

after the rotor:

dh02

dr
5 2ΩðK2 2K1Þr5

d

dr

c2x2
2

� �
1K2

d

dr
ðK2r

2Þ

After rearranging and integrating,

c2x2 5 constant2 2½K2
2 2ΩðK2 2K1Þ�r2 (6.11)

The constants of integration in Eqs (6.10) and (6.11) can be found from the continuity of mass

flow, i.e.,

_m

2πρ
5

ðr2
rh

cx1rdr5

ðr2
rh

cx2rdr (6.12)

which applies to the assumed incompressible flow.

Variable vortex design
In this case the tangential velocity distribution is given by

cθ1 5 ar n 2 b=r ðbefore rotorÞ (6.13a)

cθ2 5 ar n 1 b=r ðafter rotorÞ (6.13b)

The distribution of work for all values of the index n is constant with radius so that if h01 is uni-

form, h02 is also uniform with radius. From Eqs (6.13a) and (6.13b),

ΔW 5 h02 2 h01 5Uðcθ2 2 cθ1Þ5 2bΩ (6.14)

Selecting different values of n gives several of the tangential velocity distributions commonly

used in compressor design. With n5 0, or zero power blading, it leads to the so-called exponential

type of stage design (included as an exercise at the end of this chapter). With n5 1, or first power

blading, the stage design is called (incorrectly, as it transpires later) constant reaction.
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Mixed vortex design
A problem arises with the use of the free-vortex solution, especially when it is applied to low

hub�tip ratio stages, which is the large radial variation in flow angles, reaction, and tangential

velocities that results from its use. This leads to highly twisted blades which are difficult and

expensive to manufacture and can be the cause of large total pressure losses. Turbomachinery

designers have been aware for some time of this difficulty and have attempted various strategies to

reduce these flow extremes. One of these attempts is the use of the so-called “mixed vortex,” which

combines a free vortex with a forced vortex or solid-body rotation. For the flow after a rotor row,

this combined flow produces a tangential velocity distribution given by

cθ2 5
a

r
1 br (6.15)

First power stage vortex design
For a given stage temperature rise, the discussion in Chapter 5 would suggest the choice of 50%

reaction at all radii for the highest stage efficiency. With swirl velocity distributions,

cθ1 5 ar2 b=r; cθ2 5 ar1 b=r (6.16)

before and after the rotor, respectively; and rewriting the expression for reaction, Eq. (5.21), as

R5 12
cx

2U
ðtan α1 1 tan α2Þ

then, using Eq. (6.16),

R5 12 a=Ω5 constant (6.17)

Implicit in Eq. (6.17) is the assumption that the axial velocity across the rotor remains constant

which, of course, is tantamount to ignoring radial equilibrium. The axial velocity must change in

crossing the rotor row so that Eq. (6.17) is only a crude approximation at the best.

Assuming constant stagnation enthalpy at entry to the stage, integrating Eq. (6.6b), the axial

velocity distributions before and after the rotor are

c2x1 5 constant2 4a
1

2
ar2 2 b ln r

� �
(6.18a)

c2x2 5 constant2 4a
1

2
ar2 2 b ln r

� �
(6.18b)

More conveniently, these expressions can be written nondimensionally as

cx1

Ut

� �2
5A1 2

2a

Ω

� �2
1

2

r

rt

� �2
2

b

ar2t
ln

r

rt

� �" #
(6.19a)
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cx2

Ut

� �2
5A2 2

2a

Ω

� �2
1

2

r

rt

� �2
1

b

ar2t
ln

r

rt

� �" #
(6.19b)

in which Ut5Ωrt is the tip blade speed. The constants A1, A2 are not arbitrary as the continuity

equation, Eq. (6.12), must be satisfied.

EXAMPLE 6.2

A DESIGN PROBLEM

By careful selection of the values of the constants a and b in Eq. (6.15), the radial distribution of the

blade loading can be optimized for a mixed vortex design. However, it was suggested by Lewis

(1996) that a better design strategy would be to consider instead the work coefficient, ψ, and attempt

to make this more uniform. Consider a single compressor rotor in incompressible flow with purely

axial-flow upstream of the rotor, cθ1 5 0. In this case, the variation of work coefficient is given by

ψ5
Δp0

ρU2
5

cθ2

U
5

1

Ω
a

r2
1 b

� �
By choosing values of the work coefficient at two radii, the values of a and b can then be

found. Let ψ5ψm 5 0:3 at the root mean square radius, r5 rm 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þðr2h 1 r2t Þ

p
and

ψ5ψh 5 0:6 at r5 rh. The values of the hub-to-tip radius ratio are rh=rt 5 0:4, rm=rt 5 0:7616,
and rt 5 0:5 m. These choices of rh and rt and the values of the work coefficients are quite arbi-

trary and other values could be selected by the designer. Also, for use later, assume the local

flow coefficient, φm 5 cxm=Um 5 0:5 and the rotational speed, Ω5 500 rad=s. By substitution

into the above equation for work coefficient, it is possible to evaluate a and b as

a5 8:286 and b5 92:86

At this point, it is useful to compare some of the values determined for a free-vortex design

and the mixed vortex design, as shown in Table 6.1. Note that from Eq. (5.23), it is apparent

that the reaction R5 12ψ=2 when cθ1 5 0. From Table 6.1, it is seen for the free-vortex design

that there is a considerable variation of the work coefficient ψ and the reaction R, whereas for

the mixed vortex design only moderate variations are determined.

Solving for the axial velocity
For the mixed vortex, the solution for the axial velocity (for h0 5 constant and s5 constant) is

found as follows:

cx
dcx

dr
1

cθ

r

dðrcθÞ
dr

5 0 or
d

dr
ðc2xÞ52 2

cθ

r

d

dr
ðrcθÞ

With cθ2 5 ða=rÞ1 br, we get

c2x2 52 4b

ð
a

r
1 br

� �
dr5C2 4b a ln r1

b

2
r2
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where C is an arbitrary constant, which is found using the continuity equation. The average

value of the axial velocity is cx 5φmUm 5 95:2 m=s. The volume flow rate Q for the flow

upstream of the rotor is

Q=π5 cxðr2t 2 r2hÞ5 20:0 m3=s

and the volume flow rate downstream is given by

Q=π5
ðrt
rh

cx2rdr5

ðrt
rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 4b½a ln r1 br2=2�

p
3 rdr

To solve for C an iterative method of calculation is required. The preferred method uses the

“mid-ordinate rule” and the details of the final iteration (with C5 8500) are shown in the

Table 6.2. Using the results in the table, Q=π5
P

cx2rmid 3 0:15 19:98 m3=s for the flow

downstream of the rotor.

This result is approximately equal to the value of Q=π determined for the flow upstream of

the rotor. The details of the absolute and relative flow angles, α2;β1; and β2, and the fluid

Table 6.1 Tangential Velocity Ratio, Work Coefficient, and Reaction

Distributions for the Two Designs.

Free vortex Mixed vortex

r=rt cθ2=cx ψ R cθ2=cx ψ R

0.4 1.142 1.088 0.456 0.630 0.600 0.700

0.5 0.913 0.696 0.652 0.592 0.451 0.775

0.6 0.761 0.483 0.758 0.583 0.370 0.815

0.7 0.653 0.355 0.822 0.590 0.321 0.840

0.8 0.571 0.272 0.864 0.608 0.289 0.855

0.9 0.508 0.215 0.893 0.632 0.268 0.866

1.0 0.457 0.174 0.913 0.662 0.252 0.874

Table 6.2 Mixed vortex calculation results

Radius r (m) 0.20 0.25 0.30 0.35 0.40 0.45 0.50

4b½a ln r 1br2=2� 2 4264 2 3190 2 2153 2 1119 2 60.5 1035 2178

C2 4b½a ln r 1br2=2� 12,764 11,690 10,653 9619 8560 7465 6322

cx2ðm=sÞ 113.0 108.1 103.2 98.08 92.52 86.4 79.5

cx2 at mid-ordinates 110.5 105.6 100.64 95.3 89.46 82.95

Mid-ordinate
radius (m)

0.225 0.275 0.325 0.375 0.425 0.475
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deflection angle, ε, are given in Table 6.3. The flow angles follow the generalized notation given

in Figure 5.2 with cθ1 5 0�. The various angles are determined using the following formulae:

tan β1 5
U

cx2
; tan β2 5

U

cx2
ð12ψÞ; tan α2 5ψ

U

cx2
; and ε5β1 2β2

The velocity triangles at radii r=rt 5 0:4; 0:7; and 1:0 are shown in Figure 6.5. Note that for

simplicity, these are drawn with equal axial velocity at inlet and exit. In reality, the axial veloc-

ity upstream of the rotor does not vary with radius because the flow there is not swirling.

Table 6.3 Flow angles for the mixed vortex design

r=rt 0.40 0.50 0.60 0.70 0.80 0.90 1.00

β0
1

41.5 49.15 55.47 60.73 65.17 70.0 72.36

β0
2

19.49 32.4 42.47 50.46 56.95 62.32 66.97

ε0 22.01 16.75 13.0 10.27 8.22 7.68 5.39

α0
2

27.97 27.53 28.26 29.8 32.0 34.91 38.4

φ5 cx2=Ut 1.13 0.865 0.688 0.561 0.463 0.384 0.318

At r/rt= 0.4 At r/rt= 0.7

cx
w1

w2

β1

Cθ2

U

β2

U

Cθ2

cx

w1

w2

β1β2

At r/rt= 1.0
U

Cθ2

cx
w1

w2 β1
β2

FIGURE 6.5

Velocity triangles for the mixed vortex design.
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Meridional flow reversal as a result of excessive swirl
A noticeable feature of the downstream velocity profile is the tendency of the axial velocity to

reduce rapidly as r-rt. Any increase in the swirl velocity will cause the axial velocity to reduce

further and this can ultimately lead to flow reversal. This is a real physical limit and mathemati-

cally no real solution is possible in the above equations. In the problem solved, a fairly uniform

distribution of work transfer was stipulated. Any increase in the exit swirl energy (by increasing

the factor b) would reduce the energy contribution to the axial velocity component, which could

lead to flow failure. Lewis (1996) suggested that designers have two options available in order

to avoid this flow problem:

1. prescribe a less powerful vortex type, or

2. increase the hub/tip ratio.

6.4 The direct problem
The flow angle variation is specified in the direct problem and the radial equilibrium equation

enables the solution of cx and cθ to be found.

The radial equilibrium equation is

cx
dcx

dr
1

cθ

r

d

dr
ðrcθÞ5

dh0

dr
2 T

ds

dr
(6.20a)

Substituting cθ 5 c sin α and cx 5 c cos α, we get

cx
dcx

dr
1

c sin α
r

d

dr
ðrc sin αÞ5 dh0

dr
2 T

ds

dr

‘
c sin α

r

d

dr
ðrc sin αÞ1 c cos α

d

dr
ðc cos αÞ5 dh0

dr
2 T

ds

dr

‘
c sin α

r
c sin α1 r sin α

dc

dr
1 rc cos α

dα
dr

	 

1 c cos α

dc

dr
cos α2 c sin α

dα
dr

	 

5

dh0

dr
2 T

ds

dr

Multiplying out and simplifying we then get

c
dc

dr
1

c2

r
sin2 α5

dh0

dr
2 T

ds

dr
(6.20b)

Note the similarities between Eqs (6.20a) and (6.20b).

Some special cases
1. If both dh0=dr and ds=dr are zero, Eq. (6.20b) integrated gives

ln c5 2

ð
sin2α

dr

r
1 a constant

If c5 cm at r5 rm, then

c

cm
5 exp 2

ð
sin2α

dr

r

� �
(6.21)
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2. If the flow angle α is made constant, then the above equation simplifies to

c

cm
5

cx

cxm
5

cθ

cθm
5

r

rm

� �2sin2α

(6.22)

The vortex distribution represented by Eq. (6.22) is often employed in practice as untwisted

blades are much simpler to manufacture.

The general solution of the radial equilibrium equation
A more general case applies when h0 5 h0ðrÞ; α5αðrÞ; and s5 a constant. This specification gives

the designer a much wider choice. A solution can be contrived as follows. From Eq. (6.20b), i.e.,

c
dc

dr
1

c2

r
sin2 α5

dh0

dr

we can solve this by introducing a suitable integrating factor. Multiplying throughout by

exp 2

ð
sin2 α

dr

r

	 


‘
d

dr
c2 exp 2

ð
sin2 α

dr

r

	 
� �
5 2

dh0

dr

� �
exp 2

ð
sin2 αdr=r

	 


The solution for the velocity is

c2 5
2
Ð feDgðdh0=drÞdr1K

feDg
where eD 5 expð2 Ð ðsin2 α=rÞdrÞ and K is a constant.

Let c5 cm at r5 rm, so that K can be evaluated. The final expression for the velocity is

c2

c2m
5

2
Ð r
rm

exp 2
Ð r
rm
ðsin2 α=rÞdr

� �h i
ðdh0=drÞdr

exp 2
Ð r
rm
ðsin2 α=rÞdr

� � 1 exp 22

ðr
rm

ðsin2 α=rÞdr
� �

or more concisely

c2

c2m
5

2
Ð r
rm
eDðdh0=drÞ1 1

eD
(6.23a)

A special case
Let 2dh0=dr5 kc2m=rm and let a5 2 sin2 α, then exp 2

Ð
sin2 αdr=r

 �
5 ra and hence

c

cm

� �2
r

rm

� �a

5 11
k

11 k

r

rm

� �11a

2 1

" #
(6.23b)
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If the variation of α is specified by bðr=rmÞ5 2 sin2 α, where b is a constant, it can be

shown that

c

cm

� �2
5

k

b
1 12

k

b

� �
exp b 12

r

rm

� �	 

(6.23c)

where k is a constant of integration.

These sort of analyses can be used in the preliminary design of blading and some computational

methods use them to prescribe their boundary conditions, see Lakshminarayana (1996).

6.5 Compressible flow through a fixed blade row
In the blade rows of high-performance gas turbines, fluid velocities approaching, or even exceed-

ing, the speed of sound are common and compressibility effects may no longer be ignored. A sim-

ple analysis is outlined here for the inviscid flow of a perfect gas through a fixed row of blades

which, nevertheless, can be extended to the flow through moving blade rows.

The radial equilibrium equation, Eq. (6.6a), applies to compressible flow as well as incompress-

ible flow. With constant stagnation enthalpy and constant entropy, a free-vortex flow therefore

implies uniform axial velocity downstream of a blade row, regardless of any density changes

incurred in passing through the blade row. In fact, for high-speed flows there must be a density

change in the blade row, which implies a streamline shift as shown in Figure 6.1. This may be illus-

trated by considering the free-vortex flow of a perfect gas as follows. In radial equilibrium,

1

ρ
dp

dr
5

c2θ
r
5

K2

r3
with cθ 5

K

r

For reversible adiabatic flow of a perfect gas, ρ5Ep1=y; see Eq. (1.35), where E is constant.

Thus, ð
p21=γdp5EK2

ð
r23dr1 constant

therefore,

p5 constant2
γ21

γ

� �
EK2

r2

	 
γ=ðγ21Þ
(6.24)

For this free-vortex flow the pressure, and therefore the density also, must be larger at the casing

than at the hub. The density difference from hub to tip may be appreciable in a high velocity, high

swirl angle flow. If the fluid is without swirl at entry to the blades, the density will be uniform.

Therefore, from continuity of mass flow there must be a redistribution of fluid in its passage across the

blade row to compensate for the changes in density. Thus, for this blade row, the continuity equation is

_m5 ρ1A1cx1 5 2πcx2
ðrt
rh

ρ2rdr (6.25)

where ρ2 is the density of the swirling flow, obtainable from Eq. (6.24).
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6.6 Constant specific mass flow
Although there appears to be no evidence that the redistribution of the flow across blade rows is a

source of inefficiency, it has been suggested by Horlock (1966) that the radial distribution of cθ for

each blade row is chosen so that the product of axial velocity and density is constant with radius, i.e.,

d _m=dA5 ρcx 5 ρc cos α5 ρmcm cos αm 5 constant (6.26)

where subscript m denotes conditions at r5 rm. This constant specific mass flow design is the logi-

cal choice when radial equilibrium theory is applied to compressible flows as the assumption that

cr5 0 is then likely to be realized.

Solutions may be determined by means of a simple numerical procedure and, as an illustration

of one method, a turbine stage is considered here. It is convenient to assume that the stagnation

enthalpy is uniform at nozzle entry, the entropy is constant throughout the stage, and the fluid is a

perfect gas. At nozzle exit under these conditions the equation of radial equilibrium, Eq. (6.20), can

be written as

dc=c52 sin2 αdr=r (6.27)

From Eq. (6.1), noting that at constant entropy the acoustic velocity α5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dp=dρ

p
;

1

ρ
dp

dr
5

1

ρ
dp

dρ

� �
dρ
dr

� �
5

a2

ρ
dρ
dr

5
c2

r
sin2 α

therefore,

dρ=ρ5M2 sin2 αdr=r (6.28a)

where the flow Mach number

M5 c=a5 c=
ffiffiffiffiffiffiffiffiffi
γRT

p
(6.28b)

The isentropic relation between temperature and density for a perfect gas is

T=Tm 5 ðρ=ρmÞγ21

which after logarithmic differentiation gives

dT=T5 ðγ2 1Þdρ=ρ (6.29)

Using this set of equations, the procedure for determining the nozzle exit flow is as follows.

Starting at r5 rm, values of cm, αm, Tm, and ρm are assumed to be known. For a small finite interval

Δr, the changes in velocity Δc, density Δρ, and temperature ΔT can be computed using Eqs (6.27),

(6.28), and (6.29), respectively. Hence, at the new radius r5 rm1Δr, the velocity c5 cm1Δc, the

density ρ5 ρm1Δρ, and temperature T5 Tm1ΔT are obtained. The corresponding flow angle α
and Mach number M can now be determined from Eqs (6.26) and (6.28b), respectively. Thus, all

parameters of the problem are known at radius r5 rm1Δr. This procedure is repeated for further

increments in radius to the casing and again from the mean radius to the hub.

Figure 6.6 shows the distributions of flow angle and Mach number computed with this proce-

dure for a turbine nozzle blade row of 0.6 hub�tip radius ratio. The input data used was
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αm5 70.4� and M5 0.907 at the mean radius. Air was assumed at a stagnation pressure of 859 kPa

and a stagnation temperature of 465�K. A remarkable feature of these results is the almost uniform

swirl angle that is obtained.

With the nozzle exit flow fully determined the flow at rotor outlet can now be computed by a

similar procedure. The procedure is a little more complicated than that for the nozzle row because

the specific work done by the rotor is not uniform with radius. Across the rotor, using the notation

of Chapter 4,

h03 2 h03 5Uðcθ2 1 cθ3Þ (6.30a)

and, hence, the gradient in stagnation enthalpy after the rotor is

dh03=dr52 d½Uðcθ2 2 cθ3Þ�=dr52 dðUcθ2Þ=dr2 dðUc3 sin α3Þ=dr
After differentiating the last term,

2dh0 5 dðUcθ2Þ1Uðc sin αdr=r1 sin αdc1 c cos αdαÞ (6.30b)

the subscript 3 having now been dropped.

From Eq. (6.20b), the radial equilibrium equation applied to the rotor exit flow is

dh0 5 c2 sin2 αdr=r1 cdc (6.30c)

After logarithmic differentiation of ρc cos α5 constant,

dρ=ρ1 dc=c5 tan αdα (6.31)
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FIGURE 6.6

Flow angle and Mach number distributions with radius of a nozzle blade row designed for constant specific

mass flow.
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Eliminating successively dh0 between Eqs (6.30b) and (6.30c), dρ/ρ between Eqs (6.28) and

(6.31), and finally dα from the resulting equations gives

dc

c
11

cθ

U

� �
52 sin2α

dðrcθÞ
rcθ

1 11
cθ

U
1M2

x

� � dr
r

	 

(6.32)

where Mx 5M cos α5 c cos α=
ffiffiffiffiffiffiffiffiffi
γRT

p
: and the static temperature

T 5 T3 5 T03 2 c23=ð2CpÞ5 T02 2 Uðcθ2 1 cθ3Þ1 ð1=2Þc23
 �

=Cp (6.33)

The verification of Eq. (6.32) is left as an exercise for the diligent student.

Provided that the exit flow angle α3 at r5 rm and the mean rotor blade speeds are specified, the

velocity distribution, etc., at rotor exit can be readily computed from these equations.

6.7 Off-design performance of a stage
A turbine stage is considered here although, with some minor modifications, the analysis can be

made applicable to a compressor stage.

Assuming the flow is at constant entropy, apply the radial equilibrium equation, Eq. (6.6a), to

the flow on both sides of the rotor:

dh03

dr
5

dh02

dr
2Ω

d

dr
ðrcθ2 1 rcθ3Þ5 cx3

dcx3

dr
1

cθ3

r

d

dr
ðrcθ3Þ

Therefore,

cx2
dcx2

dr
1

cθ2

r
2Ω

� � d

dr
ðrcθ2Þ5 cx3

dcx3

dr
1

cθ3

r
1Ω

� �
d

dr
ðrcθ3Þ

Substituting cθ35 cx3tan β32Ωr into this equation, after some simplification,

cx2
dcx2

dr
1

cθ2

r
2Ω

� � d

dr
ðrcθ2Þ5 cx3

dcx3

dr
1

cx3

r
tan β3

d

dr
ðrcx3 tan β3Þ2 2Ωcx3 tan β3 (6.34)

In a particular problem, the quantities cx2, cθ2, β3 are known functions of radius and Ω can be

specified. Equation (6.34) is thus a first-order differential equation in which cx3 is unknown and

may best be solved, in the general case, by numerical iteration. This procedure requires a guessed

value of cx3 at the hub and, by applying Eq. (6.34) to a small interval of radius Δr, a new value of

cx3 at radius rh1Δr is found. By repeating this calculation for successive increments of radius, a

complete velocity profile cx3 can be determined. Using the continuity relationðrt
rk

cx3rdr5

ðrt
rk

cx2rdr

this initial velocity distribution can be integrated and a new, more accurate, estimate of cx3 at the

hub is then found. Using this value of cx3, the step-by-step procedure is repeated as described and

again checked by continuity. This iterative process is normally rapidly convergent and, in most

cases, three cycles of the calculation enable a sufficiently accurate exit velocity profile to be found.
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The off-design performance may be obtained by making the approximation that the rotor rela-

tive exit angle β3 and the nozzle exit angle α2 remain constant at a particular radius with a change

in mass flow. This approximation is not unrealistic as cascade data (see Chapter 3) suggest that

fluid angles at outlet from a blade row alter very little with change in incidence up to the stall

point.

Although any type of flow through a stage may be successfully treated using this method, rather

more elegant solutions in closed form can be obtained for a few special cases. One such case is out-

lined next for a free-vortex turbine stage whilst other cases are already covered by Eqs (6.21)�(6.23).

6.8 Free-vortex turbine stage
Suppose, for simplicity, a free-vortex stage is considered where, at the design point, the flow at

rotor exit is completely axial (i.e., without swirl). At stage entry, the flow is again supposed

completely axial and of constant stagnation enthalpy h01. Free-vortex conditions prevail at entry to

the rotor, rcθ25 rcx2 tan α25 constant. The problem is to find how the axial velocity distribution at

rotor exit varies as the mass flow is altered away from the design value.

At off-design conditions, the relative rotor exit angle β3 is assumed to remain equal to the value

β� at the design mass flow (� denotes design conditions). Thus, referring to the velocity triangles in

Figure 6.7, at off-design conditions the swirl velocity cθ3 is evidently nonzero:

cθ3 5 cx3 tan β3 2U5 cx3 tan β�
3 2Ωr (6.35)

At the design condition, c�θ3 5 0 and so

c�x3 tan β�
3 5Ωr (6.36)

Combining Eqs (6.35) and (6.36),

cθ3 5Ωr
cx3

c�x3
2 1

� �
(6.37)

The radial equilibrium equation at rotor outlet gives

dh03

dr
5 cx3

dcx3

dr
1

cθ3

r

d

dr
ðrcθ3Þ52Ω

d

dr
ðrcθ3Þ (6.38)

after combining with Eq. (6.33), noting that dh02/dr5 0 and that (d/dr)(rcθ2)5 0 at all mass flows.

From Eq. (6.37),

Ω1
cθ3

r
5Ω

cx3

c�x3
; rcθ3 5Ωr2

cx3

c�x3
2 1

� �

which when substituted into Eq. (6.38) gives

dcx3

dr
5

Ω2

c�x3
2r

cx3

c�x3
2 1

� �
1

r2

c�x3

dcx3

dr
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After rearranging,

dcx3

cx3 2 c�x3
5

2 dðΩ2r2Þ
ðc�2x3 1Ω2r2Þ (6.39)

Equation (6.39) is immediately integrated in the form

cx3 2 c�x3
cx3m 2 c�x3

5
c�2x3 1Ω2r2m

c�2x3 1Ω2r2
(6.40a)

where cx35 cx3m at r5 rm. Equation (6.40a) is more conveniently expressed in a nondimensional

form by introducing flow coefficients φ5 cx3=Um; φ� 5 c�x3=Um; and φm 5 cx3m=Um. Thus,

φ=φ� 2 1

φm=φ
� 2 1

5
φ�2 1 1

φ�2 1 ðr=rmÞ2
(6.40b)

If rm is the mean radius, then cx3mDcx1 and, therefore, φm provides an approximate measure of

the overall flow coefficient for the machine (note: cx1 is uniform).

The results of this analysis are shown in Figure 6.8 for a representative design flow coefficient

φ� 5 0.8 at several different off-design flow coefficients φm, with r/rm5 0.8 at the hub

and r/rm5 1.2 at the tip. It is apparent for values of φm,φ� that cx3 increases from hub to tip; con-

versely for φm.φ�, cx3 decreases towards the tip.

c2

c2

w3

w3

w2

w2

c3= cx*

(a) Design

(b) Off-design

U = cθ*2

U = cθ*2

β3*

β3*

FIGURE 6.7

Design (a) and off-design (b) velocity triangles for a free-vortex turbine stage.
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The foregoing analysis is only a special case of the more general analysis of free-vortex turbine

and compressor flows (Horlock & Dixon, 1966), in which rotor exit swirl, rc�θ3 is constant (at

design conditions), is included. However, from Horlock and Dixon, it is quite clear that even for

fairly large values of α�
3m, the value of φ is little different from the value found when α�

3 5 0, all

other factors being equal. In Figure 6.8, values of φ are shown when α�
3m 5 31:4� at φm5 0.4

(φ� 5 0.8) for comparison with the results obtained when Δ0 5 ð1=2ÞðcxN1 2 cxN2Þ:
It should be noted that the rotor efflux flow at off-design conditions is not a free vortex.

6.9 Actuator disc approach
In the radial equilibrium design method it was assumed that all radial motion took place within the

blade row. However, in most turbomachines of low hub�tip ratio, appreciable radial velocities can

be measured outside of the blade row. Figure 6.9, taken from a review paper by Hawthorne and

Horlock (1962), shows the distribution of the axial velocity component at various axial distances

upstream and downstream of an isolated row of stationary inlet guide vanes. This figure clearly

illustrates the appreciable redistribution of flow in regions outside of the blade row and that radial

velocities must exist in these regions. For the flow through a single row of rotor blades, the varia-

tion in pressure (near the hub and tip) and variation in axial velocity (near the hub), both as func-

tions of axial position, are shown in Figure 6.10, also taken from Hawthorne and Horlock. Clearly,

radial equilibrium is not established entirely within the blade row.

A more accurate form of flow analysis than radial equilibrium theory is obtained with the actua-

tor disc concept. The idea of an actuator disc is quite old and appears to have been first used in the
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Off-design rotor exit flow coefficients.
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theory of propellers; it has since evolved into a fairly sophisticated method of analyzing flow pro-

blems in turbomachinery. To appreciate the idea of an actuator disc, imagine that the axial width of

each blade row is shrunk while, at the same time, the space�chord ratio, the blade angles, and

overall length of machine are maintained constant. As the deflection through each blade row for a

given incidence is, apart from Reynolds number and Mach number effects (cf. Chapter 3 on cas-

cades), fixed by the cascade geometry, a blade row of reduced width may be considered to affect

the flow in exactly the same way as the original row. In the limit as the axial width vanishes, the

blade row becomes, conceptually, a plane discontinuity of tangential velocity—the actuator disc.

Note that while the tangential velocity undergoes an abrupt change in direction, the axial and radial

velocities are continuous across the disc.

An isolated actuator disc is depicted in Figure 6.11 with radial equilibrium established at fairly large

axial distances from the disc. An approximate solution to the velocity fields upstream and downstream

of the actuator can be found in terms of the axial velocity distributions far upstream and far down-

stream of the disc. The detailed analysis exceeds the scope of this book, involving the solution of the
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equations of motion, the equation of continuity, and the satisfaction of boundary conditions at the walls

and disc. The form of the approximate solution is of considerable interest and is quoted here.

For convenience, conditions far upstream and far downstream of the disc are denoted by sub-

scripts N1 and N2, respectively (Figure 6.11). Actuator disc theory proves that at the disc (x5 0),

at any given radius, the axial velocity is equal to the mean of the axial velocities at N1 and N2 at

the same radius, or

cx01 5 cx02 5
1

2
ðcxN1 1 cxN2Þ (6.41)

Subscripts 01 and 02 denote positions immediately upstream and downstream, respectively, of

the actuator disc. Equation (6.41) is known as the mean-value rule.

In the downstream flow field (x$ 0), the difference in axial velocity at some position (x, rA) to that

at position (x5N, rA) is conceived as a velocity perturbation. Referring to Figure 6.12, the axial veloc-

ity perturbation at the disc (x5 0, rA) is denoted by Δ0 and at position (x, rA) by Δ. The important
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Variation in axial velocity with axial distance from the actuator disc.
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result of actuator disc theory is that velocity perturbations decay exponentially away from the disc. This

is also true for the upstream flow field (x# 0). The result obtained for the decay rate is

Δ=Δ0 5 12 exp½7 πx=ðrt 2 rhÞ� (6.42)

where the minus and plus signs apply to the flow regions x$ 0 and x# 0, respectively. Equation

(6.42) is often called the settling-rate rule. Since cx15 cx011Δ, cx25 cx022Δ and noting that

Δ0 5 ð1=2ÞðcxN1 2 cxN2Þ; Eqs (6.41) and (6.42) combine to give

cx1 5 cxN1 2
1

2
ðcxN1 2 cxN2Þexp πx=ðrt 2 rhÞ

 �
(6.43a)

cx2 5 cxN2 1
1

2
ðcxN1 2 cxN2Þexp 2 πx=ðrt 2 rhÞ

 �
(6.43b)

At the disc, x5 0, Eqs (6.43a) and (6.43b) reduce to Eq. (6.41). It is of particular interest to

note, in Figures 6.9 and 6.10, how closely isolated actuator disc theory compares with experimen-

tally derived results.

Blade row interaction effects
The spacing between consecutive blade rows in axial turbomachines is usually sufficiently small

for mutual flow interactions to occur between the rows. This interference may be calculated by an

extension of the results obtained from isolated actuator disc theory. As an illustration, the simplest

case of two actuator discs situated a distance δ apart from one another is considered. The extension

to the case of a large number of discs is given in Hawthorne and Horlock (1962).

Consider each disc in turn as though it was in isolation. Referring to Figure 6.13, disc A, located

at x5 0, changes the far upstream velocity cxN1 to cxN2 far downstream. Let us suppose for sim-

plicity that the effect of disc B, located at x5 δ, exactly cancels the effect of disc A (i.e., the veloc-

ity far upstream of disc B is cxN2, which changes to cxN1 far downstream). Thus, for disc A in

isolation,

cx 5 cxN1 2
1

2
ðcxN1 2 cxN2Þ exp

2πjxj
H

	 

; x# 0 (6.44)

cx 5 cxN2 1
1

2
ðcxN1 2 cxN2Þ exp

2πjxj
H

	 

; x$ 0 (6.45)

where jxj denotes modulus of x and H5 rt2 rh.

For disc B in isolation,

cx 5 cxN2 2
1

2
ðcxN2 2 cxN1Þ exp

2πjx2 δj
H

	 

; x# δ (6.46)

cx 5 cxN1 1
1

2
ðcxN2 2 cxN1Þ exp

2πjx2 δj
H

	 

; x$ δ (6.47)

Now the combined effect of the two discs is most easily obtained by extracting from the preced-

ing four equations the velocity perturbations appropriate to a given region and adding these to the
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related radial equilibrium velocity for x# 0, and to cxN1 the perturbation velocities from Eqs

(6.44) and (6.46):

cx 5 cxN1 2
1

2
ðcxN1 2 cxN2Þ exp

2πjxj
H

	 

2 exp

2πjx2 δj
H

	 
� �
(6.48)

For the region 0# x# δ,

cx 5 cxN2 1
1

2
ðcxN1 2 cxN2Þ exp

2 πjxj
H

	 

1 exp

2πjx2 δj
H

	 
� �
(6.49)

For the region x$ δ,

cx 5 cxN1 1
1

2
ðcxN1 2 cxN2Þ exp

2 πjxj
H

	 

2 exp

2πjx2 δj
H

	 
� �
(6.50)

Figure 6.13 indicates the variation of axial velocity when the two discs are regarded as isolated

and when they are combined. It can be seen from these equations that as the gap between these two

discs is increased, the perturbations tend to vanish. Thus, in turbomachines where δ/r is fairly small

(e.g., the front stages of aircraft axial compressors or the rear stages of condensing steam turbines),

interference effects are strong and then the simpler radial equilibrium analysis is inadequate.

Application to compressible flow
An elegant analysis to the problem of compressible flow through a multistage turbomachine has

been developed by Lewis (1995) using an innovative application of actuator disc theory, which
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FIGURE 6.13

Interaction between two closely spaced actuator discs.
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models the influence of density gradients on the meridional flow through the turbomachine. The

analysis takes advantage of previous solutions for the flow induced by source discs and the analogy

between compressible flows and incompressible flows with source distributions. The following con-

clusions were drawn by Lewis:

1. Vortex actuator disc theory can be extended to include compressibility effects, which may be

superimposed linearly upon rotational effects. The influence of density gradients upon the

meridional flow is considerable for typical free-vortex axial turbine stages.

2. Plane actuator discs can be easily replaced by smeared actuator discs distributed uniformly

between the leading and trailing edge planes of each blade row.

3. A simple analysis extending cylindrical compressible actuator disc theory to axial turbines with

flared annuli has been completed for application to multistage turbines.

4. The method is ideal for rapid computational analysis.

Figure 6.14 illustrates the predicted axial velocity distribution at the hub and tip radii of a model

turbine stage (Table 6.4 gives the main details) resulting from axially smeared actuator discs to rep-

resent the blade rows. This smearing spreads the density gradient fairly realistically between the

blade leading and trailing edges. The rather large change in axial velocity observed is the result of

the overall decrease in density—the stage chosen was cylindrical. Usual design practice would be

to increase the annular area to maintain a more or less constant value of axial velocity.
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Flow through turbine stage in cylindrical annulus with smeared actuator disc representation of the blade rows

.

(Adapted from Lewis, 1995 with the permission of Elsevier Science Ltd.)
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6.10 Computational through-flow methods
Actuator disc theory gives some understanding of the meridional through-flow in turbomachines of

simple geometry and flow conditions, but its application to design and analysis is now quite lim-

ited. Numerous computational methods have evolved for predicting the meridional flow field for

single-stage and multistage turbomachines with nonaxial annulus lines, compressible flow, and

blade losses. These are known as through-flow methods and are discussed below.

In any through-flow method, the equations of motion to be solved are simplified. First, the flow

is taken to be steady in both the absolute and relative frames of reference. Second, the flow is

assumed to be axisymmetric. Outside of the blade rows, the effects of wakes from the upstream

blade row are “mixed out” so as to give uniform circumferential conditions. Within the blade rows,

the effects of the blades themselves are modeled by passage-averaged body forces and loss coeffi-

cients. Clearly, with these major assumptions, solutions from through-flow methods are only

approximations to the real flow but, if used appropriately, they can accurately reproduce the meridi-

onal variations.

Three techniques for solving through-flow problems are

1. Stream function methods, in which a stream function is employed as the primary variable. This

approach has the advantage of simplifying the numerics by satisfying the continuity equation

via the boundary conditions of the stream function at the hub and casing. However, it fails

when the flow becomes transonic.

2. Matrix through-flow or finite difference solutions (Marsh, 1968), in which computations of the

radial equilibrium flow field are made at a number of locations within each blade row as well

as at the leading and trailing edges and outside of the blade row. An illustration of a typical

computing mesh for a single blade row taken from Macchi (1985) is shown in Figure 6.15.

3. Time-marching solutions of the streamline curvature equation (Denton, 1985), in which the

computation starts from some assumed flow field and the governing equations are marched

forward with time. The method requires a large number of iterations to converge but with

modern computers, a solution can be obtained within a matter of seconds.

As stated in Denton and Dawes (1999), the time-marching streamline curvature method remains

the dominant numerical scheme because of its simplicity and ability to cope with mixed subsonic

Table 6.4 Specification of Model Turbine Stage

Hub/tip ratio, rh/rt 0.6

Flow coefficient at r.m.s. radius 0.5

Work coefficient at r.m.s. radius 1.0

Exit mach number M2h at root radius 1.0

Total-to-total efficiency 92%

Zero swirl flow upstream of stator

Free-vortex flow downstream of stator

Perfect gas (air) assumed
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and supersonic flows. However, all three approaches essentially solve the same equations of

momentum, energy, continuity, and state, for axisymmetric flow through a turbomachine with vary-

ing hub and tip radii.

A form of the streamline curvature equation can be derived following the approach presented in

Section 6.2. Consider the axisymmetric stream surface and components of acceleration shown in

Figure 6.16. In this case, the radial velocity component cannot be neglected and the stagnation

enthalpy is written as

h0 5 h1
1

2
ðc2m 1 c2θÞ; where c2m 5 c2x 1 c2r (6.51a)

Note that in this section, cm represents the meridional velocity, which is a variable, and not the

mean velocity as it was defined earlier in this chapter. Applying the momentum equation in the

radial direction (Figure 6.16),

2
1

ρ
@p

@r
52

c2θ
r
1

c2m
Rc

cos φ1 cm
@cm
@m

sin φ (6.51b)

Using the second law of thermodynamics,

@h

@r
5 T

@s

@r
1

1

ρ
@p

@r
(6.51c)

Combining Eqs (6.51a), (6.51b), and (6.51c) gives

@h0
@r

2 T
@s

@r
5 cm

@cm
@r

1 cθ
@cθ
@r

1
c2θ
r
2

c2m
Rc

cos φ2 cm
@cm
@m

sin φ (6.52a)
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Typical computational mesh for a single blade row.

(Adapted from Macchi, 1985)
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This equation can be rewritten as

@h0
@r

2 T
@s

@r
5 cm

@cm
@r

1
cθ

r

@ðrcθÞ
@r

2
c2m
Rc

cos φ2 cm
@cm
@m

sin φ: (6.52b)

The above streamline curvature equation reduces to simple radial equilibrium, Eq. (6.6a), when

the radial velocity is zero, since φ-0; Rc-N; cm-cx. The last term on the right-hand side of

Eq. (6.52b) represents the radial component of acceleration along the stream surface. The term

before this represents the radial component of centripetal acceleration due to meridional curvature.

Equation (6.52b) can be solved numerically to find the variations of cθ and cm for given stagnation

enthalpy and entropy variations. The solution is combined with the continuity equation to give the

velocity levels that match the total mass flow using

_m5

ðt
h

ρcmdAn (6.53)

Along the streamlines, the tangential velocity, cθ, is found from specified flow angles within

blade rows and conservation of angular momentum outside of blade rows, rcθ 5 constant. The

Euler equation can be used to find the variation of stagnation enthalpy within blade rows,

h0 2 rΩcθ 5 constant. The entropy variation along streamlines is zero outside of blade rows and

specified via loss coefficients within the blade rows.

In practice, the solution procedure is further complicated as the directions of the streamlines are

not known at the outset and the method must iterate further to find the pitch angle φ at each loca-

tion, such that the streamline curvature equation balances. In general, initial streamline paths are

assumed and these are adjusted as the solution progresses. Figure 6.17 shows an example solution

for a single-stage fan rig using a code based on the method by Denton (1978).
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Acceleration components for a point on an axisymmetric stream surface.
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Through-flow methods can be applied in design or analysis mode. In analysis mode, the blade

row flow angles and loss coefficients are specified and the method determines the velocity field

and the spanwise variation of work from the rotor blades. In design mode, the main difference is

that the work distribution will be specified and the flow angles and velocity field are determined.

6.11 3D flow features
Radial equilibrium and through-flow methods determine the meridional variations in the velocity

field, but they assume that the turbomachinery flow field is axisymmetric. Cascade analysis and

blade-to-blade computational methods consider the flow variations across the blade passages, but

they neglect spanwise variations and radial flows (see Chapter 3). These two views of a turboma-

chine are very useful and both are essential in the design process, but in reality the flow field in all

axial turbomachinery, to some degree, varies in the axial, radial, and tangential directions. The

flow features that lead to fully 3D variations are discussed below.

Secondary flow
When a fluid particle possessing rotation is turned (e.g., by a cascade), its axis of rotation is

deflected in a direction perpendicular to the direction of turning. The rotation of the fluid particles

is known as vorticity, which is a vector quantity with a direction along the axis of rotation. The

result of deflecting the axis of rotation is a component of vorticity in the direction of the flow

streamlines, and whenever this occurs there are secondary flows.

Consider the flow at inlet to the guide vanes of a compressor to be completely axial and with a

velocity profile as illustrated in Figure 6.18. This velocity profile is nonuniform as a result of fric-

tion between the fluid and the wall; the vorticity of this boundary layer is normal to the approach

velocity c1 and of magnitude

ω1 5
@c1
@z

(6.54)

where z is distance from the wall.

The direction of ω1 follows from the right-hand screw rule and it will be observed that ω1 is in

opposite directions on the two annulus walls. This vector is turned by the cascade, thereby
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FIGURE 6.17

Solution for a fan test rig from a time-marching through-flow computation.
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generating secondary vorticity parallel to the outlet stream direction. If the deflection angle ε is not

large, the magnitude of the secondary vorticity ωs is, approximately,

ωs 52 2ε
@c1
@z

(6.55)

A swirling motion of the cascade exit flow is associated with the vorticity ωs, which is in oppo-

site directions for the two wall boundary layers. This generates simultaneous velocity variations in

the spanwise and tangential directions that cannot be captured within two-dimensional models of

the flow field (see Dixon, 1974).

The secondary flow structure in a blade passage is further complicated by the flow around the

leading edge, as illustrated in Figure 6.19. The vorticity within the annulus wall boundary layer is

split into two vortices as the flow stagnates. One vortex enters the blade passage near the pressure

surface and the other vortex enters beside the suction surface. The vortex that starts beside the pres-

sure surface is rapidly swept towards the suction surface by the cross-passage pressure gradient and

forms what is known as the passage vortex. The other vortex, known as the counter vortex, sticks to

the suction surface hub. In addition to these vortices, boundary layer fluid on the endwalls is swept

from the pressure surface towards the suction surface. The result is a collection of highly rotational

fluid on the suction surface near the hub and casing endwalls. This fluid leads to increased loss

through viscous shear and mixing and forms a 3D wake structure downstream of the blades.

As well as increasing the loss, secondary flow affects the variation of exit flow angle from a

blade row. The flow is overturned close to the endwalls, where the boundary layer fluid has been

strongly turned by the cross-passage pressure gradients, and underturned some distance away from

the endwalls, where the influence of the passage vortex is stronger. Hawthorne (1955) developed

some of the first models of secondary flow in turbomachinery and showed how the exit flow angle

distribution could be calculated using theoretical analysis. Figure 6.20 shows a comparison by

Horlock (1963) between corrected exit flow angles calculated using such an analysis and
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FIGURE 6.18

Secondary vorticity produced by a row of guide vanes.
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Secondary flow structure within a blade passage.

(Adapted from Langston, 1980)
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Exit air angle from inlet guide vanes.

(Adapted from Horlock, 1963)
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experimental results. The regions of underturning and overturning of the flow are predicted,

although the magnitude of the variation is not the same as measured.

Note that secondary flow phenomena occur in all axial turbomachines. In turbines they can be

stronger because of the large amount of flow turning and the high cross-passage pressure gradients

that exist. However, in compressors, secondary flow effects are often more apparent and can have

greater consequences because of the thick boundary layers on the annulus walls and the highly

adverse pressure gradients in the streamwise direction.

Figure 6.21 shows stagnation pressure contours measured downstream of a stator row in a com-

pressor test rig. This shows the increased regions of loss near the endwalls beside the suction sur-

faces of the stator blades. In the case shown the aspect ratio of the blading is high and the majority

of the wakes are still quite two-dimensional. In compressors, the low momentum fluid from the

endwall boundary layers often separates on the suction surface due to the high level of diffusion

there. This is known as a corner separation, which is also visible in Figure 6.21.

Figure 6.22 shows measured contours of normalized total pressure loss coefficient downstream

of a turbine cascade trailing edge, from Pullan and Harvey (2008). Just downstream of the trailing

edge, Figure 6.22(a), the wake is radial with a clear region of high loss around z/b5 0.2. This is

the passage vortex, which has carried inlet endwall boundary layer fluid from upstream of the lead-

ing edge. This vortex overturns the flow below it and underturns the flow above it. Further down-

stream, Figure 6.22(b), this vortex combined with the other secondary flows present have distorted

and twisted the wake.

Leakage flows
Turbomachinery blades require clearance gaps between the rotating and stationary components and

these lead to leakage paths. Figure 6.23 illustrates the flow field over the tip of a rotor blade,

S
uc

tio
n 

su
rf

ac
e

P
re

ss
ur

e 
su

rf
ac

e
Corner separation

FIGURE 6.21

Stagnation pressure contours measured downstream of a rig compressor stage.
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although the flow through a hub clearance gap of a stator blade cantilevered from the casing is sim-

ilar. The leakage flow is driven by the pressure difference between the pressure surface and suction

surface. The flow usually separates from the pressure side corner of the blade tip, which leads to a

contraction of the flow area available. If the blade thickness is small compared to the tip gap, the

leakage flow may not reattach (as is the case in many compressors). However, in thicker blades a

separation bubble forms. The leakage flow then emerges as a high velocity jet at the suction surface

tip, almost perpendicular to the free stream flow. The shear between the leakage jet and the free
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FIGURE 6.22

Stagnation pressure contours measured downstream of a turbine cascade: (a) just downstream of the trailing

edge and (b) a quarter-chord downstream of the trailing edge.

(Adapted from Pullan & Harvey, 2008)
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stream flow generates a tip leakage vortex, with a rotation axis aligned with the streamwise direc-

tion. Losses are generated through viscous shear in the clearance gap as well as shear and mixing

of the leakage jet with the free stream. Tip leakage losses typically account for around one-third of

the total losses in a turbomachine (Denton, 1993). In addition, the leakage flow leads to blockage

reducing the total mass flow and work transfer. In compressors, increased leakage significantly

reduces the stability margin.

Note that some turbomachinery, particularly axial turbines, use a shroud. This is a band that

covers and connects the blade tips (an example is shown in Figure 4.22). This prevents the tip leak-

age flow described above. However, a leakage path still exists above the shroud from the high-

pressure end to the low-pressure end (upstream to downstream in a turbine). Shrouded blades are

also significantly heavier with greater centrifugal stresses.

6.12 3D design
Until the 1980s, almost all turbomachinery design could be described as two-dimensional.

Following the preliminary design using mean-line analysis, through-flow methods were used to set

the spanwise variations and suitable blade sections were specified using cascade test results and

blade-to-blade methods. Many turbomachines are still designed in this way without significant con-

sideration of 3D effects. However, the development of 3D computational analysis (see following

section) and the improved understanding of 3D flow have enabled more widespread application of

3D design effects. In general, these effects are used to control spanwise variations in the flow field

and to reduce secondary flow features.

A detailed explanation of 3D design effects is given in Denton and Xu (1999). In this section, a

brief outline is given of how different 3D design changes impact on the flow field and how they

can be used to improve a design.

Sweep
Sweep is where the leading edge (or trailing edge) of a blade row is not perpendicular to the local

meridional velocity, as illustrated in Figure 6.24(a). One effect of sweep is to reduce the effective

velocity perpendicular to the blade surfaces and thus reduce the local blade loading and surface

Mach numbers. This can be thought of in a similar way to the use of swept wings on aircraft to

reduce transonic losses from shock waves. The normal velocity is reduced from cm to cm cos λ,
where λ is the leading edge sweep angle. For transonic compressor rotors, sweep can be applied to

control the shock strength and position. However, this is a complex problem since a shock of a par-

ticular strength is required to provide the rotor pressure rise (see Chapter 5) and the position of the

shock relative to the blade leading edge influences stability. As found by Wadia, Szucs, and Crall

(1997), swept back transonic compressor blades have reduced stability margin because the shock is

closer to the leading edge, whereas swept forward blades typically have better stability and they

can still be designed to be highly efficient. Modern fan blades for large jet engines typically have a

combination of both rearward sweep and forward sweep above mid span.

The effects of sweep near to the endwalls can be determined by considering the fact that pres-

sure gradients perpendicular to the hub and casing must be small (Figure 6.24a). This is true

250 CHAPTER 6 Three-Dimensional Flows in Axial Turbomachines



because there can be no fluid acceleration perpendicular to the endwalls. Given the normal pressure

gradient is small, if the blade sweep is such that moving perpendicularly away from the endwall is

moving towards a region with low loading (or where there is no blade) then at the endwall the load-

ing must also be low. Conversely, if moving perpendicularly from the endwall is moving rearward

in the blade to higher loading, the endwall loading must be high. Blades that are swept forward

towards the hub and casing will, therefore, have reduced loading at the leading edge, which can be

beneficial in reducing losses.

Lean
Lean is where a blade row is not stacked in the radial direction, as illustrated in Figure 6.24(b). It

is more applicable to stators than rotors, since the centrifugal stresses in a rotor will usually demand

radial stacking. The effect of lean is to introduce a radial component of the blade force, which acts

in addition to the radial pressure gradient and hence modifies the spanwise velocity field. For

example, if a stator blade row is leant with the pressure surface towards the hub, the static pressure

at the hub will be increased and the meridional velocity will be decreased. This effect has been

applied with great success in high aspect ratio steam turbines (Grant and Borthwick, 1987). In

these turbines, the hub reaction is very low and decreasing the hub velocity with lean increases this

reaction and can significantly improve efficiency.

Endwall profiling
Shaping the hub and casing annulus lines of a turbomachine can be applied to control blade velocity dis-

tributions by changing the local meridional curvature and by varying the annulus area. This is, strictly

speaking, a two-dimensional effect as it could be predicted by a through-flow method, and the flow field

can still be described with axisymmetric stream surfaces. However, endwall profiling in the meridional

plane will also affect 3D flow features and it can be applied to reduce secondary flow effects.

It is also possible to use nonaxisymmetric endwall profiling to reduce secondary flow effects.

Varying the endwall shape in the tangential direction modifies the endwall pressure distribution,
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The application of 3D design: (a) sweep and (b) lean.
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and this can be used to reduce secondary flows or to limit leakage flows between stationary and

moving endwalls (Rose, 1994).

Leakage paths, seals, and gaps
In recent years, more attention has been paid to the complete real geometry of turbomachinery,

which includes steps and bumps, fillets, seals and gaps. These geometrical imperfections can have

significant effects on efficiency, particularly where they influence secondary flows, leakage losses,

or flow separations. Many modern 3D computational methods can now include these geometrical

features and through examining the predicted flow field, fairly modest changes to the location and

shape of the detailed geometry have been proposed that are shown to reduce losses. This is an

active field of research that is expected to become of increasing importance now that most other

sources of loss in turbomachinery designs have been minimized.

6.13 The application of 3D computational fluid dynamics
Three-dimensional computational fluid dynamics (CFD) started to be developed in the 1970s and

early 1980s. The first methods were inviscid and ran on very coarse meshes of only a few thousand

points per blade passage. These methods were generally based on the Euler blade-to-blade

approach, described in Chapter 3, extended to three dimensions. Viscous 3D CFD became possible

in the 1980s due to the advances made in computing. Much larger meshes, of the order of 100,000

points, are required to resolve viscous flow features like boundary layers close to the blade sur-

faces. More powerful computers enabled the full equations of motion, with viscous terms, to be

solved for such meshes. 3D CFD is now routinely applied to the analysis and design of turboma-

chinery, and solutions with mesh sizes of around 1 million points can be computed in less than a

few hours on a modern workstation. Figure 6.25 shows an example of a viscous CFD mesh for a

low-speed fan with 1 million points in the rotor mesh and 0.64 million in the stator. Note how the

mesh points are clustered together close to the blade and endwall surfaces.

Most methods applied to turbomachinery use time-marching algorithms, where the solution iter-

ates towards convergence. These methods require a turbulence model to “close” the equations of

motion and this introduces an element of uncertainty into the accuracy of a prediction, even when

an extremely fine mesh is used. In general, flow features that are not particularly sensitive to turbu-

lence are still well predicted, whereas some viscous and 3D flow features are difficult to reproduce

accurately (Denton and Dawes, 1999). A modern 3D CFD method, if applied carefully, should reli-

ably predict the blade surface pressure distribution, the primary flow field, transonic effects, any

effects of lean and sweep, and any leakage flows. However, secondary flows and surface boundary

layers, which depend on the parameters of the inlet boundary layers and on the turbulence model,

may be inaccurate. For example, 3D CFD has difficulty predicting the extent of corner separations

in compressors and often some empirical calibration is required. Figure 6.26 shows the predicted

flow downstream of the fan stage illustrated in Figure 6.25. Results are shown for the stator with

no hub gap, Figure 6.26(a), and for a small stator hub gap of 0.2% span, Figure 6.26(b). The com-

puted results in Figure 6.26(a) can be compared directly with the measured results given earlier in

Figure 6.21. Although the predicted flow field includes comparable features, there are significant
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differences: the predicted corner separation is larger, the predicted wake has higher loss, and the

flow structure close to the casing is different. Figure 6.26(b) shows that a small amount of leakage

flow is potentially beneficial in reducing the size of the corner separation.

A comprehensive presentation of the limitations of CFD is given in Denton (2010) and phenom-

ena that are shown to be particularly difficult to predict include boundary layer transition, viscous

shear and mixing, trailing edge flows, and compressor stall. Despite these issues, CFD remains an
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FIGURE 6.25

3D CFD mesh for a test rig fan stage.
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FIGURE 6.26

Computed stagnation pressure contours downstream of the fan stage shown in Figure 6.25: (a) zero stator

hub gap and (b) stator hub gap of 0.2% span.
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invaluable tool for turbomachinery design and analysis, provided it is applied carefully with a full

understanding of its capabilities.

Single-passage steady computations
Many single-passage computations are still performed for turbomachinery design and analysis, and

before the introduction of multirow computations, CFD could only be applied to single blade rows

in isolation. For such computations, it is essential to ensure that the boundary conditions applied

are accurate. These can be extracted from a through-flow computation of the whole machine, and

this is the normal approach for design work, or alternatively, experimental measurements of the

inlet and exit flow field are applied as boundary conditions.

Figure 6.27 shows an example of predicted performance results from single-passage steady

CFD of a transonic fan rotor, from Jerez-Fidalgo, Hall, and Colin (2012). The agreement between

CFD and experimental data shown here is better than average. There is a close match in the shape

of all the characteristic curves and the absolute levels of pressure ratio and choking mass flow are

accurately reproduced. However, the stall point is not predicted accurately, and should not be

expected to be, since stall is inherently unsteady and involves the full-annulus flow field. Also, at

part speeds, the predicted efficiency values are noticeably lower than the measured values.

Multiple blade row steady computations
In general, the flow around a rotor blade is steady in the relative frame and the flow around a

stator blade is steady in the stationary frame. However, wakes and pressure perturbations gener-

ated by a rotor will be perceived by an adjacent downstream stator as unsteady fluctuations.

FIGURE 6.27

Rotor alone characteristic map for a transonic fan: single blade row CFD compared with test results.

(Adapted from Jerez-Fidalgo, et al., 2012)
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Unsteady interactions between the components are, therefore, always present, but rather than

compute the complete time-accurate unsteady flow field, which is computationally very expen-

sive, there are some techniques that enable the time-averaged unsteady flow to be predicted for

multistage machines using just steady computations.

The most straightforward and common approach is to simply average the flow field in the cir-

cumferential direction at the exit of each blade row. The flow conditions will then be steady in

both frames of reference and they can then be exchanged as a boundary condition to the down-

stream blade row. The averaging process is equivalent to mixing the flow and, therefore, the inter-

faces between the rotating and stationary blade rows are called mixing planes (as shown in

Figure 6.25). The problem with mixing planes is that the mixing, or averaging, introduces extra

loss at the interfaces and, in general, this will be different from the loss that would have occurred if

the circumferentially nonuniform flow had been allowed to interact and mix unsteadily in the

downstream blade passage.

Another approach developed by Adamczyk (1985) was to use deterministic stresses that

describe all the effects of unsteadiness linked to the machine shaft rotation rate. This method allows

steady computations to be used, but extra terms are included in the momentum equations that cap-

ture the gradual mixing of the flow from upstream blade rows. This has been shown to give

improved results relative to mixing planes, but it requires a more complex computational method,

and either a model of the deterministic stresses must be provided or larger, overlapping grids are

required to calculate how these stresses vary downstream of each blade row.

Unsteady computations
Unsteady 3D computations are currently too expensive and time-consuming to perform routinely

for turbomachinery design. However, they are necessary for problems where unsteady phenomena

are important and they are widely used in research and development. For example, unsteady CFD

can be applied to investigating blade row interactions, compressor stall and surge, noise generation,

nonuniform installation effects, and unsteady secondary flow features. These fields are active areas

of research and well beyond the scope of this book, but it is worth stating that advanced unsteady

CFD methods combined with huge computational resources are enabling continuous improvements

in our understanding of complex turbomachinery aerodynamic problems.

Current and future application of CFD to turbomachinery
Over the last 20 years, turbomachinery design has becoming increasingly more dependent on 3D

CFD, and this trend is set to continue. Simple methods of determining performance with empirical

input, such as described in this book, are still needed for the mean radius design and for through-flow

calculations. It is often emphasized by experienced designers that, if the one-dimensional preliminary

design is incorrect, e.g., the blade diffusion factors and stage loading, then no amount of CFD will

produce a good design! However, CFD does provide the ability to exploit the 3D nature of the

flow to suppress deleterious features, such as corner stall in compressors or strong secondary flows in

turbines. It is also a quick means to provide better understanding of the flow field for a given design.

As indicated by Horlock and Denton (2003), loss predictions from CFD are still not accurate

and interpretation of the computations requires considerable skill and experience. Denton (2010)
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shows there are still a large number of limitations in CFD that users need to be aware of and these

are areas requiring further research and development.

The outlook for CFD is that its capabilities will continue to develop and that it will be used

more routinely to tackle more complex turbomachinery design and analysis problems. This trend

has been apparent for some time and, at the turn of the century, Adamczyk (2000) outlined the shift

towards multistage and unsteady flow computations with more detailed geometrical features and

larger computational meshes. The speed and availability of cluster computing has enabled larger

computations to be done in shorter and shorter timescales. Figure 6.28 shows the computational

domain for the calculation of a high-speed fan stage operating within a test facility with a nonuni-

form inlet flow field (Jerez-Fidalgo et al., 2012). The mesh contains over 40 million points and the

CFD used is fully viscous and unsteady. Computations of this type, in just the last few years, have

gone from taking months to run, to just weeks and now, in some cases, days. In the future, compu-

tations that were previously barely feasible for research will become routine and possible within

design timescales. The growing challenge will be to process the large quantities of data produced

by such computations and to interpret the results correctly. Also, with greater computational capa-

bilities, there are inevitably going to be fewer rig tests, which tend to be very expensive, and, there-

fore, fewer opportunities for experimental validation. The future CFD user should maintain a

healthy amount of skepticism in their results!

PROBLEMS
1. Derive the radial equilibrium equation for an incompressible fluid flowing with axisymmetric

swirl through an annular duct. Air leaves the inlet guide vanes of an axial-flow compressor in

radial equilibrium and with a free-vortex tangenital velocity distribution. The absolute static

FIGURE 6.28

Computational domain for full annulus, unsteady CFD of a transonic fan operating with nonuniform inlet

stagnation pressure.

(Adapted from Jerez-Fidalgo et al., 2012)
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pressure and static temperature at the hub, radius 0.3 m, are 94.5 kPa and 293 K, respectively.

At the casing, radius 0.4 m, the absolute static pressure is 96.5 kPa. Calculate the flow angles

at exit from the vanes at the hub and casing when the inlet absolute stagnation pressure is

101.3 kPa. Assume the fluid to be inviscid and incompressible. Take R5 0.287 kJ/(kg �C)
for air.

2. A gas turbine stage has an initial absolute pressure of 350 kPa and a temperature of 565�C
with negligible initial velocity. At the mean radius, 0.36 m, conditions are as follows:

Nozzle exit flow angle 68�

Nozzle exit absolute pressure 207 kPa

Stage reaction 0.2

Determine the flow coefficient and stage loading factor at the mean radius and the

reaction at the hub, radius 0.31 m, at the design speed of 8000 rev/min, given that stage is to

have a free-vortex swirl at this speed. You may assume that losses are absent. Comment upon

the results you obtain. Take Cp5 1.148 kJ/(kg �C) and γ5 1.33.

3. Gas enters the nozzles of an axial-flow turbine stage with uniform total pressure at a uniform

velocity c1 in the axial direction and leaves the nozzles at a constant flow angle α2 to the

axial direction. The absolute flow leaving the rotor c3 is completely axial at all radii. Using

radial equilibrium theory and assuming no losses in total pressure show that

ðc23 2 c21Þ=25Umcθm2 12
r

rm

� �cos2 α2

" #

where Um is the mean blade speed and cθm2 is the tangential velocity component at nozzle

exit at the mean radius r5 rm. (Note: The approximate c35 c1 at r5 rm is used to derive this

expression.)

4. Gas leaves an untwisted turbine nozzle at an angle α to the axial direction and in radial

equilibrium. Show that the variation in axial velocity from root to tip, assuming total pressure

is constant, is given by

cxr
sin2 α 5 constant

Determine the axial velocity at a radius of 0.6 m when the axial velocity is 100 m/s at a

radius of 0.3 m. The outlet angle α is 45�.

5. The flow at the entrance and exit of an axial-flow compressor rotor is in radial equilibrium.

The distributions of the tangential components of absolute velocity with radius are

cθ1 5 ar2 b=r; before the rotor

cθ2 5 ar1 b=r; after the rotor

where a and b are constants. What is the variation of work done with radius? Deduce

expressions for the axial velocity distributions before and after the rotor, assuming
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incompressible flow theory and that the radial gradient of stagnation pressure is zero. At the

mean radius, r5 0.3 m, the stage loading coefficient, ψ5ΔW=U2
t , is 0.3, the reaction ratio is

0.5, and the mean axial velocity is 150 m/s. The rotor speed is 7640 rev/min. Determine the

rotor flow inlet and outlet angles at a radius of 0.24 m given that the hub�tip ratio is 0.5.

Assume that at the mean radius the axial velocity remained unchanged (cx15 cx2 at

r5 0.3 m). (Note: ΔW is the specific work and Ut the blade tip speed.)

6. An axial-flow turbine stage is to be designed for free-vortex conditions at exit from the

nozzle row and for zero swirl at exit from the rotor. The gas entering the stage has a

stagnation temperature of 1000 K, the mass flow rate is 32 kg/s, the root and tip diameters are

0.56 m and 0.76 m, respectively, and the rotor speed is 8000 rev/min. At the rotor tip, the

stage reaction is 50% and the axial velocity is constant at 183 m/s. The velocity of the gas

entering the stage is equal to that leaving. Determine

a. the maximum velocity leaving the nozzles;

b. the maximum absolute Mach number in the stage;

c. the root section reaction;

d. the power output of the stage;

e. the stagnation and static temperatures at stage exit.

Take R5 0.287 kJ/(kg K) and Cp5 1.147 kJ/(kg K).

7. The rotor blades of an axial-flow turbine stage are 100 mm long and are designed to receive

gas at an incidence of 3� from a nozzle row. A free-vortex whirl distribution is to be

maintained between nozzle exit and rotor entry. At rotor exit, the absolute velocity is 150 m/s

in the axial direction at all radii. The deviation is 5� for the rotor blades and 0� for the nozzle

blades at all radii. At the hub, radius 200 mm, the conditions are as follows:

Nozzle outlet angle 70�

Rotor blade speed 180 m/s

Gas speed at nozzle exit 450 m/s

Assuming that the axial velocity of the gas is constant across the stage, determine

a. the nozzle outlet angle at the tip;

b. the rotor blade inlet angles at hub and tip;

c. the rotor blade outlet angles at hub and tip;

d. the degree of reaction at root and tip.

Why is it essential to have a positive reaction in a turbine stage?

8. The rotor and stator of an isolated stage in an axial-flow turbomachine are to be represented

by two actuator discs located at axial positions x5 0 and x5 δ, respectively. The hub and tip

diameters are constant and the hub�tip radius ratio rh/rt is 0.5. The rotor disc considered on

its own has an axial velocity of 100 m/s far upstream and 150 m/s downstream at a constant

radius r5 0.75rt. The stator disc in isolation has an axial velocity of 150 m/s far upstream

and 100 m/s far downstream at radius r5 0.75rt. Calculate and plot the axial velocity

variation between 20.5# x/rt# 0.6 at the given radius for each actuator disc in isolation and

for the combined discs when (a) δ5 0.1rt, (b) δ5 0.25rt, and (c) δ5 rt.
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9. a. For the fluid element rotating in radial equilibrium about the axis of a turbomachine

(Figure 6.2) prove the generalized radial equilibrium equation:

dh0

dr
2 T

ds

dr
5 cx

dcx

dr
1

cθ

r

d

dr
ðrcθÞ

b. At entry to an axial-flow hydraulic turbine, the flow passes through a row of inlet guide

vanes giving the water a free-vortex swirl prior to it entering the rotor blade row. The

rotor has a root radius of 0.5 m and a tip radius of 1.2 m and the volume flow of water is

45 m3/s. A pressure probe inserted radially into the flow upstream of the rotor to the mean

radius indicates a flow angle of 26.1� from the axial direction.

Assuming that the stagnation pressure is constant, determine the static pressure difference

between the hub and tip upstream of the rotor as measured on a vertical mercury manometer.

Take the density of water as 1000 kg/m3 and the density of mercury as 13:63 103 kg=m3.

10. A single-stage axial-flow gas turbine stage with a hub/tip ratio of 0.85 is to be designed to

give a free-vortex flow after the rotor row and is required to develop 2.6 MW from a gas

flow of 30 kg/s. The gas admitted is at a stagnation temperature and pressure of 1100 K and

430 kPa (abs) and the relevant gas properties are Cp 5 1:15 kJ=kg and γ5 1:333. At the mean

radius the blade speed is to be 250 m/s, the flow coefficient φ5 0:5, the absolute flow angle

α2 5 67�, and the reaction is 0.5. The static pressure at exit is 1.02 kPa.

Sketch an appropriate velocity diagram for the stage and determine

a. the blade loading coefficient, ψ5ΔW=U2

b. the flow area and the hub and tip radii

c. the absolute tangential velocity components, cθ2 and cθ3, following the expansion through

the nozzle

d. the reaction at the hub and tip.

11. a. An axial-flow fan comprising a stator followed by a rotor is to be made with swirl

distributions specified by

cθ1 5 ar2 b=r downstream of the stator and

cθ2 5 ar1 b=r downsream of the rotor:

Show that:

i. the specific work ΔW at any radius is constant and equal to 2bΩ, where Ω is the

rotational speed, in rad/s;

ii. the work done factor at the mean radius, ψm 5 ðΔh0=U2
mÞ5 ð2b=cxÞ3 ðψm=φmÞ;

iii. the reaction, R5 12 ða=ΩÞ (is this always true?);
iv. at the mean radius, ða=cxÞ5 ðcθ1 1 cθ2Þ=2cxrm 5 ð12RmÞ=φmrm:

b. Assuming incompressible flow, with constant enthalpy and entropy, show that the axial

velocity distributions upstream and downstream of the rotor are given by the expressions:

cx1

Ut

� �2
5A1 2

2a

Ω

� �2
1

2

r

rt

� �2
2

b

ar2
ln

r

rt

� � !
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cx2

Ut

� �2
5A2 2

2a

Ω

� �2
1

2

r

rt

� �2
1

b

ar2t
ln

r

rt

� �" #

where A1 and A2 are constants.

c. For the above fan the hub/tip radius ratio is 0.6, the rotational speed is 4010 rpm, the rotor

diameter is 1.0 m, the mean reaction is 0.5, the flow coefficient upstream of the rotor at the

mean radius φ5 cx1=Ut 5 0:5, and the stagnation temperature rise is 10�C. Determine

i. the value of A1, and values of cx1=Ut in the range, 0:6# 0:05# 1:0 for r=rt and hence find

the volume flow rate using the mid-ordinate method;

ii. a value of A2 by repeated iteration of the velocity profile until the correct value of the

volume flow is achieved.

Hence, plot the final axial velocity profiles for the upstream and downstream flows.

12. a. A solution of the so-called “direct problem” of the flow in an axial-flow turbomachine

can be found using the radial equilibrium equation when the absolute flow angle α is

constant and a radial gradient in stagnation enthalpy ðdh0=drÞ5 ðk=2Þðc2m=rmÞ is present
(where k is a constant).

If the variation of α is specified by a5 2 sin2 α, prove that the velocity variation across

the duct is given by

c

cm

� �2
r

rm

� �a

5 11
k

11 a

r

rm

� �a11

2 1

" #

where cm is the velocity at radius r5 rm.

b. An axial-flow fan with a hub/tip ratio of 0.4, a tip diameter of 1 m is used to compress air

at normal temperature and pressure. The rotational speed of the fan is 500 rad/s. The

radial gradient of stagnation enthalpy from hub to tip is to be estimated from the

following data:

At r=rt 5 0:4, the work coefficient ψh 5 0:6. At r5 rt, the work coefficient ψt 5 0:25.
The entropy is to be assumed constant.

Determine the velocity of the air as a function of radius and plot the results you

obtain for

i. k5 0.6 at α5 30, 45, and 60�.
ii. k521, 0, 1.0 with α5 45�.

Comment on the trends caused by the choice of these variables.

13. a. Inlet guide vanes are to be tested to produce a flow with a tangential velocity distribution

cθ 5 k r, where k and K are arbitrary constants. Show that the axial velocity distribution is

given by

cx 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2k2r2

p

b. Using the continuity equation derive the following solution for the axial velocity:

260 CHAPTER 6 Three-Dimensional Flows in Axial Turbomachines



cx r2t 2 r2h
� �

5
1

3k2
K22k2r2h
� �3=2

2 K22k2r2t
� �3=2h i

c. Several arithmetical methods are available for solving this quite complicated equation,

one of which is to get an approximate solution for the axial velocity at the root mean

square radius: rrms 5 ðð1=2Þðr2h1r2t ÞÞ0:5. Designating this special axial velocity as X, you

should be able to find that

K5X2 1 2ðcθrmsÞ2 5X2 1 c2θtð11 υ2Þ
where 11 ν2 5 2ðrms=rtÞ2. Finally, after some working you should get

cx

X
5 11 11ν222

r

rt

� �2 !
cθt

X

� �2" #0:5

d. For the solid-body inlet guide vane design, the cascade has a hub/tip radius ratio of 0.5,

the tip radius is 0.7 m, the value of X is 50 m/s and k5 25. Determine the flow angles at

the hub and tip and the volume flow rate using the above approximate analysis.

14. An axial-flow compressor has a hub-to-tip radius ratio of 0.5. At the arithmetic mean radius,

rm 5 0:15 m, the following conditions apply:

the total temperature at stage entry, T01 5 580 K;

the shaft rotational speed, N5 20; 000 rpm;

absolute velocity, c5 cm 5 250 m=s;
absolute flow angle, α5α2m 5 30�;
static density, ρ5 ρ2m 5 5:0 kg=m3;

flow incidence angle onto the rotor, β5 βm 5 0�.
the tangential velocity swirl distribution is in radial equilibrium after the stator and varies

according to rc2θ 5A (a constant). The stagnation enthalpy is constant;

the rotor blade inlet angle, β0
1 is 5

� at r5 rh and 50� at r5 rt;

the average specific heat Cp is 1.157 kJ/(kg K) and γ5 1:33.
Calculate the following:

a. The rotor blade incidence angles at the hub, mean, and tip radii.

b. The stagnation pressure difference between the hub and tip ðp0hub 2 p0tipÞ at entry to the

rotor, assuming (for simplicity) that the static density at the mean radius applies to all radii.

15. a. The general solution of the radial equilibrium equation is given as

d

dr
c2 exp 2

ð
sin2 α

dr

r

	 
� �
2 c2m exp 2

ðrm
sin2 α

dr

r

	 

5 2

dh0

dr
2 T

ds

dr

� �
exp 2

ð
sin2 αdr=r

	 


If the variation of α is specified by the formula bðr=rmÞ5 2 sin2 α and the stagnation

enthalpy gradient by

dh0

dr
5

k

2

c2m
rm

show that the velocity varies according to the expression:
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c

cm

� �2
5

k

b
1 12

k

b

� �
exp b 12

r

rm

� �	 


where k is a constant of integration.

b. Using the operational data and sizes given in Problem 12, determine the velocity variation

c=cm of an axial fan using the expression given for α5 30; 45; and 60� and k5 0.6. Plot

your results ðc=cmÞ versus ðr=rtÞ and compare these with the results of problem 6.12.

Repeat this calculation for k5 1.2 and α5 45�. What conclusion do you draw about the

effect made by the increased stagnation enthalpy gradient on the spanwise velocity

distribution?
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CHAPTER

7Centrifugal Pumps, Fans,
and Compressors

And to thy speed add wings
Milton, Paradise Lost

7.1 Introduction
This chapter is concerned with the elementary flow analysis and preliminary design of work-

absorbing turbomachines comprising pumps, low-speed fans, and compressors. The major part of

the analysis is centered on the compressor since the basic action of all these machines is, in most

respects, similar.

Turbomachines employing centrifugal effects for increasing fluid pressure have been in use for

more than a century. The earliest known machines using this method were hydraulic pumps followed

later by ventilating fans and blowers. Cheshire (1945) recorded that a centrifugal compressor was

incorporated in the build of the Whittle turbojet engine. Figure 7.1 is a version of this compressor illus-

trating, for that period, a rather complex flow path of the air. By way of contrast, a modern centrifugal

compressor is shown as one component of a composite compressor of a jet engine in Figure 7.2.

Development of the centrifugal compressor for aircraft propulsion continued into the mid-1950s

but, long before this, it had become clear that axial-flow compressors were better able to meet the

needs of larger engines. Not only were the frontal area (and drag) smaller with engines using axial

compressors but also the efficiency for the same duty was better by as much as 3 or 4%. However,

for very small compressors with low flow rates, the efficiency of axial compressors drops sharply,

blading is small and difficult to make accurately, and the centrifugal compressor is again the king.

Many applications are found in small gas turbines for road vehicles and commercial helicopters as

well as bigger applications, e.g., diesel engine turbochargers, chemical plant processes, factory

workshop air supplies, and large-scale air-conditioning plant.

Centrifugal compressors were the choice for refrigerating plants and compression-type heat

pumps used in district heating schemes described by Hess (1985). These compressors with capaci-

ties ranging from below 1 MW up to nearly 30 MW were preferred because of their good economy,

low maintenance, and absolute reliability.

Palmer and Waterman (1995) gave some details of an advanced two-stage centrifugal compressor

used in a helicopter engine with a pressure ratio of 14, a mass flow rate of 3.3 kg/s, and an overall

total-to-total efficiency of 80%. Both stages employed backswept vanes (approximately 47�) with a

265Fluid Mechanics and Thermodynamics of Turbomachinery. DOI: http://dx.doi.org/10.1016/B978-0-12-415954-9.00007-3

Copyright © 2014 S.L. Dixon and C.A. Hall. Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-415954-9.00007-3


Diffuser
vanes

Rotating
guide
vanes

Impeller

FIGURE 7.1

A version of the centrifugal compressor used by Sir Frank Whittle.

(With Kind Permission of Rolls-Royce plc)

Centrifugal
compressor

FIGURE 7.2

The turbomeca centrifugal compressor fitted to the RTM322 engine.

(With kind permission of Rolls-Royce plc)
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low aerodynamic loading achieved by having a relatively large number of vanes (19 full vanes and

19 splitter vanes). Some basic details are given in this chapter for calculating the performance of

centrifugal compressors with backward swept impeller vanes. Figure 7.3 is a picture of a compres-

sor that features a high-performance centrifugal compressor impeller with 15 backswept main vanes

(and 15 splitter vanes) and its surrounding wedge diffuser is fitted with 24 vanes.

7.2 Some definitions
As well as axial-flow compressors and fans, which we dealt with in Chapter 5, most of the

pressure-increasing turbomachines in use are of the radial-flow type and vary from fans that pro-

duce pressure rises equivalent to a few millimeters of water to pumps producing pressure heads of

many hundreds of meters of water. The term pump refers to machines that increase the pressure of

a flowing liquid. The term fan is used for machines imparting only a small increase in pressure to a

flowing gas. In this case, the pressure rise is usually so small that the gas can be considered as

being incompressible. A compressor gives a substantial rise in pressure to a flowing gas. To make

a distinction, a compressor can be defined as a pressure-increasing machine where the density ratio

across it is 1.05 or greater.

FIGURE 7.3

An axial�radial flow compressor for applications requiring high-pressure ratios and intercooling.

(With Kind Permission of Siemens AG)
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A centrifugal compressor or pump consists essentially of a rotating impeller followed by a dif-

fuser. Figure 7.4 shows diagrammatically the various elements of a centrifugal compressor. Fluid is

drawn in through the inlet casing into the eye of the impeller. The function of the impeller is to

increase the energy level of the fluid by whirling it outward, thereby increasing the angular momen-

tum of the fluid. Both the static pressure and the velocity are increased within the impeller. The

purpose of the diffuser is to convert the kinetic energy of the fluid leaving the impeller into pres-

sure energy. This process can be accomplished by free diffusion in the annular space surrounding

the impeller or, as indicated in Figure 7.4, by incorporating a row of fixed diffuser vanes that

allows the diffuser to be made very much smaller. Outside the diffuser is a scroll or volute whose

function is to collect the flow from the diffuser and deliver it to the outlet pipe. In low-speed com-

pressors and pump applications where simplicity and low cost count for more than efficiency, the

volute follows immediately after the impeller (as shown later in Figures 7.22 and 7.23).

The hub is the curved surface of revolution of the impeller a�b; the shroud is the curved sur-

face c�d forming the outer boundary to the flow of fluid. At entry to the impeller, the relative flow

has a velocity w1 at angle β1 to the axis of rotation. This relative flow is turned into the axial direc-

tion by the inducer section or rotating guide vanes as they are sometimes called. The inducer starts

at the eye and usually finishes in the region where the flow is beginning to turn into the radial

direction. Some compressors of advanced design extend the inducer well into the radial flow

region, apparently to reduce the amount of relative velocity diffusion.

To simplify manufacture and reduce cost, the impellers of many fans and pumps are confined to

a 2D radial section as shown in Figure 7.5. With this arrangement some loss in efficiency can be

Collector scroll

Diffuser vanes

Shroud

Eye

Impeller d b
Hub

c

Inducer
section

Impeller vane
U1

w2

c2

w1
β1

β2

c1= cx1

wθ2

Direction of
rotationa

Cr2

U2

cθ2

FIGURE 7.4

Centrifugal compressor stage and velocity diagrams at impeller entry and exit.
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expected. For the purpose of greatest utility, relations obtained in this chapter are generally in terms

of the 3D compressor configuration as shown in Figure 7.4.

7.3 Thermodynamic analysis of a centrifugal compressor
The flow through a centrifugal compressor stage is a highly complicated 3D motion and a full anal-

ysis presents many problems. Fortunately, we can obtain approximate solutions by simplifying the

flow model, e.g., by adopting the so-called 1D approach that assumes that the fluid conditions are

uniform over certain flow cross sections. These cross sections are conveniently taken immediately

before and after the impeller as well as at inlet and exit of the entire machine. Where inlet vanes

are used to give prerotation to the fluid entering the impeller, the 1D treatment is no longer valid

and an extension of the analysis is then required. (Examples of 3D flows are given in Chapter 6.)

The impeller
The general 3D motion has components of velocity cr, cθ, and cx, respectively, in the radial, tangen-

tial, and axial directions and c2 5 c2r 1 c2θ 1 c2x .

From Eq. (1.20a), rothalpy can be rewritten as

I5 h1
1

2
ðc2r 1 c2θ 1 c2x 2 2UcθÞ

Adding and subtracting ð1=2ÞU2 this becomes

I5 h1
1

2
ðU2 2 2Ucθ 1 c2θÞ1

1

2
ðc2r 1 c2x 2U2Þ5 h1

1

2
ðU2cθÞ2 1

1

2
ðc2x 1 c2r 2U2Þ (7.1)

U1 = Ωr1

Ω

U2 = Ωr2

c2

w2

x2
x1

c1

w1

FIGURE 7.5

Centrifugal pump and velocity triangles.
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From the velocity triangle, Figure 7.4, U2 cθ5wθ, and with w2 5 c2r 1w2
θ 1 c2x , Eq. (7.1)

becomes

I5 h1
1

2
ðw2 2U2Þ

or

I5 h0rel 2
1

2
U2

since h0rel 5 h1 ð1=2Þw2. Across the impeller, I15 I2 so

h2 2 h1 5
1

2
ðU2

2 2U2
1Þ1

1

2
ðw2

1 2w2
2Þ (7.2)

This expression provides the reason why the static enthalpy rise in a centrifugal compressor is

so large compared with a single-stage axial compressor. On the right-hand side of Eq. (7.2), the

second term, ð1=2Þðw2
1 2w2

2Þ, is the contribution from the diffusion of relative velocity, also

obtained for axial compressors. The first term, ð1=2ÞðU2
2 2U2

1 Þ, is the contribution from the centrif-

ugal action caused by the change in radius. The relation between the enthalpies at state points

1 and 2 can be traced in Figure 7.6 with the aid of Eq. (7.2).
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FIGURE 7.6

Mollier diagram for the compressor stage (impeller and diffuser only).
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Referring to Figure 7.4, and in particular the inlet velocity diagram, the absolute flow has no

whirl component or angular momentum and cθ15 0. In centrifugal compressors and pumps, this is

the normal situation where the flow is free to enter axially. For such a flow, the specific work done

on the fluid, from Eq. (1.18b), is written as

ΔW 5U2cθ2 5 h02 2 h01 (7.3)

in the case of compressors, and

ΔW 5U2cθ2 5 gHi (7.4)

in the case of pumps, where Hi (the “ideal” head) is the total head rise across the pump excluding

all internal losses. In high-pressure ratio compressors, it may be necessary to impart prerotation to

the flow entering the impeller as a means of reducing a high relative inlet velocity. The effects of

high relative velocity at the impeller inlet are experienced as Mach number effects in compressors

and cavitation effects in pumps. The usual method of establishing prerotation requires the installa-

tion of a row of inlet guide vanes upstream of the impeller, the location depending upon the type of

inlet. Unless contrary statements are made, it will be assumed for the remainder of this chapter that

there is no prerotation (i.e., cθ15 0).

The diffuser
The diffuser is an important element of a compressor or pump. Its purpose is to reduce the velocity

of the flow leaving the impeller resulting in an increase in pressure. The diffuser can be simply

depicted as a nonrotating channel whose flow area increases in the direction of flow (Figure 7.7).

Although the basic diffuser appears to be a geometrically simple device, it is beset by two seri-

ous fluid mechanical problems. The primary problem is the tendency of the boundary layers to

(a) (b)
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A2AR = =
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r1

N

L
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2

1

FIGURE 7.7

Some diffuser geometries and their notation: (a) 2D and (b) conical.
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separate from the diffuser walls if the local rate of diffusion is too rapid resulting in flow mixing

and large losses in stagnation pressure. On the other hand, if the diffusion rate is too low, the fluid

is exposed to a long length of wall and fluid friction losses again become excessive. Clearly, there

has to be an optimum rate of diffusion between these two extremes for which the losses are mini-

mized. Test results indicate that a diffuser with an included angle of about 7� or 8� gives the opti-

mum recovery for both 2D and conical diffusers. Some further details of the performance of

rectilinear diffusers taking into account the classical work of Sovran and Klomp (1967) is given

later in this chapter.

7.4 Inlet velocity limitations at the compressor eye
The inlet eye is an important and critical region in both centrifugal pumps and compressors and

requires careful consideration at the design stage. If the relative velocity of the inlet flow is too large

in pumps, cavitation (details in next section) may result with consequent blade erosion or even

reduced performance. In compressors, large relative velocities can cause an increase in the impeller

total pressure losses. In high-speed centrifugal compressors Mach number effects may become

important with high relative velocities in the inlet. By suitable sizing of the eye, the maximum rela-

tive velocity, or some related parameter (e.g., maximum relative Mach number), can be minimized

to give the optimum inlet flow conditions. As an illustration, the following analysis shows a simple

optimization procedure for a low-speed compressor based upon incompressible flow theory.

For the inlet geometry shown in Figure 7.4, the absolute eye velocity is assumed to be uniform

and axial. The inlet relative velocity is w1 5 ðc2x11U2Þ1=2, which, of course, is a maximum at the

inducer’s tip. The volume flow rate is

Q5 cx1A1 5πðr2s1 2 r2h1Þðw2
s12Ω2r2s1Þ1=2 (7.5)

It is worth noticing that with both Q and rh1 are fixed:

i. if rs1 is made large then, from continuity, the axial velocity is low but the blade speed is high;

ii. if rs1 is made small, the blade speed is small but the axial velocity is high.

Both extremes produce large relative velocities and there must exist some optimum radius rs1
for which the relative velocity is a minimum.

For maximum volume flow, differentiating Eq. (7.5) with respect to rs1 (keeping ws1 constant)

and equating to zero,

1

π
@Q

@rs1
5 05 2rs1ðw2

s12Ω2r2s1Þ1=2 2 ðr2s1 2 r2h1ÞΩ2r2s1=ðw2
s12Ω2r2s1Þ1=2

After simplifying,

2ðw2
s1 2Ω2r2s1Þ5 ðr2s1 2 r2h1ÞΩ2

therefore,

2c2x1 5 kU2
s1 (7.6)
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where k5 1(rh1/rs1)
2 and Us15Ωrs1. Hence, the optimum inlet velocity coefficient is

φ5 cx1=Us1 5 cot βs1 5 ðk=2Þ1=2 (7.7)

Equation (7.7) specifies the optimum conditions for the inlet velocity triangles in terms of the

hub�tip radius ratio. For typical values of this ratio (i.e., 0.3# rh1/rs1# 0.6), the optimum relative

flow angle at the inducer tip βs1 lies between 56� and 60�.

7.5 Design of a pump inlet
A crucial factor in good pump design is the avoidance of cavitation both on account of obtaining

good efficiency and the possibility of damage to the impeller blades. In Chapter 2, a brief descrip-

tion of cavitation was given and the net positive suction head, NPSH, was defined as

Hs 5 ðp0 2 pvÞ=ρ
where p0 is the absolute stagnation pressure of the liquid and pv is its absolute vapor pressure.

The pump considered in the following analysis is assumed to have the flow geometry shown in

Figure 7.4. As liquid passes through the impeller, there are changes in the pressure levels. In the

vicinity of the impeller blades’ leading edges on the suction surfaces there will be a rapid increase

in velocity and a corresponding decrease in pressure. If the absolute pressure of the liquid drops

below the vapor pressure then cavitation will occur. The fluid then moves into the impeller and the

dynamic action of the blades causes the pressure to increase. This pressure rise causes the cavita-

tion bubbles’ collapse and the resulting implosion of the bubbles and consequent shock waves can

cause pitting of the impeller blades and, eventually, structural failure.

Cavitation can also occur near the impeller exit of radial flow and mixed flow impellers where

the velocities are greatest. The blade tip of the axial-flow pump has been found to be the most vul-

nerable location for cavitation. At inception of cavitation, at some point on the surface of the pump

the pressure is equal to the vapor pressure, i.e.,

p5 pv 5 p1 2 σb

1

2
ρw2

1

� �
where σb is the blade cavitation coefficient corresponding to the cavitation point.

Figure 9.20 is an example of the severe cavitation damage sustained by the runner of a Francis

turbine. Similar damage can occur in pump impellers. Pearsall (1972) found that this coefficient

lies in the range

0:2#σb # 0:4

Thus, just upstream of impeller entry at cavitation inception we have

p1 5 p01 2σb

1

2
ρw2

1

� �
Referring to the velocity triangles (Figure 7.4),

gHs 5 ðp01 2 pvÞ=ρ5
1

2
c2x1 1σb

1

2
w2
1

� �
5

1

2
c2x1ð11σbÞ1

1

2
σbU

2
s1

where Hs is the NPSH measured at the shroud radius, r5 rs1.
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To obtain the optimum inlet design conditions consider the suction specific speed, defined as

Ωss 5ΩQ1=2=ðgHsÞ3=4, where Ω5Us1/rs1 and Q5 cx1A1 5πkr2s1cx1. Thus,

Ω2
ss

πk
5

U2
s1cx1

ð1=2Þc2x1ð11σbÞ1ð1=2ÞσbU
2
s1

� �3=2 5
φ

ð1=2Þð11σbÞφ21ð1=2Þσb

� �3=2 (7.8)

where φ5 cx1/Us1. To obtain the condition of maximum Ωss, Eq. (7.8) is differentiated with respect

to φ and the result set equal to zero. From this procedure, the optimum conditions are found:

φ5
σb

2ð11σbÞ

� �1=2

(7.9a)

gHs 5
3

2
σb

1

2
U2

s1

� �
(7.9b)

Ω2
ss 5

2πkð2=3Þ1:5
σbð11σbÞ0:5

5
3:420k

σbð11σbÞ0:5
(7.9c)

EXAMPLE 7.1

The inlet of a centrifugal pump of the type shown in Figure 7.4 is to be designed for optimum

conditions when the flow rate of water is 25 dm3/s and the impeller rotational speed is

1450 rev/min. The maximum suction specific speed Ωss5 3.0 (rad) and the inlet eye radius ratio

is to be 0.3. Determine

a. the blade cavitation coefficient;

b. the shroud diameter at the eye;

c. the eye axial velocity;

d. the NPSH.

Solution
a. From Eq. (7.9c), squaring both sides,

σ2
bð11σbÞ5 ð3:42kÞ2=Ω4

ss 5 0:1196

with k5 12 (rh1/rs1)
25 1�0.325 0.91. Solving iteratively (e.g., using the Newton�Raphson

approximation), we get σb5 0.3030.

b. As Q5πkr2s1cx1 and cx1 5φrs1Ω; r3s1 5Q=ðπkΩφÞ and, hence, Ω5 1450π/305 151.84 rad/s.

From Eq. (7.9a), φ5 [0.303/(23 1.303)]0.55 0.3410

r3s1 5 0:025=ðπ3 0:913 151:843 0:341Þ5 1:6893 1024

rs1 5 0:05528 m

The required diameter of the eye is 110.6 mm.

c. cx15φφΩrs15 0.3413 151.843 0.055285 2.862 m/s
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d. From Eq. (7.9b), the NPSH is

Hs 5
0:75σbc

2
x1

gφ2
5

0:753 0:3033 2:8622

9:813 0:3412
5 1:632 m

7.6 Design of a centrifugal compressor inlet1

To obtain high efficiencies from high-pressure ratio compressors, it is necessary to limit the relative

Mach number at the eye. In the following paragraphs, two analyses are given, the first for an axial

flow at inlet, α15 0�, and the second when prewhirl vanes are used and α1. 0�. The analyses are

applied to the shroud radius rs1 at the impeller eye.

Case A (α15 0�)
The flow area at the eye is

A1 5πr2s1k

where k5 12 (rh1/rs1)
2. Hence,

A1 5 πkU2
s1=Ω

2 (7.10)

with Us15Ωrs1. Assuming a uniform axial velocity, the continuity equation is, _m5 ρ1A1cx1.

From the inlet velocity diagram (Figure 7.4), cx15ws1 cos βs1 and Us15ws1 sin βs1. Using

(Eq. 7.10),

_mΩ2

ρ1kπ
5w3

s1 sin
2 βs1 cos βs1 (7.11)

For a perfect gas, the static density ρ is

ρ5 ρ0
p

p0

� �
T0

T

� �
With CpT0 5CpT 1 ð1=2Þc2 and Cp5 γR/(γ2 1),

T0

T
5 11

γ2 1

2
M2 5

a20
a2

where the Mach number, M5 c/(γRT)1/25 c/a, a0 and a being the stagnation and local (static)

speeds of sound. For isentropic flow,

p

p0
5

T

T0

� �γ=ðγ21Þ

1This section is rather more difficult and could be left for a later reading.
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Thus,

ρ1
ρ0

5
T1

T0

� �12γ=ðγ21Þ
5 11

γ21

2
M2

1

� �21=ðγ21Þ

where ρ05 p0/(RT0).

The absolute Mach number M1 and the relative Mach number M1,rel are defined as

M1 5 cx1=a1 5M1;rel cos βs1 and ws1 5M1;rela1

Using these two relations together with Eq. (7.11), we obtain

_mΩ2RT01

kπp01
5

M3
1;rela

3
1

½11ð1=2Þðγ21ÞM2
1�1=ðγ21Þ sin

2 βs1 cos βs1

Since a01=a1 5 ½11ð1=2Þðγ21ÞM2
1�1=2 and a015 (γRT01)

1/2 this equation is reworked to give

_mΩ2

γπkp01ðγRT01Þ1=2
5

M3
1;rel sin

2 βs1 cos βs1

½11ð1=2Þðγ21ÞM2
1;rel cos

2 βs1�1=ðγ21Þ13=2
(7.12a)

Although it looks rather cumbersome the preceding equation is really quite useful. For a particu-

lar gas, by specifying values of γ, R, p01, and T01, we obtain _mΩ2=k as a function of M1,rel and βs1.

Choosing a particular value of M1,rel as a limit, an optimum value of βs1 for maximum mass flow

can then be found.

Taking air as an example and assuming γ5 1.4, Eq. (7.12a) becomes

f ðM1;rel; βs1Þ5 _mΩ2=ð1:4πkp01a01Þ5
M3

1;rel sin
2 βs1 cos βs1

ð11ð1=5ÞM2
1;rel cos

2 βs1Þ4
(7.13a)

The right-hand side of Eq. (7.13a) is plotted in Figure 7.8 as a function of βs1 for M1,rel5 0.8

and 0.9. It has been shown that these curves are a maximum when

cos2 βs1 5A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 2 1=M2

1;rel

q
where A5 0:71 1:5=M2

1;rel:

Case B (α1. 0�)
The effect of prewhirl on the mass flow function can be determined by a similar analysis. From the

velocity triangles in Figure 7.4,

c1 5 cx=cos α1 5w1 cos β1=cos α1

_m5 ρAcr 5 2πrbρcr

Also, U15w1 sin β11 c1 sin α15w1 cos β1 (tan β11 tan α1),

_m5 ρ1A1cx1
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It is better to refer to the shroud radius rs1 from this point on. Following the previous procedure,

we get

_m5
πk
Ω2

ρ1U
2
s1ws1 cos βs1 5

πkρ1
Ω2

� �
w3
1 cos

3 βs1ðtan βs11tan αs1Þ2

Using the relations developed earlier for T01/T1, p01/p1, and ρ01/ρ1, we obtain

f ðM1;rel;βs1Þ5
_mΩ2

πkρ01a
3
01

5
M3

1;rel cos
3 βs1ðtan βs11tan αs1Þ2

ð11ðγ21=2ÞM2
1;rel cos

2 βs1=cos2 αs1Þð1=γ21Þ1ð3=2Þ (7.12b)

Substituting γ5 1.4 for air into Eq. (7.12b), we get

f ðM1;relÞ5 Ω2 _m

πkρ01α3
01

5
M3

1;rel cos
2 βs1ðtan βs11tan αs1Þ2

ð11ð1=5ÞM2
1;rel cos

2 βs1=cos2 αs1Þ4
(7.13b)

The right-hand side of Eq. (7.13b) is plotted in Figure 7.8 with α15 30� and M1,rel5 0.8 and

0.9, showing that the peak values of _mΩ2=k are significantly increased but arise at much lower

values of βs1.
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Variation of mass flow function f(M1,rel) as a function of βs1 for the inducer of a centrifugal compressor: Case

A, no guide vanes, α15 0; Case B, with guide vanes, α1. 0.
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EXAMPLE 7.2

The inlet of a centrifugal compressor is fitted with free-vortex guide vanes to provide a positive

prewhirl of 30� at the shroud. The inlet hub�shroud radius ratio is 0.4 and a requirement of the

design is that the relative inlet Mach number, M1,rel, does not exceed 0.9. The air mass flow is

1 kg/s, the stagnation pressure and temperature are 101.3 kPa and 288 K. For air, take R5 287 J/

(kg K) and γ5 1.4.

Assuming optimum conditions at the shroud, determine

a. the rotational speed of the impeller;

b. the inlet static density downstream of the guide vanes at the shroud and the axial velocity;

c. the inducer tip diameter and velocity.

Solution
a. From Figure 7.9, the peak value of f(M1,rel)5 0.4307 at a relative flow angle β15 49.4�. The

constants needed are a01
ffiffiffiffiffiffiffiffiffiffiffiffi
γRT01

p
5 340:2 m=s; ρ01 5 p01=RT01 5 1:2255 kg=m3; and

k5 1�0.425 0.84. From Eq. (7.13b), we find Ω2 5πfkρ01a
3
01 5 5:48433 107: Hence,

Ω5 7405:6 rad=s and N5 70; 718 rev=min

b.

ρ1 5
ρ01

½11ð1=5ÞðM1;rel cos β1Þ2�2:5
5

1:2255

1:069732:5
5 0:98464 kg=m3

The axial velocity is found from

ðw1 cos β1Þ3 5 c3x 5
Ω2 _m

πkρ1ðtan β11tan α1Þ2
5

5:48433 107

π3 0:843 0:984643 3:0418
5 6:93883 106

therefore,

cx 5 190:73 m=s

c.

A1 5
_m

ρ1cx
5πkr2s1

therefore,

r2s1 5
_m

πρ1cxk
5

1

π3 0:984643 190:733 0:84
5 2:01783 1023

rs1 5 0:04492 m and ds1 5 8:984 cm

U5Ωrs1 5 7405:63 0:044925 332:7 m=s
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Some remarks on the use of prewhirl vanes at entry to the impeller
Introducing positive prewhirl (i.e., in the direction of impeller rotation) can give a significant reduc-

tion of w1 and the inlet Mach number M1,rel but, as can be seen from the Euler pump equation,

Eq. (1.18b), it reduces the specific work done on the gas. Thus, it is necessary to increase the blade

tip speed to maintain the same level of impeller pressure ratio as was obtained without prewhirl.

Prewhirl is obtained by fitting guide vanes upstream of the impeller. One arrangement for doing

this is shown in Figure 7.10(a). The velocity triangles, Figure 7.10(b) and (c), suggest how the

guide vanes reduce the relative inlet velocity. Guide vanes are designed to produce either a free

vortex or some form of forced-vortex velocity distribution. In Chapter 6, it was shown that for a

free-vortex flow (rcθ5 constant) the axial velocity, cx, is constant (in the ideal flow). It was shown

by Wallace, Whitfield, and Atkey (1975) that the use of free-vortex prewhirl vanes leads to a sig-

nificant increase in incidence angle with low inducer radius ratios. The use of some forced-vortex

velocity distribution does alleviate this problem. Whitfield and Baines (1990) have reviewed some

of the effects resulting from the adoption of various forms of a generalized forced-vortex,

cθ 5A
r

rs1

� �n

(7.14)

where n is any integer value in the range �1 to 2.
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Chart depicting flow regimes for 2D diffusers.

(Adapted from Sovran and Klomp, 1967)
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Figure 7.11(a) shows (for a particular case in which αs15 30�, βs15 60�) the effect of prewhirl

on the variation of the incidence angle, i5β1 2β0
2 with radius ratio, r/rs1, for several whirl distri-

butions. Figure 7.11(b) shows the corresponding variations of the absolute flow angle, α1. It is

apparent that a high degree of prewhirl vane twist is required for either a free-vortex design or the

quadratic (n5 2) design. The advantage of the quadratic design is the low variation of incidence

with radius, where it is evident that the free-vortex design produces a wide variation of incidence.
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(c) Velocity diagram at hub
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Impeller
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(a) (b) Velocity diagram at shroud

Ws1

Us1

Cs1

Cx1

βs1

FIGURE 7.10

Effect of free-vortex prewhirl vanes upon the relative velocity at impeller inlet.
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Effect of prewhirl vanes on (a) incidence angle and (b) absolute flow angle with αs15 30�, βs15 60�.
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Wallace et al. (1975) adopted the simple untwisted blade shape (n5 0), which proved to be a rea-

sonable compromise.

7.7 The slip factor
Introduction
Even under ideal (i.e., frictionless) conditions, the relative flow leaving the impeller of a compres-

sor or pump will receive less than perfect guidance from the vanes and the real flow is said to slip.

If the impeller could be imagined as being made with an infinite number of infinitesimally thin

vanes, then an ideal flow would be perfectly guided by the vanes and would leave the impeller at

the vane angle. Figure 7.12 compares the relative flow angle, β2, obtained with a finite number of

vanes, with the vane angle, β0
2.

A slip factor may be defined as2

σ5 cθ2=cθ20 (7.15a)

where cθ2 is the tangential component of the absolute velocity and related to the relative flow angle

β2. The hypothetical tangential velocity component is related to the vane angle β0
2. The slip velocity

is given by cθs 5 cθ20 2 cθ2 so that the slip factor can be written as

σ5 12 cθs=cθ20 (7.15b)

The slip factor is a vital piece of information needed by pump and compressor designers (also

by designers of radial turbines as it turns out!) as its accurate estimation allows the pressure rise,

the work input, and the velocity triangles at the impeller exit to be determined. There have been

many attempts to determine correlations for the slip factor starting, apparently, with that of

Busemann (1928) and followed by Stanitz (1952), Wiesner (1967), and many other researchers.

C′θ2

Cθ2Cθs

C
r2

β′2 β2

W2

C2

U2

β2 is the average
relative flow angle

β′2 is the vane angle

FIGURE 7.12

Effect of slip (in the velocity diagram) on the relative flow angle β2 at exit from an impeller with backswept

vanes at a vane angle of β0
2.

2This is now known as the European definition of slip factor. The American definition is σ5 12 cθs=U2.
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Wiesner (1967) has given an extensive review of the various expressions used for determining

slip factors. Most of the expressions derived relate to radially vaned impellers ðβ0
2 5 0Þ or to mixed

flow designs, but some are given for backward swept vane (bsv) designs. Most of the correlations

presented work well for one type of impeller at the design point but fail for other designs. A recent

paper presented by Qiu et al. (2011) has presented what is now called a unified slip factor model

that can be applied to axial, mixed flow, and radial flow impellers and capable of being applied at

both the design condition and the off-design conditions.

The relative eddy concept
Suppose that an irrotational and frictionless fluid flow is possible that passes through an impeller.

If the absolute flow enters the impeller without spin, then at outlet the spin of the absolute flow

must still be zero. The impeller itself has an angular velocity Ω so that, relative to the impeller, the

fluid has an angular velocity of �Ω; this is termed as the relative eddy (Figure 7.13(a)). A simple

explanation for the slip effect in an impeller is obtained from the idea of a relative eddy.

At outlet from the impeller, the relative flow can be regarded as a through-flow on which is

superimposed a relative eddy. The net effect of these two motions is that the average relative flow

emerging from the impeller passages is at an angle to the vanes and in a direction opposite to the

blade motion, as indicated in Figure 7.13(b). This is the basis of the various early theories of slip.

Slip factor correlations
One of the earliest and simplest expressions for the slip factor was obtained by Stodola (1945).

Referring to Figure 7.13(c), the slip velocity, cθs 5 cθ2 2 cθ2, is considered to be the product of

the relative eddy and the radius d/2 of a circle, which can be inscribed within the channel.

(b) (c)(a)

–Ω

Ω Ω

2πr2/Z β′2
d

FIGURE 7.13

(a) Relative eddy without any through-flow; (b) relative flow at impeller exit (through-flow added to relative

eddy); and (c) Stodola flow model.
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Thus, cθs5Ωd/2. If the number of vanes is denoted by Z, then an approximate expression,

dDð2πr2=ZÞcos β0
2, can be written if Z is not small. Since Ω5U2/r2,

cθs 5
πU2 cos β0

2

Z
(7.15c)

Now as cθ20 5U2 2 cr2 tan β0
2then the Stodola slip factor becomes

σ5
cθ2

c0θ2
5 12

cθs

U2 2 cr2 tan β0
2

(7.16)

or

σ5 12
ðπ=ZÞcos β0

2

12φ2 tan β0
2

(7.17)

where φ25 cr2/U2.

A number of “mathematically exact” solutions have been evolved of which the best known is

that of Busemann (1928). This theory applies to the special case of 2D vanes curved as logarithmic

spirals as shown in Figure 7.14.

Considering the geometry of the vane element shown, it can be proved that

κ5 tan β0 lnðr2=r1Þ (7.18)
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0.7
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Current model
Wiesner
Stodola

12,000 RPM
14,000 RPM
16,000 RPM

0.3 0.4 0.5 0.6 0.7 0.8

Exit flow coefficient, φ2

FIGURE 7.14

Calculated experimental results for the Eckardt rotor A slip factor and comparison with results from the

Wiesner and Stodola theories.
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and that the ratio of vane length to equivalent blade pitch is

l

s
5

Z

2π cos β0 ln
r2

r1

� �
(7.19)

Hence, the equivalent pitch is

s5
2πðr2 2 r1Þ
Z lnðr2=r1Þ

(7.20)

The equiangular or logarithmic spiral is the simplest form of radial vane system and has been

frequently used for pump impellers in the past. The Busemann slip factor can be written as

σ5 ðA2Bφ2 tan β0
2Þ=ð12φ2 tan β0

2Þ (7.21)

where both A and B are functions of r2/r1, β0
2, and Z. For typical pump and compressor impellers,

the dependence of A and B on r2/r1 is negligible when the equivalent l/s exceeds unity. From

Eq. (7.19), the requirement for l/s$ 1 is that the radius ratio must be sufficiently large, i.e.,

r2=r1 $ expð2π cos β0=ZÞ (7.22)

This criterion is often applied to other than logarithmic spiral vanes, then β0
2 is used instead of

β0. Radius ratios of typical centrifugal pump impeller vanes normally exceed the preceding limit.

For instance, blade outlet angles of impellers are usually in the range 50� #β0
2 # 70� with between

5 and 12 vanes. Taking representative values of β0
2 5 60� and Z5 8 the right-hand side of

Eq. (7.22) is equal to 1.48, which is not particularly large for a pump.

So long as these criteria are obeyed, the value of B is constant and practically equal to unity for

all conditions. Similarly, the value of A is independent of the radius ratio r2/r1 and depends on β0
2

and Z only. Values of A given by Csanady (1960) are shown in Figure 7.15 and may also be inter-

preted as the value of σB for zero through-flow ðφ2 5 0Þ.
The mathematically exact solution of Busemann makes it possible to check the validity of

approximate methods of calculation, such as the Stodola expression. By putting φ2 5 0 in Eqs

(7.17) and (7.21) a comparison of the Stodola and Busemann slip factors at the zero through-flow

condition can be made. The Stodola value of slip comes close to the exact correction if the vane

angle is within the range 50� #β0
2 # 70� and the number of vanes exceeds six.

Stanitz (1952) applied the mathematical method called relaxation to solve the potential flow

field between the blades of eight impellers with blade tip angles β0
2 varying between 0� and 45�.

The conclusions drawn were that the computed slip velocity, cθs, was independent of vane angle,

β0
2, and depended only on blade spacing (number of blades). He also found that compressibility

effects did not affect the slip factor. Stanitz’s expression for slip velocity is

cθs 5 0:63U2π=Z (7.23a)

and it is easily shown that the corresponding slip factor using Eq. (7.16) is

σ5 12
0:63π=Z

12φ2 tan β0
2

(7.23b)
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For radial-vaned impellers this becomes σ5 1�0.63π/Z but is often written for initial approxi-

mate calculations as σ5 1�2/Z.

Wiesner (1967) reviewed all available methods and concluded that Busemann’s procedure was

still the most generally applicable predictor for determining the slip factor of centripetal impellers.

Wiesner obtained the following simple empirical expression for the slip velocity,

cθs 5
U2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos β0

2

p
Z0:7

(7.24a)

and the corresponding slip factor,

σ5 12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos β0

2

p
z0:7ð12φ2 tan β0

2Þ
(7.24b)

which, according to Wiesner, fitted the Busemann results “extremely well over the whole range of

practical blade angles and number of blades.”

The preceding equation is applicable to a limiting mean radius ratio for the impeller given by

the empirical expression

ε5
r1

r2

� �
lim

5 exp
2 8:16 cos β0

2

Z

� �
(7.24c)

For values of r1/r2. ε, the following empirical expression is useful:

σ0
w 5σw 12

r1=r22ε
12ε

� �3
" #

(7.24d)

dr

rdθ

rdθ = tan β′ dr dl = dr sec β′

dl

β′

β′

β′

β′

r2

r1
κ

κ = θ2– θ1

r

FIGURE 7.15

Logarithmic spiral vane; vane angle β0 is constant at all radii.
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7.8 A unified correlation for slip factor3

It will have been noticed for the preceding correlations of slip factor that once the geometry of an

impeller is defined (i.e., the exit blade angle, the number of blades and (possibly) the inlet blade

angle), then the slip factor is firmly fixed. However, a new, unified slip factor has been defined by

Qiu et al. (2011) which is applicable to axial, radial, and mixed flow impellers and, importantly,

takes into account the effect of the flow coefficient. This is a most interesting and significant devel-

opment of slip factor theory. According to the paper’s authors, slip factor is affected by the impel-

ler rotation as well as by the blade turning rate at the point of impeller discharge.

For an axial impeller (i.e., a compressor blade row), there is no radial effect and the resulting

slip factor is comparable to the deviation rule of Howell, Carter, and others (see Eqs (3.34) and

(3.35)). However, for many radial impellers it turns out that the blade turning term is significant

and is actually the key factor that dominates the variation of the slip factor at off-design conditions.

Eck (1973) extended the theory originally advanced by Stodola in which it was asserted that it

was the relative eddy which caused the slip in centrifugal impellers. Velocity differences are cre-

ated in the blade passages so that the velocity on the pressure side of a blade is less than that on

the suction side. In Figures 7.13 and 7.16, the pressure side of the passage is, of course, on the

right. The relative eddy is imagined to be circular in shape with a diameter d, (shown as AC in

Figure 7.16) rotating as a solid body with an angular velocity Ω. The slip velocity is then deter-

mined from,

cθs 5
d

2
ω5

ωs2 cos β2b

2
(7.25)

where the angular velocity in Stodola’s flow model is the same as the wheel speed but in the oppo-

site direction.

B

C

A

D

O

R2

R1

Z = 10

θ

β2b

FIGURE 7.16

Flow model used by Qiu.

3The word “unified” refers to the intention of the authors to bring into one theory all varieties of compressor. It is not

the intention of the present authors to verify the wider aspects of the paper (i.e., application to axial and mixed flow

compressors) only to centrifugal compressors.
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The pressure inequality includes the effect of blade rotation as well as the effect of blade turn-

ing. In his book, Eck stated “the linear velocity gradient is equivalent to a rotation of the total flow

across the passage” and from this he recalculated the angular velocity of this rotation as follows:

ω1 5
ws 2wp

2a
(7.26)

The slip velocity can now be related to the blade loading, i.e., the velocity difference on the

blade suction and pressure surfaces at impeller discharge:

cθs 5
a

2
ω1 5

ws 2wp

4
(7.27)

Inside the impeller passage, the flow is loaded by the Coriolis force, the centrifugal force, and

the blade turning force. According to Qiu, these forces vanish when the flow reaches the line AC

with the result that the flow deviates from its expected path. This is the crucial point of Qiu’s

argument.

The next step is to quantify the blade loading up to AC so that the right-hand side of Eq. (7.27)

can be evaluated.

Qiu assumed that the velocity difference between D and A is small so that the blade loading at

AC can be determined (approximately) by the loading on the arc DC. Following fairly recent work

by Johnson (1986) and Cumpsty (1989), Qiu found that the loading on the arc DC could be

expressed by the following equation:

ws 2wp

DC
5 2ω sin γ cos β2w

dβ
dm

2
cos β sin β

ρb
dðρbÞ
dm

	 
� �
(7.28)

The length of the arc DC is related to the pitch length at the impeller exit s2 through a shape

factor, F, i.e.,

DC5F3 s2 (7.28a)

where the F factor can be determined from the following equation:

F5 12 sin
π
Z

� �
sin

π
Z
1β2b

� �
cos β2b sin γ2 2

t2

s2 cos β2b

(7.29)

The detailed derivation of this equation is given later in this section.
Combining Eqs (7.27), (7.28), and (7.28a), we arrive at the final expression for the slip velocity

cθs 5F
ωs2 cos β2b sin γ

2
1

w2s2

4

dβ
dm

� �
2

2
w2s2 sin 2β2b

8ρ2β2

d

dm
ðρbÞ

� �
2

� �
(7.30)

The final form of the slip factor is obtained when Eq. (7.30) is divided by the rotational speed, i.e.,

σ5 12
cθs

U2

5 12
Fπ cos β2b sin γ2

Z
2

Fs2φ2

4 cos β2b

dβ
dm

� �
2

1
Fφ2s2 sin β2b

4ρ2b2
dhρbi
dm

� �
2

(7.31)

Now, in order to better understand the above equation, an inspection of each term is given after

labeling them.
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Equation (7.31) can be written as

σ5 12Δσradial 2Δσturn 2Δσpassage (7.32)

where

Δσradial 5
Fπ cos β2b sin γ2

Z
(7.32a)

is the decrement in slip due to the effect of radial rotation,

Δσturn 5
Fs2φ2

4 cos β2b

dβ
dm

� �
2

(7.32b)

is the decrement due to blade turning, and

Δσpassage 52
Fφ2s2 sin β2b

4ρ2b2
dhρbi
dm

� �
2

(7.32c)

is the decrement due to any variations of passage width and density.

Qiu stated that the radical term in Eq. (7.32c) will be very small compared with the other terms

and that its contribution to the slip factor would be minimal. Therefore, this last term is disregarded

in all the following calculations.

Comparison of the new slip factor theory with experimental results
Method of Calculating the Shape Factor F
Referring to Figure 7.16, the line AC is drawn from point A and is perpendicular to the adjacent

blade. The line AC is referred to as the exit throat. The object of the following method is to calcu-

late the length of the arc DC.

The angle between two adjacent blades is Δθ5 2π=Z, where Z is the number of blades.

The chord AB can now be calculated as

AB5 2R2 sin
Δθ
2

� �

Since

+OBA5 ðπ2ΔθÞ=2 then +ABC5+OBA2β2b 5
π
2
2

Δθ
2

2β2b

We can now calculate the length of the line BC

BC5AB cosð+ABCÞ5AB sin
Δθ
2

1β2b

� �
The radius reduction from the tip of the impeller (at B) to point C can now be determined

approximately as

BE5BC cosðβ2bÞsinðγ2Þ5 2R2 sin
Δθ
2

� �
sin

Δθ
2

1β2b

� �
cosðβ2bÞsinðγ2Þ

288 CHAPTER 7 Centrifugal Pumps, Fans, and Compressors



The presence of the angle γ2 is because the whole calculation is projected onto the radial plane

so as to determine the reduction in radius. Therefore, the radius of the arc DC is

OC � OB2BE5R2 12 2 sin
π
Z

� �
sin

π
Z
1β2b

� �
cosðβ2bÞsinðγ2Þ

h i
For a blade of finite thickness, the length of arc DC is then

DC5OC3Δθ2
t2

cos β2b

The F factor is the ratio of the lengths DC to AB, i.e.,

F5 12 2 sin
π
Z

� �
sin

π
Z
1β2b

� �
cosðβ2bÞsinðγ2Þ2

t2

s2 cos β2b

Illustrative exercise (determining a value for F)
For the Eckardt (1980) rotor A, the following parameters apply.

R2 5 0:2 m;β2b 5 30� ðbacksweptÞ; γ2 5 90�;Z5 20; dβ=dm52 9=m (and this corresponds to

20.5�/mm of radius increment).

Referring to Figure 7.16,

AB5 2πR2=Z5 0:0626 m;+OBA5 ðπ2ΔθÞ=25 81�

+ABC 5 +OBA2β2b 5 812 30 5 51� ‘BC5AB cosð+ABCÞ5 0:0626 cos 51�

BC5 0.0394 m.

‘BE5BC3 cos 30� 5 0:03412 and OE5OB2EB5 0:22 0:034125 0:1659 m

Finally, although no information is given about the thickness t2 at the trailing edge of the blade,

we shall assume here a value of 2 mm

‘t2=s2 5
0:002

23π3 0:23 0:866
5 1:8383 1023

‘F5
0:16592 :001838

0:2
5 0:82

An approximate confirmation of this result can be made by making a careful scale drawing of

the impeller geometry.

Results
Values of the slip factor calculated by Qiu for the Eckardt rotor A are shown in Figure 7.14 as a

function of the exit flow coefficient Φ2. By way of contrast, the results determined using the

Stodola and Wiesner formulae are shown. It is clear that the current model matched the experimen-

tal values measured for this rotor closely at all speeds whereas the Stodola and Wiesner did not

come close. This seems to be a remarkable achievement by the authors and they deserve everyone’s

congratulations! It should be mentioned that Qiu and his colleagues were supported in their conclu-

sions by a vast number of confirmatory tests on many other types of rotors and pumps.
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Qiu expressed the view that the negative blade turning rate was responsible for the upward trend

of the slip factor with the exit flow coefficient. Finally, Qiu emphasized how all the data points for

all four speeds closely followed a single curve. This observation confirmed that the slip factor cor-

related with a single parameter—the exit flow coefficient.

It may have been noticed from the references at the end of this chapter that some attempts have

been made by various authors to include the variation of the flow rate in their predictions of the

slip factor.

7.9 Head increase of a centrifugal pump
The actual delivered head H, measured as the head difference between the inlet and the outlet flanges

of the pump and sometimes called the manometric head, is less than the ideal head Hi defined in

Eq. (7.4) by the amount of the internal losses. The hydraulic efficiency of the pump is defined as

ηh 5
H

Hi

5
gH

U2cθ2
(7.33a)

From the velocity triangles of Figure 7.5,

cθ2 5U2 2 cr2 tan β2

Therefore,

H5 ηhU
2
2ð12φ2 tan β2Þ=g (7.33b)

where φ25 cr2/U2 and β2 is the actual averaged relative flow angle at impeller outlet.

With the definition of slip factor, σ5 cθ2=c0θ2, H can, more usefully, be directly related to the

impeller vane outlet angle as

H5 ηhσU
2
2ð12φ2 tan β0

2Þ=g (7.33c)

In general, centrifugal pump impellers have between 5 and 12 vanes inclined backward to the

direction of rotation, as suggested in Figure 7.5, with a vane tip angle β0
2 of between 50� and 70�.

A knowledge of blade number, β0
2 and φ2 (usually small and on the order of 0.1), generally enables

σ to be found using the Busemann formula. The effect of slip, it should be noted, causes the rela-

tive flow angle β2 to become larger than the vane tip angle β0
2.

EXAMPLE 7.3

A centrifugal pump delivers 0.1 m3/s of water at a rotational speed of 1200 rev/min. The impel-

ler has seven vanes, which lean backward to the direction of rotation such that the vane tip angle

β0
2 is 50�. The impeller has an external diameter of 0.4 m, an internal diameter of 0.2 m, and an

axial width of 31.7 mm. Assuming that the diffuser efficiency is 51.5%, that the impeller head

losses are 10% of the ideal head rise, and that the diffuser exit is 0.15 m in diameter, estimate

the slip factor, the manometric head, and the hydraulic efficiency.
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Solution
The criterion given as Eq. (7.24c) is employed prior to estimating the slip factor. As

expð2π cos β0
2=ZÞ5 expð2π3 0:643=7Þ5 1:78 (which is less than r2/r15 2), then B5 1 and

A� 0.77. Note: This value of A is obtained by replotting values of A given in Figure 7.17 for

β0
2 5 50� and interpolating.

The vane tip speed

U2 5πND2=605π3 12003 0:4=65 25:13 m=s

The radial velocity

cr2 5Q=ðπD2b2Þ5 0:1=ðπ3 0:43 0:0317Þ5 2:51 m=s

Hence, the Busemann slip factor is

σ5 ð0:772 0:13 1:192Þ=ð12 0:13 1:192Þ5 0:739

Hydraulic losses occur in the impeller, in the diffuser, and in the volute. The loss in head in

the diffuser is

ΔHD 5 ðp02 2 p03Þ=ðρgÞ5 ðp2 2 p3Þ=ðρgÞ1 ðc22 2 c23Þ=ð2gÞ
and, from Eq. (7.52) for incompressible flow,

p3 2 p2 5
1

2
ηDρðc22 2 c23Þ

Substituting in the previous equation, we find

ΔHD 5 ð12 ηDÞðc22 2 c23Þ=ð2gÞ
The kinetic energy leaving the diffuser is only partly recovered. Watson and Janota (1982)

ascribe the total loss in the volute as about half the dynamic head leaving the diffuser, and this

is also assumed in this calculation. The exit head loss is 0:53 c23=ð2gÞ and the head loss in the

impeller is 0.13U2cθ2/g.

Summing all the losses,

HL 5 0:4853 ðc22 2 c23Þ=ð2gÞ1 0:13U2cθ2=g1 0:53 c23=ð2gÞ
Determining the velocities and heads needed,

cθ2 5σU2ð12φ2 tan β20 Þ5 0:7393 25:133 0:8815 16:35 m=s

Hi 5U2cθ2=g5 25:133 16:35=9:815 41:8 m

c22=ð2gÞ5 ð16:352 1 2:512Þ=19:625 13:96 m

c3 5 4Q=ðπd2Þ5 0:4=ðπ3 0:152Þ5 5:65 m=s

c23=ð2gÞ5 1:63 m
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Therefore,

HL 5 4:181 0:485ð13:962 1:63Þ1 1:63=25 10:98 m

The manometric head is

H5Hi 2HL 5 41:82 10:985 30:82 m

and the hydraulic efficiency is

ηh 5H=Hi 5 73:7%

7.10 Performance of centrifugal compressors
Determining the pressure ratio
Consider a centrifugal compressor having zero inlet swirl, compressing a perfect gas. With the

usual notation, the energy transfer is

ΔW 5 _Wc= _m5 h02 2 h01 5U2cθ2

30°

0.8

0.7

0.6

0.5

60°90°
0

5

10

Z

15

20

25

A = 0.9

0°

β′2

FIGURE 7.17

Head correction factors for centrifugal impellers.

(Adapted from Csanady, 1960)
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The overall or total-to-total efficiency ηc is

ηc 5
h03ss 2 h01

h03 2 h01
5

CpT01ðT03ss=T01 2 1Þ
h02 2 h01

5CpT01ðT03ss=T01 2 1Þ=ðU2cθ2Þ (7.34)

Now the overall pressure ratio is

p03

p01
5

T03ss

T01

� �γ=ðγ21Þ
(7.35)

Substituting Eq. (7.34) into Eq. (7.35) and noting that CpT01 5 γRT01=ðγ2 1Þ5 a201=ðγ2 1Þ, the
pressure ratio becomes

p03

p01
5 11

ðγ21ÞηcU2cr2 tan α2

a201

 �γ=ðγ21Þ
(7.36)

From the velocity triangle at impeller outlet (Figure 7.4),

φ2 5 cr2=U2 5 ðtan α21tan β2Þ21

and, therefore,

p03

p01
5 11

ðγ21ÞηcU2
2 tan α2

a201ðtan α21tan β2Þ

 �γ=ðγ21Þ
(7.37a)

This formulation is useful if the flow angles can be specified. Alternatively, and more usefully,

as cθ2 5σcθ20 5 σðU2 2 cr2 tan β0
2Þ, then

p03

p01
5 ½11ðγ21Þηcσð12φ2 tan β0

2ÞM2
u�γ=ðγ21Þ (7.37b)

where Mu5U2/a01 is now defined as a blade Mach number.

It is useful and of interest to calculate the variation of the pressure ratio of a radially vaned

ðβ0
2 5 0Þ centrifugal air compressor to show the influence of blade speed and efficiency on the per-

formance. With γ5 1.4 and σ5 0.9 (i.e., using the Stanitz slip factor, σ5 1�1.98/Z) and assuming

Z5 20, the results evaluated are shown in Figure 7.18 It is clear that both the efficiency and the

blade speed have a strong effect on the pressure ratio.

In the 1970s the limit on blade speed due to centrifugal stress was about 500 m/s and compres-

sor efficiency seldom exceeded 80%. With a slip factor of 0.9, a radial-vaned impeller and an inlet

temperature of 288 K, the pressure ratio achieved was barely above 5. More recently quite signifi-

cant improvements in the performance of centrifugal compressors have been obtained, brought

about by the development of computer-aided design and analysis techniques. According to

Whitfield and Baines (1990), the techniques employed consist of “a judicious mix of empirical cor-

relations and detailed modeling of the flow physics”! However, it is possible to use these computer

packages and arrive at a design solution without any real appreciation of the flow phenomena

involved. In all compressors, the problematic part of the flow process is the diffusion; boundary

layers are very prone to separate and the flow can become very complicated with separated wakes

in the flow and unsteady flow downstream of the impeller. It must be stressed that a broad
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understanding of the flow processes within a centrifugal compressor is still a vital requirement for

the more advanced student and for the further progress of new design methods.

A characteristic of all high-performance compressors is that as the design pressure ratio has

increased, so the range of mass flow between surge and choking has diminished. In the case of the

centrifugal compressor, choking can occur when the Mach number entering the diffuser passages is

just in excess of unity. This is a severe problem that is aggravated by any shock-induced separation

of the boundary layers on the vanes, which will worsen the problem of flow blockage.

Effect of backswept vanes
Came (1978) and Whitfield and Baines (1990) have commented upon the trend of obtaining higher

pressure ratios from single-stage compressors leading to more highly stressed impellers. The

increasing use of backswept vanes and higher blade tip speeds results in higher direct stress in the

impeller and bending stress in the nonradial vanes. However, methods of computing the stresses in

impellers are available, capable of determining both the direct and the bending stresses caused by

the impeller rotation.

γ = 1.4

σ = 0.9
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FIGURE 7.18

Variation of pressure ratio with blade speed for a radial-bladed compressor ðβ0
2 5 0Þ at various values of

efficiency.
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The effect of using backswept impeller vanes on the pressure ratio is shown in Figure 7.19 for a

range of blade Mach numbers. The use of backswept vanes at a given blade speed causes some loss

in pressure ratio. In order to maintain a given pressure ratio, it is therefore necessary to increase the

design speed, which increases the blade stresses.

With high blade tip speeds the Mach number of the absolute flow leaving the impeller may

exceed unity. As this Mach number can be related to the Mach number at entry to the diffuser

vanes, it is of some advantage to be able to calculate the former.

Assuming a perfect gas, the Mach number at impeller exit M2 can be written as

M2
2 5

c22
a22

5
c22
T01

3
T01

T2
3

T2

a22
5

c22
a201

T01

T2
(7.38)

since a201 5 γRT01 and a22 5 γRT2.
Referring to the outlet velocity triangle, Figure 7.12 (for the impeller with backswept vanes),

c22 5 c2r2 1 c2θ2 5 c2r2 1 ðσcθ20 Þ2

where

cθ20 5U2 2 cr2 tan β20

c2

U2

� �2

5φ2
2 1σ2ð12φ2 tan β20 Þ2 (7.39)
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FIGURE 7.19

Variation of pressure ratio versus blade Mach number of a centrifugal compressor for selected backsweep

angles (γ5 1.4, σ5 0.9, φ25 0.375, ηc5 0.8).
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Assuming that rothalpy remains constant, Eq. (7.2), gives

h2 5 h1 1
1

2
w2
1 2

1

2
U2

1

� �
1

1

2
ðU2

2 2w2
2Þ5 h01 1

1

2
ðU2

2 2w2
2Þ

hence,

T2

T01
5 11

ðU2
2 2w2

2Þ
a201=ðγ2 1Þ 5 11

1

2
ðγ2 1ÞM2

u 12
w2
2

U2
2

� �
(7.40)

since h01 5CpT01 5 a201=ðγ2 1Þ:
From the exit velocity triangle, Figure 7.12,

w2
2 5 c2r2 1 ðU22cθ2Þ2 5 c2r2 1 ðU22σcθ20 Þ2

5 c2r2 1 ½U22σðU22cr2 tan β0
2Þ�2

(7.41)

12
w2

U2

� �2

5 12φs22 2 ½12σð12φ2 tan β0
2Þ�2 (7.42)

Substituting Eqs (7.39), (7.40), and (7.42) into Eq. (7.38), we get

M2
2 5

M2
u½σ2ð12φ2 tan β20 Þ2 1φ2

2�
11 ð1=2Þðγ2 1ÞM2

uf12φ2
2 2 ½12σð12φ2 tan β20 Þ�2g

(7.43a)

Although Eq. (7.43a) may look rather complicated at first sight, it reduces into an easily man-

aged form when a few constant values are inserted. Assuming the same values, we used previously,

i.e., γ5 1.4, σ5 0.9, φ25 0.375, and β0
2 5 0�; 15�; 30�; and 45�; the solution for M2 simplifies to

M2 5
AMuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11BM2

u

q (7.43b)

where the values of A and B are given in Table 7.1 and from which the curves of M2 against Mu in

Figure 7.19 have been calculated.

Whitfield and Baines (1990) assert that the two most important aerodynamic parameters at

impeller exit are the magnitude and direction of the absolute Mach number M2. If M2 has too high

a value, the process of efficient flow deceleration within the diffuser itself is more difficult leading

to high friction losses as well as the increased possibility of shock losses. If the flow angle α2 is

Table 7.1 Values of Constants Used to Evaluate M2

β0
2

Constant 0° 15° 30° 45°

A 0.975 0.8922 0.7986 0.676

B 0.1669 0.1646 0.1545 0.1336
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large, then the flow path in the vaneless diffuser will be excessively long resulting in high friction

losses and possible stall and flow instability. Several researchers, e.g., Rodgers and Sapiro (1972),

have shown that the optimum flow angle is in the range 60� ,α2, 70�.
Backswept vanes give a reduction of the impeller discharge Mach number, M2, at any given tip

speed. A designer making the change from radial vanes to backswept vanes will incur a reduction

in the design pressure ratio if the vane tip speed remains the same. To recover the original pressure

ratio, the designer needs to increase the blade tip speed, which, in turn, increases the discharge

Mach number. Fortunately, it turns out that this increase in M2 is rather less than the reduction

obtained by the use of backsweep.

Illustrative exercise
Consider a centrifugal compressor design that assumes the previous design data (Figures 7.19 and

7.20) together with β0
2 5 0� and a blade speed such that Mu5 1.6. From Figure 7.19, the pressure

ratio at this point is 6.9 and, from Figure 7.20, the value of M25 1.3. Choosing another impeller

with a backsweep angle, β20 5 30�, the pressure ratio is 5.0 from Figure 7.19 at the same value of

Mu. So, to restore the original pressure ratio of 6.9 the blade Mach number must be increased to

0.8 1.2

M
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FIGURE 7.20

Variation of impeller exit mach number versus blade Mach number of a centrifugal compresor for selected

backsweep angles ðγ5 1:4;σ5 0:9;φ2 5 0:375Þ.
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Mu5 1.81. At this new condition a value of M25 1.178 is obtained from Figure 7.20, a significant

reduction from the original value. Greater values of backsweep may produce even further benefits!

The absolute flow angle can now be found from the exit velocity triangle, Figure 7.12:

tan α2 5
cθ2

cr2
5

σðU2 2 cr2 tan β20 Þ
cr2

5σ
1

φ2

2 tan β20

� �
Assuming again the values σ5 0.9, σ25 0.375, then with β0

2 5 0�, the value of α25 67.38�.
Similarly, with β0

2 5 30�, the value of α25 62�, i.e., both values of α2 are within the prescribed

acceptible range.

Kinetic energy leaving the impeller
According to van den Braembussche (1985), “the kinetic energy available at the diffuser inlet easily

amounts to more than 50% of the total energy added by the impeller.” Using the foregoing analysis,

we can determine whether this statement is true or not. If the magnitude of the kinetic energy is so

large, then the importance of efficiently converting this energy into pressure energy can be appre-

ciated. The conversion of the kinetic energy to pressure energy is considered in the following sec-

tion on diffusers.

We can define the fraction of the kinetic energy at impeller exit to the specific work input as

fKE 5
1

2
c22=ΔW (7.44)

where

ΔW 5σU2
2 ð12φ2 tan β0

2Þ and c2
U2

� �2

5 c2
a2
3 a2

a01
3 a01

U2

� �2

5 M2

Mu

� �2
a2
a01

3 a02
a01

� �2 (7.45)

Defining the total-to-total efficiency of the impeller as

η1 5
h02s 2 h01

h02 2 h01
5

h01ððT02s=T01Þ2 1Þ
h02 2 h01

5
h01ðpðγ21Þ=γ

R 2 1Þ
ΔW

where pR is the total-to-total pressure ratio across the impeller, then

a02

a01

� �2

5
T02

T01
5 11

ΔT0

T01
5 11

ΔW

CpT01
5 11

1

η1
ðpðγ21Þγ

R 2 1Þ (7.46)

a02

a2

� �2

5
T02

T2
5 11

1

2
ðγ2 1ÞM2

2 (7.47)

Substituting Eqs (7.48), (7.49), and (7.50) into Eq. (7.47), we get

fKE 5
c22=U

2
2

2σð12φ2 tan β0
2Þ

5
ðM2=MuÞ2½11 ð1=η1Þðpðγ21Þ=γ

R 2 1Þ�
2σð12φ2 tan β0

2Þ½11 ð1=2Þðγ2 1ÞM2
2�

(7.48)
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Illustrative exercise
Determine fKE assuming that β

0
2 5 0; σ5 0:9; ηI 5 0:8; pr 5 4; and γ5 1:4:

Note: It is very convenient to assume that Figures 7.19 and 7.20 can be used to derive the

values of the Mach numbers Mu and M2. From Figure 7.19, we get Mu5 1.32 and from

Figure 7.20, we get M25 1.13. Substituting these results into Eq. (7.48), we obtain the result

fKE 5
1

23 0:9

1:13

1:32

� �2 ½11 ð1=0:8Þð41=3:5 2 1Þ�
11 ð1=5Þ3 1:132

5 0:5213

This calculation has thus verified the assertion of van den Braembussche (given previously) that

the kinetic energy available at diffuser inlet amounts to more than 50% of ΔW. This, clearly, is an

extra incentive to seek an efficient diffuser system!

Calculations of fKE at other pressure ratios and sweepback angles show that its value remains

about 0.52 provided that σ and η1 do not change.

EXAMPLE 7.4

Air at a stagnation temperature of 22�C enters the impeller of a centrifugal compressor in the

axial direction. The rotor, which has 17 radial vanes, rotates at 15,000 rev/min. The stagnation

pressure ratio between diffuser outlet and impeller inlet is 4.2 and the overall efficiency (total-

to-total) is 83%. Determine the impeller tip radius and power required to drive the compressor

when the mass flow rate is 2 kg/s and the mechanical efficiency is 97%. Given that the air den-

sity at impeller outlet is 2 kg/m3 and the axial width at entrance to the diffuser is 11 mm, deter-

mine the absolute Mach number at that point. Assume that the slip factor σ5 1�2/Z, where Z is

the number of vanes. (For air, take γ5 1.4 and R5 0.287 kJ/(kg K).)

Solution
From Eq. (7.3), the specific work is

ΔW 5 h02 2 h01 5U2cθ2

as cθ15 0. For a radial impeller, β
0
2 5 0; so cθ2 5σU2: With Eq. (7.28) and some rearranging:

U2
2 5

CpT01ðp03=p02ðγ21Þ=γ 2 1Þ
σηc

where p03/p015 4.2; Cp5 γR/(γ2 1)5 1.005 kJ/kg K, σs5 1�2/175 0.8824. Therefore,

U2
2 5

10053 295ð4:20:286 2 1Þ
0:88243 0:83

5 20:53 104

and U25 452 m/s.

The rotational speed is Ω5 15,0003 2π/605 1570 rad/s and the impeller tip radius is

rt5U2/Ω5 452/15705 0.288 m.

The actual shaft power is obtained from

_Wact 5 _Wc=ηm 5 _mΔW=ηm 5 23 0:88243 4522=0:975 373 kW
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Although the absolute Mach number at the impeller tip can be obtained almost directly from

Eq. (7.46a), it may be instructive instead to find it from its basic definition:

M2 5
c2

a2
5

c2

ðγRT2Þ1=2

where

c2 5 ðc2θ21c2r2Þ1=2

cr2 5 _m=ðρ22πrtb2Þ5 2=ð23 2π3 0:2883 0:011Þ5 50:3 m=s

cθ2 5σU2 5 400 m=s

Therefore,

c2 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4002 1 50:32

p
5 402:5 m=s

Since

h02 5 h01 1ΔW

h2 5 h01 1ΔW 2
1

2
c22

Therefore,

T2 5 T01 1 ΔW 2
1

2
c22

� �
=Cp 5 2951 ð18:12 8:1Þ104=10055 394:5 K

Hence,

M2 5
402:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4023 394:5
p 5 1:01

7.11 The diffuser system
Centrifugal compressors and pumps are, in general, fitted with either a vaneless or a vaned diffuser

to transform the kinetic energy at the impeller outlet into static pressure. The volute or scroll is the

final component of a centrifugal compressor or pump (Figure 7.21). This is a spiral-shaped channel

of increasing cross-sectional area whose purpose is to collect the flow from the diffuser (or impel-

ler) and deliver it to the exit pipe. The volute for compressors is almost always of the overhung

type, usually the choice is imposed by constraints of space. Figure 7.22 shows two types of volute

cross section.

According to Whitfield and Johnson (2002), it is well known that the volute of a centrifugal

compressor can cause a circumferential pressure distortion around the impeller at all flow rates

other than at design.
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Vaneless diffusers or volutes
The simplest method of diffusion in a radial flow machine is one where the swirl velocity is

reduced by an increase in radius (conservation of angular momentum) and the radial component of

velocity is controlled by the radial flow area. From continuity, since _m5 ρAcr 5 2πrbρcr; where b

is the width of passage, then the radial velocity cr at radius r is

cr 5
r2b2ρ2cr2

rbρ
(7.49)

cr 2
cθ2

c2

FIGURE 7.21

Volute of a centrifugal compressor or pump.

Symmetric volute Overhung volute

FIGURE 7.22

Two types of volute.
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Assuming the flow is frictionless in the diffuser, the angular momentum is constant and

cθ5 cθ2r2/r. Now the tangential velocity component cθ is usually very much larger than the radial

velocity component cr; therefore, the ratio of inlet-to-outlet diffuser velocities c2/c3 is approxi-

mately r3/r2. Clearly, to obtain useful reductions in velocity, volutes must be large. This may not

be a disadvantage in industrial applications where weight and size may be of secondary importance

compared with the cost of a vaned diffuser. A factor in favor of volutes is their wide operating

range, vaned diffusers being more sensitive to flow variation because of incidence effects.

For a parallel-walled radial diffuser in incompressible flow, the continuity equation requires that

rcr is constant. Assuming that rcθ remains constant, then the absolute flow angle α2 5 tan21ðcθ=crÞ
is also constant as the fluid is diffused outward. Under these conditions, the flow follows a logar-

ithmic spiral. The relationship between the change in the circumferential angle Δθ and the radius

ratio of the flow in the diffuser can be found by considering an element of the flow geometry,

shown in Figure 7.23. For an increment in radius Dr we have, rdθ5Dr tan α2. Integrating between

stations 2 and 3, gives

Δθ5 θ3 2 θ2 5 tan α2 ln
r3

r2

� �
(7.50)

Values of Δθ are shown in Figure 7.24 plotted against r3/r2 for several values of α2. It can be

readily seen that when α2. 70�, rather long flow paths are implied, friction losses will be greater

and the diffuser efficiency will be lower. Further information about volute design and testing can

be found in a paper by Whitfield and Johnson (2002).

rdθ

dr

r

α2

FIGURE 7.23

Element of flow in a radial diffuser.
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Vaned diffusers
With vaned diffusers, the vanes are used to remove the swirl of the fluid at a higher rate than is

possible by a simple increase in radius, thereby reducing the length of flow path and diameter. The

vaned diffuser is clearly advantageous where small unit size is important.

There is a clearance between the impeller and the vane leading edges amounting to about

0.04D2 for pumps and between 0.1D2 and 0.2D2 for compressors. This space constitutes a vaneless

diffuser and its functions are (i) to reduce the circumferential pressure gradient at the impeller tip,

(ii) to smooth out velocity variations between the impeller tip and the vanes, and (iii) for compres-

sors, to reduce the Mach number at entry to the vanes. Flow calculations in this space follow the

same procedure as for vaneless diffusers.

The flow follows an approximately logarithmic spiral path to the vanes after which it is con-

strained by the diffuser channels. For rapid diffusion, the axis of the channel is straight and tangen-

tial to the spiral as shown. The passages are generally designed on the basis of simple channel

theory with an equivalent angle of divergence of between 8� and 10� to control separation.

In many applications of the centrifugal compressor, size is important and the outside diameter

must be minimized. With a vaned diffuser, the channel length can be crucial when considering the

final size of the compressor. Clements and Artt (1988) considered this and performed a series of

experiments aimed at determining the optimum diffuser channel length to width ratio, L/W. They

found that, on the compressor they tested, increasing L/W beyond 3.7 did not produce any improve-

ment in the performance, the pressure gradient at that point having reached zero. Another signifi-

cant result found by them was that the pressure gradient in the diffuser channel when L/W. 2.13
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240

160

80
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=80°
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FIGURE 7.24

Variation of flow path parameters for parallel-walled radial diffuser (incompressible flow).
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was no greater than that which could be obtained in a vaneless diffuser. Hence, removing

completely that portion of the diffuser after this point would yield the same pressure recovery as

with the full diffuser.

The number of diffuser vanes can also have a direct bearing on the efficiency and surge margin

of the compressor. Surge occurs at higher flow rates when vaned diffusers are used than when a

simple vaneless diffuser design is adopted. It is better to have fewer diffuser vanes than impeller

vanes (about half) in order to achieve a wide range of surge-free flow.

With several adjacent diffuser passages sharing the gas from one impeller passage, the uneven

velocity distribution from that passage results in alternate diffuser passages being either starved or

choked. This is an unstable situation leading to flow reversal in the passages and to surge of the

compressor. When the number of diffuser passages is less than the number of impeller passages a

more uniform total flow results.

Figure 7.9 shows the occurrence of flow unsteadiness or nonuniform flow at the exit from 2D

diffusers. The line marked a�a will be of most interest for turbomachinery diffuser applications.

Note that this sharply marked transition line is not necessarily true and exact and a certain amount

of arbitrariness and subjectivity attends the occurrence of “first stall.”

Figure 7.25 shows typical performance curves for a rectangular diffuser with a fixed sidewall to

length ratio, L/W15 8.0, given by Kline, Abbott, and Fox (1959). On the line labeled Cp, points

numbered 1, 2, and 3 are shown. These numbered points correspond to those shown in Figure 7.9

where they lie in relation to the various flow regimes. Inspection of the location of point 2 shows

that optimum recovery at constant length occurs slightly above the line marked No appreciable
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FIGURE 7.25

Typical diffuser performance curves for a 2D diffuser with L/W15 8:0.

(Adapted from Kline et al., 1959)
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stall. The performance of the diffuser between points 2 and 3 in Figure 7.9 shows a very significant

deterioration and is in the regime of large amplitude, very unsteady flow.

7.12 Diffuser performance parameters
The diffusion process can be represented on a Mollier diagram, Figure 7.26, by a change of state

from point 1 to point 2, and the corresponding changes in pressure from p1 to p2 and velocity from

c1 to c2.

Several ways are available for expressing diffuser performance in compressible flow:

i. Diffuser efficiency, ηD5 ratio of actual change in enthalpy to the isentropic change in enthalpy.

For steady and adiabatic flow in stationary passages, h015 h02, so that

h2 5 h1 5
1

2
ðc21 2 c22Þ (7.51a)

For the equivalent reversible adiabatic process from state point 1 to state point 2s,

h2s 2 h1 5
1

2
ðc21 2 c22sÞ (7.51b)
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FIGURE 7.26

Mollier diagram for a diffuser flow.
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Hence,

ηD 5 ðh2s 2 h1Þ=ðh2 2 h1Þ5 ðc21 2 c22sÞ=ðc21 2 c22Þ (7.52)

ii. A total pressure recovery factor, p02/p01, can be used as a measure of diffuser performance. The

diffuser efficiency is

ηD 5 ðT2s=T1 2 1Þ=ðT2=T1 2 1Þ (7.53)

It may be more convenient to represent this efficiency in terms of pressure ratios as follows:

For the isentropic process 1�2s,

T2s

T1
5

p2

p1

� �ðγ21Þ=γ

For the constant temperature process, 01�02, we obtain T ds5�dp/ρ, which, when
combined with the gas law, p/ρ5RT, gives ds5R dp/p. Upon integrating for the whole

process, we get

Δs5R ln
p01

p02

� �

For the constant pressure process, 2s2 2, T ds5 dh5Cp dT, therefore,

Δs5Cp ln
T2

T2s

� �

Equating these expressions for the entropy increase and using R/Cp2 (γ2 1)/γ, we find

T2

T2s
5

p01

p02

� �ðγ21Þ=γ

Therefore,

T2

T1
5

T2

T2s

� �
T2s

T1

� �
5

p01

p02

� �
p2

p1

� � �ðγ21Þ=γ

Substituting these expressions into Eq. (7.53), we get

ηD 5
ðp2=p1Þðγ21Þ=γ 2 1

½ðp01=p02Þðp2=p1Þ�ðγ21Þ=γ 2 1
(7.54)

EXAMPLE 7.5

Air enters the diffuser of a compressor with a velocity of 300 m/s at a stagnation pressure of

200 kPa and a stagnation temperature of 200�C and leaves the diffuser with a velocity of 50 m/s.

Using compressible flow relations and assuming the diffuser efficiency, ηD5 0.9, determine

a. the static temperatures at inlet and outlet of the diffuser and the inlet Mach number;
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b. the static pressure at diffuser inlet;

c. the increase in entropy caused by the diffusion process.

Take γ5 1.4 and Cp5 1005 J/kg K

Solution
Note: When solving diffuser problems it is advisable and always useful to make a sketch of the

Mollier diagram of the diffusion process. In this case, we refer to Figure 7.25.

The expression for the diffuser efficiency, which is most useful for this example, is Eq. (7.53):

ηD 5 ðT2s=T1 2 1Þ=ðT2=T1 2 1Þ
From the energy equation, h01 2 h1 5 ð1=2Þc21 we obtain,

T1

T01
5 12

c21
2CpT01

5 12
3002

23 10503 473
5 0:90533

Therefore,

T1 5 428:2 K as T 5 473 K

The Mach number at diffuser entry is

M1 5 c1=a1 where a1 5
ffiffiffiffiffiffiffiffiffiffiffi
γRT1

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:43 2873 428:2

p
5 414:8 m=s

Therefore,

M1 5 0:7233:

Again, from the energy equation, h02 2 h2 5 ð1=2Þc22; hence,
T2

T02
5 12

c22
2CpT02

5 12
502

23 10503 473
5 0:9974

and

T2 5 471:7 K

From the diffuser efficiency definition above, we get

T2s

T1
5 ηD

T2

T1
2 1

� �
1 15 11 0:9

471:7

428:2
2 1

� �
5 1:0915

p2

p1
5

T2s

T1

� �γ=ðγ21Þ
5 1:09153:5 5 1:3588

p01

p1
5

T02

T1

� �γ=ðγ21Þ
5

473

428:2

� �3:5

5 1:4166

Therefore,

p1 5 141:2 kPa
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and

p2 5 1:35883 141:25 191:8 kPa

From the thermodynamic relation, namely T ds5 dh2 ð1=ρÞdp; we obtain

s2 2 s1 5Cp ln
T2

T1
2R ln

p2

p1
5 1005 ln

471:7

428:2
2 287 ln 1:35885 97:22 88:05 9:2 J=kg K

Diffuser design calculation
The performance of a conical diffuser has been chosen as an illustration using data presented by

Sovran and Klomp (1967). This is shown in Figure 7.27 as contour plots of Cp in terms of the

geometry of the diffuser, N/R1 and the area ratio AR (5A2/A1). Two optimum diffuser lines, useful

for design purposes, were added by the authors. The first is the line C�
p , the locus of points that

defines the diffuser area ratio AR, producing the maximum pressure recovery for a prescribed nondi-

mensional length, N/R1. The second is the line C��
p , the locus of points defining the diffuser
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FIGURE 7.27

Performance chart for conical diffusers.

(Adapted from Sovran and Klomp, 1967)

308 CHAPTER 7 Centrifugal Pumps, Fans, and Compressors



nondimensional length, producing the maximum pressure recovery at a prescribed area ratio. Note:

Compressible flow data was not available and incompressible data has been used.

EXAMPLE 7.6

Using the performance chart given by Sovran and Klomp (Figure 7.27) determine the efficiency

of a conical low-speed diffuser to give maximum pressure recovery with a prescribed nondimen-

sional length of 8.0 and evaluate the included angle of the cone.

Solution
From Figure 7.26 at N/R5 8.0, we find Cp5 0.7 and Ag5 2.8. The efficiency of the diffuser is

ηD 5Cp=Cp;id

where

Cp;id 5 12 ½1=A2
R�5 0:872

therefore,

ηD 5 0:802

From the geometric expression given for the diffuser shown in Figure 7.7(b), the included

angle is

2θ5 2 tan21 R1

N
A

1
2

R 2 1
� � �

5 2 tan21 1

8

ffiffiffiffiffiffiffi
2:8

p
2 1

� � �
5 9:6�

Note: This angle may be slightly on the high side and a small modification to the area ratio

would seem advisable.

7.13 Choking in a compressor stage
When the through-flow velocity in a passage reaches the speed of sound at some cross section, the

flow chokes. For the stationary inlet passage, this means that no further increase in mass flow is

possible, either by decreasing the back pressure or by increasing the rotational speed. Now the

choking behavior of rotating passages differs from that of stationary passages, making separate

analyses for the inlet, impeller, and diffuser a necessity. For each component, a simple, 1D

approach is used assuming that all flow processes are adiabatic and that the fluid is a perfect gas.

Inlet
Choking takes place when c25 a25 γRT. Since h0 5 h1 ð1=2Þc2; CpT0 5CpT 1 ð1=2ÞγRT ; and
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T0

T0
5 11

γR
2Cp

� �21

5
2

γ1 1
(7.55))

Assuming the flow in the inlet is isentropic,

ρ
ρ0

5
p

p0

T0

T
5 11

1

2
ðγ21ÞM2

 �21=ðγ21Þ

and when c5 a, M5 1, so that

ρ
ρ0

5
2

γ11

� �1=ðγ21Þ
(7.56)

Substituting Eqs (7.55) and (7.56) into the continuity equation, _m=A5 ρc5 ρðγRTÞ1=2;
_m

A
5 ρ0a0

2

γ11

� �ðγ11Þ=2ðγ21Þ
(7.57)

Thus, ρ0a0 refer to inlet stagnation conditions that remain unchanged, the mass flow rate at

choking is constant.

Impeller
In the rotating impeller passages, flow conditions are referred to the factor I5 h1 ð1=2Þðw2 2U2Þ;
which is constant according to Eq. (7.2). At the impeller inlet and for the special case cθ15 0, note that

I1 5 h1 1 ð1=2Þc21 5 h01. When choking occurs in the impeller passages, the relative velocity w equals

the speed of sound at some section. Now w25 a25 γRT and T015 T1 (γRT/2Cp)2 (U2/2Cp), therefore,

T

T01
5

2

γ1 1

� �
11

U2

2CpT01

� �
(7.58)

Assuming isentropic flow, ρ/ρ015 (T/T01)
1/(γ21). Using the continuity equation,

_m

A
5 ρ01a01

T
T01

� �ðγ11Þ=2ðγ21Þ
5 ρ01a01

2
γ11

11 U2

2CpT01

� � �ðγ11Þ=2ðγ21Þ

5 ρ01a01
21ðγ21ÞU2=a2

01

γ11

 �ðγ11Þ=2ðγ21Þ (7.59)

If choking occurs in the rotating passages, Eq. (7.59) indicates that the mass flow is dependent

on the blade speed. As the speed of rotation is increased, the compressor can accept a greater mass

flow, unless choking occurs in some other component of the compressor. The fact that the choking

flow in an impeller can vary, depending on blade speed, may seem at first rather surprising; this

analysis gives the reason for the variation of the choking limit of a compressor.

Diffuser
The relation for the choking flow, Eq. (7.57) holds for the diffuser passages, it being noted that

stagnation conditions now refer to the diffuser and not the inlet. Thus,
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_m

A2

5 ρ02a02
2

γ11

� �ðγ11Þ=2ðγ21Þ
(7.60)

Clearly, stagnation conditions at the diffuser inlet are dependent on the impeller process. To

find how the choking mass flow limit is affected by blade speed it is necessary to refer back to inlet

stagnation conditions.

Assuming a radial blade impeller of efficiency ηi then,

T02s 2 T01 5 ηiðT02 2 T01Þ5 ηiσU
2
2=Cp

Hence,

p02=p01 5 ðT02s=T01Þγ=ðγ21Þ 5 11ηiσU
2
2=CpT01

� ��γ=ðγ21Þ

therefore,

_m

A2

5 ρ01a01
½11ðγ21ÞηiσU2

2=a
2
01�γ=ðγ21Þ

½11ðγ21ÞσU2
2=a01�1=2

2

γ11

� �ðγ11Þ=2ðγ21Þ
(7.61)

In this analysis, it should be noted that the diffuser process has been assumed to be isentropic

but the impeller process has been assumed anisentropic. Equation (7.61) indicates that the choking

mass flow can be varied by changing the impeller speed of rotation.

Note: The preliminary design of centrifugal compressor for a turbocharger is given in Appendix B.

PROBLEMS
Note: In problems 1�6 assume γ and R are 1.4 and 287 J/(kg �C), respectively. In problems 2�6

assume the stagnation pressure and stagnation temperature at compressor entry are 101.3 kPa and

288 K, respectively.

1. A cheap radial-vaned centrifugal fan is required to provide a supply of pressurized air to a

furnace. The specification requires that the fan produce a total pressure rise equivalent to

7.5 cm of water at a volume flow rate of 0.2 m3/s. The fan impeller is fabricated from 30 thin

sheet metal vanes, the ratio of the passage width to circumferential pitch at the impeller exit

being specified as 0.5, and the ratio of the radial velocity to blade tip speed as 0.1. Assuming

that the overall isentropic efficiency of the fan is 0.75 and that the slip can be estimated from

Stanitz’s expression, Eq. (7.34b), determine

a. the vane tip speed;

b. the rotational speed and diameter of the impeller;

c. the power required to drive the fan if the mechanical efficiency is 0.95;

d. the specific speed.

For air assume the pressure is 105 Pa and the temperature is 20�C.

2. The air entering the impeller of a centrifugal compressor has an absolute axial velocity of

100 m/s. At rotor exit the relative air angle measured from the radial direction is 26�360, the
radial component of velocity is 120 m/s, and the tip speed of the radial vanes is 500 m/s.

311Problems



Determine the power required to drive the compressor when the air flow rate is 2.5 kg/s and

the mechanical efficiency is 95%. If the radius ratio of the impeller eye is 0.3, calculate a

suitable inlet diameter assuming the inlet flow is incompressible. Determine the overall total

pressure ratio of the compressor when the total-to-total efficiency is 80%, assuming the

velocity at exit from the diffuser is negligible.

3. A centrifugal compressor has an impeller tip speed of 366 m/s. Determine the absolute Mach

number of the flow leaving the radial vanes of the impeller when the radial component of

velocity at impeller exit is 30.5 m/s and the slip factor is 0.90. Given that the flow area at

impeller exit is 0.1 m2 and the total-to-total efficiency of the impeller is 90%, determine the

mass flow rate.

4. The eye of a centrifugal compressor has a hub�tip radius ratio of 0.4, a maximum relative flow

Mach number of 0.9, and an absolute flow that is uniform and completely axial. Determine the

optimum speed of rotation for the condition of maximum mass flow given that the mass flow

rate is 4.536 kg/s. Also, determine the outside diameter of the eye and the ratio of axial

velocity�blade speed at the eye tip. Figure 7.12 may be used to assist the calculations.

5. An experimental centrifugal compressor is fitted with free-vortex guide vanes to reduce the

relative air speed at inlet to the impeller. At the outer radius of the eye, air leaving the guide

vanes has a velocity of 91.5 m/s at 20� to the axial direction. Determine the inlet relative

Mach number, assuming frictionless flow through the guide vanes, and the impeller total-to-

total efficiency. Other details of the compressor and its operating conditions are:

Radial vanes at impeller exit

Impeller entry tip diameter, 0.457 m;

Impeller exit tip diameter, 0.762 m;

Slip factor, 0.9 radial blades at impeller exit;

Radial component of velocity at impeller exit, 53.4 m/s;

Rotational speed of impeller, 11,000 rev/min;

Static pressure at impeller exit, 223 kPa (abs).

6. A centrifugal compressor has an impeller with 21 vanes, which are radial at exit, a vaneless

diffuser, and no inlet guide vanes. At inlet, the stagnation pressure is 100 kPa (abs) and the

stagnation temperature is 300 K.

a. Given that the mass flow rate is 2.3 kg/s, the impeller tip speed is 500 m/s and the

mechanical efficiency is 96%, determine the driving power on the shaft. Use Eq. (7.34b)

for the slip factor.

b. Determine the total and static pressures at diffuser exit when the velocity at that position

is 100 m/s. The total-to-total efficiency is 82%.

c. The reaction, which may be defined as for an axial-flow compressor by Eq. (5.19), is 0.5,

the absolute flow speed at impeller entry is 150 m/s, and the diffuser efficiency is 84%.

Determine the total and static pressures, absolute Mach number, and radial component of

velocity at the impeller exit.

d. Determine the total-to-total efficiency for the impeller.
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e. Estimate the inlet�outlet radius ratio for the diffuser assuming the conservation of

angular momentum.

f. Find a suitable rotational speed for the impeller given an impeller tip width of 6 mm.

7. A centrifugal pump is used to raise water against a static head of 18.0 m. The suction and

delivery pipes, both 0.15 m diameter, have, respectively, friction head losses amounting to

2.25 and 7.5 times the dynamic head. The impeller, which rotates at 1450 rev/min, is 0.25 m

diameter with eight vanes, radius ratio 0.45, inclined backward at β0
2 5 60�. The axial width

of the impeller is designed so as to give constant radial velocity at all radii and is 20 mm at

impeller exit. Assuming a hydraulic efficiency of 0.82 and an overall efficiency of 0.72,

determine

a. the volume flow rate;

b. the slip factor using Busemann’s method;

c. the impeller vane inlet angle required for zero incidence angle;

d. the power required to drive the pump.

8. A centrifugal pump delivers 50 dm3/s of water at an impeller speed of 1450 rev/min. The

impeller has eight vanes inclined backward to the direction of rotation with an angle at

the tip of β0
2 5 60�. The diameter of the impeller is twice the diameter of the shroud at

inlet and the magnitude of the radial component of velocity at impeller exit is equal to

that of the axial component of velocity at the inlet. The impeller entry is designed for the

optimum flow condition to resist cavitation (see Eq. (7.20)) has a radius ratio of 0.35 and

the blade shape corresponds to a well-tested design giving a cavitation coefficient

σb5 0.3. Assuming that the hydraulic efficiency is 70% and the mechanical efficiency is

90%, determine

a. the diameter of the inlet;

b. the NPSH;

c. the impeller slip factor using Wiesner’s formula;

d. the head developed by the pump;

e. the power input.

Also calculate values for slip factor using the equations of Stodola and Busemann,

comparing the answers obtained with the result found from Wiesner’s equation.

9. a. Write down the advantages and disadvantages of using free-vortex guide vanes upstream

of the impeller of a high-pressure ratio centrifugal compressor. What other sorts of guide

vanes can be used and how do they compare with free-vortex vanes?

b. The inlet of a centrifugal air compressor has a shroud diameter of 0.2 m and a hub

diameter of 0.105 m. Free-vortex guide vanes are fitted in the duct upstream of the

impeller so that the flow on the shroud at the impeller inlet has a relative Mach number,

M1,rel5 1.0, an absolute flow angle of α15 20�, and a relative flow angle β15 55�. At
inlet the stagnation conditions are 288 K and 105 Pa. Assuming frictionless flow into the

inlet, determine

i. the rotational speed of the impeller;

ii. the air mass flow.
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c. At exit from the radially vaned impeller, the vanes have a radius of 0.16 m and a design

point slip factor of 0.9. Assuming an impeller efficiency of 0.9, determine

i. the shaft power input;

ii. the impeller pressure ratio.

10. Sketch a Mollier diagram showing all the stagnation and static points needed to represent the

complete flow process in a diffuser. Derive the following expression for the diffuser

efficiency:

ηD 5
T2s=T1 2 1

T2=T1 2 1

Air enters a diffuser with an averaged velocity of 360 m/s at a stagnation pressure and

temperature of 340 kPa and 420 K and leaves at a stagnation pressure of 300 kPa with an

averaged velocity of 120 m/s and a static pressure of 285 kPa. Determine

a. the static pressure and Mach number of the air at inlet;

b. the diffuser efficiency;

c. the Mach number at exit and the overall entropy increase.

Take γ5 1.4 and Cp5 287 J/(kg K).

11. At the inlet to an axial diffuser the velocity of the approaching air is 420 m/s, the stagnation

pressure is 300 kPa, and the stagnation temperature is 600 K. At exit the stagnation pressure

is 285 kPa and the static pressure is 270 kPa. Using compressible flow analysis, determine

a. the static temperature, static pressure, and Mach number at inlet and the diffuser

efficiency;

b. the Mach numbers at exit and entry.

For air take γ5 1.376 and R5 287 J/(kg K).

12. A centrifugal compressor fitted with 21 radial vanes with an outside diameter of 40 cm is

designed to operate at a rotational speed of 17,400 rpm. Assuming that the air admitted is at

101.3 kPa and a temperature of 15�C, determine

a. the absolute Mach number of the flow at the impeller tip given that the radial velocity at

that location is 30 m/s;

b. the stagnation pressure of the air leaving the impeller if the total-to-total efficiency of the

impeller is 92%;

c. the mass flow of air passing through the compressor if the axial width of the passage at

impeller exit is 2.0 cm.

Assume the Stanitz expression for the slip factor. Take Cp5 1005 J/(kg K) and γ5 1.4.

13. a. A model of low-speed centrifugal compressor (a “blower”) runs at 430 rpm and delivers

10 m3/s of air against a pressure head of 60 mm of water. If the pump efficiency is

estimated to be 80%, how much power is required to drive the compressor?

b. A geometrically similar compressor is made with a diameter 1.8 times the size of the

model and is required to work against a pressure head of 80 mm of water. Determine the

operating speed and the power needed to drive the compressor assuming dynamically

similar conditions apply.
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14. A centrifugal pump is required to deliver 0.09 m3/s of water against a back pressure of

100 kPa. The impeller, which rotates at 1250 rpm, is 0.35 m diameter and has nine vanes

swept back at 45�. The axial width of the impeller at its tip is 40 mm. Using Wiesner’s slip

correlation (assuming that r1/r25 ε in Eq. (7.35d)) determine the specific work done by the

impeller. If the efficiency of the pump is 70%, calculate the power needed to drive the pump.

Calculate the specific speed and specific diameter of the pump and compare your results with

the data given in Chapter 2.

15. Atmospheric air enters the intake diffuser of a jet aircraft flying at a Mach number of 0.9 at a

constant altitude where the static pressure and temperature are 25 kPa and 220 K,

respectively. The entrance area of the intake is 0.5 m2 and the area at entry to the compressor

is 0.8 m2. There is a loss of 10% of the stagnation pressure of the air as it flows to the

compressor. Using compressible flow theory and assuming adiabatic flow in the intake,

determine the Mach number and velocity of the flow entering the compressor.

16. A prototype centrifugal compressor is to be built with an impeller having 19 vanes backswept

at β0
2 5 30�, rotating at 12,000 rpm and delivering air at an outlet pressure of 385 kPa. The

total-to-total efficiency of the compressor, based upon previous well-established design data,

is estimated as 0.82. It can be assumed that the radial component of the air leaving the

impeller equals 0.2 times the impeller tip speed. The air enters the inlet axially at a

stagnation temperature and pressure of 288 K and 100 kPa. Determine

a. the impeller tip speed and tip diameter using the Wiesner slip factor;

b. the specific speed of the compressor assuming that the axial velocity at entry is equal to

the radial component of velocity at impeller outlet. Comment upon whether the chosen

value of the efficiency is appropriate.

How well does the specific speed you have found compare with the values shown in

Figure 2.7?

17. For the preceding problem determine the size of the compressor eye given that the air flow is

8 kg/s the radius ratio rh1/rs15 0.4. What is the value of the absolute Mach number M1?

18. A radial-vaned centrifugal compressor is designed for a rotational speed of 2400 rpm and

requires 1 MW of power to compress the incoming air at a flow rate of 8 kg/s. The air enters

the intake axially and the stagnation conditions are 103 kPa and 288 K. Assuming the slip

factor is 0.9 and the specific speed

NS 5φ0:5=ψ0:75 5 0:7;

where φ5 cx1=U2 and ψ5ΔW=U2
2 , determine

a. the vane tip speed;

b. the axial velocity at inlet, cx1;

c. the inlet Mach number, M1;

d. the inlet area.

19. The final stage of a high-pressure axial compressor is centrifugal of the purely radial type

(see Figure 7.5), the flow at all points through the stage having no axial component. At the

design point for the stage the following data applies:
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Impeller speed, (Ω)5 65,000 rpm

Total pressure at impeller inlet, ðp01Þ5 4:5 bar

Total temperature at impeller inlet, ðT01Þ5 520 K

Total temperature at impeller exit, ðT02Þ5 650 K

Stage isentropic efficiency, ðηcÞ5 75%

Mach number at impeller exit, ðM2Þ5 0:85
Impeller blade radius at inlet, ðr1Þ5 0:08 m
Impeller blade radius at outlet, ðr2Þ5 0:11 m

Impeller blade axial width at inlet ðb1Þ5 0:035 m

Impeller blade axial width at outlet ðb2Þ5 0:018 m

The following assumptions are to be made:

Adiabatic flow throughout the stage

Specific heat at constant pressure, ðCpÞ5 1:005 kJ=kg K

Specific heat ratio ðγÞ5 1:4
Determine,

a. the air mass flow, ð _mÞ;
b. the extra power needed to drive the stage, ðPÞ;
c. the Mach number ðM1Þ at impeller inlet;

d. the specific speed (compare the value you compute with the data shown in Figure 2.7).
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CHAPTER

8Radial-Flow Gas Turbines

I like work; it fascinates me, I can sit and look at it for hours.
Jerome K. Jerome, Three Men in a Boat

8.1 Introduction
The radial-flow turbine has had a long history of development being first conceived for the purpose

of producing hydraulic power over 180 years ago. A French engineer, Fourneyron, developed the

first commercially successful hydraulic turbine (circa 1830) and this was of the radial-outflow type.

A radial-inflow type of hydraulic turbine was built by Francis and Boyden in the United States

(circa 1847), which gave excellent results and was highly regarded. This type of machine is now

known as the Francis turbine, a simplified arrangement of it being shown in Figure 1.1. It will be

observed that the flow path followed is from the radial direction to what is substantially an axial

direction. A flow path in the reverse direction (radial outflow), for a single-stage turbine anyway,

creates several problems, one of which (discussed later) is low specific work. However, as pointed

out by Shepherd (1956) radial-outflow steam turbines comprising many stages have received con-

siderable acceptance in Europe. Figure 8.1, from Kearton (1951), shows diagrammatically the

Ljungström steam turbine, which, because of the tremendous increase in the specific volume of

steam, makes the radial-outflow flow path virtually imperative. A unique feature of the Ljungström

turbine is that it does not have any stationary blade rows. The two rows of blades constituting each

of the stages rotate in opposite directions so that they can both be regarded as rotors.

The inward-flow radial (IFR) turbine covers tremendous ranges of power, rates of mass flow,

and rotational speeds, from very large Francis turbines used in hydroelectric power generation and

developing hundreds of megawatts (see Figures 9.12 and 9.13) down to tiny closed cycle gas tur-

bines for space power generation of a few kilowatts.

The IFR gas turbine has been, and continues to be, used extensively for powering automotive

turbocharges, aircraft auxiliary power units, expansion units in gas liquefaction, and other

cryogenic systems and as a component of the small (10 kW) gas turbines used for space power gen-

eration (Anon, 1971). It has been considered for primary power use in automobiles and in helicop-

ters. According to Huntsman, Hodson, and Hill (1992), studies at Rolls-Royce have shown that a

cooled, high efficiency IFR turbine could offer significant improvement in performance as the gas

generator turbine of a high technology turboshaft engine. What is needed to enable this type of

application are some small improvements in current technology levels. However, designers of this
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new generation of IFR turbines face considerable problems, particularly in the development of

advanced techniques of rotor cooling or of ceramic, shock-resistant rotors.

As indicated later in this chapter, over a limited range of specific speed, IFR turbines provide

an efficiency about equal to that of the best axial-flow turbines. The significant advantages offered

by the IFR turbine compared with the axial-flow turbine are the greater amount of work that can be

obtained per stage, the ease of manufacture, and its superior ruggedness.

8.2 Types of IFR turbine
In the centripetal turbine, energy is transferred from the fluid to the rotor in passing from a large

radius to a small radius. For the production of positive work the product of Ucθ at entry to the rotor

must be greater than Ucθ at rotor exit (Eq. (1.18c)). This is usually arranged by imparting a large

component of tangential velocity at rotor entry, using single or multiple nozzles, and allowing little

or no swirl in the exit absolute flow.

Cantilever turbine
Figure 8.2(a) shows a cantilever IFR turbine where the blades are limited to the region of the rotor

tip, extending from the rotor in the axial direction. In practice the cantilever blades are usually of

Exhaust to
condenser

Incoming
steam Concentric

labyrinth rings (to
reduce leakage)

(a) (b)

FIGURE 8.1

Ljungström type outward-flow radial turbine: (a) meridional section through turbine and (b) blading

arrangement and directions of rotation.

(Adapted from Kearton, 1951)
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the impulse type (i.e., low reaction), by which it is implied that there is little change in relative

velocity at inlet and outlet of the rotor. There is no fundamental reason why the blading should not

be of the reaction type. However, the resulting expansion through the rotor would require an

increase in flow area. This extra flow area is extremely difficult to accommodate in a small radial

distance, especially as the radius decreases through the rotor row.

Aerodynamically, the cantilever turbine is similar to an axial-impulse turbine and can even be

designed by similar methods. Figure 8.2(b) shows the velocity triangles at rotor inlet and outlet.

The fact that the flow is radially inwards hardly alters the design procedure because the blade

radius ratio r2/r3 is close to unity anyway.

The 90� IFR turbine
Because of its higher structural strength compared with the cantilever turbine, the 90� IFR turbine is

the preferred type. Figure 8.3 shows a typical layout of a 90� IFR turbine; the inlet blade angle is

generally made zero, a fact dictated by the material strength and often high gas temperature. The

rotor vanes are subject to high stress levels caused by the centrifugal force field, together with a pul-

sating and often unsteady gas flow at high temperatures. Despite possible performance gains the use

of nonradial (or swept) vanes is generally avoided, mainly because of the additional stresses that

arise due to bending. Nevertheless, despite this difficulty, Meitner and Glassman (1983) have consid-

ered designs using sweptback vanes in assessing ways of increasing the work output of IFR turbines.

From station 2, the rotor vanes extend radially inward and turn the flow into the axial direction.

The exit part of the vanes, called the exducer, is curved to remove most if not all of the absolute

(a)

(b)

c2

cm3

U3

U2

w2

w3

1
Nozzle blades

Rotor blades

Axis of rotor
Flow

2

3

FIGURE 8.2

Arrangement of cantilever turbine and velocity triangles at the design point.
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tangential component of velocity. The 90� IFR turbine or centripetal turbine is very similar in

appearance to the centrifugal compressor of Chapter 7, but with the flow direction and blade

motion reversed.

The fluid discharging from the turbine rotor may have a considerable velocity c3 and an axial

diffuser (see Chapter 7) would normally be incorporated to recover most of the kinetic energy,

ð1=2Þc23, which would otherwise be wasted. In hydraulic turbines (discussed in Chapter 9), a dif-

fuser is invariably used and is called the draught tube.

In Figure 8.3, the velocity triangles are drawn to suggest that the inlet relative velocity, w2, is

radially inward, i.e., zero incidence flow, and the absolute flow at rotor exit, c3, is axial. This con-

figuration of the velocity triangles, popular with designers for many years, is called the nominal

design condition and will be considered in some detail in the following pages. Following this the

so-called optimum efficiency design will be explained.

8.3 Thermodynamics of the 90� IFR turbine
The complete adiabatic expansion process for a turbine comprising (a) the scroll and nozzle blade

row, (b) a radial rotor, and (c) a diffuser, corresponding to the layout of Figure 8.3, is represented

Nozzle blades

Scroll

1

2

3

At rotor inlet c2
cm2= cr 2= w2

c3= cm3= cx3

α2

β3U2

U3

w3

At rotor outlet

4

Rotor
Shroud

Diffuser Ω

FIGURE 8.3

Layout and velocity diagrams for a 90� IFR turbine at the nominal design point.
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by the Mollier diagram shown in Figure 8.4. In the turbine, frictional processes cause the entropy

to increase in all components and these irreversibilities are implied in Figure 8.4.

Across the scroll and nozzle blades the stagnation enthalpy is assumed constant, h015 h02, and,

therefore, the static enthalpy drop is

h1 2 h2 5
1

2
c22 2 c21
� �

(8.1)

which correspond to the static pressure change from p1 to the lower pressure p2. The ideal enthalpy

change (h12 h2s) is between these same two pressures but is at constant entropy.

In Chapter 7, it was shown that the rothalpy, I5 h0;rel 2 ð1=2ÞU2, is constant for an adiabatic

irreversible flow process, relative to a rotating component. For the rotor of the 90� IFR turbine,

h02;rel 2
1

2
U2

2 5 h03;rel 2
1

2
U2

3

Thus, as h5 h0;rel 2 ð1=2Þw2, then

h2 2 h3 5
1

2
U2

2 2U2
3

� �
2 w2

2 2w2
3

� �� �
(8.2a)

In this analysis, the reference point 2 (Figure 8.3) is taken to be at the inlet radius r2 of the rotor

(the blade tip speed U25Ωr2). This implies that the nozzle irreversibilities are lumped together

with any friction losses occurring in the annular space between nozzle exit and rotor entry (usually

scroll losses are included as well).

03ss
04ss
4ss

3ss
3s

s

3

4

03 04
2s

2

02rel

I2

1

01
h 02

p 01 p 02

p 03 p 04

p 1

p 2

p 4

p 3

w2
21

2

c3
21

2

U2
21

2

FIGURE 8.4

Mollier diagram for a 90� IFR turbine and diffuser (at the design point).
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Across the diffuser the stagnation enthalpy does not change, h035 h04, but the static enthalpy

increases as a result of the velocity diffusion. Hence,

h4 2 h3 5
1

2
c23 2 c24
� �

(8.3)

The specific work done by the fluid on the rotor is

ΔW 5 h01 2 h03 5U2cθ2 2U3cθ3 (8.4a)

As h015 h02,

ΔW 5 h02 2 h03 5 h2 2 h3 1
1

2
c22 2 c23
� �

5
1

2
U2

2 2U2
3

� �
2 w2

2 2w2
3

� �
1 c22 2 c23
� �� �

(8.4b)

after substituting Eq. (8.2a).

8.4 Basic design of the rotor
Each term in Eq. (8.4b) makes a contribution to the specific work done on the rotor. A significant

contribution comes from the first term, namely, 1=2ðU2
2 2U2

1Þ, and is the main reason why the

inward-flow turbine has such an advantage over the outward-flow turbine where the contribution

from this term would be negative. For the axial-flow turbine, where U25U1, of course, no contri-

bution to the specific work is obtained from this term. For the second term in Eq. (8.4b), a positive

contribution to the specific work is obtained when w3.w2. In fact, accelerating the relative veloc-

ity through the rotor is a most useful aim of the designer as this is conducive to achieving a low

loss flow. The third term in Eq. (8.4b) indicates that the absolute velocity at rotor inlet should be

larger than at rotor outlet so as to increase the work input to the rotor. With these considerations in

mind the general shape of the velocity diagram shown in Figure 8.3 results.

Nominal design
The nominal design is defined by a relative flow of zero incidence at rotor inlet (i.e., w25 cr2) and

an absolute flow at rotor exit, which is axial (i.e., c35 cx3).
1 Thus, from Eq. (8.4a), with cθ35 0

and cθ25U2, the specific work for the nominal design is simply

ΔW 5U2
2 (8.4c)

EXAMPLE 8.1

The rotor of an IFR turbine, which is designed to operate at the nominal condition, is 23.76 cm

in diameter and rotates at 38,140 rev/min. At the design point, the absolute flow angle at rotor

1This arrangement (cθ35 0) minimizes the exit kinetic energy loss. However, some designers may opt for some exit swirl

in the flow in order to benefit a subsequent diffusion process.
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entry is 72�. The rotor mean exit diameter is one-half of the rotor diameter and the relative

velocity at rotor exit is twice the relative velocity at rotor inlet.

Determine the relative contributions to the specific work of each of the three terms in Eq. (8.4b).

Solution
The blade tip speed is U25πΩD2/605π3 38,1403 0.2376/605 474.5 m/s.

Referring to Figure 8.3, w25U2 cot α25 154.17 m/s and c25U2/sin α25 498.9 m/s

c23 5w2
3 2U2

3 5 ð23 154:17Þ2 2 1

2
3 474:5

� �2

5 38; 786 m2=s2

Hence,

U2
2 2U2

2 5U2
2ð12 1=4Þ5 168; 863 m2=s2

w2
3 2w2

2 5 33w2
2 5 71; 305 m2=s2

and

c22 2 c23 5 210; 115 m2=s2

Thus, summing the values of the three terms and dividing by 2, we get ΔW5 225,142 m2/s2.

The fractional inputs from each of the three terms are, for the U2 terms, 0.375; for the w2

terms, 0.158; for the c2 terms, 0.467.

Finally, as a numerical check, the specific work is ΔW 5U2
2 5 474:52 5 225; 150 m2=s2,

which, apart from some rounding errors, agrees with the preceding computations.

Spouting velocity
The term spouting velocity c0 (originating from hydraulic turbine practice) is defined as that velocity

that has an associated kinetic energy equal to the isentropic enthalpy drop from turbine inlet stagnation

pressure p01 to the final exhaust pressure. The exhaust pressure here can have several interpretations

depending upon whether total or static conditions are used in the related efficiency definition and upon

whether or not a diffuser is included with the turbine. Thus, when no diffuser is used

1

2
c20 5 h01 2 h03ss (8.5a)

or

1

2
c20 5 h01 2 h3ss (8.5b)

for the total and static cases, respectively.

In an ideal (frictionless) radial turbine with complete recovery of the exhaust kinetic energy and

with cθ25U2,

ΔW 5U2
2 5

1

2
c20
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therefore,

U2

c0
5 0:707

At the best efficiency point of actual (frictional) 90� IFR turbines, it is found that this velocity

ratio is, generally, in the range 0.68 ,U2/c0, 0.71.

8.5 Nominal design point efficiency
Referring to Figure 8.4, the total-to-static efficiency in the absence of a diffuser is defined as

ηts 5
h01 2 h03

h01 2 h3ss
5

ΔW

ΔW 1 ð1=2Þc23 1 ðh3 2 h3sÞ1 ðh3s 2 h3ssÞ
(8.6)

The passage enthalpy losses can be expressed as a fraction (ζ) of the exit kinetic energy relative

to the nozzle row and the rotor, i.e.,

h3 2 h3s 5
1

2
w2
3ζR (8.7a)

h3s 2 h3ss 5
1

2
c22ζNðT3=T2Þ (8.7b)

for the rotor and nozzles, respectively. It is noted that, for a constant pressure process, ds5 dh/T,

hence, the approximation,

h3s 2 h3ss 5 ðh2 2 h2sÞðT3=T2Þ
Substituting for the enthalpy losses in Eq. (8.6),

ηts 5 11
1

2
ðc231w3

3ζR1c22ζNT3=T2Þ=ΔW

� 	21

(8.8)

From the design point velocity triangles, Figure 8.3,

c2 5U2 cosec a2;w3 5U3 cosec β3; c3 5U3 cot β3;ΔW 5U2
2

Thus, substituting all these expressions in Eq. (8.8) and noting that U35U2r3/r2,

ηts 5 11
1

2
ζN

T3

T2
cosec2 α21

r3

r2

� �2

ζR cosec2 β31cot2 β3

� �" #( )21

(8.9a)

where r3 and β3 are taken to apply at the arithmetic mean radius, i.e., r3 5 ð1=2Þðr3s 1 r3hÞ. Note
that r3s is the shroud radius at rotor exit and r3h is the hub radius at rotor exit. The temperature ratio

(T3/T2) in Eq. (8.9a) can be obtained as follows.

At the nominal design condition, referring to the velocity triangles of Figure 8.3, w2
3 2U2

3 5 c23,

and so Eq. (8.2a) can be rewritten as

h2 2 h3 5
1

2
ðU2

2 2w2
2 1 c23Þ (8.2b)
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This particular relationship, in the form I5 h02;rel 2 ð1=2ÞU2
2 5 h03, can be easily identified in

Figure 8.4.

Again, referring to the velocity triangles, w25U2 cot α2 and c35U3 cot β3, a useful alternative

form to Eq. (8.2b) is obtained:

h2 2 h3 5
1

2
U2

2 12 cot2α2

� �
1 ðr3=r2Þcot2β3

� �
(8.2c)

where U3 is written as U2r3/r2. For a perfect gas, the temperature ratio T3/T2 can be easily found.

Substituting h5CpT5 γRT/(γ2 1) in Eq. (8.2c),

12
T3

T2
5

1

2
U2

2

ðγ2 1Þ
γRT2

12 cot2α2 1
r3

r2

� �2

cot2β3

" #

therefore,

T3

T2
5 12

1

2
ðγ2 1Þ U2

a2

� �2

12 cot2α2 1
r3

r2

� �2

cot2β3

" #
(8.2d)

where a25 (γRT2)
1/2 is the sonic velocity at temperature T2.

Generally this temperature ratio will have only a very minor effect upon the numerical value of

ηts and so it is often ignored in calculations. Thus,

ηtsC 11
1

2
ζN cosec2 α21

r3

r2

� �2

ðζR cosec2 β31cos2 β3Þ
" #( )21

(8.9b)

is the expression normally used to determine the total-to-static efficiency. An alternative form for

ηts can be obtained by rewriting Eq. (8.6) as

ηts 5
h01 2 h03

h01 2 h3ss
5

ðh01 2 h3ssÞ2 ðh03 2 h3Þ2 ðh3 2 h3sÞ2 ðh3s 2 h3ssÞ
ðh01 2 h3ssÞ

5 12 c23 1 ζNc
2
2 1 ζRw

2
3

� �
=c20

(8.10)

where the spouting velocity c0 is defined by

h01 2 h3ss 5
1

2
c20 5CpT01 12 ðp3=p01Þðγ21Þ=γ

h i
(8.11)

A simple connection exists between total-to-total and total-to-static efficiency, which can be

obtained as follows. Writing

ΔW 5 ηtsΔWts 2 ηtsðh01 2 h3ssÞ
then

ηtt 5
ΔW

ΔWts 2 ð1=2Þc23
5

1

ð1=ηtsÞ2 ðc23=2ΔWÞ
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Therefore,

1

ηtt
5

1

ηts
2

c23
2ΔW

5
1

ηts
2

1

2

r3

r2
cot β3

� �2

(8.12)

EXAMPLE 8.2

Performance data from the CAV type 01 radial turbine (Benson, Cartwright, & Das 1968) oper-

ating at a pressure ratio p01/p3 of 1.5 with zero incidence relative flow onto the rotor is presented

in the following form:

_m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T01=p01

p
5 1:443 1025 msðKÞ1=2

Ω=
ffiffiffiffiffiffiffi
T01

p
5 2410 ðrev=minÞ=K1=2

τ=p01 5 4:593 1026 m3

where τ is the torque, corrected for bearing friction loss. The principal dimensions and angles,

etc. are given as follows:

rotor inlet diameter, 72.5 mm;

rotor inlet width, 7.14 mm;

rotor mean outlet diameter, 34.4 mm;

rotor outlet annulus height, 20.1 mm;

rotor inlet angle, 0�;
rotor outlet angle, 53�;
number of rotor blades, 10;

nozzle outlet diameter, 74.1 mm;

nozzle outlet angle, 80�;
nozzle blade number, 15.

The turbine is “cold tested” with air heated to 400 K (to prevent condensation erosion of the

blades). At nozzle outlet an estimate of the flow angle is given as 70� and the corresponding

enthalpy loss coefficient is stated to be 0.065. Assuming that the absolute flow at rotor exit is

without swirl and uniform and the relative flow leaves the rotor without any deviation, determine

the total-to-static and overall efficiencies of the turbine, the rotor enthalpy loss coefficient, and

the rotor relative velocity ratio.

Solution
The data given are obtained from an actual turbine test and, even though the bearing friction

loss has been corrected, there is an additional reduction in the specific work delivered due to

disk friction and tip leakage losses, etc. The rotor speed Ω5 2410
ffiffiffiffiffiffiffiffi
400

p
5 48; 200 rev=min, the

rotor tip speed U25πΩD2/605 183 m/s and, hence, the specific work done by the rotor

ΔW 5U2
2 5 33:48 kJ=kg. The corresponding isentropic total-to-static enthalpy drop is

h01 2 h3ss 5CpT01 12 ðp3=p01Þðγ21Þ=γ
h i

5 1:0053 400½12 ð1=1:5Þ1=3:5�5 43:97 kJ=kg
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Thus, the total-to-static efficiency is

ηts 5ΔW=ðh01 2 h3ssÞ5 76:14%

The actual specific work output to the shaft, after allowing for the bearing friction loss, is

ΔWact 5 τΩ= _m5
τ
p01

0
@

1
A Ωffiffiffiffiffiffiffi

T01
p p01

_m
ffiffiffiffiffiffiffi
T01

p
0
@

1
A π

30
T01

5 4:593 1026 3 24103π3 400=ð303 1:443 1025Þ
5 32:18 kJ=kg

Thus, the turbine overall total-to-static efficiency is

η0 5ΔWact=ðh01 2 h3ssÞ5 73:18%

By rearranging Eq. (8.9b), the rotor enthalpy loss coefficient can be obtained as

ζR 5 ½2ð1=ηts 2 1Þ2 ζN cosec2 α2�ðr2=r3Þ2 sin2 β3 2 cos2 β3

5 ½2ð1=0:76132 1Þ2 0:0653 1:1186�3 4:4423 0:63782 0:3622

5 1:208

At rotor exit, the absolute velocity is uniform and axial. From the velocity triangles,

Figure 8.3,

w2
3ðrÞ5U2

3 1 c23 5U2
3

r
r3

� �2

1 cot2β3

" #

w2 5U2 cot α2

ignoring blade-to-blade velocity variations. Hence,

w3ðrÞ
w2

5
r3

r2
tan α2

r

r3

� �2

1cot2β3

" #1=2
(8.13)

The lowest value of this relative velocity ratio occurs when, r5 r3h5 (34.42 20.1)/25 7.15 mm,

so that

w3h

w2

5 0:4753 2:904½0:415210:75362�1=2 5 1:19

The relative velocity ratio corresponding to the mean exit radius is

w3

w2

5 0:4753 2:904½110:75362�1=2 5 1:73

It is worth commenting that higher total-to-static efficiencies have been obtained in

other small radial turbines operating at higher pressure ratios. Rodgers (1969) has suggested that
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total-to-static efficiencies in excess of 90% for pressure ratios up to 5�1 can be attained.

Nusbaum and Kofskey (1969) reported an experimental value of 88.8% for a small radial turbine

(fitted with an outlet diffuser, admittedly!) at a pressure ratio p01/p4 of 1.763. In the design point

exercise just given the high rotor enthalpy loss coefficient and the corresponding relatively low

total-to-static efficiency may well be related to the low relative velocity ratio determined on the

hub. Matters are probably worse than this as the calculation is based only on a simple one-

dimensional treatment. In determining velocity ratios across the rotor, account should also be

taken of the effect of blade-to-blade velocity variation (outlined in this chapter) as well as vis-

cous effects. The number of vanes in the rotor (10) may be insufficient on the basis of

Jamieson’s theory (1955), included later in this chapter, which suggests 18 vanes (i.e.,

Zmin5 2π tan α2). For this turbine, at lower nozzle exit angles, Eq. (8.13) suggests that the rela-

tive velocity ratio becomes even less favorable despite the fact that the Jamieson blade spacing

criterion is being approached. (For Z5 10, the optimum value of α2 is about 58
�.)

8.6 Some Mach number relations
Assuming the fluid is a perfect gas, expressions can be deduced for the important Mach numbers in

the turbine. At nozzle outlet, the absolute Mach number at the nominal design point is

M2 5
c2

a2
5

U2

a2
cosec α2

Now,

T2 5 T01 2 c22=ð2CpÞ2 T01 2
1

2
U2

2 cosec
2 α2=Cp

Therefore,

T2

T01
5 12

1

2
ðγ2 1ÞðU2=a01Þ2cosec2 α2

where a25 a01(T2/T01)
1/2. Hence,

M2 5
U2=a01

sin α2 12ð1=2Þðγ21ÞðU2=a01Þ2 cosec2 α2

� �1=2 (8.14)

At rotor outlet, the relative Mach number at the design point is defined by

M3;rel 5
w3

a3
5

r3U2

r2a3
cosec β3
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Now,

h3 5 h01 2 U2
2 1

1

2
c23

0
@

1
A5 h01 2 U2

2 1
1

2
U2

3 cot
2β3

0
@

1
A5 h01 2U2

2 11
1

2
r3
r2
cot β3

� �2
2
4

3
5

a23 5 a201 2 ðγ2 1ÞU2
2 11

1

2
r3
r2
cot β3

� �2
2
4

3
5

therefore,

M3;rel 5
ðU2=a01Þðr3=r2Þ

sin β3f12ðγ21ÞðU2=a01Þ2½11ð1=2Þððr3=r2Þ cot β3Þ2�g1=2
(8.15)

8.7 The scroll and stator blades
It was pointed out by Artt and Spence (1998) that the division of losses in a radial-inflow turbine is

an essential step in attaining a simple performance prediction procedure, one likely to yield useful

results. A common procedure is to simply measure the static pressure at the rotor inlet tip diameter.

However, without knowledge of the magnitude of the loss occurring in the stator passages the

mean velocities cannot be determined.

Many different loss models for one-dimensional performance prediction methods have been

published, e.g., Rohlik (1968), Benson (1970), Benson et al. (1968), Spence and Artt (1997),

Whitfield (1990), etc. These range from simple loss factors determined from experimental data to

more credible attempts at estimating the friction losses in a blade passage. A common fault in most

of these loss models was the lack of verification from reliable experimental data. This unsatisfac-

tory state of affairs still holds true. Spence and Artt (1997) published performance data of tests

done on a 99 mm turbine rotor tested with seven different sized stator diameters embracing a wide

range of rotor speeds and pressure ratios. Despite the ensuing comprehensive test program, these

tests were not successful in providing the answers required.

It is worth trying to understand the procedure followed in these tests. The static pressure p2 was

measured just outside the rotor inlet diameter. An isentropic analysis was carried out to determine

the stator loss from p2. The flow was assumed to accelerate isentropically through the nozzle throat,

the law of continuity enabling the velocity and ideal static pressure and static temperature to be

determined. Conservation of angular momentum was then assumed to apply from the nozzle throat

to the rotor inlet. The radial component of velocity at rotor inlet was found from the continuity equa-

tion applied to the cylindrical potion of the rotor inlet. Solving for these measurements by iteration

enabled the ideal velocity, static temperature and pressure at the rotor inlet to be found. The mea-

sured static pressure was lower than the ideal calculated value and this difference was equated to the

loss through the stator. All of this seemed straightforward enough. However, the resulting pressure

loss turned out to be a strong function of the assumed angle of flow through the throat. Assuming a

flow angle perpendicular to the geometric nozzle throat predicted a loss in excess of the total loss

measured for the turbine stage. Using a flow angle determined from the cos21(o/s) proposed by Hiett
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and Johnston (1964), resulted in a loss of a more believable magnitude. For the 5.5-mm-diameter

nozzle, the angle measured perpendicular to the throat was 62.7� from the radial direction, compared

with 75.2� calculated from the cosine rule. The author decided to abandon this method of analysis

since it is difficult to justify any angle other than one that is perpendicular to the throat.

Stator loss models
Clearly some theoretical method would be needed to estimate the stator loss. With this the rotor

inlet velocity triangles and the rotor losses should then be determinable. Many loss models have

been proposed for correlating the scroll and nozzle losses from performance data, but surprisingly

few have been successful at predicting the losses based on the geometry alone. One of the main

drawbacks with any of the simple loss models is the heavy reliance on existing test data in order to

determine a loss coefficient. Also, no account is taken of the geometrical details of the blades.

Rohlik (1968) used a more complex stator loss model requiring little empirical data when he pre-

sented a design procedure for radial-inflow turbines. This related boundary layer momentum thick-

ness, blade geometry, energy level, and friction loss in the blade passages of axial-flow machines.

A single equation (which originated from Stewart, Witney, and Wong, 1960) was given for the

overall loss in a blade row:

Hf 5E
ðθ=lÞðlc=lÞðl=sÞ

cos α1 2 t=s2 δ=s

� 	
11

Aendwall

Avane

� �
(8.16)

where

Hf5 fraction of the ideal kinetic energy that is lost in the scroll and nozzle passages;

Avane5 area of one of the vane walls of the nozzle passage;

Aendwall5 area of one of the end walls of the nozzle passage;

l5 chord length of the nozzle vane;

lc5mean camber length of the nozzle vane;

s5 vane pitch;

σ5 vane solidity5 l/s;

α1 5mean angle at nozzle exit, measured from the radial direction;

E5 energy factor; from experimental results, E5 1.8;

t5 trailing edge thickness;

θ/l5momentum thickness ratio, determined from axial cascade data as 0.03;

δ/θ5 form factor, determined from correlations of experimental data.

Stewart et al. claimed that the momentum thickness loss parameter varied inversely as the 1/5th

power of the Reynolds number. The value of momentum thickness at any Reynolds number could

be determined from a reference value of momentum thickness at a known Reynolds number, i.e.,

ðθ=lcÞ
ðθ=lcÞref

5
Re

Reref

� �20:2

(8.17)

This analysis has the advantage of requiring little empirical input data, none of which has to be derived

from measured performance data of the turbine being examined. Although there were other analytical
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models that were examined only the model presented by Rohlik has the firmest foundation. It was the

only model of many that correctly predicted the loss changes that occur for different sized nozzles.

Effects of varying the vaneless space and the vane solidity
An extensive experimental program of tests have been reported by Simpson, Spence, and

Watterson (2013) carried out on a 135-mm-tip diameter radial turbine with a variety of stator vane

designs. The purpose of these tests was to determine the effects that the parameter Rte=Rle
2 and the

vane solidity had on the stage efficiency. The authors used computational fluid dynamics and

reported that it was a reliable tool in predicting trends of both stage efficiency and mass flow.

Performance tests were carried out on two series of vaned stator designs in order to measure the

efficiency variations with varying values of the parameters Rte=Rle and solidity c/s. It was found

that the aerodynamic optimum values for these two parameters were 1.175 and 1.25, respectively.

Increasing the values of both of these parameters led to a reduction of both the measured and pre-

dicted static pressure variations at the rotor inlet.

An interesting finding for designers was that increasing the size of the vaneless space was a

more aerodynamically efficient method of obtaining a more circumferentially uniform flow around

the rotor periphery.

Loss coefficients used in 90� IFR turbines
There are a number of ways of representing the losses in the passages of 90� IFR turbines and these

have been listed and interrelated by Benson (1970). As well as the nozzle and rotor passage losses,

there is a loss at rotor entry at off-design conditions. This occurs when the relative flow entering

the rotor is at some angle of incidence to the radial vanes so that it can be called an incidence loss.

It is sometimes referred to as shock loss. This is a rather misleading term because, normally, there

is no shock wave.

Nozzle (or stator) loss coefficients
The enthalpy loss coefficient, which normally includes the inlet scroll and nozzle blade losses, has

already been defined and is

ζN 5
h2 2 h2s

ð1=2Þc22
(8.18)

the stagnation pressure loss coefficient,

YN 5 ðp01 2 p02Þ=ðp02 2 p2Þ (8.18a)

which can be related, approximately, to ζN by

YNCζN 11
1

2
γM2

2

� �
(8.18b)

2Rle is rotor leading edge radius and Rte is stator vane trailing edge radius.
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Since

h01 5 h2 1
1

2
c22 1 h2s 1

1

2
c22s; h2 2 h2s 5

1

2
c22s 2 c22
� �

and

ζN 5
1

φ2
N

2 1 (8.19)

Practical values of the flow coefficient φN for well-designed nozzle rows in normal operation

are usually in the range 0.90,φN, 0.97, therefore, 0.23, ζN, 0.063.

Artt and Spence (1998) gave a very detailed review of the many tests made by researchers since

the early 1960s on the losses occurring in the nozzles of radial-inflow turbines. They also made

many of their own experimental tests on a 99-mm-diameter radial-inflow turbine with seven different

nozzle throat areas at two rotor speeds. Plots were presented showing the division of the losses in the

several parts of the turbine for the two rotor speeds and for each of the seven stator throat areas.

In a previous report, Spence and Artt (1997) commented that a good efficiency was obtained

with a stator�rotor throat area ratio of 0.5. This area ratio seemed to the above authors to be inex-

tricably linked to the optimum blade angles and the more even distribution of the expansion of the

flow between the stator and the rotor.

Rotor loss coefficients
At either the design condition (Figure 8.4), or at the off-design condition dealt with later

(Figure 8.5), the rotor passage friction losses can be expressed in terms of the following coefficients.

The enthalpy loss coefficient is

ζR 5
h3 2 h3s

ð1=2Þw2
3

(8.20)

The velocity coefficient is

φR 5w3=w3s (8.21)

which is related to ζR by

ζR 5
1

φ2
R

2 1 (8.22)

The normal range of φ for well-designed rotors is approximately, 0.70,φR, 0.85 and

1.04, ζR, 0.38.

8.8 Optimum efficiency considerations
According to Abidat, Chen, Baines, and Firth (1992), the understanding of incidence effects on the

rotors of radial- and mixed-flow turbines is very limited. Normally, IFR turbines are made with
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radial vanes to reduce bending stresses. In most flow analyses that have been published of the IFR

turbine, including all earlier editions of this text, it was assumed that the average relative flow at

entry to the rotor was radial, that is, the incidence of the relative flow approaching the radial vanes

was zero. The following discussion of the flow model will show that this is an oversimplification

and the flow angle for optimum efficiency is significantly different from zero incidence. Rohlik

(1975) had asserted that “there is some incidence angle that provides optimum flow conditions at

the rotor-blade leading edge. This angle has a value sometimes as high as 40� with a radial blade.”

The flow approaching the rotor is assumed to be in the radial plane with a velocity c2 and flow

angle α2 determined by the geometry of the nozzles or volute. Once the fluid enters the rotor, the

process of work extraction proceeds rapidly with reductions in the magnitude of the tangential

velocity component and blade speed as the flow radius decreases. Corresponding to these velocity

changes is a high blade loading and an accompanying large pressure gradient across the passage

from the pressure side to the suction side (Figure 8.5a).

P S P S

Direction
of rotation

(a)

U2

α2 β2

w2

c2

(b)

FIGURE 8.5

Optimum flow condition at inlet to the rotor: (a) streamline flow at rotor inlet—P is for pressure surface, S is

for suction surface, and (b) velocity diagram for the pitchwise averaged flow.
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With the rotor rotating at angular velocity Ω and the entering flow assumed to be irrotational, a

counter-rotating vortex (or relative eddy) is created in the relative flow, whose magnitude is 2Ω,

which conserves the irrotational state. The effect is virtually the same as that described earlier for

the flow leaving the impeller of a centrifugal compressor but in reverse (see Section 7.8 entitled

“Slip Factor”). As a result of combining the incoming irrotational flow with the relative eddy, the

relative velocity on the pressure (or trailing) surface of the vane is reduced. Similarly, on the suc-

tion (or leading) surface of the vane it is seen that the relative velocity is increased. Thus, a static

pressure gradient exists across the vane passage in agreement with the reasoning of the preceding

paragraph.

Figure 8.5(b) indicates the average relative velocity, w2, entering the rotor at angle β2 and

giving optimum flow conditions at the vane leading edge. As the rotor vanes in IFR turbines are

assumed to be radial, the angle β2 is an angle of incidence, and as drawn it is numerically posi-

tive. Depending upon the number of rotor vanes, this angle may be between 20� and 40�. The
static pressure gradient across the passage causes a streamline shift of the flow towards the suc-

tion surface. Stream function analyses of this flow condition show that the streamline pattern

properly locates the inlet stagnation point on the vane leading edge so that this streamline is

approximately radial (Figure 8.5a). It is reasoned that only at this flow condition will the fluid

move smoothly into the rotor passage. Thus, it is the averaged relative flow that is at an angle of

incidence β2 to the vane. Whitfield and Baines (1990, chap. 8) have comprehensively reviewed

the computational methods used in determining turbomachinery flows, including stream function

methods.

Wilson and Jansen (1965) appear to have been the first to note that the optimum angle of inci-

dence was virtually identical to the angle of “slip” of the flow leaving the impeller of a radially

bladed centrifugal compressor with the same number of vanes as the turbine rotor. Following

Whitfield and Baines (1990, chap. 8), an incidence factor, λ, is defined, analogous to the slip factor

used in centrifugal compressors:

λ5 cθ2=U2

The slip factor most often used in determining the flow angle at rotor inlet is that devised by

Stanitz (1952)3 for radial-vaned impellers, so for the incidence factor

λ5 12 0:63π=Z � 12 2=Z

Thus, from the geometry of Figure 8.5(b), we obtain

tan β2 5 ð2=ZÞU2=cm2 (8.23)

To determine the relative flow angle, β2, we need to know, at least, the values of the flow coef-

ficient, φ25 cm2/U2, and the vane number, Z. A simple method of determining the minimum num-

ber of vanes needed in the rotor, due to Jamieson (1955, chap. 9), is given later in this chapter.

However, in the next section an optimum efficiency design method devised by Whitfield (1990)

provides an alternative way for deriving β2.

3In Chapter 7, a recently modified and improved slip factor for centrifugal compressors has been presented which may

have application to the analysis of radial-inflow turbines.
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Design for optimum efficiency
Whitfield (1990) presented a general one-dimensional design procedure for the IFR turbine in

which, initially, only the required power output is specified. The specific power output is given as

ΔW 5 _W _m5 h01 2 h03 5
γR

γ2 1
ðT01 2 T03Þ (8.24)

and, from this a nondimensional power ratio, S, is defined as

S5ΔW=h01 5 12 T03=T01 (8.25)

The power ratio is related to the overall pressure ratio through the total-to-static efficiency:

ηts 5
S

12 ðp3=p01Þðγ21Þ=γ
h i (8.26)

If the power output, mass flow rate, and inlet stagnation temperature are specified, then S can

be directly calculated but, if only the output power is known, then an iterative procedure must be

followed.

Whitfield (1990) chose to develop his procedure in terms of the power ratio S and evolved a

new nondimensional design method. At a later stage of the design when the rate of mass flow and

inlet stagnation temperature can be quantified, the actual gas velocities and turbine size can be

determined. Only the first part of Whitfield’s method dealing with the rotor design is considered in

this chapter.

Solution of Whitfield’s design problem
At the design point, it is usually assumed that the fluid discharges from the rotor in the axial direc-

tion so that with cθ35 0, the specific work is

ΔW 5U2cθ2

and, combining this with Eqs (8.24) and (8.25), we obtain

U2cθ2=a
2
01 5 S=ðγ2 1Þ (8.27)

where a015 (γRT01)
1/2 is the speed of sound corresponding to the temperature T01.

Now, from the velocity triangle at rotor inlet, Figure 8.5(b),

U2 2 cθ2 5 cm2 tan β2 5 cθ2 tan β2=tan α2 (8.28)

Multiplying both sides of Eq. (8.28) by cθ2=c2m2, we get

U2cθ2=c
2
m2 2 c2θ2=c

2
m2 2 tan α2 tan β2 5 0

But,

U2cθ2=c
2
m2 5 ðU2cθ2=c

2
2Þ sec2 α2 5 cð11 tan2 α2Þ
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which can be written as a quadratic equation for tan α2:

ðc2 1Þ tan2 α2 2 b tan α2 1 c5 0

where, for economy of writing, c5U2cθ2=c22 and b5 tan β2. Solving for tan α2,

tan α2 5
b6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 4cð12 cÞ

p
2ðc2 1Þ (8.29)

For a real solution to exist the radical must be greater than, or equal to, zero, i.e., b21 4c(12 c)$ 0.

Taking the zero case and rearranging the terms, another quadratic equation is found, namely,

c2 2 c2 b2=45 0

Hence, solving for c,

c5 16
ffiffiffiffiffiffiffiffiffiffiffiffiffi
11 b2

p� �
=25

1

2
ð16 sec β2Þ5U2cθ2=c

2
2 (8.30)

From Eq. (8.29) and then Eq. (8.30), the corresponding solution for tan α2 is

tan α2 5 b=½2ðc2 1Þ�5 tan β2=ð2 16 sec β2Þ
The correct choice between these two solutions will give a value for α2. 0; thus

tan α2 5
sin β2

12 cos β2

(8.31a)

It is easy to see from Table 8.1 that a simple numerical relation exists between these two para-

meters, namely,

α2 5 902β2=2 (8.31b)

From Eqs (8.27) and (8.30), after some rearranging, a minimum stagnation Mach number at

rotor inlet can be found:

M2
02 5 c22=a

2
01 5

S

γ2 1

� �
2 cos β2

11 cos β2

(8.32)

and the inlet Mach number can be determined using the equation

M2
2 5

c2

a2

� �2
M2

02

12 ð1=2Þðγ2 1ÞM2
02

(8.33)

assuming that T025 T01, as the flow through the stator is adiabatic.

Table 8.1 Variation of α2 for Several Values of β2

Degrees

β2 10 20 30 40

α2 85 80 75 70
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Now, from Eq. (8.28)

cθ2

U2

5
1

11 tan β2=tan α2

After rearranging Eq. (8.31a) to give

tan β2=tan α2 5 sec β2 2 1 (8.34)

and, combining these equations with Eq. (8.23),

cθ2=U2 5 cos β2 5 12 2=Z (8.35)

Equation (8.35) is a direct relationship between the number of rotor blades and the relative flow

angle at inlet to the rotor. Also, from Eq. (8.31b),

cos 2α2 5 cosð1802β2Þ52 cos β2

so that, from the identity cos 2α25 2cos2 α22 1, we get the result

cos2 α2 5 ð12 cos β2Þ=25 1=Z (8.31c)

using also Eq. (8.35).

EXAMPLE 8.3

An IFR turbine with 12 vanes is required to develop 230 kW from a supply of dry air available

at a stagnation temperature of 1050 K and a flow rate of 1 kg/s. Using the optimum efficiency

design method and assuming a total-to-static efficiency of 0.81, determine

a. the absolute and relative flow angles at rotor inlet;

b. the overall pressure ratio, p01/p3;

c. the rotor tip speed and the inlet absolute Mach number.

Solution
a. From the gas tables, e.g., Rogers and Mayhew (1995) or NIST Properties of Fluids Tables, at

T015 1050 K, we can find values for Cp5 1.1502 kJ/kgK and γ5 1.333. Using Eq. (8.25),

S5ΔW=ðCpT01Þ5 230=ð1:153 1050Þ5 0:2

From Whitfield’s equation (8.31c),

cos2 α2 5 1=Z5 0:083333

therefore, α25 73.22� and, from Eq. (8.31b), β25 2(902α2)5 33.56�

b. Rewriting Eq. (8.26),

p3

p01
5 12

s

ηts

� �γ=ðγ21Þ
5 12

0:2

0:81

� �4

5 0:32165

therefore, p01/p0035 3.109
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c. Using Eq. (8.32),

M2
02 5

S

γ2 1

� �
2 cos β2

11 cos β2

5
0:2

0:333
3

23 0:8333

11 0:8333
5 0:5460

therefore, M5 0.7389. Using Eq. (8.33),

M2
2 5

M2
02

12 ð1=2Þðγ2 1ÞM2
02

5
0:546

12 ð0:333=2Þ3 0:546
5 0:6006

and M25 0.775. To find the rotor tip speed, substitute Eq. (8.35) into Eq. (8.27) to obtain

U2
2

a201

� �
cos β2 5

S

γ2 1

therefore,

U2 5 a01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

ðγ2 1Þ cos β2

s
5 633:8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2

0:3333 0:8333

r
5 538:1 m=s

where

a01 5
ffiffiffiffiffiffiffiffiffiffiffiffi
γRT01

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:3333 2873 1050

p
5 633:8 m=s

and T025 T01 is assumed.

8.9 Criterion for minimum number of blades
The following simple analysis of the relative flow in a radially bladed rotor is of considerable inter-

est as it illustrates an important fundamental point concerning blade spacing. From elementary

mechanics, the radial and transverse components of acceleration, fr and ft, respectively, of a particle

moving in a radial plane (Figure 8.6a) are

fr 5 _w2Ω2r (8.36a)

ft 5 r _Ω1 2Ωw (8.36b)

where w is the radial velocity, _w5 dw=dt5w@w=@r (for steady flow), Ω is the angular velocity,

and _Ω5 dΩ=dt is set equal to zero.

Applying Newton’s second law of motion to a fluid element (as shown in Figure 6.2) of unit

depth, ignoring viscous forces, but putting cr5w, the radial equation of motion is

ðp1 dpÞðr1 drÞdθ2 prdθ2 pdrdθ52 frdm

where the elementary mass dm5 ρrdθdr. After simplifying and substituting for fr from Eq. (8.36a),

the following result is obtained,
1

ρ
@p

@r
1w

@w

@r
5Ω2r (8.37)
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Integrating Eq. (8.37) with respect to r obtains

p=ρ1
1

2
w2 2

1

2
U2 5 constant (8.38)

which is merely the inviscid form of Eq. (8.2a).

The torque transmitted to the rotor by the fluid manifests itself as a pressure difference across

each radial vane. Consequently, there must be a pressure gradient in the tangential direction in the

space between the vanes. Again, consider the element of fluid and apply Newton’s second law of

motion in the tangential direction:

dp3 dr5 ftdm5 2ΩwðρrdθdrÞ
Hence,

1

ρ
@p

@θ
5 2Ωrw (8.39)

Radial velocity,W
Radial acceleration, fr

(a)

Insufficient blades
at this radius

Region of flow reversal

(b)

Tangential velocity, Ωr
Tangential acceleration, ft

r
Ω

Ω

ropt

FIGURE 8.6

Flow models used in analysis of minimum number of blades: (a) motion of particle in a radial plane and (b)

optimum radius to avoid flow reversal, ropt.
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which establishes the magnitude of the tangential pressure gradient. Differentiating Eq. (8.38) with

respect to θ,

1

ρ
@p

@θ
52w

@w

@θ
(8.40)

Thus, combining Eqs (8.39) and (8.40) gives

@w

@θ
52 2Ωr (8.41)

This result establishes the important fact that the radial velocity is not uniform across the pas-

sage as is frequently assumed. As a consequence the radial velocity on one side of a passage is

lower than on the other side. Jamieson (1955, chap. 9), who originated this method, conceived the

idea of determining the minimum number of blades based upon these velocity considerations.

Let the mean radial velocity be w and the angular space between two adjacent blades be

Δθ5 2π/Z, where Z is the number of blades. The maximum and minimum radial velocities are,

therefore,

wmax 5w1
1

2
Δw5w1ΩrΔθ (8.42a)

wmin 5w2
1

2
Δw5w2ΩrΔθ (8.42b)

using Eq. (8.41).

Making the reasonable assumption that the radial velocity should not drop below zero

(Figure 8.6b), the limiting case occurs at the rotor tip, r5 r2 with wmin5 0. From Eq. (8.42b) with

U25Ωr2, the minimum number of rotor blades is

Zmin 5 2πU2=w2 (8.43a)

At the design condition, U2 5w2 tan α2, hence,

Zmin 5 2π tan α2 (8.43b)

Jamieson’s result, Eq. (8.43b), is plotted in Figure 8.7 and shows that a large number of rotor

vanes are required, especially for high absolute flow angles at rotor inlet. In practice, a large num-

ber of vanes are not used for several reasons, e.g., excessive flow blockage at rotor exit, a dispro-

portionally large “wetted” surface area causing high friction losses, and the weight and inertia of

the rotor become relatively high.

Some experimental tests reported by Hiett and Johnston (1964) are of interest in connection

with the analysis just presented. With a nozzle outlet angle α25 77� and a 12 vane rotor, a total-to-

static efficiency ηts5 0.84 was measured at the optimum velocity ratio U2/c0. For that magnitude of

flow angle, Eq. (8.43b) suggests 27 vanes would be required to avoid reverse flow at the rotor tip.

However, a second test with the number of vanes increased to 24 produced a gain in efficiency of

only 1%. Hiett and Johnston suggested that the criterion for the optimum number of vanes might

not simply be the avoidance of local flow reversal but require a compromise between total pressure

losses from this cause and friction losses based upon rotor and blade surface areas.
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Glassman (1976) preferred to use an empirical relationship between Z and α2, namely,

Z5
π
30

ð1102α2Þ tan α2 (8.44)

as he also considered Jamieson’s result, Eq. (8.43b), gave too many vanes in the rotor. Glassman’s

result, which gives far fewer vanes than Jamieson’s is plotted in Figure 8.7. Whitfield’s result,

given in Eq. (8.31c), is not too dissimilar from the result given by Glassman’s equation, at least for

low vane numbers.

8.10 Design considerations for rotor exit
Several decisions need to be made regarding the design of the rotor exit. The flow angle β3, the

meridional velocity to blade tip speed ratio cm3/U2, the shroud tip to rotor tip radius ratio r3s/r2,

and the exit hub-to-shroud radius ratio ν5 r3h/r3s, all have to be considered. It is assumed that the

absolute flow at rotor exit is entirely axial so that the relative velocity can be written as

w2
3 5 c2m3 1U2

3

If values of cm3/U2 and r3/r2 can be chosen, then the exit flow angle variation can be found for

all radii. From the rotor exit velocity diagram in Figure 8.3,

cot β3ðrÞ5
cm3r2

U2r
(8.45)
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FIGURE 8.7

Flow angle at rotor inlet as a function of the number of rotor vanes.
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The meridional velocity cm3 should be kept small in order to minimize the exhaust energy loss,

unless an exhaust diffuser is fitted to the turbine.

Rodgers and Geiser (1987) correlated attainable efficiency levels of IFR turbines against the

blade tip speed�spouting velocity ratio, U2/c0, and the axial exit flow coefficient, cm3/U2, and their

result is shown in Figure 8.8. From this figure, it can be seen that peak efficiency values are obtained

with velocity ratios close to 0.7 and with values of exit flow coefficient between 0.2 and 0.3.

Rohlik (1968) suggested that the ratio of mean rotor exit radius to rotor inlet radius, r3/r2,

should not exceed 0.7 to avoid excessive curvature of the shroud. Also, the exit hub-to-shroud

radius ratio, r3h/r3s, should not be ,0.4 because of the likelihood of flow blockage caused by

closely spaced vanes. Based upon the metal thickness alone, it is easily shown that

ð2πr3h=ZÞ cos β3h . t3h

where t3h is the vane thickness at the hub. It is also necessary to allow more than this thickness

because of the boundary layers on each vane. Some of the rather limited test data available on the

design of the rotor exit comes from Rodgers and Geiser (1987) and concerns the effect of rotor radius

ratio and blade solidity on turbine efficiency (Figure 8.9). It is the relative efficiency variation,

η/ηopt, that is depicted as a function of the rotor inlet radius�exit root mean square radius ratio,

r2/r3rms, for various values of a blade solidity parameter, ZL/D2 (where L is the length of the blade

along the mean meridian). This radius ratio is related to the rotor exit hub-to-shroud ratio, ν, by

r3rms

r2
5

r3s

r2

11v2

2

� �1=2

From Figure 8.9, for r2/r3rms, a value between 1.6 and 1.8 appears to be the optimum.

0.1 0.2 0.3
cm3/U2

U
2
/c

o

0.4 0.6 0.8 1.0

0.8

0.7

0.6

0.5

86
84

82 80

88

ηts= 78

FIGURE 8.8

Correlation of attainable efficiency levels of IFR turbines against velocity ratios.

(Adapted from Rodgers & Geiser, 1987)
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Rohlik (1968) suggested that the ratio of the relative velocity at the mean exit radius to the inlet

relative velocity, w3/w2, should be sufficiently high to assure a low total pressure loss. He gave w3/w2

a value of 2.0. The relative velocity at the shroud tip will be greater than that at the mean radius

depending upon the radius ratio at rotor exit.

EXAMPLE 8.4

Given the following data for an IFR turbine,

cm3=U2 5 0:25; v5 0:4; r3s=r2 5 0:7; and w3=w2 5 2:0

determine the ratio of the relative velocity ratio, w3s/w2 at the shroud.

Solution
As w3s=cm3 5 sec β3s and w3=cm3 5 sec β3;

w3s

w3

5
sec β3s

sec β3s

r3

r3s
5

1

2
ð11 vÞ5 0:7 and

r3

r2
5

r3

r3s

r3s

r2
5 0:73 0:75 0:49

1.1

1.0

0.9

0.8
1.5 2.0 2.5 3.0

3.0 4.0 4.5 5.0
6.0

ZL/D2

η/
η o

pt

r2/r3rms

FIGURE 8.9

Effects of vane solidity and rotor radius ratio on the efficiency ratio of the IFR turbine.

(Adapted from Rodgers & Geiser, 1987)
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From Eq. (8.45), the angle at mean radius is given by

cot β3 5
cm3

U2

r2

r3
5

0:25

0:49
5 0:5102

hence, β35 62.97�,

cot β3s 5
cm3

U2

r2

r3s

0:25

0:7
5 0:3571

hence, β3s5 70.35�, and, therefore,

w3s

w2

5
w3s

w3

w3

w2

5
sec β3s

sec β3

3 25
0:4544

0:3363
3 25 2:702

The relative velocity ratio will increase progressively from the hub to the shroud.

EXAMPLE 8.5

Using the data and results given in Examples 8.3 and 8.4 together with the additional informa-

tion that the static pressure at rotor exit is 100 kPa and the nozzle enthalpy loss coefficient,

ζN5 0.06, determine

a. the diameter of the rotor and its speed of rotation; and

b. the vane width to diameter ratio, b2/D2 at rotor inlet.

Solution
a. The rate of mass flow is given by

_m5 ρ3cm3A3 5
p3

RT3

� �
cm3

U2

� �
U2π

r3s

r2

� �2

ð12 v2Þr22 :

From Eq. (8.25), T035 T01(12 S)5 10503 0.85 840 K,

T3 5 T03 2 c2m3=ð2CpÞ5 T03 2
cm3

U2

� �2
U2

2

2Cp

5 8402 0:252 3 5:38:12=ð23 1150:2Þ

Hence, T35 832.1 K.

Substituting values into this mass flow equation,

15 ½105=ð2873 832:1Þ�3 0:253 538:13 0:72 3π3 ð12 0:42Þr22
therefore,

r22 5 0:01373 and r2 5 0:1172 m;

D2 5 0:2343 m

Ω5U2=r2 5 4591:3 rad=s ð43; 843 rev=minÞ:
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b. The rate of mass flow equation is now written as

_m5 ρ2cm2A2; where A2 5 2πr2b2 5 4πr22ðb2=D2Þ
Solving for the absolute velocity at rotor inlet and its components,

cθ2 5 SCpT01=U2 5 0:23 1150:23 1050=538:15 448:9 m=s

cm2 5 cθ2=tan α2 5 448:9=3:31635 135:4 m=s

c2 5 cθ2=sin α2 5 448:9=0:95745 468:8 m=s

To obtain a value for the static density, ρ2, we need to determine T2 and p2:

T2 5 T02 2 c22=ð2CpÞ5 10502 468:82=ð23 1150:2Þ5 954:5 K

h02 2 h2 5
1

2
c22 and as ζN 5

h2 2 h2s

ð1=2Þc22
; h01 2 h2s 5

1

2
c22ð11 ζNÞ

so

T02 2 T2s

T02
5

c22ð11 ζNÞ
2CpT02

5
468:82 3 1:06

23 1150:23 1050
5 0:096447

T2s

T01
5

p2

T01

� �ðγ21Þ=γ
5 12 0:096455 0:90355

Therefore,

p2

p01
5

T2s

T01

� �γ=ðγ21Þ
5 0:903554 5 0:66652

p2 5 3:1093 105 3 0:666525 2:07223 105 Pa

b2

D2

5
1

4π
RT2

p2

� �
_m

cm2r
2
2

� �
5

1

43 π
2873 954:5

2:07223 105

� �
1

135:43 0:01373
5 0:0566

EXAMPLE 8.6

For the IFR turbine described in Example 8.3 and using the data and results in Examples 8.4 and

8.5, deduce a value for the rotor enthalpy loss coefficient, ζR, at the optimum efficiency flow

condition.

Solution
From Eq. (8.10), solving for ζR,
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ζR 5 ð12 ηtsÞc20 2 c23 2 ζNc22
� �

=w2
3

We need to find values for c0, c3, w3, and c2.

From the data,

c3 5 cm3 5 0:253 538:15 134:5 m=s

w3 5 2w2 5 2cm2=cos β2 5 23 135:4=cos 33:5605 324:97 m=s

1

2
c20 5ΔW=ηts 5 2303 103=0:815 283:953 103

c2 5 468:8 m=s

Therefore,

ζR 5 ð23 283:953 103 3 0:192 134:52 2 0:063 468:82Þ=324:972
5 76; 624=105; 6055 0:7256

8.11 Significance and application of specific speed
The concept of specific speed, Ωs, has already been discussed in Chapter 2 and some applications

of it have been made already. Specific speed is extensively used to describe turbomachinery operat-

ing requirements in terms of shaft speed, volume flow rate, and ideal specific work (alternatively,

power developed is used instead of specific work). Originally, specific speed was applied almost

exclusively to incompressible flow machines as a tool in the selection of the optimum type and size

of unit. Its application to units handling compressible fluids was somewhat inhibited, due, it would

appear, to the fact that volume flow rate changes through the machine, which raised the awkward

question of which flow rate should be used in the specific speed definition. According to Balje

(1981), the significant volume flow rate that should be used for turbines is that in the rotor exit,

Q3. This has now been widely adopted by many authorities.

Wood (1963) found it useful to factorize the basic definition of the specific speed equation,

Eq. (2.14a), in terms of the geometry and flow conditions within the radial-inflow turbine.

Adopting the nondimensional form of specific speed, to avoid ambiguities,

Ωs 5
ΩQ1=2

3

Δh
3=4
0s

(8.46)

where Ω is in rad/s, Q3 is in m3/s, and the isentropic total-to-total enthalpy drop Δh0s (from turbine

inlet to exhaust) is in joules per kilogram (i.e., square meters per second squared).

For the 90� IFR turbine, writing U25 0.5ΩD2 and Δh0s 5 ð1=2Þc20, Eq. (8.46) can be factorized

as follows:

Ωs 5
Q

1=2
3

ðð1=2Þc20Þ3=4
2U2

D2

� �
2U2

ΩD2

� �1=2

5 2
ffiffiffi
2

p� �3=2 U2

c0

� �3=2
Q3

ΩD3
2

� �1=2

(8.47a)
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For the ideal 90� IFR turbine and with cθ25U2, it was shown earlier that the blade speed to

spouting velocity ratio, U2=c0 5
ffiffiffi
2

p
5 0:707. Substituting this value into Eq. (8.47a),

Ωs 5 8
Q3

ΩD3
2

� �1=2

(8.47b)

that is, specific speed is directly proportional to the square root of the volumetric flow coefficient.

To obtain some physical significance from Eqs (8.46) and (8.47b), define a rotor disc

areaAd 5πD2
2=4 and assume a uniform axial rotor exit velocity c3 so that Q35A3c3, as

Ω5 2U2=D2 5
2c0

ffiffiffi
2

p

D2

Q3

ΩD3
2

5
A3c3D2

2
ffiffiffi
2

p
c0D

3
2

5
A3

Ad

c3

c0

π
8

ffiffiffi
2

p

Hence,

Ωs 5 2:11
c3

c0

� �1=2
A3

Ad

� �1=2

ðradÞ (8.47c)

In an early study of IFR turbine design for maximum efficiency, Rohlik (1968) specified that

the ratio of the rotor shroud diameter to rotor inlet diameter should be limited to a maximum value

of 0.7 to avoid excessive shroud curvature and that the exit hub�shroud tip ratio was limited to a

minimum of 0.4 to avoid excess hub blade blockage and loss. Using this as data, an upper limit for

A3/Ad can be found,

A3

Ad

5
D3s

D2

� �2

12
D3h

D3s

� �2
" #

5 0:72 3 ð12 0:16Þ5 0:41

Figure 8.10 shows the relationship between Ωs, the exhaust energy factor (c3/c0)
2, and the area

ratio A3/Ad based upon Eq. (8.47c). According to Wood (1963), the limits for the exhaust energy

factor in gas turbine practice are 0.04, (c3/c0)
2, 0.30, the lower value being apparently a flow sta-

bility limit.

The numerical value of specific speed provides a general index of flow capacity relative to

work output. Low values of Ωs are associated with relatively small flow passage areas and high

values with relatively large flow passage areas. Specific speed has also been widely used as a gen-

eral indication of achievable efficiency. Figure 8.11 presents a broad correlation of maximum effi-

ciencies for hydraulic and compressible fluid turbines as functions of specific speed. These

efficiencies apply to favorable design conditions with high values of flow Reynolds number, effi-

cient diffusers, and low leakage losses at the blade tips. It is seen that over a limited range of spe-

cific speed the best radial-flow turbines match the best axial-flow turbine efficiency, but from

Ωs5 0.03�10 no other form of turbine handling compressible fluids can exceed the peak perfor-

mance capability of the axial turbine.

Over the fairly limited range of specific speed (0.3,Ωs, 1.0) that the IFR turbine can produce

a high efficiency, it is difficult to find a decisive performance advantage in favor of either the
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axial-flow turbine or the radial-flow turbine. New methods of fabrication enable the blades of small

axial-flow turbines to be cast integrally with the rotor so that both types of turbine can operate at

about the same blade tip speed. Wood (1963) compared the relative merits of axial and radial gas

0.2

0.4

0.6

0.8

1.0

2.0

0.03 0.04 0.06 0.08 0.1 0.2

Exhaust energy factor (c3/c0)2

S
pe

ci
fic

 s
pe

ed
, Ω

 (
ra

d)

0.3 0.4

0.3
0.4

0.2

A3/Ad= 0.5

FIGURE 8.10

Specific speed function for a 90� IFR turbine.

(Adapted from Wood, 1963)
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turbines at some length. In general, although weight, bulk, and diameter are greater for radial than

axial turbines, the differences are not so large and mechanical design compatibility can reverse the

difference in a complete gas turbine power plant. The NASA nuclear Brayton cycle space power

studies were all made with 90� IFR turbines rather than with axial-flow turbines.

The design problems of a small axial-flow turbine were discussed by Dunham and Panton

(1973), who studied the cold performance measurements made on a single-shaft turbine of 13 cm

diameter, about the same size as the IFR turbines tested by NASA. Tests had been performed with

four rotors to try to determine the effects of aspect ratio, trailing edge thickness, Reynolds number,

and tip clearance. One turbine build achieved a total-to-total efficiency of 90%, about equal to that

of the best IFR turbine. However, because of the much higher outlet velocity, the total-to-static effi-

ciency of the axial turbine gave a less satisfactory value (84%) than the IFR type which could be

decisive in some applications. They also confirmed that the axial turbine tip clearance was compar-

atively large, losing 2% efficiency for every 1% increase in clearance. The tests illustrated one

major design problem of a small axial turbine that was the extreme thinness of the blade trailing

edges needed to achieve the efficiencies stated.

8.12 Optimum design selection of 90� IFR turbines
Rohlik (1968) has examined analytically the performance of 90� IFR turbines to determine optimum

design geometry for various applications as characterized by specific speed. His procedure, which

extends an earlier treatment of Wood (1963), was used to determine the design point losses and

corresponding efficiencies for various combinations of nozzle exit flow angle, α2, rotor diameter

ratio, D2/D3, and rotor-blade entry height to exit diameter ratio, b2/D3. The losses taken into

account in the calculations are those associated with

1. nozzle blade row boundary layers;

2. rotor passage boundary layers;

3. rotor-blade tip clearance;

4. disc windage (on the back surface of the rotor);

5. kinetic energy loss at exit.

A mean flow path analysis was used and the passage losses were based upon the data of

Stewart et al. (1960). The main constraints in the analysis were

1. w3/w25 2.0;

2. cθ35 0;

3. β25β2,opt, i.e., zero incidence;

4. r3s/r25 0.7;

5. r3h/r3s5 0.4.

Figure 8.12 shows the variation in total-to-static efficiency with specific speed (Ωs) for a selection

of nozzle exit flow angles, α2. For each value of α2 a hatched area is drawn, inside of which the various

diameter ratios are varied. The envelope of maximum ηts is bounded by the constraints D3h/D3s5 0.4 in

all cases and D3s/D25 0.7 for Ωs$ 0.58 in these hatched regions. This envelope is the optimum
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geometry curve and has a peak ηts of 0.87 at Ωs5 0.58 rad. An interesting comparison is made by

Rohlik with the experimental results obtained by Kofskey and Wasserbauer (1966) on a single 90� IFR
turbine rotor operated with several nozzle blade row configurations. The peak value of ηts from this

experimental investigation also turned out to be 0.87 at a slightly higher specific speed, Ωs5 0.64 rad.

The distribution of losses for optimum geometry over the specific speed range is shown in

Figure 8.13. The way the loss distributions change is a result of the changing ratio of flow to spe-

cific work. At low Ωs all friction losses are relatively large because of the high ratios of surface

area to flow area. At high Ωs the high velocities at turbine exit cause the kinetic energy leaving

loss to predominate.

Figure 8.14 shows several meridional plane sections at three values of specific speed corresponding

to the curve of maximum total-to-static efficiency. The ratio of nozzle exit height�rotor diameter,

b2/D2, is shown in Figure 8.15, the general rise of this ratio with increasing Ωs reflecting the increase

in nozzle flow area4 accompanying the larger flow rates of higher specific speed. Figure 8.15 also

shows the variation of U2/c0 with Ωs along the curve of maximum total-to-static efficiency.

8.13 Clearance and windage losses
A clearance gap must exist between the rotor vanes and the shroud. Because of the pressure differ-

ence between the pressure and suction surfaces of a vane, a leakage flow occurs through the gap
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Calculated performance of 90� IFR turbine.

(Adapted from Rohlik, 1968)

4The ratio b2/D2 is also affected by the pressure ratio but this has not been shown.
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introducing a loss in efficiency of the turbine. The minimum clearance is usually a compromise

between manufacturing difficulty and aerodynamic requirements. Often, the minimum clearance is

determined by the differential expansion and cooling of components under transient operating con-

ditions that can compromise the steady state operating condition. According to Rohlik (1968), the

loss in specific work as a result of gap leakage can be determined with the simple proportionality

Δhc 5Δh0ðc=bmÞ (8.48)

where Δh0 is the turbine specific work uncorrected for clearance or windage losses and c/bm is the

ratio of the gap to average vane height ½i:e:; bm 5 ð1=2Þðb2 1 b3Þ�. A constant axial and radial gap,
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FIGURE 8.14

Sections of radial turbines of maximum static efficiency.

(Adapted from Rohlik, 1968)
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c5 0.25 mm, was used in the analytical study of Rohlik quoted earlier. According to Rodgers

(1969), extensive development on small gas turbines has shown that it is difficult to maintain clear-

ances less than about 0.4 mm. One consequence of this is that as small gas turbines are made pro-

gressively smaller the relative magnitude of the clearance loss must increase.

The nondimensional power loss due to windage on the back of the rotor has been given by

Shepherd (1956) in the form

ΔPw=ðρ2Ω3D2
2Þ5 constant3Re21=5

where Ω is the rotational speed of the rotor and Re is a Reynolds number. Rohlik (1968) used this

expression to calculate the loss in specific work due to windage,

Δhw 5 0:56 ρ2D
2
2ðU2=100Þ3=ð _m ReÞ (8.49)

where _m is the total rate of mass flow entering the turbine and the Reynolds number is defined by

Re5U2D2/ν2, ν2 being the kinematic viscosity of the gas corresponding to the static temperature

T2 at nozzle exit.

8.14 Cooled 90� IFR turbines
The incentive to use higher temperatures in the basic Brayton gas turbine cycle is well known and

arises from a desire to increase cycle efficiency and specific work output. In all gas turbines

designed for high efficiency, a compromise is necessary between the turbine inlet temperature

desired and the temperature that can be tolerated by the turbine materials used. This problem can

be minimized by using an auxiliary supply of cooling air to lower the temperature of the highly
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stressed parts of the turbine exposed to the high temperature gas. Following the successful applica-

tion of blade cooling techniques to axial-flow turbines, methods of cooling small radial gas turbines

have been developed.

According to Rodgers (1969), the most practical method of cooling small radial turbines is by

film (or veil) cooling (Figure 8.16) where cooling air is impinged on the rotor and vane tips. The

main problem with this method of cooling being its relatively low cooling effectiveness, defined by

ε5
T01 2 ðTm 1ΔT0Þ
T01 2 ðT0c 1ΔT0Þ

(8.50)

where Tm is the rotor metal temperature,

ΔT0 5
1

2
U2

2=Cp

Rodgers refers to tests that indicate the possibility of obtaining ε5 0.30 at the rotor tip section

with a cooling flow of approximately 10% of the main gas flow. Since the cool and hot streams

rapidly mix, effectiveness decreases with distance from the point of impingement. A model study

of the heat transfer aspects of film-cooled radial-flow gas turbines is given by Metzger and

Mitchell (1966).

PROBLEMS
1. A small inward radial-flow gas turbine, comprising a ring of nozzle blades, a radial-vaned

rotor and an axial diffuser, operates at the nominal design point with a total-to-total

efficiency of 0.90. At turbine entry, the stagnation pressure and temperature of the gas are

400 kPa and 1140 K. The flow leaving the turbine is diffused to a pressure of 100 kPa and

has negligible final velocity. Given that the flow is just choked at nozzle exit, determine the

impeller peripheral speed and the flow outlet angle from the nozzles. For the gas assume

γ5 1.333 and R5 287 J/(kg �C).

2. The mass flow rate of gas through the turbine given in Problem 1 is 3.1 kg/s, the ratio of the

rotor axial width�rotor tip radius (b2/r2) is 0.1, and the nozzle isentropic velocity ratio (φ2) is

0.96. Assuming that the space between nozzle exit and rotor entry is negligible and ignoring

the effects of blade blockage, determine

a. the static pressure and static temperature at nozzle exit;

Main flow

Film flow Rotor

Vane

FIGURE 8.16

Cross section of film-cooled radial turbine.
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b. the rotor tip diameter and rotational speed;

c. the power transmitted assuming a mechanical efficiency of 93.5%.

3. A radial turbine is proposed as the gas expansion element of a nuclear powered Brayton cycle

space power system. The pressure and temperature conditions through the stage at the design

point are to be as follows:

upstream of nozzles, p015 699 kPa, T015 1145 K;

nozzle exit, p25 527.2 kPa, T25 1029 K;

rotor exit, p35 384.7 kPa, T35 914.5 K; T035 924.7 K.

The ratio of rotor exit mean diameter to rotor inlet tip diameter is chosen as 0.49 and the

required rotational speed as 24,000 rev/min. Assuming the relative flow at rotor inlet is radial

and the absolute flow at rotor exit is axial, determine

a. the total-to-static efficiency of the turbine;

b. the rotor diameter;

c. the implied enthalpy loss coefficients for the nozzles and rotor row.

The gas employed in this cycle is a mixture of helium and xenon with a molecular weight

of 39.94 and a ratio of specific heats of 5/3. The universal gas constant is R05 8.314 kJ/(kg-

mol K).

4. A film-cooled radial-inflow turbine is to be used in a high-performance open Brayton cycle

gas turbine. The rotor is made of a material able to withstand a temperature of 1145 K at a

tip speed of 600 m/s for short periods of operation. Cooling air is supplied by the compressor

that operates at a stagnation pressure ratio of 4�1, with an isentropic efficiency of 80%,

when air is admitted to the compressor at a stagnation temperature of 288 K. Assuming that

the effectiveness of the film cooling is 0.30 and the cooling air temperature at turbine entry is

the same as that at compressor exit, determine the maximum permissible gas temperature at

entry to the turbine. Take γ5 1.4 for the air. Take γ5 1.333 for the gas entering the turbine.

Assume R5 287 J/(kg K) in both cases.

5. The radial-inflow turbine in Problem 3 is designed for a specific speed Ωs of 0.55 rad.

Determine

a. the volume flow rate and the turbine power output;

b. the rotor exit hub and tip diameters;

c. the nozzle exit flow angle and the rotor inlet passage width�diameter ratio, b2/D2.

6. An IFR gas turbine with a rotor diameter of 23.76 cm is designed to operate with a gas mass

flow of 1.0 kg/s at a rotational speed of 38,140 rev/min. At the design condition, the inlet

stagnation pressure and temperature are to be 300 kPa and 727�C. The turbine is to be “cold”

tested in a laboratory where an air supply is available only at the stagnation conditions of

200 kPa and 102�C.
a. Assuming dynamically similar conditions between those of the laboratory and the

projected design determine, for the “cold” test, the equivalent mass flow rate and the

speed of rotation. Assume the gas properties are the same as for air.

b. Using property tables for air, determine the Reynolds numbers for both the hot and cold

running conditions. The Reynolds number is defined in this context as
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Re5 ρ01ΩD
2=μ1

where ρ01 and μ1 are the stagnation density and viscosity of the air, Ω is the rotational speed

(rev/s), and D is the rotor diameter.

7. For the radial-flow turbine described in the previous problem and operating at the prescribed

“hot” design point condition, the gas leaves the exducer directly to the atmosphere at a

pressure of 100 kPa and without swirl. The absolute flow angle at rotor inlet is 72� to the

radial direction. The relative velocity w3 at the mean radius of the exducer (which is one-half

of the rotor inlet radius r2) is twice the rotor inlet relative velocity w2. The nozzle enthalpy

loss coefficient, ζN5 0.06. Assuming the gas has the properties of air with an average value

of γ5 1.34 (this temperature range) and R5 287 J/kg K, determine

a. the total-to-static efficiency of the turbine;

b. the static temperature and pressure at the rotor inlet;

c. the axial width of the passage at inlet to the rotor;

d. the absolute velocity of the flow at exit from the exducer;

e. the rotor enthalpy loss coefficient;

f. the radii of the exducer exit given that the radius ratio at that location is 0.4.

8. One of the early space power systems built and tested for NASA was based on the Brayton

cycle and incorporated an IFR turbine as the gas expander. Some of the data available

concerning the turbine are as follows:

total-to-total pressure ratio (turbine inlet to turbine exit), p01/p035 1.560;

total-to-static pressure ratio, p01/p35 1.613;

total temperature at turbine entry, T015 1083 K;

total pressure at inlet to turbine, T015 91 kPa;

shaft power output (measured on a dynamometer), Pnet5 22.03 kW;

bearing and seal friction torque (a separate test), τf5 0.0794 Nm;

rotor diameter, D25 15.29 cm;

absolute flow angle at rotor inlet, α25 72�;
absolute flow angle at rotor exit, α35 0�;
the hub-to-shroud radius ratio at rotor exit, r3h/r3s5 0.35;

ratio of blade speed to jet speed, ν5U2/c05 0.6958, c0 based on total-to-static pressure ratio.

For reasons of crew safety, an inert gas argon (R5 208.2 J/(kg K), ratio of specific heats,

γ5 1.667) was used in the cycle. The turbine design scheme was based on the concept of

optimum efficiency. Determine, for the design point

a. the rotor vane tip speed;

b. the static pressure and temperature at rotor exit;

c. the gas exit velocity and mass flow rate;

d. the shroud radius at rotor exit;

e. the relative flow angle at rotor inlet;

f. the specific speed.

Note: The volume flow rate to be used in the definition of the specific speed is based on

the rotor exit conditions.
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9. What is meant by the term nominal design in connection with a radial-flow gas turbine rotor?

Sketch the velocity diagrams for a 90� IFR turbine operating at the nominal design point.

At entry to a 90� IFR turbine, the gas leaves the nozzle vanes at an absolute flow angle, α2,

of 73�. The rotor-blade tip speed is 460 m/s and the relative velocity of the gas at rotor exit is

twice the relative velocity at rotor inlet. The rotor mean exit diameter is 45% of the rotor

inlet diameter. Determine

a. the exit velocity from the rotor;

b. the static temperature difference, T22 T3, of the flow between nozzle exit and rotor exit.

Assume the turbine operates at the nominal design condition and that Cp5 1.33 kJ/kg K.

10. The initial design of an IFR turbine is to be based upon Whitfield’s procedure for optimum

efficiency. The turbine is to be supplied with 2.2 kg/s of air, a stagnation pressure of 250 kPa,

a stagnation temperature of 800�C, and have an output power of 450 kW. At turbine exit the

static pressure is 105 kPA. Assuming for air that γ5 1.33 and R5 287 J/kg K, determine the

value of Whitfield’s power ratio, S, and the total-to-static efficiency of the turbine.

11. By considering the theoretical details of Whitfield’s design problem for obtaining the

optimum efficiency of an IFR turbine show that the correct choice for the relationship of the

rotor inlet flow angles is obtained from the following equation:

tan α2 5
sin β2

12 cos β2

and that a minimum stagnation Mach number at rotor inlet is obtained from

M2
02 5

S

γ2 1

� �
2 cos β2

11 cos β2

12. An IFR turbine rotor is designed with 13 vanes and is expected to produce 400 kW from a

supply of gas heated to a stagnation temperature of 1100 K at a flow rate of 1.2 kg/s. Using

Whitfield’s optimum efficiency design method and assuming ηts5 0.85, determine

a. the overall stagnation pressure to static pressure ratio and

b. the rotor tip speed and inlet Mach number, M2, of the flow.

Assume Cp5 1.187 kJ/kg K and γ5 1.33.

13. Another IFR turbine is to be built to develop 250 kW of shaft power from a gas flow of

1.1 kg/s. The inlet stagnation temperature, T01, is 1050 K, the number of rotor blades is 13,

and the outlet static pressure, p3, is 102 kPa. At rotor exit the area ratio, ν5 r3h/r3s5 0.4, and

the velocity ratio, cm3/U25 0.25. The shroud-to-rotor inlet radius, r3s/r2, is 0.4. Using the

optimum efficiency design method, determine

a. the power ratio, S, and the relative and absolute flow angles at rotor inlet;

b. the rotor-blade tip speed;

c. the static temperature at rotor exit;

d. the rotor speed of rotation and rotor diameter.

Evaluate the specific speed, Ωs. How does this value compare with the optimum value of

specific speed determined in Figure 8.15?
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14. Using the same input design data for the IFR turbine given in Problem 5 and given that the

total-to-static efficiency is 0.8, determine

a. the stagnation pressure of the gas at inlet and

b. the total-to-total efficiency of the turbine.

15. An IFR turbine is required with a power output of 300 kW driven by a supply of gas at a

stagnation pressure of 222 kPa, at a stagnation temperature of 1100 K, and at a flow rate of

1.5 kg/s. The turbine selected by the engineer has 13 vanes and preliminary tests indicate it

should have a total-to-static efficiency of 0.86. Based upon the optimum efficiency design

method, sketch the appropriate velocity diagrams for the turbine and determine

a. the absolute and relative flow angles at rotor inlet;

b. the overall pressure ratio;

c. the rotor tip speed.

16. For the IFR turbine of the previous problem, the following additional information is made

available:

cm3=U2 0:25;w3=w2 5 2:0; r3s=r2 5 0:7 and v5 0:4:

Again, based upon the optimum efficiency design criterion, determine

a. the rotor diameter and speed of rotation;

b. the enthalpy loss coefficients of the rotor and the nozzles given that the nozzle loss

coefficient is (estimated) to be one quarter of the rotor loss coefficient.
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CHAPTER

9Hydraulic Turbines

Hear ye not the hum of mighty workings?
John Keats, Sonnet No. 14

The power of water has changed more in this world than emperors or kings.

Leonardo da Vinci

9.1 Introduction
To put this chapter into perspective, some idea of the scale of hydropower development in the

world might be useful before delving into the intricacies of hydraulic turbines. A very detailed and

authoritative account of virtually every aspect of hydropower is given by Raabe (1985), and this

brief introduction serves merely to illustrate a few aspects of a very extensive subject.

Hydropower is the longest established source for the generation of electric power, which, start-

ing in 1880 as a small DC generating plant in Wisconsin, United States, developed into an indus-

trial size plant following the demonstration of the economic transmission of high-voltage AC at the

Frankfurt Exhibition in 1891. Hydropower was expected to have a worldwide yearly growth rate of

about 5% (i.e., doubling in size every 15 years), but this rate has now proved to be too optimistic.

In 1980, the worldwide installed generating capacity was 460 GW according to the United Nations,

but in 2007 the figure was just exceeding 700 GW. This works out at roughly 1.6% annual yearly

growth. The smaller growth rate must, primarily, be due to the high costs involved in the civil engi-

neering work, the cost of the power and related electrical plant, and to some extent the human cost

due to massive population displacements with necessary new building.

According to the Environmental Resources Group Ltd., in 2007 hydropower constituted about

21% of the world’s electrical generating capacity. The theoretical potential of hydropower is believed

to be 2800 GW. The main areas with potential for growth are China, Latin America, and Africa.

Table 9.1 is an extract of data quoted by Raabe (1985) of the distribution of harnessed and

harnessable potential of some of the countries with the biggest usable potential of hydropower. From

this list, it is seen that the People’s Republic of China (PRC), the country with the largest harnessable

potential in the world had, in 1974, harnessed only 4.22% of this. However, the Three Gorges Dam

project on the Yangtze River is now the biggest hydropower plant in the world. It contains 32 Francis

turbines, each capable of generating 700 MW, the total generating capacity being 22,500 MW.
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Tidal power
This relatively new and very promising technology, in which tidal stream generators are used to

generate power, is still under active development. Very large amounts of energy can be obtained by

this means and, unlike wind power and solar power, it is available at known times each day. The

most efficient type of generator is still to be determined. The world’s first commercial tidal stream

generator, SeaGen, was installed in 2008 at Strangford Lough, Northern Ireland. The prototype

version comprises two 600 kW axial-flow turbines, 16 m in diameter. Further details on this tidal

turbine are given toward the end of this chapter.

Wave power
Several energy conversion systems have now been developed for obtaining electrical power from

sea waves. One notable example is the Wells turbine, which uses an oscillating water column gen-

erated by the waves to drive this special type of axial-flow turbine. Several of these turbines have

been installed (in Scotland and India) and details of their rather special fluid mechanical design are

given in this chapter.

Features of hydropower plants
The initial cost of hydropower plants may be much higher than those of thermal power plants.

However, the present value of total costs (which includes those of fuel) is, in general, lower in

hydropower plants. Raabe (1985) listed the various advantages and disadvantages of hydropower

plants and a brief summary of these is given in Table 9.2.

Table 9.1 Distribution of Harnessed and Harnessable Potential of Hydroelectric Power

Country Usable
Potential
(TWh)

Amount of
Potential
Used (TWh)

Percentage
of Usable
Potential

1 China (PRC) 1320 55.6 4.22

2 Former USSR 1095 180 16.45

3 USA 701.5 277.7 39.6

4 Zaire 660 4.3 0.65

5 Canada 535.2 251 46.9

6 Brazil 519.3 126.9 24.45

7 Malaysia 320 1.25 0.39

8 Columbia 300 13.8 4.6

9 India 280 46.87 16.7

Sum 1�9 5731 907.4 15.83

Other countries 4071 843 20.7

Total 9802.4 1750.5 17.8

(From Raabe, 1985)
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9.2 Hydraulic turbines
Early history of hydraulic turbines
The hydraulic turbine has a long period of development, its oldest and simplest form being the

waterwheel, first used in ancient Greece and subsequently adopted throughout medieval Europe for

the grinding of grain, etc. A French engineer, Benoit Fourneyron, developed the first commercially

successful hydraulic turbine (circa 1830). Later Fourneyron built turbines for industrial purposes

that achieved a speed of 2300 rpm, developing about 50 kW at an efficiency of over 80%.

The American engineer James B. Francis designed the first radial-inflow hydraulic turbine that

became widely used, gave excellent results, and was highly regarded. In its original form, it was used

for heads of between 10 and 100 m. A simplified form of this turbine is shown in Figure 1.1(d). It will

be observed that the flow path followed is essentially from a radial direction to an axial direction.

The Pelton wheel turbine, named after its American inventor, Lester A. Pelton, was brought into

use in the second half of the nineteenth century. This is an impulse turbine in which water is piped at

high pressure to a nozzle where it expands completely to atmospheric pressure. The emerging jet

impacts onto the blades (or buckets) of the turbine, which produce the required torque and power out-

put. A simplified diagram of a Pelton wheel turbine is shown in Figure 1.1(f). The head of water used

originally was between about 90 and 900 m (modern versions operate up to heads of nearly 2000 m).

The increasing need for more power during the early years of the twentieth century also led to

the invention of a turbine suitable for small heads of water, i.e., 3�9 m, in river locations where a

dam could be built. In 1913, Viktor Kaplan revealed his idea of the propeller (or Kaplan) turbine,

see Figure 1.1(e), which acts like a ship’s propeller but in reverse. At a later date, Kaplan improved

his turbine by means of swiveling blades, which improved the efficiency of the turbine appropriate

to the available flow rate and head.

Flow regimes for maximum efficiency
The efficiency of a hydraulic turbine can be defined as the work developed by the rotor in unit

time divided by the difference in hydraulic energy between inlet and outlet of the turbine in unit

Table 9.2 Features of Hydroelectric Power Plants

Advantages Disadvantages

Technology is relatively simple and proven. High efficiency.
Long useful life. No thermal phenomena apart from those in
bearings and generator.

Number of favorable sites limited and available
only in some countries. Problems with
cavitation and water hammer.

Small operating, maintenance, and replacement costs. High initial cost especially for low head plants
compared with thermal power plants.

No air pollution. No thermal pollution of water. Inundation of the reservoirs and displacement
of the population. Loss of arable land.
Facilitates sedimentation upstream and
erosion downstream of a barrage.

(From Raabe, 1985)
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time. The efficiencies of the three principal types of hydraulic turbine just mentioned are shown in

Figure 9.1 as functions of the power specific speed, Ωsp. From Eq. (2.15b), this is

Ωsp 5
Ω

ffiffiffiffiffiffiffiffi
P=ρ

p
ðgHEÞ5=4

(9.1)

where P is the power delivered by the shaft, ρ is the density of water, HE is the effective head

at turbine entry, and Ω is the rotational speed in radians per second. It is remarkable that the

efficiency of the multistage Pelton turbine has now reached 92.5% at ΩspD0.2 and that the Francis

turbine can achieve an efficiency of 95�96% at an ΩspD1.0�2.0.

The Ωsp regimes of these turbine types are of considerable importance to the designer as they

indicate the most suitable choice of machine for an application. In general, low specific speed

machines correspond to low-volume flow rates and high heads, whereas high specific speed

machines correspond to high volume flow rates and low heads. Table 9.3 summarizes the normal
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FIGURE 9.1

Typical design point efficiencies of Pelton, Francis, and Kaplan turbines.

Table 9.3 Operating Ranges of Hydraulic Turbines

Pelton Turbine Francis Turbine Kaplan Turbine

Specific speed (rad) 0.05�0.4 0.4�2.2 1.8�5.0

Head (m) 100�1770 20�900 6�70

Maximum power (MW) 500 800 300

Optimum efficiency (%) 90 95 94

Regulation method Needle valve and
deflector plate

Stagger angle of
guide vanes

Stagger angle of
rotor blades

Note: Values shown in the table are only a rough guide and are subject to change.
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operating ranges for the specific speed, the effective head, the maximum power, and best efficiency

for each type of turbine.

According to the experience of Sulzer Hydro Ltd., of Zurich, the application ranges of the various

types of turbines and turbine pumps (including some not mentioned here) are plotted in Figure 9.2 on

a ln Q versus ln HE diagram and reflect the present state of the art of hydraulic turbomachinery

design. Also in Figure 9.2, lines of constant power output are conveniently shown and have been cal-

culated as the product ηρgQHE, where the efficiency η is given the value of 0.8 throughout the chart.

Capacity of large Francis turbines
The size and capacity of some of the recently built Francis turbines is a source of wonder, and they

seem so enormous! The size and weight of the runners cause special problems getting them to the

site, especially when rivers have to be crossed and the bridges are inadequate.
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FIGURE 9.2

Application ranges for various types of hydraulic turbomachines, as a plot of Q versus H with lines of constant

power determined assuming η05 0.8.

(Courtesy Sulzer Hydro Ltd., Zurich)
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The largest installation in North America (circa 1998) is at La Grande on James Bay in eastern

Canada where 22 units each rated at 333 MW have a total capacity of 7326 MW. A close competi-

tor with the Three Gorges project is the Itaipu hydroelectric plant on the Paraná river (between

Brazil and Paraguay), which has a capacity of 12,600 MW in full operation using 18 Francis

turbines each sized at 700 MW.

The efficiency of large Francis turbines has gradually risen over the years and now is about 95%.

There seems to be little prospect of much further improvement in efficiency as computable values of

losses due to skin friction, tip leakage, and exit kinetic energy from the diffuser are reckoned to account

for the remaining 5%. Raabe (1985) has given much attention to the statistics of the world’s biggest tur-

bines. It would appear at the present time that the largest hydroturbines in the world are the three

vertical-shaft Francis turbines installed at Grand Coulee III on the Columbia River, Washington,

United States. Each of these leviathans has been uprated to 800 MW, with the delivery (or effective)

head, HE5 87 m, Ω5 85.7 rpm, the runner having a diameter of D5 9.26 m and weighing 450 ton.

Using this data in Eq. (9.1), it is easy to calculate that the power specific speed Ωsp5 1.74 rad.

9.3 The Pelton turbine
This is the only hydraulic turbine of the impulse type now in common use. It is an efficient

machine and it is particularly suited to high head applications. The rotor consists of a circular disk

with a number of blades (usually called buckets) spaced around the periphery. One or more nozzles

are mounted in such a way that each nozzle directs its jet along a tangent to the circle through the

centers of the buckets. A “splitter” or ridge splits the oncoming jet into two equal streams so that,

after flowing round the inner surface of the bucket, the two streams depart from the bucket in a

direction nearly opposite to that of the incoming jet.

Figure 9.3 shows the runner of a Pelton turbine and Figure 9.4 shows a six-jet vertical axis Pelton

turbine. Considering one jet impinging on a bucket, the appropriate velocity diagram is shown in

Figure 9.5. The jet velocity at entry is c1 and the blade speed is U so that the relative velocity at entry

is w15 c1 2 U. At exit from the bucket, one half of the jet stream flows as shown in the velocity

diagram, leaving with a relative velocity w2 and at an angle β2 to the original direction of flow. From

the velocity diagram, the much smaller absolute exit velocity c2 can be determined.1

From Euler’s turbine equation, Eq. (1.18c), the specific work done by the water is

ΔW 5U1cθ1 2U2cθ2

For the Pelton turbine, U15U25U, cθ15 c1, so we get

ΔW 5U½U1w1 2 ðU1w2 cos β2Þ�5Uðw1 2w2 cos β2Þ
in which the value of cθ2, 0, as defined in Figure 9.5, i.e., cθ25U1w2 cos β2.

1Design practicalities of Pelton turbines suggested by Franzini and Finnemore (1997). For good efficiency, the bucket

width should be three to four times the size of the jet diameter. The wheel diameter, also referred to as the pitch diame-

ter, is usually 15�20 times the size of the jet diameter. It is the pitch circle to which the centerline of the jet is tangent.

The maximum efficiency of the turbine would be obtained if each bucket completely reversed the relative velocity of the

impinging jet. However, this is not possible because the water must be deflected to either side to avoid interfering with

the following bucket. As a result, the bucket angle β2 is usually about 165�.
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The effect of friction on the fluid flowing inside the bucket will cause the relative velocity at

outlet to be less than the value at inlet. Writing w25 kw1, where 0:8# k# 0:9.

ΔW 5Uw1ð12 k cos β2Þ5Uðc1 2UÞð12 k cos β2Þ (9.2)

An efficiency ηR for the runner can be defined as the specific work done ΔW divided by the

incoming kinetic energy, i.e.,

ηR 5ΔW=
1

2
c21

� �
5 2Uðc1 2UÞð12 k cos β2Þ=c21 (9.3)

Therefore,

ηR 5 2vð12 vÞð12 k cos β2Þ (9.4)

where the blade speed to jet speed ratio, v5U/c1.

To find the optimum efficiency, differentiate Eq. (9.4) with respect to the blade speed ratio, i.e.,

dηR
dv

5 2
d

dv
ðv2 v2Þð12 k cos β2Þ5 2ð12 2vÞð12 k cos β2Þ5 0

FIGURE 9.3

Pelton turbine runner.

(Courtesy Sulzer Hydro Ltd., Zurich)
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FIGURE 9.4

Six-jet vertical-shaft Pelton turbine, horizontal section; power rating 174.4 MW, runner diameter 4.1 m, speed

300 rpm, head 587 m.

(Courtesy Sulzer Hydro Ltd., Zurich)

Nozzle

U w1

c1

w2

c2

U

Direction of
blade motion

β2

FIGURE 9.5

The Pelton wheel showing the jet impinging onto a bucket and the relative and absolute velocities of the flow

(only one half of the emergent velocity diagram is shown).
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Therefore, the maximum efficiency of the runner occurs when ν5 0.5, i.e., U5 c1/2. Hence,

ηR max 5 ð12 kcosβ2Þ (9.5)

Figure 9.6 shows the theoretical variation of the runner efficiency with blade speed ratio for

assumed values of k5 0.8, 0.9, and 1.0 with β25 165�. In practice, the value of k is usually found

to be between 0.8 and 0.9.

A simple hydroelectric scheme
The layout of a Pelton turbine hydroelectric scheme is shown in Figure 9.7. The water is delivered

from a constant level reservoir at an elevation zR (above sea level) and flows via a pressure tunnel

to the penstock head, down the penstock to the turbine nozzles emerging onto the buckets as a

high-speed jet. To reduce the deleterious effects of large pressure surges, a surge tank is connected

to the flow close to the penstock head, which acts so as to damp out transients. The elevation of

the nozzles is zN and the gross head, HG5 zR2 zN.

Controlling the speed of the Pelton turbine
The Pelton turbine is usually directly coupled to an electrical generator that must run at synchro-

nous speed. With large size hydroelectric schemes supplying electricity to a national grid, it is

essential for both the voltage and the frequency to closely match the grid values. To ensure that the

turbine runs at constant speed despite any load changes that may occur, the rate of flow Q is

changed. A spear (or needle) valve, Figure 9.8(a), whose position is controlled by means of a servo-

mechanism, is moved axially within the nozzle to alter the diameter of the jet. This works well for
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FIGURE 9.6

Theoretical variation of runner efficiency for a Pelton wheel with a blade speed�jet speed ratio for several

values of friction factor k.
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Reservoir Surge tank

Penstock head

Penstock

Pelton wheel

5
Nozzle ZN

ZR

Datum level

FIGURE 9.7

Pelton turbine hydroelectric scheme.

Full load

(a) 

(b) 

Part load

Deflector in normal position Fully deflected posiition

FIGURE 9.8

Methods of regulating the speed of a Pelton turbine: (a) with a spear (or needle) valve, and (b) with a

deflector plate.
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very gradual changes in load. However, when a sudden loss in load occurs, a more rapid response

is needed. This is accomplished by temporarily deflecting the jet with a deflector plate so that

some of the water does not reach the buckets, Figure 9.8(b). This acts to prevent over-speeding and

allows time for the slower acting spear valve to move to a new position.

It is vital to ensure that the spear valve does move slowly as a sudden reduction in the rate of

flow could result in serious damage to the system from pressure surges (called water hammer). If

the spear valve did close quickly, all the kinetic energy of the water in the penstock would be

absorbed by the elasticity of the supply pipeline (penstock) and the water, creating very large stres-

ses, which would reach their greatest intensity at the turbine inlet where the pipeline is already

heavily stressed. The surge tank, shown in Figure 9.7, has the function of absorbing and dissipating

some of the pressure and energy fluctuations created by too rapid a closure of the needle valve.

Sizing the penstock diameter
It is shown in elementary textbooks on fluid mechanics (e.g., Franzini & Finnemore, 1997; White,

2011) that the loss in head with incompressible, steady, turbulent flow in pipes of circular cross-

section is given by the Darcy�Weisbach equation (often referred to simply as Darcy’s equation):

Hf 5
flV2

2gd
(9.6)

where f is the friction factor, l is the length of the pipe, d is the pipe diameter, and V is the mass

average velocity of the flow in the pipe. It is assumed, of course, that the pipe is running full. The

value of the friction factor has been determined for various conditions of flow and pipe surface

roughness, e, and the results are usually presented in what is called a Moody diagram. The penstock

(the pipeline bringing the water to the turbine) is long and of large diameter and this can add signif-

icantly to the total cost of a hydroelectric power scheme. Using Darcy’s equation, Eq. (9.6), it is

easy to calculate a suitable pipe diameter for such a scheme if the friction factor is known and an

estimate can be made of the allowable head loss. Logically, this head loss would be determined

economically on the cost of materials, etc., needed for a large diameter pipe and compared with the

value of the useful energy lost from having too small a pipe. A commonly used compromise for the

loss in head in the supply pipes is to allow Hf# 0.1HG.

A summary of various other factors on which the “economic diameter” of a pipe can be deter-

mined is given by Raabe (1985).

From Eq. (9.6), substituting for the velocity, V5 4Q/(πd2), we get

Hf 5
8fl

π2g

� �
Q2

d5
(9.7)

Energy losses in the Pelton turbine
Having accounted for the energy loss due to friction in the penstock, the energy losses in the rest

of the hydroelectric scheme must now be considered. The effective head, HE (or delivered head), at

entry to the turbine is the gross head minus the friction head loss, Hf, i.e.,

HE 5HG 2Hf 5 zR 2 zN 2Hf
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and the spouting (or ideal) velocity, co, is

co 5
ffiffiffiffiffiffiffiffiffiffiffi
2gHE

p
The pipeline friction loss Hf is regarded as an external loss and is not usually included in the

losses attributed to the turbine itself. The performance and efficiency of the turbine are, in effect,

measured against the total head, HE, as shown in the following.

The main energy losses of the turbine occur in

i. the nozzles due to fluid friction;

ii. converting the kinetic energy of the jet into mechanical energy of the runner;

iii. external effects (bearing friction and windage).

Each of these energy losses are now considered in turn.

For item (i), let the loss in head in the nozzles be ΔHN. Thus, the available head is

HE 5ΔHN 5 c21=ð2gÞ (9.8)

where c1 is the actual velocity of the jet at nozzle exit. The nozzle efficiency is defined by

ηN 5
energy at nozzle exit

energy at nozzle inlet
5

c21
2gHE

(9.9a)

An often-used alternative to ηN is the nozzle velocity coefficient KN defined by

KN 5
actual velocity at nozzle exit

spouting velocity
5

c1

c0

i.e.,

ηN 5K2
N 5

c21
c20

(9.9b)

Optimum jet diameter
For any given penstock, there will be a unique jet diameter that will provide a maximum power to

the jet. The power available in the jet is given by

P5 _mc21=ð2gÞ5 ρQc21=ð2gÞ
where c1 is the velocity of the jet.

To give further weight to the above statement, consider allowing the flow rate Q to slowly

increase, initially allowing the power to increase. As a result of this, the frictional losses must

increase and the jet velocity will be reduced. It will be apparent from the above equation that

there will be some flow rate at which the power must be at a maximum. This is illustrated in

Example 9.1.
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EXAMPLE 9.1

Water is supplied to the nozzle of a Pelton turbine through a single penstock 0.3 m internal

diameter and 300 m long from a reservoir whose surface level is 180 m above the centerline of

the nozzle. The friction factor for the penstock is f5 0.04. The head loss of the flow in the noz-

zle is 0:04c21=ð2gÞ. Determine the jet diameter that will give the maximum power in the jet.

The energy equation for the pipe flow can be written as

HE 2
flc2p

2gd
2

0:04c21
2g

5
c21
2g

where HE is the effective head and cp is the flow velocity in the pipeline.

Substituting values, we get

1802
0:043 3003 c2p

23 9:813 0:3
5

1:043 c21
23 9:81

‘1802 2:0393 c2p 5 0:0533 c21 (i)

From the continuity equation,

‘d2c1 5 d2pcp so that cp 5 c1
d

dp

� �2

(ii)

Substituting Eq. (ii) into Eq. (i) and simplifying, we get

1805 c21ð0:0531 251:7d4Þ (iii)

Choose a range of values of d, calculate c1 using Eq. (iii), then Q and P as shown in the

table below:

d (m) 0.0531251.7d4 c1 (m/s) Q (m3/s) P (kW)

0.06 0.06015 54.7 0.1547 23.59

0.08 0.06331 53.41 0.2685 39.04

0.10 0.07817 47.99 0.3769 44.24

0.12 0.1052 41.36 0.4677 40.78

0.14 0.1497 34.68 0.5339 32.73

0.16 0.2180 28.73 0.5777 24.30

The maximum power for the jet is 44.24 kW at d5 0.10 m.

Of course it is possible to obtain a solution for the jet diameter and maximum power by set-

ting up an expression for the power and differentiating with respect to the diameter. The advan-

tage of the tabular method used here is that of being able to observe the variations of the various

factors with the change in diameter of the jet.

As an exercise, it would be useful to determine the nozzle efficiency, ηN, as given in

Eq. (9.9a). We must first calculate HE5Hg2Hf, where
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Hf 5
8fl

π2g

� �
Q2

d5
5 57:94 m

‘HE 5 1802 57:945 122:06 m

‘ηN 5
c21

2gHE

5
47:992

23 9:813 122:06
5 0:9617

For item (ii), the loss in energy is already described in Eq. (9.2) and the runner efficiency, ηR,
by Eqs (9.3) and (9.4). The turbine hydraulic efficiency, ηh, is defined as the specific work done by

the rotor, ΔW, divided by the specific energy available at entry to the nozzle, gHE, i.e.,

ηh 5
ΔW

gHE

5
ΔW

ð1=2Þc21

� � ð1=2Þc21
gHE

� �
5 ηRηN (9.10)

after using Eq. (9.9a).

For item (iii), the external losses are responsible for the energy deficit between the runner and

the shaft. A good estimate of these losses can be made using the following simple flow model

where the specific energy loss is assumed to be proportional to the square of the blade speed, i.e.,

external loss=unit mass flow5KU2

where K is a dimensionless constant of proportionality. Thus, the shaft work done/unit mass flow is

ΔW 2KU2

Therefore, the overall efficiency of the turbine, ηo, including these external losses is

ηo 5 ðΔW 2KU2Þ=ðgHeÞ
i.e., the shaft work delivered by the turbine/specific energy available at nozzle entry, which

5 ηRηN 2 2K
U

c1

� �2
c21

2gHE

� �

Using the definitions of the blade speed�jet speed ratio, ν5U/c1, and the nozzle efficiency,

ηN 5 c21=c
2
2,

η0 5 ηNðηR 2 2Kv2Þ5 ηmηRηN (9.11)

where the mechanical efficiency, ηm5 12 external losses/gHE, i.e.,

ηm 5 12 2Kv2=ηR (9.12)

The variation of the overall efficiency as given by Eq. (9.11) is shown in Figure 9.9 as a func-

tion of v for several values of the windage coefficient K. It will be noted that peak efficiency

reduces as the value of K is increased and that it occurs at lower values of v than the optimum for

the runner. This evaluation of the theoretical performance of a Pelton turbine gives a possible
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reason for the often puzzling result found when experiments are evaluated and that always yield a

peak efficiency for values of v, 0.5.

By differentiating Eq. (9.11), it can be shown that the optimum value of v occurs when

vopt 5
A

2ðA1KÞ
where A5 12 k cos β2.

Exercise
Let k5 0.9, β25 165�, and K5 0.1. Hence, A5 1.869 and ν5 0.475.

Typical performance of a Pelton turbine under conditions of constant head and speed is shown

in Figure 9.10 in the form of the variation of overall efficiency against load ratio. As a result of a
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1.0

Locus of maxima 0.4
0.2
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K=0

FIGURE 9.9

Variation of overall efficiency of a Pelton turbine with speed ratio for several values of windage coefficient, K.
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FIGURE 9.10

Pelton turbine overall efficiency variation with load under constant head and constant speed conditions.
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change in the load, the output of the turbine must then be regulated by a change in the setting of

the needle valve to keep the turbine speed constant. The observed almost constant value of the effi-

ciency over most of the load range is the result of the hydraulic losses reducing in proportion to the

power output. However, as the load ratio is reduced to even lower values, the windage and bearing

friction losses, which have not diminished, assume a relatively greater importance and the overall

efficiency rapidly diminishes toward zero.

EXAMPLE 9.2

A Pelton turbine is driven by two jets, generating 1.4 MW at 375 rpm. The effective head at the

nozzles is 200 m of water and the nozzle velocity coefficient, KN5 0.98. The axes of the jets are

tangent to a circle 1.5 m in diameter. The relative velocity of the flow across the buckets is

decreased by 15% and the water is deflected through an angle of 165�.
Neglecting bearing and windage losses, determine

a. the runner efficiency;

b. the diameter of each jet;

c. the power specific speed.

Solution
a. The blade speed is

U5Ωr5 ð3753π=30Þ3 1:5=25 39:273 1:5=25 29:45 m=s

The jet speed is

c1 5KN

ffiffiffiffiffiffiffiffiffiffiffi
2gHE

p
5 0:983

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 9:813 200

p
5 61:39 m=s

Therefore, v5U/c15 0.4798.

The efficiency of the runner is obtained from Eq. (9.4):

ηR 5 23 0:47983 ð12 0:4798Þð12 0:853 cos 165�Þ5 0:9090

b. The “theoretical” power is Pth5P/ηR5 1.4/0.9095 1.54 MW, where Pth5 ρgQHE.

Therefore,

Q5Pth=ðρgHEÞ5 1:543 106=ð98103 200Þ5 0:785 m3=s

Each jet must have a flow area of

Aj 5
Q

2c1
5 0:785=ð23 61:39Þ5 0:00639 m2

Therefore, dj5 0.0902 m.

Note: The wheel diameter is 16.63 times the jet diameter which is in the acceptable range

given earlier, i.e., 15�20 times.
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c. Substituting into Eq. (9.1), the power specific speed is

Ωsp 5 39:273 ð1:43 103Þ1=2=ð9:813 200Þ5=4 5 0:1125

Note: In Figure 9.1, the efficiency for a single-jet Pelton turbine would be about 89%

when Ωsp 5 0:1125: For a multi-jet turbine at the same specific speed, an efficiency of 92%

could be attained.

9.4 Reaction turbines
The primary features of the reaction turbine are:

i. only part of the overall pressure drop has occurred up to turbine entry, the remaining pressure

drop takes place in the turbine itself;

ii. the flow completely fills all of the passages in the runner, unlike the Pelton turbine where, for

each jet, only one or two of the buckets at a time are in contact with the water;

iii. pivotable guide vanes are used to control and direct the flow;

iv. a draft tube is normally added on to the turbine exit; this is considered as an integral part of

the turbine.

The pressure of the water gradually decreases as it flows through the runner and the reaction

from this pressure change earns this type of turbine its appellation.

9.5 The Francis turbine
The majority of Francis turbines are arranged so that the axis is vertical (some smaller machines

can have horizontal axes). Figure 9.11 illustrates a section through a vertical-shaft Francis turbine

with a runner diameter of 5 m, a head of 110 m, and a power rating of nearly 200 MW. Water

enters via a spiral casing called a volute or scroll that surrounds the runner. The area of cross-

section of the volute decreases along the flow path in such a way that the flow velocity remains

constant. From the volute, the flow enters a ring of stationary guide vanes, which direct it onto the

runner at the most appropriate angle.

In flowing through the runner, the angular momentum of the water is reduced and work is sup-

plied to the turbine shaft. At the design condition, the absolute flow leaves the runner axially

(although a small amount of swirl may be countenanced) into the draft tube and, finally, the flow

enters the tailrace. It is essential that the exit of the draft tube is submerged below the level of the

water in the tailrace in order that the turbine remains full of water. The draft tube also acts as a dif-

fuser; by careful design, it can ensure maximum recovery of energy through the turbine by signifi-

cantly reducing the exit kinetic energy.
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Figure 9.12 shows the runner of a small Francis turbine and Figure 9.13 is a sectional view of

the turbine together with the velocity triangles at inlet to and exit from the runner at mid-blade

height. At inlet to the guide vanes, the flow is in the radial/tangential plane, the absolute velocity is

c1, and the absolute flow angle is α1. Thus,

α1 5 tan21ðcθ1=cr1Þ (9.13)

The flow is turned to angle α2 and velocity c2, the absolute condition of the flow at entry to the

runner. By vector subtraction, the relative velocity at entry to the runner is found, i.e.,

w25 c22U2. The relative flow angle β2 at inlet to the runner is defined as

β2 5 tan21½ðcθ2 2U2Þ=cr2� (9.14)

Further inspection of the velocity diagrams in Figure 9.13 reveals that the direction of the veloc-

ity vectors approaching both guide vanes and runner blades are tangential to the camber lines at the

leading edge of each row. This is the ideal flow condition for “shockless” low loss entry, although

an incidence of a few degrees may be beneficial to output without a significant extra loss penalty.

At vane outlet some deviation from the blade outlet angle is to be expected (see Chapter 3). For

FIGURE 9.11

Vertical-shaft Francis turbine: runner diameter 5 m, head 110 m, power 200 MW.

(Courtesy Sulzer Hydro Ltd., Zurich)
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FIGURE 9.12

Runner of a small Francis turbine.

(Permission Granted to Copy Under the Terms of the GNU Free Documentation License)
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FIGURE 9.13

Sectional sketch of blading for a Francis turbine showing velocity diagrams at runner inlet and exit.

3799.5 The Francis turbine



these reasons, in all problems concerning the direction of flow, it is clear that the angle of the fluid

flow is important and not the vane angle as is often quoted in other texts.

At outlet from the runner, the flow plane is simplified as though it were actually in the radial/

tangential plane. This simplification will not affect the subsequent analysis of the flow, but it must

be conceded that some component of velocity in the axial direction does exist at runner outlet.

The water leaves the runner with a relative flow angle β3 and a relative flow velocity w3. The

absolute velocity at runner exit is found by vector addition, i.e., c35w31U3. The relative flow

angle, β3, at runner exit is given by

β3 5 tan21½ðcθ3 1U3Þ=cr3� (9.15)

In this equation it is assumed that some residual swirl velocity cθ3 is present (cr3 is the radial

velocity at exit from the runner). In most simple analyses of the Francis turbine, it is assumed that

there is no exit swirl. Detailed investigations have shown that some extra counter-swirl (i.e., acting

so as to increase Δcθ) at the runner exit does increase the amount of work done by the fluid with-

out a significant reduction in turbine efficiency.

When a Francis turbine is required to operate at part load, the power output is reduced by

swiveling the guide vanes to restrict the flow, i.e., Q is reduced, while the blade speed is main-

tained constant. Figure 9.14 compares the velocity triangles at full load and at part load from which

it will be seen that the relative flow at runner entry is at a high incidence and at runner exit the

absolute flow has a large component of swirl. Both of these flow conditions give rise to high head

losses. Figure 9.15 shows the variation of hydraulic efficiency for several types of turbine, includ-

ing the Francis turbine, over the full load range at constant speed and constant head.

It is of interest to note the effect that swirling flow has on the performance of the following dif-

fuser. The results of an extensive experimental investigation made by McDonald, Fox, and van

Dewoestine (1971) showed that swirling inlet flow does not affect the performance of conical diffu-

sers, which are well designed and give unseparated or only slightly separated flow when the flow

through them is entirely axial. Accordingly, part load operation of the turbine is unlikely to give

adverse diffuser performance.

U2 U2

w2 w2
c2 c2

U3

w3

c3

U2 U2

U3

w3
c3

Design point — full load operation Part load operation

FIGURE 9.14

Comparison of velocity triangles for a Francis turbine at full load and at part load operation.
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Basic equations
Euler’s turbine equation, Eq. (1.18c), in the present notation, is written as

ΔW 5U2cθ2 2U3cθ3 (9.16a)

If the flow at runner exit is without swirl, then the equation reduces to

ΔW 5U2cθ2 (9.16b)

The effective head for all reaction turbines, HE, is the total head available at the turbine inlet

relative to the surface of the tailrace. At entry to the runner, the energy available is equal to the

sum of the kinetic, potential, and pressure energies:

gðHE 2ΔHNÞ5
p2 2 pa

ρ
1

1

2
c22 1 gz2 (9.17)

where ΔHN is the loss of head due to friction in the volute and guide vanes and p2 is the absolute

static pressure at inlet to the runner.

At runner outlet, the energy in the water is further reduced by the amount of specific work ΔW

and by friction work in the runner, gΔHR and this remaining energy equals the sum of the pressure

potential and kinetic energies:

gðHE 2ΔHN 2ΔHRÞ2ΔW 5
1

2
c23 1 p3=ρ2 pa=ρ1 gz3 (9.18)
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FIGURE 9.15

Variation of hydraulic efficiency for various types of turbine over a range of loading, at constant speed and

constant head.
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where p3 is the absolute static pressure at runner exit.

By differencing Eqs (9.17) and (9.18), the specific work is obtained:

ΔW 5 ðp02 2 p03Þ=p2 gΔHR 1 gðz2 2 z3Þ (9.19)

where p02 and p03 are the absolute total pressures at runner inlet and exit.

Figure 9.16 shows the draft tube in relation to a vertical-shaft Francis turbine. The most impor-

tant dimension in this diagram is the vertical distance (z5 z3) between the exit plane of the runner

and the free surface of the tailrace. The energy equation between the exit of the runner and the tail-

race can now be written as

p3=ρ1
1

2
c23 1 gz3 2 gΔHDT 5

1

2
c24 1 pa=ρ (9.20)

where ΔHDT is the loss in head in the draft tube and c4 is the flow exit velocity.

The hydraulic efficiency is defined by

ηh 5
ΔW

gHE

5
U2cθ2 2U3cθ3

gHE

(9.21a)

and, whenever cθ35 0,

ηH 5
U2cθ2

gHE

(9.21b)

The overall efficiency is given by ηo5 ηmηH. For very large turbines (e.g., 500�1000 MW), the

mechanical losses are then relatively small, η-100% and effectively ηo� ηH.
For the Francis turbine, the ratio of the runner tip speed to the jet velocity, v5U2/c1, is not as

critical for high-efficiency operation as it is for the Pelton turbine and can lie in a fairly wide range,

c3

Z

Draft tube

c4

Tailwater

FIGURE 9.16

Location of draft tube in relation to vertical-shaft Francis turbine.
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e.g., 0.6# v# 0.95. In most applications, the Francis turbine is used to drive a synchronous genera-

tor and the rotational speeds chosen are those appropriate to either 50 or 60 cycles per second. The

speed must then be maintained constant.

It is possible to obtain part load operation of the turbine by varying the angle of the guide

vanes. The guide vanes are pivoted and set to an optimum angle via a gearing mechanism.

However, part load operation normally causes a whirl velocity to be set up in the flow downstream

of the runner causing a reduction in efficiency. The strength of the vortex may be enough to cause

a cavitation bubble to form along the axis of the draft tube (see Section 9.8).

EXAMPLE 9.3

In a vertical-shaft Francis turbine, the available head at the inlet flange is 150 m of water and

the vertical distance between the runner and the tailrace is 2.0 m. The runner tip speed is 35 m/s,

the meridional velocity of the water through the runner is constant at 10.5 m/s, the flow leaves

the runner without whirl and the velocity at exit from the draft tube is 3.5 m/s.

The hydraulic losses for the turbine are as follows:

ΔHN 5 6:0 m; ΔHR 5 10 m; ΔHDT 5 1:0 m

Determine

a. the specific work, ΔW, and the hydraulic efficiency, ηh, of the turbine;
b. the absolute velocity, c2, at runner entry;

c. the pressure head (relative to the tailrace) at inlet to and exit from the runner;

d. the absolute and relative flow angles at runner inlet; the flow discharged by the turbine is

20 m3/s and the power specific speed is 0.8 (rad), the speed of rotation and diameter of the

runner.

Solution
a. From Eqs (9.18) and (9.20), we can find the specific work:

ΔW 5 gðHE 2ΔHN 2ΔHR 2ΔHDTÞ2
1

2
c24

5 9:813 ð1502 62 102 1Þ2 3:52=25 1298:6 m2=s2

The hydraulic efficiency, ηh5ΔW/(gHE)5 0.8825.

b. As cθ35 0, then ΔW5U2cθ2 and cθ25ΔW/U25 1298.6/355 37.1 m/s, thus,

c2 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2θ2 1 c2m

q
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
37:12 1 10:52

p
5 38:56 m=s

c. From Eq. (9.17), the pressure head at inlet to the runner is

H2 5HE 2ΔHN 2 c22=ð2gÞ5 1502 62 38:562=ð23 9:81Þ5 68:22 m
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Again, using Eq. (9.20), the pressure head (relative to the tailrace) at runner exit is

H3 5 ðp3 2 paÞ=ðρgÞ5 ðc24 2 c23Þ=ð2gÞ1ΔHDT 2 z3 5 ð3:52 2 10:52Þ=ð23 9:81Þ1 12 252 6:0 m

Note: The minus sign for H3 indicates that the pressure is below the atmospheric level.

This is a matter of considerable importance in the design and operation of hydraulic turboma-

chinery and is considered in further detail under Section 9.8 later in this chapter.

d. The flow angles at runner inlet are now obtained as follows:

α2 5 tan21ðcθ2=cr2Þ5 tan21ð37:1=10:5Þ5 74:2�

β2 5 tan21½ðcθ2 2U2Þ=cr2�5 tan21½ð37:12 35Þ=10:5�5 11:31�

From the definition of power specific speed, Eq. (9.1), and using P/ρ5QΔW,

Ω5
ΩSPðgHEÞ5=4ffiffiffiffiffiffiffiffiffiffiffiffi

QΔW
p 5

0:83 9114ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
203 1298:7

p 5 45:24 rad=s

Thus, the rotational speed Ω5 432 rpm and the runner diameter is

D2 5 2U2=Ω5 70=45:245 1:547 m

The pump turbine
The pump turbine is an example of a system capable of providing large reserves of power with a

very short start-up time and its design is generally based on the Francis turbine. It is, essentially,

a reversible turbomachine employing two large reservoirs, one at high level able to generate power

from the turbines in the daytime when the demand for electricity is high and the other at low level

used to store the water which is pumped back at night when the demand for electricity is low. The

plant is usually referred to as a pumped storage scheme. (For further technical details, consult

Stelzer and Walters (1977) or go to URL www.usbr.gov/pmts/hydraulics_lab/pubs/EM/EM39.pdf).

EXAMPLE 9.4

A modern pumped storage scheme, the Gwynedd plant at Llanberis, North Wales, consists of six

Francis turbines with a total power output P5 1728 MW, a volume flow rate Q5 60 m3/s for

each turbine, a head H5 600 m at full capacity, operating at a rotational speed of Ω5 500 rpm.

When pumping the water back to the upper reservoir, the demand on the electricity supply is

33% greater than it was in the turbine mode.

Determine

a. the efficiency of the turbines and their specific speed, comparing the value you obtain with the

range of values shown in Figure 2.8; comment on the suitability of these turbines for the task;
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b. the diameter of the turbines assuming a peripheral velocity factor (PVF) for the turbines of 0.75;

c. the efficiency of the system in the pumping mode.

Solution
a. The efficiency of each turbine is

η5
P

ρgHQ
5

ð1728=6Þ3 106

98103 6003 60
5 0:8155

with Ω5Nπ=305 52:36 rad, the specific speed is

Ωs 5
ΩQ1=2

ðgHÞ3=4
5

52:363 601=2

ð9:813 600Þ3=4
5 0:604

Examining Figure 2.8, this value of specific speed is in the middle of the range shown for

Francis turbines confirming that the working values are well chosen.

b.

D5
2

Ω
φ

ffiffiffiffiffiffiffiffiffi
2gH

p
5

2

52:36
3 0:753

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 9:813 600

p
5 3:11 m

c. The efficiency of the system in the pumping mode is

ηp 5
power to pump water

input power
5

ρgQH
1:333 288

5
98103 6003 60

1:333 2883 106
5 92:2%

9.6 The Kaplan turbine
This type of turbine evolved from the need to generate power from much lower pressure heads than

are normally employed with the Francis turbine. To satisfy large power demands, very large volume

flow rates need to be accommodated in the Kaplan turbine, i.e., the product QHE is large. The overall

flow configuration is from radial to axial. Figure 9.17(a) is a part sectional view of a Kaplan turbine

in which the flow enters from a volute into the inlet guide vanes, which impart a degree of swirl to

the flow determined by the needs of the runner. The flow leaving the guide vanes is forced by the

shape of the passage into an axial direction and the swirl becomes essentially a free vortex, i.e.,

rcθ 5 a constant

The vanes of the runner are similar to those of an axial-flow turbine rotor but designed with

a twist suitable for the free-vortex flow at entry and an axial flow at outlet. A picture of a Kaplan

(or propeller) turbine runner is shown in Figure 9.17(b). Because of the very high torque that must

be transmitted and the large length of the blades, strength considerations impose the need for large
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blade chords. As a result, pitch�chord ratios of 1.0�1.5 are commonly used by manufacturers and,

consequently, the number of blades is small, usually four, five, or six. The Kaplan turbine incorpo-

rates one essential feature not found in other turbine rotors and that is the setting of the stagger

angle can be controlled. At part load operation, the setting angle of the runner vanes is adjusted

automatically by a servomechanism to maintain optimum efficiency conditions. This adjustment

requires a complementary adjustment of the inlet guide vane stagger angle to maintain an absolute

axial flow at exit from the runner.

Basic equations
Most of the equations presented for the Francis turbine also apply to the Kaplan (or propeller) turbine,

apart from the treatment of the runner. Figure 9.18 shows the velocity triangles and part section of a

Kaplan turbine drawn for the mid-blade height. At exit from the runner, the flow is shown leaving

the runner without a whirl velocity, i.e., cθ35 0 and constant axial velocity. The theory of free-vortex

flows was expounded in Chapter 6 and the main results as they apply to an incompressible fluid are

given here. The runner blades will have a fairly high degree of twist, the amount depending upon the

strength of the circulation function K, and the magnitude of the axial velocity. Just upstream of the

runner, the flow is assumed to be a free-vortex and the velocity components are accordingly

cθ2 5K=r; cx 5 a constant

The relations for the flow angles are

tan β2 5U=cx 2 tan α2 5Ωr=cx 2K=ðrcxÞ (9.22a)

tan β3 5U=cx 5Ωr=cx (9.22b)

(b)(a)

FIGURE 9.17

(a) Part section of a Kaplan turbine in situ. (b) Kaplan turbine runner.

(Courtesy Sulzer Hydro Ltd., Zurich)
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EXAMPLE 9.5

A small-scale Kaplan turbine has a power output of 8 MW, an available head at turbine entry of

13.4 m, and a rotational speed of 200 rpm. The inlet guide vanes have a length of 1.6 m and the

diameter at the trailing edge surface is 3.1 m. The runner diameter is 2.9 m and the hub�tip ratio

is 0.4.

Assuming the hydraulic efficiency is 92% and the runner design is “free-vortex,” determine

a. the radial and tangential components of velocity at exit from the guide vanes;

b. the component of axial velocity at the runner;

c. the absolute and relative flow angles upstream and downstream of the runner at the hub, mid-

radius, and tip.

Solution
a. As P5 ηHρgQHE, then the volume flow rate is

Q5P=ðηHρgHEÞ5 83 106=ð0:923 98103 13:4Þ5 66:15 m=s2

Therefore,

cr1 5Q=ð2πr1LÞ5 66:15=ð2π3 1:553 1:6Þ5 4:245 m=s

cx2 5
4Q

πD2
2tð12 v2Þ 5 43 66:15=ðπ3 2:92 3 0:84Þ5 11:922 m=s
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FIGURE 9.18

Section of a Kaplan turbine and velocity diagrams at inlet to and exit from the runner.
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b. As the specific work done is ΔW5U2cθ2 and ηH5ΔW/(gHE), then at the tip

cθ2 5
ηHgHE

U2

5
0:923 9:813 13:4

30:37
5 3:892 m=s

where the blade tip speed is U25ΩD2/25 (2003π/30)3 2.9/25 30.37 m/s,

cθ1 5 cθ2r2=r1 5 3:8923 1:45=1:555 3:725 m=s2

α1 5 tan21 cθ1

cr1

� �
5 tan21 3:725

4:245

� �
5 41:26�

c. Values α2, β2, and β3 given in Table 9.4 have been derived from the following relations:

α2 5 tan21 cθ2

cx2

0
@

1
A5 tan21 cθ2t

cx2

rt

r

0
@

1
A

β2 5 tan21 Ωr
cx2

2 tanα2

0
@

1
A5 tan21 U2t

cx2

r

rt
2 tanα2

0
@

1
A

β3 5 tan21 U

cx2

0
@

1
A5 tan21 U2t

cx2

r

rt

0
@

1
A

Table 9.4 Calculated Values of Flow Angles for Example 9.5

Ratio r/rt

Parameter 0.4 0.7 1.0

cθ2 (m/s) 9.955 5.687 3.982

tan α2 0.835 0.4772 0.334

α2 (deg) 39.86 25.51 18.47

U/cx2 1.019 1.7832 2.547

β2 (deg) 10.43 52.56 65.69

β3 (deg) 45.54 60.72 68.57
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Finally, Figure 9.19 illustrates the variation of the flow angles, from which the large

amount of blade twist mentioned earlier can be inferred.

9.7 Effect of size on turbomachine efficiency
Despite careful attention to detail at the design stage and during manufacture, it is a fact that small

turbomachines always have lower efficiencies than larger geometrically similar machines. The pri-

mary reason for this is that it is not possible to establish perfect dynamical similarity between tur-

bomachines of different size. To obtain this condition, each of the dimensionless terms in Eq. (2.2)

would need to be the same for all sizes of a machine.

To illustrate this, consider a family of turbomachines where the loading term, ψ5 gH/Ω2D2, is

the same and the Reynolds number, Re5ΩD2/ν, is the same for every size of machine, then

ψ Re2 5
gH

Ω2D2
3

Ω2D4

v2
5

gHD2

v2

must be the same for the whole family. Thus, for a given fluid (v is a constant), a reduction in size

D must be followed by an increase in the head H. A turbine model of one-eighth the size of a pro-

totype would need to be tested with a head 64 times that required by the prototype! Fortunately,

the effect on the model efficiency caused by changing the Reynolds number is not large. In
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FIGURE 9.19

Calculated variation of flow angles for Kaplan turbine of Example 9.5.
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practice, models are normally tested at conveniently low heads and an empirical correction is

applied to the efficiency.

With model testing, other factors affect the results. Exact geometric similarity cannot be

achieved for the following reasons:

a. The blades in the model will probably be thicker than in the prototype.

b. The relative surface roughness for the model blades will be greater.

c. Leakage losses around the blade tips of the model will be relatively greater as a result of

increased relative tip clearances.

Various simple corrections have been devised (see Addison, 1964) to allow for the effects of

size (or scale) on the efficiency. One of the simplest and best known is that due to Moody and

Zowski (1969), also reported by Addison (1964) and Massey (1979), which as applied to the effi-

ciency of reaction turbines is

12 ηp
12 ηm

5
Dm

Dp

� �n

(9.23)

where the subscripts p and m refer to prototype and model, respectively, and the index n is in the

range 0.2�0.25. From comparison of field tests of large units with model tests, Moody and Zowski

concluded that the best value for n was approximately 0.2 rather than 0.25 and for general applica-

tion this is the value used. However, Addison (1964) reported tests done on a full-scale Francis tur-

bine and a model made to a scale of 1�4.54 that gave measured values of the maximum

efficiencies of 0.85 and 0.90 for the model and full-scale turbines, respectively, which agreed very

well with the ratio computed with n5 0.25 in the Moody formula!

EXAMPLE 9.6

A model of a Francis turbine is built to a scale of one-fifth of full size and when tested it devel-

oped a power output of 3 kW under a head of 1.8 m of water, at a rotational speed of 360 rpm

and a flow rate of 0.215 m3/s. Estimate the speed, flow rate, and power of the full-scale turbine

when working under dynamically similar conditions with a head of 60 m of water.

By making a suitable correction for scale effects, determine the efficiency and the power of

the full-size turbine. Use Moody’s formula and assume n5 0.25.

Solution
From the group ψ5 gH/(ND)2, we get

Np 5NmðDm=DpÞðHp=HmÞ0:5 5 ð360=5Þð60=1:8Þ0:5 5 415:7 rev=min

From the group φ5Q/(ND3), we get

Qp 5QmðNp=NmÞðDp=DmÞ3 5 0:2153 ð415:7=360Þ3 53 5 31:03 m3=s

Lastly, from the group P̂5P=ðρN3D3Þ, we get

Pp 5PmðNp=NmÞ3ðDp=DmÞ5 5 33 ð415:7Þ3 3 55 5 14; 430 kW5 14:43 MW
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This result has still to be corrected to allow for scale effects. First we must calculate the

efficiency of the model turbine. The efficiency is found from

ηm 5P=ðρQgHÞ5 33 103=ð103 3 0:2153 9:813 1:8Þ5 0:79

Using Moody’s formula, the efficiency of the prototype is determined:

ð12 ηpÞ5 ð12 ηmÞ3 0:20:25 5 0:213 0:6687

hence,

ηp 5 0:8596

The corresponding power is found by an adjustment of the original power obtained under

dynamically similar conditions, i.e.,

corrected Pp 5 14:433 0:8596=0:795 15:7 MW

9.8 Cavitation in hydraulic turbines
A description of the phenomenon of cavitation with regard to pumps was given in Chapter 7. In

hydraulic turbines, where reliability, long life, and efficiency are all very important, the effects of

cavitation must be considered. Two types of cavitation may be in evidence:

a. on the suction surfaces of the runner blades at outlet that can cause severe blade erosion;

b. a twisting “rope type” cavity that appears in the draft tube at off-design operating conditions.

Cavitation in hydraulic turbines can occur on the suction surfaces of the runner blades where

the dynamic action of the blades acting on the fluid creates low-pressure zones in a region where

the static pressure is already low. Hydraulic turbines are designed to run for many years with very

little maintenance. However, if cavitation does occur, then pitting of the surfaces, fatigue cracking,

and partial collapse of the blades will reduce performance. Figure 9.20 shows extensive damage

due to cavitation of a Francis runner.

Cavitation will commence when the local static pressure is less than the vapor pressure of the

water, i.e., where the head is low, the velocity is high and the elevation, z, of the turbine is set too

high above the tailrace. For a turbine with a horizontal shaft, the lowest pressure will be located in

the upper part of the runner, which could be of major significance in large machines. Fortunately,

the runners of large machines are, in general, made so that their shafts are orientated vertically,

lessening the problem of cavitation occurrence.

The cavitation performance of hydraulic turbines can be correlated with the Thoma coefficient, σ,
defined as

σ5
HS

HE

5
ðpa 2 p0Þ=ðρgÞ2 z

HE

(9.24)
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where HS is the net positive suction head (NPSH), the amount of head needed to avoid cavitation,

the difference in elevation, z, is defined in Figure 9.16 and pv is the vapor pressure of the water.

The Thoma coefficient was, strictly, originally defined in connection with cavitation in turbines

and its use in pumps is not appropriate (see Yedidiah, 1981). It is to be shown that σ represents the

fraction of the available head HE, which is unavailable for the production of work. A large value

of σ means that a smaller part of the available head can be utilized. In a pump, incidentally, there

is no direct connection between the developed head and its suction capabilities, provided that

cavitation does not occur, which is why the use of the Thoma coefficient is not appropriate for pumps.

From the energy equation, Eq. (9.20), this can be rewritten as

pa 2 p3

ρg
2 z5

1

2g
ðc23 2 c24Þ2ΔHDT (9.25)

so that when p35 pv, then HS is equal to the right-hand side of Eq. (9.24).

Figure 9.21 shows a widely used correlation of the Thoma coefficient plotted against specific speed

for Francis and Kaplan turbines, approximately defining the boundary between no cavitation and severe

cavitation. In fact, there exists a wide range of critical values of σ for each value of specific speed and

type of turbine due to the individual cavitation characteristics of the various runner designs. The curves

drawn are meant to assist preliminary selection procedures. An alternative method for avoiding cavita-

tion is to perform tests on a model of a particular turbine in which the value of p3 is reduced until cavi-

tation occurs or a marked decrease in efficiency becomes apparent. This performance reduction would

correspond to the production of large-scale cavitation bubbles. The pressure at which cavitation erosion

occurs will actually be at some higher value than that at which the performance reduction starts.

FIGURE 9.20

Cavitation damage to the blades of a Francis turbine.

(Permission Granted to Copy Under the Terms of the GNU Free Documentation License)
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For the centerline cavitation that appears downstream of the runner at off-design operating

conditions, oscillations of the cavity can cause severe vibration of the draft tube. Young (1989)

reported some results of a “corkscrew” cavity rotating at 4 Hz. Air injected into the flow both

stabilizes the flow and cushions the vibration.

EXAMPLE 9.7

Using the data for the Francis turbine given in Example 9.3 and the atmospheric pressure is

1.013 bar, and the water is at 25�C, determine the NPSH for the turbine. Hence, using Thoma’s

coefficient and the data shown in Figure 9.21, determine whether cavitation is likely to occur.

Verify the result using Wislicenus’s criterion, the result given in Eq. (2.23b).

Solution
From tables of fluid properties, e.g., Rogers and Mayhew (1995), or using the data of Figure 9.22,

the vapor pressure for water corresponding to a temperature of 25�C is 0.03166 bar. From the

definition of NPSH, Eq. (9.24), we obtain

HS 5
pa 2 pv

ρg
2 z5 ð1:0132 0:03166Þ3 105=ð9810Þ2 25 8:003 m

FIGURE 9.21

Variation of critical cavitation coefficient with nondimensional specific speed for Francis and Kaplan turbines.

(Adapted from Moody and Zowski, 1969)
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Thus, from Eq. (9.24) with HE 5 150 m, then Thoma’s coefficient is, σ5HS/HE5 8.003/

1505 0.05336.

At the value of Ωsp5 0.8 given as data, the value of the critical Thoma coefficient σc corre-

sponding to this is 0.083 from Figure 9.21. From the fact that σ, σc, then the turbine will cavitate.
The point X in Figure 9.21 is the intercept of σc and Ωsp in the severe cavitation zone.

From the definition of the suction specific speed,

ΩSS 5
ΩQ1=2

ðgHSÞ3=4
5

44:93 201=2

ð9:813 8:003Þ3=4
5 200:8=26:3755 7:613

According to Eq. (2.23b), when ΩSS exceeds 4.0 (rad) cavitation can occur, giving further

confirmation of the above conclusion.

Connection between Thoma’s coefficient, suction specific speed,
and specific speed
The definitions of suction specific speed ΩSS and specific speed Ωs are

ΩSS 5
ΩQ1=2

ðgHSÞ3=4
and ΩS 5

ΩQ1=2

ðgHEÞ3=4

Combining these expressions and using Eq. (9.24), we get

ΩS

ΩSS

5
gHS

gHE

� �3=4

5 σ3=4
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FIGURE 9.22

Vapor pressure of water as head (m) versus temperature.
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therefore, the cavitation coefficient is,

σ5
ΩS

ΩSS

� �4=3

(9.26)

Exercise
Verify the value of Thoma’s coefficient in Example 9.5 using the values of power specific speed,

efficiency, and suction specific speed given or derived.

We use as data ΩSS5 7.613, ΩSP5 0.8, and ηH 5 0:896 so that, from Eq. (2.16),

ΩS 5Ωsp=
ffiffiffiffiffiffi
ηH

p
5 0:8=

ffiffiffiffiffiffiffiffiffiffiffi
0:896

p
5 0:8452

therefore, from Eq. (9.26)

σ5 ð0:8452=7:613Þ4=3 5 0:05336

This value corresponds to point X shown in Figure 9.21 and corroborates the previous

conclusion that cavitation will occur.

Avoiding Cavitation
By rearranging Eq. (9.24) and putting σ5σc, a critical value of z can be derived on the boundary

curve between cavitation and no cavitation. Thus,

z5 zc 5
pa 2 pv

ρg
2 σcHE 5 ð101:32 3:17Þ=9:812 0:093 15052 3:5 m

This means that the turbine would need to be submerged to a depth of 3.5 m or more below

the surface of the tailwater and, for a Francis turbine, would lead to problems with regard to

construction and maintenance. Equation (9.24) shows that the greater the available head HE at

which a turbine operates, the lower it must be located relative to the surface of the tailrace.

Controversially, some manufacturers might allow for some cavitation damage to occur in large

turbines, balancing this against the extra cost. A difficult choice!

Peripheral velocity factor
This is a most useful concept which is often used to verify (and calculate) the size of pumps and

turbines. For a pump impeller or for a turbine runner, the PVF is defined as

φ5U2=
ffiffiffiffiffiffiffiffiffi
2gH

p
where U2 is the peripheral velocity or blade tip speed (ΩD2=2) and H is the net head delivered by

the pump or the effective head supplied to a turbine. Thus, from these expressions, we get

D2 5 2U2=Ω5 2φ
ffiffiffiffiffiffiffiffiffi
2gH

p
=Ω (9.27)

assuming all the parameters are at the respective maximum efficiency condition (BEP).
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For the various main types of hydraulic turbine, the approximate values of PVF are as follows:

Pelton Wheel 0.43�0.48

Francis turbine 0.7�0.8

Kaplan turbine 1.4�2.0

Selecting the right turbine
The power specific speed, Eq. (2.15), is often understood to be the best guide in choosing the most

appropriate type of turbine for a given duty. From Figure 9.1, it would seem that for high heads

and a low Ωsp the most likely choice would be a Pelton wheel, providing the designer with a

high efficiency. However, the situation is rather more complicated than at first sight because it is

possible for the designer to end up with a very large and costly turbine.

At a give site, options to be considered must include not only the type of turbine but also the num-

ber of units to be installed. It is regarded as good practice to have at least two turbines in place so that

in the event of essential maintenance of a turbine the plant can continue to operate. Another factor to

be considered is the freedom from cavitation. Example 9.8 illustrates the choices to be made.

EXAMPLE 9.8

Two (or more) identical turbines are to be installed where the net available head is 108 m and

the total flow rate is 18 m3/s. You are required to choose appropriate turbines for the site assum-

ing that all the turbines have an efficiency of 90%.

The total power available is

P5 ηρgQH5 0:93 98103 183 1085 17:16 MW

a. Assuming there are actually two turbines operating at Ω5 75 rpm, i.e., Ω5 753π=30
5 7:854 rad=s; then the power specific speed is

Ωsp 5
Ω

ffiffiffiffiffiffiffiffi
P=ρ

p
ðgHÞ5=4

5 7:8543

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð17:163 106=23 103Þ

q
ð9:813 108Þ5=4

5 0:1204

From Figure 9.1, it can be seen that the type of turbine best suited to this power specific

speed is either a single-jet Pelton wheel or a multi-jet Pelton wheel.

From the definition of the PVF, φ, Eq. (9.27), the diameter is

D5
2

Ω
φ

ffiffiffiffiffiffiffiffiffi
2gH

p

where, for a Pelton wheel, φ � 0:47

‘D5
2

7:854
3 0:473

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 9:813 108

p
5 5:55 m
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This diameter seems rather large for Pelton wheel turbines and it would be worth looking

around to see if suitable alternatives are available.

b. Another solution is to use four Pelton turbines operating at 180 rpm (this would require a

generator with 20 pole pairs for a supply at 60 Hz) Thus, Ω5 ð180=30Þ3π5 18:85 rad=s.

Ωsp 5
18:853

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17:163 103=4

q
ð9:813 108Þ5=4

5 0:204

and

D2 5
2φ

ffiffiffiffiffiffiffiffiffi
2gH

p

Ω
5

23 0:45
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 9:813 108

p

18:85
5 2:198 m

Thus, the specific speed appears to be satisfactory with a multi-jet Pelton wheel (see

Figure 9.1).

The diameter of the impeller wheels is more acceptable with the higher rotational speed

and lower flow rate for each turbine.

c. An additional alternative, of many other possible choices, is to use one Francis turbine which

operates at some speed still to be selected.

For the generator operating at 60 Hz and having z pole pairs, the operating speed is

Ω5 2π3 60=z

The peripheral velocity ratio for a Francis turbine can be assumed to be the accepted

average of

φ5 0:75 ‘D2 5 2φ
ffiffiffiffiffiffiffiffiffi
2gH

p
=Ω

Values for various pole pairs are shown in the table below of rotational speed diameter

and power specific speed.

z 8 10 15
Ω ðrpmÞ 450 360 240
Ω ðrad=sÞ 47.12 37.7 25.13
D2 1.46 1.83 2.75
Ωsp 1.02 0.818 0.545

It would seem that a good choice of Francis turbine would be the one with eight pole

pairs operating at 450 rpm and having an impeller diameter of 1.02 m. The power specific

speed suggests that the efficiency would be about 95%.
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9.9 Application of CFD to the design of hydraulic turbines
With such a long history, the design of hydraulic turbines still depends very much on the experi-

ence gained from earlier designs. According to Drtina and Sallaberger (1999), the use of compu-

tational fluid dynamics (CFDs) for predicting the flow in these machines has brought further

substantial improvements in their hydraulic design and resulted in a more complete understanding

of the flow processes and their influence on turbine performance. Details of flow separation, loss

sources, and loss distributions in components both at design and off-design as well as detecting

low-pressure levels associated with the risk of cavitation are now amenable to analysis with the

aid of CFD.

Drtina and Sallaberger presented two examples where the application of CFD resulted in a bet-

ter understanding of complex flow phenomena. Generally, this better knowledge of the flow has

resulted either in design improvements to existing components or to the replacement of components

by a completely new design.

9.10 The Wells turbine
Introduction
Numerous methods for extracting energy from the motion of sea waves have been proposed and

investigated since the late 1970s. The problem is in finding an efficient and economical means of

converting an oscillating flow of energy into a unidirectional rotary motion for driving electrical

generators. A novel solution of this problem is the Wells turbine (Wells, 1976), a version of the

axial-flow turbine. For countries surrounded by the sea, such as the British Isles and Japan to

mention just two, or with extensive shorelines like the United States, wave energy conversion is

an attractive proposition. Energy conversion systems based on the oscillating water column and

the Wells turbine have been installed at several locations (Islay in Scotland and Trivandrum in

India). Figure 9.23 shows the arrangement of a turbine and generator together with the oscillating

column of seawater. The cross-sectional area of the plenum chamber is made very large com-

pared to the flow area of the turbine so that a substantial air velocity through the turbine is

attained.

One version of the Wells turbine consists of a rotor with eight uncambered aerofoil section

blades set at a stagger angle of 90� (i.e., with their chord lines lying in the plane of rotation).

A schematic diagram of such a Wells turbine is shown in Figure 9.24. At first sight, the

arrangement might seem to be a highly improbable means of energy conversion. However, once

the blades have attained design speed, the turbine is capable of producing a time-averaged posi-

tive power output from the cyclically reversing airflow with a fairly high efficiency. According

to Raghunathan, Curran, and Whittaker (1995), peak efficiencies of 65% have been measured

at the experimental wave power station on Islay. The results obtained from a theoretical analy-

sis by Gato and de O Falcào (1984) showed that fairly high values of the mean efficiency,

on the order of 70�80%, may be attained in an oscillating flow “with properly designed Wells

turbines.”
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FIGURE 9.24

Schematic of a Wells turbine.

(Adapted from Raghunathan et al., 1995)
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FIGURE 9.23

Arrangement of Wells turbine and oscillating water column.

(Adapted from Raghunathan et al., 1995)
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Operating principles
Figure 9.25(a) shows a blade in motion at the design speed U in a flow with an upward, absolute

axial velocity c1. It can be seen that the relative velocity w1 is inclined to the chord line of the

blade at an angle α. According to classical aerofoil theory, an isolated aerofoil at an angle of inci-

dence α to a free stream will generate a lift force L normal to the direction of the free stream. In a

viscous fluid, the aerofoil will also experience a drag force D in the direction of the free stream.

These lift and drag forces can be resolved into the components of force X and Y as indicated in

Figure 9.25(a), i.e.,

X5 L cos α1D sin α (9.28a)

Y 5 L sin α2D cos α (9.28b)

The student should note, in particular, that the force Y acts in the direction of blade motion,

giving positive work production.

For a symmetrical aerofoil, the direction of the tangential force Y is the same for both positive

and negative values of α, as indicated in Figure 9.25b. If the aerofoils are secured to a rotor drum

to form a turbine row, as in Figure 9.24, they will always rotate in the direction of the positive

tangential force regardless of whether the air is approaching from above or below. With a time-

varying, bidirectional airflow, the torque produced will fluctuate cyclically but can be smoothed to

a large extent by means of a high inertia rotor�generator.

It will be observed from the velocity diagrams that a residual swirl velocity is present for both

directions of flow. It was suggested by Raghunathan et al. (1995) that the swirl losses at turbine

exit can be reduced by the use of guide vanes.

Two-dimensional flow analysis
The performance of the Wells turbine can be predicted by means of blade element theory. In this

analysis, the turbine annulus is considered to be made up of a series of concentric elementary rings,

each ring being treated separately as a two-dimensional cascade.

The power output from an elementary ring of area 2πr dr is given by

dW 5 ZU dy

where Z is the number of blades and the tangential force on each blade element is

dY5Cy

1

2
ρω2

1l

� �
dr

The axial force acting on the blade elements at radius r is Z dX, where

dX5CX

1

2
ρw2

1l

� �
dr

400 CHAPTER 9 Hydraulic Turbines



(b)

(a)

– α

α

α

XL

D

Y

U
D Y

L
X

U

w2

c2

L X

α

α

DY

w1

w1

w1

w1

w2

D Y

L X

α

U

U

α
c1

c1

c2

FIGURE 9.25

Velocity and force vectors acting on a blade of a Wells turbine in motion: (a) upward absolute flow onto blade

moving at speed U, and (b) downward absolute flow onto blade moving at speed U.
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and where Cx, Cy are the axial and tangential force coefficients, respectively. Now the axial

force on all the blade elements at radius r can be equated to the pressure force acting on the ele-

mentary ring:

2πrðp1 2 p2Þdr5 ZCx

1

2
ρw2

1l

� �
dr

so

ðp1 2 p2Þ
ð1=2Þρc2x

5
ZCxl

2πr sin2 α1

where w15 cx/sin α1.

An expression for the efficiency can now be derived from a consideration of all the power

losses and the power output. The power lost due to the drag forces is dWf5w1 dD, where

dD5 ZCD

1

2
ρw2

1l

� �
dr

and the power lost due to exit kinetic energy is given by

dWk 5
1

2
c22

� �
d _m

where d _m5 2πrρcxdr and c2 is the absolute velocity at exit. Thus, the aerodynamic efficiency,

defined as power output/power input, can now be written as

η5

Ð t
h
dWÐ t

h
ðdW 1 dWf 1 dWkÞ

(9.29)

The predictions for nondimensional pressure drop p� and aerodynamic efficiency η determined

by Raghunathan et al. (1995) are shown in Figure 9.26(a) and (b), respectively, together with exper-

imental results for comparison.

Design and performance variables
The primary input for the design of a Wells turbine is the air power based upon the pressure ampli-

tude (p1 2 p2) and the volume flow rate Q at turbine inlet. The performance indicators are the

pressure drop, power, and efficiency, and their variation with the flow rate. The aerodynamic

design and consequent performance is a function of several variables that have been listed by

Raghunathan. In nondimensional form, these are

flow coefficient φ5 cx=U

solid dity at mean radius σ5
2lZ

πDtð11 vÞ
hub=tip ratio v5Dh=Dt

blade aspect ratio AR5 blade length chord

blade tip clearance ratio5 tc=Dt

402 CHAPTER 9 Hydraulic Turbines



and also blade thickness ratio, turbulence level at inlet to turbine, frequency of waves, and the rela-

tive Mach number. It was observed by Raghunathan, Setoguchi, and Kaneko (1987) that the Wells

turbine has a characteristic feature that makes it significantly different from most turbomachines:

the absolute velocity of the flow is only a (small) fraction of the relative velocity. It is theoretically

possible for transonic flow conditions to occur in the relative flow resulting in additional losses due

to shock waves and an interaction with the boundary layers leading to flow separation. The effects

of these variables on the performance of the Wells turbine have been considered by Raghunathan

(1995) and a summary of some of the main findings follow.

Effect of flow coefficient
The flow coefficient φ is a measure of the angle of incidence of the flow and the aerodynamic

forces developed are critically dependent upon this parameter. Typical results based on predictions

and experiments of the nondimensional pressure drop p� 5Ωp=ðρω2D2
t Þ and efficiency are shown

in Figure 9.26. For a Wells turbine, a linear relationship exists between pressure drop and the flow

rate (Figure 9.26(a)), and this fact can be employed when making a match between a turbine and

an oscillating water column that also has a similar characteristic.

The aerodynamic efficiency η (Figure 9.26(b)) is shown to increase up to a certain value, after

which it decreases, because of boundary layer separation.

Effect of blade solidity
The solidity is a measure of the blockage offered by the blades to the flow of air and is an impor-

tant design variable. The pressure drop across the turbine is, clearly, proportional to the axial force

acting on the blades. An increase of solidity increases the axial force and likewise the pressure
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FIGURE 9.26

Comparison of theory with experiment for the Wells turbine: —— Theory ��� Experiment (Adapted from

Raghunathan, 1995): (a) Nondimensional pressure drop versus flow coefficient and (b) efficiency versus flow

coefficient.
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drop. Figure 9.27 shows how the variations of peak efficiency and pressure drop are related to the

amount of the solidity.

Raghunathan gives correlations between pressure drop and efficiency with solidity:

p�=p�0 5 12σ2 and η=η0 5
1

2
ð12σ2Þ

where the subscript 0 refers to values for a two-dimensional isolated aerofoil (σ5 0). A correlation

between pressure drop and solidity (for σ. 0) was also expressed as

p� 5Aσ1:6

where A is a constant.

Effect of hub�tip ratio
The hub�tip ratio v is an important parameter as it controls the volume flow rate through the tur-

bine but also influences the stall conditions, the tip leakage, and, most importantly, the ability of

the turbine to run up to operating speed. Values of v, 0.6 are recommended for design.
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FIGURE 9.27

Variation of peak efficiency and nondimensional pressure drop (in comparison to the values for an isolated

aerofoil) versus solidity: ——— Pressure ��� Efficiency.

(Adapted from Raghunathan et al., 1995)
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The starting behavior of the Wells turbine
When a Wells turbine is started from rest, the incoming relative flow will be at 90� to the rotor

blades. According to the choice of the design parameters, the blades could be severely stalled and,

consequentially, the tangential force Y will be small and the acceleration negligible. In fact, if and

when this situation occurs, the turbine may accelerate only up to a speed much lower than the

design operational speed, a phenomenon called crawling. The problem can be avoided either by

choosing a suitable combination of hub�tip ratio and solidity values at the design stage or by some

other means, such as incorporating a starter drive. Values of hub�tip ratio and solidity that have

been found to allow self-starting of the Wells turbine are indicated in Figure 9.28.

Pitch-controlled blades
Some appreciable improvements have been made in the performance of the Wells turbine as a

result of incorporating pitch-controlled blades into the design. The efficiency of the original Wells

turbine had a peak of about 80%, but the power output was rather low and the starting performance

was poor. One reason for the low-power output was the low tangential force Y and low flow coeffi-

cient φ as a consequence of the fixed-blade geometry.

A turbine with self-pitch-controlled blades
Performance enhancement of the Wells turbine reported by Kim et al. (2002) was achieved by

incorporating swivelable vanes instead of fixed vanes in an experimental test rig. The method they
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Self-starting capability of the Wells turbine.

(Adapted from Raghunathan et al., 1995)
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devised used symmetrical blades that pivot about the nose, whose pitch angle changes by a small

amount as a result of the varying aerodynamic forces developed by the oscillating flow. This

change to the turbine configuration enables a higher torque and efficiency to be obtained from the

reciprocating airflow. According to the authors, the turbine is geometrically simpler and would be

less expensive to manufacture than some earlier methods using “active” pitch-controlled blades,

e.g., Sarmento, Gato, and de O Falcào (1987) and Salter (1993).

The working principle with self-pitch-controlled blades is illustrated in Figure 9.29. This shows

one of the turbine blades fixed to the hub by a pivot located near the leading edge, allowing the

blade to move between two prescribed limits, 6 γ. An aerofoil set at a certain angle of incidence

experiences a pitching moment about the pivot, which causes the blade to flip. In this new position,

the blade develops a higher tangential force and torque at a lower rotational speed than was

obtained with the original fixed-blade design of the Wells turbine.

Kim et al., using a piston-driven wind tunnel, measured the performance characteristics of the

turbine under steady flow conditions. To determine its running and starting characteristics, a quasi-

steady computer simulation of the oscillating through-flow was used together with the steady state

characteristics. Details of the turbine rotor are given in Table 9.5.

The turbine characteristics under steady flow conditions were determined in the form of the out-

put torque coefficient, Cτ, and the input power coefficient, CP, against the flow coefficient, φ5 cx/

Uav, defined as

Cτ 5 τ0=½ρðc2x 1U2
avÞZlHrav=2� (9.30)

Rotation

Air flow

Air flow
Air foil

M

M

γ

γ

Pivot

FIGURE 9.29

Air turbine using self-pitch-controlled blades for wave energy conversion.

(From Kim et al., 2002, with Permission of Elsevier Science)

Table 9.5 Details of the Turbine Rotor

Blade profile NACA 0021 Hub�tip ratio 0.7

Blade chord, l 75 mm Tip diameter 298 mm

Number of blades, Z 8 Hub diameter 208 mm

Solidity 0.75 Blade length, H 45 mm
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Cp 5Δp0=½ρðc2x 1U2
avÞZlHrx=2� (9.31)

where τ0 is the output torque and Δp0 is the total pressure difference across the turbine.

Figure 9.30(a) shows the Cτ versus φ characteristics for the turbine for various blade-setting

angles. The solid line (γ5 0�) represents the result obtained for the original, fixed-blade Wells tur-

bine. For values of γ. 0�, Cτ decreases with increasing γ in the stall-free zone but, beyond the

original stall point for γ5 0, much higher values of Cτ were obtained.

Figure 9.30(b) shows the Cp versus φ characteristics for the turbine for various blade-setting

angles. This figure indicates that for γ. 0�, the input power coefficient, Cp, is lower than the case

where γ5 0� for all values of φ. Clearly, this is due to the variation in the rotor blade-setting angle.

The instantaneous efficiency of the turbine is given by

η5
Ωτ0
QΔp0

5
Cτ

φCp

(9.32a)

and the mean efficiency over the period of the wave, T5 1/f, is

ηav 5
1

T

ðT
0

Cτ

� �
=

1

T

ðT
0

φCpdt

� �
(9.32b)

Using the measured characteristics for Cτ and Cp and assuming a sinusoidal variation of the

axial velocity with a different maximum amplitude2 for each half cycle, as shown in Figure 9.31,
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Turbine characteristics under steady flow conditions: (a) torque coefficient; (b) input power coefficient.

(From Kim et al., 2002, with Permission of Elsevier Science)

2Kim et al. reported a lower maximum axial velocity cxi during inhalation than exhalation cxo.
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the mean efficiency of the cycle can be computed. Figure 9.32 shows the mean efficiency as a

function of the flow coefficient φ for a range of γ values with cxi5 0.6cxo.

Compared to the basic Wells turbine (with γ5 0�), the optimum result for γ5 10� shows an

improved mean efficiency and an optimum flow coefficient of about 0.4. It is apparent that further

field testing would be needed to prove the concept.

0

0.1

0.5

0.2

1.0

0.3

Flow coefficient, φ

M
ea

n 
ef

fic
ie

nc
y,

 η
m

γ

cxi 
/cxo = 0.6

1.5

0.4 0°
4°
6°
8°
10°
12°

0.5

FIGURE 9.32

Mean efficiency under sinusoidally oscillating flow conditions.

(From Kim et al., 2002, with Permission of Elsevier Science)
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Assumed axial velocity variation.

(From Kim et al., 2002, with Permission of Elsevier Science)
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Further work
Energetech in Sydney, Australia, began (circa 2003) the design of a half-scale test turbine,

which will be used for more detailed flow studies and to test new blade�hub arrangements.

Also, a full-scale 1.6 m diameter variable-pitch turbine has been constructed for use at the proto-

type wave energy plant at Port Kembla, New South Wales, Australia. Studies of derivatives of

the Wells turbine are also being undertaken at research centers in the United Kingdom, Ireland,

Japan, India, and other countries. It is still not clear which type of blading or which pitch-

control system will prevail. Kim et al. (2001) attempted a comparison of five derivatives of the

Wells turbine using steady flow data and numerical simulation of an irregular wave motion.

However, at present a “best” type has still not emerged from a welter of data. A final conclusion

must await the outcome of further development and the testing of prototypes subjected to real

sea wave conditions.

9.11 Tidal power
Tidal energy is generated by the relative motion of the Earth, Sun, and Moon system whose gravi-

tational forces cause periodic changes to the water levels on the Earth’s surface. The magnitude of

the tide at any given location is the result of the varying positions of the Moon and Sun relative to

that of the Earth, the rotation of the Earth, the shape of the seabed, and the magnifying effects of

the coast. The Moon is the main cause of these tides and the Sun to a much lesser extent. When the

Sun and Moon are in-line with the Earth (Figure 9.33), the gravitational force is greatest causing

bigger tides (so-called spring tides).

With the Sun and Moon disposed at 90� to the Earth, the gravitational pull on the Earth is weak-

est (the so-called neap tide). It is worth noting that tidal power is inexhaustible for all practical pur-

poses (it is a renewable energy resource).3 At any one moment in time, there are two high tides

and two low tides around the Earth. One high tide occurs on the longitude closest to the Moon and

the other on the longitude furthest from it. Of course, at the same time, the low tides are occurring

at longitudes that are at 90� to those at which the high tides are occurring. The interval between

high tide is about 12 h 25 min. The tidal range is the difference in height between high and low

tides. In mid-ocean, the tidal range is between 0.5 and 1.0 m, but in the coastal regions the range

can be significantly enhanced. In the Severn estuary (United Kingdom), the tidal range can be as

much as 14 m and other shallow areas, e.g., the Bay of Fundy (Nova Scotia), the tidal range can

exceed 13 m. Other coastal regions have enhanced tidal ranges and many are under consideration

for the installation of tidal energy generators.

Several of these tidal generators have been installed for long-term evaluations and testing and

recent commercial enterprises have produced successful results. Compared to wind and solar

energy, tidal power has the great advantage of being entirely predictable.

3Williams (2000) records that tidal activity has caused a loss of mechanical energy in the Earth�Moon system due to

pumping of water through natural restrictions around coastlines, to viscous dissipation at the seabed and in turbulence.

Over the last 620 million years, this loss of energy is estimated to have caused the Earth’s speed of rotation to slow

down, the period of rotation is estimated to have increased from 21.9 h to the present 24 h. Energy taken from the tides

by humankind would be insignificant on a world-scale and would have a negligible effect on the Earth’s rotation.
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Categories of tidal power
There are two main types of tidal power generator:

a. tidal stream systems that use the kinetic energy of the water to power turbines;

b. barrages that make use of the potential energy of the water trapped between high and low tides.

Barrages are essentially dams stretching across the full width of a tidal estuary. Because of

their very high civil engineering construction costs, the environmental problems they can cause,

and also a worldwide lack of suitable sites (they require a minimum tidal range of at least 7 m

for economic reasons), very few are likely to be made. The La Rance scheme in France, how-

ever, has been in operation since 1966. It was the first tidal barrage in the world, took 6 years

to build, and provides an output of 240 MW. This type of tidal power generator is not consid-

ered any further.

Tidal stream generators
This is a relatively new technology and is still under development. It appears that the most success-

ful approach is based on axial turbine practice. Since April 2007, Verdant Power has been running

a demonstration project in the East River between Queens and Roosevelt Island in New York

City. It is noted that the strength of the currents at that location has posed serious engineering
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Earth

Spring
tides

FIGURE 9.33

Sun, Moon, and Earth orientations causing spring and neap tides.
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challenges: the blades of the 2006 and 2007 prototypes broke off. Because of the robust underwater

environment they encounter, new stronger blades were installed in September 2008. Several other

installations based on the axial turbine design have been tried out at Kvalsund in Norway (300 kW)

in 2003, and the SeaGen project at Strangford Lough in Northern Ireland has proved successful and

has been providing 1.2 MW to the grid.

The SeaGen tidal turbine
Strangford Lough, shown in Figure 9.34, is a large (150 km2) shallow lagoon situated on the east

coast of Northern Ireland, open to the sea. The entrance to the lough is a deep channel (the

Narrows) about 8 km long and about 0.5 km wide. The currents through the Narrows are extremely

strong and fast, reaching up to about 4 m/s at full flow. At the time this book was being prepared,

little technical information had been released by the manufacturers about the SeaGen project, but

using the data given and with the aid of actuator disk theory as applied to wind turbines

(Chapter 10), some of the leading values of the operating parameters can be estimated. The back-

ground to the design philosophy, development, and testing of the pioneering “Seaflow Project,”

FIGURE 9.34

Strangford Lough, near Belfast, is about 25 km long. Roughly 1.83 106 m3 of water flow in and out of the

lough (loch) each day.
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which preceded SeaGen, and the preparation for the installation of SeaGen itself is described by

Fraenkel (2007). A slightly later technical article by Douglas et al. (2008) gives a detailed assess-

ment of the Seagen including the important information that the energy payback period is approxi-

mately 14 months and the CO2 payback time is around 8 months.

Figure 9.35 shows the structural arrangement of SeaGen comprising two unshrouded axial-flow

turbines, 16 m tip diameter, supported on a single beam. At the design speed, given as 14 rpm,

each turbine provides 600 kW. The configuration of the turbines appears to be the same as that of

horizontal axis wind turbines (HAWTs) studied in Chapter 10. The rotor blades can be pitched

through 180v to allow operation of the turbine on both the ebb and flood tides.

From the actuator disk theory used in Chapter 10, Eq. (10.15b), the turbine hydrodynamic power

output is

P5
1

2
ρACpc

3
x1

where A is the blade disk area, Cp is the power coefficient, ρ is the density of seawater, and cx1 is

the velocity of the water approaching the turbine.

FIGURE 9.35

SeaGen tidal power generator.

(With permission of Marine Current Turbines, Ltd.)
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EXAMPLE 9.9

Determine the minimum flow speed of the water approaching the SeaGen tidal turbine in order

for the full design power of 600 kW (for each turbine) to be achieved and also the blade

tip�speed ratio. Assume the power coefficient Cp5 0.3,4 the blade diameter is 16 m, and the

density of seawater is 1025 kg/m3.

Solution
From the preceding equation,

c3x1 5P=
1

2
ρACp

� �
5P=

π
8
ρD2Cp

� �
5

6003 103

π=83 10253 162 3 0:3
5 19:41

Therefore,

cx1 5 2:69 m=s

The blade tip speed is

Ut 5Ωrt 5
14

30
π

� �
3 85 11:73 m=s

Hence, the blade tip�speed ratio (when full power is reached) is

J5
Ut

cx1
5

11:73

2:69
5 4:36

This value of blade tip�speed ratio conforms with the values found for HAWTs.

PROBLEMS
1. A generator is driven by a small, single-jet Pelton turbine designed to have a power specific

speed Ωsp5 0.20. The effective head at nozzle inlet is 120 m and the nozzle velocity

coefficient is 0.985. The runner rotates at 880 rpm, the turbine overall efficiency is 88%, and

the mechanical efficiency is 96%. If the blade speed�jet speed ratio, v5 0.47, determine

a. the shaft power output of the turbine;

b. the volume flow rate;

c. the ratio of the wheel diameter to jet diameter.

2. a. Water is to be supplied to the Pelton wheel of a hydroelectric power plant by a pipe of

uniform diameter, 400 m long, from a reservoir whose surface is 200 m vertically above

the nozzles. The required volume flow of water to the Pelton wheel is 30 m3/s. If the pipe

skin friction loss is not to exceed 10% of the available head and f5 0.03, determine the

minimum pipe diameter.

4Values of Cp for horizontal axis wind turbines are normally found in the range 0.3�0.35. The Betz limit for Cp is 0.593.
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b. You are required to select a suitable pipe diameter from the available range of stock sizes

to satisfy the criteria given. The ranges of diameters (m) available are 1.6, 1.8, 2.0, 2.2,

2.4, 2.6, and 2.8. For the diameter you have selected, determine

a. the friction head loss in the pipe;

b. the nozzle exit velocity assuming no friction losses occur in the nozzle and the water

leaves the nozzle at atmospheric pressure;

c. the total power developed by the turbine assuming that its efficiency is 75% based

upon the energy available at turbine inlet.

3. A multi-jet Pelton turbine with a wheel 1.47 m diameter operates under an effective head of

200 m at nozzle inlet and uses 4 m3/s of water. Tests have proved that the wheel efficiency is

88% and the velocity coefficient of each nozzle is 0.99. Assuming that the turbine operates at

a blade speed to jet speed ratio of 0.47, determine

a. the wheel rotational speed;

b. the power output and the power specific speed;

c. the bucket friction coefficient given that the relative flow is deflected 165�;
d. the required number of nozzles if the ratio of the jet diameter�mean diameter of the

wheel is limited to a maximum value of 0.113.

4. A four-jet Pelton turbine is supplied by a reservoir whose surface is at an elevation of 500 m

above the nozzles of the turbine. The water flows through a single pipe 600 m long, 0.75 m

diameter, with a friction coefficient f5 0.0075. Each nozzle provides a jet 75 mm diameter

and the nozzle velocity coefficient KN5 0.98. The jets impinge on the buckets of the wheel

at a radius of 0.65 m and are deflected (relative to the wheel) through an angle of 160�. Fluid
friction within the buckets reduces the relative velocity by 15%. The blade speed�jet speed

ratio v5 0.48 and the mechanical efficiency of the turbine is 98%. Calculate, using an

iterative process, the loss of head in the pipeline and, hence, determine for the turbine

a. the speed of rotation;

b. the overall efficiency (based on the effective head);

c. the power output;

d. the percentage of the energy available at turbine inlet that is lost as kinetic energy at

turbine exit.

5. A Francis turbine operates at its maximum efficiency point at η05 0.94, corresponding to a

power specific speed of 0.9 rad. The effective head across the turbine is 160 m and the speed

required for electrical generation is 750 rpm. The runner tip speed is 0.7 times the spouting

velocity, the absolute flow angle at runner entry is 72� from the radial direction, and the

absolute flow at runner exit is without swirl. Assuming there are no losses in the guide vanes

and the mechanical efficiency is 100%, determine

a. the turbine power and the volume flow rate;

b. the runner diameter;

c. the magnitude of the tangential component of the absolute velocity at runner inlet;

d. the axial length of the runner vanes at inlet.

6. The power specific speed of a 4 MW Francis turbine is 0.8, and the hydraulic efficiency can

be assumed to be 90%. The head of water supplied to the turbine is 100 m. The runner vanes

are radial at inlet and their internal diameter is three-quarters of the external diameter. The
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meridional velocities at runner inlet and outlet are equal to 25% and 30%, respectively, of the

spouting velocity. Determine

a. the rotational speed and diameter of the runner;

b. the flow angles at outlet from the guide vanes and at runner exit;

c. the widths of the runner at inlet and at exit.

Blade thickness effects can be neglected.

7. a. Review, briefly, the phenomenon of cavitation in hydraulic turbines and indicate the

places where it is likely to occur. Describe the possible effects it can have upon turbine

operation and the turbine’s structural integrity. What strategies can be adopted to alleviate

the onset of cavitation?

b. A Francis turbine is to be designed to produce 27 MW at a shaft speed of 94 rpm under

an effective head of 27.8 m. Assuming that the optimum hydraulic efficiency is 92% and

the runner tip speed�jet speed ratio is 0.69, determine

a. the power specific speed;

b. the volume flow rate;

c. the impeller diameter and blade tip speed.

c. A 1/10 scale model is to be constructed to verify the performance targets of the prototype

turbine and to determine its cavitation limits. The head of water available for the model

tests is 5.0 m. When tested under dynamically similar conditions as the prototype, the

NPSH HS of the model is 1.35 m. Determine for the model

a. the speed and the volume flow rate;

b. the power output, corrected using Moody’s equation to allow for scale effects (assume

a value for n5 0.2);

c. the suction specific speed ΩSS.

d. The prototype turbine operates in water at 30�C when the barometric pressure is 95 kPa.

Determine the necessary depth of submergence of that part of the turbine most likely to

be prone to cavitation.

8. The preliminary design of a turbine for a new hydroelectric power scheme has under

consideration a vertical-shaft Francis turbine with a hydraulic power output of 200 MW under

an effective head of 110 m. For this particular design, a specific speed, Ωs5 0.9 (rad), is selected

for optimum efficiency. At runner inlet the ratio of the absolute velocity to the spouting

velocity is 0.77, the absolute flow angle is 68�, and the ratio of the blade speed to the spouting
velocity is 0.6583. At runner outlet, the absolute flow is to be without swirl. Determine

a. the hydraulic efficiency of the rotor;

b. the rotational speed and diameter of the rotor;

c. the volume flow rate of water;

d. the axial length of the vanes at inlet.

9. A Kaplan turbine designed with a shape factor (power specific speed) of 3.0 (rad), a runner

tip diameter of 4.4 m, and a hub diameter of 2.0 m operates with a net head of 20 m and a

shaft speed of 150 rpm. The absolute flow at runner exit is axial. Assuming that the hydraulic

efficiency is 90% and the mechanical efficiency is 99%, determine

a. the volume flow rate and shaft power output;

b. the relative flow angles at the runner inlet and outlet at the hub, at the mean radius and at

the tip.
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10. A hydroelectric power station is required to generate a total of 4.2 MW from a number of

single-jet Pelton wheel turbines each operating at the same rotational speed of 650 rpm, at the

same power output and at a power specific speed of 1.0 rev. The nozzle efficiency ηN of each

turbine can be assumed to be 0.98, the overall efficiency ηo is assumed to be 0.88, and the

blades speed to jet speed ratio v is to be 0.47. If the effective head HE at the entry to the

nozzles is 250 m, determine

a. the number of turbines required (round up the value obtained);

b. the wheel diameter;

c. the total flow rate.

11. a. In the previous problem, the reservoir surface is 300 m above the turbine nozzles and the

water is supplied to the turbines by three pipelines, each 2 km long and of constant

diameter. Using Darcy’s formula, determine a suitable diameter for the pipes assuming

the friction factor f5 0.006.

b. The chief designer of the scheme decides that a single pipeline would be more

economical and that its cross-sectional area would need to be equal to the total

cross-sectional area of the pipelines in the previous scheme. Determine the resulting

friction head loss assuming that the friction factor remains the same and that the

total flow rate is unchanged.

12. Sulzer Hydro Ltd. of Zurich at one time manufactured a six-jet vertical-shaft Pelton wheel

turbine with a power rating of 174.4 MW, with a runner diameter of 4.1 m, and an operating

speed of 300 rpm with an effective head of 587 m. Assuming the overall efficiency is 0.90

and the nozzle efficiency is 0.99, determine

a. the power specific speed;

b. the blade speed�jet speed ratio;

c. the volume flow rate.

Considering the values shown in Figure 9.2, comment on your result.

13. A vertical axis Francis turbine has a runner diameter of 0.825 m, operates with an effective

head, HE5 6.0 m, and produces 200 kW at the shaft. The rotational speed of the runner is

250 rpm, the overall efficiency is 0.90, and the hydraulic efficiency is 0.96. If the meridional

(i.e., flow) velocity of the water through the runner is constant and equal to 0:4
ffiffiffiffiffiffiffiffiffiffiffi
2gHE

p
and

the exit absolute flow is without swirl, determine the vane exit angle, the inlet angle of the

runner vanes, and the runner height at inlet. Evaluate the power specific speed of the turbine

and decide if the data given is consistent with the stated overall efficiency.

14. a. A prototype Francis turbine is to be designed to operate at 375 rpm at a power specific

speed of 0.8 (rad), with an effective head of 25 m. Assuming the overall efficiency is

92%, the mechanical efficiency is 99%, the runner tip speed to jet speed ratio is 0.68, and

the flow at runner exit has zero swirl, determine

i. the shaft power developed;

ii. the volume flow rate;

iii. the impeller diameter and blade tip speed;

iv. the absolute and relative flow angles at runner inlet if the meridional velocity is

constant and equal to 7.0 m/s.

b. Using Thoma’s coefficient and the data in Figure 9.21, investigate whether the

turbine is likely to experience cavitation. The vertical distance between the runner and
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the tailrace is 2.5 m, the atmospheric pressure is 1.0 bar, and the water temperature

is 20�C.

15. For the previous problem, a 1/5 scale model turbine of the prototype is to be made and tested

to check that the performance targets are valid. The test facility has an available head of 3 m.

For the model, determine

a. the rotational speed and volume flow rate;

b. the power developed (uncorrected for scale).

16. A radial flow hydraulic turbine whose design is based on a power specific speed, Ωsp5 1.707

is to produce 25 MW from a total head, HE5 25 m. The overall turbine efficiency ηo5 0.92,

the mechanical efficiency is 0.985, and the loss in head in the nozzles is 0.5 m. The ratio of

the blade tip speed to jet speed is 0.90. Assuming the meridional velocity is constant and

equal to 10 m/s and there is no swirl in the runner exit flow, determine

a. the volume flow rate through the turbine;

b. the rotational speed and diameter of the runner;

c. the absolute and relative flow angles at entry to the runner.

17. An axial-flow hydraulic turbine operates with a head of 20 m at turbine entry and develops

10 MW when running at 250 rpm. The blade tip diameter is 3 m, the hub diameter is 1.25 m,

and the runner design is based upon a “free vortex.” Assuming the hydraulic efficiency is

94%, the overall efficiency is 92%, and the flow at exit is entirely axial, determine the

absolute and relative flow angles upstream of the runner at the hub, mean, and tip radii.

18. a. A model of a Kaplan turbine, built to a scale of 1/6 of the full-scale prototype, develops

an output of 5 kW from a net head of 1.2 m of water at a rotational speed of 300 rpm and

a flow rate of 0.5 m3/s. Determine the efficiency of the model.

b. By using the scaling laws, estimate the rotational speed, flow rate, and power of the

prototype turbine when running with a net head of 30 m.

c. Determine the power specific speed for both the model and the prototype, corrected with

Moody’s equation. To take account of the effects of size (scale), use the Moody formula

ð12 ηpÞ5 ð12 ηmÞðDm=DpÞ0:25

to estimate the full-scale efficiency, ηp, and the corresponding power.

19. A Pelton wheel turbine rotates at 240 rpm, has a pitch diameter of 3.0 m, a bucket angle of

165�, and a jet diameter of 5.0 cm. If the jet velocity at nozzle exit is 60 m/s and the relative

velocity leaving the buckets is 0.9 times that at entry to the buckets, determine

a. the force acting on the buckets;

b. the power developed by the turbine.
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CHAPTER

10Wind Turbines

Take care your worship, those things over there are not giants but windmills.
M. Cervantes, Don Quixote, Part 1, Chapter 8

Like a circle in a spiral

Like a wheel within a wheel

Never ending or beginning

On an ever spinning reel

As the images unwind

Like the circles

That you find

In the windmills of your mind!

Lyric: The Windmills of your Mind (Legrande/Bergman/Bergman)

10.1 Introduction
A modern wind turbine is a machine which converts the power available in the wind into electric-

ity. On the other hand, a windmill is a machine which was used to convert wind power to mechani-

cal power. As generators of electricity, wind turbines are usually connected into some form of

electrical network and the larger turbines can form a part of the electrical grid. The largest size sin-

gle turbines used for this purpose can have an output of around 5�6 MW.

Over the past four decades, there has been a remarkable growth in global installed generating

capacity. The data given in Figure 10.1 obtained from statistics published by the Global Wind

Energy Council (GWEC), the European Wind Energy Association (EWEA), the American Wind

Energy Association (AWEA), and others shows the regional and worldwide growth of installed

wind power capacity up to the end of 2011. It is interesting to note that the global wind power

capacity is now still doubling every 3 years. The biggest regional contributors to this installed

growth in wind power are the Peoples Republic of China. According to the GWEC, the develop-

ment of wind energy in China in terms of scale is absolutely unparalleled in the world. By the end

of 2010, the installed wind power capacity had reached 41.8 GW. Up to May 2009, 80 countries

around the world contributed to the generation of wind power on a commercial scale. Predicting

the growth of wind power generation is far from reliable. At the end of 2011, the total worldwide

wind power capacity had reached 237 GW.
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An interesting paper which considers the potential of wind power as a global source of electric-

ity has been presented by Xi, McElroy, and Kiviluoma (2009). The analysis indicates that a net-

work of land based 2.5 MW wind turbines restricted to land based, nonforested, ice free, nonurban

areas and operating as little as 20% of their rated capacity could supply more than 40 times the cur-

rent world capacity of electricity.

Wind characteristics and resource estimation
The Earth receives more energy from the Sun at the equator than at the poles. Dry land heats up

(and cools down) more quickly than the oceans. This differential heating and cooling, which is

greatest near the equator, drives an atmospheric convection system extending from sea level to the

upper atmosphere. The warm air rises, circulates in the atmosphere, and gradually sinks back to the

surface in the cooler regions. At the upper levels of the atmosphere, continuous wind speeds are

known to exceed 150 km/h. The large-scale motion of the air at altitude causes a circulation pattern

with well-known features at sea level such as the trade winds.

The most striking characteristic of wind energy is its variability both spatially and temporally.

The variability depends on many factors: climatic region, topography, season of the year, altitude,

type of local vegetation, etc. Topography and altitude have a major influence on wind strength. The

strength of wind on the high ground and mountain tops is greater than in the sheltered valleys.

Coastal regions are often windier than further inland because of the difference in heating between

land and sea. The use of available wind resource data is clearly of some importance. Studies have

been made in the United States, Europe, and many parts of the world that give an indication of the

wind resource (in W/m2) for many locations. In is not feasible (in this book) to give a sensible

300

250

200

150

Glob
al

EU

PRC

USA

In
st

al
le

d 
w

in
d 

po
w

er
 (

G
W

)

100

50

0
1098 2000 2002 2004

End of year results

2006 2008 2010 2012

UK

FIGURE 10.1

Installed wind power capacity (global and of some selected countries).
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coverage of these extensive results, but an indication is given for some of the chief organizations

which give detailed resource references. These are:

1. For world summaries:

Singh, S., Bhatti, T.S., & Kothari, D.P. (2006). A review of wind-resource-assessment

technology. Journal of Energy Engineering, 132(1), 8�14.

Elliot, D.L. (2002). Assessing the world wind resource. Power Engineering Review, IEEE,

22(9).

2. For the United States:

Elliot, D.L., & Schwartz, M. (2004). Validation of Updated State Wind Resource Maps for

the United States, NREL/CP�500�36200.

3. For Europe:

Troen, I., & Petersen, E.L. (1989). European Wind Atlas,

Risø National Laboratory; Denmark:

A significant change has now taken place with the location and rapid building of many wind

turbines in coastal waters. Despite the difficult installation environment and increased cost, the

main advantages arise from the significantly higher wind speeds and lower wind turbulence. Often

centers of population and industry are situated close to coasts so that the cost of electrical transmis-

sion is reduced by the more likely shorter distances required by their supply lines.

At any given location temporal variability can mean that the magnitude and amount of the wind

strength can change from 1 year to the next. The cause of these changes are still not well under-

stood but may be generated by large-scale variations in weather systems and ocean currents.

The proper design and size of a wind turbine will depend crucially upon the site under consider-

ation having a favorable wind. Briefly, to be favorable, the wind would need to be of sufficient

strength and duration at an acceptable height. For the locations being considered as possible sites,

extended anemometric surveys (lasting over at least a year) are needed to determine the nature of

the wind speed distribution with respect to time and height above the ground. These surveys are

generally carried out at a fairly standard height of 30 m above the ground and, when required,

some sort of extrapolation is made for estimating wind speeds at other heights.1 To assess the fre-

quency of the occurrence of wind speeds at a site, a probability distribution function is often

employed to fit the observed data. Several types of these distribution functions are commonly used:

i. the simple single-parameter Rayleigh distribution;

ii. the complicated but slightly more accurate, two-parameter Weibull distribution.

From these data, estimates of power output for a range of turbine designs and sizes can be

made. Wind turbine rotors have been known to suffer damage or even destruction from excessive

wind speeds and obviously this aspect requires very careful consideration of the worst-case wind

conditions so the problem may be avoided.

1The NREL has developed an automated method for wind resource mapping in order to quickly generate wind data.

Their mapping technique is based on known empirical relationships between the “free-air” wind speed, 100�200 m

above the surface, and the actual surface. A so-called “top-down” method is then used to determine the free-air velocity

profiles down to the surface (Schwartz, 1999).
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An important issue concerning the installation of wind power plants involves their environmen-

tal impact. Walker and Jenkins (1997) have outlined the most significant benefits for installing

wind turbines as well as the reasons put forward to counter their installation. It is clear that the ben-

efits include the reduction in the use of fossil fuels, leading to a reduction in the emission of pollu-

tants (the most important of these being the oxides of carbon, sulfur, and nitrogen). Any emissions

caused by the manufacture of the wind turbine plant itself are offset after a few months of

emission-free operation. Similarly, and importantly, the energy expended in the manufacture of a

wind turbine, according to the World Energy Council (1994), is paid back after about a year’s nor-

mal productive operation.

Historical viewpoint
It may be of interest to mention a little about how the modern wind turbine evolved. Of course, the

extraction of mechanical power from the wind is an ancient practice dating back at least 3000

years. Beginning with sailing ships, the technical insight gained from them was somehow extended

to the early windmills for the grinding of corn, etc. Windmills are believed to have originated in

Persia in the seventh century and, by the twelfth century, their use had spread across Europe. The

design was gradually improved, especially in England during the eighteenth century where mill-

wrights developed remarkably effective self-acting control mechanisms. A carefully preserved brick

built tower windmill, shown in Figure 10.2, a classic version of this type, still exists on Bidston

Hill near Liverpool, United Kingdom, and was used to grind corn into flour for 75 years up until

1875. It has now become a popular historical attraction.

The wind pump was first developed in Holland for drainage purposes, while in the United

States, the deep-well pump was evolved for raising water for stock watering. Most windmills

employ a rotor with a near horizontal axis, the sails were originally of canvas, a type still in use

today in Crete. The English windmill employed wooden sails with pivoted slats for control.

The US wind pump made use of a large number of sheet-metal sails (Lynette and Gipe, 1998). The

remarkable revival of interest in modern wind-powered machines appears to have started in the

1970s because of the so-called fuel crisis. A most interesting brief history of wind turbine design is

given by Eggleston and Stoddard (1987). Their focus of attention was the use of wind power for

generating electrical energy rather than mechanical energy. A rather more detailed history of the

engineering development of windmills from the earliest times leading to the introduction of the first

wind turbines is given by Manwell et al. (2009).

10.2 Types of wind turbine
Wind turbines fall into two main categories: those that depend upon aerodynamic drag to drive

them (i.e., the old style windmills) and those that depend upon aerodynamic lift. Drag machines

such as those developed in ancient times by the Persians were of very low efficiency compared

with modern turbines (employing lift forces) and so are not considered any further in this chapter.

The design of the modern wind turbine is based upon aerodynamic principles, which are elabo-

rated later in this chapter. The rotor blades are designed to interact with the oncoming airflow so

that an aerodynamic lift force is developed. A drag force is also developed but, in the normal range
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of prestall operation, this will amount to only about 1% or 2% of the lift force. The lift force, and

the consequent positive torque produced, drives the turbine thereby developing output power.

In this chapter, the focus of attention is necessarily restricted to the aerodynamic analysis of the

horizontal axis wind turbine (HAWT) although some mention is given of the vertical axis wind tur-

bine (VAWT). The VAWT, also referred to as the Darrieus turbine after its French inventor in the

1920s, uses vertical and often slightly curved symmetrical aerofoils. Figure 10.3(a) shows a general

view of the very large 4.2 MW vertical axis Darrieus wind turbine called the Eole�VAWT installed

at Cap-Chat, Quebec, Canada, having an effective diameter of 64 m and a blade height of 96 m.

Figure 10.3(b), from Richards (1987), is a sketch of the major components of this aptly named

eggbeater wind turbine. Guy cables (not shown) are required to maintain the turbine erect. This

FIGURE 10.2

Tower Windmill, Bidston, Wirral, UK (ca. 1875).
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type of machine has one distinct advantage: it can operate consistently without regard to wind

direction. However, it does have a number of major disadvantages:

i. wind speeds are low close to the ground so that the lower part of the rotor is rather less

productive than the upper part;

ii. high fluctuations in torque occur with every revolution;

iii. negligible self-start capability;

iv. limited capacity for speed regulation in winds of high speed.

Darrieus turbines usually require mechanical power input to start them but have been known to

self-start. (Several VAWTs have been destroyed by such self-starts.) For assisted starting, the

method used is to run the generator as a motor up to a speed when aerodynamic wind forces can

take over. Stopping a VAWT in high winds is difficult as aerodynamic braking has not been suc-

cessful and friction braking is needed.

According to Ackermann and Söder (2002), VAWTs were developed and produced commer-

cially in the 1970s until the 1980s. Since the end of the 1980s, research and development on

VAWTs has virtually ceased in most countries, apart from Canada (see Gasch, 2002; Walker &

Jenkins, 1997; Divone, 1998).

(a) (b)

Brake discs
Flexible coupling
Building enclosure

Generator 8.5 m

96 m

64 m

FIGURE 10.3

(a) The 4 MW Eolé VAWT installed at Cap-Chat, Quebec; (b) sketch of VAWT Eolé showing the major

components, including the direct-drive generator.

(Courtesy AWEA)
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Large HAWTs
The HAWT type is currently dominant in all large-scale applications for extracting power from the

wind and seems likely to remain so. The large HAWT, Figure 10.4(a), operating at Barrax, Spain,

is 104 m in diameter and can generate 3.6 MW. (This size of wind turbine has become fairly com-

monplace, especially in the coastal waters around Great Britain.) Basically, a HAWT comprises a

nacelle mounted on top of a high tower, containing a generator and, usually, a gearbox to which

the rotor is attached. Increasing numbers of wind turbines do not have gearboxes but use a direct

drive. A powered yaw system is used to turn the turbine so that it faces into the wind. Sensors mon-

itor the wind direction and the nacelle is turned according to some integrated average wind direc-

tion. The number of rotor blades employed depends on the purpose of the wind turbine. As a rule,

three-bladed rotors are used for the generation of electricity. Wind turbines with only two or three

blades have a high ratio of blade tip speed to axial flow velocity (the tip�speed ratio), but only a

FIGURE 10.4

(a) First general electric baseline HAWT, 3.6 MW, 104 m diameter, operating at Barrax, Spain, since 2002.

(b) The Bergey Excel-S, three-bladed, 7 m diameter wind turbine, rated at 10 kW at wind speed of 13 m/s.

((a) Courtesy US DOE; (b) with permission of Bergey Windpower Company)
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low starting torque and may even require assistance at startup to bring it into the useful power pro-

ducing range of operation. Commercial turbines range in capacity from a few hundred kilowatts to

more than 3 MW. The crucial parameter is the diameter of the rotor blades, the longer the blades,

the greater is the “swept” area and the greater the possible power output. Rotor diameters now

range to over 100 m. The trend has been toward larger machines as they can produce electricity at

a lower price. Most wind turbines of European origin are made to operate upwind of the tower, i.e.,

they face into the wind with the nacelle and tower downstream. However, there are also wind tur-

bines of downwind design, where the wind passes the tower before reaching the rotor blades.

Advantages of the upwind design are that there is little or no tower “shadow” effect and lower

noise level than the downwind design.

Small HAWTs
Small wind turbines with a horizontal axis were developed in the nineteenth century for mechanical

pumping of water, e.g., the American farm pump. The rotors had 20 or more blades, a low

tip�speed ratio but a high starting torque. With increasing wind speed pumping would then start

automatically. According to Baker (1985), the outgrowth of the utility grid caused the decline of

the wind-driven pump in the 1930s. However, there has been a worldwide revival of interest in

small HAWTs of modern design for providing electricity in remote homes and isolated communi-

ties that are “off grid.” The power output of such a wind-powered unit would range from about 1

to 50 kW. Figure 10.4(b) shows the Bergey Excel-S, which is a three-blade upwind turbine rated at

10 kW at a wind speed of 13 m/s. This is currently America’s most popular residential and small

business wind turbine.

Effect of tower height
An important factor in the design of HAWTs is the tower height. The wind speed is higher the

greater the height above the ground. This is the meteorological phenomenon known as wind shear.

This common characteristic of wind can be used to advantage by employing wind towers with

increased hub heights to capture more wind energy. A study by Livingston and Anderson (2004)

investigated the wind velocities at heights up to 125 m on the Great Plains (United States) and pro-

vide a compelling case for operating wind turbines with hub heights of at least 80 m. Typically, for

daytime temperatures, the variation follows the wind profile one-seventh power law (i.e., wind

speed increases proportionally to the one-seventh root of height above the surface):

cx=cx;ref 5 ðh=hrefÞn

where cx is the wind speed at height h, cx,ref is the known wind speed at a reference height href.

The exponent n is an empirically derived coefficient. In a neutrally stable atmosphere and over

open ground (the normal condition), n� 1/7 or 0.143. Over open water, a more appropriate coeffi-

cient is n� 0.11. As an example, it is required to estimate the wind speed at a height of 80 m above

the ground using a reference velocity of 15 m/s measured at a hub height of 50 m:

cx 5 15ð80=50Þ0:143 5 16:04 m=s
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Even a small increase in wind speed can be important. It is shown later that the possible power

extracted from the wind varies as the cube of the wind speed. Using this example, the increase in

the power extracted would be over 22% as a result of increasing the hub height from 50 to 80 m.

Of course, there is a penalty as costs will be greater for the stronger tower structure required.

10.3 Performance measurement of wind turbines
Wind turbine performance relates to the energy availability in the wind at the turbines site. The wind can

be described by a probability density distribution of turbulence of various frequencies superimposed on a

momentarily steady component. The turbulent wind will have longitudinal, lateral, and vertical compo-

nents of velocity. In this basic description of the wind, we will be concerned only with its longitudinal

component c which will normally be parallel to the axis of rotation of the turbine. In the short term, the

speed of the wind is to be considered as a steady component c and a fluctuating component c0, i.e.,
c5 c1 c0.

Wind speed probability density function
From measurements of wind speeds at any one location and over a long enough period of time, it

becomes apparent that the wind speed is more likely to be closer to a mean value than far from it.

Also, the measured values will, in all probability, be as much above the mean as below it. The

probability density function (p.d.f.) that best fits in with this type of erratic behavior of turbulence

is called the Gaussian probability density distribution (or normal distribution).

The normal p.d.f. for continuously collected data is given by:

pðcÞ5 1

σc

ffiffiffiffiffiffi
2π

p exp 2
ðc2cÞ2
2σ2

c

� �

where σ2
c 5 ð1=Ns 2 1ÞPNs

i51 ðci2cÞ2; σc is the standard deviation and Ns is the number of readings

taken over a time interval of (say) 10 s to determine the short-term wind speed, c5 ð1=NsÞ
PNs

i51 ci.

Figure 10.5 shows a sample histogram of the wind speeds varying about a mean wind speed.

The Gaussian p.d.f. that represents this data is shown drawn onto this histogram.

Prediction of power output. The power output of a wind turbine is obviously a function of the

wind speed. We will find that every wind turbine has its own characteristic power curve. From this

curve, it is possible to predict the energy output without having to refer to more detailed informa-

tion about the individual components of the turbine. Figure 10.6 shows the power output curve of a

hypothetical wind turbine as a function of the wind speed at hub height.

There are three important key factors included in this diagram and which are applicable to all

wind turbines. These are:

1. Cut-in wind speed: This is the minimum wind speed that the turbine can deliver useful power.

It is usually between 3 and 4 m/s.

2. Cut-out wind speed: This is the maximum wind speed that the turbine can safely deliver power.

This is a positive limit set by the stresses in the turbine components. If this limit is reached, the

control system activates the braking system which brings the rotor to rest.
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3. Rated output power and rated output wind speed: The electrical power output increases rapidly

with wind speed. However, usually between 14 and 17 m/s, the maximum permitted power

limit of the generator is reached. The rated output power and the corresponding wind speed is

called the rated output wind speed. At higher wind speeds, the power output is kept constant by

the control system making adjustment of the blade angles.

The kinetic power available in the wind is

P0 5
1

2
ρA2c

3
x1

where A2 is the disc area and cx1 is the velocity upstream of the disc. The ideal power generated by the

turbine can therefore be expected to vary as the cube of the wind speed. Figure 10.6 shows the idealized

power curve for a wind turbine, where the preceding cubic “law” applies between the cut-in wind speed

and the rated wind speed at which the maximum power is first reached. The rated wind speed often cor-

responds to the point at which the efficiency of energy conversion is close to its maximum.
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Idealized power output curve for a wind turbine.
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Gaussian p.d.f. fitted to a sample of wind speed data.
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Storing energy
Because of the intermittency of wind and the unavailability at times of the required energy, it is

often claimed by opponents of wind turbines that it is better to rely on other sources of power.

Clearly, some form of energy storage can be devised. For instance, in Spain more than 13.8 GW of

wind power capacity has been installed, providing about 10% of that country’s electricity needs,

according to Renewable Energy World (September�October, 2009). At Iberdrola, Spain, a pumped

storage scheme (852 MW) is now being used to store the excess wind turbine energy and three fur-

ther pumped storage plants are likely to be built with a total capacity of 1.64 GW.

In the following sections, the aerodynamic theory of the HAWT is gradually developed, start-

ing with the simple 1D momentum analysis of the actuator disc and followed by the more

detailed analysis of the blade element theory. The flow state just upstream of the rotor plane

forms the so-called inflow condition for the rotor blades and from which the aerodynamic forces

acting on the blades can be determined. The highly regarded blade element momentum (BEM)

method2 is outlined and used extensively. A number of worked examples are included at each

stage of development to illustrate the application of the theory. Detailed calculations using the

BEM method were made to show the influence of various factors, such as the tip�speed ratio

and blade number on performance. Further development of the theory includes the application of

Prandtl’s tip loss correction factor, which corrects for a finite number of blades. Glauert’s optimi-

zation analysis is developed and used to determine the ideal blade shape for a given lift coeffi-

cient and to show how the optimum rotor power coefficient is influenced by the choice of

tip�speed ratio.

Calculating the maximum possible power production of a wind turbine
This method of calculation, devised by Carlin (1997), is based on the Rayleigh probability energy

distribution for a HAWT of a given size and determines the maximum possible average power for

a given average wind speed c.

The average wind power produced by the turbine is given by:

PW 5
1

2
ρ
π
4
D2η

ðN
0

CpðλÞc3pðcÞdc

where λ5 ðblade tip speed=wind speedÞ5 ðΩR=cÞ and η is the mechanical efficiency of the turbine.

The average machine wind power assuming the Rayleigh distribution applies is

PW 5
π
8
ρD2η

ðN
0

CpðλÞc3
2c

c2c
exp 2

c

cc

� �2
" #( )

dc

where cc 5 2c=
ffiffiffi
π

p
is a characteristic wind velocity obtained from the average wind speed, c.

2Details are given in Section 10.8.
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Some simplifications can now be made by assuming that the efficiency, η5 1 and the power

coefficient is replaced by the maximum value of the Betz coefficient, Cp;Betz 5 16=27. This form of

the turbine power is the average idealized wind turbine power, PW ;id

‘PW ;id 5
π
8
ρD2c3cCp;Betz

ðN
0

c

cc

� �3
2c

cc
exp 2

c

cc

� �2
" #( )

dc

cc

It is usual to further simplify the above equation by the use of a dimensionless wind speed

x5 c=cc. Hence, we get:

PW ;id 5
π
8
ρD2c3cCp;Betz

ðN
0

x3 2x exp 2 ðx2Þ� �	 

dx

The above integral can be easily evaluated and is ð3=4Þ ffiffiffi
π

p
and so the equation for the averaged

maximum possible power becomes

PW ;id 5 ρ
2

3
D

� �2

c3

which may be worth remembering. You are reminded that this result is for an idealized wind tur-

bine without losses, the value of Cp is assumed to be at the Betz limit and the wind speed probabil-

ity is given by the Rayleigh distribution.

EXAMPLE 10.1

Determine the annual average energy production (AEP) of a 30 m diameter HAWT for a loca-

tion at sea level with an annual average wind speed of (a) 6 m/s, (b) 8 m/s, (c) 10 m/s.

Assume that the air density is 1.25 kg/m3. Assume also that the efficiency is 100% and that

Cp 5 0:5926 (the Betz maximum).

Solution

PW 5 1:253 ðð2=3Þ3 30Þ2 3 c3 5 5003 c3; hence

a.

PW 5 108 kW ‘AEP5 87603 1085 946 MWh

b.

PW 5 256 kW ‘AEP 5 2243 MWh

c.

PW 5 500 kW ‘AEP 5 4380 MWh

Some considerable loss of power can be expected because we have taken η5 1 and

Cp 5 16=27 as the maximum value given by Betz’s theory.
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10.4 Annual energy output
The cost effectiveness of a wind turbine is determined by its average production of energy over a

year. (Of course, some allowance must be made for installation and running costs.) Determining

the annual energy output requires detailed information about the wind speed frequency distribution,

derived from detailed measurements of the wind speed variation at the actual site of the wind tur-

bine. For a HAWT, it is necessary to measure the varying wind speed at the elevation of the tur-

bine’s hub over a long period of time, usually over at least a year. The usual procedure adopted is

to make these varying wind speed measurements over relatively short time intervals, say 5 min and

the averaged values are stored in what are called “wind speed bins.” This “method of bins” is

widely adopted as a reliable way of summarizing wind data.3

10.5 Statistical analysis of wind data
Basic equations
The frequency of the occurrence of wind speeds can be described by a p.d.f. p(c), of the wind

speed c. The probability of a particular value of a wind speed occurring between ca and cb may be

expressed as

pa-b 5

ðcb
ca

pðcÞdc

and the mean wind speed, c5
ÐN
0

cpðcÞdc.
The total area under the p.d.f. is ðN

0

pðcÞdc5 1

and the mean wind speed, c5
ÐN
0

cpðcÞdc.
The mass flow of air of density ρ passing through a rotor disc of area A with a velocity c

(assumed constant) is given by:

dm

dt
5 ρAc

3Empirical relationships have been found by NREL (see Schwartz, 1999) for well-exposed locations with low surface

roughness in diverse parts of the world. Accordingly, the wind resource values presented on NREL maps are for nonshel-

tered locations with low surface roughness (e.g., short grasslands). NREL uses a so called “top-down” method in the

adjustment of much of the available wind resource data. In other words, The NREL approach uses the free-air wind

profile in the lowest few hundred meters above the surface and adjusts it down to the surface. The NREL took this “top-

down” approach because of the many data reliability problems regarding data from many parts of the world. For exam-

ple, a few of the problems indicated apparently relate to a lack of information about observation procedures, anemometer

hardware calibration, height, exposure, and maintenance history.
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The kinetic energy per unit time, or wind power of the flow, is

P5
1

2

dm

dt
U2 5

1

2
ρAc3 (10.1a)

Hence, the mean available wind power is

P5
ρA
2

ðN
0

c3pðcÞdc5 ρA
2
c3 (10.1b)

Wind speed probability distributions
For the statistical analysis of wind speed distributions, two types of flow model are in use.

These are

1. the Rayleigh Distribution;

2. the Weibull Distribution.

The simplest velocity probability distribution for the wind resource is the so-called Rayleigh

distribution as it only requires knowledge of one parameter namely the mean wind speed c.

The Rayleigh probability distribution is written as

pðcÞ5 π
2

c

c2

� �
exp 2

π
4

c

c

� �2� �

and the cumulative distribution factor is

FðcÞ5 12 exp 2
π
4

c

c

� �2� �

Figure 10.7 illustrates Rayleigh probability density distributions for a range of different mean wind

speeds. It is implied that a bigger value of the mean wind speed gives a higher probability of higher

wind speeds. The cumulative distribution function FðcÞ represents the time fraction that the wind

speed is smaller than or equal to a given wind speed, c. This means that FðcÞ5
the probability that c0 # c where c0 is a dummy variable:

It can be shown that

FðcÞ5
ðN
0

pðc0Þdc0 5 1

and the derivative of the cumulative distribution function equals the p.d.f., i.e.,

pðcÞ5 dFðcÞ
dc

Note: The mathematics of the Weibull probability distribution are rather more complicated

than those of the Rayleigh distribution as it is based upon two parameters and also requires some

knowledge of Gamma functions. All we need to know about the wind speed characteristics, for the

purposes of this book, can be obtained using the Rayleigh probability distribution function.
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Readers wishing to advance their knowledge of the Weibull probability function and its application

to wind characteristics can consult Manwell et al. (2009).

Comment: It should be carefully noted that the mean power output of a wind turbine (which

includes the effect of the probability function), Eq. (10.1b), is very much less than the rated power

of the turbine. This has been a source of some confusion in discussions. The ratio of the mean

power produced at a given mean wind speed to the so-called rated power output is called the

capacity factor. The capacity factor is usually about 0.5 at maximum power output of a turbine.

10.6 Actuator disc approach
Introduction
In the following sections, the aerodynamic theory of the HAWT is gradually developed, starting

with the simple 1D momentum analysis of the actuator disc and followed by the more detailed

analysis of the blade element theory. The flow state just upstream of the rotor plane forms the

so-called inflow condition for the rotor blades and from which the aerodynamic forces acting on

the blades can be determined. The highly regarded BEM method is outlined and used extensively.

A number of worked examples are included at each stage of development to illustrate the applica-

tion of the theory. Detailed calculations using the BEM method were made to show the influence

of various factors, such as the tip�speed ratio and blade number on performance. Further develop-

ment of the theory includes the application of Prandtl’s tip loss correction factor, which corrects for

a finite number of blades. Glauert’s optimization analysis is developed and used to determine the

ideal blade shape for a given lift coefficient and to show how the optimum rotor power coefficient

is influenced by the choice of tip�speed ratio.
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FIGURE 10.7

Rayleigh p.d.f.
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The concept of the actuator disc was used in Chapter 6 as a method of determining the 3D flows

in compressor and turbine blade rows. Betz (1926) in his seminal work on the flow through wind-

mill blades used a much simpler version of the actuator disc. As a start to understanding the power

production process of the turbine consider the flow model shown in Figure 10.8 where the rotor of

the HAWT is replaced by an actuator disc. It is necessary to make a number of simplifying assump-

tions concerning the flow but, fortunately, the analysis yields useful approximate results.

Theory of the actuator disc
The following assumptions are made:

i. steady uniform flow upstream of the disc;

ii. uniform and steady velocity at the disc;

iii. no flow rotation produced by the disc;

iv. the flow passing through the disc is contained both upstream and downstream by the boundary

stream tube;

v. the flow is incompressible.

Because the actuator disc offers a resistance to the flow, the velocity of the air is reduced as it

approaches the disc and there will be a corresponding increase in pressure. The flow crossing

through the disc experiences a sudden drop in pressure below the ambient pressure. This disconti-

nuity in pressure at the disc characterizes the actuator. Downstream of the disc there is a gradual

recovery of the pressure to the ambient value.

We define the axial velocities of the flow far upstream (x-2N), at the disc (x5 0) and far

downstream (x-N) as cx1, cx2 and cx3, respectively. From the continuity equation, the mass flow is

_m5 ρcx2A2

where ρ5 air density and A25 area of disc.

Stream tube

Plane
of disc

cx1

cx2
cx3

1
2

3

FIGURE 10.8

Actuator disc and boundary stream tube model.
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The axial force acting on the disc is

X5 _mðcx1 2 cx3Þ (10.2)

and the corresponding power extracted by the turbine or actuator disc is

P5Xcx2 5 _mðcx1 2 cx3Þcx2 (10.3)

The rate of energy loss by the wind must then be

PW 5 _mðc2x1 2 c2x3Þ=2 (10.4)

Assuming no other energy losses, we can equate the power lost by the wind to the power gained by

the turbine rotor or actuator:

PW 5P

_mðc2x1 2 c2x3Þ=25 _mðcx1 2 cx3Þcx2
therefore,

cx2 5
1

2
ðcx1 1 cx3Þ (10.5)

This is the proof developed by Betz (1926) to show that the velocity of the flow in the plane of the

actuator disc is the mean of the velocities far upstream and far downstream of the disc. We should

emphasize again that wake mixing, which must physically occur far downstream of the disc, has so

far been ignored.

An alternative proof of Betz’s result
The air passing across the disc undergoes an overall change in velocity (cx12 cx3) and a corre-

sponding rate of change of momentum equal to the mass flow rate multiplied by this velocity

change. The force causing this momentum change is equal to the difference in pressure across the

disc times the area of the disc. Thus,

ðp21 2 p22ÞA2 5 _mðcx1 2 cx3Þ5 ρA2cx2ðcx1 2 cx3Þ
Δp5 ðp21 2 p22Þ5 ρcx2ðcx1 2 cx3Þ

(10.6)

The pressure difference Δp is obtained by separate applications of Bernoulli’s equation to the two

flow regimes of the stream tube.

Referring to regions 1�2 in Figure 10.8,

p1 1
1

2
ρc2x1 5 p21 1

1

2
ρc2x2

and for regions 2�3,

p3 1
1

2
ρc2x3 5 p22 1

1

2
ρc2x2
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By taking the difference of the two equations, we obtain

1

2
ρðc2x1 2 c2x3Þ5 p21 2 p22 (10.7)

Equating Eqs (10.6) and (10.7), we arrive at the result previously found,

cx2 5
1

2
ðcx1 1 cx3Þ (10.5)

By combining continuity with Eq. (10.3),

P5 ρA2c
2
x2ðcx1 2 cx3Þ

and from Eq. (10.5), we can obtain

cx3 5 2cx2 2 cx1

hence,

cx1 2 cx3 5 cx1 2 2cx2 1 cx1 5 2ðcx1 1 cx2Þ
and so

P5 2ρA2c
2
x2ðcx1 2 cx2Þ (10.8)

It is convenient to define an axial flow induction factor, a (assumed to be invariant with radius)4,

for the actuator disc:

a5 ðcx1 2 cx2Þ=cx1 (10.9)

Hence,

cx2 5 cx1ð12 aÞ;
P5 2aρA2c

3
x1ð12aÞ2

(10.10a)

The power coefficient
For the unperturbed wind (i.e., velocity is cx1) with the same flow area as the disc (A25πR2), the

kinetic power available in the wind is

P0 5
1

2
c2x1ðρA2cx1Þ5

1

2
ρA2c

3
x1

A power coefficient Cp is defined as

Cp 5P=P0 5 4að12aÞ2 (10.11)

The maximum value of Cp is found by differentiating Cp with respect to a, i.e., finally

dCp=da5 4ð12 aÞð12 3aÞ5 0

4Later on this restriction is removed.
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which gives two roots, a5 1=3 and 1.0. Using the first root, the maximum value of the power coef-

ficient is

Cp max 5 16=275 0:593 (10.12)

This value of Cp is often referred to as the Betz limit, referring to the maximum possible power

coefficient of the turbine (with the prescribed flow conditions).

The axial force coefficient
The axial force coefficient is defined as

Cx 5X

,
1

2
ρc2x1A2

0
@

1
A

5 2 _mðcx1 2 cx2Þ
,

1

2
ρc2x1A2

0
@

1
A

5 4cx2ðcx1 2 cx2Þ=c2x1
5 4að12 aÞ

(10.13)

By differentiating this expression with respect to a, we can show that Cx has a maximum value of

unity at a5 0:5. Figure 10.9(a) shows the variation of both Cp and Cx as functions of the axial

induction factor, a.

0

Cp

Cx

1.0

1.0(a) (b)

a

p2�

p2�

p1

FIGURE 10.9

(a) Variation of Cp and Cx as functions of ā. (b) Schematic of the pressure variation before and after the plane

of the actuator disc.
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EXAMPLE 10.2

Using the theoretical flow model of a wind turbine proposed by Betz obtain expressions for the

static pressure changes:

a. across the actuator disc;

b. up to the disc from far upstream;

c. from the disc to far downstream.

The pressure immediately before the disc is p21. The pressure immediately after the disc

is p22.

Solution
a. The force acting on the disc is X5A2ðp21 2 p22Þ5A2Δp. The power developed by the

disc is

P5Xcx2 5A2Δpcx2

Also, we have

P5
1

2
_mðc2x1 2 c2x3Þ

Equating for power and simplifying, we get

Δp


1

2
ρc2x1

� �
5 12 ðcx3=cx1Þ2
� �

5 12 ð122aÞ2 5 4að12 aÞ

This is the pressure change across the disc divided by the upstream dynamic pressure.

b. For the flow field from far upstream of the disc,

p01 5 p1 1
1

2
ρc2x1 5 p21 1

1

2
ρc2x2

ðp21 2 p1Þ5
1

2
ρðc2x1 2 c2x2Þ

ðp21 2 p1Þ
,

1

2
ρc2x1

0
@

1
A5 12 ðcx2=cx1Þ2 5 12 ð12aÞ2 5 að22 aÞ

c. For the flow field from the disc to far downstream,

p03 5 p3 1
1

2
ρc2x3 5 p22 1

1

2
ρc2x2

ðp22 2 p3Þ
,

1

2
ρc2x1

0
@

1
A5 ðc2x3 2 c2x2Þ=c2x1
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and, noting that p35 p1, we finally obtain

ðp22 2 p1Þ


1

2
ρc2x1

� �
5 ð122aÞ2 2 ð12aÞ2 52 að22 3aÞ

Figure 10.9 (b) indicates, approximately, the way the pressure varies before and after the

actuator disc.

EXAMPLE 10.3

Determine the radii of the unmixed slipstream at the disc (R2) and far downstream of the disc

(R3) compared with the radius far upstream (R1).

Solution
Continuity requires that

πR2
1cx1 5πR2

2cx2 5πR2
3cx3

ðR2=R1Þ2 5 cx1=cx2 5 1=ð12 aÞ; R2=R1 5 1=ð12aÞ0:5

ðR3=R1Þ2 5 cx1=cx3 5 1=ð12 2aÞ; R3=R1 5 1=ð122aÞ0:5

ðR3=R2Þ5 ð12aÞ=ð122aÞ� �0:5
Choosing a value of a5 1=3, corresponding to the maximum power condition, the radius ratios

are R2/R15 1.225, R3/R15 1.732 and R3/R25 1.414.

EXAMPLE 10.4

Using the preceding expressions for an actuator disc, determine the power output of a HAWT of

30 m tip diameter in a steady wind blowing at

a. 7.5 m/s;

b. 10 m/s.

Assume that the air density is 1.2 kg/m3 and that a5 1=3.

Solution
Using Eq. (10.10a) and substituting a5 1=3; ρ5 1:2 kg=m2 and A2 5π152;

P5 2aρA2c
3
x1ð12aÞ2 2

3
3 1:23π152 3 12

1

3

� �2

c3x1 5 251:3c3x1

a. With cx15 7.5 m/s, P5 106 kW

b. With cx15 10 m/s, P5 251.3 kW

These two results give some indication of the power available in the wind.
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Correcting for high values of a
It is of some interest to examine the theoretical implications of what happens at high values of a

and compare this with what is found experimentally. From the actuator disc analysis, we found that

the velocity in the wake far downstream was determined by cx3 5 cx1ð12 2aÞ; and this becomes

zero when a5 0:5. In other words, the actuator disc model has already failed as there can be no

flow when a5 0:5. It is as if a large flat plate had been put into the flow, completely replacing the

rotor. Some opinion has it that the theoretical model does not hold true for values of a even as low

as 0.4. So, it becomes necessary to resort to empirical methods to include physical reality.

Figure 10.10 shows experimental values of CX for heavily loaded turbines plotted against a,

taken from various sources, together with the theoretical curve of CX versus a given by Eq. (10.13).

The part of this curve in the range 0:5, a, 1:0, shown by a broken line, is invalid as already

explained. The experiments revealed that the vortex structure of the flow downstream disintegrates

and that wake mixing with the surrounding air takes place. Various authors including Glauert

(1935), Wilson (1976), and Anderson (1980), have presented curves to fit the data points in the

regime a. 0:5. Anderson obtained a simple “best fit” of the data with a straight line drawn from a

point denoted by CXA located at a5 1 to a tangent point T, the transition point, on the theoretical

curve located at a5 aT. It is easy to show, by differentiation of the curve CX 5 4að12 aÞ then fit-

ting a straight line, with the equation,

CX 5CXA 2 4ðC0:5
XA 2 1Þð12 aÞ (10.14)

where

aT 5 12
1

2
C0:5
XA

0 0.2 0.4

0.8

C
X

CXA
1.6

0.6 0.8 1.0
a

aT

FIGURE 10.10

Comparison of theoretical and measured values of Cx versus ā.
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Anderson recommended a value of 1.816 for CXA. Using this value, Eq. (10.14) reduces to

CX 5 0:42561 1:3904a (10.15a)

where aT 5 0:3262.
Sharpe (1990) noted that, for most practical, existent HAWTs, the value of a rarely exceeds 0.6.

Estimating the power output
Preliminary estimates of rotor diameter can easily be made using simple actuator disc theory.

A number of factors need to be taken into account, i.e., the wind regime in which the turbine is to

operate and the tip�speed ratio. Various losses must be allowed for the main ones being the

mechanical transmission including gearbox losses and the electrical generation losses. From the

actuator disc theory, the turbine aerodynamic power output is

P5
1

2
ρA2Cpc

3
x1 (10.15b)

Under theoretical ideal conditions, the maximum value of Cp5 0.593. According to Eggleston and

Stoddard (1987), rotor Cp values as high as 0.45 have been reported. Such high, real values of Cp

relate to very precise, smooth aerofoil blades and tip�speed ratios above 10. For most machines of

good design a value of Cp from 0.3 to 0.35 would be possible. With a drive train efficiency, ηd, and
an electrical generation efficiency, ηg, the output electrical power would be

Pel 5
1

2
ρA2Cpηgηdc

3
x1

EXAMPLE 10.5

Determine the size of rotor required to generate 20 kW of electrical power in a steady wind of

7.5 m/s. It can be assumed that the air density, ρ5 1.2 kg/m3, Cp5 0.35, ηg5 0.75, and

ηd5 0.85.

Solution
From this expression, the disc area is

A2 5 2Pel=ðρCpηgηdc
3
x1Þ5 23 203 103=ð1:23 0:353 0:753 0:853 7:53Þ5 354:1 m2

Hence, the diameter is 21.2 m.

10.7 Blade element theory
Introduction
It has long been recognized that the work of Glauert (1935) in developing the fundamental theory

of aerofoils and airscrews is among the great classics of aerodynamic theory. Glauert also
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generalized the theory to make it applicable to wind turbines and, with various modifications, it is

still used in turbine design. It is often referred to as the momentum vortex blade element theory or

more simply as the blade element method. However, the original work neglected an important

aspect: the flow periodicity resulting from the turbine having a finite number of blades. Glauert

assumed that elementary radial blade sections could be analyzed independently, which is valid only

for a rotor with an infinite number of blades. However, several approximate solutions are available

(those of Prandtl and Tietjens (1957) and Goldstein (1929)), which enable compensating corrections

to be made for a finite number of blades. The simplest and most often used of these, called the

Prandtl correction factor, will be considered later in this chapter. Another correction that is consid-

ered is empirical and applies only to heavily loaded turbines when the magnitude of the axial flow

induction factor a exceeds the acceptable limit of the momentum theory. According to Sharpe

(1990), the flow field of heavily loaded turbines is not well understood, and the results of the

empirical analysis mentioned are only approximate but better than those predicted by the momen-

tum theory.

The vortex system of an aerofoil
To derive a better understanding of the aerodynamics of the HAWT than was obtained earlier from

simple actuator disc theory, it is now necessary to consider the forces acting on the blades.

We may regard each radial element of a blade as an aerofoil. The turbine is assumed to have a

constant angular speed Ω and is situated in a uniform wind of velocity cx1 parallel to the axis of

rotation. The lift force acting on each element must have an associated circulation (see Section 3.4)

around the blade. In effect there is a line vortex (or a set of line vortices) along the aerofoil span.

The line vortices that move with the aerofoil are called bound vortices of the aerofoil. As the circu-

lation along the blade length can vary, trailing vortices will spring from the blade and will be con-

vected downstream with the flow in approximately helical paths, as indicated for a two-bladed

wind turbine in Figure 10.11. It will be observed that the helices, as drawn, gradually expand in

radius as they move downstream (at the wake velocity) and the pitch between each sheet becomes

smaller because of the deceleration of the flow.

Wake rotation
In the previous analysis of the actuator disc, it was assumed that no rotation was imparted to the

flow. It is evident that the torque exerted on the rotor disc by the air passing through it requires an

equal and opposite torque to be exerted on the air. As a consequence, this reaction torque causes

the air leaving the rotor to rotate incrementally in the opposite direction to that of the rotor. Thus,

the wakes leaving the rotor blades will have a velocity component in the direction tangential to the

blade rotation as well as an axial velocity component.

The flow entering the rotor has no rotational motion at all. The flow exiting the rotor has rota-

tion and this remains constant as the flow travels downstream. We can define the change in the tan-

gential velocity in terms of a tangential flow induction factor, a0. Downstream of the disc in the

induced tangential velocity cθ2 defined as 2Ωra0 is as shown in Figure 10.12(a). The complete

transfer of rotational energy is assumed to take place across the rotor disc. This is actually impossi-

ble as the disc is defined as having no thickness. The rotational velocity component cθ2 develops

physically as the actual flow progresses toward the trailing edge plane.
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Glauert regarded the exact evaluation of the interference flow to be of great complexity because

of the periodicity of the flow caused by the blades. He asserted that for most purposes it is suffi-

ciently accurate to use circumferentially averaged values, equivalent to assuming that the thrust and

the torque carried by the finite number of blades are replaced by uniform distributions of thrust and

torque spread over the whole circumference at the same radius.

Consider such an elementary annulus of a HAWT of radius r from the axis of rotation and of

radial thickness dr. Let dτ be the element of torque equal to the rate of decrease in angular momen-

tum of the wind passing through the annulus. Thus,

dτ5 ðd _mÞ3 2a0Ωr2 5 ð2πr drρcx2Þ3 2a0Ωr2 (10.16a)

or

dτ5 4πρΩcx1ð12 aÞa0r3 dr (10.16b)

In the actuator disc analysis, the value of a (denoted by a) is a constant over the whole of the disc.

With blade element theory, the value of a is a function of the radius. This is a fact that must not be

overlooked. A constant value of a could be obtained for a wind turbine design with blade element

theory, but only by varying the chord and the pitch in some special way along the radius. This is

not a useful design requirement.

FIGURE 10.11

Schematic drawing of the vortex system being carried downstream from a two-bladed wind turbine rotor.
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Assuming the axial and tangential induction factors a and a0 are functions of r, we obtain an

expression for the power developed by the blades by multiplying the above expression by Ω and

integrating from the hub rh to the tip radius R:

P5 4πρΩ2cx1

ðR
rh

ð12 aÞa0r3 dr (10.17)

Forces acting on a blade element
Consider now a turbine with Z blades of tip radius R each of chord l at radius r and rotating at

angular speed Ω. The pitch angle of the blade at radius r is β measured from the zero lift line to

the plane of rotation. The axial velocity of the wind at the blades is the same as the value deter-

mined from actuator disc theory, i.e., cx25 cx1(12 a), and is perpendicular to the plane of rotation.

Figure 10.12(a) shows the blade element moving from right to left together with the velocity

vectors relative to the blade chord line at radius r. The resultant of the relative velocity immediately

upstream of the blades is

w21 5 ½c2x1ð12aÞ21ðΩrÞ2ð11a0Þ2�0:5 (10.18)

Direction of
blade motion

W2+

W2–

W2+

U(1+a')

U(1+a')

cx2 = cx1(1-a)

cθ2 = 2+Ωa'

c2 cx2

βφ

(a)

(b)

D

φ
β

∝

90º

L R
X

Y

FIGURE 10.12

(a) Blade element at radius r showing the various velocity components. (b) The various components of force

acting on the blade.
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and this is shown as impinging onto the blade element at angle φ to the plane of rotation. It will be

noticed that the relative velocity at blade exit is reduced to w22 as a result of the wake mentioned

earlier. The following relations will be found useful in later algebraic manipulations:

sin φ5 cx2=w21 5 cx1ð12 aÞ=w21 (10.19)

cos φ5Ωrð11 a0Þ=w20 (10.20)

tan φ5
cx1

Ωr
12 a

11 a0

� �
(10.21)

Figure 10.12(b) shows the lift force L and the drag force D drawn (by convention) perpendicular

and parallel to the relative velocity at entry, respectively. In the normal range of operation, D

although rather small (1�2%) compared with L, is not to be entirely ignored. The resultant force,

R, is seen as having a component in the direction of blade motion. This is the force contributing to

the positive power output of the turbine.

From Figure 10.12 (b), the force per unit blade length in the direction of motion is

Y5 L sin φ2D cos φ (10.22)

and the force per unit blade length in the direction perpendicular to the direction of motion is

X5 L cos φ1D sin φ (10.23)

Lift and drag coefficients
We can define the lift and drag coefficients as

CLðαÞ5 L=
1

2
ρw2l

� �
(10.24)

CDðαÞ5D=
1

2
ρw2l

� �
(10.25)

where, by the convention employed for an isolated aerofoil, w is the incoming relative velocity and

l is the blade chord. The coefficients CL and CD are functions of the angle of incidence, α5φ2β,
as defined in Figure 10.12 as well as the blade profile and blade Reynolds number. In this chapter,

the angle of incidence is understood to be measured from the zero lift line (see Section 5.15) for

which the CL versus α curve goes through zero. It is important to note that Glauert (1935), when

considering aerofoils of small camber and thickness, obtained a theoretical expression for the lift

coefficient,

CL 5 2π sin α (10.26)

The theoretical slope of the curve of lift coefficient against incidence is 2π per radian (for small

values of α) or 0.11 per degree but, from experimental results, a good average generally accepted

is 0.1 per degree within the prestall regime. This very useful result will be used extensively in cal-

culating results later. However, measured values of the lift-curve slope reported by Abbott and von

Doenhoff (1959) for a number of NACA four- and five-digit series and NACA 6-series wing
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sections, measured at a Reynolds number of 63 106, gave 0.11 per degree. But these blade profiles

were intended for aircraft wings, so some departure from the rule might be expected when the

application is the wind turbine.

Again, within the prestall regime, values of CD are small and the ratio of CD/CL is usually about

0.01. Figure 10.13 shows typical variations of lift coefficient CL plotted against incidence α and drag

coefficient CD plotted against CL for a wind turbine blade tested beyond the stall state. The blades of

a wind turbine may occasionally have to operate in poststall conditions when CD becomes large; then

the drag term needs to be included in performance calculations. Details of stall modeling and formu-

lae for CD and CL under poststall conditions are given by Eggleston and Stoddard (1987).

The correct choice of aerofoil sections is very important for achieving good performance. The

design details and the resulting performance are clearly competitive and not much information is

actually available in the public domain. The US Department of Energy (DOE) developed a series

of aerofoils specifically for wind turbine blades. These aerofoils were designed to provide the nec-

essarily different performance characteristics from the blade root to the tip while accommodating

the structural requirements. Substantially increased energy output (from 10% to 35%) from wind

turbines with these new blades have been reported. The data are cataloged and is available to the

US wind industry.5 Many other countries have national associations, research organizations, and

conferences relating to wind energy and contact details are listed by Ackermann and Söder (2002).

Connecting actuator disc theory and blade element theory
The elementary axial force and elementary force exerted on one blade of length dr at radius r are

dX 5 ðL cos φ1D sin φÞdr
dτ 5 rðL sin φ2D cos φÞdr

0.4

0 8 16 �0.8 �0.4 0 0.4 0.8

0.005

0.010

0.015

1.2
α (α � 0) CL

CDCL

0.8

1.2

FIGURE 10.13

Typical performance characteristics for a wind turbine blade, CL versus α and CD versus CL.

5See Section 10.11, HAWT Blade Section Criteria, for more details.
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For a turbine having Z blades and using the definitions for CL and CD given by Eqs (10.24) and

(10.25), we can write expressions for the elementary torque, power, and thrust as

dτ5
1

2
ρw2rðCL sin φ2CD cos φÞZl dr (10.27)

dP5Ω dτ5
1

2
ρw2ΩrðCL sin φ2CD cos φÞZl dr (10.28)

dX5
1

2
ρw2ðCL cos φ1CD sin φÞZl dr (10.29)

It is now possible to make a connection between actuator disc theory and blade element theory.

(Values of a and a0 are allowed to vary with radius in this analysis.) From Eq. (10.2), for an ele-

ment of the flow, we obtain

dX5 d _mðcx1 2 cx3Þ5 d _mcx22a=ð12 aÞ (10.30)

Equating Eqs (10.29) and (10.30) and with some rearranging, we get

a=ð12 aÞ5 ZlðCL cos φ1CD sin φÞ=ð8πr sin2 φÞ (10.31)

Again, considering the tangential momentum, from Eq. (10.16a) the elementary torque is

dτ5 ð2πr drÞρcx2ðrcθÞ
Equating this with Eq. (10.27) and simplifying, we get

cx2cθ=w
2 5 ZlðCL sin φ2CD cos φÞ=ð4πrÞ (10.32)

Using Eq. (10.20), we find

cθ=w5Ua0 cos φ=½Uð11 a0Þ�5 2a0 cos φ=ð11 a0Þ
and, with Eq. (10.19), Eq. (10.32) becomes

a0=ð11 a0Þ5 ZlðCL sin φ2CD cos φÞ=ð8πr sin φ cos φÞ (10.33)

Introducing a useful new dimensionless parameter, the blade loading coefficient,

λ5 ZlCL=ð8πrÞ (10.34)

into Eqs (10.31) and (10.33), we get

a=ð12 aÞ5λðcos φ1 εsin φÞ=sin2 φ (10.35a)

a0=ð11 a0Þ5λðsin φ2 εcos φÞ=ðsin φ cos φÞ (10.36a)

ε5
CD

CL

(10.37)
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Tip�speed ratio
A most important nondimensional parameter for the rotors of HAWTs is the tip�speed ratio,

defined as

J5
ΩR
cx1

(10.38)

This parameter controls the operating conditions of a turbine and strongly influences the values

of the flow induction factors, a and a0.
Using Eq. (10.38) in Eq. (10.21), we write the tangent of the relative flow angle φ as

tan φ5
R

rJ

12 a

11 a0

� �
(10.39)

Turbine solidity
A primary nondimensional parameter that characterizes the geometry of a wind turbine is the blade

solidity, σ. The solidity is defined as the ratio of the blade area to the disc area:

σ5 ZAB=ðπR2Þ

where

AB 5

ð
lðrÞdr5 1

2
Rlav

This is usually written as

σ5 Zlav=ð2πRÞ (10.40)

where lav is the mean blade chord.

Solving the equations
The foregoing analysis provides a set of relations which can be solved by a process of iteration,

enabling a and a0 to be determined for any specified pitch angle β, provided that convergence is

possible. To obtain faster solutions, we will use the approximation that εD0 in the normal efficient

range of operation (i.e., the prestall range). Equations (10.35a) and (10.36a) can now be written as

a=ð12 aÞ5λ cot φ=sin φ (10.35b)

a0=ð11 a0Þ5λ=cos φ (10.36b)

These equations are about as simple as it is possible to make them and they will be used to model

some numerical solutions.
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10.8 The BEM method
All the theory and important definitions to determine the force components on a blade element have

been introduced and a first trial approach has been given to finding a solution in Example 10.5. The

various steps of the classical BEM model from Glauert are formalized in Table 10.1 as an algorithm

for evaluating a and a0 for each elementary control volume.

Spanwise variation of parameters
Along the blade span there is a significant variation in the blade-pitch angle β, which is strongly

linked to the value of J and to a lesser extent to the values of the lift coefficient CL and the blade

chord l. The ways both CL and l vary with radius are at the discretion of the turbine designer. In

the previous example, the value of the pitch angle was specified and the lift coefficient was derived

(together with other factors) from it. We can likewise specify the lift coefficient, keeping the inci-

dence below the angle of stall and from it determine the angle of pitch. This procedure will be used

in the next example to obtain the spanwise variation of β for the turbine blade. It is certainly true

that for optimum performance the blade must be twisted along its length with the result that, near

the root, there is a large pitch angle. The blade-pitch angle will decrease with increasing radius so

that, near the tip, it is close to zero and may even become slightly negative. The blade chord in the

following examples has been kept constant to limit the number of choices. Of course, most turbines

in operation have tapered blades whose design features depend upon blade strength as well as

economic and aesthetic considerations.

EXAMPLE 10.6

A three-bladed HAWT with a 30 m tip diameter is to be designed to operate with a constant lift

coefficient CL5 0.8 along the span, with a tip�speed ratio J5 5.0. Assuming a constant chord

of 1.0 m, determine, using an iterative method of calculation, the variation along the span

(0.2# r/R# 1.0) of the flow induction factors a and a0 and the pitch angle β.

Table 10.1 BEM Method for Evaluating a and a0

Step Action Required

1 Initialize a and a0 with zero values

2 Evaluate the flow angle using Eq. (10.39)

3 Evaluate the local angle of incidence, α5φ2 β
4 Determine CL and CD from tables (if available) or from formula

5 Calculate a and a0

6 Check on convergence of a and a0, if not sufficient go to step 2,
else go to step 7

7 Calculate local forces on the element
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Solution
We begin the calculation at the tip, r5 15 m and, as before, take initial values for a and a0 of
zero. Now,

λ5 ðZlCLÞ=ð8πrÞ5 ð33 0:8Þ=ð83 π3 15Þ5 0:116366; and 1=λ5 157:1

tan φ5 ðR=rJÞð12 aÞ=ð11 a0Þ5 0:2;φ5 1131�

1=a5 11 157:13 sin 11:313 tan 11:315 7:162; a5 0:1396

1=a0 5 157:13 cos 11:312 15 153:05; a0 5 0:00653

After a further five iterations (to obtain sufficient convergence), the result is

a5 0:2054; a0 5 0:00649; and β5 0:97�

The results of the computations along the complete span (0.2# r/R# 1.0) for a and a0 are shown

in Table 10.2. It is very evident that the parameter a varies markedly with radius, unlike the

actuator disc application where a was constant. The spanwise variation of the pitch angle β for

CL5 0.8 (as well as for CL5 1.0 and 1.2 for comparison) is shown in Figure 10.14. The large

variation of β along the span is not surprising and is linked to the choice of the value of J, the

tip�speed ratio. The choice of inner radius ratio r/R5 0.2 was arbitrary. However, the contribu-

tion to the power developed from choosing an even smaller radius would have been negligible.

Evaluating the torque and axial force
The incremental axial force can be derived from Eqs (10.29) and (10.19) in the form

ΔX5
1

2
ρZlRc2x1½ð12aÞ=sin φ�2CL cos φΔðr=RÞ (10.41)

and the incremental torque can be derived from Eqs (10.27) and (10.20) as

Δτ5
1

2
ρZlΩ2R4½ð11a0Þ=cos φ�2ðr=RÞ3CL sin φΔðr=RÞ (10.42)

In determining numerical solutions, these two equations have proved to be more reliable in use

than some alternative forms that have been published. The two preceding equations will now be

integrated numerically.

Table 10.2 Summary of Results Following Iterations

r/
R

0.2 0.3 0.4 0.6 0.8 0.9 0.95 1.0

φ 42.29 31.35 24.36 16.29 11.97 10.32 9.59 8.973

β 34.29 23.35 16.36 8.29 3.97 2.32 1.59 0.97

a 0.0494 0.06295 0.07853 0.1138 0.1532 0.1742 0.1915 0.2054

a0 0.04497 0.0255 0.01778 0.01118 0.00820 0.00724 0.00684 0.00649

Note: CL50.8 along the span.
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EXAMPLE 10.7

Determine the total axial force, the torque, the power, and the power coefficient of the wind tur-

bine described in Example 10.5. Assume that cx15 7.5 m/s and that the air density ρ5 1.2 kg/m3.

Solution
Evaluating the elements of axial force ΔX having previously determined the mid-ordinate values

of a, a0, and φ to gain greater accuracy (the relevant data is shown in Table 10.3):

ΔX5
1

2
ρZlRc2x1½ð12aÞ=sin φ�2CL cos φΔðr=RÞ

where, in Table 10.3, Var.15 [(12 a)/sin φ]2CL cos φΔ(r/R):X
Var:15 6:9682
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FIGURE 10.14

Variation of blade-pitch angle β with radius ratio r/R for CL5 0.8, 1.0, and 1.2.

Table 10.3 Data Used for Summing Axial Force

Mid r/R 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.95

Δr/R 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100

a 0.05565 0.0704 0.0871 0.1053 0.1248 0.1456 0.1682 0.1925

φ (deg) 36.193 27.488 21.778 17.818 14.93 12.736 10.992 9.5826

Var.1 0.1648 0.2880 0.4490 0.6511 0.8920 1.172 1.4645 1.8561
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Then with ð1=2ÞρZlRc2x1 5 ð1=2Þ3 1:23 33 153 7:52 5 1518:8; we obtain

X5 1518:8
X

Var:15 10; 583 N

In Table 10.4, Var.25 [(11 a0)/cos φ]2(r/R)3CL sin φΔ(r/R),X
Var:25 47:5093 1023

and with ð1=2ÞρZlΩ2R4 5 0:56953 106

τ5 27:0583 103 Nm

Hence, the power developed is P5 τΩ5 67.644 kW. The power coefficient is, see

Eq. (10.11), is

Cp 5
P

P0

5
P

0:5ρA2c
3
x1

5
P

1:7893 105
5 0:378

and the relative power coefficient is, see Eq. (10.12b),

ζ5
27

16
Cp 5 0:638

EXAMPLE 10.8

The relationship between actuator disc theory and blade element theory can be more firmly

established by evaluating the power again, this time using the actuator disc equations.

Solution
To do this we need to determine the equivalent constant value for a. From Eq. (10.13),

Cx 5 4að12 aÞ5X=
1

2
ρc2x1A2

� �

with X5 10,583 N and ð1=2Þρc2x1A2 5 ð1=2Þ3 1:23 7:52 3π3 152 3 23; 856; we obtain

Cx 5 10; 583=23; 8565 0:4436

Table 10.4 Data Used for Summing Torque

Mid r/R 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.950

a0 0.0325 0.02093 0.0155 0.0123 0.0102 0.0088 0.0077 0.00684

φ 36.19 27.488 21.778 17.818 14.93 12.736 10.992 9.5826

(r/R)3 0.0156 0.0429 0.0911 0.1664 0.2746 0.4219 0.6141 0.8574

Var.2
(3 1023)

1.206 2.098 3.733 4.550 6.187 7.959 9.871 11.905
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að12 aÞ5 0:4436=45 0:1109

Solving the quadratic equation, we get a5 0:12704:
From Eq. (10.10a), P5 2ρA2c

3
x1að12aÞ2; and substituting values,

P5 69:286 kW

and this agrees fairly well with the value obtained in Example 10.8.

Note: The lift coefficient used in this example, admittedly modest, was selected purely to

illustrate the method of calculation. For an initial design, the equations just developed would suf-

fice but some further refinements can be added. An important refinement concerns the Prandtl

correction for the number of blades.

Correcting for a finite number of blades
So far, the analysis has ignored the effect of having a finite number of blades. The fact is that at a

fixed point the flow fluctuates as a blade passes by. The induced velocities at the point are not con-

stant with time. The overall effect is to reduce the net momentum exchange and the net power of

the turbine. Some modification of the analysis is needed and this is done by applying a blade tip

correction factor. Several solutions are available: (i) an exact one due to Goldstein (1929), repre-

sented by an infinite series of modified Bessel functions, and (ii) a closed form approximation due

to Prandtl and Tietjens (1957). Both methods give similar results and Prandtl’s method is the one

usually preferred.

Prandtl’s correction factor
The mathematical details of some parts of Prandtl’s analysis are beyond the scope of this book, but

the result for F is usually expressed as

F5 ð2=πÞcos21½expð2πd=sÞ� (10.43)

where, as shown in Figure 10.15, s is the pitchwise distance between the successive helical vortex

sheets and d5R2 r. From the geometry of the helices,

s5 ð2πR=ZÞsin φ

where sin φ5 cx2/w. Thus,

s5 2πð12 aÞRcx1=ðwZÞ

πd=s5
1

2
Zð12 r=RÞw=cx2 5

1

2
Zð12 r=RÞ=sin φ (10.44a)
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This can be evaluated with sufficient accuracy and perhaps more conveniently with the

approximation,

πd=s5
1

2
Zð12 r=RÞð11J2Þ0:5 (10.44b)

The circulation at the blade tips reduces to zero because of the vorticity shed from it, in the

same way as at the tip of an aircraft wing. These expressions ensure that F becomes zero when

r5R but rapidly increases toward unity with decreasing radius.

The variation of F5F(r/R) is shown in Figure 10.16 for J5 5 and Z5 2, 3, 4, and 6. It will be

clear from the graph and the preceding equations that the greater the pitch s and the smaller the

number of blades Z, the bigger will be the variation of F (from unity) at any radius ratio. In other

words, the amplitude of the velocity fluctuations will be increased.

Prandtl’s tip correction factor is applied directly to each blade element, modifying the elemen-

tary axial force, obtained from Eq. (10.13),

dX5 4πρað12 aÞrc2x1 dr
to become

dX5 4πρað12 aÞrc2x1F dr (10.45)

and the elementary torque, Eq. (10.16b),

dτ5 4πρΩcx1ð12 aÞa0r3 dr
is modified to become

dτ5 4πρΩcx1ð12 aÞa0Fr3 dr (10.46)

Following the reduction processes that led to Eqs (10.35a) and (10.36a), the last two numbered

equations give the following results:

a=ð12 aÞ5λðcos φ1 ε sin φÞ=ðF sin2 φÞ (10.47a)

a0=ð11 a0Þ5λðs sin φ2 ε cos φÞ=ðF sin φ cos φÞ (10.48a)

d

r
R

s

FIGURE 10.15

Prandtl tip loss model showing the distances used in the analysis.
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The application of the Prandtl tip correction factor to the elementary axial force and elementary

torque equations has some important implications concerning the overall flow and the interference

factors. The basic meaning of Eq. (10.45) is

dX5 d _mð2aFcx1Þ

i.e., the average axial induction factor in the far wake is 2aF when the correction factor is applied

as opposed to 2a when it is not. Note also that, in the plane of the disc (or the blades), the average

induction factor is aF, and that the axial velocity becomes

cx2 5 cx1ð12 aFÞ

From this, we see that at the tips of the blades cx25 cx1, because F is zero at that radius.

Note: It was explained earlier that the limit of application of the theory occurs when a-0.5,

i.e., cx25 cx1(12 2a), and, as the earlier calculations have shown, a is usually greatest toward the

blade tip. However, with the application of the tip correction factor F, the limit state becomes

aF5 0.5. As F progressively reduces to zero as the blade tip is approached, the operational result

gives, in effect, some additional leeway in the convergence of the iterative procedure discussed

earlier.
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FIGURE 10.16

Variation of Prandtl correction factor F with radius ratio for blade number Z5 2, 3, 4, and 6.
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Performance calculations with tip correction included
In accordance with the previous approximation (to reduce the amount of work needed), ε is

ascribed the value zero, simplifying the preceding equations for determining a and a0 to

a=ð12 aÞ5λ cos φ=ðF sin2 φÞ (10.47b)

a0=ð11 a0Þ5λ=ðF cos φÞ (10.48b)

When using the BEM method, an extra step is required in Table 10.1, between steps 1 and 2, to

calculate F, and it is necessary to calculate a new value of CL for each iteration that, consequently,

changes the value of the blade loading coefficient λ as the calculation progresses.

EXAMPLE 10.9

This example repeats the calculations of Example 10.8 using the same blade specification (i.e.,

the pitch angle β5 β(r)) but now it includes the Prandtl correction factor. The results of the

iterations to determine a, a0, φ, and CL and used as data for the summations are shown in

Table 10.5. The details of the calculation for one mid-ordinate radius (r/R5 0.95) are shown first

to clarify the process.

Solution
At r/R5 0.95, F5 0.522, using Eqs (10.44b) and (10.43). Thus, with Z5 3, l5 1.0,

F=λ5 62:32=CL

In the BEM method, we start with a5 a0 5 0 so, initially, tan φ5 (R/r)/J5 (1/0.95)/

55 0.2105. Thus, φ5 11.89� and CL5 (φ2β)/105 (11.892 1.59)/105 1.03. Hence, F/

λ5 60.5. With Eqs (10.47a) and (10.48a), we compute a5 0.2759 and a0 5 0.0172.

The next cycle of iteration gives φ5 8.522, CL5 0.693, F/λ5 89.9, a5 0.3338, and

a0 5 0.0114. Continuing the series of iterations we finally obtain

Table 10.5 Summary of Results for All Mid-ordinates

Mid r/R 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.950

F 1.0 1.0 0.9905 0.9796 0.9562 0.9056 0.7943 0.522

CL 0.8 0.8 0.796 0.790 0.784 0.7667 0.7468 0.6115

A 0.055 0.0704 0.0876 0.1063 0.1228 0.1563 0.2078 0.3510

a’ 0.0322 0.0209 0.0155 0.01216 0.0105 0.0093 0.00903 0.010

φ (deg) 36.4 27.49 21.76 17.80 14.857 12.567 10.468 7.705

Var.1 0.1643 0.2878 0.4457 0.6483 0.8800 1.1715 1.395 0.5803
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a5 0:351; a0 5 0:010; φ5 7:705; and CL 5 0:6115

For the elements of force,

ΔX5
1

2
ρZlRc2x1½ð12aÞ=sin φ�2cos φCLΔðr=RÞ

where, in Table 10.5, Var.15 [(12 a)/sin φ]2cos φCLΔ(r/R),X
Var:15 6:3416

As in Example 10.6, ð1=2ÞZlRc2x1 5 1518:8, then

X5 1518:83 6:34165 9631 N

Evaluating the elements of the torque using Eq. (10.42), where, in Table 10.6, Var.25
[(11 a0)/cosφ]2(r/R)3CL sin φΔ(r/R),

X
Var:25 40:7073 1023 and

1

2
ρZlΩ2R4 5 056953 106

then

τ5 23:1833 103 Nm

Hence, P5 τΩ5 57.960 kW, CP5 0.324, and ζ5 0.547.

These calculations, summarized in Table 10.7, demonstrate that quite substantial reductions

occur in both the axial force and the power output as a result of including the Prandtl tip loss

correction factor.

Table 10.6 Data Used for Summing Torque

Midr/R 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.950

(r/R)3 0.01563 0.04288 0.09113 0.1664 0.2746 0.4219 0.6141 0.7915

Var.23 1023 1.2203 2.097 3.215 4.541 6.033 7.526 8.773 7.302

Table 10.7 Summary of Results

Axial Force (kN) Power (kW) CP ζ

Without tip correction 10.583 67.64 0.378 0.638

With tip correction 9.848 57.96 0.324 0.547
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10.9 Rotor configurations
Clearly, with so many geometric design and operational variables to consider, it is not easy to

give general rules about the way the performance of a wind turbine will be affected by the values

of parameters other than (perhaps) running large numbers of computer calculations. The variables

for the turbine include the number of blades, blade solidity, blade taper and twist, as well as

tip�speed ratio.

Blade planform
In all the preceding worked examples, a constant value of chord size was used, mainly to simplify

proceedings. The actual planform used for the blades of most HAWTs is tapered, the degree of

taper is chosen for structural, economic, and, to some degree, aesthetic reasons. If the planform is

known or one can be specified, the calculation procedure developed previously, i.e., the BEM

method, can be easily modified to include the variation of blade chord as a function of radius.

In the following section, Glauert’s analysis is extended to determine the variation of the rotor

blade planform under optimum conditions.

Effect of varying the number of blades
A first estimate of overall performance (power output and axial force) based on actuator disc theory

was given earlier. The choice of the number of blades needed is one of the first items to be consid-

ered. Wind turbines have been built with anything from 1 to 40 blades. The vast majority of

HAWTs, with high tip�speed ratios, have either two or three blades. For purposes such as water

pumping, rotors with low tip�speed ratios (giving high starting torques) employ a large number of

blades. The chief considerations to be made in deciding on the blade number, Z, are the design

tip�speed ratio, J, the effect on the power coefficient, CP, as well as other factors such as weight,

cost, structural dynamics, and fatigue life, which we cannot consider in this short chapter.

Tangler (2000) has reviewed the evolution of the rotor and the design of blades for HAWTs,

commenting that, for large commercial machines, the upwind, three-bladed rotor is the industry

accepted standard. Most large machines built since the mid-1990s are of this configuration. The

blade number choice appears to be guided mainly by inviscid calculations presented by Rohrback

and Worobel (1977) and Miller, Dugundji et al. (1978). Figure 10.17 shows the effect on the power

coefficient CP of blade, number for a range of tip�speed ratio, J. It is clear, on the basis of these

results, that there is a significant increase in CP in going from one blade to two blades, rather less

gain in going from two to three blades, and so on for higher numbers of blades. In reality, the

apparent gains in CP would be quickly canceled when blade frictional losses are included with

more than two or three blades.

Tangler (2000) indicated that considerations of rotor noise and aesthetics strongly support the

choice of three blades rather than two or even one. Also, for a given rotor diameter and solidity, a

three-bladed rotor will have two-thirds the blade loading of a two-bladed rotor resulting in lower

impulsive noise generation.
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Effect of varying tip�speed ratio
The tip�speed ratio J is generally regarded as a parameter of some importance in the design perfor-

mance of a wind turbine. So far, all the examples have been determined with one value of J and it

is worth finding out how performance changes with other values of the tip�speed ratio. Using the

procedure outlined in Example 10.6, assuming zero drag (ε5 0) and ignoring the correction for a

finite number of blades, the overall performance (axial force and power) has been calculated for

CL5 0.6, 0.8, and 1.0 (with l5 1.0) for a range of J values. Figure 10.18 shows the variation of the

axial force coefficient CX plotted against J for the three values of CL and Figure 10.19(a) the

corresponding values of the power coefficient CP plotted against J. A point of particular interest is

that when CX is replotted as CX/(JCL) all three sets of results collapse onto one straight line, as

shown in Figure 10.19(b). The main interest in the axial force would be its effect on the bearings

and on the supporting structure of the turbine rotor. A detailed discussion of the effects of both

steady and unsteady loads acting on the rotor blades and supporting structure of HAWTs is given

by Garrad (1990).

Note: The range of these calculated results is effectively limited by the nonconvergence of the

value of the axial flow induction factor a at, or near, the blade tip at high values of J. The largeness

of the blade loading coefficient, λ5 ZlCL/(8πr), is wholly responsible for this nonconvergence of

a. In practical terms, λ can be reduced by decreasing CL or by reducing l (or by a combination of

these). Also, use of the tip correction factor in calculations will extend the range of J for which
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FIGURE 10.17

Theoretical effect of tip�speed ratio and number of blades on power coefficient assuming zero drag.
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convergence of a can be obtained. The effect of any of these measures will be to reduce the amount

of power developed. However, in the examples throughout this chapter, to make valid comparisons

of performance the values of lift coefficients and chord are fixed. It is of interest to note that the

curves of the power coefficient CP all rise to about the same value, approximately 0.48, where the

cut-off due to nonconvergence occurs.

Rotor optimum design criteria
Glauert’s momentum analysis provides a relatively simple yet accurate framework for the prelimi-

nary design of wind turbine rotors. An important aspect of the analysis not yet covered was his

development of the concept of the “ideal windmill” that provides equations for the optimal rotor. In

a nutshell, the analysis gives a preferred value of the product CLl for each rotor blade segment as a

function of the local speed ratio j defined by

j5
Ωr
cx1

5
r

R

� �
J (10.49)

By choosing a value for either CL or l enables a value for the other variable to be determined

from the known optimum product CLl at every radius.

The analysis proceeds as follows. Assuming CD5 0, we divide Eq. (10.36b) by Eq. (10.35b) to

obtain

a0ð12 aÞ
að11 a0Þ 5 tan2 φ (10.50)

1

0.2

0.8

0.6

0.4

3 4 5 6 72

Tip–speed ratio, J

0.6
0.8C L

�
1.0

C
X

FIGURE 10.18

Variation of the axial force coefficient CX versus tip�speed ratio J for three values of the lift coefficient

CL5 0.6, 0.8, and 1.0.
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(a) Variation of the power coefficient CP versus J for three values of the lift coefficient CL5 0.6, 0.8, and 1.0.

(b) Axial force coefficient divided by JCL and plotted versus J (this collapses all results shown in Figure 10.17

onto a straight line).
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Also, from Eqs (10.39) and (10.49), we have

tan φ5
ð12 aÞ
jð11 a0Þ (10.51)

We now substitute for tan φ in Eq. (10.50) to obtain

1

j2
5

a0ð11 a0Þ
að12 aÞ (10.52)

Thus, at any radius r, the value of j is constant for a fixed tip�speed ratio J, and the right-hand

side is likewise constant. Looking again at Eq. (10.17), for specific values of cx1 and Ω, the power

output is a maximum when the product (12 a)a0 is a maximum. Differentiating this product and

setting the result to zero, we obtain

a0 5
da0

da
ð12 aÞ (10.53)

From Eq. (10.52), after differentiating and some simplification, we find

j2ð11 2a0Þ da
0

da
5 12 2a (10.54)

Substituting Eq. (10.53) into Eq. (10.54), we get

j2ð11 2a0Þa0 5 ð12 2aÞð12 aÞ

Combining this equation with Eq. (10.52), we obtain

11 2a0

11 a0
5

12 2a

a

Solving this equation for a0,

a0 5
12 3a

4a2 1
(10.55)

Substitute Eq. (10.55) back into Eq. (10.52) and using 11 a0 5 a/(4a2 1), we get

a0j2 5 ð12 aÞð4a2 1Þ (10.56)

Equations (10.53) and (10.55) can be used to determine the variation of the interference factors

a and a0 with respect to the coordinate j along the turbine blade length. After combining

Eq. (10.55) with Eq. (10.56), we obtain

j5 ð4a2 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 a

12 3a

r
(10.57)

Equation (10.57), derived for these ideal conditions, is valid only over a very narrow range of a,

i.e., ð1=4Þ, a, ð1=3Þ: It is important to keep in mind that optimum conditions are much more

restrictive than general conditions. Table 10.8 gives the values of a0 and j for increments of a in

this range (as well as φ and λ). It will be seen that for large values of j the interference factor a is
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only slightly less than ð1=3Þ and a0 is very small. Conversely, for small values of j the interference

factor a approaches the value ð1=4Þ and a0 increases rapidly.
The flow angle φ at optimum power conditions is found from Eqs (10.50) and (10.55),

tan2 φ5
a0ð12 aÞ
að11 a0Þ 5

ð12 3aÞð12 aÞ
a2

therefore,

tan φ5
1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 3aÞð12 aÞ

p
(10.58)

Again, at optimum conditions, we can determine the blade loading coefficient λ in terms of the

flow angle φ. Starting with Eq. (10.55), we substitute for a0 and a using Eqs (10.36b) and (10.35b).

After some simplification, we obtain

λ2 5 sin2 φ2 2λ cos φ

Solving this quadratic equation, we obtain a relation for the optimum blade loading coefficient

as a function of the flow angle φ,

λ5 12 cos φ � ZlCL

8πr
(10.59)

Returning to the general conditions, from Eq. (10.51) together with Eqs (10.35b) and (10.36b),

we obtain

tan φ5
1ð12 aÞ
jð11 a0Þ 5

1

j

a

a0

� �
tan2 φ

therefore,

j5
a

a0

� �
tan φ (10.60)

Table 10.8 Relationship Between a0, a, φ, j, and λ at Optimum Conditions

a a0 j φ (°) λ

0.260 5.500 0.0734 57.2 0.4583

0.270 2.375 0.157 54.06 0.4131

0.280 1.333 0.255 50.48 0.3637

0.290 0.812 0.374 46.33 0.3095

0.300 0.500 0.529 41.41 0.2500

0.310 0.292 0.753 35.33 0.1842

0.320 0.143 1.150 27.27 0.1111

0.330 0.031 2.63 13.93 0.0294

0.333 0.003 8.574 4.44 0.0030
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Rewriting Eqs (10.35b) and (10.36b) in the form

1

a
5 11

1

λ
sin φ tan φ and

1

a0
5

1

λ
cos φ2 1

and substituting into Eq. (10.60), we get

j5 sin φ
cos φ2λ

λ cos φ1 sin2 φ

� �
(10.61)

Reintroducing optimum conditions with Eq. (10.59),

j5
sin φð2 cos φ2 1Þ

ð12 cos φÞcos φ1 sin 2φ

therefore,

j5
sin φð2 cos φ2 1Þ

ð11 2 cos φÞð12 cos φÞ (10.62)

jλ5
sin φð2 cos φ2 1Þ

11 2 cos φ
(10.63)

Some values of λ are shown in Table 10.8. Equation (10.62) enables j to be calculated directly

from φ. These equations also allow the optimum blade layout in terms of the product of the chord l

and the lift coefficient CL (for CD5 0) to be determined. By ascribing a value of CL at a given

radius, the corresponding value of l can be determined.

Figure 10.20 shows the calculated variation of blade chord with radius. The fact that the chord

increases rapidly as the radius is reduced would suggest that the blade designer would ignore opti-

mum conditions at some point and accept a slightly reduced performance. A typical blade planform

(for the Micon 65/13 HAWT; Tangler et al., 1990) is also included in Figure 10.20 for comparison.
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FIGURE 10.20

Examples of variation of chord length with radius: (a) optimal variation of chord length with radius, according

to Glauert theory, for CL5 1.0 and (b) a typical blade planform (used for the Micon 65/13 HAWT).
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EXAMPLE 10.10

A three-bladed HAWT, with a 30 m tip diameter, is to be designed for optimum conditions with

a constant lift coefficient CL of unity along the span and with a tip�speed ratio J5 5.0.

Determine a suitable chord distribution along the blade, from a radius of 3 m to the blade tip,

satisfying these conditions.

Solution
It is obviously easier to input values of φ in order to determine the values of the other para-

meters than attempting the reverse process. To illustrate the procedure, choose φ5 10�, and so

we determine jλ5 0.0567, using Eq. (10.63). From Eq. (10.59), we determine λ5 0.0152 and

then find j5 3.733. Now

j5
Ωr
cx1

5 J
r

R

� �
5

5

15
r

r5 3j5 11:19 m

As

jλ5 J
r

R

� �
5

ZlCL

8πr
5

J

R

ZlCL

8π
5

l

8π

after substituting J5 5, R5 15 m, Z5 3, CL5 1.0. Thus,

l5 8π3 0:05675 1425 m

and Table 10.9 shows the optimum blade chord and radius values.

10.10 The power output at optimum conditions
Equation (10.17) expresses the power output under general conditions, i.e., when the rotational interfer-

ence factor a0 is retained in the analysis. From this equation, the power coefficient can be written as

CP 5P=
1

2
πρR2c3x1

� �
5

8

J2

ðJ
jk

ð12 aÞa0j3 dj

Table 10.9 Values of Blade Chord and Radius (Optimum Conditions)

φ (°) j 4jλ r (m) l (m)

30 1.00 0.536 3.0 3.368

20 1.73 0.418 5.19 2.626

15 2.42 0.329 7.26 2.067

10 3.733 0.2268 11.2 1.433

7.556 5 0.1733 15 1.089
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This equation converts to optimum conditions by substituting Eq. (10.56) into it, i.e.,

CP 5
8

J2

ðJ
jk

ð12aÞ2ð4a2 1Þj dj (10.64)

where the limits of the integral are changed to jh and J5ΩR/cx1. Glauert (1935) derived values for

CP for the limit range j5 0 to J (from 0.5 to 10) by numerical integration and the relative maxi-

mum power coefficient ζ. These values are shown in Table 10.10. So, to obtain a large fraction of

the possible power, it is apparent that the tip�speed ratio J should not be too low.

10.11 HAWT blade section criteria
The essential requirements of turbine blades clearly relate to aerodynamic performance, structural

strength and stiffness, ease of manufacture, and ease of maintenance in that order. It was assumed,

in the early days of turbine development, that blades with high lift and low drag were the ideal

choice with the result that standard aerofoils, e.g., NACA 44XX, NACA 230XX, (where the XX

denotes thickness to chord ratio, as a percentage), suitable for aircraft were selected for wind tur-

bines. The aerodynamic characteristics and shapes of these aerofoils are summarized by Abbott and

von Doenhoff (1959).

The primary factor influencing the lift�drag ratio of a given aerofoil section is the Reynolds

number. The analysis developed earlier showed that optimal performance of a turbine blade

depends on the product of blade chord and lift coefficient, lCL. When other turbine parameters

such as the tip�speed ratio J and radius R are kept constant, the operation of the turbine at a high

value of CL thus allows the use of narrower blades. Using narrower blades does not necessarily

result in lower viscous losses, instead the lower Reynolds number often produces higher values of

CD. Another important factor to consider is the effect on the blade structural stiffness, which

decreases sharply as thickness decreases. The standard aerofoils just mentioned also suffered from

a serious fault; namely, a gradual performance degradation from roughness effects consequent on

leading-edge contamination. Tangler commented that “the annual energy losses due to leading-edge

roughness are greatest for stall-regulated6 rotors.” Figure 10.21 illustrates the surprising loss in

power output of a stall-regulated, three-bladed rotor on a medium scale (65 kW) turbine. The loss

Table 10.10 Power Coefficients at Optimum Conditions

J ζ CP J ζ CP

0.5 0.486 0.288 2.5 0.899 0.532

1.0 0.703 0.416 5.0 0.963 0.570

1.5 0.811 0.480 7.5 0.983 0.582

2.0 0.865 0.512 10.0 0.987 0.584

6Refer to Section 10.13, Control Methods.
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in performance is proportional to the reduction in maximum lift coefficient along the blade. The

roughness also degrades the aerofoil’s lift-curve slope and increases profile drag, further contribut-

ing to losses. Small-scale wind turbines are even more severely affected because their lower eleva-

tion allows the accretion of more insects and dust particles and the debris thickness is actually a

larger fraction of the leading-edge radius. Some details of the effect of blade fouling on a small-

scale (10 m diameter) rotor are given by Lissaman (1998). Estimates of the typical annual energy

loss (in the United States) caused by this increased roughness are 20�30%. The newer NREL tur-

bine blades described in the next section are much less susceptible to the effects of fouling.

10.12 Developments in blade manufacture
Snel (1998) remarked, “in general, since blade design details are of a competitive nature, not much

information is present in the open literature with regard to these items.” Fortunately, for progress,

efficiency, and the future expansion of wind energy power plants, the progressive and enlightened

policies of the US DOE, NASA, and the National Renewable Energy Laboratory allowed the

release of much valuable knowledge to the world concerning wind turbines. Some important

aspects gleaned from this absorbing literature follows.

Tangler and Somers (1995) outlined the development of special-purpose aerofoils for HAWTs,

which began as a collaborative venture between the National Renewable Energy Laboratory

(NREL) and the Airfoils Incorporated. Seven families of blades comprising 23 aerofoils were

planned for rotors of various sizes. These aerofoils were designed to have a maximum CL that was

largely insensitive to roughness effects. This was achieved by ensuring that the boundary layer tran-

sition from laminar to turbulent flow on the suction surface of the aerofoil occurred very close to

the leading edge, just before reaching the maximum value of CL. These new aerofoils also have
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FIGURE 10.21

Power curves from field tests for NACA 4415-4424 blades.

(Adapted from Tangler, 1990, courtesy of NREL)
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low values of CD in the clean condition because of the extensive laminar flow over them. The

tip�region aerofoils typically have close to 50% laminar flow on the suction surface and over 60%

laminar flow on the pressure surface.

The preferred choice of blade from the NREL collection of results rather depends on whether

the turbine is to be regulated by stall, by variable blade pitch, or by variable rotor speed. The differ-

ent demands made of the aerofoil from the hub to the tip preclude the use of a single design type.

The changing aerodynamic requirements along the span are answered by specifying different values

of lift and drag coefficients (and, as a consequence, different aerofoil sections along the length).

For stall-regulated turbines, a limited maximum value of CL in the blade tip region is of benefit to

passively control peak rotor power. Figures 10.22�10.25 show families of aerofoils for rotors origi-

nally designated as “small-, medium-, large-, and very large-sized” HAWTs,7 designed specifically

for turbines having low values of maximum blade tip CL. A noticeable feature of these aerofoils is

the substantial thickness�chord ratio of the blades, especially at the root section, needed to address

the structural requirements of “flap stiffness” and the high root bending stresses.

According to Tangler (2000), the evolutionary process of HAWTs is not likely to deviate much

from the now firmly established three-bladed, upwind rotors, which are rapidly maturing in design.

Further refinements, however, can be expected of the various configurations and the convergence

NREL S822

Tip region airfoil, 90% radius

Root region airfoil, 40% radius

Design specifications

Airfoil

S822

S823

r /R

0.9

0.4

Re (�106)

0.6

0.4

tmax /l

0.16

0.21

CL max CD min

1.0

1.2

0.010

0.018

NREL S823

FIGURE 10.22

Thick aerofoil family for HAWTs of diameter 2�11 m (P5 2�20 kW).

(Courtesy of NREL)

7With the top end size of HAWTs growing ever larger with time, the size categories of “large” or “very large” used in

the 1990s are rather misleading and, perhaps, better described by stating either the relevant diameter or the power range.
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toward the best of the three options of stall regulated, variable pitch, and variable speed blades.

Blades on large, stall-regulated wind turbines with movable speed control tips may be replaced by

variable-pitch blades for more refined peak power control and reliability.

With the very large HAWTs (i.e., 104 m diameter, refer to Figure 10.4(a)) being brought into

use, new blade section designs and materials will be needed. Mason (2004) has described “light-

weight” blades being made from a carbon/glass fiber composite for the 125 m diameter, 5 MW

HAWT to be deployed in the North Sea as part of Germany’s first deepwater offshore project.

10.13 Control methods (starting, modulating, and stopping)
Referring to Figure 10.9, the operation of a wind turbine involves starting the turbine from rest,

regulating the power while the system is running, and stopping the turbine if and when the wind

NREL S820

Tip region airfoil, 95% radius

Root region airfoil, 40% radius

Design specifications

Airfoil

S820

S819

r /R

0.95

0.75

Re (�106)

1.3

1.0

tmax /l

0.16

0.21

CL max CD min

1.1

1.2

0.007

0.008

NREL S819

S821 0.40 0.8 0.24 1.4 0.014

NREL S821

Primary outboard airfoil, 75% radius

FIGURE 10.23

Thick aerofoil family for HAWTs of diameter 11�21 m (P5 20�100 kW).

(Courtesy of NREL)
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speed becomes excessive. Startup of most wind turbines usually means operating the generator as a

motor to overcome initial resistive torque until sufficient power is generated at “cut-in” speed

assuming, of course, that a source of power is available.

Blade-pitch control
The angle of the rotor blades is actively adjusted by the machine control system. This, known as

blade-pitch control, has the advantage that the blades have built-in braking, which brings the blades

to rest. Pitching the whole blade requires large actuators and bearings, increasing the weight, and

expense of the system. One solution to this problem is to use partial span blade-pitch control

where only the outer one-third of the blade span is pitched.

NREL S813

Tip region airfoil, 95% radius

Root region airfoil, 40% radius

Primary outboard airfoil, 75% radius

Design Specifications

Airfoil

S813

S812

r /R

0.95

0.75

Re (�106)

2.0

2.0

tmax /l

0.16

0.21

CL max CD min

1.1

1.2

0.007

0.008

NREL S812

S814 0.40 1.5 0.24 1.3 0.012

S815 0.30 1.2 0.26 1.1 0.014

NREL S814

FIGURE 10.24

Thick aerofoil family for HAWTs of diameter 21�35 m (P5 100�400 kW) (Note: blade profile for S815 was

not available).

(Courtesy of NREL)

470 CHAPTER 10 Wind Turbines



Passive or stall control
The aerodynamic design of the blades (i.e., the distribution of the twist and thickness along the

blade length) varies in such a way that blade stall occurs whenever the wind speed becomes too

high. The turbulence generated under stall conditions causes less energy to be transferred to the

blades minimizing the output of power at high wind speeds.

According to Armstrong and Brown (1990), there is some competition between the advocates of

the various systems used in commercial wind farms. The classical European machines are usually

stall regulated, while most American designs are now either pitch regulated or, for large turbines,

use some form of aileron control.

Aileron control
Aerodynamic control surfaces have been investigated by the US DOE and NASA as an alternative

to full blade-pitch control. The aileron control system has the potential to reduce cost and weight

NREL S817

Tip region airfoil, 95% radius

Root region airfoil, 40% radius

Design specifications

Airfoil

S817

S816

r/R

0.95

0.75

Re (�106)

3.0

4.0

tmax /l

0.16

0.21

CL max CD min

1.1

1.2

0.007

0.008

NREL S816

S818 0.40 2.5 0.24 1.3 0.012

NREL S818

Primary outboard airfoil, 75% radius

FIGURE 10.25

Thick aerofoil family for HAWTs with D. 36 m (blade length5 15�25 m, P5 400�1000 kW).

(Courtesy of NREL)
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of the rotors of large HAWTs. The control surfaces consist of a movable flap built into the outer

part of the trailing edge of the blade, as shown in Figure 10.26(a). Although they appear similar to

the flaps and ailerons used on aircraft wings, they operate differently. Control surfaces on an air-

craft wing deflect downward toward the high-pressure surface in order to increase lift during take-

off and landing, whereas on a wind turbine blade the flaps deflect toward the low-pressure surface

(i.e., downwind side) to reduce lift and cause a braking effect. Figure 10.26(b) shows sketches of

two typical control surface arrangements in the fully deflected position, included in a paper by

Miller and Sirocky (1985). The configuration marked plain was found to have the best braking per-

formance. The configuration marked balanced has both a low-pressure and a high-pressure control

surface, which helps to reduce the control torque.

Ailerons change the lift and drag characteristics of the basic blade aerofoil as a function of the

deflection angle. Full-scale field tests were conducted on the Mod-O wind turbine8 with ailerons of

20% chord and 38% chord. Results from loss of load to shutdown showed that the 38% chord ailer-

ons were the better aerodynamic braking device than the 20% chord ailerons. Also, the 38% chord

ailerons effectively regulated the power output over the entire operating range of the Mod-O tur-

bine. Figure 10.27 shows the variation of the lift and drag coefficients for the 38% chord ailerons

set at 0�, 260�, and 290�.

Direction
of rotation

Aileron
blade tip
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Plain

Direction of
rotation

Wind
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(b)

�

FIGURE 10.26

Aileron control surfaces: (a) showing position of ailerons on two-bladed rotor and (b) two types of aileron in

fully deflected position.

(Adapted from Miller and Sirocky, 1985)

8Details of the Mod-O wind turbine are given in Divone (1998).
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Although wind tunnel tests normally present results in terms of lift and drag coefficients, Miller

and Sirocky (1985) wisely chose to represent their aileron-controlled wind turbine results in terms

of a chordwise force coefficient, CC (also called a suction coefficient). CC is a combination of both

the lift and the drag coefficients, as described next:

CC 5CL sin α2CD cos α (10.65)

where α5 angle of attack.

The reason for using CC to describe aileron-control braking effectiveness is that only the chord-

wise force produces torque (assuming a wind turbine blade with no pitch or twist). Because of this

direct relationship between chordwise force and rotor torque, CC serves as a convenient parameter

for evaluating an aileron’s braking effectiveness. Thus, if CC is negative it corresponds to a nega-

tive torque producing a rotor deceleration. Clearly, it is desirable to have a negative value of CC

available for all angles of attack. Figure 10.28 shows some experimental results, Snyder, Wentz,

and Ahmed (1984) illustrate the variation of the chordwise force coefficient with the angle of

attack, a, for aileron percent chord of 20% and 30% for several aileron deflection angles. The gen-

eral conclusions to be drawn from these results are that increasing the aileron chord length and the

aileron deflection angle contribute to better aerodynamic braking performance.

10.14 Blade tip shapes
The blade geometry determined with various aerodynamic models gives no guidance of an efficient

aerodynamic tip shape. From a basic view of fluid mechanics, a strong shed vortex occurs at the

blade tip as a result of the termination of lift and this together with the highly 3D nature of the
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FIGURE 10.27

Variation of (a) lift and (b) drag coefficients for the 38% chord ailerons when set at 0�, 260�, and at 290�.
(Adapted from Savino, Nyland, and Birchenough, 1985; courtesy of NASA)
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flow at the blade tip causes a loss of lift. The effect is exacerbated with a blunt blade end as this

increases the intensity of the vortex.

Many attempts have been made to improve the aerodynamic efficiency by the addition of vari-

ous shapes of “winglet” at the blade ends. Details of field tests on a number of tip shapes intended

to improve performance by controlling the shedding of the tip vortex are given by Gyatt and

Lissaman (1985). According to Tangler (2000), test experience has shown that rounding the

leading-edge corner, Figure 10.29, with a contoured, streamwise edge (a swept tip) yields good per-

formance. Tip shapes of other geometries are widely used. The sword tip also shown is often cho-

sen because of its low noise generation, but this is at the expense of a reduction in performance.

10.15 Performance testing
Comparison and improvement of aerodynamic predictive methods for wind turbine performance

and field measurements have many inherent limitations. The natural wind is capricious; it is

unsteady, nonuniform, and variable in direction, making the task of interpreting performance mea-

surements of questionable value. As well as the nonsteadiness of the wind, nonuniformity is present

at all elevations as a result of wind shear, the vertical velocity profile caused by ground friction.

The problem of obtaining accurate, measured, steady-state flow conditions for correlating with pre-

dictive methods was solved by testing a full-size HAWT in the world’s largest wind tunnel, the

NASA Ames low speed wind tunnel9 with a test section of 24.4 m3 36.6 m (80 ft3 120 ft).
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FIGURE 10.28

Effect of chord length on chordwise force coefficient, CC, for a range of angles of attack.

(Adapted from Snyder et al., 1984, unpublished)

9Further details of this facility can be found at windtunnels.arc.nasa.gov/80ft1.html.
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10.16 Performance prediction codes
BEM theory
The BEM theory presented, because of its relative simplicity, has been the mainstay of the wind

turbine industry for predicting wind turbine performance. Tangler (2002) has listed some of the

many versions of performance prediction codes based upon the BEM theory and reference to these

is shown in Table 10.11.

According to Tangler (2002), some limitations are apparent in the BEM theory that affect its

accuracy and are related to simplifications that are not easily corrected. Basically, these errors

begin with the assumption of uniform inflow over each annulus of the rotor disc and no interaction

between annuli. Also, the tip loss model accounts for blade number effects but not effects due to

differences in blade planform.

Sword tip

Swept tip

FIGURE 10.29

Blade tip geometries.

(Tangler, 2000; courtesy of NREL)

Table 10.11 Performance prediction codes

Code Name Reference

PROP Wilson and Walker (1976)

PROP93 McCarty (1993)

PROPID Selig and Tangler (1995)

WTPERF Buhl (2000)
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Lifting surface, prescribed wake theory
Modeling the rotor blades with a lifting surface and its resulting vortex wake is claimed to elimi-

nate the errors resulting from the simplifications mentioned for the BEM theory. The lifting sur-

face, prescribed wake theory (LSWT) is an advanced code capable of modeling complex blade

geometries and, according to Kocurek (1987), allows for wind shear velocity profiles, tower

shadow, and off-axis operation. Performance predictions are calculated by combining the lifting

surface method with blade element analysis that incorporates 2D aerofoil lift and drag coefficients

as functions of the angle of attack and the Reynolds number.

It is not possible to pursue the ramifications of this developing theory any further in this intro-

ductory text. Gerber et al. (2004) give a useful, detailed description of LSWT methodology and

suggestions for its likely future development. Other leading references that give details of LSWT

theory are Kocurek (1987) and Fisichella (2001).

Comparison with experimental data
A HAWT with a 10 m diameter rotor was comprehensively tested by NREL in the NASA Ames

wind tunnel. Some of these test results are reported by Tangler (2002) and only a brief extract com-

paring the predicted and measured power is given here. The test configuration comprised a constant

speed (72 rpm), two-bladed rotor, which was upwind and stall regulated. Rotor blades (see Giguere

and Selig, 1998) for this test had a linear chord taper with a nonlinear twist distribution, as shown

in Figure 10.30. It operated with 23� tip pitch relative to the aerofoil chord line. The S809 aerofoil
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FIGURE 10.30

Rotor blade tested in the NASA Ames wind tunnel showing the chord and twist distributions.

(Tangler, 2002; courtesy of NREL)
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was used from blade root to tip for simplicity and because of the availability of 2D wind tunnel

data for the blade section.

Comparison of the measured power output with the BEM (WTPERF and PROP93) and the

LSWT predictions are shown in Figure 10.31, plotted against wind speed. At low wind speeds, up

to about 8 m/s, both the BEM and the LSWT predictions are in very good agreement with the mea-

sured results. At higher wind speeds both theoretical methods slightly underpredict the power actu-

ally measured, the LSWT method rather more than the BEM method. It may be a matter of

interpretation but it appears to this writer that only after blade stall (when the measured power

sharply decreases) does the LSWT method approach closer to the measured power than the BEM

method. Thus, the overall result obtained from wind tunnel measurements appears, in general, to

strongly confirm the validity of the BEM theory prior to the onset of stall.

Peak and postpeak power predictions
The comprehensive testing of a highly instrumented 10 m rotor in the NASA Ames

24.4 m3 36.6 m wind tunnel has provided steady-state data that gives better understanding of the

complex phenomena of blade stall. Until recently, according to Gerber et al. (2004), peak and
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Measured power output (kW) (CER/NASA) for the 10 m diameter wind turbine versus wind speed (m/s)

compared with theoretical predictions.

(Tangler, 2000; courtesy of NREL)
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postpeak power were mistakenly thought to coincide with blade stall that originated in the root

region and propagated toward the tip with increased wind speed. This rather simplistic scenario

does not occur due to 3D delayed stall effects. Analysis of some of the more recent data, Tangler

(2003), showed leading edge separation to occur in the mid-span region, which spread radially

inward and outward with increased wind speed. The BEM approach lacks the ability to model the

3D stall process. Further efforts are being made to take these real effects into account.

Enhanced performance of turbine blades (bioinspired technology)
It has been known for more than a decade that the fins of the baleen whale as shaped by nature,

give exceptional swimming performance and maneuverability enabling them to capture prey. Large

rounded tubercles along the leading edge of the flippers are morphological structures that are

unique in nature (Figure 10.32; Fish et al., 2011). Laboratory experiments on models of these struc-

tures have shown that there is a delay in the angle of attack of a blade until the stall point is

reached thereby increasing the maximum lift as well as reducing the drag. Figure 10.33 shows

some comparative results of the output power of a standard blade and that of a so-called

WhalePower blade (of the same shape) plotted against wind speed, obtained by Howle (2009). The

tubercles constructed on the leading edges of blades can be applied as a feature to the design of

watercraft, aircraft, ventilation fans as well as wind turbines.

10.17 Environmental matters
On what may be classed as aesthetic considerations and environmental objections are the following

topics, arguably in decreasing order of importance: (i) visual intrusion, (ii) acoustic emissions, (iii)

impact on local ecology, (iv) land usage, and (v) effects on radio, radar, and television reception.

Much has been written about all these topics, also numerous websites cover each of them so, for

brevity, only a brief recapitulation of some of the main issues regarding the first two are afforded

any space in this chapter.

FIGURE 10.32

Large rounded tubercles along the leading edge of the flippers of the baleen whale.
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Visual intrusion
The matter of public acceptance (in the United Kingdom especially and several other countries) is

important and clearly depends upon where the turbines are located and their size. The early investi-

gations of acceptability indicated that the sight of just a few turbines, perhaps a mile or so distant,

produced only a few isolated complaints and even appeared to generate some favorable interest

from the public. However, any suggestion of locating wind turbines on some nearby scenic hillside

produced some very strong opposition, comments in the press, and the formation of groups to

oppose the proposals. The opposition set up by a few vociferous landowners and members of the

public in the 1990s retarded the installation of wind farms for several years in many parts of the

United Kingdom. However, wind turbines in larger numbers located in relatively remote upland

areas and not occupying particularly scenic ground have been installed. Nowadays, medium- and

large-size wind turbines in small numbers (i.e., 20�30) are regarded as beneficial to the commu-

nity, providing they are not too close. The move to locate wind turbines offshore may have started

as a result of this opposition but, as it turned out, there were some hidden benefits. Perhaps they

may eventually become tourist attractions in the area. The graceful, almost hypnotic turning of the

slender blades of the larger turbines, seemingly in slow motion, has generally led to a more positive

aesthetic reaction, in most surveys. Other factors can importantly sway public acceptance of wind

turbines. The first factor is the perceived benefit to the community with part or total ownership,
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Wind turbine blade with tubercles (top left) and wind turbine (top right). Graph shows comparison of the

output power of a standard blade versus a WhalePower turbine blade.

(Tests made by the Wind Institute of Canada, Courtesy of WhalePower Corporation)
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giving lower power costs and possibly even preferential availability of power. The second factor

comes from the amount of careful planning and cooperation between the installers and the leaders

of the community long before any work on installation commences. It is a strange fact that the old-

fashioned, disused windmills, now local landmarks, that abound in many parts of Europe (e.g., see

Figure 10.2), are now widely accepted.

Acoustic emissions
Wind turbines undoubtedly generate some noise but, with the improvements in design in recent

years, the level of noise emitted by them has dropped remarkably.

Aerodynamic broadband noise is typically the largest contributor to wind turbine noise. The

main efforts to reduce this noise have included the use of lower blade tip speeds, lower blade

angles of attack, upwind turbine configuration, variable speed operation, and specially modified

blade trailing edges and tip shapes. For the new, very large (i.e., 1�5 MW size) wind turbines, the

rotor tip speed on land is limited (in the United States the limit is 70 m/s). However, large variable

speed wind turbines often rotate at lower tip speeds in low speed winds. As wind speed increases,

the rotor speed is allowed to increase until the limit is reached. This mode of operation results in

much quieter working at low wind speeds than a comparable constant speed wind turbine.

The study of noise emitted by wind turbines is a large and complex subject. No coverage of the

basic theory is given in this chapter. Numerous publications on acoustics are available and one partic-

ularly recommended as it covers the study of fundamentals to some extent is the white paper by

Rogers and Manwell (2004), prepared by NREL. A wide ranging, deeper approach to turbine noise is

given in the NASA/DOE publication “Wind Turbine Acoustics,” by Hubbard and Shepherd (1990).

A particular problem occurs in connection with small wind turbines. These turbines are sold in

large numbers in areas remote from electric utilities and are often installed close to people’s homes,

often too close. There is an urgent need for reliable data on the levels of noise generated so that

homeowners and communities can then reliably anticipate the noise levels from wind turbines prior

to installation. The NREL have performed acoustic tests (Migliore, van Dam, & Huskey, 2004) on

eight small wind turbines with power ratings from 400 W to 100 kW to develop a database of

acoustic power output of new and existing turbines and to set targets for low noise rotors. Test

results will be documented as NREL reports, technical papers, seminars, colloquia, and on the

Internet. In comparing the results, Migliore et al. reported that, following improvements to the blad-

ing, the noise from the Bergey Excel (see Figure 10.4(b)) was reduced to the point that the turbine

noise could not be separated from the background noise. As a result, any further testing will need

to be done in a much quieter location.

10.18 The largest wind turbines
Claims are sometimes made that a new wind turbine is the biggest yet and produces more power

than any other. Such claims need to be carefully considered and compared with verified perfor-

mance data. The latest claimant (in 2011) for the title of “largest wind turbine” appears to be the

Enercon E-126, a 3-bladed rotor of 127 m diameter and rated at 7.58 MW. The hub height was

stated to be 135 m.
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The previous record holder was the 5 MW REpower Systems wind turbine installed at

Brunsbüttel in Schleswig-Holstein, Germany (October 1, 2004), according to a report in Renewable

Energy World (November�December 2004). The three-bladed rotor again has a tip diameter of

126.3 m (blade length 61.5 m, maximum chord 4.6 m) and a hub height of 120 m.

The various speeds and rotor speed range quoted (data that may be useful in problem solving) are

Rotor speed 6.9�12.1 rev/min

Rated wind speed 13 m/s

Cut-in wind speed 3.5 m/s

Cut-out wind speed 25 m/s (onshore); 30 m/s (offshore)

The chief factors that influence the higher output of the Enercon E-126 turbine seems to be the

increased hub height and possibly the windier location of the site.

A factor of some importance in getting higher performance from HAWT’s is the enormous length

of the individual blades and transporting them to the site of use often along roads with unhelpful

bends. Until recently, the world’s longest blades were around 80�100 m. Now blades are being

made of carbon fiber (instead of fiberglass) in shorter pieces which are joined up together. This

advance makes possible individual offshore wind turbines with an output capacity of 8�10 MW.

What are the limits on the size of wind turbine
A recent investigation by Ceyhan (2012) has been made in a project called UPWIND in which sev-

eral aspects of the design have been investigated. Due to the increased blade size, 252 m diameter,

the local Reynolds number values along the blade were found to be as high as 253 106 while the

local wind speeds remain constant. Further progress on this advanced project is hampered by the

lack of performance data for aerofoils operating at such high Reynolds numbers. The author of this

seminal work concludes that high quality measurements will be the key to obtaining cost effective

and reliable designs for very large offshore wind turbines.

10.19 Final remarks
This chapter has given an introduction to the aerodynamics of HAWTs. In order to model the perfor-

mance of a HAWT, it was necessary to give a brief introduction to the mathematics of wind speed proba-

bility. By combining the statistical method of probability theory with the important but relatively simple

BEM method, the performance of a HAWT over a wide range of wind speeds can be determined.

PROBLEMS
1. Determine the diameter of a HAWT rotor required to generate 0.42 MW of power in a steady

wind of 10 m/s at hub height. Assume that the power coefficient CP 5 0:35; the air density
is 1:2 kg=m3 and the mechanical efficiency; η5 0:88:
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2. The original 5 MW, three-bladed HAWT, made by RE Systems has a tip diameter of 126.3 m

and a rated wind speed of 13 m/s. Determine the rated value of the power coefficient CP and

compare this with the value at the Betz limit. Assume the air density ρ5 1.2 kg/m3.

3. For the preceding problem, using actuator disc theory, determine the axial flow induction

factor, a, and the static pressure difference across the disc at the rated wind speed.

4. A HAWT with a hub height of 80 m and blades of 80 m diameter develops 1.824 MW in a

wind of 12 m/s with a blade tip�speed ratio of 4.5. Determine

a. the power coefficient, the relative maximum power coefficient, and the rotational speed;

b. for the same wind speed at 80 m height the wind speed that could be expected at a height

of 150 m and, if the hub height was raised to that level, the likely power output if the

power coefficient remains the same.

Assume the density is constant at 1.2 kg/m3 and that the one-seventh power law applies.

5. A three-bladed HAWT of 50 m diameter, has a constant blade chord of 2 m. and operates with

a tip�speed ratio, J5 4.5. Using an iterative method of calculation determine the values of the

axial and tangential induction factors (a and á) at a radius ratio of 0.95 and the value of the lift

coefficient. Assume the drag coefficient is negligible (and can be ignored) compared with the

lift coefficient and that the pitch angle of the blades β5 3�.
Note: This problem requires the application of the BEM iterative method. Students are

recommended to write computer programs for solving problems of this type.

(Stop the calculation after three iterations if solving manually.)

6. Using the methods of probability theory for a Rayleigh distribution of the wind speed, show thatðN
0

pðcÞdc5 1 where pðcÞ5 π
2

c

c

� �
exp 2

π
4

c

c

� �2� �
and

where c is the fluctuating wind speed and c is the mean wind speed:

7. a. In calculating the maximum possible power production of a wind turbine (Carlin’s method)

show that the integralðN
0

c3
2c

c2c
exp 2

c

cc

� �2
" #( )

dc reduces to
3

4

� � ffiffiffi
π

p

where the characteristic wind velocity cc 5 2c=
ffiffiffi
π

p
.

b. Determine the maximum idealized power output using Carlin’s formula for a turbine of

28 m diameter in a wind regime with an average wind speed of 10 m/s and an air density

of 1.22 kg/m3.

8. A turbine has a cut-in speed of 4.5 m/s and a cut-out speed of 26 m/s. Assuming that the

turbine is located at a favorable site where the mean annual wind speed is 10 m/s and a

Rayleigh wind speed distribution may be applied, calculate:

a. the annual number of hours below the cut-in speed when the turbine does not produce

any power;

b. the annual number of hours when the turbine is within the usable range of wind speed.
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9. A three-bladed rotor of a HAWT with blades of 20 m tip radius is to be designed to work with

a constant lift coefficient CL 5 1:1 along the length of the span at a tip�speed ratio, J5 5.5.

Using Glauert’s momentum analysis of the “ideal wind turbine,” determine the variation of the

chord size along the length of the span for the radius range of 2.8 m to a radius of 19.5 m.

Note: It is expected that students attempting this classical problem will need to become

familiar with the theory of Glauert outlined in section “rotor optimum design criteria.” Also,

this problem requires the application of the BEM iterative method of solution. Students are

recommended to write a computer program for solving this type of problem, probably saving

much time.
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Appendix A: Preliminary Design of
an Axial-Flow Turbine for a Large
Turbocharger

Turbochargers are used to increase the power output of internal combustion engines by compres-

sing the air prior to it being admitted into the engine. This is achieved by employing a centrifugal

compressor driven by a turbine that is powered by the engine exhaust gases. Figure A.1 shows the

mechanical arrangement with the compressor and turbine on a common shaft. An air or water

cooler is often used to reduce the temperature of the air entering the engine, enabling greater power

to be achieved by the engine.

There are two basic types of turbocharger:

1. Small units for turbocharging the complete range of automobiles and trucks that incorporate an

inward flow radial turbine.

2. Large units whose duties include ship propulsion and electrical power generation, typically

1 MW and above, employ an axial-flow turbine. The present design study is directed to this

larger size of unit. The essential design philosophy of these larger turbochargers is that they

have high efficiencies over a limited flow range unlike the automotive turbochargers, which

usually have a rather lower efficiency over a wide flow range. All turbochargers need to be

compact, durable, and have low unit cost. Typically, for these large units, low unit cost is

maintained by using single-stage turbines even for pressure ratios greater than 4.5.

Detailed discussions of the various types and design features of turbochargers are given by

Flaxington and Swain (1999) and by Iwaki and Mitsubori (2004).

Design requirements

The total pressure available at turbine inlet 2.1 kPa

The static pressure at turbine exit, p3 1.05 kPa

Entry temperature of products of combustion to turbine, T01 500�C
Mass flow rate, _m 8 kg/s

Free-vortex design

Reaction ratio, R 0.4

Flow coefficient, φ 0.4

Axial flow at entry and exit of turbine

Target efficiency, ηtt 0.90

Assume a constant value of specific heat at constant pressure, Cp(kJ/kg
�C) 1.178

Assume a ratio of specific heats, γ 1.32
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Mean radius design
The steps in a preliminary design of an axial-flow turbine are essentially a process of trial and error

and several different approaches are possible depending on the data available, any additional

assumptions that may have to be made, and the designer’s previous experience. The notation used

relates to that of Figure 4.4.

First we need to determine the isentropic enthalpy drop across the stage, Δhis5 h012 h3ss.

The isentropic temperature ratio is

T3ss

T01
5

p3

p01

� �ðγ21Þ=γ
5 0:50:2424 5 0:8453

Therefore,

Δhis 5CpT01ð12 T3ss=T01Þ5 1:1783 7733 ð12 0:8453Þ5 140:8 kJ=kg

and

T3ss 5 653:4 K

From Figure 4.4, ΔW5 h012 h03 and the total-to-total efficiency can be written as

ηtt 5
ΔW

h01 2 h03ss
� ΔW

h01 2 h3ss 2 ð1=2Þc23

FIGURE A.1

The mechanical arrangement of the centrifugal compressor and axial-flow turbine of a large turbocharger.

(With permission of ABB Asea Brown Beverl)

488 Appendix A: Preliminary Design of an Axial-Flow Turbine for a Large



using the small approximation, ð1=2Þc23 � ð1=2Þc23ss. Hence,

Δhis 5
ΔW

ηtt
1

1

2
c23 5

ΔW

ηtt
1

1

2
c2x

From Eq. (4.13a) and with α15 0 (axial entry flow),

R5 12
cx tan α2

2U
(A.1)

therefore,

ΔW 5Ucx tan α2 5 2ð12RÞU2 5 ηtt Δhis 2
1

2
c2x

� �
(A.2)

after some rearranging.

Using φ5 cx=U in the preceding and with a little more rearranging we get:

U2 5
ηttΔhis

2ð12RÞ1 ð1=2Þηttφ2
(A.3)

Using the values of the parameters given in the design requirements, we get

U5 315:6 m=s and cx 5 126:3 m=s

From Eq. (A.2), ΔW5 2(12R)U25 119.6 kJ/kg,

tan α2 5
ΔW

Ucx
5

119:553 103

315:63 126:3
5 3:0

α2 5 71:56�

Determining the mean radius velocity triangles and efficiency
We can easily determine the rest of the data necessary to calculate the total-to-total efficiency. For

α35 0�,

tan β3 5U=cx 5 1=φ5 2:5; so β3 5 68:2�

From Eq. (4.13b) with α35 0�,

tan β2 5 tan β3 2 2R=φ5 0:5; so β2 5 26:57�

w3 5 cx=cos β3 5 340:1 m=s

c2 5 cx=cos α2 5 399:3 m=s

From Eq. (4.20b), we use the approximation for the total-to-total efficiency recommended for

initial calculations, i.e.,

ηtt 5 11
ζRw2

31ζNc22
2ΔW

� �21
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The Soderberg loss coefficients, in their simplest form, are used,

ζ5 0:04½11 1:5ðε=100Þ2�
For the rotor, εR5 β21β35 94.77�, hence, ζ5 0.0939.

For the nozzle row, εN5α25 71.56�, hence, ζ5 0.0707.

Evaluating the total-to-total efficiency using these data, ηtt5 91.5%.

This is fairly close to the value originally used in the calculations and a further iteration at this

stage of the design with this new value is not really necessary.

The total-to-static efficiency can be evaluated from Eq. (4.21b), i.e.,

ηts 5 11
ζRw2

31ζNc221c2x
2ΔW

� �21

Hence, we get, ηts5 86.26%.

It is worth noting that values of total-to-static efficiency are shown in Figure 4.17 for a stage

with axial flow at exit with the coordinate axes, stage loading coefficient, ψ5ΔW/U2, and flow

coefficient, φ5 cx=U. In the present design, the value of ψ5 1.2 and R5 0.4 at the mean radius

and, not unexpectedly, we obtain complete accord for the value of ηts from the graph.

The nozzle exit Mach number M2 5 c2=
ffiffiffiffiffiffiffiffiffiffiffi
γRT2

p
is now determined:

T2 5 T01 2 c22=ð2CpÞ5 705:3 K

γR5 ðγ2 1ÞCp

M2 5 0:774

Note: Turbine stages can be designed to operate at much higher loads, i.e., with larger available

pressure ratios, resulting in supersonic absolute flow at nozzle exit and possibly supersonic relative

flow into the rotor. For such flows, shock wave systems will occur and some loss in efficiency is

then inevitable. Supersonic and transonic flows in axial turbine cascades are discussed in

Chapter 3.

Determining the root and tip radii
The axial-flow area at nozzle exit is A2 5 _m=ðρ2cxÞ where p2=ðRT2Þ. We need to determine the

static pressure p2 taking into account the nozzle losses. It is easily shown that

p2

p01
5

T2s

T01

� �γ=ðγ21Þ

and, for a nozzle,

12
T2s

T01

� �
5 12

T2

T01

� �
=ηN
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At this point in the design we have no information on the magnitude of nozzle efficiency.

However, in a nozzle the losses will be low and a value ηN5 0.97 is selected. Using this value and

earlier data, determine T2s/T015 0.9097. Hence,

p2 5 0:6768p01 5 1:42133 105 Pa as p01 5 2:13 105 Pa

Thus, p25 p2/(RT2)5 0.7056 kg/m3 with R5 285.6 kJ/kg �C. Therefore, the flow area

A2 5
_m

ρ2cx
5

8

0:70563 126:3
5 0:08977 m2

In Table A.1, several values of hub�tip ratio have been selected to discover the most

suitable blade aspect ratio, rotational speed, and blade root stress for the turbine rotor. Equation

(4.34a) gives the centrifugal stress developed at the root of the rotor blades. It is assumed that the

blades are untapered and made of steel (ρm5 7850 kg/m3).

The blade tip radius is determined from Eq. (4.25),

rt 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2=π½12 ðrh=rtÞ2�

q

and the average blade temperature Tb5 721 K is determined from Eq. (4.35).

Comparing the stress divided by density values with the rather limited data given in

Figure 4.20, the stress levels are quite low and there appears to be no limitation in using untapered

steel blades.

Variation of reaction at the hub
In Chapter 6, an application of free-vortex flow was made to an axial-flow compressor where it

was shown that the reaction increases radially as we go from root to tip, see Eq. (6.9). The same

result applies to the axial-flow turbine stage and here our interest must be directed to how small the

reaction becomes at the hub. This is important as losses can become large when the reaction is

very low or even negative.

Table A.1 Results for several values of hub-to-tip radius ratio

rh/rt 0.75 0.8 0.85 0.9 Notes

rt (cm) 25.56 28.17 32.09 38.78

H (cm) 6.39 5.634 4.814 3.878 Blade height

Ut (m/s) 360.7 350.7 341.2 332.2 Tip speed
σc=ρm

104 m2=s2
2.846 2.214 1.615 1.048

σc (MPa) 223.4 173.8 126.8 104.8 Centrifugal stress

N (rev/min) 13,476 11,887 10,153 8,180 Rotor speed

Rh 0.18 0.24 0.29 0.33 Reaction at the hub

Z 44 56.5 77.5 119 Number of blades with H/s52
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From Eq. (A.1), for all radii,

R5 12
cx tan α2

2U
5 12

cθ2

2U
5 12

K

2Ur

When referring to particular flow conditions at the mean radius, the subscript m will be added

to the variables R and r. Thus,

Rm 5 12
K

2Umrm

Combining these expressions, the radial variation of reaction is

R5 12 ð12RmÞ
rm

r

� �2

Values of R at the hub radius rh are given in Table A.2 as a function of rh/rt. The value of rh/rt
at which R5 0 is 0.632.

Choosing a suitable stage geometry
Deciding on a suitable configuration for the turbine is not so easy as several factors need to be con-

sidered in making a decision. The size of the unit can be of importance and usually the turbocharger

needs to be made as small as possible. As shown in Table A.1, by making rt smaller the speed of

rotation must increase. As a result both the blade length and the root stress are increased. It is also

necessary to check that the blade pitch s is not so small that the blades cannot be safely attached to

the rim of the turbine disc. In small turbines such as this design it may be practicable to consider

either machining the blades and disc from a single forging or welding the blades onto the disc.

The blade aspect ratio H/s is another factor that can affect the efficient working of the turbine.

This ratio needs to be sufficiently large that the end wall losses and secondary flow losses do not

become excessive. A just acceptable value of H/s is 2.0 and, in Table A.1, the values of Z5 2πrm/s
resulting from this choice are shown.

Although the decision is not absolutely clear cut, on balance the present designer favors the

smallest size of the selection, rh/rt5 0.75 with 44 blades. With the sizing choice having now been

made the flow angles at the root and tip radii are determined and the velocity diagrams are added

to Figure A.2.

Table A.2 Data for the Calculated Velocity Triangles

r/rt α2 (deg) β2 (deg) β3 (deg) U (m/s) Rh

1.0 69.14 �13.0 70.7 360.7 0.54

0.875 71.6 26.6 68.2 315.6 0.4

0.75 74.1 53.7 65.0 270.5 0.183

Note: Axial velocity cx5 126.3 m/s at all radii.
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As a precaution against the possibility of inducing resonant frequencies between the rotor blades

and the nozzle blades, the number of nozzle blades is chosen to be 45, thereby avoiding common

multiples.

Estimating the pitch/chord ratio
Referring to the measured profile loss coefficients for turbine nozzle and impulse blades, the data

of Figure 3.24, indicate two significant trends:

1. Losses increase generally as the flow deflection increases.

2. The greater the flow deflection required, the lower must be the pitch�chord ratio to minimize

the losses.

The simplified form of Zweifel’s criterion, Eq. (3.55) can be applied to the mean radius of the

rotor:

Z5 2ðs=bÞcos2 β3ðtan β3 1 tan β2Þ5 0:8

with β25 26.6� and β35 68.2�, we get

s=b5 0:8=0:82755 0:967

–13°

26.6°

53.7°
74.1°

71.6°

69.14°

360.7

Tip

Mean

Root

315.6

270.5

70.7°

68.2°

65°

FIGURE A.2

Velocity triangles for root, mean, and tip radii.
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The relationship between the axial chord, b, and the true chord, l, of a blade row is not simple

or at all obvious. However, a simple, approximate geometric relationship can be found based upon

the assumption of a single circular arc to represent the camber line of a turbine blade in a cascade,

as shown in Figure A.3. From the construction details shown in this figure, the stagger angle ξ can

be obtained from

tan ξ5
cos β0

2 2 cos β0
3

sin β0
2 1 sin β0

3

Making a crude approximation, we can substitute the relative flow angles β2 and β3 into this

expression and so derive a “stagger” angle,

tan ξ5
cos 26:62 cos 68:2

sin 26:61 sin 68:2
5

0:5228

1:376
5 0:3798

ξ5 20:8�

Hence, s/l5 (s/b)(b/l)5 0.9673 cos 20.85 0.903.

This space�chord ratio appears to be suitable and is in agreement with the values found by

Ainley and Mathieson (1951), Figure 3.24, although the exact value is not crucial.

The velocity triangles for the root, mean, and tip radii are drawn in Figure A.2. Equation (4.15)

can be used to obtain the relative flow angles shown in Table A.2 with α35 0.

Blade angles and gas flow angles
A point well worth remembering is that the velocity triangles relate to the gas angles and not to

the blade angles. Cascade results for impulse and reaction blades, e.g., Figure 3.25, show that the

R

l

S

R

b

β1
2

β1
3

ξ

FIGURE A.3

Construction details to determine stagger angle.
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profile loss coefficients for reaction blades are not very sensitive to the angle of incidence over a

wide range (�20� to 15�). This means that in the preliminary design exercise the rotor blades can

have less twist along their length, i.e., blade sections may operate at varying amounts of incidence

without incurring excessive losses.

Additional information concerning the design

Power output _mΔW5 956:4 kW

Rotational speed N5 13,476 rev/min

Rotor tip radius rt5 25.56 cm

Rotor blade chord l5 4.56 cm

Rotor blade temperature Tb5 772 K

See also Table A.3.

Postscript
The initial design described is one of many possible methods that could be employed and was gov-

erned by the initial assumptions (free-vortex design, choices of degree of reaction, and flow coeffi-

cient) as well as decisions made about the radius ratio and blading. Students could further

investigate the effect of increasing the value of the flow coefficient (so reducing the turbine diame-

ter), increasing the reaction ratio or using a nonfree-vortex flow such as the first power stage

design, Eq. (6.15). In all such design attempts, it would be wise to check the values of reaction and

Mach number at the blade root for reasons given earlier.
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Table A.3 Results at hub, mid-span and tip.

Radius (cm) rh5 19.17 cm rm5 22.37 cm rt5 25.56 cm

Nozzle exit Mach number 0.906 0.74 0.682

Nozzle exit velocity (m/s) 460 399 355
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Appendix B: Preliminary Design of a
Centrifugal Compressor for a
Turbocharge

This design is a follow-up to the preliminary turbine design given in Appendix A to which it is

linked. The power delivered to the compressor will be rather less than that produced by the turbine

to allow for bearing frictional losses. The air mass flow entering the compressor will be lower than

the products of combustion entering the turbine because of the fuel used by the engine. The rota-

tional speed of the compressor is the same as that of the turbine as they are on the same shaft.

For the turbine, a premium was placed on small size, so that for the compressor a vaned diffuser

will be needed to restrict the size of the turbocompressor. Prewhirl of the inlet flow will not be

required both to simplify the design and because of the expected fairly low Mach numbers. As this

compressor is not a heavily loaded, high-performance design, the use of backward swept impeller

vanes is unlikely to confer much advantage in comparison with a design having radial vanes. In

fact, certain attributes associated with backward swept vanes suggest that a higher overall effi-

ciency can be achieved although this design study has not been extended to include such vanes.

Design requirements and assumptions

Power supplied by the turbine (allowing for bearing friction), P 947 kW

Rotational speed, N 13,476 rev/min

Air mass flow, _m 7.5 kg/s

Inlet stagnation temperature, T01 293 K

Inlet stagnation pressure, p01 105 kPa

Assume a constant value of specific heat, Cp 1.005 kJ/kg �C
Assume a constant value of ratio of specific heats, γ 1.4

The number of rotor blades, Z 21

Determining the blade speed and impeller radius
The specific work is ΔW 5P= _m5 9473 103=7:55 126:33 103 m2=s2.1

The impeller radius is easily found since ΔW5U2cθ2 and, using the Stanitz expression for the

slip factor, σ5 0.63π/Z5 cθ2/U25 0.9057:

U2 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔW=σ

p
5 373:4 m=s

1Results shown in bold will be referred to later.
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r2 5U2=Ω5 0:265 m as Ω5 1411 rad=s

Design of impeller inlet
Several alternative methods can be used to start the design of the inlet. We can choose a particular

ratio of rs1/r2, usually in the range of 0.35�0.65, and select an axial velocity to blade tip speed

ratio at inlet, cx1/Us1, in the range of 0.4�0.5, then proceed from there to calculate the hub�tip

radius ratio from the continuity equation. The magnitude of the maximum relative Mach number at

the inlet, M1,rel, at the shroud radius rs1 can then be checked and further repeated adjustments made

as required to the values of rh1/r2 and cx1/Us1.

A more direct method is available using the theory already developed leading to Eq. (7.13a).

The inlet radius ratio can be determined by a suitable choice of the relative inlet Mach number

M1,rel at the shroud. Referring to Eq. (7.12a) with γ5 1.4, this is

f ðM1;relÞ5
Ω2 _m

πkp01γa01
5

M3
1;rel sin

2 βs1 cos βs1

ð11ð1=5ÞM2
1;rel cos

2 βs1Þ4
(7.13a)

where k5 12 (rh1/rs1)
2. For α15 0 and a fixed value of M1,rel, the optimum value of βs1, is at the

maximum value of f(M1,rel) (see Figure 7.8). For a fixed value of M1,rel, it can be shown by differ-

entiating the right-hand side of Eq. (7.13a), that this maximum occurs when

cos2 βs1 5X2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 2 1=M2

1;rel

q

where X5 0:71 1:5=M2
1;rel:

Using the given or derived data, several optimum values of k and hub�tip ratios have been

determined (to illustrate the trend) for a range of values of M1,rel, shown in Table B.1.

The value rh1/rs15 0.443 is in the normal range used in practice and corresponds to M1,rel5 0.7,

which seems satisfactory.

The inlet dimensions are now easily found with the equation of continuity, _m5 ρ1A1cx1:

r2x1 5
_m

πkρ1cx1

where

ρ1 5 ρ01= 11
1

5
M2

1

� �2:5

and cx15M1a1,

M1 5M1;rel cos βs1 5 0:73 cos 57:945 0:3716

498 Appendix B: Preliminary Design of a Centrifugal Compressor



a1 5 a01= 11
1

5
M2

1

� �0:5
5 338:5 m=s

and

cx1 5 0:37163 338:55 125:8 m=s

As ρ01 5 p01=ðRT01Þ5 1:249 kg=m3, ρ15 1.249/1.07045 1.1669 kg/m3. Thus, r2s1 5 7:5=
ðπ3 0:80373 1:16693 125:8Þ5 0:02024 and

rs1 5 0:1423 m and rh1 5 0:0630 m:

Efficiency considerations for the impeller
In well-designed radial-vaned impellers, the stagnation pressure losses are not large and isentropic

efficiencies up to 92% have been attained at the optimum specific speed, NS5 0.6�0.7.2 The rea-

son for the high efficiency achieved by centrifugal compressor impellers is because of the major

contribution made to the compression process by the frictionless centrifugal term ð1=2ÞðU2
2 2U2

1Þ,
shown in Eq. (7.2). Rodgers (1980) noted that impellers with between 25� and 50� of backsweep

were found to give around 2% higher efficiency than those with radial vanes. Notwithstanding the

efficiency advantage of backswept vanes we shall persist with radial vanes because of their greater

simplicity and obviously lower manufacturing cost. In the present radially bladed impeller, it seems

quite reasonable to assume an isentropic efficiency ηi5 92% for the impeller, and this value is

used in the following calculations.

Design of impeller exit
Designers often choose a value for the radial component of velocity cr2 at impeller exit equal to the

axial velocity cx1 at impeller entry. Hence, we shall use cr25 125.8 m/s.

As U25 373.4 m/s and σ5 0.9057, then cθ25 338.2 m/s

Table B.1 Values of k and radius ratio determined for several values of M1,rel

M1,rel 0.7 0.75 0.8 0.85

Max of right-hand side of Eq. (7.13a) 0.1173 0.1420 0.1695 0.2000

βs1 (deg) at max of f(M1,rel) 57.94 58.36 58.78 59.25

k 0.8037 0.6640 0.5560 0.4715

rh1/rs1 0.4430 0.5796 0.666 0.7270

2In this design, Ns5φ0.5/ψ0.75, where φ5 cx1/U25 118.7/373.45 0.3179 and ψ5ΔW=U2
2 5 126:33 103=373:42 5

0:9058. Hence, Ns5 0.607 (based on inlet axial velocity).
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c2 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2θ2 1 c2r2

q
5 360:8 m=s

and the flow angle α25 tan21 (cθ2/cr2)5 69.60� (measured from the radial direction).

From the continuity equation, Eq. (1.8), _m5 ρ2A2cr2 5 7:5 kg=s and A25 2πr2b2, so to solve for

b2 we need to determine the density, ρ25 p2/(RT2).

Now

ηi 5
h02s 2 h01

h02 2 h01
5

T02s=T01 2 1

T02=T01 2 1

and

T02

T01
5

ΔW

CpT01
1 15 1:4289

and T025 418.7 K.

Hence, with ηi5 0.92, we obtain T02s/T015 1.3946 and p02/p015 3.203; therefore,

p02 5 336:3 kPa

T2 5 T02 2
c22
2Cp

5 353:9 K so T2=T01 5 1:2080 and T02=T2 5 1:1830

p2 5 p02=
T02

T2

� �γðγ21Þ
5 186:7 kPa

Hence, ρ25 p2/RT25 186.73 103/(2873 353.9)5 1.838 kg/m3, so

b2 5 _m=ð2πρ2cr2r2Þ5 0:0195 m5 1:95 cm

b2

r2
5

1:95

26:5
5 0:0736

At impeller exit the Mach number, M25 c2/a2, where a2 5
ffiffiffiffiffiffiffiffiffiffiffi
γRT2

p
5 377:1 m=s,

M2 5 360:8=377:15 0:957:

Flow in the vaneless space
The region between the impeller exit, radius r2 and the start of the diffuser vanes at radius r2d is

known as the vaneless space and within this space the flow is treated as though it was in a vaneless

diffuser (see notes on Vaneless diffusers). The flow leaving the impeller is known to have extensive
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regions of separated flow and to be highly nonuniform and may have strong, deleterious effects on

the diffuser performance. Having a vaneless space allows some flow diffusion to take place but

also allows some reduction of these flow irregularities before entry into the diffuser vanes.

The minimum radius ratio for the vaneless space, r2d/r2, mentioned by Cumpsty (1989) and

others is 1.1, although this ratio could be further increased if necessary to reduce the Mach number

of the flow at entry to the vanes. In the case of the present design, the Mach number, M2, is not

excessive so that this measure is not needed. We will assume that the axial width of the vaneless

space remains constant at b25 1.95 cm.

Despite the known highly irregular flow entering the vaneless space, it is usually assumed for

the purposes of a preliminary design that a smoothed out and frictionless flow exists. It is assumed

for simplicity that the flow is frictionless, that the tangential momentum is conserved within the

vaneless space. In Chapter 7, the flow in a parallel walled diffuser was assumed to be incompress-

ible and this led to the idea of a logarithmic spiral flow path as described by Eq. (7.42).

We may determine the tangential velocity at the radius r2d5 1.1r2 from

cθ2d

cθ2
5

r2

r2d
so cθ2d 5 338:2=1:15 307:5 m=s

cr2d 5
r2

r2d
cr2 5 114:36 m=s;α2d 5 cos21ð114:36=307:5Þ5 68:16�

c2d 5 ðc22d1c2r2dÞ0:5 5 328:1 m=s; T2d 5 T02 2 c22d=ð2CpÞ5 418:72 328:12=20105 365:2 K

a2d 5 ðγRT2dÞ0:5 5 383:0; so M2d 5 328:1=3835 0:856

An iterative procedure
The flow at entry to our vaneless diffuser space is in a high subsonic Mach number range and one

might expect a significant change in Mach number to occur across the diffuser. So, in the following

analysis, a progressive series of approximations is used to try and discover just how much the den-

sity (and Mach number) changes.

In the first approximation, the radial velocity at radius r2d is obtained using the incompressible

log-spiral approximation:

cr2d 5 cr2ðr2=r2dÞ5 125:8=1:15 114:3

Hence,

c2d 5 ðc2θ2d1c2r2dÞ0:5 5 ð307:521114:32Þ0:5 5 328:06 m=s

In the second approximation, we can determine T2d and p2d at radius r2d:

T2d 5 T02 2 c22d=2Cp 5 418:72 328:062=20105 365:2 K

p2d 5 p02=ðT02=T2dÞγ=ðγ21Þ 5 336:33 103=ð418:7=365:2Þ3:5 5 208:4 kPa

p2d 5
p2d

RT2d
5

208:43 103

2873 365:2
5 1:988 kg=m3
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A2d 5 2πr2db2 5 2π3 0:29153 0:01955 0:03572 m2

so that

cr2 5 _m=ðρ2dA2dÞ5 7:5=ð1:9883 0:03572Þ5 105:6 m=s

c2d 5 ð105:621307:52Þ0:5 5 325:1 m=s

For the third approximation,

T2d 5 T02d 2 c22d=ð2CpÞ5 418:72 325:12=20105 366:1 K

p2d 5 p02d=ðT02d=T2Þγ=ðγ21Þ 5 336:3=ð418:7=366:1Þ3:5 5 210:2 kPa

p2d 5 210:2=ð2873 366:1Þ5 2:000 kg=m3

cr2d 5 _m=ðp2dA2dÞ5 7:5=ð2:003 0:03572Þ5 104:98 m=s

therefore,

c2d 5 ð104:9821307:52Þ0:5 5 324:9 m=s

This iteration has provided sufficient convergence so that the Mach number M2d and flow angle

α2d can be determined:

M2d 5 c2d=
ffiffiffiffiffiffiffiffiffiffiffiffi
γRT2d

p
5 324:9=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:43 2873 366:1

p
5 0:847

α2d 5 tan21ðcθ2d=cr2dÞ5 tan21ð307:5=104:98Þ5 71:15�

This calculation shows that, for this spiraling flow with a high subsonic Mach number, the

change in radius between the impeller exit and the entrance to the vaned diffuser actually causes

only a small change in Mach number and flow angle.

A more elegant method of solution for the flow in the vaneless space is to use the compressible

flow equation:

_m

Anp0

ffiffiffiffiffiffiffiffiffiffi
CpT0

p
5

γMffiffiffiffiffiffiffiffiffiffiffi
γ2 1

p 11
γ21

2
M2

� �ð1=2Þ½ðγ11Þ=ðγ21Þ�
(1.39)

In the vaneless space, the values of _m, Cp, T0, and p0 are constant by assumption and γ5 1.4.

Thus, the equation reduces to

AnM

ð11ð1=5ÞM2Þ3 5 constant

It will be appreciated that An is the area 2πrb and the change in area we are considering is con-

trolled by the radial direction r. It is thus necessary to apply this expression to the change in radius

from r2 to r2d using the radial component of M.

At entry to the vaneless space,M25 0.957 and α25 69.6�, so thatM2r5 0.957 cos 69.6� 5 0.3336.
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Hence, we need to solve for M2r in the expression

r2M2r

ð11ð1=5ÞM2
2rÞ3

5
r2dM2dr

ð11ð1=5ÞM2
2drÞ3

Substituting r2d/r25 1.1 and M2r5 0.3336, we can solve iteratively (or using tables) to obtain

M2r5 0.2995. With α25 69.6�, we find M2d5 0.858.

Determining the Mach number change across the vaneless space may be regarded (in this

instance) as just an exercise in the use of the compressible flow equation. The result obtained varies

only slightly from that determined using incompressible flow analysis.

The vaned diffuser
From Figure 7.25 (with L/W15 8), a good choice of a plate diffuser would be one with 2θ5 8�,
corresponding, at this point, to the values Cp5 0.7 and Cp,id5 0.8. This is close to the maximum

efficiency condition for this type of diffuser and, according to the data shown in Figure 7.24, is in

the flow regime that avoids stall.

From Eq. (7.48), the static pressure at diffuser exit will be

p3 5 p2d 1Cpq2d 5 210:21 0:73 105:65 284:1 kPa

and by using Eq. (7.51) the exit velocity will be

c3 5 c2dð12Cp;idÞ0:5 5 324:9ð120:8Þ0:5 5 145:3 m=s

The actual number of diffuser “nozzles” is fairly arbitrary but is usually chosen to be much less

than the number of impeller vanes. In this design, the number chosen is Z5 12 corresponding with

common practice in manufacturing.

The volute
The purpose of the volute (or scroll), shown in Figure 7.4, is simply to collect the compressed air

leaving the diffuser and guide it to the engine air intake. The energy losses in the volute are partly

the result of the dissipation of the kinetic energy at diffuser exit due to turbulent mixing and partly

due to friction on the solid surfaces of the volute. According to Watson and Janota (1982), the total

loss in the volute is usually assumed to be (about) half of the dynamic pressure leaving the diffuser.

Here, we shall assume this extra loss is exactly half of the available dynamic pressure.

Determining the exit stagnation pressure, p03, and overall compressor
efficiency, ηC

We determine the density, ρ35 p3/RT3, where T3 5 T03 2 c23=ð2CpÞ5 411:9 K and p35 284.1 kPa.

Hence, ρ35 2.409 kg/m3.
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Immediately on leaving the diffuser the total pressure is approximately p035 p31 q3 where

q3 5 ð1=2Þρ3c23, and q35 16.4 kPa, hence, p035 300.9 kPa. Because of the total pressure losses in

the volute mentioned previously, the final total pressure at compressor exit is estimated as

p03 5 p3 1 ð1=2Þq3 5 293 kPa.

The overall compressor efficiency ηC can be found with Eq. (7.10):

ηC 5CpT01ðT03ss=T01 2 1Þ=ΔW

where T03ss=T01 5 ðp03=p01Þð1=35Þ 5 1:3407. Thus,

ηC 5 0:794

This value of overall efficiency is rather low and can be attributed to the poor diffuser effi-

ciency (ηD5 0.805). The performance of the conical diffuser is known to be fairly resistant to stall,

particularly with the flow issuing from the impeller, which is turbulent and unsteady. So, another

attempt is made to redesign the diffuser with Cp 5C�
p 5 0:8.

Again, from Figure 7.26 the new values of A2/A15 4.42 and N/R15 18.8:

C�
p;id 5 12 1=A2

R 5 0:9490 and ηD 5C�
p=C

�
p;id 5 0:843

Following the previous calculations, the results obtained for the new diffuser are

p3 5 295:3 kPa

c3 5 73:0 m=s

T3 5 416:0 K

ρ3 5 2:473 kg=m3

and

p03 5 301:9 kPa

With the volute loss included, p030 5 298:6 kPa.
Thus, T03ss0=T01ð298:6=105Þð1=35Þ 2 1:3480 and the compressor efficiency is

ηC 5 81:1%

This is a substantial improvement on the previous value. The student will have realized that the

subject of design provides a seemingly infinite number of choices and the best one can do is to use

any well-founded guidance that is available. On this topic, it was remarked by Cumpsty (1989) that

the procedures used by most organizations involved in the design of compressors are shrouded in

commercial secrecy. New designs are somehow evolved often based upon older successful designs

and as long as the new product gives satisfactory test results then some sort progress can be

claimed.
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Appendix C: Tables for the
Compressible Flow of a Perfect Gas

The tables in this appendix are required for some of the problems in the book. All results are

quoted to four decimal places at equal intervals of Mach number so that linear interpolation can be

easily applied where required. In most cases this will give adequate accuracy, but if necessary

improved precision can be obtained by direct application of the formulae that follow:

Static and Stagnation Quantities Flow Relations

T
T0

5 11 γ21
2 M2

� �21

c5M
ffiffiffiffiffiffiffiffiffi
γRT

p
; cffiffiffiffiffiffiffiffi

CpT0
p 5M

ffiffiffiffiffiffiffiffiffiffiffi
γ21

p
11 γ21

2 M2
� �2ð1=2Þ

p
p0

5 11 γ21
2 M2

� �2γ=ðγ21Þ
_m5 ρcAn;

_m
ffiffiffiffiffiffiffiffi
CpT0

p
AnP0

5 γffiffiffiffiffiffiffiffi
γ2 1

p M 11 γ21
2 M2

� �2ð1=2Þ½ðγ11Þ=ðγ21Þ�

ρ
ρ0

5 11 γ21
2 M2

� �21=ðγ21Þ

Note that in steady, adiabatic flow with no shaft work, T0 is constant. If the flow is also isentro-

pic, p0 and ρ0 are also constant.

Through a steady flow turbomachinery device, the mass flow rate will be conserved such that _m
is constant.

Table C.1 shows results for γ5 1.4 (applicable to dry air and diatomic gases). Table C.2 shows

results for γ5 1.333 (typical of gas turbine combustion products).

Table C.1 Compressible Flow for a Perfect Gas, γ51.4

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p
=Anp0 c=

ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p

0.00 1.0000 1.0000 1.0000 0.0000 0.0000

0.01 1.0000 0.9999 1.0000 0.0221 0.0063

0.02 0.9999 0.9997 0.9998 0.0443 0.0126

0.03 0.9998 0.9994 0.9996 0.0664 0.0190

0.04 0.9997 0.9989 0.9992 0.0885 0.0253

0.05 0.9995 0.9983 0.9988 0.1105 0.0316

0.06 0.9993 0.9975 0.9982 0.1325 0.0379

0.07 0.9990 0.9966 0.9976 0.1545 0.0443

0.08 0.9987 0.9955 0.9968 0.1764 0.0506

0.09 0.9984 0.9944 0.9960 0.1983 0.0569
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Table C.1 (Continued)

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p
=Anp0 c=

ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p

0.10 0.9980 0.9930 0.9950 0.2200 0.0632

0.11 0.9976 0.9916 0.9940 0.2417 0.0695

0.12 0.9971 0.9900 0.9928 0.2633 0.0758

0.13 0.9966 0.9883 0.9916 0.2849 0.0821

0.14 0.9961 0.9864 0.9903 0.3063 0.0884

0.15 0.9955 0.9844 0.9888 0.3276 0.0947

0.16 0.9949 0.9823 0.9873 0.3488 0.1009

0.17 0.9943 0.9800 0.9857 0.3699 0.1072

0.18 0.9936 0.9776 0.9840 0.3908 0.1135

0.19 0.9928 0.9751 0.9822 0.4116 0.1197

0.20 0.9921 0.9725 0.9803 0.4323 0.1260

0.21 0.9913 0.9697 0.9783 0.4528 0.1322

0.22 0.9904 0.9668 0.9762 0.4731 0.1385

0.23 0.9895 0.9638 0.9740 0.4933 0.1447

0.24 0.9886 0.9607 0.9718 0.5133 0.1509

0.25 0.9877 0.9575 0.9694 0.5332 0.1571

0.26 0.9867 0.9541 0.9670 0.5528 0.1633

0.27 0.9856 0.9506 0.9645 0.5723 0.1695

0.28 0.9846 0.9470 0.9619 0.5915 0.1757

0.29 0.9835 0.9433 0.9592 0.6106 0.1819

0.30 0.9823 0.9395 0.9564 0.6295 0.1881

0.31 0.9811 0.9355 0.9535 0.6481 0.1942

0.32 0.9799 0.9315 0.9506 0.6666 0.2003

0.33 0.9787 0.9274 0.9476 0.6848 0.2065

0.34 0.9774 0.9231 0.9445 0.7027 0.2126

0.35 0.9761 0.9188 0.9413 0.7205 0.2187

0.36 0.9747 0.9143 0.9380 0.7380 0.2248

0.37 0.9733 0.9098 0.9347 0.7553 0.2309

0.38 0.9719 0.9052 0.9313 0.7723 0.2369

0.39 0.9705 0.9004 0.9278 0.7891 0.2430

0.40 0.9690 0.8956 0.9243 0.8056 0.2490

0.41 0.9675 0.8907 0.9207 0.8219 0.2551

0.42 0.9659 0.8857 0.9170 0.8379 0.2611

0.43 0.9643 0.8807 0.9132 0.8536 0.2671

0.44 0.9627 0.8755 0.9094 0.8691 0.2730

0.45 0.9611 0.8703 0.9055 0.8843 0.2790

0.46 0.9594 0.8650 0.9016 0.8992 0.2850

0.47 0.9577 0.8596 0.8976 0.9138 0.2909

0.48 0.9559 0.8541 0.8935 0.9282 0.2968

0.49 0.9542 0.8486 0.8894 0.9423 0.3027
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Table C.1 (Continued)

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p
=Anp0 c=

ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p

0.50 0.9524 0.8430 0.8852 0.9561 0.3086

0.51 0.9506 0.8374 0.8809 0.9696 0.3145

0.52 0.9487 0.8317 0.8766 0.9828 0.3203

0.53 0.9468 0.8259 0.8723 0.9958 0.3262

0.54 0.9449 0.8201 0.8679 1.0084 0.3320

0.55 0.9430 0.8142 0.8634 1.0208 0.3378

0.56 0.9410 0.8082 0.8589 1.0328 0.3436

0.57 0.9390 0.8022 0.8544 1.0446 0.3493

0.58 0.9370 0.7962 0.8498 1.0561 0.3551

0.59 0.9349 0.7901 0.8451 1.0672 0.3608

0.60 0.9328 0.7840 0.8405 1.0781 0.3665

0.61 0.9307 0.7778 0.8357 1.0887 0.3722

0.62 0.9286 0.7716 0.8310 1.0990 0.3779

0.63 0.9265 0.7654 0.8262 1.1090 0.3835

0.64 0.9243 0.7591 0.8213 1.1186 0.3891

0.65 0.9221 0.7528 0.8164 1.1280 0.3948

0.66 0.9199 0.7465 0.8115 1.1371 0.4003

0.67 0.9176 0.7401 0.8066 1.1459 0.4059

0.68 0.9153 0.7338 0.8016 1.1544 0.4115

0.69 0.9131 0.7274 0.7966 1.1626 0.4170

0.70 0.9107 0.7209 0.7916 1.1705 0.4225

0.71 0.9084 0.7145 0.7865 1.1782 0.4280

0.72 0.9061 0.7080 0.7814 1.1855 0.4335

0.73 0.9037 0.7016 0.7763 1.1925 0.4389

0.74 0.9013 0.6951 0.7712 1.1993 0.4443

0.75 0.8989 0.6886 0.7660 1.2058 0.4497

0.76 0.8964 0.6821 0.7609 1.2119 0.4551

0.77 0.8940 0.6756 0.7557 1.2178 0.4605

0.78 0.8915 0.6691 0.7505 1.2234 0.4658

0.79 0.8890 0.6625 0.7452 1.2288 0.4711

0.80 0.8865 0.6560 0.7400 1.2338 0.4764

0.81 0.8840 0.6495 0.7347 1.2386 0.4817

0.82 0.8815 0.6430 0.7295 1.2431 0.4869

0.83 0.8789 0.6365 0.7242 1.2474 0.4921

0.84 0.8763 0.6300 0.7189 1.2514 0.4973

0.85 0.8737 0.6235 0.7136 1.2551 0.5025

0.86 0.8711 0.6170 0.7083 1.2585 0.5077

0.87 0.8685 0.6106 0.7030 1.2617 0.5128

0.88 0.8659 0.6041 0.6977 1.2646 0.5179

0.89 0.8632 0.5977 0.6924 1.2673 0.5230
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Table C.1 (Continued)

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p
=Anp0 c=

ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p

0.90 0.8606 0.5913 0.6870 1.2698 0.5280

0.91 0.8579 0.5849 0.6817 1.2719 0.5331

0.92 0.8552 0.5785 0.6764 1.2739 0.5381

0.93 0.8525 0.5721 0.6711 1.2756 0.5431

0.94 0.8498 0.5658 0.6658 1.2770 0.5481

0.95 0.8471 0.5595 0.6604 1.2783 0.5530

0.96 0.8444 0.5532 0.6551 1.2793 0.5579

0.97 0.8416 0.5469 0.6498 1.2800 0.5628

0.98 0.8389 0.5407 0.6445 1.2806 0.5677

0.99 0.8361 0.5345 0.6392 1.2809 0.5725

1.00 0.8333 0.5283 0.6339 1.2810 0.5774

1.01 0.8306 0.5221 0.6287 1.2809 0.5821

1.02 0.8278 0.5160 0.6234 1.2806 0.5869

1.03 0.8250 0.5099 0.6181 1.2801 0.5917

1.04 0.8222 0.5039 0.6129 1.2793 0.5964

1.05 0.8193 0.4979 0.6077 1.2784 0.6011

1.06 0.8165 0.4919 0.6024 1.2773 0.6058

1.07 0.8137 0.4860 0.5972 1.2760 0.6104

1.08 0.8108 0.4800 0.5920 1.2745 0.6151

1.09 0.8080 0.4742 0.5869 1.2728 0.6197

1.10 0.8052 0.4684 0.5817 1.2709 0.6243

1.11 0.8023 0.4626 0.5766 1.2689 0.6288

1.12 0.7994 0.4568 0.5714 1.2667 0.6333

1.13 0.7966 0.4511 0.5663 1.2643 0.6379

1.14 0.7937 0.4455 0.5612 1.2618 0.6423

1.15 0.7908 0.4398 0.5562 1.2590 0.6468

1.16 0.7879 0.4343 0.5511 1.2562 0.6512

1.17 0.7851 0.4287 0.5461 1.2531 0.6556

1.18 0.7822 0.4232 0.5411 1.2500 0.6600

1.19 0.7793 0.4178 0.5361 1.2466 0.6644

1.20 0.7764 0.4124 0.5311 1.2432 0.6687

1.21 0.7735 0.4070 0.5262 1.2396 0.6730

1.22 0.7706 0.4017 0.5213 1.2358 0.6773

1.23 0.7677 0.3964 0.5164 1.2319 0.6816

1.24 0.7648 0.3912 0.5115 1.2279 0.6858

1.25 0.7619 0.3861 0.5067 1.2238 0.6901

1.26 0.7590 0.3809 0.5019 1.2195 0.6943

1.27 0.7561 0.3759 0.4971 1.2152 0.6984

1.28 0.7532 0.3708 0.4923 1.2107 0.7026

1.29 0.7503 0.3658 0.4876 1.2061 0.7067
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Table C.1 (Continued)

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p
=Anp0 c=

ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p

1.30 0.7474 0.3609 0.4829 1.2014 0.7108

1.31 0.7445 0.3560 0.4782 1.1965 0.7149

1.32 0.7416 0.3512 0.4736 1.1916 0.7189

1.33 0.7387 0.3464 0.4690 1.1866 0.7229

1.34 0.7358 0.3417 0.4644 1.1815 0.7270

1.35 0.7329 0.3370 0.4598 1.1763 0.7309

1.36 0.7300 0.3323 0.4553 1.1710 0.7349

1.37 0.7271 0.3277 0.4508 1.1656 0.7388

1.38 0.7242 0.3232 0.4463 1.1601 0.7427

1.39 0.7213 0.3187 0.4418 1.1546 0.7466

1.40 0.7184 0.3142 0.4374 1.1490 0.7505

1.41 0.7155 0.3098 0.4330 1.1433 0.7543

1.42 0.7126 0.3055 0.4287 1.1375 0.7581

1.43 0.7097 0.3012 0.4244 1.1317 0.7619

1.44 0.7069 0.2969 0.4201 1.1258 0.7657

1.45 0.7040 0.2927 0.4158 1.1198 0.7694

1.46 0.7011 0.2886 0.4116 1.1138 0.7732

1.47 0.6982 0.2845 0.4074 1.1077 0.7769

1.48 0.6954 0.2804 0.4032 1.1016 0.7805

1.49 0.6925 0.2764 0.3991 1.0954 0.7842

1.50 0.6897 0.2724 0.3950 1.0891 0.7878

1.51 0.6868 0.2685 0.3909 1.0829 0.7914

1.52 0.6840 0.2646 0.3869 1.0765 0.7950

1.53 0.6811 0.2608 0.3829 1.0702 0.7986

1.54 0.6783 0.2570 0.3789 1.0638 0.8021

1.55 0.6754 0.2533 0.3750 1.0573 0.8057

1.56 0.6726 0.2496 0.3710 1.0508 0.8092

1.57 0.6698 0.2459 0.3672 1.0443 0.8126

1.58 0.6670 0.2423 0.3633 1.0378 0.8161

1.59 0.6642 0.2388 0.3595 1.0312 0.8195

1.60 0.6614 0.2353 0.3557 1.0246 0.8230

1.61 0.6586 0.2318 0.3520 1.0180 0.8263

1.62 0.6558 0.2284 0.3483 1.0114 0.8297

1.63 0.6530 0.2250 0.3446 1.0047 0.8331

1.64 0.6502 0.2217 0.3409 0.9980 0.8364

1.65 0.6475 0.2184 0.3373 0.9913 0.8397

1.66 0.6447 0.2151 0.3337 0.9846 0.8430

1.67 0.6419 0.2119 0.3302 0.9779 0.8462

1.68 0.6392 0.2088 0.3266 0.9712 0.8495

1.69 0.6364 0.2057 0.3232 0.9644 0.8527
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Table C.1 (Continued)

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p
=Anp0 c=

ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p

1.70 0.6337 0.2026 0.3197 0.9577 0.8559

1.71 0.6310 0.1996 0.3163 0.9509 0.8591

1.72 0.6283 0.1966 0.3129 0.9442 0.8622

1.73 0.6256 0.1936 0.3095 0.9374 0.8654

1.74 0.6229 0.1907 0.3062 0.9307 0.8685

1.75 0.6202 0.1878 0.3029 0.9239 0.8716

1.76 0.6175 0.1850 0.2996 0.9172 0.8747

1.77 0.6148 0.1822 0.2964 0.9104 0.8777

1.78 0.6121 0.1794 0.2931 0.9037 0.8808

1.79 0.6095 0.1767 0.2900 0.8970 0.8838

1.80 0.6068 0.1740 0.2868 0.8902 0.8868

1.81 0.6041 0.1714 0.2837 0.8835 0.8898

1.82 0.6015 0.1688 0.2806 0.8768 0.8927

1.83 0.5989 0.1662 0.2776 0.8701 0.8957

1.84 0.5963 0.1637 0.2745 0.8634 0.8986

1.85 0.5936 0.1612 0.2715 0.8568 0.9015

1.86 0.5910 0.1587 0.2686 0.8501 0.9044

1.87 0.5884 0.1563 0.2656 0.8435 0.9072

1.88 0.5859 0.1539 0.2627 0.8368 0.9101

1.89 0.5833 0.1516 0.2598 0.8302 0.9129

1.90 0.5807 0.1492 0.2570 0.8237 0.9157

1.91 0.5782 0.1470 0.2542 0.8171 0.9185

1.92 0.5756 0.1447 0.2514 0.8106 0.9213

1.93 0.5731 0.1425 0.2486 0.8041 0.9240

1.94 0.5705 0.1403 0.2459 0.7976 0.9268

1.95 0.5680 0.1381 0.2432 0.7911 0.9295

1.96 0.5655 0.1360 0.2405 0.7846 0.9322

1.97 0.5630 0.1339 0.2378 0.7782 0.9349

1.98 0.5605 0.1318 0.2352 0.7718 0.9375

1.99 0.5580 0.1298 0.2326 0.7655 0.9402

2.00 0.5556 0.1278 0.2300 0.7591 0.9428
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Table C.2 Compressible Flow for a Perfect Gas, γ51.333

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p
=Anp0 c=

ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p

0.00 1.0000 1.0000 1.0000 0.0000 0.0000

0.01 1.0000 0.9999 1.0000 0.0231 0.0058

0.02 0.9999 0.9997 0.9998 0.0462 0.0115

0.03 0.9999 0.9994 0.9996 0.0693 0.0173

0.04 0.9997 0.9989 0.9992 0.0923 0.0231

0.05 0.9996 0.9983 0.9988 0.1153 0.0288

0.06 0.9994 0.9976 0.9982 0.1383 0.0346

0.07 0.9992 0.9967 0.9976 0.1612 0.0404

0.08 0.9989 0.9957 0.9968 0.1841 0.0461

0.09 0.9987 0.9946 0.9960 0.2069 0.0519

0.10 0.9983 0.9934 0.9950 0.2297 0.0577

0.11 0.9980 0.9920 0.9940 0.2523 0.0634

0.12 0.9976 0.9905 0.9928 0.2749 0.0692

0.13 0.9972 0.9888 0.9916 0.2974 0.0749

0.14 0.9967 0.9870 0.9903 0.3197 0.0807

0.15 0.9963 0.9851 0.9888 0.3420 0.0864

0.16 0.9958 0.9831 0.9873 0.3641 0.0921

0.17 0.9952 0.9810 0.9857 0.3861 0.0979

0.18 0.9946 0.9787 0.9840 0.4080 0.1036

0.19 0.99402 0.9763 0.982 0.4298 0.1093

0.20 0.9934 0.9738 0.9803 0.4514 0.1150

0.21 0.9927x 0.9711 0.9783 0.4728 0.4728

0.22 0.9920 0.9684 0.9762 0.4941 0.1264

0.23 0.9913 0.9655 0.9740 0.5152 0.1321

0.24 0.9905 0.9625 0.9717 0.5362 0.1378

0.25 0.9897 0.9594 0.9694 0.5569 0.1435

0.26 0.9889 0.9562 0.9669 0.5775 0.1492

0.27 0.9880 0.9529 0.9644 0.5979 0.1549

0.28 0.9871 0.9494 0.9618 0.6181 0.1605

0.29 0.9862 0.9459 0.9591 0.6380 0.1662

0.30 0.9852 0.9422 0.9563 0.6578 0.1718

0.31 0.9843 0.9384 0.9534 0.6774 0.1775

0.32 0.9832 0.9346 0.9505 0.6967 0.1831

0.33 0.9822 0.9306 0.9475 0.7158 0.1887

0.34 0.9811 0.9265 0.9444 0.7347 0.1943

0.35 0.9800 0.9224 0.9412 0.7533 0.1999

0.36 0.9789 0.9181 0.9379 0.7717 0.2055

0.37 0.9777 0.9137 0.9346 0.7898 0.2111

0.38 0.9765 0.9093 0.9311 0.8077 0.2167

0.39 0.9753 0.9047 0.9276 0.8253 0.2223
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Table C.2 (Continued)

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p
=Anp0 c=

ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p

0.40 0.9741 0.9001 0.9241 0.8427 0.2278

0.41 0.9728 0.8954 0.9204 0.2334 0.8598

0.42 0.9715 0.8906 0.8906 0.8766 0.2389

0.43 0.9701 0.8857 0.9130 0.8932 0.2444

0.44 0.9688 0.8807 0.9091 0.9095 0.2499

0.45 0.9674 0.8757 0.9052 0.9255 0.2554

0.46 0.9660 0.8706 0.9012 0.9412 0.2609

0.47 0.9645 0.8654 0.8972 0.9567 0.2664

0.48 0.9631 0.8601 0.8931 0.9718 0.2718

0.49 0.9616 0.8548 0.8890 0.9867 0.2773

0.50 0.9600 0.8494 0.8847 1.0012 0.2827

0.51 0.9585 0.8439 0.8805 1.0155 0.2881

0.52 0.9569 0.8384 0.8761 1.0295 0.2935

0.53 0.9553 0.8328 0.8717 1.0431 0.2989

0.54 0.9537 0.8271 0.8673 1.0565 0.3043

0.55 0.9520 0.8214 0.8628 1.0696 0.3097

0.56 0.9504 0.8157 0.8583 1.0823 0.3150

0.57 0.9487 0.8099 0.8537 1.0948 0.3204

0.58 0.9470 0.8040 0.8490 1.1069 0.3257

0.59 0.9452 0.7981 0.8443 1.1188 0.3310

0.60 0.9434 0.7921 0.8396 1.1303 0.3363

0.61 0.9417 0.7861 0.8348 1.1415 0.3416

0.62 0.9398 0.7801 0.8300 1.1524 0.3469

0.63 0.9380 0.7740 0.8252 1.1630 0.3521

0.64 0.9362 0.7679 0.8203 1.1733 0.3573

0.65 0.9343 0.7618 0.8153 1.1833 0.3626

0.66 0.9324 0.7556 0.8104 1.1930 0.3678

0.67 0.9305 0.7494 0.8054 1.2023 0.3729

0.68 0.9285 0.7431 0.8003 1.2114 0.3781

0.69 0.9266 0.7368 0.7953 1.2201 0.3833

0.70 0.9246 0.7306 0.7902 1.2285 0.3884

0.71 0.9226 0.7242 0.7850 1.2367 0.3935

0.72 0.9205 0.7179 0.7799 1.2445 0.3986

0.73 0.9185 0.7116 0.7747 1.2520 0.4037

0.74 0.9164 0.7052 0.7695 1.2592 0.4088

0.75 0.9144 0.6988 0.7643 1.2661 0.4139

0.76 0.9123 0.6924 0.7590 1.2727 0.4189

0.77 0.9102 0.6860 0.7537 1.2790 0.4239

0.78 0.9080 0.6796 0.7484 1.2850 0.4289

0.79 0.9059 0.6732 0.7431 1.2907 0.4339
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Table C.2 (Continued)

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p
=Anp0 c=

ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p

0.80 0.9037 0.6668 0.7378 1.2961 0.4389

0.81 0.9015 0.6603 0.7325 1.3013 0.4438

0.82 0.8993 0.6539 0.7271 1.3061 0.4487

0.83 0.8971 0.6475 0.7217 1.3107 0.4536

0.84 0.8949 0.6411 0.7164 1.3149 0.4585

0.85 0.8926 0.6346 0.7110 1.3189 0.4634

0.86 0.8904 0.6282 0.7056 1.3226 0.4683

0.87 0.8881 0.6218 0.7002 1.3260 0.4731

0.88 0.8858 0.6154 0.6948 1.3292 0.4779

0.89 0.8835 0.6090 0.6893 1.3321 0.4827

0.90 0.8812 0.6026 0.6839 1.3347 0.4875

0.91 0.8788 0.5963 0.6785 1.3370 0.4923

0.92 0.8765 0.5899 0.6731 1.3391 0.4970

0.93 0.8741 0.5836 0.6676 1.3410 0.5018

0.94 0.8717 0.5773 0.6622 1.3425 0.5065

0.95 0.8694 0.5710 0.6568 1.3439 0.5111

0.96 0.8670 0.5647 0.6514 1.3449 0.5158

0.97 0.8646 0.5585 0.6459 1.3458 0.5205

0.98 0.8621 0.5522 0.6405 1.3464 0.5251

0.99 0.8597 0.5460 0.6351 1.3467 0.5297

1.00 0.8573 0.5398 0.6297 1.3468 0.5343

1.01 0.8548 0.5337 0.6243 1.3467 0.5389

1.02 0.8524 0.5276 1.3464 0.6189 0.5434

1.03 0.8499 0.5215 0.6136 1.3458 0.5479

1.04 0.8474 0.5154 0.6082 1.3450 0.5525

1.05 0.8449 0.5093 0.6028 1.3440 0.5569

1.06 0.8424 0.5033 0.5975 1.3428 0.5614

1.07 0.8399 0.4974 0.5922 1.3414 0.5659

1.08 0.8374 0.4914 0.5869 1.3397 0.5703

1.09 0.8349 0.4855 0.5816 1.3379 0.5747

1.10 0.8323 0.4796 0.5763 1.3359 0.5791

1.11 0.8298 0.4738 0.5710 1.3337 0.5835

1.12 0.8272 0.4680 0.5658 1.3313 0.5878

1.13 0.8247 0.4622 0.5605 1.3287 0.5922

1.14 0.8221 0.4565 0.5553 1.3259 0.5965

1.15 0.8195 0.4508 0.5501 1.3229 0.6008

1.16 0.8170 0.4452 0.5449 1.3198 0.6050

1.17 0.8144 0.4396 0.5398 1.3165 0.6093

1.18 0.8118 0.4340 0.5347 1.3131 0.6135

1.19 0.8092 0.4285 0.5295 1.3094 0.6177
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Table C.2 (Continued)

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p
=Anp0 c=

ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p

1.20 0.8066 0.4230 0.5245 1.3057 0.6219

1.21 0.8040 0.4176 0.5194 1.3017 0.6261

1.22 0.8014 0.4122 0.5143 1.2976 0.6302

1.23 0.7988 0.4068 0.5093 1.2934 0.6344

1.24 0.7962 0.4015 0.5043 1.2890 0.6385

1.25 0.7936 0.3963 0.4994 1.2845 0.6426

1.26 0.7909 0.3911 0.4944 1.2798 0.6466

1.27 0.7883 0.3859 0.4895 1.2751 0.6507

1.28 0.7857 0.3808 0.4846 1.2701 0.6547

1.29 0.7830 0.3757 0.4798 1.2651 0.6587

1.30 0.7804 0.3706 0.4749 1.2599 0.6627

1.31 0.7778 0.3657 0.4701 1.2547 0.6667

1.32 0.7751 0.3607 0.4654 1.2493 0.6706

1.33 0.7725 0.3558 0.4606 1.2438 0.6746

1.34 0.7698 0.3510 0.4559 1.2382 0.6785

1.35 0.7672 0.3462 0.4512 1.2325 0.6824

1.36 0.7646 0.3414 0.4465 1.2266 0.6862

1.37 0.7619 0.3367 0.4419 1.2207 0.6901

1.38 0.7593 0.3320 0.4373 1.2147 0.6939

1.39 0.7566 0.3274 0.4328 1.2086 0.6977

1.40 0.7540 0.3229 0.4282 1.2025 0.7015

1.41 0.7513 0.3183 0.4237 1.1962 0.7053

1.42 0.7487 0.3139 0.4192 1.1899 0.7090

1.43 0.7460 0.3094 0.4148 1.1835 0.7127

1.44 0.7434 0.3051 0.4104 1.1770 0.7164

1.45 0.7407 0.3007 0.4060 1.1704 0.7201

1.46 0.7381 0.2965 0.4017 1.1638 0.7238

1.47 0.7354 0.2922 0.3974 1.1571 0.7275

1.48 0.7328 0.2880 0.3931 1.1504 0.7311

1.49 0.7301 0.2839 0.3888 1.1367 0.7347

1.50 0.7275 0.2798 0.3846 1.1367 0.7383

1.51 0.7248 0.2758 0.3804 1.1298 0.7419

1.52 0.7222 0.2718 0.3763 1.1228 0.7454

1.53 0.7195 0.2678 0.3722 1.1158 0.7489

1.54 0.7169 0.2639 0.3681 1.1087 0.7524

1.55 0.7143 0.2600 0.3641 1.1016 0.7559

1.56 0.7116 0.2562 0.3600 1.0945 0.7594

1.57 0.7090 0.2524 0.3561 1.0873 0.7629

1.58 0.7064 0.2487 0.3521 1.0801 0.7663

1.59 0.7038 0.2450 0.3482 1.0729 0.7697

1.60 0.7011 0.2414 0.3443 1.0656 0.7731
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Table C.2 (Continued)

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p
=Anp0 c=

ffiffiffiffiffiffiffiffiffiffiffiffi
CpT0

p

1.61 0.6985x 0.2378 0.3405 1.0583 1.0583

1.62 0.6959 0.2343 0.3367 1.0510 0.7799

1.63 0.6933 0.2308 0.3329 1.0436 0.7832

1.64 0.6907 0.2273 0.3291 1.0363 0.7865

1.65 0.6881 0.2239 0.3254 1.0289 0.7898

1.66 0.6855 0.2206 0.3217 1.0215 0.7931

1.67 0.6829 0.2172 0.3181 1.0141 0.7964

1.68 0.6803 0.2139 0.3145 1.0066 0.7996

1.69 0.6777 0.2107 0.3109 0.9992 0.8028

1.70 0.6751 0.2075 0.3074 0.9918 0.8061

1.71 0.6726 0.2044 0.3039 0.9843 0.8093

1.72 0.6700 0.2012 0.3004 0.9769 0.8124

1.73 0.6674 0.1982 0.2969 0.9694 0.8156

1.74 0.6649 0.1951 0.2935 0.9620 0.8187

1.75 0.6623 0.1922 0.2901 0.9545 0.8218

1.76 0.6597 0.1892 0.2868 0.9471 0.8249

1.77 0.6572 0.1863 0.2835 0.9396 0.8280

1.78 0.6546 0.1834 0.2802 0.9322 0.8311

1.79 0.6521 0.1806 0.2770 0.9248 0.8341

1.80 0.6496 0.1778 0.2737 0.9173 0.8372

1.81 0.6471 0.1751 0.2706 0.9099 0.8402

1.82 0.6445 0.1723 0.2674 0.9025 0.8432

1.83 0.6420 0.1697 0.2643 0.8951 0.8461

1.84 0.6395 0.1670 0.2612 0.8878 0.8491

1.85 0.6370 0.1644 0.2581 0.8804 0.8521

1.86 0.6345 0.1619 0.2551 0.8731 0.8550

1.87 0.6320 0.1593 0.2521 0.8658 0.8579

1.88 0.6295 0.1568 0.2491 0.8585 0.8608

1.89 0.6271 0.1544 0.2462 0.8512 0.8636

1.90 0.6246 0.1520 0.2433 0.8439 0.8665

1.91 0.6221 0.1496 0.2404 0.8367 0.8693

1.92 0.6197 0.1472 0.2376 0.8295 0.8722

1.93 0.6172 0.1449 0.2348 0.8223 0.8750

1.94 0.6148 0.1426 0.2320 0.8152 0.8778

1.95 0.6123 0.1404 0.2292 0.8081 0.8805

1.96 0.6099 0.1382 0.2265 0.8010 0.8833

1.97 0.6075 0.1360 0.2238 0.7939 0.8860

1.98 0.6051 0.1338 0.2212 0.7869 0.8888

1.99 0.6026 0.1317 0.2185 0.7799 0.8915

2.00 0.6002 0.1296 0.2159 0.7729 0.8942
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Appendix D: Conversion of British
and American Units to SI Units

Length Force

1 inch50.0254 m 1 lbf5 4.448 N

1 foot5 0.3048 m 1 ton f (UK)5 9.964 kN

Area Pressure

1 in25 6.4523 1024 m2 1 lbf/in25 6.895 kPa

1 ft25 0.09290 m2 1 ft H2O5 2.989 kPa

1 in Hg5 3.386 kPa

1 bar5 100.0 kPa

Volume Energy

1 in35 16.39 cm3 1 ft lbf5 1.356 J

1 ft35 28.32 dm3

5 0.02832 m3
1 Btu5 1.055 kJ

1 gall (UK)5 4.546 dm3

1 gall (US)5 3.785 dm3

Velocity Specific energy

1 ft/s5 0.3048 m/s 1 ft lbf/lb5 2.989 J/kg

1 mile/h5 0.447 m/s 1 Btu/lb52.326 kJ/kg

Mass Specific heat capacity

1 lb5 0.4536 kg 1 ft lbf/(lb �F)5 5.38 J/(kg �C)
1 ton (UK)51016 kg 1 ft lbf/(slug �F)5 0.167 J/(kg �C)

1 Btu/(lb �F)5 4.188 kJ/(kg �C)

Density Power

1 lb/ft35 16.02 kg/m3 1 hp5 0.7457 kW

1 slug/ft35 515.4 kg/m3
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Appendix E: Mollier Chart for Steam
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FIGURE E.1

Plotted from the IAPWS equations (http://www.iapws.org) by Peter O’Brien, 2013.
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Appendix F: Answers to Problems

Chapter 1
1. (a) 179.9 m/s, 439.1 K; (b) 501.4 kPa, 39.24 J/kg K.

2. (a) 279.9 K, 2.551 bar; (b) 27.16 kg/s.

3. 316.9 m/s, 0.0263 kJ/kg K.

4. 88.1%.

5. (a) 704 K; (b) 750 K; (c) 668 K.

6. 2301.8 kJ/kg, 36.5 kg/s.

7. (a) 500 K, 0.313 m3/kg; (b) 1.045.

8. 49.1 kg/s; 24 mm.

9. (a) 630 kPa, 275�C; 240 kPa; 201�C; 85 kPa, 126�C; 26 kPa, x5 0.988; 7 kPa, x5 0.95.

(b) 0.638, 0.655, 0.688, 0.726, 0.739. (c) 0.739, 0.724. (d) 1.075.

10. (a) 0.489, (b) 87.4 kPa, (c) 399.6 K, (d) 0.308.

11. 630.6 K, 0.8756.

Chapter 2
1. 6.29 m3/s.

2. 9.15 m/s, 5.33 atm.

4 551 rev/min, 1:10.8; 0.885 m3/s; 17.85 MN.

5 4030 rev/min, 31.4 kg/s.

6 (a) 0.501, 4.95, 3.658 kW; (b) 61.19 m, 0.64 m3/s, 468 kW.

7 (a) 150 rpm, 1500 kW; (b) 0.842 rev or 5.293 rad.

8 (a) 88.9%; (b) 202.4 rpm, 13.9 m3/s, 4.858 MW.

9 (a) 303 kW, ΩS5 1.632 (rad), DS5 4.09; (b) 0.0936 m3/s, 799 rpm, P5 3.23 kW.

10 (a) T025 305.2 K; (b) PC5 105 kW.

Chapter 3
1. 49.8�.
2. 0.77; CD5 0.048, CL5 2.245.

3. (b) 57.8�; (c) (a) 357 kPa, (b) 0.0218, 1.075.

4. (a) 1.22, 6�; (b) 19.5�.
5. (a) 41.3�; (b) 0.78; (c) 0.60; (d) 27.95�.
6. (a) 0.178, 0.121; (b) 0.1; (c) 0.342.
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7. 141.2 kg/(sm2), 0.40, 1.30.

8. 0.058.

9. (a) 1.21; (c) 0.19.

Chapter 4
2. (a) 88%; (b) 86.17%; (c) 1170.6 K.

3. α25 70�, β25 7.02�, α35 18.4�, β35 50.37�, 375.3 m/s.

4. 22.7 kJ/kg; 420 kPa, 117�C.
5. 91%.

6. (a) 1.503; (b) 39.9�, 59�; (c) 0.25; (d) 90.5 and 81.6%.

7. (b) 67.5�, 22.5�, 0.90, 0.80; (c) 0.501 m, 85.2 m/s, 61 mm.

8. (a) 215 m/s; (b) 0.098, 2.68; (c) 0.872; (d) 265�C, 0.75 MPa.

9. (a) (a) 601.9 m/s, (b) 282.8 m/s, (c) 79.8%; (b) 89.23%.

10. (b) (a) 130.9 kJ/kg, (b) 301.6 m/s, (c) 707.6 K; (c) (a) 10,200 rev/min, (b) 0.565 m, (c) 0.845.

11. (b) 0.2166; (c) 8740 rev/min; (d) 450.7 m/s, 0.846.

12. 1.07, 0.464.

13. 0.908.

Chapter 5
1. 14 stages.

2. 30.6�C.
3. 132.5 m/s, 56.1 kg/s; 10.1 MW.

4. 86.5%; 9.28 MW.

5. 0.59, 0.415.

6. (a) 0.88; (b) 0.571.

7. 36.9�, 36.9�, 0.55, 0.50.
8. (a) 229.3 m/s; (b) 23.5 kg/s, 15796 rev/min; (c) 33.16 kJ/kg; (d) 84.7%; (e) 5.86 stages,

4.68 MW; (f) with six stages the stage loading will be lower for the same pressure ratio, with

five stages the weight and cost would be lower.

9. (a) 0.44, 19.8�; (b) 0.322, 0.556, 70.0�, 55.2�, 111.3�, 23.4�; (c) 55.6�.
10. (a) 0.137; (b) 0.508; (c) 0.872, 2.422.

11. (a) 16.22�, 22.08�, 33.79�; (b) 467.2 Pa, 7.42 m/s.

12. (a) β15 70.79�, β25 68.24�; (b) 83.96%; (c) 399.3 Pa; (d) 7.144 cm.

13. (a) 141.1 Pa, 0.588; (b) 60.48 Pa; (c) 70.14%.
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Chapter 6
1. 55� and 47�.
2. 0.602, 1.38, 20.08 (i.e., implies large losses near hub).

4. 70.7 m/s.

5. Work done is constant at all radii:

c2x1 5 constant2 2a2½ðr2 2 1Þ2 2ðb=aÞ ln r�;
c2x2 5 constant2 2a2½ðr2 2 1Þ2 2ðb=aÞ ln r�;
β1 5 47:5�;β2 5 4:6�:

6. (a) 469.3 m/s; (b) 0.798; (c) 0.079; (d) 3.244 MW; (e) 911.6 K, 897 K.

7. (a) 62�; (b) 55.3�, 1.54�; (c) 55.19� and 65.95�; (d) 20.175, 0.478.

8. See Figure 6.13. For (a) at x/rt5 0.05, cx5 113.2 m/s.

9. 0.31 m.

10. (a) 1.4; (b) A25 0.4822 m2, rt5 0.7737 m, rh5 0.632 m; (c) cθ3h5 49.49 m/s, cθ3h5 40.43 m/s;

(d) Rh5 0.444, Rt5 0.546.

11. Tabulated results. See Solutions Manual.

12. See graphs in Solutions Manual.

13. (d) αh5 9.1� αt5 21.08�.
14. (a) ih5 7.09�, it5 7.5�, (b) p0h2 p0t5 0.276 bar.

15. See Solutions manual.

Chapter 7
1. (a) 27.9 m/s; (b) 880 rev/min, 0.604 m; (c) 182 W; (d) 0.333 (rad).

2. 579 kW; 169 mm; 50.0.

3. 0.875; 5.61 kg/s.

4. 24,430 rev/min; 0.2025 m, 0.5844.

5. 0.735, 90.5%.

6. (a) 542.5 kW; (b) 536 and 519 kPa; (c) 586 and 240.8 kPa, 1.20, 176 m/s; (d) 0.875; (e) 0.22;

(f) 28,400 rev/min.

7. (a) 29.4 dm3/s; (b) 0.781; (c) 77.7�; (d) 7.82 kW.

8. (a) 14.11 m; (b) 2.635 m; (c) 0.7664; (d) 17.73 m; (e) 13.8 kW; σS5 0.722, σB5 0.752.

9. (a) See text; (b) (a) 32,214 rev/min, (b) 5.246 kg/s; (c) (a) 1.254 MW, (b) 6.997.

10. (a) 189.7 kPa, 0.953; (b) 0.751; (c) 0.294, 33.3 J/(kg K)

11. Bookwork: (a) 516 K, 172.8 kPa, 0.890; (b) M25 0.281, M25 0.930.

12. (a) 0.880; (b) 314.7 kPa; (c) 1.414 kg/s.

13. (a) 7.358 kW; (b) 275.8 rpm, 36.7 kW.

14. (a) ΔW5 300 J/(kg K), power5 38.6 kW; (b) Ωs5 0.545 (rad), DS5 4.85.

15. M25 0.4482, c25 140.8 m/s.

16. (a) 465 m/s, 0.740 m; (b) 0.546 (rad).
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17. rs15 0.164m, M15 0.275.

18. (a) 372.7 m/s; (b) 156 m/s; (c) 0.4685; (d) 0.046 m2.

19. (a) 11.55 kg/s; (b) 1509 kW; (c) 0.5786; (d) 2.925 rad.

Chapter 8
1. 586 m/s, 73.75�.
2. (a) 205.8 kPa, 977 K; (b) 125.4 mm, 89,200 rev/min; (c) 1 MW.

3. (a) 90.3%; (b) 269 mm; (c) 0.051, 0.223.

4. 1593 K.

5. 2.159 m3/s, 500 kW.

6. (a) 10.089 kg/s, 23,356 rev/min; (b) 9.0633 105, 1.8793 106.

7. (a) 81.82%; (b) 890 K, 184.3 kPa; (c) 1.206 cm; (d) 196.3 m/s; (e) 0.492; (f) rs35 6.59 m,

rh35 2.636 cm.

8. (a) 308.24 m/s; (b) 56.42 kPa, 915.4 K; (c) 113.6 m/s, 0.2765 kg/s; (d) 5.452 cm; (e) 28.34�;
(f) 0.7385 rad

9. (a) 190.3 m/s; (b) 85.7�C.
10. S5 0.1648, ηts5 0.851.

11. Bookwork.

12. (a) 4.218; (b) 627.6 m/s, M35 0.896.

13. (a) S5 0.1824, β25 32.2�, α25 73.9�; (b) U25 518.3 m/s; (c) T35 851.4 K;

(d) N5 38,956 rpm, D25 0.254 m, Ωs5 0.5685, which corresponds (approximately)

to the maximum of ηts in Figure 8.15.

14. (a) 361.5 kPa; (b) 0.8205.

15. (a) α25 73.9�, β25 32.2�; (b) 2.205; (c) 486.2 m/s.

16. (a) 0.3194 m, 29.073 rpm; (b) ζR5 0.330, ζN5 0.0826.

Chapter 9
1. (a) 224 kW; (b) 0.2162 m3/s; (c) 6.423.

2. (a) 2.138 m. (b) For d5 2.2 m, (a) 17.32 m, (b) 59.87 m/s, 40.3 MW.

3. (a) 378.7 rev/min; (b) 6.906 MW, 0.252 (rad); (c) 0.783; (d) 3.

4. Head loss in pipeline is 17.8 m. (a) 672.2 rev/min; (b) 84.5%; (c) 6.735 MW; (d) 2.59%.

5. (a) 12.82 MW, 8.69 m3/s; (b) 1.0 m; (c) 37.6 m/s; (d) 0.226 m.

6. (a) 663.2 rev/min; (b) 69.55�, 59.2�; (c) 0.152 m and 0.169 m.

7. (b) (a) 1.459 (rad), (b) 107.6 m3/s, (c) 3.153 m, 15.52 m/s. (c) (a) 398.7 rev/min, 0.456 m2/s;

(b) 20.6 kW (uncorrected), 19.55 kW (corrected); (c) 4.06 (rad). (d) Hs2Ha522.18 m.

8. (a) 0.94; (b) 115.2 rev/min, 5.068 m; (c) 197.2 m2/s; (d) 0.924 m.

9. (a) 11.4 m3/s, 19.47 MW; (b) 72.6�, 75.04� at tip; (c) 25.73�, 59.54� at hub.
10. (a) 6 turbines required; (b) 0.958 m; (c) 1.861 m3/s.

11. (a) 0.498 m; (b) 28.86 m.
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12. (a) 0.262 (rad); (b) 0.603; (c) 33.65 m3/s.

13. α25 50.32�, β25 52.06�, 0.336 m, Ωsp5 2.27 (rad). Yes, it is consistent with stated

efficiency.

14. (a) (a) 390.9 kW, (b) 1.733 m3/s, (c) 0.767 m and 15.06 m/s, (d) α25 65.17� and β25 0.57�.
(b) σ5 0.298, at Ωsp5 0.8, σc5 0.1 the turbine is well clear of cavitation (see Figure 9.21).

15. (a) 649.5 rev/min and 0.024 m3/s; (b) 0.650 kW; (c) 0.579 kW.

16. (a) 110.8 m3/s; (b) 100 rpm and 3.766 m; (c) α25 49.26� and β25 39.08�.
17. At hub, α25 49.92�, β25 28.22�; at mean radius, α25 38.64�, β25 60.46�; at tip,

α25 31.07�,β25 70.34�.
18. (a) 0.8495; (b) 250 rpm, 90 m3/s, 22.5 MW; (c) NSP5 30.77 rpm for model and 31.73 for

prototype.

19. (a) 4910 N; (b) 185.1 kW.

Chapter 10
1. Cp5 0.303, ζ5 0.51.

2. a5 0:0758 and Δp5 14.78 Pa.

3. (a) Cp5 0.35, ζ5 0.59, and N5 12.89 rpm; (b) 13.13 m/s, 2.388 MW.

4. a5 0.145, a0 5 0.0059, and CL5 0.80.
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Index

Note: Page numbers followed by “f” and “t” refer to figures and tables, respectively.

A
Actuator disc, 433�441

alternative proof of Betz’s result, 435�436

approach, 235�242

axial flow induction factor for, 435�436, 440�441

axial force coefficient, 437�439

blade row interaction effects, 239�241

and boundary stream tube model, 434f

concept, 235, 238

estimating power output, 441

mean-value rule, 239

power coefficient, 436�437

and radial equilibrium, 238

settling-rate rule, 239

theory for compressible flow, 241�242

theory of, 434�435, 446�447

Aerofoils, 73�74, 75f, 135

theory, 204

vortex system of, 442�444

zero lift line, 208�212

Aileron control system, 471�473

Ainley and Mathieson correlation, 96�98

American units conversion to SI units, 419t�486t

Annual energy output, 431

Annulus wall boundary layers, 194�195

Axial flow compressor stage, velocity diagrams for, 5�6

Axial flow induction factor for actuator disc, 435�436,

440�441

Axial flow turbomachine, 1, 2f

Axial force coefficient, 437�439

Axial velocity density ratio (AVDR), 77

Axial-flow compressors, 169

blade aspect ratio, 183�186

casing treatment, 200�203

control of flow instabilities, 203

design of, 169

flow coefficient, 182

flow within, 169�170

interstage swirl, 183

mean-line analysis, 170�171

Mollier diagram for stage, 173f

multi-stage, 188�195

off-design performance, 187�188

reaction, 182�183

stage loading, 181�182

stage loss relationships and efficiency, 173�176

stall and surge in, 198�203

thermodynamics, 172�173

velocity diagrams for stage, 172f

Axial-flow turbines, 119�121, 487

blade and flow angle, 494�495

blade aspect ratio, 492

blade boundary layers, loss in, 130

coolant flows, loss from, 131

design of, 122�123, 133�135, 487

efficiency, determining, 489�490

ellipse law, 159�160

endwall loss, 131

estimating pitch/chord ratio, 493�494

fifty percent reaction stage, 136�139

flow characteristics, 159�166

flow coefficient, 122, 126, 146f

flow separation loss, 130

mean line analysis, 119�121

mean radius design, 489�490

mean radius velocity triangles, determining, 489�490

mechanical arrangement, 488f

Mollier diagram of, 123�124, 125f, 136

with multiple stages, 124�125, 160�166

normal stage, 126

number of stages, 134

pitchline analysis, 119�120

reaction effect on efficiency, 140f

repeating stage, 124�127

root and tip radii, determining, 490�491

shock loss, 130

stage geometry, choosing, 492�493

stage loading coefficient, 123, 126, 146f

stage losses and efficiency, 127�133

stage reaction, 123, 126

steam turbines, 131�133

thermal efficiency vs. inlet gas temperature, 158f

thermodynamics of stage, 123�124

2D loss sources, 130

tip leakage flows, 131

trailing edge mixing loss, 130

turbofan jet engine, 121f

variation of reaction at hub, 491�492

velocity diagrams of stage, 121�122, 136f, 137f, 149f, 160f

zero reaction stage, 136, 148, 149f
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B
Bernoulli’s equation, 13�14

Betz limit, 437

Bioinspired technology, 478

Blade element momentum (BEM) method, 449�457

parameter variation, 449�450

torque and axial force, evaluating, 450�453

Blade element theory, 206�207, 441�448, 475

and actuator disc theory, 446�447

forces acting on, 444�445

tangential flow induction factor, 442

Blade Mach number, 45

Blade row method, 129

Blade tip correction

performance calculations with, 456�457

Prandtl’s method, 453�455

Blades

aspect ratio, 183�186

cavitation coefficient, 273

centrifugal stresses in rotor, 151�155

cooling systems, 155�158

criterion for minimum number of, 340�343

developments in manufacture, 467�469

diffusion in, 141�143

element efficiency, 207�208

enhanced performance of, 478

height and mean radius, 134�135

loading of, 84�86

pitch control, 470

planform, 458

row interaction effects, 239�241

section criteria, 466�467

surface velocity distributions, 80

tip shapes, 473�474

turbine, 74�75

“Blade-to-blade methods,” 108

British units conversion to SI units, 419t�486t

C
Camber angle, 72

Camber line, 72�75

Cantilever IFR turbine, 320�321

Cascades, two-dimensional, 69

boundary conditions, 110�111

calculation geometry, 108�109

camber angle, 72

circulation and lift, 83�84

contraction coefficient, 70

drag coefficient, 82�83

drag forces, 81�82

energy loss coefficient, 78

flow characteristics, 75�80

forces, analysis, 80�84

geometry, 72�75

hub�tip radius ratios, 72

incidence effects, 87�89

incompressible cascade analysis, 89�91

lift coefficient, 82�83

lift forces, 81�82

Mach number, effects of, 92�95

method types, 109�110

performance parameters, 77�79

pressure rise coefficient, 78

profile loss coefficient, 97

profile thickness distribution, 72

space�chord ratio, 72

stagger angle, 72

stagnation pressure loss coefficient, 77

streamtube thickness variation, 76�77

total pressure loss coefficient, 77�78

transonic effects, 111

turbine loss correlations, 95�96

viscous effects, 112�115

wind tunnels, 70f

Cavitation, 61�64

avoiding, 395

in hydraulic turbines, 391�397

inception, 62�63

limits, 62�64

net positive suction head, 63

peripheral velocity factor (PVF), 395�396

right turbine, selecting, 396�397

tensile stress in liquids, 62�63

vapour formation, 62

vapour pressure, 62�63

Centrifugal compressor, 2f, 265�267

air mass flow, 497

applications of, 265

with backswept impeller vanes, 265�267, 266f, 294�297

blade Mach number of, 295, 297f

choking of stage, 309�316

design requirements, 497

diffuser, 268, 271�272, 310�316

effect of prewhirl vanes, 279�281, 280f

efficiency of impeller in, 499

exit stagnation pressure, 503�504

impeller, 268�271, 298, 310

impeller exit, design of, 499�500

impeller exit Mach number of, 295�297, 297f

impeller inlet, design of, 498�499

impeller radius and blade speed, 497�498

inlet, 309�310

inlet, design of, 275�281
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inlet velocity limitations at eye, 272�273

kinetic energy at impeller, 298

mechanical arrangement, 488f

Mollier diagram for, 270f

overall efficiency, 503�504

performance of, 292�300

pressure ratio, 292�294

stage and velocity diagrams, 268f

thermodynamic analysis of, 269�272

volute, 268, 300

Centrifugal pump

head increase of, 290�292

hydraulic efficiency of, 290

impellers, 284, 290

volute, 300

Centripetal turbine. See 90� Inward-flow radial (IFR) turbines

CFD. See Computational fluid dynamics (CFD)

Choked flow, 21

Coefficient

contraction, 70

drag, 82�83, 205�206, 445�446

energy loss, 78

enthalpy loss, 333�334

flow, 48, 122, 126, 146f, 182, 403

lift, 82�83, 205�206, 208�212, 445�446

nozzle loss, 333�334

power, 436�437, 461f

pressure rise, 78

profile loss, 97, 98f

rotor loss, 334

stagnation pressure loss, 77, 79

total pressure loss, 77

Compressible flow

actuator disc theory for, 241�242

diffuser performance in, 305�308

equation, 502

through fixed blade row, 229

for perfect gas, 507t, 513t

Compressible fluid analysis, 44�48

Compressible gas flow relations, 18�21

Compressible specific speed, 60�61

Compression process, 27�29

Compressor, 267. See also Centrifugal compressor

blade profiles, 73�74

high speed, 48�49

Compressor cascade, 84�95

and blade notation, 73f

choking of, 95

Lieblein’s correlation, 84�85

Mach number effect, 92�94

Mollier diagrams for, 78

performance characteristics, 84�95

pitch�chord ratio, 85

velocity distribution, 85f

wake momentum thickness ratio, 89, 91f

wind tunnels, 70f

Compressor stage, 218�221

high Mach number, 195�198

mean-line analysis, 170�171

off-design performance, 187�188, 232�233

reaction, 182�183

stage loading, 181�182

stage loss relationships and efficiency, 173�176

thermodynamics of, 172�173

velocity diagrams of, 172f

Computational fluid dynamics (CFD), 129

application in hydraulic turbines design, 398

methods, 69

Conical diffuser, 271f, 308�309, 308f

Constant specific mass flow, 230�232

Contraction coefficient, 70

Cordier diagram, 56�59

Correlation

Ainley and Mathieson, 96�98

Lieblein, 84�85

Soderberg, 99�101, 140

Critical point, 18

Cut-in wind speed, 427

Cut-out wind speed, 427

D
Darcy’s equation, 371

Darrieus turbine, 423

De Haller number, 85�86

Deflection of fluid, 86�87

Design

of centrifugal compressor inlet, 275�281

of pump inlet, 273�275

Deviation of fluid, 86�87

Diffuser, 268, 271�272, 300�305

conical, 271f, 308�309, 308f

design calculation, 308�309

efficiency, 305�306

performance parameters, 305�309

radial, 302, 302f, 303f

two-dimensional, 271f, 304f

vaned, 303�305

vaneless, 301�302

Diffusion factor (DF), 85

local, 84�85

Diffusion in turbine blades, 141�143

Dimensional analysis, 39�40

Direct problem, radial equilibrium equation for, 227�229
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Drag coefficient, 82�83, 205�206, 445�446

Drag forces, 81�82

Dryness fraction, 18

Ducted fans, 204�212

Dunham and Came improvements, 96�97

E
Efficiency

of compressors and pumps, 26�27

correlation, 143�146

design point, 146�150

diffuser, 305�306

hydraulic turbines, 25, 363�365, 381f

isentropic, 22, 26

mechanical, 22

nominal design point, 326�330

optimum, IFR turbine, 334�340

overall, 22

reaction effect on, 140�141

size effect on turbomachine, 389�391

small stage/polytropic, 27�33

steam and gas turbines, 23�25

turbine, 22, 127�133

turbine polytropic, 31

Endwall profiling, 252

Energy loss coefficient, 78

Energy transfer coefficient, 41

Enthalpy loss coefficient, 333�334

Entropy, 11�13

Environmental considerations for wind turbine

acoustic emissions, 480

visual intrusion, 479�480

Environmental matters for wind turbine, 478�480

Equation of continuity, 6�7

Euler method, 110�111

Euler’s equation

pump, 10

turbine, 10, 381

work, 10�11

Exhaust energy factor, 349, 350f

F
Fans, 265, 267�269

axial-flow, 204, 204f

ducted, 204�212

lift coefficient of, 208�212

First law of thermodynamics, 7�8

Flow angle, 230�231

Flow coefficient, 47�48, 122, 126, 146f, 182, 403

Flow velocities, 3f, 4

Fluid deviation, 86�87

Fluids, thermodynamic properties of, 14�18

Forced vortex design, 222

Forces

drag, 81�82

lift, 81�82

Francis turbine, 2f, 319, 377�385

balding, sectional sketch of, 379f

basic equations, 381�384

capacity of, 365�366

cavitation in, 391, 392f

design point efficiency of, 364f

hydraulic efficiency of, 381f

runner of, 379f

velocity triangles for, 380f

vertical shaft, 378f, 382f

volute, 377�385

Free-vortex flow, 218, 229, 385�386

Free-vortex turbine stage, 233�235

G
Gas turbines, cooling system for, 155�157

Gaussian probability density distribution, 427, 428f

H
Head coefficient, 41

High-speed machines

performance characteristics for, 48�52

Horizontal axis wind turbine (HAWT), 423

aerofoils for, 466�467, 468f

blade section criteria, 466�467

energy storage, 429

tower height, 426�427

HP turbine

nozzle guide vane cooling system, 158f

rotor blade cooling system, 157f

Hub�tip radius ratios, 72

Hydraulic efficiency, 22, 26

of centrifugal pump, 290

Hydraulic turbines, 25, 319, 361�362. See also Francis

turbine; Kaplan turbine; Pelton turbine

application ranges of, 365f

cavitation in, 391�397

design of, CFD application to, 398

flow regimes for maximum efficiency of, 363�365

history of, 363

operating ranges of, 364t

radial-inflow, 363

Hydropower, 361

harnessed and harnessable potential of, distribution

of, 362t

Hydropower plants, features of, 362, 363t
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I
Ideal gases, 14�15

IFR turbines. See Inward-flow radial (IFR) turbines

Impellers

centrifugal compressor, 268�271, 298, 310

centrifugal pump, 284, 290

efficiency, 499

exit, design of, 499�500

head correction factors for, 292f

inlet, design of, 498�499

kinetic energy at, 298

Mach number at exit, 295�297, 297f

prewhirl vanes at, 279�281

stresses in, 294

total-to-total efficiency of, 298

Impulse blading, 97, 98f

Impulse turbine stage, 137f

Incidence loss, 333

Incompressible cascade analysis, 89�91

Incompressible flow

parallel-walled radial diffuser in, 302, 303f

Incompressible fluid analysis, 40�42

Indirect problem, radial equilibrium equation

for, 218�227

compressor stage, 218�221

first power stage design, 223�227

forced vortex, 222

free-vortex flow, 218

mixed vortex design, 223

whirl distribution, 222

Inequality of Clausius, 11�12

Inviscid methods, 112

Inward-flow radial (IFR) turbines, 319, 487

90 degree type. See 90� Inward-flow radial

(IFR) turbines

cantilever, 320�321

efficiency levels of, 344f

optimum efficiency, 334�340

types of, 320�322

90� Inward-flow radial (IFR) turbines, 321�322

cooling of, 354�359

loss coefficients in, 333

Mollier diagram, 323f

optimum design selection of, 351�352

optimum efficiency, 334�340

specific speed, significance and

application, 348�351

specific speed function, 350f

thermodynamics of, 322�324

Isentropic efficiency, 22

Isentropic process, 12, 26

Isentropic temperature ratio, 488

K
Kaplan turbine, 2f, 363, 385�389

basic equations, 386�389

cavitation in, 393f

design point efficiencies of, 364f

flow angles for, 389f

hydraulic efficiency of, 381f

runner of, 385�386

velocity diagrams of, 387f

Kinetic power, of wind turbines, 428

Kutta�Joukowski theorem, 83

L
Leading edge spike, 87

Leakage flows, 250

Leakage paths, seals, and gaps, 252�254

Lean, 252

Lieblein’s correlation, 84�85

Lift coefficient, 82�83, 205�206, 445�446

of fan aerofoil, 208�212

Lift forces, 81�82

Lifting surface, prescribed wake theory (LSWT), 476

Ljungström steam turbine, 319, 320f

Local diffusion factor, 84�85

Loss bucket, 95

Loss coefficients in 90� IFR turbines, 333

Loss loop, 95

Low-speed machines

performance characteristics for, 42�44

M
Mach number, 18, 230�231, 501

blade, 293, 295

compressor stage, 195�198

effects of, 92�95

at impeller exit, 295�297, 297f

radial flow gas turbines, 330�331

Mach number effects on loss, 101�102

Manometric head, 290

Matrix through-flow method, 243

Mean radius velocity triangles, 489�490

Mean velocity, 81

Mean-value rule, 239

Mechanical efficiency, 22

Meridional velocity, 3�4

Mixed flow turbomachines, 1, 2f

Mixed-flow turbomachinery, 58�60

Mollier chart, for steam, 521f

Mollier diagram, 17

90� IFR turbine, 323f

for axial compressor stage, 173f

533Index



Mollier diagram (Continued)

for axial turbine stage, 125f

for centrifugal compressor stage, 270f

compression process, 27�29

compressor blade cascade, 78f

compressors and pumps, 26

for diffuser flow, 305f

for fifty percent reaction turbine stage, 137f

for impulse turbine stage, 123�124

reheat factor, 31�33, 32f

steam and gas turbines, 23�25

turbine blade cascade, 78f

for zero reaction turbine stage, 136f

Momentum

equation, 9�11

moment of, 9

Multiple blade row steady computations, 255�256

Multi-stage compressor, 188�195

annulus wall boundary layers, 194�195

off-design operation, 190�193

overall pressure ratio and efficiency, 188�190

pressure ratio of, 188�190

stage matching, 190�193

stage stacking, 193

ultimate steady flow, 194�195

Multistage turbines, 124�125

flow characteristics, 160�166

N
National Advisory Committee for Aeronautics (NACA),

73�74

Navier�Stokes method, 110�112

Neap tide, 409, 410f

Net positive suction head (NPSH), 63, 273, 391�392

Newton’s second law of motion, 9

Nozzle loss coefficients, 333�334

NPSH. See Net positive suction head (NPSH)

O
Off-design performance of compressor, 187�188

Optimum design

of 90� IFR turbines, 337, 351�352

of centrifugal compressor inlet, 275�281

Optimum efficiency, IFR turbine, 334�340

Optimum space�chord ratio, 102

Overall efficiency, 22

P
Panel (or vortex) method, 109

Peak and post-peak power predictions, 477�478

Pelton turbine, 61, 61f, 363, 366�377

design point efficiencies of, 364f

energy losses in, 371�372

hydraulic efficiency of, 381f

hydroelectric scheme, 369, 370f

jet impinging on bucket, 368f

optimum jet diameter, 372�375

overall efficiency of, 374, 375f

runner of, 367f

six-jet vertical shaft, 368f

sizing the penstock, 371

speed control of, 369�371

surge tank, 369

water hammer, 371

Pelton wheel, 2f

Perfect gases, 15�17

Performance prediction codes, wind

turbine, 475�478

Peripheral velocity factor (PVF), 395�396

Pitch�chord ratio, 85

Power coefficient, 436�437, 461f

at optimum conditions, 463t

Prandtl’s tip correction factor, 453�455

Prescribed velocity distribution (PVD) method, 73

Pressure loss coefficient

stagnation, 77, 79

total, 77

Pressure ratio of multi-stage compressor, 188�190

Pressure rise coefficient, 78

Profile loss coefficient, 97

Pump, 267�269. See also Centrifugal pump

inlet, design of, 273�275

radial-flow, 269f

Q
Quality/dryness fraction, 18

Quasi-three-dimensional (Q3D) methods, 108

R
Radial diffuser, 302, 302f, 303f

Radial equilibrium, 215

direct problem, 227�229

equation, 215�217, 227

fluid element in, 215�217

indirect problem, 218�227

theory of, 215�217

Radial flow gas turbines, 319�320

basic design of rotor, 324�326

cantilever type, 320�321

clearance and windage losses, 352�354

cooling of, 354�359

criterion for number of vanes, 342, 343f
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Francis type, 319

incidence loss, 333

IFR type. See Inward-flow radial (IFR) turbines

Ljungström steam type, 319, 320f

mach number relations, 330�331

nominal design point efficiency, 326�330

nozzle loss coefficients, 333�334

optimum design selection, 351�352

optimum efficiency considerations, 334�340

rotor loss coefficients, 334

scroll and stator blades, 331�334

spouting velocity, 325�326

stator loss models, 332�333

vaneless space and vane solidity, 333

velocity triangles, 321f, 322

Radial flow turbomachine, 1

Rayleigh distribution, 432, 433f

Reaction, turbine stage, 126

fifty percent, 136�139

zero value, 136, 148, 149f

Reaction turbine, 377

Reheat factor, 31�33

Relative eddy, 282

Relative roughness, 42

Relative velocity, 4, 11

Reynolds number, 41�42

Reynolds number correction, 99

Right turbine, selecting, 396�397

Rotating stall in compressor, 198

Rothalpy, 11, 124

Rotor, 176�180

compressible case, 176�177

incompressible case, 178�180

Rotor blade configurations, 458�465

blade variation effect, 458

optimum design criteria, 460�465

planform, 458

tip�speed ratio effect, 459�460

Rotor design, 324�326, 343�348

nominal, 324�325

Whitfield, 337�340

Rotor loss coefficients, 334

Roughness ratio, 42

S
Saturated liquid, 17�18

Saturated vapor, 17�18

Saturation curve, 17�18

Scroll. See Volute

SeaGen tidal turbine, 362, 411�417

Second law of thermodynamics, 11�13

Secondary flows, 246�250

passage vortex, 248

vorticity, 246�248

Semi-perfect gas, 15

Settling-rate rule, 239

Shock loss, 333

SI units, British and American units conversion

to, 419t�486t

Sign convention, 4

Single-passage computations, 255

Slip factor, 281�285

Busemann, 284

correlations, 282�285

Stanitz, 284�285

Stodola, 283

unified correlation for, 286�290

Wiesner, 285

Soderberg’s correlation, 99�101, 140

Solid-body rotation, 222. See also Forced

vortex design

Space�chord ratio, 72, 494

Specific diameter, 53�61

Specific speed, 53�61, 394�395

compressible, 60�61

efficiency for turbines, 350f

significance and application of, 348�351

Spouting velocity, 325�326

Spring tide, 409, 410f

Stage loading, 48, 123, 126, 146f, 181�182

Stage matching, 190�193

Stage stacking, 193

Stagger angle, 72

Stagnation enthalpy, 8, 18�19

Stagnation pressure loss coefficient, 77, 79

Stall and surge in compressor, 198�203

Stanitz’s expression for slip velocity, 284�285

Stator loss models, 332�333

Steady flow

energy equation, 8

moment of momentum, 9

momentum equation, 9

Steam, 17�18

and gas turbines, 23�25

Steam turbines, 119, 131�133

low pressure, 120f

Streamline curvature method, 243�245

Streamtube thickness variation, 76�77

Stresses in turbine rotor blades, 150�155

centrifugal, 151�155

Suction specific speed, 394�395

Superheat of steam, degree of, 18

Surge margin, 48�49

Sweep, 251�252
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T
Tangential flow induction factor, 442

Tangential velocity distribution, 222

Thermodynamic properties of fluids, 14�18

ideal gases, 14�15

perfect gases, 16�17

steam, 17�18

Thoma coefficient, 391�392, 394�395

3D computational fluid dynamics (3D CFD)

application in axial turbomachines, 254�263

multiple blade row steady computations, 255�256

single-passage computations, 255

unsteady computations, 257

3D design, 251�254

endwall profiling, 252

leakage paths, seals, and gaps, 252�254

lean, 252

sweep, 251�252

Three-dimensional flows in axial turbomachines, 215

Throat, 21

Through-flow problem

computer-aided methods of solving, 242�245

techniques for solving, 243

Tidal power, 362, 409�417. See also SeaGen tidal turbine

categories of, 410

Tidal stream generators, 410�411

Tides

neap, 409, 410f

range, 409

spring, 409, 410f

Time-marching method, 243

Tip�speed ratio, 448, 459�460

Total-to-static efficiency, 24, 326, 351�352

effect of reaction on, 140�141

of stage with axial velocity at exit, 148�150, 149f

Total-to-total efficiency, 23

of fifty percent reaction turbine stage, 146�147

of impeller, 298

of turbine stage, 127

of zero reaction turbine stage, 148, 149f

Triple point for water, 18

Turbine cascade (two-dimensional), 95�108

Ainley and Mathieson correlation, 96�98

Dunham and Came improvements, 96�97

flow exit angle, 105�106

flow outlet angles, 97�98

limit load, 106�108

Mach number effects on loss, 101�102

optimum space to chord ratio, 102�103

Reynolds number correction, 99

Soderberg’s correlation, 99�101

turbine limit load, 106�108

turbine loss correlations, 95�96

Zweifel criterion, 102�105

Turbine efficiency, 22

Turbine polytropic efficiency, 31

Turbines

axial�flow. See Axial-flow turbines

Francis. See Francis turbine

free-vortex stage, 233�235

high speed, 49�52

hydraulic. See Hydraulic turbines

Kaplan. See Kaplan turbine

off-design performance of stage, 232�233

Pelton. See Pelton turbine

radial flow gas. See Radial flow gas turbines

reaction, 377

Wells. See Wells turbine

wind. See Wind turbine

Turbochargers, 487

advantages, 487

efficiency, size effect on, 389�391

types, 487

Turbomachines

categories of, 1

as control volume, 9, 10f, 40f

coordinate system, 2�6

definition of, 1�2

flow unsteadiness, 33�36

performance characteristics of, 42�44

Turbomachines, axial

blade rows in, 239

endwall profiling, 252

leakage paths, seals, and gaps, 252�254

lean, 252

solving through-flow problem in, 242�245

sweep, 251�252

3D design of, 251�254

Two-dimensional cascades. See Cascades, two-dimensional

U
Unsteadiness paradox, 33

Unsteady 3D computations, 257

V
Vaned diffuser, 303�305, 503

Vaneless diffuser, 301�302

space, flow in, 500�503

Vapour pressure, 62�63

Velocity, spouting, 325�326

Velocity diagrams for axial flow compressor stage, 5�6

Velocity triangles for root, mean and tip radii, 493f, 494

Vertical axis wind turbine (VAWT), 423
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Volute, 301�302, 503

centrifugal compressor, 268, 300, 301f

centrifugal pump, 300, 301f

Vorticity, secondary, 246�248

W
Wake momentum thickness ratio, 89, 91f

Wave power, 362. See also Wells turbine

Weibull Distribution, 432�433

Wells turbine, 362, 398�399, 399f

blade of, velocity and force vectors acting on, 401f

blade solidity effect on, 403�404

characteristics under steady flow conditions, 406

design and performance variables, 402�405

flow coefficient, effect on, 403

hub�tip ratio, effect on, 404

operating principles, 400

and oscillating water column, 398

self pitch-controlled blades, 405�408

starting behaviour of, 405, 405f

two-dimensional flow analysis, 400�402

Wet steam, 17

Whirl distribution, 222

White noise, 62

Whitfield’s design of rotor, 337�340

Wind data

basic equations, 431�432

statistical analysis of, 431�433

Wind energy

availability, 420

characteristics, 420�422

resource estimation, 420�422

Wind shear, 426�427

Wind speed probability density function, 427�428

Wind speed probability distributions, 432�433

Rayleigh distribution, 432, 433f

Weibull distribution, 432�433

Wind turbine, 419�422, 481

blade section criteria, 466�467

control methods, 469�473

cut-in wind speed, 427

cut-out wind speed, 427

environmental matters, 478�480

historical viewpoint, 422

idealized power output curve for, 428f

kinetic power, 428

maximum possible power production

of, 429�430

performance measurement of, 427�430

performance testing, 474

power coefficient of, 436�437

power output, 441

Prandtl’s blade tip correction for, 453�455

prediction of power output, 427

rated output power, 428

rotor blade configuration, 458�465

size of, 481

solidity, 448

stall control, 471

types of, 422�427

Windmills, 422

Z
Zero lift line of aerofoil, 208�212

Zero reaction turbine stage, 136

Mollier diagram for, 136f

total-to-total efficiency of, 148, 149f

Zweifel criterion, 102�105
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