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Preface to second edition

[ am pleased that my 1998 Oxford Chemistry Primer, entitled Crystal Structure
Determination, continues to be recommended and used as a standard text in
many undergraduate chemistry courses around the world. After 16 years, how-
ever, it is really quite dated. One of the reasons why X-ray crystallography is an
important topic to present to chemistry students alongside other structural tech-
niques is that it plays such a major role in modern research, supplying otherwise
unobtainable information about the details of both molecular and extended
network structures in the solid state. As a wide-ranging research field in its own
right, crystallography constantly sees enormous developments in the under-
standing of its fundamental principles and in their practical application across
many physical and biological sciences as well as engineering. Appropriately in
this International Year of Crystallography (IYCr 2014), | am grateful to Alice Rob-
erts and others at OUP for the invitation to provide a revised, expanded, and
updated edition, with the new title of X-ray Crystallography.

Of the original four chapters, the first has seen the least change, as the fun-
damental principles of X-ray crystallography remain as they were; | have mostly
replaced the various examples, and have provided an updated account of X-ray
sources. Chapter 2 has a shift in balance from older photographic and serial-
diffractometer experiments to area detectors that are now routinely used and
are being further developed; some newer methods of solving and refining crys-
tal structures have been included, together with a brief account of some of the
problems often encountered and how they are dealt with; and the reporting and
archiving of crystal structures are described here. | have replaced all but one of
the case studies in Chapter 3 by more recent examples, ensuring that all the main
points of Chapter 2 areillustrated by at least one example. Here and elsewhere, full
references are given to the example structures, all of which have been published;
the data and results are being made available online so that they can be further
investigated by students and teachers. The related topics of neutron diffraction
and powder diffraction, retained largely unchanged in Chapter 4, have been sup-
plemented by an account of biological macromolecular crystallography and a
brief description of crystal structure prediction. As with other second-edition
Primers, an extensive glossary of terms is provided. Each chapter has exercises
for the reader, answers to which are available online along with further exercises.

[thank the OUP editorial staff for their advice, assistance, and patience, my col-
leagues and collaborators for the research projects that have provided examples
and case studies in this book, and Dr Ehmke Pohl of Durham University for his
suggestions for improvement of the section on macromolecular crystallography.

Bill Clegg
Newcastle upon Tyne
September 2014
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Fundamentals of X-ray
crystallography

1.1 Introduction

This book aims to provide a basic introduction to the technique of structure
determination by X-ray crystallography at the chemistry undergraduate level.
It is not intended as a detailed practical manual for researchers in the subject.
The approach taken is to introduce fundamental principles and concepts, then to
show in outline how these are used in practice, and to provide a number of case
studies by way of illustration. A few related topics are discussed in the final chapter.  Most of the structures used as

This first chapter describes the ir.npc?rtancg of X-ray cwstallography in‘the 'r"';éf)t:;te'g?s :‘;Z‘é:;e;ﬁ%‘é:'isst?ﬁgti’r‘g are
context of modern chemistry, explains its basis by an optical analogy, outlines  patabase (CSD; databases are discussed
the main relevant properties of crystalline materials, especially aspects of sym-  in Chapter 2); in each case a literature
metry, and provides a basic description of diffraction phenomena. Three impor- ;eéircecheEtsagn‘éec'gr?ﬁ::f rrevsv:]tl?st:: dCSD
tant properties of the diffraction pattern of a single crystal are examined and  data files are available onfine, so that the
related to features of interest in the crystal structure: the geometry of diffraction, ~ structures can be investigated further by
symmetry observed in the pattern, and the variation of intensity in the discrete readers and teachers.
diffraction measurements; mathematical details are kept to a minimum, and
are illustrated graphically as well as being explained in words. Finally, a brief

description is given of the available sources of X-rays for crystallography.

1.2 Crystallography compared with other
structural techniques

A knowledge of the structure of both molecular and non-molecular mater-
ials is one of the fundamental aims of chemistry and is essential for a proper
understanding of the physical and chemical properties of the materials. The
term ‘structure’ has many meanings; here we take it to be the relative positions
of the atoms or ions which make up the substance under study and hence a
geometrical description in terms of bond lengths and angles, torsion angles and
other measures of conformation, intramolecular and intermolecular non-
bonded distances and interactions such as hydrogen bonding, and other quan-
tities of interest. This knowledge makes possible the pictorial representation of
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For example, chemical shifts and
coupling constants in proton NMR
spectroscopy, obtained from the
measured absorption spectrum, may
indicate the number, chemical type,
and relative proximity of the hydrogen
atoms in a molecule and thus provide
information on the connectivity (which
atoms are bonded together); by more
detailed NMR experiments some
interatomic distances can be calculated.
Similarly, the presence of particular
functional groups in a molecule can

be deduced from the appearance of
characteristic absorption bands in an
infrared (vibrational) spectrum.

Monochromatic, literally 'single
coloured’, means having a single
wavelength.

Diffraction effects are a characteristic
behaviour of waves, including

X-rays, light and other forms of
electromagnetic radiation, involving
interference effects as described later. An
example can easily be seen by looking
at a yellow street lamp {(monochromatic
light) through a finely woven fabric

such as an umbrella. Simple diffraction
patterns can also be produced on a
screen or wall by shining a simple laser
pointer through some clothing materials
such as a cotton shirt.

chemical structures which are to be found throughout the literature of teach-
ing and research in chemistry and biochemistry; typical chemical examples are
shown in Fig. 1.1. Knowledge of the structure may be sought simply as a means
of identifying a newly synthesized compound and understanding how it was
formed, or the detailed geometry may be important for further investigations of
reactivity, bonding, chirality, structure-energy relationships, etc.

Many experimental methods of probing the structure of a material are based
on its absorption or emission of radiation; these are various forms of spectros-
copy. Absorption takes place when the frequency v of the radiation, and hence
its quantum energy hv, matches a difference in certain energy levels in the sam-
ple. The observed frequencies of absorption thus provide information about
energy levels and, from this information, something can be deduced about the
structure of the material, based on a substantial body of accumulated experience.

In most spectroscopic techniques, what is measured is the variation of inten-
sity of radiation passing through the sample as its frequency (or wavelength) is
varied, in a particular direction; the intensity variation is produced by absorption
of particular frequencies, leading to energy changes in the sample. This book is
concerned with some diffraction methods, which are based on a different inter-
action of radiation with matter, usually in the solid state. Here we normally keep
the wavelength fixed and measure the variation of intensity with direction, i.e.
the scattering of monochromatic radiation is measured. From these measure-
ments it is possible to work out the positions of the atoms in the sample and
hence obtain a complete geometrical description of the structure. The intensity
variation is caused by interference effects, also known as diffraction.

Spectroscopic and diffraction methods are thus based on different interactions
of radiation with a sample, and provide complementary structural information;
a thorough characterization of a material will often involve using both types of
experiment. Diffraction methods are capable of providing much more detailed
structural information than spectroscopic methods. There are, however, limita-
tions on the types of materials which can be studied, as we shall see.

A substantial body of rather complex mathematics forms the theory of dif-
fraction methods for crystal structure determination. Fortunately it is not
necessary to master this in order to understand the principles and application of
the subject. This is, to a large extent, true even for those who carry out research
in crystallography, because almost all the calculations are usually performed by
sophisticated and largely automated computer programs. Advances in the sub-
ject since its birth just over a century ago have been very much in parallel with
developments in computing, and modern personal computers are of sufficient
power to make most crystal structure determinations very much faster than
the days or weeks suggested by even fairly recent textbooks. Some of the other
modern technological developments which have contributed to this dramatic
increase in speed are described later in this book. The level of mathematics has
deliberately been kept relatively low in this treatment of the subject. The funda-
mental equations for the diffraction process are given for completeness and to
satisfy the more inquisitive reader, but they are also illustrated with analogies in
words and diagrams in order to clarify their meaning.
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These structures have all been
published: (a) Crystal structures of
thionitrosyl hexafluoroantimonate(V)
and thionitrosyl
undecafluorodiantimonate(V)

at 293 K and of thionitrosyl
undecafluorodiantimonate(V) at 121.5 K:
the effect of thermal motion on the
apparent NS bond length. W. Clegg,

0. Glemser, K. Harms, G. Hartmann,

R. Mews, M. Noltemeyer and G. M.
Sheldrick, Acta Crystallogr. Sect. B 1981,
37,548-552 (not in the CSDY); (b) A
bimetallic aluminum(salen) complex
for the synthesis of 1,3-oxathiolane-2-
thiones and 1,3-dithiolane-2-thiones.
W. Clegg, R. W. Harrington, M. North
and P, Villuendas, J. Org. Chem. 2010,
75, 62016207 (CSD UCUDAZ); (c)
Synthesis, structure and redox properties
of ferrocenylmethylnucleobases. A.
Houlton, C. . Isaac, A. E. Gibson, B.

R. Horrocks, W. Clegg and M. R. J.
Elsegood, J. Chem. Soc. Dalton Trans.
1999, 3229-3234 (CSD BISLAQ);

(d) Synthesis, crystal structures and
spectroscopic characterization of

two neutral heterobimetallic clusters
MS4Cuy(pz™2)sCl, (where M = Mo (1)
or W (2), X = Cl (1) or disordered CI/Br
(2), and pz™<? = 3 5-dimethylpyrazole).
A. Beheshti, N. R. Brooks, W. Clegg

and S. E. Sichani, Polyhedron 2004, 23,
3143-3146 (CSD QALXORY; (e) Structural
variety within gallium diphosphonates
affected by the organic linker length. M.
P. Attfield, Z. Yuan, H. G. Harvey and W.
Clegg, Inorg. Chem. 2010, 49, 2656-2666
(CSD YUSQINY); (f) Neutral [2]catenanes
from oxidative coupling of mt-stacked
components. D. G. Hamilton, J. K. M.
Sanders, ). E. Davies, W. Clegg and S. J.
Teat, Chem. Commun. 1997, 897-898.

Fig. 1.1 An illustration of the range of chemical structures which can be investigated by X-ray
crystallography: (a) the inorganic salt [NS}* [AsFg]"; (b) a small chiral organic molecule; (c) a
relatively small organometallic complex; (d} a polynuclear metal complex; () a polymeric
network structure with organic pillars linking inorganic two-dimensional sheets; (f) a
supramolecular assembly of two interlocking organic ring compounds.
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One form of hen egg-white lysozyme
was only the second protein crystal
structure {and the first for an enzyme) to
be determined by X-ray crystallography,
in 1965.

Visible light also has a range of
wavelengths A and frequencies v, such
that Av =, the velocity of light; for
simplicity here and for comparison with
the X-ray diffraction experiment, we

consider light of just one wavelength, i.e.

monochromatic light.

Crystal structure determination can be applied to a wide range of size of
structures, from very small molecules and simple salts to synthetic and natural
polymers and to biological macromolecules such as proteins (Fig. 1.2). This
book is concerned mainly with chemical applications, but some indication is
given of the differences encountered when working with larger scale biological
systems, particularly in Chapter 4.

Fig. 1.2 A conventional ball-and-stick representation of one structural form of lysozyme, a
relatively small protein; hydrogen atoms are omitted. The molecule contains C, N, O and S atoms.

1.3 The eye and microscope analogy

Objects of macroscopic size are visible to us because they scatter light falling
on them. Our eyes intercept some of the scattered light and the function of the
eye lens is to bring together the bundle of light rays, recombining the individual
rays into an image on the retina (Fig. 1.3). Light consists of waves, and each
scattered light ray has a particular intensity and a particular phase relative to
other scattered rays, resulting from the scattering which produced it (Fig. 1.4).
These relative intensities and phases, in turn, determine the nature of the image
formed in the eye, which is understood by the brain as a representation of the
object being viewed. Thus information on the shape (structure) of the object
is carried in the intensities and phases of the light waves scattered by it. Since
objects with different shapes can be distinguished simply by looking at them, it
follows that they must have different, individual scattering patterns.

For smaller objects the eye needs help from more powerful lenses which
can produce a farger image. The principle of operation is just the same: a
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Fig. 1.3 Leftand centre, the function of the eye and microscope lenses for the recombination
of scattered light; right, the equivalent two-stage process in X-ray diffraction.

proportion of the scattered light is collected by the microscope lens system
and is refracted (the directions of the light rays are changed) to bring it all
back together (the individual rays are combined by addition, with the cor-
rect relative amplitudes and phases) in the observer's eye (Fig. 1.3). Note that
it is not necessary to capture all the scattered light, but the observed image
becomes less clear as the proportion of light collected is reduced: a good
quality image is produced by a wide objective lens close to the object.

The lower limit on the size of objects which can be clearly seen with a micro-
scope of sufficient magnifying power is set, not by optical engineering cap-
abilities, but by the wavelength of visible light itself (in the range 400-700 nm).
Objects which are much smaller than this, such as individual molecules (which
are typically 100-1000 times smaller), do not give any significant scattering of
the light. In order to ‘see’ the structure of molecules, it is necessary to resolve
the component atoms, which are of the order of one or a few angstroms in size.
Instead of visible light, this means using X-rays. So, in principle, what we need is
an X-ray microscope in order to observe molecular structure.

Quite apart from safety issues and the need to provide suitably sensitive detec-
tors to record the X-rays, such an instrument does not exist, because convention-
al lenses cannot be used to focus X-rays. The scattering of X-rays by molecules
does, indeed, occur, but the scattered X-rays cannot be physically recombined
to forman image.

The situation is, however, not hopeless, because the pattern of scattered X-rays
can be directly recorded, either on photographic film (now mainly of historical
interest) or on a variety of other X-ray sensitive detectors, then the recombination
which is impossible physically can be performed mathematically, with the aid of
computers: the mathematics involved is well established, but it requires a con-
siderable amount of calculation. Thus the experiment to determine a molecular
structure falls into two parts, recording the X-ray scattering pattern and carrying
out the recombination subsequently by mathematics (Fig. 1.3), and is no longer
instantaneous like viewing an object through a microscope.

IFl

-

Fig. 1.4 Amplitude and phase ofa
wave; the phase becomes important
only when two or more waves meet
and combine.

Refraction is the alteration in the
direction of travel of light as it passes
from one medium into another

with a different refractive index. it

is responsible, for example, for the
apparent bending of a drinking straw
in a glass of water (and many other
optical illusions), because water and air
have quite different refractive indices.
Refraction should not be confused
with diffraction, a quite different
phenomenon despite the similar name;
even senior chemistry researchers
sometimes produce nonsense words
such as ‘defraction’.

The angstrom unit, A, is not strictly
permitted by the Sl rules, but is widely
used in structural chemistry because of
its convenient size: TA=100pm=0.1nm.

Focusing of extremely high intensity
X-rays can be achieved using special
methods, but they are not of general
application.

Note that it is perfectly possible to record
the pattern of visible fight scattered by
an object in an analogous way; some
examples will be used in Section 1.5 to
illustrate the principles of diffraction.
Although this is not commonly done,
avariant of itis a valuable procedure
used by mineralogists, in identifying and
characterizing mineral specimens.
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The technique is known as crystal structure determination because the object
studied is actually a small crystalline sample rather than a single molecule, which
it would be impossible to hold in the X-ray beam for the duration of the experi-
ment and which would give an immeasurably weak scattering pattern on its
own. In a crystal, there are large numbers of identical molecules (or molecules
and their mirror images), locked in position in a regular arrangement, which
together give significant scattering. The method can be used only for samples
which can be obtained in a suitable crystalline form.

When the method is successful, it provides an image of the molecular struc-
ture. More precisely, it locates the components of the material which interact
with the incident X-rays and scatter them. These are the electrons in the atoms.
Although each individual electron/X-ray interaction is instantaneous, the total
time taken to record the scattering pattern with modern equipment is usually
minutes or hours, and even the most rapid methods available are very slow
compared with the movement of electrons, so the picture that results is of a
time-averaged electron density (Fig. 1.5). Concentrations of electron density in
the image correspond to atoms, somewhat spread out by time-averaged vibra-
tion, and the results are usually interpreted and presented as atomic positions,
but there are some important consequences of the fact that the primary result
is the location of electron density, which will be discussed later.

One very important consequence of the need to divide the overall experiment
into two parts instead of directly recombining the scattered X-rays to generate
an image is that some of the information in the scattered X-rays is unfortunately
lost. When the X-ray scattering pattern is recorded, the individual wave ampli-
tudes are retained as relative intensities (intensity is proportional to the square of
amplitude), but the relative phases are lost. This makes the mathematical recon-
struction stage much less straightforward. It is one of the fundamental challenges
of crystallography and methods of dealing with ‘the phase problem’ have been
major research projects throughout the history of the subject.

Fig. 1.5 An electron density map, with the positions of atoms and bonds marked. Note
that the rather wiggly contours here and in other figures are an artefact of the computer
program used.
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1.4 Fundamentals of the crystalline state

A perfect crystalline solid material is made up of a large number of identical mol-
ecules which are arranged in a precisely regular way repeated in all directions, to
give a highly ordered structure. Even for a microscopic crystal, the repetition is
effectively infinite on an atomic scale. This repetition of a structural unit by pure
translation, to form a space-filling, three-dimensional crystal, is a type of sym-
metry, which occurs in all crystalline solids, whether or not they also show other
forms of symmetry such as rotation, reflection or inversion.

In two dimensions, such translation symmetry is familiar in the form of pat-
terns on wallpapers, flooring and other manufactured materials. A two-dimen-
sional projection of part of a real crystal structure is shown in Fig. 1.6(a). The basic
structural unit here is a single molecule. All the molecules are identical and repe-
tition by translation gives the complete two-dimensional pattern; the structure
has no symmetry other than pure translation.

If each molecule is represented by just a single point (placed, for example, on
the same atom in each molecule), the result is a regular array of points, which
shows the repeating nature of the structure but not the actual form (the detailed
contents) of the basic structural unit (Fig. 1.6(b)). This array of identical points,
equivalent to each other by translation symmetry, is called the lattice of the
structure.

To define the repeat geometry of the structure, a parallelogram of four lattice
points is chosen, and is called the unit cell of the structure; it has two sides of
different lengths and one included angle (Figs 1.6(c) and 1.7). Obviously, many
different choices of unit cell are possible for any one lattice (Fig. 1.6(d)); there
are conventions to guide this choice. In the absence of any rotation or reflection
symmetry in the structure, the conventional unit cell has sides as short as pos-
sible, a < b, and an angle as close as possible to 90°. Inspection shows that each
unit cell in Fig. 1.6(c) contains parts of several molecules, and the total contents
are just one molecule. Each unit cell contains the equivalent of one lattice point
{one repeat unit).

The presence of rotation or reflection symmetry in a crystal structure, relating
molecules or parts of molecules to each other, imposes restrictions on the geom-
etry of the lattice and unit cell. For example, fourfold rotation symmetry in a two-
dimensional lattice requires a square unit cell with two equal sides and a 90° angle,
while reflection symmetry gives a 90° angle but still allows the two unit cell sides to
be of different length (Fig. 1.8).

In three dimensions, a unit cell has three sides and three angles (Fig. 1.9). Con-
ventionally, the three lengths are called a, b, ¢, and the angles o, B, vy such that o
lies between the b and ¢ axes, i.e. opposite a. In the absence of any rotation or
reflection symmetry, the three axes have different lengths and the three angles
are different from each other and from 90°. Rotation and reflection symmetry
impose restrictions and special values on the unit cell parameters. On the basis
of these restrictions, crystal symmetry is broadly divided into seven types, called
the seven crystal systems. Table 1.1 shows their names, minimum symmetry

The basic unit of a crystal structure may
not be a single molecule, but a number
of ions, an assembly of a few molecules,
or other unit, which is then repeated.
Real structures also show various kinds
of defects and irregularities, which are
beyond the scope of this book.

For an introduction to symmetry in
chemistry, which is largely concerned
with molecular symmetry and hence
with point groups, reference should be
made to standard chemistry text books,

Unit cell parameters are also known as
lattice parameters.
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Fig. 1.7 The geometry of the unit cell
for Fig. 1.6.

The discovery of so-called quasicrystals,
with structures and diffraction patterns
that show fivefold symmetry, has led to

a broadened redefinition of the word
crystal, but these materials do not have the
long-range order characteristic of what we
here call ‘true crystals’. The initial study of
quasicrystals is just one of many examples
of crystallography-related research that
has led to Nobel Prize awards since the
beginning of the twentieth century.

Fig. 1.6 (a) A two-dimensional projection of an organic crystal structure, showing 16 identical
molecules; (b) the two-dimensional lattice for this pattern; (c) a unit cell for the pattern; (d)
other possible choices of unit cell for the same pattern.

characteristics and unit cell geometries. Note that inversion symmetry does not
impose any lattice geometry restrictions, since every three-dimensional lattice
has inversion symmetry anyway, whether the complete structure represented
by the lattice is centrosymmetric or not. As we shall see later, this has important
consequences in X-ray diffraction.

Individual objects, such as molecules, can display rotation symmetry of any
order C,, G, ... up to C,, rotation axes, but only C,, C3, Cy, and Cg axes can be
found in true crystals. This does not mean that molecules with Cs symmetry, for
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Fig. 1.8 A structure with reflection symmetry. The reflection lines run vertically along the unit
cell edges and through the cell centre, bisecting each molecule. There are also glide reflection
lines half-way between these (see later). The conventional centred rectangular unit cell is
outlined, together with two possible primitive cells, each of half the area.

example, (such as ferrocene (CsHs),Fe, or buckminsterfullerene Cyg) cannot form
crystalline solids, but the rotation symmetry does not apply to the surroundings
of the molecule and to the structure as a whole (Fig. 1.10).

On the other hand, crystals can have other types of symmetry element not

possible in single finite molecules, in which rotation or reflection is combined

Table 1.1 Crystal systems

Crystal system

Essential symmetry

Restrictions on unit cell

Triclinic none none
Monoclinic one twofold rotation and/ a=y=90°

or mirror
Orthorhombic three twofold rotations and/ ~ q=f=y=90°

or mirrors
Tetragonal one fourfold rotation a=bo=PF=y=90°
Trigonal one threefold rotation a=b;a=p=90%y=120°
Hexagonal one sixfold rotation a=bo=0§=90°y=120°
Cubic four threefold rotation axes a=b=¢o=pF=y=90°

AV

Fig. 1.9 Athree-dimensional unit cell.

Although trigonal and hexagonal
crystals are characterized by the same
shape of unit cell, they have different
essential symmetries (threefold and
sixfold rotations, respectively); the unit
cell shape alone does not distinguish
them. Note also that some structures
have unit cells that approximate to the
shape of a higher-symmetry system,
e.g. itis possible for the angle P to be
insignificantly different from 90° for a
monoclinic structure, so that the unit
cell appears to be of orthorhombic
symmetry; this can complicate the
determination of the correct symmetry
and can lead to the phenomenon of
twinning, discussed later.
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It is often the case that molecules
occupy positions in crystal structures
with lower symmetry than their own
intrinsic point-group symmetry. This
can have consequences, not only in
crystalflography, but also in spectroscopy
and in physical properties; for example,
bands in solid-state spectra often show
splittings compared with those from
samples in solution, because atoms
become non-equivalent by symmetry in
the solid.

Fig. 1.10 The structure of one crystalline form of ferrocene, showing that the surroundings of
each molecule do not have fivefold rotation symmetry.

with translation to give, respectively, screw axes and glide planes. Figure 1.11
illustrates the difference between simple reflection and glide reflection in a
two-dimensional pattern. Reflection symmetry is familiar in everyday life; the
two mirror-related objects lie directly opposite each other, reflected from each
other across the mirror line {in two dimensions) or mirror plane (in three dimen-
sions). Glide reflection involves displacement of the two mirror images relative
to each other by exactly half of a repeat unit of the pattern. In a two-dimensional
pattern such asin Fig. 1.11, there is only one possibility for the direction of glide,
parallel to the glide line. In a three-dimensional crystal structure, the direction

=

Fig. 1.11 Atwo-dimensional illustration of simple reflection (left) and glide reflection (right)
for a regularly spaced repeated motif. Because glide reflection provides more efficient packing
of molecules than does simple reflection, space groups with glide planes tend to be observed
more often than those with mirror planes. A similar argument applies to screw axes versus
simple rotation axes.

Bia
1
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of glide can, in most cases, be parallel to either of two different axes or along
the diagonal between them. Similarly, screw axes combine a simple rotation
with a translation along the direction of the axis. An example of glide reflection
symmetry occurring in the same structure as simple reflection symmetry can be
seen in Fig. 1.8.

For some structures with more than purely translation symmetry, it is con-
venient and conventional to choose a unit cell which contains more than one
lattice point, because the resultant unit cell geometry displays the symmetry
more clearly. The unit cell in Fig. 1.8 has a lattice point at each corner, but
also an entirely equivalent lattice point at its centre; this centred unit cell is
arectangle, with a 90° angle, whereas a primitive unit cell with lattice points
only at its corners and with half the area, would not be. A three-dimension-
al example is the all-face-centred cubic structure of many metals, in which
the centre of each face of the unit cell is equivalent to all the cell corners
(Fig. 1.12). This unit cell has four times the volume of the smallest possible
primitive unit cell, but has the advantage of displaying the cubic symmetry
clearly in its shape.

Symmetry elements in a single molecule all pass through one point, and
the various possible combinations of symmetry elements are known as point
groups. In a crystal, symmetry elements do not all pass through one point, but
they are regularly arranged in space in accordance with the [attice translation
symmetry. There are exactly 230 possible arrangements of symmetry elements
in the solid state; these are called the 230 space groups, and their symme-
try properties are well established and available in standard reference books
and tables, the most comprehensive and widely used being the International
Tables for Crystallography, Volume A.

Some popular misconceptions about lattices and unit cells should be dispelled.

@ The term lattice’ is often used as a synonym for ‘structure’, but this is
incorrect, because the lattice shows only the repeating nature of the
structure, not the detailed contents. A particularly common misuse of the
term is ‘lattice solvent’ instead of ‘uncoordinated solvent'.

e Anypointina éwstal structure can be chosen as a lattice point and the lattice
constructed from all the equivalent points (with identical environments
in identical orientation); conventions apply to the choice of lattice points

Fig. 1.12 The face-centred cubic structure of many metals; left, the conventional cubic unit
cell; right, a primitive unit cell with one-quarter the volume, having lattice points only at its
corners.

A primitive unit cell has lattice points
only at its eight corners; all of these,

by definition of a [attice, are entirely
equivalent. A centred unit cell has other,
also entirely equivalent, lattice points, For
a two-dimensional lattice there is only
one form of centring, with an equivalent
lattice point exactly at the centre of each
unit cell. For a three-dimensional lattice,
various different types of centring are
possible, with lattice points at the centres
of pairs of opposite faces, at the centres
of all faces, or at the very centre (the
body centre) of each unit cell.

A point group may be thought of as the
complete collection of all symmetry
elements passing through a central point,
describing the symmetry of an individual
object. A space group is the complete
collection of all symmetry elements for
an infinitely repeating pattern. Both can
be elegantly treated by mathematical
group theory; strictly speaking, for this

to be true, point groups and space
groups are actually complete collections
of symmetry operations rather than
symmetry elements, but the distinction is
not important for our purposes here.

The International Tables for
Crystallography are published for the
International Union of Crystallography
by John Wiley & Sons. They are available
as an online resource at http:/it.iucrorg/
to subscribing institutions.
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A proper rotation is a simple rotation
axis. An improper rotation combines
the operation of rotation with
either inversion through a point
(crystallography) or reflection in a
perpendicular plane (spectroscopy).

relative to the positions of symmetry elements in the structure (in particular,
it is conventional to place lattice points on inversion centres when they are
present), and it is the exception rather than the rule for an atom to lieon a
lattice point in any other than simple high-symmetry structures (which are
usually the structures first encountered by students in the context of lattices
and unit cells).

® The unit cell is the repeat unit (building block) of any crystal structure and
so contains a small whole number of molecules, but in most structures
the molecules lie across unit cell edges and faces rather than being neatly
contained within these purely mathematical constructions (see, for example,
Figs 1.6 and 1.8).

Pure lattice translation symmetry relates individual unit cells to each other. If
a structure has any other symmetry as well, then this symmetry relates atoms
and molecules within one unit cell to each other. Thus the unique, independ-
ent part of the structure is usually only a fraction of the unit cell, the fraction
depending on the amount of symmetry present. This unique portion is called
the asymmetric unit of the structure. Operation of all the rotation, reflection,
inversion, and translation symmetry elements of the space group on this asym-
metric unit generates the complete crystal structure. The asymmetric unit may
consist of one molecule, more than one molecule, or a fraction of a molecule,
the molecule itself possessing symmetry that is displayed by the crystal structure
as awhole.

One further point should be made about symmetry. Different symbols are
used for symmetry elements, and for combinations of them (point groups and
space groups) in different fields of science. For rotation, reflection, and inver-
sion symmetry elements, which can occur both in individual molecules and in
solid-state structures, the correspondence of the two common sets of symbols
is shown in Table 1.2. There are good reasons for the differences in the sym-
bols, and also for the different definitions of the so-called ‘improper rotations’,
but they do lead to confusion. The Schoenflies notation, used in molecular spec-
troscopy, produces convenient and compact symbols for point groups, while

Table 1.2 Correspondence of symbols for symmetry elements in the Hermann-Mauguin
(crystallography) and Schoenflies (spectroscopy) systems of notation.

Crystallography Spectroscopy

Proper rotations 2 G
&
Gy
Cs

Improper rotations Se

Reflection
Inversion

—= 3 ol s WO W
g
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the Hermann-Mauguin notation (also known as international notation), used
in crystallography, is much better suited to space group representation, some of
which will be seen later in examples. The details of symbols for glide planes and
screw axes are beyond the scope of this short text.

1.5 Diffraction of X-rays by molecules and crystals

Figure 1.13 shows part of the pattern of scattered X-rays produced by a single
crystal. The complete pattern can only be recorded by rotating the crystal in the
X-ray beam, for reasons we shall see later. There are many different kinds of instru-
ment for recording X-rays scattered by crystals, and they produce a variety of
appearances, butin each case a good quality crystal always gives a pattern of spots
of varied intensity. In Fig. 1.13, different intensities are represented by different
sizes of spot; on a photographic film, they would vary in their degree of blackness.
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Fig. 1.13 A computer-generated reproduction of an X-ray diffraction pattern similar to a type
obtained by one form of X-ray camera.

The pattern of spots has three properties of interest, which correspond to
three properties of the crystal structure.

o First, the pattern has a particular geometry. The spots lie in certain positions
which are clearly not random. Each spot is generated at the detector by an
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individual scattered X-ray beam travelling in a definite direction from the
crystal. This diffraction pattern geometry is related to the lattice and unit cell
geometry of the crystal structure and so can tell us the repeat distances (and
directions) between molecules.

e Second, the pattern has symmetry, not only in the regular spatial
arrangement of the spots but also in having equal intensities of spots which
lie in symmetry-related positions relative to the centre of the pattern. The
diffraction pattern symmetry is closely related to the symmetry of the unit
cell of the crystal structure, i.e. to the crystal system and space group. The
pattern in Fig. 1.13 has both vertical and horizontal reflection symmetry, and
an inversion point at the centre.

@ Third, apart from this symmetry, there is no apparent relationship among the
intensities of the individual spots, which vary widely; some are very intense,
while others are too weak to be seen (their positions are deduced from the
regular array). These intensities hold all the available information about the
positions of the atoms in the unit cell of the crystal structure, because it is the
relative atomic positions which, through the combination of their individual
interactions with the X-rays, generate different amplitudes for different
directions of scattering.

Thus, measurement of the geometry and symmetry of an X-ray scattering pat-
tern provides information on the unit cell geometry and symmetry, while deter-
mination of the full molecular structure involves the measurement of all the
many individual intensities, a considerably greater task.

An understanding of these relationships is valuable in grasping the fundamen-
tals of X-ray diffraction in crystal structure determination. They can be summar-
ized elegantly in mathematical terms, and the main equations will be presented
later, but a pictorial approach may be more informative to many readers and will
be given first. To illustrate the relationships between objects and their scattering
patterns simply, we restrict the treatment to two-dimensional objects and scale
up the process by a factor of about 10, so that atoms in planar molecules are
represented by small holes punched in opaque card and monochromatic X-rays
are replaced by monochromatic light with a wavelength comparable to the hole
size and spacing. By doing this, it is possible to obtain from a modified type of
microscope both an image (a picture) of each object and its light scattering pat-
tern (also known as its optical transform) for comparison. Twelve pairs of objects
and corresponding optical transforms are shown in Fig. 1.14.

Note first that every object produces a different pattern. These patterns of
light and dark are generated by interference effects, i.e. by the combination of
light waves corning from different parts of the object as the incident light passes
through it.

Even for a single circular hole (think of this as a single atom in an X-ray beam)
there are interference effects for the light waves scattered by the edges of the
hole (objects A and B). in some directions these waves are in phase and the
scattering pattern is bright; in other directions, scattered waves are out of phase
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and cancel each other, so little or no net intensity is seen. Thus the transmitted
light does not give a sharp pattern matching the shape and size of the hole, but a
diffuse pattern with a central circular bright region surrounded by rings of lower
intensity. A larger hole (B) gives a smaller pattern. A rectangular hole (C) gives a
diffuse pattern of rectangular symmetry, also with light and dark fringes. Note
that the relative dimensions of the rectangle (tall and narrow) are reversed in the
scattering pattern (short and wide). A series of experiments with different rect-
angles shows that there is an exact inverse relationship.

Several holes together represent a single molecule with a number of atoms
(D to F). These give more complicated scattering patterns, each with diffuse areas
of varied intensity. There are now additional scattered wave interference effects,
which depend on the relative positions of the different holes. The rectangular
object (D) gives a pattern with rectangular symmetry. The regular hexagon of
holes (F) gives a pattern with the same sixfold symmetry. The object with only
one vertical reflection line of symmetry (E), however, generates a pattern with
extra symmetry: two mutually perpendicular lines of reflection, horizontal and
vertical, intersecting in an inversion point. In general, each optical transform has
the same symmetry as the corresponding object, with the addition of inversion
symmetry if it is not already present (and this may imply further symmetry elem-
ents as in this case); the scattering pattern never has less symmetry than the
object. In three dimensions, an equivalent rule applies, with the addition of an
inversion centre to all scattering patterns.

Parts G to I show the effect of pure translation symmetry on the scattering of
radiation by an object. Again, extra interference effects take place for the light
rays scattered from individual holes. Because the holes are regularly spaced,
these interference effects strongly reinforce each other, and the most obvious
result is that the scattering patterns contain sharp maxima of intensity instead
of broad diffuse regions. A single row of holes gives a pattern of narrow bright
stripes running perpendicular to the row (G and H). A two-dimensional regular
array of holes (I) imposes a restriction on the intensity maxima in both dimen-
sions simultaneously, so that only sharp points of light are now seen {where two
perpendicular sets of stripes cross), and these are also regularly spaced. The rows
of spots in the optical transform always lie perpendicular to the rows of holes in
the object, and there is an inverse relationship in the spacings: the array of holes
in the object I are spaced wider horizontally than vertically, and the bright spots
in the scattering pattern are spaced wider vertically than horizontally, with the
inverse ratio.

This interference effect is well known and exploited in many branches of sci-
ence, and is called diffraction. Here we see that a regular lattice arrangement of
objects scattering radiation produces severe diffraction restrictions, so that the
scattered radiation has significant intensity only in certain well-defined direc-
tions and not in a diffuse pattern such as occurs with a single object.

Finally, we place more complicated objects (hexagons, representing molecules,
instead of single holes) on lattices. The three lattices J to L have different geometries
(different unit cells) but each has as its basic repeat unit the same single hexagon
in the same orientation (which is the same as F, but turned through 90°). Each

The extra bright fringes and spots

near the centres of these patterns are

a result of the small number of holes

in the objects. With more holes, these
subsidiary maxima decrease in intensity
and eventually disappear, and the main
maxima become sharper. A real crystal
may contain millions of unit cells in each
direction, so the maxima for scattered
X-rays are sharp.



16

(@)

Fig. 1.14 Aselection of objects and their optical scattering patterns. Each of the 12 objects on the left page has its scattering pattern in
the corresponding position on the right page. The bottom row of objects is on a different scale; in the objects themselves, each hexagon
has the same size as the individual hexagon in the second row. In the description in the text, the objects and their patterns are labelled
from (.A) 10 (C) in the top row, continuing to (L) at the end of the bottom row. These illustrations are taken from a very comprehensive
compilation in Atlas of Optical Transforms by G. Harburn, C. A. Taylor and T. R. Welberry (G. Bell and Sons Ltd, London, 1975), with the
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permission of the authors.
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Fig. 1.14 (continued)
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Fourier transformation is a well-known
and well-established mathematical
operation used in a wide variety of
science and technology applications,
including spectroscopy and image
processing.

produces a diffraction pattern consisting of a regularly spaced array of more or less
bright points, The positions of these points are dictated by the diffraction condi-
tions, generated by the parent lattice: in each case, the rows of points run perpen-
dicular to the rows of hexagons on the object lattice, and the spacing of the points
in each direction is inversely proportional to the spacing of the hexagons. The
intensities of the individual spots are produced by the form of the single object (the
hexagon): comparison of J, K, and L with F (especially with half-closed eyes to blur
the lattice diffraction effects!) shows that the underlying pattern of light and dark
is the same for all of them, and this is the optical transform of the single hexagon.

The net effect is like looking at the optical transform of the single hexagon
through a sieve. The transform itself (the variation of intensity) is determined by
the detailed geometrical form of the single object, while the mesh of the sieve,
which dictates the points at which the transform intensities can actually be seen,
is determined by the lattice geometry. ‘

Extending this to three dimensions, translating it to the case of a single crystal in
a monochromatic X-ray beam, and introducing some formal terminology, these
relationships illustrated pictorially are summarized as follows. An object scatters
radiation of wavelength comparable to its own size; the mathematical relation-
ship between the object and the scattering pattern is Fourier transformation, such
that the scattering pattern is the Fourier transform of the object, and the image
of the object (provided by an optical microscope or by X-ray crystallography)
is in turn the Fourier transform of the scattering pattern. If identical objects are
arranged on a lattice, diffraction effects of the lattice are also imposed, so that
the diffraction pattern can have non-zero intensity only where the direction of
scattering satisfies the equations for diffraction geometry. The overall effect is
a combination of the two effects—scattering by the object further restricted by
diffraction by the lattice—so the observed diffraction pattern is the Fourier trans-
form of the single object sampled at certain geometrically determined points.

The previous paragraph is the essential basis of the technique of X-ray crys-
tallography. In principle, then, the process of crystal structure determination is
simple. We record the diffraction pattern from a crystal. Measurement of the dif-
fraction pattern geometry and symmetry tells us the unit cell geometry and gives
some information about the symmetry of arrangement of the molecules in the
unit cell. Then from the individual intensities of the diffraction pattern we work out
the positions of the atoms in the unit cell, by pretending to be a microscope lens
system, adding together the individual waves with their correct relative amplitudes
and phases. And here we see the phase problem, the fact that the measured dif-
fraction pattern provides directly only the amplitudes and not the required phases,
without which the Fourier transformation cannot be made.

1.6 The geometry and symmetry of X-ray diffraction
Geometry

Having seen the fundamental basis of X-ray diffraction in both pictorial and ver-
bal form, we will now present the relationships mathematically.
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Fig. 1.15 Diffraction by a single row of regularly spaced objects.

asiny,

For the geometry, consider first diffraction by a single row of regularly spaced
points (one-dimensional diffraction; Fig. 1.15).

In any particular direction, the radiation scattered by the row of points will
have zero intensity by destructive interference of the individual scattered rays
unless they are all in phase. Since, except in the straight-through direction, indi-
vidual rays have different path lengths, these path differences must be equal to
whole numbers of wavelengths to keep the rays in phase. So, for rays scattered
by two adjacent points in the row,

path difference = asinwy; +asinyy = hA (1.1)

where y; and yq are the angles of the incident and diffracted beams as shown,
A is the wavelength, a is the one-dimensional lattice spacing, and h is an integer
(positive, zero, or.negative). For a given value of v; (a fixed incident beam), each
value of h corresponds to one of the observed diffraction maxima and the equa-
tion can be used to calculate the permitted values of yy, the directions in which
intensity is observed. The result, as we have seen in Fig. 1.14, is a set of bright
fringes.

For diffraction by a three-dimensional lattice there are three such equations
and all have to be satisfied simultaneously. The first equation contains the lattice
a spacing, angles relative to this a axis of the unit cell, and an integer h. The other
two equations, correspondingly, contain the unit cell axes b and ¢, and integers
k and I respectively.

Thus each allowed diffracted beam (each spot seen in an X-ray diffraction pat-
tern) can be labelled by three integers, or indices, hkl, which uniquely specify it
if the unit cell geometry is known.

These three equations for diffraction geometry, the Laue conditions, are
cumbersome to use in this form. An alternative but equivalent description was

The letters h, k, and | are used
conventionally by all crystallographers
although, unlike other conventional
triplets of letters used in the subject (such
asa, b, ¢; x, ¥, z), they are not consecutive
in the alphabet, for unimportant
historical reasons.
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At the age of 24 W. L. Bragg, together
with his father W. H. Bragg, was awarded
the Nobel Prize for Physics for this work
and its application in the first crystal
structure determinations in 1913. Max
von Laue received the Prize the previous
year for his part in the discovery of the
diffraction of X-rays by crystals in 1912.

derived by W. L. Bragg soon after the experimental demonstration that X-rays
could be diffracted by crystals, and is expressed in the single Bragg equation,
which is universally used as the basis for X-ray diffraction geometry (Fig. 1.16).
Bragg showed that every diffracted beam that can be produced by an appropri-
ate orientation of a crystal in an X-ray beam can be regarded geometrically as
if it were a reflection from sets of parallel planes passing through lattice points
(lattice planes), analogous to the reflection of light by a mirror, in that the angles
of incidence and reflection must be equal and that the incoming and outgo-
ing beams and the normal to the reflecting planes must themselves all lie in
one plane. The reflection by adjacent planes in the set gives interference effects
equivalent to those of the Laue equations; to define a plane we need three inte-
gers to specify its orientation with respect to the three unit cell edges, and these
are the indices hkl; the spacing between successive planes is determined by the
lattice geometry, so is a function of the unit cell parameters.

i

Lattice planes hk/

‘ 2 X dhkl sing

Fig. 1.16 The Bragg construction for diffraction by a three-dimensional crystal structure; one
set of parallel lattice planes is seen edge-on.

For rays reflected by two adjacent planes,
path difference = 2dy, sin® =n\ (1.2)

In practice, the value of n can always be set to 1 by considering planes with
smaller spacing (n = 2 for planes hkl is equivalent to n = 1 for planes 2h, 2k, 2!
which have exactly half the spacing) and it is in the form:

7\‘:2dhkl sin@ (13)

that the Bragg equation is always used. It allows each observed diffracted
beam (commonly known as a ‘reflection’) to be uniquely labelled with its
three indices and for its net scattering angle (20 from the direct beam direc-
tion) to be calculated from the unit cell geometry, of which each d, spacing
is a function.
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Rearrangement of the Bragg equation gives:

G

The distance of each spot from the centre of an X-ray diffraction pattern such
as Fig. 1.13 is proportional to sin and hence to 1/d,y for some set of lattice
planes. This demonstrates mathematically the reciprocal (inverse) nature of the
geometrical relationship between a crystal lattice and its diffraction pattern,
already seen pictorially.

The Bragg equation is the basis of all methods for obtaining unit cell {lattice)
geometry from the measured geometry of the diffraction pattern. The exact appli-
cation depends on the experimental setup used to obtain the diffraction pattern.

(1.4)

Symmetry

The unit cell dimensions provide some information about the distances between
molecules, which are regularly spaced in the crystal structure. In most structures,
however, each unit cell contains not one but several molecules which are related
to each other by the space group symmetry. This symmetry is revealed in various
aspects of the appearance of the diffraction pattern, from which it is usually pos-
sible to choose the correct space group from the complete list of 230 or, at least,
to narrow down the choice to a few possibilities; ambiguities arise, for example,
because a diffraction pattern may have more symmetry than the structure itself,
but it cannot have less, and in such cases the correct answer is known only when
the structure is successfully solved and refined.

For a compound of known chemical formula, the number of molecules per unit
cell can be calculated (if the density of the crystals is measured or estimated, as illus-
trated by examples that follow). This number can be compared with the number of
asymmetric units required by the symmetry elements present in the space group
(see Section 1.4). If the two are equal, then there is one molecule per asymmetric
unitand this tells us nothing about the molecular shape. If, however, the asymmetric
unitis only a fraction of a molecule, then the molecule itself must have one or more
symmetry elements of the space group, and this provides some information on the
molecular shape, even before the full structure determination is carried out.

This is best illustrated with examples. The first is an organic compound (an
oxepin), the chemical structure of which is shown in Fig. 1.17. Crystals obtained
from solution in toluene (methylbenzene, C;HsCHj3) belong to the monoclinic
crystal system, with a=13.616, b= 14.295, c=16.520 A, B =95.18° the unit cell
volume V=3202.4 A%,

The density D of the crystals is 1.23 g cm™. Since the density and unit cell
volume are known experimentally, the mass of the contents of one unit cell can
be calculated.

mass

1l

density x volume

123gcm™ x3202.4A°

= 1.23gem>x32024x (1087 cm3
3.939x1072'g per unit cell

5o, unit cell mass

A more detailed treatment of diffraction
geometry, in the form of the Ewald
sphere, can be found in other
crystallography texts. It is of particular
importance in the processing of data
collected using modern area-detector
diffractometers, but it is unnecessary
here and the usual presentation in two
dimensions of a three-dimensional
construction can be misleading.
Similarly, the most elegant description
of diffraction in crystallography uses
the concept of the reciprocal lattice,
but this requires familiarity with vector
algebra, which is not assumed of the
readership of this book, and goes
beyond our needs.

Simple rotation and reflection symmetry
is seen directly in the diffraction pattern,
always with the addition of an inversion
centre if it is not already there. Glide
planes and screw axes cause particular
subsets of reflections to have exactly zero
intensity, according to well-established
rules for these systematic absences. The
effect can be seen in the central rows, both
horizontal and vertical, in Fig. 1.13, where
alternate refiections have zero intensity.

For a unit cell with all angles equal to 90°,
the volume is simply V = abc; if two of
the cell angles are 90° and one is not (as
in this monoclinic example, for which the
non-orthogonal angle is B), then V= abc
sin B. This covers all except the triclinic
system {(and rhombohedral structures,
which are a subset of the trigonal system
in which the standard hexagonal-type
unit cell has 3 rather than 1 lattice point
and the corresponding primitive unit

cell has a=b=¢; o= =7v(z90°—this
may be thought of as a cube that is either
compressed or elongated along one of
its four body diagonals, the other three
no longer showing threefold rotation
symmetry); for the triclinic system

the formula for the unit cell volume,
involving all six cell parameters, is rather
more complicated unless it is expressed
in vector notation.

Be careful of the units in these
calculations; they need to be consistent,
and initial data usually have to be
multiplied or divided by some powers
of 10 to achieve this. For simplicity,
uncertainties in the experimental
measurements are ignored here; this
topic is discussed later.
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Ph
Ph o
Ph Ph

Fig. 1.17 The organic oxepin molecule
used as the first example of density
and symmetry calculations.

The term ‘molecular mass' is generally
used, though some compounds are ionic
rather than molecular; 'mole mass’ is
more appropriate.

The subject of space groups is, in detall,
beyond the scope of this book. The space
group P2;/n (an alternative setting for
the conventional P2,/c, with a different
choice of unit cell axes) is, in fact, the
most common of all 230, accounting for
roughly one-third of all known molecular
crystal structures; its arrangement

of symmetry elements provides

a particularly effective packing of
molecules of general shape. Fortunately,
itis one of the space groups which give
a unique set of systematic absences in
the diffraction pattern. The screw axis
(24), parallel to the unit cell b axis, causes
reflections 0kO to be absent when k is
odd; the glide plane (n), perpendicular
to the b axis and with its glide direction
along the ac face diagonal, causes
reflections hOl to be absent when h+ 1

is odd. The presence of the screw axis
and the perpendicular n-glide plane are
indicated in the space group symbol
P2;/n, the capital letter P indicating a
primitive (not centred) unit cell.

Anon-integer value of Z must always be
rounded down to a suitable integer, of
course; rounding it up would correspond
to solvent with negative mass.

This structure has been published:
Synthesis of highly hindered oxepins and
an azepine from bis-trityl carbenium
ions: structural characterisation by NMR
and X-ray crystallography. K.A. Carey,

W. Clegg, M. R. J. Elsegood, B. T. Golding,
M. N. S. Hill and H. Maskill, J. Chem. Soc.,
Perkin Trans. 1 2002, 2673-2679. The
CSD REFCODE is VACYIL.

To convert between grams for one unit cell (or for one molecule) and atomic
mass units (officially called daltons in SI; these are masses in grams for one mole),
the scale factor is Avogadro’s number.

3.939%1071% 6.023 x 102
2372 daltons

unit cell mass

(1.6)

The mass of one formula unit is just the sum of all the atomic masses, in this
case 500.6 daltons for the formula C3gH,50. From the known (or assumed!) for-
mula mass and the experimentally determined total unit cell mass, the ratio gives
the number of formula units (‘molecules’) per unit cell, conventionally given the
symbol Z.

V4

unit cell mass/formula mass
2372/500.6
4.74

Il

(1.7)

This must be a whole number and appropriate to the symmetry of the crystal
system and space group; the space group for this compound is P2;/n, for which
the expected value of Z is 4.

Clearly there is something wrong here! If the experimental measurements
{unit cell geometry and density) are correct, the answer to the problem must
lie in the chemical formula, which has been assumed, not proved. To find the
true formula mass instead of the assumed one, we must choose an appropriate
integral value for Z, in this case 4, and work backwards, from what we know to
what we do not.

unit cell mass/Z
2372/4
593 daltons

formula mass

It

i

(1.8)

1l

This is 92.4 greater than the previously assumed formula mass of 500.6 and the
difference is, within reasonable experimental error, equal to the molecular mass
for toluene (92.1). The true complete formula of the compound is, therefore,
probably C3gH,50 - C;Hg; for every oxepin molecule in the crystal structure, there
is also one molecule of toluene solvent, incorporated during the crystallization.
This gives a calculated density of 1.229 g cm™.

Such solvent of crystallization is by no means uncommon, and is certainly
not restricted to the familiar case of water of crystallization in many salts obtained
from aqueous solution (hydrates). Solvents often encountered in crystal struc-
tures include methanol, dichloromethane, acetonitrile, and toluene.

Since we have Z = 4 and this is the expected value for the space group, the
asymmetric unit consists of one oxepin molecule and one molecule of toluene;
molecules do not lie in special positions on any symmetry elements, and we
can deduce nothing at this stage about the molecular shape.

As a second example, an ionic compound [(18-crown-6)K][In(SCN)4(py),]
(where py is pyridine) can be obtained from solution in pyridine (which serves
not only as a solvent, but also as a ligand to the indium atom) (Fig. 1.18). It crys-
tallizes in the triclinic system with a = 8.941, b =9.682, c=13.113 A, o, = 87.25,
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B =72.33, y=89.05° giving V = 1080.3 A%, The compound is air-sensitive and
there are other experimental difficulties in measuring the density. In fact, crystal
densities are often not measured at all. Experience shows that, for a wide range
of organic compounds and metal complexes with organic ligands, the average
volume required for a molecule in a crystal structure is about 18 A% per non-
hydrogen atom (hydrogen atoms are not counted). The proposed formula for
this compound has 44 non-hydrogen atoms, so a volume of about 792 A3 is
expected for each cation-anion pair on the basis of this 18 A3 rule. This is rather
less than the measured unit cell volume, but more than half of it, so the unit
cell cannot contain more than one formula unit, and the proposed formula is
incomplete (or incorrect): the cell volume is sufficient for one cation, one anion,
and two or three molecules of pyridine. There are two possible triclinic space
groups: P1, which has no symmetry other than pure translation, and P1, which
has inversion symmetry. Of these, the centrosymmetric space group P1 is far
more common, except for structures of chiral molecules. In this space group, the
asymmetric unitis half the unit cell, the other half being refated to it by inversion
symmetry, so the expected value of Z is 2. Since the volume calculations show
that this structure has Z =1 (so there is only one cation and one anion in each
unit cell), both the cation and the anion must themselves have symmetry, and
must lie on inversion centres. Therefore, the [(18-crown-6)K] * cation and the
[IN(SCN)4(py),] anion are both centrosymmetric. In the case of the anion, this
means that identical ligands must occur in pairs trans to each other, with the
indium atom sitting on the inversion centre. Hence we already know (assuming
the proposed chemical formula is correct apart from additional solvent mol-
ecules, and that the much more common triclinic space group applies) that
the pyridine ligands are trans to each other, not cis, one of the questions to be
answered by carrying out the structure determination. There are probably two
pyridine molecules for each cation-anion pair, lying in general positions and
related to each other by inversion symmetry.

The final example is rather unusual, with a very high symmetry. Crystals of
[Cr(NH3)¢[HgCls), obtained from aqueous solution, belong to the cubic crystal sys-
tem, with a=22.653 A; the unit cell volume is V= a®=11.625 A® and the density has
been measured as 2.44 g cm™>. This gives the mass of the contents of one unit cell:

mass

i

density x volume
= 244gcm3x11.625A3
= 244gecm3x11.625% (10782 cm?

= 2.837x107% g per unit cell (1.9)
then unitcell mass = 2.837x107% x6.023x 107
= 17.090 daltons (1.10)
The mass of one formula unit is 532.0 daltons, so
Z = unitcell mass/formula mass
= 17090/532.0
= 321 (1.11)
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Fig. 1.18 The cation and anion of [(18-
crown-6)K][In{SCN)4{py)2}.

This structure has been published:

Two anionic indium({lll)-thiocyanate
complexes with potassium-centred
complex cations. C. J. Carmalt, W. Clegg,
M.R.J. Elsegood, B. O. Kneisel and N. C.
Norman, Acta Crystallogr. Sect. C 1995, 51,
1254-1258, The CSD REFCODE is YUXXIY.

In addition to Z, the number of chemical
formula units (molecules, ion pairs, etc.)
in one unit cell, crystallographers also
define Z’ as the number of chemical
formula units in the asymmetric unit.
The first exaraple above had 2’ =1 (the
most common situation), while this
second example has 2’ = 0.5. Structures
with Z’ > 1 can sometimes present
difficulties in their determination and
interpretation, and the comparison

of the chemically identical but
crystallographically independent
molecules is often of interest, especially
when they have quite different
geometries.
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This structure has been published: Crystal
structure and vibrational spectroscopy
of hexaamminechromium{I!1)
pentachloromercurate(ll). W. Clegg, D. A.
Greenhalgh and B. P. Straughan, J. Chem.
Soc. Dalton Trans. 1975, 2591-2593,
Having no organic content, it is not
recorded in the CSD.

NHg 13"
HaN o T 4 NH3
\‘Cr'l
HsNY b /NHj
NH;
cl 3-
| .Ci
Cl—Hg'
| Yo
cl

Fig. 1.19

The space group is Fd3¢ (number 228 of the 230). There must, therefore, be
32 complex cations and 32 complex anions in each unit cell (there is no incor-
porated solvent in this example). Reference to the space group tables shows that
the asymmetric unit for space group Fd3c is 1/192 of the unit cell, so a molecule
or ion with no symmetry of its own would have Z = 192. The cation and anion
here have considerable symmetry themselves, with Z’ = 1/6. According to the
tables, for Z =32, the allowed point group symmetries of the ions are Sg and Ds.
Of these, the cation must have S5 symmetry, which is consistent with essentially
octahedral coordination of the Cr by six NH; ligands, and the anion has D; sym-
metry, which means it is a regular trigonal bipyramid with two equivalent axial
and three equivalent equatorial ligands attached to Hg.

This rather extreme case shows that sometimes a great deal can be deduced
about the molecular shape, even before the full structure determination is car-
ried out (Figs 1.19 and 1.20).

Fig. 1.20 The structures of the component ions of [Cr{NH3)¢[HgCls].

There are, of course, numerous instances in which the proposed chemical for-
mula and the experimentally measured unit cell volume are just not compatible,
with no possible integer value of Z, even when possible solvent of crystalliza-
tion is included. In such cases, these preliminary measurements and calculations
show that the material being studied is simply not what was thought. Sometimes
it is starting material or a decomposition product, but sometimes it is a totally
unexpected and unknown material of considerable interest. Without any other
non-crystallographic information, only a full structure determination based on
the measured intensities will show the answer, unless the unit cell can be recog-
nized as that of an already known crystal structure (perhaps with the help of a
computer database, as described in Chapter 2). Further examples of these calcu-
lations, in the form of problems for solution by the reader, can be found at the
end of this chapter (Section 1.10).

1.7 The intensities of diffracted X-rays
Background and notation

The intensities of the diffraction pattern and the arrangement of atoms
in the unit cell of the crystal structure are related to each other by Fourier
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transformation: the diffraction pattern is the Fourier transform of the electron
density, and the electron density is itself the Fourier transform of the diffrac-
tion pattern.

The mathematical equations for crystallographic Fourier transformations
have a fearsome appearance, but they can be understood in terms of the
physical processes which they represent, with the help of the optical ana-
logues presented earlier. Much of the difficulty presented by the Fourier trans-
form equations comes from their use of complex number notation. This can
be regarded as just a convenient way of manipulating two numbers with only
one symbol. The two numerical values associated with each reflection in a
crystal diffraction pattern are the amplitude |F| and the phase ¢ of the diffracted
wave. Figure 1.21 shows two such waves; the amplitude is represented by the
height of the wave, and the phase by the horizontal shift relative to some
chosen origin.

Another, more compact, way of representing the same waves is shown in
Fig. 1.22. Each wave is represented by an arrow with its tail at the centre of the
diagram (the origin); the length of the arrow is proportional to the wave ampli-
tude |F, and the direction shows the phase ¢, with a zero phase angle on the
horizontal axis to the right and other angles (0-360° or 0-2r radians) measured
anticlockwise from there. This is a vector representation: a vector F has both
magnitude |F| and direction ¢, like the arrows in the diagram.

fnstead of the two values of length and direction from the origin, each of the
arrowhead positions could be specified by two coordinates on the horizontal
(A) and vertical (B) axes. The mathematical relationship between the vector and
coordinate representations is in terms of the Pythagoras theorem and simple
trigonometry (Fig. 1.23).

|FP=A"+B% tang=B/A
A=|Flcoso ; B=|F|sing

(1.12)

Forming an image of electron density from a diffraction pattern is the
equivalent of the operation of a microscope lens system and involves add-
ing together waves with their correct relative amplitudes and phases. This is
shown in wave terms for just two waves in Fig. 1.24 and in vector terms in

I~ 04 = 30°
4 [Fil =10

,\ . IF3l =
AN

AL
/X7 X

Fig. 1.24 Addition of two waves to give a resultant wave.

The mathematical process of Fourier
transformation is reversible, and the effect
of performing Fourier transformation

on afunction twice in succession is

to reproduce the original function,
multiplied by a scale factor and by —1;

this is why a simple optical microscope
produces a maghnified, inverted image of
the object being studied.

- ¢y = 30°

NN
Va
X
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Fig. 1.21 Amplitudes and phases of
two waves.
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(¢ =907

by =165°||F,| = 10
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Fig. 1.22 The same two waves as in
Fig. 1.21, represented as vectors.

Fl
b
A

Fig. 1.23 The relationship
between vector and coordinate
representations.
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A3=A1+A2 B
B3 =B+ B,

F
Fy| gl

3 = 83°
|Fal =7 F

>y

Fig. 1.25 The same wave addition as

in Fig. 1.24, as a vector representation.

This means, logically, that i is the square
root of -1, a difficult concept which
leads to the unhelpful and misleading
description (as far as our subject is
concerned) of the two components as
‘real’ and 'imaginary”: they are, in fact,
both equally real!

To avoid cramped superscripts, e? can
also be written as exp(idp). We adopt this
notation from here on.

Fig. 1.25. The A component of the resultant combined vector is simply the
sum of the A components of the individual vectors, and similarly for the B
components. Then the final amplitude |[F| and phase ¢ can be calculated from
the final A and B by equations 1.12. This is true for the combination of any
number of waves.

n
combined A= A+ A, +-+A,= ZA‘_
- (1.13)

n
combined B=B;+B, ++B,,= ZB:’
=1

Clearly, the A and B components must be summed separately and not mixed
up together during the process until the sums are complete. The A components
are terms involving cosines of phase angles, and the B components are analo-
gous terms involving sines of phase angles (equation 1.12).

In practice, computer programs to calculate crystallographic Fourier trans-
forms do treat the A and B components of the individual reflections separately in
this way. For convenience in showing the mathematical relationships, however,
avoiding the need for two versions of every equation, the two components can
be represented by a single symbol using complex number notation. A complex
number has two parts, which are kept separate by multiplying one of them by
the symbol i. A full treatment of complex number theory is beyond the scope or
requirement of our subject. Here we need only a few of its most important fea-
tures. The ‘non-i-terms’ and the ‘i-terms’ are equivalent to two orthogonal coor-
dinates, the components of two-dimensional vectors (the horizontal and vertical
axes in Figs 1.22 and 1.25). Multiplication by i is equivalent to rotating a vector by
90° anticlockwise, for example from the A axis to the B axis, so multiplying by i is
a 180° rotation which turns a vector F into its opposite vector ~F. So we can write
one symbol F for a wave, where

F=A+iB (1.14)

From the previous relationship between the vector and coordinate represen-
tations, and using a property of complex numbers whereby e = cos¢ + i sin¢,
the above equation becomes

F = |Flcoso+i|F|sing
= |F|(cosd+isind) (1.15)
so F=|F e

and we have the amplitude |F] and phase ¢ represented by the one symbol F, a
complex number. Remember that each reflection, or diffracted wave, is labelled
by its three indices hkl, so for each reflection

F(hkl) =| F(hki) | explio(hk))] (1.16)

F(hkl) is called the structure factor of the reflection with indices h, k, and /.
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The forward Fourier transform (the diffraction experiment)

The diffraction pattern is the Fourier transform (FT) of the electron density. In
mathematics:

F(hk!)= _[ p(xyz)-exp[2mi(hx + ky +[z)]dV (1.17)

cell

The structure factor (amplitude and phase) for reflection hkl is given by taking
the value of the electron density at each point in the unit cell, p(xyz), multiplying
it by the complex number exp[2mi(hx + ky + Iz)], and adding up (integrating over
the whole cell volume, | dV) these values. Positions in the unit cell are meas-
ured from one corner (théegrigin) and the coordinates x, y, zare in fractions of the
corresponding cell edges a, b, c: for example, the very centre of the unit cell has
coordinates x =1, y =%, z=1%. This calculation can be carried out mathematically
to mimic the observed experimental diffraction of X-rays by a crystal. It needs to
be done for each reflection and it produces a set of calculated structure factors,
each with an amplitude |F(hkl)| and a phase ¢(hkl). In the physical experiment
itself, of course, only the amplitudes are obtained.

This equation shows how each bit of the structure contributes to every reflec-
tion. Since all the unit cells are identical, the total diffraction pattern of the crystal
is just the Fourier transform of the contents of one unit cell multiplied by the
number of unit cells in the crystal, so there should be just a simple scale factor
between the observed and calculated sets of amplitudes.

The equation in this form is not convenient for calculation, because it contains
integration and a continuous function p(xyz). Summation of a finite number of
terms is easier. This can be achieved by expressing the electron density instead in
terms of individual atoms.

One atom scatters X-rays rather like a single circular hole scatters light pass-
ing through it (Fig. 1.14), except that the scattering is by electrons throughout
the atom and not just on its edges; this means no outer rings of brightness are
formed. In the forward direction (26 = 0°) all the electrons scatter X-rays exactly
in phase, but at all other angles there are partial destructive interference effects,
so the intensity falls off as & increases. The variation of intensity with angle (usu-
ally shown as a function of (sin)/A, so that it is the same for X-rays of different
wavelengths) is called the atomic scattering factor f{(6) and has the general form
shown in Fig. 1.26. It is measured in units of electrons; f(0), the scattering factor
for zero deflection, is equal to the atomic number. These functions are known
for atoms and ions of all elements and are obtained from quantum mechanical
calculations; they are available in standard reference tables and incorporated
into many crystallographic computer programs.

Atoms in crystalline solids, however, are not stationary; they vibrate, to an
extent which depends on the temperature, and this effectively spreads out the
atomic electron density and increases the interference effects. The atomic scat-
tering factor falls off more rapidly with increasing angle, and is not the same for
all atoms of the same element, because they generally have different amounts
of vibration unless they are symmetry-equivalent. For an atom which vibrates

oxygen

0 (sin@)/A

Fig. 1.26 X-ray atomic scattering
factors for carbon and oxygen.
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0 (sinB)/A

Fig. 1.27 The effect of atomic
vibration on X-ray scattering factors;
in this example, B = 8n2U =4 AZ,

Note that there is a diffracted wave
F(000), for which 8 =0 and so |F(000)|

is the sum of all the zero-angle atomic
scattering factors; this is just the total
number of electrons in one unit cell.

The intensity of this wave cannot be
measured experimentally, because

it coincides with the majority of the
incident X-ray beam, which passes
undeflected through the crystal. All other
|F(hkt)| values are smaller than |[F(000},
which represents all the atoms scattering
together cooperatively.

The forward and reverse Fourier
transforms differ in that one has a
negative sign inside the exponential
term. The unmeasured term F(000) must
also be included; it is equal to the total
number of electrons in one unit cell.

equally in all directions (isotropic vibration), the effect is to multiply the atomic
scattering factor by a term containing an isotropic displacement parameter
U (see Fig. 1.27), which represents a mean-square amplitude of vibration for the
atom, a measure of how much it is vibrating.

, 8m2Usin? 0
f'(6)= }‘(9)-exp(—-—k2 ] (1.18)
Note that U has units A? and the extra term has a value < |. The larger the value
of U, the more the curve falls off at higher Bragg angles.
With discrete atoms instead of a continuous electron density function, the for-

ward Fourier transform takes the form
F(hkl)="Y" f;(6)-exp(~8m2U;sin? 6 / A?)-exp[2mi(hx ; + ky +lz;)] (1.19)
1 2 3 4 5

The summation is made over all the atoms in the unit cell, each of which has
its appropriate atomic scattering factor f; (a function of the Bragg angle 6), a dis-
placement parameter U;, and coordinates (x; y;, z) relative to the unit cell origin.
This summation must be carried out for every diffracted wave F(hki).

Although equation 1.19 looks complicated, it can be readily understood in
terms of the physical process it represents. Every atom scatters X-rays falling on
it (terms 3 and 4 in the equation). In any particular direction (hki), these separate
scattered waves from each atom have different relative phases which depend on
the relative positions of the atoms (term 5), and the total diffracted wave in that
direction (term 1) is just the resultant sum (term 2) of the X-rays scattered by the
individual atoms. The equation just represents the combination or addition of
many waves to give one resultant wave in each direction; the graphical equiva-
lent for two waves was given in Fig. 1.24,

The reverse Fourier transform (the recombination calculation)

The electron density is the reverse Fourier transform (FT™) of the diffraction
pattern. Because the diffraction pattern of a crystal consists of discrete reflec-
tions rather than a diffuse pattern, this Fourier transform is a summation, not an
integral.

p(xyz):&2F(hkl)-exp[—2ni(hx+ky+lz)]

hkl
or p(xyz):%2|F(hkl)]-exp[i(l)(hkl)]-exp[—27ri(hx+ky+lz)] (1.20)
hk/t

1 2 3 4 5

Remember that F(hkl) is a complex number, containing both amplitude
and phase information, as is shown explicitly in the second version. The
term 1/V is necessary in order to give the correct units (structure factors, like
atomic scattering factors, have units of electrons, but electron density is elec-
trons per A3,
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The summation is performed over all values of h, k, and J, i.e. all the reflections
in the diffraction pattern contribute to it. In practice, reflections are measured
only to a certain maximum Bragg angle, but this is usually unimportant because
the higher angle reflections are weaker and so contribute relatively little to the
sums. The summation must be carried out for many different coordinates x, y, z
in order to show the variation of electron density in the unit cell and hence locate
the atoms where the electron density is concentrated in peaks.

As for the forward Fourier transform, this equation is readily understood in terms
of the (unachievable!) physical process it represents. The image of the electron den-
sity (1), which originally generated the diffraction pattern, is obtained by adding
together (2) all the diffracted beams, with their correct amplitudes (3) and phases (4,
5); the correct relative phases here include the intrinsic phases of the waves them-
selves, relative to the original incident beam (4), and an extra phase shift appropri-
ate to each geometrical position in the image relative to the unit cell origin (5).

The relative phase shifts (5) can be calculated as required, but the intrinsic
phases ¢(hkl) of the different reflections are unknown from the diffraction experi-
ment. This means that it is not possible simply to calculate the reverse Fourier
transform once the diffraction pattern has been measured. Here, once again, in
the mathematical basis of the method we see the nature of the ‘phase problem’.

1.8 Sources of X-rays

So far, uses of X-rays have been discussed, but nothing about how they are pro-
duced. Details are not important for our purposes, and only a brief outline is
given here for completeness.

In most laboratories the standard source of X-rays is an X-ray tube (Fig. 1.28).
Until fairly recently this was usually an evacuated enclosure of glass (or ceramic
material) and metal construction which produces electrons by passing an elec-
trical current through a wire filament, accelerates them to a high velocity by an
electrical potential of typically 40 000-60 000 volts across a few millimetres, then
stops them dead with a water-cooled metal block. Most of the electron kinetic
energy is converted to heat and wasted, but a small proportion generates X-rays
by interaction with the target metal atoms. Among other effects occurring, if an
electron in a core atomic orbital is ejected (ionized), an electron from a higher
orbital can take its place and the drop in energy produces emission of radiation of
a definite frequency and wavelength (AE = hv = hc/A). Several such transitions are
possible, so the output of radiation from the target consists of a series of intense
sharp maxima, superimposed on a broad-spectrum background of radiation from
non-quantum processes (Fig. 1.29). One particular peak, usually the most intense,
can be selected and the rest of the output suppressed by exploiting the Bragg
equation: the beam of radiation falls on a single crystal of known structure (often
graphite} suitably oriented so that the desired wavelength satisfies the equation;
only this wavelength is diffracted at the appropriate angle, the others pass straight
through the monochromator crystal. The most commonly used X-ray tube tar-
get materials are copper and molybdenum, which give characteristic X-rays of
wavelengths 1.54184 and 0.71073 A respectively.

cooling water

X-rays | electrons

Fig. 1.28 A schematic representation
of a conventional laboratory X-ray
tube.

Here, h is Planck’s constant, not to
be confused with hk! indices of X-ray
reflections!

intensity

A

Fig. 1.29 The spectrum of X-rays
emitted by an X-ray tube.
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electron beam

synchrotfron radiation

Fig. 1.30 The production of
synchrotron radiation from relativistic
electrons in a special type of particle
accelerator.

First-generation synchrotron sources
were built primarily as particle
accelerators and colliders for use

in high-energy physics, and their
production of electromagnetic radiation
was considered an unfortunate loss of
energy by their main users; in some
cases it could be used without significant
disturbance of the main operational
purpose. Second-generation sources
were designed with the stable and
reliable production of synchrotron
radiation as their main aim, and would
be better referred to as storage rings; the
radiation is produced by the bending
magnets. Third-generation sources
make extensive use of insertion devices,
though the bending magnets also
provide useful output.

Various developments of the basic X-ray tube produce higher intensities.
The main limitation is the amount of heat produced. For a more powerful elec-
tron beam, the target must be constantly moved in its own plane to spread the
heat load, producing ‘rotating anode’ X-ray tubes, which can provide about
one order of magnitude more intensity. Alternatively, unwanted melting of the
target can be avoided by using a liquid metal target in the form of a jet of
an alloy of gallium, indium, and tin, which is a liquid at room temperature;
the wavelengths of X-rays produced from gallium and indium are 1.3414 and
0.5151 A respectively.

An alternative approach is to focus the electron beam in the X-ray tube with
electric and/or magnetic fields so that the X-rays are generated from a much
smaller spot on the target; in such microfocus tubes, a higher X-ray intensity can
be obtained from a much lower electron current, reducing both the power con-
sumed and the heat generated. The X-rays can be collected, monochromated,
and effectively focused by a range of available advanced X-ray optics compo-
nents including curved and graded multilayer materials which have a gradual -
change of chemical composition, and hence of lattice spacing, in one dimension,
and planar or curved grazing-incidence mirrors. Combinations of these recent
technological developments can provide increases in X-ray intensity of several
orders of magnitude over conventional X-ray tubes.

Even more intense X-rays, as well as other parts of the electromagnetic spec-
trum, are produced in a synchrotron storage ring (Fig. 1.30), in which electrons (or
positrons) moving at almost the speed of light are constrained by magnetic fields
to move in a circle usually hundreds of metres in diameter. The radiation, emitted
tangentially from the ring, has a continuous spectrum, ranging from infrared to
X-rays, from which a single wavelength of any value can be selected by a mono-
chromator or other optics (the X-rays are ‘tuneable’) and is many orders of mag-
nitude more intense than the output of laboratory X-ray sources. Such facilities,
of course, are vastly more expensive and are national or international facilities
with a wide variety of other scientific applications in addition to X-ray diffraction.

While the bending magnets of a synchrotron source themselves produce
X-rays, and these have been successfully exploited in so-called second-gener-
ation synchrotrons from around 1980 onwards, most synchrotron sources in
current operation are third-generation, in which the main X-ray output is from
complex arrays of many magnets (known as wigglers and undulators depending
on their detailed construction) located in the straight sections between bending
magnets and hence called insertion devices. A fourth generation of sources is
now being planned and constructed, based on very long accelerators and undu-
fators and known as X-ray free-electron lasers (XFELs); these will give very short
and rapid pulses of extremely high-intensity X-rays and will further extend the
power of crystallography and other sciences.

Although synchrotron sources have many special properties that can be
exploited in a wide range of experiments related to crystallography (and also
in other forms of scattering, spectroscopy, imaging and other applications), the
most important points for our purpose here are that they provide extremely high
intensities of X-rays, these X-ray beams are usually finely focused for beneficial
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use with very small crystals, and the X-ray wavelength can be selected through
optical components from the broad spectrum available. Some of the benefits
will be demonstrated later with case studies (Chapter 3) and with reference to
particular problems and applications.

1.9 Summary

X-ray crystallography is based on the diffraction of X-rays by a crystalline
material, a cooperative form of scattering, in contrast to spectroscopic
methods, most of which are based on the absorption (or emission) of
electromagnetic radiation.

X-rays are used because they have a wavelength comparable to the size

of atoms and molecules, giving rise to measurable diffraction effects from
crystals. The process resembles the operation of a microscope using visible
light, but the recombination of scattered X-rays by a conventional lens
system is not possible, so it has to be done mathematically. Unfortunately,
only the diffracted X-ray amplitudes (as intensities) are available from the
recorded diffraction pattern, while the relative phases are lost.

The fundamental property of the crystalline state is translation symmetry,
characterized by the concepts of the lattice and unit cell. Crystalline solids
cannot display some symmetry elements possible for single molecules, but
they can show other symmetry elements, with translational components,
that do not occur in finite molecules. Solid-state symmetry is described by
space groups, of which there are 230.

A diffraction pattern from a single crystal consists of discrete reflections’

in a regular pattern. The geometry of a diffraction pattern is related to the
lattice and unit cell geometry through the Bragg equation. The symmetry

of a diffraction pattern is related to the space group symmetry of the crystal
structure. The intensities of a diffraction pattern arise from the detailed
contents of the unit cell, i.e. the identity and positions of atoms in the structure,
the relationship between these being Fourier transformation: the diffraction
pattern is the Fourier transform of the crystal structure, and vice versa.

X-rays are generated from the impact of fast-moving electrons on a metal
target in a range of laboratory equipment; the most intense X-rays are available
from national and international synchrotron and free electron laser facilities.

1.10 Exercises

Exercise 1.1

Why are X-rays used, rather than any other part of the electromagnetic spectrum,
for crystal structure determination? Why is it not possible to build and use an
X-ray microscope to observe molecules directly? Why is a single crystal used for
the experiment?
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Exercise 1.2

For the cubic crystal system, many calculations are easier than in lower-
symmetry systems. For example, the spacing of lattice planes dyy is simply
a/~ (W +k?+1?) . For a cubic unit cell with a = 10A, calculate the d spacings
for the lattice planes (1 00), (2 00), (0 2 0) and (1 1 1). Using the Bragg equation
(1.3), calculate the Bragg angle 8 for the reflections from these lattice planes, with
an X-ray wavelength A =0.7A.

Exercise 1.3

What is the smallest observable d spacing in a diffraction pattern measured with
X-rays from a copper target (A = 1.54184 A)? What implication does this have for
the feasibility of resolving individual atoms in an electron density map?

Exercise 1.4

The complex[(C;gH1gN4S)HgBr;] {relative molecular mass 682.8) crystallizes from
solution in acetonitrile (CH3CN) to give triclinic crystals with a unit cell volume of
1113.5 A3 and with a density of 2.16 g cm™. Calculate the number of molecules
of complex per unit cell and the number of molecules of solvent per unit cell.

Exercise 1.5

A compound of supposed formula K * [In(NCS),(bipy)]”, where bipy is the chelat-
ing ligand 2,2’-bipyridyl, is obtained from solution in THF (C4H0) as monoclinic
crystals with a =14.985A, b = 17.375A, ¢ = 16.437A, B = 92.23°. The density of
the crystals is 1.40 g cm™, and the relative molecular mass for the above formula
is 542.4. Calculate the unit cell volume and deduce the number of cations and
anions per unit cell (expected values are 2, 4, or 8) and the number of molecules
of THF per cation (which are likely to be coordinated to it).



2.1 Introduction

Having examined the physical basis of X-ray crystallography and its expression in
mathematical notation, and thereby outlined the main principles and concepts
of the subject, we consider in this chapter how the method works in practice. The
various successive steps of a typical crystal structure determination are described
in general terms and illustrated with appropriate examples. A number of com-
mon potential problems are described together with ways of dealing with them.
Fig. 2.1 shows an outline of crystal structure determination in a simplified form as
aschematic flowchart. The steps involved are in the boxes. To the right of each is list-
ed the information obtained and to the left an indication of the timescale involved
in carrying out the operation. Some of these times vary considerably, depending on
the quality of the sample being studied, the resources available for the work, the
size and complexity of the structure, the skill of the crystallographer, and a certain
amount of luck, and most of them become shorter as technigues advance.

2.2 The preparation and selection of samples

The sample must be a single crystal, in which all the unit cells are identical and are
aligned in the same orientation, so that they scatter cooperatively to give a clear
diffraction pattern consisting of individual X-ray beams, each in a definite direc-
tion. Outward appearance such as regularity of shape is not important, but rather
the internal regularity of the molecular arrangement on a well-defined lattice;
many single crystals have an unpromising irregular shape, while polycrystalline
and even non-crystalline materials such as glass may have beautiful external forms.

The intensities of X-rays diffracted by a crystal depend on the crystal size, the
unit cell volume, and the types and numbers of atoms in the unit cell, as well as
on the incident beam intensity; an approximate formula for the relative scatter-
ing power of a crystal is as follows.

Y\_C/%i“i‘x f2 1)

cell  cell

In reality, all crystals have faults in their
internal structure, so unit cells are not
exactly aligned. The range of misalignment
is called the mosaic spread, because the
slightly misaligned sub-microscopic blocks
of a real single crystal resernble the tiles

in a mosaic (Fig. 2.2). For a good quality
single crystal, the mosaic spread is only a
fraction of a degree.
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Fig.2.2 Mosaic structure of a single
crystal (highly exaggerated).

Time taken Operation Information obtained
» 1. Select a suitable crystal
) and mount it
I abcofy
. 2. Obtain unit cell geometry and crystal system, space group?
mins/hours o ; . . h
preliminary symmetry information | information on molecular
I symmetry?
hours/days (3. Measure intensity data ) II;slt<s/(I)f(;(l)
s : I - N lists of:
mins 4. Data rgductlon (yarlous hkIFo(F)or
corrections applied to data hkIF? o(F?)
(5. Solve the structure: h ‘
from mins (a) Patterson methods some or all non-H
upwards (b) Direct methods atom positions
L (c) Other methcids )
" M "
ins/h 6. Complete the structure — find all atom positions
minsfhours all the atoms: Fourier and (approximate)
difference Fourier syntheses

mins—days (7. Refine the structure model

I

? (8. Interpret the results

'

Fig. 2.1 Aflowchart for the steps involved in a crystal structure determination.

) atom positions and
displacement parameters

molecular geometry,
packing arrangement, etc....

The diffracted intensities are directly proportional to the crystal volume, but
X-rays are also absorbed by crystals and this effect increases exponentially with
crystal dimensions; X-ray absorption affects the measured intensities, intro-
ducing a systematic error, for which a correction may need to be made (see
Section 2.6). The amount of absorption (as well as the intensities of diffraction)
depends on the X-ray wavelength and on the chemical compasition, and can
be very high when heavier elements are present. Systematic errors are also
produced if the crystal is not completely bathed in the incident X-ray beam
throughout the diffraction measurements, and most X-ray beams are less than
1 mm in cross-section; those from microfocus tubes and synchrotron sources
can be 100-200 um (microns) or even smaller. A typical acceptable crystal size
for a conventional X-ray source is a few tenths of a millimetre; a smaller size
and uniform dimensions are preferable for samples containing heavy atoms,
and very small crystals can be examined with intense synchrotron radiation.
Such crystals, much smaller than the popular image, usually need to be exam-
ined and handled under a microscope. A microscope with polarizing filters
provides some useful optical tests of the quality of a crystal, but the ultimate
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test is the X-ray diffraction pattern. Crystals can be cut with a sharp scalpel, but
this sometimes adversely affects the crystal quality.

Suitable crystals are sometimes produced in the initial synthesis of a com-
pound, but often recrystallization is necessary. This process can be difficult,
unpredictable, frustrating, and time-consuming and is not guaranteed to suc-
ceed; it is often described as an art rather than a science. The objective is quite
different from that of recrystallization in synthesis—good quality single crystals
of suitable size, with high yield not a priority—though both aim for a pure mater-
jal, and special techniques have been devised. It is not uncommon for a crystal
structure to incorporate molecules of solvent, so the solvent itself is one of the
conditions which can be varied in the quest for suitable crystals.

One single crystal is separated from the rest of the sample and is mounted on a
device which will hold it firmly in the X-ray beam; a precision of hundredths of a
degree is required. Since the diffraction experiment involves rotating the crystal in
the beam during exposure, as explained in Section 2.3, lateral adjustments need to
be available to position the crystal accurately on each rotation axis. For some less
commonly used equipment, it is an advantage if one unit cell axis can be aligned
in a particular direction, so there may also be provision for angular adjustments.
Such a device, known as a goniometer head, is shown in Fig. 2.3. Apart from the
sample itself, no crystalline material should be in the X-ray beam, so the crystal is
usually attached (with a minimum quantity of an amorphous adhesive) to a fine
glass fibre attached to the goniometer head (Fig. 2.4), or to a specially designed thin
plastic mount or a fine fibre loop. The glue and mount contribute a small amount
to general background scattering but not to the sharp diffraction maxima.

Samples which are air-sensitive or which degrade by loss of loosely bound solv-
ent require special treatment. Handling them in an inert-atmosphere glove-box is
possible but difficult, especially if the crystals are very small. They may be sealed in
thin-walled glass capillary tubes, an operation which is considerably easier if brief
exposure to the air can be tolerated. Alternatively, the crystals can be coated with an
inert viscous oil and then manipulated without difficulty under a normal microscope
in the open atmosphere; if the X-ray examination is to be carried out at a sufficiently
low temperature that the oil vitrifies to a glass, it can be used simultaneously as an
adhesive and a protective coating, and this provides a particularly elegant and simple
solution for materials of even extreme air sensitivity (Fig. 2.4). Since collecting dif-
fraction data at low temperature usually leads to a better result because of reduced
atoric motion in the crystal (and is now considered the norm rather than the excep-
tion), this technique is widely used, whether samples are air-sensitive or not.

2.3 Measuring diffraction patterns

An X-ray diffraction experiment involves several equipment components: a
source of X-rays, a suitable mounted crystal, a device for rotating the crystal
around one or more axes in the X-ray beam (variously called a camera, goniom-
eter, or diffractometer), an X-ray-sensitive detector, possibly a device for cool-
ing (or heating) the crystal during the experiment, and computer control for the
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Fig. 2.3 Schematic representation of
a goniometer head with a mounted
crystal. Such devices were originally
used on equipment for the optical
measurement of angles between
well-developed flat faces of crystals,
which is the derivation of the word
goniometer (angle-measuring device).
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Fig. 2.4 Crystal mounting methods:
(a) glued to a fine glass fibre (or other
non-crystalline mount); (b) enclosed
in a capillary tube; (c) coated with an
inert oil for subsequent cooling.



36 K-RAY CRYSTALLOGRAPHY

It is also possible, in more specialized
experiments, to control the pressure
and/or the chemical environment-of the
crystal, such as providing a particular
gaseous atmosphere.

various movements and for storage of the measured data. In order to interpret
and use a diffraction pattern, indices hkl must be assigned to each individual
reflection; to achieve this, the unit cell must be obtained, together with a know-
ledge of its orientation relative to the goniometer head on which the crystal is
mounted. Three different types of equipment widely used at different stages in
the development of X-ray crystallography, together with examples of their meas-
ured diffraction patterns, are shown in Fig. 2.5.

intensity

_
() crystal rotation

Fig. 2.5 (a) One type of X-ray camera and (b) an example of a photograph produced by it; (c)
a serial four-circle diffractometer and (d) a typical single reflection profile obtained by rotating
the crystal through the correct Bragg setting; (e) a modern area-detector diffractometer and (f)
an image recorded for a few seconds with a small crystal movement.
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For about the first 50 years of X-ray crystallography, diffraction patterns were
usually recorded on photographic film (Fig. 2.5(a) and (b)). Although this is now
mainly of historical interest, there are some basic features of film-based meas-
urements that largely disappeared when so-called serial diffractometers became
commonplace from around the 1960s but returned in modified form with the
widespread introduction of area-detector diffractometers in the 1990s.

The diffraction conditions represented by the Bragg equation are severe, and
will be satisfied for only very few reflections for a randomly oriented station-
ary crystal in an X-ray beam, because few of the lattice planes will fortuitously
be oriented at the correct 8 angle, so the pattern recorded on film (or an area
detector) will show only a few spots (Fig. 2.6(a)). In order to bring more lattice
planes into a reflecting position, the crystal must be rotated in the X-ray beam
(Fig. 2.6(b}). Recording the whole of the diffraction pattern on one film, how-
ever, leads to severe overlap of the reflections occurring at different stages of
the rotation, because three-dimensional information is being compressed into a
two-dimensional record, and its measurement and interpretation are impossible
(Fig. 2.6(c)).

Instead, selected portions of the diffraction pattern need to be recorded sepa-
rately on different films, or at different times on an area detector. The interpret-
ation of photographically recorded patterns is greatly assisted if the rotation
of the crystal is about the direction of a unit cell axis, and further simplifica-
tion results from some types of correlated movement of the film with that of the
crystal, and from the use of metal screens of appropriate shape that intercept
most of the reflections and allow through to the film only those belonging to
one particular two-dimensional slice through the three-dimensional diffraction
pattern. Assigning hkl indices to the individual reflections is then a simple mat-
ter of counting along obvious rows of spots. Several types of X-ray camera have
been developed over many years to achieve such effects, each operating with a
particular geometrical combination of crystal orientation, film and screen shape,
and film movement. The geometry, symmetry, and intensities of the diffraction
pattern can all be obtained from a suitable set of photographs, and many earlier
crystal structuresiwere determined in this way, but electronic X-ray detectors
offer major advantages of speed, precision, and convenience.

(@) (b)

Fig. 2.6 (a) A diffraction pattern recorded on an electronic area detector from a stationary
crystal; a similar pattern would be obtained on a photographic film, which is effectively a
non-electronic area detector; (b) a diffraction pattern recorded from a 5° rotation of the same
crystal; (c) a diffraction pattern recorded from a full 360° rotation of the same crystal.

An X-ray camera is an instrument for
recording X-ray diffraction patterns on
photographic film. A diffractometer is
an instrument which records diffraction
patterns by means of some kind of
X-ray-sensitive detector other than
photographic film, usually involving the
conversion of incident X-ray energy into
an electronic signal, possibly via visible
light in a two-stage process.
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A scintillation counter contains a
material, such as thallium-doped sodium
iodide, which produces light in the
visible region when X-rays fall on it. The
light is detected and the signal amplified
by a photomultiplier, so that the overall
effectis an electrical pulse for each

X-ray photon incident on the face of the
detector.

From around the 1960s, computer-controlled diffractometers became the
standard means of collecting diffraction data. Instead of photographic film, an
electronic device is used which is sensitive to X-rays. The most commonly used
detector for about the next 30 years, a scintillation counter; is typically a few millime-
tres in diameter and so is capable of detecting and measuring only one reflection
at a time; such devices are known as serial diffractometers. For each reflection, the
detector must be moved round one axis {usually vertical) to the correct 20 angle.
Because the detector can see only reflections which occur in the horizontal plane,
more than one axis of rotation is needed for the crystal. The most widely used
types of diffractometer have three rotation axes for the crystal, giving more than
enough freedom, so that there is even a choice of settings possible for many of the
reflections. With one of these four-circle diffractometers reflections (positions and
intensities) are observed one ata time, the crystal and detector being moved under
computer control from each one to the next in sequence (Fig. 2.5 (c) and (d)).

More recently, X-ray detectors became available which record over a consid-
erably larger area and are position-sensitive: a number of incident beams can be
recorded at the same time, and their positions as well as intensities are known.
There are various types of area detectors based on different technologies, each
with particular advantages and disadvantages of size, sensitivity, spatial reso-
lution, speed of read-out, and cost; they can be regarded simply as electronic
equivalents of photographic film in many respects. An area detector can replace
the scintillation counter of a four-circle diffractometer, but it is also possible to
reduce the number or range of rotation axes for the crystal, because of the size of
the detector; it is no longer necessary to bring all reflections into the horizontal
plane in order to record them (Fig. 2.5 (e) and {f)).

Two particular types of area detectors are currently in widespread use. The
majority of diffractometers use a charge-coupled device (CCD), similar to the sen-
sor in a digital camera or camera phone; the CCD does not directly detect and
record X-rays, but relies on an intermediate phosphor sensor that converts the
X-ray energy to light. A CCD is an integrating device, in the sense that the incident
signal is built up over a period of time (usually seconds) and then read out electron-
ically, so recording and read-out alternate in its operation and the crystal needs to
be moved in steps to record a complete diffraction pattern. More recent so-called
pixel detectors record the incident X-rays directly and instantaneously, with simul-
taneous read-out, so they can operate continuously while the crystal is rotated at
a constant speed; they are much faster and are capable of recording a wider range
of intensities (a higher dynamic range) without overloading their capacity. They are
particularly valuable for synchrotron sources. They will undoubtedly displace CCD
detectors in most crystallography applications in coming years.

2.4 Obtaining unit cell geometry and symmetry

Both photographically and with a diffractometer the unit cell geometry can be
measured from a preliminary subset of the complete diffraction pattern. The key
step is assigning the correct indices hkl to each of the observed reflections. From
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these and the measured Bragg angle for a few reflections, the six unit cell param-
eters can be calculated via the Bragg equation and modified versions of it appro-
priate to the geometry of the particular camera or diffractometer being used.

With diffractometers, the crystal is usually mounted in a random orientation,
and this has to be determined as well as the unit cell geometry. With a serial dif-
fractometer, some tens of reflections of moderate to high intensity are located by
simply driving the various motors while monitoring the detector output for a sig-
nal significantly above background (a blind search, all under computer control);
with an area detector, a small number of initial images usually provides a few
hundred suitable reflections. From their positions, the crystal orientation, unit
cell geometry, and reflection indices have to be determined simultaneously, by
calculations which are not simple and are usually regarded as computer ‘black-
box’ methods, but they are all based essentially on the Bragg equation. The pro-
cess usually takes only a few minutes. With a serial diffractometer, it is necessary
to have the unit cell and orientation before the complete set of reflection inten-
sities can be measured, but an area-detector machine can be set to collect all
available data (assuming no symmetry) without this knowledge and the unit cell
can be derived from the full set of data afterwards.

At this stage, it may be possible to assign the correct space group by compari-
son of intensities which are equivalent by symmetry, and by noting that certain
special subsets of reflections have zero intensity (Fig. 2.7), which is an effect of
symmetry elements with a translation component (glide planes and screw axes),
but the decision is made more reliably on the basis of the complete data set
later. We have already seen examples of how this may provide some information
about the structure, such as molecular symmetry or presence of solvent.

Of course, the initial examination of a crystal with X-rays also shows the qual-
ity of the diffraction pattern, from which a decision is made whether to proceed
with the full experiment (and how to do this) or look for a better crystal.

2.5 The measurement of intensities

Although diffraction intensities can be measured from photographic films, this
is now rarely done. It involves estimating the degree of blackening in each spot,
which can be achieved either by visual comparison with a calibrated scale or
by measuring the absorption of a beam of light passed through the film. Some
reflections are too weak to be seen above the general level of background scatter-
ing on the film, and these are labelled as ‘unobserved'; usually no numerical value
is recorded for their intensities, and they are not used in the successive calcula-
tions. The process of estimating intensities may take several weeks, depending on
the size and symmetry of the structure (and hence the number of photographs
required to record the complete data set) and the overall intensity of diffraction.

A four-circle diffractometer measures intensities one at a time in an auto-
matic, computer-controlled serial process. For each reflection the crystal and
detector are driven to the appropriate positions to satisfy the Bragg equation
and bring the diffracted beam into the detector in the horizontal plane, and the
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Fig. 2.7 Part of a diffraction pattern
(the central section of Fig. 1.13)
showing systematic absences
(alternate reflections missing on the
central horizontal and vertical rows)
due to screw axes.
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The unique set of data, up to a particular
maximum Bragg angle, is the total set

of reflections which are independent of
each other by symmetry. Application of
symmetry to the unique set produces all
the reflections which can be measured.
For example, in the centrosymmetric
triclinic case the diffraction pattern

has only inversion symmetry, and the
unique set is exactly half of the total
available data: each reflection h, k, I'is
equivalent to the reflection —h, —k, —I. For
a centrosymmetric monoclinic structure,
the unique set is one quarter of the total,
and for centrosymmetric orthorhombic
itis one eighth.

A previous term for standard uncertainty,
still in wide use, is estimated standard
deviation (e.s.d.). Itis an estimate of

the spread of values which would be
obtained if the measurements were
repeated many times.

total ‘integrated intensity’ is measured while the crystal is rotated through a small
angle from one side of the Bragg position to the other to allow for the mosaic
spread of the crystal, which produces a peak profile of a few tenths of a degree
rather than a sharp spike of intensity at one angle (Fig. 2.5(d)). Some diffractom-
eter systems carry out a detailed statistical analysis of the reflection profile shape,
which provides more reliable results for weaker reflections.

With an area-detector diffractometer, many diffracted beams are recorded
simultaneously. Usually the crystal is rotated about one axis, and several such
scans are performed in order to obtain the complete diffraction pattern. With a
CCD detector, each exposure covers a small angular range; reflections are usu-
ally spread over more than one image and sophisticated computer analysis of
large quantities of data is required. With a pixel detector, continuous scanning
and simultaneous read-out are possible, giving much faster data collection.
Intensities of reflections are extracted from the raw images by sophisticated
profile-fitting, integration and background subtraction techniques. Among
other advantages, area detectors usually provide a high degree of redundancy
of symmetry-equivalent data and of the same reflections measured more than
once in different crystal orientations.

The crystallographer must make some decisions about the data collection
procedure. These include the maximum Bragg angle to be measured (reflec-
tions at higher angles are generally weaker but add to the precision of the final
structure if they have measurable intensities), the time to spend on each meas-
urement (each single reflection, image, or scan), and whether to ensure only
the complete coverage of the unique set of data (a fraction of the total pat-
tern depending on the space-group symmetry) or to include more symmetry-
equivalent reflections, which takes fonger but again improves the quality of
data overall and gives a confirmation of the symmetry. The time taken to col-
lect the intensity data on a four-circle diffractometer depends very much on
these decisions and on the size of the structure; a larger structure gives more
reflections to the same maximum Bragg angle. It takes at least overnight and
usually several days. Data collection typically takes only a few hours with a
CCD, minutes with a pixel detector, independent of the size of the structure,
since a larger structure just gives more simultaneous reflections, but longer
exposures are advisable for weakly scattering samples. Here the use of high-
intensity X-ray sources and particularly synchrotron radiation brings a substan-
tial improvement.

The result of this process, from whatever equipment is used, is a list of
reflections, usually thousands of them, each with hk! indices and a measured
intensity. In addition, from diffractometer measurements, each intensity / has
an associated standard uncertainty (s.u.), o(l), which is calculated from the
known statistical properties of the X-ray generation and diffraction processes,
and is a measure of the precision or reliability of the measurement. Other
information available includes the directions of the incident and diffracted
beams for each reflection, together with details of its position on the detector
face, time of recording, etc,, for use in calculating corrections for absorption
and other effects.
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2.6 Data reduction

We have previously seen that the intensity of an X-ray beam is proportional to
the square of the wave amplitude. The measured intensity is affected by vari-
ous factors, however, for which corrections must be applied. The conversion of
intensities | to ‘observed structure amplitudes' |F| (o = observed) or F,* and, cor-
respondingly, of s.u.s o(l) to o(F,) or o(F,2) is known as data reduction and has
several components.

There are corrections associated with the data collection process, which are
geometrical in nature. These are a function of the geometry of the equipment
and so are instrument-dependent. There is also a correction needed because
reflected radiation is partially polarized (a phenomenon exploited in the use
of polaroid sunglasses, for example). These geometrical corrections, known as
Lorenz-polarization factors, are well known, and are easily and routinely made.

A correction may also be needed for changes in the incident X-ray beam inten-
sity or in the scattering power of the crystal during the experiment. The former is
particularly important for synchrotron radiation, which may fluctuate somewhat
or decay gradually, depending on the details of the synchrotron operation, and
the latter may be caused by some decomposition or physical deterioration of the
sample in the high-energy X-ray beam. The effect of both is to make intensities
change with time or with image sequence number. A correction can be made for
serial diffractometer data on the basis of reflections which are measured repeat-
edly at intervals during the data collection to monitor changes. For area detect-
ors, these corrections are usually made at the same time as those for absorption
and related effects.

Where absorption effects are significant an appropriate correction must be
made. Each reflection is affected differently by absorption, because the absorp-
tion depends on the path length of the X-rays through the crystal, and this varies
as the crystal orientation is changed (Fig. 2.8). Many different types of absorption
correction are used. Some are based on careful measurement of the crystal shape
‘and dimensions and calculation of path lengths; others are based on comparison
of intensities of symmetry-equivalent reflections, which should be equal but are
not because of absorption effects. The high degree of redundancy of equiva-
lent and repeated reflections from area detectors provides a convenient basis
for the simultaneous correction of effects due to incident intensity variations,
crystal absorption of X-rays, non-uniform exposure of the entire crystal to the
X-rays, and other factors. Individual scale factors for the diffraction images are
refined together with other parameters that model absorption effects (spherical
harmonics, familiar to chemists as the mathematical functions for atomic orbit-
als, are often used) to make the intensities of symmetry-equivalent reflections as
nearly equal as possible.

The data reduction process may also include the merging and averaging of
repeated and symmetry-equivalent measurements in order to produce a unique,
corrected, and scaled set of data (though sometimes this is performed by pro-
grams used later in solving and refining the structure). This calculation affords
a numerical measure of the agreement among equivalent reflections, which is

I{hkd) o<| F(Hkd) ]2
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Fig. 2.8 The effect of absorptionfora
needle-shaped crystal.
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In reality, of course, intensities

cannot be negative, but the weakest
reflections from a diffractometer may
be insignificantly above background
and, through statistical variations in the
measuring process, may be recorded as
below background, i.e. apparently net
negative. These would be 'unobserved’
by photographic methods. The fact
that they are weak is actually valuable
information in structure determination.
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Fig. 2.9 Addition of two waves (first
and second) to give their sum (in
phase, third) or their difference {out of
phase, fourth).
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one indication of the quality of the data and the appropriateness of the applied
corrections.

At the same time, statistical analysis of the complete unique data set can
provide an indication of the presence or absence of some symmetry elements,
particularly whether the structure is centrosymmetric or not, though this is not
infallible; and the observed overall decay of intensity with increasing (sin 8)/A
gives an average atomic displacement parameter.

The various corrections for the intensities are applied also to their s.u.s. The
result of this whole process, which usually takes only a matter of minutes on a
computer, is a list of reflections as h, k, I, |F, | o (F,) [or h, k, I, F2, &(F2)]; one
advantage of retaining the squared form is that no special treatment is required
for intensities measured as negative.

2.7 Solving the structure

Having measured and appropriately corrected the diffraction data, we turn now
to the solution of the structure, in which we obtain atomic positions in the unit
cell from the data. Remember that the objective here is to imitate a microscope
lens system, recombining the individual diffracted beams to give a picture of the
electron density distribution in the unit cell.

p(xyz):%Z[F(hk/) |- explio(hkh)]- expl—2mi(hx + ky +12)] (1.20)

hiki

The mathematical expression of this process is equation 1.20, repeated above.
The amplitudes |[F(hkl)| have been measured, the final exponential term can be
calculated for the contribution of each reflection hk! to each position xyz, but the
phases of the reflections are unfortunately unknown, so the calculation cannot
be carried out immediately.

The result of adding even just two waves varies from the sum to the differ-
ence of their amplitudes depending on their relative phases (Fig. 2.9), and to apply
trial-and-error methods to thousands of waves is a task of impossible proportions.

We shall see in the next step (Section 2.8) that knowing part of the structure,
i.e. the positions of some of the atoms, especially those with the most electrons,
is often enough to help find the rest. The question is, where to begin?

Of the various methods used, two are by far the most common and important.
One works best for structures containing one atom or a small number of atoms
with significantly more electrons than the rest (‘heavy atoms’), while the other is
more appropriate for ‘equal atom'’ structures, though in practice versions of it are
used to solve most structures. In general, not surprisingly, the easiest atoms to
find are those which contribute most to the total scattering.

The Patterson synthesis

The Fourier transform of the observed diffracted beam amplitudes |F,| gives
the correct electron density, but it requires knowledge of the phases of all the
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reflections (equation 1.20). The Fourier transform of the squared amplitudes F,?
with all phases set equal to zero (all waves taken in phase) produces what is called
a Patterson synthesis (or Patterson function, or Patterson map). All the informa-
tion needed for this transform is known; it can be calculated for any measured
diffraction pattern. But is it of any use?

P(xyz) = & 3 | o (k) -expl—2mi(hx +ky +I2)] (2.2)

hki

The Patterson map looks rather like an electron density map (see Fig. 2.10), in
that it has peaks of positive density in various positions. These are not, however,
the positions of atoms in the structure. Instead, it turns out that the Patterson
function is a map of vectors between pairs of atoms in the structure. For every pair
of atoms at positions (x;, vy, zy) and (xy, ¥,, z,) there is a peak in the Patterson map
at (x; —Xy, ¥1 - Y2, 21 — z5) and another of the same size at (x;— Xy, o = ¥1, Z,—27). In
other words, for every peak seen in the Patterson map (at, say, u, v, w), there must
be two atoms in the structure whose x coordinates differ by u, y coordinates dif-
fer by v, and z coordinates differ by w. The Patterson peaks show where atoms lie
relative to each other, but not where they lie relative to the unit cell origin, which
is what we really want to know.

Peaks in an electron density map are, ignoring vibration effects, proportional
in size to the atomic numbers of the respective elements, since these are equal to
the number of electrons. Patterson peaks are proportional in size to the product
of the atomic numbers of the two atoms concerned.
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Fig. 2.10 A section of the Patterson map for a structure containing one unique As atom
together with atoms of H, C, N, F, and S.

A. L. Patterson introduced and
developed this method refatively early in
the history of X-ray crystallography.
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For example, for ferrocene Fe(CsHs),,
Fe-Fe peaks, Fe-C peaks and C-C peaks
have relative heights 26 x 26 = 676,

26 X6=156, and 6 x 6 = 36; these are

in the ratio approximately 19:4:1. Peaks
involving H are even smaller. The few
large Fe-Fe peaks (because there is more
than one molecule per unit cell} will be
clearly seen among the many smaller
overlapped peaks. Figure 2.10 also shows
asmall number of large peaks and is
otherwise relatively featureless.

Fig- 211 The structure of cholesterol,
with the characteristic rigid steroid
tetracyclic framework highlighted.

In order to see how the Patterson function can be used to locate some of the
atoms, we note some of the properties of the Patterson function, which follow
from its definition.

(a) Every atom forms a pair, and hence a vector, with every other atom,
including with itself. So a unit cell containing n atoms gives n? vectors. Of
these, the self-vectors (each atom to itself) have zero length and all coincide
at the origin (0, 0, 0). This is always the largest peak in any Patterson map.
There are n’-n other peaks.

(b) The vector between atom A and atom B is exactly equal and opposite to
the vector between atom B and atom A. This means that a Patterson map
always has an inversion centre, even if the crystal structure itself does not.

(c) Patterson peaks have a similar shape to electron density peaks, but are
about twice as broad.

(d) Asaconsequence of points (a) and (c), there is usually considerable overlap
of peaks, and not all will be resolved as separate identifiable maxima.

For these reasons, Patterson maps usually show large featureless regions of
overlapped broad peaks, with significant peaks due to vectors involving ‘heavy
atoms'. If a structure contains only a few heavy atoms among a lot of lighter
atoms, the Patterson map will show a small number of large peaks standing out
clearly above the general background level.

In such cases it is usuélly possible to find a self-consistent set of atomic pos-
itions for the heavy atoms which explain the large Patterson peaks. Vectors
between symmetry-related heavy atoms often lie in special positions, with some
coordinates equal to 0 or %, for example, and are easily recognized. Worked
examples (and exercises for the reader) are given in Chapter 3. Solving a Pat-
terson map is rather like a mathematical brain-teaser puzzle. Once the heaviest
atoms have been found, the rest are located as shown in Section 2.8.

Patterson search methods

Even for structures without particularly heavy atoms, the Patterson synthesis
can provide a solution method in some cases. If a significant proportion of the
molecule has a known shape, then a group of vectors generated internally by
these atoms can be calculated. Such a pattern occurs in the Patterson map,
but its orientation is unknown and it is mixed up with other vectors involving
the rest of the molecule and vectors between atoms in different molecules. It
may be possible to match the pattern by computer search and hence find the
correct orientation of the known fragment. Further computer analysis of pos-
sible intermolecular vectors then gives proposed positions for the fragment.
Steroids, with a relatively rigid and predictable tetracyclic nucleus, are good
examples of suitable materials for this Patterson search approach (Fig. 2.11).
Direct methods are, however, much more commonly used for ‘equal atom’
structures (and, together with dual-space methods, for most structures, as
they are more automatic than Patterson-based methods).
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Direct methods

This is a general name given to a wide variety of methods which seek to obtain
approximate reflection phases from the measured intensities with no other
information available. Such a description of the situation is, however, misleading.
There is other information available to help us find the missing phases, in various
aspects of the nature of the electron density we are trying to determine.

The electron density is the Fourier transform of the diffraction pattern. This
means we add together a set of waves in order to produce the electron density
distribution. Each wave has half its value positive and half negative (alternate
‘crests’ and ‘troughs”: see Fig. 1.21), except for F(000), which is constant and
positive. The electron density, however, is everywhere positive or zero; it can
have no negative regions. Furthermore, it is concentrated into certain compact
regions (atoms; see Fig. 1.5). So the waves must be added together in such
a way as to build up and concentrate positive regions and cancel out nega-
tive regions. This puts considerable restrictions on the relationships among the
phases of different reflections, especially the most intense ones, which contrib-
ute most to the sum.

Since large numbers of reflections are involved in the complete Fourier trans-
form, individual phase relationships are not certainties, but have to be expressed
in terms of probabilities, and the probabilities depend on the relative intensities.

Direct methods involve selecting the most important reflections (those which
contribute most to the Fourier transform), working out the probable relation-
ships among their phases, then trying different possible phases to see how well
the probability relationships are satisfied. For the most promising combinations
(assessed by various numerical measures), Fourier transforms are calculated
from the observed amplitudes and trial phases, and are examined for recogniz-
able molecular features.

Over the years, various methods of more or less sophistication have been
developed for the steps involved. They can be regarded most simply as a sort of
inspired trial-and-error method, in which it is usually necessary to try many dif-
ferent sets of phases and use the relationships themselves to ‘refine’ or improve
them. Direct methods involve a considerable amount of computing, and are
treated as a ‘black box’ even by many of their regular users. When they are suc-
cessful, they usually locate most or all of the non-hydrogen atoms in a struc-
ture. Examples are given in the next chapter, and an illustration in one dimension
is shown later in this section, after the description of other methods. Although
starting sets of phases can be assigned by various theoretical approaches, it has
been found that completely random values can lead to success in many cases if
sufficient attempts are made (this is no problem with modern computers) and if
effective procedures are used for refining phases on the basis of expected phase
relationships.

Dual-space methods

Crystallographers often refer to a physical crystal structure as being in direct
space (based on the direct lattice) and the diffraction pattern in reciprocal space
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Direct space is measured in distance
units, usually A; the units of reciprocal
space are A-1, as can be seen from

the rearranged form of the Bragg
equation (1.4). Fourier transforms relate
functions with reciprocal or inverse
units such as these. Other examples in
chemistry include Fourier transform
NMR spectroscopy (converting decay
measurements in time to spectra in
frequency, which has units of reciprocal
time) and Fourier transform IR
spectroscopy (converting interferometry
measurements in cm to spectra in
wavenumbers (cm™)).

An online demonstration of the charge
flipping procedure, as an example of
dual-space methods, can be found at
http://escher.epfl.ch/flip/

(based on the reciprocal lattice, which describes its geometry and is evident,
for example, in Figs. 1.13, 2.5(b), and 2.7). The two spaces are related by for-
ward and reverse Fourier transforms. Solving a structure by Patterson methods
involves transforming the measured intensities into a Patterson function, which
is in direct space, and then deducing atom positions from this function; this is
thus a direct-space method. Conventional direct methods do most of their work
in reciprocal space, manipulating reflection phases, with a Fourier transform
into direct space to give a trial electron density map only after a promising set
of phases has been found. Powerful methods of solving structures have been
developed, combining alternating direct space and reciprocal space calcula-
tions, exploiting the available information and expected behaviour in each step.
The various methods differ in the particular direct and reciprocal space tech-
niques they use; all of them rely on fast repeated interconversion between the
two spaces by Fourier transforms. ,

The starting point for dual-space methods may be in either direct or recip-
rocal space. A direct space starting model consists of some kind of electron
density distribution or an initial set of atom positions. Examples include: a
random allocation of expected atom types in the unit cell, possibly screened
to avoid impossibly short contacts or other undesirable features; a molecu-
lar fragment of known geometry in random positions and orientations, or in
positions suggested by an inconclusive Patterson search procedure; a structure
of a related compound; or an electron density function calculated by special
manipulations of the Patterson function. A reciprocal space starting model is a
set of phases for some or all of the reflections: randomly generated, taken from
another related structure, or calculated by other methods. Adjustments made
to the reciprocal space information during each cycle of dual-space calcula-
tions include applying probable phase relationships to modify the phases, or
simply taking the calculated phases from the forward Fourier transform and
using them unaltered in combination with the observed amplitudes (ignoring
the calculated amplitudes) in the subsequent reverse transformation. Modifi-
cations to the direct space electron density or atom-based model may include
selecting atoms that give reasonable molecular geometry and ignoring others,
moving or deleting atoms to improve the geometry, omitting a particular frac-
tion of the atoms (these atoms being chosen at random), and changing the
sign of all electron density below a particular threshold value (this method is
known as charge flipping and has proved remarkably successful for such a
simple idea; it has grown in popularity recently). Progress of the calculations is
monitored by a range of figures of merit' that measure the agreement of either
electron density or reflection phases (or both} with some kind of expected
behaviour. In many cases, a recognizable molecular structure emerges, either
gradually or suddenly, from the starting point. Some dual-space methods
ignore the proposed space-group symmetry, carry out all calculations in
space group P1 with only translation symmetry, and then locate the true sym-
metry elements of the structure in the electron density map (direct space) or by
inspection of phase relationships for potentially symmetry-equivalent reflec-
tions (reciprocal space).



H-RAY CRYSTALLOGRAPHY IN PRACTICE 47

Other methods

Almost all ‘small molecule’ crystal structures these days are solved by Patterson,
direct, or dual-space methods. Other methods used for macromolecular struc-
tures are described briefly in Chapter 4. A partial solution for some small mol-
ecule structures can be found from considerations of symmetry. For example, ifa
molecule which could reasonably have a centrosymmetric geometry crystallizes
in the triclinic system with one molecule per unit cell, then the centre of the mol-
ecule probably coincides with a crystallographic inversion centre in space group
P1 (see Section 1.6). Such a situation is frequently found for metal complexes,
and the metal atom is thereby located at a special position. If the metal has suf-

. ficient electrons to be classed as a heavy atom, it can be used, as shown in the

next section, to find the rest of the atoms; no Patterson map or direct methods
calculation is necessary. An extreme example, that of [Cr(NHs)¢][HgCls] in a cubic
space group with most of the atoms in special positions, was described in Section
1.6 with respect to symmetry arguments.

A one-dimensional illustration of direct methods
and Patterson synthesis

Racemic 3-bromo-octadecanoic acid (Fig. 2.12) forms triclinic crystals with
two molecules in the unit cell, related to each other by inversion symmetry.
The unit cell has two short and one long axis, and the molecule is extended
approximately along the longest axis (c) (Fig. 2.13). This structure provides an
illustration of structure solution in one dimension; if we take only those reflec-
tions (00)) which have h and k indices equal to zero, they contain no infor-
mation about the x and y coordinates of atoms, but we can use them to find
z coordinates. The reflections (001) and (002) were not measured, probably
because they lie too close to the direct beam; intensities were obtained for
reflections with | from 3 to 21, and their amplitudes, derived from the meas-
ured intensities, are in Table 2.1.

To find the z coordinates of the atoms, it is necessary to add up the contribu-
tions of all these 19 waves, together with F(000), at each of a range of z values
from 0 to 1 (because of the inversion symmetry in the structure, the range 0.5 to
1.0 is actually equivalent to the range 0.0 to 0.5 by inversion, but we shall carry
out the calculations for the whole z range of one unit cell for completeness). For
this purpose we need a one-dimensional version of equation 1.20.

pl) =2 I F()|-explig()]-expl-2ri(i)] ‘ 23)
!

Ateach chosen value of z, there are 19 terms to add together. The task is further
simplified by the fact that the structure is centrosymmetric (this simplification for
centrosymmetric structures applies also in three dimensions). In such cases the
phases of reflections can only take one of two special values, 0° and 180° {or 0
and T radians), and the term exp(i¢p) becomes equal to cos(¢); this is simply +1
for ¢ =0° and -1 for ¢ = 180°, and the mystery of the unknown phase narrows

There is no ‘correct’ method for solving

a particular structure. Once the right
solution has been found, by whatever
method, it can be further refined (see
Section 2.9); the method of solution is no
longer important. If one method does
notwork, it is perfectly valid to try others,
with all the available variations, until one
is successful. The objective is to beat the
‘phase problem’; exactly how this is done
does not really matter,

0 Br

HO/”\)\(CHZ)MCHS,

Fig. 2.12 The formula of
3-bromo-octadecanoic acid.

Fig. 2.13 Two molecules in the
elongated unit cell of 3-bromo-
octadecanoic acid.
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Table 2.1 Observed amplitudes and correct phases for 00/ reflections
of 3-bromo-octadecanoic acid

lindex Measured |F(000)| Correct sign
3 5.8 +
4 452 -
5 39.2 -
6 526 -
7 106 —
8 3.8 +
9 322 +
10 31.8 +
11 304 +
12 11.8 +
13 6.2

14 18.2 -
15 21.8 -
16 16.2 -
17 82 —
18 100 +
19 144 +
20 234 +
21 44.6 +

down to a straight choice between completely in phase and completely out of
phase for each individual reflection. This is the same as having to choose whether
each amplitude is added or subtracted to make up the total sum. This still leaves
us with a two-way choice 19 times over, giving 524 288 possible combinations!
This is clearly too much for a blind trial-and-error approach.

Note also that the final exponential term simplifies to a cosine in the same way,
so we have the equation

p(z):—!—Z|F(I)|-sign[F(l)]-cos[27t(Iz)] (24)
!

For the one-dimensional case, this summation process can be shown graphi-
cally. The contributions of each of the 19 reflection amplitudes to each point
across the range of z from 0 to 1 are shown in Fig. 2.14. The contributions are
all shown on the same scale, and with all the unknown signs (corresponding to
the unknown phases) set arbitrarily as positive. The cosine term in equation 2.3
means that reflections with a low value of the index | make a contribution to the
electron density which varies only slowly across the unit cell; reflections with
a high value of | contribute much more finely, with more maxima and minima
across the range. Figure 2.15 shows the result of adding up these 19 contribu-
tions with different combinations of signs (phases). The top result comes from
arbitrarily chosen signs; it does notlook like a promising solution for the electron
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index sign [F]
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6 - 263
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19+ 72 MWWV

21 + 223

0 z 1

Fig. 2.14 The contributions of the 19 00/ reflections to the one-dimensional Fourier
summation of equation 2.3, with all their phases set at zero. The correct phases, as signs,

are shown with the indices and amplitudes in the left-hand columns. Reflections with larger
indices are observed at higher Bragg angles and provide greater resolution of the electron
density image, just as light scattered at greater angles by an object on an optical microscope
provides better resolution than low-angle scattering. The curves shown here for the different
reflections must not be confused with X-ray wavelengths and frequencies (the wavelength

is constant for all reflections); these are not the waves themselves, but the contributions

they make to the electron density calculation at various points in the unit cell via the
one-dimensional Fourier transformation.

0 z 1

Fig. 2.15 Combinations of the

19 contributions of Fig. 2.14

with different sets of phases: top,
randomly chosen phases giving an
unrecognizable result; middle, correct
phases clearly showing the bromine
atoms; bottom, all phases positive,
resembling a Patterson synthesis.
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Itis not actually the strongest reflections
absolutely which are most important,
but those reflections which are relatively
strong for their Bragg angle; because
intensities always decrease at higher
angle, a high-angle reflection which

is weak compared with low-angle
reflections but strong compared with
other high-angle reflections is an
important contributor to the electron
density calculation. For this reason,
direct methods use normalized structure
amplitudes, more commonly known as
Evalues, instead of the basic amplitudes
(F values) themselves; normalization

is a calculation which effectively
compensates for the 6-dependent
decrease in intensity within a data set.

H-RAY %’ZR%’STALL@@ RAPHY

density, particularly with some deep minima. The second result comes from
the correct signs (as provided by a forward Fourier transform calculation from
the final known structure; these correct signs are given in Table 2.1); it shows
large maxima for two symmetry-related bromine atoms (two molecules per unit
cell) and smaller maxima, approximately regularly spaced, most of which corre-
spond to pairs of carbon atoms, these overlapping in projection along the axis.
The positions of the atoms, particularly the large bromine atoms, are correctly
given: the final refined z coordinates for bromine are very close to 0.1 and 0.9.

To illustrate the principles of direct methods, concentrate on the largest ampli-
tudes; clearly these contribute most to the summations, and incorrect signs for
the smaller amplitudes will not greatly affect the result. The correct signs for
reflections 4 and 5 (using the ! indices to label them) are both negative. This
means they should both be turned upside down before being added into the
sum. Together they then contribute a considerable positive amount where their
original first and last troughs, as seen in Fig. 2.14, almost coincide, a large nega-
tive amount at z =0 and z =1, and their contributions largely cancel out else-
where. Reflection 9 is also quite strong, and the positions of its crests and troughs
are related to those of reflections 4 and 5, simply because 4 + 5=9. If reflection 9
is to reinforce the positive build-up of electron density provided by the inverted
reflections 4 and 5, rather than partially cancelling it, it must have a crest roughly
coinciding with the first troughs of those reflections as they are shown in the
figure, so its sign must be positive and not negative. Since (1) x (=1) = (+1) this
relationship can be represented as

sign[F(9)]=sign[F(4)]xsign[F(5)] (2.5)
or, in terms of phase angles rather than signs,
AlON=0l(4)]+0l(5)] (2.6)

The probability that such a relationship among the phases of reflections
with related indices is true increases with their amplitudes. In this particular
example, if we take all the reflections with amplitudes greater than 80, there
are 11 of these relatively strong reflections and 19 relationships of this kind
which involve only these reflections. All 19 relationships are, in fact, obeyed
{for example, reflection 6 is negative, reflection 9 is positive, and reflection 15
is negative: (—1) x (+1) = (-1)); Table 2.2 gives them all. In general, for three-
dimensional structures, because these relationships are probabilities rather
than certainties, some of the indications will be wrong, and for some reflec-
tions participating in several relationships contrary indications may be found,
so an overall balance of the various indications has to be taken.

In direct methods as commonly applied, the strongest reflections are chosen
and all the phase relationships among them are generated. Then various possible
combinations of phases are tried, either by assigning values to a few reflections
and using the probability relationships to generate others, or by assigning ran-
dom phases to all the reflections and using the relationships to improve them
so that they fit the relationships better. The combination of phases giving the
best agreement with the expected relationships is then used, together with the
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Table 2.2 Phase relationships for the strongest 00/ reflections

4 5 9 10 1 14 15 16 20 21
4 9 10 1415 20
5 9 10 1 14 15 16 20 21
6 10 1 15 16 20 21
9 14 15 20
10 14 15 16 20 21
11 15 16 20 21
14 20
15 20 21
16 20 21
20
21

For each relationship the | indices of the three reflections are given by one entry in the table body together
with the corresponding number at the head of the column and the number at the left-hand end of the row;
an underlined index represents a negative reflection amplitude (for example, reflection 6 has a negative
amplitude, but reflection 9 has a positive amplitude).

observed amplitudes, in a reverse Fourier transformation to calculate an electron
density map, and this is examined for recognizable molecular features. In typi-
cal cases a few tens of initial phase sets are tried and several of these are likely to
lead to a recognizable correct structure showing most or all of the non-hydrogen
atoms. In more difficult cases, many hundreds or thousands of attempts may be
necessary.

The third result in Fig. 2.15 comes from taking all the reflections as positive,
i.e. all phases set at zero; the 19 curves of Fig. 2.14 are simply added together
as they are. Since all the curves have a crest at z= 0 and at z = 1, very large
maxima are generated at these points. This is just like a one-dimensional Pat-
terson synthesis, except that |F| values have been used instead of F* values. The
corresponding result using F? and zero phases looks very much like the third
curve except that the maxima and minima are more exaggerated. The large
maximum at the origin is a feature of all Patterson syntheses, corresponding to
the superposition of the self-vectors of all atoms in the structure. The next larg-
est maximum in this curve (together with its symmetry equivalent) corresponds
to a vector between the two bromine atoms in the unit cell; its z coordinate
is twice the z coordinate for one bromine atom, because the two symmetry-
equivalent bromine atoms are at +z and —z, and the difference between these
is (+2) — (—z) = 2z. Hence the bromine atom in the molecule can be located sim-
ply by inspection of this Patterson synthesis, without the knowledge or guess-
ing of any phases at all. Location of the remaining atoms then fotlows in the
next stage (Section 2.8). The solution of a Patterson synthesis in order to find
one unique heavy atom in a structure (together with its symmetry equivalents)
often involves no arithmetic more difficult than dividing by 2. Further worked
examples are given in Chapter 3.

This structure has been published. See:
The crystal and molecular structure

of DL-3-bromo-octadecanoic acid. S.
Abrahamsson and M. M. Harding, Acta
Crystallogr. 1966, 20, 377-383; the CSD
REFCODE is BRODAC.

This one-dimensional Fourier synthesis
is available as a Microsoft Excel
spreadsheet for use by the reader in
exploring various features of Fourier
calculations including also the structure
completion steps described in the

next section. For a description of the
spreadsheet and its use, see: An Excel
spreadsheet for a one-dimensional
Fourier map in X-ray crystallography. W.
Clegg, J. Chem. Ed. 2004, 81, 908-911.
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2.8 Completing the basic structure

If the initial structure solution has revealed positions for all the atoms (except
for hydrogen atoms, which have very little electron density and are not usually
found until later, if at all), this next step is unnecessary. Often, however, particu-
larly from analysis of a Patterson map or for structures containing solvent mol-
ecules or other components with high atomic vibration or disorder, only a partial
structure has been obtained: some atom positions are known, but not all. This
partial structure serves as our initial model or trial structure.

Using the forward Fourier transform equation (the mathematical represen-
tation of the scattering process), we can calculate what the diffraction pattern
would be if this model structure were, in fact, the correct complete structure:

model structure —— set of F, ‘ (2.7)

where F. are calculated structure factors, one corresponding to each observed
structure factor F,,. The calculation provides values for the amplitudes and phases
of F. (|F.| and ¢), whereas we have only amplitudes for F, (|F.|, no ¢).

If the atoms of the model structure are approximately in the right positions,
there should be at least some degree of resemblance between the calculated dif-
fraction pattern and the observed one, i.e. between the sets of |F | and |F,| values.
The two sets of values can be compared in various ways. The most widely used
assessment is a so-called residual factor or R factor, defined as

pro 2R =Rl (2.8)

2RI

This involves adding together all the discrepancies between corresponding
observed and calculated amplitudes, ignoring signs of the differences, and nor-
malizing the sum by dividing by the sum of all the observed amplitudes to give a
value which can be compared for different structures. Variations on this defini-
tion include using F? values instead of |F| values, squaring the differences, and/or
incorporating different weighting factors (weights) multiplying different reflec-
tions, based on their s.u.s, and hence incorporating information on the relative
reliability of different measurements; for example, one residual factor in a very
widely used computer program for crystal structure determination is

WR2= | S (2.9)

where each reflection has its own weight w. This is, in many ways, and certainly
from a statistical viewpoint, more meaningful than the basic R1 factor. For a cor-
rect and complete crystal structure determined from well-measured data, R1 is
typically around 0.02-0.07; for an initial model structure it will be much high-
er, possibly 0.4-0.5 depending on the fraction of electron density so far found,
and its decrease during the next stages is a measure of progress. Values of wR2
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and other residual factors based on F* are generally higher than those based on
F values, by a factor of two or more.

Obviously, the reverse Fourier transform (the mathematical representation of
the image construction) carried out with the calculated amplitudes |F]and calcu-
lated phases ¢, would just regenerate the electron density of the model structure,

|F, | with ¢, — s p for model structure (2.10)
and this is not progress. However, combination of the experimentally observed
amplitudes |F,| (which carry information about the true structure) with the cal-
culated phases ¢ (which are not completely correct, but are the best approxima-
tion we currently have to the unavailable ¢, values) produces something new:

|F, | with ¢, ———>p for a new model structure (2.11)

Usually, if the errors in the calculated phases are not too large, this electron
density shows the atoms of the existing model structure, together with add-
itional atoms not already known. This provides an improved model structure,
with more atoms than before.

If there are still more atoms to be found, this process can be repeated. A for-
ward Fourier transform of the new model structure gives a new set of |F| and ¢;
the previous set is discarded. The new |F| and the unchanged original |F,| values
should now give lower R factors, and the improved ¢ together with |F | generate,
via another reverse Fourier transform, a further electron density map.

Eventually all the atoms are located and the Fourier transform calculations
give no further improvement. This repeated process is an example of a bootstrap
procedure. It is also another example of a dual-space method, the direct space
manipulation being the selection of genuine atoms from the candidate electron
density peaks, and the reciprocal space manipulation being the combination of
observed amplitudes with phases calculated from the model structure.

There are some variations on the basic Fourier bootstrap procedure, which
make it more effective. In particular, the reverse transform (Fourier map calcula-
tion) can be carried out using the differences |Fo|-{F | instead of just|F,|. In this case,
a difference electron density map is produced, in which the existing atoms of
the current model structure do not appear. This makes new atoms stand out more
clearly from the background and from false maxima arising from errors in the ¢,
values. Difference electron density peaks or holes (negative peaks) at model struc-
ture atom positions may indicate incorrect atom assignments with too little or too
much assumed electron density, which should be corrected in the next model.

Full electron density maps, with values of electron density or difference elec-
tron density at each of many regularly spaced points in all or part of the unit
cell, either numerically or as contours, are not often generated and output as
such by computer programs used for chemical crystallography. In most cases
an automatic search is carried out for the positions of maximum density (peaks,
analogous to mountains on a geographical map), and the output is just a list of
these in descending order of height, as potential positions of atoms.

WR?2 is the conventional name for this
residual factor. The w indicates that
weights are included, and the 2 indicates
that F2 values are used rather than F
values; compare this with R1 defined
above (which does not include weights
and is based on F values; historically this
was usually referred to as just R).

‘Bootstrap’ is a term common in
computing jargon, usually shortened to
‘boot’, and is derived from an old saying,
"You can't pull yourself up by your own
bootstraps' i.e. shoe-laces; in computer
operating systems, crystallography and
many other sciences, you can!

There are many other variations on the
straightforward Fourier map calculation,
using combinations of F,, F, and
normalized E, values, and applying
weighting schemes designed to enhance
the contributions of some reflections
(perhaps those for which the calculated
phases are likely to be more nearly
correct) and reduce the contributions of
others. They serve particular purposes
at different stages of a difficult structure
solution.
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Fig. 2.16 The component ions of
[PhSNSNSNSPh]* [AsFe] .

An example of structure completion by Fourier syntheses

To illustrate the bootstrap procedure we take a structure which has most of the
atoms lying in one plane, because the gradual development of the structure is
clearly seen by successive calculations of the electron density in this plane. The
compound is [PhSNSNSNSPh]"[AsF¢]™ (Fig. 2.16). The complete cation, together
with arsenic and two fluorine atoms of the anion, lie on a mirror plane perpen-
dicular to the b axis in an orthorhombic space group, so all their y coordinates
are equal. The position of the arsenic atom within this plane can be found by
inspection of the Patterson synthesis, part of which was shown in Fig. 2.10 (As
has 34 electrons, S 16, F 9, N 7, and C 6, so vectors between symmetry-equivalent
arsenic atoms stand out clearly).

Calculation of the diffraction pattern corresponding to the arsenic atom
alone (and its equivalent atoms according to the space-group symmetry), by
the forward Fourier transform equation (2.7), gives a set of calculated ampli-
tudes and phases for this very crude initial model structure; at this stage the
value of R1 is 0.604, so the agreement between the observed and calculated
amplitudes is not very good. The calculated phases are also far from perfect
(the structure is centrosymmetric, so each phase must be either 0° or 180°, and
any particular calculated phase is either completely right or completely wrong),
but there are enough correct phases for the reverse Fourier transform, calcu-
lated from these phases and the observed amplitudes (equation 2.11), to show
not only the known arsenic atom, but also four clear peaks for the four sulfur
atoms (Fig. 2.17(a)). Inclusion of these in the model structure leads to a calcu-
lated diffraction pattern in better agreement with the observed amplitudes: R1
is reduced to 0.364, the calculated phases are more nearly correct, and the next
electron density map (reverse Fourier transform) shows all the N, C, and F atoms
(Fig. 2.17(b)). With all the non-hydrogen atoms included, R1 drops to 0.036 after
refinement (see Section 2.9), and an electron density map shows well resolved
and clear peaks for all the atoms (Fig. 2.17(c)). The largest peaks in a difference
electron density map (calculated from |F |-{F| instead of from |F|) are in the
positions expected for the hydrogen atoms (Fig. 2.17(d)), and incorporation of
these into the model structure leads to a final R1 of 0.027, and a very precise
structure.

2.9 Refining the structure

Once all the non-hydrogen atoms have been found, the model structure needs
to be subject to refinement. This means varying the numerical parameters
describing the structure to produce the ‘best’ agreement between the diffraction
pattern calculated from it by a Fourier transform and the observed diffraction
pattern. Since there are no observed phases, the comparison of observed and
calculated diffraction patterns is made entirely on their amplitudes |F,| and |F.
Changing any of the structural parameters (modifying the model structure in any
way) affects the |F | values, while the |F,| values remain fixed during the process.
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Fig. 2.17 Successive electron density and difference electron density syntheses in the
development of the structure of [PhSNSNSNSPh]AsF¢]™ starting from the position of the
arsenic atom derived from a Patterson map. The contour interval is much smaller for the
difference electron density map (d).

The refinement process uses a well-established mathematical procedure
called least-squares analysis, which defines the ‘best fit' of two sets of data (here
|[Fo| and |F ]} to be that which minimizes one of the least-squares sums:

EW(IFol_ch‘DZ (2.12)
or P w(F~F)

The first of these (refinement on F) has historically been most commonly
used, but the second (refinement on F2) is now regarded as standard and is, in
many ways, superior. The contribution of each reflection to the sum is weighted
according to its perceived reliability, usually with weights based on the experi-
mental s.u.s, such as w=1/6%(F?) for refinement on F~

The least-squares refinement of crystal structures is similar, in principle, to
finding a ‘best-fit’ straight line through a set of points on a graph, but is more
complicated because (i) there are many variable parameters instead of just two
(the gradient and intercept) for a straight line graph and (ii) the equation relating
data to parameters (the Fourier transform) is far from linear. Because of the non-
linearity, an approximate solution (the model structure) must be known before
refinement can begin, and each least-squares calculation is approximate, not

This structure has been published. See:
Reaction of [SNS]AsF¢] with Hg(CN),
and PhHgCN: preparation and crystal
structures of [Hg(CNSNS),][AsFg, and
[PhS4N3Ph][AsFg]. C. M. Aherne, A. .
Banister, |. Lavender, S. E. Lawrence, J. M.
Rawson and W. Clegg, Polyhedron 1996,
15, 1877 -1866; the CSD REFCODE is
TEQSOX.
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Fig. 2.18 Isotropic (top, represented
as spheres) and anisotropic (bottom,
represented as ellipsoids) atomic

displacements for a perchlorate anion.

As a rough rule of thumb, around 100
data per non-hydrogen atom in the
asymmetric unit should be ample.

The goodness of fit is another standard
statistical parameter, intended to show
how well the calculated diffraction
pattern corresponding to the model
structure agrees with the observed
diffraction pattern. For an ideal
agreement and a correct weighting
scheme, the goodness of fit should have
a value of unity; considerable variation is
observed in practice.

exact, giving an improvement to the model, but not the best possible fit; the
calculation must be repeated several times until eventually the changes in the
parameters are insignificant.

What are the numerical parameters to be refined? They are, for the most part,
the terms describing the positions and vibrations of the atoms in the Fourier
transform equation (1.19). For each atom there are three positional coordinates
X, ¥, z and a displacement parameter U, which can be interpreted as an isotropic
mean-square amplitude of vibration (in A%) of the atom. In most experiments a sig-
nificantly better fit to the data can be achieved by using more than one displace-
ment parameter per atom in the model structure, allowing each atom to vibrate
by different amounts in different directions (anisotropic vibration). The usual
mathematical treatment has six U values (one for each axis and three cross-terms)
for each atom in order to give different vibration amplitudes in three orthogonal
directions which are, in general, not along the unit cell axes (Fig. 2.18). Thus, there
are commonly nine refined parameters for each independent atom (atoms which
are not related to each other by symmetry) in the structure. In addition, a scale -
factor has to be refined, which puts the |F| and |F ] values on the same scale (the
|Fo| scale is arbitrary at the time of measurement, but |F{ values are calculated
relative to the scattering power of one electron). There may be a small number of
other refined correction factors, but most of these are not important for a basic
understanding of the procedure.

Although there are many parameters to be refined for all but the smallest
structures, the diffraction experiment usually provides an even greater number
of observed data, unless X-ray scattering is unusually weak. Typically, the data/
parameter ratio exceeds 6, and it may be as high as 20 or more. The structure
refinement problem is said to be ‘over-determined’, and this is essential in order
to produce precise (reliable) parameters. As well as providing a value for each
refined parameter, the least-squares process also gives a standard uncertainty.
These parameter s.u.s depend on the s.u.s of the data (a good structure requires
good data!), on the extent of agreement of the observed and calculated data
(a lower least-squares sum gives lower parameter s.u.s; another function closely
related to this sum is called the goodness of fit), and on the excess of data over
parameters (a greater excess gives lower parameter s.u.s). Both the quality and
the quantity of measured data matter for the quality (reliability) of the structure
derived from them.

Once the model structure has been refined with anisotropic displacement
parameters for the atoms, it is often possible to see small but significant differ-
ence electron density peaks in positions close to those expected for hydrogen
atoms, particularly if there are few or no heavy atoms in the structure. Hydrogen
atoms are more likely to be located from measurements taken at low tempera-
ture, because this reduces the vibration of the atoms and sharpens the electron
density peaks. It is possible to include the hydrogen atoms in the refinement,
and this may improve the fit slightly, but their parameters usually have large
s.u.s because their low electron density means they contribute only weakly to
the diffraction of X-rays, so the measured intensities are relatively insensitive to
the hydrogen atom parameters. In most cases, refinement is more successful
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if constraints are applied to hydrogen atom parameters, e.g. by keeping their
bond lengths fixed and by tying their U values to those of the atoms to which
they are attached. Details of how this is done vary enormously with different
computer programs and with the habits and preferences of different crystallog-
raphers; some examples can be seen in Chapter 3.

[n some cases, unconstrained parameters may refine to unreasonable values,
or have unacceptably high uncertainties because they are not well defined by the
diffraction data, but a rigid constraint would be inappropriate. A more flexible
approach is the use of restraints (also known as soft constraints). Here a desir-
able target value is chosen for a particular parameter, or for a feature that can be
calculated from a combination of parameters {such as a bond length or angle,
planarity of a group of atoms, or relationships between displacement param-
eters of connected atoms), and the difference between this target and the value
calculated from the current model is squared, appropriately weighted relative
to other restraints and to the observed diffraction data, and added to the least-
squares minimization function. The full set of restraints (of which there may be a
few or many) thus contributes as effective ‘observations’ along with the diffracted
X-ray amplitudes to control the refinement of the parameters of the model. This
approach is particularly useful when diffraction is weak, leading to a shortage of
significantly observed data.

The refinement stage usually involves the vast majority of the computing
resources used in a crystal structure determination, simply because the calcula-
tions are many and very repetitive. Compared with finding the atoms initially, it
is often a much less interesting process, but its correct execution is very impor-
tant, since it delivers the final parameters describing the structure; exactly how a
structure is solved does not really matter, but how it is refined does. At the end of
refinement, a difference electron density map should contain no significant fea-
tures (peaks or holes). This calculation is usually performed as an extra check on
the validity of the refined model structure. Typically, a final map with no features
outside the range = 1 e A= is accepted, along with other indicators, as evidence
of a satisfactory structure determination.

2.10 Disorder, twinning, and the determination
of ‘absolute structure’

Disorder

An ideal crystal structure is completely ordered: each atom occupies a single
well-defined site, all asymmetric units are exactly equivalent under the space-
group symmetry, and all unit cells are identical. Instantaneously, of course, this is
never true, as each atom is undergoing vibration and these movements are not
usually correlated throughout the structure, but this effect is dealt with by the
atomic displacement parameters, giving equivalence on a time-averaged basis.
Large amplitudes of vibration are sometimes referred to as dynamic disorder,
and they are reduced by cooling the sample in low-temperature data collection.

Constraints are conditions which

are imposed on the refinement, for
example by requiring certain parameters
to have particular values rather than
being free to take values which give

the best agreement between observed
and calculated diffraction patterns.
Constraints may be imposed for various
reasons, including the requirements

of symmetry or the need to control
parameters which are poorly defined by
the diffraction data.

Constraints are rigid mathematical
relationships that must be obeyed in the
refinement; they reduce the number

of refined parameters while leaving

the data untouched. Restraints, by
contrast, are treated as non-diffraction
‘experimental observations’ and are
combined with the diffraction data; they
do not change the number or nature of
the refined parameters. It is important
to use an appropriate balance of weights
for the restraints and the data so that
both make a sensible contribution to the
refinement; heavily weighted restraints
behave almost like constraints.
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Fig. 2,19 A disordered trifluoromethyl
group attached to a benzene ring: top
and centre, the two observed disorder
components; bottom, the combined
disorder model seen in projection
along the bond between the CF4
group (in front) and the ring (behind).

Examples of constraints and restraints are
given in Chapter 3, including application
to disordered structures.

Some structures display static disorder, a random (not systematic) variation
in the detailed contents of the asymmetric unit; here there are alternative posi-
tions for atoms or groups of atoms. If the disorder is truly random, then what
X-ray diffraction sees is the average asymmetric unit. This appears in the model
structure as partially occupied atom sites. It is best explained by giving some
examples.

A commonly observed case is a methyl (CHs) or trifluoromethyl (CF;) group
attached to an aromatic ring, as in a toluene solvent molecuie or a tolyl sub-
stituent. There is no single preferred torsional orientation of the methyl group,
and the energy barrier to rotation about the C-C bond is relatively low. In some
structures, a difference electron density map will show three clear positions for
the hydrogen or fluorine atoms, because the CHz or CF3 group is held in one
preferred orientation by neighbouring atoms in the same or another molecule.
In others, six positions are found (with lower peak heights), corresponding to two
alternative orientations with comparable energies, because the intermolecular
interactions are weaker, and each molecule in the structure adopts one of the
two possibilities at random, with no regard for the orientation adopted in neigh-
bouring asymmetric units (Fig. 2.19).

Other commonly observed disorder patterns are for conformationally flex-
ible groups of atoms, such as long alkyl chains, non-planar five-membered rings
(tetrahydrofuran, THF, is notorious in this respect), counter-ions of high sym-
metry which are only foosely held in place with no strong intermolecular inter-
actions (particularly BF,~, CIO,~ and PF¢™ anions), and small solvent molecules
not anchored by hydrogen bonding or other significant interactions (such as
toluene, acetone, and dichloromethane). Figure 2.20 shows some typical cases.
Further examples more relevant to inorganic compounds include substitutional
disorder of two or more types of atoms or ions (e.g. a random distribution of Na*
and K*cations over common sites in an alkali metal salt, or a random mixture of
two different halide anions as ligands in a metal complex), and an end-to-end
disorder of orientation of bridging cyano ligands in polymeric complexes con-
taining M-C-N-M linkages.

Where the disordered atom sites are well resolved, so that individual elec-
tron density peaks can be seen, refinement is usually straightforward. When
disordered atom sites are closer together than normal bonding distances,
constraints and/or restraints may be needed, so that the expected molecu-
far geometry is used as data in the refinement alongside the diffraction pat-
tern intensities; this is particularly useful, and often essential, in cases of high
disorder.

Very often, the disordered part of a crystal structure is not of particular inter-
est, and the fact that this portion is less well determined is not important. Unfor-
tunately, however, disorder in any part of the structure affects the reliability with
which the whole structure can be determined. This is because the whole struc-
ture generally contributes to the whole diffraction pattern in the experiment,
and the whole diffraction pattern contributes to the whole structure in the sub-
sequent calculations; this is the nature of Fourier transforms. The effect can be
seen in two particular ways.
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Fig. 2.20 Some examples of disorder: top left, an n-butyl chain in which the last two carbon
atoms (with their hydrogen atoms) adopt two alternative positions; top right, three disordered
THF ligands coordinated to a metal atom; bottom left, an AsF¢™ anion with two orientations
related by rotation about one of the linear FAsF units; bottom right, a toluene solvent molecule
disordered over an inversion centre (hydrogen atoms not shown).

First, exceptin the simplest cases, disorder can be difficult to incorporate in the
model structure which is refined, especially when some alternative atom sites lie
close together or when there are muttiple disorder sites. A less than ideal model
structure makes it more difficult to match the calculated and observed diffrac-
tion patterns and so leads to higher uncertainties in all the refined parameters
than there would be for a fully ordered structure.

Second, static disorder represents an effective spreading out of electron
density from ideal ordered positions, and this, like atomic vibrations, increases
interference effects and hence reduces diffracted intensities, particularly at
higher Bragg angles (see Section 1.7). Badly disordered structures give diffrac-
tion patterns in which the intensities fall off rapidly at higher angles; a lower
proportion of reflections will be of significant intensity than for an ordered
structure of similar scattering power. A shortage of high-angle data with sig-
nificant intensity leads inevitably to a structure with lower precision, not only
because there are fewer data. Inspection of the Bragg equation (1.3 and 1.4)
shows that high scattering angle corresponds to small d-spacings, i.e. the reso-
lution of closely spaced features in the structure. The maximum Bragg angle for
which data are measured dictates the effective minimum resolution to which
the structure can be determined. The effect of omitting higher-angle data is
illustrated in Fig. 2.21, where electron density maps have been calculated from
all data with 8 < 25° (d > 0.84 A) and from the data with 6 < 15° (d > 1.37 A).
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Fig. 2.21 Electron density maps calculated from data with 6 < 25° (left) and from data
with 6 < 15° (right).

With the lower resolution data only, it is much more difficult to distinguish the
individual lighter atoms.

High disorder particularly affects crystal structures of biological macromol-
ecules, such as proteins, which incorporate large amounts of disordered solvent
water in the substantial spaces between molecules. The diffraction intensities are
also weak because of the large size of the molecules. As a consequence, usually
only relatively low-angle intensities are observed, and atomic resolution is rarely
achieved; in many cases, resolution is limited to 2A, 3A, or even worse. This
is one of the challenges of macromolecular crystallography discussed further
in Chapter 4. Similar, though less serious, problems can affect some large non-
biological structures in popular modern research areas such as supramolecular
chemistry. Low-temperature data collection and the use of synchrotron radia-
tion are both important as means of maximizing intensities and crystal stability.

In some extreme cases of disorder, individual atom sites cannot be allocated
from difference electron density maps, so there is no sensible contribution to the
structural model for refinement; diffuse electron density is seen rather than dis-
crete peaks. There are methods available that calculate a Fourier transform of this
diffuse density in the structure and then treat this as an extra contribution (with
amplitudes and phases) to be added to the diffraction pattern calculated from
the rest of the structure, the sum of these being matched to the observed intensi-
ties in the refinement. The volume of the diffuse region and the number of elec-
trons in it can be estimated as part of this calculation, and may be used, together
with other information such as chemical analysis or spectroscopy, to identify the
disordered component, which is usually a solvent, but this is not always success-
ful. The main part of the structure is usually determined satisfactorily despite this
problem. An example occurs in one of the case studies in Chapter 3.

Twinning

Another departure from ideal structures which can seriously hinder a crystal
structure determination is the phenomenon of twinning. A twinned crystal is
one in which two (or more) orientations or mirror images of the same structure
occur together in a well-defined relationship to each other. It tends to occur
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when there are fortuitous rational relationships among the unit cell parameters,
such as for a monoclinic structure with the angle B close to 90°, or with similar
values for the a and c axis lengths. Twinning then results from ‘mistakes’ in putting
the unit cells together to form the complete crystal during its growth, because
they can fit almost equally well two different ways round.

A twinned crystal gives a diffraction pattern which is the superposition of the
diffraction patterns of the two (or more) individual component parts of the crys-
tal. In some cases, the two diffraction patterns have reflections which coincide
exactly, each measured intensity then being the sum of two different (and non-
equivalent by symmetry) but twin-related reflections. In other cases, the pres-
ence of two diffraction patterns can be recognized from the outset, because they
are not exactly superimposed and the observed pattern clearly cannot belong to
a single untwinned crystal. Whatever the precise nature of the twin relationship,
if it can be worked out from the observed diffraction pattern (or from subsequent
recognition of problems in the structure determination), then there are methods
for solving and refining the structure, though it is more complicated than for
a normal untwinned structure. A two-component twin is characterized by two
parameters, which need to be determined: a twin law, which is expressed as a
3 % 3 matrix relating the orientations of the two components, and a twin frac-
tion giving the relative amounts of the two components present in the crystal.
An example of a twinned structure is included in the case studies of Chapter 3.

Absolute structure

In Chapter 1 it was shown with optical analogues how a diffraction pattern has
inversion symmetry, even if the structure responsible for it does not. This is known
as Friedel’s law. In fact, this is only approximately true, because of an effect
known as resonant scattering. As a first approximation, every time an atom scat-
ters X-rays, a phase shift of 180° occurs; because this phase shift is constant, it
can be ignored, and we regard all atoms as scattering in phase at © =0°. In reality,
the phase shift is not exactly 180°, and it is different for different atoms, generally
increasing with atomic number, although there are irregularities in the pattern;
atoms which contribute strongly to X-ray absorption also give significant reso-
nant scattering. For centrosymmetric structures, the effects of resonant scatter-
ing on the pair of opposite reflections h, k, | and ~h, —k, —I are equal, and so they
still do have the same intensity: Friedel's law is obeyed. For non-centrosymmetric
structures, however, the effects do not cancel, and these reflections, known as
Friedel pairs or Friedel opposites, have different intensities. The differences are not
very great in most cases, since resonant scattering is only a small fraction of the
total atomic scattering of X-rays, but careful measurement and comparison of
Friedel pairs of reflections, or inclusion of them as separate non-equivalent data
in refinement, allows us to distinguish a crystal structure from its inverse or oppo-~
site hand. For chiral molecules, this represents a direct experimental method of
determining absolute configurations, which is not possible otherwise.
Resonant scattering is incorporated into the equations for X-ray diffraction
by allowing atomic scattering factors to be complex numbers rather than purely

The conditions for possible twinning are
actually more subtle than this and are
often not obvious from simple inspection
of the unit cell parameters. In geometrical
terms, what is required is the possibility

of taking either one unit celf or a block

of two or more unit cells together and
inserting this in a different orientation,
and/or after reflection/inversion, into

the same structure without significant
distortion of the overall lattice of the rest of
the structure. Apart from the geometrical
aspect, it is also necessary for the
differently oriented section of the structure
to make acceptable energetic interactions
with the ‘host’ structure. A full treatment

of twinning requires a deeper knowledge
of space-group and diffraction symmetry
than is provided in this short text.

Twinning has been detected in many
crystal structures since the widespread
introduction of area-detector
diffractometers, which record the whole
diffraction pattern and not just the Bragg
reflections found at positions expected
from the initially found unit cell and
crystal orientation. Itis very likely that
many earlier structures giving poor
refinement results actually suffered from
unrecognized twinning.

Friedel's law states that the intensities
of reflections (h, k, I) and (=h, —k, —I) have
equal intensities; in fact they have the
same amplitude, and phases with equal
values but opposite signs:

[F(h kD)= F(=h—k,~1)], d(h.k
=—¢(~h—k, 1), and i(h.k,)=l(~h,~k,~1).

Resonant scattering by an atom occurs
when the X-ray photon energy is close
to a value appropriate for promotion of
an electron from one orbital of the atom
to another, or for complete removal
(ionization) of an electron. It is also often
called anomalous scattering, but there
is actually nothing anomalous about

it, and the term resonant scattering
relates the effect to the energy match
that is responsible for it. The amount

of resonant scattering depends on the
element and on the X-ray wavelength.

A chiral molecule is one which is not
identical to its mirror image; the two
non-identical mirror images, known as
enantiomers, are related like left and
right hands. Determining the absolute
configuration means finding out which
one of the two we actually have.
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Absolute structure is a general term
encompassing a number of physical
properties that are different on inversion
of a structure. Opposite chirality of

two enantiomers is the property most
familiar in molecular chemistry, but less
familiar aspects such as crystal polarity
are beyond the scope of this text.

real numbers; there are two extra contributions (measured, like the atomic scat-
tering factor fitself, in units of electrons), one real and one imaginary {multiplied
by i), so that f for each atom type is replaced by f+f’+if” . The values of f and
f” are strongly wavelength-dependent, but do not depend on the Bragg angle 6.
Some representative values are given in Table 2.3 for X-rays from the widely used
copper and molybdenum targets.

Table 2.3 Normal and resonant scattering factors

Element Normal f(6=0) f and f’ (Cu) f and f’ (Mo)
Carbon 6 0.018, 0.009 0.003, 0.002
Oxygen 8 0.049,0.032 0.011,0.006
Phosphorus 15 0.296,0.434 0.102, 0.094
Iron 26 ~1.134,3.197 0.346, 0.844
lodine 53 —-0.326,6.836 '-0474,1.812
Mercury 80 ~4.292,7.685 -2.389,9.227

Although resonant scattering makes only a small contribution to the overall
diffraction effects, in many cases this is sufficient to distinguish between a chiral
structure and its opposite hand. One approach is to refine the two possible enan-
tiomeric structures separately with the same set of experimental data, and decide
which gives the better fit in terms of R factors and other indicators. A more com-
mon approach is to incorporate into the refinement a so-called absolute structure
parameter, such that the structure is treated as a twin composed of the two enan-
tiomers (the twin law is inversion) and the absolute structure parameter is the
refined twin fraction, defined here as the fraction of the component of opposite
hand to the model structure. An absolute structure parameter close to zero with
a small s.u. therefore indicates that the model is correct, while a value close to 1
with a small s.u. shows that the model should be inverted. An intermediate value
with a small s.u. suggests that the crystal really is an inversion twin, while a large
s.u. demonstrates that the absolute structure cannot be reliably determined, usu-
ally because the resonant scattering contributions are too small. This approach
has the advantage of providing, through the s.u. of the refined parameter, an
estimate of the reliability of the result.

2.11 Presenting and interpreting the results

What in fact are the results of a crystal structure determination? Returning to the
microscope analogy, the application of the reverse Fourier transform equation
to the observed diffraction pattern (but using calculated rather than genuinely
observed phases!) gives an electron density map, an image of the X-ray scattering
power of the crystal sample. It is, however, rare for the results to be presented in
this way. Instead, the structure is represented as atoms (positioned at the centres of
peaks of electron density) joined together by chemical bonds, and these atoms are
described numerically by the refined parameters of the model structure.
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The primary results from the refinement are the unit cell geometry and sym-
metry (space group), and the positions of all the atoms in the asymmetric unit
(three coordinates each), together with their isotropic (one) or anisotropic
(six) displacement parameters (each with an associated s.u.). The displacement
parameters are usually interpreted as representing thermal vibration of the
atoms and, in most cases, are regarded as less important and less interesting
than the positional parameters; they are also more affected than the positional
parameters by many experimental errors.

From the atomic coordinates, unit cell geometry and symmetry, many geo-
metrical results can be derived. These include:

(a) bond lengths (distance between two atoms considered to be bonded
together; see Fig. 2.22(a); a normal X-ray diffraction experiment does not
directly show bonds, which are an interpretation based on distances and
chemical experience);

(b) bond angles (angle between two bonds at one atom; see Fig. 2.22(b));

(c) torsion angles (the apparent angle between two bonds A-B and C-D
when viewed along the B-C bond for a connected sequence of atoms
A-B-C-D; see Fig. 2.22(c));

(d) theshapes and conformations of rings (e.g. chair and boat conformations
of cyclohexane rings);

(e) the planarity or otherwise of groups of atoms (with possible consequences
for the interpretation of their bonding);

(f) degree of association (monomers, formation of small oligomers,
polymers);

(g) intermolecular geometry such as hydrogen bonding, van der Waals
contacts, n-interaction stacking of planar aromatic groups.

As well as numerically, the results may be displayed graphically, as pictures of
individual molecules and of the packing arrangement of molecules in the crystal
structure (Fig. 2.23). Since these are all interpretative models, not direct observa-
tions (unlike what is seen through a standard optical microscope), a wide vari-
ety of styles of representation is possible, the traditional ball-and-stick model
being the most commonly used. It is also possible, of course, to construct accur-
ately scaled three-dimensional models of structures from the atomic coordi-
nates, though this is likely to be very time-consuming or involve new 3D printing
technology. In terms of the microscope analogy, the effective magnification for a
typical molecule is > 108, which is a very impressive result!

Further interpretation and explanation of the structure and its relation to
physical and chemical properties then follows as appropriate. For a large and
complex structure, this can be quite a task. The amount and detail of structural
information produced is greater than for any spectroscopic method of investi-
gating chemical structure. It is salutary to recall that it all comes from a sample
a fraction of a millimetre in size. Such is the power of the technique of X-ray
crystallography.

(d)

Fig. 2.22 Geometrical parameters:
(a) bond length; (b) bond angle;
(c) torsion angle (two views, the
second down the central bond).

This raises other questions, for example
whether the particular crystal selected
is actually representative of the bulk
sample, which may not be a pure
homogeneous compound. One way

of checking this is to use powder
diffraction, described in Chapter 4.
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Fig. 2.23 Various styles of pictorial representation of the structure of [PhRSNSNSNSPh]*[AsF¢]™:
top left, conventional ball-and-stick model; top right, atomic displacement ellipsoids; bottom
left, space-filling model; bottom right, packing of cations and anions in parallel layers in the
crystal structure.

2.12 Archiving and reporting crystal structures

A crystal structure determination yields as its results the unit cell geometry and
symmetry, and the positions and displacement {vibration) parameters of all the
atoms it contains. From these the intramolecular and intermolecular geometry
can be calculated, and graphical representations can be produced, as shown
in the previous sections. All the results, together with the diffraction data from
which they are derived, are held electronically in computer files.

The use of computers does not end with the successful completion of a struc-
ture refinement. One important further step is the safe storage of the results on
computer-readable backup media locally and/or somewhere on the internet, for
archiving, future access, and any further analysis.

Computers also play an important role in the publication of structural results
in the research literature. Not only are manuscripts prepared with computer
word-processors, as in research generally, but it is now normal practice to trans-
mit results from researchers and authors to journals in purely electronic form,
usually with procedures set up by the publishers. Such developments are very
much assisted by the well-defined nature of the X-ray crystallographic results
and widespread acceptance of particular standards and formats for them. A
major development was the introduction of the so-called Crystallographic
Information File (CIF), which was devised as a convenient and flexible form
of information for archive, exchange, and publication; modern structure refine-
ment programs generally produce a CIF as well as other forms of output, and fur-
ther items of information can easily be added, since each piece of information in
the file is uniquely identified by a name defined in an internationally agreed (and
frequently updated) dictionary. An example of part of a CIF is shown in Fig. 2.24;
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_cell_length_a 17.3546(11)
_cell_length_b 6.7359(7)
_cell_length_c 15.7608(9)
_cell_angle_alpha 90
_cell_angle_beta 90
_cell_angle_gamma 90
_cell_volume 1842.4(2)
_cell_formula_units_Z 4
_cell_measurement_temperature 240(2)
_cell_measurement_reflns_used 32
_cell_measurement_theta_min 10.59
_cell_measurement_theta_max 12.28
_exptl_crystal_description needle
_exptl_crystal_colour ‘dark blue’
_expti_crystal_density_diffrn 1.851
_exptl_crystal_F_000 1016
_exptl_crystal_size_max 0.56
_exptl_crystal_size_mid 0.24
_exptl_crystal_size_min 0.16
_exptt_absorpt_coefficient_mu 2.358
_exptl_absorpt_correction_type multi-scan
_exptl_absorpt_correction_T_min 0.342
_exptl_absorpt_correction_T_max 0.386
_exptl_absorpt_process_details ‘based on equivalents and psi-scans'
_diffrn_ambient_temperature 240(2)
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoK\a
_diffrn_source ‘sealed tube'

_diffrn_measurement_device_type
_diffrn_measurement_method
_diffrn_reflns_number

'Stoe-Siemens four-circle diffractometer’

‘wi\q scans with on-line profile fitting'
7487

_diffrn_reflns_av_unetl/netl 0.0318
_diffrn_refins_av_R_equivalents 0.0506
_diffrn_refins_limit_h_min -20
_diffrn_reflns_limit_h_max 20
_diffrn_reflns_limit_k_min -8
_diffrn_refins_limit_k_max 8
_diffrn_reflns_limit_|_min -18
_diffrn_refins_limit_|_max 18
_diffrn_reflns_theta_min 1.745
_diffrn_reflns_theta_max 25.034
_diffrn_measured_fraction_theta_max 0.996
_reflns_number_total 1768
_reflns_number_gt 1444
_refins_threshold_expression ‘> 23s(1)'
_refine_ts_structure_factor_coef Fsqd
_refine_|s_matrix_type full
_refine_ls_weighting_scheme calc

_refine_Is_weighting_details

'w=1/[\s"2"(Fo"2")+{0.0360P)"2"+0.8887P] where P=(Fo"2"+2Fc"2")/3'

_atom_sites_solution_primary heavy
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment constr
_refine_ls_extinction_method SHELXL
_refine_Is_extinction_coef 0.0017(3)
_refine_Is_extinction_expression
'F¢™"=kFc[1+0.001xFc"27\] 3" sin(2\q)] - 1/4™
_refine_ls_number_reflns 1768
_refine_Is_number_parameters 1562
_refine_ls_number_restraints 0
_refine_Is_R_factor_all 0.0391
_refine_ls_R_factor_gt 0.0270
_refine_ls_wR_factor_ref 0.0792
_refine_Is_wR_factor_gt 0.0704
_refine_Is_goodness_of_fit_ref 1.066
_refine_ls_restrained_S_all 1.066
_refine_ls_shift/su_max 0.000
_refine_is_shift/su_mean 0.000
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Fig. 2.24 An edited extract of a Crystallographic Information File (CIF), giving experimental
details for a crystal structure determination; the compound is [PhRSNSNSNSPh][AsFg], used at
various points in this chapter as an example.
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Many of these validation tests are
combined in the online CheckCIF facility
provided by the International Union of
Crystallography.

a complete CIF for a large structure is a long file, including not only the primary
results, but also the derived geometry with associated s.u.s. The diffraction data
can also be stored in a defined CIF format, as can an entire research report or
manuscript for publication. Computer programs and journal publishing systems
are then used for converting information from a CIF into text and tables more
suitable for human readers, by-passing any need for manual typesetting with
its inherent probability of introducing errors. Crystallography is particularly well
suited to electronic publishing and has led the field in such developments.

The complete record of a crystal structure analysis encapsulated in a CIF also
lends itself readily to a range of validation processes, contributing to the gener-
ally high reliability of X-ray crystallography as a structural tool in modern chem-
istry. Various computer programs and online facilities are available that will:

o checka CIF for conformity to the agreed standards in terms of its contents,
structure, and internal consistency;

@ check for consistency of the unit cell geometry, space-group symmetry, and
atom positions with the derived geometrical results (bond lengths etc.);

@ check the geometry, displacement parameters, and other results against
expected behaviour and typical ranges of values for such items, flagging
unusual items for closer examination and possible correction.

Such validation procedures are a required part of the process of submitting
structural results for publication in many journals, and help to avoid erroneous
results appearing in the literature and in databases.

Once structural results have been published in the primary research literature
{scientific journals), they are available for anyone to access and use. It is, how-
ever, not necessary to work through libraries of printed material to find results of
relevance and interest, because of the availability of computer databases. Data-
bases are essentially collections of items of information with a common structure
and format. Their advantages over paper-based or other storage and retrieval
systems include their ease of maintenance and updating, the possibility of auto-
matic validation of new entries, facilities for selecting and sorting entries, and
computer-based analysis of selected entries. A database has two components:
the stored contents, and suitable software for search, retrieval, and analysis.

Computer databases are important in many areas of chemistry and other
sciences, and cover such aspects as bibliography and literature citations, safety
information, spectroscopy, and reaction mechanisms. They are particularly well
suited for crystal structures.

Four main structural databases are used internationally in research. CrystMet,
produced by Toth Information Systems Incorporated, holds information on met-
als, alloys, and intermetallics. In July 2014 there were over 150 000 entries. The
Inorganic Crystal Structure Database (ICSD) is managed by the Fachinformation-
szentrum in Germany and the US National Institute of Standards and Technol-
ogy. It contains inorganics and minerals, in which there is no organic carbon. In
May 2014 there were over 160 000 entries. The Protein Data Bank (PDB), main-
tained by the Research Collaboratory for Structural Bioinformatics, stores data
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for proteins, nucleic acids, and larger biological assemblies; see Chapter 4 for a
discussion of biological macromolecular crystallography. A relative newcomer, its
size has grown enormously, with over 100 000 entries in August 2014. The largest
structural database is the Cambridge Structural Database (CSD), developed by the
Cambridge Crystallographic Data Centre, UK. Its contents are organics, organo-
metallics, and metal complexes, and numbered over 700 000 in April 2014, with
continued rapid expansion.

Each of these databases has its own individual special features appropriate
to the contents, but they also have common aspects. Since the CSD is the most
widely used, we consider it further here in illustrating some points. Entries for the
CSD are drawn mainly from the primary research literature and are now almost
entirely obtained in electronic form from the authors’ submission. Other entries
are supplied direct by crystallographers for inclusion in CSD as Private Com-
munications, which remain otherwise unpublished. Individual entries are thor-
oughly checked for consistency and possible errors, which are either corrected
or flagged.

Each entry in the database contains: bibliographic information; a collection
of individual text and numeric data such as unit cell parameters, tempera-
ture of data collection, and R factor; a two-dimensional representation of the
chemical structural formula; and all the atom positions, from which detailed
geometry can be calculated. Searches can be made through the contents
against any of these items; particularly useful is the facility to search for all
structures containing a particular group of atoms (a molecular fragment), with
or without specific restrictions on its geometry. The possible output includes
display of all the searchable items, a three-dimensional graphical representa-
tion of the structure which can be manipulated interactively, and statistical
analysis of any of the numerical items, including specific geometrical features
such as bond lengths.

The structural databases are thus an invaluable resource of reliable informa-
tion, far more convenient to use than the original published literature. They can
be used to find a particular structure for various reasons (this includes avoiding
repeating work which has already been done!), to obtain information on a series
of related structures, to generate a geometry for a structural fragment for use
in other calculations such as a Patterson search to solve a structure, molecular
orbital theory, or molecular modelling, and for extensive research into trends
and patterns in structures (such as conformations of rings, hydrogen bonding,
intermolecular interactions, substituent effects, etc.).

2.13 Summary

e The determination of a crystal structure by X-ray diffraction may be
achieved within a day, or it may take much longer, depending on many
factors including the quality of crystals, type of experimental equipment and
X-ray source available, size and complexity of the structure, and problems
encountered during structure solution, refinement, and interpretation.

There is, of course, much that the
databases do not contain, such as the
authors' discussion of their results, for
which the original literature must be
consulted: but even here, the databases
provide the necessary bibliographic
information as a way into the literature.

Such research, based on extensive

and often sophisticated analysis

of structures in the databases, has
uncovered numerous fascinating
structural relationships and can even
provide information relevant to chemical
reactions through careful examination
of the distortions produced in molecular
structures by significant interactions
with their crystal environment. It is often
referred to as ‘database mining'.
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e The sample must be a single crystal of appropriate size for the material and
experimental setup; no other crystalline material should be present in the
X-ray beam during data collection.

@ Diffraction patterns are usually measured using an X-ray diffractometer,
consisting essentially of an X-ray source, a device for rotating the crystal in
the X-ray beam, an X-ray detector, and computer control. Most modern
diffractometers have an electronic area detector, giving data collection
times ranging from minutes to hours. Computer analysis of the diffraction
pattern provides unit cell parameters, the space group, and a list of
measured intensities with their associated reflection indices and standard
uncertainties.

@ Corrections may be required for variations in the incident X-ray intensity,
crystal deterioration in the beam, various geometrical factors associated with
the diffraction process, and other physical effects such as X-ray absorption.
The corrected intensities are proportional to the squares of diffracted wave
amplitudes, and experimental reflection phases cannot be measured.

e Structures may be solved (atom positions found) by a range of methods,
of which the most common are analysis of the Patterson function for
heavy atoms, so-called direct methods based on probability relationships
among reflection phases, and dual-space methods exploiting the limited
information available in both direct space (the crystal structure) and
reciprocal space (the diffraction pattern).

@ Astructural model is refined by least-squares methods to give calculated
amplitudes that match as closely as possible the observed amplitudes, the
observations being appropriately weighted according to their perceived
reliability. Refinement may incorporate constraints, restraints, and other
aids to overcome difficulties such as the low scattering power of hydrogen
atoms.

@ Structure refinement is monitored by a range of statistical indicators
known generally as R factors; the correctness of a final structural model is
demonstrated by an essentially featureless difference electron density map.

® Problems often encountered in crystal structure determination, for which
tools are available in refinement software, include static disorder and
twinning.

@ The absolute configuration of a chiral structure can be determined in X-ray
crystallography by use of resonant scattering effects, which are significant and
useful for certain combinations of chemical elements and X-ray wavelengths.

@ The primary results of structure refinement are the positions (and
displacement parameters) of atoms within a unit cell of known geometry
and subject to the symmetry of a particular space group. From these,
intramolecular and intermolecular geometrical parameters of interest can
be calculated and analysed. Many different graphical representations of
structures are possible, to suit the desired presentation of the results.
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@ The results of crystal structure determinations are conveniently recorded in
a standard form known as the Crystallographic Information File (CIF), which
serves as a vehicle for archiving, transmission, and publication. Published
crystal structures are available in large internationally recognized computer
databases, each with associated software for search, retrieval, display, and
analysis.

e The overall effect is as if we could operate a microscope of around
10® magnifying power giving a result with a short delay rather than
instantaneously.

2.14 Exercises

Exercise 2.1

Which steps in the flowchart of Fig. 2.1 have become generally faster as a result of
improved computer hardware and software, and which have been largely unaf-
fected by these developments?

Exercise 2.2

Why must a crystal be rotated in the X-ray beam during data collection (a) in
order to obtain the complete diffraction pattern; (b) even in the measurement of
a single reflection with a serial diffractometer?

Exercise 2.3

What advantages are there in measuring the complete diffraction pat-
tern (with a full range of negative and positive values for all three indices,
as would be necessary for a non-centrosymmetric triclinic structure in space
group P1) rather than only the unique portion without symmetry-equivalent
measurements?

Exercise 2.4

List the types of information that are available (a) in direct space and (b) in recip-
rocal space at the stage when X-ray diffraction data have been measured and
‘reduced’ (corrected) and the next step is to solve the structure.

Exercise 2.5

If possible, obtain a copy of the Excel spreadsheet described in Section 2.7 and a
copy of the publication describing its use, and work through the stages outlined
for the solution of the 1D structure.
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Exercise 2.6

Why do Fig. 2.17(c) and (d) show only two of the six F atoms of the [AsF¢]” anion?
Why are H atoms not found until all the other atoms have been located and
refined?

Exercise 2.7

Give two reasons why crystallographic R factors never decrease to a value of zero,
even with good quality data and the best available refinement software.

Exercise 2.8

Which of the following solvent molecules must be disordered, and which could
be ordered?

e THF on a twofold rotation axis.

e THF on a mirror plane.

@ n-pentane on an inversion centre.

® nh-hexane on an inversion centre.

Exercise 2.9

Why are copper-target X-rays often used in preference to molybdenum-target
X-rays for the study of natural products containing only C, H, N, O, and F atoms?



case studies

3.7 Introduction

In this chapter the process of X-ray crystal structure determination is illustrated
by a series of five examples drawn from a wide range of structural chemistry
research. The examples have been chosen to cover many different aspects of
the experimental measurements and methods of structure solution and refine-
ment, as well as a variety of types of material and some of the potential problems
described earlier. Not all details of every structure determination are given, but
each example presents particular features of interest. All the examples are of
published work and references are provided as well as CSD REFCODEs so that
further details can be found. 3D rotatable images and computer results and data
files are also available in the supplementary electronic resources. At the end of
the chapter (Section 3.8) some problems are presented for the reader to solve.

3.2 Case study 1: a mercury thiolate complex

The complex [Et4N] [Hg(SR)s] (Fig. 3.1), where R is the cyclo-hexyl group CgHyq, is
prepared from HgCl,, NaSR and [Et,N]Cl in acetonitrile solution. This is an empir-
ical formula corresponding to a monomeric structure; the anion could actually
be a dimer with bridging thiolate ligands, a higher oligomer, or even a polymer,
and this is one of the key questions to be answered by a crystal structure deter-
mination. Examination of a crystal of size 0.52 x 0.36 x 0.34 mm on a four-circle
serial diffractometer with molybdenum radiation of wavelength 0.71073 A ata
temperature of 240 K, reveals a triclinic unit cell with dimensions

a=10724(4) b=12.440(5) c=12.643(5)A
0.=72402) PB=79.36(2) y=73.33(2)°
vV =1531.3(10)A°

The formula mass for the proposed formula CysHs3HgNS3 is 676.5 daltons;
this gives a calculated density of 1.467 g cm™ and an average volume of 24.7 A*

X-ray crystallography

\
N+
AN

Fig. 3.1 The expected chemical
structure of case study 1.

The numbers in parentheses are
standard uncertainties, expressed for
compactness as units in the last figure of
the corresponding numerical value. Thus,
for example, 10.724(4) A means a value
of 10.724 Awith an s.u. of 0.004 A.



72 X-RAY CRYSTALLQG@APHY

In this space group symbol, the P means
a primitive unit cell, and the T means

an inversion centre as the only other
symmetry. The other triclinic space
group, P1, has only translation symmetry,
no inversion; it is less likely because it
would not require Z =2 and because it is
far less commonly found for non-chiral
materials.

The subscript ‘int’ stands for internal,
since this is a measure of the internal
consistency of agreement of the data,
not agreement with something else.

per non-hydrogen atom, if Z = 2; both of these values are reasonable for such a
compound containing a heavy metal atom—the density was not actually meas-
ured. This means there are two cations and two anions in the unit cell. There are
only two possible triclinic space groups (see Section 1.6), and the more likely is
P1, which requires the two cations to be related to each other by inversion sym-
metry, and similarly for the two anions in the unit cell; the asymmetric unit of the
structure (half the unit cell) is one cation and one anion, so we know nothing at
this stage about the molecutar geometry from symmetry arguments.

All possible reflections with 8 < 25° have been measured one by one, includ-
ing those equivalent by symmetry, a few of them more than once, giving a total
of 10 990 reflections. Corrections are applied for absorption effects, which are
strong for a compound containing mercury, based on measurements of inten-
sities of selected medium-strong reflections at a range of different crystal ori-
entations (these would be equal if there were no absorption, and an empirical
correction can be calculated from their observed variation); the correction indi-
cates that about 75-85% of the intensity of each reflection is lost by absorp-
tion of the incident and diffracted beams, the high values being due to the large
absorption coefficient of the material and the range being a result of the crystal
shape. It is also found that the intensities have decreased steadily by about 7%
in total during the data collection period of around 4 days, and this is corrected
for, so that all the data are on the same scale. Each pair of reflections with indices
h, k, I and —h, -k, —! is equivalent by inversion symmetry, so they are averaged,
to give a unique set of 5412 reflections. The averaging process also provides a
measure of the agreement of symmetry-equivalent data in the form of a factor
Rint, defined rather like the R factors in structure refinement, except that com-
parison is between pairs of observed symmetry-equivalent reflections instead of
between observed and calculated values; the value 0.022 obtained for this set of
data is excellent.

With just one heavy atom in the asymmetric unit, two in the unit cell, this
structure is an obvious candidate for a Patterson synthesis as the means of solu-
tion. The largest peaks found in the Patterson synthesis (one half of the unit cell
only; the other half is equivalent by inversion symmetry) are shown in Table 3.1.

Table 3.1 The largest Patterson peaks for case study 1

Peak no. u v w Peak height  Vector length (A)
1 0.000 0.000 0.000 999 0.00
2 0.462 0.146 0432 403 8.87
3 0.354 0.273 0.265 132 7.49
4 01M 0.867 0.163 118 247
5 0.466 0.957 0.407 115 7.61
6 0.003 0.811 0.975 110 246
7 0.074 0.022 0.158 101 2.39
8 0.462 0.836 0411 99 7.28
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The peak heights are scaled arbitrarily so that the largest peak, at the origin,
has a height of 999. The length given for each peak is the length of the corre-
sponding interatomic vector, which is the distance (in A) between the two atoms
concerned.

In this space group, for each atom at a position x, y, z there is a symmetry-
equivalent atom at position —x, ~y, —z. The two mercury atoms in the unit cell
thus have coordinates which are equal but opposite in sign, and the vector
between these two positions is x—(—x), y—~(-y), z—(—z), which is just 2x, 2y, 2z. The
highest Patterson peak, therefore, excluding the origin peak, should correspond
to an Hg—Hg vector, should be much larger than the other peaks, and has coordi-
nates equal to twice those of a mercury atom in the structure; its vector length is
the distance between the two mercury atoms in the unit cell. The coordinates of
one mercury atom are thus 0.462/2, 0.146/2, 0.432/2, giving x=0.231, y=0.073,
z=0.216. The two mercury atoms are well separated (almost 9 A apart); a short
distance here would indicate that the two mercury atoms are in fact part of a
dimeric anion of formula [Hg,(SR)¢]*, probably with bridging thiolate ligands,
so we can already deduce that the anion is monomeric, as proposed in Fig. 3.1.

A mercury atom has 80 electrons, and this is a significant proportion of the
total scattering power of the asymmetric unit (344 electrons). Since we now know
the position of the mercury atom, we can use this as our first model structure in
the next stage of Fourier syntheses to find the remaining atoms. It is, however,
worth pausing to examine the next highest peaks in the Patterson map. There
are six of these with similar heights; all other peak heights are less than 60 on this
scale. The next largest peaks after Hg—Hg are expected to be Hg-S. There should
be three of these corresponding to intramolecular vectors, i.e. Hg—S bonds within
one anion, and three corresponding to intermolecular vectors, i.e. from mercury
in one anion to the three sulfur atoms in the other anion. The list does include
three vectors of length 2.47, 2.46 and 2.39 A, which are appropriate for bonds,
and three vectors more than 7 A long, which will be the intermolecular ones. So
the Patterson map is certainly consistent with our proposed chemical formula
and with a three-coordinate Hg-centred anion.

Now we move into the structure completion 'bootstrap’ procedure. Taking
the mercury atom alone as the model structure, Fourier transformation gives
a calculated diffraction pattern. The value of the residual factor R1 is 0.284 for
the 5032 reflections which have F> > 26(F?) (such reflections are sometimes
called ‘observed reflections’, because they have an intensity judged to be signifi-
cantly higher than background scattering), and wR2 is 0.650 for the complete
set of reflections; these values are reasonable for a model structure containing
only one heavy atom. A difference electron density map calculated from the
observed amplitudes and the calculated phases derived from just the mercury
atom (Fig. 3.2) does not show the complete electron density of the mercury atom
(it would appear clearly as a very large peak in a full electron density map, but a
difference map is better for finding new atoms). Its highest three peaks, with elec-
tron densities above 20 e A3, are in positions about 2.4 Afrom mercury, suitable
for sulfur atoms; all 26 carbon atoms and the single nitrogen atom are among the
30 next highest peaks excluding residual electron density close to the position

It would be possible to use this
information to calculate the positions of
the three S atoms bonded to Hg and add
them to the starting model structure, but
itis not necessary.

O

O

Fig. 3.2 Partof a 2D slice through the
3D difference electron density map
around the mercury atom position;
the points and lines show the final
refined mercury and sulfur atom
positions and bonds.
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of mercury, with densities in the range 8.6 down to 2.8 e A=, and the remaining
peaks are rather lower. It is not expected that all carbon atoms will have the same
maximum electron density, because those which undergo larger vibrations have
their electron density spread out over a larger volume, so they usually show up as
peaks of lower height. The assignment of atom types is made on the basis of the
observed distances and angles involving the peak positions, and the expected
structure, as well as on peak heights.

So in this case, a single cycle of Fourier synthesis calculations reveals all the
non-hydrogen atoms, and refinement of the structure can begin. Refinement
with isotropic displacement parameters for all the atoms (each atom has one
adjustable overall displacement parameter as well as three adjustable coord-
inates) reduces wR2 from 0.362 (with all atoms in the positions found from the
difference map) to 0.311 and the value of R1 after refinement is 0.102, a consid-
erable improvement on the first trial structure with just the mercury atom pres-
ent. Inclusion of anisotropic displacement parameters (six values for each atom
instead of one) reduces wR2 to 0.137 and R1 to 0.041; there are now 280 refined
parameters (3 coordinates and 6 displacement parameters for each of 31 atoms,
together with an overall scale factor to bring the observed and calculated intensi-
ties onto a common scale).

Most of the 53 hydrogen atoms now show up in a further difference elec-
tron density map, those in the anion being clearer than those in the cation,
for which the atoms have higher displacement parameters, so their electron
density is more spread out. They are all included in the refinement, but the
C—H bond lengths and angles involving hydrogen atoms are kept fixed (con-
strained) at ideal values rather than being allowed to refine freely, because the
hydrogen atoms are not very precisely located by X-ray diffraction, especially
in the presence of the heavy Hg atom; effectively, the hydrogen atoms are
made to ride on their parent carbon atoms. This technique incorporates all the
electron density of the atoms in the model structure, but it adds very few or no
extra refined parameters; in this particular structure, free rotation is allowed
about the C—C bonds of the cation starting from an idealized staggered confor-
mation; such small deviations from ideal positions are due to intermolecular
interactions. The final refinement also includes some extra minor corrections
for effects which are not important for this account, including small modifi-
cations to the relative weighting of different reflections, and gives values of
0.082 for wR2 (all data) and 0.032 for R1 (observed data). There are 285 refined
parameters derived from the 5412 data, a very high degree of over-determi-
nation, so the precision of the structure is high (s.u. values of the parameters
are small). In a final difference electron density map there a few peaks of size
0.8-2.1 e A= very close to the mercury atom (a commonly observed feature
for heavy atom structures, due largely to an imperfect correction for strong
absorption effects in the data), and no other peaks above 0.6 e A3, which is an
insignificant level.

The cation and anion are shown in Fig. 3.3. The main interest, in addition to
the degree of association (a monomer rather than a dimer or higher aggregate)
is in the coordination of the mercury atom, which is somewhat distorted trigonal
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Fig. 3.3 The structure of the cation and anion of case study 1; the anion is shown in
conventional ball-and-stick form, the cation with displacement ellipsoids (the disptayed
envelope enclosing 50% probability for each atom) for carbon and nitrogen atoms, to
illustrate different styles of representation.

planar, with a range of about 0.08 A for the three Hg-S bond lengths, much
greater than their individual uncertainties of about 0.002 A, and three very dif-
ferent S~Hg-S angles, the smallest being 101.27(5)° and the largest 135.82(5)°.
As expected, all the cyclohexane rings show a chair conformation with sulfur in
an equatorial position. There is nothing at all unexpected or special about the
geometry of the cation, which occurs in many salts of complex anions. It is an
important feature of crystal structure determination that, in general, the whole
structure has to be determined, even if only one particular part of it is really of
interest; it is an all-or-nothing technique. This is a direct consequence of the
nature of Fourier transforms: all the atoms in the unit cell contribute together to
the observed diffraction pattern, and all the diffraction pattern has to be used to
find the atoms.

This structure has been published:
Homoleptic cyclohexanethiolato
complexes of mercury(ll). T. Alsina,

W. Clegg, K. A. Fraser and J. Sola, J. Chem.
Soc. Dalton Trans. 1992, 1393-1399.

The CSD REFCODE is VOXTOR.
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In summary, this case study illustrates the following points:

e how simple itis to find a single heavy atom in the asymmetric unit of this
common low-symmetry space group by a Patterson synthesis;

@ the straightforward completion of the structure by Fourier methods from
this one heavy atom as a starting point (phasing model);

@ the necessity to locate and refine all the atoms of the structure even if some
parts of it are of little or no particular interest;

¢ the importance of corrections for non-diffraction effects in the experiment.

3.3 Case study 2: a solvated chiral rhodium complex

This complex, with expected chemical formula [Rh(Ph,PCH,PPh,)(C;,HgBO,)] or
[Rh{(dppm)(Bcat,)], was prepared from [(acac)Rh(dppm)] and B,(cat); in THF solu-
tion (see Fig. 3.4 for the ligands); crystals were obtained from a solution in C¢Dg,
the deuterated solvent being used for NMR studies. The diphosphine dppm is a
commonly used chelating ligand. The main interest in this structure is the coor-
dination of Rh, especially the mode of attachment of the Bcat, ™ ligand.

The crystal size was 0.36 X 0.18 x 0.16 mm, and data were collected in a few
hours with radiation of wavelength 0.71073 A at 160 K, on a CCD-based area
detector diffractometer. The total number of measured reflections is 26 554, giv-
ing 8415 unique data after the application of corrections for absorption {less
severe than for case study 1, but still significant) and the averaging of symmetry-
equivalent reflections, with Ry, = 0.025.

The crystal system is orthorhombic and the space group is P2,242; (unambigu-
ously indicated by the systematic absences in the data, with the lack of inversion

(acac)Rh(dppm) B(cat);

Fig. 3.4 Reagents and ligands for case study 2.
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symmetry also indicated by the statistical analysis of intensities). The unit cell
parameters are as follows:

a=13.2932(7) b=152327(8) c=17.8046(10)A
o=p=y=90° V=3605(3)A3

This cell volume is sufficient for 4 molecules of the proposed complex, with
an average non-hydrogen atom volume of 20.1 A3, slightly on the high side for
such a compound; the formula mass of 714.3 daltons gives a calculated density
of 1.309 g cm™, which is reasonable. Reference to standard space group tables
shows that the asymmetric unit is one-quarter of the unit cell, so we expect to
find one molecule in the asymmetric unit, and there is no information at this
stage about the molecular shape, all atoms lying in general positions (in fact
there are no special positions in this space group, in which the only symmetry
elements are screw axes and pure translation).

The presence of rhodium (45 electrons; the next largest atomic number is 15
for phosphorus) means a Patterson synthesis is again suitable for the solution of
this structure (though, in fact, it can be solved easily by automatic direct methods
or charge flipping to give most or all of the non-hydrogen atoms). For this space
group there are four equivalent general positions in the unit cell, related by the
screw axes in all three cell axis directions, with coordinates: x, y, z; % —x, -y, % +z;
=X, % +Yy, =z, Va+x, Y%~y —z. Four atom positions give 16 vectors as shown in
Table 3.2, where each entry in the table body is the difference between the pos-
ition at the top of the column and the position at the left of the row; wherever the
number —% would appear by this simple subtraction, it is replaced here by % to
give a neater table, because it is always permissible to add or subtract any whole
number (in this case adding one) to a coordinate, which has the effect of moving
to an exactly equivalent position in another unit cell.

Each row, and each column, contains one entry 0, 0, 0 for the vector between
an atom and itself; one entry with % as the first coordinate; one with % as the
second coordinate; and one with % as the third coordinate. Some of the entries
are identical except for a change of sign before one or more of 2x, 2y, and 2z. In
fact, the 16 vectors give only 3 unique non-origin Patterson peaks together with
their equivalents in orthorhombic symmetry; note that for every entry there is

Table 3.2. Vectors for equivalent atoms in space group P2,242,

e buyder oudiyder ey
XY,z 0,0,0 T=2x,-2y,3 -2%3 42z +4=2y,-2z
T-x-yi+z T+2x2y.3 0,0,0 F442y,-2z 2x,3.1-2z
X, 2tyt-z 2x,3.342z2 +4-2y,2z 0,00 142x-2y,1

T+XF—y—z 1.3+2y2z2 —2x%.3+2z 1-2x2y,3 0,0,0
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The advantage of constructing the
complete vector table is that it shows
when some entries are completely
identical; in such cases, the two or more
vectors involved are parallel, and they
contribute to a single peak of combined
height. It is important to recognize this
when matching the expected vectors
for the space group with the peak

list obtained from the experimental
Patterson map.

The symmetry of all Patterson maps in
the orthorhombic crystal system is such
that changing the sign of any one, two,
or all three coordinates of a peak gives
an equivalent peak; the asymmetric
unit of the Patterson map (which is
smaller than the asymmetric unit of
the crystal structure if the latter is non-
centrosymmetric) is one-eighth of the
unit cell. The unique peak positions listed
here have been chosen from among
symmetry-equivalents in order to make
the calculations easy for demonstration
purposes.

Choosing a different column of the
vector table, or one of the rows,

would lead to a different set of three
coordinates for the Rh atom, but it would
be equivalent by symmetry or by taking
a different valid unit cell origin for this
space group.

H-RAY CRYSTALLOGRAPHY

another with all the signs changed, which appears in a different row and differ-
ent column, because the Patterson synthesis is always centrosymmetric even
when the crystal structure (as in this case) is not. The unique vectors are listed
in any one single row or any one single column, and it is necessary to consider
only one row or one column to interpret the Patterson map; here we will take
the first column.

The highest unique peaks in the Patterson synthesis calculated from the dif-
fraction pattern of this compound are listed in Table 3.3; each of these has others
equivalent to it by symmetry. All other peaks are under 80 in height.

Table 3.3 The largest Patterson peaks for case study 2

Peak no. u v w Peak height Vector length (A)
1 0.000 0.000 0.000 999 , 0.00

2 0.500 0.788 0.800 173 8.21

3 0.094 0.500 0.300 169 9.38

4 0.594 0.288 0.500 158 11.29

Finding the position of the rhodium atom in the asymmetric unit from these
peaks is a matter of identifying each of the peaks with a corresponding entry in
column 1 of Table 3.2. Peak 2 has u =% and so corresponds to the fourth entry:
%, %+ 2y, 2z. From this we obtain y=0.144 and z=0.400. Similarly peaks 3 and
4 correspond to entries 3 and 2 respectively, and we obtain the following results:

from peak 2 : y=0.144 z=0.400
frompeak3: x=0.047 z=-0.100
frompeak4: x=0.047 y=0144

For this particular space group (this is not always the case), each entry pro-
vides us with two coordinates, and we obtain two indications for each of x, y
and z. The results for x and y agree, but there are two different values for z. The
reason for this is inherent in the process for solving the Patterson synthesis
and is easily explained. Note that peak 3, for example, at 0.094, 0.500, 0.300,
appears in the same position (and at symmetry-related positions) in every unit
cell of the Patterson map. There is thus also a peak at 0.094, 0.500, 1.300, from
which the above calculation gives x =0.047 (as before) and z = 0.400. Because
a coordinate is obtained by dividing by 2, % can be added to or subtracted
from the answer to give an equally valid result. This corresponds to choosing
a different possible allowed unit cell origin (in most space groups, symmetry
elements occur regularly spaced at intervals of one-half a lattice repeat, so
possible unit cell origin choices lie at intervals of % along some or all of the unit
cell axes).

We now have a first model structure consisting of a single Rh atom at 0.047,
0.144, 0.400 and can begin the Fourier bootstrap procedure to find the remaining
atoms. The Rh atom alone is a smaller proportion of the total scattering power
of the asymmetric unit than we had with the Hg atom in case study 1, so it is not
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surprising that our first R1 factor is somewhat higher in this case, at 0.336, with
WR2=0.709. The phases calculated from the Rh atom are also not very close to the
correct (unknown) phases, and so the resulting difference electron density does
not clearly show all the missing non-hydrogen atoms; in fact, there are just two
large peaks at sensible positions for the P atoms of the dppm ligand, and the lighter
atoms are not well defined yet. It is usually counterproductive to include dubious
atoms in the model structure, so the next model consists of just the Rh and two P
atoms, a modest but significant improvement. This reduces R1 to 0.256 and wR2
t0 0.616, and now all the C, O, and B atoms of the ligands are clearly revealed in a
difference map as 42 of the 46 highest peaks and are readily assigned the correct
atom types.

Refinement of all these atoms, with anisotropic displacement parameters, gives
values of 0.080 for R1 and 0.255 for wR2 and a further difference map now contains
6 peaks with heights between 3.5 and 5.3 e A3, all other peaks being under 1.4 e A~
in height. These form a regular planar hexagon and must be a molecule of benzene
or, more correctly, perdeutero-benzene, the solvent from which the crystals were
grown. This solvent molecule was not recognized earfier because its atoms have
rather higher displacement parameters and hence lower electron density maxima,
and because its presence was not expected. Addition of the 6 extra C atoms to the
model structure, with further anisotropic refinement, reduces R1 to 0.032 and wR2
to 0.104. At this stage all 36 H atoms are revealed in a difference map.

In the final refinement the H atoms are included with riding-model constraints
asfor case study 1, giving a total of 460 refined parameters and 8415 unique data,
a satisfactorily high data/parameter ratio. R1 is 0.021 and wR2 is 0.047; both of
these are substantially reduced by inclusion of the H atoms. There are no differ-
ence electron density peaks above 0.28 e A3,

The space group is non-centrosymmetric and the arrangement of ligands
around the Rh atom is chiral, so the structure is not identical to its enantiomer,
which can be generated by inverting the signs of all coordinates of all the atoms.
Refinement of the inverted model structure gives significantly higher R1 (0.028)
and wR2 (0.065), and the absolute structure parameter for the correct enanti-
omer has a value of -0.012(7), insignificantly different from zero and with a very
small s.u,, indicating a very high confidence of the absolute chirality assignment;
Rh and P atoms have significant resonant scattering effects.

The molecular structure is shown in Fig. 3.5. Rhodium, in oxidation state +1, is
chelated by the diphosphine ligand, as expected, and is n°-coordinated (in a half-
sandwich fashion) by one benzene ring of the Bcat,™ ligand, giving an overall neutral
complex. The four-membered RhP,C ring is essentially planar, as are both halves of
the Bcat, ligand, which are perpendicular to each other. The asymmetric unit also
contains one C¢Dg molecule, so the compound is a solvate; the solvent molecules
occupy spaces between the complex molecules and contribute to the overall pack-
ing, but there are no particularly strong intermolecular interactions and the solvent
molecule shows rather higher atomic displacements than the molecule of the com-
plex(whichisonereasonwhyitwasnotlocatedin theinitial structuresolution). Stand-
ard uncertainties for Rh—P and Rh—C bond lengths are 0.0006 and 0.002-0.003 A
respectively, and those for bonds between lighter atoms are 0.003~0.005 A and up

Six of these are actually D atoms, but H
and D (like isotopes of other elements)
are indistinguishable in X-ray diffraction
because they have the same electron
density and differ only in their nuclei.
The only impact of having D rather than
H atoms is in the molecular mass and
crystal density; it does not affect the
crystal structure itself.
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This structure has been published:
Rhodium catalyzed diboration of
unstrained internal alkenes and a
new and general route to zwitterionic
[L,Rh(n®-catBcat)}(cat=1,2-O;CsHs)
complexes. C. Dai, E. G. Robins, A,

J. Scott, W. Clegg, D. S Yufit, J. A. K.
Howard and T. B. Marder, Chem.
Commun. 1998, 1983-1984. The CSD
REFCODE is FAJJOP.

Fig. 3.5 The structure of the asymmetric unit of case study 2.

to 0.006 A in the benzene solvent molecule; these values reflect the relative X-ray
scattering factors of the different atoms and their atomic displacements.
In summary, this case study illustrates the following points:

e atypical Patterson solution for one heavy atom in a medium-symmetry space
group, aided by analysis of vectors between symmetry-equivalent heavy atoms;

e routine completion of the structure by a few cycles of Fourier map
calculations and addition of new atoms to the model structure;

e theincorporation of solvent molecules in a crystal structure to give a solvate,
having a small effect on the crystal density and average atomic volume—in
this case without significant intermolecular interactions;

e the equivalence of different isotopes of an element in X-ray diffraction;

o the determination of the ‘absolute structure’ of a chiral molecule by resonant
scattering effects;

o the advantages of area detectors and low-temperature data collection in
providing rapid and precise diffraction data.

3.4 Case study 3: a microcrystalline
chiral organic compound

Tetracycline hydrochloride (Fig. 3.6) is an antibiotic agent. This is one of a number
of compounds that were selected in 1998 for a competitive exercise in crystal struc-
ture determination from powder diffraction data collected by the organizers and
made available to competitor research groups. It was important to have a definitive
crystal structure obtained from single-crystal X-ray diffraction as a benchmark for
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NH, 0 OH O OH

CI-

Me OH

Me,NH*

Fig. 3.6 The proposed chemical structure of tetracycline hydrochloride, case study 3.

the exercise, but at that stage no such information was available for the anhydrous
salt. The sample provided was a commercial microcrystalline material, and recrystal-
lization to generate larger single crystals was not permissible, as this could not be
guaranteed to give exactly the same crystalline form. Since individual crystals were
essentially coarse powder grains with maximum dimensions of tens of microns, con-
ventional laboratory X-ray sources were unable to give adequate diffraction inten-
sities, even though the crystal quality was good. Data were collected with synchrotron
radiation (A= 0.6883 A) at 150 K, using a CCD-based area detector diffractometer of
the same kind as for case study 2, from a crystal of dimensions 0.04 x 0.03 x 0.02mm.

The material is orthorhombic, with the same space group (P242,2;) as for case
study 2. The unit cell parameters are as follows.

a=109300  b=127162(11) c¢=15.7085(13) A
o=B=y=90° vV =21833(3) A3

With a formula mass of 480.9 daltons, this gives a calculated density of
1.463 g cm™ and an average volume of 16.6 A% per non-hydrogen atom if
Z = 4, corresponding to a single cation-anion pair in the asymmetric unit of
the structure. The average atomic volume is somewhat lower than for a typical
organic compound, and this is consistent with substantial hydrogen bonding
in the structure, which reduces some of the intermolecular contact distances.

The total number of measured reflections is 8955, with 4915 unique data after
averaging symmetry-equivalent reflections (R;,, = 0.047). Corrections are not
needed for absorption for such a small crystal and with no heavy atoms present,
but they are required for a substantial steady decline in intensities, caused in this
case not by sample decomposition in the X-ray beam but by a decay of the inten-
sity of the X-ray source itself (a property of some older synchrotron facilities).

There are no particularly heavy atoms in this structure, chlorine having only
about twice the electron density of the lighter non-hydrogen atoms. The struc-
ture is easily solved by direct methods: well-established programs available
at the time this structure was originally determined require only the unit cell
parameters, space group, X-ray wavelength, and an estimate of the contents of
the asymmetric unit (or of the unit cell) together with the diffraction data in order
to give a correct solution, while more recent direct methods and charge flipping
programs are able to work out the space group as part of the process. A range of
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programs all reveal one large electron density peak for the chloride anion and
32 smaller peaks corresponding to the expected O, N, and C atoms; other peaks
are much lower. This means the complete structure, other than H atom:s, is found
in a single calculation, and the Fourier bootstrap procedure is not needed.

Refinement proceeds as in the previous case studies; with anisotropic dis-
placement parameters for all the non-H atoms, R1 = 0.066 and wR2 = 0.173. A
difference map now shows 24 H atoms among the top 25 peaks; the position of
one H atom is less clear, but it can be found in the next difference map after the
other H atoms have been included in the model structure.

For this structure, the positions of H atoms bonded to O and N are of particu-
lar interest because of hydrogen bonding and because the compound has more
than one possible tautomeric form, these being related by transfer of H atoms and
exchange of single and double bonds. It is therefore important, if possible, to refine
the H atoms without constraints or restraints, so that their positions.are defined only
by the experimental data and not by any preconceived ideas. This is successful here,
with free refinement of the coordinates and isotropic displacement parameters of
the 25 Hatoms in afinal calculation, which gives R1=0.050, wR2=0.116. The geom-
etry involving H atoms, and their displacement parameters relative to their parent
atoms, are all entirely reasonable; these H-atom parameters, of course, have rather
higher standard uncertainties than those for the other atoms. The resonant scatter-
ing effects, although not very strong for Cl and almost non-existent for the lighter
atoms, are sufficient to indicate the correct absolute configuration for this chiral
compound, with an absolute structure parameter of 0.02(10), very close to zero and
with an acceptably small s.u. Because of the free refinement of the H atoms, there
are 399 refined parameters, but this still gives a high data/parameter ratio of 12.3.

The structure of the asymmetric unit (one cation, with protonation of the tetra-
cycline molecule at the NMe; group, and one chloride anion) is shown in Fig. 3.7.

CI1@

Fig. 3.7 The asymmetric unit of tetracycline hydrochloride, case study 3. N, O, and Cl atoms
are labelled for comparison with the table of hydrogen bonds.
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Cr-

Me,NH*

Fig. 3.8 The observed tautomeric form of case study 3.

The tautomeric form, based on the observed H atom positions and on C-C and
C—-0O bond lengths, is found to be that shown in Fig. 3.8, which differs from the one
originally proposed and found in other crystal forms of tetracycline and its salts.
The difference consists in the transfer of one H atom from a ring OH substituent
to the adjacent amide CONH, group, with interconversion of some single and
double bonds. Interestingly, this H atom forms arelatively strong O-H..O hydrogen
bond (as indicated by a long O—H bond, a short H..O contact, and a short O..0
distance) to the O atom from which it has been transferred, so the transfer may be
regarded as incomplete; this, not surprisingly, was the last H atom to be found in
the structure determination and it has the highest displacement parameter of all
the atoms, corresponding to a relatively shallow potential energy minimum for its
position between the two O atoms.

The hydrogen bonding in a section of the crystal structure of case study 3 is
shown in Fig. 3.9; apart from the involvement of the chloride anion, all the hydro-
gen bonding is intramolecular. The geometry of hydrogen bonding is usually
characterized by the X—H, H..Y and X..Y distances and the X—H..Y angle, where
X is the hydrogen bond donor atom (here N or O) and Y is the acceptor (here O
or Cl); this information is provided in Table 3.4 for tetracycline hydrochloride. In
providing this information for intermolecular hydrogen bonds (and for intermo-
lecular interactions generally), it is necessary to specify any symmetry operations
relating the acceptor to an equivalent atom in the 'home’ asymmetric unit.

In summary, this case study illustrates the following points:

]

the use of intense synchrotron radiation for investigation of small crystals
and other weakly scattering samples;

& atypical straightforward direct methods solution of an ‘equal-atom’
structure;

@ the determination of absolute configuration from resonant scattering
effects;

# the free refinement of H atoms in appropriate cases;

& the study of intramolecular and intermolecular hydrogen bondingin a
crystal structure;

@ the existence of related crystal forms such as polymorphs, hydrates and
other solvates, and co-crystals.

There are several other published
crystal structures that contain either
tetracycline itself or its protonated
cation along with an anion in the latter
case and with solvent or other neutral
molecules; 20 are found in the CSD,
including a hexahydrate of the neutral
molecule, a hydrated hydrochloride,
and a whole series of co-crystals
containing carboxylic acids. The study
of polymorphs, solvates, co-crystals
and other closely related crystal forms
is an important pursuit with respect

to variations in physical properties,
especially in the pharmaceutical industry.
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This structure has been published:
Tetracycline hydrochloride: a
synchrotron microcrystal study. W. Clegg
and S. ). Teat, Acta Crystallogr. Sect. C
2000, 56, 1343—1345. The CSD REFCODE
is XAYCAB.

Fig. 3.9 Intramolecular and intermolecular hydrogen bonding (shown as dashed lines) in

the crystal structure of case study 3. For hydrogen bonds to chloride formed by OH and NH,
groups of symmetry-related cations, only these donor groups of atoms are shown; inclusion of
complete cations would cause major congestion of the diagram.

Table 3.4 Hydrogen bonds for tetracycline (A and °).

X-H H..Y X.Y X-H..Y
O1-H1..017 0.92(6) 1.79(6) 2.564(5) 140(5)
06-H6..Cl1a 0.94(6) 2.24(6) 3.179(3) 174(5)
014-H14..Cl1b 0.70(5) 2.55(5) 3.195(3) 153(6)
O14-H14..015 0.70(5) 2.36(6) 2.683(4) 110(5)
015-H15..017 0.95(6) 1.62(6) 2.491(4) 151(5)
019-H19..011 1.13(7) 1A9(7) 2.484(4) 143(5)
N10-H10N..CI1 0.87(5) 2.26(5) 3.053(4) 152(5)
N19-H19A..Clic 0.92(6) 2.27(6) 3.157(4) 163(5)
N19-H198..013 0.87(6) 1.97(6) 2.694(5) 141(5)

Symmetry operations for equivalent atoms:a x=1y,zz b —x +3/2,-y + 1,z +1/2
¢ x=1/2, -y +3/2, =z

3.5 Case study 4: a metal coordination chain polymer

There is much current interest in the structures and properties of coordination
polymers, especially where these contain channels or pores that could poten-
tially be used for storage of gas molecules, with energy (hydrogen storage) and
environmental (CO, storage) applications. Such compounds are generated when
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metal centres (nodes) are connected by multidentate ligands (linkers) that serve
as bridges across two or more metal ions rather than chelates to a single metal
ion. Depending on the coordination geometry and the nature and geometry
of the linker ligands (and any non-bridging ligands that may also be present),
the polymers may be one-, two- or three-dimensional; the higher-dimensional
structures are also known as metal organic frameworks (MOFs). The polymeric
structures may be electrically neutral, or they may carry a net charge balanced by
uncoordinated counter-ions, which can occupy voids in the network along with
solvent or other molecules.

The compound [(MoS4Cusl),(bbd)s] uses a tetranuclear metal cluster rather
than asingle metal ion asa node, and the bridging ligand bbd shown in Fig. 3.10. It
was prepared from (NH,),[MoS4] and Cul (to generate the cluster node) together
with bbd in dimethylformamide (DMF, Me,NCHO) solution, and obtained as
very small crystals requiring synchrotron radiation for data collection, carried
outat150 K.

The crystals are monoclinic, space group 12/a, with the following unit cell
parameters.

a=19.937(6) b =10.0013) c=35707(14)A
B=97.164(4)° a=y=90° V=7064A3

Chemical analysis results fit reasonably well with the formula given above,
though slightly better if 1 mol of DMF solvent is included. With and without the
added DMEF, and for Z = 4, the calculated density and average non-hydrogen
atomic volume are 1.783 and 1.714 g cm™, and 22.9 and 24.5 A?, respectively,
which are reasonable for such a compound containing several large metal and
iodine atoms. If the correct space group is indeed 12/a, then the expected value
of Z is 8 for atoms in general positions, and so the two clusters in the chemical
formula must be symmetry-equivalent, as are two of the three bbd ligands, with
the third one lying on either an inversion centre or a twofold rotation axis; the
asymmetric unit contains one cluster and 1.5 bbd ligands. The consequences of
the space group symmetry for any DMF solvent present are discussed later.

Corrections were made for absorption {the crystal was a thin plate, 0.08 x 0.08 x
<0.01mm) and other factors in the synchrotron data collection. The total number
of measured reflections is 31 049, from a data collection taking less than one hour.

The structure is readily solved (and the space group thus confirmed) by stand-
ard methods. However, not all the atoms appear clearly in electron density maps:
the (CH,), linker chain of the bbd ligand lying in a special position across an inver-
sion centre (such that the two halves of the ligand are symmetry-equivalent) is
not easily found at first; it has two independent C atoms, one of which is attached
to the pyrazole ring and presents no great problem, but the other is found only
after the rest of the atoms have been refined, and it has a low electron density
maximum and a high refined displacement parameter. Isotropic refinement of
all these atoms gives an R1 factor of 0.172, with wR2 = 0.454; introduction of
anisotropic displacement parameters reduces these to 0.068 and 0.240, respec-
tively. At this stage it is clear from the elongated shape of displacement ellipsoids

N
N/
Cu—l
S—lCu/l
— N
|/S|/CU\N/
Mo—S
7 \ /

Fig.3.10 The expected metal cluster
node and bbd ligand of case study 4.

Space group /2/a has a body-centred

(1) unit cell, glide planes perpendicular

to the b axis, and both simple twofold
and screw axes parallel to this axis;

it also has inversion centres. A non-
centrosymmetric space group la shows
the same systematic absences, but is

less likely on the basis of a statistical
analysis of the measured intensities,
which supports the presence of inversion
symmetry. The asymmetric unit for 12/a is
one-eighth of the unit cell. An alternative
choice of axes can be made that gives the
more conventional setting C2/c for this
space group, but this involves a larger
value for the angle B.
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that the centrosymmetric bbd ligand is disordered. It is possible to split each of
the C and N atoms into two alternative positions, maintaining a sensible and
similar geometry for the combinations of these into two disorder components of
the ligand. Subsequent refinement with appropriate restraints on the geometry
and on the relative sizes and shapes of displacement ellipsoids of neighbouring
atoms gives a small reduction in R1 to 0.067 and wR2 to 0.235, but the important
point is that all the atoms now have reasonable displacement parameters and
the C, chain has a sensible geometry, so this is a better structural model. The two
disorder components do not have equal occupancies, but are in a ratio of about
3:2.

The R factors are still a little high, and there are some difference electron dens-
ity peaks of significant size lying too far away from any of the atoms in the model
structure to be bonded to them. These are probably due to solvent molecules,
but the collection of peaks does not resemble the geometry of a DMF molecule
at all, so the solvent must be highly disordered. Before dealing with this, it is
necessary to make the model structure as complete as possible, and this involves
adding the hydrogen atoms. These are inserted in geometrically calculated posi-
tions and refined with a riding model as in case studies T and 2, allowing ligand
methyl groups to rotate about the C—C bonds joining them to the pyrazole rings.
R1 is now 0.064 and wR2 is 0.218.

The main contributor to the high R factors is probably unmodelled solvent.
There is a group of difference electron density peaks in a suitable region of the
structure not occupied by the atoms in the model, two at 3—4 and several at
around 1 e A=, but they make no geometrical sense. In such a case we turn to the
procedure described briefly in Chapter 2, in which a Fourier transform is carried
out on this region of electron density considered to be occupied by disordered
solvent, and this is used as a contribution to the calculated diffraction pattern
along with the normal Fourier transform of the model structure. For this struc-
ture, the very satisfactory resultis a final R1 factor of 0.039, with wR2 =0.103; the
highest residual peaks in the final difference map are around 1 e A= and lie close
to the heavy atoms (I and Mo), as is often the case. The disordered solvent fitting
procedure indicates that there are four symmetry-equivalent solvent-accessible
voids in the model structure, each lying on a twofold rotation axis, having a vol-
ume of about 300 A3, and containing approximately 50 electrons; these figures
are an acceptable estimate of the requirements of one DMF molecule disordered
in each of these voids, in agreement with the chemical analysis. As a DMF mol-
ecule has no twofold rotation axis, it must be disordered in such a position, and
in this case the disorder cannot be resolved as two rotation-related overlapping
components by inspection of the difference map obtained earlier. The chemical
formula can thus be given with some confidence as [(MoS,Cusl),(bbd);]} DMF,
withZ=4.

The structure is best described as being composed of cube-like clusters con-
nected by bridging bbd ligands to form a polymeric chain; the connections are
made by Cu~N bonds, all three Cu atoms of each cluster being coordinated
by pyrazine N atoms (Fig. 3.11). Pairs of clusters are connected by pairs of
bbd ligands to form a (cluster),(bbd), unit with twofold rotation symmetry,
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Fig.3.11 Part of the polymeric chain structure of case study 4, showing only the major
component of the disordered bbd ligand; H atoms are omitted.

and these units are linked together by single bbd ligands, each of which is dis-
ordered over two different conformations across an inversion centre (in about
a 57:43% ratio). The main feature of the bbd disorder is in the positions of the
two central C atoms of the (CH,), linker chain between the pyrazine rings.
This may most easily be understood in terms of the arrangements commonly
found for torsion angles of saturated alkyl chains: adjacent C atoms usually
have a staggered arrangement, such that X—C—C—X torsion angles are close to
+60° (gauche, g) or 180° (anti, a). The sequence of three torsion angles in the
NCCCCN chain of the ordered bbd ligand in this structure is aga, while the
two components of the disordered bbd ligand have aaa and gag sequences
(Fig. 3.12), giving three different conformations for this ligand within the struc-
ture. The cluster is of a well-known type, in which S atoms occupy three of the
eight vertices of a distorted cube, three are occupied by Cu, one by Mo, and
one (opposite Mo) by I.

Two other points of interest regarding this structure arise, not from the
experiment or the structure itself, but from comparison with other structures.
First, this is one of two polymorphs that have been found; in each of them
the coordination polymer chain takes essentially the same form, with some
minor differences in the details of the conformation, but the chains are packed
together in different ways, giving a different unit cell (with one axis approxi-
mately halved and another approximately doubled in length) and a different
space group for the second polymorph, in which the DMF solvent is ordered in
a general position (not on a crystallographic symmetry element). Second, the
corresponding tungsten compound {(with W instead of Mo) adopts the same
two polymorphic structures with very similar cell parameters, the same pair
of space groups, and atoms in essentially the same positions. For each pair
of polymorphs, the two compounds (containing Mo and W) are said to be
isostructural. Pairs, and indeed whole sets, of compounds with chemical for-
mulae differing only in the identity of one or more of the elements present are
frequently isostructural; another example is the compound [Cr(NH3)g][HgCls],
used as an example in Chapter 1 for considerations of unit cell geometry and
symmetry arguments, the cubic polymorph of which is isostructural with the
corresponding compounds in which Cd or Cu replaces Hg in the anion, but not
‘with the Zn compound nor with the compound in which Co replaces Cr in the
cation (there is also a monoclinic polymorph).

Fig.3.12 The two disorder
components of the centrosymmetric
bbd ligand. The minor component is
shown with dashed circles for atoms
and dashed bonds.

If two crystal structures have very similar
unit cell parameters and the same space
group, they are isomorphous; if, in
addition, the atoms lie in essentially the
same positions in the two structures,

so that each of them can be used asa
starting model structure (with appropriate
changes in scattering factors for the
substituted atoms) for the refinement of
the other, they are isostructural. Note that
the word isostructural may be used with
different meanings in subjects other than
crystallography.

The four crystal structures (two
polymorphs each, for compounds
containing Mo and W) have not all been
determined in full. The existence of two
pairs of polymorphs, and the isostructural
relationships, have been deduced from

a combination of two single-crystal
structure determinations and some X-ray
powder diffraction studies, a related
technique described in Chapter 4.
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This structure has been published:
Metal-to-ligand ratio as a design

factor in the one-pot synthesis

of coordination polymers with

[MS,4Cu,] (M = W or Mo,n = 3 or 5)
cluster nodes and a flexible pyrazole-
based bridging ligand. A. Beheshti,

W. Clegg, V. Nobakht and R, W.
Harrington, Cryst. Growth Des. 2013,

13, 1023-1032. The CSD REFCODE

is XIBYUB. Some of the computer
programs and their combinations used
here were not available at the time of
the original research, so these results are
not identical to those published (they
are actually an improvement, particularly
in the disorder modelling).
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Fig.3.13 The molecule of case study 5.

[n summary, this case study illustrates the following points:

e an example in which parts of the structure lie in special positions on
symmetry elements, with Z’ < 1 (in this case 0.5);

® occurrence of disorder that can be modeiled by the use of atoms with partial
occupancy in alternative positions;

e the use of restraints and constraints to assist the refinement of a disordered
structure;

e extensive disorder that cannot be modelled with discrete atom positions,
requiring the use of a Fourier transform to calculate the contribution of the
disordered region to the diffraction pattern;

e a polymeric structure, in this case one-dimensional;

e isostructural and polymorphic compounds.

3.6 Casestudy5:a Falladium complex of a bulky
phosphine for catalysis studies

This complex, with a chemical formula [PdCI{C1,H1oN)(CosH35P)] (Fig. 3.13) and
synthesized in a mixed acetone-dichloromethane solvent, is one of a series
of palladium complexes of interest for the efficient catalysis of organic cross-
coupling reactions. It is another example of a sample obtained only as very small
crystals (0.05 x 0,02 x 0.02 mm for the crystal examined) and thus requiring data
collection with synchrotron radiation. At 120 K, the crystals are triclinic with the
following unit dimensions.

a=10.0924(18)

o = 88.004(2)
V =3430.8(1M A3

b=16.907(3) ¢=20.136(4) A
B=89.567(2) v=87.63112)°

Simple calculation, as in previous examples, demonstrates that Z= 4, giving a
density of 1.380 g cm™ and an average non-hydrogen atomic volume of 19.5 A3,
The two possible triclinic space groups have 1 (for P1)and 2 (for P1) asymmetric
units per unit cell, so in either case we have here a structure with 2’ > 1 (2 or 4,
respectively).

This case study presents a new problem: the reflections observed in the dif-
fraction pattern cannot all be indexed on the basis of any reasonable single unit
cell. The unit cell given above accounts for some of the reflections when it lies
in one particular orientation (the indexing procedure determines simultaneously
the unit cell parameters and the orientation), and others when it is rotated by 180°
into a different orientation. Twofold rotation symmetry does not occur in a tri-
clinic lattice, and so this is a twinned crystal with two twin components related in
this way. The twin law is a 3 x 3 rotation matrix expressing the 180° rotation and its
axis direction, and an initial estimate of the twin fraction can be found by compar-
ing the average intensities of the two sets of non-overlapping reflections, which in
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this case are approximately equal. In the data file of measured intensities derived
from the data collection and reduction, individual reflections are labelled to show
whether they belong to the first or second twin component, or have contributions
from both components overlapping, with two sets of reflection indices assigned.

In the large collection of measured reflections, over 17 000 belong exclusively
to the first component, essentially the same number to the second, and almost
as many are overlaps (these numbers include symmetry equivalents and reflec-
tions measured more than once in different combinations of crystal and detec-
tor positions). Corrections are made in the usual way for absorption and other
effects, and there are about 51 000 reflections in the complete set of data, 25 242
being unique (with (h, k, [} and (—h, —k, —I) equivalent by symmetry in the space
group P1, subsequently confirmed as correct; Ry is 0.048 for the merging of
equivalent reflections).

Once the twinning is recognized and appropriately treated, structure solu-
tion and refinement proceeds without difficulty; the structure can be solved by
Patterson or direct methods, using data from one of the twin components, and
refinement requires no restraints or constraints other than a standard riding-
model treatment of hydrogen atoms. There is no disorder. Intermediate steps do
not need to be described here.

The twin fraction is one of the refined parameters, and its final value is
0.4523(6), so we have a 55:45% two-component twin. Apart from recording this
fact, it has no impact on the quality and interpretation of the structural results.
The final values of R1 and wR2 are 0.052 and 0.139, respectively. The largest resid-
ual difference electron density peaks lie close to Pd atoms and near a cyclohexy!
ring that could be subject to minor unresolved disorder, a possibility indicated
also by somewhat elongated displacement ellipsoids, but validation of the struc-
ture does not flag this as a significant problem worth investigating further. These
results are excellent for a challenging sample.

The asymmetric unit contains two chemically identical but crystallographically
independent molecules, shown in their observed relative positions in Fig. 3.14. A
least-squares fit of the two molecules, with one of them rotated and translated to
overlay the other as closely as possible, is shown in Fig. 3.15, and demonstrates

Fig.3.14 The two molecules in the asymmetric unit of case study 5. H atoms are omitted.

This structure has been published:
Electron-rich trialkyl-type dihydro-
KITPHOS monophosphines: efficient
ligands for palladium-catalyzed Suzuki-
Miyaura cross-coupling. Comparison
with their biaryl-like KITPHOS
monophosphine counterparts. S.
Doherty,J. G. Knight, N. A. B. Ward, D. M.
Bittner, C. Wills, W. McFarlane, W. Clegg
and R. W. Harrington, Organometallics
2013, 32,1773~1788. The CSD REFCODE
is HOQQOV.
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Fig. 3.15 Aleast-squares overlay

of the two independent molecules,
showing their very similar geometry.
H atoms are omitted.

that they have almost exactly the same geometry, the main difference being in

the orientation of one of the cyclohexyt rings. In structures with Z'> 1 this is by no

means always the case, and conformational differences in molecules within the

same crystal structure, as well as in different crystal structures, can be very interest-

ing; there are even cases in which differentisomers are found in the same structure.
In summary, this case study illustrates the following points;

e extraction of a correct unit cell in two orientations for a twinned crystal,
thereby establishing the twin law;

@ use of the complete two-component twinned data in refinement of the
structure, including determining the twin ratio;

@ the presence of two crystallographically independent molecules in the
asymmetric unit (Z’ = 2) and comparison of their structures,

3.7 Summary

This chapter has described the main features of crystal structure determinations
of five example compounds, to illustrate the various stages described in Chapter 2
and some further points of interest. The following topics have been covered:

e calculations of unit cell contents and deductions about the presence of
solvent and possible symmetry restrictions on molecular structure;
@ some aspects of space group symmetry;

e the measurement of diffraction patterns with both serial and area-detector
diffractometers;

e the use of different sources of X-rays;
@ correction of measured intensity for effects such as absorption;

o the solution of crystal structures by Patterson, conventional direct, and
dual-space methods;

@ the completion of partial structure models with Fourier calculations;

o crystal structure refinement with isotropic and with anisotropic
displacement parameters;

e theinclusion of hydrogen atoms, with and without constraints depending on
circumstances;

e indicators of precision and completeness in structural results;
® arange of typical features found in crystal structures;

@ the use of resonant scattering effects to determine absolute configuration
and related properties;

e solvates;
® polymorphism;

e isostructural compounds;
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& disorder and twinning as problems to be recognized and overcome;

@ structures in which the asymmetric unit contains only part of a symmetric
molecule, or contains more than one molecule of the same compound;

3.8 Exercises

Exercise 3.1

For case study 1, calculate the relative heights expected for non-overlapping
Patterson peaks due to the following pairs of atoms: Hg-Hg, Hg-S, Hg—N, S-S.
Confirm that the peaks listed in Table 3.1 have appropriate heights for Hg—Hg
and Hg—S vectors. What should be the approximate height of the peaks appear-
ing next in the list, and what atom pairs are responsible for them?

Exercise 3.2

The Hg—S bond lengths in case study 1 are obtained, at the end of the refine-
ment, with higher precision {lower s.u. values) than the N-C and C-C bond
lengths. Why is this?

Exercise 3.3

Why is it reasonable to expect that the [Hg(SR)s]™ anion of case study 1 will devi-
ate significantly from showing perfect threefold rotation symmetry?

Exercise 3.4

The triclinic space group for the complex [(C,gH:sN,S)HgBr;] in Exercise 1.4 is P1.
For each mercury atom at a position (x, y, z) in the unit cell, space group sym-
metry requires that there is another mercury atom at the position (—x, -y, —z).
Where, apart from the origin (0, 0, 0), will the largest peaks be found in the Pat-
terson map for this structure? The largest peaks found in the Patterson map cal-
culated from the observed diffraction pattern are listed below (Table 3.5); there
are also peaks at symmetry-equivalent positions. All other peaks are under 100
in height. Deduce the coordinates of one mercury atom in the structure. To what
are peaks 3 and 4, and peaks 5 and 6, probably due?

Table 3.5 The largest Patterson peaks for Exercise 3.4

Peak number X y z Peak height Vector length (A)
1 0.000 0.000 0.000 999 0.00
2 0.358 0.374 0.540 336 8.23
3 0118 -0.124 0.154 224 2.61
4 0.188 0111 -0.094 223 250
5 0452 0.514 0.558 223 8.46
6 0471 0.243 0.689 222 676
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Exercise 3.5

The monoclinic space group for the indium complex in Exercise 1.5 is P2;/c.
For each atom at a general position (x, y, z) in this space group, there must be
three symmetry-equivalent atoms at positions (—x, -y, —z), (-x, % +y, % — z), and
(x, % — y, % + z). Derive from these the positions of the corresponding Patter-
son vector peaks (similar to Table 3.2, but with different entries). The four largest
peaks in the Patterson map for this compound are at positions given in Table 3.6,
together with peaks at symmetry-equivalent positions. Propose (x, y, z) coordi-
nates for one indium atom consistent with these peaks.

Table 3.6 The largest Patterson peaks for Exercise 3.5

Peak number x y z Peak height Vector length (A)
1 0.000 0.000 0.000 999 0.00

2 0.000 0.888 0.500 348 8.45

3 -0.120 0.500 0.820 329 933

4 -0.120 0.388 0320 179 8.77
Exercise 3.6

What difference is there in the following geometrical parameters for two
enantiomers?

e Bond lengths.
@ Bond angles.

e Torsion angles.

Exercise 3.7

Distinguish between isomers and polymorphs. Why is it important to investigate
polymorphism and the formation of solvates for pharmaceutical compounds?

Exercise 3.8

What do you think might be the consequences of overlooking twinning in a dif-
fraction pattern, and measuring and using only the reflections that fit the unit cell
and orientation of one of the twin components?



4.7 Introduction

The previous chapters have described the main topics of X-ray crystallography of
interest to undergraduate chemistry students, under the headings of fundamen-
tals, practical steps involved, and selected examples as case studies. In this final
chapter, four further topics are considered briefly for the sake of completeness,
extending the basic treatment beyond the core subject of X-ray single-crystal
diffraction for the determination of chemical compounds. These are: the use of
neutrons instead of X-rays (extending the choice of radiation source); the use of
powder diffraction (extending the scope regarding the physical state of the sam-
ple); applications to biological macromolecules (extending the scope of the tech-
nique beyond what is sometimes called ‘small-molecule’ crystallography); and
crystal structure prediction (extending the investigations to add theoretical to
experimental methods).

4.2 Single-crystal neutron diffraction

X-rays are used for crystal structure determination because they have wave-
lengths comparable to the separations between atoms in molecules, and so
they give measurable diffraction effects from crystals. Any other radiation with a
similar wavelength.would, in principle, serve the same purpose. Of course, there
are no other forms of electromagnetic radiation with the same wavelengths as
X-rays, by definition.

According to the de Broglie relationship

A=h/p=h/mv (4.1)

an object of mass m moving with velocity vand momentum p =mv has an associ-
ated wavelength and can display corresponding wave properties. For neutrons
generated by a nuclear reactor or a neutron spallation source, the associ-
ated wavelengths lie in the same range as X-rays, so a beam of neutrons can be
diffracted as particulate radiation by crystalline material.

The use of neutrons for diffraction is experimentally much more difficult
and expensive than the use of a conventional laboratory X-ray tube or even

Neutrons (and other elementary
particles) from nuclear reactors have
been used for scattering, diffraction

and spectroscopy in research for many
years; the reactor may be designed
specifically for this purpose, or may be
used primarily for energy generation or
nuclear reactions. More recently neutron
spallation sources have been developed,
in which particles (typically protons)

are accelerated in a synchrotron and
fired in pulses at a target to generate
neutrons and other useful particles. The
pulsed nature of these neutron beams

is a property exploited in specialized
experiments; it provides, among other
uses, a means of measuring neutron
wavelengths by their de Broglie
relationship to velocity through time-
of-flight measurements.
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The intensity of neutrons available at
modern spallation sources has greatly
improved this situation, enabling the
use of considerably smaller crystals than
previously.

a synchrotron source and, in most cases, diffracted intensities are consider-
ably weaker, so there is no point in it unless it offers some significant advan-
tages over X-ray diffraction. For most structure determinations this is not the
case, and X-ray diffraction is much more widely used. There are, however,
circumstances in which neutrons provide clear advantages, arising from the
different ways in which neutrons and X-rays interact with matter as they pass
through it.

X-rays, as we have seen, are scattered by the electrons of atoms; an X-ray dif-
fraction experiment shows the electron density distribution within the unit cell
of a crystal. This electron density distribution is usually interpreted in terms of
atomic positions, and leads to molecular geometry. Since the electron density of
each atom is generally distributed approximately symmetrically about the nucle-
us, this interpretation is valid, but in reality there are deviations from spherical
symmetry, caused by chemical bonding and other valence effects. The effect is
particularly marked for hydrogen atoms, which are consistently located too close
to their bonded atoms by X-ray diffraction (Fig. 4.1).

Fig. 4.1 Total electron density (left) and difference electron density (right) for the location

of a hydrogen atom attached to a benzene ring, as obtained from X-ray diffraction at low
temperature. The points and lines show the final refined positions of the atoms and bonds,
with the C~H bond length extended to its expected internuclear distance (from spectroscopic
measurements of many small molecules). The relatively poor scattering and the inward
displacement of the hydrogen atom are apparent.

Neutrons, by contrast, interact insignificantly with the electron density when
they pass through a crystalline solid. Scattering is instead by the nuclei. Since
both nuclei and neutrons are extremely small, significant scattering takes place
only when a neutron passes close to a nucleus, and on average the total intensity
of diffraction of neutrons by a crystal is low compared with that of X-rays. The
relatively weak scattering means that larger crystals are preferred for neutron
diffraction, and it may not be easy to grow them. On the other hand, neutron
scattering by a stationary atom does not fall off at higher angle like that of X-rays
(Fig. 4.2); lower intensities at higher angles are due entirely to atomic vibrations.
The weaker atom-neutron interactions also mean that absorption of neutrons by



single crystals is usually negligible, even when heavy atoms are present, in con-
trast to the situation with X-rays.

Although the scattering power of an atom for X-rays is directly proportion-
al to its atomic number (the number of electrons in the neutral atom), there
is no simple relationship between neutron scattering power and atomic num-
ber. Neutron scattering powers vary erratically across the periodic table, often
with large differences between adjacent elements, and heavier elements do not
dominate lighter ones as they do with X-rays; even different isotopes of the same
element have different neutron scattering factors. A selection of relative scat-
tering powers for X-rays and neutrons is given in Table 4.1.

It can be seen that some nuclei scatter in phase (positive scattering factors),
while others scatter out of phase (negative scattering factors). Note that different
isotopes of the same element may have quite different neutron scattering pow-
ers; this is particularly so for the isotopes of hydrogen, H and D. Elements (iso-
topes) with very small scattering powers, such as V, are effectively almost invisible
to neutrons. Among common elements, H (D even more so) and N are particu-
larly good neutron scatterers. There are several important consequences of this
difference in the nature of X-ray and neutron scattering, which make neutron
diffraction a useful tool in particular cases.

Compared with X-rays, neutrons are generally good at locating light atoms
in the presence of much heavier atoms, though this depends very much on the
particular elements involved. In particular, the precise location of first-row atoms
such as C, N, O in structures containing several very heavy atoms such as W, Re,
U is likely to be more successful with neutron diffraction, though an X-ray result
is perfectly adequate in most cases (see, for example, case study 1) unless small
differences in light-atom bond lengths are to be detected.

An extreme case is, of course, the location of hydrogen atoms, for which neu-
tron diffraction is far superior to X-ray diffraction, especially for deuterated com-
pounds. Not only is the neutron result more precise, because H/D atoms scatter

Table 4.1 Relative X-ray and neutron scattering factors of selected elements and isotopes. The
two sets of values are not on the same scale; neutron scattering is much weaker.

Atom X-ray Neutron
H 1 =37
D 1 6.7
C 6 6.6
N 7 94
0 8 5.8
| 17 1.7
) 17 31
v 23 —04
W 74 48
Re 75 9.2
U 92 8.4
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The use of neutrons for diffraction is
somewhat more complicated than
the brief treatment provided here. For
example, scattering that is inelastic
{change of wavelength on scattering)
and/or incoherent (more complicated
phase relationships) needs to be
recognized and handled correctly.

X-ray
0 (sing)/A
neutron
0 (sin6)/A

Fig. 4.2 The variation of X-ray (top) and
neutron (bottom) atomic scattering
factors with Bragg angle for stationary
atoms. In both cases atomic vibration
causes a reduction in scattering factors
at higher Bragg angles.
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The distinction between precision and
accuracy is important {in all of sciencel)
Precision refers to the spread of resuits
obtained if a measurement is repeated
many times; it measures repeatability

or the degree of confidence with which
a particular measurement can be

made, and it is measured by statistical
parameters such as s.u.s. Accuracy refers
to the agreement of the measurement or
result with the true (usually wanted but
unknown) value. Thus, a result can be
precise but not accurate (like a wrongly
set digital clock), and it can be accurate
but not precise.

Under certain circumstances, significant
differences between the X-ray scattering
factors of neighbouring elements can

be generated by choosing a wavelength
which gives a large resonant scattering
effect for one of them and a small effect
for the other. This requires tuneable
X-ray wavelengths, which can be
achieved with synchrotron radiation but
not with standard laboratory sources.

relatively strongly, it is also more accurate, because it locates the nuclei directly
rather than the electron density distorted by valence effects. For studies in which
precise and accurate hydrogen atom location is important, neutron diffraction is
the method of choice. Examples include hydride (H™) ligands in transition metal
complexes, bridging hydrogen atoms in electron-deficient compounds such as
boranes, and unusual hydrogen bonding. In the majority of structures, however,
hydrogen atom positions are entirely predictable and neutron diffraction is not
justified.

Neutron diffraction can clearly distinguish many pairs of neighbouring ele-
ments in the periodic table, which have almost the same X-ray scattering power.
This may be of value in some compounds such as mixed-metal complexes (e.g.
containing both W and Re, which have 74 and 75 electrons, respectively, but
quite different neutron scattering powers), alloys (where metal atoms may be
ordered or disordered), and minerals. ‘

Distinguishing between isotopes of the same element is impossible with X-ray
diffraction but, in many cases, straightforward with neutrons, provided the iso-
topes are not disordered in the structure. A case in point is the determination
of the H and D sites in a partially deuterated compound, which may help, for
example, in establishing a reaction mechanism by unambiguously identifying
the isotopic substitution in the product.

It should also be noted that neutrons have a magnetic moment, which inter-
acts with the magnetic moments of atoms containing unpaired electrons. In
paramagnetic materials, the atomic moments are randomly oriented, so these
effects are averaged out and there is no extra information available with neu-
trons. Ferromagnetic, ferrimagnetic and antiferromagnetic materials, on the
other hand, have an ordered arrangement of atomic moments, which often
leads to an increase in the size of the unit cell when this effect is included; neu-
tron diffraction produces extra diffraction maxima corresponding to the larger
unit cell (a supercell), and can thus characterize the magnetic ordering in such
compounds.

There are more advanced types of experiment, in which both X-rays and
neutrons are used to study the same structure. Since neutrons locate nuclei,
from which core electron density can be calculated, and X-rays reveal the total
electron density distribution, the combination provides a means of mapping
valence electrons and bonding effects. Such approaches (so-called ‘charge den-
sity studies’) require extremely careful measurements and corrections, since the
valence effects are small compared with the total electron density, and they lie
beyond the scope of this book.

4.3 Diffraction by powder samples

A single crystal gives a diffraction pattern (with either X-rays or neutrons) with
discrete diffracted beams, each in a definite direction relative to the orientation
of the crystal and the incident beam, according to the Bragg equation. Because
the diffraction conditions are severe, a stationary single crystal gives very few



reflections (see Section 2.3). In order to generate the complete diffraction pattern
it is necessary to rotate the crystal in the X-ray or neutron beam.

If several single crystals of the same material in different orientations are irradi-
ated simultaneously by X-rays, each of them gives its own diffraction pattern
and these are superimposed. As the composite sample is rotated, any particular
reflection will be generated by each of the individual crystals at different times
as the Bragg equation is satisfied; the Bragg angle and intensity will be the same
in each case (assuming equal sizes of crystals), but the direction of the diffracted
beam will vary, while always being inclined at 20 to the straight-through direc-
tion (Fig. 4.3). On a flat detector perpendicular to the incident beam and on the
opposite side of the sample, this set of corresponding reflections from the mul-
tiple crystals appears as identical spots on a circle. With an increasing number
of identical and randomly oriented crystals, more such spots appear, all lying on
the same circle, which is where a cone of diffracted radiation hits the detector. A
microcrystalline powder consists of an essentially infinite number of tiny crystals
and this produces a complete circle for a particular reflection.
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Fig. 4.3 The relationship between single-crystal and powder diffraction. Top: the effect for
one individual reflection. The centre of the detector is marked with an open circle. Left: the
position of one reflection from a single crystal. Centre: the positions of this reflection derived
from four crystals together in different orientations. Right: the effect for a very large number of
crystals. Bottom: the effect for a complete simple diffraction pattern. Left: the pattern from one
carefully aligned single crystal. Centre: the patterns from four crystals superimposed in random
relative orientations. Right: the pattern for a very large number of crystals; this is a powder
diffraction pattern, and each spot in the left diagram has generated a complete circle in the
right diagram.

The same occurs for every Bragg reflection, each one giving a cone of radiation
with semi-angle 26 (Fig. 4.4), and hence producing a circle on the detector. The
overall result is a set of many concentric circles, with radii dictated by the Bragg
equation and hence the unit cell geometry, and with intensities closely related to
those that would be produced by one single crystal.

In practice, a powder diffraction pattern is usually measured either on a strip
of photographic film wrapped round the sample in a cylindrical shape (a pow-
der camera), in order to reach high Bragg angles (with & approaching 90°, the
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Even individual tiny crystals which can
be seen only under a microscope, such
as constitute a fine powder, are still
effectively infinite in size compared with
the wavelength of X-rays, so each one
acts as a single crystal. In a fine powder,
the number of individual crystals is also
effectively infinite, with all possible
orientations present simultaneously.
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Fig. 4.4 Cones of diffracted X-rays
produced by each reflection from a
microcrystalline powder sample.
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The earliest biological applications of
X-ray crystallography were to proteins,
and the term ‘protein crystallography’,
abbreviated PX, was commonly used.
With extension to nucleic acids and virus
structures, the broad research area is
now widely known as macromolecular
crystallography or MX, and we will

use this abbreviation here; for simplicity
we shall also refer to ‘proteins’, with the
understanding that this term includes
also other macromolecules.
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diffracted beam is almost doubled back on the incident beam), or by an electronic
detector which is driven in a circle around the sample under computer control
(a powder diffractometer). In either case, intensity is recorded as a function of
angle, and for each reflection a Bragg angle and an intensity can be obtained. The
effect of using a microcrystalline powder instead of a single crystal is to compress
the full three-dimensional diffraction pattern into a one-dimensional pattern
(the only geometrical variable is 6). It is also possible to use a position-sensitive
detector (either an area detector, or one which is one-dimensional rather than
two-dimensional in form) to record powder diffraction patterns quickly and
efficiently.

For relatively simple structures, giving few reflections, there may be little overlap
of these in the powder diffraction pattern. In such cases it is possible to assign indi-
vidual indices and intensities and carry out structure determination as with single
crystals. Even for larger structures and those of lower symmetry, where this is not
possible, powder diffraction has important uses, in chemical analysis (both qualita-
tive and quantitative) and for the identification of materials, which is its most com-
mon application. The determination of crystal structures from powder diffraction
data, using advanced techniques for indexing the pattern to obtain a reliable unit
cell, for solving the structure without a complete set of non-overlapping reflec-
tions (a problem with some similarities to twinning), and for refinement using the
total measured powder diffraction profile instead of individual indexed reflection
intensities, is a subject now undergoing rapid and impressive development. A
proper treatment lies far beyond this text. The primary purpose of this brief treat-
ment is to illustrate the relationship between single-crystal and powder diffraction
techniques, both of which can be carried out with laboratory X-rays, synchrotron
radiation, or neutrons.

4.4 Biological macromolecular crystallography

[t was mentioned in Chapter 1 that a wide range of sizes of crystal structures can
be determined by diffraction methods, from small molecules and simple salts
to biological macromolecules such as proteins, nucleic acids, and assemblies
including viruses and the ribosome. This book has focused on organic, inorgan-
ic, and organometallic compounds of interest to chemists; here we describe a
few ways in which the technique is different when applied to large biological
molecules. The principles are just the same, but they need to be used differently
because of the nature of the samples themselves and the way in which they inter-
act with X-rays.

In most cases there is a very limited amount of material available (and there
may be significant safety requirements if it is a potent biological agent). Obtain-
ing suitable single crystals can be a serious challenge, especially as the proteins
are normally surrounded by a large amount of water within the crystals and they
can be grown only from aqueous solution, often within a relatively narrow pH
range, so there are fewer options for crystallization procedures, variation of the
solvent itself not being one of them except to the extent that water-miscible



organic solvents such as alcohols can be added. Various additives (for example,
polyethyleneglycols, inorganic salts, and ligands binding to the protein) can also
be used to change the solubility, and other conditions that can be varied include
the concentration and temperature. Special techniques have been developed to
encourage crystallization from very small volumes of solution, and large arrays
of nanolitre-scale crystallization cells can be set up in a combinatorial approach,
possibly with robotic control of the varied conditions.

Crystals of biological macromolecules can be very beautiful in appearance, but
they are often mechanically fragile and require special techniques for selection
and mounting, along with some mother liquor, typically in small fibre loops or
cavities in thin non-crystalline polymer holders looking rather like old-fashioned
pen nibs; separation of crystals from the mother liquor before X-ray diffraction
usually leads to serious degradation of crystal quality.

Unit cell axes are much longer than for most chemical compounds (generally
in the hundreds of A), and the larger cell volumes have two major impacts on
X-ray diffraction patterns. First, there is a much greater density of reflections, the
geometry of the diffraction pattern (the reciprocal lattice) being inversely related
to the lattice geometry. Second, according to equation 2.1, the relative scattering
power of a crystal is inversely proportional to the square of the unit cell volume,
and approximately directly proportional to the sum of f* for all the atoms in
one unit cell. While the Zfz proportionality suggests strong diffraction from the
large number of atoms, these are predominantly light atoms with small f values,
and the inverse-square dependence on unit cell volume works strongly in the
opposite direction, leading to diffraction that is weaker than that observed for
chemical compounds with crystals of similar size. This general weakness is exacer-
bated by the extensive disorder that usually affects the solvent content of the
crystal structure (and often some protein side-chains); as we have seen earlier,
disorder reduces the intensities of reflections, especially those at higher Bragg
angles. As a consequence, significant diffraction is often unobservable beyond
a resolution (lattice plane d value) of 2 or 3 A using laboratory X-ray sources, in
contrast to well-behaved chemical systems for which a resolution considerably
better than 1 A is normal. This low resolution has impacts on data collection and
reduction, and on structure solution and refinement, as well as limiting the detail
with which the structural results can be described, because individual atoms,
with bond lengths around 1.5 A, are not clearly resolved from each other.

MX samples tend to suffer greatly from radiation damage, the high energy
of X-rays disrupting chemical bonds and generating radical species, especially
*OH radicals, which attack the protein molecules; this leads to decomposition
and also to increased structural disorder. The effects are usually much reduced
by collecting data at low temperature, but even then it is often necessary to use
several crystals to obtain a full set of data, or to irradiate sequentially different
parts of a single crystal with a very narrow (microfocus) X-ray beam, moving on
to a new part as each becomes too damaged.

For the various reasons outlined above, synchrotron radiation is very widely
used in MX: it provides high intensity even in a microfocus beam, and allows
rapid data collection with modern pixel detectors. The availability of a wide
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The significant separation of protein
molecules from one another in the
crystal means that it can generally be
assumed that they have a molecular
structure essentially the same as that in
aqueous solution, and hence probably
in vivo; if this were not the case,
determining the crystal structure would
be far less useful.

Techniques are currently being
developed for growing crystals directly
on a suitable support so that they do not
need to be selected and mounted as a
separate step.

Very significant increases in lifetime

of individual crystals are observed at
temperatures down to around 100 K,
which can readily be achieved by routine
use of gas stream apparatus based

on evaporated liquid nitrogen with a
boiling point of 77 K; there is usually
little or no further improvement at lower
temperatures.
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This is true also, of course, for a single
enantiomer of any chemical compound;
in synthetic chemistry, however, it

is possible for partial or complete
racemization to occur in subsequent
stages, even after an enantiomerically
pure compound has been obtained.

The protein without incorporation of
heavy atoms is called the native structure
and has measured reflection amplitudes
|Fy}: the amplitudes for an isomorphous
heavy-atom derivative are |Fp|. The
squared differences (| Fo |~ | R |} are
used to calculate a difference Patterson
map’ from which the heavy atom
position is found. The map may not

be very clear, because the difference

| Fori |- | | is only an approximation for
the heavy-atom diffraction amplitudes
|Fuf; caleulation of the true heavy atom
contribution requires a vector (complex
nurnber} difference, fy = Ry —Fp, which
involves phases as well as amplitudes.

range of X-ray wavelengths is also an advantage in providing data for ‘anomal-
ous dispersion’ structure solution methods, as described later in this section. The
experimental setup is quite similar to that used for chemical samples, but there
is often only one rotation axis for the crystal {for simplicity), area detectors tend
to be larger because they need to be positioned further away from the crystal to
avoid overlap of the reflections in the dense diffraction pattern, and automation
(including robotic sample mounting and removal) and remote control are com-
mon features to maximize throughput.

The data reduction step has to handle very large numbers of reflections, pos-
sibly measured from several crystals, so scaling of the different contributions is
important. Unless the experiment is with a heavy-atom derivative as an aid to
structure solution (see later in this section), absorption is not usually a significant
effect. Because biological macromolecules are chiral and present as only one
enantiomer (proteins contain naturally occurring amino acids and nucleic acids
contain naturally occurring sugars), the only possible space groups are those
which have only proper rotations (simple or screw); inversion, reflection, and
other improper symmetry operations cannot occur. There are 65 of these, the
so-called Sohnke space groups.

Standard methods of solving crystal structures of chemical compounds,
described in Chapter 2, are rarely successful in MX. Most proteins do not contain
heavy atoms, and if they are introduced in a derivative or into the solvent region
of the structure, they do not usually dominate the scattering enough for routine
Patterson map interpretation and subsequent Fourier-based structure comple-
tion. The probabilities of phase relationships in conventional direct methods
depend on the size of the structure, becoming smaller as the size increases, so
these methods are insufficiently reliable; they also do not work well if atomic
resolution is not achieved in the data. Additional information is needed to solve
the phase problem in MX, leading to the development of methods different from
those already described. Three methods are particularly popular.

Isomorphous replacement depends on obtaining one or more additional
crystal structures in which a heavy atom has been introduced in the asymmetric
unit while leaving the rest of the structure essentially unchanged; the space group
must be the same, and the unit cell parameters sufficiently similar for the struc-
tures to be considered isomorphous (within about 1%). The heavy atom may be,
for example, a small mercury compound or a salt of the [PtCl,]>~ anion. The dif-
fraction patterns of these isomorphous crystals will be similar but not identical,
the scattering by the heavy atoms making an overall small but significant con-
tribution. The difference between the two patterns is the heavy atom scattering
and hence the heavy atom can be located in a Patterson map using the squares
of the differences between the amplitudes measured for the native and deriva-
tive structures, or by variants of direct methods. Estimates of reflection phases
can then be obtained by comparing the two sets of amplitudes and knowing
the true heavy-atom contribution to each reflection, the amplitude and phase
of which can be calculated by a Fourier transform from the known heavy atom
position. With only one isomorphous derivative, ambiguities arise, but these can
be resolved if there are at least two heavy-atom derivatives with the heavy atoms



in different positions {the method is then called multiple isomorphous replace-
ment or MIR, in contrast to SIR).

The more generally applicable molecular replacement method does not
require isomorphous derivatives, but it does depend on having a known crystal
structure, possibly from a database, for a protein that is believed to have a similar
molecular structure to that being investigated. This is taken as a model struc-
ture for the unknown one, but its orientation and location in the unit cell need
to be determined. Essentially, this is the same as the Patterson search method
described in Section 2.7, though the detailed implementation may be different
because of the large size of the structure.

The third method for solving MX structures uses resonant scattering, also
known as anomalous dispersion, which leads to a breakdown of Friedel’s law,
with reflections (h, k, I) and (—h, —k, —I) having different intensities (see Section
2.10). It is best performed with data from a synchrotron source, at which the
wavelength can be tuned precisely to give the desired effects. A multiple-wave-
length anomalous dispersion {(MAD) experiment measures data at three different
wavelengths, chosen such that one gives the maximum value of the imaginary
scattering factor component f” for a particular element in the structure, one
gives the maximum value (whether positive or negative) of the component f,
both of these lying close to what is called an absorption edge of the element,
and the third is well away from the edge so that resonant scattering components
are small. The same crystal (or crystals taken from the same batch if this is not
possible) is used for all three measurements. The three data sets serve essentially
the same purpose as three isomorphous derivatives in the MIR approach, with
the advantages that only one crystal is required, there is no doubt about the
isomorphous relationship, and the information content is higher because there
are also Friedel pair differences; the resonant scatterer in the structure plays the
same part as the heavy atom in the isomorphous derivative. Measurement of a
single set of data at the wavelength of maximum f” (single-wavelength anom-
alous dispersion, SAD) is equivalent to SIR, with the Friedel differences as large
as possible. Heavy atoms are often used as resonant scatterers, but significant
and useful effects can be obtained from atoms considerably lighter than those
needed for MIR and SIR, for example first-row transition metals. Selenium also
has a strong resonant scattering effect for commonly used wavelengths and
can be introduced into proteins in multiple locations by substitution of seleno-
methionine for the sulfur-containing amino acid methionine. If suitable heavy
atom derivatives are available, it is also possible to combine the techniques of
isomorphous replacement and ‘anomalous scattering’ to provide even more
information to help find reflection phases.

When MX diffraction data are available to less than atomicresolution (i.e. larger
dpmin than about 1.1-1.2 A), electron density maps, even with completely correct
phases, do not show individual resolved atoms, but rather continuous chains of
electron density. The interpretation of such maps is, therefore, less straightfor-
ward than for chemical samples, and involves computer graphics-aided manipu-
lation of molecular models to fit the calculated electron density. This is less of a
problem than it might be, because the individual structural components (amino
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MAD may also be understood as an
abbreviation for multiple-wavelength (or
multiwavelength) anomalous diffraction,
and likewise for SAD. Note that resonant
scattering is principally used as a
reflection phasing tool in MX, whereas
its main use in chemical crystallography
is for determination of absolute
configuration; this is not necessary in
MJX, as naturally occurring amino acids
and sugars have known enantiomeric
forms.

Such techniques, not surprisingly, have
their own acronyms: SIRAS and MIRAS
for single and multiple isomorphous
replacement with anomalous scattering,
respectively.
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acids, nucleobases, sugars, and phosphate groups) have well-known and largely
invariant bond lengths and angles, and even some of the torsion angles have a
tendency to fall within certain recognized ranges. Highly disordered solvent is
often found in protein crystals {though hydrogen bonding does impose some
order, especially in interactions with the protein molecules themselves), and this
is treated in a similar way to the method described in Section 2.10.

The weakness of high-angle data means that MX structures generally have a
much lower ratio of reflections to atoms than chemical crystal structures, and so it
is not possible to refine freely as many parameters. The use of restraints is common,
and in many cases isotropic rather than anisotropic displacement parameters are
refined. Because of the size and complexity of the structures, different graphical
forms of representation are often used; a common model shows a protein back-
bone chain as a ribbon, with differently coloured segments for the various amino
acids or for different structural features in the protein folding, and this clearly dis-
plays important folding motifs such as o-helices and B-sheets (Fig. 4.5). Ligands
bound to proteins can be highlighted, for example as ball-and-spoke or space-
filling models attached to the ribbons, and important solvent interactions added.

Fig. 4.5 A cartoon representation of one of many known crystal structures of lysozyme; only
the protein molecule is shown, without any solvent. Compare this with the very different ball-
and-spoke representation in Fig. 1.2.

MX structures have their own internationally recognized database, the PDB,
already mentioned in Section 2.12; it is growing very rapidly. Structures are sub-
ject to validation in a similar way to those of chemical compounds, though the
details are different.

4.5 Crystal structure prediction

Experimental chemistry, including spectroscopic and diffraction methods for
structural characterization, are often complemented by theoretical calculations
that seek to interpret and explain known results and predict as-yet unknown
ones. Such approaches include molecular orbital calculations at a variety of
levels of sophistication using ab initio, density functional, and other quantum
theory methods, molecular modelling based on classical mechanics force fields,
and molecular dynamics simulations. Many of these calculations are made for
isolated single molecules, and refer essentially to behaviour at absolute zero, 0K,
though some methods provide for inclusion of a solvent environment.



Similarly, theoretical calculations can be made to predict or rationalize crys-
tal structures. The task is considerably more challenging than for a single mol-
ecule, because intermolecular as well as intramolecular interactions have to be
considered. The basic aim is to find crystal structures that have a lattice energy
as low as possible. A simple approach would be to find the minimum-energy
conformation of a single molecule by one of the methods mentioned above,
then to try various arrangements of this in different space groups. Unfortu-
nately this is far from sufficient, as intermolecular interactions can stabilize
a less favourable molecular conformation and, in any case, the molecular
structure will usually be perturbed significantly in a crystal environment, so
the conformation itself must be allowed to change in the lattice energy mini-
mization. Further complications arise from the possibility of including solvent
molecules to generate solvate structures, the possible presence of disorder
(not easily handled), the need to consider structures with Z" > 1 (considerably
increasing the amount of calculation required), and the existence of potential
polymorphs and temperature-dependent or pressure-dependent phase tran-
sitions, which may be indicated by finding two or more crystal structures with
similar lattice energies. One way of assessing the relative merits of what are
often many possible predicted crystal structures for a given compound is to
produce a scattergram of lattice energy against calculated density; the most
favourable structures are expected to have a minimum value for the first of
these, and maximum for the second.

Crystal structure prediction is an expanding topic of current research inter-
est, with important applications such as pharmaceutical polymorph screening,
but it is very demanding of computing resources and it is difficult to ensure
efficient and exhaustive coverage of all reasonable possibilities with so many
variables.

4.6 Summary

e Single crystalé can diffract neutrons with an appropriate wavelength given by
the de Broglie relationship. The diffraction is much weaker than with X-rays,
because the scattering is due to interactions with the very small atomic
nuclei rather than with electrons. However, the neutron scattering from
stationary atoms does not decrease with increasing Bragg angle.

@ There is no simple pattern of neutron scattering factors for atoms across
and down the periodic table, but an apparent random variation; most of the
range of scattering factors is much smaller than the range of X-ray scattering
factors, which are proportional to atomic number. Therefore most light
atoms are more readily located in the presence of heavy atoms by neutron
than by X-ray diffraction. This is particularly true for the location of hydrogen
atoms, if such a result is of sufficient importance to outweigh the greater
financial cost and technical difficulties associated with neutron diffraction.

® Neutrons are also generally more able than X-rays to distinguish between
atoms of elements that have similar atomic numbers.

RELATED TOPICS
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Neutrons can distinguish different isotopes of the same element, which is
not possible with X-rays.

Neutrons have a magnetic moment, which interacts with ordered magnetic
moments of atoms with unpaired electrons, providing additional structural
information for such materials.

Microcrystalline powders give diffraction patterns (with X-rays or neutrons)
that are a superposition of large numbers of very weak single-crystal '
diffraction patterns. The three-dimensional information in a single-crystal
diffraction pattern is thus compressed into one dimension, the only
geometrical variable being the Bragg angle; a powder diffraction pattern is
usually a profile trace of intensity against Bragg angle.

Powder diffraction can be used as a ‘fingerprint’ analysis tool, providing both
qualitative and quantitative (from relative intensities) information on single
compounds and mixtures. In some cases it is possible to solve and refine
crystal structures from powder diffraction data, and this technique is rapidly
developing in power and reliability.

Biological macromolecules diffract X-rays (and neutrons) in the same way

as chemical compounds, but there are significant differences in the quality
of diffraction patterns and in experimental procedures as a result of the
much larger unit cells, high content of solvent that is usually disordered, and
susceptibility of crystals to X-ray damage. Data are usually collected at low
temperature with synchrotron radiation, and are usually obtained to a lower
resolution than for smaller ordered structures.

Special techniques are needed for solving and refining macromolecular
structures, exploiting isomorphous relationships and resonant scattering
effects in structure solution and extensive restraints in refinement. Large-scale
biological structures are often displayed in quite different graphical styles
from the familiar chemical molecular models.

Crystal structure prediction (or rationalization for a known structure) involves
extensive lattice energy calculations and variation of molecular conformations
in response to intermolecular forces. Calculations are complicated by issues of
polymorphism, solvate formation, and structures with chemically identical but
crystallographically independent molecules in the asymmetric unit.

4.7 Exercises

Exercise 4.1

What advantages would there be in the use of neutron diffraction for crystal
structure determination of each of the following, with one exception, and why
would X-ray diffraction be preferable for that one case?

a)

The product of a reaction of an organic compound with D,0 in a study of
stereochemistry.
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b) A polynuclear osmium carbonyl complex in which differences in the C-O
bond lengths of terminal and bridging ligands is of importance.

c) A natural product containing C, H, N, and O for which the chemical identity
needs to be confirmed.

d) An aluminosilicate mineral which may have the framework Al and Si atoms
ordered or disordered.

e) A platinum complex of a boron hydride which may involve Pt-H-B bridging
bonds.

Exercise 4.2

Why might neutrons be preferable to X-rays as the radiation source in the struc-
tural study of samples contained in special apparatus for controlling the sample
environment, such as some high-pressure cells or devices for maintaining a par-
ticular gaseous atmosphere? Why are air-sensitive crystals sometimes encased in
a vanadium capsule for neutron diffraction study?

Exercise 4.3

Why does a powder diffractometer usually include provision to rotate the sam-
ple around one axis, but only one?

Exercise 4.4

What difference would twinning make to a powder diffraction pattern?

Exercise 4.5

Use equation 2.1 to calculate the approximate relative scattering power of crys-
tals of the following materials, assuming all the crystals to have the same volume;
this serves to illustrate some of the difficulty encountered in macromolecular
crystallography and the reason why even tiny crystals of simple compounds can
be studied readily with synchrotron radiation. For simplicity, consider all atoms
present to be carbon.

e Diamond, with 8 atoms in each cubic unit cell, a = 3.57A.

e A benzene solvate of buckminsterfullerene, C4y-4CgHg (ignore the H atoms),
with Z= 2 in a triclinic unit cell of volume 2294 A3,

e A protein with about 300 amino acids (2750 atoms), Z=4, in an
orthorhombic unit cell, a=50.1, b=67.2, c= 92.2A.
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18 A® rule. A rough rule of thumb, applicable for most organic,
organometallic, and coordination compounds, based on the
observation that the average volume for non-hydrogen atoms in a
crystal structure is usually fairly close to 18 A3, This can be used to
estimate the number of atoms (and hence molecules) in the unit cell at
an early stage of a crystal structure determination.

Absolute configuration. The assignment of the correct enantiomer
of a chiral molecule {or non-molecular chiral solid material).

Absolute structure. A general term encompassing absolute
configuration for chiral materials and related properties (such as
polarity) of achiral but non-centrosymmetric crystal structures;
the correct choice between a structure and its inversion-related
counterpart.

Accuracy. The agreement of a measurement or derived result with
the true (usually desired but unknown) value. See also Precision.

Amplitude. The size of a wave, measured from zero deviation (the
mean value, between maxima and minima) to the wave maximum. The
amplitude of a beam of X-rays is proportional to the square root of the
intensity.

Angstrom unit. More correctly, Angstrém unit; a measure of
distance equal to 100pm=0.1nm=10"""m.

Anisotropic. An anisotropic property, or function, is one that has
different values in different directions or orientations.

Anisotropic displacement parameter. A set of (usually 6)
parameters describing the mean-square amplitude of an atom in a
crystal structure in different directions.

Anomalous scattering (or anomalous dispersion). An alternative
(and inappropriate) name for resonant scattering.

Area detector. A device for recording part or all of a diffraction
pattern, such that the position of each reflection on the face of the
detector is known as well as the intensity; in some cases, the time at
which the reflection is recorded is also known.

Asymmetric unit. The unique, symmetry-independent portion

(a rational fraction of the unit cell volume} of a crystal structure.
Application of the space group symmetry operations to the asymmetric
unit generates the complete crystal structure, and it is the asymmetric
unit that must be determined using X-ray diffraction.

Atomic scattering factor (for X-rays). The variation in X-ray
scattering power of an individual atom as a function of Bragg angle
(usually expressed as a function of (sin 8)/A).

Ball-and-stick (or ball-and-spoke). A commonly used model for
molecules in which atoms are represented as spheres, connected by
rods representing bonds.

Bond angle. The angle enclosed between two bonds B-A and B-C
formed by a particular atom B.

Bond length. The distance (usually measured in A, nm, or pm)
between two atoms that are considered to be directly bonded to each
other.

Bragg equation (or Bragg's Law). A single equation, with associated
geometrical definitions and conditions, that describes X-ray diffraction
by a single crystal, relating angles of diffraction to the indices and
spacings of sets of parallel lattice planes: A = 2dj sin®

Centred unit cell. A unit cell with lattice points at its eight corners
and also at some or all of its six faces or at the centre of the unit cell;
there is also a centred trigonal unit cell for rhombohedral crystal
structures, which has lattice points at the positions (25, %4, 4) and
()4,24,24). A centred unit cell is chosen so that it has the characteristic
shape for its crystal system.

Charge flipping. A dual-space method of solving crystal structures
in which the direct-space modification is the reversal of sign of all
calculated electron density below a particular threshold value.

CheckCIF. An online tool provided by the International Union of
Crystallography for the validation of a CIF.

Chiral. A molecule or other object is chiral if it is not identical to any
conformation of its mirror image.

Co-crystal. A crystal structure containing two or more distinct
chemical species. Note that the term co-crystal is not usually applied to
solvates of a single main species.

Complex number. A quantity having two numerical components
that may be considered as orthogonal to each other in some way and
cannot be combined by simple scalar addition. Complex numbers are
used in crystallography to represent reflections (as an alternative to
explicit amplitude and phase) and in Fourier transform equations.

Conformation. Different conformations are different geometries
of a molecule that can be interconverted by moving atoms relative to
each other without breaking and making any bonds, for example by
rotating about bonds in a chain or flexing a ring.

Constraints. Mathematical relationships applied rigidly to
combinations of refined parameters (or imposed on individual
parameters), such that the total number of independent refined
parameters is reduced. Constraints are thus imposed on the model
structure, possibly in conflict with the requirements of the diffraction
data.

Crystal. A solid material that gives essentially a sharp diffraction
pattern with most of the intensity in Bragg reflections. (This is the
definition adopted by the International Union of Crystallography.)

Crystallographic Information File (also Format or Framework),
CIF. Aninternationally agreed standard for the archive and exchange of
crystal structure results (and other crystallographic information, including
data and publication details) according to a CIF dictionary maintained
and developed by the International Union of Crystallography.
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Crystallography. A broad range of scientific theories and methods
concerned with the study of solid materials, mostly but not exclusively
crystalline in form.

Crystal structure determination. The application of diffraction
methods to find the positions of atoms in the structure of a crystalline
material.

Crystal systems. Seven different arrangements of types of symmetry
element in crystalline solids, leading to seven characteristic shapes of
unit cells. The seven systems are: triclinic, monoclinic, orthorhombic,
tetragonal, trigonal, hexagonal, and cubic.

Database. A computer-based collection of items of information with
a common structure and format, usually with associated software for
its efficient management, searching, and manipulation of the contents.
International crystallographic databases are comprehensive major
research tools and repositories of published and deposited structural
information.

Data reduction. The process of converting raw measured intensities
to structure factor amplitudes (or their squares) by applying corrections
for absorption, geometrical effects, and other factors concerned in the
experiment.

de Broglie relationship. The relationship between the
momentum p of a moving particle such as a neutron or electron and
its associated wavelength A with applications in properties such as
diffraction: A = h/p.

Difference electron density map. A reverse Fourier transform in
which |Fo|is replaced by |F, |~|F. |, so that atoms in the trial structure
are suppressed in the resulting electron density map, and new atoms
are revealed more clearly.

Diffraction. Cooperative scattering, involving interference effects,
of radiation (electromagnetic or particulate) by a collection of objects
such as molecules in a crystal structure.

Diffractometer. A device for rotating a single crystal to different
orientations in an X-ray beam and recording the diffraction pattern on
a detector, under computer control.

Direct methods. A general term encompassing methods for
solving crystal structures from the measured diffraction amplitudes,
using no other information except the known properties of electron
density distributions and typical molecular geometry, which impose
restrictions on relationships among phases of reflections with related
indices.

Dual-space methods. Methods for solving crystal structures
involving repeated forward and reverse Fourier transforms with
successive modification of the direct-space information available
(such as recognized features of molecular geometry and selection
of candidate atoms) and reciprocal-space information (replacement
of calculated by observed amplitudes, and possible application of
probabilistic phase relationships).

Dynamic disorder. A term sometimes used to refer to atomic
displacements, which increase with temperature, especially where
these are unusually large.

Evalues (normalized structure amplitudes). Structure factor
amplitudes set on a normalized common scale by dividing each one by

the average value for reflections with a similar Bragg angle, the data set
being divided into ranges of Bragg angle to obtain an average for each
range. E values are an estimate of diffraction amplitudes that would be
measured for point atoms at rest, i.e. no spread of electron density for
the atoms. (There are some symmetry-related factors also involved in
this calculation.)

Electromagnetic radiation. A form of energy consisting of
coupled oscillating electric and magnetic fields, covering a wide range
from radio waves (long wavelength, low frequency) to X-rays and y-rays
(short wavelength, high frequency) and with a common and constant
velocity in a vacuum.

Enantiomers. The two mirror images of a chiral molecule.

Ewald sphere. A geometrical construction used to demonstrate
X-ray diffraction, which predicts the direction of each reflection and
the orientation of the crystal relative to the incident X-ray beam at
which it occurs.

Fourier transform. A mathematical relationship between two
functions that have mutually inverse (reciprocal) dimensions. In
crystallography, a diffraction pattern is the Fourier transform of a
crystal structure, and vice versa.

Frequency (of a wave). The number of waves occurring in one
second (units are s™! = Hz).

Friedel's law. The equality of intensities of reflections with indices
(h, k, Iy and (=h, —k, —I). This applies always for centrosymmetric
structures, but only in the absence of significant resonant scattering
effects for non-centrosymmetric structures.

General position. Any position in the unit cell of a crystal
structure which does not lie on a pure rotation axis, mirror plane,
inversion centre, or central point of an improper rotation axis.
An atom lying in a general position is not transformed into itself
by any of the space-group operations (except the trivial identity
operation).

Glide plane. A symmetry element combining reflection with a
translation component, a rational fraction of a relevant lattice repeat,
in a direction within the plane.

Goniometer head. A device on which a single crystal is mounted
for measurement of a diffraction pattern, providing lateral (and
possibly angular) adjustments to enable the centring of the crystal in
the X-ray beam.

Goodness of fit. A statistical parameter, closely related to R

factors and incorporating standard uncertainties, that gives an overall
indication of how well the calculated and observed amplitudes match.
An ideal agreement and correct weighting scheme based on the s.u.s
should give a goodness of fit equal to 1, and this should be the case for
subsets of the data displayed over ranges of intensity, Bragg angle, and
other variables.

Hydrate. A solvate in which the solvent is water.

Hydrogen bonding (and hydrogen bond). A significant
attractive interaction between a hydrogen atom usually bonded to an
electronegative atom, and another electronegative atom in the same
or another molecule. Hydrogen bonds generally contribute attractive
energies that are a small fraction of covalent or ionic bonds.



Indices. Three integers h, k, I, that specify a particular Bragg reflection
(also known as reflection indices) and also a set of parallel lattice planes
(also known as Miller indices, especially in describing external crystal
faces that are parallel to these planes).

Inelastic scattering. Scattering (mainly of neutrons) in which the
wavelength is changed because some of the radiation energy is lost to,
or gained from, the scattering atom, which recoils.

Insertion devices. Complex arrays of many magnets inserted in the
straight sections between bending magnets of a synchrotron storage
ring, designed to generate X-rays with very high intensity and other
special properties of interest.

Intermolecular. Between two {(or more) molecules (referring to
forces, interactions, etc.).

International Tables for Crystallography. A series of reference
books, available in print and online, produced by the International
Union of Crystallography and covering many aspects of the theory
and practice of crystallography. Volume A is the standard reference for
space-group symmetry.

Intramolecular. Within a single molecule (referring to forces,
interactions, etc.).

Isomorphous and isostructural. Two (or more) crystal structures
are isomorphous if they have very similar unit cell parameters and the
same space group. If, in addition, the atoms lie in essentially the same
positions in the two structures, they are isostructural.

Isomorphous replacement. A method for solving macromolecular
crystal structures, in which data are collected for two or more
isomorphous samples and the differences in the diffraction patterns
are used to locate the heavy atoms incorporated in the isomorphous
derivative(s) of the native substance.

Isotropic. An isotropic property, or function, is one that has the same
value in all directions or orientations.

Isotropic displacement parameter. A single parameter describing
the mean-square amplitude of an atom in a crystal structure.

Lattice. A set of points (lattice points) regularly spaced in one,
two, or three dimensions, equivalent to each other by pure
translation symmetry; a crystal lattice shows the repeating nature
of the crystal structure but not the actual contents of the repeat
structural unit.

Lattice parameters (or unit cell parameters). The three axis
lengths (a, b, ¢) and three interaxial angles (o, B, v) describing the
geometry of a crystal unit cell.

Lattice planes. Sets of parallel planes passing through lattice points,
with applications to crystal faces (morphology) and diffraction.

Laue conditions (or Laue equations). Three equations, one for
each dimension, describing the diffraction of X-rays by a single crystal.

Macromolecular crystallography (MX). The term generally
applied currently to the determination of crystal structures of
biological macromolecules and their larger assemblies.

Microscope. An optical device with a combination of lenses for
obtaining a magnified image of a small object. The use of electron
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diffraction with electromagnetic focusing of the scattered electrons to
obtain a magnified image is known, by analogy, as electron microscopy.

Molecular replacement. The name given to the Patterson search
method for solving crystal structures when it is used for biological
macromolecules.

Monochromatic. Having a single wavelength (literally, ‘single
coloured’, used of radiation).

Monochromator. A single crystal or other material that exploits the
Bragg equation to select a single wavelength from an X-ray beam.

Mosaic spread. The small angular range of misalignment of
sub-microscopic domains in a real, as opposed to perfect, single
crystal.

Multiple-wavelength (and single-wavelength) anomalous
dispersion. Methods for solving macromolecular crystal structures
in which the resonant scattering of some elements is used to help
locate those atoms; it involves measuring intensity differences for
Friedel pairs of reflections, preferably at several different X-ray
wavelengths with the same crystal.

Neutron scattering factor. The scattering power of a particular
atomic nucleus for neutrons. Unlike X-ray scattering factors, they are
independent of Bragg angle for stationary atoms, and they are different
for different isotopes of the same element. They are much smaller
(though usually measured in different units) than X-ray scattering
factors.

Neutron spallation source. A pulsed source of neutrons (and
other elementary particles) generated by impact of high-energy
protons or other particles from a synchrotron with a heavy-metal
target.

Oligomer. An association of two or more copies of a chemical
species (which may or may not exist itself as a stable entity) in a single
discrete molecule. Specific terms are used for different numbers of
associated monomers: dimer, trimer, tetramer, etc. polymer.

Particulate radiation. The wave nature associated, through the de
Broglie relationship, with moving elementary particles such as neutrons
or electrons.

Patterson search. A method of solving a crystal structure by
matching the set of interatomic vectors expected for a known (or
assumed) molecular fragment structure to the Patterson function, while
rotating and then translating the fragment to its correct orientation and
position in the asymmetric unit.

Patterson synthesis (or Patterson map). A reverse Fourier
transform in which |F| is replaced by |F,J and all phases are set to zero.
The result is a map of vectors between all pairs of atoms in the crystal
structure, from which the positions of some (usually heavy) atoms

can be found in some cases, providing an initial solution of the phase
problem.

Phase (of a wave). The position of the maximum of a waveform
(measured along the direction of the wave) relative to some defined
origin; usually only relative phases are important (when waves interact),
so the choice of origin is unimportant. The phase may be measured

as a dimensionless fraction of the wavelength, or as an angle such that
one whole wavelength corresponds to 360° (2x radians).
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Phase problem. The loss of relative phase information for individual
reflections when a diffraction pattern is recorded on a detector, thus
providing only the direction and intensity (related to amplitude) of
each reflection. Direct reconstruction of an image of the structure by
Fourier synthesis is impossible without the missing phases.

Point group. The complete set of symmetry operations for a
molecule or other single finite object.

Polymorphs. Two or more different crystal structures of the same
chemical compound, or the same solvate. Note that different solvates,
even solvates containing different amounts of the same solvent, are not
strictly polymorphs; they are sometimes (confusingly) called pseudo-
polymorphs.

Powder diffraction. The diffraction of X-rays or neutrons by a
microcrystalline powder sample, in which the three-dimensional
diffraction pattern, including orientational information, is compressed
into a one-dimensional pattern with the Bragg angle as the only
geometrical variable by superposition of huge numbers of identical
weak single-crystal patterns.

Powder diffractometer. A device for recording a powder
diffraction pattern, with the main components of a radiation source
and monochromator, powder sample, detector (single element,
one-dimensional position-sensitive, or area detector), and facilities to
rotate the sample and detector.

Precision. A measure of the spread of results obtained if a
measurement is repeated many times, or an estimate of this spread
obtained from statistical analysis of a single measurement. Precision in
crystallography is expressed by standard uncertainties. See also Accuracy.

Primitive unit cell. A unit cell with lattice points only at its eight
corners.

Quasicrystal. A crystalline material giving a sharp diffraction pattern
as a result of short-range structural order but lacking long-range
periodic order in the form of a lattice.

Radiation damage. The deterioration in crystal quality and
diffraction pattern observed for some samples during X-ray irradiation,
particularly for biological samples. Radiation damage tends to be much
lower with neutrons.

Reciprocal lattice. A lattice with dimensions of A™! uniquely
related to the crystal (direct) lattice, used to describe the geometry of a
diffraction pattern.

REFCODE. A unique identifier of 6-8 characters assigned to each
entry in the Cambridge Structural Database (CSD).

Refinement. The process of systematically adjusting the
numerical parameters of a trial structure (mainly atom positions
and displacement parameters) to make the calculated diffraction
amplitudes match the observed amplitudes as closely as possible, as
assessed by a least-squares discrepancy definition.

Refraction. The alteration in the direction of travel of light as it
passes from one medium into another with a different refractive index.

Refractive index. The ratio between the velocity of light (or other
electromagnetic radiation) in a vacuum and its velocity in a particular
medium.

Resolution. The minimum lattice plane d-spacing in a measured
diffraction pattern, corresponding to the maximum Bragg angle. This
corresponds to the smallest interatomic distance that can effectively
be resolved in the crystal structure. True atomic resolution requires a
d-spacing resolution of about 1.1 A or better (lower).

Resonant scattering. A modification to normal X-ray scattering by
an atom that occurs when the X-ray photon energy is close to a value
appropriate for promotion of an electron from one orbital of the atom
to another, or for complete removal (ionization) of an electron. The
amount of resonant scattering depends on the element and on the
X-ray wavelength,

Restraints. Mathematical relationships among refined parameters,
representing reasonable expected behaviour for molecular geometry,
atomic displacements, etc., that are formulated as additional
‘experimental observations' alongside the diffraction data in structure
refinement. Restraints, in contrast to constraints, do not reduce the
number of refined parameters, and are used in coordination with,
rather than in potential opposition to, the diffraction data.

R factors (or residual factors)., Various numerical functions
providing single-value assessments of how well a trial structure
accounts for the observed diffraction pattern. The sum of differences
between observed and calculated amplitudes (or some function of
these, possibly weighted to reflect perceived reliabilities) is divided by
the sum of observed amplitudes and expressed as a simple humber or
a percentage. R factors decrease as a trial structure is improved during
structure solution and refinement. There are also R factors, defined

in an analogous way, for assessing the internal agreement of a set of
diffraction data containing symmetry-equivalent reflections.

Rhombohedral. A subset of the trigonal crystal system, in which
the primitive unit cell may be regarded as a cube that is either
compressed or elongated along one of its four body diagonals; this
diagonal retains its threefold rotation symmetry as the trigonal axis.
A conventional trigonal unit cell has three times the volume of the
primitive rhombohedral cell, with two additional lattice points (see
Centred unit cell).

Screw axis. A symmetry element combining rotation with a
translation component, a rational fraction of the relevant lattice repeat,
along the axis direction.

Single crystal. A crystal in which all the unit cells are identical and
aligned in essentially the same orientation, thereby generating a clear
single diffraction pattern.

Sohnke space groups. The 65 space groups that have no
improper symmetry elements—no inversion-rotation axes, reflection,
or inversion. Materials consisting of only one enantiomer, including
biological macromolecules, can crystallize only in these space
groups.

Solvate. A crystal structure containing solvent of crystallization in
addition to the main component(s).

Solvent of crystallization. Molecules of solvent, used in the
synthesis or crystallization of materials, that are incorporated in the
crystal structure.

Space-filling. A model of a molecule in which atoms are
represented by intersecting spheres with the appropriate van der



Waals (non-bonding) radii, and bonds between the atoms are not
visible.

Space group. The complete set of symmetry operations for a crystal
structure. There are 230 space groups.

Special position. Any position in the unit cell of a crystal structure
which lies on a pure rotation axis, mirror plane, inversion centre, or
central point of an improper rotation axis. An atom lying in a special
position is transformed into itself by at least one of the space group
operations other than the identity operation.

Spectroscopy. The probing of energy levels of a material by
measuring the absorption or emission of radiation in order to
investigate aspects of structure or carry out qualitative or quantitative
analysis.

Standard uncertainty (s.u.). A statistically derived estimate of the
precision of a measurement or calculated result, also known previously
as estimated standard deviation as it represents an approximation to
the expected spread of measurements or results if the experiment were
to be repeated many times.

Static disorder. A random variation in the detailed contents of the
asymmetric unit, involving alternative positions for some atoms and/or
a mixture of different atom types on a common site. This appears in the
trial structure as partially occupied atom sites in an average asymmetric
unit.

Structure factor. A term used for the combination of amplitude and
phase for a particular reflection in a diffraction pattern.

Supramolecular. A term literally meaning ‘above or beyond
molecular’, usually applied to assembilies of separate molecules
having specific interactions with each other that can be predicted or
rationalized.

Synchrotron. Charged elementary particles (usually electrons

or positrons) confined by magnets to an almost circular (actually
polygonal) path and travelling at relativistic velocities emit a broad
range of electromagnetic radiation, known as synchrotron radiation, at
each magnetically induced change of direction (bending magnets and
insertion devices). The output includes X-rays of very high intensity and
with special properties different from those of laboratory-generated
X-rays. ‘

Systematic absences. Subsets of reflections in a complete
diffraction pattern, or in particular sections or rows of it, that have zero
intensity as a result of translation symmetry elements in a space group
(unit cell centring, glide planes, or screw axes).

Tautomeric forms (tautomers). Different forms (isomers) of a
molecule related to each other purely by the concerted migration of
electrons (in bonds and lone pairs) and hydrogen atoms.

Torsion angle. The angle between two bonds (B-A and C-D) formed
by two directly bonded atoms (B and C) when viewed in projection
along the B-C bond joining these two atoms; the angle is positive if
B-A must be rotated clockwise around B-C to make its projection
coincident with that of C-D.

Translation. A form of symmetry consisting of effectively infinite
repetition of a basic unit in the same orientation with regular spacing
in one, two, or (for crystalline materials) three dimensions.
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Trial structure. A model structure containing some, or all, of

the atoms of a crystal structure in what are currently believed to be
approximately their correct positions. Solving and refining a structure
consists of gradually completing and improving the trial structure until
its calculated diffraction pattern matches the observed one as closely
as possible.

Twin fraction. The relative amounts of two {or more) components
in a twinned crystal.

Twin law. A 3 x 3 matrix defining the relative orientations (with or
without inversion) of two components of a twinned crystal structure.

Twinning. The presence of two or more orientations or mirror
images of the same crystal structure in a well-defined geometrical
relationship to each other in a crystal sample, leading to a
superposition of the individual single-crystal diffraction patterns,

Unique set (of data). The total set of reflections, up to a particular
maximum Bragg angle, that are independent of each other by
symmetry. The unique set of data in reciprocal space (the diffraction
pattern) corresponds to the asymmetric unit in direct space (the crystal
structure).

Unit cell. The basic structural unit of a crystal structure; repetition
of the unit cell at each lattice point generates the complete crystal
structure.

Unit cell parameters. See Lattice parameters.

Vector. A quantity having both magnitude and direction. Vectors
are used extensively in crystallography, including to represent atom
positions (as distance and direction from the unit cell origin) and
reflections (with amplitude and phase). A quantity having magnitude
but no direction {such as volume) is called a scalar.

Wavelength. The separation, in distance units (usually A in
crystallography), between adjacent maxima of a wave.

Weights. [n the calculation of Fourier maps and least-squares
refinement, individual reflections may be assigned weights according
to their perceived reliability. Weights are usually based on 1/G%(F,?)
or a similar function, with possible incorporation of additional terms
depending on intensity, Bragg angle, and other variables.

X-ray absorption. The absorption of X-rays as they pass through a
crystalline sample, whether they are simultaneously diffracted or not.
Absorption reduces the intensity of diffracted X-rays and is dependent
on path length, so it is different for different (even symmetry-
equivalent) reflections, and a correction must be made if it is significant.

X-ray camera. A device (now largely superseded) for recording
diffraction patterns on photographic film.

X-ray tube. A laboratory source of X-rays involving the high-energy
impact of an electron beam with a metal target, leading to the ejection
of core electrons and refaxation of electrons from higher-energy
atomic orbitals; the orbital energy differences are in the X-ray range

of the electromagnetic spectrum and are characteristic of the target
metal.

Zand Z'. Zis the number of chemical formula units (molecules,
etc.) in one unit cell of a crystal structure. Z' is the number of chemical
formula units in the asymmetric unit.



Further reading

The following books provide more detailed accounts
or different approaches to the subject suitable for the
target readership of this Primer. This is not intended to
be an exhaustive list; some classic crystallographic texts
are not included, because they are inappropriate at
the undergraduate chemistry level or because they are
rather outdated in content or approach, and the list is
deliberately kept short.
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