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Note to the Reader 

This book is one of a series written by professional mathematicians in 
order to make some important mathematical ideas interesting and under- 
standable to a large audience of high school students and laymen. Most of 
the volumes in the New Mathematical Libray cover topics not usually 
included in the high school curriculum; they vary in difficulty, and, even 
within a single book, some parts require a greater degree of concentration 
than others. Thus, while the reader needs little technical knowledge to 
understand most of these books, he will have to make an intellectual 
effort. 

If the reader has so far encountered mathematics only in classroom 
work, he should keep in mind that a book on mathematics cannot be read 
quickly. Nor must he expect to understand all parts of the book on first 
reading. He should feel free to skip complicated parts and return to them 
later; often an argument will be clarified by a subsequent remark. On the 
other hand, sections containing thoroughly familiar material may be read 
very quickly. 

The best way to learn mathematics is to do mathematics, and each 
book includes problems, some of which may require considerable 
thought. The reader is urged to acquire the habit of reading with paper 
and pencil in hand; in this way mathematics will become increasingly 
meaningful to him. 

The authors and editorial committee are interested in reactions to the 
books in this series and hope that readers will write to: Anneli Lax, 
Editor, New Mathematical Library, NEW YON UNIVERSITY, THE 
COURANT INSTITUTE OF MATHEMATICAL SCIENCES, 251 Mercer Street, 
New York, N. Y. 10012. 

The Editors 
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Introduction 

Our purpose in writing this book is to show how topology arose, develop 
a few of its elements, and present some of its simpler applications. 

Topology came to be recognized as a distinct area of mathematics 
about fifty years ago, and its major growth has taken place within the 
last thirty years. It is the most vigorous of the newer branches of mathe- 
matics and has been producing strong repercussions in most of the older 
branches. It got its start in response to the needs of analysis (the part 
of mathematics containing calculus itnd differential equations). However, 
topology is not a branch of anidysis. Instead, it is a kind of geometry. It 
is not an advanced form of geometry such as projective or differential 
geometry, but rather a primitive, rudimentary form-one which underlies 
all geometries. A striking fact about topology is that its ideas have pene- 
trated nearly all areas of mathematics. In most of these applications, 
topology supplies essential tools and concepts for proving certain basic 
propositions known as existence theorems. 

Our presentation of the elements of topology will be centered around 
two existence theorems of analysis. The first, given in Part I, is funda- 
mental in the calculus and was known long before topology was recog- 
nized as a subject. In working out its proof, we shall develop basic ideas 
of topology. This will show how topology got started, and why it is 
useful. Our second main theorem, given in Part 11, is a generalization of 
the first from one to two dimensions. I n  contrast to the first, a. topological 
concept is needed for its formulation. Its proof exhibits that peculiar 
blending of numerical precision und rough qualitative geometry so char- 
acteristic of topology. Both theorems have numerous applications. We 
shall present those having the strongest topological flavor. 

The beginnings of topology can be found in the work of Karl Weier- 
strass during the 1860’s in which he analyzed the concept of the limit of a 
function (as used in the calculus). In this endeavor, he reconstructed 

1 



2 FIRST CONCEPTS OF TOPOLOGY 

the real number system and revealed certain of its properties now called 
“topological”. Then came Georg Cantor’s bold development of the theory 
of point sets (1874-1895); it provided a foundation on which topology 
eventually built its own house. A second aspect of topology, called com- 
binaforiul or algebraic topology, was initiated in the 1890’s by the re- 
markable work of Henri PoincarC dealing with the theory of integral 
calculus in higher dimensions. The first aspect, called set-theoretic topol- 
ogy, was placed on a firm foundation by F. Hausdorff and others during 
the period 1900-1910. A union of the combinatorial and set-theoretic 
aspects of topology was achieved first by L. E. J. Brouwer in his investiga- 
tion (1908-1912) of the concept of dimension. The unified theory was 
given a solid development in the period 1915-1930 by J. W. Alexander, 
P. L. Alexandrov, S. Lefschetz and others. Until 1930 topology was 
called anulysis situs. It was Lefschetz who first used and popularized the 
name fofiology by publishing a book with this title in 1930. 

Since 1930 topology has been growing at  an accelerated pace. To em- 
phasize this point we shall mention a few of topology’s achievements. 
It invaded the calculus of variations through the theory of critical points 
developed by M. Morse (Institute for Advanced Study, Princeton). It 
reinvigorated differential geometry through the work on fibre bundles by 
H. Whitney (Institute for Advanced Study, Princeton), the work on 
differential forms by G. de Rham (Lausanne), and the work on Lie 
groups by H. Hopf (Zurich). It enforced a minor revolution in modern 
algebra through the development of new foundations for algebra and a 
new branch called homological algebra. Much of this work is due to S. 
Eilenberg (Columbia University) and S. MacLane (University of 
Chicago). Topology gave a new lease on life to algebraic geometry via 
the theory of sheaves and cohomology, and i t  has found important a p  
plications to partial differential equations through the works of J. Leray 
(Paris) and M. Atiyah (Oxford). 

Applications of topology have been made to sciences other than mathe- 
matics, but nearly all of these occur through some intervening mathemati- 
cal subject. For example, the changes topology has made in differential 
geometry have initiated topological thinking in relativity theory. Topol- 
ogy has become a basic subject of mathematics, in fact, a necessity in 
many areas and a unifying force for nearly all of mathematics. 

When a non-mathematician asks a topologist, “What is topology?”, 
“What is it good for?”, the latter is a t  a disadvantage because the ques- 
tioner expects the kind of answer that can be given to analogous questions 
about trigonometry, namely, trigonometry deals with the determination 
of angles and is used to solve problems in surveying, navigation, and 
astronomy. The topologist cannot give such a direct answer; he can say, 
correctly, that topology is a kind of geometric thinking useful in many 
areas of advanced mathematics, but this does not satisfy the questioner 
who is after some of the flavor of the subject. The topologist can then 
bring out paper, scissors and paste, construct a Mobius band, and cut 
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along its center line, or he can take some string and show how three 
separate loops can be enlaced without being linked. If he feels energetic, 
he can demonstrate how to take off his vest without removing his coat. 
These are parlor tricks, each based on a serious mathematical idea which 
would require a t  least several hours to explain. To present these tricks 
without adequate explanation is to present a caricature of topology. 

To appreciate topology i t  is necessary to take the viewpoint of the 
mathematician and explore some of its successful applications. Most of 
these applications have in common that they occur in  the proof of an 
existence theorem. An existence theorem is one which asserts that each of 
a certain broad class of problems has a solution of a particular kind. 
Such theorems are frequently the basic structure theorems of a subject. 
One of our principal aims is to demonstrate the power and flexibility of 
topology in proving existence theorems. 

The existence theorem we shall prove in Part I answers the question: 
When can an equation of the form f (x) = y be solved for x in terms of 
y ? Here f (x) stands for a function or formula (such as 2- 4 1  + x* ) 
defined for real numbers x in some interval [a ,  b ]  (such as [ 2 ,  41 ), 
and y denotes a real number (such as v). The problem is: Does there 
exist a number x in the interval [a, b] such that f (x) = y ? Formu- 
lated for the example it becomes: Is there an x between 2 and 4 such 
that 9- 4- = u? 33 

We emphasize that we are not asking for methods of finding the value 
or values of x in special cases. Instead we are seeking a broad criterion, 
applicable to each of many different problems, to determine whether or 
not a solution exists. Once the criterion assures us that a particular prob- 
lem has a solution, we can start hunting for it with the knowledge that 
the search is not in vain. 

The criterion given by our main theorem (stated in Section 1) requires 
the notion of the continuity of a function (defined in Section 3). The proof 
of the theorem (given in Sections 2-8) is based on two topological prop- 
erties of the interval [a ,  b]  called compactness and connectedness. We 
give these concepts a thorough treatment because they are basic in 
modern mathematics. 

The main theorem of Part I1 is an existence theorem which answers 
the question: When can a pair of simultaneous equations f(x, y) = a and 
g(x, y )  = b be solved for x and y in  terms of a and b ? A familiar 
example of such a problem is the pair of simultaneous linear equations 

x -  2y = 3 and 3 x + y  = 5 ;  
these can be solved readily by elimination. Here is a more difficult 
problem of the same type: Find a pair of numbers x ,  y satisfying the 
two equations 
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In  particular, is there a solution such that x is between 4 and 1, and y 
is between -1 and 21 Just as before, we are not asking for a list of 
methods for finding solutions (x, y), but rather for a test to determine 
whether or not there is a solution. 

The criterion given by the second main theorem (stated in Section 18) 
requires the concept of the number of times a curve in a plane winds 
about a point of the plane. The proof also makes extensive use of the 
machinery of Part I having to do with compactness, connectedness, and 
continuity. 

The applications of our main theorems are theorems concerning the 
existence of zeros of polynomials, fixed points of mappings, and singu- 
larities of vector fields. 

In conclusion it may be well to say a few words about existence theo- 
rems in general. Their importance is granted immediately by mathe- 
maticians. Students, at first, may be somewhat skeptical. The reason is 
that there is quite a gap between the methods given in the proof of exist- 
ence and the techniques the student must learn for finding solutions. 
The proof of existence must work in all cases however difficult; hence its 
methods tend to be complicated and tedious in application to particular 
cases. Most cases confronting the student are relatively simple, and 
therefore amenable to much simpler methods. 

Consider for example the problem of finding zeros of polynomials. The 
equations presented first to the student are usually of low degree, have 
integer coefficients and can be factored by inspection. For less simple 
problems he learns to find the integral roots by testing the factors of the 
constant term. Then he learns a more complicated method for finding 
the rational roots. Finally, for rare and more desperate situations, he 
may learn a method of successive approximations due to Horner. The 
difficulty of acquiring these techniques is sufficient to make him forget 
the general question of the existence or non-existence of what he is seeking. 
If he is reminded of the question, he quickly relegates it to the domain 
of the metaphysical. 

That i t  is not a metaphysical question becomes clear if we consider 
the history of the famous problems of trisecting an angle and squaring 
the circle using only straightedge and compasses. Since the time of 
Euclid, mathematicians and others have struggled with these problems, 
devising scheme on top of ingenious scheme. They invariably approached 
the problem with the tacit assumption that solutions exist. The problem 
was to find them. The amount of effort expended in this search must 
have been prodigious. It was not until the latter part of the nineteenth 
century that someone finally considered the possibility that solutions 
might not exist. Shortly thereafter, proofs of non-existence were forth- 
coming, Once the existence question was brought clearly to the fore, it 
was answered promptly. In modern research, existence questions come 
first; answers to them are absolutely vital in order that our theories have 
sound foundations. 



P A R T  I 

Existence Theorems in Dimension 1 

1. The first existence theorem 

This section is devoted to the formulation of the main existence 
theorem of Part I. Its proof will be worked out in Sections 2-7 and sum- 
marized in Section 8. We shall lead up to its statement by examining a 
number of special cases. Recall that our problem is to formulate a criterion 
which will tell us in many cases whether or not an equation of the form 
f ( x )  = y can be solved for x. To see what form the criterion might 
take, we examine cases where we know how to solve the equation 
completely. 

Consider first the function f(x) defined by the formula x2 + 1 for 
x-values between - 1 and +2. (The formula makes sense for x-values 
outside the interval - 1 to 2, but we shall ignore this fact.) The func- 
tion can be pictured from its graph shown in Fig. 1.1. The equation 
y = x2 + 1 defines a parabola, and our graph is the piece of the para- 
bolic curve between the vertical lines where x = -1 and x = 2. 

Notice first that there is a lowest point on the curve at x = 0, y = 1. 
This can be restated precisely: x2 + 1 is greater than or equal to 1 for 
all x between -1 and 2, and i t  has the minimum value 1 when 
x = 0. If we now look for the highest point on the curve for x between 
-1 and 2, we find that it occurs when x = 2 and y = 5 ,  providing 
we interpret the phrase “x between -1 and 2” to include the end 
value x = 2 of the interval. If it were not included then there would 
be no highest point on the curve; because, no matter what point on the 

5 
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curve we take whose x-coordinate is less than 2, a higher point can be 
found by taking one whose x-coordinate is nearer to 2. To avoid such 
a situation, we shall include the end values -1 and 2. Then 9 + 1 
is less than or equal to 5 for all x such that -1 I x I 2, and the 
function has the maximum value 5 when x = 2. 

Consider now the problem of starting with a y-value and trying to 
solve the equation x2 + 1 = y for a corresponding x-value in the 
interval -1 to 2. If the y-value exceeds the maximum 5,  there is 
surely no solution. This is likewise the case if y is less than the minimum 
1. However, if y is between 1 and 5, there is a solution. We can see 
this from the graph by drawing a horizontal line at a height above the 
x-axis equal to the y-value. If the line is too high or too low, it does not 
meet the curve. At a height between 2 and 5, it cuts the curve once, 
and between 1 and 2, it cuts twice. (A formula for x in terms of y 
i s x  = d y - 1 .  ) 

Figure 1.1 Figure 1.2 

As a second example, let f ( x )  be defined by the formula 
2x 

xp +-1 
for all x-values such that -3 I x 5 3 . 

Its graph is shown in Fig. 1.2. It is readily seen by inspecting the equation 
2x y = -  

xS+1 
that a positive x-value gives a positive y-value, and a negative x-value 
gives a negative y-value. Moreover, changing the sign of the x-value 
changes only the sign of the y-value; hence the curve is symmetric with 
respect to the origin. The highest point on the curve occurs when x is 1 
and then y is 1. To see that this is so, we do a bit of algebraic juggling 
of the difference 1 - f ( x ) :  
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x l +  1 - 2x ( x  - 1)’ 
P 

2x 
$ + I  2 + l  2 + 1 *  

l - f ( x )  = 1-- = 

Since this last expression can never be negative, it follows that 
1 - f ( x )  2 0, whence f ( x )  5 1. By symmetry, the lowest point on 
the curve occurs a t  x = -1 and y = -1. It is evident therefore 
that the equation f ( x )  = y has no solution if y > 1 or if y < -1, 
but for each y-value such that -1 5 y 5 1, the equation can be 
solved. (Multiplying both sides of the equation by a? + 1, and solving 
the resulting quadratic gives x = (1 - d F y ) / y .  ) 

Figure 1.3 Figure 1.4 

One might try to generalize from the two examples treated thus far 
and conjecture that, if f ( x )  is any function defined for z-values such 
that a 5 x 5 b, then f ( x )  has amaximumvalue M, aminmum 
value m, and for each y-valuesuch that m 5 y 5 M the equation 
f ( x )  = y has a solution. Let us test this conjecture by picturing the 
graphs of several more functions, recalling that functions can be defined 
by specifying their graphs in any manner we please. :I:”.--; m - . . . : . . . - . - - - : - L q  1-__ /;q 

Figure 1.5 Figure 1.6 

If the graph for f ( x )  is a smooth curve as shown in Fig. 1.3, the con- 
jecture appears to be true..A horizontal line at  a height y between the 
heights m and M must intersect the curve. Even if the curve had some 
corners, as in Fig. 1.4, the conjecture still appears to be correct. However, 
if there is a break in the curve as in Fig. 1.5, the conjecture is seen to be 
false, because some horizontal lines pass through the break without 
meeting the graph. Functions whose graphs have such breaks do arise in 
mathematics in natural ways. They are called discorriinwus functions. 
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The graph of such a function may not even have a highest or lowest 
point as in the example of Fig. 1.6 where, at the break in the graph at 
x = c, the point (c, f ( c ) )  on the graph is at r. 

We are prepared now to state the main theorem. 

THEOREM. If a function j (x)  is defined for all red numbers x in some 
closed interval [a, b], i f  f (x) has real numbers as values, and ij it is con- 
tinuous, then there is a minimum value m and a maximum value M of 
the function, and, for each y-value in the closed interval [m, MI, the 
equutwn j (x)  = y has at least one solution x in the intend [a, b]. 

The statement of the theorem is sometimes abbreviated thus: If the 
real-valued function f(x) is defined and continuous for a 5 x I b, 
then it has a minimum value, a maximum value, and takes on all values 
between. 

The expression “closed interval” means that the endpoints a, b are 
included as points of the interval, that is, the limitation on x is 
a I x I b. The expression “open interval” means that the endpoints 
are excluded. We shall denote the closed interval by [a, b] and the open 
interval by (a, b). A “half-open” interval includes one endpoint but 
not the other, thus (a, b ]  means a < x 2 b, and [a, b) means 
a I x < b .  

How does the theorem help us to decide whether or not we can solve 
f ( x )  = y in the case of a particular function f(x), known to be con- 
tinuous, and a particular y-value? If we can determine the minimum m 
andmaximum M of f(x), we haveonly toaskif m 5 y 5 11.1. In  
many cases it may be dificult to find m and M. However, i t  is usually 
easy to compute a number of values of the function. If, for some x-value 
c, we observe that f(c) < y, and for another d, that y < f ( d ) ,  
then the theorem asserts that there is an x in [c, d] (or [d,  c] if 
d < c )such that f(x) = y. For example, if f(x) is d - d m ,  
wehave f(0) = -1, and f(2) = 5. Therefore d - 4- = 2 
has a solution in the interval [ O ,  21. 

We must emphasize that the importance of the theorem lies in its 
generality. It tells us what we can always count on finding in a great 
variety of circumstances. In numerous special cases like x2 + 1, i t  is of 
no use to us because the facts we are after are readily available. The 
theorem shows its power as soon as it is applied to complicated functions. 
But more important, it is the first theorem of a general theory of con- 
tinuous functions. 

It must also be emphasized that our formulation of the theorem is in- 
complete. We have not defined precisely what is meant by the continuity 
of f ; we have given an intuitive description based on geometric pictures 
-the graph of f is a curve with no breaks-but this is only a substitu- 
tion of one undefined term for another. The next two sections lead up to 
a precise definition of continuity. 
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Exercises 

1. Find the minimum value and maximum value of f ( x )  = 4 + 2 x  - $ 
in the interval 0 < x 2 3. For what values of y are there no corre- 
sponding values of x in the interval? For what values of y is there only 
one value of x in the interval? two values of x in the interval? 

2. The function f(x) = x? - 5 takes on the value - 4  a t  x = 1 and 
the value 3 a t  x = 2; it is continuous in the interval 1 < x 5 2. 
How does the theorem imply that ‘6 has a value between 1 and 21 

3. Between what two positive integral values of x is there a zero for the 
polynomial 2- 2 x -  41 

4. Find the minimum value and maximum value for f ( x )  = l/x in the 
interval 0 < x < 5. 

5. Find the minimum value and maximum value for f(x) = 3 in the 
interval O < x 2 7. 

6. Find the minimum value and maximum value for f(x) = x in the inter- 
val 0 < x < 5. 

2. Sets and functions 

Throughout this book, we shall be primarily interested in geometric 
configurations. These are subsets of a euclidean line, plane, or space. For 
convenience, we shall assume that Cartesian coordinates have been intro- 
duced into the line, plane, or space so that each point x is specified by 
its coordinates which form an ordered set of n real numbers 
(xl, x ~ ,  *.a, x n ) ,  that is, an n-tuple of real numbers. Thus n is 2 in 
the case of the plane, n is 3 for three-dimensional space, and n = 1 
for the line. The set of all real numbers will be denoted by R and the 
set of all n-tuples of real numbers by RR. We shall think of these geo- 
metrically; thus R = R* is the number line (a line with a coordinate 
system), R2 denotes a plane with a coordinate system, and Ra denotes 
a three dimensional space with a coordinate system. 

From the program set forth in both the Introduction and in the pre- 
ceding section, i t  can be seen that considerable emphasis will be placed 
on the study of functions. In this book, we shall use the word “function” 
in a sense which is somewhat broader than is customary in the more 
elementary courses up through the calculus, and we shall indicate in this 
section the scope of generality we have in mind. In our development, 
we shall use the customary language and notation of set theory. Not 
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many terms from this vocabulary will be used, but those that we do use 
will be used quite frequently. We present here the terms and notation 
needed in what follows. 

If X is a set, then x E X means that x is an element of the set X. 
If A and X are sets, then A C X (read as: A is contained in X ) 
means that each element of A is an element of X, and A is called a 
sdse t  of X .  In  most cases, we shall be dealing with subsets of a line, a 
plane, or space (that is, X C Rn for some positive integer n ), and 
therefore we shall often refer to the elements of X as points. If A C X 
and B C X ,  then their intersection A n B consists of all points common 
to A and B, and their union A U B consists of all points either in A 
or in B or both. The empty set is denoted by 0, and it is contained 
in any set. Thus A n B = @ means that A and B have no point in 
common. If A C X ,  then the complement of A in X, denoted by 
X - A, consists of all points of X not in A.  

In advanced mathematics, the word function is used in an extremely 
broad sense; in fact, it appears as a fundamental concept of all mathe- 
matics. The following definition accords with this broadest usage. 
DEFINITION. A function f consists of three things: a set X called 

the domain of f, a set Y called the range of f, and a rule which assigns 
to each element of X a corresponding element of Y. The notation 
f: X + Y is to be read: f is a function with domain X and range Y; 
or, briefly, f isafunction from X to Y. If x E X, the statement ‘7 
assigns to x the element y E Y” is abbreviated y = fx (in keeping 
with current practice, we omit the parentheses from f ( x )  ). In case Y 
is exactly the set of all values f x  for x E X, we say that f is a func- 
tion from X onto Y. 

In  the calculus, for example, a function usually means a real-valued 
function of a real variable; that is, its domain and range are subsets of 
R. Moreover, it is frequently supposed that the function is given by some 
formula such as d E .  In  such a case, i t  is customary not to describe 
either the domain or the range. It is tacitly assumed that the domain X 
is the set of those real numbers for which the formula makes sense (for 
example, is defined for all x < 1 including negative numbers). 
The range Y is often taken to be exactly the set of all values of the func- 
tion (for example, for d x ,  it is the set of all y 2 0). Functions 
of this kind will be called numerical functions. 

In  more advanced work, it cannot be supposed that f is given by a 
formula from which the domain X and range Y can be worked out. 
Moreover, we do not wish X and Y to be restricted to subsets of R. 
In this book, X and Y will usually be subsets of euclidean spaces of 
possibly different dimensions: X C R” and Y C Rn. So we must be 
careful to specify X and Y for each function considered. Also, we shall 
not always suppose that Y is exactly the set of values of the function; 
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it may be larger. Let us consider first some familiar examples of geo- 
metrically defined functions. 

A translation of the plane is a function j R2 + R2. It is the result of 
a rigid and uniform motion in which each point traverses a line segment 
or vector; the vectors are the paths of the various points, are all parallel, 
and have the same length and direction. A translation is specified by the 
vector for just one point because the others can be constructed from it. 
Thus, if we know that f carries the point p into the point q, then it 
will carry a point p' into the point q' such that p ,  q, p', q' form a 
parallelogram. For example, if f carries the origin (0,O) into the point 
(2, -3), then it carries (XI, x2) into the point (XI + 2, XP - 3). There- 
fore f is given by the formulas yl = XI + 2 and y2 = xs - 3. 

A rotation of the plane is a function f: R2 -+ R2, again resulting from 
a rigid motion, this time about a fixed point z called the center of the 
rotation. Each circle with center z is carried by f onto itself; and each 
ray (half-line including initial point) issuing from a is carried onto 
another ray. The angle formed by these two rays is called the angle of 
rotation, and its measure in degrees does not depend on the initial ray. 
The rotation is specified by its center and angle of rotation. 

A rejection in a line L of R2 is a function f: R2 + R2; it is a rigid 
motion that leaves fixed each point of L and interchanges the two sides 
of L. It is most easily visualized as the result of the rotation in space 
of the plane about the line L through 180". 

It can be shown that the result of any rigid motion of the plane onto 
itself is a translation, a rotation, a reflection, or a reflection followed by 
a translation. The shapes and sizes of the configurations in the plane are 
not altered; only their positions and orientations may be changed. These 
functions are the congruences of elementary geometry. 

A similarity of the plane is a function f: RS 4 R2 which alters all 
lengths by the same factor r. As an example, choose a point z of R', 
set fa = z, and, for each other point x # z, define fx to be the end- 
point of the segment (or vector) issuing from z which has the same 
direction and twice the length of the segment from z to x. This f 
alters all lengths by the factor r = 2. Such an f, with r > 1, is 
called an expansion centered at a. When r < 1, f is called a contraction. 
A similarity with r = 1 is one of the rigid motions described above. A 
similarity with r # 1 always has a fixed point z, and it is the result 
of a contraction or expansion with center z followed by a rotation about 
z or a reflection in some line through z. A similarity always carries 
straight lines into straight lines, and it does not change the measures of 
angles between lines. It can alter the size, location, and orientation of a 
configuration, but it does not alter its shape. 
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Let L be a line in the plane R2. The perpenduuhr projection f: R2 j- L 
assigns to each point x of R2 the foot fx of the perpendicular from x 
to L. 

Let S be the surface of a sphere in R8 with center a. The radial 
Projection j R3 - a + S assigns to each point x of R3 different from 
B the point fx where the ray from a through x intersects S. 

Figure 2.1 Figure 2.2 Figure 2.3 

The foregoing examples indicate in part the kind of functions that will 
interest us. In order to picture such functions and to make significant 
statements about them, one uses the notions of images and inverse images. 
If f: X + Y and A C X, then the image of A under f, denoted by 
fA, is the subset of Y of values fx for all x E A. Precisely, to say 
that a point y E Y is in fA means that there is a t  least one x E A 
such that fx = y. One can think of fA as the result of applying f to 
all of A. For example, under a rigid motion or a similarity f: R2 --+ R2, 
any straight line L of R2 has as its image a straight line fL of R2. 
Under perpendicular projection f: R2 -+ ‘L, each line segment A of R2 
has as its image fA a line segment of L (see Fig. 2.1), or a single point 
of L in case A is perpendicular to L (Fig. 2.2). Under radial projec- 
tion f: R3 - z --+ S, each straight line L of R8 not passing through z 
has as its image fL a great semi-circle of S with endpoints excluded 
(see Fig. 2.3). 

The origin of our use of the word “image” in this sense is evident if we 
consider any reflection of R’ in a plane. 

If f: X -+ Y and B C Y ,  then the inverse image of B under f, 
denoted by f-lB, is the subset of X consisting of points x such that 
fx E B. Under perpendicular projection R2 + L, the inverse image of 
a single point y of L is the line perpendicular to L a t  y, and the 
inverse image of a line segment is the strip between the two lines per- 
pendicular to L a t  the ends of the segment. Under radial projection 
Ra - z + S, the inverse image of a point y of S is the ray from z 
through y with z deleted. The inverse image of a circular region on S 
is a solid cone with the vertex deleted. 
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Let f: X + Y and let A be a subset of X. Then the image of A 
is also in Y.  If B is a subset of Y such that B contains f A ,  then 
the function g: A + B defined by gx = fx for all x E A is called the 
restriction of f to A and B. Most frequently we shall need to restrict 
only the domain of j ,  and, in this case, the restriction of f to A and 
Y is denoted by f I A (read as: f restricted to A ) .  For example, if 
f: R2 + R2 is a translation, and L is a line in RP, then f I L displaces 
L to a parallel line. 

If we have two functions f: X + Y and g: Y + 2, then we can 
compose the two functions to form a new function denoted by g f :  X + 2; 
it attaches to each x in X the element g (  fx) in 2. For example, let f 
and g be translations R2 + R2 where f moves each point 2 units 
toward the east, and g moves each point 2 units to the north. Then gj 
is the translation moving each point 242 units to the northeast. As a 
second example, let f and g be numerical functions R + R given by 
the formulas 

jx = x2+1,  gx = 2 - x .  

Then the compositions gf and jg can be formed, and they are given 
by the formulas 

gjx = g ( f x )  = 2 -  ( X ' + l )  = 1 - 9  

f g x  = f ( g x )  = (2 - x)2 + 1 = 5 - 4% + 39. 
Some simple functions are so inconspicuous that one must be reminded 

of their presence. We call attention first to the constant functions: a 
function f: X + Y is a constant function if the image jX is a single 
point of Y.  There is one constant function for each point of Y.  Next, 
we mention the identity functions: for each set X ,  the function j:  X+ X 
such that f x  = x for every x E X is called the identity function of X .  
Finally, if A C X ,  the function j:  A +. X such that fx = x for every 
x E A is called the inclusion function. Clearly, the inclusion is the re- 
striction of the identity function to the subset. Any restriction of a con- 
stant function is constant. 

A function f: X + Y is called one-to-one (abbreviated: 1-1) if each 
point of Y is the image under j of one and only one point of X.t In 
this case, the function which assigns to each point y in Y the unique 
point x in X such that f x  = y is called the inverse function of f and 

Some authors say that j :  X-+ Y is one-to-one if each point of Y is the 
image of at most one point of X ,  allowing thereby that j X  may not be all 
of Y; and in case j X  = Y ,  they say that j is one-to-one and onto. 
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is denoted by f-l: Y + X. For example, every rigid motion of the plane 
is 1-1. If f is the translation given by a line segment from p to q, then 
f-l is the translation given by a line segment from q to p .  The inverse 
of a rotation is a rotation with the same center and an angle equal in 
magnitude but opposite in sign. A similarity of the plane is 1-1. The 
inverse of an expansion by a factor r > 1 is a contraction by the factor 
1 / ~  and it has the same center. 

In dealing with numerical functions, one tries to obtain the formula 
for the inverse function by solving y = fx for x in terms of y. Thus 
the square root is the inverse of the square, and the logarithm is the 
inverse of the exponential. In  case the inverse images of certain points 
are not single points, one takes a restriction of the function f to subsets 
so as to obtain a 1-1 function. For example, if fx = 9, from y = x2 

one obtains x = l/r and x = - dj, but if we restrict the domain 
of f to the subset A of positive numbers and zero, and restrict its range 
to the same set, then this restricted function g is 1-1, and its inverse is 
the usual square root function g l y  = dj. In the case of the exponential 
function fx = lo”, we need to restrict only the range of f to the set 
of positive numbers to obtain a 1-1 function. 

Although our examples of functions have been quite varied, they still 
fail to suggest how broad and basic is the concept of function. As an 
example of a function in the broad sense, consider the concept “the 
mother of the boy”. The domain X is the set of boys, the range Y is 
the set of women, and to each boy x is assigned the woman fx who is 
his mother. Such examples abound in our experiences: the color of a 
book, the roof of a house, etc. Whenever the word “of” is used, there is a 
function in the offing. This is equally so when the possessive form of a 
noun appears; for example, the boy’s mother. 

Functions are omnipresent in science. The outcome of a chemical 
reaction is a function of the reagents brought together. The outcome of 
a physical experiment is a function of the conditions set up by the 
experimenter. 

Coming back to mathematics, there are examples of expressions of 
the form “the this of that” occurring everywhere: the area of a circle, 
the midpoint of a line segment, the bisector of an angle, the union of two 
sets, etc. Each of these is a function. In the case of the union of two sets, 
an element of the domain of the function is a pair (A, B) of subsets 
of a given set X, and its range is the set of subsets of X. 

Many functions can be pictured geometrically. For example, the sum 
of two numbers x + y is a function f: Rz -+ R1 which can be Visualized 
as a projection of a plane into a line. Regard each instance of a pair 
(x,  y) as a point in R2. The line whose equation is x + y = 3 is 

f-’3. The inverse images of other numbers form the family of parallels 
(see Fig. 2.4). If we picture the range R1 as a line cutting through this 
family of parallels at right angles, then f can be regarded as the per- 
pendicular projection onto this line. 
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N 

X 

Figure 2.4 Figure 2.5 

Exercises 

1. If A ,  B ,  C are subsets of a set X ,  show that 
( A U B )  n C  = ( A n C )  U ( B n C )  

and illustrate the result with a diagram of sets in P. 

2. If A and B are subsets of X ,  show that 

(x- A )  n ( x -  B )  = x- ( A U B ) .  

3. If A and B are subsetsof a s e t  X ,  and if A C B ,  show that 
A n ( X -  B )  = 0. 

4. Prove the following properties of images under f: X --* Y : 

(a) If A and B are any subsets of X ,  then f ( A  U B )  = f A  UfB,  
(b) f ( A  n B )  c fA n f B ,  
(c) if A C  B C X ,  then f A C f B .  

5. Stereographic projection from the north pole is a function f in which 
the domain X is the sphere with the north pole omitted and the range 
Y is a plane parallel to the equator but not containing the north pole. 
f assigns to each point z of the sphere (excepting the north pole) the 
point y where the ray from the north pole through x meets the plane 
(see Fig. 2.5). Suppose that the plane Y is tangent to the sphere at its 
south pole S. 
(a) Describe the image of a parallel of latitude. 
(b) Describe the image of a meridian circle. 
(c) What is the inverse image of a line segment in Y ? 
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(d) The image of the equator is a circle on the-plane. How is the radius 

(e) What is the inverse image of a ray through the south pole? 

6. If f is the translation RI --+ R2 given by the formulas n = X I +  3, 
y2 = x2- 4, and g is thereflectiongiven by = -21 and y2 = ~ 2 ,  
find the formulas for the compositions gf, fg, for the inverses f-l, g-1, 
(gf)", and the compositions flgl and g'f-'. Is (gf)-l = g'f-? 

of the image circle related to the radius of the sphere? 

7. For the following, let f: X+ Y. 
(a) If A ,  B are subsets of Y, prove that 

f l (A U B) = f-lA U f-lB and f-l(A tl B )  = f-lA n f-lB. 

(b) Find f-lY andf-lg. 
(c) If A C B, how are the inversesf-lrl andf1B related? 

8. If f: X 4  Y and g: Y+ 2, show that (gf)-'C = f-'(glC) for each 
C C 2. If f and g are 1-1, show that gl is 1- 1, and (d)" = f-lgl. 

3. Neighborhoods and continuity 

If x and y are two points of Rn, thedistance from x to y means 
the ordinary straight line distance. It is denoted by d(x, y), and in 
terms of the coordinates of x and y, it can be computed from the 
following formula based on a generalization of the theorem of Pythagoras: 

d(x, y )  d ( x 1  - ~ 1 ) '  + ($2 - y ~ ) *  + *'*  + ( x n  - Y n F  * 

In  case $2 = 1, the formula reduces to d ( x ,  y) = I x - y (the 
absolute value of x - y ). Actually we shall not use this formula directly. 
Instead, we shall use only certain properties of the distance function 
which can be proved using the formula. These are well-known properties, 
and we list them now without proof. 

First, if x and y are different points then d ( x ,  y) > 0. Secondly, 
d (x, x) = 0 for all x. Next, for all pairs of points x ,  y, the distance is 
symmetric: d (x,  y) = d (y, x ) .  Finally, for any three points x,  y, 2, 
we have 

d ( x ,  8) I d(x, Y) + d b ,  z )  - 
This last is called the "triangle inequality" because it asserts that the 
sum of the lengths of two sides of a triangle exceeds the length of the 
third side. 
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Recall that in our preliminary examination of various graphs in Section 
1, whether or not the graph had any breaks was vital to our conclusion; 
it is for this reason that the main theorem specifies that the function 
must be continuous. The intuitive description of continuity was based 
on geometric pictures; the precise definition will be given in terms of 
another concept that we shall now define: the concept of a neighborhood. 

DEFINITION. Let X beasubsetof R", let x beapoint af X, and 
let I be a positive real number. Then we define the neighborhood of x in 
X of radius r to be the set of all points of X whose distance from x 
is less than I. The neighborhood is denoted by N ( x ,  I, X ) ,  and this is 
abbreviated to N (x ,  I) whenever the X is understood. 

Figure 3.1 

For example, if X = R" and n = 2, then N ( x ,  I, R2) is just the 
interior of a circle with center x and radius r. Similarly the neighbor- 
hood of x in R8 of radius I, N ( x ,  I, Rs), is the interior of a sphere 
with center 2 and radius I, In case n = 1, then N ( x ,  Y ,  R )  is just 
the open interval (x  - I, x + r )  with midpoint x and length 2r. 
Whenever X is not all of R", then N ( x ,  I, X) is just that part of X 
which lies inside N(X,  I, Rn) (see Fig. 3.1). It is the intersection of X 
with the neighborhood in Rn: 

N ( x ,  r ,  X) = X n N ( x ,  r ,  R") . 
We come now to the important concept of the continuity of a function. 

DEFINITION. Let f: X 4 Y be a function such that X C Rm and 
I' C R" and let x E X .  We shall say that f is continuow at x if, for 
each neighborhood of f x  in Y ,  there is some neighborhood of x in X 
whose image under f lies in the neighborhood of j x  under consideration. 

To express this condition briefly, we follow the customary notation of 
the calculus and denote the radii of these neighborhoods by c and 6. 
Then the requirement can be restated: for each positive number E ,  there 
is a positive number 6 such that 

fly (x ,  6, X )  c N (f., e ,  Y )  
We shall say that f is colztintwus if it is continuous at every point of X. 
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If we interpret 6 and c as measures of nearness, then the definition 
may be paraphrased. one can make fx’ be near to fx by requiring x‘ 
to be sufficiently near to x. An even rougher paraphrase is: a small 
change in x produces a small change in fx. 

In topology we are primarily interested in continuous functions, and 
we abbreviate the expression “continuous function” by the word 
“mapping” which in turn is often shortened into “map”. Thus stereo- 
graphic projection is a mapping of the surface of a sphere with the pole 
deleted onto a plane. However, in order to illustrate what the definition 
of continuity means, let us examine several examples of discontinuous 
functions. 

L 

Figure 3.2 

As a first example, let f: R2 + R2 leave fixed each point of the plane 
except for a single point, say p, and let fp = q be some other point. 
To be specific, we can take p to be the origin of coordinates (0,O) and 
q to be (1, 0). Then f is continuous at  all points except p. To see 
that it is not continuous at  p ,  take B to be half of d(p ,  q),  so that 
N(q,  c) = N(q ,  4) is the interior of a circle of radius 3 about (1,O) 
(see Fig. 3.2). Then no neighborhood of p is mapped into N(q ,  #), for 
each neighborhood of p contains points not in N ( q ,  #), and since these 
are left fixed by f, their images are not in N(q ,  3 ) .  (Fig. 3.2 shows the 
neighborhood A’ (p, f) ; among its points only p has its image j p  in 
N(q ,  3) ). Since for e = 3 there is no corresponding 8 > 0 such that 
j N @ ,  8) C N ( q ,  #), f is not continuous at p. The intuitive geometric 
picture is that f rips the point p out of the plane, and then pastes it 
down on q. 

L L f L  
Figure 3.3 
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Our second example displays a slightly different type of discontinuity. 
Divide the plane R2 into two half-planes A, B, where A includes all 
points (xl, xz)  such that XI 1 0, and B is its complement. Notice 
that the vertical line L where XI = 0 is included in A (see Fig. 3.3). 
Define f to be a function from Ra to R2 so that the restriction of f 
to A is the translation to the right by one unit, and f I B is the transla- 
tion to the left by one unit. The two halves are separated, one moving 
to the right, the other to the left. Since L C A ,  the line L moves to 
the right. The function is continuous at each point not on L, and is 
discontinuous at each point of L. To prove the latter statement, let 
p E L, let q = fp, and let e be any positive number less than 2. 
Then the neighborhood of q in R2 of radius e, namely N ( q ,  e), con- 
tains no point of f B ,  and each N (p, r) contains points of B. As shown 
in Fig. 3.3, the left half of any neighborhood of p (indicated by a dotted 
circle) is moved by f away from N (q, e). Hence there is no correspond- 
ing 6 such that the image of the neighborhood of p in R2 of radius 6 
is contained in the neighborhood of q of radius e, that is, such that 

fN(P, 6) c " q ,  €1 - 
The intuitive picture is that f rips the plane apart along L and sepa- 
rates the two halves. 

To see that the definition agrees with our intuitive notion, we can test 
i t  against the examples of discontinuity for the graphs depicted in Section 
1. In Fig. 1.5, if the radius e of the neighborhood N ( r ,  c) is less than 
half the distance d( r ,  s), then any neighborhood of c includes points 
of X whose images do not lie in this eneighborhood of fc = T. Sim- 
ilarly, in Fig. 1.6, if e is less than the smaller of the distances d(r ,  s) 
and d ( ~ ,  t ) ,  then any neighborhood of c again includes points whose 
images do not lie in the neighborhood of fc = r of radius c. 

To prove that a function has a discontinuity at some point, i t  is only 
necessary to display a single e > 0 for which no 6 exists. To prove 
continuity is often more difficult because we must show how to find a 
number 6 corresponding to each possible choice of e (that is, we must 
display 6 as a function of e ). However, there are a number of simple 
functions where this is not difficult, and we consider these now. 

For any X C Rn, the identity function f: X + X is continuous. 
Recall that fx = x for all x E X. Corresponding to x E X and an 
e > 0, take 6 = c. Then it is clear that f maps N ( x ,  6, X) into 
N (  f x ,  e, X), for these two neighborhoods coincide since f leaves all 
points fixed. Similarly, if A C X, then the inclusion function f: A - X 
is continuous; hence it is a mapping. Again we take 6 = e, and we use 
the fact that N ( x ,  6, A )  = A n N ( x ,  6, X). 

Any constant function f: X -+ Y is continuous. In this case fX is a 
single point, say q, of Y; hence f N ( x ,  I ,  X) C N ( q ,  e, Y )  for every 
x, and for every e > 0, and I > 0, so we may take 6 = e, for 
example. 
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Any rigid function f: X - Y is continuous. By “rigid” we mean a 
function which does not alter distances: 

d(fx,fx’) = d(x, x’) for all x, x’ E X. 
For example, the translations, rotations, and reflections of R2 are rigid. 
To prove continuity at x E X, we take 6 = e for each e > 0. Then, 
if x’ E N ( x ,  6, X), we have d ( x ,  x ’ )  < E, therefore d ( f x , f x ’ )  < e, 
hence fx’ E N (fx, e, U). In words, the e-neighborhood of x is carried 
by f into the eneighborliood of fx because of the rigidity of f. 

Any function f: X + Y that shrinks or contracts all distances is con- 
tinuous. The requirement is expressed by 

d ( f x ,  fx’) I d(x, X I )  for all x, x’ E X . 
Again we take 6 = e for all x, and we apply the argument of the pre- 
ceding paragraph. 

Any similarity function f: X + Y is continuous. The condition here 
is that all distances should be changed by the same common factor, say k 

d(fx,fx’) = Kd(x ,  x’) for all x, XI  E X .  
If 0 I k 5 1 , then f is a contraction and the preceding paragraph 
applies. When k > 1 we take 6 = e /k  for all points x. Then 
x’ E N ( x ,  e /k ,  X) implies d(x, x’ )  < e/k.  This can be written 
k d(x, x’) < E. The equality above yields d ( f x ,  fx’) < e, hence 
fx’ E N ( f x ,  e, Y). For example, if k = 2 and f doubles distances, 
then the neighborhood of x of half the radius of the neighborhood 
N (fx, e, U) is carried by f into the latter. 

Figure 3.4 

The radial projection onto the surface of a sphere S from its center 
z is continuous as a function f: R3 - z + S. In projecting two points 
in the exterior of S down onto S, f contracts the distance between 
them, so it is obvious that f restricted to the exterior of S is continuous. 
However, f restricted to the interior expands distances; the projection 
onto S expands distances between pairs of points more and more as 
they move inside toward the center z. To prove continuity a t  a point 
x # z, the expression for 6 as a function of e is rather involved, but 
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can nevertheless be obtained with a bit of algebra by considering various 
similar triangles (see Exercise 9 below). Geometrically, we can obtain a 
6 thus: Let t be a point of intersection of S and the sphere with center 
f x  and radius E. The  cross-section on the plane through the three points 
z, f x ,  and t is shown in Fig. 3.4. L e t  6 be the perpendicular distance 
from x to the line zt. Then each point of the interior of the sphere 
N ( x ,  6)  projects into N ( f x ,  E, S). 

Exercises 

1. For which triples of points x, y, z will equality hold in the triangle in- 
equality; that is, 

d(x, 2) = 4 x ,  Y) + d ( y ,  211 

2. If XI  is a point of the neighborhood N ( x ,  r, X ) ,  show that there is an 
/ > 0 such that 

N(x’ ,  r’, x) c N ( x ,  r ,  X ) .  
What is the largest value of r’ which assures this? 

3. If, in testing the continuity of a function f: X -+ Y at a point x, a 
number 6 > 0 has been found which does for E = 4, why will the 
same 6 do for all E 2 $? 

4. If, as in Exercise 3, a 6 > 0 has been found which does for E = 4, 
why will any smaller value of 6 do for E = $? 

5. Divide the plane R2 into two parts A and B where A consists of all 
points inside and on a circle C with center z and radius 1, and B is 
the complement of A in R2. Define f :  R2 -+ R2 by f l  A rotates A 
about its center through an angle of 90°, and f leaves fixed each point 
of B.  Where is f continuous and where is it discontinuous? At a point 
of discontinuity, for what values of E are there no corresponding a’s? 

6. If L is a line or a plane in R3, state why the perpendicular projection 
j: R3+ L is continuous. 

7. Let S be the spherical surface of radius 1 with center a t  the origin of 
RJ, let p = (0, 0, 1) be the north pole of S ,  and let f: S - p - +  R2 
be the stereographic projection from p of S - p onto the equatorial 
plane. Construct a diagram which shows that f is continuous. Over 
what part of S - p is f a contracting function? Show that f is 1- 1, 
and that f-l: R?-+ S - p is also continuous. What is the image under 
f of the deleted neighborhood N ( p ,  r ,  S )  - p for r-values less than l ?  
Why is it impossible to define fp so that the extended function is 
continuous? 
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8. If f and g are continuous functions from an interval [a, b] to R, 
show that f + g and f - g are continuous. Hint: To demonstrate 
the continuity a t  x of hx = f x  + gx and of kx = f x  - gx, estimate I hx - hx’ 1 and I kx - kx’ 1 with the help of the triangle inequality 

I(f..tgx)- (fx’fgx’)I 5 Ifx-fx’l+Igx-gx’I 

for all x,  x’ E [u, b].  

9. Let f: R3 - a+ S be the radial projection onto the surface of a sphere 
from its center s (see Fig. 3.4). Let the radius of S be 1. Show that 6 
in the figure is given as a function of e by 

6 = d € d m ,  
where d is the distance from x to z. Hint: Drop a perpendicular from 
s to the chord from fx to t, let B denote half the angle a t  z determined 
by f x  and t, and use the identity sin 20 = 2 sin B cos 0. 

4. Open sets and closed sets 

Our objective is to deiine and study a special class of subsets of a set 
X in R” called open sets of X. They will play a fundamental role in 
our subsequent work, because the various topological properties of X 
we shall discuss are readily expressible in terms of the open sets. Also, 
the condition for a function to be continuous takes on a very simple 
form when open sets are used. 

It is not easy to see in advance why the notion of open set should be 
an important concept. It is a historical fact that it gained recognition 
slowly. During the early development of topology (1900-1930), a variety 
of different approaches to the subject were devised and worked out. 
Attached to these are concepts with names such as: neighborhood spaces, 
metric spaces, limit points, sequential limits, and closures. At the time 
it was not clear that these approaches were equivalent; nor could one 
predict the direction of development and ultimate form of topology. Not 
until the end of this period did i t  gradually become clear that the con- 
cept of open set is a simple and flexible tool for the investigation of all 
topological properties. Since then this concept has provided the preferred 
approach. 

DEFINITION. Let X be a subset of Rn. A subset U of X is called 
an open set of X if, for each point x of U, there is some neighborhood 
of x in X which lies in U. The condition may be restated: for each 
x E U ,  there is a number I > 0 such that N ( x ,  I, X) C U. 
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As we shall see shortly, open sets are easily found and occur in great 
variety. Our first class of examples consists of neighborhoods: 

All neigM0rhood.s are open sets. 

Figure 4.1 

Let xo E X and ro > 0 be given. To prove our assertion we must 
show that N (xo, 10, X) is an open set of X (see Fig. 4.1) ; this we shall 
do by showing that for each point x E N ( a ,  ro, X), there is a positive 
number I such that the neighborhood N ( x ,  I, X) is contained in 
N(xo, YO, X). Set I = ro - d ( x ,  xo). Now x E N(xo, ro, X) means 
that d ( x ,  xo) < ro; hence I must be positive. Let y E N ( z ,  I, X); 
then d(x ,  y) < r. The triangle inequality gives 

d(xo, Y )  I d(%, x )  + d(x, r) , 
and since d ( x ,  y) < I, we have 

d(xo, r) < d(x0, x )  + 1. 

But by our definition of r, d(x0, x )  + I = YO, so 

d ( % , Y )  < Yo.  

This shows that any point of .V (x ,  I, X) is a point of LV (a, ro, X), and 
therefore N (XO, 10, X) is open in X. 

The following theorems show how we may manufacture additional 
examples of open sets from those at hand. 

MOREM 4.1. If U and V areopensetsof X ,  then theirintersectiolz 
U t l  V is an open set of X .  The intersection of any Jinite number of open 
sets of X is an open set of X . 

To prove the first statement, let x E U n V. Since x € U and U is 
open, there is an I > 0 such that N ( x ,  I, X) C U. Since x € V and 
V is open, there is an s > 0 such that N ( x ,  s, X) C V. Let t be 
the smaller of I and s; it is clear that N ( x ,  t, X) lies in both U and 
V ,  and therefore in U n V .  This proves that U n V is open. To prove 
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the second statement, suppose that x is in each of the open sets 
U1, UZ, * * * ,  Uk. Then there are numbers ri > 0 (i = 1, 2, ..*, k) 
such that N (x, ri, X) C Ui. Take t to be the smallest of r l ,  12 ,  - -, r k .  
Clearly N (x, t ,  X )  lies in the intersection, and this completes the proof. 

In  the argument given above, we assume that there is a point in U n V .  
If U and V have no common point, that is, 

U n V = @ = the empty set ,  
we must test the definition of open set on the empty set. At first glance, 
this may seem a bit foolish; however it is strictly logical. Since @ has 
no points, it is correct to say that each of its points has a neighborhood 
contained in @. Therefore @ is open. Look a t  it the other way around. 
If a set A is not open in X, it contains some point having no neighbor- 
hood contained in A ;  so a non-open set is non-empty. This fact is im- 
portant enough to state formally along with another important fact, 
namely that a set is an open set of itself. 

THEOREM 4.2. 
is an open set of X .  

The empty set @ i s  an open set of X ,  and X itself 

The second proposition is obvious since, for each x E X, 
X ( x ,  r ,  X) C X 

for all r > 0 by the definition of neighborhood. 

The next theorem gives another method of building new open sets out 
of old ones. 

THEOREM 4.3. Tke union of any collection of open sets of X ( finite 
or infinite in  number) is an open set of X .  

To prove this, let C denote the collection of open sets, and let A 
denote their union. If x E A ,  then we must have x E U for some open 
set U of C. Since U is open, there is an r > 0 such that 
N ( x ,  r, X) C U .  Now U C A by the definition of the union. It follows 
that A7(x, r ,  X) C A ,  and this shows that A is open. 

These results indicate that, for most sets X, the family of open sets 
of X is very large We can build open sets in endless variety by forming 
unions of neighborhoods. We shall now show that many familiar sets 
qualify as open sets. 
If X = R, then each neighborhood is an open interval 

W(z, r )  = (x - r, x + r )  . 
Each open interval is a neighborhood of its midpoint and thus is an open 
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set of R. A union of two or more open intervals is also an open set of R;  
for example, the union of the sequence of non-overlapping open intervals 
(l/(n + l), l/n), for n = 1,2,3, * * - ,  is open. 

Let X = Ra. In this case, interiors of circles are neighborhoods so 
each such is open in Ra. Let A denote the set of points on four segments 
forming a rectangle in R2. Then its complement Ra - A has two parts: 
an interior U and an exterior V (see Fig. 4.2). If x is a point of U, 
and we choose a positive number r less than the shortest distance from 
x to the sides of A ,  then N ( x ,  I) lies in U. Therefore U is open in 
R2. Similarly, the exterior V is open in R2. However A is not open 
in Ra because it has a point z having no neighborhood ,'v(z, r, R2) 
which is contained in A .  In fact, every point of A has this property. 
These conclusions remain valid if we replace the rectangle A by any 
simple closed polygon such as a triangle or a hexagon. 

V 

0 
I 

-A- 

Figure 4.2 

It should be noticed that the property of being open is a delicate one-  
i t  can be lost if the set is altered by a single point. In the preceding 
example, if we adjoin to the interior U of A a single point either from 
-4 or its exterior, then the enlarged set will not be open in R2. 

When X = R3, the neighborhoods are the interiors of spheres, and 
each such set is open in R3. The exteriors of spheres are likewise open 
in R3, but the surface of a sphere is not open in R3. Let A denote the 
set of points on the faces, edges, and vertices of a rectangular box in R3; 
then R3 - -4 is divided into two open sets: the interior and the exterior 
of the box. Let T denote the set of points on the surface of a torus 
(doughnut) in R3, then R3 - T is also divided into two open sets: 
the interior and exterior of T. 

In  the preceding examples, we have taken X to be all of Rn. The 
following theorem tells us how to "see" the open sets of a subset X 
once we have pictured those of Rn. 

THEOREM 4.4. If X C Rn, then the collection of open sets of X co- 
incides with the collection of intersections of X with all open sets of Rn. 

As the first part of the proof, we shall show that, if U is an open set 
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of Rn, then X t l  U is an open set of X. Let x E X n U. Since x E U 
and U is open, there is an r > 0 such that N ( x ,  I )  C U. Hence 

x n N ( x , r )  c Xn U. 

N ( x , ~ , x ) c X n U .  
But N ( x ,  r, X )  = X n N(x ,  I ) ,  so 

This says that for each x E X n U there is a neighborhood of x in 
X contained in X n U; therefore X n U is an open set of X .  This 
is half of what we must prove. 

Next we must show that an open set V of X can be enlarged to an 
open set U of Rn such that V = X n U. If V were a neighborhood 
N ( x ,  I ,  X ) ,  it is clear that the desired enlargement would be N ( x ,  I ,  Rn). 
Now, it is easily verified that any open set V of X is the union of all 
neighborhoods contained in V, so we construct the desired enlargement 
of V by enlarging each neighborhood contained in V. We define U 
to be the union of the collection of neighborhoods N ( x ,  I ,  Rn) for all 
2 E V and r > 0 such that N ( x ,  I ,  X )  C V ,  and we shall prove that 
this U fulfills the requirement, that is, we prove that U is open in Rn 
and that X n U = V. Since each N ( x ,  I ,  Rn) is open in Rn, Theorem 
4.3 asserts that U is open in Rn. The proof that X fl U = V will be 
accomplished in two stages: lint we shall show that each element of V 
is an element of X n U, and then that each element of X n U is an 
element of V .  

Since V is open in X ,  each point x E V has an N ( x ,  I ,  X )  C V ,  
and therefore x E U. This shows that V C U. But V is also a subset 
of X ,  so V C X t l  U. Finally, to show that X n U C V, we note that 
any point y E X n U is in both X and U. As a point of U, it lies in 
some N ( x ,  I, Rn) such that N ( x ,  I ,  X )  C Y .  Since it also lies in X ,  
it is in X n N ( x ,  r, R") = N ( x ,  I ,  X), and since N ( x ,  I ,  X )  C V ,  it 
follows that y E V. This completes the proof that X n U = V and 
also the proof of the theorem. 

Let us summarize what has been done so far in Section 4. The main 
property of an open set U of X is its defining property: each x E U 
has a neighborhood N ( x ,  r, X) C U. There is little more that can be 
said about a single open set. Our theorems state properties of the family 
of all open sets of X ,  namely, it contains as elements the empty set, X 
itself, and every neighborhood N ( x ,  I ,  X ) ;  moreover, it contains the 
intersection of any finite collection of its elements, and the union of any 
collection, finite or infinite. 

We turn now to the concept of closed set. 

DEFINITION. Let X be a subset of R". A subset A of X is called 
a closed set of X if its complement in X is an open set of X .  Briefly, 
A isclosedif X - A isopen. 
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If we refer to the definition of an open set, we obtain the following 
test for a set A to be closed in X:  each point of X - A has a neighbor- 
hood not meeting A .  For example, a set consisting of a single point is 
always closed in any larger set X ;  for, if x is the point and y is any 
other point, then hT(y, r) does not contain x if r is less than or equal 
to the distance from x to y. Similarly, a straight line L in a plane or 
in space is a closed set in any larger set; for, if y is not on L, and r is 
the distance from y to the nearest point of L, we have that N ( y ,  I) 
does not meet L. 

Each example we have given of an open set yields, on passing to its 
complement, an example of a closed set. In the example of the rectangle 
A of Fig. 4.2, the complement of the exterior V is the union of A with 
its interior U. Since V is an open set, it follows that A U U is a closed 
set of R2. Similarly, A U V is closed in Ra. Since the union U U V is 
open and A is the complement of U U V, it follows that A is closed 
in R2. 

The relation between a set A in X and its complement X - A is 
reciprocal: the complement of X - A is A .  This correspondence 
between subsets of X is called d d i t y  in X .  Open sets and closed sets 
are dual concepts because the dual of an open set is a closed set, and 
conversely. 

This duality between open sets and closed sets enables us to deduce 
from each theorem we have proved about open sets a true “dual” theorem 
about closed sets. In working out the form of the dual propositions, we 
make use of the fact that union and intersection are “dual” operations 
in the following sense. The complement of the union of two sets is the inter- 
section of their complements: 

X -  ( A U B )  = ( X - A ) n ( X - B ) .  

Similarly, the complement of the intersection of two sets is the union of their 
complements: 

x- ( A n B )  = ( x -  A ) u ( x - B ) .  

Thus the following four theorems for closed sets correspond to those we 
have proved for open sets. The theorem about the intersection of two 
open sets gives us the dual 

T~OFUZM 4.1’. If A and B are closed sets of X ,  then their union 
A U B is  a closed set of X .  The union of any jinite number of closed sets 
of X is a closed set of X .  

To obtain the dual of the proposition that 0 and X are open, we 
need only observe that @ and X are complementary sets in X:  
X - @  = X ,  and X - X  = @. 
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THEOREM 4.2'. Both the empty set 0 and X itself are simuliamusly 
open sets of X and closed sets of X .  

An open set of X is usually not a closed set of X, and vice versa. In 
Section 7 we shall make a careful study of subsets of X which are both 
open and closed in X. 

The theorem on the union of any collection of open sets gives as its dual 

THEOREM 4.3'. The intersection of any collection of closed sets of X 
(finite or inJinite in number) is a closed set of X .  

The proposition about open sets of X being the intersections of X 
with open sets of Rn has as its dual 

THEOREM 4.4'. If X C Rn, then the wllectwn of closed sets of X 
coincides with the collection of intersections of X with all closed sets of Rn. 

Suppose A C X C Rn and A is closed in Rn; then the theorem 
asserts that A n X is closed in X. Since A n X = A ,  we obtain 

COROLLARY. If A is a closed set in Rn, then, for every set X wn- 
iaining A ,  A i s  a closed set in X .  

It should not be thought that every set in R n  is either open or closed 
in R"; many sets are neither. The half-open interval (a, b]  is neither 
open nor closed in R. For any point x in (a ,  b ]  other than b, there is 
some neighborhood of x which lies in the interval. On the other hand, 
each neighborhood of b contains points which do not lie in (a,  b]. In 
the example of Fig. 4.2, the union of the interior U and a single point 
of A is neither an open set nor a closed set of R2. We remarked before 
that i t  was not open. It is not closed because, for any point x of A ,  
every S ( x ,  r )  contains points of U. But by our test for a set to be 
closed, each point of its complement must have rl neighborhood not 
meeting the set. 

We turn now to the formulation of the continuity of a function in terms 
of open sets. The ease of the formulation suggests how useful open sets 
will be in treating questions of continuity. 

THEOREM 4.5. A function f :  X * Y is continuous if and only if the 
inverse image of each open set of I.' is an open set of X .  Equirlalently, f 
is continuous if and only if the inverse image of each closed set of I' i s  a 
closed set of X .  
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Recall that j is continuous if, for each x E X and each t 7 0, 
there is a 6 > 0 such that j maps the 6-neighborhood of x into the 
+neighborhood of f x .  The condition that j-1V be open in X for each 
open set V of Y is surely a simpler requirement to state. 

To prove the theorem, suppose first that j is continuous and that I' 
is an open set of Y .  We must show that each point x E j-IV has a 
neighborhood contained in j-lV. Now f x  E V and V is open in Y ,  
so there is a number c > 0 such that N ( f x ,  c, Y ) C  V. Since j is 
continuous, there is a 6 7 0 such that the image under f of N (x ,  6 ,  X )  
lies in K ( f x ,  e, Y )  and hence in V .  Therefore N ( x ,  6 ,  X )  C f-'V, 
and this proves that f-'V is open for each open set V of Y .  

To prove the converse, we suppose j has the property that f-'V is 
open for every open set V of Y and show that then f is continuous. 
Let x E X and let c > 0. N ( f x ,  c, Y )  is an open set of Y ,  so its 
inverse image in X is open in X ;  denote i t  by U .  Since x is in U 
and U is open, x has some neighborhood .Y(x, 6, X )  contained in U .  
It follows that f S ( x ,  6,  X )  C X ( f x ,  Q, Y ) ,  and this shows that j is 
continuous. 

We have proved the part of the theorem referring to open sets. The 
dual statement for closed sets is a consequence of the fact that for any 
function f: X --+ Y the complement in X of the inverse image of a set 
.4 of Y is the same as the inverse image of the complement of A in 
Y .  Symbolically, for each subset A C Y ,  

X - j - ' A  = f- '(Y - A ) .  
The proof of this formula is a short exercise for the reader. Let us take 
it for granted and suppose f is continuous and A is closed in Y .  Then 
I.' - A is open in Y. By the first part of the theorem, f-I (Y - A ) is 
open in X .  Its complement is therefore closed in X .  The formula 
above says that this complement is f-1.4 ; hence f-'A is closed in X .  

Suppose inst&td that the inverse image of each closed set is a closed 
set. If A is an open set of Y ,  then Y - A is closed in Y ;  hence 
f-'(Y - A )  is closed in X .  So its complement in X is open. The 
formula above states that this complement is f-lA. Thus f-1A is open 
for each open set A .  So f is continuous. This concludes the proof. 

THEOREM 4.6. If f: X -  Y and g:  Y ---t Z are Continuous ficnctions, 
then their composition g j :  X - Z is continuous. 

Let W be an open set of Z .  Since g is continuous, the preceding 
theorem asserts that g l l Y  is an open set of Y, and since f is continu- 
ous, it asserts that f-I(g-'W) is an open set of X .  It is a short exercise 
for the reader to verify that 

(gf)-'W = f-' (gW) . 
(See the answer to Exercise 2.8.) Thus we have shown that (gf)-'W is 
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open for each open set W of 2. By the preceding theorem, this means 
that gf is continuous. 

In subsequent sections we shall frequently use the expression “a space 
X”. In every case, X is a subset of some Rn; however, our point of 
view will be that we wish to concern ourselves solely with the points of 
X and the open subsets or X and to ignore the surrounding space Rn. 
This is called the intrinsic viewpoint. The reader is urged to review the 
definitions and theorems of this section, and note that all save Theorems 
4.4 and 4.4’ are worded intrinsically. We shall discuss the importance of 
this viewpoint in Section 8 

Exercises 

1. If X has a finite number of points, show that every subset of X is 
both open and closed in X. 

2. Let L bealine in R and U anopen intervalof L; findanopenset 
V of R2 such that V fl L = U. 

3. Let D be the circular disk in R of points (2, y) such that 25+ 9 5 1; 
find the largest subset of D which is open in R2. 

4. Give an example of a closed set of R2 which becomes an open set when 
one of its points is deleted. 

5. Give an example to show that the complement of the union of two sets 
is not the union of their complements. 

6. Give an example to show that a union of two non-open sets can be open. 
(Hint: Consider half-open intervals.) 

7. If X C Y C R”, show that each open set of X is an intersection X f l  V 
for some open set V of Y. 

8. Let C be the collection of open intervals in R 

I1 = (-1,1), 1 2  = <-a,*>, *-., 
and 

Show that the intersection of all these open sets is not open in R. 

9. Give an example of a mapping f: X + Y and a set A C X such that 
Y - fA is different from f ( X  - A). 
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10. Prove that for any function f :  X -+ Y the complement in X of the 
inverse image of a set of Y is the same as the inverse image of its com- 
plement taken in Y; that is, X - f l A  = f-l( Y - A ) .  

11. Show that each open set of X is the union of some collection of neigh- 
borhoods in X. 

5. The completeness of the real number system 

The main point of this section is that there are enough real numbers. 
In  greater detail, if by a real number we mean something representable 
by a decimal expansion (finite or infinite), then there are enough real 
numbers to fill up the number line completely. 

The history of mathematics has been marked by a succession of ex- 
pansions of the number system. First there was prehistoric man with his 
counting: one, two, three, many. Then came the concept of the unending 
sequence of positive integers together with a nomenclature and an ab- 
breviated notation. Next came the fractions or rational numbers, then 
came the “roots” of algebraic equations or algebraic numbers, then zero 
and the negative numbers, and finally the transcendental numbers.t 

At each of these stages, some of those who used numbers became 
gradually aware of an inadequacy in the concept of numbers as they 
understood it. After several attempts they finally succeeded in creating 
new numbers which, when adjoined to the older numbers, removed the 
inadequacy. Most of us understand thoroughly the need for the integers 
and rational numbers including their negatives and zero. It is less well 
understood why these are not enough. 

It was the school of Pythagoras which discovered that v2 is not a 
rational number; precisely, there is no fraction whose square is 2. Here 
is the proof given by Euclid. Suppose, to the contrary, that m/n is a 
fraction whose square is 2. We can suppose in fact that m / n  is in re- 
duced form, that is, m and n have no common integral factor other 
than 1. In  particular then, they are not both even integers (all common 
2’s having been “cancelled”). We write the equation (m/n)* = 2 in 
the form m2 = 2n2, which tells us that ma is an even integer. Now 
the square of an odd integer is itself odd 

(27 + 1 ) Z  = 47-2 + 4r + 1 = 2(272 + 2r) + 1 .  
Since mz is even, it follows that m is even, so that m = 2k for some 
integer k. If we substitute this value for m in our equation it becomes 

t For a detailed treatment of the development of the number concept see 
Volume 1 of the New Mathematical Library, Numbers: Rat iml  and Iwa- 
tional by Ivan Niven. 
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4ka = 2na, hence n2 = 2ka. This means that n2 is even, and there- 
fore n is even. Thus both m and n are even integers, contradicting 
the fact that m/n was in reduced form. The contradiction shows that 
there can be no fraction whose square is 2. 

The Pythagoreans needed the number d because they were geometers. 
Starting with a line segment of length d they could construct, using 
straightedge and compasses, a square of side d. By the theorem of 
Pythagoras, the length of the diagonal had to be d d. 

Think of the successive expansions of the number system this way. 
Starting with a line L and two points on L, called 0 and 1, one can 
use compasses to mark off successively the remaining integer points 
2,3, and - 1, - 2, 0 .  By means of another construction involving 
an auxiliary line, one can divide each interval [n, n + 11 into as many 
equal parts as desired. Thus all points on the line L with rational co- 
ordinates can be constructed from the two points 0 and 1. 

Figure 5.1 Figure 5.2 

Now the rational points are densely distributed along L (between 
any two such points there are infinitely many more distributed uni- 
formly). It is easy to see how one might assume, without being aware of 
it, that these rational points were all the points of L. However, the 
Pythagoreans discovered that the diagonal of a square with side 1, when 
mirked off on L (see Fig. 5.1), gave a point v2 which was not one of 
these rational points. What a jolt this must have been to the discoverers! 
This forced them to create new numbers to correspond to the new points 
of L arising from such geometric constructions. 

Unfortunately, inventing the square roots of rationals still did not 
give enough numbers. Trisecting an angle or duplicating a cube requires 
the taking of cube roots of rationals, and these are not usually square 
roots of rationals. So mathematicians were forced into the creation of 
n-th roots of rationals and of the even larger set of all algebraic numbers. 
These are the roots of polynomial equations having integer coefficients. 

About one hundred years ago it was found that the algebraic numbers 
are not enough; that is, there are points on the number line that do not 
correspond to algebraic numbers. In particular, the number T (the 
ratio of the circumference of a circle to its diameter) was proved to be 
not an algebraic number. One is led to ask When, if ever, will the process 
end? 



051 COMPLETENESS OF REAL NUMBERS 33 

The development of the decimal system and of decimal expansions of 
numbers gave a new viewpoint on these questions. All of the numbers 
created so far can be represented by their decimal expansions. It should 
be emphasized that most rationals and all the other numbers have un- 
ending decimal expansions. It is natural a t  this stage to turn things 
around and to say that any decimal expansion represents a real number. 
That is to say, we can define the set R of real numbers to be the set of 
decimal expansions (with the customary convention that an expansion 
ending in nines represents the same number as another one ending in 
zeros, for example, 3.26999.0- = 3.27000.-.). This is in fact what we 
shall do. To justify the procedure we must show that i t  brings an end 
to the game of creating new numbers; the numbers in the set R fill up 
the line completely. 

We must explain what is meant by “filling up the line”. Recall the 
standard method of extracting a square root such as d. Geometrically 
we are dealing with the graph of the equation y = x2, and we are 
trying to determine the x-coordinate of the point where the graph crosses 
the horizontal line y = 2 (see Fig. 5.2). We test first the squares of 
the first few integers and we find that la = 1 is too small and 22 = 4 
is too large. Now if x is made to increase from one positive value to 
another, its square also increases. This fact tells us that d lies some- 
where in the interval lo = [l, 21, and the integer part of its decimal 
expansion is 1. Next we divide the interval ZO into tenths, and square each 
of thenumbers 1.0, 1.1, 1.2, 1.9, 2.0. We find that (1.4)2 is less 
than 2 and (1.5)2 is greater than 2. Thus d lies in the interval 
I1 = C1.4, 1.51, and the decimal expansion of d begins with 1.4. 
Next we divide I I  into ten equal parts, test the squares of the points of 
the division, and find that d lies in the interval Zz = C1.41, 1.421. 
Continuing thus we determine an infinite sequence of intervals 
l o  3 I1 3 IZ 3 * * *  3 Ik 3 squeezing down on d (the symbol 3 
is the reverse of C, and “ A  3 B” is read: “ A  contains B”). Each interval 
is a tenth part of the preceding, and the decimal expansion of d can 
be read off from the decimal expansions of their left-hand endpoints 
which are 1, then 1.4, next 1.41, etc. 

Picture now a similar but more general problem; instead of y = x2 
consider y = fx, where f is any continuous function which increases 
in value as x increases, and instead of finding a number x such that 
.r2 = 2, we wish to solve the equation fx = b where b is some given 
number. If we can find an initial interval I0 = [n, n + 11 such that 
fn < b and f ( n  + 1) > b, then we can again carry out the procedure 
of repeatedly dividing intervals into tenths. This gives an infinite se- 
quence of intervals lo 3 I1 3 * a .  3 Ik 3 - . a .  Amalgamating the 
decimal expansions of the left-hand endpoints of these intervals just as 
in the case of the number 42, we can construct the decimal expansion 
of a number a which lies in each of the intervals, and should therefore 
be a solution of our problem: fa = b. This suggests strongly the con- 
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clusion that we have enough real numbers fo solve any problem of the abm 
type y we agree thut euch decimal expansion determines a real number. 

We proceed now with the formulation and proof of a theorem which is 
a precise restatement of some of the preceding ideas. 

DEFINITION. An infinite sequence of closed intervals of real numbers 
l o ,  I1, IS, IS, 0 ,  In, is called a contracting sequence if each interval 
contains the next and hence all intervals that follow: 

I O > I l > I 2 > I 8 >  * * *  > I n >  * * *  

A contracting sequence is called a regularly contracting sequence if 
10 = [m, m + 13 is the interval from an integer m to the next integer 
m + 1, and, for each n 1 1, I n  is one of the intervals obtained by 
partitioning I,,-1 into ten equal parts. Thus I1 is a tenth part of I ,  
1, a tenth part of II, and so on. The length of I n  is lo". 

COMPLETENJXS THEOREM. &h contracting sequence of intervals has 
a common point; that is, the intersection of all the intervals of the family is 
not empty. 

Consider first the case of a regularly contracting sequence. For each 
N = 0, 1, 2, - * - ,  let an denote the left-hand endpoint of In; then 
a0 = m is an integer. Since I n  has length lo", I n  = [a,,, a, + lo"]. 
The points that divide I-1 into ten equal parts are 

1 2 9 10 
L l ,  %l+G, L l + G ,  ' * '  , a-1+- a"'+l(r' 

Since In is one of these ten subintervals, its left endpoint must be 

where kn is one of the digits 0, 1, 2, * - * ,  9. In this way the sequence 
of intervals determines an integer m and an infinite sequence of digits 
R1, k,, , kn, . Let c denote the real number 

(that is, the decimal expansion of c is m . klkeka. 0 ) .  Since 
ki  k2 kn 
10 1oa 10" ' an E m +  - + - + . a * + -  

it is clear that an 5 c. Now the decimal expansions of an + 1/10, and 
of c agree out to the n-th digits, but the n-th digit of c is kn while 
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that of an + 1/10" is R ,  + 1. It follows that 
1 
lo" - an 5 c 5 an+-  

These inequalities assert that c E I,, and since they hold for every 
integer n, it follows that c lies in each interval of the sequence, hence 
in the intersection of all of them. This proves the theorem in case the 
sequence contracts regularly. 

Now let Io, 11, - 0 -  be any contracting sequence; let I0 = [UU, bo], 
11 = [al, a,], - a * ,  and in general, I ,  = [an, bn]. Then we have the 
inequalities 

a0 5 a1 5 0 . 0  5 a* 5 - * *  5 b, 5 * * *  - < bl 5 bo. 
Choose an integer Y 5 u,, and an integer s > bo, thus obtaining an 
interval I' = [Y, s ]  containing I0 and all the other intervals. The 
interval I' is partitioned into equal subintervals of length one by the 
integers between Y and s. Let I4 = cm, m + 13 be the subinterval 
such that only finitely many a's precede m, and all a's precede m + 1. 
Equivalently, among those subintervals of I0 that contain a's of the 
sequence, I< is the one farthest to the right. We now divide lo' into 
ten equal parts and let I: = [cl, dl]  be the subinterval of lo' such 
that only finitely many a's precede cl and all a's precede dl. Now 
divide I: into ten equal parts and let Is' = [CZ, dz] be the part such 
that only finitely many a's precede CZ, and all a's precede dz. Continue 
in this manner so that, for each n, I,,' = [tn, dn] is a tenth part of 
Ikl, and only finitely many a's precede t n  and all a's precede dn. 
Since the sequence lo', 11', * * *  contracts regularly, there is a point c 
common to all the intervals. Thus cn 5 c 5 dn for all n. Since I,,' 
has length lo", we have cn 5 c I cn + lo" = dn so that 

dn 5 c + lo" and c - lo" 5 tn. 
We want to prove that a,, 5 c 5 b, for every n. Suppose to the 

contrary that, for some integer N, we have t < U N .  Since the powers 
of 10 increase without bound, we can find integers n such that 

1 
10" > -. 

Of these, choose an integer n greater than N; for such an n we have 

a n  2 UN and lo">-. 

The second inequality can be rewritten UN - c > lo" or UN > c + 1W 
which, combined with the first inequality, gives an > c + lo". Since 
dn does not exceed c + lo", it follows that d,  < a,, contradicting 
the fact that dn is preceded by all the a's. The contradiction shows that 

a N  - c 

1 
a N  - c 
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an 5 t for all n. To prove that c 5 bn for all n, suppose to the 
contrary that bN < c for some integer N .  Then t - bN > 0, and 
we can choose an integer n bigger than N such that 

1 
10" > -. 

C - bN 

Then we have bn I bN and 10-" < c - bN. These combine to give 
6, < t - 1 P .  This inequality and the one above involving t n  imply 
that bn < cn. Since all the a's precede all the b's, this means that all 
the a's precede cn. As this is a contradiction, i t  follows that c 5 bn 
for all n. This proves that c E I n  for all n, and completes the proof 
of the theorem. 

We could proceed now to show precisely how our completeness theorem 
enables us to solve equations of the type discussed earlier in this section. 
But all these results are embodied in the main theorem of Part I (see 
Section 1); so we shall continue with the working out of its proof. 

Exercises 

1. Show that is not a rational number. [Hint: Show that an integer 
whose square is divisible by 3 is also divisible by 3; or equivalently, 
show that the square of an integer not divisible by 3 (i.e., of the form 
3k + 1 or 3k + 2 )  is not divisible by 3.1 

2. Give another proof of the proposition that the equation 2n2 = m2 has 
no solution in integers m, n, using the theorem that each integer has a 
unique factorization as a product of prime numbers. (Hint: Compare 
the number of factors 2 on each side of the equation.) 

3. Show that 2/2 is not a rational number by proving (with the aid of the 
unique prime factorization theorem) that 2na = m3 has no solution 
in integers. 

4. Show thaithe equation 
x ,  y other than (0, 0). 

= 222 has no solution in rational numbers 

5. Show that there are no integers k, m and n such that 

[ ( k +  mV2)/nl3 = 2. 

6. If S = UI+ a2 + a3 + - - is an infinite series, the finite sums 

so = 0, s1 = u1, s2 = u1+ u2, a*., 

S n  = UI+ S+ * * *  + G, ... 
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are called partial sums of the series. Show how the partial sums of the 
infinite series 

1 - -+ 1 1 1 1  - - -+ - - ... + (-1)n-+ 1 0 . ’  

10 102 103 104 10” 

determine a regularly contracting sequence of intervals. What is the 
sum of the series? 

7. Show how the partial sums of the infinite series 

determine a contracting sequence of intervals whose intersection is the 
sum of the series. What is this sum? 

8. Show how the process of long division applied to 12.27/3.41 leads to a 
regularly contracting sequence of intervals. 

9. Find to the second decimal place by the method of contracting 
intervals. 

10. Show that each open interval (a, b ) ,  where a < b, contains a rational 
number and also an irrational number; show that the set Q of all rational 
numbers is neither closed nor open in R. 

11. Prove the theorem of Dedekind about a “cut” of the real numbers: If 
A and B are two non-empty subsets of R such that R = A U B 
and every number of A is less than every number of B,  then there is 
a real number which is either the largest number of A or the smallest 
number of B. 

6. Compactness 

A subset X of Rm is said to be bounded if i t  is contained in some 
sufficiently large ball; that is, if there is a point xo and a number Y > 0 
such that X C :Y(zo, I). Examples of bounded sets are segments, circles, 
spheres, triangles, etc. Examples of unbounded sets are lines, half-lines, 
rays, planes, exteriors of circles in Ra, the entire space R”, and the 
rational numbers. Intuitively, a set is unbounded if one can run off to 
infinity along the set. 

A most important and remarkable property possessed by any subset 
X of Rm that is both closed in Rm and bounded is that, for any con- 
tinuous mapping f: X +. Rm, the image set j X  is also closed and 
bounded. The main purpose of this section is to prove this fact. The 
proof is necessarily somewhat indirect; its development passed through 
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many stages beginning with the work of Cauchy (1789-1857). In par- 
ticular, i t  embodies the propositions of analysis often referred to as the 
theorem of Bolzano-Weierstrass and the theorem of Heine-Borel. 

In the proof to be given, we first show that the property of being closed 
and bounded is equivalent to another property called "compactness". 
This is the major part of the argument. Once this is done, i t  is easy to 
show that fX is compact whenever X is compact and f is continuous. 
We shall lead up to the definition of compactness by displaying a common 
property of unbounded sets and non-closed sets. 

Let X be an unbounded subset of R" and xo a point of R". 
Picture the sequence of neighborhoods X ( x o ,  r) where the radius r 
takes on the values r = 1,2,3,  - 0 .  These form an expanding sequence 
of open sets whose union is all of R", since, for each x E R", the dis- 
tance d ( x ,  x ~ )  is less than I for some sufficiently large integer r. The 
intersections X n .\'(%, I), r = 1, 2, 3, 0 ,  form therefore an ex- 
panding sequence of open sets of X whose union is all of X; but X is 
not equal to any one of these open sets because X is unbounded. More- 
over, X is not contained in the union of any finite number of these sets 
because their union is just the largest one. 

Now let X be a bounded but non-closed subset of Rm; then there is 
some point y in the complement Rm - X of X such that each neigh- 
borhood A'(y, I) contains points of X (see the definition of closed set 
in Section 4). For each integer k = 1,2,3,  * * * ,  let uk be the exterior 
of the circle about y of radius l/k. Each uk is an open set of R"; for, 
if x E u k ,  then N (x, d (x ,  y)- 1/&) is a neighborhood of x contained 
in uk. The uk form an expanding sequence Ul C UZ C * * * ,  and 
their union is the complement of y, because for each point x # y 
there is a k such that (l/k) < d ( x ,  y). It follows that the intersec- 
tions X n uk form an expanding sequence of open sets of X whose 
union is all of X, but X is not equal to any one of the sets because each 
N ( y ,  l/k) contains points of X. Moreover, X is not in the union of 
any finite number of the sets because their union is just the largest one. 

Thus if X is unbounded or if X is not closed we can find in X an 
expanding sequence of open sets of X whose union is X, but X is not 
the union of any finite number of them. This leads us to the definition 
of compactness. First, however, we need the definition of an "open 
covering". 

DEFINITIONS. Let X be a subset of Rm. A collection C of subsets 
of Rm is called a covering of X if the union of the sets of C contains 
X; that is, each point of X lies in a t  least one of the sets of C. A 
covering C of X is calledjinib if the number of sets in C is finite. 
A covering C of X is said to conlain a covering D of X if each set 
of D is also a set of C. A covering of X is called an open covering of 
X if each set of the covering is an open set of X. Finally, the space X 
is called compact if each open covering of X contains a finite covering 
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of X; that is to say, from any infinite collection of open sets of X, 
whose union is X ,  we can select a finite subcollection whose union is 
also X. 

If X is unbounded or not closed in Rm, the expanding sequence of 
open sets constructed above is an open covering of X .  Any finite number 
of them has as their union the largest of them. Since no one of them is 
all of X, it follows that X is not covered by any finite number of them; 
hence X is not compact. We now state this result in its positive form: 

THEOREM 6.1. Every compact subset of Rm is bounded and closed in 
R". 

Eventually we must prove also the converse: every closed and bounded 
subset of Rm is compact. This is more difficult and will be accomplished 
in stages. (At the moment, the only sets that are obviously compact are 
those with only a finite number of points: choose one set of the covering 
containing each point.) The first stage and the first non-trivial case is 
that of an interval 

Any closed interval Z = [a ,  b ]  of real numbers is compact. 

To prove this, we assume, to the contrary, that C is an open covering 
of Z which contains no finite covering cif I ,  and deduce a contradiction. 
Under this assumption we shall construct a contracting sequence of 
intervals Z = lo 3 Il 3 12 3 - such that each interval is a half of 
its predecessor, and no one of them is covered by a finite subcollection 
of C .  By means of the completeness theorem of Section 5, we shall then 
show that one of the intervals I k  is, in fact, contained in a single set of 
C, a contradiction. 

To  construct the contracting sequence, we note that lo = Z is not 
finitely covered by C by hypothesis. The midpoint of I0 divides ZO 
into two closed intervals I{ and I{' whose union is lo. At least one 
of ZO', I d f  is not finitely covered by C ;  for if C contained finite cover- 
ings C' of I{ and C" of Id', then C' U C" would be a finite covering 
of lo. Choose the half of lo not finitely covered by C and call it ZI. 
(In case both are not finitely covered, choose the right-hand half so as 
to make the selection specific.) We now divide Zl in half and proceed 
as before. If lo, ZI, 0 . 0 ,  Z L ~  have been properly constructed, we argue 
as above that, since Ik-1 is not finitely covered by C, a t  least one of its 
halves is not finitely covered by C .  We select such a half and call it Zk. 
This completes the inductive proof of the existence of the contracting 
sequence. 

By the completeness of R (see Section 5), there is a point x such 
that 2 E z k  for all k. Since x E Z and C covers I ,  there is an open 
set U of the open covering C such that x E U .  Hence there is a 
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number r > 0 such that N ( x ,  r, I )  C U. Now the intervals 
1 0 ,  11, * * * ,  Ik, * * *  

contain x and have decreasing lengths 
( b  - a ) ,  (b - a) /2 ,  * * = ,  (b  - a)/2k, * * a .  

If we choose a k big enough so that (b - a)/2k < r, then Ik will lie 
entirely in N (x ,  r, I ) .  Here is our contradiction: there is a k such that 

I k  c N ( x ,  r, I) c u ,  
so I k  is covered by a single set of the collection C, and yet each interval 
of our sequence is not covered by any finite subcollection of C. This 
contradiction shows that I is compact. 

Before starting on our next case, we need another definition. A subset 
B of Rm is called an m-dimensional box  if there are pairs of numbers 
a,  < b, for i = 1, 2 ,  * - * ,  m such that B consists of all points x 
whose coordinates (xl, - * * ,  G,) satisfy the conditions a, 5 xi 5 bi 
for i = l , * - - , m .  Incase m = 1, Bisjustaninterva1.When m = 2, 
B is a rectangle and its interior, with sides parallel to the coordinate 
axes. When m = 3, B is a rectangular box and its interior, with its 
faces parallel to the coordinate planes. 

c1 p, 
I - 

H 

Figure 6.1 

We need also to be able to subdivide the box B into smaller boxes. 
This is done by dividing each of the intervals [ai, bi], i = 1, 2, a * * ,  m, 
into two intervals by its midpoint ci; each box of the subdivision has as 
its i-th interval either [ai, ci] or [ci, b i ] .  Thus when m = 2, the 
rectangle is divided by the lines x1 = CI and xz = cz into 4 = 22 
congruent rectangles, with edges half as long as those of B (see Fig. 
6.1). When m = 3, the box is divided by the three planes q = cl, 
x2 = cz and xa = cs into 8 = 28 congruent boxes, with edges half 
as long as those of B. In general, B is divided by the m hyperplanes 
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xi = ci (i = 1, 2, 0 0 ,  m) into 2" congruent boxes, with edges half 
as long as those of B. 

Any mdimensiod box B is compact. 
We shall prove this by a process similar to that used for the one- 

dimensional box, the interval. Assume, to the contrary, that C is an 
open covering of B which contains no finite covering. We shall construct 
a contracting sequence of boxes Bo, BI ,  0 ,  Bk, * * *  such that BO = B ,  
no one of them is covered by a finite subcollection of C,  and, for each 
k > 0, Bk is one of the 2'" boxes of the subdivision of Bk-1. By hy- 
pothesis Bo = B is not finitely covered by C. This starts our inductive 
construction of the sequence. Assuming that Bo, BI, * - * ,  BLI have 
been properly chosen, consider the 2" boxes of the subdivision of Bk-1. 
If each were covered by a finite subcollection of C, then the union of 
these 2" subcollections would be a finite subcollection of C covering 
BLI. Since this is impossible, a t  least one of these subboxes of Bk-l is 
not finitely covered by C. Choose Bk to be one such box. This completes 
the inductive proof of the existence of the sequence Bo, B1, 0 ,  Bk, 0 .  

(Fig. 6.1 illustrates the first three stages for m = 2.)  
We claim that there is a point x E Bk for every R = 1, 2, ' 0 . .  To 

see this, consider the projections of the sequence of boxes on the i-th 
coordinate axis, for i = 1, 2 ,  * a * ,  m. On each axis the projections 
form a contracting sequence of intervals. Let xi be a number common 
to all the intervals formed by the projections on the i-th coordinate axis. 
Then the point x of Rm whose coordinates are ( X I ,  x2, * * * ,  xm) is a 
point of Bk for all k's. Since x E B,  there is an open set U of the 
covering C such that x E U. Hence there is a number r > 0 such 
that .V(x, r ,  B )  C U. Let d denote the length of the longest edge of B.  
Since all edges were bisected at  each stage of the construction of the 
sequence, it follows that d/2k is the length of the longest edge of Bk. 
By the theorem of Pythagoras, the length of the diagonal of Bk is a t  
most fi d/2k. Choose an integer k so large that 

and i t  follows that 
Bk c -y(X, r ,  B )  c L' ; 

hence Bk is contained in a single set of C, and this contradicts the fact 
that Bk is not finitely covered by C. Our supposition that B is not com- 
pact has led to a contradiction; therefore B is compact. 

The collection of sets which we can prove to be compact is greatly en- 
larged by the following useful proposition. 

THEOREM 6.2. If X is a closed subset of a compact space B, then X 
is compact. 
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To prove this, we shall take any open covering C of X and enlarge 
each member of C so that the enlarged sets form an open covering C‘ 
of B. We then use the compactness of B to select a finite covering 
from C’, and observe that the corresponding unenlarged sets form the 
desired finite covering of X. 

For each set U of theopen covering C of X, let U‘ = U u (B - X), 
and let C’ denote the collection of these larger sets U’. First we shall 
show that U’ is an open set of B. A point x E U’ is either in U or 
in B - X. If x E B - X, the hypothesis that X is closed in B tells 
us that there is an I > 0 such that h’(x, I, 9) C B - X C U’. If 
x E U, the fact that U is open in X means that there is an I > 0 
such that N ( x ,  I, X) C U, and hence N ( x ,  I, B) C 6’ U (9 - X) = U’. 
This proves that U’ is open in B. 

Now let y be any point of B; either y E X or y E B - X. If 
y E X, then y E U for some U E C so that y E U’ for the corre 
sponding U’ E C‘. If y E B - X, then y E U’ for all U’ E C’. There- 
fore C’ is an open covering of B. Since B is compact, a finite number 
of the sets of C’, say U;, Ug’, - * * ,  uk’ cover B and hence also X. 
It follows that the corresponding sets of C, namely, 6’1, UZ, * * = ,  uk, 
form a finite covering of X; for every point of X covered by Uj’ is also 
covered by Uj. This completes the proof of the theorem. 

We are now able to prove the converse of Theorem 6.1 by enclosing 
our closed and bounded set in an mdimensional box (which has been 
shown to be compact) and then applying Theorem 6.2. 

THEOREM 6.3. Each closed and bounded subset of R” is compact. 

Let X be closed in Rm and bounded. Since X is bounded, there is a 
point b E Rm and a number I > 0 such that X C X ( b ,  I). Let B 
denote the m-dimensional box with center a t  b and with edges all equal 
to 21; precisely, a point y E Rm is in B if its coordinates (yl, - 0 0 ,  ym) 
satisfy 

Then B contains N ( b ,  I), and therefore B 3 X; hence X fl B = X. 
Furthermore X isclosedin B ;  for X isclosedin R”, and by Theorem 
4.4’, the closed sets of B coincide with the intersections of B with the 
closed sets of Rm. The desired conclusion, that X is compact, is now a 
consequence of the preceding theorem. 

At this point we have established the equivalence of the property of 
being compact and the property of being closed and bounded in P. 
We are prepared now to prove the main proposition of this section. 

bi - I I y, 5 bi + Y for i = 1, - - * ,  m .  

THEOREM 6.4. Let X be a compact space and let f: X + Y be con- 
tinuous; then the image jX is compact. 
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F'ROOP. Let C be an open covering of f X .  We want to show that C 
contains a finite covering of fX. For each U E C, consider the inverse 
image f - W ,  and let C' be the collection of all such inverse images. 
Since f is continuous and U is an open set of fX, each f-'U is an 
open set of X .  For each x E X, f x  lies in some U E C because C 
covers j X ;  so x lies in the corresponding j-W. Thus C' is an open 
covering of X .  Since X is compact, there is a finite subcollection D' 
of C' which covers X .  The corresponding subcollection D of C is 
finite and covers f X ;  for, if x E f-1U and f-'U is in D', then fx E U 
where U is in D. Thus C contains a finite covering of fX. This 
completes the proof that f X  is compact. 

An immediate consequence of Theorem 6.4 is the following. 

COROLLARY. If X i s  a closed and bounded set in  R", and i f f :  X-- t  R" 
is continuous, then j X  is a closed and bounded set in Rn. 

To relate the preceding work to the main objective of Part I (to prove 
the theorem of Section l),  we must prove an important property of 
compact sets on a line. 

THEOREM 6.5. A compact non-empty set X of real numbers has a 
maximum and a minimum; that is, there are numbers m and M i n  X 
such that m is  the smallest number in  X and M is the largest number in  X .  

To appreciate the force of the conclusion, note first that the set R of 
all real numbers has no largest number and no smallest. In fact, any 
unbounded set Y of numbers must fail to have a maximum or a mini- 
mum; for, if it had both, any open interval containing both would contain 
all of Y, and then Y would be bounded. Note next that there are 
bounded sets which have neither a maximum nor a minimum. For ex- 
ample, an open interval (a,  b )  has neither a largest number nor a smallest 
number. These examples show that, to achieve the conclusion of the 
theorem, we must require X to be bounded, and we must impose some 
additional condition which is not satisfied by an open interval. Since a 
compact set is bounded and closed, the single condition of compactness 
guarantees boundedness and rules out the open interval. 

Let us proceed with the proof of the theorem. Since X is compact, 
it is bounded; hence there is a closed interval 10 = [ao, bo] which con- 
tains X. We shall construct a contracting sequence of intervals 
10, 11, ---, Zk, 0 . -  with the following properties each interval Ik is a 
half of Ik-1; each Ik contains a t  least one point of X ;  and finally, the 
right-hand endpoint bk of Ik is an upper bound of X-that is, for all 
x E X, we have x 5 bk, k = 0, 1, 2, * * * .  Clearly 10 contains a 
point of X (since X is not empty), and bo is an upper bound of X. 
Assume that lo, 11, * * * ,  Ik-1 have been properly selected. Let c be the 
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midpoint of Ik-1 = [ak-l, bk-11. If t is an upper bound of X, we take 
Ik = Cak-1, c ] ,  and if t is not an upper bound, we set Ik = [c, bk-11. 
In  either case, Ik has the required properties. 

By the completeness of R (see Section S), there is a number M such 
that M E Ik for every k = 0, 1, 2, - 0 . .  We shall show fist that M 
belongs to X. Suppose the contrary were true. Since X is a closed set, 
the complement R - X is open; then there would be an r > 0 such 
that N ( M ,  I )  C R - X. If d denotes the length of Io, then d/2k is 
the length of Ik, For a sufficiently large integer k we have d/2k < I ,  
so Ik contains M and has length less than r; hence 

Ik c N(M,r) c R - x. 
This contradicts the fact that each Ik contains a point of X. It follows 
that M must belong to X. 

Now we show that M is the largest number of X. Suppose to the 
contrary that therewere an x E X such that x > M. Take r = x - M 
so that r > 0, andchooseaninteger k solargethat d/2k < r. Since 
M E Ik and the length of Ik is less than r, i t  follows that bk < 2; so 
bk is not an upper bound of X .  But bk is an upper bound by construc- 
tion. This contradiction shows that M is the largest number of X. 

The proof of the existence of the minimum proceeds similarly. The con- 
tracting sequence of intervals is chosen so that each interval contains 
some point of X, and the left-hand endpoint of each is a h e r  bound of 
X. The details of the proof are left to the reader. One can also obtain 
the existence of the minimum from that of the maximum by applying 
the mapping f: R + R defined by f x  = - x .  Since X is compact, 
Theorem 6.4 asserts that fX is compact. Then fX has a maximum, 
say MI. It follows that fM' is the required minimum of X. 

Our final theorem of this section provides a part of the conclusion of 
the main theorem stated in Section 1. 

THEOREM 6.6. I f  X is a closed, bounded and non-empty subset of Rm, 
and if f: X + R is a continuous redvalued junction defined on X ,  then 
theimage fX haramaximum M andaminimum m.  

Since X is closed and bounded, i t  is compact. Since X is compact 
and f is continuous, the image fX is compact. Since fX is a compact 
and non-empty set of seal numbers, the preceding theorem assures us of 
the existence of m and M. This completes the proof. 

Exercises 

1. Show that any subset of a bounded set is bounded. 
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2. Show that the union of two bounded sets is bounded, also that the union 
of a finite number of bounded sets is bounded. 

3. Find an example of an infinite sequence of bounded sets whose union is 
unbounded. 

4. Find an expanding sequence of open subsets UI, U2, - . a ,  uk, of the 
half-open interval X = [a, b )  whose union is X but no one of them 
is all of X .  

5. Let D be the disk in R2 with center q and radius 1; that is, D con- 
sists of all points x € R2 such that d ( x ,  X O )  < 1. If X is the set ob- 
tained by deleting xo from D, solve the preceding problem for this X. 
Do the same if X is obtained by deleting from D a point yo of its 
boundary, i.e., d(yo, s) = 1. 

6. Let X be the closed interval [0, lo] C R. Show that the set C of all 
open intervals of R of length 1 is a covering of X .  Find a finite sub- 
collection of C covering X .  What is the least number of such intervals 
in a covering of X ? 

7. Let C ,  denote the circle in R2 with center at xo and radius 7. For 
each point c on the unit circle, that is c E C1, let Tc be the line through 
c tangent to C1. Then R2 - T, is divided into two open half-planes; 
we let U, be the one not containing XO. Show that the collection C of 
these half-planes U, for all c E C1 covers the exterior of C1. If 7 > 1, 
why must there be a finite subcollection of C covering C, ? For 7 > 2, 
show that C, can be covered by three sets of C but not by two. For 
7 such that .\/z < 7 5 2, show that C, can be covered by 4 sets of 
C but not by 3. For 7 such that 2 / G  < 7 < a, show that C, can 
be covered by 6 sets of C but not by 4. Can the open annulus between 
C1 and Cz be covered by a finite subcollection of C ? (An annulus is 
the ring between two concentric circles.) 

8. Show that the union of two compact sets is a compact set. Similarly, the 
union of any finite number of compact sets is compact. 

9. Give an example of an infinite collection of compact sets whose union is 
not compact. 

10. If X is compact and X C Y ,  show that X is closed in Y .  

11. Find a bounded subset X of the rational numbers Q such that X is 
closed in Q, but X contains neither a maximum nor a minimum. 

12. Show that there is a continuous mapping of the interval I = [- 1, 13 
onto the interval [-n, n] for each positive integer n. Does there exist 
a continuous mapping of I onto the entire real line R ? Construct a 
continuous mapping of the open interval (- 1, 1) onto the entire line R. 
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13. Show that a subset X of R”’ is compact if and only if each covering of 
X by open sets of P contains a finite covering. 

7. Connectedness 

For the proof of our main theorem of Part I, we need two important 
topological properties of the closed interval. The first of these, com- 
pactness, has been treated in Section 6. We shall discuss now the other 
property called “connectedness”. 

Some spaces can be divided in a natural way into two or more parts. 
For example, a space consisting of two non-intersecting lines can be 
divided into the two lines. As another example, the complement of a 
circle in the plane consists of two parts, the part inside the circle and the 
part outside. Again, if p is a point of a line L, then the complement of 
p in L falls naturally into the two half-lines determined by p (the 
deletion of p cuts L into two parts). 

In  each of the foregoing examples, the natural division occurs in just 
one way. The set Q of rational numbers can be divided into parts in 
many ways. Each irrational number x produces a division of Q into 
those rationals greater than x and those less than 2. The set of irra- 
tional numbers can be divided by each rational number in a similar 
manner. 

On the other hand, certain sets cannot be divided into parts in any 
natural way; this is true, for example, of a line, a line segment, a plane, 
and a circular disk. 

Of course it is possible to force a division. For example, if I is the in- 
terval [a,  b]  and if c is a number such that a < c < b, then c 
divides I into the two intervals [a, c]  and [c, b] .  However, since they 
have c in common, we do not regard this as a proper division. We obtain 
a proper division by deleting c from one of the sets, say the second. Let 
A = [a,  c ]  and B = (c, b ] ;  then A U B = I and A tl B = @. 
We do not regard such a division or “breaking” of I as natural because 
the set B “sticks” to A a t  the point c. If we delete c also from A 
to overcome this “stickiness”, then A U B # I, but A U B is the 
complement of c in I; hence this example is similar to the example of 
the complement of a point p in a line L. 

The precise notion we need is now stated. 

DEFINITION. A separation of a space X is a pair A,  B of non-empty 
subsets of X such that A U B = X, A n B = 0, and both A and 
B are open in X. A space which has no separation is said to be connected. 

Consider, for example, the complement X of a circle C in the plane. 
Let A be its interior and B its exterior; that is, A consists of all points 
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of X whose distance from the center of C is less than the radius of C, 
and B is the complement of A in X .  The conditions for a separation 
are readily verified. The fact that A and B are open in X is apparent 
from Fig. 7.1; each point of A has a neighborhood contained in A ,  
and each point of B has a neighborhood in B. 

0 

Figure 7.1 

Let L be a line, p a point of L, and X the complement of p in 
L. Let A be the set of points of L to the left of p (see Fig. 7.2) and 
B the set of points to the right of p .  Again each point of A has a 
neighborhood in A ,  and similarly for B. 

A B 
- 

a P 
Figure 7.2 

Recall now the “forced” division of the interval I = [a, b]  into 
A = [a, c] and B = (c, b ] .  If we check the conditions for a separa- 
tion we find that all except one are satisfied A is not open in I because 
no neighborhood of the point G E A lies entirely in A .  

These preliminary considerations indicate that the definitions of a 
separation and of a connected space express precisely the rough geometric 
idea we have in mind, and the next theorems will justify these definitions 
completely. 

The definition of a separation can be reworded in several equivalent 
ways. Since A and B are complements of each other in X, each is 
open if and only if the other is closed. Thus we could equally well require 
that A and B be closed in X. Also we may drop explicit reference to 
B, and say that a separation of X is a subset A of X which is both 
an open and a closed set of X ,  and which is neither 0 nor X. Then 
its complement B in X has the same properties. (Recall that 0 and 
X are both open and closed in X.) 

Thus, any of the following may serve as definition of a separation 
A ,  B of a space X :  

1. A and B are non-empty subsets of X such that A U B = X, 
A n B = 0, and both A and B are open in X ;  

2. A and B are non-empty subsets of X such that A U B = X, 
A n B = 0, and both A and B are closed in X; 
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3. A is a subset of X which is both an open and a closed set of X, 
and which is neither 0 nor X. 

It is usually easier to prove that a space is not connected than to prove 
that i t  is connected. In the first case, we need only exhibit a separation 
and verify that i t  is one, while, in the second case, we must prove some- 
thing about all open sets of X other than @ and X ,  namely, that 
each such set is not closed in X .  The following theorems not only show 
that certain simple spaces are connected, but also present a technique 
for verifying the connectedness of many spaces. 

THEOREM 7.1. A closed interval of real numbers i s  a connected set. 

a b b a 

a 
I i 

a > b  I' b- 
m a =M M b, A ' - 4  

Figure 7.3 

Let I be a closed interval of R, and let A be a closed set of I 
which is neither @ nor I. To prove the theorem we shall show that A 
is not open in I. Since A # @ and A #  I, there is a point a E A 
and a point b E I - A .  Let I' denote the interval [a ,  b ]  (or [b, a ] ,  
if b < a ) .  To picture this, imagine the interval I made up of the sub- 
sets A and B shown in Fig. 7.3 where A is a closed set and B is its 
complement in I. Since A and I' are closed, so is their intersection 
A n I'. Since A n I' is also bounded, it is a compact set. By Theorem 
6.5, A n I' has a minimum m and a maximum M. If a < b, then 
m = a since a is the left-hand endpoint of I'. Since the right-hand 
endpoint b isnotin A ,  wehave m = a 5 M < b. Itfollows that 
each neighborhood of M contains numbers between M and b ;  these 
arenotin A ,  hence A isnotopen. If a > b, then M = a, b < m 5 a,  
and each neighborhood of m contains numbers between b and m; 
these are not in A ,  so again A is not open. This proves that the only 
subsets of I which are both open and closed are I and @. Therefore 
I is connected. 

THEOREM 7.2. If f: X + Y is a continuous map and A ,  B is a 
separation of the image fX, then the inverse images -4' = f-lA and 
B' = f-'B form a separation of X .  

We must verify that the pair A', B' satisfies each of the conditions 
for a separation. Since A is not empty, there is a point y E A .  Since 
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A C fX, there is an x E X such that fx = y; so x E A', and hence 
A' is not empty. Similarly, B' is not empty. Any point x E X has its 
image in fX = A U B, so jx E A or fx E B. Accordingly, x E A' 
or x € B'. This shows that X = A' U B'. If there were a point x 
common to A' and B', i t  would follow that fx is common to A and 
B.  This is impossible, therefore A' n B' = @. Finally, since A and 
B are open in fX and f is continuous, their inverse images are open in 
X (see Theorem 4.5). This proves that A', B' is a separation of X. 

The theorem can be restated briefly: If f i s  continuous and fX i s  not 
connected, then X i s  not connected. Hence an equivalent assertion is: 

COROLLARY. If f: X + Y is continuous and X is connected, then 
jX is connected. 

This is the form of the proposition most useful to us; for example, it 
enables us to prove: 

COROLLARY. Each line segment i s  a connected set. 
PROOF. If L is a line segment and I is an interval, there is a similarity 

f: Z + L so that fI = L. Since a similarity is continuous (see Section 
3) and I is connected, it follows that L is connected. 

It is intuitively evident that two line segments meeting a t  a point 
together form a connected set. The proof of this rests on the following 
two lemmas. 

LEMMA 7.3. If X is not connected and A ,  B is a separation of X ,  
then each connected subset of X lies wholly in  A or wholly in  B. 

Suppose C is a subset of X which' contains a point of A and a 
point of B. Then C fl A and C n B are not empty, each is an open set 
of C ,  their union is C ,  and their intersection is empty. Therefore C 
is not connected. This shows that a connected subset could not contain 
points of both A and B .  

LEMMA 7.4. Zf two connected sets 2 and 14' have a point in  common, 
then Z U W is connected. 

Suppose, to the contrary, that Z U W has a separation A ,  B. Let c 
be a point common to Z and W .  In case c E A ,  then both Z and 
It' are connected sets containing a point of A .  By Lemma 7.3 (with 
X = Z U W ) ,  Z ,  and W lie wholly in A .  So B must be empty. In 
case c E B, we find that Z and W lie wholly in B, and then A = @. 
In either case we have a contradiction; therefore 2 u W is connected. 

A simple application of Lemma 7.4 shows that two line segments 
meeting at  a point together form a connected set; by attaching additional 
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segments one at  a time, we can conclude that any polygonal path is a 
connected set. 

The next theorem is an important tool for showing that certain spaces 
are connected. 

THEOREM 7.5. A space X is connected ij and only ij each pair of 
points of X lies in  some connected subset of X .  

The proof of the part of the theorem stating that, if X is connected, 
then each pair of points of X lies in some connected subset of X is a 
triviality, for the whole set X is a connected subset of itself containing 
every pair of its points. 

To prove the other half of the theorem, assume that X has the 
property that each pair of its points lies in a connected subset of X, and 
suppose that X is not connected. Let A,  B be a separation of X ,  
and let x E A and y E B (recall that A and B are not empty). By 
hypothesis there is a connected set C in X containing x and y .  How- 
ever, by Lemma 7.3, C lies wholly in A or wholly in B. This contradic- 
tion shows that X can have no separation. Therefore X is connected, 
and the theorem is proved. 

Recall that a subset of Rn is called coltuex if it contains all line seg- 
ments joining all pairs of its points (for example, the interior of a circle 
in the plane is convex, but its exterior is not). Since line segments are 
connected, Theorem 7.5 implies 

COROLLARY. Each wnuex set i s  connected. 

A set need not be convex to be connected. Although the exterior of a 
circle is not convex, it is nevertheless connected because any two of its 
points may be joined by a polygonal path lying in the exterior (see Fig. 
7.4). Similarly, any two points of an annular region between two circles 
may be connected by a polygonal path; hence an annulus is connected. 

We return now to the study of subsets of a line (that is, subsets of the 
real numbers) for our final proposition about connectedness. 
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THEOREM 7.6. A compact connected set of real numbers is a closed 
interval. 

The converse of this theorem, that a closed interval is both compact 
and connected, has already been proved (see Section 6 and Theorem 7.1). 

PROOF. Let X be any connected set of real numbers and let a and 
b be numbers in X with a < b. We prove first that any number c 
such that a < c < b is also in X .  The point c determinesa separa- 
tion of its complement in R ;  let A consist of all numbers less than c, 
and let B consist of all numbers greater than c. If, contrary to our 
claim, X did not contain c, i t  would be a subset of A U B, and, since 
X is connected, by Lemma 7.3 i t  would lie wholly in A or wholly in B. 
But X contains a and b, so this is impossible. Thus we have shown 
that a connected set of real numbers contains all numbers between any two 
of its nzcmbers. 

If, in addition, X is compact, Theorem 6.5 asserts that X has a 
minimum m and a maximum M. It follows that X is precisely the 
closed interval [m,  MI. 

Exercises 

1. State whether each o,f the following sets is connected; if not connected, 
find a separation. 

(a) A circle with one point deleted; with two points deleted. 
(b) An arc of a circle; an arc with its midpoint deleted. 
(c) A finite set of points; the singleton set consisting of a single point; 

the empty set. 

Figure 7.5 

R 

(d) The torus (see Fig. 7.5) 
(i) with circle P deleted; 
(ii) with circle Q deleted; 

(iii) with circles P and Q deleted; 
(iv) with closed curve R deleted; 
(v) with two circles of type P deleted; 

(vi) with two circles of type Q deleted; 
(vii) with its interior, but with two circles of type P deleted. 
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(e) The union of two disjoint circles in the plane; the intersection of 
these two disjoint circles. 

(f) Let A ,  B, C, D be four points on a circle, equally spaced and in 
order. Letting AB denote the shortest arc from A to B including 
the end points, answer the question for the following sets: 

(i) A B  U BC; (ii) A B  fl BC; (iii) A B  U CD; 
(iv) A B n C D ;  (v) A B C U C D A .  

2. A subset D of R” is called star-shaped about a point p if, for each 
point x E D ,  the line segment p to x lies in D. Show that such a 
set is connected. 

3. Show that each of the following is connected: the surface of a sphere; 
the interior of a sphere; the exterior of a sphere; the surface of a torus; 
the interior of a torus; the exterior of a torus. 

4. Show by an example that the inverse image of a connected set is not 
necessarily connected. 

5. Show that central projection of a non-diametral chord or of a tangential 
line segment into a circle is continuous; conclude that circular arcs are 
connected. 

6. Give an example of two connected sets whose intersection is not 
connected. 

7. Explain whether the points in the plane having a t  least one rational co- 
ordinate form a connected set; those having exactly one rational coordi- 
nate; those having two rational coordinates. If not connected, show a 
separation. 

8. Let X be the set of points.on all circles in the plane with center a t  (0,O) 
and with radius r ,  where r is a rational number; find a separation of X. 

9. Show that a connected set of real numbers is one of eight things: the 
empty set, R itself, an open or closed half-line, a single point, or an 
open, closed, or half-closed interva!. 

10. Show that the intersection of a contracting sequence of closed intervals 
is either a single point or a closed interval. 

11. Give another proof that any interval I is connected by assuming that 
there is a separation I = A U B,  constructing a contracting sequence 
of intervals each with one end in A and the other in B, and deducing 
a contradiction by showing that a point t of their intersection is not in 
A or in B. 



TOPOLOGICAL PROPERTIES 53 

8. Topological properties and topological equivalences 

The principal task in these sections is the proof of the main theorem 
stated in Section 1: If the real-valued function fx is defined and con- 
tinuous for a < x < b, then i t  has a minimum value, a maximum 
value, and takes on all values between. We have now completed all the 
work required for the proof; i t  is only necessary to assemble its various 
parts. The following three propositions have been proved: 

1. A closed interval of real numbers is a compact and connected set. 
2. A continuous image of a compact set is compact, and a continuous 

3.  A compact and connected set of real numbers is a closed interual. 

Each of the first two propositions is obtained by uniting an assertion 
on compactness proved in Section 6 with an assertion on connectedness 
proved in Section 7. The third proposition is Theorem 7.6. The three 
propositions together assert that a continuous image in R of a closed 
interval is itself a closed interval. This is just another way of stating the 
main theorem. 

We have done much more than prove our main theorem; we have 
proved a number of theorems of considerable generality, and we have 
analyzed the argument so that theorems similar to the main theorem 
can be obtained without further trouble. For example, the fact that a 
closed and bounded set is compact (Section 6 ) ,  together with proposi- 
tions 2 and 3, enables us to conclude: 

image of a connected set is connected. 

If X is  a closed, bounded, and connected set in  Rn, and if f: X + R is 
continwus, then the image fX i s  a closed interval. 

One of the many different kinds of closed, bounded, and connected 
subsets of Rn is the surface of a sphere in R3. Hence a continuous real- 
valued function defined on a sphere has a maximum value, a minimum 
value, and takes on all values between. We can see now that the hy- 
pothesis of the main theorem, that the domain of f is a closed interval, 
is unnecessarily restrictive; it is enough to require that the domain of f 
be closed, bounded, and connected. 

We are now in a position to begin to answer the question: What is 
topology? 

DEFINITION. A property of a subset X of Rm is called a topological 
property if it is equivalent to a property whose definition uses only the 
notion of open set of X and the standard concepts of set theory (ele- 
ment, subset, complement, union, intersection, finite, infinite, etc.). 
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Briefly, a topological property of X C R" is one which is expressible 
as a property of the family of open sets of X. 

Compactness and connectedness are topological properties. The reader 
is urged to review carefully the definitions of these concepts given in 
Section 6 and Section 7, and to note the absence of references to proper- 
ties of X such as size, shape, length, area, and volume. Similarly, a 
closed set in X is a topological concept because a closed set is defined 
to be the complement of an open set in X. 

Once a property or concept is known to be topological, we may use it 
freely in defining other topological properties and concepts; for example 
the notions of closed set, compactness, and connectedness may be so used. 

Here are some examples of topological properties of specific sets. A line 
L is a connected set, and the complement in L of each point of L is 
not connected. Stated differently: a line is disconnected by the deletion 
of any one of its points. A circle does not have this property; however it 
is disconnected by the deletion of any pair of its points. Some of the 
topological properties of a plane are that it is connected, it is not compact, 
and it is not disconnected by the deletion of any finite set of points. 

If a property of a subset X of R"' involves features of X or its sub- 
sets such as size, shape, angle, length, area or volume, then it is not likely 
to be a topological property. For example, the property of being bounded 
refers to the size of X. The property of being closed in R" refers to 
the set R" - X and not just to open sets of X. On the face of it, neither 
property is likely to be a topological property of X. However there is 
danger here of jumping to a hasty conclusion. If we consider the property 
of X of being both bounded and closed in R", we might equally well 
presume that this is not a topological property; but we proved in Section 
6 that it is equivalent to compactness which is a topological property. 
Clearly, we need a practical test for a property to be not topological. 
Such a test is based on the concept of the topological equivalence of two 
point sets: 

DEFINITION. A set X C R" and a set Y C R n  are called topo- 
logically equivalent (or homeomorphic) if there is a one-to-one function 
f: X + Y such that f is continuous and also f-1: Y + X is continuous; 
moreover, the function f is called a topological equivalence (or 
homeomorphism). 

Let us consider sowe examples. We have already observed that any 
two line segments are similar, and that a similarity is continuous. Since 
the inverse function of a similarity is also a similarity, it follows that any 
two line segments are topologically equivalent (see Fig. 8.1). 

As shown in Fig. 8.2, we may use a radial projection with center z to 
define a topological equivalence between a line segment and an arc of a 
circle. The continuity of f is proved by forming the wedgeshaped 
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region determined by N ( f x ,  e) and the point 2,  and then taking a 
positive 6 so small that N ( x ,  6) lies in this region. Since f-' contracts 
distances, it too is continuous. 

Figure 8.1 Figure 8.2 

In fact a very wiggly curve can be topologically equivalent to a line 
segment. Fig. 8.3 shows the graph C of a continuous function f defined 
on an interval I. Let g. C -B I be the perpendicular projection, so 
that g(x ,  fx) = x. Clearly g is 1-1, and g-1. = (x ,  fx) for all 
x E I. As a projection, g contracts distances, so g is continuous. The 
continuity of g-1 is a consequence of the continuity of f. So, for any 
continuous f, the graph C of f is topologically equivalent to the line 
segment I. 

I 
Figure 8.3 

Speaking roughly, any non-selfintersecting curve described by 1 ie con- 
tinuous motion of a particle moving from a point p to a point q is 
topologically equivalent to a line segment (see Fig. 8.4). 

Figure 8.4 
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Another example of a homeomorphism is provided by the stereographic 
projection of a spherical surface S, with a pole p deleted, onto its 
equatorial plane P (see Fig. 8.5). The solution of Exercise 7 of Section 
3 shows that this defines a topological equivalence between S - p and 
P. If we restrict the projection to the points of a single great circle C 
through p ,  we obtain a topological equivalence of C - p with a line L. 

Figure 8.5 

Having illustrated the concept of topological equivalence, let us return 
to the discussion of topological properties. The following theorem states 
the basic relationship involving these concepts. 

THEOREM 8.1. If a s zhe t  X of R” and a szlbset Y of R* are 
topologically equivalent, then each has ewery topological property possessed 
by the other. 

This is obvious because a topological equivalence f: X + Y sets up 
a 1-1 correspondence between the points of the two sets, and a 1-1 cor- 
respondence between their subsets ( A  C X is associated with fA C Y 
and B C Y with f-lB C X) in such a way as to make open sets corre- 
spond to open sets, and to preserve the relations and operations of set 
theory (for example, A C B in X if and only if fA C f B  in Y ) .  Any 
true statement we can make about points of X ,  subsets of X, open 
sets of X ,  and their set-theoretic relations, will yield a true statement 
if we replace all points and subsets of X by their images in Y .  

Let us illustrate the argument with the property of being not con- 
nected. In terms of open sets, this is stated: X has two non-empty open 
sets A and B such that A U B = X and A n B = a. If we take 
images under f and use the obvious relations jX = Y, fa = 0, 
f(A u B )  = f A  U j B  and f ( A  n B )  = f A  n fB,  then we obtain: Y 
has two non-empty opensets fA and f B  such that f.4 UfB = Y and 
j A  n j B  = a. Therefore Y is not connected. 

We use Theorem 8.1 to show that certain properties of a subset X of 
Rm are not topological. Since a line segment is topologically equivalent 
to any other line segment, its length is not a topological property. Since 
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a line segment is equivalent to an arc of a circle, its straightness is not a 
topological property. Since a sphere S with a point p deleted is equiva- 
lent to a plane P under stereographic projection, the boundedness of 
S - p is not a topological property. Since P is closed in Ra and 
S - p is not closed in Ra, the property of P being closed in R9 is not 
topological. 

By this time the answer to the question “What is topology?” should 
be fairly obvious: 

Topology is the study of the topological properties of point sets. 

This is a satisfactory answer but i t  is not the complete answer. We 
must include also the topological properties of functions. If f: X 4 Y 
is a function such that X C Rm and Y C R“, then a property of f is 
called topological if i t  is equivalent to one whose definition uses only the 
notions: open sets of X and of Y ,  images and inverse images, and the 
standard concepts of set theory. 

For example, continuity is a topological property of a function because 
Theorem 4.5 states that f is continuous if and only if the inverse image 
of each open set of Y is an open set of X. It is easy to find topological 
properties of functions. As another example, the property of being a 
constant function is a topological property. Again, the property of 
f: X --+ Y that f-ly is a compact subset of X for every y E Y is a 
topological property. 

The complete answer to the original question is that topology is the 
study of the topological properties of point sets and junctions. 

In  the light of these definitions, let us reexamine our proof of the main 
theorem as broken down into the three propositions given a t  the beginning 
of this section. The second proposition is pure topology; i t  states that a 
topological property of X (compactness) and a topological property of 
f (continuity) imply a topological property of fX (compactness). The 
same holds with connectedness in place of compactness. The first proposi- 
tion states two topological properties of a familiar object. The third is a 
converse of the first: the two topological properties, compactness and 
connectedness, characterize closed intervals among all subsets of R. 
We can conclude from this that the proof of the main theorem is nearly 
all topological. 

Topology has been called rubber geometry. If one attempts to picture 
those point sets which are topologically equivalent to a particular set X, 
i t  is a good intuitive device to regard X as made of rubber. If X can 
be deformed into a set Y by stretching here, contracting there, and 
twisting (but never tearing or gluing different parts together), then X 
and Y are topologically equivalent. For example, a small spherical sur- 
face (balloon) can be inflated into a big one, then it can be squeezed to 
form an ellipsoid, and then i t  can be squeezed still more to yield a surface 
of a dumbbell. Also, an inflated spherical surface can be allowed to con- 
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tract until its surface fits tautly over the surface of a solid such as a 
rectangular box or a tetrahedron (Fig. 8.6). 

Figure 8.6 

Since two topologically equivalent point sets have exactly the same 
topological properties, the topologist regards them as being essentially 
the same (topologically indistinguishable). This is analogous to the 
viewpoint in euclidean geometry that two congruent configurations are 
completely equivalent. A topologist has been defined to be a mathe- 
matician who can’t tell the difference between a donut and a cup of 
coffee. Fig. 8.7 shows several intermediate stages of the deformation of a 
solid donut into a cup. 

Figure 8.7 

In each of the classical geometries there is a concept of equivalent con- 
figurations. As already noted, in euclidean geometry two configurations 
are equivalent if they are congruent, in particular, if there is a rigid 
motion carrying one onto the other. In projective geometry, figures are 
equivalent if there is a Fojectivity carrying one onto the other. The 
projectivities include congruences and similarities, and enough additional 
transformations so that any two triangles are equivalent, and any circle 
is equivalent to any ellipse (see Fig. 8.8). 

Figure 8.8 Figure 8.9 
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In differential geometry, the equivalences are called isometries (equal 
metrics). Here, two configurations are equivalent if there is a 1-1 cor- 
respondence between their points such that the length of any curve in 
the domain equals the length of the corresponding curve in the range. 
For example, a portion of a cylindrical surface can be rolled out upon a 
portion of a plane. Likewise a portion of a cone can be rolled out onto a 
sector of an annular ring (see Fig. 8.9). Therefore these surfaces are 
isometric. 

Congruences, projectivities, and isometries are all topological equiva- 
lences; for, in each case, the correspondence between two equivalent 
figures is 1-1 and continuous each way. It follows that every topological 
property of one such configuration is also a property of the other, and 
therefore a topological property is also a property in the sense of euclidean 
geometry, projective geometry, and differential geometry. As a conse- 
quence, a theorem of topology is automatically a theorem of each of 
these geometries. In  view of this, i t  can be said with considerable justifica- 
tion that topology is the fundamental geometry. 

Exercises 

1. Find a homeomorphism between X and Y if: 
(a) X is an open interval and Y is a line. 
(b) X is a half-open interval and Y is a ray. 
(c) X is the interior of a circle and Y is the plane. 

2. Show that a circle with one point deleted is topologically equivalent to 
an open interval. 

3. A set is totally disconnected if the only connected subsets are single 
points and the empty set. Give two examples of subsets of R that are 
totally disconnected and contain infinitely many points. 

4. A set X is locally connected if, for each point x E X and each neigh- 
borhood N(x,  Y ) ,  there is a connected open set U of X such that 
x E U C  N(x,  Y ) .  Determine whether each of the following sets is locally 
connected : 
(a) the set of all integers, (b) the set (0, +, 3, i, ' * * I ,  
(c) the set [u, b ] ,  (d) the set of rational numbers. 

5. A set X is locally compact if each point of X has a neighborhood in X 
contained in a compact subset of X .  
(a) Give an example of a set that is not compact but is locally compact. 
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(b) Show that each closed set in R” is locally compact. 

6. Determine which of the following properties are topological and which 
are not. For each property given that is not topological, find two topo- 
logically equivalent sets, one with the property and one without. 
(a) X isunbounded. 
(b) X isafiniteset. 
(c) X is a curve of length 2. 

(d) X is locally compact. 
(e) X is a convex polygon. 
(f)  X is locally connected. 

(g) X is totally disconnected. 

7. Illustrate the argument of Theorem 8.1 to show that, if a compact subset 
X of R“ and a subset Y of R” are topologically equivalent, then Y 
is compact. 

8. Which of the following properties of a function f: X +  Y are topological? 
(a) The image of each open set of X is an open set of Y .  
(b) f is a similarity. 
(c) f is a translation. 
(d) The inverse image of each point is a finite set. 
(e) The inverse image of each point is a compact set. 

(f) The inverse image of Y is bounded. 
(g) The inverse image of each point is a connected set. 

9. A fixed point theorem 

If a set is mapped into itself by a function f, it may happen that some 
point is carried into itself. A point x with the property that fx = x is 
called a j x e d  point of the mapping. If a circular disk is rotated on itself 
through a right angle, the center of the disk is the sole fixed point. The 
same mapping restricted to the circle which is the periphery of the disk 
has no fixed point. Each constant map of a space into itself has one fixed 
point. Thus a mapping of a set into itself may or may not have a 
fixed point depending on the set and the mapping. However, in the case 
of a line segment (closed interval), we have the following remarkable 
result. 

THEOREM 9.1. Every mapping of a line segment into itself has at least 
one $xed point. 
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Let coordinates be introduced on the line so that the segment becomes 
an interval [a, b ] .  Then a mapping of the segment into itself is just a 
continuous function j [a, b ]  -+ [a, 61. Define a new function 
g: [a, b]  + R by g x  = f x  - x for each x E [a, b ] .  Thus g measures 
the directed distance between x and its image fx. It is positive when 
f x  is to the right of x, i.e. fx > x, and negative when f x  is to the 
left of x. We seek a fixed point of f, that is, a point a t  which g is zero. 
If either endpoint is fixed, we have nothing to prove. Suppose neither is 
fixed. Since f a  and f b  are in [a, b ] ,  a < f a  and f b  < b ;  hence 
g a  > 0 and gb < 0. Since g is continuous (it is the difference of 
two continuous functions, see Exercise 8 of Section 3) ,  the main theorem 
asserts that g takes on all values between g a  and gb. So g x  = 0 for 
some x E [a, b ] ,  and this x is the required fixed point of f. 

Figure 9.1 

Theorem 9.1 may be examined from the point of view of the graph of 
f illustrated in Fig. 9.1. A fixed point off is one whose corresponding 
point on the graph lies on the diagonal line (i.e. if f x  = x, then 
(x, fx) = (x, x) is on the diagonal). Since a < f a ,  the point (a, f a )  
lies above the diagonal, and similarly (b, f b )  lies below it. Since the diago- 
nal line disconnects the plane into the points above and those below, and 
the graph is a connected set, the graph must intersect the diagonal. The 
function g measures the vertical distance between the graph and the 
diagonal. 

Exercises 

1. Find the fixed point of the mapping of the interval [0,  11 onto itself de- 
fined by fx = (1 - 

2. Let the mapping of the interval [0, 11 onto itself be defined by 
fx = 4x - 4x2. 
(a) Sketch the graph of the function and the diagonal line y = x.  
(b) Is the mapping 1 - 1 in the interval? 
(c) Find the fixed points of the mapping. 
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3. Let the mapping of the interval into itself be defined by [0, 11 
f x =  2- x +  1. 
(a) Sketch the graph of the function and the line y = x. 

(b) Is this mapping 1 - 1 in the interval? 
( c )  Find the Gxed points of the mapping. 

4. Show that the following property of a set X in R” is a topological 

5. Give an example of a mapping of the interval [0, 11 into itself having 
property: every mapping of X into itself has a fixed point. 

precisely two fixed points, namely 0 and 1. 

6. Give an example of a mapping of the open interval (0 , l )  onto itself having 
no fixed points. 

7 Show that each mapping of a half-open interval onto itself has at  least one 
fixed point. 

10. Mappings of a circle into a line 

A circle has the following striking property: 

THEOREM 10.1. Every mapping of a circle into a line carries some pair 
of diametrical poinis into ihe same image point. 

PROOF. Let fi C - L be a mapping of a circle C into a line L. By 
introducing coordinates on L, we may consider f as having the real 
numbers R as its range. Consider a pair of diametrical points p and p’ 
on C (Fig. 10.1); let their image points on L have coordinates fp = a 
and fp’ = b, and examine the function g defined by 

g p  = fp- fp’ = a -  b .  
This is a continuous function of p because f is continuous. Moreover, 

gp’ = fp’ - fp = b - a = - (a - b )  , 
so the function g is either zero at p and at  p’ (in which case p and 
p’ have the same image under f), or i t  has opposite signs at p and at 
p‘. In  the second case, we apply the main theorem to one of the semi- 
circlesfrom p to p’ toobtain apoint q such that gq = 0 = fq - fq’. 
It follows that fq = fq’, that is, the diametrical points q and q’ have 
the same image point. 

The analog of diametrical points on a circle is antipodal points on an 
ellipse; these are points located symmetrically with respect to the center 
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of an ellipse. Since a circle is a special case of an ellipse, diametrical is a 
special case of antipodal. It is therefore appropriate to ask whether a 
similar theorem holds for antipodal points. 

b a 

Figure 10.1 

If a circle X and an ellipse Y have the same center z and lie in the 
same plane, a homeomorphism is most easily constructed by pairing off 
two points if they lie on the same ray from z. This is essentially the 
radial projection onto X mentioned in Section 3 and has been proved 
continuous in that section. If X and Y are not concentric, we arrive 
a t  a homeomorphism by first projecting Y radially onto a circle X’ 
that has the same center as Y (see Fig. 10.2). Since X and X’ are 
similar, X is topologically equivalent to X‘ which is in turn topologi- 
cally equivalent to Y .  Furthermore, the homeomorphism Y + X, 
composed of the radial projection and the similarity, preserves antipodes; 
that is, if the image of q is p ,  and if q’ is the antipode of q, then the 
image of q’ is the antipode p‘ of p .  So the theorem on diametrical 
points holds for the ellipse with the understanding that antipodal points 
play the same role as diametrical points. 

C 

Figure 10.2 Figure 10.3 

A similar argument shows that the result holds also for any star- 
shaped closed curve such as the polygon B in Fig. 10.3. By projecting 
B radially from the center point z onto the circle C, we obtain a 
homeomorphism which transforms each pair of points of B on the same 
line through z into a diametrical pair on C. 
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Exercises 

1. In Fig. 10.4, let f: C+ L be the projection of the circle into the line 
from a point p outside C as the center of the projection. 
(a) Describe the inverse images of various points of L. 
(b) Which pair of diametrical points on C have the same image in L? 

f x '  
Figure 10.4 

2. Let L be tangent to a circle C a t  p.  From the point fi' of C dia- 
metrical to p ,  project C onto L. Describe the inverse images of points 
of L. Why doesn't Theorem 10.1 apply to this mapping? 

3. If a circle C is divided by diametrical points b and b' into two semi- 
circles D and D', show that, in any mapping j: D-+ D', some point 
is reflected about the diameter bb'. 

4. If a circle C is divided by diametrical points b and b' into two semi- 
circles D and D', show that any mapping j: D -+ D', carries some 
point into its antipode. 

5. Give an example of a non-constant map of the circle into the line such 
that each two diametrical points have one image point. 

11. The pancake problems 

The first pancake problem may be stated roughly as follows: Suppose 
two irregularly shaped pancakes lie on the same platter; show that it is 
possible to cut both exactly in half with one stroke of the knife. If, for 
example, each pancake happens to form a perfect circle, then the line 
through their centers would provide the desired cut. The problem be- 
comes more difficult, however, if the shapes of the pancakes are not 
restricted. The precise mathematical theorem is as follows. 
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THEOREM 11.1. If A and B are tzuo bounded regions in the same 
pkzne, then there is a line in the plane which divides each region in  half by 

By a region in the plane is meant a connected open subset of the plane. 
The theorem applies even when the two pancakes are stacked one onto 
the other, that is, the two regions may overlap. 

WeU. 

Figure 11.1 

Since the proof is somewhat long, we present first its major steps, 
defemng the proofs of two minor propositions. Since A and B are 
bounded, we may choose a circle C including A U B in its interior (see 
Fig. 11.1). Let a denote the center of C and r its radius. For any 
1~ E C, let x' denote its diametrical point, and D, the diameter x' to 
z. Our first proposition to be proved later is 

(1) For any x E C, the family of all lines perpendicular to D, 
contains one and only one line L ( A ,  x )  which divides A in half by 
area, and one and only one line L (B, x )  which divides B in half by area. 

Denote by XA and XI? the points where D, meets L ( A ,  x )  and 
L(B, x ) ,  respectively. On D, we have a natural scale (or coordinate 
system) with z at the origin: the coordinate of a point is its directed 
distance from z ,  positive when the point is on the same side as x, 
negative otherwise. Let g A X  and gBx denote the coordinates of XA and 
ZB, respectively. Now, for each x E C,  set 

hx = gAx - gBx. 
Our second proposition to be proved later is 

(2) The function h C+ R is continuous. 

of C are equal in absolute value but opposite in sign: 
h'= -h for any x E C .  

A crucial property of h is that its values at any two diametrical points 
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This is proved by noting that D,* = Dz, so L ( A ,  x )  = L ( A ,  x ‘ )  and 
L(B, x )  = L(B, x ’ ) ;  hence X’A = XA and X’B = XB. However, the 
positive direction for coordinates on D,, is opposite that of D,; hence 
a x ‘  = - g A x  and gBx’ = -gBx,  and therefore 

hx’ = gA2’ - @’ = - g A x  + @% = -hx. 
Now, by Theorem 10.1, there is a point x of C such that hx’ = hx. 
For this x we have both hx’ = hx and hx’ = -hx; hence hx = 0, 
and this implies XA = XB, so that L ( A ,  x )  = L(B, x )  divides both 
A and B in half by area. 

PROOF OF (1): Corresponding to a number y, let Ly denote the line 
perpendicular to D, through the point of D, with coordinate y, and 
let fy denote the area of the part of A on the positive side of Ly (the 
side in the direction of increasing y-values). Then f is a real-valued 
function of a real variable, j R + R. As y varies from -r to -I, the 
line Ly sweeps once over the interior of C. Picture Ly as a steel needle 
mounted on a rod D, at right angles. As the mounting traverses the 
rod from 2’ to x, the needle sweeps across the interior of C. When 
y = -I, the mounting is at  x’, all of A is on the positive side, so 
f(-r) is the area of A. When y = r, the mounting is at  x, all of 
A is on the negative side, so f r  = 0. 

Figure 11.2 

To show that f is continuous, let y, y’ E R with y < y‘. Then 
fy - fy’ is the area of the part of A between the lines Ly and Ly’. 
Since this is contained in the rectangular region shown as shaded in 
Fig. 11.2, it follows that 1 fy - fy’ 1 < 2r I y - y’ I . Corresponding to 
an c > 0, we take 6 = a/2r. Then, when y’ is in the &neighborhood 
of y, it follows that fy’ is in the eneighborhood of fy. Therefore f is 
continuous at y. Since this is true for each y, f is continuous. 

By the main theorem, as y varies from --I to +r, fy sweeps over all 
values starting from the area of A down to 0. Hence there is at  least one 
y-value where fy is exactly half the area of A so that Ly = L ( A ,  x )  
cuts A in half. We need to know that there is only one such cut. Suppose 
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tothecontrary that both Ly and L,,' divide A in half (i.e. fy = fy') 
and that y # y', say y < y'. The strip Q between Ly and is 
an open set, and its comp!ement separates into two parts, one containing 
the positive side of Ly' and the other the negative side of Ly. Since A 
is connected and contains points in each of the two parts, A must con- 
tain a point of Q, say p .  Since A and Q are open, A n Q is open, 
so it contains a neighborhood of p. Therefore A n Q has positive area, 
hence fy > fy'. Since this contradicts fy = fy', we have proved the 
uniqueness. The existence and uniqueness of L (B, x )  is proved similarly. 
This completes the proof of (1). 

Figure 11.3 

PROOF OF (2): Since h is the difference g A  - g B ,  it suffices to prove 
that gA and g B  are continuous (see Exercise 8 of Section 3). Let c be 
a point of C where we wish to show that gA is continuous, and, in ac- 
cord with the notation above, let CA be the point on the diameter D, 
where the perpendicular L ( A ,  c )  cuts A in half (see Fig. 11.3). Let 
x be a point of C near c. Through the points u and u where L ( A ,  c )  
meets C, draw lines K and K' perpendicular to D,. The line L ( A ,  c )  
divides the interior of C into two parts, U and V. The strip between 
K and K' separates its complement in the interior of C into two 
parts, U' and V', such that U' C U and Y' C V. Therefore U' 
and V' each contain at most half the area of A.  It follows that the 
line L ( A ,  x ) ,  perpendicular to D, and dividing A in half, lies in the 
strip, and so does the point ZA where L ( A ,  x )  meets D,. Since the 
circle through CA with center z meets D, inside the strip, it follows that 

I w - g g A c I  < w ,  
where w is the width of the strip. 

two triangles gives 
To obtain an estimate of the size of w, notice that the similarity of 

W d(e ,  x )  
d(% u )  d ( z ,  x )  ' 
- = -  
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where e is the foot of the perpendicular from x to D,. Since 
r = d ( z , x ) ,  thisgives 

w = -  d(u7 d(e ,  x )  . 
r 

Since d(N, v )  I 2r, and d(e,  x )  I d(c ,  x ) ,  we obtain 

and therefore 
w I 2 d ( c , x ) ,  

I gAx - gAc 1 2d(c, x )  . 
So if t > 0, and x E N ( c ,  t/2), it follows that 

I g A X -  gAc 1 < € .  

This shows that g A  is continuous. Similarly g B  is continuous. This 
completes the proof of (2) and Theorem 11.1. 

For our second pancake problem we are asked to cut one pancake into 
four equal parts with two perpendicular cuts. 

Figure 11.4 

THEOREM 11.2. If A is a bounded region in the plane, then there are 
two perpendicular lines which divide A into four parts having equal areas. 

As before we enclose A within a circle C. For each x E C, let 
L, be the line perpendicular to D, which divides A in half, and let 
K, be the line parallel to D, which divides A in half. The two lines 
divide A into four parts which, counting in a counter-clockwise direction 
(see Fig. 11.4), have areas denoted by P,, Q,, R,, S,. Since L, and 
K ,  divide A in half, we have 

P, i- Q, = R, 4- S, and Q, -b R, = S, i- P , .  
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Subtracting these equations, we obtain P, = R, and QZ = S,. If 
by good fortune we also have P, = Q,, then the lines L, and K,, 
solve our problem. Since this is generally not the case, we set the differ- 
ence P, - QZ = fx and ask how this function varies as x moves 
around the circle. If y E C is such that Du is perpendicular to D,, it 
isclear that = K,  and KzI = L,. It follows that PzI = Q, and 
Q,, = R,. Since P, = R,, weobtain 

fy = Pv - Qy = QZ - P, = - (P, - Q2) = -fX. 

Therefore the function f reverses sign as x moves through an arc of 90". 
Once f has been shown to be continuous, it will follow from the main 
theorem that fx = 0 somewhere on each arc of 90". Such a point pro- 
vides the required dissection. 

We shall only sketch the proof of continuity. Since f is the difference 
of two functions, it will again suffice to show that P, is continuous (a 
similar proof shows that Q, is continuous). Let c E C be a point where 
the continuity of P, is to be proved, and let x be near to G. The passage 
from the perpendicular pair L,, K ,  to the similar pair L,, K ,  can be 
done in two steps. First rotate L,, K,  about their point p of intersec- 
tion into a pair of perpendiculars L', , K', which are parallel respectively 
to L,, K,. The angle a of rotation is the small one determined by the 
arc c to x. The second step translates Llc, K', into L,, K ,  by a 
parallel displacement. The change from P, to P', is seen to be no more 
than the area of the off-center sector of C with vertex p and angle a, 
and this is a t  most 2r d (G, x) where r is the radius of C. The area U 
between L', and L,  and inside C is at most 2ru where u is the 
distance between L', and L,. Similarly the area V between K', and 
R, is a t  most 2ro. The change from P', to P, is clearly less than 

C'+ v 5 2r(u  + 0 ) .  

The point y in which L,. and L, intersect can be seen to lie inside C 
because L, and L, divide A in half and A is connected. This means 
that d ( p ,  y) < 2r, and then, by similar triangles, u < 2d(c,  x). In 
the same way, 0 < 2d(c,  x). Putting these estimates together gives 

I P, - P,.I < 10rd(C, X) 
So, if a number E > 0 is given, we take 6 = € / l o r ,  and then we have 
1 P ,  - P,. < E for every x E .Y(c, 6). This concludes the proof. 

Exercises 

1. Two pancakes, one in the shape of a perfect square and the other in the 
shape of a perfect circle lie on the same platter. Describe the cut dividing 
each exactly in half with one stroke of the knife. 
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-2 -1 1 2  -2 -1 

2. Would the “line of centers” method work for any two pancakes in the 
shape of regular polygons? 

I 2  

3. In how many ways can cuts be made to divide a square pancake into four 
equal parts with a set of two perpendicular lines? 

4. In dividing any pancake into four equal parts with a pair of perpendicular 
lines, the function P, - Qz is zero within each quarter-turn. Explain 
why this does not necessarily imply a t  least four such divisions as x 
traverses the entire circle. 

5. If one pancake is circular and the other is irregular, give a direct argument 
(different from that in the text) to show that some single line cuts both 
in half. 

6. In Theorem 11.1, replace the knife which makes straight cuts by a blade 
in the shape of a semicircle having a radius equal to the diameter of the 
circle enclosing the two regions, and, in the analog of proposition (1), 
consider those cuts for which the center of the semicircle is on the ray 
from z through x. Where does the argument fail for this type of cut? 
For what type of curved blade would the wgumenf hold? 

12. Zeros of polynomials 

Our next theorem is an application of the main theorem to algebra. 

THEOREM 12.1. A eolynomial of odd degree with real coeficients has 
at least one real zero. 

To appreciate the implications of this theorem, let us examine some 
specific examples of polynomials of even degree and polynomials of odd 
degree. First, if the polynomial has degree 1, fx = ax + b, a # 0, 
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then the graph of y = ax + b is a line that crosses the x-axis a t  
x = -b/u, so the polynomial has a zero for this value of x. Next, 
consider the parabola y = x2 + 1 as an example of a polynomial of 
degree 2 (see Fig. 12.1). The curve lies entirely in the upper half of the 
coordinate plane. The minimum value of xz + 1 is 1 because for any 
real number x ,  x2 2 0; hence the polynomial has no real zero. Similarly, 
~ + 1 has no real zero; neither has x4 - 2 s  + 5 since 

x4 - 2x2 + 5 = ( x 2 -  1)'+ 4 
never has a value less than 4 (see Fig. 12.2). On the other hand the poly- 
nomial x2 - 4x + 3 of even degree has the zeros x = 1 and x = 3 
(see Fig. 12.3). 

y = X' ' 2 X 2 +  5 

Figure 12.3 
--f;ft+f: 

Figure 12.2 

The graph of y = 9 - x + 5 is the curve shown in Fig. 12.4: it 
crosses the x-axis somewhere between -2  and -1. The polynomial 
9 - 2 9  + x + 4 has degree 5; its graph, sketched in Fig. 12.5, crosses 
the x-axis somewhere between - 1.7 and - 1.6. 

Figure 12.4 Figure 12.5 

In each of our examples, the graph of an odd degree polynomial rises 
from - m, crosses the x-axis, and eventually goes on to +a. Even 
degree polynomials have graphs that come down from + 00 and go back 
to + 00 with a few possible wiggles between, and our examples show that 
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some of these never cross the x-axis. The gist of Theorem 12.1 is that this 
is not the case with polynomials of odd degree; every odd degree poly- 
nomial with real coefficients has a t  least one real zero. 

To prove Theorem 12.1, it suffices to consider polynomials of the form 

f(x) = x" + a1xn-' + *.* + a,lx + a,, , 
for, if the coefficient of the term of highest degree is not 1, we can mul- 
tiply the polynomial by the reciprocal of this coefficient without changing 
its zeros. For x # 0, we may write f(x) in the form 

or f ( x )  = x"q(x) ,  where 
01 an-' an 
X p - 1  xn 

q ( x )  = 1 + - +  a ' *  +-+-. 
Our method of proof will consist in showing that the polynomial f, of 
odd degree, is negative for some x,  positive for some other x, and con- 
tinuous. The main theorem will then yield the desired result. 

Now if x is a number such that the absolute value of each of the terms 

is less than l/n, then the sum 

of these n terms is less in absolute value than n/n = 1; this means 
that h ( x )  is between -1 and +1, and since q ( x )  = 1 + h(x), q ( x )  
is positive. To find an x for which this holds, examine each of the 
numbers 

and choose a number b greater than all of them. To see that q ( x )  is 
positive for an x such that I x I 2 b, we observe that the inequalities, 

n l a l l ,  ( ~ I u ~ I ) * / ~ ,  0 . .  7 (n I an  I>'/" , 

1x1 > n l a l l ,  1x1 > (nlu2t)lP2, . - *  7 I x l  > (n I anI)'/" 
imply 

For values of x such that I x I 2 b the sign of the polynomial is the 
sign of x" because f ( x )  = x n q ( x )  and q ( x )  is positive. Since n is 
odd, xn has the sign of x. Thus the polynomial is positive for x = b 
and negative for x = -b .  
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To apply the main theorem and infer the existence of a zero between 
-b  and b, i t  is necessary to show that a polynomial is a continuous 
function. In Section 3 we showed that any constant function (e.g., a 
polynomial of degree 0) and any identity function (e.g., the polynomial 
x of degree 1) are continuous. In Exercise 2 below, it is required to prove 
that a product of continuous functions is continuous. From this it follows 
that x2 = x - x  is continuous, XS = x 2 * x  is continuous and, by an 
induction, $ is continuous for every k. Since 3 and a constant a 
are continuous, the same result tells us that any monomial uxk is con- 
tinuous. Now every polynomial is the sum of its monomial terms, and 
any sum of continuous functions is continuous (see Exercise 8, Section 3 
and answer) ; therefore every polynomial is continuous. 

Exercises 

1. Show that the polynomial 9 is a continuous function. 

2. Show that the product of two continuous functions f and g: [a, b ] +  R 
is a continuous function. Hint: 

I (I.) (gx) - (I%’) (gx’) I = I (fx) (gx - 67%’) + ( f. - fx’) (gx’) I 
5 l fx l  I @ -  @’I+ Ifx-fx’l lgx ’ l .  

3. For a polynomial of degree n, what is the determining factor as to whether 
the polynomial is positive or negative when x is zero? 

4. Use the criterion I x 1 > (n I ak to find a number b such that the 
polynomial f ( x )  = 2 - 2x2 - 3n is positive for x > b and negative 
for x < - b .  Factor the polynomial into linear factors to find the 
smallest number a such that f(x) > 0 for x > a, and the largest 
number c such that f ( x )  < 0 for x < c. 

5. Use the criterion I x I > (n I ak I)l’k to find a number b such that the 
polynomial x5 - 3x4 + 12.52 + 2002 - x + 2 is positive for x > b 
and negative for x < - b .  (Notice that the cubic in Exercise 4 was easy 
to factor into linear factors, but this is not so for the quintic of this 
problem.) 
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Existence Theorems in Dimension 2 

13. Mappings of a plane into itself 

As stated in the introduction, our purpose in Part I1 is to prove an 
existence theorem for solutions of pairs of simultaneous equations. This 
theorem is stated in Section 18, and its proof is completed in Section 26. 
Sections 27 through 36 apply the theorem to questions about fixed points 
of mappings, singularities of vector fields, and zeros of polynomials. To 
formulate the main theorem, we must develop two-dimensional analogs 
of the one-dimensional concepts of Part I. The crucial concept needed is 
that of the winding number of a closed curve in a plane about some point 
of the plane not on the curve. We shall give first an intuitive definition 
of this notion together with an intuitive proof of the main theorem 
(Sections 17, 18). In Sections 19-26, the definition is made precise and 
the proof rigorous. 

Recall that the main theorem of Part I deals with a mapping 
j :  [a, b ]  + R of a segment into a line, and gives conditions on a point 
y E R under which i t  could be asserted that y is in the image j [u ,  b]  
(e.g. fa 5 y 5 fb ). The main theorem of Part I1 will deal with a 
mapping f: D -+ P of a portion D of a plane P ( =  RS) into P ,  and 
will give conditions on a point y E P under which i t  can be asserted 
that y is in the image fD.t 

t I n  the introduction this theorem was described as dealing with a pair 
of simultaneous equations f ( x ,  y )  = a and g(x, y )  = b ;  this form is 
converted to the present form by making the notational substitutions (a, x2) 
for (x, y) ,  ( y ~ ,  yz) for (a ,  b ) ,  f for (f, g), and by interpreting the pairs 
of numbers ( X I ,  x2), ( y l ,  372) as coordinates of points x ,  y in P. 

75 
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Recall also that we found the concept of the graph of f: [u, b ]  + R 
very useful in explaining the meaning of the main theorem and in making 
its truth geometrically evident. In the two-dimensional case, we may also 
speak of the graph of a mapping f: D + P. To see what i t  involves, 
note that a point of the plane P = Ra is represented by two real 
numbers (XI, s). Its image under j requires two more, (yl, yz). Then 
the pair consisting of the point and its image is represented by four 
numbers, and a point of the graph is a point of four-dimensional space. 
Thus the graph of j is a curved surface in R4. 

Here then is our first difficulty. To explain our theorems by graphs 
would require the ability (which none of us has) to visualize a surface 
in four dimensions. We must therefore adopt a different method of 
visualizing mappings: the method of picturing images and inverse images 
as described briefly in Section 2 of Part I. In the remainder of this section, 
we shall discuss more tomplicated mappings by the same method. Our 
purpose is to sharpen the geometric intuition, and to indicate the degree 
of generality of subsequent theorems. 

I 
I I I 

I I 

Figure 13.1 

In Part I, Section 2, we discussed translations, rotations, reflections 
and similarities as mappings of the plane into itself. A more complicated 
mapping is one which expands lengths in one direction and contracts 
them in another. Fig. 13.1 illustrates a mapping j which doubles lengths 
in the horizontal direction and halves lengths in the vertical direction. 
Clearly it alters angles and shapes. It maps a circle into an ellipse. 
Surprisingly it maps any straight line into a straight line. 

I ,  

_ _ - I _ _  )- 

_ -  - * - - , -  - 

' I  _ - -  r - r  , I - - ' - - -  
I' ,' ,' ,' ,' I ,  I I I I I  

Figure 13.2 

Fig. 13.2 illustrates a shearing transformation P + P. Picture a 
trellis with many horizontal and vertical slats with a nail inserted a t  
each junction of a horizontal and a vertical slat. Such a structure is not 
rigid and can slew over, exercising a scissoring action on unwary fingers. 
A shear also maps circles into ellipses and straight lines into straight lines. 
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The mappings considered so far are 1 to 1 mappings. We want to con- 
sider also mappings which are not 1 to 1. Fig. 13.3 illustrates a simple 
fold of P about a line. This mapping is 1 to 1 along the line of the fold, 
but every point above the line of the fold is the image of two distinct 
points of the plane. 

- L  ,- P - f *IL 0 "' 

Figure 13.4 

Fig. 13.4 illustrates a doubling of a plane on itself. A center point z is 
mapped into itself. Each point of a ray L is also fixed. Each ray issuing 
from z is mapped rigidly onto a ray issuing from z but forming an 
angle with L which is twice the original angle. Think of a ray rotating 
about a a t  a constant angular velocity; its image is a ray rotating about 
z a t  twice the velocity. As the first ray completes a half-rotation, its 
image completes a full rotation. This mapping is 2 to 1 except a t  'z. Each 
circle with center z is wrapped twice around itself. A similar mapping is 
obtained for each integer n by multiplying the angular velocity by n. 
It is n to 1 except a t  z. 

f - 

Figure 13.5 

An even more complicated mapping is one which winds P over P 
an infinity of times. This is illustrated in Fig. 13.5. The horizontal line 
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L is mapped into the single point z, and each vertical line is mapped 
rigidly on a line through z. As the vertical line moves horizontally at a 
constant velocity its image spins about z at a constant angular velocity. 
The figure shows only a half of one rotation. This mapping is QO to 1. 
The inverse image of z is an entire ray. The inverse image of any other 
point consists of two rows of isolated points, one above and one below 
L, successive points of a row being at a fixed distance apart. 

- flsj!LT 
Figure 13.6 

Mappings that can be described precisely and quickly are usually too 
simple to illustrate the complexities to be found in general. Fig. 13.6 
illustrates a more complicated mapping which we shall not describe in 
detail. It carries a family of concentric circles into a family of figure 
eights. In  this case the image of P is just a part of P bounded by two 
rays. Intuitively, this may be thought of as a stringing out of the con- 
centric circles along a line with each circle given a half-twist. 

Exercises 

1. Construct a mapping f: P+ P by, first, rolling up the plane P onto a 
cylinder Q so that the lines parallel to the z-axis are parallel to the axis 
of Q, and then composing this mapping with a perpendicular projection 
of Q onto P, assuming that the axis of Q is parallel to the z-axis. 
Describe the image under f of 
(a) the plane P, (b) a horizontal line y = constant, 
(c) avertical line x = constant, (d) a sloping line. 
(e) Describe the inverse image of a point. 

2. Let P be a plane through the center of a sphere S. Construct f: P+ P 
as the composition of, first, the stereographic projection P + S from 
the pole p ,  and then the perpendicular projection of S back into P. 
Describe (a) the image of P, (b) the image of a line L in P, (c) the 
inverse image of a point of fP. 
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3. If f is the mapping of Fig. 13.5 above, describe the image of 
(a) R vertical line, 
(b) a horizontal line at a distance r from the line L, 
(c) a sloping line. 
(d) Sketch the inverse image of the configuration of Fig. 13.7, showing 

the first one and one-half revolutions. 

Figure 13.7 

14. The disk 

Intervals played an important role in both the statements and proofs 
of our one-dimensional theorems. The analogous role for the two-dimen- 
sional theorems will be played by circular disks. A disk D in the plane 
P consists of a circle C and all points of P inside C. The circle C is 
called the boundary of D. A disk D is specified by its center point e 
and its radius r. A point is in the disk if its distance from z is less than 
or equal to the radius; that is, x E D means that d(x ,  e) 5 r. 

We have seen that any two intervals are similar and therefore topo- 
logically equivalent; the same is true of any two disks D and D'. If 
D and D' do not have the same center we may translate D' to a disk 
D" having the same center z as D. Then a suitable expansion or con- 
traction about z will maD D" onto D. 

Figure 14.1 

In one dimension, any subset of a line topologically equivalent to an 
interval is itself an interval because it must be compact and connected. 
In the plane, however, there are many quite dissimilar subsets which are 
topologically equivalent to a disk. For example, under a shearing trans- 
formation, a disk can be mapped into an ellipse and its interior. Fig. 
14.1 illustrates a topological mapping of a disk into a simple closed figure 
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and its interior. The center z is mapped into a’ and each radial segment 
zy of D is mapped onto the parallel segment z’y’ by a similarity (an 
expansion or a contraction). The same device works also for any convex 
polygon, for example, a triangle or a rectangle. 

In the theorems of Part 11, the word disk can be interpreted as meaning 
any one of these configurations topologically equivalent to a disk. The 
disk is preferred to the others because of its symmetry and ease of 
description. 

A disk D is certainly a bounded set since it lies inside any circle 
about its center having a larger radius. It is also a closed set, since each 
point of its complement has a neighborhood not meeting D; for, if y 
is not in D, then d(y ,  z) exceeds the radius I of D, and then the 
circular neighborhood of y of radius I’ = d(y ,  a )  - I contains no 
point of D. Since D is closed and bounded, i t  follows that D is a 
compact set. Hence, under any mapping f: D * P, the image fD is 
compact, and therefore closed and bounded. 

For any two points of D, the line segment joining them also lies in 
D. Therefore D is a connected set. It follows that fD is connected 
for any mapping f: D + P. 

Exercises 

1. If a disk is cut in half by a diameter, show that half of the disk, including 
the diameter, is homeomorphic to a disk. Conclude that any space homeo- 
morphic to a disk is homeomorphic to this half-disk. 

2. If D is a disk and C is its bounding circle, show that any homeomorphism 
g: C 4 C can be extended to a homeomorphism f: D + D. 

3. If A and B are two subsets of P, both homeomorphic to a disk, and if 
A f l  B is an arc of the boundary curve of each, show that A U B is homeo- 
morphic to a disk. 

4. Which of the configurations in Fig. 14.2 are homeomorphic to a disk? 

a b C 

F i i  14.2 

d 
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5. (a) If the last configuration of Fig. 14.2 is cut by removing a thin strip 
at  A ,  as shown in Fig. 14.3, is the resulting set homeomorphic to a disk? 
(b) Which combinations of cuts at  A ,  B and C will produce a homeo- 
morph of a disk? (c) If a configuration has three holes, how many cuts are 
required to produce a homeomorph of a disk? 

Figure 14.3 

15. Initial attempts to formulate the main theorem 

Our main existence theorem in two dimensions is analogous to the 
main theorem in one dimension. It states that, if f: D + P is a mapping 
of a disk into the plane, then an equation j x  = y has a solution x E D 
for each point y of P which satisfies a certain condition. The formula- 
tion of this condition will be a bit complicated. We shall approach i t  in 
stages by showing that several simple but plausible conditions are not 
adequate. 

In the one-dimensional theorem, where D is a closed interval [a, b ] ,  
the condition on y is that it lie between fa and fb. Now a and b are 
the extremes of the interval, and separate i t  from the rest of the line. In 
the case of a disk, the extreme points of D are the points of the bounding 
circle C, and C separates D from the rest of the plane. Thus the con- 
dition to be formulated might state that y is related in some way to 
fC. Clearly to say “ y  is between fC” is nonsense. If we restate the 
one-dimensional condition by requiring that y be enclosed by fa and 
fb, i t  conveys the same idea, and the two-dimensional analogy “ y  is 
enclosed by fC” has intuitive meaning. Let us try to formulate this 
expression precisely. As a first attempt, consider “y is a point of the 
disk whose boundary is fC”. This is not adequate since, for many 
mappings f, j C  is not a circle. It could easily be an ellipse or a rectangle. 
As a second attempt, consider “ y  is a point of the region whose boundary 
is fC”. This is better but i t  does not allow for an fC which is a figure 8. 
As a third attempt, we try “y is a point of some bounded region whose 
boundary is contained in jC” .  This seems to be what is wanted until 
we examine the example of an f: D + P in Fig. 15.1. This mapping is 
best described in stages pictured from left to right. First, stretch D into 
a long thin strip E .  Next, bend E around into a curved shape F 
which resembles a thickened three quarters of a circle. Continue this 
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bending until the two tips are made to overlap in the final configuration 
fD. The point labeled y is not in fD, yet it belongs to a bounded region 
whose boundary lies in fC. 

Figure 15.1 

This last example exhibits clearly the difficulty we must surmount. 
What relationship does the point labeled y’ of fD bear to fC that the 
point y does not bear to fC ? The answer will be given in terms of a 
new concept we shall develop: the winding number of a curve about a point. 
We shall see that the winding number of f I C about y’ is not zero, and 
its winding number about y is zero. This is why fx = y‘ has a soh- 
tion x € D, but fx = y does not. 

Exercise 

1. Show by an example that the following condition on a point y does not 
insure that y E fD: if z is thecenterof D, then y and fs liein acon- 
nected subset of P - f C. 

16. Curves and closed curves 

Heretofore the word “curve” has referred to the graph of a continuous 
function f: [a, b ]  +. R. We need now to use the word in the following 
broader sense. A curve in the plane is defined to be a mapping 
cp: [a, b ]  + P of some interval of real numbers into the plane. Each 
number t E [a, b ]  can be thought of as an instant of time, and the cor- 
responding point cpt E P as the location of a moving point a t  the time 
t .  Thus a curve may be regarded as the path of a moving point. In  par- 
ticular any curve has an orientation in the sense that the preferred or posi- 
tive direction along the curve goes from cpa to cpb. This is the direction 
of motion (of increasing t ) .  In pictures of the curves the orientation is 
indicated by arrowheads as in Fig. 16.1. Notice that we allow a curve to 
cross itself; that is, the moving point can pass through the same point 
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at several different times. Moreover, the moving point may remain at 
rest for an interval of time. For example, the constant function which 
maps the entire interval [a, b]  into a single point is a curve in our sense. 
A closed curve is a curve which begins and ends a t  the same point: qa = cpb. 

The line segment L from a point A to a point B in P may be 
represented as a curve. Recall that any two segments are similar. So if 
cp: [a, b]  + L is the similarity with cpa = A and cpb = B, then Q 

defines a curve whose image is L. In  this example the moving point 
has a constant velocity. 

The graph of a continuous function f: [a, b]  + R is a curve. We need 
only set cpt equal to the point whose coordinates are (t, j t )  for each 
t E [a, b] .  A curve of this type does not cross itself, nor is it closed, 
because tl # t2  implies that cpt~ and cpt2 have different abscissas. 

Figure 16.1 Figure 16.2 

Any circle C is regarded as a closed curve in the following standard 
way. Let z denote the center of C, and let LO be a fixed ray (half-line 
including the initial point) issuing from z. Define cpt for t E [0, 13 as 
follows: & is the point of intersection of Lo with C, and pt  is the 
point of C such that the angle at z between LO and the segment z 
to cpt is 360t degrees. For example, p ( f )  is the point a t  the 90" mark 
(f the way around). (See Fig. 16.2.) Since there are 360" in a complete 
circle, we have cpl = &. In this case also, the moving point has a 
constant speed. 

The boundary of a rectangle may likewise be regarded as a closed curve. 
Take an interval [a, e l  and divide i t  into four subintervals by numbers 
b, c, d so that a < b < c < d < e.  Let the four vertices of the 
rectangle be A ,  B ,  C, D in that order. As in the example above we can 
deiine cp so that i t  maps the intervals [a, b] ,  [b, c ] ,  [G,  d ]  and [d ,  e l  
onto the segments AB,  BC, CD and DA,  respectively. Since cpa = A 
and cpe = A ,  thecurveisclosed. 

Our pictorial illustrations foster the tendency, sometimes misleading, 
to regard a curve cp as being no more than the image cp[a, b] .  So it 
must be emphasized that the curve is the mapping (c. For example, there 
is an infinity of distinct standard representations of the circle C as a 
closed curve, one for each choice of Lo. 
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Exercises 

1. As a wheel of radius r with a flange rolls along a single rail without 
slipping, the center of the wheel traverses a straight line parallel to the 
track. Sketch the paths followed by 
(a) a point on the circumference; 
(b) a point at  distance r /2  from the center; 
(c) a point at  distance 5r/4 from the center. 

2. If f: [a, b]+ P and g: P+ P, are continuous, show that gf is a curve. 

3. If f: [O, 11 + [a, b ]  is the similarity such that f0 = a and f l  = b ,  
find the formula for j t  when t E [0, 13. Give a formula for another such 
map which is not a similarity. 

17. Intuitive definition of winding number 

Let cp: [a, b]  + P be a closed curve, let y be a point of the plane not 
on the curve, and, for each t in the interval, let Lt denote the ray 
starting at y and passing through cpt. As t varies from a to b, the 
point cpt traverses the curve, and the ray Lt rotates about its fixed 
endpoint at y. Since the curve is closed, Lf eventually returns to its 
initial position Lb = L,,. Therefore, during its motion, the ray made a 
whole number of complete rotations about y. This number is called 
the winding Izumber of the closed curve cp about the point y, and we 
shall use the abbreviation W(cp, y)  for this number. By convention, 
counterclockwise rotations are given a positive sign and clockwise 
rotations a negative sign. 

Figure 17.1 Figure 17.2 

In  Fig. 17.1, the circle, regarded as the closed curve described in Sec- 
tion 16, winds once about its center point. It also winds once about any 
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point inside the circle. For any point outside the circle, the winding 
number is zero. As cpl traces the circle, the ray Lt ,  pivoting on a point 
y outside the circle, sweeps over the portion of the plane bounded by 
the rays from y tangent to the circle. The sweeping goes first in one 
direction; then, after having reached one boundary (one of the tangent 
rays), reverses its direction, ultimately returning to its initial position 
without completing one rotation (see Fig. 17.2). 

In Fig. 17.3, the closed curve is an ellipse traced once in the clockwise 
direction. For any point inside, the winding number is -1, and for 
any point outside, it is zero. 

Figure 17.3 Figure 17.4 Figure 17.5 

Fig. 17.4 is a closed curve in the shape of a figure 8 curve. The points 
in one bounded region all have winding number 1, and those in the other, 
- 1. Of course all points in the unbounded region have winding number 0. 

Fig. 17.5 shows the example discussed in Section 15. In this example, 
there is a bounded region about whose points the curve has winding 
number zero. For the other two bounded regions, the winding numbers 
are 1 and 2. Notice that, for two points in the same connected region, 
the winding numbers are always the same. 

Fig. 17.6 shows the constant closed curve (all a t  a single point). It 
winds about each other point zero times. 

0 

Figure 17.6 Figure 17.7 

The diagram on the front cover of this book shows a closed curve and 
the winding numbers it has about points in each of its complementary 
regions. 

Fig. 17.7 indicates that the possibilities are endless. 
Now let C be a circle and let f: C + P be a mapping of C into the 

plane. Let (a: [0, 11 + C be the standard representation of C as a 
closed curve described in Section 16. Then the composition f(a: [0, 11 + P 
is again a closed curve because (Po = (a1 implies that f@ = fv1. It 
has a winding number about any point y of P not on fC. This is 
called the winding number of f about y and is denoted by W ( f ,  y).  
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Exercises 

1. In Fig. 17.2, let y be at  the distance r d  from the center of the circle 
C of radius r. As we trace the outer arc of C from one point of tangency 
to the other, through what angle does the ray Lt turn? Through what 
angle does it turn as we continue around the circle along the inner arc? 

2. The complement in P of the closed curve in Fig. 17.8 consists of seven 
connected regions labeled A ,  B ,  C, D, E,  F, G. For each region, state the 
winding number of the closed curve about a point of that region. 

3. Do the same as in the preceding problem for the closed curve of Fig. 17.9. 

Figure 17.8 Figure 17.9 

18. Statement of the main theorem 

By using the concept of winding number, we can formulate now the 
main theorem of Part 11. 

THEOREM 18.1. Let f: D * P be a mapping of a disk into the plane, 
let C be the boundary circle of D, and let y be a point of the plane not 
on fC. If the winding number of f I C about y is not zero, then y E fD; 
i.e. there is a point x E D such that fx = y .  

What follows is a short intuitive proof. Let Y be the radius of C .  For 
each number s such that 0 I s I I ,  let C, be the circle of radius s 
concentric with C ;  thus C, = C, and CO is the center point z. Let 
yl be a point of the plane not in fD. Then for every s in [0, r ] ,  y’ is 
not on fC, because C, is in D, and so the winding number W ( f I C,, y l )  
is defined for every s in [0, r ] .  Abbreviate i t  by W ( s ) .  Consider now 
the family of closed curves f 1 C. as s decreases from r to 0. Its mem- 
bers begin with f I C and eventually shriuk down to the constant curve 
f I Co, i.e. to the point f z .  Since f I C, varies gradually as s decreases 
steadily, it  follows that W (s) is a continuous function of s E [O ,  Y ] .  
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How does the winding number W (s) vary? The answer is: not at all, 
because W is a continuous function of s and each value W ( s )  must 
be an integer; i t  cannot jump from one integer value to another without 
taking on non-integral values between (see the main theorem of Part I ) .  
Thus W (s) has the same value for all s; in particular, W ( Y )  = W(0) .  
But W ( 0 )  = 0 because f I Co = fz is the constant closed curve. 
Therefore f I C, has winding number zero about y' for every point yf 
not in fD. It follows that W (f 1 C,, y )  # 0 implies that y is in fD; 
and to say that y is in fD is to say that there is an x E D such that 

One can see how the argument works in the illustration of Fig. 18.1 by 
following the successive closed curves f I C, as s decreases; as soon as 
the two lobes separate (e.g., the third closed curve drawn), y is clearly 
in the exterior of this closed curve, and therefore the winding number is 
zero. Notice that this agrees with the result obtained for Fig. 17.5. 

fx = y. 

Figure 18.1 

Exercises 

1. If the closed curve in Exercise 2 of Section 17 is the f l  C of a map 
must lie in fD? f: D+ P, which of the complementary regions A ,  B ,  

2. Answer the analogous question for the closed curve of Exercise 3, Section 
17. 

3. Let f: P+ P be a mapping of the plane into itself that is a simple fold 
along a diameter of a disk. 
(a) What is the image of the boundary circle C? of the disk? 
(b) What is the winding number W ( j l  C, y) of points y in the image 
of the disk? 
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19. When is an argument not a proof? 

Most people, when they have seen and understood the arguments of 
the preceding two sections, are convinced that they have seen the truth 
and that little more need be added to achieve a complete and logical 
proof. However, a thoughtful reader should spot the gaps in the reason- 
ing. The main gap occurs in Section 17 ; no precise definition of the winding 
number was given. It was left to the intuition to decide how many com- 
plete rotations the ray Lt makes about its endpoint y as t varies from 
a to b ;  it was assumed that our eyes could follow the rotating ray and 
integrate its motion into a single number of rotations. As is well known, 
eyesight is not entirely reliable in this respect; for example, we can be 
misled into thinking we are seeing continuous motion by a sufliciently 
rapid sequence of still pictures. 

Fortunately mathematical concepts and deductions are independent 
of our ability to visualize motion. The situation we must treat is a static 
one. We have a closed curve cp, a point v not on the curve, and we wish 
to attach to y and cp an integer called the winding number which agrees 
with our intuitive notion. This will be done in the next seven sections. A 
reader, who prefers new ideas and applications to the careful development 
of an idea already outlined, should skip to Section 27. 

Before we submerge ourselves in the details of the definition of W(cp, y), 
let us note that, to complete the statement and proof of the main theorem, 
we need only 

(1) define W(p, y )  precisely, 
(2) show that it is continuous under the type of variation of cp used 

(3) show that W(p, y)  = 0 whenever cp is a constant closed curve. 
If we were to define W(cp, y) to be 0 for all cp and y, this would 

satisfy the requirements (l), (2) and (3), and so the proof of the main 
theorem would be valid for this W ,  but the conclusion of the theorem 
would say nothing because there would be no points y such that 
W ( f  I C, y )  # 0. Thus, to make our efforts worthwhile, we require 
also that 

(4) W(cp, y )  should be non-zero for certain curves cp and points y; 
in particular, it should agree with the winding numbers defined 
intuitively in Section 17. 

in the intuitive proof presented in Section 18, and 

20. The angle swept out by a curve 

In  order to formulate a good definition of winding number, we first 
consider the more general concept of “angle swept out by a curve 
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up: [a, b ]  + P with respect to a point y”. We shall define the measure 
A ( @ ,  y) of this angle in two stages: first for a special class of curves, 
then for any curve. (Unless otherwise stated, angles will be measured in 
degrees, and the degree symbol O will be omitted.) We shall then see 
that the measure of an angle swept out by a closed curve is a multiple of 
360, and this multiple will be defined to be the winding number W (cp, y): 

The special class of curves for which A (cp, y) can be defined readily 
and unambiguously consists of the so-called short curves relative to the 
point y not on the curve; cp is called short relative to y if there is a ray 
L issuing from y which does not meet the curve. For example, a con- 
stant curve cpt = z # y for all t E [a, b]  is short relative to y. Fig. 
20.1 shows a less trivial example of a short curve. As t varies from a to 
b, cppt varies from pa to cpb along the curve, and the ray issuing from 
y to the point cpt on the curve rotates from L, to b. Let SLaLb 
denote this angle of rotation; since cp is short, this angle does not include 
the ray L (from y and not meeting cp) .  We define A (cp, y) to be the 
measure, in degrees, of QLLb; a counterclockwise angle is given a 
positive sign, and a clockwise angle a negative sign. 

Lb 

Figure 20.1 

Suppose we have a protractor in the form of a complete circle C 
divided into 360 equal arcs, the points of division being numbered from 
a zero-point in counterclockwise order from 0 to 359. We place C so 
that its center is at y and it is zeroed along the ray L (i.e. the zero- 
point on C is at the intersection of C with L ) .  Let pa, p b  denote the 
intersections of C with the rays L, Lb, respectively, and let xa, xb 
denote their respective protractor readings; then the degrees in the angle 
LLb can be computed by 

A (P, y )  = x b  - X, 
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Observe that the difference za - x, is independent of the position of 
the initial ray of the protractor provided that this ray is not contained 
in the angle A we are measuring (see Fig. 20.2) ; for, suppose we rotate 
our protractor by an angle a so that it is now zeroed at a ray L‘. The 
new protractor readings are 

x h = x , - a  and X ’ b = % - C X ,  

so that 

provided L, L’ do not cut the arc j@t, of C carrying the radial pro- 
jection of the curve. It is easy to see that, under these conditions, the 
protractor readings are always numbers between 0 and 360, and that the 
difference xa - x, is always between -360 and 360. In Fig. 20.1, it is 
positive and about 230. (If the orientation of the curve were reversed, 
i.e., if pu and qb were interchanged, then A(cp, y )  would be about 

x f b - x ;  = a-x ,  = A (cp, Y) 

- 230.) 

Figure 20.2 Figure 20.3 

The formula 
A(cp,y) = X a - %  

thus gives the measure of the angle swept out by a short curve cp with 
respect to a point y uniquely. Moreover, the definition of “short” curve 
guarantees that there is a ray L from y not meeting cp along which 
we may zero our protractor to compute A (cp, y);  if there are many such 
rays, it does not matter which one we select as initial ray of our protractor. 

Notice how our definition provides for the cancellation of positive and 
negative motions. For example, in Fig. 20.1, the line Lt at  the start 
rotates through an angle of -30’ and immediately cancels this by ro- 
tating back to its initial position. Similarly, as the point traverses the 
loop at the top of the curve, the rotation of Lt adds up to zero. 

In case cp is a constant curve mapping [a, b] into a single point, 
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then cp is a short curve and A (cp, y) = 0 because L,, = & and so 
x, = xa. 

The function A (cp, y) has a most important property called additivity 
in cp. Let a < b < c be real numbers, and let cp: [a, c] --* P be a 
short curve relative to y. Let a, cps be the two parts of cp obtained 
by restricting cp to [a, b]  and to [b, c] respectively. We can think of 
cp as the union of cp1 and cps. Clearly cpl, cps are also short relative to 
y. Choosing a ray L issuing from y and missing cp, we obtain pro- 
tractor readings %, xa, x, for L,,, &, L,, respectively. Since 

we see that 
xc - % = (xb - xo) + (xc - xa), 

A (cpl, Y) + A (cps, Y) . A (cp, Y) = 

Exercises 

1. I n  Fig. 20.3, for which of the points u, u, w, 2, y, z is the curve C short? 
2. For each point for which C is short, what is the angle in degrees? 

21. Partitioning a curve into short curves 

If cp: [a, b]  + P is a curve, we can cut it up into pieces by dividing 
[a, b ]  into subintervals and restricting cp to each of these in turn. In 
this way cp can be decomposed into a union of shorter curves. In case 
cp is not short relative to a point y, it may happen that each of the pieces 
of such a decomposition is short relative to y. Then, by adding the 
measures of the angles subtended at  y by the various pieces, we can 
obtain a value for A (cp, y). 

To be precise, a decomposition of cp: [a, b]  + P into a union of curves 
is called a partition 6 of cp . It consists iirst of an increasing sequence 
of numbers starting with a and ending with b 

a = to < tl < * * -  < L1 < t,,, = b ,  
and secondly of the sequence of curves cpl, cps, 0 ,  oprn where pi denotes 
the restriction of cp to the interval [tcl, t i ]  (i = 1, 2, * a * ,  m). The 
partition is called sufiienUy$fine for a point y not on cp if each of the 
pieces cpi is short relative to y. In that case, each of the A(cpi, y)  is 
defined and their sum is denoted by A (6, y): 

m 

A (6, r) = c A h ,  Y) 
i-1 

(21.1) 
= A(Pl ,Y) + A(cps,Y) + * * *  + A(*,y). 
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We shall prove two propositions: 

sac ien t ly  fine for y. 

then A (6, y) = A (6’, y ) .  

as follows: 

1. If p is any curve and y a point not on p, then there is a partition 

2. If 6 and 6’ are any two partitions of cp sufficiently fine for y, 

Once these facts are proved we can define A (p, y )  for any curve p 

DEFINITION. If p is a curve in the plane and ’y a point not on p, 
the common value of A (@, y) for all sufficiently fine partitions 6 of 
p is the measure of th angle at y swept out by p. It is denoted by 
A (p, y )  and may be computed from the formula (21.1), each term of 
the sum on the right being computed by the method of Section 20. 

The first proposition tells us that we can find a partition for which 
A (6, y) is defined. The second tells us that the number A ( @ ,  y)  so 
obtained doesn’t depend on which partition we may have chosen, and 
so it depends only on p and y. 

Figure 21.1 

PROOF OF 1. A t  any point p = cpt of the curve, the circle with 
center p and radius d ( p ,  y )  passes through Y (see Fig. 21.1). Any 
piece of the curve lying inside this circle is short relative to y because 
it does not meet the ray issuing from y which is the continuation of the 
segment p y  leading out of the circle. Let us apply the continuity of cp 
at t taking t t  = d ( p ,  y). It provides us with a number > 0 such 
that cpLr E X ( p ,  e l )  for every t’ E S ( t ,  6,). I t  follows now that, for 
every interval I’ C S ( t ,  S t ) ,  the curve cp I I’ is short relative to y. 

Since [u, b]  is compact and the neighborhoods {.l’(t, a t ) )  cover 
[a, b ] ,  there is a finite number of these neighborhoods, say N1, AT*, - *, 
N k ,  covering [a, b ] .  Let S be the set of all endpoints of the open 
intervals XI, N2, ---,  X k .  Let 6 be half the shortest of the distances 
d(s,  t )  for s, t E S and s # !. Let (P be any partition of [a, b]  by 
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intervals of lengths a t  most 6. We claim that 6 is sufficiently fine for 
y. To prove this, it suffices to show that every subinterval I‘ of 6 is 
contained in some one of the N1, N2, * * * ,  N k .  Since the length of I’ is 
a t  most 6, I’ contains either no point of S or one point of S,  say c. 
In the first case, choose any Ni which meets I‘ (I’ is covered by 
NI, -*., A7k); then I’ C N i  because the interval I’ contains neither 
endpoint of the open interval .I:<. In the second case, choose any N ,  
containing c; then again I’ C AT, because I’ contains neither end- 
point of A‘,. This completes the proof of 1. 

PROOF OF 2. If 6 is a sufficiently fine partition of Q, and 6’ is a 
partition obtained from 6 by introducing a new point into a subinterval, 
say I k ,  dividing i t  into two subintervals 1’, I”, then the additivity 
proved in Section 20 tells us that 

A (‘P 1 I’i Y> + A (‘P I I”, y )  = A (CP 1 I k i  Y> 

Adding to both sides the terms A (p I I j ,  y) for all j # k leads to the 
result A ( 6 , y )  = A ( 6 ’ , y ) .  

Let us call the points (to, tl, * * * ,  t) of a partition 6 the vertices of 
6. If 6,6’ are two partitions of cp such that the vertices of 6 are con- 
tained in those of @’, then 6’ is called a refinement of 6, and we 
express this by writing 6’ < 6. Each subinterval of 6‘ must be in- 
cluded in some subinterval of 6. So if 6 is sufficiently fine so are all 
refinements of 6. 

If 6’ < 6, we may take the vertices of 6’ which are not vertices 
of 6 and adjoin them one a t  a time. We obtain thus a sequence of re- 
finements 6 = > 62 > ... > 6, = 6’. Assume moreover 
that 6 is sufficiently fine. Then the result of the first paragraph of this 
proof gives 

Therefore 6’ < 6 and 6 sufficientlyfineimply A ( 6 , y )  = A ( 6 ’ , y ) .  
Now let 61, 62 be any two sufficiently fine partitions. The union of 

the vertices of 61 and of 62 is the set of vertices of a partition that we 
shall call 63. Clearly 63 < 61 and 6 3  < 62. The result of the pre- 
ceding paragraph gives A (61, y )  = A (63, y )  and A (62, y)  = A (68, y )  ; 
hence A (61, y )  = A (62, y),  and our proof is complete. 

Exercises 

1. For a point y in each of the regions A ,  B ,  D, and F of Fig. 17.8, find 
a partition which is sufficiently fine for y. 
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2. Let the curve in Fig. 21.2 be partitioned by the points a, b, c, d ,  e, f as 
Shown. 

Figure 21.2 

(a) Beginning at  u and following the arrows, what is the largest section 

(b) Is there another section that may be adjoined to the section from u 

(c) Find the least number of the points u, b, which provide a parti- 

of the curve that is short relative to y? 

to d for which the curve is short relative to y? 

tion sufficiently fine for y. 

22. The winding number W(9, Y) 

Once a sufliciently fine partition 6 = ((00, cp1, 0 ,  (pm) of (p relative 
to y has been found, the computation of A ((p, y) is a routine affair of 
computing each A(pi, y) with the protractor and adding the results 
with due regard for signs. In measuring A (pi, y), the zero of the scale 
is set on a ray Li which misses pa and the difference is taken of the 
two readings at the endpoints of ( p i .  Thus the protractor must be r e  
positioned for each short curve. We shall show now how all the readings 
can be taken with a single position of the protractor, and how the com- 
putation can be greatly shortened. 

As before, let C be the circle with center y and radius 1. For each 
i = 0, 1, *=* ,  m, let pi denote the point of intersection of C with 
the ray from y through the point pti of the curve (p. For each short 
curve (pi, let Li be a ray from y which does not intersect (pi. Two 
points on the circle, Bcl and p, ,  determine two arcs; of these two, let 
p c l p i  denote the arc not intersecting Li. Then, as shown in Section 20, 
A (pi, y) is the angular measure of this arc with due regard for sign. The 
arc is oriented from pcl to pi .  If this orientation is counterclockwise, 
the sign of A (pi, y) is positive, otherwise it is negative. 

Assume for convenience that our protractor has radius 1. Let 11s center 
it a t  y and rotate i t  until the zero is at a point q of C different from 
PO, PI ,  - * * ,  pm. Now keep the protractor ked, and let XO, XI, * * * ,  zn, 



denote the direct readings in degrees for the points PO, PI, - * * ,  pm, re- 
spectively. Each x, lies between 0 and 360. We can now state our 
simpliied formula for A (p, y). 

TEEOREM 22.1. Let r be ihe number of arcs p c l p ,  which contain q 
and have positive orientation, and let s be the number of arcs p ~ &  which 
contain q and have negative orientation. Then 

A (p, y )  = 2, - zo + (r - s)360. 

An illustration of the theorem is given in Fig. 22.1. If we draw the ray 
yq, we see that it meets the curve p three times. A t  each point of inter- 
section, the orientation of p, and hence of the arc pi-lp,, can be deter- 
mined. It is first negative, then negative again, and finally positive; so 
r = 1 and s = 2. The protractor readings, zeroed at q, are 65 for 
2, and 195 for XO. So A (p, y )  = 65 - 195 + (1 - 2)360 = -490. 

It is a consequence of the theorem that the number 

2, - zo + (r - s)360 
does not depend on the choice of the zero-point q even though x,,,, xo, 
I and s do depend on that choice. 

Figure 22.1 

To prove the theorem, recall that 
m 

A (P, Y) = c A h ,  Y) - 
i-1 

We shall express each A(p~i, y>, which is the angular measure of the 
arc p ~ ~ p i ,  in terms of the readings Xi-1, xi. 

Consider first an i such that the arc p c l p i  does not contain q as in 
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Fig. 22.2. By our definition of the measure of the angle swept out by a 
short curve, A ((0, y )  = xi - xc1. Note that this holds even when the 
arc has a negative orientation, for then xcl > X i ,  and so Xi - 2 6 1  is 
negative. 

Figure 22.2 Figure 22.3 

Consider next an i such that the arc p e l p i  is positively oriented and 
contains q as in Fig. 22.3. By adding the angles determined by the arcs 
pi-lq and qpi, we obtain 

A (Pi, y )  = 360 - xc1 + xi = xi - xc1 + 3 6 0 .  
Consider finally an i such that the arc p e l p i  is negatively oriented 

and contains q as in Fig. 22.4. By adding the angles determined by the 
arcs pG1q and qp,, weobtain 

A (Pi ,  y) = -xc1 - (360 - X i )  = xi - xc1 - 3 6 0 .  
The three cases above comprise all possibilities. If we add all the 

A (pi, y ) ,  i = 1, 2, * * * ,  m, each term will have an xi - x c l ,  I of the 
terms will have a +360, and s of the terms a -360. Therefore 

A(p,y) = (X, - %I) + ( k 1 -  xm-2) + * * *  

+ (x1 - q) + r360 - s360 
= X, - Q 4- (Y - ~ ) 3 6 0 ,  

and this completes 

F w e  22.4 
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COROLLARY. If cp is a closed curve, then A (cp, y )  = (r - s)360. 

The proof of the corollary lies merely in noting that x, = xo for a 
closed curve because cpa = cpb. 

We are finally in a position to give a precise definition of winding 
number: W(cp, y )  = A (cp, y)/360 = r - s. It follows that the winding 
number is an integer. 

Exercises 

1. If a closed curve is short relative to a point y, what is its winding number? 

2. The closed curve in Fig. 22.5 has been partitioned by highest and lowest 
points as indicated, and the protractor readings for the vertices are given 
in the following table, with the protractor zeroed along the indicated ray. 

qt, = a, b, c, 4 e, f, g, lJ 
x i  = 270, 90, 300, 20, 340, 45, 350, 60 

Figure 22.5 

(a) Find the angle at y swept out by the curve from a to d ;  from b 

(b) Find the winding number W(cp, y) and verify the result obtained in 

(c) Suggest a different direction for the ray yq that will reduce the com- 

(d) For a point in each of the regions A ,  B, - a ,  verify the results for 

to g. 

Exercise 2, Section 17. 

putation of W(p, y) to a minimum. 

the winding number obtained in Section 17. 
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23. Propertiesof A((e,y) and W((e,y) 

Having defined A (cp, y) and W (Q, y )  precisely, we must now show 

1. If cp is a constant curve, then A ( Q ,  y) = 0 and W(Q, y) = 0. 
Since ~ [ a ,  b]  is a point, Q is a short curve, and the trivial partition 

is sufficiently fine. But for short curves cpa = cpb implies x, = q,, so 
A (9, r) = 0; hence W(cp, y )  = A (Q, y)/360 = 0. 

2. A(cp, y) is additive in cp. Precisely, suppose a < b < t, and 
q [a, c] -+ P. = cp I [b, c]. Then 

cpl, P2, cp 
are closed curves, and W(Q, y )  = W(Q,, y )  + W(*, y ) .  

Let 6 1  and 6 2  be sufficiently fine partitions of cpl, (02 respectively. 
Then the union of the vertices of 61,62 gives a sufficiently fine partition 
6 of 9. Since the terms of the sum A (6, y )  are the same as those of 
the sum A (61, y )  + A (&, y)  i t  is evident that 

that they have the properties we claimed for them. 

Let cp1 = Q I [a, b ] ,  and 
A (cp, r) = A (PI, r) + A (P2, y ) .  In  case cpa = cpb = w, 

A (6, Y) = A (61, Y) + A (62, Y) 9 

and this proves the first relation. In case p, cpl, cp2 are closed curves, 
each term in this relation is an integer multiple of 360. Dividing by 360 
gives the additivity of the winding number in cp. 

Exercise 

1. Use the figure and protractor readings given in Exercise 2, Section 22. If 
cpto = a, cpti = d ,  and cph = g, find A ( a ,  y), A(*, y), and apply 
the appropriate result of this section to find A (p I [to, h], y) . 

24. Homotopies of curves 

In  the next section we shall show that the winding number of a curve 
about a point does not change if the curve or the point is varied in a con- 
tinuous fashion (see Section 18). Our purpose in this section is to describe 
precisely the kind of variation we shall allow. 

DEFINITION. Let cpo and (ol be two curves in a space Y which are 
defined on the same interval [a, b] .  Then a homotopy of cpo into (PI is a 
mapping @ of a rectangle Q into Y so that the lower edge of Q maps 
onto the curve cpo, and the upper edge onto cpl. Precisely, let Q be the 
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rectangle in the plane of two variables ( t ,  7 )  such that a 5 t I b 
and 0 5 I 1. Then a homotopy 9 of cpo into cpl is a mapping 
ip: Q+  Y such that 

@(t, 0) = qd and 9((t, 1) = cplt for all t E [a, b] .  
In  case cpo, cpl are closed curves, a homotopy of cpo into cpl as closed 
curves is a homotopy el as above, satisfying the additional condition 

@(a, 7 )  = 9 ( b ,  7 )  for all 7 E [0, 11 . 
t 

Figure 24.1 

To make this definition transparent, picture the rectangle Q as com- 
posed of horizontal line segments s,, one for each value 7 E [0, 13. The 
restriction of 9 to one of the segments s, determines a curve 
cp7: [a, b]  + Y defined by p,t = @(t, 7 ) .  We obtain thus a family of 
curves, one for each value of T between 0 and 1 (see Fig. 24.1). If we 
regard 7 as the time variable, we can think of the family of curves as 
the various positions of a single moving curve. Each vertical segment in 
Q maps into the path followed by a point of the moving curve. Because 
of this picture, a homotopy is of ten called a deformation. 

If the two curves cpo, cpl map [a, b ]  into the plane P or into R", 
then there is a special homotopy of cpo into pl called the linear homotopy. 
For each pair ( t ,  7) in Q, define @it ,  7 )  to be the point which divides 
the line segment from cpd to qlt in the ratio 7 :  1 - 7 (see Fig. 24.2). 
The ratio 0: 1 gives the initial end of the segment, and 1 :O  the terminal; 
hence @(t,  0) = cpot and @ ( t ,  1) = prt. The restriction of 9 to each 
vertical segment of Q is a similarity because preservation of ratios is 
characteristic of a similarity. OD, 

(+ -@P(t,z) 

' P O  t 

6 b t=o 
Figure 24.2 Figure 24. 

r-3 

An illustration of a linear homotopy is given in Fig. 24.3. The positions 
of the moving curve are drawn for the times 7 = 0, t ,  a,;, and 1; and 
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the straight line paths followed by various points on the curve are shown 
for t = 0, 6 ,  4, 3, 3, #, and 1. Notice that a single point of the moving 
curve follows a straight line a t  a constant velocity. 

V 

Figure 24.4 

We must prove that the linear homotopy 9 is continuous.t Let (c, y) 
denote the coordinates of a point of Q a t  which we wish to prove con- 
tinuity. Let (t, T) denote the coordinates of any other point of Q. In- 
troduce the abbreviations: 

24 = cpoc,  0 = PIC, 2 = 9(c,  y )  , 2’‘ = @(c, 7 )  7 

u’ = (cot , 0’ = cplt , 2’ = @(t, 7 )  . 
Fig. 24.4 gives a picture of the situation when (t, 7 )  is near to (c, 7). The 
solid line segments are the paths followed under the homotopy by the 
points pc and cpt as 7 varies from 0 to 1. We wish to show that the 
distance d ( z ,  2’) can be made small (less than a prescribed e > 0) by 
restricting ( t ,  7 )  to be near (6, 7 ) .  By the triangle inequality, 

d(2 ,  2 ’ )  5 d(2 ,  2”) + d(z”,  2’) . 
Since the mapping of [0, 11 into the segment uv which sends T into 
@(c, 7 )  is a similarity, it is continuous. Hence, corresponding to the 
positive number e/2, there is a 6’ > 0 such that 

t For a reader who is familiar with vector algebra, we can write 9(t, 7)*= 

(1 - 7 )  (cpot) + ~(nt ) ,  and we can argue that (1 - 7 )  (4) is continuous 
because it is the product of the continuous scalar function 1 - T and the 
continuous vector function pot. Similarly 7(&) is continuous. Finally, 
9(t, 7 )  is continuous because it is the vector sum of two continuous functions. 
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d(z, z ” )  < e/2 for every T satisfying I T - y 1 < 6’. 

Since ’po, cpl are continuous a t  c, there are numbers 60 > 0 and 
61 > 0 such that 

d(u, u’) < e/2 for every t satisfying I t - c I < 6 0 ,  

d(v,  a’)  < 4 2  for every t satisfying I t - c I < 6, . 
Now let 6 be the smallest of 6’, 60 and al. If ( t ,  T )  is in N ((c, y), 6), 
then all three of the preceding inequalities hold. It can be shown that 
d(z”, z ’ )  is no greater than the larger of d(u, u’) and d(v,  v ’ ) .  Fig. 
24.4 shows how this is proved when d (u, u’) is the larger. Through v’ 
construct a parallel to vu meeting UU’ in s, and through z’ constiuct 
a parallel to uu’ meeting v’s in w. Then line p, extended, meets vu 
in a point r which, by similar triangles, divides vu in the same ratio as 
z‘ divides v’u’; hence r = z”. Then 

d(z”, 2’) I d(z”, w )  + d(w, 2’) 

I d(u, s) + d(s, u’)  = d(u, u’ )  . 
Therefore d(z”, z ’ )  < 4 2 .  Combining this with d(z,  z ” )  < e/2 and 
the triangle inequality gives d(z,  z‘) < c. This completes the proof of 
the continuity of Q,. 

In case the two curves a, cpl are closed, the linear homotopy of (PO 

into 501 is a homotopy as closed curves; for, cp,,u = cpob and cpla = cplb 
imply that the segments cpoa to cpla and CpOb to cp,b coincide, and so 
+((a, T )  = @(b ,  T )  for all T E [O,  13. 

Whenever the end curve cp1 of a homotopy is a constant curve a t  a 
point, then the homotopy is said to shrink the initial curve cpo to a 
point. An important example of this is the following. Let D be a disk 
with center z and boundary circle C .  Let cpo: [ O ,  13 + C be the stand- 
ard representation of C as a closed curve; that is, [ O ,  11 is wrapped just 
once around C in the counterclockwise sense (see Section 16). Let 
PI: [0, 11 + z be the constant curve a t  the center. Finally let @ be the 
linear homotopy of (PO into (al. Then @ shrinks cpo (or C )  to a point. 
If we picture the homotopy as a moving curve, then a t  each instant, it 
is a circle with center z, and each point moves towards a along a radial 
line. 

Now let f: D + P be a mapping of the disk into the plane, and let 
Q, be the homotopy just described. Then the composition fa Q +. P is 
a shrinking of the closed curve fa: [(a, b] + P into the constant closed 
curve fcpl a t  fz. This homotopy gives the family of closed curves used 
in the intuitive proof of our main theorem (Section 18). 
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Exercises 

1. Show that any closed curve in the plane is homotopic to a constant closed 
curve. 

2. Show that a curve p :  [a, b]  + Y in any space Y is homotopic to a 
constant mapping leaving one endpoint fixed. 

3. Let a < b < c E  R, let p : [ a , c  + Y besuch that pa = pb = qc, 
and suppose the closed curves p ? [a, b ] ,  p I [b, c] are homotopic to 
constants leaving fixed endpoints; then p is homotopic to a constant 
mapping leaving ends fixed. 

4. Show that a homotopy CP of cpo into M can be reversed to give a homo- 
topyof - into cpo. 

25. Constancy of the winding number 

THEOREM 25.1. Let ip: Q - P be a homotopy of cpo into q1 as 
closed curves, and let y be a point not in the image @Q. Then the winding 
number W(p,, y )  is constant as 7 varies from 0 to 1 .  I n  partudur, 
W ( a ,  Y >  = W(91, Y ) .  

Let us abbreviate W(p,, y )  by fr; f is a function defined on [0, 13, 
and, as shown in Section 22, each value of f is an integer. The main part 
of our proof consists in showing that f is constant under “small changes” 
of 7. Precisely, if a E [0, 11, then there is a neighborhood N ,  of a 
such that f7 = fa for every 7 E Nu. Once this has been done the 
theorem is proved as follows: Since f is constant on Nu, i t  is continuous 
on ATu and hence continuous a t  a; and since this is true for each a, f 
is continuous in [0, 11. Now, if f were not constant and had at least 
two different values, then the main theorem of Part I would say that f 
takes on all values between the two values, including the non-integral 
numbers between. This contradicts the fact that every value of f is an 
integer, so i t  follows that f must be constant. 

To prove constancy near a E LO, 13, choose a partition 6 sufficiently 
fine for pa. First we shall find a neighborhood N‘ of a such that, for 
all 7 E A’’, 6 is sufficiently fine for e. Then, using the method of 
computing winding numbers described in Section 22, we shall find a still 
smaller neighborhood A’ such that each separate step of t h  computation 
remains constant in S. 

Let h, C, * a * ,  1, be the vertices of 6. For each subinterval 
Ik = [el, t k ] ,  the fineness of 6 means that there is a ray Lk from y 
not meeting pJk.  Let Dk denote the line segment in Q from (tk-1, a )  
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to (a, a). We shall show that there is a rectangle E k  containing D k  

such that its image @ E k  does not meet the ray L k .  Let 

v k  w'(P - L k )  . 
Since CP is continuous and P - L k  is an open set, it follows that v k  
is open. Since CPDk = p a r k  is in P - L k ,  it follows that D k  C v k .  

For each point p E D k ,  we may choose a circ4ar neighborhood 
A'@) C v k -  Then let M (p) denote the interior of the largest square 
in A'@) whose sides are parallel to the (t, 7)-axes. The collection of 
these M ( p )  for all p E D k  is an open covering of D k .  Since D k  is 
compact, this covering contains a finite covering, say MI, M2, Mn. 
Let 6k denote half the width of the smallest of these squares, and let 
Ek denote the rectangle of (1, r)-values such that t E r k  and 

< 6 k .  

By our choice of 6 k ,  it follows that 
E k  C MI U Mp U * *  U Mn C v k .  

This means that f i r k  C P - L k  for every r E N ( a ,  6 k ) .  Supposing 
this construction done for each of the intervals I k ,  k = 1, 2, **., m, 
let 6 be the least of the numbers 61, &, *, am, and let N' = N (a, 6). 
Then, if r E N' we have that f i I k  C P - L k  for all k = 1,2, - - a ,  m. 
This proves that, for every r E N', 6 is sufficiently fine for q,. 

We now apply the method of Section 22 for computing winding num- 
bers to this partition 6 and the various curves q, for 7 E lV. As in 
Section 22, C denotes the circle with center y and radius 1. Let 
g: P - y + C denote the radial projection from y onto C. Then 
@: Q + C and gcpz: [a, b ]  --+ C are continuous because they are com- 
positions of continuous functions. The image on C of the vertex tk  of 
6 under gcpz, namely g e t k ,  is abbreviated by p k 7 .  Let A k r  denote 
the arc of C from to p k 7  which does not meet L k .  If q is a 
point of C distinct from POT, plr, * * * ,  pnr, then, as in Section 22, the 
winding number W ( p r ,  y )  is f r  = Y - s, where I (respectively s) is 
the number of positively (negatively) oriented arcs A k T  which contain q. 

Select a q E C distinct from pm, pla, * * - ,  pma. For each 
k = 1, 2, 0 ,  m, choose a neighborhood u k  of p k f f  on C which does 
not contain q and does not meet either L k  or L k + l .  Then u k  will be 
a short arc of C containing p k a .  Since g@ is continuous and u k  is a 
neighborhood of p k a ,  and g + ( t k ,  a) = p m ,  it follows that there is a 
neighborhood .Irk of (Y in [0, 13 such that g @ ( t k ,  r )  = p k T  lies in 
U k  for all T E h'k. Let N denote the smallest of the neighborhoods X' 
and -TI, .1'2, - * * ,  'I'm. Then r E .I' implies that pkT E u k  for every 
k = 1, 2, * a s ,  m. (Note that pmT = p s  because each cpz is a closed 
curve.) In particular, q is distinct from POT, plr, * * * ,  p-IT because q 
is in none of the u k ' s .  

It remains to show that, for each r E S and each k = 1, 2, a * * ,  m, 
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the two arcs A k r  and Am bear the same relation to q; for then we 
obtain the same count I - s for p, as for pa. Consider first the case 
of a k where u k - 1  and u k  have a point in common. Then Uk-1 U u k  

is a connected arc, and its complement D in C is a connected arc which 
meets L k ,  contains q, but for all r E X, contains neither pk-17 nor 
PkT. Since D is connected, i t  lies wholly in one of the two arcs of c 
from pk-17 to P k T ;  one of these is A k r ,  and the other meets L k .  Since 
D meets L k ,  it follows that D does not meet A k r .  Since q is in D, 
this proves that, for all r E S, A k r  does not contain q. Thus, in this 
case, the relationship of A k r  to q is constant for r E .IT; that is, if 
Aka does not contain q, neither does A k r  for r E .V((Y). 

Consider finally a k such that u k - 1  and u k  have no common point. 
Then the complement of u k - 1  U u k  in C consists of two arcs D and 
E, and we let D denote the one which meets L k .  Arguing as above, 
we see that, for all r E S, D does not meet A k r .  Moreover, since E 
does not meet L k ,  all of the arcs A k r ,  for r E .IT, contain E and are 
similarly oriented from u k - 1  to u k .  Now q is not in ULI U u k  so i t  
must lie in D U E. If q E D, none of the arcs A k r ,  for r E .Ir, contain 
q. If q E El all of the arcs &, for E .V, contain q and are similarly 
oriented. Thus the relationship of Akr to q is constant as r varies in 
S. This completes the proof of the constancy for all r E 9 of the winding 
number fr. By the argument immediately following Theorem 25.1, this 
proves the constancy of the winding number under a homotopy of the 
curve. 

THEOREM 25.2. Let cp: [a, b] + P be a closed cum in the plane. Let 
yo, y l  be two points of P not on the c m  cp such that yo, y l  can be joined 
by a curve +: [0, 11 + P that does not intersect cp. Then we have equality 
of winding numbers: W(cp, yo) = W(cp, y l ) .  

Figure 25.1 
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For each t E [a, b ]  and T E [O, 11, let @(t ,  T) be the point a t  the 
end of the vector which starts a t  cpt and is parallel to and of the same 
length as the vector from $7 to yo (see Fig. 25.1). Thus if we set 
p7f = 9(t, T) for a fixed T, the curve p7 is obtained by a parallel 
translation of the curve cp. Think of the plane P as a rigid sheet of 
metal with a slot cut along the curve 9. Nail the sheet to the wall by a 
nail a t  yo of diameter less than the width of the slot. Now slide the sheet 
along the wall so that the nail follows the course of the slot, but do not 
allow the sheet to rotate. The resulting motion of the closed curve gives 
a picture of the homotopy 9 we have constructed. 

From the constancy of the winding number under a homotopy, i t  
follows that W(v0, yo)  = W(cpl, yo). Moreover the pair (cpl, yo) is 
congruent to the pair (PO, yl) under the translation of the plane by the 
rector from yo to yl. Since the winding number is obviously unchanged 

by a congruence, W(cp1, yo) = W(cp0, yl). Combining these equalities 
gives the conclusion of the theorem. 

Exercises 

1. I n  Fig. 25.2, show that the winding number of the circle (00 about y is 
the same as the winding number of the congruent circle cp1 about y by 
sketching a homotopy to which we may apply Theorem 25.1. 

Figure 25.2 

2. I n  Fig. 25.3, show by sketching a homotopy why W(cp0, y )  = W ( M ,  y )  ; 
explain why this is not applicable to W(cp0, x )  and W(cp1, x ) .  

3. Explain why the homotopy of Fig. 25.4 is improper as a honiotopy for 
Exercise 2 that does not meet I. 

Figure 25.3 Figure 25.4 
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26. Proof of the main theorem 

We have at hand now all the machinery needed to prove our main 
theorem as stated in Section 18. Suppose y is not in the image fD.  Let 
4po: [0, 11 -+ C be the standard representation of C as a closed curve. 
Let 9 be the homotopy described in Section 24 which shrinks cpo over 
D to the center point z of D. Then f@ is a homotopy of fcpo into the 
constant closed curve at  f z .  Since f@Q C fD,  y is not in the image of 
the homotopy. Therefore W (  fa, y) = W (  fp1, y) by Theorem 25.1. 
Since fcpl is a constant curve, W (  fv1, y) = 0 (see Section 23). Hence 
W( fa, y) = 0. Thus we have proved: If y is not in fD,  then 
W (  fvo, y )  = 0. Therefore W (  fa, y) # 0 implies y is in fD.  This 
completes the proof. (Fig. 26.1 illustrates successive stages of the homo- 
topy f9 for the mapping f described in Section 15.) 

Figure 26.1 

Exercise 

1. If the disk D in the statement of the theorem is replaced by a rectangle 
D’ and its interior, how must the proof be modified? What replaces the 
standard representation of a and the homotopy CP? 

27. The circle winds once about each interior point 

In this section, we shall show that, if a mapping of a disk D into a 
plane leaves fixed each point of its boundary, then all points of D lie 
in the image of D. To pave the way for the proof of this theorem, we 
shall first prove something that we accepted in Section 17 as intuitively 
clear: the circle winds once about each interior point. 

LEMMA. Let C be a circle in the plane, y a point of the interwr of C, 
and let cpo: [0, 11 + C be the standard representation of C as a closed 
curve (see Section 16); then W ( ~ O ,  y) = 1. 
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To prove this, we use the partition 6 = { O , $ ,  1). Recall that (p is 
defined by choosing a reference point QO, and then each t E [0, 11 is 
mapped into the point of C whose angular measure from QO in degrees 
is 360t. Therefore p[O, $1 is the semicircle from p0 to in the 
counterclockwise direction and p[+, 13 is the semicircle from (p3 to 
01 = p0 in the counterclockwise direction (see Fig. 27.1). Taking y 
to be the center, the prescription of Section 22 gives W (cp, y) = r - s, 
where I = 1 and s = 0. Thus the lemma is true for the center. But 
each interior point can be joined to the center by a line segment not 
meeting C. Hence, by Theorem 25.2, it has the same winding number 
as the center. 

1, 
Figure 27.1 

As an intuitive formulation of the next proposition, consider the effect 
of gluing the circular edge of a thin flexible rubber disk to the top of a 
table. If we want to see what is under the disk, we can achieve nothing 
by stretching, pulling, or twisting the rubber as long as the edge remains 
hed. 

THEOREM 27.1. Let f: D + P be a mapping of a disk into a plane 
which leaves fixed each point of its bounding circle C; then the image f D  
contains all of D. 

Let cpo: [0, 13 + C be the standard representation of C as a closed 
curve, and let y be an interior point of D. Since f leaves fixed each 
point of C, f I  C is the identity map, that is fp,, = p,,. Therefore 
W ( fpo ,  y )  = W (a, y). The preceding lemma asserts that W(p0, y)  # 0; 
hence W ( fm, y) # 0. The main theorem is applicable now and asserts 
that y E fD.  Each point of C is in D since fC=C.  Thus all 
pointsof D arein fD.  

As a consequence of this theorem, we have the 
COROLLARY 27.2. 

its boundary C which leaves fixed each point of C.  
There is no continuous mapping of a disk D into 
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One can, of course, map a rectangle and its interior onto one of its 
bounding edges so that this edge remains fixed. Just picture rolling up a 
window shade; under this mapping f, fx = x for all points x on the 
roller. The edge represented by the roller is said to be a retract of the 
rectangular region (the shade). The corollary says that we cannot roll 
up the interior of a circle onto its boundary; that is, a circle is not a 
retract of the disk. Picture the circle and its interior as the rim and mem- 
brane of a drumhead. The assertion is that the entire membrane cannot 
be stretched and rolled onto the rim. Because of this visualization, the 
corollary is sometimes referred to as the drumhead principle. 

Exercises 

1. Show that the periphery E of a rectangular region F is not a retract of 
F; state the theorem, corollary and proofs corresponding to these. Hint: 
Use a homeomorphism h: P+ P which maps a disk D onto the region 
F (constructed as in Section 14, the center e of D is carried into the 
center he of F and each ray issuing from e is mapped by a similarity 
onto the parallel ray issuing from hz). 

2. Let y be a point on the boundary C of a disk D; show that there is a 
continuous mapping of D - y onto C - y which leaves fixed each point 
of c - y. 

3. If yo is a point of the interior of D, show that D - yo can be retracted 
continuously onto C. 

4. Show that each of the following can be a retract of the disk D: 
(a) any diameter of D; (b) any one point of D. 

5. State and prove the analog in dimension 1 of Corollary 27.2. 

28. The fixed point property 

In  Section 9, Part I, we proved that a continuous mapping of a line 
segment into itself has a t  least one fixed point. We prove now the anal- 
ogous theorem for a disk. 

THEOREM 28.1. Let f :  D + D be a mapping of a disk info itself; then 
f leaves$xed at least one point of D, that is, f x  = x for at least one point 
x E D. 
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Figure 28.1 

Let us assume, to the contrary, that there is a map f: D -+ D without 
any hed point. Then for each x E D, fx and x are distinct. Hence we 
may construct a ray L, issuing from fx and passing through x. Let 
gx be the point of C in which the ray L, meets C. In case f x  happens 
tobeon C, gx is theotherpointin which L, meets C; and if x E C, 
then gx = x. Fig. 28.1 shows several of the possibilities. Thus 
g: D + C, and g [ C is the identity. We shall prove that g is continu- 
ous; then g will contradict Corollary 27.2, and this contradiction will 
prove our theorem. 

To prove the continuity of g, let xo E D and let V be a neighborhood 
of gxo. We shall construct a neighborhood U of xo such that x E U 
implies gx E V .  Let b, c denote the endpoints of V ,  and let m be 
the midpoint of the segment xo to fxo. Let H be the line through b 
and m, and let K be the line through c and m. Choose a circular 
neighborhood -47 of fxo containing no points of H or K.  Since f is 
continuous, there is a circular neighborhood U' of xo such that 
j U l  C -4'. Choose now a neighborhood U of xo such that U contains 
no points of H or K and U C U'. We have then the situation pictured 
in Fig. 28.2: U is a neighborhood of XO, N is a neighborhood of fxo, 
neither U nor 3' meet H or K, and f U  C N .  Moreover, a point 
x E U and its image fx E -47 lie on opposite sides of H (and also of K )  
because xo and fxo lie on opposite sides of H (and also of K )  and U 
and -V are connected sets not meeting H (and K). 

Figure 28.2 
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Hence L,, the ray from fx through x ,  meets both R and K b e  
tween f x  and x.  Therefore the segment S of L, leading from x to 
gx contains no points of H or K. Let h denote the radial projection 
from m onto C. Since m is on L,,, k sends xo into gxo. Now h 
maps the segment S’ from xo to x into an arc A’ of C starting at 
gxo. Since S’ does not meet H or K, A’ cannot contain b or c. 
Hence A’ lies whollyin V, andso hx E V .  Since S doesnotmeet H 
or K, i t  follows as before that hS C V. The radial projection of gx 
from m onto C is gx; that is, kgx = gx. Taken together, the three 
statements gx E S, gx = hgx, and hS C V imply that gx E V, and 
this completes the proof of the continuity of g. 

Exercises 

1. Let D be a disk with center z and radius 1. Find the fixed point in 
each of the following mappings of D into D: 
(a) a rotation about the center, 
(b) a reflection in a diameter, 
(c) a contraction similarity toward the center, 
(d) a contraction to half size followed by a translation of j r ,  
(e) a reflection in a vertical diameter, followed by a contraction toward 

z to half its size, followed by a translation of #r to the right. 
(f) Each ray from z is mapped onto a ray from z forming an angle with 

the horizontal which is twice the original angle with similarity ratio 
3, and translated j r  to the left. 

2. Show that, if E is homeomorphic to D, then any mapping E + E has 
a fixed point. 

29. Vector fields 

A vector in a plane or in space is an ordered pair of points. It is cus- 
tomary to picture the vector as the line segment connecting the two 
points, oriented from the first point to the second by an arrowhead. The 
algebraic properties of vectors make them indispensable tools for the 
study of the geometry of euclidean spaces of higher dimension. Vectors 
are of utmost importance in mathematical physics where they are used 
to represent forces, velocities, and accelerations. 

We shall use the concept of velocity vector to obtain an intuitive ap- 
preciation of the theorems to be proved in the following sections. If a 
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moving point passes through a point x ,  its velocity vector at x is the 
vector u from x whose direction is the instantaneous direction of mo- 
tion, and whose length is the instantaneous speed. If the point were to 
continue to travel in the same direction a t  the same speed for one unit 
of time, i t  would arrive at  the endpoint x’ of v. Constant velocity (i.e. 
constant direction and constant speed) is just the simplest case, but we 
must consider motions of points along a curve. In  such a case the direc- 
tion and speed of the point will ordinarily change as it moves along the 
curve. The velocity vector a t  each point of the curve is tangent to the 
curve, oriented in the same direction as the curve, and its length is the 
instantaneous speed (rate of eating up arclength). For example, the 
points labeled 0, 1, 2, 3, in Fig. 29.1 indicate the various positions a t  
equal time intervals of a particle traversing a curve, and tangential 
vectors have been attached to each point to indicate the velocity of the 
particle a t  these points. Thus the smaller velocity vectors a t  1 and 2 
accord with the short distance from 1 to 2 and from 2 to 3; a spurt in 
speed is indicated a t  3, a slowing down a t  4, and high speed at 5 ,  etc. 

Figure 29.1 

A vector field u is a function which to each point x of a region of a 
plane (or space) assigns a vector ux issuing from 2. If one considers a 
flowing liquid or gas, the velocity vectors of the various particles a t  a 
single instant of time form a vector field. For example, under a steady 
flow in a fixed direction at  a fixed velocity, the vectors are all parallel 
and of equal lengths. As another example, consider a rotation about a 
point z in the plane a t  constant angular velocity (see Fig. 29.2). At a 
point x ,  vx  is perpendicular to the line through z and x ,  and its 
length is proportional to d ( z ,  2). The vector uz is the ordered pair 
(2, z); i t  has no direction, and its length is zero. Such a vector is called 
the zero vector. 

Figure 29.2 

A flowing fluid whose velocity field is the same a t  all times is called a 
steady flow. Precisely, the velocity vector depends only on the location 
of the particle in the plane (or space) and does not depend on the time. 
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Two particles passing through the same point a t  different times have the 
same velocity vectors at  that point. The two examples discussed above 
are examples of steady flows. Such flows have streamlines. These are the 
paths of the particles. They form a family of curves such that one and 
only one curve passes through each point, and the velocity vector a t  the 
point is tangent to the curve. The particles along any streamline remain 
on the streamline. One can think of the streamline as sliding along itself. 
In  the first example above, the streamlines form a family of parallel 
lines. In the second example, they form the family of circles with center 
z. The streamline through z is the constant curve a t  z. 

30. The equivalence of vector fields and mappings 

A t  first glance a vector field may seem a rather difficult concept to 
handle mathematically. However i t  is entirely equivalent to the concept 
of a mapping in the following way. Suppose f: A + P is a mapping of a 
subset A of the plane into the plane. Let o be a fixed reference point 
of P called the origin. For each x E A ,  let vx be the vector issuing 
from x which is parallel to the vector from o to fx and has the same 
length. Thus to each mapping f is assigned a vector field v.  Conversely, 
if a field v is given on A ,  we can define f by saying that fx is the end- 
point of the vector issuing from o which is parallel and equal in length 
to vx. It is readily seen that this correspondence between vector fields 
and mappings is one-to-one. 

This correspondence can be clarified by using the concept of the 
equivalence of two vectors. Two vectors are called equivalent vectors if 
they are parallel, have the same length, and are similarly oriented. In 
case one of them is the zero vector, they are equivalent only when both 
are zero. Now if v is a vector field, the vector vx based a t  x is equiva- 
lent to a unique vector based a t  o,  and this vector is uniquely determined 
by its endpoint fx. Conversely, if f: A + P is a mapping, we obtain 
the corresponding vector field v by defining vx to be the vector based 
at x which is equivalent to the vector from o to fx. 

Figure 30.1 
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The left diagram of Fig. 30.1 pictures the vector field on a circle C of 
radius Y consisting of the tangent vector a t  each point, of length 4r, 
oriented counter-clockwise. The right diagram of Fig. 30.1 pictures the 
image of the associated mapping. In  this case f shrinks C by a 
similarity to a circle half its size with center 0, and rotates it through 
90'. Fig. 30.2 illustrates a field of outward normals of lengths 3r. In 
this case f shrinks the circle to half its size, but does not rotate it. 
The field of inward normals of the same length would give an f obtained 
from the preceding by a 180' rotation about 0. 

Figure 30.2 

In case f is a constant function sending all of A into a single point, 
the image fx is the same point for all x E A .  Then the ordered pair 
( o , f x )  is unique for all x E A and all of the vectors of the corresponding 
field are parallel and of the same length and orientation. Such a field is 
called a constantfield. 

The one-to-one correspondence between vector fields and mappings is 
used to carry over to vector fields concepts and properties defined for 
mappings. For example, a vector field 8 is called continuous if the cor- 
responding function f is continuous. 

Exercise 

1. For each of the following mappings of P into P, write a description or 
draw a picture of the corresponding vector field: 

(a) 
(b) f is the identity mapping; 
(c) f is a 180' rotation about the origin; 
(d) f translates all points in a fixed direction by a fixed distance; 
(e) f is the reflection in a line through 0. 

maps all the points of P into a single point not the origin; 
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31. The index of a vector field around a closed curve 

Let u denote a continuous vector field on a subset A of the plane P, 
and let cp: [a ,  b ]  3 A be a closed curve in A. Think of the curve as a 
moving point. At each position x on the curve, the vector vx is defined. 
As the point traverses the curve, the vector will vary continuously, 
rotating its direction and changing its length. When the point returns 
to the initial position, the vector must return to its initial direction and 
length. One can ask how many complete rotations of the direction were 
made by the vector as the point traversed the curve. The question and 
its answer are most clearly formulated by means of the associated 
mapping f: A + P described in Section 30. The composition 
fcp: [a ,  b]  + P is a closed curve in the plane. If the origin o is not on 
fcp, then the winding number W ( fp, 01 is defined. We shall also call it 
the index of the vector field v around the closed curve cp and denote it 
by I(u, cp). Thus 

I(w, = W(fcp, 0 )  - 
In the example of Fig. 30.1 we clearly have I(u, C) = 1. The same 

is true of the example of Fig. 30.2, and also of the third example of the 
inward normals. However a constant field, as in Fig. 31.1, has index zero. 
A field of index 2 on a circle is shown in Fig. 31.2. 

0 /IC 

Figure 31.1 Figure 31.2 

THEOREM 31.1. Let v be a continuous vector field defined on a disk D 
i n  the plane and such that vx is not the zero uector for any point x on the 
boundary circle C of D. If the index of v around C, I (u ,  C ) ,  is not 
zero, then there is at least one point x in D whose vector vx is zero. 

This theorem is just a translation from “mapping” language into 
“vector field” language of our main theorem of Part 11. Let f: D + P 
be the mapping which corresponds to the field v, and let cp: [0, 11 + C 
be the standard representation of C as a closed curve. Then 
W (fcp, 0 )  = I (v, cp) is not zero by hypothesis. Our main theorem asserts 
that the equation f x  = o has at  least one solution x.  Then the cor- 
responding vx must be the zero vector for it is equivalent to the vector 
from o to 0. 
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THEOREM 31.2. Let u be a continuous field of non-zero vectors dejned 
on a disk D.  Then on the boundary C of D, there is at least one point x 
where ux is an outward normal, at least one point x‘ where ux’ is an in- 
ward normal, and there are at least two points on C where ihe vectors are 
iangent to C. I n  general, for m h  angle a, there is at Zeast one point 
x E C such that ux and the outward nmmal at x form the angle a. 

The conclusions rest heady on the assumption that u has no zeros 
inside D. For example, let D have center 0, let f: D + P be the 
identity mapping. The corresponding u has just one zero at the center 
of D. The conclusion of the theorem is not true here; for every x E C, 
ux is the outward normal at each point. A good illustration of the theorem 
is provided by the constant field (Fig. 31.1); each a is taken on exactly 
once. 

It suffices to prove the last conclusion of Theorem 31.2, for it implies 
the preceding ones; just let a be the angle of 0’ for the outward 
normal, 180’ for the inward normal, and 9oo, 270°, for the tangents. 

To prove the last conclusion, let a be iixed. Choose the origin o at 
the center of D, and let f: D -+ P be the mapping which corresponds 
to the field u. Let g denote the rotation of P about o through the 
angle -a. Let h denote the radial projection from o onto C. Since 
v is never zero, fD and gfD do not contain 0. Hence hgj: D + C is 
dejined. Since C C D, hgj can be regarded as a mapping D + 0. Theo- 
rem 28.1 asserts that hgf leaves fixed at least one point; that is, there is 
an x E C such that hgfx = x. Let u’x be the vector which corresponds 
to x under the mapping hgf. By definition it is parallel to the vector 
from o to hgfx = x. Therefore v’x is the outward normal at  x. But 
for any point y of D, how do vy and u’y differ? Since hgf is obtained 
by applying first g and then h to f, it follows that v’y is obtained from 
vy by rotating it about y through an angle -a and then changing its 
length to the radius of C. Thus, at  the fmed point x on C, the vector 
vx must make the angle a with d x  which has been shown to be the 
outward normal. 

COROLLARY. If u is a continuous vector field on a disk D, and q, on 
C, v is neuer iangent (neuer normal) to C ,  then u km at least one zero in  D. 

The foregoing results are of significance in the study of steady flows. 
A zero of the velocity field occurs only a t  a point which remains fixed 
during the flow. Suppose a velocity field on a disk is such that, on its 
boundary C, the field is the inward normal. Clearly the fluid flows into 
D at each point of C. Intuition says that the fluid must pile up some- 
where inside D. Since the field is nowhere tangent to C, the preceding 
corollary gives us a t  least one fixed point of the flow where fluid can 
congest. 
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Exercises 

1. Let D be a disk with center e. For each point x of D, let ux be the 
vector of a fixed length s, oriented along the ray from e to x. Then on 
the boundary C, each vx is an outward normal, there is no inward 
normal, and there is no point a t  which ux is tangent to C. Does this 
contradict the conclusions to the second theorem of this section? 

2. For each of the following mappings of the disk D, find the index of the 
field on C, find the points x E D where vx is zero, the points x E C 
where ux is tangent to C, where it is an outward normal, and where it 
is an inward normal to C. 
(a) f maps all points of D into the center e (and o # e); 

(b) f is the identity mapping and o is a t  the center e; 

(c) f is the identity mapping and o is a t  distance r/2 from e; 

(d) f is the identity mapping and d(o, e) > Y ;  

(e) f is a 180° rotation about the center, and o is an exterior point of D; 
(f) f translates by a fixed vector and o is exterior to fD; 
(g) f is the reflection about a chosen diameter and o is a t  e. 

32. The mappings of a sphere into a plane 

By a sphere S we shall mean the set of all points in space whose 
distance from a point z (the center) is a fixed positive number I (the 
radius). If x E S, the antipode x’ of x is the other point in which the 
line through x and z meets S, i.e., the diametrically opposite point. 

If we map the sphere S into a plane P by a perpendicular projec- 
tion f, then there is a pair of antipodes x, x’ for which j’x = fx’, 
namely, the intersections of S with the line through z perpendicular 
to P. It is a surprising fact that a part of this result holds true for any 
mapping of S into P. The following analog of Theorem 10.1 was dis- 
covered by the mathematicians K. Borsuk and S. Ulam in 1933. 

THEOREM 32.1. Every mapping j’: S + P of a sphere into a plane 
maps some pair of antipodes of S into the same point; that is, for at least 
one pair x,  x’ of antipodes, fx = fx’. 

To prove the theorem, choose a point o in P as origin. For each 
x E S define gx in P to be the endpoint of a vector issuing from o 
equivalent to the vector from fx to fx’,  where x’ is the antipode of x 
(see Fig. 32.1). Thus g is also a mapping g: S +  P. It has the property 
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that, for every x E S ,  gx‘ is symmetric to g x  about 0, because x is 
the antipode of x’, and, to construct gx’, we have only to reverse the 
arrow from fx to fx‘. The theorem may now be proved by showing 
that g maps some point of S onto 0, since it is only then that the 
vector and its opposite coincide. 

Figure 32.1 

Assume as known that g is continuous; this will be proved later. Let 
P’ be a fixed plane through the center z of S, let C denote the circle 
in which P’ meets S,  and let D be the disk in P’ whose boundary is 
C. In  case the image gC contains 0, there is an x E S such that 
gx = 0, and the theorem is proved. So we need consider only the case 
where gC does not contain 0. Let H be one of the hemispheres into 
which S is divided by P‘, and let #: D + H be the inverse of the per- 
pendicular projection of H onto D. Then the composition &: D + P 
coincides with g on the boundary C. Let cp be the standard repre- 
sentation of C as a closed curve (Section 16). It will suffice now to 
prove that the winding number W(gcp, 0) is not zero, because, once this 
is done, the main theorem (Section 18) assures us of the existence of a 
point y in D such that &y = 0, and this y yields the point x = Jly 
in S that satisfies gx = 0. 

We shall prove that W (gp, o)  # 0 by showing that W (gcp, 0) is 
an odd integer (recall that zero is even because 2.0 = 0). Let cpl and 
(p2 be the restrictions of p to the subintervals [0, 33 and [f, 11. Let 
xo = (PO = cpl; then its antipode x‘o = cp$. Moreover cpl rep- 
resents one semicircle of C as a curve from xo to do, and ‘p2 represents 
the other from x’o to xo. Select now a partition of [0, 41 which is 
sufficiently fine for the curve gcpl relative to 0, and apply the result of 
Section 22 for computing A (gpl, 0). It states that 

A (gcpi, 0) = u - II 4- (I - ~ ) 3 6 0  , 
where r - s is an integer, and u and o are the protractor readings for 
the rays from o to gx’o and gxo respectively. Since XO, X’O are anti- 
podal, the points gx’o, 0, gxo are in a straight line; hence u - II is the 
measure in degrees of a straight angle, that is, u - v = f180 .  It 
follows that A (gpl, 0) is an odd multiple of 180: 

-4 (gpi, 0) = (2m + 1)lSO. 
Fig. 32.2 illustrates the case where the multiple is -3. 
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Consider next the curve g e  from gxr0 back to gx,,. Let h P + P 
be the rotation about o through 180’. If 1 E [0,3], then t + 3 E [$, 13, 
and e(t + 3 )  is the antipode of pd. It follows now from the symmetry 
property of g that 

g e ( t  + 3 )  = hgat for all t E [O, 9 3 .  
That is to say, the curve g e  is obtained by rotating the curve gpl 
through 180’ (see Fig. 32.2). Since a rotation preserves angles, 
A (gn, o) = A ( g e ,  0 ) .  Using the additive property of A,  we obtain 

A (gp,  0 )  = A (gpi, 0 )  + A ( g e ,  0 )  = 2A &I, 0 )  

= 2(2m + l)l80 = (2m + 1)360, 
hence 

W(gq, o )  = A (gq, o)/360 = 2m + 1 . 
This completes the proof that W(gq, 0 )  is odd. 

s 

Figure 32.2 

It remains to show that g is continuous. Let q be a point of S,  and 
let N be a circular neighborhood of gm of radius r. Let U ,  U’ be 
circular neighborhoods of fzo, f x b ,  respectively, each of radius r/2. 
Since f is continuous, there are neighborhoods V, V’ of XO, X’O, respec- 
tively, such that fV C U and fV’ C U’. The set T of antipodes of 
points of V’ is a neighborhood of XO; let W be a neighborhood of zo 
contained in both V and T. Then if x is a point in W ,  we have 
x E V and x’ E V’; so it follows that fx E U and fx’ E U’. Let y 
be the point in P such that the vector from fxo to y is equivalent to 
the vector from f x  to fx’ (see Fig. 32.3). Since by definition the vector 
from o to gx is also equivalent to the vector from fx to fx’, and the 
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vector from o to gxo is equivalent to the vector from fxo to fxb, one 
sees that the distance 

d k x ,  gxo) = d (y, fz’o) * 

d ( y , f x ’ )  + d(fx’,fx’o) - 
By the triangle inequality, this is in turn less than or equal to 

From the parallelogram, d (y, fx’) = d ( f ~ ,  fx), and both this distance 
and d ( f x ’ ,  fx’o) are less than r /2 ;  so their sum is less than I .  This 
implies gx E N. Hence g maps W into N .  This proves the continuity 
of g, and thus completes the proof of the theorem. 

Y 

f x  
Figure 32.3 

As an application, let us assume that the surface of the earth is a 
sphere S, and that a t  any instant of time, the air pressure px and 
temperature tx are continuous functions of x E S. In a plane P, 
choose a Cartesian coordinate system by selecting an origin, two per- 
pendicular oriented lines through it, and a unit of measure. For each 
x E S let fx be the point of P whose coordinates are (px ,  tx ) .  Since 
p and t are continuous, i t  follows that f: S 3 P is continuous. We now 
apply our theorem to this f and obtain the 

COROLLARY. At each instant of time, there is a pair of antipodal points 
on the earth’s surface where the Fessures and also the temperatures are equal. 

Clearly the physical properties of pressure and temperature have 
nothing to do with the conclusion; p and t can be any two continuous 
real-valued functions defined on S. 

Notice also that if we consider just a single function, say, temperature, 
then Theorem 10.1 tells us that on each great circle there is a pair of 
antipodes where the temperatures are equal. 

Exercises 

1. Let S denote a sphere in R3 of radius I with center e at  the origin of 
the coordinate system (a, ?, 2 8 ) .  Let P denote the (a, m)-plane, and 
let L denote the xl-axis. Find the pairs of antipodes with the Same image 
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under f: S+ P if f is (a) the perpendicular projection of S into L 
(all projecting rays are perpendicular to L ) ,  (b) the composition of the 
90’ rotation of S about L followed by the perpendicular projection 
into P. 

2. Show that the conclusion of the Borsuk-Ulam theorem is still true if 
“antipodes” are defined using lines through a point Q inside S other 
than the center. 

3. Show that the conclusion of the theorem is true if the sphere is replaced 
by an ellipsoidal surface, or the surface of a rectangular box, and antipodes 
are symmetric with respect to the center. 

33. Dividing a ham sandwich 

The theorem of this section is the three-dimensional analog of Theorem 
11.1 which says that any pair of bounded, connected regions in the plane 
can be divided exactly in half (in the sense of area) by a single line. 

THEOREM 33.1. Let A ,  B ,  C be three bounded and connected open 
sets in  space. Then there is a single plane which divides each exactly in half 
by volume. 

An illustration is provided by three spherical balls and the plane 
through their centers. The strength of the theorem is that it applies 
even when the regions are irregular. If we interpret A ,  B to be slices 
of bread, and C to be a slice of ham between them, then the conclusion 
can be interpreted: With one stroke of a knife, a ham sandwich can be 
divided so that both slices of bread and the ham are cut exactly in half. 

To  prove the theorem, we choose a sphere S which encloses A ,  B 
and C. There is such a sphere because A ,  B and C are bounded. Let 
z be the center of S and Y its radius. For each x E S, let L, denote 
the diametrical line through z and x. We shall show that: 

(1) For every x E S, there is a unique point X A  on L, such that 
the plane perpendicular to L, a t  xA divides A in half by volume. 

Once this is done, we let g A X  be the distance d(z,  XA) with a positive 
sign if XA is on the segment from z to x, and with a negative sign if 
X A  is on the segment from z to the antipode x’ of x. Since L, and 
L,. coincide and have oppositely oriented coordinates, and since 
x’A = xA, i t  follows that gAx’ = - - A X .  

We define xu, gnx and XC, gcx in the analogous fashion, using B 
and C in place of A .  Now consider the mapping f: S + R2 which 
assigns to each x E S the point with the coordinates 

fx = ( g A x  - g B x ,  g A x  - g C x )  . 
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We shall show that: 

(2) f is continuous. 

Once we have proved (1) and (2), the proof of Theorem 33.1 is con- 
cluded very quickly as follows. By Theorem 32.1, there is a point x 
such that j x  = fx'. Equating the coordinates of j x  and .fx' yields 

gAx - gBx = gAx' - gBx' 

gAx - gCx = gAx' - gcx' 

With the help of the relations gAx' = -gAx, and 
gcx' = -gcx noted above, the first equation reduces to gAx = gnx, 
and the second to gAx = gcx. Hence, for the point x E S whose 
image coincides with that of its antipode, we have XA = XB = xc, 
and the plane perpendicular to L, through this point divides all three 
regions in half. 

To prove (l), for each point y E L,, let P,, denote the plane through 
y perpendicular to L,, and let hy denote the volume of the part of A 
on the same side of P,, as x .  As y varies from x' to x ,  hy varies 
from the volume of A down to zero. If y l ,  y2 are in L,, the difference 
I hy, - hy2 I is a t  most the volume of the part of the solid sphere between 
the planes P,,, and Pus, and this is less than rrZ I yl - y2 1 .  This 
shows that h is continuous a t  each point y of L, (with 6 = e/?n"). 
So the main theorem of Part I assures us that there is a point y such 
that hy is half the volume of A .  If there were two such points, there 
would be two parallel planes PI and P2 dividing A in half. The slab 
Q of space between P I  and P2 separates the rest of space into two 
disconnected parts. Since A is connected and has half its volume in 
each part, A must contain a point q inside Q. Since A and Q are 
open, there is a spherical neighborhood U of q contained in A n Q. 
Since U has a positive volume, so does A n Q. Shifting from PI to 
P2 alters hy  by the volume of A n Q; so both PI and Pz could not 
divide A in half. This proves (1). 

To prove (21, the continuity of f, it suffices to prove the continuity 
of each coordinate of f. We shall prove only that g A  is continuous, and 
leave the rest to the reader. Let c be a point of S a t  which the con- 
tinuity of gA is to be proved, and let CA be the point on L, where the 
plane P,. perpendicular to L, cuts A in half. Let x be a point on S 
near c, and let X A ,  P, be defined similarly. Fig. 33.1 shows the inter- 
section of the configuration with the plane through c, x ,  z. We want to 
show that I  AX - gAc 1 can be made small (less than a prescribed 
e > 0) by restricting x to be near to c (in .\'(c, 6)) .  

Let u and 1) be the points where the great circle through c and x 
meets P,. Let P' and P'' be the planes perpendicular to L, passing 
through u and 1) respectively. Let S denote the interior of S. The 
part of S on the same side of P' as c is included in the part of ilr on 

gBX' = -gBX, 



122 EXISTENCE THEOREMS IN DIMENSION 2 [11 

the same side of P, as c. Since A C N, the part of A on the same 
side of P' as G is included in the part of A on the same side of P, as 
t. So if V denotes the volume of A,  the volume of the part of A on 
the same side of P' as G is a t  most V / 2 .  By a similar argument, the 
volume of the part of A on the side of P" opposite to c is a t  most 
V/2. It follows that P, must lie between P' and P". Therefore, if 
w is the distance between P' and P", we have 

1 

Figure 33.1 

An estimate of the size of w is obtained by noting from the similarity 
of two triangles that 

where e is the perpendicular projection of x on L,. Since d (8, x )  = I ,  
this gives 

Since d(u, v )  I 2r, and d(e,  x )  I d(c ,  x ) ,  we obtain 

w I 2 d(c ,  x )  . 
Therefore 

I g A X  - gAG 1 < 2 d(C, X )  . 
For a given c > 0, take 6 = e/2; then x E S ( c ,  6 )  implies that 
I gAx  - gAC I < C. This shows that g A  is continuous at c. Since this 
holds for each G E S, it follows that g A  is continuous on S. The proof 
of Theorem 33.1 is now complete. 
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Exercises 

1. If A is a solid spherical ball, B is a solid cube, and C is a solid cylinder, 
describe the plane which cuts all three in half. 

2. Give a direct proof of the theorem in case A is a solid spherical ball, B 
is a solid hemisphere whose axis passes through the center of A ,  and C 
is any third solid. 

34. Vector fields tangent to a sphere 

Let v denote a vector field defined on a sphere S in space (see 
Section 29). It assigns to each point x of S an oriented line segment 
issuing from x. We shall say that the field v is tangent to S if, for each 
x of S, the line segment issuing from x is tangent to S, or equiva- 
lently, if i t  is perpendicular to the radial line zx where z is the center 
of S .  As in Section 30, we associate with v a mapping g of S into 
space by choosing an origin o and defining gx to be the endpoint of 
the vector issuing from o parallel and equal in length to vx. We say 
that v is continuous whenever the associated g is continuous. 

THEOREM 34.1. Let v be a continuous vector field defined over a sphere 
S and tangent to S. Then there is at least one point x of S such thut 
Z'X = 0. 

A vector field tangent to S can be interpreted as a flow. The theorem 
then implies that any steady flow on a spherical surface has a t  least one 
stationary point. To give this a practical aspect, assume that the earth's 
surface is a sphere, and that the velocity vector of wind flow is continu- 
ous. Then, a t  any instant of time, there is some place on earth where 
the wind is not blowing. 

If we rotate a sphere about an axis a t  a constant angular velocity, we 
obtain a flow having two stationary points. 

To illustrate the theorem, let us construct a tangent field to S having 
exactly one zero a t  a point xo. Let L be an oriented tangent line to S 
through xo. For any x E S distinct from xo, x and L determine a 
plane P, which intersects S in a circle C,. Give to C, the same 
orientation as that of its tangent line L. Define vx to be the vector in 
P, issuing from x tangent to C,, whose length is half the distance 
d(x,  XO), and which is oriented concordantly with C,. Fig. 34.1 shows 
several of the vectors tangent to C, in Pz; we have oriented L u p  
wards, and then C, counterclockwise. Notice that the vectors become 
shorter and shorter as x approaches xo. We complete the definition of 
v by setting vxo = 0 and obtain a continuous field. 



124 EXISTENCE THEOREMS IN DIMENSION 2 

Figure 34.1 

In contrast to a sphere, the surface of a torus (an inner tube) does 
possess continuous tangent vector fields which are nowhere zero. Picture 
the velocity field of an inner tube rotating about an axle. Equally well, 
picture a smoke ring. 

PROOF. Choose a fixed plane P through the center z of S .  Let C 
denote the circle P n S, and let D be the disk i t  bounds in P .  Denote 
by H and H' the two closed hemispheres of S determined by C. Let 
p and p' be the poles where the line through z perpendicular to P 
meets H and H' respectively. Let h: H' + D be the topological equiva- 
lence given by stereographic projection from p .  Precisely, if x E HI, 
then hx is the intersection of D with the segment p to x.  Similarly, 
let h': H --+ D be given by stereographic projection from p'. 

has no zero vector on one of the hemispheres, 
say HI, then it must have a zero vector on H .  As the first major step, 
we shall prove: 

1. The stereographic projection k maps the field v on H' into a 
field w' on D so that vectors a t  corresponding points have the same 
lengths. Similarly, h' projects the field v on H into a field w on D. 

Once this is done, the fact that v has no zero vectors on H' will 
imply that w' has no zero vectors on D, hence the index I (w', C) = 0 
by Theorem 31.1. Then, as the second major step, we shall prove 

2. A t  a point x of C the vectors wx and w'x are obtained by ro- 
tating vx about the tangent line to C, first 90" one way and then 90" 
the other. This fact and Z(w', C) = 0 imply that I ( w ,  C) = 2. 

Once this is proved, we apply Theorem 31.1 and I (w ,  C) # 0 to 

It suffices to prove: if 
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conclude that w has a zero vector at some point of D; hence t i  has a 
zero vector a t  the corresponding point of H .  It remains therefore to 
prove 1 and 2. 

For each point x of S,  let T,  denote the plane through x tangent 
to S. When x is in H', define a mapping h,: T ,  + P by parallel 
projection using the family of lines parallel to the line through p and 
x. Precisely, if q E T,, then h,(q) is the point of intersection of P 
with the line through q parallel to the line through p and 3c (see Fig. 
34.2). It is an exercise of elementary geometry to show that T,  and P 
make equal angles with the line from p to x. Therefore h, is an isom- 
etry (preserves distances). We define the vector field w' on D by de- 
fining the vector w'y, based at y E D, to be the image in P of the 
vector DX in T, under h,, where x is the point of H' such that 
hx = y. Since h, is an isometry, the vectors w'y and vx have equal 
lengths. Similarly, when x E H ,  we define h',: T ,  + P using parallels 
to the line through p' and x ,  and wy is the image of vx under h', 
when y = h'x. Thisdefinesthefields w and w' on D, andcompletes 
the proof of 1. 

Figure 34.2 

When x E C we have hx = x and h'x = x. Moreover the planes 
T,  and P are inclined a t  an angle of 45' to the line through p and x.  
Therefore the mapping h, of T, into P may be regarded as the result 
of a 90' rotation of T ,  about the line I, tangent to C at x. Similarly 
h', is the result of a 90' rotation of T,  about I,, but in the opposite 
direction. Therefore the vector wx is obtained from w'x by reflecting 
the plane P in the tangent line L, to C at  x. 

As shown in Section 30, the field w' on D may be interpreted as a 
mapping f: D -+ P. Since w' has no zero vectors, $0 does not contain 
the origin. The standard shrinking of C over D into the center point 
of D when composed with j gives a homotopy of the closed curve 
f I C to a constant (see Section 25). Each stage of the homotopy, cor- 
responding to a T E [0, 11, reinterprets as a vector field 70: on C,  all 
vectors lying in P. As T varies from 0 to 1, we obtain a moving vector 
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field on C; that is, for a 6 x 4  x E C, the vector w’,x rotates about x 
as T varies from 0 to 1. When T = 0, the field w’o is w’, and when 
T = 1, the field wfl is constant (all vectors are parallel and of the 
same length). Since fD does not contain the origin, none of the vectors 
w’,x are zero. 

Define w,x to be the vector obtained from w’,x by reflection of P 
in L,. Then, for each T, w, is a vector field on C with vectors in P, 
and as T varies from 0 to 1 we obtain a homotopy of the field w = ouo 
into a field w1. Since w,x is never zero, it follows that w and have 
the same index on C. The index I(wl ,  C) is readily computed by in- 
specting Fig. 34.3. The constant field w’1 on C is shown with solid 
vectors. The field w1 is shown with dotted vectors. At each point x 
of C the dotted vector wx is obtained by reflecting the solid vector 
wflx in the tangent line L,. Suppose we start a t  the top of C, in Fig. 
34.3, and run once around C in the clockwise direction. At the start 
wlx = W ’ ~ X  points to the right. By the time we have traversed a fourth 
of C, wlx has rotated through 180’ counterclockwise, and points to the 
left. As we continue around C, i t  continues to rotate a t  the same speed. 
Therefore i t  rotates through 720’ counterclockwise as we move once 
around C, so I (wl ,  C) = 2. Since I (w,  C) = I(%, C) it follows 
that I ( w ,  C) = 2. This completes the proof of the theorem. 

Figure 34.3 

Exercises 

1. Show that a continuous field of non-zero vectors defined on the sphere 
(but not required to be tangent) must have at  least one vector perpendicu- 
lar to the sphere. 

2. Show that the theorem holds if the sphere is replaced by an ellipsoid (or 
any smooth ovoid). 
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35. Complex numbers 

It is a familiar fact that some polynomials in a real variable x, for 
example, x' + x2 + 1, have no real zeros. The simplest such polynomial, 
Zg + 1, led to the introduction of the pure imaginary number fl 
which we denote by i. It was then discovered that the zeros of other 
polynomials could be expressed in the form a + ib where a and b 
are real numbers. For example, x' + XZ + 1 has as zeros 

l a  
i- - - -  l v 3  - - + i -  

2 2 2 '  2 2 '  
1 G l G  - - i 2 ,  ?+", 

as can be verified by direct substitution. 
This enlargement of the number system should be compared with the 

various enlargements discussed in Section 5. The need for i t  is entirely 
analogous: the real number system is not adequate for solving poly- 
nomial equations. Two questions arise immediately How big a class of 
numbers must one use so that every polynomial has a zero? How are the 
new numbers to be pictured geometrically? In the next section we shall 
show that the set of complex numbers is big enough. In this section we 
shall review the basic properties of the complex numbers and their 
geometric interpretations. 

t 

I 
I I 

I : - x-axis 
I 

-1 0 1 x 2  3 

y-axis 

Figure 35.1 

Just as the real numbers can be pictured as the points of a line, the 
complex numbers can be represented by the points of a plane P. A 
complex number x + i y  is just a pair ( x ,  y )  of real numbers. Having 
chosen an origin, two perpendicular coordinate lines, and a unit of length 
in P, the pair (x, y )  can be plotted as the point with the coordinates 
(x, y ) ,  as illustrated in Fig. 35.1. The complex numbers having y = 0 
(i.e., of the form x or (x ,  0) ) are called real numbers. These are the 
points of the x-axis. Those having x = 0 (i.e., of the form iy or (0, y )  ) 
are called pure imaginaries. These are the points of the y-axis. For any 
complex number x + i y ,  the two perpendicular projections on the co- 
ordinate axes are x and i y .  The real numbers x, y are called the red  
and imaginary parts of x + i y .  



128 EXISTENCE THEOREMS IN DIMENSION 2 [n 

In  order for the complex numbers to form a number system, we must 
define the operations of addition and multiplication on complex numbers. 
We add two complex numbers by adding separately their real parts and 
their imaginary parts. 

(x1, n) + (5, y2) = (x1 + a, yl + yz) 9 

or, equivalently, 

(%+ iy1) + (z2 + iy2) = ( X l +  a) + i(y1+ y2). 

The geometric picture of addition is that of yector addition, where each 
complex number (x ,  y )  is pictured as a vector from the origin to the 
point (x ,  y). The sum of two vectors is just the diagonal of the parallelo- 
gram completed on the vectors to be added (see Fig. 35.2). 

( X I +  x 2 ,  Y I * Y 2 )  p 
@ I + @ ,  

( x 2  I Y z )  

0 1 
Figure 35.2 Figure 35.3 

Multiplication is more complicated. In terms of coordinates, the 
product is easily formed by the rule 

(8, Yl).  (x2, P) = (x1x2 - y1y2, x1y2 + x2yd . 
For example 

This rule can be derived by assuming the distributive, associative, and 
commutative rules for complex numbers, and the extra rule z7 = -1, 
thus: 

(2, -3) .  ( - 4 , s )  = (14, y) . 

(x1 + ird (x2 + iy2) = x1xz + XliY2 + i Y l S  + ir1iyz 
= xrx2 + z2y1y2 + iXlY2 + iX2Yl 

(ax2 - Y l Y d  + i(XlYZ + x2y1) - = 

The geometric picture of multiplication is based on angles and lengths 
of vectors. All angles a t  the origin are measured from the positive =axis. 
Then any vector from the origin is determined by a pair of numbers 
[I, B] where B is the angle in degrees it makes with the x-axis, and 
I 2 0 is the length. Two vectors (complex numbers) are multiplied 
by adding their angles and multiplying their lengths (see Fig. 35.3). 
For example, i = [l, W"]; hence i2 = [l, lSO"] = (-1,O) = - 1. 



$351 COMPLEX NUMBERS 129 

The derivation of this geometric rule from the algebraic rule is an exercise 
in trigonometry. In the algebraic rule, we substitute XI = 11 cos 61, 
yl = YI sin 61, etc., and then apply addition formulas for sine and 
cosine. 

Much work must be done to justify these definitions. First, one must 
verify that, for numbers along the x-axis, addition and multiplication are 
the same as for real numbers. In this way the complex numbers form an 
enlargement of the real numbers. Next, all of the algebraic laws for real 
numbers must be proved to hold for complex numbers, e.g., the associa- 
tive and commutative laws for addition and multiplication and the 
distributive law. The real number 1 = (1, 0) is the unit for complex 
numbers, i.e., (1, 0). (x, y )  = (x, y).  The origin (0, 0) is the zero for 
both addition and multiplication: 

(0,O) + (x, r> = (2, r> , (0,O). (x ,  Y )  = (0,O) - 
Finally one must prove that addition and multiplication are continuous 
operations. 

It is customary to abbreviate (x, y )  by z, thus z = x + iy. Then 
z2 = z - a  = (x2 - y2, 2xy). Wedefine zn for all integers n 2 1 by 
the inductive rule z" = z.zn-1. Then fi = an defines a mapping 
P - P of the set of complex numbers into itself. If n = 1, f is just 
the identity map. If n = 2, then f doubles the angle from the x-axis 
and squares the distance from the origin. Each ray issuing from 0 is 
mapped onto the ray having twice the angle. A circle of radius r about 
0 is mapped onto the circle of radids y2, and is wrapped around it twice. 
It is most useful to think of P as afan of rays issuing from 0. Then za 
wraps the fan twice around itself. 

Similarly, fa = zn multiplies angles by n and raises radii to the 
n-th power. A circle of radius Y about 0 is wrapped n times around the 
circle of radius yn about 0. Thus, if C is any circle about 0, the winding 
number W ( f l  C,  0) is n for this function fz = zn. 

A polynomial f of degree n is defined just as for real numbers. It 
is a function given by a formula 

f2 = U ~ Z ~  + an-lzn-' + ' + US' + a12 + uo 

where ao, al, - , an are specified complex numbers, and a, # 0. (Keep 
in mind that each real number is a complex number, and some or all of 
the a's may be real.) As a function, f defines a mapping f: P + P. Its 
continuity is proved by using the continuity of addition and multiplica- 
tion of complex numbers. 

Exercise 

1. Describe geometrically the mapping f: P -+ P given by each of the 
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formulas 
(a) fs = s - 4, 

(c) fs = s+ (1 - i ) ,  
(b) fs = s + 2i, 
(d) fs = 28, 

(e) fs = -I, 
(g) Is = ( i  + 0% (h) f~ = (i+ 1)s- 3i, 

(i) fs = i#+ 2 i +  2, (s f 0). 

( f )  fs = is ,  

(j) f z  =l/s 

36. Every polynomial has a zero 

THEOREM 36.1. Let n 2 1 be an integer, and let f be a polynomial 
of degree n with complex numbers as coeficients. Then f has at least one 
zero, that is, there is a complex nzcmber a such that f(a) = 0. 

Since the coefficient of zn in f is not zero, we can divide by i t  and 
obtain j / a  = g or j = ag where g has leading coefficient 1: 

g(2) = zn + a1zn-l + - 0 -  + LIZ + a,,. 
Since a zero of g is also a zero of f, we need only prove that g has a 
zero. We shall do this bv showing that there is a circle C whose image 
under the mapping g: P + P winds about the zero point n times: 
W(g I C, 0) = n. Since n # 0, the main theorem of Part I1 asserts 
that there is a point a inside C such that ga = 0. 

The distance d ( z ,  0) of a complex number z from 0 is called its 
absolute value, and it is abbreviated by 1 a I . The circle C will have 
center a t  0 and its radius Y is any number larger than the maximum ro 
of the real numbers 

n I a1 I , ( n  I a2 * * -  , ( n  I an \)'In. 

The direct computation of W ( g  I C, 0) is too difficult, so we shall con- 
struct a homotopy of g I C into the simpler mapping given by the poly- 
nomial zn. In  Section 35 we saw that W(zn  I C, 0 )  = n. So if we can 
show that 0 is not in the image of the homotopy, then the constancy of 
the winding number implies W ( g  I C, 0 )  = n.  

Define the homotopy of g I C by the formula 

g ( z , ~ )  = ~"[l + (1 - T ) ~ ( z ) ] ,  z E c ,  0 5 7 5 1, 
where 

When 7 = 1, g(z ,  T )  reduces to 2"; and when 7 = 0, we find that 
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g(z,  0 )  = gz. It remains to show that 0 is not in the image of this 
homotopy, that is, g(z ,  7 )  # 0 for all z E C and all 7 E [0, 13. 

Now z E C means 1 z \  = r. Since r > (nI ak \ ) I l k  for each 
k = 0, 1, 0 . 0 ,  n - 1, i t  follows that rk > n I uk I , and this implies 
that, for all z E C, 

I a k I  I a k I  ~ _ .  1 - = -  
I Z k  I r k  n 

Since h ( z )  has n terms each of absolute value less than l /n  on C,  i t  
follows that I h ( z )  I < 1 on C. Since also I 1 - 7 I 5 1, we find 
that 1 (1 - 7 ) h ( z )  1 < 1. The sum of 1 and a complex number of 
absolute value less than 1 is never zero. Therefore, for all z E C and 
7 C [ O ,  13, 1 + (1  - 7 ) h ( z )  is not zero. Since zn  is also not zero for 
z E C,  it follows that the product zn[ l  + (1 - ~ ) h ( z ) ]  = g ( z ,  7 )  is 
not zero. This completes the proof. 

An algebraist would not be content with only one zero of a polynomial 
of degree greater than 1. The following theorem gives the complete result. 

THEOREM 36.2. Let f be a polynomial of degree n with (real m) 
complex numbers as coejkients. Then there are n complex numbers 
al, az, * * - ,  a,, such that f factors into the product of the n linear factors 

f(z) = an(z - C X ~ ) ( Z  - O L Z ) * * * ( Z  - a n )  . 
If we set z = ai, the i-th factor is zero; hence each ai is a zero of f. 

If we set z = a, where a is a number different from a1, -.., an, then 
each factor is non-zero; hence f ( a )  # 0. This shows that all a2, - -, a n  
are zeros of f,  and they are the only zeros. In case a particular number 
occurs two or more times in the sequence, it is called a multiple zero, and 
the number of its occurrences is called its multiplicity. 

To prove the theorem we need the following lemma. 

LEMMA. If f i s  a polynomial of degree PZ and a i s  any complex 
number, then there i s  a polynomial g of degree n - 1 such that 
f(z> = ( z  - f f > g ( z >  + f ( f f ) .  

We prove the lemma by dividing f by z - a using the process of 
:ong division. Let g denote the quotient and r the remainder, so that 

I - -  - g ( z )  + -. f ( z )  
2 - a  2 - a  

Multiplying by z - a gives 

f ( z )  = (z - a ) g ( z )  + r - 
To evaluate I ,  we set z = a, and obtain f ( a )  = r. 
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To prove Theorem 36.2, we apply Theorem 36.1 which says that f 
has at least one zero, say a1. Since ~ ( C Y I )  = 0, the lemma states that 
there is a polynomial g of degree n - 1 such that 

f(z) = (z - a1>g(z) +f(.l) = (2 - a1)g(z) 

The remainder term drops out because f(a1) = 0. If n - 1 2 1, we 
may apply Theorem 36.1 to obtain a zero a2 of g. Then the lemma 
says that there is a polynomial h of degree n - 2 such that 

g(z) = (z  - az)h(z) . 

f(z) = (z  - ad(z  - az>h(z) - 
Combining these gives 

If n 2 3, thereis azero a3 of h, and h ( z )  = (z - ( Y 3 ) k ( Z ) ;  whence 

f(z) = (z - ai) (z  - az) (z - aa)K(z )  
Each step reduces the degree of the last factor by 1. After n steps, the 
last factor has degree 0; hence it is a constant c, and 

f ( z )  = (Z - al) (Z - a*)*.* (2 - an)C .  

If we multiply out the right side, the coefficient of zn is c. Therefore 
c = a,. This completes the proof. 

Historical comment. Theorem 36.1 has been called the fundamental 
theorem of algebra. I ts  first rigorous demonstration was given by Gauss in 
1797 (see D. E. Smith, A Source Book of Malhematics, Dover 1959, 
page 292) .  In later years he gave several quite different proofs, but none 
resembles the one presented above. A direct and fairly simple proof along 
classical lines can be found in the book Calcdzts by Ford and Ford 
(McGraw-Hill, 1963), page 263. 

Exercises 

1. If TO is defined as in the proof of Theorem 36.1, and E denotes the set 
l a 1  > TO, show that f has no zeros in E.  

2. Compute the number ro for each of the following polynomials, thus 
finding a disk about the origin which contains all the zeros of the 
polynomial. 
(a)e4+323-22+5, (b)2z7+iZ3-3z, (c)e4+(2- i )9+ ( i+  1)z. 

3. Let fa = (a - 2)(2 + l)(z - i ) 4 ;  compute the coefficients of the 
polynomial, compute ro as above, and check that the disk with radius TO 
contains all the zeros. 
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4. Find the zeros of each of the following quadratic polynomials and verify 
that all zeros lie inside the disk with radius ro. 

(a) 322 - 132 - 10, (b) 3z2 - 2e 4- 1. 

5. In the proof of the theorem, show that i t  suffices to pick Y so that the sum 

Using this fact, show that all the zeros of d - e + 5 lie inside the circle 
121 = 2. 

37. Epilogue : A brief glance at higher dimensional cases 

In  passing from the one-dimensional case to the two-dimensional, we 
met with serious difficulties which could only be resolved by the develop- 
ment of a new concept-the winding number W (p, y )  of a closed curve 
(e about a point y. One would expect additional difficulties in passing 
to the three- and higher dimensional cases. Indeed they do appear, but 
much that we have done in the two-dimensional case carries over with 
little change. A brief sketch of a part of what is known about this prob- 
lem is worthwhile because i t  embodies some of the best of modern re- 
search in mathematics. 

In passing from the plane P to a n-dimensional euclidean space Rn, 
it is natural to replace the disk and its boundary circle by the spherical 
ball B and its boundary sphere S. Let f: B + Rn be a mapping, and 
y a point of R" not in fS. Then the main theorem states: If 
W ( f  1 S, y )  # 0, then there is a t  least one .I- E B such that fx = y. 
The chief problem lies in defining the number IY( f I S, y )  so that it 
has all the properties of the winding number when n = 2. When 
n = 3 it is better to call W ( f  I S, y) the endosing number. For 
example, the sphere S should enclose each interior point of B exactly 
once. This work has been carried out: the number W ( f  1 S, y )  has 
been defined precisely for all dimensions n, and has been shown to have 
the same properties as for n = 2. For example, it is unchanged by a 
homotopy that avoids y. 

Once the main theorem has been proved, then the applications dis- 
cussed in Sections 27-36 for n = 2 can be stated and proved for all 
dimensions with only moderate changes in the notation and language. 
Let us state a few of these. Since the sphere S encloses once each interior 
point of the ball B ,  any mapping j B + R", which leaves fixed all 
points of S, has the property fB 3 B. Next we have that any mapping 
B * B has a t  least one fixed point. Again, if a sphere S in Rn is mapped 
into Rn-*, then some pair of antipodes have the same image point. 

The theorem about a field of tangent vectors to a sphere S in Rn 
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must be modified. When n is even, S does have a continuous field of 
non-zero tangent vectors (e.g., when n = 2, S is a circle). When n is 
odd, any continuous field of tangent vectors to S has at least one zero. 

In jumping to the n-dimensional case, we have skimmed over two 
questions worthy of much more attention. The first of these is: Can the 
ball and sphere be replaced in the main theorem by other objects without 
altering the truth of the conclusion? Naturally, one can always replace 
them by topologically equivalent objects such as a solid box and its 
boundary surface. But can we replace them by objects which are topo- 
logically different without altering essentially the conclusion of the main 
theorem? The answer is “yes” for dimensions greater than 2. For ex- 
ample, in R3 let T be a torus and D its interior (e.g., D is a solid 
ring and T is its boundary surface). One can define an enclosing number 
W (f I T ,  y)  so that T encloses once each inner point of D, and en- 
closes each point of the complement of D zero times. Other examples 
in Ra are provided by the multiply-connected surfaces and their solid 
interiors. Figure 37.1 illustrates a triple doughnut and its boundary. 

Figure 37.1 

The second question we have glossed over is: Why do we consider only 
mappings of n-dimensional sets into n-dimensional sets? Can our main 
theorem be generalized so as to allow mappings of a k-dimensional set 
into Rn ? We shall indicate briefly how something can be done in this 
direction in the case k = 2 and n = 3. Let f: D+ R3 be a mapping 
of a disk into space. Let cp: [a, b] 4 R3 be a closed curve in Ra which 
does not intersect j C .  Assigned to the two curves j l  C and cp is an 
integer W (f I C ,  c p )  called their linking number. The five examples in 
Fig. 37.2, ordered from left to right, have linking numbers 0, 1, 2, 4, and 
0. The new version of the main theorem reads as follows: Zj the linking 
number W (  f I C ,  c p )  is not zero, fhen fD intersects the closed cum cp in 
at least one point. The reader should check this statement against the 
five examples in Fig. 37.2. In the first and fifth examples, one is able to 
picture a surface whose boundary is the lower closed curve, and which 
misses the upper closed curve. This surface might be fD. In the other 
three examples, no matter how we insert a surface fD whose boundary 
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is the lower curve, this surface intersects the upper curve. (In examples 
3 and 4, one can picture a twisted strip, i.e. a Mobius band, which does 
not meet the upper curve and whose periphery is the lower curve; how- 
ever i t  cannot be an fD because i t  is one-sided.) 

Figure 37.2 

Notice that the winding number W (f I C, y )  in the plane involves a 
closed curve and a point, but, on passing to maps of a disk into Ra, the 
point y is replaced by a closed curve cp, and the winding number be- 
comes a linking number. If we were to formulate an analog of our main 
theorem for mappings of a disk in R4, we would need the concept of 
“linking number” W (  f I C, c p )  of a closed curve f I C and a closed 
surface cp in R4. By a closed surface in R4 we mean a continuous 
mapping into R4 of a sphere or a torus, or any one of the multiply- 
connected surfaces. 

Thus a point, a closed curve, and a closed surface are examples in 
dimensions 0, 1, and 2 of a concept defined for all dimensions called a 
cycle. The things of which they are the boundaries (e.g. intervals, disks, 
balls, etc. ) are called chains. Cycles, chains, their homologies and homo- 
topies, and their intersections and linkings make up the main fare of the 
fascinating subject of homology theory which is a major part of topology. 

We have shown how some of the simpler ideas of topology can be used 
to prove theorems which are, a t  the same time, intuitively satisfying yet 
subtle. They are existence theorems. Higher dimensional generalizations 
of these theorems can be formulated and proved using the concepts of 
homology theory. 

A reader who desires to pursue the development of the ideas presented 
in this monograph can consult the following books. The one by Hall and 
Spencer provides a continuation of the material of Part I on point-set 
topology. The other two continue the ideas of Part I1 on algebraic 

D. W. Hall and G. L. Spencer, Elementary Topology, John Wiley 

J. G. Hocking and G. S .  Young, Topology, Addison-Wesley, Reading, 

P. J. Hilton and S .  Wylie, Homology Theory, Cambridge University 

topology. 

and Sons, New York, 1955. 

Mass., 1961. 

Press, 1960. 





Solutions for Exercises 

Section 1 

1. Minimum f ( 3 )  = 1, maximum j(1) = 5 ,  since j(x) = 5 -  (x- 1)2. 
No solution if y < 1 or if y > 5 .  One solution if 1 5 y < 4 or if 
y = 5 .  Two solutions if 4 5 y < 5 .  

2. Since .$ - 5 takes on all values between -4  and 4-3 as x varies 
from 1 to 2, for some x between 1 and 2 i t  takes on the value 0. 
Since a3 - 5 = 0 means 9 = 5 ,  such an x must be ‘4. 

3. The value of this function at x = 3 is negative, at x = 4 is positive, 
so it  has a zero between 3 and 4. 

4. Minimum f(5) = %. There is no maximum because j (  l/n) = It for 
tz = 1, 2, 3, - a *  are values of f. Note that j ( 0 )  is not defined. 

5. In  this case, every value of f is 3 (its graph is a horizontal line segment), 
so112 = M = 3. 

6. Minimum j ( 0 )  = 0. There is no maximum because 5 is not in the 
interval [ O ,  5). 

Section 2 

1. To prove the equality of two sets, one must show that an element of the 
first set is an element of the second set and vice versa. For the first part, 
suppose x E ( A  U B )  n C. This means that 5 is in A or B, and also 
x is in C.  So we must consider two cases. 
Case 1: ?G E A and x E C.  It follows that x E A n C, and this implies 

that .r 6 ( A  n C )  U ( B  n C). 
137 
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Case 2 :  x E B and x E C. It follows that x E B fl C, and this implies 

For the second part, suppose x E ( A  f l  C )  U ( B  n C )  . This means that 
X E  A n C  or X E  B n C .  
Case 1: x E A n C. It follows that x E A and x E C. This implies 

that x E  ( A  U B )  and x E  C ;  hence x E  ( A  U B )  n C. 
Case 2 :  x E B r l  C.  It follows that x E B and x E C. This implies that 

X E  ( A U B )  and x E  C. 
In either case, x E ( A  U B )  fl C. (See Fig. Sl.) 

that x E (A n C )  u ( B  n C ) .  

Figure S1 

2. (See Fig. S2.) 

Figure S2 

3. Since B and its complement have no points in common, any subset of B 

4. (a) Following the pattern described in the answer to Problem 1, let 
y E f ( A  U B ) .  This means that there is an x E A U B such that 
f x  = y. Incase x E  A,  wehave y E  f A ,  andincase X E  B,  WI: 
have y E fB .  Thus, in either case y E fA U fB.  For the converse 
argument, let y E f A  U fB.  In case y E f A ,  then there is an x E A 
such that f x  = y; and since x E A U B, this means y E f ( A  U 8)  
In  case y E fB ,  y = f x  for some x E B;  and since x E A U B,  
this means y E f ( A  U B )  . So, in either case, y E f ( A  U B )  . 

(b) Let y e  f ( A n B ) ,  then y = f x  forsome x E  A n B .  Since X E  A ,  
we have y E f A ;  and since x E B, we have y E fB .  Therefore 
y E f A  n fB .  (The converse argument breaks down. Suppose X 
consistsof two points A and B, and Y has justone point y; then 
f A  = y = fB ,  f ( A  n B )  = 0, and f A  fl f B  consists of y.) 

and the complement of B have no points in common. 

5. (a) A circle with center at S. 
(b) A line through S. 
(c) An arc of a circle ( a  plane through N and the segment cuts X in 

(d) Twice as large. 
(e) All points of a great semicircle from N to S but omitting ET . 

a circle). 

6. gf: y 1 =  -a- 3, y2 = 22- 4 
fg: yl = -x1+3, y2 = xs-4 
j - 1 :  y1 = X I  - 3, y2 = x*+ 4 
g-': y1 = -a, y2 = m. 
(gf)-': y1 = - X I -  3, y2 = xs+ 4 
f-": 3 = -a- 3, y2 = z*+ 4 
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8. x E (gf)-lC means that gfx E C; and this means that j x  E g'C, which 
in turn means that x E j - ' (g 'C);  so x E (gf)-'C means that x E 
j- '(g'C). (We use the word "means" to mean that the statements are 
equivalent, i.e. each implies the other.) For the second part, suppose 
x # x'. Since j i s  1-1, we have fx # fx', and since g is 1-1, we 
have gjx  # gjx'. Now let z E Z. Since gY = Z, there is a y E Y 
such that gy = z; and since fX = Y, there is an x E X such that 
fx = y; hence gfx = z or z = (gf)-'z. By definition, y = g l z  
and x = j-ly; hence x = f-'g-'z. Therefore (6)" = f-'gl. 

Section 3 

1. When x , y ,  z are in lineand y is between x and z. 

2. r' = I- d ( x , x ' ) .  

3. Because N ( f x ,  c) 3 N ( f x ,  8 )  for all c 2 3 . 
4. Because N ( x ,  6') C N ( x ,  6) for all 6' < 6. 

5. Discontinuous at each point of C, continuous everywhere else. For 
c 5 d,  there is no corresponding 6 .  

6. Because it does not increase any distance: 

d(x ,  2') 1 d ( j x , f x ' )  for all x , ~ ' .  

Figure S3 

7. Contracts distances for any pair of points in the lower hemisphere. j-' 
sends y E R2 into the intersection of the ray p y  with S. See Fig. S3. 
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The same picture shows that the inverse is continuous. The image of 
N ( p ,  I, S) - p is the exterior of a circle with center at the origin. If f p  
were defined and f were continuous a t  p ,  then any N( f p ,  c) would 
have to contain the entire exterior of some circle; but this is impossible. 

8. Let x E [u, b] and c > 0 be hied. Since f is continuous at x ,  there 
is a & > 0 such that 1 fz’ - f x  I < c/2 for all x’ E N ( x ,  61). Since 
g is continuous, there is a 62 > 0 such that I gz’ - gx I < c/2 for all 
z’E N(x ,&) .  Let 6 be thesmallerof &, 62. Then x’e N ( x ,  6 )  implies 

I f z ’ - f z I + I g z ’ - g x I  < €/2+€/2 = c. 

Apply now the inequality of the hint. 

9. 6 = d sin 28 = 2d sin 8 cos 8, where sin 8 = c/2. Since 
cos8 = 41 - sin2& 

iirect substitution gives 6 = aid-. 

Section 4 

I A single point x E X is a closed set of X for any space X .  Since a 
finite union of closed sets is closed, any finite set A of a space X ,  being 
the k i t e  union of its single points, must be closed. If X is also finite, 
then X - A is finite; hence X - A isclosed, so A is open. 

2. One solution is V = U u (R - L). 

4. A set of a single point; also R. 

5. Let X consist of two points XI ,  x2, A = { X I } ,  and B = { x Y } .  A and 
B are complements. A U B = X ;  X - ( A  U B )  = @; 

( X - A A ) U ( X - B B )  = B U A . =  x .  
6. Let X = R, A = (0, 21, B = [l, 3 ) ;  then A U B is open in R. 

7. If U is open in X ,  then by Theorem 4.4 there is an open set W of R” 
such that U = X t l  W. Let V = Y n W. Then V is open in Y, 
and U = X n  V because X n  Y = X .  

8. Intersection of these intervals is the single point 0, and a single point of 
R is never an open set of R. 

9. Let X = {a) ,  and Y = (39,yz) suchthat fa = y1. A = O C X ,  
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fA = 0, Y - f A  = Y .  f ( X -  A )  = fX = y1. so 
Y - f A  # f ( X -  A ) .  

10. x E X - f-lA means that x E X and x 4 f-’A. x E X means fx E Y, 
and x @ f-’A means fx 4 A .  So fx E Y - A ,  and this means that 
x E f -yY  - A ) .  

11. Let A be a subset of X such that A is open in X ;  then, for each 
x E A ,  there is some neighborhood of x in X which lies in A .  Each 
neighborhood is open; take the union of all such neighborhoods. 

Section 5 

1. If .\13 were rational, we could write .\13 = a / b ,  where a,  b are integers 
with no common factor. Square both sides, and multiply by b2 to obtain 
a2 = 3b2 which shows that a2 is divisible by 3 .  If a were not divisible 
by 3 ,  i t  would be of one of the forms a = 3k + 1 a = 3k + 2 
for some integer k .  In  the first case 

or 

a2 = 9 k 2 +  6 k +  1 = 3 ( 3 k 2 +  2 k )  + 1 = 3k’+ 1 ; 

in the second case 

a2 = 9k2+ 12k + 4 = 3k”+ 1 ; 

in either case a2 is not divisible by 3 .  But a2 = 3b2 is divisible by 3 ,  
so a must be divisible by 3 ,  and a = 3k for some integer k .  Then 
3b2 = ( 3 k ) 2  = 9k2;  whence b2 = 3k2; this says that b2 is divisible 
by 3 from which it follows that b is divisible by 3 .  This is a contradic- 
tion because a, b were assumed to have no common factor. 

2. Let 2n2 = m2; since n is iln integer, its prime factorization contains 
either an odd number of 2’s or an even number of 2’s. I n  either case, n2 
has an even number of 2’s, and 2n2 has an odd number of 2’s. But m2 
has an even number of 2’s as factors; so if m and n are integers, 
2n2 # m2; that is, 2n2 = m2 has no solution in integers m, n. 

3. Let 2123 = m3; if the factor 2 occurs k timesin m, it  occurs 3k times 
in m3. If 2 occurs k’ times in n, then it occurs 3k’ times in n3 and 
3k’ + 1 times in 2n3. Since the number of any prime factor in a com- 
plete factorization is unique, 2n3 = m? has a solution in integers only 
if there are integers k ,  k‘ such that 3k’ + 1 = 3k.  This is impossible 
since 3k’ + 1 is not divisible by 3 but 3k is divisible by 3 .  

4. If there were rational solutions x = m/n and y = p / q ,  where m, n, 
p ,  q are integers, then 

nP so (np)’ = 2 ( ~ 2 q ) ~ ,  and fl = +- - P2 = 
q2 n2 ’ mq 
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This says that a is rational, contradicting what we have proved in 
Section 5. 

5. If there are integers R ,  m, n such that 

r*y = 2 ,  and m # 0 ,  

then cubing gives ka + 3 P m a  + 3km22 
it follows that 

2& = 2nS, from which 

2n3- Ka- 6km2 
3Pm+ 2m3 a- 

is a rational number; contradiction. The case of m = 0 is that of 
Exercise 3. 

6. The partial sums of this series are 

0, 1, .9, .91, .909, 3091, 90909, 0 . 9  

and the intervals from each sum to the next form a sequence of con- 
tracting intervals 

[O, 11 3 [.9, 13 3 C.9, .91] 3 [.909, .91] 3 .-- . 
These contract regularly. Their intersection is the number whose decimal 
expansion is 0.909090. - - (repeating on the digits 90). It equals 10/11 
and represents the sum of the infinite series. 

7. Similar to Exercise 6: 

co, 11 3 E l  11 3 rk $1 3 [i, $1 3 ... - 
The sum is $. 

8. First trial shows that 3.41 divides 12.27 at least 3 times but not 4, so 
fist interval is [3, 41. Second trial shows that 3.41 divides 12.27 at 
least 3.5 times but not 3.6, so second interval is c3.5, 3.6). The next is 
(3.59, 3.603, and then C3.598, 3.5991, - * - .  

9. [l, 2 1  2 c1.5, 1.61 3 c1.58, 1.591 3 * * * .  

M If s is a positive number less than b - a, then all the integral multiples 
of s are evenly spaced along the line with each two neighbors being a 
distance s apart. Since a and b are farther apart than s, the interval 
(a, b) must contain a multiple of s. To construct a rational in (a, b), 
choose s = 1/n where n is an integer such that n > l/(b - a). It 
follows that s = l/n < b - a, and that some multiple ms = m/n, 
a rational number, lies in (a, b). To obtain an irrational number con- 
tained in (a, b), let s = a / n  < b - a. Q is not closed since, for 
each x E R - Q and each r > 0, the interval N ( z ,  Y )  contains 
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rational numbers. Neither is i t  open because each open interval contains 
irrational numbers. 

11. Since a < b for every a E A and b E B, pick any l o  = [ao, bo] 
where aoE A and boE B. Let co = 3(ao+bo). Then ao < co < bo. 
Either A or Q E  B. If A,  let I1 = [ a l , b ~ ] ,  where a1 = co 
and bl = bo. If a E B, let (11 = a0 and b~ = co. Continue in this 
way to build a contracting sequence so that, for each s 2 1, I ,  = 
[a,,, b,] is a half of In+ and a,, E A ,  b, E B. By the completeness 
theorem, the intervals I ,  have a point c in common. By construction, 
if c E A,  all preceding a’s are less than c, and c is the largest number 
of A ;  if c E B, c is the smallest number of B. See proof of theorem 
on page 34. 

Section 6 

1. If X is bounded it  is contained in some sufficiently large ball B. If 
A C X then A is contained in B, hence any subset A of X isalso 
bounded. 

2. If X, Y are two bounded sets then X c N(q, r ) ,  Y c N(yo, s) for 
some I ,  s. Let t = d(zo, yo); then 

Nq, Y + s + t )  3 N(q, r> u N Y o ,  s) 3 x u Y .  

3. For example, each integer is a bounded set; but the infinite sequence 
1,2, 3, -.-, n, - * *  is unbounded. 

5. In thefirstcase, uk consistsofall x E  X such that 1/K< d(zo,z) 2 1; 
that is, uk is an annulus containing its outer circle but not its inner one. 
I n  the second case, uk consists of all points x E X such that 

a(%, Yo) > l/k ; 
that is, uk is a crescent shaped region. 

6. The least number of such intervals is 11; for example, let s = 1/10 
and set U1 = (-s, 1 - s), Uz = (1 - 2s, 2 - 2s), * a * ,  

U11 = (10 - lls, 11 - 11s). This is a subset of all intervals of R of 
length 1, and since this subset covers X, the set of all such intervals is 
a covering of X. 

7. If y i s  in the exterior of C1, then the line segment from to y meets 
C1 in a point c such that U,  contains y. C, is closed and bounded, 
hence compact. See Fig. S4. The open annulus cannot be covered by a 
finite subcollection of C because, as r gets nearer to 1, the number of 
half-planes required to cover C, increases without bound. 
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&a Figure S4 

8. The union of a finite covering of X and a finite covering of Y is a finite 
covering of X U Y .  

9. Take the integers as one-element sets; or consider R as the union of 
the closed intervals [-n, n], n = 1, 2, 3, *.*.  

10. For any point y of Y -  X, theexterior of N(y,r)  for each r > 0 is 
open, and the collection of these for r > 0 covers X .  Choose a finite 
covering. Take the smallest r in this covering. Then N ( y ,  r) n X = a. 
This proves that Y - X is open, hence X is closed. 

11. Let a and b be irrationals (for example, let a = -a and b = a) ; 
then X = [a, b] n Q is closed in Q since [a, b]  is closed in R, and 
X contains neither a greatest nor a smallest rational number. 

12. j x  = nx; f: [- 1, 11 4 [-n, n]. KO; because I is compact so jI is 
also compact, but R is not compact. The function j x  = x/( 1 - .') 
maps (- 1, 1) onto R ;  so does fx = tan irx. There are many such 
functions: any continuous increasing function with vertical asymptotes 
at x = -1 and x = +1 fulfills the requirement. 

13. First, let X be compact and C a covering of X by open sets of R". 
The collection C' of intersections V' = V n X for all V E C is a 
covering of X by open sets of X .  As X is compact, C' contains a 
finite covering D'. The V's in C corresponding to V' in D' form a 
finite covering D C C. Next, let X have the property that each cover- 
ing of X by open sets of Rm contains a finite covering, and let C be a 
covering of X by open sets of X. If y E Rn - X, the exteriors of 
neighborhoods of y form a covering of X by open sets of Rn; since 
it contains a finite covering, y has a neighborhood not meeting X ;  
hence X is closed. For each V E C, let V' = V U (R" - X ) .  The 
collection of these for all V E C is a covering C' of X by open sets of 
R". A finite covering in C' corresponds to one in C. 
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Section 7 

1. (a) The first is connected; the second is not and separates into the two 
different circular arcs connecting the two deleted points which, of 
course, do not belong to the separation. 

(b) The first is connected; the second separates into two subarcs. 

(c) The first is not connected, for if A is the set consisting of any point, 
and B the set consisting of the other points, A ,  B is a separation. 
The other two sets are connected. 

(d) (i) Connected (section of rubber tubing) ; 
(ii) Connected {with cut along Q, an inner tube can roll out into 

(iii) Connected (section of rubber tubing sliced lengthwise rolls 

(iv) Disconnected (patch of inner tube severed from remaining 

(v) Disconnected (inner tube cut into two sections) ; 
(vi) Disconnected (ring collar sliced from tube) ; 
(vii) Connected (deletion of two P’s from the solid figure is like 

making two scratch marks on the surface; any two points may 
be connected via the interior). 

(e) Not connected; A and B are the two circles. A tl B = 0, so 

( f )  (i) Connected; (ii) Connected; (iii) Not connected; 

an annulus) ; 

out into rectangle) ; 

portion) ; 

the intersection is connected. 

(iv) Connected; (v) Connected. 

2. If D is star-shaped about the point p ,  then each .2: E D lies on the 
line segment p x  in D, and this segment is connected. Any two points 
x ,  y of D lie on the broken line xp U p y  in D which is also connected 
since i t  is the union of two connected sets with a common point. 

3. In all cases, two points outside, inside, or on the surface can be connected 
by an arc of a circle. 

4. Let the domain X consist of two points and the range Y consist of 
one point. 

5. For a tangent line, the projection j shrinks distances, and so is continu- 
ous. For a chord, let g be projection from the center onto a segment of 
the parallel tangent line. Then g is a similarity, hence the composition 
fg is continuous. A chord is a segment, hence is connected, and hence 
also the arc is connected, being a continuous image of a connected set. 

6. Two semicircles whose intersection consists of the two endpoints. 

7. The set of points with rational forms a family of lines parallel to the 
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y-axis; points with y rational form a family of lines parallel to the x- 
axis. The union of these forms a grid. Any two points of the grid are 
connected by a polygonal path having a t  most three segments. Points 
having exactly one rational coordinate are separated, for example, by 
the line y = 2 into those points above the line and those below. Points 
having two rational coordinates are separated, for example, by the line 
x = d. 

8. A circle with center (0, 0) and radius I’, where f is irrational, sepa- 
rates X. 

9. Let X denote the set, and assume X # @. Let xo be a point of X. 
Divide R - X into the set A of those numbers less than zo and the 
set B of those greater than XO. Since X contains all points between 
any two of its points (see the proof of Theorem 7.6), it follows that each 
number of A precedes each of X, and each of X precedes each of B. 
If A and B areempty, wehave X = R. Ascase 1,suppose A # @ 
and B = @. Apply Exercise 11, Section 5 ,  to obtain a number a 
which is either the largest in A or the smallest in X; if a E A ,  then 
X is the open half-line of numbers x such that a < x < 00, and if 
a E X, then X is the closed half-line a 5 x < 00. Case 2, when 
A = @ and B # 0, is similar. In case 3, when A # @ and 
B # @, we apply Exercise 11, Section 5 to the cut composed of A 
and X U B to obtain a number a which is the largest of A or the 
smallest of X. Apply it also to the cut A U X and B to obtain a 
number b which is either the smallest in B or the largest in X. If 
a = b, then X is the single point XO. If a < b, then X consists of 
the open interval (a ,  b)  with none, one, or both endpoints. 

10. Since the intervals are closed, their intersection X is also closed. Sup- 
pose X has more than one point. If x and y are any two points of X, 
the interval [ x ,  y] lies in each interval of the sequence and therefore in 
X; hence X is connected. Since X is closed and bounded, it is compact, 
and since X is compact and connected, it is a closed interval. 

11. Let I0 = [UO, &], where a0 E A and bo E B. If the midpoint m of 
I0 is in A ,  set I1 = [m, bo]; otherwise set I1 = [ao, m]. Construct 
in this way a contracting sequence such that, for each n, In = [an, bn] 
is a half of In-l, cr, E A and bn E B. Let c be a point common to all 
the I,. Each neighborhood of c contains In for sufficiently large n, 
hence i~ contains points of both A and B. So, if c E A,  then A is 
not open, and, if c E B, then B is not open. This contradicts the assump- 
tion that A ,  B is a separation because c E In c I = A U B. 

Section 8 

1. (a) See answer to Exercise 12, Section 6. 
(b) Restrict an answer to (a) to [0, 1). 
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(c) Using polar coordinates ( I ,  0) in the plane Y with origin a t  the 
center of X ,  define f: X +  Y by f(r, 0) = (r/(b2 - ."), 0) where 
b is the radius of X .  In  words, f maps each diameter of X topo- 
logically onto the line containing the diameter by a mapping of the 
type in part (a). 

2. By stereographic projection, the circle with one point deleted is topo- 
logically equivalent to a line; by l(a) , the line is topologically equivalent 
to an open interval. Alternately, by measuring arc length from a base 
point, the deleted circle is mapped topologically onto an open segment 
whose length is the circumference. 

3. For example, the set of all whole numbers; the set of all positive rationals; 
the set of all positive irrationals; the set { 0, +, 3, f, - * } ; etr. 

4. (a) Yes; (b) No; in each neighborhood of 0 there are points not con- 
nected with 0; (c) Yes; (d) No. 

5. (a) For example, the set of all integers; a line; a closed half-line. 
(b) Let X be closed in R", and x E X .  For any c > 0, N ( x ,  Y )  lies 

in the set B, of all points x' such that d(x, x') 5 7. Since B, is 
closed and bounded, it is compact. Since X is closed, X n B, is 
compact. It contains N ( x ,  I ,  X ) .  

6. (a) Not topological; a line is unbounded and is topologically equivalent 
to an open interval which is bounded. 

(b) Topological. 
(c) Not topological; any two segments of same or different lengths are 

(d) Topological. 
(e) Not topological; for example, a square is topologically equivalent to 

(f) Topological. 
(g) Topological. 

topologically equivalent. 

any quadrilateral, convex or concave. 

7. X ,  Y are topologically equivalent, so there is a continuous 1- 1 function 
f such that j X  = Y.  Let C be an open covering of Y ;  for each U E C, 
let U' = f-W, and let C' be the collection of these sets U'. Since j is 
continuous, each U' is open. Since C covers j X ,  it follows that C' 
covers X .  Since X is compact and C' is a covering of X by open sets, 
C' contains a finite covering, say U:, U;, * * , Uk). Then the correspond- 
ing sets u1, UZ, ..., uk in c cover Y because Y = .fx and each 
Uj = fU(. Therefore Y iscompact. 

8. ( 4 ,  ( 4 ,  ( 4 ,  (g). 

Section 9 

1. 1/42. 
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2. (a) The graph is an inverted parabola passing through (0,O) and (1,O) ; 
its highest point is at (1/2, 1). 

(b) No, for example, f0 = fl = 0. 
(c) j0 = 0 and f(3/4) = 3/4. 

3. (a) The graph is a parabola passing through (0, 1) and (1, 1); its 
lowest point is at (1/2, 3/4). 

(b) No, for example, f0 = fl  = 1, also f-'O is empty. 
(c) fl  = 1. 

4. We show that every set Y topologically equivalent to X necessarily 
has the same property. Let h: X + Y be a homeomorphism, and let 
f: Y --+ Y be continuous. Then h-'fh: X- X is continuous. Let x E X 
be a fixed point of h-yh so that Ir'jhx = x. This implies fhx = hx, 
hence hx E Y is a fixed point of f. 

5. 9, 2, <x, or xm for any positive m different from 1. 

6. Each of the answers to Exercise 5. 

7. Suppose f maps [0, 1) onto [0, 1). Then there is a b E [0, 1) such 
that f b  = 0. If b = 0, then 0 is fixed; so suppose b > 0. Then 
f x  - x is positive for x = 0 and negative for x = b. By the main 
theorem f x  - x = 0 for some x E [0, b] .  

Section 10 

1. (a) The tangents from p to C divide L into three subsets; namely, 
the two points of intersection a ,  b of the tangents with L, the 
points between a and b, and the points not in the segment ab. For 
each point of L between a and b, there are two inverse images; 
for each of a and b, there is one inverse image; for each point of L 
not in the segment, there is no inverse image. 

(b) The points of intersection of the diametrical line through p with C. 

2. Each point of L has just one inverse image. The projection does not map 
p' into L; and it cannot be defined to do so continuously because C is 
compact and L is not. 

3. Let f: D + D' be any mapping and compose f with the reflection 
g: D'+ D. Then gf: D+ D has a fixed point x,  and gfx = x means 
that fx is the reflection of x. 

4. Compose f with the antipodal mapping g: D' + D. Then 6: D + D 
has a fixed point x ,  and gfx = x means that fx is antipodal to x. 
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5. Let j :  C -+ C wrap C twice around itself so as to double the arc length 
from a fixed reference point (e.g., if (I, 6) denote polar coordinates in 
the plane with pole a t  the center of C, let fir, 6) = (r, 26) ). Then f 
maps each diametrical pair into one point. Now compose f with any 
non-constant mapping g: C L, e.g., a projection. 

Section 11 

1. The cut through the line of centers solves the problem; this applies equally 
to any pair of pancakes with the property that each is symmetric with 
respect to some point, the center. 

2 Only if the polygons have an even number of sides; if the polygon has an 
odd number of sides, the method works only if a vertex lies on the line 
of centers. 

3. There are iniinitely many ways: any perpendicular pair through the center. 

4. A quarter turn applied to any solution gives the same solution. 

5. Enclose both pancakes within a sufficiently large circle C having the 
center z of the circular pancake as center. Let I be the radius of C. 
For each x E C, let Pz be the area of the part of the irregular pancake 
that is to the left of xz (oriented from x through z), and let QZ be 
the area of the part to the right of a. Define fx to be the difference 
P, - QZ. At the diametrical point x’ of x,  the sides are reversed; hence 
jx’  = -fx. Since f is continuous and changes sign as we traverse a 
semicircle, i t  is somewhere zero. 

6. With a semicircular blade, i t  would not be true that XA‘ = x~ (a  semi- 
circle is not transformed onto itself by a 180’ rotation about its midpoint). 
The argument holds for any curved blade that is invariant under a 180’ 
rotation, e.g. an S-shaped blade. 

Section 12 

1. Observe first that for any x and x’ we have 
(Z9-z’2( = I z + x ’ 1 \ x - x ’ (  5 ( I z I + { x ’ I , \ 3 : - x 1 ( .  

6/(2 I x I + 1)- 

12- 2’21 5 ( l x l +  Ixtf l ) -Ix-  X’J < ( 2 ) x l +  1) 12- *’I 5 Q. 

If x and Q > 0 are given, take 6 to be the smaller of 1 and 

If x’ is such that I x’-x I < 6, then 6 5 1 implies 1 x’ I < I x 1+1 
and hence I x I + I xt I < 2 1 x I + 1; and 6 5 ~ / ( 2  I x 1 + 1) implies 
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2. Let x and t > 0 be given. Since g is continuous at x, there is a 
6, > 0 such that for all z’ E N ( x ,  6,) 

t I gx - gx’l < -- and I g x - g Z ’ I  < 1. 
2(lfx I + 1) 

These imply 
l f x l  I g x -  gx’l < 4 2  and Igz’( < 1gzl-b 1 .  

Since f is continuous at x ,  there is a 6f > 0 such that for all 
2‘ E N ( z ,  6f) 

c 
I f x - f x ‘ I  < 2 ( 1 g x l +  1) * 

Then 

l@’I I f i - f4  < ( I g z / +  1) Ifx-fx’I < 4 2 -  

J f x l  I g x -  gx ’ l+  I g x ’ I  I f x - f x ’ I  < t /2+e/2 = t .  
Now take 6 to be the smaller of 6, and 6,. Then for all x’ E N ( x ,  6 )  

3. The constant term. 

4. By the criterion, b 2 6. The polynomial factors into 
fi = z(z- 3 ) ( x +  1) , 

so fx > 0 for x > 3, and j x  < 0 for x < - 1 .  ’ 

5. b = 25. 

Section 13 

1. (a) A horizontal strip whose width is the diameter of Q. 
(b) A horizontal line. 
(c) A vertical line segment cutting across the strip. 
(d) The sloping line transforms into a helix on Q, and projects into a 

curve in the shape of a wave that oscillates back and forth across the 
strip. 

(e) If the point p is not on the strip, then f-’p = 0. If p is on the 
edge of the strip, f-lp is a sequence of points evenly spaced along a 
vertical line; the distance between adjacent points is 2m, where 
r is the radius of the cylinder. If p is inside the strip, f - l p  is again 
a sequence of points along a vertical line, and the spacing of alternate 
pairs is 2ur. 

2. (a) The image fP consists of all points of P whose distance from the 
origin is a t  most the radius of S. 



SOLUTIONS 151 

(b) Under stereographic projection, the image of a line L is the circle 
C in which the plane through p and L meets S, with p deleted 
from C. If C lies on the hemisphere of p ,  then C - p projects 
into an ellipse through the origin with the origin omitted. If C 
meets both hemispheres, i t  projects into a pair vf elliptical arcs each 
connecting two points on the edge of jP, and one of the arcs passes 
through the origin. 

(c) The inverse image f l q  is q itself when q is the origin or when q 
is on the edge of jP. For other points of fP, f-'q is a pair of points. 

3. (a)  A line through z. 

(b) A circle of radius Y. 

(c) A spiral whose distance from g increases at a constant rate. 

(d) See Fig. S5. 

iao no 
Figure SS 

Section 14 

w 3Eo 450 54 

1. If D is the disk and C is its bounding circle, let S be a semicircle of C. 
Define j( S to be the identity map, and, on D - S, let f map each 
line segment perpendicular to the diameter of S into itself by a contrac- 
tion to half its size towards its endpoint on S. Then f is a 1 to 1 mapping 
of the disk onto the semicircular region T. Any other configuration A 
that is topologically equivalent to the disk has a 1 to 1 mapping g: A c-) D ;  
the composition with f gives a 1 to 1 continuous function fg: A c-) T. 

2. Map each radius zx rigidly onto the radius zgx.  

3. The common arc is topologically equivalent to a segment, hence, to a 
diameter of a disk. From Exercise 1, this equivalence extends to a homeo- 
morphism from A to one of the semicircular regions of this disk, and i t  
also extends to a homeomorphism from B to the other semicircular 
region. So A U B is homeomorphic to the disk. 

4. and c 
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5. (a) No. 
(b) Any two of the three cuts shown in Fig. 14.3 will produce a homeo- 

(c) Three cuts. 
morph of a disk. 

Section 15 

1. Fold D along a diameter so that fD forms a semicircular region (or 
half disk) ; then any y and fa may be connected by a polygonal path 
that misses fC. 

Section 16 

1. See Fig. S6. -- 
Figure S6 

2. By Theorem 4.6, the composition gf is continuous. Its domain is [a, b] 
and its range is P. Hence gf is a curve in P. 

3. Similarity: ft = a + t ( b  - a). 
Not similarity: f f  = a + t"(b - a) ,  fi  # 1. 

Section 17 

1. 90'; -90'. 

2. A l ;  B2; C1; DO; E2; FO; G1. 

3. A l ;  B2; C1; D1; E2; F3; G2; H l ;  11; JO. 

Section 18 

1. Those for which W # 0; namely, A ,  B, C, E, and G. 

2. All but J. 
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3. (a) fC: a semicircle; 
jD: all points in the region enclosed by the semicircle and the 
diameter. 

(b) W = 0. This shows that while W # 0 is a sufficient condition 
that a solution exists for y = jx, it is not a necessary condition; 
that is, a solution may exist even if W = 0. 

Section 20 

1. 24, w,  x ,  y, 2. 

2. U, 350; W ,  -10; X ,  90; y, 180; 2, 330. 

Section 21 

1. See Fig. 22.5 for one solution; there are many others. For example, the 
trivial partition consisting of the entire curve is sufficiently fine for every 
point of F .  

2. (a) The section from a to d. 
(b) Yes; the section from f to a. 
(c) The points f and d divide the curve into two curves each of which 

is short relative to y. 

Section 22 

1. Zero. 

2. (a) From a to d :  20 - 270 + ( 2  - 0)360 = 4-470; 
from b to g: 350-  90+ ( 2  - 2)360 = +260. 

(c) For example, the ray opposite the one shown in the drawing, or any 
ray from y that intersects cp only twice. 

(b) 2- 

Section 23 

Section 24 

1. Any closed curve cp in P and any constant closed curve a t  a point y in 
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P are homotopic via the linear homotopy: from each point cpt on Q, 
draw the segment from cpt to y; this is the path followed by cpt. 

2. Let CP(t, T) = ( ~ ( T u +  ( 1  - ~ ) t )  for c E [a, b] and T E [0, I ] .  Then 
@(t,  0)  = cpt and CP(t, 1 )  = (pa. The path followed by cpt under the 
homotopy is the restriction cp I [a, t ]  taken in reverse direction. 

3. If Q is the rectangle of pairs ( t ,  T )  such that t E [a, c] and T E [0, 13, 
then Q is the union of the rectangles Q', Q", obtained by cutting Q by 
the vertical line t = b. Let CP': Q'+ P and a'': Q"+ P be homotopies 

fit together to define a mapping 0: Q + P where CP 1 Q' = CP' and 

and cp I [b ,  cy to the constant map into the point cpb so 
= cpb = 0 ' (b ,  T) for all T E [0, 13. Then CP' and 0" 

@ 1 Q' = a". 
4. Set @ ' ( t , ~ )  = @(t, 1 - T). 

Section 25 

1. The translation of cpo into ip~ by the vector from the center of to 
the center of is a homotopy not meeting y. 

2. Linear homotopy does not meet y; it  does meet x. 

3. Orientations of cpo and M do not correspond under the homotopy. If 
the orientation of a, say, were reversed, they would. 

Section 26 

1. The map cpo' of [0, 1 onto the boundary C' of the rectangle D' maps 
the four subintervals i 0, $1, [a, $3, etc. onto the successive edges by 
similarities. @' is  the linear homotopy of a' into the constant closed 
curve a t  the center of D'. No other changes are needed. 

Section 27 

1. THEOREM: Let f :  F -+ P be a mapping of a rectangle and its interior 
into a plane such that f leaves fixed each point of the periphery E of 
F; then the image fF contains all of F. 
COROLLARY: There is no continuous mapping of a rectangle and its interior 
into its periphery which leaves fixed each point of the periphery. 
PROOF OF THEOREM. Following the hint, let h: P + P be such that 
h D  = F. Then f h  maps D into P and h-yh isamappingof D into 
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P. By the construction, if y is a point of the boundary C of D, then 
hy E E and j h y  = hy. So h-'fhy = y. h-'fh is then a mapping of a 
disk into a plane which leaves fixed each point of its bounding circle. By 
the theorem in the section, h-'fhD contains all of D;  that is, h-yhD 3 D, 
hence f h D  3 hD. Since hD = F ,  this last statement says that j F  3 F .  

2. Take f to be the projection onto the circle from y ,  i.e. for x E D - y ,  
f x  is the point where the line through x and y meets C - y. 

3. By radial projection from yo onto C. 

4. (a) For example, a perpendicular projection onto the diameter. 
(b) The constant map into that fixed point. 

5. There is no continuous mapping of a segment s onto its endpoints leaving 
iixed each endpoint, because s is connected, any continuous image of s 
is connected, but a set of two points is not connected. 

Section 28 

1. (a) The center. (b) That diameter. (c) The center. 
(d) A point on the line of centers 3 of the radius from the center of D. 
(e) The horizontal diameter L is mapped into itself by the composite 

mapping f. Using a coordinate x on L with origin e we find that 
f x  = -42 + 37. The fixed point occurs where x = 37. 

( f )  Again the horizontal diameter is mapped onto itself by 
f x  = 3 1 x I - 5 1 .  1 

Fixed point at x = -+. 
2. See answer to Exercise 4, Section 9. 

Section 30 

1. (a) f is the constant map discussed in the section; all vectors in the field 
are parallel and of the same length and orientation. 

(b) Since f x  = x ,  the vector from x parallel to and of the same length 
and orientation as (0 ,  f x )  ends at a point y twice the distance 
d(o,  x )  from o;  ( 0 ,  y )  lies along (0 ,  x )  and is twice as long. 

(c) For every x,  vx starts at x and ends at the origin. 

(d) Let the translation be described by the vector (0 ,  c), and let e be 
the point such that o is the midpoint of the segment from e to c. 
Then the translation carries the point z into o. The vector in the 
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field for this point is the zero vector. All other vectors in the field 
“radiate” from z in the following manner. For each point x in the 
plane, ux is the vector issuing from x away from z on the line zx, 
with length equal to the distance from e to x. 

(e) Let x’ be the perpendicular projection of any point x on the line 
L of reflection. Then the vector vx goes from x to the point 2’’ 
on L which is twice as far from o as 2‘ and on the same side of o 
as 2’. 

Section 31 

1. No; vx is not defined at 8, and cannot be defined there so as to be 
continuous. 

Index - 
0 

1 

1 

0 

0 

0 

-1 

DX = 0 - 
none 

I 

0 

none 

none 

none 

5 

Tangents 

at ends of diameter 
perpendicular to oe 

none 

none 

at points of contact of 
external tangents 
from o 

at  antipodes to points 
of contact of exter- 
nal tangents from o 

at  points whose trans- 
lates fx are points 
of contact of the 
tangents from o 
to fC 

at  ends of the four 
radii making 45 de- 
gree angle with 
chosen diameter 

Outward normal 

a t  intersection of C 
with 01 extended 

all points of C 

at ends of diameter 
through o and z 

at  intersection of C 
with 01 extended. 

at intersection of C 
with 08 extended 

at the point which 
corresponds to in- 
tersection of jC 
with oje extended 

at  ends of chosen 
diameter 

Section 32 

Inward normal 

at intersection of C 
with 01 

none 

none 

at intersection of C 
with oe 

a t  intersection of C 
with OP 

at  the point which 
corresponds to in- 
tersection of fC 
with of2 

at ends of diameter 
perpendicular to 
chosen diameter 

1. (a) Let P’ be the plane through z perpendicular to L, and C its 
intersection with S; then all points of C map into the intersection 
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z of P’ with L, and all pairs of diametrical points of C are anti- 
podes having the same image. 

(b) The pair (0, r, 0), (0, - I ,  0). 

2. Choose a sphes 8 with center a t  Q, and let h be the radial projection 
from Q of S- onto S. Then h is a homeomorphism carrying ordinary 
antipodes on S -into queer antipodes on S. Given f: S-+ P, we get a 
composition fh: S+ P. A pair of antipodes u, u’ on s with the same 
image gives a pair hu, hu’ of queer antipodes on S with the same 
image. 

3. By a device similar to the above, for example, by radial projection, there 
is a homeomorphism from either surface to the sphere; the assertion of 
the problem follows. 

Section 33 

1. (a) The plane through the centers of the three bodies. 

2. All the planes through the axis of B form a family of planes each of 
which divides both A and B in half. Enclose all three solids with a 
sufficiently large ball having the axis L of B as a diameter and center 
2. Each point x of the great circle E that is on the plane perpendicular 
to L determines a plane P, of the family, the one perpendicular to zx. 
The side of P, containing .r is called its positive side. Let V ,  be the 
volume of the part of C in the positive side of P,, let W ,  be the volume 
of the part of C in the negative side of Pz. Define fx to be the differ- 
ence V ,  - W,. Then for antipodal points x, x‘, we have fx’ = -fx. 
Since f is continuous, i t  must be zero somewhere on any semicircle of E. 

Section 34 

1. Consider the perpendicular projection ux of each vector vx  into the 
plane tangent to the sphere at  x ;  u is a continuous tangent field, hence 
is somewhere zero by the theorem; since each vx is a non-zero vector, 
the vector with zero tangential component is normal. 

2. Radial projection maps the ellipsoid and its tangent field onto a sphere 
and a field tangent to it. The mapping is continuous and carries zero 
vectors into zero vectors. 

Section 35 

1. (a) Translation 4 units to the left. 
(b) Translation 2 units up. 
(c> Translation d units southeast. 
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(d) Radial expansion by a factor of 2; a similarity. 
(e) 180' rotation about the origin. 
(f)  90Orotation about the origin. 
(g) 45' rotation about the origin followed by expansion by a. 
(h) Same as preceding followed by translation 3 units down. 
(i) e2 as described in the section, followed by the 90' rotation about the 

origin and by the translation NE by 2 s  units. 
(j) Inversion in unit circle followed by reflection in the z-axis. 

Section 36 

1. If e E E, set I = I e 1 . Since I > ro, rhe proof applies to the circle C 
of radius r, and it shows that g(e, 7 )  is not zero for e E E and T E [0, 13. 
When 7 = 0, it says that g(e) is not zero. Therefore g, hence also 
f, has no zero in E. 

2. (a) The largest of (4.3)', (Y12, (4.2)Il3, (4-5)114 is ro = 12. 
(b) g(e) = $f(e) = d + $i 9 - $2. The larger of ( 7/2)'14 and 

(21/2)1/6 is YO = (21/2)'/6. 

(c) ro = 4 6 .  

3. fe = 4 ( 9  - (1 + i) 9 - (2 - i) I + 2i). The largest of 3 G ,  ( 3 6 ) ' / * ,  
(3.2)'13 is YO = (3&)'l2, approximately 6.7. The absolute values of 
the roots 2, -1, i are 2, 1 and 1. 

4. (a) The zeros are at -2/3 and 5, and ro = 26/3. 
(b) The zeros are at (1  f i s ) / 3  and have absolute value G/3,  and 

YO = 4/3. 

5. Take the absolute value of the formula for h(e) ,  and use the fact that 
the absolute value of a sum is a t  most the sum of the absolute values; 
this gives 

Since the right side is <1,  we have I h(e)  1 < 1. Now continue with 
the last five sentences of the proof of Theorem 36.1. 

6. Taking r = 2 in the example, we find 

0 -+-+- 1-11 5 = 7 - < 1 
2 4 8 8  

so the disk of radius 2 contains all the zeros of the polynomial. (Compare 
with ro = 1S1l3, approximately 2.5.) 
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Antipodal points, 62, 116 
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Upper, 43 
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Bounded, 37 

Cartesian coordinates, 9 
Chain, 135 
Closed curve, 83 
Closed interval, 8 
Closed set, 26 
Compact, 38 

Locally, 59 
Complement, 10 
Completeness, 34 
Composition, 13 
Congruence, 11 
Connected, 46 

Locally, 59 
Constant curve, 85,90 
Constant field, 113 
Constant function, 13 
Lnta in ,  10 
Continuous function, 8, 17 
Contracting sequence, 34 
Contraction, 11 
Convex set, 50 
Covering, 38 

Open, 38 
Curve, 82 

Angle swept out by, 88,92 
Closed, 83 

Constant, 85,90 
Short, 89 

Cycle, 135 

Decimal expansion, 33 
Dedekind cut, 37 
Deformation, 99 
Disconnected 

Totally, 59 
Discontinuous function, 7, 18 
Disk, 79 
Distance, 16 
Domain, 10 
Duality, 27 

Element, 10 
Empty set, 10 
Enclosing number, 133 
Equivalent configurations, 58 
Equivalent vectors, 112 
Expansion, 11 

Field 
Tangent, 123 
Vector, 111 

Fixed point, 60 
Function, 10 

Composition, 13 
Constant, 13 
Continuous, 8, 17 
Discontinuous, 7, 18 
Identity, 13 
Inclusion, 13 
Inverse, 13 
One-to-one, 13 
Onto, 10 

Fundamental theorem of algebra, 132 
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Half-open interval, 8 
Homeomorphism, 54 
Homology, 135 
Homotopy, 98 

Linear, 99 

Identity function, 13 
Image, 12 

Inverse, 12 
Inclusion, 13 
Index of a vector field, 114 
Intersection, 10 
Interval 

Closed, 8 
Half-open, 8 
%en, 8 

Inverse function, 13 
Inverse image, 12 

Linear homotopy, 99 
Linking number, 134 
Locally compact, 59 
Locally connected, 59 
Lower bound, 44 

Mapping, 18 
m-dimensional box, 40 

Neighborhood, 17 
n-tuple, 9 
Number 

Algebraic, 31 
Complex, 127 
Enclosing, 133 
Linking, 134 
Pure imaginary, 127 
Rational, 31 
Real, 31, 33 
Transcendental, 31 
Winding, 82, 84, 97 

One-to-one function, 13 
Onto function, 10 
Open covering, 38 
Open interval, 8 
Open set, 22 

Partition, 91 
Sufficiently fine, 91 
Vertex of, 93 

Perpendicular projection, 12 
Polynomial 

Complex coefficients, 130 
Real coefficients. 70 

Projection 
Perpendicular, 12 
Radial, 12 
Stereographic, 15 

Radial projection, 12 
Range, 10 
Reflection, 11 
Regularly contracting sequence, 34 
Restriction, 13 
Retract, 108 
Rigid function, 20 
Rotation, 11 

Separation, 46 
Sequence 

Contracting, 34 
Of intervals, 33 
Regularly contracting, 34 

Closed, 26 
Zonnected, 46 
Convex, 50 
Open, 22 

Short Curve, 89 
Shrink to a point, 101 
Similarity, 11 
Space, 30 
Star-shaped, 52 
Stereographic projection, 15 
Subset, 10 
Sufficiently fine, 91 

set  

Tangent field, 123 
Topological equivalence, 54 
Topological property, 53 
Torus, 25 
Totally disconnected, 59 
Translation, 11 
Triangle inequality, 16 

Union, 10 
Upper Bound, 43 

Vector field, 111 
Index of, 114 

Vertex of a partition, 93 

Winding number, 82, 84, 97 

Zero vector, 111 
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