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Preface

Since the first edition of An Introduction to Modern Astrophysics and its abbreviated com-
panion text, An Introduction to Modern Stellar Astrophysics, first appeared in 1996, there
has been an incredible explosion in our knowledge of the heavens. It was just two months
before the printing of the first editions that Michel Mayor and Didier Queloz announced
the discovery of an extrasolar planet around 51 Pegasi, the first planet found orbiting a
main-sequence star. In the next eleven years, the number of known extrasolar planets has
grown to over 193. Not only do these discoveries shed new light on how stars and planetary
systems form, but they also inform us about formation and planetary evolution in our own
Solar System.

In addition, within the past decade important discoveries have been made of objects,
within our Solar System but beyond Pluto, that are similar in size to that diminutive planet.
In fact, one of the newly discovered Kuiper belt objects, currently referred to as 2003 UB313
(until the International Astronomical Union makes an official determination), appears to be
larger than Pluto, challenging our definition of what a planet is and how many planets our
Solar System is home to.

Explorations by robotic spacecraft and landers throughout our Solar System have also
yielded a tremendous amount of new information about our celestial neighborhood. The
armada of orbiters, along with the remarkable rovers, Spirit and Opportunity, have confirmed
that liquid water has existed on the surface of Mars in the past. We have also had robotic
emissaries visit Jupiter and Saturn, touch down on the surfaces of Titan and asteroids, crash
into cometary nuclei, and even return cometary dust to Earth.

Missions such as Swift have enabled us to close in on the solutions to the mysterious
gamma-ray bursts that were such an enigma at the time An Introduction to Modern Astro-
physics first appeared. We now know that one class of gamma-ray bursts is associated with
core-collapse supernovae and that the other class is probably associated with the merger of
two neutron stars, or a neutron star and a black hole, in a binary system.

Remarkably precise observations of the center of our Milky Way Galaxy and other
galaxies, since the publication of the first editions, have revealed that a great many, perhaps
most, spiral and large elliptical galaxies are home to one or more supermassive black holes
at their centers. It also appears likely that galactic mergers help to grow these monsters in
their centers. Furthermore, it now seems almost certain that supermassive black holes are the
central engines responsible for the exotic and remarkably energetic phenomena associated
with radio galaxies, Seyfert galaxies, blazars, and quasars.

The past decade has also witnessed the startling discovery that the expansion of the uni-
verse is not slowing down but, rather, is actually accelerating! This remarkable observation
suggests that we currently live in a dark-energy-dominated universe, in which Einstein’s

From the Preface of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.



Preface

cosmological constant (once considered his “greatest blunder”) plays an important role
in our understanding of cosmology. Dark energy was not even imagined in cosmological
models at the time the first editions were published.

Indeed, since the publication of the first editions, cosmology has entered into a new era of
precision measurements. With the release of the remarkable data obtained by the Wilkinson
Microwave Anisotropy Probe (WMAP), previously large uncertainties in the age of the
universe have been reduced to less than 2% (13.7 & 0.2 Gyr). At the same time, stellar
evolution theory and observations have led to the determination that the ages of the oldest
globular clusters are in full agreement with the upper limit of the age of the universe.

We opened the preface to the first editions with the sentence “There has never been
a more exciting time to study modern astrophysics”; this has certainly been borne out in
the tremendous advances that have occurred over the past decade. It is also clear that this
incredible decade of discovery is only a prelude to further advances to come. Joining the
Hubble Space Telescope in its high-resolution study of the heavens have been the Chandra
X-ray Observatory and the Spitzer Infrared Space Telescope. From the ground, 8-m and
larger telescopes have also joined the search for new information about our remarkable
universe. Tremendously ambitious sky surveys have generated a previously unimagined
wealth of data that provide critically important statistical data sets; the Sloan Digital Sky
Survey, the Two-Micron All Sky Survey, the 2dF redshift survey, the Hubble Deep Fields
and Ultradeep Fields, and others have become indispensable tools for hosts of studies. We
also anticipate the first observations from new observatories and spacecraft, including the
high-altitude (5000 m) Atacama Large Millimeter Array and high-precision astrometric
missions such as Gaia and SIM PlanetQuest. Of course, studies of our own Solar System
also continue; just the day before this preface was written, the Mars Reconnaissance Orbiter
entered orbit around the red planet.

When the first editions were written, even the World Wide Web was in its infancy. Today
it is hard to imagine a world in which virtually any information you might want is only
a search engine and a mouse click away. With enormous data sets available online, along
with fully searchable journal and preprint archives, the ability to access critical information
very rapidly has been truly revolutionary.

Needless to say, a second edition of BOB (the “Big Orange Book,” as An Introduction
to Modern Astrophysics has come to be known by many students) and its associated text
is long overdue. In addition to an abbreviated version focusing on stellar astrophysics (An
Introduction to Modern Stellar Astrophysics), a second abbreviated version (An Introduction
to Modern Galactic Astrophysics and Cosmology) is being published. We are confident that
BOB and its smaller siblings will serve the needs of a range of introductory astrophysics
courses and that they will instill some of the excitement felt by the authors and hosts of
astronomers and astrophysicists worldwide.

We have switched from cgs to SI units in the second edition. Although we are personally
more comfortable quoting luminosities in ergs s~! rather than watts, our students are not.
We do not want students to feel exasperated by a new system of units during their first
encounter with the concepts of modern astrophysics. However, we have retained the natural
units of parsecs and solar units (Mg and L) because they provide a comparative context
for numerical values. An appendix of unit conversions (see back endpapers) is included for
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those who delve into the professional literature and discover the world of angstroms, ergs,
and esu.

Our goal in writing these texts was to open the entire field of modern astrophysics to
you by using only the basic tools of physics. Nothing is more satisfying than appreciating
the drama of the universe through an understanding of its underlying physical principles.
The advantages of a mathematical approach to understanding the heavenly spectacle were
obvious to Plato, as manifested in his Epinomis:

Are you unaware that the true astronomer must be a person of great wisdom?
Hence there will be a need for several sciences. The first and most important
is that which treats of pure numbers. To those who pursue their studies in
the proper way, all geometric constructions, all systems of numbers, all duly
constituted melodic progressions, the single ordered scheme of all celestial
revolutions should disclose themselves. And, believe me, no one will ever
behold that spectacle without the studies we have described, and so be able to
boast that they have won it by an easy route.

Now, 24 centuries later, the application of a little physics and mathematics still leads to
deep insights.

These texts were also born of the frustration we encountered while teaching our junior-
level astrophysics course. Most of the available astronomy texts seemed more descriptive
than mathematical. Students who were learning about Schrodinger’s equation, partition
functions, and multipole expansions in other courses felt handicapped because their astro-
physics text did not take advantage of their physics background. It seemed a double shame to
us because a course in astrophysics offers students the unique opportunity of actually using
the physics they have learned to appreciate many of astronomy’s fascinating phenomena.
Furthermore, as a discipline, astrophysics draws on virtually every aspect of physics. Thus
astrophysics gives students the chance to review and extend their knowledge.

Anyone who has had an introductory calculus-based physics course is ready to under-
stand nearly all the major concepts of modern astrophysics. The amount of modern physics
covered in such a course varies widely, so we have included a chapter on the theory of
special relativity and one on quantum physics which will provide the necessary background
in these areas. Everything else in the text is self-contained and generously cross-referenced,
so you will not lose sight of the chain of reasoning that leads to some of the most astounding
ideas in all of science.!

Although we have attempted to be fairly rigorous, we have tended to favor the sort of
back-of-the-envelope calculation that uses a simple model of the system being studied.
The payoff-to-effort ratio is so high, yielding 80% of the understanding for 20% of the
effort, that these quick calculations should be a part of every astrophysicist’s toolkit. In
fact, while writing this book we were constantly surprised by the number of phenomena
that could be described in this way. Above all, we have tried to be honest with you; we
remained determined not to simplify the material beyond recognition. Stellar interiors,

!Footnotes are used when we don’t want to interrupt the main flow of a paragraph.
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stellar atmospheres, general relativity, and cosmology—all are described with a depth that
is more satisfying than mere hand-waving description.

Computational astrophysics is today as fundamental to the advance in our understanding
of astronomy as observation and traditional theory, and so we have developed numerous
computer problems, as well as several complete codes, that are integrated with the text
material. You can calculate your own planetary orbits, compute observed features of binary
star systems, make your own models of stars, and reproduce the gravitational interactions
between galaxies. These codes favor simplicity over sophistication for pedagogical rea-
sons; you can easily expand on the conceptually transparent codes that we have provided.
Astrophysicists have traditionally led the way in large-scale computation and visualization,
and we have tried to provide a gentle introduction to this blend of science and art.

Instructors can use these texts to create courses tailored to their particular needs by
approaching the content as an astrophysical smorgasbord. By judiciously selecting topics,
we have used BOB to teach a semester-long course in stellar astrophysics. (Of course,
much was omitted from the first 18 chapters, but the text is designed to accommodate such
surgery.) Interested students have then gone on to take an additional course in cosmology.
On the other hand, using the entire text would nicely fill a year-long survey course (and then
some) covering all of modern astrophysics. To facilitate the selection of topics, as well as
identify important topics within sections, we have added subsection headings to the second
editions. Instructors may choose to skim, or even omit, subsections in accordance with their
own as well as their students’ interests—and thereby design a course to their liking.

An extensive website at http://www.aw-bc.com/astrophysics is associated with
these texts. It contains downloadable versions of the computer codes in various languages,
including Fortran, C++, and, in some cases, Java. There are also links to some of the
many important websites in astronomy. In addition, links are provided to public domain
images found in the texts, as well as to line art that can be used for instructor presentations.
Instructors may also obtain a detailed solutions manual directly from the publisher.

Throughout the process of the extensive revisions for the second editions, our editors have
maintained a positive and supportive attitude that has sustained us throughout. Although we
must have sorely tried their patience, Adam R. S. Black, Lothlérien Homet, Ashley Taylor
Anderson, Deb Greco, Stacie Kent, Shannon Tozier, and Carol Sawyer (at Techsetters) have
been truly wonderful to work with.

We have certainly been fortunate in our professional associations throughout the years.
We want to express our gratitude and appreciation to Art Cox, John Cox (1926-1984),
Carl Hansen, Hugh Van Horn, and Lee Anne Willson, whose profound influence on us has
remained and, we hope, shines through the pages ahead.

Our good fortune has been extended to include the many expert reviewers who cast
a merciless eye on our chapters and gave us invaluable advice on how to improve them.
For their careful reading of the first editions, we owe a great debt to Robert Antonucci,
Martin Burkhead, Peter Foukal, David Friend, Carl Hansen, H. Lawrence Helfer, Steven
D. Kawaler, William Keel, J. Ward Moody, Tobias Owen, Judith Pipher, Lawrence Pinsky,
Joseph Silk, J. Allyn Smith, and Rosemary Wyse. Additionally, the extensive revisions to
the second editions have been carefully reviewed by Bryon D. Anderson, Markus J. As-
chwanden, Andrew Blain, Donald J. Bord, Jean-Pierre Caillault, Richard Crowe, Daniel
Dale, Constantine Deliyannis, Kathy DeGioia Eastwood, J. C. Evans, Debra Fischer, Kim
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Griest, Triston Guillot, Fred Hamann, Jason Harlow, Peter Hauschildt, Lynne A. Hillen-
brand, Philip Hughes, William H. Ingham, David Jewitt, Steven D. Kawaler, John Kielkopf,
Jeremy King, John Kolena, Matthew Lister, Donald G. Luttermoser, Geoff Marcy, Norman
Markworth, Pedro Marronetti, C. R. O’Dell, Frederik Paerels, Eric S. Perlman, Bradley
M. Peterson, Slawomir Piatek, Lawrence Pinsky, Martin Pohl, Eric Preston, Irving K. Rob-
bins, Andrew Robinson, Gary D. Schmidt, Steven Stahler, Richard D. Sydora, Paula Szkody,
Henry Throop, Michael T. Vaughn, Dan Watson, Joel Weisberg, Gregory G. Wood, Matt
A. Wood, Kausar Yasmin, Andrew Youdin, Esther Zirbel, E. J. Zita, and others. Over the
past decade, we have received valuable input from users of the first-edition texts that has
shaped many of the revisions and corrections to the second editions. Several generations
of students have provided us with a different and extremely valuable perspective as well.
Unfortunately, no matter how fine the sieve, some mistakes are sure to slip through, and
some arguments and derivations may be less than perfectly clear. The responsibility for the
remaining errors is entirely ours, and we invite you to submit comments and corrections to
us at our e-mail address: modastro@weber. edu.

Unfortunately, the burden of writing has not been confined to the authors but was un-
avoidably shared by family and friends. We wish to thank our parents, Wayne and Marjorie
Carroll, and Dean and Dorothy Ostlie, for raising us to be intellectual explorers of this fas-
cinating universe. Finally, it is to those people who make our universe so wondrous that we
dedicate this book: our wives, Lynn Carroll and Candy Ostlie, and Dale’s terrific children,
Michael and Megan. Without their love, patience, encouragement, and constant support,
this project would never have been completed.

And now it is time to get up into Utah’s beautiful mountains for some skiing, hiking,
mountain biking, fishing, and camping and share those down-to-Earth joys with our families!

Bradley W. Carroll
Dale A. Ostlie

Weber State University
Ogden, UT
modastro@weber.edu
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The Celestial Sphere

The Greek Tradition

The Copernican Revolution
Positions on the Celestial Sphere
Physics and Astronomy

BN =

B THE GREEKTRADITION

Human beings have long looked up at the sky and pondered its mysteries. Evidence of the
long struggle to understand its secrets may be seen in remnants of cultures around the world:
the great Stonehenge monument in England, the structures and the writings of the Maya and
Aztecs, and the medicine wheels of the Native Americans. However, our modern scientific
view of the universe traces its beginnings to the ancient Greek tradition of natural philosophy.
Pythagoras (ca. 550 B.c.) first demonstrated the fundamental relationship between numbers
and nature through his study of musical intervals and through his investigation of the
geometry of the right angle. The Greeks continued their study of the universe for hundreds
of years using the natural language of mathematics employed by Pythagoras. The modern
discipline of astronomy depends heavily on a mathematical formulation of its physical
theories, following the process begun by the ancient Greeks.

In an initial investigation of the night sky, perhaps its most obvious feature to a careful
observer is the fact that it is constantly changing. Not only do the stars move steadily from
east to west during the course of a night, but different stars are visible in the evening sky,
depending upon the season. Of course the Moon also changes, both in its position in the
sky and in its phase. More subtle and more complex are the movements of the planets, or
“wandering stars.”

The Geocentric Universe

Plato (ca. 350 B.C.) suggested that to understand the motions of the heavens, one must first
begin with a set of workable assumptions, or hypotheses. It seemed obvious that the stars
of the night sky revolved about a fixed Earth and that the heavens ought to obey the purest
possible form of motion. Plato therefore proposed that celestial bodies should move about
Earth with a uniform (or constant) speed and follow a circular motion with Earth at the
center of that motion. This concept of a geocentric universe was a natural consequence of
the apparently unchanging relationship of the stars to one another in fixed constellations.
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FIGURE 1  The celestial sphere. Earth is depicted in the center of the celestial sphere.

If the stars were simply attached to a celestial sphere that rotated about an axis passing
through the North and South poles of Earth and intersecting the celestial sphere at the north
and south celestial poles, respectively (Fig. 1), all of the stars’ known motions could be
described.

Retrograde Motion

The wandering stars posed a somewhat more difficult problem. A planet such as Mars moves
slowly from west to east against the fixed background stars and then mysteriously reverses
direction for a period of time before resuming its previous path (Fig. 2). Attempting to
understand this backward, or retrograde, motion became the principal problem in astron-
omy for nearly 2000 years! Eudoxus of Cnidus, a student of Plato’s and an exceptional
mathematician, suggested that each of the wandering stars occupied its own sphere and that
all the spheres were connected through axes oriented at different angles and rotating at var-
ious speeds. Although this theory of a complex system of spheres initially was marginally
successful at explaining retrograde motion, predictions began to deviate significantly from
the observations as more data were obtained.

Hipparchus (ca. 150 B.C.), perhaps the most notable of the Greek astronomers, proposed
a system of circles to explain retrograde motion. By placing a planet on a small, rotating
epicycle that in turn moved on a larger deferent, he was able to reproduce the behavior of
the wandering stars. Furthermore, this system was able to explain the increased brightness
of the planets during their retrograde phases as resulting from changes in their distances
from Earth. Hipparchus also created the first catalog of the stars, developed a magnitude
system for describing the brightness of stars that is still in use today, and contributed to the
development of trigonometry.

During the next two hundred years, the model of planetary motion put forth by Hip-
parchus also proved increasingly unsatisfactory in explaining many of the details of the ob-
servations. Claudius Ptolemy (ca. A.D. 100) introduced refinements to the epicycle/deferent
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FIGURE 2  The retrograde motion of Mars in 2005. The general, long-term motion of the planet
is eastward relative to the background stars. However, between October 1 and December 10, 2005,
the planet’s motion temporarily becomes westward (retrograde). (Of course the planet’s short-term
daily motion across the sky is always from east to west.) The coordinates of right ascension and
declination are discussed in Fig. 13. Betelgeuse, the bright star in the constellation of Orion, is
visible at (a, §) = (5"55™, +7°24’), Aldebaran, in the constellation of Taurus, has coor-dinates
(4"36™, 4-16°31’), and the Hyades and Pleiades star clusters (also in Taurus) are visible at
(4"24™ +15°45") and (3"44™, 4-23°58"), respectively.

Planet

Deferent

Equant

FIGURE 3  The Ptolemaic model of planetary motion.

system by adding equants (Fig. 3), resulting in a constant angular speed of the epicycle
about the deferent (d6/dt was assumed to be constant). He also moved Earth away from
the deferent center and even allowed for a wobble of the deferent itself. Predictions of the
Ptolemaic model did agree more closely with observations than any previously devised
scheme, but the original philosophical tenets of Plato (uniform and circular motion) were
significantly compromised.

Despite its shortcomings, the Ptolemaic model became almost universally accepted as
the correct explanation of the motion of the wandering stars. When a disagreement between
the model and observations would develop, the model was modified slightly by the addition
of another circle. This process of “fixing” the existing theory led to an increasingly complex
theoretical description of observable phenomena.
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(d)

FIGURE4 (a) Nicolaus Copernicus (1473-1543). (b) The Copernican model of planetary motion:
Planets travel in circles with the Sun at the center of motion. (Courtesy of Yerkes Observatory.)

2 HETHE COPERNICAN REVOLUTION

By the sixteenth century the inherent simplicity of the Ptolemaic model was gone. Polish-
born astronomer Nicolaus Copernicus (1473—1543), hoping to return the science to a less
cumbersome, more elegant view of the universe, suggested a heliocentric (Sun-centered)
model of planetary motion (Fig. 4).! His bold proposal led immediately to a much less
complicated description of the relationships between the planets and the stars. Fearing
severe criticism from the Catholic Church, whose doctrine then declared that Earth was
the center of the universe, Copernicus postponed publication of his ideas until late in life.
De Revolutionibus Orbium Coelestium (On the Revolution of the Celestial Sphere) first
appeared in the year of his death. Faced with a radical new view of the universe, along
with Earth’s location in it, even some supporters of Copernicus argued that the heliocentric
model merely represented a mathematical improvement in calculating planetary positions
but did not actually reflect the true geometry of the universe. In fact, a preface to that effect
was added by Osiander, the priest who acted as the book’s publisher.

Bringing Order to the Planets

One immediate consequence of the Copernican model was the ability to establish the order
of all of the planets from the Sun, along with their relative distances and orbital periods.
The fact that Mercury and Venus are never seen more than 28° and 47°, respectively, east
or west of the Sun clearly establishes that their orbits are located inside the orbit of Earth.
These planets are referred to as inferior planets, and their maximum angular separations
east or west of the Sun are known as greatest eastern elongation and greatest western

! Actually, Aristarchus proposed a heliocentric model of the universe in 280 B.c. At that time, however, there was
no compelling evidence to suggest that Earth itself was in motion.
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FIGURE 5  Orbital configurations of the planets.

elongation, respectively (see Fig. 5). Mars, Jupiter, and Saturn (the most distant planets
known to Copernicus) can be seen as much as 180° from the Sun, an alignment known
as opposition. This could only occur if these superior planets have orbits outside Earth’s
orbit. The Copernican model also predicts that only inferior planets can pass in front of the
solar disk (inferior conjunction), as observed.

Retrograde Motion Revisited

The great long-standing problem of astronomy—retrograde motion—was also easily ex-
plained through the Copernican model. Consider the case of a superior planet such as Mars.
Assuming, as Copernicus did, that the farther a planet is from the Sun, the more slowly
it moves in its orbit, Mars will then be overtaken by the faster-moving Earth. As a result,
the apparent position of Mars will shift against the relatively fixed background stars, with
the planet seemingly moving backward near opposition, where it is closest to Earth and at
its brightest (see Fig. 6). Since the orbits of all of the planets are not in the same plane,
retrograde loops will occur. The same analysis works equally well for all other planets,
superior and inferior.

The relative orbital motions of Earth and the other planets mean that the time interval
between successive oppositions or conjunctions can differ significantly from the amount of
time necessary to make one complete orbit relative to the background stars (Fig. 7). The
former time interval (between oppositions) is known as the synodic period (S), and the
latter time interval (measured relative to the background stars) is referred to as the sidereal
period (P). It is left as an exercise to show that the relationship between the two periods is
given by

1/P —1/Ps (inferior)
1/8 = (1)
1/Pg—1/P (superior),
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N kW o

Mars orbit

FIGURE 6 The retrograde motion of Mars as described by the Copernican model. Note that the
lines of sight from Earth to Mars cross for positions 3, 4, and 5. This effect, combined with the slightly
differing planes of the two orbits result in retrograde paths near opposition. Recall the retrograde (or
westward) motion of Mars between October 1, 2005, and December 10, 2005, as illustrated in Fig. 2.

Earth orbit
Mars orbit 1.5

FIGURE 7  The relationship between the sidereal and synodic periods of Mars. The two periods
do not agree due to the motion of Earth. The numbers represent the elapsed time in sidereal years
since Mars was initially at opposition. Note that Earth completes more than two orbits in a synodic
period of S = 2.135 yr, whereas Mars completes slightly more than one orbit during one synodic
period from opposition to opposition.

when perfectly circular orbits and constant speeds are assumed; Pg is the sidereal period
of Earth’s orbit (365.256308 d).

Although the Copernican model did represent a simpler, more elegant model of planetary
motion, it was not successful in predicting positions any more accurately than the Ptolemaic
model. This lack of improvement was due to Copernicus’s inability to relinquish the 2000-
year-old concept that planetary motion required circles, the human notion of perfection. As
a consequence, Copernicus was forced (as were the Greeks) to introduce the concept of
epicycles to “fix” his model.

13
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Perhaps the quintessential example of a scientific revolution was the revolution begun
by Copernicus. What we think of today as the obvious solution to the problem of planetary
motion—a heliocentric universe—was perceived as a very strange and even rebellious
notion during a time of major upheaval, when Columbus had recently sailed to the “new
world” and Martin Luther had proposed radical revisions in Christianity. Thomas Kuhn
has suggested that an established scientific theory is much more than just a framework for
guiding the study of natural phenomena. The present paradigm (or prevailing scientific
theory) is actually a way of seeing the universe around us. We ask questions, pose new
research problems, and interpret the results of experiments and observations in the context
of the paradigm. Viewing the universe in any other way requires a complete shift from the
current paradigm. To suggest that Earth actually orbits the Sun instead of believing that the
Sun inexorably rises and sets about a fixed Earth is to argue for a change in the very structure
of the universe, a structure that was believed to be correct and beyond question for nearly
2000 years. Not until the complexity of the old Ptolemaic scheme became too unwieldy
could the intellectual environment reach a point where the concept of a heliocentric universe
was even possible.

3 EPOSITIONS ON THE CELESTIAL SPHERE

The Copernican revolution has shown us that the notion of a geocentric universe is incorrect.
Nevertheless, with the exception of a small number of planetary probes, our observations
of the heavens are still based on a reference frame centered on Earth. The daily (or diurnal)
rotation of Earth, coupled with its annual motion around the Sun and the slow wobble of its
rotation axis, together with relative motions of the stars, planets, and other objects, results
in the constantly changing positions of celestial objects. To catalog the locations of objects
such as the Crab supernova remnant in Taurus or the great spiral galaxy of Andromeda,
coordinates must be specified. Moreover, the coordinate system should not be sensitive to
the short-term manifestations of Earth’s motions; otherwise the specified coordinates would
constantly change.

The Altitude—Azimuth Coordinate System

Viewing objects in the night sky requires only directions to them, not their distances. We
can imagine that all objects are located on a celestial sphere, just as the ancient Greeks
believed. It then becomes sufficient to specify only two coordinates. The most straight-
forward coordinate system one might devise is based on the observer’s local horizon. The
altitude-azimuth (or horizon) coordinate system is based on the measurement of the az-
imuth angle along the horizon together with the altitude angle above the horizon (Fig. 8).
The altitude 7 is defined as that angle measured from the horizon to the object along a great
circle? that passes through that object and the point on the celestial sphere directly above
the observer, a point known as the zenith. Equivalently, the zenith distance z is the angle
measured from the zenith to the object, so z + A = 90°. The azimuth A is simply the angle

2A great circle is the curve resulting from the intersection of a sphere with a plane passing through the center of
that sphere.
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East

FIGURE 8 The altitude—azimuth coordinate system. %, z, and A are the altitude, zenith distance,
and azimuth, respectively.

measured along the horizon eastward from north to the great circle used for the measure
of altitude. (The meridian is another frequently used great circle; it is defined as passing
through the observer’s zenith and intersecting the horizon due north and south.)

Although simple to define, the altitude—azimuth system is difficult to use in practice.
Coordinates of celestial objects in this system are specific to the local latitude and longitude
of the observer and are difficult to transform to other locations on Earth. Also, since Earth
is rotating, stars appear to move constantly across the sky, meaning that the coordinates of
each object are constantly changing, even for the local observer. Complicating the problem
still further, the stars rise approximately 4 minutes earlier on each successive night, so that
even when viewed from the same location at a specified time, the coordinates change from
day to day.

Daily and Seasonal Changes in the Sky

To understand the problem of these day-to-day changes in altitude—azimuth coordinates, we
must consider the orbital motion of Earth about the Sun (see Fig. 9). As Earth orbits the
Sun, our view of the distant stars is constantly changing. Our line of sight to the Sun sweeps
through the constellations during the seasons; consequently, we see the Sun apparently
move through those constellations along a path referred to as the ecliptic.® During the
spring the Sun appears to travel across the constellation of Virgo, in the summer it moves
through Orion, during the autumn months it enters Aquarius, and in the winter the Sun is
located near Scorpius. As a consequence, those constellations become obscured in the glare
of daylight, and other constellations appear in our night sky. This seasonal change in the
constellations is directly related to the fact that a given star rises approximately 4 minutes
earlier each day. Since Earth completes one sidereal period in approximately 365.26 days,
it moves slightly less than 1° around its orbit in 24 hours. Thus Earth must actually rotate
nearly 361° to bring the Sun to the meridian on two successive days (Fig. 10). Because of
the much greater distances to the stars, they do not shift their positions significantly as Earth
orbits the Sun. As a result, placing a star on the meridian on successive nights requires only
a360° rotation. It takes approximately 4 minutes for Earth to rotate the extra 1°. Therefore a
given star rises 4 minutes earlier each night. Solar time is defined as an average interval of

3The term ecliptic is derived from the observation of eclipses along that path through the heavens.
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FIGURE 9  The plane of Earth’s orbit seen edge-on. The tilt of Earth’s rotation axis relative to
the ecliptic is also shown.

To distant star
___________________ 'y

FIGURE 10  Earth must rotate nearly 361° per solar day and only 360° per sidereal day.

24 hours between meridian crossings of the Sun, and sidereal time is based on consecutive
meridian crossings of a star.

Seasonal climatic variations are also due to the orbital motion of Earth, coupled with the
approximately 23.5° tilt of its rotation axis. As a result of the tilt, the ecliptic moves north
and south of the celestial equator (Fig. 11), which is defined by passing a plane through
Earth at its equator and extending that plane out to the celestial sphere. The sinusoidal
shape of the ecliptic occurs because the Northern Hemisphere alternately points toward
and then away from the Sun during Earth’s annual orbit. Twice during the year the Sun
crosses the celestial equator, once moving northward along the ecliptic and later moving
to the south. In the first case, the point of intersection is called the vernal equinox and
the southern crossing occurs at the autumnal equinox. Spring officially begins when the
center of the Sun is precisely on the vernal equinox; similarly, fall begins when the center
of the Sun crosses the autumnal equinox. The most northern excursion of the Sun along the
ecliptic occurs at the summer solstice, representing the official start of summer, and the
southernmost position of the Sun is defined as the winter solstice.

The seasonal variations in weather are due to the position of the Sun relative to the
celestial equator. During the summer months in the Northern Hemisphere, the Sun’s northern
declination causes it to appear higher in the sky, producing longer days and more intense
sunlight. During the winter months the declination of the Sun is below the celestial equator,
its path above the horizon is shorter, and its rays are less intense (see Fig. 12). The more
direct the Sun’s rays, the more energy per unit area strikes Earth’s surface and the higher
the resulting surface temperature.
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FIGURE 11  The ecliptic is the annual path of the Sun across the celestial sphere and is sinusoidal
about the celestial equator. Summer solstice is at a declination of 23.5° and winter solstice is at a
declination of —23.5°. See Fig. 13 for explanations of right ascension and declination.
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FIGURE 12 (a) The diurnal path of the Sun across the celestial sphere for an observer at latitude
L when the Sun is located at the vernal equinox (March), the summer solstice (June), the autumnal
equinox (September), and the winter solstice (December). NCP and SCP designate the north and south
celestial poles, respectively. The dots represent the location of the Sun at local noon on the approximate
dates indicated. (b) The direction of the Sun’s rays at noon at the summer solstice (approximately
June 21) and at the winter solstice (approximately December 21) for an observer at 40° N latitude.

The Equatorial Coordinate System

A coordinate system that results in nearly constant values for the positions of celestial ob-
jects, despite the complexities of diurnal and annual motions, is necessarily less straightfor-
ward than the altitude—azimuth system. The equatorial coordinate system (see Fig. 13)
is based on the latitude—longitude system of Earth but does not participate in the planet’s
rotation. Declination § is the equivalent of latitude and is measured in degrees north or
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FIGURE 13 The equatorial coordinate system. «, 8, and Y designate right ascension, declination,
and the position of the vernal equinox, respectively.

south of the celestial equator. Right ascension « is analogous to longitude and is measured
eastward along the celestial equator from the vernal equinox (Y) to its intersection with
the object’s hour circle (the great circle passing through the object being considered and
through the north celestial pole). Right ascension is traditionally measured in hours, min-
utes, and seconds; 24 hours of right ascension is equivalent to 360°, or 1 hour = 15°. The
rationale for this unit of measure is based on the 24 hours (sidereal time) necessary for an
object to make two successive crossings of the observer’s local meridian. The coordinates
of right ascension and declination are also indicated in Figs. 2 and 11. Since the equa-
torial coordinate system is based on the celestial equator and the vernal equinox, changes
in the latitude and longitude of the observer do not affect the values of right ascension and
declination. Values of « and § are similarly unaffected by the annual motion of Earth around
the Sun.

The local sidereal time of the observer is defined as the amount of time that has elapsed
since the vernal equinox last traversed the meridian. Local sidereal time is also equivalent to
the hour angle H of the vernal equinox, where hour angle is defined as the angle between
a celestial object and the observer’s meridian, measured in the direction of the object’s
motion around the celestial sphere.

Precession

Despite referencing the equatorial coordinate system to the celestial equator and its inter-
section with the ecliptic (the vernal equinox), precession causes the right ascension and
declination of celestial objects to change, albeit very slowly. Precession is the slow wobble
of Earth’s rotation axis due to our planet’s nonspherical shape and its gravitational inter-
action with the Sun and the Moon. It was Hipparchus who first observed the effects of
precession. Although we will not discuss the physical cause of this phenomenon in detail,
it is completely analogous to the well-known precession of a child’s toy top. Earth’s pre-
cession period is 25,770 years and causes the north celestial pole to make a slow circle
through the heavens. Although Polaris (the North Star) is currently within 1° of the north
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celestial pole, in 13,000 years it will be nearly 47° away from that point. The same effect
also causes a 50.26” yr~! westward motion of the vernal equinox along the ecliptic.* An
additional precession effect due to Earth—planet interactions results in an eastward motion
of the vernal equinox of 0.12" yr~!.

Because precession alters the position of the vernal equinox along the ecliptic, it is
necessary to refer to a specific epoch (or reference date) when listing the right ascension
and declination of a celestial object. The current values of « and § may then be calculated,
based on the amount of time elapsed since the reference epoch. The epoch commonly used
today for astronomical catalogs of stars, galaxies, and other celestial phenomena refers to
an object’s position at noon in Greenwich, England (universal time, UT) on January 1,
2000.3 A catalog using this reference date is designated as J2000.0. The prefix, J, in the
designation J2000.0 refers to the Julian calendar, which was introduced by Julius Caesar
in 46 B.C.

Approximate expressions for the changes in the coordinates relative to J2000.0 are

Ao = M + N sinatan § 2)

AS§ = N cosa, 3)

where M and N are given by

M = 1°2812323T + 02000387972 + 02000010173
N = 0°55675307 — 0°00011857> — 0°00001167">

and T is defined as
T = (t+ — 2000.0)/100 €]

where ¢ is the current date, specified in fractions of a year.

Example 3.1.  Altair, the brightest star in the summer constellation of Aquila, has the
following J2000.0 coordinates: @ = 19"50™47.0%, § = +08°52/06.0". Using Egs. ( 2) and
(' 3), we may precess the star’s coordinates to noon Greenwich mean time on July 30, 2005.
Writing the date as ¢ = 2005.575, we have that T = 0.05575. This implies that
M = 0.071430° and N = 0.031039°. From the relations between time and the angular

continued

41 arcminute = 1’ = 1/60 degree; 1 arcsecond = 1” = 1/60 arcminute.

SUniversal time is also sometimes referred to as Greenwich mean time. Technically there are two forms of
universal time; UT1 is based on Earth’s rotation rate, and UTC (coordinated universal time) is the basis of the
worldwide system of civil time and is measured by atomic clocks. Because Earth’s rotation rate is less regular
than the time kept by atomic clocks, it is necessary to adjust UTC clocks by about one second (a leap second)
roughly every year to year and a half. Among other effects contributing to the difference between UT1 and UTC
is the slowing of Earth’s rotation rate due to tidal effects.
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measure of right ascension,

1" =15°
™ =15
18 — 15//

the corrections to the coordinates are
Aa = 0.071430° + (0.031039°) sin 297.696° tan 8.86833°
=0.067142° >~ 16.11°
and
AS = (0.031039°) c0s297.696°
=0.014426° ~ 51.93".

Thus Altair’s precessed coordinates are o = 19"51™03.1% and § = +08°5257.9".

Measurements of Time

The civic calendar commonly used in most countries today is the Gregorian calendar. The
Gregorian calendar, introduced by Pope Gregory XIII in 1582, carefully specifies which
years are to be considered leap years. Although leap years are useful for many purposes,
astronomers are generally interested in the number of days (or seconds) between events,
not in worrying about the complexities of leap years. Consequently, astronomers typically
refer to the times when observations were made in terms of the elapsed time since some
specified zero time. The time that is universally used is noon on January 1, 4713 B.C., as
specified by the Julian calendar. This time is designated as JD 0.0, where JD indicates
Julian Date.® The Julian date of J2000.0 is JD 2451545.0. Times other than noon universal
time are specified as fractions of a day; for example, 6 PM January 1, 2000 UT would be
designated JD 2451545.25. Referring to Julian date, the parameter T defined by Eq. ( 4)
can also be written as

T = (JD — 2451545.0) /36525,

where the constant 36,525 is taken from the Julian year, which is defined to be exactly
365.25 days.

Another commonly-used designation is the Modified Julian Date (MJD), defined as
MIJD = JD — 2400000.5, where JD refers to the Julian date. Thus a MJD day begins at
midnight, universal time, rather than at noon.

The Julian date JD 0.0 was proposed by Joseph Justus Scaliger (1540-1609) in 1583. His choice was based on
the convergence of three calendar cycles; the 28 years required for the Julian calendar dates to fall on the same
days of the week, the 19 years required for the phases of the Moon to nearly fall on the same dates of the year, and
the 15-year Roman tax cycle. 28 x 19 x 15 = 7980 means that the three calendars align once every 7980 years.
JD 0.0 corresponds to the last time the three calendars all started their cycles together.
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Because of the need to measure events very precisely in astronomy, various high-
precision time measurements are used. For instance, Heliocentric Julian Date (HJD) is
the Julian Date of an event as measured from the center of the Sun. In order to determine
the heliocentric Julian date, astronomers must consider the time it would take light to travel
from a celestial object to the center of the Sun rather than to Earth. Terrestrial Time (TT)
is time measured on the surface of Earth, taking into consideration the effects of special and
general relativity as Earth moves around the Sun and rotates on its own axis.

Archaeoastronomy

An interesting application of the ideas discussed above is in the interdisciplinary field of
archaeoastronomy, a merger of archaeology and astronomy. Archaeoastronomy is a field
of study that relies heavily on historical adjustments that must be made to the positions of
objects in the sky resulting from precession. It is the goal of archaeoastronomy to study
the astronomy of past cultures, the investigation of which relies heavily on the alignments
of ancient structures with celestial objects. Because of the long periods of time since con-
struction, care must be given to the proper precession of celestial coordinates if any proposed
alignments are to be meaningful. The Great Pyramid at Giza (Fig. 14), one of the “seven
wonders of the world,” is an example of such a structure. Believed to have been erected
about 2600 B.c., the Great Pyramid has long been the subject of speculation. Although many
of the proposals concerning this amazing monument are more than somewhat fanciful, there
can be no doubt about its careful orientation with the four cardinal positions, north, south,
east, and west. The greatest misalignment of any side from a true cardinal direction is no
more than 5%/. Equally astounding is the nearly perfect square formed by its base; no two
sides differ in length by more than 20 cm.

Perhaps the most demanding alignments discovered so far are associated with the “air
shafts” leading from the King’s Chamber (the main chamber of the pyramid) to the outside.
These air shafts seem too poorly designed to circulate fresh air into the tomb of Pharaoh, and

To Orion’s belt To Thuban

FIGURE 14  The astronomical alignments of the Great Pyramid at Giza. (Adaptation of a figure
from Griffith Observatory.)
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it is now thought that they served another function. The Egyptians believed that when their
pharaohs died, their souls would travel to the sky to join Osiris, the god of life, death, and
rebirth. Osiris was associated with the constellation we now know as Orion. Allowing for
over one-sixth of a precession period since the construction of the Great Pyramid, Virginia
Trimble has shown that one of the air shafts pointed directly to Orion’s belt. The other air
shaft pointed toward Thuban, the star that was then closest to the north celestial pole, the
point in the sky about which all else turns.

As amodern scientific culture, we trace our study of astronomy to the ancient Greeks, but
it has become apparent that many cultures carefully studied the sky and its mysterious points
of light. Archaeological structures worldwide apparently exhibit astronomical alignments.
Although some of these alignments may be coincidental, it is clear that many of them were
by design.

The Effects of Motions Through the Heavens

Another effect contributing to the change in equatorial coordinates is due to the intrinsic
velocities of the objects themselves.” As we have already discussed, the Sun, the Moon,
and the planets exhibit relatively rapid and complex motions through the heavens. The stars
also move with respect to one another. Even though their actual speeds may be very large,
the apparent relative motions of stars are generally very difficult to measure because of their
enormous distances.

Consider the velocity of a star relative to an observer (Fig. 15). The velocity vector
may be decomposed into two mutually perpendicular components, one lying
along the line of sight and the other perpendicular to it. The line-of-sight com-
ponent is the star’s radial velocity, v,; the second component is the star’s

FIGURE 15 The components of velocity. v, is the star’s radial velocity and v, is the star’s
transverse velocity.

7Parallax is an important periodic motion of the stars resulting from the motion of Earth about the Sun.
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transverse or tangential velocity, vy, along the celestial sphere. This transverse velocity
appears as a slow, angular change in its equatorial coordinates, known as proper motion
(usually expressed in seconds of arc per year). In a time interval A, the star will have
moved in a direction perpendicular to the observer’s line of sight a distance

Ad = vy At.

If the distance from the observer to the star is r, then the angular change in its position
along the celestial sphere is given by

Ad Vg
A = — = —Ar.
r r

Thus the star’s proper motion, u, is related to its transverse velocity by

=2 (5)

An Application of Spherical Trigonometry

The laws of spherical trigonometry must be employed in order to find the relationship
between A6 and changes in the equatorial coordinates, A« and A§, on the celestial sphere.
A spherical triangle such as the one depicted in Fig. 16 is composed of three intersecting
segments of great circles. For a spherical triangle the following relationships hold (with all
sides measured in arc length, e.g., degrees):

Law of sines

sina sin b sin ¢

sinA  sinB  sinC

Law of cosines for sides
cosa = cosbcosc + sinb sinccos A
Law of cosines for angles
cos A = —cos B cos C + sin B sin C cosa.

Figure 17 shows the motion of a star on the celestial sphere from point A to point B.
The angular distance traveled is Af. Let point P be located at the north celestial pole so
that the arcs AP, AB, and BP form segments of great circles. The star is then said to be
moving in the direction of the position angle ¢ (£ PA B), measured from the north celestial
pole. Now, construct a segment of a circle NB such that N is at the same declination as B
and ZPNB = 90°. If the coordinates of the star at point A are (¢, §) and its new coordinates
at point B are (¢ + A«, § + Ad), then LZAPB = A«, AP =90°— 68, and NP = BP =
90° — (6 + AJ). Using the law of sines,

sin (Af)  sin[90° — (8 + AJ)]
sin (Aw) - sin ¢

s
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FIGURE 16  Aspherical triangle. Each leg is a segment of a great circle on the surface of a sphere,
and all angles are less than 180°. a, b, and c are in angular units (e.g., degrees).

Celestial equator

FIGURE 17  The proper motion of a star across the celestial sphere. The star is assumed to be
moving from A to B along the position angle ¢.

or
sin (A«) cos (§ + Ad) = sin (A6) sin ¢.

Assuming that the changes in position are much less than one radian, we may use the small-
angle approximations sin € ~ ¢ and cos € ~ 1. Employing the appropriate trigonometric
identity and neglecting all terms of second order or higher, the previous equation reduces
to

sin ¢

Ao = AO .
cos S

(6)
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The law of cosines for sides may also be used to find an expression for the change in the
declination:

cos [90° — (§ + AS8)] = cos (90° — §) cos (AB) + sin (90° — §) sin (AO) cos ¢.

Again using small-angle approximations and trigonometric identities, this expression re-
duces to

AS = AB cos ¢. 7)

(Note that this is the same result that would be obtained if we had used plane trigonometry.
This should be expected, however, since we have assumed that the triangle being considered
has an area much smaller than the total area of the sphere and should therefore appear
essentially flat.) Combining Eqgs. ( 6) and ( 7), we arrive at the expression for the angular
distance traveled in terms of the changes in right ascension and declination:

(A0)? = (Aacos §)? + (AS)?. (8)

4 HEPHYSICS AND ASTRONOMY

The mathematical view of nature first proposed by Pythagoras and the Greeks led ultimately
to the Copernican revolution. The inability of astronomers to accurately fit the observed
positions of the “wandering stars” with mathematical models resulted in a dramatic change
in our perception of Earth’s location in the universe. However, an equally important step
still remained in the development of science: the search for physical causes of observable
phenomena. As we will see, the modern study of astronomy relies heavily on an under-
standing of the physical nature of the universe. The application of physics to astronomy,
astrophysics, has proved very successful in explaining a wide range of observations, in-
cluding strange and exotic objects and events, such as pulsating stars, supernovae, variable
X-ray sources, black holes, quasars, gamma-ray bursts, and the Big Bang.

As a part of our investigation of the science of astronomy, it will be necessary to study
the details of celestial motions, the nature of light, the structure of the atom, and the shape
of space itself. Rapid advances in astronomy over the past several decades have occurred
because of advances in our understanding of fundamental physics and because of improve-
ments in the tools we use to study the heavens: telescopes and computers.

Essentially every area of physics plays an important role in some aspect of astronomy.
Particle physics and astrophysics merge in the study of the Big Bang; the basic question
of the origin of the zoo of elementary particles, as well as the very nature of the fundamental
forces, is intimately linked to how the universe was formed. Nuclear physics provides
information about the types of reactions that are possible in the interiors of stars, and atomic
physics describes how individual atoms interact with one another and with light, processes
that are basic to a great many astrophysical phenomena. Condensed-matter physics plays a
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role in the crusts of neutron stars and in the center of Jupiter. Thermodynamics is involved
everywhere from the Big Bang to the interiors of stars. Even electronics plays an important
role in the development of new detectors capable of giving a clearer view of the universe
around us.

With the advent of modern technology and the space age, telescopes have been built to
study the heavens with ever-increasing sensitivity. No longer limited to detecting visible
light, telescopes are now capable of “seeing” gamma rays, X-rays, ultraviolet light, infrared
radiation, and radio signals. Many of these telescopes require operation above Earth’s
atmosphere to carry out their missions. Other types of telescopes, very different in nature,
detect elementary particles instead of light and are often placed below ground to study the
heavens.

Computers have provided us with the power to carry out the enormous number of calcu-
lations necessary to build mathematical models from fundamental physical principles. The
birth of high-speed computing machines has enabled astronomers to calculate the evolution
of a star and compare those calculations with observations; it is also possible to study the
rotation of a galaxy and its interaction with neighboring galaxies. Processes that require
billions of years (significantly longer than any National Science Foundation grant) cannot
possibly be observed directly but may be investigated using the modern supercomputer.

All of these tools and related disciplines are used to look at the heavens with a probing
eye. The study of astronomy is a natural extension of human curiosity in its purest form. Just
as a small child is always asking why this or that is the way it is, the goal of an astronomer
is to attempt to understand the nature of the universe in all of its complexity, simply for the
sake of understanding—the ultimate end of any intellectual adventure. In a very real sense,
the true beauty of the heavens lies not only in observing the stars on a dark night but also
in considering the delicate interplay between the physical processes that cause the stars to
exist at all.

The most incomprehensible thing about the universe is that it is
comprehensible. — Albert Einstein
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PROBLEM SET

1 Derive the relationship between a planet’s synodic period and its sidereal period (Eq. 1).
Consider both inferior and superior planets.

/s = 1/P —1/Pg (inferior) 0
1/Pg—1/P (superior)

2 Devise methods to determine the relative distances of each of the planets from the Sun given
the information available to Copernicus (observable angles between the planets and the Sun,
orbital configurations, and synodic periods).

3 (a) The observed orbital synodic periods of Venus and Mars are 583.9 days and 779.9 days,
respectively. Calculate their sidereal periods.

(b) Which one of the superior planets has the shortest synodic period? Why?

4 List the right ascension and declination of the Sun when it is located at the vernal equinox, the
summer solstice, the autumnal equinox, and the winter solstice.

5 (a) Referring to Fig. 12(a), calculate the altitude of the Sun along the meridian on the first
day of summer for an observer at a latitude of 42° north.

Jun 21}\\‘ b,
Mar 20 W Hpd
Sep 23—
Dec 21 ~:‘
South = North
Horizon
&
Celestial
equator

(a)

FIGURE 12 (a) The diurnal path of the Sun across the celestial sphere for an observer at latitude
L when the Sun is located at the vernal equinox (March), the summer solstice (June), the autumnal
equinox (September), and the winter solstice (December). NCP and SCP designate the north and south
celestial poles, respectively. The dots represent the location of the Sun at local noon on the approximate
dates indicated.

From Chapter 1 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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FIGURE 12

The Celestial Sphere: Problem Set

(b) What is the maximum altitude of the Sun on the first day of winter at the same latitude?

(a) Circumpolar stars are stars that never set below the horizon of the local observer or stars
that are never visible above the horizon. After sketching a diagram similar to Fig.12(a),
calculate the range of declinations for these two groups of stars for an observer at the
latitude L.

Jun 21

Mar 20 M4
Sep 23— e

South

North

Horizon

Celestial
equator

(a)

dates indicated.

10

1

(b) At what latitude(s) on Earth will the Sun never set when it is at the summer solstice?

(c) Is there any latitude on Earth where the Sun will never set when it is at the vernal equinox?
If so, where?

(a) Determine the Julian date for 16:15 UT on July 14, 2006. (Hint: Be sure to include any leap
years in your calculation.)

(b) What is the corresponding modified Julian date?

Proxima Centauri (o Centauri C) is the closest star to the Sun and is a part of a triple star system.
It has the epoch J2000.0 coordinates (e, §) = (14"29™42.95%, —62°40/46.1”). The brightest
member of the system, Alpha Centauri (¢ Centauri A) has J2000.0 coordinates of («, §) =
(14h39™36.50°, —60°50'02.3").

(a) What is the angular separation of Proxima Centauri and Alpha Centauri?

(b) If the distance to Proxima Centauri is 4.0 x 10'® m, how far is the star from Alpha Centauri?
(a) Using the information in Problem 8, precess the coordinates of Proxima Centauri to epoch

J2010.0.

(b) The proper motion of Proxima Centauri is 3.84” yr~! with the position angle 282°. Calculate
the change in « and § due to proper motion between 2000.0 and 2010.0.

(¢) Which effect makes the largest contribution to changes in the coordinates of Proxima Cen-
tauri: precession or proper motion?

Which values of right ascension would be best for viewing by an observer at a latitude of 40°
in January?

Verify that Eq. ( 7) follows directly from the expression immediately preceding it.

A8 = A6 cos ¢. @)

(a) The diurnal path of the Sun across the celestial sphere for an observer at latitude
L when the Sun is located at the vernal equinox (March), the summer solstice (June), the autumnal
equinox (September), and the winter solstice (December). NCP and SCP designate the north and south
celestial poles, respectively. The dots represent the location of the Sun at local noon on the approximate
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1 Elliptical Orbits

2 Newtonian Mechanics
3 Kepler’s Laws Derived
4 The Virial Theorem

1 MELLIPTICAL ORBITS

Although the inherent simplicity of the Copernican model was aesthetically pleasing, the
idea of a heliocentric universe was not immediately accepted; it lacked the support of
observations capable of unambiguously demonstrating that a geocentric model was wrong.

Tycho Brahe: The Great Naked-Eye Observer

After the death of Copernicus, Tycho Brahe (1546-1601), the foremost naked-eye observer,
carefully followed the motions of the “wandering stars” and other celestial objects. He
carried out his work at the observatory, Uraniborg, on the island of Hveen (a facility provided
for him by King Frederick II of Denmark). To improve the accuracy of his observations,
Tycho used large measuring instruments, such as the quadrant depicted in the mural in
Fig. 1(a). Tycho’s observations were so meticulous that he was able to measure the position
of an object in the heavens to an accuracy of better than 4’, approximately one-eighth the
angular diameter of a full moon. Through the accuracy of his observations he demonstrated
for the first time that comets must be much farther away than the Moon, rather than being
some form of atmospheric phenomenon. Tycho is also credited with observing the supernova
of 1572, which clearly demonstrated that the heavens were not unchanging as Church
doctrine held. (This observation prompted King Frederick to build Uraniborg.) Despite the
great care with which he carried out his work, Tycho was not able to find any clear evidence
of the motion of Earth through the heavens, and he therefore concluded that the Copernican
model must be false.

Kepler’s Laws of Planetary Motion

At Tycho’s invitation, Johannes Kepler (1571-1630), a German mathematician, joined him
later in Prague [Fig. 1(b)]. Unlike Tycho, Kepler was a heliocentrist, and it was his
desire to find a geometrical model of the universe that would be consistent with the best
observations then available, namely Tycho’s. After Tycho’s death, Kepler inherited the mass

From Chapter 2 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.



32

Celestial Mechanics

»,
)

> =
\A

(@ (b)

FIGURE 1 (a) Mural of Tycho Brahe (1546-1601). (b) Johannes Kepler (1571-1630). (Courtesy
of Yerkes Observatory.)

of observations accumulated over the years and began a painstaking analysis of the data. His
initial, almost mystic, idea was that the universe is arranged with five perfect solids, nested
to support the six known naked-eye planets (including Earth) on crystalline spheres, with
the entire system centered on the Sun. After this model proved unsuccessful, he attempted
to devise an accurate set of circular planetary orbits about the Sun, focusing specifically on
Mars. Through his very clever use of offset circles and equants,' Kepler was able to obtain
excellent agreement with Tycho’s data for all but two of the points available. In particular,
the discrepant points were each off by approximately &', or twice the accuracy of Tycho’s
data. Believing that Tycho would not have made observational errors of this magnitude,
Kepler felt forced to dismiss the idea of purely circular motion.

Rejecting the last fundamental assumption of the Ptolemaic model, Kepler began to
consider the possibility that planetary orbits were elliptical in shape rather than circular.
Through this relatively minor mathematical (though monumental philosophical) change,
he was finally able to bring all of Tycho’s observations into agreement with a model for
planetary motion. This paradigm shift also allowed Kepler to discover that the orbital speed
of a planet is not constant but varies in a precise way depending on its location in its orbit.
In 1609 Kepler published the first two of his three laws of planetary motion in the book
Astronomica Nova, or The New Astronomy:

Kepler’s First Law A planet orbits the Sun in an ellipse, with the Sun at one
focus of the ellipse.

Kepler’s Second Law A line connecting a planet to the Sun sweeps out equal
areas in equal time intervals.

IRecall the geocentric use of circles and equants by Ptolemy.
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FIGURE 2  Kepler’s second law states that the area swept out by a line between a planet and the
focus of an ellipse is always the same for a given time interval, regardless of the planet’s position in
its orbit. The dots are evenly spaced in time.

Kepler’s first and second laws are illustrated in Fig. 2, where each dot on the ellipse
represents the position of the planet during evenly spaced time intervals.

Kepler’s third law was published ten years later in the book Harmonica Mundi (The
Harmony of the World). His final law relates the average orbital distance of a planet from
the Sun to its sidereal period:

Kepler’s Third Law The Harmonic Law.

P =4

where P is the orbital period of the planet, measured in years, and a is the average distance
of the planet from the Sun, in astronomical units, or AU. An astronomical unit is, by
definition, the average distance between Earth and the Sun, 1.496 x 10'" m. The graph of
Kepler’s third law shown in Fig. 3 was prepared using data for each planet in our Solar
System.

In retrospect it is easy to understand why the assumption of uniform and circular motion
first proposed nearly 2000 years earlier was not determined to be wrong much sooner;
in most cases, planetary motion differs little from purely circular motion. In fact, it was
actually fortuitous that Kepler chose to focus on Mars, since the data for that planet were
particularly good and Mars deviates from circular motion more than most of the others.

The Geometry of Elliptical Motion

To appreciate the significance of Kepler’s laws, we must first understand the nature of the
ellipse. An ellipse (see Fig. 4) is defined by that set of points that satisfies the equation

r+r' =2a, (1)

where a is a constant known as the semimajor axis (half the length of the long, or major
axis of the ellipse), and r and r’ represent the distances to the ellipse from the two focal
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FIGURE 3  Kepler’s third law for planets orbiting the Sun.

FIGURE 4  The geometry of an elliptical orbit.

points, F and F’, respectively. According to Kepler’s first law, a planet orbits the Sun in an
ellipse, with the Sun located at one focus of the ellipse, the principal focus, F (the other
focus is empty space). Notice that if F and F’ were located at the same point, then ' = r
and the previous equation would reduce to r = r’ = a, the equation for a circle. Thus a
circle is simply a special case of an ellipse. The distance b is known as the semiminor axis.
The eccentricity, ¢ (0 < e < 1), of the ellipse is defined as the distance between the foci
divided by the major axis, 2a, of the ellipse, implying that the distance of either focal point
from the center of the ellipse may be expressed as ae. For a circle, e = 0. The point on the
ellipse that is closest to the principal focus (located on the major axis) is called perihelion;
the point on the opposite end of the major axis and farthest from the principal focus is
known as aphelion.
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A convenient relationship among a, b, and e may be determined geometrically. Consider
one of the two points at either end of the semiminor axis of an ellipse, where r = r’.
In this case, r = a and, by the Pythagorean theorem, r> = b?> 4 a’¢?. Substitution leads
immediately to the expression

b =a? (1 — e2) . 2)

Kepler’s second law states that the orbital speed of a planet depends on its location in
that orbit. To describe in detail the orbital behavior of a planet, it is necessary to specify
where that planet is (its position vector) as well as how fast, and in what direction, the
planet is moving (its velocity vector). It is often most convenient to express a planet’s orbit
in polar coordinates, indicating its distance r from the principal focus in terms of an angle 6
measured counterclockwise from the major axis of the ellipse beginning with the direction
toward perihelion (see Fig. 4). Using the Pythagorean theorem, we have

r'? = r2sin%0 + (2ae + r cos0)?,

which reduces to
72

r'* =r? 4+ 4ae(ae + rcosh).

Using the definition of an ellipse, r + r’ = 2a, we find that

a(l —6‘2)

= ooy ©Se<D. 3)

It is left as an exercise to show that the total area of an ellipse is given by

A = mab. “4)

Example 1.1.  Using Eq. ( 3), it is possible to determine the variation in distance of
a planet from the principal focus throughout its orbit. The semimajor axis of Mars’s orbit
is 1.5237 AU (or 2.2794 x 10'! m) and the planet’s orbital eccentricity is 0.0934. When
0 = 0°, the planet is at perihelion and is at a distance given by

a(l—ez)
1+e
=a(l—e) 5

rp =

= 1.3814 AU.

continued
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Similarly, at aphelion (6 = 180°), the point where Mars is farthest from the Sun, the distance
is given by

a (1 — 62)
T l—e
a(l+e) (6)
1.6660 AU.

The variation in Mars’s orbital distance from the Sun between perihelion and aphelion is
approximately 19%.

An ellipse is actually one of a class of curves known as conic sections, found by passing
a plane through a cone (see Fig. 5). Each type of conic section has its own characteristic
range of eccentricities. As already mentioned, a circle is a conic section with e = 0, and an
ellipse has 0 < e < 1. A curve having e = 1 is known as a parabola and is described by
the equation

2p

r= 1+ cosd (e=1), @)

where p is the distance of closest approach to the parabola’s one focus, at 6 = 0. Curves

Parabola Hyperbola
e=1.0 e=14
a=1.0 a=25

Circle Ellipse

Ellipse
e=0.6
a=25

Parabola Hyperbola
(a) (b)
FIGURE 5 (a) Conic sections. (b) Related orbital paths.
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having eccentricities greater than unity, e > 1, are hyperbolas and have the form

. a(ez—l)

" 1+ ecosf (e>1). ®)

Each type of conic section is related to a specific form of celestial motion.

2 HE NEWTONIAN MECHANICS

At the time Kepler was developing his three laws of planetary motion, Galileo Galilei
(1564-1642), perhaps the first of the true experimental physicists, was studying the motion
of objects on Earth [Fig. 6(a)]. It was Galileo who proposed the earliest formulation of the
concept of inertia. He had also developed an understanding of acceleration; in particular, he
realized that objects near the surface of Earth fall with the same acceleration, independent
of their weight. Whether Galileo publicly proved this fact by dropping objects of differing
weights from the Leaning Tower of Pisa is a matter of some debate.

The Observations of Galileo

Galileo is also the father of modern observational astronomy. Shortly after learning about
the 1608 invention of the first crude spyglass, he thought through its design and constructed
his own. Using his new telescope to carefully observe the heavens, Galileo quickly made
a number of important observations in support of the heliocentric model of the universe.
In particular, he discovered that the band of light known as the Milky Way, which runs
from horizon to horizon, is not merely a cloud, as had previously been supposed, but

(a) (b)

FIGURE 6 (a) Galileo Galilei (1564—-1642). (b) Isaac Newton (1642-1727). (Courtesy of Yerkes
Observatory.)
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actually contains an enormous number of individual stars not resolvable by the naked eye.
Galileo also observed that the Moon possesses craters and therefore is not a perfect sphere.
Observations of the varying phases of Venus implied that the planet does not shine by its own
power, but must be reflecting sunlight from constantly changing angles relative to the Sun
and Earth while it orbits the Sun. He also discovered that the Sun itself is blemished, having
sunspots that vary in number and location. But perhaps the most damaging observation for
the geocentric model, a model still strongly supported by the Church, was the discovery of
four moons in orbit about Jupiter, indicating the existence of at least one other center of
motion in the universe.

Many of Galileo’s first observations were published in his book Sidereus Nuncius (The
Starry Messenger) in 1610. By 1616 the Church forced him to withdraw his support of the
Copernican model, although he was able to continue his study of astronomy for some years.
In 1632 Galileo published another work, The Dialogue on the Two Chief World Systems, in
which a three-character play was staged. In the play Salviati was the proponent of Galileo’s
views, Simplicio believed in the old Aristotelian view, and Sagredo acted as the neutral third
party who was invariably swayed by Salviati’s arguments. In a strong reaction, Galileo was
called before the Roman Inquisition and his book was heavily censored. The book was then
placed on the Index of banned books, a collection of titles that included works of Copernicus
and Kepler. Galileo was put under house arrest for the remainder of his life, serving out his
term at his home in Florence.

In 1992, after a 13-year study by Vatican experts, Pope John Paul II officially announced
that, because of a “tragic mutual incomprehension,” the Roman Catholic Church had erred
in its condemnation of Galileo some 360 years earlier. By reevaluating its position, the
Church demonstrated that, at least on this issue, there is room for the philosophical views
of both science and religion.

Newton’s Three Laws of Motion

Isaac Newton (1642-1727), arguably the greatest of any scientific mind in history
[Fig. 6(b)], was born on Christmas Day in the year of Galileo’s death. At age 18, Newton
enrolled at Cambridge University and subsequently obtained his bachelor’s degree. In the
two years following the completion of his formal studies, and while living at home in Wool-
sthorpe, in rural England, away from the immediate dangers of the Plague, Newton engaged
in what was likely the most productive period of scientific work ever carried out by one
individual. During that interval, he made significant discoveries and theoretical advances
in understanding motion, astronomy, optics, and mathematics. Although his work was not
published immediately, the Philosophiae Naturalis Principia Mathematica (Mathematical
Principles of Natural Philosophy), now simply known as the Principia, finally appeared
in 1687 and contained much of his work on mechanics, gravitation, and the calculus. The
publication of the Principia came about largely as a result of the urging of Edmond Halley,
who paid for its printing. Another book, Optiks, appeared separately in 1704 and contained
Newton’s ideas about the nature of light and some of his early experiments in optics.
Although many of his ideas concerning the particle nature of light were later shown to be
in error, much of Newton’s other work is still used extensively today.

Newton’s great intellect is evidenced in his solution of the so-called brachistochrone
problem posed by Johann Bernoulli, the Swiss mathematician, as a challenge to his col-
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leagues. The brachistochrone problem amounts to finding the curve along which a bead
could slide over a frictionless wire in the least amount of time while under the influence
only of gravity. The deadline for finding a solution was set at a year and a half. The problem
was presented to Newton late one afternoon; by the next morning he had found the answer
by inventing a new area of mathematics known as the calculus of variations. Although the
solution was published anonymously at Newton’s request, Bernoulli commented, “By the
claw, the lion is revealed.”
Concerning the successes of his own career, Newton wrote:

I do not know what I may appear to the world; but to myself I seem to have
been only like a boy, playing on the seashore, and diverting myself, in now and
then finding a smoother pebble or a prettier shell than ordinary, while the great
ocean of truth lay all undiscovered before me.

Today, classical mechanics is described by Newton’s three laws of motion, along with his
universal law of gravity. Outside of the realms of atomic dimensions, velocities approaching
the speed of light, or extreme gravitational forces, Newtonian physics has proved very
successful in explaining the results of observations and experiments. Those regimes where
Newtonian mechanics have been shown to be unsatisfactory will be discussed in later
chapters.

Newton’s first law of motion may be stated as follows:

Newton’s First Law The Law of Inertia. An object at rest will remain at rest
and an object in motion will remain in motion in a straight line at a constant
speed unless acted upon by an external force.

To establish whether an object is actually moving, a reference frame must be established. In
later chapters we will refer to reference frames that have the special property that the first
law is valid; all such frames are known as inertial reference frames. Noninertial reference
frames are accelerated with respect to inertial frames.

The first law may be restated in terms of the momentum of an object, p = mv, where
m and v are mass and velocity, respectively.? Thus Newton’s first law may be expressed as
“the momentum of an object remains constant unless it experiences an external force.”>

The second law is actually a definition of the concept of force:

Newton’s Second Law The net force (the sum of all forces) acting on an object
is proportional to the object’s mass and its resultant acceleration.

If an object is experiencing n forces, then the net force is given by

n

Foo = ZFi = ma. 9)

i=1

2Hereafter, all vectors will be indicated by boldface type. Vectors are quantities described by both a magnitude
and a direction. Some texts use alternate notations for vectors, expressing them either as v or V.
3The law of inertia is an extension of the original concept developed by Galileo.
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FIGURE 7 Newton’s third law.

However, assuming that the mass is constant and using the definition a = dv/dt, Newton’s
second law may also be expressed as
dv __d(mv) dp

Fooo =m— =

= ; 10
dt dt dt (10)

the net force on an object is equal to the time rate of change of its momentum, p. F, =
dp/dt actually represents the most general statement of the second law, allowing for a time
variation in the mass of the object such as occurs with rocket propulsion.

The third law of motion is generally expressed as follows:

Newton’s Third Law For every action there is an equal and opposite reaction.

In this law, action and reaction are to be interpreted as forces acting on different objects.
Consider the force exerted on one object (object 1) by a second object (object 2), F,.
Newton’s third law states that the force exerted on object 2 by object 1, F;, must necessarily
be of the same magnitude but in the opposite direction (see Fig. 7). Mathematically, the
third law can be represented as

Fi, = —F».

Newton’s Law of Universal Gravitation

Using his three laws of motion along with Kepler’s third law, Newton was able to find an
expression describing the force that holds planets in their orbits. Consider the special case
of circular orbital motion of a mass m about a much larger mass M (M > m). Allowing
for a system of units other than years and astronomical units, Kepler’s third law may be
written as

P? =kr?,

where r is the distance between the two objects and k is a constant of proportionality. Writing
the period of the orbit in terms of the orbit’s circumference and the constant velocity of m
yields

2rr

P__a
v

and substituting into the prior equation gives

4722
= ki,

2
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Rearranging terms and multiplying both sides by m lead to the expression

v 47%m
m— =
r kr?

The left-hand side of the equation may be recognized as the centripetal force for circular
motion, SO

47%m
kr?

must be the gravitational force keeping m in its orbit about M. However, Newton’s third
law states that the magnitude of the force exerted on M by m must equal the magnitude of
the force exerted on m by M. Therefore, the form of the equation ought to be symmetric
with respect to exchange of m and M, implying

4r’M
T k2
Expressing this symmetry explicitly and grouping the remaining constants into a new con-
stant, we have
A’ Mm
N

where k = k”/M and k' = k”/m. Finally, introducing a new constant, G = A? /K", we
arrive at the form of the Law of Universal Gravitation found by Newton,

Mm

F=G—-, (11)
r

where G = 6.673 x 107" N m? kg~ (the Universal Gravitational Constant).*
Newton’s law of gravity applies to any two objects having mass. In particular, for an

extended object (as opposed to a point mass), the force exerted by that object on another

extended object may be found by integrating over each of their mass distributions.

Example 2.1.  The force exerted by a spherically symmetric object of mass M on a point
mass m may be found by integrating over rings centered along a line connecting the point
mass to the center of the extended object (see Fig. 8). In this way all points on a specific
ring are located at the same distance from m. Furthermore, because of the symmetry of
the ring, the gravitational force vector associated with it is oriented along the ring’s central
axis. Once a general description of the force due to one ring is determined, it is possible to
add up the individual contributions from all such rings throughout the entire volume of the
mass M. The result will be the force on m due to M.

continued

4At the time this text was written, the uncertainty in G was £0.010 x 10~ N m? kgfz.
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FIGURE 8  The gravitational effect of a spherically symmetric mass distribution.

Let r be the distance between the centers of the two masses, M and m. Ry is the radius
of the large mass, and s is the distance from the point mass to a point on the ring. Because
of the symmetry of the problem, only the component of the gravitational force vector along
the line connecting the centers of the two objects needs to be calculated; the perpendicular
components will cancel. If d M., is the mass of the ring being considered, the force exerted
by that ring on m is given by

ering

d Fiing = Gm 2 cos .

Assuming that the mass density, p(R), of the extended object is a function of radius only
and that the volume of the ring of thickness d R is d Vying, we find that

dMﬁng = p(R)dVrmg
= p(R)2nrRsinf® RdOdR
=27 R*p(R)sin6 dR db.

The cosine is given by

r — Rcosf
cosqb:—s )

where s may be found by the Pythagorean theorem:

s =\/(r — Rcos0)?+ R2sin?@ = v/r2 — 2rRcosé + R2.

Substituting into the expression for d Fyj,e, summing over all rings located at a distance R
from the center of the mass M (i.e., integrating over all 8 from 0 to & for constant R), and
then summing over all resultant shells of radius R from R = 0 to R = R, give the total
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force of gravity acting on the small mass m along the system’s line of symmetry:

F e Gm /Ro /” (r — Rcos0)p(R)2w R?sin 0 10 dR
0 0

53

oo pm R?p(R)sin6
:271Gm/ / PRPRSEavar
o Jo (r?4 R?>—2rRcosb)

Ro rm R3p(R)sin6 cosd
_27tGm/ / PIRISINOCOSD 4 4R,
o Jo (r2 + R? —2rRcosb)

The integrations over # may be carried out by making the change of variable, u = s> =
r2 4+ R? —2rRcos@.Thencos6 = (r> + R?> — u)/2rR and sin 6 dé = du/2r R. After the
appropriate substitutions and integration over the new variable u, the equation for the force
becomes

_ Gm R

0
F = 47 R’p(R)dR.

7,
Notice that the integrand is just the mass of a shell of thickness d R, having a volume d V1,
or

dMgen = 47 R*p(R)dR = p(R) dVepen.

Therefore, the integrand gives the force on m due to a spherically symmetric mass shell of
mass d Mo as

Gm dMgen

d Fohent = 5
p

The shell acts gravitationally as if its mass were located entirely at its center. Finally,
integrating over the mass shells, we have that the force exerted on m by an extended,
spherically symmetric mass distribution is directed along the line of symmetry between the
two objects and is given by

Mm

r2’

F=G

just the equation for the force of gravity between two point masses.

When an object is dropped near the surface of Earth, it accelerates toward the center of
Earth at the rate g = 9.80 m s2, the local acceleration of gravity. Using Newton’s second
law and his law of gravity, an expression for the acceleration of gravity may be found. If m
is the mass of the falling object, Mg and Rg are the mass and radius of Earth, respectively,
and £ is the height of the object above Earth, then the force of gravity on m due to Earth is
given by

M@m
G—2"
(Re +h)
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Assuming that m is near Earth’s surface, then 7 < Rg and

Mqom
F~G ®2 .
Rg,
However, F = ma = mg; thus
M
g§=G—. (12)
Rg

Substituting the values Mg = 5.9736 x 10** kg and Rg = 6.378136 x 10° m gives a value
for g in agreement with the measured value.

The Orbit of the Moon

The famous story that an apple falling on Newton’s head allowed him to immediately
realize that gravity holds the Moon in its orbit is probably somewhat fanciful and inaccurate.
However, he did demonstrate that, along with the acceleration of the falling apple, gravity
was responsible for the motion of Earth’s closest neighbor.

Example 2.2.  Assuming for simplicity that the Moon’s orbit is exactly circular, we
can calculate the centripetal acceleration of the Moon rapidly. Recall that the centripetal
acceleration of an object moving in a perfect circle is given by

vZ

a. = —.
r

In this case, r is the distance from the center of Earth to the center of the Moon, r =
3.84401 x 10% m, and v is the Moon’s orbital velocity, given by

2r
V= —

P

’

where P = 27.3 days = 2.36 x 10° s is the sidereal orbital period of the Moon. Finding
v =1.02 km s™' gives a value for the centripetal acceleration of

a. = 0.0027 m s 2.

The acceleration of the Moon caused by Earth’s gravitational pull may also be calculated
directly from

M
a, = G—2 =0.0027 ms 2,
8 r2

in agreement with the value for the centripetal acceleration.
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Work and Energy

In astrophysics, as in any area of physics, it is often very helpful to have some understand-
ing of the energetics of specific physical phenomena in order to determine whether these
processes are important in certain systems. Some models may be ruled out immediately
if they are incapable of producing the amount of energy observed. Energy arguments also
often result in simpler solutions to particular problems. For example, in the evolution of a
planetary atmosphere, the possibility of a particular component of the atmosphere escaping
must be considered. Such a consideration is based on a calculation of the escape speed of
the gas particles.

The amount of energy (the work) necessary to raise an object of mass m a height i
against a gravitational force is equal to the change in the potential energy of the system.
Generally, the change in potential energy resulting from a change in position between two
points is given by

ry
Uf—U,»:AU:—/ F.dr, (13)
r;

where F is the force vector, r; and r; are the initial and final position vectors, respectively,
and dr is the infinitesimal change in the position vector for some general coordinate system
(see Fig. 9). If the gravitational force on m is due to a mass M located at the origin, then
F is directed inward toward M, dr is directed outward, F - dr = —F dr, and the change in
potential energy becomes

X

FIGURE 9  Gravitational potential energy. The amount of work done depends on the direction of
motion relative to the direction of the force vector.
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Since only relative changes in potential energy are physically meaningful, a reference
position where the potential energy is defined as being identically zero may be chosen. If,
for a specific gravitational system, it is assumed that the potential energy goes to zero at
infinity, letting r approach infinity (ry — o0) and dropping the subscripts for simplicity
give

Mm
U=-G—. (14)

r

Of course, the process can be reversed: The force may be found by differentiating the
gravitational potential energy. For forces that depend only on r,

oU
F=——. (15)
ar

In a general three-dimensional description, F = —VU, where VU represents the gradient
of U. In rectangular coordinates this becomes

Work must be performed on a massive object if its speed, |v|, is to be changed. This can
be seen by rewriting the work integral, first in terms of time, then speed:

W=-AU

I‘f
= / F.dr
.

i

iy dp
= — - (vdt
[ 7 (vdt)

i
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We may now identify the quantity

K = —mv? (16)

as the kinetic energy of the object. Thus work done on the particle results in an equiva-
lent change in the particle’s kinetic energy. This statement is simply one example of the
conservation of energy, a concept that is encountered frequently in all areas of physics.
Consider a particle of mass m that has an initial velocity v and is at a distance r from
the center of a larger mass M, such as Earth. How fast must the mass be moving upward to
completely escape the pull of gravity? To calculate the escape speed, energy conservation
may be used directly. The total initial mechanical energy of the particle (both kinetic and
potential) is given by
| Mm
E=-mv—-G—.
2 r
Assume that, in the critical case, the final velocity of the mass will be zero at a position
infinitely far from M, implying that both the kinetic and potential energy will become zero.
Clearly, by conservation of energy, the rofal energy of the particle must be identically zero
at all times. Thus
1 Mm

—mv* = G—,
2 r

which may be solved immediately for the initial speed of m to give

Vese = /2GM/r. a7y

Notice that the mass of the escaping object does not enter into the final expression for the
escape speed. Near the surface of Earth, ve,e = 11.2 km s7h

3 MW KEPLER’S LAWS DERIVED

Although Kepler did finally determine that the geometry of planetary motion was in the more
general form of an ellipse rather than circular motion, he was unable to explain the nature
of the force that kept the planets moving in their precise patterns. Not only was Newton
successful in quantifying that force, he was also able to generalize Kepler’s work, deriving
the empirical laws of planetary motion from the gravitational force law. The derivation of
Kepler’s laws represented a crucial step in the development of modern astrophysics.

The Center-of-Mass Reference Frame

However, before proceeding onward to derive Kepler’s laws, it will be useful to examine
more closely the dynamics of orbital motion. An interacting two-body problem, such as
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my

r

X

FIGURE 10 A general Cartesian coordinate system indicating the positions of m;, m,, and the
center of mass (located at M).

binary orbits, or the more general many-body problem (often called the N-body problem),
is most easily done in the reference frame of the center of mass.

Figure 10 shows two objects of masses m; and m at positions r| and r}, respectively,
with the displacement vector from r} to r} given by

I /
r=r,—r.

Define a position vector R to be a weighted average of the position vectors of the individual
masses,

/ /
mr, + mor
R=—1"°2

(18)

mi + mo
Of course, this definition can be immediately generalized to the case of n objects,

Dimi MY

R .
Z?:l m;

Rewriting the equation, we have

n n
E miR = E m,-r;.
i=1 i=1

Then, if we define M to be the total mass of the system, M = Z?:, m;, the previous equation
becomes

n
MR = Zmirl/«.
i=1

Assuming that the individual masses do not change, differentiating both sides with respect
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to time gives

dR " dr’
M = fhaals
dr ;m dt

or

MV = Xn:mivl{.

i=1

The right-hand side is the sum of the linear momenta of every particle in the system,
so the total linear momentum of the system may be treated as though all of the mass were
located at R, moving with a velocity V. Thus R is the position of the center of mass of the
system, and V is the center-of-mass velocity. Letting P = MV be the linear momentum of
the center of mass and p; =m iV,/' be the linear momentum of an individual particle i, and
again differentiating both sides with respect to time, yields

dP - dp]
s

If we assume that all of the forces acting on individual particles in the system are due to
other particles contained within the system, Newton’s third law requires that the total force
must be zero. This constraint exists because of the equal magnitudes and opposite directions
of action—reaction pairs. Of course, the momentum of individual masses may change. Using
center-of-mass quantities, we find that the total (or net) force on the system is

dP d’R
= M

F=—=M—
dt dt?

=0.
Therefore, the center of mass will not accelerate if no external forces exist. This implies
that a reference frame associated with the center of mass must be an inertial reference frame
and that the N-body problem may be simplified by choosing a coordinate system for which
the center of mass is at rest at R = 0.
If we choose a center-of-mass reference frame for a binary system, depicted in Fig. 11
(R =0), Eq. ( 18) becomes
miry + morp
— =0, (19)
mi +my
where the primes have been dropped, indicating center-of-mass coordinates. Both r; and
r; may now be rewritten in terms of the displacement vector, r. Substituting r, =r; +r
gives

ro=——2 (20)
my + mp

= — Q1)
my + my
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FIGURE 11 The center-of-mass reference frame for a binary orbit, with the center of mass fixed
at the origin of the coordinate system.

Next, define the reduced mass to be

mimy
= —. 22
. (22)

Then r; and r, become

r, = —ir 23)

nj
n= “r (24)

my

The convenience of the center-of-mass reference frame becomes evident when the total
energy and orbital angular momentum of the system are considered. Including the necessary
kinetic energy and gravitational potential energy terms, the total energy may be expressed
as

1 1 nymyp
2 2
E=_m|vi|"+ -my[v2|" = G :
2 2 ry — 1y
Substituting the relations for r; and r;, along with the expression for the total mass of the
system and the definition for the reduced mass, gives

E:llwz—c;@, (25)
2 r
where v = |v| and v = dr/dt. We have also used the notation r = |r; — ry|. The total
energy of the system is equal to the kinetic energy of the reduced mass, plus the potential
energy of the reduced mass moving about a mass M, assumed to be located and fixed at
the origin. The distance between p and M is equal to the separation between the objects of
masses m and m,.
Similarly, the total orbital angular momentum,

L =mr; x vi +myr; X vy
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X

FIGURE 12 A binary orbit may be reduced to the equivalent problem of calculating the motion
of the reduced mass, p, about the total mass, M, located at the origin.

becomes
L=urxv=rxp, (26)

where p = pv. The total orbital angular momentum equals the angular momentum of the
reduced mass only. In general, the two-body problem may be treated as an equivalent one-
body problem with the reduced mass | moving about a fixed mass M at a distance r (see

Fig. 12).

The Derivation of Kepler’s First Law

To obtain Kepler’s laws, we begin by considering the effect of gravitation on the orbital
angular momentum of a planet. Using center-of-mass coordinates and evaluating the time
derivative of the orbital angular momentum of the reduced mass (Eq. 26) give

dL dr dp ¥
Jr - dr Xp+rx I =VXp+rxEk,
the second expression arising from the definition of velocity and Newton’s second law.
Notice that because v and p are in the same direction, their cross product is identically zero.
Similarly, since F is a central force directed inward along r, the cross product of r and F is
also zero. The result is an important general statement concerning angular momentum:

dL
i 0, (27)
the angular momentum of a system is a constant for a central force law. Equation ( 26)
further shows that the position vector r is always perpendicular to the constant angular
momentum vector L, meaning that the orbit of the reduced mass lies in a plane perpendicular
to L.

Using the radial unit vector F (so r = rf), we can write the angular momentum vector
in an alternative form as

L=urxv

f'xd(f’)
= ur —(r
H dt
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R drAJr d .
= Urr X —7T r—r
H dt dt
2A A
= r X —7r.
mr dt

(The last result comes from the fact that ¥ x t = 0.) In vector form, the acceleration of the
reduced mass due to the gravitational force exerted by M is

GM
a=—-——-T1.
72

Taking the vector cross product of the acceleration of the reduced mass with its own orbital
angular momentum gives

axL GMf'x zf‘xdf‘ GMuprt x f'xdf’
= —— r _— = — _— .
72 HEEX # d
Applying the vector identity A x (B x C) = (A - C)B — (A - B)C results in
d d
axL=-GMu [(f-af>f~— (f-f')Ef].
Because T is a unit vector, r - ¥ = 1 and
i s . d,
—(@-.r)=2r-—r=0.
dt dt

As a result,

d
axL=GMu—r
x Mdt

or, by referring to Eq. ( 27),
i(v x L) = i(GMpc ).
dt dt
Integrating with respect to time then yields
vxL=GMur+D, (28)

where D is a constant vector. Because v x L and F both lie in the orbital plane, so must

D. Furthermore, the magnitude of the left-hand side will be greatest at perihelion when the

velocity of the reduced mass is a maximum. Moreover, the magnitude of the right-hand

side is greatest when r and D point in the same direction. Therefore, D is directed toward

perihelion. As shown below, the magnitude of D determines the eccentricity of the orbit.
We next take the vector dot product of Eq. ( 28) with the position vector r = r

r-(VxL)y=GMurr-r+r-D.
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Invoking the vector identity A - (B x C) = (A x B) - C gives
rxv)-L=GMpur +rDcosf.

Finally, recalling the definition of angular momentum (Eq. 26), we obtain

L2 oM 1+ Dcosf
= , 7
w o GMu

where 6 is the angle of the reduced mass as measured from the direction to perihelion.
Defining e = D/G M p and solving for r, we find

Kepler’s First Law (revisited)

L/’

. 29
"T GM(1 + ecosh) 29

This is exactly the equation of a conic section, as may be seen by comparing Eq. ( 29)
with Egs. ( 3), ( 7), and ( 8) for an ellipse, parabola, and hyperbola, respectively. The
path of the reduced mass about the center of mass under the influence of gravity (or any
other inverse-square force) is a conic section. Elliptical orbits result from an attractive 2
central-force law such as gravity when the total energy of the system is less than zero (a
bound system), parabolic trajectories are obtained when the energy is identically zero, and
hyperbolic paths result from an unbounded system with an energy that is greater than zero.

When Eq. ( 29) is translated back to a physical reference frame on the sky, we find
that Kepler’s first law for bound planetary orbits may be stated as: Both objects in a binary
orbit move about the center of mass in ellipses, with the center of mass occupying one
focus of each ellipse. Newton was able to demonstrate the elliptical behavior of planetary
motion and found that Kepler’s first law must be generalized somewhat: The center of mass
of the system, rather than the exact center of the Sun, is actually located at the focus of
the ellipse. For our Solar System, such a mistake is understandable, since the largest of
the planets, Jupiter, has only 1/1000 the mass of the Sun. This places the center of mass
of the Sun—Jupiter system near the surface of the Sun. Having used the naked-eye data of
Tycho, Kepler can be forgiven for not realizing his error.

For the case of closed planetary orbits, comparing Eqgs. ( 3) and ( 29) shows that the
total orbital angular momentum of the system is

L=p,/GMa (1 -eé?). (30)

Note that L is a maximum for purely circular motion (e = 0) and goes to zero as the
eccentricity approaches unity, as expected.

The Derivation of Kepler’s Second Law

To derive Kepler’s second law, which relates the area of a section of an ellipse to a time
interval, we begin by considering the infinitesimal area element in polar coordinates, as
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dA = rdrdf

T

r

do
FIGURE 13  The infinitesimal area element in polar coordinates.

shown in Fig. 13:
dA =dr (rdf) =rdrdo.

If we integrate from the principal focus of the ellipse to a specific distance, r, the area swept
out by an infinitesimal change in 6 becomes

1
dA = —r*de.
2
Therefore, the time rate of change in area swept out by a line joining a point on the ellipse
to the focus becomes
dA 1 ,do

— = —r —. 31
dt 2 dt G

Now the orbital velocity, v, may be expressed in two components, one directed along r and

the other perpendicular to r. Letting T and 0 be the unit vectors along r and its normal,

respectively, v may be written as (see Fig. 14)

dr, do »
v=v,+vpg=—F+r—=90
dt
Substituting vy into Eq. ( 31) gives
dA 1
— = —ruy
dt 2
Since r and vy are perpendicular,
L
rv9=|rxv|='—'=—.
wl o u

Finally, the time derivative of the area becomes

Kepler’s Second Law (revisited)

dA 1L

i 32
dt 2 1 (32)
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FIGURE 14  The velocity vector for elliptical motion in polar coordinates.

It has already been shown that the orbital angular momentum is a constant, so the time rate
of change of the area swept out by a line connecting a planet to the focus of an ellipse is
a constant, one-half of the orbital angular momentum per unit mass. This is just Kepler’s
second law.

Expressions for the speed of the reduced mass at perihelion (6 = 0) and aphelion (8 =
7 /2) may be easily obtained from Eq. ( 29). Since at both perihelion and aphelion, r and v
are perpendicular, the magnitude of the angular momentum at these points simply becomes

L = urv.
Eq. ( 29) at perihelion may thus be written as

o ()
PTGM(+e)’

whereas at aphelion

- (l”'ava)z/uz
“TGMO—e)

Recalling from Example 1.1 thatr, = a(1 — e) at perihelion and r, = a(l + e) at aphe-
lion, we immediately obtain

2=GM(1+e):GM(1+e> (33)

v
P
rp a 1—e

at perihelion and

UZZGM(I—e):GM<1—e>. 34)

a Ty a 1+e

at aphelion.
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The total orbital energy may be found as well:

E L G
=—uv, —G—.
2“” rp

Making the appropriate substitutions, and after some rearrangement,

M,
E=—G2Ht - _gl"™ (35)
2a 2a

The total energy of a binary orbit depends only on the semimajor axis a and is exactly
one-half the time-averaged potential energy of the system,

E=—-(U),
5 ()
where (U) denotes an average over one orbital period.> This is one example of the virial
theorem, a general property of gravitationally bound systems. The virial theorem will be
discussed in detail in Section 4.

A useful expression for the velocity of the reduced mass (or the relative velocity of m;
and m;) may be found directly by using the conservation of energy and equating the total
orbital energy to the sum of the kinetic and potential energies:

Mu 1

—G— = —jp? - G—.
2~ 2M

Using the identity M = m | + m,, this simplifies to give

5 2 1
v =G(I’I’l1+l’l’lz)<——; . (36)

r

This expression could also have been obtained directly by adding the vector components
of orbital velocity. Calculating v,, vy, and v? will be left as exercises.
The Derivation of Kepler’s Third Law

We are finally in a position to derive the last of Kepler’s laws. Integrating the mathematical
expression for Kepler’s second law (Eq.  32) over one orbital period, P, gives the result

Here the mass m orbiting about a much larger fixed mass M has been replaced by the more
general reduced mass p orbiting about the center of mass. Substituting the area of an ellipse,

5The proof that (U) = —GM u/a is left as an exercise. Note that the time average, (1/r), is equal to 1/a, but

(r) #a.
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A = mab, squaring the equation, and rearranging, we obtain the expression

P2 _ 4n2a2b2,u2
Nz

Finally, using Eq. ( 2) and the expression for the total orbital angular momentum (Eq. 30),
the last equation simplifies to become

Kepler’s Third Law (revisited)

2
2 4m 3

- 4. 37
G (my +mo)" 67

This is the general form of Kepler’s third law. Not only did Newton demonstrate the re-
lationship between the semimajor axis of an elliptical orbit and the orbital period, he also
found a term not discovered empirically by Kepler, the square of the orbital period is in-
versely proportional to the total mass of the system. Once again Kepler can be forgiven
for not noticing the effect. Tycho’s data were for our Solar System only, and because the
Sun’s mass M is so much greater than the mass of any of the planets, Mo + mplanet = M.
Expressing P in years and a in astronomical units gives a value of unity for the collection
of constants (including the Sun’s mass).®

The importance to astronomy of Newton’s form of Kepler’s third law cannot be over-
stated. This law provides the most direct way of obtaining masses of celestial objects, a
critical parameter in understanding a wide range of phenomena. Kepler’s laws, as derived
by Newton, apply equally well to planets orbiting the Sun, moons orbiting planets, stars
in orbit about one another, and galaxy—galaxy orbits. Knowledge of the period of an orbit
and the semimajor axis of the ellipse yields the total mass of the system. If relative dis-
tances to the center of mass are also known, the individual masses may be determined using
Eq. ( 19).

Example 3.1. The orbital sidereal period of lo, one of the four Galilean moons of Jupiter,
is 1.77 days = 1.53 x 10° s and the semimajor axis of its orbit is 4.22 x 108 m. Assuming
that the mass of Io is insignificant compared to that of Jupiter, the mass of the planet may
be estimated using Kepler’s third law:

4r? o’

MJupiter = ?ﬁ =1.90 x 1027 kg =318 M@.

Orbit is a simple computer program that makes use of many of the ideas
discussed in this chapter. It will calculate, as a function of time, the location of a small
mass that is orbiting about a much larger star (or it may be thought of as calculating the
motion of the reduced mass about the total mass). Data generated by Orbit were used to
produce Fig. 2.

®In 1621 Kepler was able to demonstrate that the four Galilean moons also obeyed his third law in the form
P2 = ka3, where the constant k differed from unity. He did not attribute the fact that k # 1 to mass, however.
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4 HETHEVIRIALTHEOREM

In the last section we found that the total energy of the binary orbit was just one-half of
the time-averaged gravitational potential energy (Eq. 35), or E = (U) /2. Since the total
energy of the system is negative, the system is necessarily bound. For gravitationally bound
systems in equilibrium, it can be shown that the total energy is always one-half of the
time-averaged potential energy; this is known as the virial theorem.

To prove the virial theorem, begin by considering the quantity

QEZPi'I’i,

where p; and r; are the linear momentum and position vectors for particle i in some inertial
reference frame, and the sum is taken to be over all particles in the system. The time
derivative of Q is

dQ dp; dr;
— = — 1 ie— |- 38
d Z ( ar NP dt) (38)
Now, the left-hand side of the expression is just
dQ d dr; d 1d ) 1d*1
—_— = — i—or~=— _— ir: = ——F,
ar ~dr&="ar " ai 5 M) = 5 g

i

where
I = Z m,-rl.2
is the moment of inertia of the collection of particles. Substituting back into Eq. ( 38),
1d*1 dr; dpi
—— = je— = — 1. 39
2dr Xi:p dr Xi:dt 59
The second term on the left-hand side is just
dl‘,‘ 1
—Xl:p, . E = —Zj:mivi eV, = —2212 Emiviz = —2K,

twice the negative of the total kinetic energy of the system. If we use Newton’s second law,
Eq. ( 39) becomes

1d’1
EW—ZK:ZF,»Q. (40)

The right-hand side of this expression is known as the virial of Clausius, named after the
physicist who first found this important energy relation.
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If F;; represents the force of interaction between two particles in the system (actually
the force on i due to j), then, considering all of the possible forces acting on i,

ZF,"I',':Z ZF'/ -I;.
i /%l

Rewriting the position vector of particle i as r; = %(ri +r;)+ %(r,- —r;), we find

ZF,"I',‘——Z ZFU . I'1+I'] Z ZFU . l"—l'j).
! /%l I#

From Newton’s third law, F;; = —F ;;, implying that the first term on the right-hand side is
zero, by symmetry. Thus the virial of Clausius may be expressed as

ZFi-ri_ ZZF” _rj 41
i /#r

If it is assumed that the only contribution to the force is the result of the gravitational
interaction between massive particles included in the system, then F;; is
mim; ,
Fl j = G ]rl Js
r? I

where r;; = |r; —r;| is the separation between particles i and j, and F;; is the unit vector
directed from i to j:

ri—r;

l','j =
r,-j

Substituting the gravitational force into Eq. ( 41) gives

YR == 2 367 =)
i J#l

PN @)
J#l

The quantity
MM

rij
is just the potential energy U;; between particles i and j. Note, however, that

m;m;
-G——

rji

59



60

Celestial Mechanics

also represents the same potential energy term and is included in the double sum as well,
so the right-hand side of Eq. ( 42) includes the potential interaction between each pair of
particles twice. Considering the factor of 1/2, Eq. ( 42) simply becomes

D DIPBIE- b D 3 IR )
i i J i J
J# J#i

the total potential energy of the system of particles. Finally, substituting into Eq. ( 40) and

taking the average with respect to time give
1[d*1
—(—=)—2(K)=(U). 44
2< dt2> (K) = (U) (44)

The average of d*1/dt* over some time interval 7 is just

d’r\ 1/’ d’1 5 4s)
a2 |t ), dr?

Cifdr| dl
T\ dt o)

dt
If the system is periodic, as in the case for orbital motion, then

T

dl

_dl
dt

=

0

and the average over one period will be zero. Even if the system being considered is not
strictly periodic, the average will still approach zero when evaluated over a sufficiently
long period of time (i.e., T — 00), assuming of course that d1/dt is bounded. This would
describe, for example, a system that has reached an equilibrium or steady-state configuration.
In either case, we now have (d21/dt2) =0, so

—2(K)=(U). (46)

This result is one form of the virial theorem. The theorem may also be expressed in terms
of the total energy of the system by using the relation (E) = (K) + (U). Thus

(v, (47)

just what we found for the binary orbit problem.

The virial theorem applies to a wide variety of systems, from an ideal gas to a cluster
of galaxies. For instance, consider the case of a static star. In equilibrium a star must obey
the virial theorem, implying that its total energy is negative, one-half of the total potential
energy. Assuming that the star formed as a result of the gravitational collapse of a large
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cloud (a nebula), the potential energy of the system must have changed from an initial value
of nearly zero to its negative static value. This implies that the star must have lost energy in
the process, meaning that gravitational energy must have been radiated into space during
the collapse. Applications of the virial theorem will be described in more detail in later
chapters.
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PROBLEM SET

1 Assume that a rectangular coordinate system has its origin at the center of an elliptical planetary
orbit and that the coordinate system’s x axis lies along the major axis of the ellipse. Show that
the equation for the ellipse is given by

x2 yZ
pE

where a and b are the lengths of the semimajor axis and the semiminor axis, respectively.

2 Using the result of Problem 1, prove that the area of an ellipse is given by A = wab.

3 (a) Beginning with Eq. ( 3) and Kepler’s second law, derive general expressions for v, and vy
for a mass m in an elliptical orbit about a second mass m,. Your final answers should be
functions of P, e, a, and 6 only.

a (1 —62)

= . 3
1+ ecosf O=e<D )

(b) Using the expressions for v, and v, that you derived in part (a), verify Eq. ( 36) directly
from v? = v? + v2.

) 2 1
vi=Gm +m)|-—-]). (36)

r a

4 Derive Eq. ( 25) from the sum of the kinetic and potential energy terms for the masses m;
and m,.

E=—-uv " —G—, (25)

5 Derive Eq. ( 26) from the total angular momentum of the masses m; and m,.

L=urxv=rxp, (26)

From Chapter 2 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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6 (a) Assuming that the Sun interacts only with Jupiter, calculate the total orbital angular mo-
mentum of the Sun—Jupiter system. The semimajor axis of Jupiter’s orbit is a = 5.2 AU,
its orbital eccentricity is e = 0.048, and its orbital period is P = 11.86 yr.

(b) Estimate the contribution the Sun makes to the total orbital angular momentum of the Sun—
Jupiter system. For simplicity, assume that the Sun’s orbital eccentricity is e = 0, rather
than e = 0.048. Hint: First find the distance of the center of the Sun from the center of
mass.

(¢) Making the approximation that the orbit of Jupiter is a perfect circle, estimate the contri-
bution it makes to the total orbital angular momentum of the Sun—Jupiter system. Compare
your answer with the difference between the two values found in parts (a) and (b).

(d) Recall that the moment of inertia of a solid sphere of mass m and radius r is given by
1= %mr2 when the sphere spins on an axis passing through its center. Furthermore, its
rotational angular momentum may be written as

L=1Iw,

where w is the angular frequency measured in rad s~'. Assuming (incorrectly) that both
the Sun and Jupiter rotate as solid spheres, calculate approximate values for the rotational
angular momenta of the Sun and Jupiter. Take the rotation periods of the Sun and Jupiter
to be 26 days and 10 hours, respectively. The radius of the Sun is 6.96 x 108 m, and the
radius of Jupiter is 6.9 x 107 m.

(e) What part of the Sun—Jupiter system makes the largest contribution to the total angular
momentum?

7 (a) Using data contained in Problem 6 and in the chapter, ‘Celestial Mechanics,” calculate
the escape speed at the surface of Jupiter.

(b) Calculate the escape speed from the Solar System, starting from Earth’s orbit. Assume that
the Sun constitutes all of the mass of the Solar System.

8 (a) The Hubble Space Telescope is in a nearly circular orbit, approximately 610 km (380 miles)
above the surface of Earth. Estimate its orbital period.

(b) Communications and weather satellites are often placed in geosynchronous “parking” orbits
above Earth. These are orbits where satellites can remain fixed above a specific point on
the surface of Earth. At what altitude must these satellites be located?

(c) Is it possible for a satellite in a geosynchronous orbit to remain “parked” over any location
on the surface of Earth? Why or why not?

9 In general, an integral average of some continuous function f(f) over an interval t is given by

l T
(f@) = *[ f@dr.
T Jo

Beginning with an expression for the integral average, prove that

M,
) =-G-~,
a
a binary system’s gravitational potential energy, averaged over one period, equals the value
of the instantaneous potential energy of the system when the two masses are separated by the
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distance a, the semimajor axis of the orbit of the reduced mass about the center of mass. Hint:
You may find the following definite integral useful:

/2” o 2x
b l+ecosd JI—e&
Using the definition of the integral average given in Problem 2.9, prove that

(r) #a
for the orbit of the reduced mass about the center of mass.

Given that a geocentric universe is (mathematically) only a matter of the choice of a reference
frame, explain why the Ptolemaic model of the universe was able to survive scrutiny for such
a long period of time.

Verify that Kepler’s third law in the form of Eq. ( 37) applies to the four moons that Galileo
discovered orbiting Jupiter (the Galilean moons: lo, Europa, Ganymede, and Callisto).

2
2 4m 3

A —) 37
G(m1+m2)a 67

(a) Using the data available in Appendix: Solor-System Data,create a graph of log,, P vs.log,, a.

(b) From the graph, show that the slope of the best-fit straight line through the data is 3/2.

(¢) Calculate the mass of Jupiter from the value of the y-intercept.

An alternative derivation of the total orbital angular momentum can be obtained by applying
the conservation laws of angular momentum and energy.

(a) From conservation of angular momentum, show that the ratio of orbital speeds at perihelion
and aphelion is given by

v, l+e
v, 1—e

(b) By equating the orbital mechanical energies at perihelion and aphelion, derive Egs. ( 33)
and (34) for the perihelion and aphelion speeds, respectively.

GM(1 GM (1
= ZHEED (”) (33)
p a l—e
GM(1—¢) GM (1-
2=GMl-o ( e). (34)
Ta a 1+e

(¢) Obtain Eq. ( 30) directly from the expression for v, (or v,).

L =p,/GMa (1 —e2). (30)

Cometary orbits usually have very large eccentricities, often approaching (or even exceeding)
unity. Halley’s comet has an orbital period of 76 yr and an orbital eccentricity of e = 0.9673.

(a) What is the semimajor axis of Comet Halley’s orbit?
(b) Use the orbital data of Comet Halley to estimate the mass of the Sun.
(c) Calculate the distance of Comet Halley from the Sun at perihelion and aphelion.
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(d) Determine the orbital speed of the comet when at perihelion, at aphelion, and on the semimi-
nor axis of its orbit.

(e) How many times larger is the kinetic energy of Halley’s comet at perihelion than at aphelion?

COMPUTER PROBLEMS

15

16

17

18

Using Orbit
together with the data given in Problem 14, estimate the amount of time required for Halley’s
comet to move from perihelion to a distance of 1 AU away from the principal focus.

The code Orbit can be used to generate orbital positions, given the mass of
the central star, the semimajor axis of the orbit, and the orbital eccentricity. Using Orbit to
generate the data, plot the orbits for three hypothetical objects orbiting our Sun. Assume that
the semimajor axis of each orbit is 1 AU and that the orbital eccentricities are:

(a) 0.0.

(b) 0.4.

(c) 0.9.

Note: Plot all three orbits on a common coordinate system and indicate the principal focus,
located at x = 0.0, y = 0.0.

(a) From the data given in Example 1.1 of “Celestial Mechanics,” use Orbit to generate an
orbit for Mars. Plot at least 25 points, evenly spaced in time, on a sheet of graph paper
and clearly indicate the principal focus.

(b) Using a compass, draw a perfect circle on top of the elliptical orbit for Mars, choosing the
radius of the circle and its center carefully in order to make the best possible approximation
of the orbit. Be sure to mark the center of the circle you chose (note that it will not correspond
to the principal focus of the elliptical orbit).

(¢) What can you conclude about the merit of Kepler’s first attempts to use offset circles and
equants to model the orbit of Mars?

The below figure was drawn assuming perfectly circular motion and constant orbital speeds
for Earth and Mars. By making very slight modifications to Orbit, a more realistic diagram can
be created.

Earth orbit
Mars orbit 1.5

FIGURE  The relationship between the sidereal and synodic periods of Mars. The two periods
do not agree due to the motion of Earth. The numbers represent the elapsed time in sidereal years
since Mars was initially at opposition. Note that Earth completes more than two orbits in a synodic
period of S = 2.135 yr, whereas Mars completes slightly more than one orbit during one synodic

period from opposition to opposition.
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(a) Beginby assuming that Mars is initially at opposition and that Earth and Mars happen to be at
their closest possible approach (aphelion and perihelion, respectively). Use your modified
version of Orbit to calculate the positions of Earth and Mars between two successive

oppositions of Mars. Graph the results.

(b) How much time (in years) elapsed between the two oppositions?

(¢) Does your answer in part (b) agree precisely with the results obtained from the below

equation? Why or why not?

1/P—1
1/S={ / /Ps
1/Pg—1/P

(inferior)

(superior)

(d) Would you have obtained the same answer to part (b) if you had started the calculation with

Earth at perihelion and Mars at aphelion? Explain your answer.

(e) From the results of your numerical experiment, explain why Mars appears brighter in the

night sky during certain oppositions than during others.
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The Quantization of Energy
The Color Index

1 Stellar Parallax

2 The Magnitude Scale

3 The Wave Nature of Light
4 Blackbody Radiation

5

6

1 MESTELLAR PARALLAX

Measuring the intrinsic brightness of stars is inextricably linked with determining their
distances. This chapter on the light emitted by stars therefore begins with the problem of
finding the distance to astronomical objects, one of the most important and most difficult
tasks faced by astronomers. Kepler’s laws in their original form describe the relative sizes
of the planets’ orbits in terms of astronomical units; their actual dimensions were unknown
to Kepler and his contemporaries. The true scale of the Solar System was first revealed
in 1761 when the distance to Venus was measured as it crossed the disk of the Sun in
a rare transit during inferior conjunction. The method used was trigonometric parallax,
the familiar surveyor’s technique of triangulation. On Earth, the distance to the peak of
a remote mountain can be determined by measuring that peak’s angular position from
two observation points separated by a known baseline distance. Simple trigonometry then
supplies the distance to the peak; see Fig. 1. Similarly, the distances to the planets can be
measured from two widely separated observation sites on Earth.

Finding the distance even to the nearest stars requires a longer baseline than Earth’s
diameter. As Earth orbits the Sun, two observations of the same star made 6 months apart
employ a baseline equal to the diameter of Earth’s orbit. These measurements reveal that a
nearby star exhibits an annual back-and-forth change in its position against the stationary
background of much more distant stars. A star may also change its position as a consequence
of its own motion through space. However, this proper motion, seen from Earth, is not pe-
riodic and so can be distinguished from the star’s periodic displacement caused by Earth’s
orbital motion. As shown in Fig. 2, a measurement of the parallax angle p (one-half of
the maximum change in angular position) allows the calculation of the distance d to the
star.

1AU 1
= ~ — AU,

d= o~
tan p p

From Chapter 3 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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FIGURE1  Trigonometric parallax: d = B/ tan p.

Earth

FIGURE 2  Stellar parallax: d = 1/p” pc.

where the small-angle approximation tan p >~ p has been employed for the parallax angle
p measured in radians. Using 1 radian = 57.2957795° = 206264.806" to convert p to p”
in units of arcseconds produces

206,265

d~ =" AU.
P

Defining a new unit of distance, the parsec (parallax-second, abbreviated pc), as 1 pc =
2.06264806 x 10° AU = 3.0856776 x 10'® m leads to

d = — pc. (1)

By definition, when the parallax angle p = 1”, the distance to the star is 1 pc. Thus 1 parsec
is the distance from which the radius of Earth’s orbit, 1 AU, subtends an angle of 1”. Another
unit of distance often encountered is the light-year (abbreviated ly), the distance traveled
by light through a vacuum in one Julian year: 1 ly = 9.460730472 x 10'> m. One parsec
is equivalent to 3.2615638 ly.
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Even Proxima Centauri, the nearest star other than the Sun, has a parallax angle of less
than 1”. (Proxima Centauri is a member of the triple star system « Centauri, and has a
parallax angle of 0.77”. If Earth’s orbit around the Sun were represented by a dime, then
Proxima Centauri would be located 2.4 km away!) In fact, this cyclic change in a star’s
position is so difficult to detect that it was not until 1838 that it was first measured, by
Friedrich Wilhelm Bessel (1784—1846), a German mathematician and astronomer.'

Example 1.1.  In 1838, after 4 years of observing 61 Cygni, Bessel announced his mea-
surement of a parallax angle of 0.316” for that star. This corresponds to a distance of

1
d = — =
Y€ 0316

pc =3.16 pc = 10.3 1y,

within 10% of the modern value 3.48 pc. 61 Cygni is one of the Sun’s nearest neighbors.

From 1989 to 1993, the European Space Agency’s (ESA’s) Hipparcos Space Astrometry
Mission operated high above Earth’s distorting atmosphere.> The spacecraft was able to
measure parallax angles with accuracies approaching 0.001” for over 118,000 stars, cor-
responding to a distance of 1000 pc = 1 kpc (kiloparsec). Along with the high-precision
Hipparcos experiment aboard the spacecraft, the lower-precision Tycho experiment pro-
duced a catalog of more than 1 million stars with parallaxes down to 0.02” — 0.03”. The
two catalogs were published in 1997 and are available on CD-ROMs and the World Wide
Web. Despite the impressive accuracy of the Hipparcos mission, the distances that were
obtained are still quite small compared to the 8-kpc distance to the center of our Milky Way
Galaxy, so stellar trigonometric parallax is currently useful only for surveying the local
neighborhood of the Sun.

However, within the next decade, NASA plans to launch the Space Interferometry Mis-
sion (SIM PlanetQuest). This observatory will be able to determine positions, distances,
and proper motions of stars with parallax angles as small as 4 microarcseconds (0.000004"),
leading to the direct determination of distances of objects up to 250 kpc away, assuming that
the objects are bright enough. In addition, ESA will launch the Gaia mission within the next
decade as well, which will catalog the brightest 1 billion stars with parallax angles as small
as 10 microarcseconds. With the anticipated levels of accuracy, these missions will be able
to catalog stars and other objects across the Milky Way Galaxy and even in nearby galaxies.
Clearly these ambitious projects will provide an amazing wealth of new information about
the three-dimensional structure of our Galaxy and the nature of its constituents.

I'Tycho Brahe had searched for stellar parallax 250 years earlier, but his instruments were too imprecise to find it.
Tycho concluded that Earth does not move through space, and he was thus unable to accept Copernicus’s model
of a heliocentric Solar System.

2Astrometry is the subdiscipline of astronomy that is concerned with the three-dimensional positions of celestial
objects.
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2 HETHE MAGNITUDE SCALE

Nearly all of the information astronomers have received about the universe beyond our
Solar System has come from the careful study of the light emitted by stars, galaxies, and
interstellar clouds of gas and dust. Our modern understanding of the universe has been made
possible by the quantitative measurement of the intensity and polarization of light in every
part of the electromagnetic spectrum.

Apparent Magnitude

The Greek astronomer Hipparchus was one of the first sky watchers to catalog the stars
that he saw. In addition to compiling a list of the positions of some 850 stars, Hipparchus
invented a numerical scale to describe how bright each star appeared in the sky. He assigned
an apparent magnitude m = 1 to the brightest stars in the sky, and he gave the dimmest
stars visible to the naked eye an apparent magnitude of m = 6. Note that a smaller apparent
magnitude means a brighter-appearing star.

Since Hipparchus’s time, astronomers have extended and refined his apparent magnitude
scale. In the nineteenth century, it was thought that the human eye responded to the difference
in the logarithms of the brightness of two luminous objects. This theory led to a scale in
which a difference of 1 magnitude between two stars implies a constant ratio between their
brightnesses. By the modern definition, a difference of 5 magnitudes corresponds exactly
to a factor of 100 in brightness, so a difference of 1 magnitude corresponds exactly to a
brightness ratio of 100'/% ~ 2.512. Thus a first-magnitude star appears 2.512 times brighter
than a second-magnitude star, 2.512% = 6.310 times brighter than a third-magnitude star,
and 100 times brighter than a sixth-magnitude star.

Using sensitive detectors, astronomers can measure the apparent magnitude of an object
with an accuracy of +0.01 magnitude, and differences in magnitudes with an accuracy of
40.002 magnitude. Hipparchus’s scale has been extended in both directions, from m =
—26.83 for the Sun to approximately m = 30 for the faintest object detectable.® The total
range of nearly 57 magnitudes corresponds to over 100°7/5 = (10%)'!* ~ 10?3 for the ratio
of the apparent brightness of the Sun to that of the faintest star or galaxy yet observed.

Flux, Luminosity, and the Inverse Square Law

The “brightness” of a star is actually measured in terms of the radiant flux F received from
the star. The radiant flux is the total amount of light energy of all wavelengths that crosses
a unit area oriented perpendicular to the direction of the light’s travel per unit time; that is,
it is the number of joules of starlight energy per second (i.e., the number of watts) received
by one square meter of a detector aimed at the star. Of course, the radiant flux received
from an object depends on both its intrinsic luminosity (energy emitted per second) and its
distance from the observer. The same star, if located farther from Earth, would appear less
bright in the sky.

3The magnitudes discussed in this section are actually bolometric magnitudes, measured over all wavelengths of
light; see Section 6 for a discussion of magnitudes measured by detectors over a finite wavelength region.
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Imagine a star of luminosity L surrounded by a huge spherical shell of radius r. Then,
assuming that no light is absorbed during its journey out to the shell, the radiant flux, F,
measured at distance r is related to the star’s luminosity by

L
F=—_ )

4rr?’

the denominator being simply the area of the sphere. Since L does not depend on r, the
radiant flux is inversely proportional to the square of the distance from the star. This is the
well-known inverse square law for light.*

Example 2.1.  The luminosity of the Sun is Ly = 3.839 x 10%® W. At a distance of
1 AU = 1.496 x 10"' m, Earth receives a radiant flux above its absorbing atmosphere of
L

F = = 1365 W m~>.
47r?

This value of the solar flux is known as the solar irradiance, sometimes also called the
solar constant. At a distance of 10 pc = 2.063 x 10° AU, an observer would measure the
radiant flux to be only 1/(2.063 x 10%)? as large. That is, the radiant flux from the Sun
would be 3.208 x 107! W m~2 at a distance of 10 pc.

Absolute Magnitude

Using the inverse square law, astronomers can assign an absolute magnitude, M, to each
star. This is defined to be the apparent magnitude a star would have if it were located at a
distance of 10 pc. Recall that a difference of 5 magnitudes between the apparent magnitudes
of two stars corresponds to the smaller-magnitude star being 100 times brighter than the
larger-magnitude star. This allows us to specify their flux ratio as

B2 _ 1optm-mos, 3)
F

Taking the logarithm of both sides leads to the alternative form:

F
i — ma = —2.510gy, <—) . 4)
P
The Distance Modulus

The connection between a star’s apparent and absolute magnitudes and its distance may be
found by combining Egs. (2) and (3):

2
100 =M/5 — ﬂ = d
F 10pc/) ’

4If the star is moving with a speed near that of light, the inverse square law must be modified slightly.
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where Fjg is the flux that would be received if the star were at a distance of 10 pc, and d is
the star’s distance, measured in parsecs. Solving for d gives

d = 10"=M+/5 pe, (5)

The quantity m — M is therefore a measure of the distance to a star and is called the star’s
distance modulus:

d
m — M = 5log,,(d) —5 = 5log, (m) . (6)

Example 2.2.  The apparent magnitude of the Sun is mg,, = —26.83, and its distance is
1 AU = 4.848 x 1079 pc. Equation (6) shows that the absolute magnitude of the Sun is

Mgyn = msyn — Slogo(d) +5 = +4.74,

as already given. The Sun’s distance modulus is thus mgy, — Mgy, = -31.575

For two stars at the same distance, Eq. ( 2) shows that the ratio of their radiant fluxes
is equal to the ratio of their luminosities. Thus Eq. ( 3) for absolute magnitudes becomes

oot —ms _ L2 (7
L,
Letting one of these stars be the Sun reveals the direct relation between a star’s absolute
magnitude and its luminosity:

L
M = Mgy, — 2.5log,, (L_) , (8)
o]

where the absolute magnitude and luminosity of the Sun are Ms,, = +4.74 and Lo =
3.839 x 10%° W, respectively. It is left as an exercise for you to show that a star’s apparent
magnitude m is related to the radiant flux F received from the star by

F
m = MSun — 25 10g10 <F . ) s (9)
10,06

where Fjg o is the radiant flux received from the Sun at a distance of 10 pc (see Exam-
ple 2.1).

The inverse square law for light, Eq. ( 2), relates the intrinsic properties of a star
(luminosity L and absolute magnitude M) to the quantities measured at a distance from

5The magnitudes m and M for the Sun have a “Sun” subscript (instead of “®”) to avoid confusion with M, the
standard symbol for the Sun’s mass.
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that star (radiant flux F and apparent magnitude m). At first glance, it may seem that
astronomers must start with the measurable quantities F' and m and then use the distance
to the star (if known) to determine the star’s intrinsic properties. However, if the star
belongs to an important class of objects known as pulsating variable stars, its intrinsic
luminosity L and absolute magnitude M can be determined without any knowledge of its
distance. Equation ( 5) then gives the distance to the variable star.

These stars act as beacons that illuminate the fundamental distance scale of
the universe.

3 B THE WAVE NATURE OF LIGHT

Much of the history of physics is concerned with the evolution of our ideas about the nature
of light.

The Speed of Light

The speed of light was first measured with some accuracy in 1675, by the Danish astronomer
Ole Roemer (1644-1710). Roemer observed the moons of Jupiter as they passed into the
giant planet’s shadow, and he was able to calculate when future eclipses of the moons should
occur by using Kepler’s laws. However, Roemer discovered that when Earth was moving
closer to Jupiter, the eclipses occurred earlier than expected. Similarly, when Earth was
moving away from Jupiter, the eclipses occurred behind schedule. Roemer realized that
the discrepancy was caused by the differing amounts of time it took for light to travel the
changing distance between the two planets, and he concluded that 22 minutes was required
for light to cross the diameter of Earth’s orbit.® The resulting value of 2.2 x 108 m s~! was
close to the modern value of the speed of light. In 1983 the speed of light in vacuo was
formally defined to be ¢ = 2.99792458 x 10® m s~!, and the unit of length (the meter) is
now derived from this value.”

Young’s Double-Slit Experiment

Even the fundamental nature of light has long been debated. Isaac Newton, for example,
believed that light must consist of a rectilinear stream of particles, because only such a
stream could account for the sharpness of shadows. Christian Huygens (1629-1695), a
contemporary of Newton, advanced the idea that light must consist of waves. According
to Huygens, light is described by the usual quantities appropriate for a wave. The distance
between two successive wave crests is the wavelength A, and the number of waves per
second that pass a point in space is the frequency v of the wave. Then the speed of the light
wave is given by

¢ =Av. 10)

%We now know that it takes light about 16.5 minutes to travel 2 AU.
"In 1905 Albert Einstein realized that the speed of light is a universal constant of nature whose value is independent
of the observer. This realization plays a central role in his Special Theory of Relativity.
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FIGURE 3 Double-slit experiment.
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FIGURE4  Superposition principle for light waves. (a) Constructive interference. (b) Destructive
interference.

Both the particle and wave models could explain the familiar phenomena of the reflection
and refraction of light. However, the particle model prevailed, primarily on the strength
of Newton’s reputation, until the wave nature of light was conclusively demonstrated by
Thomas Young’s (1773—-1829) famous double-slit experiment.

In a double-slit experiment, monochromatic light of wavelength A from a single source
passes through two narrow, parallel slits that are separated by a distance d. The light then
falls upon a screen a distance L beyond the two slits (see Fig. 3). The series of light
and dark interference fringes that Young observed on the screen could be explained only
by a wave model of light. As the light waves pass through the narrow slits,® they spread
out (diffract) radially in a succession of crests and troughs. Light obeys a superposition
principle, so when two waves meet, they add algebraically; see Fig. 4. At the screen, if a
wave crest from one slit meets a wave crest from the other slit, a bright fringe or maximum is
produced by the resulting constructive interference. But if a wave crest from one slit meets
a wave trough from the other slit, they cancel each other, and a dark fringe or minimum
results from this destructive interference.

The interference pattern observed thus depends on the difference in the lengths of the
paths traveled by the light waves from the two slits to the screen. As shown in Fig. 3,
if L > d, then to a good approximation this path difference is d sin 6. The light waves
will arrive at the screen in phase if the path difference is equal to an integral number of
wavelengths. On the other hand, the light waves will arrive 180° out of phase if the path
difference is equal to an odd integral number of half-wavelengths. So for L > d, the angular

8 Actually, Young used pinholes in his original experiment.
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positions of the bright and dark fringes for double-slit interference are given by

ni (n=0,1,2, ... for bright fringes)
dsinf = (11)

(n — %) A (n=1,2,3, ... for dark fringes).
In either case, n is called the order of the maximum or minimum. From the measured
positions of the light and dark fringes on the screen, Young was able to determine the
wavelength of the light. At the short-wavelength end, Young found that violet light has
a wavelength of approximately 400 nm, while at the long-wavelength end, red light has
a wavelength of only 700 nm.° The diffraction of light goes unnoticed under everyday
conditions for these short wavelengths, thus explaining Newton’s sharp shadows.

Maxwell’s Electromagnetic Wave Theory

The nature of these waves of light remained elusive until the early 1860s, when the Scottish
mathematical physicist James Clerk Maxwell (1831-1879) succeeded in condensing every-
thing known about electric and magnetic fields into the four equations that today bear his
name. Maxwell found that his equations could be manipulated to produce wave equations
for the electric and magnetic field vectors E and B. These wave equations predicted the
existence of electromagnetic waves that travel through a vacuum with speed v = 1/, /€p 0,
where € and ¢ are fundamental constants associated with the electric and magnetic fields,
respectively. Upon inserting the values of €, and po, Maxwell was amazed to discover
that electromagnetic waves travel at the speed of light. Furthermore, these equations im-
plied that electromagnetic waves are transverse waves, with the oscillatory electric and
magnetic fields perpendicular to each other and to the direction of the wave’s propagation
(see Fig. 5); such waves could exhibit the polarization'® known to occur for light. Max-
well wrote that “we can scarcely avoid the inference that light consists in the transverse
modulations of the same medium which is the cause of electric and magnetic phenomena.”

Maxwell did not live to see the experimental verification of his prediction of electro-
magnetic waves. Ten years after Maxwell’s death, the German physicist Heinrich Hertz
(1857-1894) succeeded in producing radio waves in his laboratory. Hertz determined that
these electromagnetic waves do indeed travel at the speed of light, and he confirmed their
reflection, refraction, and polarization properties. In 1889, Hertz wrote:

What is light? Since the time of Young and Fresnel we know that it is wave
motion. We know the velocity of the waves, we know their lengths, and we know
that they are transverse; in short, our knowledge of the geometrical conditions
of the motion is complete. A doubt about these things is no longer possible; a
refutation of these views is inconceivable to the physicist. The wave theory of
light is, from the point of view of human beings, certainty.

9 Another commonly used measure of the wavelength of light is the angstrom; 1 A = 0.1 nm. In these units, violet
light has a wavelength of 4000 A and red light has a wavelength of 7000 A.

10The electromagnetic wave shown in Fig. 5 is plane-polarized, with its electric and magnetic fields oscillating
in planes. Because E and B are always perpendicular, their respective planes of polarization are perpendicular as
well.
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E

vV=¢C
FIGURE 5  Electromagnetic wave.
TABLE 1 The Electromagnetic Spectrum.

Region Wavelength
Gamma ray A < lnm
X-ray Inm < A < 10nm
Ultraviolet 10nm < A < 400 nm
Visible 400nm < A < 700 nm
Infrared 700nm < A < 1 mm
Microwave Imm< A < 10cm
Radio 10cm < A

The Electromagnetic Spectrum

Today, astronomers utilize light from every part of the electromagnetic spectrum. The total
spectrum of light consists of electromagnetic waves of all wavelengths, ranging from very
short-wavelength gamma rays to very long-wavelength radio waves. Table 1 shows how
the electromagnetic spectrum has been arbitrarily divided into various wavelength regions.

The Poynting Vector and Radiation Pressure

Like all waves, electromagnetic waves carry both energy and momentum in the direction
of propagation. The rate at which energy is carried by a light wave is described by the
Poynting vector,'!

1
S=—E xB,
Mo

where S has units of W m~2. The Poynting vector points in the direction of the electro-
magnetic wave’s propagation and has a magnitude equal to the amount of energy per unit
time that crosses a unit area oriented perpendicular to the direction of the propagation of

'"The Poynting vector is named after John Henry Poynting (1852-1914), the physicist who first described it.
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\Area A (edge on)

F,,q (absorption)

Fyq (reflection)

FIGURE 6  Radiation pressure force. The surface area A is seen edge on.

the wave. Because the magnitudes of the fields E and B vary harmonically with time, the
quantity of practical interest is the time-averaged value of the Poynting vector over one cy-
cle of the electromagnetic wave. In a vacuum the magnitude of the time-averaged Poynting
vector, (S), is
1
(S) = 5—EoBo, (12)
210

where Ej and By are the maximum magnitudes (amplitudes) of the electric and magnetic
fields, respectively. (For an electromagnetic wave in a vacuum, E, and By are related by
Ey = c¢By.) The time-averaged Poynting vector thus provides a description of the radiant
flux in terms of the electric and magnetic fields of the light waves. However, it should be
remembered that the radiant flux discussed in Section 2 involves the amount of energy
received at all wavelengths from a star, whereas E( and B, describe an electromagnetic
wave of a specified wavelength.

Because an electromagnetic wave carries momentum, it can exert a force on a surface
hit by the light. The resulting radiation pressure depends on whether the light is reflected
from or absorbed by the surface. Referring to Fig. 6, if the light is completely absorbed,
then the force due to radiation pressure is in the direction of the light’s propagation and has
magnitude

(S)A

Frq = cosd (absorption), (13)
where 6 is the angle of incidence of the light as measured from the direction perpendicular
to the surface of area A. Alternatively, if the light is completely reflected, then the radiation
pressure force must act in a direction perpendicular to the surface; the reflected light cannot
exert a force parallel to the surface. Then the magnitude of the force is

2(S)A

tad = cos’ 0 (reflection). (14)

Radiation pressure has a negligible effect on physical systems under everyday conditions.
However, radiation pressure may play a dominant role in determining some aspects of the
behavior of extremely luminous objects such as early main-sequence stars, red supergiants,
and accreting compact stars. It may also have a significant effect on the small particles of
dust found throughout the interstellar medium.
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4 HBLACKBODY RADIATION

Anyone who has looked at the constellation of Orion on a clear winter night has noticed the
strikingly different colors of red Betelgeuse (in Orion’s northeast shoulder) and blue-white
Rigel (in the southwest leg); see Fig. 7. These colors betray the difference in the surface
temperatures of the two stars. Betelgeuse has a surface temperature of roughly 3600 K,
significantly cooler than the 13,000-K surface of Rigel.!?

The Connection between Color and Temperature

The connection between the color of light emitted by a hot object and its temperature was
first noticed in 1792 by the English maker of fine porcelain Thomas Wedgewood. All of
his ovens became red-hot at the same temperature, independent of their size, shape, and
construction. Subsequent investigations by many physicists revealed that any object with
a temperature above absolute zero emits light of all wavelengths with varying degrees of
efficiency; an ideal emitter is an object that absorbs all of the light energy incident upon
it and reradiates this energy with the characteristic spectrum shown in Fig. 8. Because
an ideal emitter reflects no light, it is known as a blackbody, and the radiation it emits
is called blackbody radiation. Stars and planets are blackbodies, at least to a rough first
approximation.

Figure 8 shows that a blackbody of temperature T emits a continuous spectrum with
some energy at all wavelengths and that this blackbody spectrum peaks at a wavelength
Amax> Which becomes shorter with increasing temperature. The relation between A, and

Betelgeus'e

Declination (deg)

. Rigel -

o)}
W

Right ascension (hr)

FIGURE 7 The constellation of Orion.

12Both of these stars are pulsating variables, so the values quoted are average temperatures. Estimates of the
surface temperature of Betelgeuse actually range quite widely, from about 3100 K to 3900 K. Similarly,
estimates of the surface temperature of Rigel range from 8000 K to 13,000 K.
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FIGURE 8 Blackbody spectrum [Planck function B; (T)].

T is known as Wien’s displacement law: '

Amax T = 0.002897755 m K. (15)

Example 4.1.  Betelgeuse has a surface temperature of 3600 K. If we treat Betelgeuse
as a blackbody, Wien’s displacement law shows that its continuous spectrum peaks at a
wavelength of

. 0.0029 m K

max — = O. 177 = s
3600 K 8.05 x 107" m = 805 nm

which is in the infrared region of the electromagnetic spectrum. Rigel, with a surface

temperature of 13,000 K, has a continuous spectrum that peaks at a wavelength of

_ 0.0029 m K

max Y ——————— =223 x 107" m = 223 nm,
13,000 K

in the ultraviolet region.

The Stefan-Boltzmann Equation

Figure 8 also shows that as the temperature of a blackbody increases, it emits more
energy per second at all wavelengths. Experiments performed by the Austrian physicist

131n 1911, the German physicist Wilhelm Wien (1864—1928) received the Nobel Prize in 1911 for his theoretical
contributions to understanding the blackbody spectrum.
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Josef Stefan (1835-1893) in 1879 showed that the luminosity, L, of a blackbody of area A
and temperature T (in kelvins) is given by

L =AcT". (16)

Five years later another Austrian physicist, Ludwig Boltzmann (1844-1906), derived this
equation, now called the Stefan-Boltzmann equation, using the laws of thermodynamics
and Maxwell’s formula for radiation pressure. The Stefan—Boltzmann constant, o, has the
value

o =5.670400 x 10 Wm2 K.

For a spherical star of radius R and surface area A = 47 R?, the Stefan-Boltzmann equation
takes the form

L =47 R* T, (17)

Since stars are not perfect blackbodies, we use this equation to define the effective temper-
ature 7, of a star’s surface. Combining this with the inverse square law, Eq. ( 2), shows
that at the surface of the star (r = R), the surface flux is

Farg =0T} (18)

Example 4.2.  The luminosity of the Sun is Ly = 3.839 x 10%® W and its radius is
Ro = 6.95508 x 10® m. The effective temperature of the Sun’s surface is then

Lo \*
T, = ) =5777K.
4w RG o

The radiant flux at the solar surface is
Fyut =0 T3 =6.316 x 10’ Wm™>.

According to Wien’s displacement law, the Sun’s continuous spectrum peaks at a wave-
length of

0.0029 m K
5777 K

This wavelength falls in the green region (491 nm < A < 575 nm) of the spectrum of
visible light. However, the Sun emits a continuum of wavelengths both shorter and longer
than Apn,x, and the human eye perceives the Sun’s color as yellow. Because the Sun emits
most of its energy at visible wavelengths (see Fig. 8), and because Earth’s atmosphere is
transparent at these wavelengths, the evolutionary process of natural selection has produced
a human eye sensitive to this wavelength region of the electromagnetic spectrum.

Rounding off A, and Ty to the values of 500 nm and 5800 K, respectively, permits
Wien’s displacement law to be written in the approximate form

=5.016 x 1077 m = 501.6 nm.

~
max —

Amax T ~ (500 nm) (5800 K). (19)
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The Eve of a New World View

This section draws to a close at the end of the nineteenth century. The physicists and
astronomers of the time believed that all of the principles that govern the physical world
had finally been discovered. Their scientific world view, the Newtonian paradigm, was the
culmination of the heroic, golden age of classical physics that had flourished for over three
hundred years. The construction of this paradigm began with the brilliant observations of
Galileo and the subtle insights of Newton. Its architecture was framed by Newton’s laws,
supported by the twin pillars of the conservation of energy and momentum and illuminated
by Maxwell’s electromagnetic waves. Its legacy was a deterministic description of auniverse
that ran like clockwork, with wheels turning inside of wheels, all of its gears perfectly
meshed. Physics was in danger of becoming a victim of its own success. There were no
challenges remaining. All of the great discoveries apparently had been made, and the only
task remaining for men and women of science at the end of the nineteenth century was
filling in the details.

However, as the twentieth century opened, it became increasingly apparent that a crisis
was brewing. Physicists were frustrated by their inability to answer some of the simplest
questions concerning light. What is the medium through which light waves travel the vast
distances between the stars, and what is Earth’s speed through this medium? What deter-
mines the continuous spectrum of blackbody radiation and the characteristic, discrete colors
of tubes filled with hot glowing gases? Astronomers were tantalized by hints of a treasure
of knowledge just beyond their grasp.

It took a physicist of the stature of Albert Einstein to topple the Newtonian paradigm
and bring about two revolutions in physics. One transformed our ideas about space and
time, and the other changed our basic concepts of matter and energy. The rigid clockwork
universe of the golden era was found to be an illusion and was replaced by a random
universe governed by the laws of probability and statistics. The following four lines aptly
summarize the situation. The first two lines were written by the English poet Alexander Pope
(1688-1744), a contemporary of Newton; the last two, by Sir J. C. Squire (1884—1958),
were penned in 1926.

Nature and Nature’s laws lay hid in night:
God said, Let Newton be! and all was light.

It did not last: the Devil howling “Ho!
Let Einstein be!” restored the status quo.

5 HETHE QUANTIZATION OF ENERGY

One of the problems haunting physicists at the end of the nineteenth century was their
inability to derive from fundamental physical principles the blackbody radiation curve de-
pictedin Fig. 8.Lord Rayleigh'* (1842-1919) had attempted to arrive at the expression by
applying Maxwell’s equations of classical electromagnetic theory together with the results

4Lord Rayleigh, as he is commonly known, was born John William Strutt but succeeded to the title of third Baron
Rayleigh of Terling Place, Witham, in the county of Essex, when he was thirty years old.
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from thermal physics. His strategy was to consider a cavity of temperature 7 filled with
blackbody radiation. This may be thought of as a hot oven filled with standing waves of
electromagnetic radiation. If L is the distance between the oven’s walls, then the permitted
wavelengths of the radiationare A = 2L, L,2L/3,2L/4,2L/5, ..., extending forever to in-
creasingly shorter wavelengths.!> According to classical physics, each of these wavelengths
should receive an amount of energy equal to k7', where k = 1.3806503 x 10~ JK~! is
Boltzmann’s constant, familiar from the ideal gas law PV = NkT . The result of Rayleigh’s
derivation gave

2ckT
)»4

B, (T) ~ , (valid only if A is long) (20)
which agrees well with the long-wavelength tail of the blackbody radiation curve. However,
a severe problem with Rayleigh’s result was recognized immediately; his solution for B (T')
grows without limit as A — 0. The source of the problem is that according to classical
physics, an infinite number of infinitesimally short wavelengths implied that an unlimited
amount of blackbody radiation energy was contained in the oven, a theoretical result so
absurd it was dubbed the “ultraviolet catastrophe.” Equation ( 20) is known today as the
Rayleigh—Jeans law.'°

Wien was also working on developing the correct mathematical expression for the black-
body radiation curve. Guided by the Stefan—Boltzmann law (Eq. 16) and classical thermal
physics, Wien was able to develop an empirical law that described the curve at short wave-
lengths but failed at longer wavelengths:

B, (T) ~ are 1T (valid only if A is short) (1)
where a and b were constants chosen to provide the best fit to the experimental data.

Planck’s Function for the Blackbody Radiation Curve

By late 1900 the German physicist Max Planck (1858-1947) had discovered that a modi-
fication of Wien’s expression could be made to fit the blackbody spectra shown in Fig. 8
while simultaneously replicating the long-wavelength success of the Rayleigh—Jeans law
and avoiding the ultraviolet catastrophe:

a/)’

B)\.(T) - eb/)»T _ 17
In order to determine the constants a and b while circumventing the ultraviolet catas-
trophe, Planck employed a clever mathematical trick. He assumed that a standing electro-
magnetic wave of wavelength A and frequency v = ¢/X could not acquire just any arbitrary
amount of energy. Instead, the wave could have only specific allowed energy values that

SThis is analogous to standing waves on a string of length L that is held fixed at both ends. The permitted
wavelengths are the same as those of the standing electromagnetic waves.

16 fames Jeans (1877—1946), a British astronomer, found a numerical error in Rayleigh’s original work; the corrected
result now bears the names of both men.



The Continuous Spectrum of Light

were integral multiples of a minimum wave energy.!” This minimum energy, a quantum of
energy, is given by hv or hc/A, where h is a constant. Thus the energy of an electromagnetic
wave is nhv or nhc/A, where n (an integer) is the number of quanta in the wave. Given this
assumption of quantized wave energy with a minimum energy proportional to the frequency
of the wave, the entire oven could not contain enough energy to supply even one quantum
of energy for the short-wavelength, high-frequency waves. Thus the ultraviolet catastrophe
would be avoided. Planck hoped that at the end of his derivation, the constant # could be
set to zero; certainly, an artificial constant should not remain in his final result for B; (7).
Planck’s stratagem worked! His formula, now known as the Planck function, agreed
wonderfully with experiment, but only if the constant 4 remained in the equation:'8

2hc? /A5

Bu(T) = ohe/ikT _ 1°

(22)

Planck’s constant has the value & = 6.62606876 x 10734 J s.

The Planck Function and Astrophysics

Finally armed with the correct expression for the blackbody spectrum, we can apply Planck’s
function to astrophysical systems. In spherical coordinates, the amount of radiant energy per
unit time having wavelengths between A and A + dA emitted by a blackbody of temperature
T and surface area d A into a solid angle d2 = sin 0 d6 d¢ is given by

B, (T)d)rdA cos8d2 = By (T)dAdA cos6 sinf d do; (23)

see Fig. 9.!° The units of B, are therefore W m~> sr~!. Unfortunately, these units can
be misleading. You should note that “W m~>” indicates power (energy per unit time) per
unit area per unit wavelength interval, W m~2 m~!, not energy per unit time per unit
volume. To help avoid confusion, the units of the wavelength interval dA are sometimes
expressed in nanometers rather than meters, so the units of the Planck function become
W m~2nm~! sr~!, as in Fig. 8.2

At times it is more convenient to deal with frequency intervals dv than with wavelength
intervals d. In this case the Planck function has the form

2hv3/c?

Bu(T) = /AT _ 1"

(24)

17 Actually, Planck restricted the possible energies of hypothetical electromagnetic oscillators in the oven walls
that emit the electromagnetic radiation.

181t is left for you to show that the Planck function reduces to the Rayleigh—Jeans law at long wavelengths
(Problem 10) and to Wien’s expression at short wavelengths (Problem 11).

19Note that d A cos 0 is the area d A projected onto a plane perpendicular to the direction in which the radiation is
traveling. .

20The value of the Planck function thus depends on the units of the wavelength interval. The conversion of d
from meters to nanometers means that the values of B;, obtained by evaluating Eq. ( 22) must be divided by 10°.
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FIGURE 9  Blackbody radiation from an element of surface area d A.

Thus, in spherical coordinates,
B,dvdA cos8d2= B,dvdA cosf sinf db d¢

is the amount of energy per unit time of blackbody radiation having frequency between v
and v + dv emitted by a blackbody of temperature T and surface area d A into a solid angle
dQ2=-sin0dO0dep.

The Planck function can be used to make the connection between the observed properties
of a star (radiant flux, apparent magnitude) and its intrinsic properties (radius, temperature).
Consider a model star consisting of a spherical blackbody of radius R and temperature 7.
Assuming that each small patch of surface area d A emits blackbody radiation isotropically
(equally in all directions) over the outward hemisphere, the energy per second having
wavelengths between A and A 4+ dA emitted by the star is

2 pr)2
Ly dx =f / By d)dA cosf sinfdbde. 25)
$=0Jo=0 JA

The angular integration yields a factor of &, and the integral over the area of the sphere
produces a factor of 47 R2. The result is

L, d\ = 47R*B; d) (26)
8m2R%hc* /)
= T 1 dx. 27

L, di is known as the monochromatic luminosity. Comparing the Stefan—Boltzmann
equation ( 17) with the result of integrating Eq. ( 26) over all wavelengths shows that

oT*

/oo B.(T)dr =" (28)
0 g
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In Problem 14, you will use Eq. ( 27) to express the Stefan—Boltzmann constant, o, in
terms of the fundamental constants c, &, and k. The monochromatic luminosity is related
to the monochromatic flux, F; dA, by the inverse square law for light, Eq. ( 2):

L, 2hc?/A5 [ R\?
Fodx = dx — | dax, (29)

4mr? T oehe/mkT _ 1\

where r is the distance to the model star. Thus Fj dA is the number of joules of starlight
energy with wavelengths between A and A + d that arrive per second at one square meter
of a detector aimed at the model star, assuming that no light has been absorbed or scattered
during its journey from the star to the detector. Of course, Earth’s atmosphere absorbs some
starlight, but measurements of fluxes and apparent magnitudes can be corrected to account
for this absorption. The values of these quantities usually quoted for stars are
in fact corrected values and would be the results of measurements above Earth’s absorbing
atmosphere.

6 HETHE COLOR INDEX

The apparent and absolute magnitudes discussed in Section 2, measured over all wave-
lengths of light emitted by a star, are known as bolometric magnitudes and are denoted by
Mpor and My, respectively.21 In practice, however, detectors measure the radiant flux of a
star only within a certain wavelength region defined by the sensitivity of the detector.

UBV Wavelength Filters

The color of a star may be precisely determined by using filters that transmit the star’s light
only within certain narrow wavelength bands. In the standard UBV system, a star’s apparent
magnitude is measured through three filters and is designated by three capital letters:

» U, the star’s ultraviolet magnitude, is measured through a filter centered at 365 nm
with an effective bandwidth of 68 nm.

* B, the star’s blue magnitude, is measured through a filter centered at 440 nm with an
effective bandwidth of 98 nm.

e V, the star’s visual magnitude, is measured through a filter centered at 550 nm with
an effective bandwidth of 89 nm.

Color Indices and the Bolometric Correction

Using Eq. ( 6), a star’s absolute color magnitudes My, Mp, and My may be determined if
its distance d is known.?? Astar’s U — B color index is the difference between its ultraviolet

21 A bolometer is an instrument that measures the increase in temperature caused by the radiant flux it receives at
all wavelengths.

22Note that although apparent magnitude is not denoted by a subscripted “m” in the UBV system, the absolute
magnitude is denoted by a subscripted “M.”
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and blue magnitudes, and a star’s B — V color index is the difference between its blue and
visual magnitudes:

U—-B=My— Mg
and
B—-V =Mp—My.

Stellar magnitudes decrease with increasing brightness; consequently, a star with a smaller
B — V color index is bluer than a star with a larger value of B — V. Because a color index
is the difference between two magnitudes, Eq. (  6) shows that it is independent of the star’s
distance. The difference between a star’s bolometric magnitude and its visual magnitude is
its bolometric correction BC:

BC =mpo — V = Mot — My. (30)

Example 6.1.  Sirius, the brightest-appearing star in the sky, has U, B, and V apparent
magnitudes of U = —1.47, B = —1.43, and V = —1.44. Thus for Sirius,

U—B=-147—(—1.43) = —-0.04
and
B—-V =-143 - (—1.44) =0.01.

Sirius is brightest at ultraviolet wavelengths, as expected for a star with an effective tem-
perature of 7, = 9970 K. For this surface temperature,

0.0029 m K

max — 9970 K =291 nm,

which is in the ultraviolet portion of the electromagnetic spectrum. The bolometric correc-
tion for Sirius is BC = —0.09, so its apparent bolometric magnitude is

Mpoy = V + BC = —1.44 + (—0.09) = —1.53.

The relation between apparent magnitude and radiant flux, Eq. ( 4), can be used to
derive expressions for the ultraviolet, blue, and visual magnitudes measured (above Earth’s
atmosphere) for a star. A sensitivity function S()) is used to describe the fraction of the
star’s flux that is detected at wavelength A. S depends on the reflectivity of the telescope
mirrors, the bandwidth of the U, B, and V filters, and the response of the photometer. Thus,
for example, a star’s ultraviolet magnitude U is given by

o0
U = —25l0g,, ( f FySu dk) e 31)
0

where Cy is a constant. Similar expressions are used for a star’s apparent magnitude within
other wavelength bands. The constants C in the equations for U, B, and V differ for each
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of these wavelength regions and are chosen so that the star Vega (« Lyrae) has a magnitude
of zero as seen through each filter.”? This is a completely arbitrary choice and does not
imply that Vega would appear equally bright when viewed through the U, B, and V filters.
However, the resulting values for the visual magnitudes of stars are about the same as those
recorded by Hipparchus two thousand years ago.”*

A different method is used to determine the constant Cy, in the expression for the
bolometric magnitude, measured over all wavelengths of light emitted by a star. For a
perfect bolometer, capable of detecting 100 percent of the light arriving from a star, we set
SA) =1:

o0
Mpor = —2.5log, ( / F, d/\) + Cho. (32)
0

The value for Cy originated in the wish of astronomers that the value of the bolometric
correction

BC =mps — V

be negative for all stars (since a star’s radiant flux over all wavelengths is greater than

its flux in any specified wavelength band) while still being as close to zero as possible.

After a value of Cy, was agreed upon, it was discovered that some supergiant stars have

positive bolometric corrections. Nevertheless, astronomers have chosen to continue using

this unphysical method of measuring magnitudes.” It is left as an exercise for you to

evaluate the constant Cy, by using the value of my, assigned to the Sun: mg,, = —26.83.
The color indices U — B and B — V are immediately seen to be

[ FSy da

U—-B=-25 10g10 <m

)+CU_B, (33)

where Cy_p = Cy — Cp. A similar relation holds for B — V. From Eq. ( 29), note that
although the apparent magnitudes depend on the radius R of the model star and its distance
r, the color indices do not, because the factor of (R/r)? cancels in Eq. ( 33). Thus the
color index is a measure solely of the temperature of a model blackbody star.

Example 6.2. A certain hot star has a surface temperature of 42,000 K and color indices
U—- B =-1.19 and B — V = —0.33. The large negative value of U — B indicates that
this star appears brightest at ultraviolet wavelengths, as can be confirmed with Wien’s
displacement law, Eq. (19). The spectrum of a 42,000-K blackbody peaks at

0.0029 m K
)\’max = = 69 nm,
42,000 K

continued

23 Actually, the average magnitude of several stars is used for this calibration.

24See Chapter 1 of Boshm-Vitense (1989b) for a further discussion of the vagaries of the magnitude system used
by astronomers.

25Some authors, such as Bohm-Vitense (1989a, 1989b), prefer to define the bolometric correction as BC =
V' — mpol, so their values of BC are usually positive.
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FIGURE 10  Sensitivity functions S() for U, B, and V filters. (Data from Johnson, Ap. J., 141,
923, 1965.)

in the ultraviolet region of the electromagnetic spectrum. This wavelength is much shorter
than the wavelengths transmitted by the U, B, and V filters (see Fig. 10), so we will be
dealing with the smoothly declining long-wavelength “tail” of the Planck function B, (T').

We can use the values of the color indices to estimate the constant Cyy_p in Eq. ( 33),
and Cp_y in a similar equation for the color index B — V. In this estimate, we will use a
step function to represent the sensitivity function: S(A) = 1 inside the filter’s bandwidth,
and S(A) = 0 otherwise. The integrals in Eq. ( 33) may then be approximated by the value
of the Planck function B;, at the center of the filter bandwidth, multiplied by that bandwidth.
Thus, for the wavelengths and bandwidths AA listed previously,

Bsgs Ady
U—-B=-251 _ Cy_
0g19 <B440 AAB> +Cy-B
—1.19=-0.32+Cy_p
Cy_p = —0.87,
and
Baso Adp
B—-—V =-251 _ Cp_
o810 <3550 A)»v) Ty

—0.33 =-098 4+ Cp_v
Cp_y = 0.65.

It is left as an exercise for you to use these values of Cy_p and Cp_y to estimate the
color indices for a model blackbody Sun with a surface temperature of 5777 K. Although
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the resulting value of B — V = 4-0.57 is in fair agreement with the measured value of
B — V = 40.650 for the Sun, the estimate of U — B = —0.22 is quite different from the
measured value of U — B = 40.195.

The Color-Color Diagram

Figure 11 is a color-color diagram showing the relation betweenthe U — Band B — V
color indices for main-sequence stars.”® Astronomers face the difficult task of connecting
a star’s position on a color—color diagram with the physical properties of the star itself. If
stars actually behaved as blackbodies, the color—color diagram would be the straight dashed
line shown in Fig. 11. However, stars are not true blackbodies.

Some light is absorbed as it travels through a star’s atmosphere, and the
amount of light absorbed depends on both the wavelength of the light and the temperature
of the star. Other factors also play a role, causing the color indices of main-sequence and
supergiant stars of the same temperature to be slightly different. The color—color diagram
in Fig. 11 shows that the agreement between actual stars and model blackbody stars is
best for very hot stars.
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FIGURE 11 Color—color diagram for main-sequence stars. The dashed line is for a blackbody.

26 Main-sequence stars are powered by the nuclear fusion of hydrogen nuclei
in their centers. Approximately 80% to 90% of all stars are main-sequence stars. The letter labels in Fig. 11 are
spectral types.
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PROBLEM SET

1 In 1672, an international effort was made to measure the parallax angle of Mars at the time of
opposition, when it was closest to Earth; see the below figure.

(a) Consider two observers who are separated by a baseline equal to Earth’s diameter. If the
difference in their measurements of Mars’s angular position is 33.6”, what is the distance
between Earth and Mars at the time of opposition? Express your answer both in units of m
and in AU.

(b) Ifthe distance to Mars is to be measured to within 10%, how closely must the clocks used by

the two observers be synchronized? Hint: Ignore the rotation of Earth. The average orbital
velocities of Earth and Mars are 29.79 km s~ and 24.13 km s™', respectively.

N N N

Mars orbit

FIGURE  The retrograde motion of Mars as described by the Copernican model. Note that the
lines of sight from Earth to Mars cross for positions 3, 4, and 5. This effect, combined with the slightly
differing planes of the two orbits result in retrograde paths near opposition.

2 At what distance from a 100-W light bulb is the radiant flux equal to the solar irradiance?

3 The parallax angle for Sirius is 0.379”.
(a) Find the distance to Sirius in units of (i) parsecs; (ii) light-years; (iii) AU; (iv) m.
(b) Determine the distance modulus for Sirius.

4 Using the information in Example 6.1 and Problem 3, determine the absolute bolometric
magnitude of Sirius and compare it with that of the Sun. What is the ratio of Sirius’s luminosity
to that of the Sun?

5 (a) The Hipparcos Space Astrometry Mission was able to measure parallax angles down to
nearly 0.001”. To get a sense of that level of resolution, how far from a dime would you need
to be to observe it subtending an angle of 0.001”? (The diameter of a dime is approximately
1.9 cm.)

From Chapter 3 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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(b) Assume that grass grows at the rate of 5 cm per week.
i. How much does grass grow in one second?

ii. How far from the grass would you need to be to see it grow at an angular rate of
0.000004” (4 microarcseconds) per second? Four microarcseconds is the estimated
angular resolution of SIM, NASA’s planned astrometric mission.

Derive the relation
F
m = Mgy, —2.5logo | — |-
Fio0

A 1.2 x 10* kg spacecraft is launched from Earth and is to be accelerated radially away from the
Sun using a circular solar sail. The initial acceleration of the spacecraft is to be 1g. Assuming a
flat sail, determine the radius of the sail if it is

(a) black, so it absorbs the Sun’s light.

(b) shiny, so it reflects the Sun’s light.

Hint: The spacecraft, like Earth, is orbiting the Sun. Should you include the Sun’s gravity in
your calculation?

The average person has 1.4 m? of skin at a skin temperature of roughly 306 K (92°F). Consider
the average person to be an ideal radiator standing in a room at a temperature of 293 K (68°F).

(a) Calculate the energy per second radiated by the average person in the form of blackbody
radiation. Express your answer in watts.

(b) Determine the peak wavelength A, of the blackbody radiation emitted by the average
person. In what region of the electromagnetic spectrum is this wavelength found?

(¢) Ablackbody also absorbs energy from its environment, in this case from the 293-K room.
The equation describing the absorption is the same as the equation describing the emission
of'blackbody radiation, Eq. ( 16). Calculate the energy per second absorbed by the average
person, expressed in watts.

L = AocT*. (16)

(d) Calculate the net energy per second lost by the average person via blackbody radiation.

Consider a model of the star Dschubba (8 Sco), the center star in the head of the constellation
Scorpius. Assume that Dschubba is a spherical blackbody with a surface temperature 028,000 K
and a radius of 5.16 x 10° m. Let this model star be located at a distance of 123 pc from Earth.
Determine the following for the star:

(a) Luminosity.

(b) Absolute bolometric magnitude.

(¢) Apparent bolometric magnitude.

(d) Distance modulus.

(e) Radiant flux at the star’s surface.

(f) Radiant flux at Earth’s surface (compare this with the solar irradiance).
(g) Peak wavelength A .

10 (a) Show that the Rayleigh—Jeans law (Eq. 20) is an approximation of the Planck function

B; in the limit of A > hc/kT. (The first-order expansion ¢* =~ 1 + x for x < 1 will be
useful.) Notice that Planck’s constant is not present in your answer. The Rayleigh—Jeans
law is a classical result, so the “ultraviolet catastrophe” at short wavelengths, produced by
the A* in the denominator, cannot be avoided.
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2ckT
)»4

B (T) ~ , (valid only if A is long) (20)

(b) Plot the Planck function B, and the Rayleigh—Jeans law for the Sun (7, = 5777 K) on the
same graph. At roughly what wavelength is the Rayleigh—Jeans value twice as large as the
Planck function?

11 Show that Wien’s expression for blackbody radiation (Eq. 21) follows directly from Planck’s
function at short wavelengths.

B, (T) ~ ax e T (valid only if A is short) 2n

12 Derive Wien’s displacement law, Eq. ( 15), by setting d B, /dA = 0. Hint: You will encounter
an equation that must be solved numerically, not algebraically.

Amax I = 0.002897755 m K. (15)

13 (a) Use Eq. ( 24)to find an expression for the frequency vy, at which the Planck function B,
attains its maximum value. (Warning: V. 7# ¢/Amax-)

2hv3/c?

By(T) = /AT _ 1"

(24)

(b) What is the value of vy, for the Sun?
(¢) Find the wavelength of a light wave having frequency vy,. In what region of the electro-
magnetic spectrum is this wavelength found?

14 (a) Integrate Eq. ( 27) over all wavelengths to obtain an expression for the total luminosity of
a blackbody model star. Hint:
[ *uwdu 7t
o et—1 15

82 R2hc? /A
= i @7)

(b) Compare your result with the Stefan—Boltzmann equation ( 17), and show that the Stefan—
Boltzmann constant o is given by
_ 2m3k4
77 Tsens

L =47R*T}. (17)

(c) Calculate the value of o from this expression.

15 Use the data in Appendix: Stellar Data, to answer the following questions.
(a) Calculate the absolute and apparent visual magnitudes, My and V, for the Sun.
(b) Determine the magnitudes Mg, B, My, and U for the Sun.
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(¢) Locate the Sun and Sirius on the color—color diagram in Fig. 11. Refer to Example 6.1
for the data on Sirius.

-0.5 0.0 0.5 1.0 1.5 2.0
B-V

FIGURE 11  Color—color diagram for main-sequence stars. The dashed line is for a blackbody.

16

17
18

19

Use the filter bandwidths for the UBV system in section 6 of “The Continuous Spectrum of
Light” and the effective temperature of 9600 K for Vega to determine through which filter Vega
would appear brightest to a photometer [i.e., ignore the constant C in Eq. ( 31)]. Assume that
S (1) = 1 inside the filter bandwidth and that S(A) = 0 outside the filter bandwidth.

o0
0

Evaluate the constant Cy,, in Eq. (3.32) by using ms,, = —26.83.

Use the values of the constants Cy_g and Cp_y found in Example 6.2 of “The Continuous
Spectrum of Light” to estimate the colorindices U — B and B — V for the Sun.

Shaula (A Scorpii) is a bright (V = 1.62) blue-white subgiant star located at the tip of the

scorpion’s tail. Its surface temperature is about 22,000 K.

(a) Use the values of the constants Cyy_ 5 and C_y found in Example 6.2 of *“The continuous
spectrum of Light” to estimate the color indices U — B and B — V for Shaula. Compare
your answers with the measured values of U—B = —0.90 and B — V = —0.23.

(b) The Hipparcos Space Astrometry Mission measured the parallax angle for Shaula to be
0.00464". Determine the absolute visual magnitude of the star.

(Shaula is a pulsating star, belonging to the class of Beta Cephei variables. As

its magnitude varies between V = 1.59 and V = 1.65 with a period of 5 hours 8 minutes, its

color indices also change slightly.)
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From Chapter 4 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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The Theory of Special Relativity

The Failure of the Galilean Transformations
The Lorentz Transformations

Time and Space in Special Relativity
Relativistic Momentum and Energy

AW =

B THE FAILURE OF THE GALILEAN TRANSFORMATIONS

A wave is a disturbance that travels through a medium. Water waves are disturbances
traveling through water, and sound waves are disturbances traveling through air. James
Clerk Maxwell predicted that light consists of “modulations of the same medium which is
the cause of electric and magnetic phenomena,” but what was the medium through which
light waves traveled? At the time, physicists believed that light waves moved through a
medium called the luminiferous ether. This idea of an all-pervading ether had its roots in
the science of early Greece. In addition to the four earthly elements of earth, air, fire, and
water, the Greeks believed that the heavens were composed of a fifth perfect element: the
ether. Maxwell echoed their ancient belief when he wrote:

There can be no doubt that the interplanetary and interstellar spaces are not
empty, but are occupied by a material substance or body, which is certainly the
largest, and probably the most uniform body of which we have any knowledge.

This modern reincarnation of the ether had been proposed for the sole purpose of transporting
light waves; an object moving through the ether would experience no mechanical resistance,
so Earth’s velocity through the ether could not be directly measured.

The Galilean Transformations

In fact, no mechanical experiment is capable of determining the absolute velocity of an ob-
server. It is impossible to tell whether you are at rest or in uniform motion (not accelerating).
This general principle was recognized very early. Galileo described a laboratory completely
enclosed below the deck of a smoothly sailing ship and argued that no experiment
done in this uniformly moving laboratory could measure the ship’s velocity. To
see why, consider two inertial reference frames, S and S’. An inertial reference
frame may be thought of as a laboratory in which Newton’s first law is valid: An object at
rest will remain at rest, and an object in motion will remain in motion in a straight line at
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FIGURE 1 Inertial reference frame.

constant speed, unless acted upon by an external force. As shown in Fig. 1, the laboratory
consists of (in principle) an infinite collection of meter sticks and synchronized clocks that
can record the position and time of any event that occurs in the laboratory, at the location of
that event; this removes the time delay involved in relaying information about an event to
a distant recording device. With no loss of generality, the frame S’ can be taken as moving
in the positive x-direction (relative to the frame S) with constant velocity u, as shown in
Fig. 2.! Furthermore, the clocks in the two frames can be started when the origins of the
coordinate systems, O and O’, coincide at time t =t = 0.

Observers in the two frames S and S’ measure the same moving object, recording its
positions (x, y, z) and (x’, ¥/, z’) at time ¢ and ¢/, respectively. An appeal to common sense
and intuition leads to the conclusion that these measurements are related by the Galilean
transformation equations:

x'=x—ut (1
Y=y 2)
7=z 3)
t'=t. “4)

IThis does not imply that the frame S is at rest and that S’ is moving. S’ could be at rest while S moves in the
negative x’-direction, or both frames could be moving. The point of the following argument is that there is no way
to tell; only the relative velocity u is meaningful.
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FIGURE 2 Inertial reference frames S and S’.

Taking time derivatives with respect to either z or ¢’ (since they are always equal) shows
how the components of the object’s velocity v and v/ measured in the two frames are related:

!/

Ve =V — U
v, =y
v, =,
or, in vector form,
vV=v—u ()

Since u is constant, another time derivative shows that the same acceleration is obtained
for the object as measured in both reference frames:

a = a.

Thus F = ma = ma’ for the object of mass m; Newton’s laws are obeyed in both reference
frames. Whether a laboratory is located in the hold of Galileo’s ship or anywhere else in
the universe, no mechanical experiment can be done to measure the laboratory’s absolute
velocity.

The Michelson-Morley Experiment

Maxwell’s discovery that electromagnetic waves move through the ether with a speed of
c~3 x 10% ms~! seemed to open the possibility of detecting Earth’s absolute motion
through the ether by measuring the speed of light from Earth’s frame of reference and
comparing it with Maxwell’s theoretical value of c. In 1887 two Americans, the physicist
Albert A. Michelson (1852—-1931) and his chemist colleague Edward W. Morley (1838—
1923), performed a classic experiment that attempted this measurement of Earth’s absolute
velocity. Although Earth orbits the Sun at approximately 30 km s™', the results of the
Michelson—Morley experiment were consistent with a velocity of Earth through the ether
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of zero!? Furthermore, as Earth spins on its axis and orbits the Sun, a laboratory’s speed
through the ether should be constantly changing. The constantly shifting “ether wind”
should easily be detected. However, all of the many physicists who have since repeated
the Michelson—Morley experiment with increasing precision have reported the same null
result. Everyone measures exactly the same value for the speed of light, regardless of the
velocity of the laboratory on Earth or the velocity of the source of the light.

On the other hand, Eq. ( 5) implies that two observers moving with a relative veloc-
ity u should obtain different values for the speed of light. The contradiction between the
commonsense expectation of Eq. ( 5) and the experimentally determined constancy of
the speed of light means that this equation, and the equations from which it was derived
(the Galilean transformation equations, 1— 4), cannot be correct. Although the Galilean
transformations adequately describe the familiar low-speed world of everyday life where
v/c < 1,they are in sharp disagreement with the results of experiments involving velocities
near the speed of light. A crisis in the Newtonian paradigm was developing.

2 ETHE LORENTZ TRANSFORMATIONS

The young Albert Einstein (1875—-1955; see Fig. 3) enjoyed discussing a puzzle with his
friends: What would you see if you looked in a mirror while moving at the speed of light?
Would you see your image in the mirror, or not? This was the beginning of Einstein’s search
for a simple, consistent picture of the universe, a quest that would culminate in his theories

FIGURE 3 Albert Einstein (1875-1955). (Courtesy of Yerkes Observatory.)

2Strictly speaking, a laboratory on Earth is not in an inertial frame of reference, because Earth both spins on its axis
and accelerates as it orbits the Sun. However, these noninertial effects are unimportant for the Michelson—-Morley
experiment.
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of relativity. After much reflection, Einstein finally rejected the notion of an all-pervading
ether.

Einstein’s Postulates

In 1905 Einstein introduced his two postulates of special relativity® in a remarkable paper,
“On the Electrodynamics of Moving Bodies.”

The phenomena of electrodynamics as well as of mechanics possess no prop-
erties corresponding to the idea of absolute rest. They suggest rather that ...
the same laws of electrodynamics and optics will be valid for all frames of
reference for which the equations of mechanics hold good. We will raise this
conjecture (the purport of which will hereafter be called the “Principle of Rela-
tivity”) to the status of a postulate, and also introduce another postulate, which
is only apparently irreconcilable to the former, namely, that light is always
propagated in empty space with a definite speed ¢ which is independent of the
state of motion of the emitting body.

In other words, Einstein’s postulates are
The Principle of Relativity The laws of physics are the same in all inertial
reference frames.

The Constancy of the Speed of Light Light moves through a vacuum at a
constant speed c that is independent of the motion of the light source.

The Derivation of the Lorentz Transformations

Einstein then went on to derive the equations that lie at the heart of his theory of special
relativity, the Lorentz transformations.* For the two inertial reference frames shown in
Fig. 2, the most general set of linear transformation equations between the space and time
coordinates (x, y, z, t) and (x', y', Z/, ') of the same event measured from S and S’ are

x'=anx +apy +aizz + ajt (6)
Y =anx +any + anz + axt (7
7 =anx + any + az + at 3
1" = anx + any + apz + ast. 9

If the transformation equations were not linear, then the length of a moving object or the
time interval between two events would depend on the choice of origin for the frames S
and §’. This is unacceptable, since the laws of physics cannot depend on the numerical
coordinates of an arbitrarily chosen coordinate system.

3The theory of special relativity deals only with inertial reference frames, whereas the general theory includes
accelerating frames.

4These equations were first derived by Hendrik A. Lorentz (1853-1928) of the Netherlands but were applied to a
different situation involving a reference frame at absolute rest with respect to the ether.
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FIGURE 4  Paint brush demonstration that y’ = y.

The coefficients a;; can be determined by using Einstein’s two postulates and some
simple symmetry arguments. Einstein’s first postulate, the Principle of Relativity, implies
that lengths perpendicular to u, the velocity of frame S relative to S’, are unchanged. To
see this, imagine that each frame has a meter stick oriented along the y- and y’-axes, with
one end of each meter stick located at the origin of its respective frame; see Fig. 4. Paint
brushes are mounted perpendicular at both ends of each meter stick, and the frames are
separated by a sheet of glass that extends to infinity in the x—y plane. Each brush paints a
line on the glass sheet as the two frames pass each other. Let’s say that frame S uses blue
paint, and frame S’ uses red paint. If an observer in frame S measures the meter stick in
frame S’ to be shorter than his own meter stick, he will see the red lines painted inside his
blue lines on the glass. But by the Principle of Relativity, an observer in frame S’ would
measure the meter stick in frame S as being shorter than her own meter stick and would
see the blue lines painted inside her red lines. Both color lines cannot lie inside the other;
the only conclusion is that blue and red lines must overlap. The lengths of the meter sticks,
perpendicular to u, are unchanged. Thus y’ = y and 7’ = z, so that ay; = a33 = 1, whereas
a1, azs, dz4, Azr, Az, and az4 are all zero.

Another simplification comes from requiring that Eq. ( 9) give the same result if y is
replaced by —y or z is replaced by —z. This must be true because rotational symmetry about
the axis parallel to the relative velocity u implies that a time measurement cannot depend
on the side of the x-axis on which an event occurs. Thus a4, = a43 = 0.

Finally, consider the motion of the origin O’ of frame S’. Since the frames’ clocks are
assumed to be synchronized at t = t' = 0 when the origins O and O’ coincide, the x-
coordinate of O’ is given by x = ut in frame S and by x’ = 0 in frame S’. Thus Eq. ( 6)
becomes

0 = ajut + appy + az + at,

103



104

The Theory of Special Relativity

which implies that aj; = a3 = 0 and aju = —aj4. Collecting the results found thus far
reveals that Egs. ( 6— 9) have been reduced to

x'=ap(x — ut) (10)
y =y (11)
7=z (12)
t' = asnx + aut. (13)

At this point, these equations would be consistent with the commonsense Galilean transfor-
mation equations ( 1- 4)ifa;; = asq = 1 and a4y = 0. However, only one of Einstein’s
postulates has been employed in the derivation thus far: the Principle of Relativity cham-
pioned by Galileo himself.

Now the argument introduces the second of Einstein’s postulates: Everyone measures
exactly the same value for the speed of light. Suppose that when the origins O and O’
coincide at time t =t = 0, a flashbulb is set off at the common origins. At a later time ¢,
an observer in frame S will measure a spherical wavefront of light with radius ct, moving
away from the origin O with speed ¢ and satisfying

X2+ 92+ 22 = (e (14)

Similarly, at a time #’, an observer in frame S’ will measure a spherical wavefront of light
with radius ct’, moving away from the origin O’ with speed ¢ and satisfying

Py = () (15)

Inserting Egs. ( 10— 13)intoEq.( 15)and comparing the result withEq.( 14)reveal that
ay = ass = 1/\/1 —u?/c? and a4 = —uay;/c?. Thus the Lorentz transformation equa-
tions linking the space and time coordinates (x, y, z, t) and (x’, y', 7/, t') of the same event
measured from S and S’ are

;X —ut

N {10
y=y (17)
7=z (18)
, t —ux/c?

Whenever the Lorentz transformations are used, you should be certain that the situation is
consistent with the geometry of Fig. 2, where the inertial reference frame S’ is moving in
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FIGURE 5 The Lorentz factor y.

the positive x-direction with velocity u relative to the frame S. The ubiquitous factor of

1

y (20)

called the Lorentz factor, may be used to estimate the importance of relativistic effects.
Roughly speaking, relativity differs from Newtonian mechanics by 1% (y = 1.01) when
u/c =~ 1/7and by 10% whenu/c ~ 5/12; see Fig. 5. In the low-speed Newtonian world,
the Lorentz transformations reduce to the Galilean transformation equations ( 1- 4). A
similar requirement holds for all relativistic formulas; they must agree with the Newtonian
equations in the low-speed limit of u /c — O.

The inverse Lorentz transformations can be derived algebraically, or they can be obtained
more easily by switching primed and unprimed quantities and by replacing u with —u. (Be
sure you understand the physical basis for these substitutions.) Either way, the inverse
transformations are found to be

v = —T + “2’/ . @1)
vV — u</c

y=y (22)

z7=17 (23)
t/ 12

o THux/e (24)
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Four-Dimensional Spacetime

The Lorentz transformation equations form the core of the theory of special relativity, and
they have many surprising and unusual implications. The most obvious surprise is the
intertwining roles of spatial and temporal coordinates in the transformations. In the words
of Einstein’s professor, Hermann Minkowski (1864—1909), “Henceforth space by itself,
and time by itself, are doomed to fade away into mere shadows, and only a kind of union
between the two will preserve an independent reality.” The drama of the physical world
unfolds on the stage of a four-dimensional spacetime, where events are identified by their
spacetime coordinates (x, y, z, ).

3 HETIME AND SPACE IN SPECIAL RELATIVITY

Suppose an observer in frame S measures two flashbulbs going off at the same time t but
at different x-coordinates x; and x,. Then an observer in frame S’ would measure the time
interval ¢] — 5 between the flashbulbs going off to be (see Eq. 19)

;o (X2 —x))u/c?
2 J1=u2jcr

According to the observer in frame S', if x| # x;, then the flashbulbs do not go off at the
same time! Events that occur simultaneously in one inertial reference frame do not occur
simultaneously in all other inertial reference frames. There is no such thing as two events
that occur at different locations happening absolutely at the same time. Equation ( 25)
shows thatif x; < x,, then t{ — #; > O for positive u; flashbulb 1 is measured to go off after
flashbulb 2. An observer moving at the same speed in the opposite direction (u changed
to —u) will come to the opposite conclusion: Flashbulb 2 goes off affer flashbulb 1. The
situation is symmetric; an observer in frame S’ will conclude that the flashbulb he or she
passes first goes off after the other flashbulb. It is tempting to ask, “Which observer is
really correct?” However, this question is meaningless and is equivalent to asking, “Which
observer is really moving?”’ Neither question has an answer because “really” has no meaning
in this situation. There is no absolute simultaneity, just as there is no absolute motion. Each
observer’s measurement is correct, as made from his or her own frame of reference.

The implications of this downfall of universal simultaneity are far-reaching. The ab-
sence of a universal simultaneity means that clocks in relative motion will not stay syn-
chronized. Newton’s idea of an absolute universal time that “of itself and from its own
nature flows equably without regard to anything external” has been overthrown. Different
observers in relative motion will measure different time intervals between the same two
events!

H—t (25)

Proper Time and Time Dilation

Imagine that a strobe light located at rest relative to frame S’ produces a flash of light every
At' seconds; see Fig. 6. If one flash is emitted at time #{, then the next flash will be emitted
at time #; = t; + At’, as measured by a clock in frame §’. Using Eq. ( 24) with x| = x},
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FIGURE 6 A strobe light at rest (x’ = constant) in frame S’.

the time interval At = 1, — t; between the same two flashes measured by a clock in frame
S is

(15— 1) + (3 — ¥ u/c?

V1 —u?/c?

Hh—1 =

or

At
At = —— (26)

J1—u2/c?

Because the clock in frame S’ is at rest relative to the strobe light, Az’ will be called
At es. Frame §’ is called the clock’s rest frame. Similarly, because the clock in frame S is
moving relative to the strobe light, At will be called Atpoving. Thus Eq. (- 26) becomes

Atrest

Al moving = ———m .
moving m

27)

This equation shows the effect of time dilation on a moving clock. It says that the
time interval between two events is measured differently by different observers in relative
motion. The shortest time interval is measured by a clock at rest relative to the two events.
This clock measures the proper time between the two events. Any other clock moving
relative to the two events will measure a longer time interval between them.

The effect of time dilation is often described by the phrase “moving clocks run slower”
without explicitly identifying the two events involved. This easily leads to confusion, since
the moving and rest subscripts in Eq. ( 27) mean “moving” or “at rest” relative to the two
events. To gain insight into this phrase, imagine that you are holding clock C while it ticks
once each second and, at the same time, are measuring the ticks of an identical clock C’
moving relative to you. The two events to be measured are consecutive ticks of clock C’.
Since clock C’ is at rest relative to itself, it measures a time At = 1 s between its own
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ticks. However, using your clock C, you measure a time
Atrest Is
= >1s
VI—u2/ct 1 —u?/c?

between the ticks of clock C’. Because you measure clock C’ to be ticking slower than once
per second, you conclude that clock C’, which is moving relative to you, is running more
slowly than your clock C. Very accurate atomic clocks have been flown around the world
on jet airliners and have confirmed that moving clocks do indeed run slower, in agreement
with relativity.’

Al‘moving =

Proper Length and Length Contraction

Both time dilation and the downfall of simultaneity contradict Newton’s belief in absolute
time. Instead, the time measured between two events differs for different observers in
relative motion. Newton also believed that “absolute space, in its own nature, without
relation to anything external, remains always similar and immovable.” However, the Lorentz
transformation equations require that different observers in relative motion will measure
space differently as well.

Imagine that a rod lies along the x’-axis of frame §’, at rest relative to that frame; S’ is
the rod’s rest frame (see Fig. 7). Let the left end of the rod have coordinate x|, and let the
right end of the rod have coordinate x5. Then the length of the rod as measured in frame S’
is L' = x — x|. What is the length of the rod measured from S? Because the rod is moving
relative to S, care must be taken to measure the x-coordinates x; and x, of the ends of
the rod at the same time. Then Eq. ( 16), with #; = f,, shows that the length L = x, — x;
measured in S may be found from

, , (o —x1) —ultr—1t)
.x2 —.xl =

V1 —u?/c?

FIGURE 7 A rod at rest in frame S’.

5See Hafele and Keating (1972a, 1972b) for the details of this test of time dilation.
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or

L = ; (28)

Because the rod is at rest relative to S, L’ will be called L. Similarly, because the rod is
moving relative to S, L will be called Lyoying. Thus Eq. ( 28) becomes

Lmoving = Lrest\/ 1— u2/62~ (29)

This equation shows the effect of length contraction on a moving rod. It says that length
or distance is measured differently by two observers in relative motion. If a rod is moving
relative to an observer, that observer will measure a shorter rod than will an observer at
rest relative to it. The longest length, called the rod’s proper length, is measured in the
rod’s rest frame. Only lengths or distances parallel to the direction of the relative motion
are affected by length contraction; distances perpendicular to the direction of the relative
motion are unchanged (cf. Eqs. 17— 18).

Time Dilation and Length Contraction Are Complementary

Time dilation and length contraction are not independent effects of Einstien’s new way of
looking at the universe. Rather, they are complementary; the magnitude of either effect
depends on the motion of the event being observed relative to the observer.

Example 3.1. Cosmic rays from space collide with the nuclei of atoms in Earth’s upper
atmosphere, producing elementary particles called muons. Muons are unstable and decay
after an average lifetime v = 2.20 us, as measured in a laboratory where the muons are at
rest. That is, the number of muons in a given sample should decrease with time according
to N(t) = Nye '/, where Ny is the number of muons originally in the sample at time
¢ = 0. At the top of Mt. Washington in New Hampshire, a detector counted 563 muons hr ™!
moving downward at a speed u = 0.9952c¢. At sea level, 1907 m below the first detector,
another detector counted 408 muons hr~'.

The muons take (1907 m)/(0.9952¢) = 6.39 us to travel from the top of Mt. Washington
to sea level. Thus it might be expected that the number of muons detected per hour at sea
level would have been

N = Nye /" = (563 muons hr ') ¢ =639 #9/220 1) — 31 myons hr!.

This is much less than the 408 muons hr~! actually measured at sea level! How did the
muons live long enough to reach the lower detector? The problem with the preceding
calculation is that the lifetime of 2.20 us is measured in the muon’s rest frame as At g, but
the experimenter’s clocks on Mt. Washington and below are moving relative to the muons.

continued

Details of this experiment can be found in Frisch and Smith (1963).
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1 s

(@ (b)

FIGURE 8 Muons moving downward past Mt. Washington. (a) Mountain frame. (b) Muon frame.

They measure the muon’s lifetime to be

At, 2.20
Al‘moving = = = 2 = 22.5 us,
VI—u2/cr /1 —(0.9952)2

more than fen times a muon’s lifetime when measured in its own rest frame. The moving
muons’ clocks run slower, so more of them survive long enough to reach sea level. Repeating
the preceding calculation using the muon lifetime as measured by the experimenters gives

N = Nye /" = (563 muons hr ') ¢~ (63 #19/(225 1) — 424 muons hr™!.

When the effects of time dilation are included, the theoretical prediction is in excellent
agreement with the experimental result.

From a muon’s rest frame, its lifetime is only 2.20 us. How would an observer riding
along with the muons, as shown in Fig. 8, explain their ability to reach sea level? The
observer would measure a severely length-contracted Mt. Washington (in the direction of
the relative motion only). The distance traveled by the muons would not be L.y = 1907 m
but, rather, would be

Luoving = Lresty/1 — u2/c = (1907 m)y/T — (0.9952) = 186.6 m.

Thus it would take (186.6 m)/(0.9952¢) = 0.625 us for the muons to travel the length-
contracted distance to the detector at sea level, as measured by an observer in the muons’
rest frame. That observer would then calculate the number of muons reaching the lower
detector to be

N = Nye™"/* = (563 muons hr 1) ¢ =625 #9/2:20 1) — 424 muons hr !,

in agreement with the previous result. This shows that an effect due to time dilation as
measured in one frame may instead be attributed to length contraction as measured in
another frame.
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The effects of time dilation and length contraction are both symmetric between two
observers in relative motion. Imagine two identical spaceships that move in opposite direc-
tions, passing each other at some relativistic speed. Observers aboard each spaceship will
measure the other ship’s length as being shorter than their own, and the other ship’s clocks
as running slower. Both observers are right, having made correct measurements from their
respective frames of reference.

You should not think of these effects as being due to some sort of “optical illusion” caused
by light taking different amounts of time to reach an observer from different parts of a moving
object. The language used in the preceding discussions has involved the measurement of
an event’s spacetime coordinates (x, y, z, t) using meter sticks and clocks located at that
event, so there is no time delay. Of course, no actual laboratory has an infinite collection
of meter sticks and clocks, and the time delays caused by finite light-travel times must be
taken into consideration. This will be important in determining the relativistic Doppler shift
formula, which follows.

The Relativistic Doppler Shift

In 1842 the Austrian physicist Christian Doppler showed that as a source of sound moves
through a medium (such as air), the wavelength is compressed in the forward direction and
expanded in the backward direction. This change in wavelength of any type of wave caused
by the motion of the source or the observer is called a Doppler shift. Doppler deduced that
the difference between the wavelength A,s observed for a moving source of sound and the
wavelength A,y measured in the laboratory for a reference source at rest is related to the
radial velocity v, (the component of the velocity directly toward or away from the observer
of the source through the medium by

)‘0 s )\res A)\ r
fobs T Arest  BA_ Ur (30)

Arest Arest Us

where vy is the speed of sound in the medium. However, this expression cannot be pre-
cisely correct for light. Experimental results such as those of Michelson and Morley led
Einstein to abandon the ether concept, and they demonstrated that no medium is involved
in the propagation of light waves. The Doppler shift for light is a qualitatively different
phenomenon from its counterpart for sound waves.

Consider a distant source of light that emits a light signal at time #,.y;.; and another signal
at time fes2 = frest,] + Atrest @s measured by a clock at rest relative to the source. If this
light source is moving relative to an observer with velocity u, as shown in Fig. 9, then the
time between receiving the light signals at the observer’s location will depend on both the
effect of time dilation and the different distances traveled by the signals from the source to
the observer. (The light source is assumed to be sufficiently far away that the signals travel
along parallel paths to the observer.) Using Eq. ( 27), we find that the time between the
emission of the light signals as measured in the observer’s frame is Afyeg / 1—u?/c In
this time, the observer determines that the distance to the light source has changed by an
amount U At COS 0 / V1 —u?/c%. Thus the time interval Aty,, between the arrival of the
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/
// uAtresl

1 —u?/c?

u
Ut cOS 0
1 —u?lc?
FIGURE 9  Relativistic Doppler shift.
two light signals at the observer’s location is
At
Atops = L [1 4 (u/c)cosf]. 31)

V1 —u?/c?

If At is taken to be the time between the emission of the light wave crests, and if Afgps
is the time between their arrival, then the frequencies of the light wave are viesy = 1/ Atrest
and vgps = 1/Atops. The equation describing the relativistic Doppler shift is thus

Vrestv/ 1- Mz/c2 Vrestv/ 1 - MZ/CZ (32)
Vobs = = s
b 14+ (u/c)cos@ 14+v,/c

where v, = u cos 6 is the radial velocity of the light source. If the light source is moving
directly away from the observer (8 = 0°, v, = u) or toward the observer (6 = 180°, v, =
—u), then the relativistic Doppler shift reduces to

- Ur/c . .
Vobs = Vrest., | ————— (radial motion). (33)
14w, /c

There is also a transverse Doppler shift for motion perpendicular to the observer’s line of
sight (6 = 90°, v, = 0). This transverse shift is entirely due to the effect of time dilation.
Note that, unlike formulas describing the Doppler shift for sound, Eqgs. ( 32) and ( 33)
do not distinguish between the velocity of the source and the velocity of the observer. Only
the relative velocity is important.

When astronomers observe a star or galaxy moving away from or toward Earth, the wave-
length of the light they receive is shifted toward longer or shorter wavelengths, respectively.
If the source of light is moving away from the observer (v, > 0), then Agps > Arest. This
shift to a longer wavelength is called a redshift. Similarly, if the source is moving foward
the observer (v, < 0), then there is a shift to a shorter wavelength, a blueshift.” Because

"Doppler himself maintained that all stars would be white if they were at rest and that the different colors of
the stars were due to their Doppler shifts. However, the stars move much too slowly for their Doppler shifts to
significantly change their colors.
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most of the objects in the universe outside of our own Milky Way Galaxy are moving away
from us, redshifts are commonly measured by astronomers. A redshift parameter z is used
to describe the change in wavelength; it is defined as

)\obs - )\rest — ﬁ (34)

[\l
ll

)\’I'CSt )\rest

The observed wavelength Aps is obtained from Eq. (33) and ¢ = Av,

1 r . .
Aobs = Arest Txu/e (radial motion), (35
1—v/c

and the redshift parameter becomes

1+ v, . .
z= +—U/C -1 (radial motion). (36)
1—v/c

In general, Eq. (34), together with A = c¢/v, shows that

I+ 1= (37)

This expression indicates that if the luminosity of an astrophysical source with redshift
parameter z > 0 (receding) is observed to vary during a time Afs, then the change in
luminosity occurred over a shorter time Atesy = Atops/(z + 1) in the rest frame of the
source.

Example 3.2.  Inits rest frame, the quasar SDSS 1030+0524 produces a hydrogen emis-
sion line of wavelength A = 121.6 nm. On Earth, this emission line is observed to have
a wavelength of Ay, = 885.2 nm. The redshift parameter for this quasar is thus

7= )\obs - )\rest — 6.28.

)Nrest

Using Eq. (36), we may calculate the speed of recession of the quasar:

14+v/c
7= | ————1
1—v,/c
\ 2 -1
v_:u (38)
c  (+D2+1

= 0.963.

continued
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Quasar SDSS 1030+0524 appears to be moving away from us at more than 96% of the speed
of light! However, objects that are enormously distant from us, such as quasars, have large
apparent recessional speeds due to the overall expansion of the universe. In these cases the
increase in the observed wavelength is actually due to the expansion of space itself (which
stretches the wavelength of light) rather than being due to the motion of the object through
space! This cosmological redshift is a consequence of the Big Bang.

This quasar was discovered as a product of the massive Sloan Digital Sky Survey; see
Becker, et al. (2001) for further information about this object.

Suppose the speed u of the light source is small compared to that of light (#/c < 1).
Using the expansion (to first order)

(4, /)2~ 14+ 2,

2c

together with Egs. (34) and (35) for radial motion, then shows that for low speeds,

AL
~ (39)

)\rest c

=

where v, > 0 for a receding source (AA > 0) and v, < 0 for an approaching source (AA <
0). Although this equation is similar to Eq. (  30), you should bear in mind that Eq. ( 39)
is an approximation, valid only for low speeds. Misapplying this equation to the relativistic
quasar SDSS 1030+0524 discussed in Example 3.2 would lead to the erroneous conclusion
that the quasar is moving away from us at 6.28 times the speed of light!

The Relativistic Velocity Transformation

Because space and time intervals are measured differently by different observers in relative
motion, velocities must be transformed as well. The equations describing the relativistic
transformation of velocities may be easily found from the Lorentz transformation equations
(16— 19) by writing them as differentials. Then dividing the dx’, dy’, and dz’ equations
by the dt’ equation gives the relativistic velocity transformations:

, vy — U
T 40
T uv,/c? (40)
;U1 —u?/c?
== 41
Yy 1 —uv,/c? @1
o = ey T H/en V1-—u/c (42)
: 1 —uv,/c?

As with the inverse Lorentz transformations, the inverse velocity transformations may be
obtained by switching primed and unprimed quantities and by replacing u with —u. Itis left
as an exercise to show that these equations do satisfy the second of Einstein’s postulates:
Light travels through a vacuum at a constant speed that is independent of the motion of the
light source. From Egs. ( 40— 42), if v has a magnitude of ¢, so does v’ (see Problem  12).
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Example 3.3.  Asmeasured in the reference frame S’, a light source is at rest and radiates
light equally in all directions. In particular, half of the light is emitted into the forward
(positive x’) hemisphere. Is this situation any different when viewed from frame S, which
measures the light source traveling in the positive x-direction with a relativistic speed u?

Consider a light ray whose velocity components measured in " are v; = 0, v}, = ¢, and
v, = 0. This ray travels along the boundary between the forward and backward hemispheres
of light as measured in S’. However, as measured in frame S, this light ray has the velocity
components given by the inverse transformations of Egs. (40—42):

v+ u
Vy=—"—"""—==1u
14 uv,/c?

v/l —u?/c?
vy, = Ll e/ =cy1—u?/c?
1 4+ uv,/c?
v/l —u?/c? _0

T uvl,/c?

As measured in frame S, the light ray is not traveling perpendicular to the x-axis; see
Fig. 10.

In fact, for u/c close to 1, the angle & measured between the light ray and the x-axis may
be found from sin 6 = v, /v, where

. 2 2 —
v = vx—l—vy—i—vz—c

is the speed of the light ray measured in frame S. Thus

sinf = 2 = /T—u/2 =y, (43)
v

\

~

sin @ = y~!

(@)§ OR

FIGURE 10 Relativistic headlight effect. (a) Frame S. (b) Frame §'.

continued
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where y is the Lorentz factor defined by Eq. ( 20). For relativistic speeds # = ¢, implying
that y is very large, so sin 6 (and hence 6) becomes very small. All of the light emitted into the
forward hemisphere, as measured in S, is concentrated into a narrow cone in the direction
of the light source’s motion when measured in frame S. Called the headlight effect, this
result plays an important role in many areas of astrophysics. For example, as relativistic
electrons spiral around magnetic field lines, they emit light in the form of synchrotron
radiation. The radiation is concentrated in the direction of the electron’s motion and is
strongly plane-polarized. Synchrotron radiation is an important electromagnetic radiation
process in the Sun, Jupiter’s magnetosphere, pulsars, and active galaxies.

4 M RELATIVISTIC MOMENTUM AND ENERGY

Up to this point, only relativistic kinematics has been considered. Einstein’s theory of
special relativity also requires new definitions for the concepts of momentum and energy.
The ideas of conservation of linear momentum and energy are two of the cornerstones of
physics. According to the Principle of Relativity, if momentum is conserved in one inertial
frame of reference, then it must be conserved in all inertial frames. At the end of this
section, it is shown that this requirement leads to a definition of the relativistic momentum
vector p:

mv

P= e

=ymv, 44)

where y is the Lorentz factor defined by Eq. ( 20). Warning: Some authors prefer to separate
the “m” and the “v” in this formula by defining a “relativistic mass,” m / V1 —v%/c2. There
is no compelling reason for this separation, and it can be misleading. In this text, the mass
m of a particle is taken to be the same value in all inertial reference frames; it is invariant
under a Lorentz transformation, and so there is no reason to qualify the term as a “rest mass.”
Thus the mass of a moving particle does not increase with increasing speed, although its
momentum approaches infinity as v — c. Also note that the “v” in the denominator is the
magnitude of the particle’s velocity relative to the observer, not the relative velocity u
between two arbitrary frames of reference.

The Derivation of E = mc?

Using Eq. ( 44) and the relation between kinetic energy, we can derive an expression
for the relativistic kinetic energy. The starting point is Newton’s second law, F =dp/dt,
applied to a particle of mass m that is initially at rest.® Consider a force of magnitude F
that acts on the particle in the x-direction. The particle’s final kinetic energy K
equals the total work done by the force on the particle as it travels from its initial

81t is left as an exercise to show that F = ma is not correct, since at relativistic speeds the force and the acceleration
need not be in the same direction!



The Theory of Special Relativity

position x; to its final position x r:

Xy rd rrd Py
K:/ Fdx:/ _de:/ —xdp=/ vdp,
. x dt p dt i

i

where p; and p are the initial and final momenta of the particle, respectively. Integrating
the last expression by parts and using the initial condition p; = 0 give

vy
K =pysvy —/ pdv
0

2
me

/U.f muv d
—— — — v
‘/l—v’jl/cz 0o 1—v?/c?
mU2
= \/—++mc2 (‘/l—vi/cz— 1)
1 —v$/c?
f

If we drop the f subscript, the expression for the relativistic kinetic energy becomes

Although it is not apparent that this formula for the kinetic energy reduces to either of the
familiar forms K = %mv2 or K = p?/2m in the low-speed Newtonian limit, both forms
must be true if Eq. (45) is to be correct. The proofs will be left as exercises.

The right-hand side of this expression for the kinetic energy consists of the difference
between two energy terms. The first is identified as the total relativistic energy E,

2
mc 2

E=—=ymc". (46)

The second term is an energy that does not depend on the speed of the particle; the particle
has this energy even when it is at rest. The term mc? is called the rest energy of the particle:

Erest = mc?. (47)

The particle’s kinetic energy is its total energy minus its rest energy. When the energy of a
particle is given as (for example) 40 MeV, the implicit meaning is that the particle’s kinetic
energy is 40 MeV; the rest energy is not included. Finally, there is a very useful expression
relating a particle’s total energy E, the magnitude of its momentum p, and its rest energy
mc?. It states that

E? = p262 + m2c*. (48)
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This equation is valid even for particles that have no mass, such as photons.

For a system of n particles, the total energy Ey of the system is the sum of the total
energies E; of the individual particles: Egs = Y -, E;. Similarly, the vector momentum
Psys of the system is the sum of the momenta p; of the individual particles: psys = Z;’Zl p:.If
the momentum of the system of particles is conserved, then the total energy is also conserved,
even for inelastic collisions in which the kinetic energy of the system, Ko = Y -, K, is
reduced. The kinetic energy lost in the inelastic collisions goes into increasing the rest
energy, and hence the mass, of the particles. This increase in rest energy allows the total
energy of the system to be conserved. Mass and energy are two sides of the same coin; one
can be transformed into the other.

Example 4.1. In a one-dimensional completely inelastic collision, two identical parti-
cles of mass m and speed v approach each other, collide head-on, and merge to form a single
particle of mass M. The initial energy of the system of particles is

2mc?

J1=02/c%

Since the initial momenta of the particles are equal in magnitude and opposite in direction,
the momentum of the system pgys = 0 before and after the collision. Thus after the collision,
the particle is at rest and its final energy is

Esys,i =

Egys.p = Mc*.

Equating the initial and final energies of the system shows that the mass M of the conglom-
erate particle is

2m
J1I=v2/c%

Thus the particle mass has increased by an amount

M =

2m 1
— - 2m=2m| —-1].
V1 —1v%/c? (,/1—1)2/62 )

The origin of this mass increase may be found by comparing the initial and final values of
the kinetic energy. The initial kinetic energy of the system is

Am =M —2m =

1
Koys,i = me? | —/—/—— — 1
V1 —v%/c?

and the final kinetic energy Ky r = 0. Dividing the kinetic energy lost in this inelastic
collision by ¢? equals the particle mass increase, Am.
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The Derivation of Relativistic Momentum (Eq. 44)

To justify Eq. ( 44) for the relativistic momentum, we will consider a glancing elastic
collision between two identical particles of mass m. This collision will be observed from
three carefully chosen inertial reference frames, as shown in Fig. 11. When measured in
an inertial reference frame S”, the two particles A and B have velocities and momenta that
are equal in magnitude and opposite in direction, both before and after the collision. As a
result, the total momentum must be zero both before and after the collision; momentum
is conserved. This collision can also be measured from two other reference frames, S and
S’. From Fig. 11, if S moves in the negative x”-direction with a velocity equal to the
x"-component of particle A in §”, then as measured from frame S, the velocity of particle
A has only a y-component. Similarly, if $” moves in the positive x”-direction with a velocity
equal to the x”-component of particle B in S”, then as measured from frame §’, the velocity
of particle B has only a y-component. Actually, the figures for frames S and S’ would be
identical if the figures for one of these frames were rotated by 180° and the A and B labels
were reversed. This means that the change in the y-component of particle A’s momentum
as measured in frame S is the same as the change in the y’-component of particle B’s
momentum as measured in the frame §’, except for a change in sign (due to the 180°
rotation): Apa y = —App y- On the other hand, momentum must be conserved in frames S
and §’, just asitisin frame S”. This means that, measured in frame §’, the sum of the changes
in the y’-components of particle A’s and B’s momenta must be zero: Ap, , + App | = 0.
Combining these results gives

Aply, = Apay. (49)
y Y Y
B B ) B ,
X X X
y Y Y
& + +
X x" x'
y Y Y
Time x x" x'
@S (b) S” ©) S’

FIGURE 11 An elastic collision measured in frames (a) S, (b) S”, and (c) S’. As observed from
frame S”, frame S moves in the negative x”-direction, along with particle A, and frame S’ moves in
the positive x”-direction, along with particle B. For each reference frame, a vertical sequence of three
figures shows the situation before (top), during, and after the collision.

119



120

The Theory of Special Relativity

So far, the argument has been independent of a specific formula for the relativistic
momentum vector p. Let’s assume that the relativistic momentum vector has the form
p = fmv, where f is a relativistic factor that depends on the magnitude of the particle’s
velocity, but not its direction. As the particle’s speed v — 0, it is required that the factor
f — 1 to obtain agreement with the Newtonian result.’

A second assumption allows the relativistic factor f to be determined: The y- and y’-
components of each particle’s velocity are chosen to be arbitrarily small compared to the
speed of light. Thus the y- and y’-components of particle A’s velocity in frames S and S’
are extremely small, and the x’-component of particle A’s velocity in frame S’ is taken to
be relativistic. Since

vy = Ul Ful R
in frame ', the relativistic factor f’ for particle A in frame S’ is not equal to 1, whereas
in frame S, f is arbitrarily close to unity. If v, , is the final y-component of particle A’s
velocity, and similarly for v}, y» then Eq. (49) becomes

21 mv)y , = 2mua . (50)

The relative velocity u of frames S and S’ is needed torelate v}y yandvy yusingEq.( 41).
Because vy , = Oinframe S, Eq. ( 40) shows that u = —vju; that is, the relative velocity
u of frame §’ relative to frame S is just the negative of the x’-component of particle A’s
velocity in frame S’. Furthermore, because the y’-component of particle A’s velocity is
arbitrarily small, we can set v, . = v),, the magnitude of particle A’s velocity as measured
in frame §’, and so use u = —v/,. Inserting this into Eq. ( 41) with v4 , = 0 gives

/ . 12 7.2
Vay = Vay L= /c

Finally, inserting this relation between v/,  and v4 , into Eq. ( 50) and canceling terms
reveals the relativistic factor f to be

1
f=—
N

as measured in frame S’. Dropping the prime superscript and the A subscript (which merely
identify the reference frame and particle involved) gives
1
f=——

1 —v2/c?
The formula for the relativistic momentum vector p = fmv is thus
mv

p=—— = ymv.
1 —v2/c?

There is no requirement that relativistic formulas appear similar to their low-speed Newtonian counterparts (cf.
Eq. 45). However, this simple argument produces the correct result.
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The Theory of Special Relativity

PROBLEM SET

1 UseEgs.( 14)and( 15)toderive the Lorentz transformation equations from Egs. ( 10— 13).

x'=ay(x —ut) (10)
Y=y (1)
7=z 12)

t' = anx + aut. (13)
X242+ 22 = (e (14)
x4 )/2 +7% = (ct’)z. (15)

2 Because there is no such thing as absolute simultaneity, two observers in relative motion may
disagree on which of two events A and B occurred first. Suppose, however, that an observer in
reference frame S measures that event A occurred first and caused event B. For example, event
A might be pushing a light switch, and event B might be a light bulb turning on. Prove that
an observer in another frame S’ cannot measure event B (the effect) occurring before event A
(the cause). The temporal order of cause and effect is preserved by the Lorentz transformation
equations. Hint: For event A to cause event B, information must have traveled from A to B,
and the fastest that anything can travel is the speed of light.

3 Consider the special light clock shown in Fig. 12. The light clock is at rest in frame S’ and
consists of two perfectly reflecting mirrors separated by a vertical distance d. As measured by
an observer in frame ', a light pulse bounces vertically back and forth between the two mirrors;
the time interval between the pulse leaving and subsequently returning to the bottom mirror is
At’. However, an observer in frame S sees a moving clock and determines that the time interval

’

y y
———> u (mirrors) > u (reference frame)

I | ; I | |;|
/ \\\ !
|
/ AN d I
/ \ |
/ Y

I || | (|

X x'
@S (b) S’

FIGURE 12 (a) A light clock that is moving in frame S, and (b) at rest in frame §’.

between the light pulse leaving and returning to the bottom mirror is Az. Use the fact that both
observers must measure that the light pulse moves with speed c, plus some simple geometry, to
derive the time-dilation equation (27).

From Chapter 4 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 by
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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Atrest

Atmoving = ———.
moving m

27)

4 Arod moving relative to an observer is measured to have its length L ,,yine contracted to one-half

of its length when measured at rest. Find the value of u /¢ for the rod’s rest frame relative to the
observer’s frame of reference.

An observer P stands on a train station platform as a high-speed train passes by at u/c = 0.8.
The observer P, who measures the platform to be 60 m long, notices that the front and back
ends of the train line up exactly with the ends of the platform at the same time.

(a) How long does it take the train to pass P as he stands on the platform, as measured by his
watch?

(b) According to a rider T’ on the train, how long is the train?
(¢) According to arider T on the train, what is the length of the train station platform?

(d) According to arider T on the train, how much time does it take for the train to pass observer
P standing on the train station platform?

(e) According to a rider T on the train, the ends of the train will not simultaneously line up
with the ends of the platform. What time interval does 7' measure between when the front
end of the train lines up with the front end of the platform, and when the back end of the
train lines up with the back end of the platform?

An astronaut in a starship travels to o Centauri, a distance of approximately 4 ly as measured
from Earth, at a speed of u/c = 0.8.

(a) How long does the trip to o Centauri take, as measured by a clock on Earth?
(b) How long does the trip to o Centauri take, as measured by the starship pilot?
(c) What is the distance between Earth and o Centauri, as measured by the starship pilot?

(d) Aradio signal is sent from Earth to the starship every 6 months, as measured by a clock on
Earth. What is the time interval between reception of one of these signals and reception of
the next signal aboard the starship?

(e) A radio signal is sent from the starship to Earth every 6 months, as measured by a clock
aboard the starship. What is the time interval between reception of one of these signals and
reception of the next signal on Earth?

(f) If the wavelength of the radio signal sent from Earth is A = 15 cm, to what wavelength
must the starship’s receiver be tuned?

Upon reaching v Centauri, the starship in Problem 6 immediately reverses direction and travels
back to Earth at a speed of u/c = 0.8. (Assume that the turnaround itself takes zero time.) Both
Earth and the starship continue to emit radio signals at 6-month intervals, as measured by their
respective clocks. Make a table for the entire trip showing at what times Earth receives the
signals from the starship. Do the same for the times when the starship receives the signals from
Earth. Thus an Earth observer and the starship pilot will agree that the pilot has aged 4 years
less than the Earth observer during the round-trip voyage to o Centauri.

In its rest frame, quasar Q2203+29 produces a hydrogen emission line of wavelength 121.6 nm.
Astronomers on Earth measure a wavelength of 656.8 nm for this line. Determine the redshift
parameter and the apparent speed of recession for this quasar. (For more information about this
quasar, see McCarthy et al. 1988.)

Quasar 3C 446 is violently variable; its luminosity at optical wavelengths has been observed to
change by a factor of 40 in as little as 10 days. Using the redshift parameter z = 1.404 measured
for 3C 446, determine the time for the luminosity variation as measured in the quasar’s rest
frame. (For more details, see Bregman et al. 1988.)
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10 Use the Lorentz transformation equations (16— 19) to derive the velocity transformation
equations (40— 42).

, X — ut (16)
X'=—
V1—u?/c?
Y=y (17)
7=z (18)
; 2
t = L/C (19)
V1 —u?/c?
, Ve — U
S 40
T uv,/c? “0)
y = vz w/e (41)
Y 1 —uv,/c?
, v/ 1 —u?/c?
=2 HT (42)
1 —uv,/c

11 The spacetime interval, As, between two events with coordinates
(1, yis 21, 1) and (%2, y2, 22, 12)
is defined by
(As)? = (cA1)’ — (Ax)* — (Ay)? — (A2)%.

(a) Use the Lorentz transformation equations (16— 19) to show that As has the same value
in all reference frames. The spacetime interval is said to be invariant under a Lorentz
transformation.

, X —ut
T V1 —u?/c? {10
Y=y (17
7=z (18)
, t —ux/c?
t = — o (19)

(b) If (As)? > 0, then the interval is timelike. Show that in this case,

At = —
C

is the proper time between the two events. Assuming that #; < t,, could the first event
possibly have caused the second event?

(¢) If (As)? = 0, then the interval is lightlike or null. Show that only light could have traveled
between the two events. Could the first event possibly have caused the second event?
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The Theory of Special Relativity: Problem Set

(d) If (As)? < 0, then the interval is spacelike. What is the physical significance of \/—(As)2?
Could the first event possibly have caused the second event?

General expressions for the components of a light ray’s velocity as measured in reference frame
S are
v, = csinf cos ¢

v, = csin6 sin ¢
v, = ccosf,

where 6 and ¢ are the angular coordinates in a spherical coordinate system.

(a) Show that
v = /v§—|—vf+v§:c.

(b) Use the velocity transformation equations to show that, as measured in reference frame S,

= 2 /2 2 —
V= vt ot vt =g,

and so confirm that the speed of light has the constant value c in all frames of reference.

Starship A moves away from Earth with a speed of v, /c = 0.8. Starship B moves away from
Earth in the opposite direction with a speed of vg/c = 0.6. What is the speed of starship A as
measured by starship B? What is the speed of starship B as measured by starship A?

Use Newton’s second law, F = dp/dt, and the formula for relativistic momentum, Eq. ( 44),
to show that the acceleration vector a = dv/dt produced by a force F acting on a particle of
mass m is

F v

a=— —
ym  ymc?

(F-v),

where F - v is the vector dot product between the force F and the particle velocity v. Thus the
acceleration depends on the particle’s velocity and is not in general in the same direction as the
force.

myv

P= V1 —1v%/c?

Suppose a constant force of magnitude F' acts on a particle of mass m initially at rest.

= ymv 44)

(a) Integrate the formula for the acceleration found in Problem 14 to show that the speed of
the particle after time 7 is given by

v (F/m)t
c  JF/mP2+c2

(b) Rearrange this equation to express the time ¢ as a function of v/c. If the particle’s initial
acceleration attime t = Oisa = g = 9.80 m s~2, how much time is required for the particle
to reach a speed of v/c = 0.9? v/c =0.99? v/c = 0.999? v/c = 0.9999? v/c = 1?

Find the value of v/c when a particle’s kinetic energy equals its rest energy.

Prove that in the low-speed Newtonian limit of v/c < 1, Eq. ( 45) does reduce to the familiar

form K = %mvz.
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18 Show that the relativistic kinetic energy of a particle can be written as

p2

K=—"
1+y)m

where p is the magnitude of the particle’s relativistic momentum. This demonstrates that in the
low-speed Newtonian limit of v/c <« 1, K = p?/2m (as expected).

19 Derive Eq. ( 48).

E? = p*c? + m*ct. 48)
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1 M SPECTRAL LINES

In 1835 a French philosopher, Auguste Comte (1798-1857), considered the limits of human
knowledge. In his book Positive Philosophy, Comte wrote of the stars, “We see how we
may determine their forms, their distances, their bulk, their motions, but we can never know
anything of their chemical or mineralogical structure.” Thirty-three years earlier, however,
William Wollaston (1766—1828), like Newton before him, passed sunlight through a prism
to produce a rainbow-like spectrum. He discovered that a number of dark spectral lines
were superimposed on the continuous spectrum where the Sun’s light had been absorbed
at certain discrete wavelengths. By 1814, the German optician Joseph von Fraunhofer
(1787-1826) had cataloged 475 of these dark lines (today called Fraunhofer lines) in the
solar spectrum. While measuring the wavelengths of these lines, Fraunhofer made the first
observation capable of proving Comte wrong. Fraunhofer determined that the wavelength
of one prominent dark line in the Sun’s spectrum corresponds to the wavelength of the
yellow light emitted when salt is sprinkled in a flame. The new science of spectroscopy was
born with the identification of this sodium line.

Kirchhoff’s Laws

The foundations of spectroscopy were established by Robert Bunsen (1811-1899), a Ger-
man chemist, and by Gustav Kirchhoff (1824-1887), a Prussian theoretical physicist. Bun-
sen’s burner produced a colorless flame that was ideal for studying the spectra of heated
substances. He and Kirchhoff then designed a spectroscope that passed the light of a flame
spectrum through a prism to be analyzed. The wavelengths of light absorbed and emitted
by an element were found to be the same; Kirchhoff determined that 70 dark lines in the
solar spectrum correspond to 70 bright lines emitted by iron vapor. In 1860 Kirchhoff and
Bunsen published their classic work Chemical Analysis by Spectral Observations, in which
they developed the idea that every element produces its own pattern of spectral lines and
thus may be identified by its unique spectral line “fingerprint.” Kirchhoff summarized the
production of spectral lines in three laws, which are now known as Kirchhoff’s laws:

From Chapter 5 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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* A hot, dense gas or hot solid object produces a continuous spectrum with no dark
spectral lines.'

* Ahot, diffuse gas produces bright spectral lines (emission lines).

* Acool, diffuse gas in front of a source of a continuous spectrum produces dark spectral
lines (absorption lines) in the continuous spectrum.

Applications of Stellar Spectra Data

An immediate application of these results was the identification of elements found in the
Sun and other stars. A new element previously unknown on Earth, helium,* was discovered
spectroscopically on the Sun in 1868; it was not found on Earth until 1895. Figure 1
shows the visible portion of the solar spectrum, and Table 1 lists some of the elements
responsible for producing the dark absorption lines.

Another rich line of investigation was pursued by measuring the Doppler shifts of spectral
lines. For individual stars, v, < ¢, and so the low-speed approximation of the following
equation,

)\obs )‘rest _ ﬂ — &7 (1)

)\'ICSI )"resl c

can be utilized to determine their radial velocities. By 1887 the radial velocities of Sirius,
Procyon, Rigel, and Arcturus had been measured with an accuracy of a few kilometers per
second.

Example 1.1.  The rest wavelength A,y for an important spectral line of hydrogen
(known as He) is 656.281 nm when measured in air. However, the wavelength of the
He absorption line in the spectrum of the star Vega in the constellation Lyra is measured to
be 656.251 nm at a ground-based telescope. Equation ( 1) shows that the radial velocity
of Vega is

v, — C()\obs _)\rest) — —13.9km S_l'
r — - . ’
)Lrest

the minus sign means that Vega is approaching the Sun. However, stars also have a
proper motion, |, perpendicular to the line of sight. Vega’s angular position in the sky
changes by 11 = 0.35077” yr~!. At a distance of r = 7.76 pc, this proper motion is related
to the star’s transverse velocity, vg. Expressing r in meters and p in radians per second
results in

v =rp=129kms '

'In the first of Kirchhoff’s laws, “hot” actually means any temperature above 0 K. However, according to Wien’s
displacement law a temperature of several thousand degrees Kis required for Amax to fall in the visible
portion of the electromagnetic spectrum. It is the opacity or optical depth of the gas that is responsible for the
continuous blackbody spectrum.

2The name helium comes from Helios, a Greek Sun god.
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This transverse velocity is comparable to Vega’s radial velocity. Vega’s speed through space

relative to the Sun is thus
v=1/v2+v2=19.0kms™".

The average speed of stars in the solar neighborhood is about 25 km s~'. In reality, the
measurement of a star’s radial velocity is complicated by the 29.8 km s~! motion of Earth
around the Sun, which causes the observed wavelength Aqps of a spectral line to vary
sinusoidally over the course of a year. This effect of Earth’s speed may be easily compensated
for by subtracting the component of Earth’s orbital velocity along the line of sight from the
star’s measured radial velocity.

Spectrographs

Modern methods can measure radial velocities with an accuracy of better than 3 m s~!!

Today astronomers use spectrographs to measure the spectra of stars and galaxies; see
Fig. 2.2 After passing through a narrow slit, the starlight is collimated by a mirror and
directed onto a diffraction grating. A diffraction grating is a piece of glass onto which
narrow, closely spaced lines have been evenly ruled (typically several thousand lines per
millimeter); the grating may be made to transmit the light (a transmission grating) or reflect
the light (a reflection grating). In either case, the grating acts like a long series of neighboring
double slits. Different wavelengths of light have their maxima occurring at different angles
0 given by the following equation:

dsinf = n n=0,1,2,...),

where d is the distance between adjacent lines of the grating, » is the order of the spectrum,
and 6 is measured from the line normal (or perpendicular) to the grating. (n = 0 corresponds
to 6 = 0 for all wavelengths, so the light is not dispersed into a spectrum in this case.) The
spectrum is then focused onto a photographic plate or electronic detector for recording.

The ability of a spectrograph to resolve two closely spaced wavelengths separated by an
amount AX depends on the order of the spectrum, #, and the total number of lines of the
grating that are illuminated, N. The smallest difference in wavelength that the grating can
resolve is

A

AL = —,
nN

2)

where A is either of the closely spaced wavelengths being measured. The ratio 1 /AX is the
resolving power of the grating.*

3 Measuring the radial velocities of stars in binary star systems allows the masses
of the stars to be determined. The same methods have now been used to detect numerous extrasolar planets.
“4In some cases, the resolving power of a spectrograph may be determined by other factors—for example, the slit
width.
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FIGURE 1  The solar spectrum with Fraunhofer lines. Note that the wavelengths are expressed
in angstroms (1 A = 0.1 nm), a commonly used wavelength unit in astronomy. Modern depictions of
spectra are typically shown as plots of flux as a function of wavelength.

(Courtesy of The Observatories of the Carnegie Institution of Washington.)
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TABLE1  Wavelengths of some of the stronger Fraunhofer lines measured in air near sea level.

The difference in wavelengths of spectral lines when measured in air versus in
vacuum are discussed in Example 3.1. (Data from Lang, Astrophysical Formulae, Third Edition,

Springer, New York, 1999.)

Wavelength Equivalent
(nm) Name Atom Width (nm)
385.992 Fel 0.155
388.905 Hs 0.235
393.368 K Call 2.025
396.849 H Call 1.547
404.582 Fel 0.117
410.175 h, Hé HI 0.313
422.674 g Cal 0.148
434.048 G,Hy HI 0.286
438.356 d Fel 0.101
486.134 F Hp HI 0.368
516.733 by Mgl 0.065
517.270 b, Mgl 0.126
518.362 b, Mgl 0.158
588.997 D, Nal 0.075
589.594 D, Nal 0.056
656.281 C,He HI 0.402
Light from
telescope
Diffraction

Couiml

mirror

Camera mirror

FIGURE 2

Spectrograph.
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Astronomers recognized the great potential for uncovering the secrets of the stars in the
empirical rules that had been obtained for the spectrum of light: Wien’s law, the Stefan—
Boltzmann equation, Kirchhoff’s laws, and the new science of spectroscopy. By 1880
Gustav Wiedemann (1826-1899) found that a detailed investigation of the Fraunhofer lines
could reveal the temperature, pressure, and density of the layer of the Sun’s atmosphere
that produces the lines. The splitting of spectral lines by a magnetic field was discovered by
Pieter Zeeman (1865-1943) of the Netherlands in 1897, raising the possibility of measuring
stellar magnetic fields. But a serious problem blocked further progress: However impressive,
these results lacked the solid theoretical foundation required for the interpretation of stellar
spectra. For example, the absorption lines produced by hydrogen are much stronger for
Vega than for the Sun. Does this mean that Vega’s composition contains significantly more
hydrogen than the Sun’s? The answer is no, but how can this information be gleaned from
the dark absorption lines of a stellar spectrum recorded on a photographic plate? The answer
required a new understanding of the nature of light itself.

2 HEPHOTONS

Despite Heinrich Hertz’s absolute certainty in the wave nature of light, the solution to the
riddle of the continuous spectrum of blackbody radiation led to a complementary descrip-
tion, and ultimately to new conceptions of matter and energy. Planck’s constant &
is the basis of the modern description of matter and energy known as quantum
mechanics. Today 4 is recognized as a fundamental constant of nature, like the speed of
light ¢ and the universal gravitational constant G. Although Planck himself was uncom-
fortable with the implications of his discovery of energy quantization, quantum theory was
to develop into what is today a spectacularly successful description of the physical world.
The next step forward was taken by Einstein, who convincingly demonstrated the reality
of Planck’s quantum bundles of energy.

The Photoelectric Effect

When light shines on a metal surface, electrons are ejected from the surface, aresult called the
photoelectric effect. The electrons are emitted with arange of energies, but those originating
closest to the surface have the maximum kinetic energy, Knax. A surprising feature of the
photoelectric effect is that the value of K,,x does not depend on the brightness of the light
shining on the metal. Increasing the intensity of a monochromatic light source will eject more
electrons but will not increase their maximum kinetic energy. Instead, K,x varies with the
frequency of the light illuminating the metal surface. In fact, each metal has a characteristic
cutoff frequency v, and a corresponding cutoff wavelength A. = c/v.; electrons will be
emitted only if the frequency v of the light satisfies v > v, (or the wavelength satisfies
A < X¢). This puzzling frequency dependence is nowhere to be found in Maxwell’s classic
description of electromagnetic waves. The equation for the Poynting vector admits no role
for the frequency in describing the energy carried by a light wave.

Einstein’s bold solution was to take seriously Planck’s assumption of the quantized
energy of electromagnetic waves. According to Einstein’s explanation of the photoelectric
effect, the light striking the metal surface consists of a stream of massless particles called
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photons.’ The energy of a single photon of frequency v and wavelength  is just the energy
of Planck’s quantum of energy:

hc
Ephoton =hv = T 3)

Example 2.1.  The energy of a single photon of visible light is small by everyday stan-
dards. For red light of wavelength A = 700 nm, the energy of a single photon is

hc N 1240 eV nm

—_ =1.77¢V.
A 700 nm

Ephoton =
Here, the product hc has been expressed in the convenient units of (electron volts) x
(nanometers); recall that 1 eV = 1.602 x 10~'° J. For a single photon of blue light with
A = 400 nm,

he N 1240 eV nm

— ~ =3.10eV.
A 400 nm

Ephoton =
How many visible photons (A = 500 nm) are emitted each second by a 100-W light bulb
(assuming that it is monochromatic)? The energy of each photon is

hc N 1240 eV nm

— ~ =248eV =397 x 107 7.
A 500 nm

Ephoton =
This means that the 100-W light bulb emits 2.52 x 10?° photons per second. As this huge
number illustrates, with so many photons nature does not appear “grainy.” We see the world
as a continuum of light, illuminated by a flood of photons.

Einstein reasoned that when a photon strikes the metal surface in the photoelectric effect,
its energy may be absorbed by a single electron. The electron uses the photon’s energy to
overcome the binding energy of the metal and so escape from the surface. If the minimum
binding energy of electrons in a metal (called the work function of the metal, usually a few
eV) is ¢, then the maximum kinetic energy of the ejected electrons is

hc
Kmaszpholon_¢=hV_¢= T_(f) “4)

Setting Ky.x = 0, the cutoff frequency and wavelength for a metal are seentobe v, = ¢/ h
and A, = hc/¢, respectively.

The photoelectric effect established the reality of Planck’s quanta. Albert Einstein was
awarded the 1921 Nobel Prize, not for his theories of special and general relativity, but
“for his services to theoretical physics, and especially for his discovery of the law of the

3Only a massless particle can move with the speed of light, since a massive particle would have infinite energy.
The term photon was first used in 1926 by the physicist G. N. Lewis (1875-1946).
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photoelectric effect.”® Today astronomers take advantage of the quantum nature of light in
various instruments and detectors, such as CCDs (charge-coupled devices).

The Compton Effect

In 1922, the American physicist Arthur Holly Compton (1892-1962) provided the most
convincing evidence that light does in fact manifest its particle-like nature when interacting
with matter. Compton measured the change in the wavelength of X-ray photons as they
were scattered by free electrons. Because photons are massless particles that move at the
speed of light, the relativistic energy equation (with mass m = 0 for photons), shows that
the energy of a photon is related to its momentum p by

hc
Ephoton = hv = 7 = pc. 5

Compton considered the “collision” between a photon and a free electron, initially at rest.
As shown in Fig. 3, the electron is scattered in the direction ¢ and the photon is scattered
by an angle 8. Because the photon has lost energy to the electron, the wavelength of the
photon has increased.

In this collision, both (relativistic) momentum and energy are conserved. It is left as
an exercise to show that the final wavelength of the photon, A, is greater than its initial

Incident photon

FIGURE 3  The Compton effect: The scattering of a photon by a free electron. 6 and ¢ are the
scattering angles of the photon and electron, respectively.

6Partly in recognition of his determination of an accurate value of Planck’s constant/, the American physicist
Robert A. Millikan (1868-1953) also received a Nobel Prize (1923) for his work on the photoelectric effect.
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wavelength, X;, by an amount

AL =hf—n =

(1 —cos9), (6)

m.c

where m, is the mass of the electron. Today, this change in wavelength is known as the
Compton effect. The term i/m.c in Eq. ( 6), called the Compton wavelength, Ac, is
the characteristic change in the wavelength of the scattered photon and has the value A¢ =
0.00243 nm, 30 times smaller than the wavelength of the X-ray photons used by Compton.
Compton’s experimental verification of this formula provided convincing evidence that
photons are indeed massless particles that nonetheless carry momentum, as described by
Eq. ( 5). This is the physical basis for the force exerted by radiation upon matter.

3 METHE BOHR MODEL OF THE ATOM

The pioneering work of Planck, Einstein, and others at the beginning of the twentieth
century revealed the wave—particle duality of light. Light exhibits its wave properties as
it propagates through space, as demonstrated by its double-slit interference pattern. On
the other hand, light manifests its particle nature when it interacts with matter, as in the
photoelectric and Compton effects. Planck’s formula describing the energy distribution of
blackbody radiation explained many of the features of the continuous spectrum of light
emitted by stars. But what physical process was responsible for the dark absorption lines
scattered throughout the continuous spectrum of a star, or for the bright emission lines
produced by a hot, diffuse gas in the laboratory?

The Structure of the Atom

In the very last years of the nineteenth century, Joseph John Thomson (1856—1940) discov-
ered the electron while working at Cambridge University’s Cavendish Laboratory. Because
bulk matter is electrically neutral, atoms were deduced to consist of negatively charged elec-
trons and an equal positive charge of uncertain distribution. Ernest Rutherford (1871-1937)
of New Zealand, working at England’s University of Manchester, discovered in 1911 that
an atom’s positive charge was concentrated in a tiny, massive nucleus. Rutherford directed
high-speed alpha particles (now known to be helium nuclei) onto thin metal foils. He was
amazed to observe that a few of the alpha particles were bounced backward by the foils
instead of plowing through them with only a slight deviation. Rutherford later wrote: “It
was quite the most incredible event that has ever happened to me in my life. It was almost
as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and
hit you.” Such an event could occur only as the result of a single collision of the alpha
particle with a minute, massive, positively charged nucleus. Rutherford calculated that the
radius of the nucleus was 10,000 times smaller than the radius of the atom itself, showing
that ordinary matter is mostly empty space! He established that an electrically neutral atom
consists of Z electrons (where Z is an integer), with Z positive elementary charges confined
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to the nucleus. Rutherford coined the term proton to refer to the nucleus of the hydrogen
atom (Z = 1), 1836 times more massive than the electron. But how were these charges
arranged?

The Wavelengths of Hydrogen

The experimental data were abundant. The wavelengths of 14 spectral lines of hydrogen
had been precisely determined. Those in the visible region of the electromagnetic spectrum
are 656.3 nm (red, He), 486.1 nm (turquoise, HB), 434.0 nm (blue, Hy), and 410.2 nm
(violet, H3). In 1885 a Swiss school teacher, Johann Balmer (1825-1898), had found, by
trial and error, a formula to reproduce the wavelengths of these spectral lines of hydrogen,
today called the Balmer series or Balmer lines:

L (L 1 .
=y @

wheren = 3,4,5,...,and Ry = 1.09677583 x 107 & 1.3 m~! is the experimentally de-
termined Rydberg constant for hydrogen.” Balmer’s formula was very accurate, to within
a fraction of a percent. Inserting n = 3 gives the wavelength of the He Balmer line, n = 4
gives HB, and so on. Furthermore, Balmer realized that since 22 — 4, his formula could be

generalized to
1 1 1
T =Rul\- 53 ) @®)

with m < n (both integers). Many nonvisible spectral lines of hydrogen were found later,
just as Balmer had predicted. Today, the lines corresponding to m = 1 are called Lyman
lines. The Lyman series of lines is found in the ultraviolet region of the electromagnetic
spectrum. Similarly, inserting m = 3 into Eq. ( 8) produces the wavelengths of the Paschen
series of lines, which lie entirely in the infrared portion of the spectrum. The wavelengths
of important selected hydrogen lines are given in Table 2.

Yet all of this was sheer numerology, with no foundation in the physics of the day. Physi-
cists were frustrated by their inability to construct a model of even this simplest of atoms. A
planetary model of the hydrogen atom, consisting of a central proton and one electron held
together by their mutual electrical attraction, should have been most amenable to analysis.
However, a model consisting of a single electron and proton moving around their common
center of mass suffers from a basic instability. According to Maxwell’s equations of elec-
tricity and magnetism, an accelerating electric charge emits electromagnetic radiation. The
orbiting electron should thus lose energy by emitting light with a continuously increasing
frequency (the orbital frequency) as it spirals down into the nucleus. This theoretical predic-
tion of a continuous spectrum disagreed with the discrete emission lines actually observed.
Even worse was the calculated timescale: The electron should plunge into the nucleus in
only 1078 s. Obviously, matter is stable over much longer periods of time!

7Ry is named in honor of Johannes Rydberg (1854-1919), a Swedish spectroscopist.
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TABLE 2  The wavelengths of selected hydrogen spectral lines in air. (Based on Cox, (ed.),
Allen’s Astrophysical Quantities, Fourth Edition, Springer, New York, 2000.)

Series Name Symbol Transition Wavelength (nm)

Lyman Lyo 21 121.567
Lyg 31 102.572
Lyy 4«1 79.254
LY timit 00 <1 91.18

Balmer Ho 32 656.281
Hp 42 486.134
Hy 5«2 434,048
Hé 6 <2 410.175
He 7 <2 397.007
Hg 8«2 388.905
Hlimit 00 <3 364.6

Paschen Pax 4«3 1875.10
Pag 5«3 1281.81
Pay 6<«<3 1093.81
Paumit 00« 3 820.4

Bohr’s Semiclassical Atom

Theoretical physicists hoped that the answer might be found among the new ideas of pho-
tons and quantized energy. A Danish physicist, Niels Bohr (1885-1962; see Fig. 4) came
to the rescue in 1913 with a daring proposal. The dimensions of Planck’s constant, J x s,
are equivalent to kg x m s™! x m, the units of angular momentum. Perhaps the angular
momentum of the orbiting electron was quantized. This quantization had been previously
introduced into atomic models by the British astronomer J. W. Nicholson. Although Bohr
knew that Nicholson’s models were flawed, he recognized the possible significance of the
quantization of angular momentum. Just as an electromagnetic wave of frequency v could
have the energy of only an integral number of quanta, £ = nhv, suppose that the value
of the angular momentum of the hydrogen atom could assume only integral multiples of
Planck’s constant divided by 27: L = nh/2m = nh.® Bohr hypothesized that in orbits with
precisely these allowed values of the angular momentum, the electron would be stable and
would not radiate in spite of its centripetal acceleration. What would be the result of such
a bold departure from classical physics?

To analyze the mechanical motion of the atomic electron—proton system, we start with
the mathematical description of their electrical attraction given by Coulomb’s law. For two
charges ¢, and ¢, separated by a distance r, the electric force on charge 2 due to charge 1
has the familiar form

I qiq2
= r
47'[60 r2

(€))

8The quantity / = h/27 = 1.054571596 x 10~3* J s and is pronounced “h-bar.”
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FIGURE 4 Niels Bohr (1885-1962). (Courtesy of The Niels Bohr Archive, Copenhagen.)

where €) = 8.854187817 ... x 1072 F m~! is the permittivity of free space® and  is a unit
vector directed from charge 1 toward charge 2.

Consider an electron of mass m, and charge —e and a proton of mass m, and charge +e
in circular orbits around their common center of mass, under the influence of their mutual
electrical attraction, e being the fundamental charge, e = 1.602176462 x 1071° C.

This two-body problem may be treated as an equivalent one-body
problem by using the reduced mass

Meh (m,)(1836.15266 m,)
W= _

- - — 0.999455679 m,
me +m,  m,+ 1836.15266m, "

and the total mass
M =m,+m, =m,+ 1836.15266 m, = 1837.15266 m, = 1.0005446 m,

of the system. Since M >~ m, and y >~ m,, the hydrogen atom may be thought of as being
composed of a proton of mass M that is at rest and an electron of mass p that follows a
circular orbit of radius r around the proton; see Fig. 5. The electrical attraction between the
electron and the proton produces the electron’s centripetal acceleration v?/r, as described
by Newton’s second law:

F = pa,
implying
Va2 v? c
dmey 1?2 P

9Formally, € is defined as €y = 1/19c2, where o = 4w x 1077 N A™2 is the permeability of free space and
¢ = 2.99792458 x 108 m s~! is the defined speed of light.
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Proton

FIGURE 5  The Bohr model of the hydrogen atom.

or

1 €%, v?
—r=—u—Tr.
2 r

dwegr

Canceling the minus sign and the unit vector F, this expression can be solved for the kinetic
energy, 3 uv>:

1 1 ¢
K =-m’ = —. 10
ZMU 8meg r (10)

Now the electrical potential energy U of the Bohr atom is'®

1 2
U=-——"% - k.
47'[60 r

Thus the total energy E = K 4 U of the atom is

1 2
E=K+U=K-2K=-K=——%_ (11)
8meg r

Note that the relation between the kinetic, potential, and total energies is in accordance
with the virial theorem for an inverse-square force,
E = %U = — K. Because the kinetic energy must be positive, the total energy E is negative.
This merely indicates that the electron and the proton are bound. To ionize the atom (that
is, to remove the proton and electron to an infinite separation), an amount of energy of
magnitude | E| (or more) must be added to the atom.

Thus far the derivation has been completely classical in nature. At this point, however,
we can use Bohr’s quantization of angular momentum,

L = pvr = nh, (12)

10 This is found from a derivation analogous to the one leading to the gravitational result. The zero of potential
energy is taken to be zero at r = oo.
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to rewrite the kinetic energy, Eq. (10).

L 1o lan? 1
8mey r 2 2 ur? 2 ur?

Solving this equation for the radius r shows that the only values allowed by Bohr’s quan-
tization condition are

4 egh?
ro = 002 = agn?, (13)
ne

where ay = 5.291772083 x 10" m = 0.0529 nm is known as the Bohr radius. Thus the
electron can orbit at a distance of ag, 4ag, 9ay, . . . from the proton, but no other separations
are allowed. According to Bohr’s hypothesis, when the electron is in one of these orbits,
the atom is stable and emits no radiation.

Inserting this expression for r into Eq. ( 11) reveals that the allowed energies of the
Bohr atom are

wet 1

En=——— =
" 32m2el? n?

1
=—13.6 eV—. (14)
n

The integer n, known as the principal quantum number, completely determines the char-
acteristics of each orbit of the Bohr atom. Thus, when the electron is in the lowest orbit (the
ground state), with n = 1 and r; = ay, its energy is E; = —13.6 eV. With the electron in
the ground state, it would take at least 13.6 eV to ionize the atom. When the electron is in
the first excited state, with n = 2 and r, = 4ay, its energy is greater than it is in the ground
state: E, = —13.6/4eV = —3.40 eV.

If the electron does not radiate in any of its allowed orbits, then what is the origin of the
spectral lines observed for hydrogen? Bohr proposed that a photon is emitted or absorbed
when an electron makes a transition from one orbit to another. Consider an electron as it
“falls” from a higher orbit, npign, to a lower orbit, nyoy, without stopping at any intermediate
orbit. (This is not a fall in the classical sense; the electron is never observed between the
two orbits.) The electron loses energy AE = Epjgh — Ejow, and this energy is carried away
from the atom by a single photon. Equation (  14) leads to an expression for the wavelength
of the emitted photon,

Ephoton = Ehigh — Elow

or

he wet 1 net 1
A 32m2elh? nﬁigh 32m2eln? ”120w ’
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which gives

1 wet 1 1 (15)
ho64miedhic \nd,  nkg )

Comparing this with Eqs. ( 7) and ( 8) reveals that Eq. ( 15) is just the generalized
Balmer formula for the spectral lines of hydrogen, with n;,, = 2 for the Balmer series.
Inserting values into the combination of constants in front of the parentheses shows that
this term is exactly the Rydberg constant for hydrogen:

pet

= ———— =10967758.3 m™".
643 e

Ry

This value is in perfect agreement with the experimental value quoted following Eq. ( 7)
for the hydrogen lines determined by Johann Balmer, and this agreement illustrates the great
success of Bohr’s model of the hydrogen atom.!!

Example 3.1.  What is the wavelength of the photon emitted when an electron makes a
transition from the n = 3 to the n = 2 orbit of the Bohr hydrogen atom? The energy lost
by the electron is carried away by the photon, so

Ephoton = Ehigh — Ejow

hc 1 1
— =-13.6eV —o— — (—13.6eV ——
A Mhigh Mow

1 1

Solving for the wavelength gives A = 656.469 nm in a vacuum. This result is within 0.03%
of the measured value of the Hu spectral line, as quoted in Example 1.1 and Table 2.

The discrepancy between the calculated and the observed values is due to the measure-
ments being made in air rather than in vacuum. Near sea level, the speed of light is slower
than in vacuum by a factor of approximately 1.000297. Defining the index of refraction
to be n = c/v, where v is the measured speed of light in the medium, n,; = 1.000297.
Given that Lv = v for wave propagation, and since v cannot be altered in moving from one
medium to another without resulting in unphysical discontinuities in the electromagnetic
field of the light wave, the measured wavelength must be proportional to the wave speed.
Thus Aair/Avacuum = Vair/C = 1/R4r. Solving for the measured wavelength of the Ho line
in air yields

Aair = Avacuum/Pair = 656.469 nm/1.000297 = 656.275 nm.

continued

"The slightly different Rydberg constant, R, found in many texts assumes an infinitely heavy nucleus. The
reduced mass, u, in the expression for Ry is replaced by the electron mass, 7., in Ro.

143



144

The Interaction of Light and Matter

This result differs from the quoted value by only 0.0009%. The remainder of the discrepancy
is due to the fact that the index of refraction is wavelength dependent. The index of refraction
also depends on environmental conditions such as temperature, pressure, and humidity.'?

Unless otherwise noted, throughout the remainder of this text, wavelengths will be as-
sumed to be measured in air (from the ground).

The reverse process may also occur. If a photon has an energy equal to the difference
in energy between two orbits (with the electron in the lower orbit), the photon may be
absorbed by the atom. The electron uses the photon’s energy to make an upward transition
from the lower orbit to the higher orbit. The relation between the photon’s wavelength and
the quantum numbers of the two orbits is again given by Eq. (15).

After the quantum revolution, the physical processes responsible for Kirchhoff’s laws
(discussed in Section 1) finally became clear.

* A hot, dense gas or hot solid object produces a continuous spectrum with no dark
spectral lines. This is the continuous spectrum of blackbody radiation emitted at any
temperature above absolute zero and described by the Planck functions B, (T") and
B, (T).The wavelength A, at which the Planck function B, (T') obtains its maximum
value is given by Wien’s displacement law.

* A hot, diffuse gas produces bright emission lines. Emission lines are produced when
an electron makes a downward transition from a higher orbit to a lower orbit. The
energy lost by the electron is carried away by a single photon. For example, the
hydrogen Balmer emission lines are produced by electrons “falling” from higher
orbits down to the n = 2 orbit; see Fig. 6(a).

* A cool, diffuse gas in front of a source of a continuous spectrum produces dark
absorption lines in the continuous spectrum. Absorption lines are produced when
an electron makes a transition from a lower orbit to a higher orbit. If an incident
photon in the continuous spectrum has exactly the right amount of energy, equal to

FIGURE 6  Balmer lines produced by the Bohr hydrogen atom. (a) Emission lines. (b) Absorption
lines.

12See, for example, Lang, Astrophysical Formulae, 1999, page 185 for a fitting formula for n(1).
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FIGURE 7  Energy level diagram for the hydrogen atom showing Lyman, Balmer, and Paschen
lines (downward arrows indicate emission lines; upward arrow indicates absorption lines).

the difference in energy between a higher orbit and the electron’s initial orbit, the
photon is absorbed by the atom and the electron makes an upward transition to that
higher orbit. For example, the hydrogen Balmer absorption lines are produced by
atoms absorbing photons that cause electrons to make transitions from the n = 2
orbit to higher orbits; see Figs. 6(b) and 7.

Despite the spectacular successes of Bohr’s model of the hydrogen atom, it is not quite
correct. Although angular momentum is quantized, it does not have the values assigned
by Bohr.!® Bohr painted a semiclassical picture of the hydrogen atom, a miniature Solar
System with an electron circling the proton in a classical circular orbit. In fact, the electron
orbits are not circular. They are not even orbits at all, in the classical sense of an electron
at a precise location moving with a precise velocity. Instead, on an atomic level, nature is
“fuzzy,” with an attendant uncertainty that cannot be avoided. It was fortunate that Bohr’s
model, with all of its faults, led to the correct values for the energies of the orbits and to
a correct interpretation of the formation of spectral lines. This intuitive, easily imagined
model of the atom is what most physicists and astronomers have in mind when they visualize
atomic processes.

4 H QUANTUM MECHANICS AND WAVE-PARTICLE DUALITY

The last act of the quantum revolution began with the musings of a French prince, Louis de
Broglie (1892-1987; see Fig.  8). Wondering about the recently discovered wave—particle
duality for light, he posed a profound question: If light (classically thought to be a wave)

13As we will see in the next section, instead of L = nfi, the actual values of the orbital angular momentum are
L = /¢ + 1) h, where £, an integer, is a new quantum number.
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FIGURE 8 Louis de Broglie (1892-1987). (Courtesy of AIP Niels Bohr Library.)

could exhibit the characteristics of particles, might not particles sometimes manifest the
properties of waves?

de Broglie’s Wavelength and Frequency

In his 1927 Ph.D. thesis, de Broglie extended the wave—particle duality to all of nature.
Photons carry both energy £ and momentum p, and these quantities are related to the
frequency v and wavelength X of the light wave by Eq. (5):

(16)

a7

TS

de Broglie proposed that these equations be used to define a frequency and a wavelength
for all particles. The de Broglie wavelength and frequency describe not only massless pho-
tons but massive electrons, protons, neutrons, atoms, molecules, people, planets, stars, and
galaxies as well. This seemingly outrageous proposal of matter waves has been confirmed
in countless experiments. Figure 9 shows the interference pattern produced by electrons
in a double-slit experiment. Just as Thomas Young’s double-slit experiment established the
wave properties of light, the electron double-slit experiment can be explained only by the
wave-like behavior of electrons, with each electron propagating through both slits.'* The
wave—particle duality applies to everything in the physical world; everything exhibits its
wave properties in its propagation and manifests its particle nature in its interactions.

14See Chapter 6 of Feynman (1965) for a fascinating description of the details and profound implications of the
electron double-slit experiment.
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FIGURE 9  Interference pattern from an electron double-slit experiment. (Figure from Jonsson,
Zeitschrift fiir Physik, 161, 454, 1961.)

Example 4.1. Compare the wavelengths of a free electron moving at 3 x 10°m s~! and
a 70-kg man jogging at 3 m s~'. For the electron,
h h
A=—= = 0.242 nm,
p My

which is about the size of an atom and much shorter than the wavelength of visible light.

Electron microscopes utilize electrons with wavelengths one million times shorter than

visible wavelengths to obtain a much higher resolution than is possible with optical micro-
scopes.

The wavelength of the jogging man is

h h

A= — =
p MmanV

=3.16 x 1073¢ m,

which is completely negligible on the scale of the everyday world, and even on atomic or
nuclear scales. Thus the jogging gentleman need not worry about diffracting when returning
home through his doorway!

Just what are the waves that are involved in the wave—particle duality of nature? In
a double-slit experiment, each photon or electron must pass through both slits, since the
interference pattern is produced by the constructive and destructive interference of the two
waves. Thus the wave cannot convey information about where the photon or electron is,
but only about where it may be. The wave is one of probability, and its amplitude is denoted
by the Greek letter W (psi). The square of the wave amplitude, |W|?, at a certain location
describes the probability of finding the photon or electron at that location. In the double-slit
experiment, photons or electrons are never found where the waves from slits 1 and 2 have
destructively interfered—that is, where | ¥, 4+ W, |?> = 0.
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Heisenberg’s Uncertainty Principle

The wave attributes of matter lead to some unexpected conclusions of paramount importance
for the science of astronomy. For example, consider Fig. 10(a). The probability wave,
W, is a sine wave, with a precise wavelength A. Thus the momentum p = h/XA of the
particle described by this wave is known exactly. However, because |¥|? consists of a
number of equally high peaks extending out to x = 00, the particle’s location is perfectly
uncertain. The particle’s position can be narrowed down if several sine waves with different
wavelengths are added together, so they destructively interfere with one another nearly
everywhere. Figure 10(b) shows the resulting combination of waves, W, is approximately
zero everywhere except at one location. Now the particle’s position may be determined
with a greater certainty because |W|? is large only for a narrow range of values of x.
However, the value of the particle’s momentum has become more uncertain because W is
now a combination of waves of various wavelengths. This is nature’s intrinsic trade-off:
The uncertainty in a particle’s position, Ax, and the uncertainty in its momentum, Ap, are
inversely related. As one decreases, the other must increase. This fundamental inability of a
particle to simultaneously have a well-defined position and a well-defined momentum is a
direct result of the wave—particle duality of nature. A German physicist, Werner Heisenberg
(1901-1976), placed this inherent “fuzziness” of the physical world in a firm theoretical
framework. He demonstrated that the uncertainty in a particle’s position multiplied by the
uncertainty in its momentum must be at least as large as i/2:

1
Ax Ap > Eh (18)

Today this is known as Heisenberg’s uncertainty principle. The equality is rarely realized
in nature, and the form often employed for making estimates is

Ax Ap =~ h. (19)

A similar statement relates the uncertainty of an energy measurement, A E, and the time
interval, At, over which the energy measurement is taken:

AE At = h. (20)

(@ (b)

FIGURE 10  Two examples of a probability wave, W: (a) a single sine wave and (b) a pulse
composed of many sine waves.



The Interaction of Light and Matter

As the time available for an energy measurement increases, the inherent uncertainty in the
result decreases.

Example 4.2.  Imagine an electron confined within a region of space the size of a hy-
drogen atom. We can estimate the minimum speed and kinetic energy of the electron using
Heisenberg’s uncertainty principle. Because we know only that the particle is within an
atom-size region of space, we can take Ax & ay = 5.29 x 10! m. This implies that the
uncertainty in the electron’s momentum is roughly

h
Ap~ — =198 x 107 ¥ kgms".
Ax
Thus, if the magnitude of the momentum of the electron were repeatedly measured, the
resulting values would vary within a range = Ap around some average (or expected) value.
Since this expected value, as well as the individual measurements, must be > 0, the expected
value must be at least as large as Ap. Thus we can equate the minimum expected value of
the momentum with its uncertainty: ppmin & Ap. Using puin = M, Unin, the minimum speed
of the electron is estimated to be
Pmin ~ AP

~

~218 x 10°ms!.

Umin =
me me

The minimum kinetic energy of the (nonrelativistic) electron is approximately

1 2 —18
Kmin = e Vmin ~2.16 x 107 T =13.5¢eV.
This is in good agreement with the kinetic energy of the electron in the ground state of
the hydrogen atom. An electron confined to such a small region must move rapidly with at
least this speed and this energy. This subtle quantum effect is responsible for supporting
white dwarf and neutron stars against the tremendous inward pull of gravity.

Quantum Mechanical Tunneling

When a ray of light attempts to travel from a glass prism into air, it may undergo total
internal reflection if it strikes the surface at an angle greater than the critical angle 6., where
the critical angle is related to the indices of refraction of the glass and air by

This familiar result is nonetheless surprising because, even though the ray of light is totally
reflected, the index of refraction of the outside air appears in this formula. In fact, the
electromagnetic wave does enter the air, but it ceases to be oscillatory and instead dies
away exponentially. In general, when a classical wave such as a water or light wave enters a
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LA
A

FIGURE 11 Quantum mechanical tunneling (barrier penetration) of a particle traveling to the
right.

b

medium through which it cannot propagate, it becomes evanescent and its amplitude decays
exponentially with distance.

This total internal reflection can in fact be frustrated by placing another prism next to
the first prism so that their surfaces nearly (but not quite) touch. Then the evanescent wave
in the air may enter the second prism before its amplitude has completely died away. The
electromagnetic wave once again becomes oscillatory upon entering the glass, and so the
ray of light has traveled from one prism to another without passing through the air gap
between the prisms. In the language of particles, photons have tunneled from one prism to
another without traveling in the space between them.

The wave—particle duality of nature implies that particles can also tunnel through a region
of space (a barrier) in which they cannot exist classically, as illustrated in Fig. 11. The
barrier must not be too wide (not more than a few particle wavelengths) if tunneling is to take
place; otherwise, the amplitude of the evanescent wave will have declined to nearly zero.
This is consistent with Heisenberg’s uncertainty principle, which implies that a particle’s
location cannot be determined with an uncertainty that is less than its wavelength. Thus, if
the barrier is only a few wavelengths wide, the particle may suddenly appear on the other
side of the barrier. Barrier penetration is extremely important in radioactive decay, where
alpha particles tunnel out of an atom’s nucleus; in modern electronics, where it is the basis
for the “tunnel diode”; and inside stars, where the rates of nuclear fusion reactions depend
upon tunneling.

Schrodinger’s Equation and the Quantum Mechanical Atom

What are the implications for Bohr’s model of the hydrogen atom? Heisenberg’s uncertainty
principle does not allow classical orbits, with their simultaneously precise values of the
electron’s position and momentum. Instead, the electron orbitals must be imagined as fuzzy
clouds of probability, with the clouds being more “dense” in regions where the electron is
more likely to be found (see Fig. 12). In 1925 a complete break from classical physics
was imminent, one that would fully incorporate de Broglie’s matter waves. Maxwell’s
equations of electricity andmagnetismcan bemanipulated to produce a wave equa-
tion for the electromagnetic waves that describe the propagation of photons. Simi-
larly, a wave equation discovered in 1926 by Erwin Schrodinger (1877-1961), an
Austrian physicist, led to a true quantum mechanics, the quantum analog of the
classical mechanics that originated with Galileo and Newton. The Schrodinger
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FIGURE 12  Electron orbitals of the hydrogen atom. Left: 2s orbital. Middle: 2p orbital with
my = 0. Right: 2p orbital with m, = £1. The quantum numbers #n, ¢, and m, are described in the
text.

equation can be solved for the probability waves that describe the allowed values of a par-
ticle’s energy, momentum, and so on, as well as the particle’s propagation through space.
In particular, the Schrédinger equation can be solved analytically for the hydrogen atom,
giving exactly the same set of allowed energies as those obtained by Bohr (cf. Eq. 11).
However, in addition to the principal quantum number 7, Schrodinger found that two addi-
tional quantum numbers, £ and m,, are required for a complete description of the electron
orbitals. These additional numbers describe the angular momentum vector, L, of the atom.
Instead of the quantization used by Bohr, L = n#h, the solution to the Schrodinger equation
shows that the permitted values of the magnitude of the angular momentum L are actually

L= I+ h, @

where £ =0,1,2,...,n — 1, and n is the principal quantum number that determines the
energy.

Note that it is common practice to refer to the angular momentum quantum numbers by
their historical spectroscopic designations s, p, d, f, g, h, and so on, corresponding to £ = 0,
1, 2,3, 4, 5, etc. When the associated principle quantum number is used in combination
with the angular momentum quantum number, the principle quantum number precedes the
spectroscopic designation. For example, (n = 2, £ = 1) corresponds to 2p, and (n = 3,
£ = 2) is given as 3d. This notation was used in the caption of Fig. 12 and is also used in
Fig. 13.

The z-component of the angular momentum vector, L., can assume only the values
L, = mh, with m, equal to any of the 2¢ + 1 integers between —¢ and +¢ inclusive. Thus
the angular momentum vector can point in 2¢ + 1 different directions. For our purposes, the
important point is that the values of the energy of an isolated hydrogen atom do not depend
on £ and m,. In the absence of a preferred direction in space, the direction of the angular
momentum has no effect on the atom’s energy. Different orbitals, labeled by different values
of £ and m, (see Fig. 12), are said to be degenerate if they have the same value of the
principal quantum number n and so have the same energy. Electrons making a transition
from a given orbital to one of several degenerate orbitals will produce the same spectral
line, because they experience the same change in energy.
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FIGURE 13  Splitting of absorption lines by the Zeeman effect.

However, the atom’s surroundings may single out one spatial direction as being different
from another. For example, an electron in an atom will feel the effect of an external magnetic
field. The magnitude of this effect will depend on the 2¢ + 1 possible orientations of the
electron’s motion, as given by m,, and the magnetic field strength, B, where the units
of B are teslas (T)."” As the electron moves through the magnetic field, the normally
degenerate orbitals acquire slightly different energies. Electrons making a transition between
these formerly degenerate orbitals will thus produce spectral lines with slightly different
frequencies. The splitting of spectral lines in a weak magnetic field is called the Zeeman
effect and is shown in Fig.  13. The three frequencies of the split lines in the simplest case
(called the normal Zeeman effect) are

V=1 and vo £ —, 22)
T

where vy is the frequency of the spectral line in the absence of a magnetic field and p is the
reduced mass. Although the energy levels are split into 2¢ + 1 components, electron transi-
tions involving these levels produce just three spectral lines with different polarizations.'®
Viewed from different directions, it may happen that not all three lines will be visible. For
example, when looking parallel to the magnetic field (as when looking down on a sunspot),
the unshifted line of frequency vy is absent.

Thus the Zeeman effect gives astronomers a probe of the magnetic fields observed
around sunspots and on other stars. Even if the splitting of the spectral line is too small to
be directly detected, the different polarizations across the closely spaced components can
still be measured and the magnetic field strength deduced.

Example 4.3.  Interstellar clouds may contain very weak magnetic fields, as small as
B ~ 2 x 10719 T. Nevertheless, astronomers have been able to measure this magnetic
field. Using radio telescopes, they detect the variation in polarization that occurs across the

15 Another commonly used unit of magnetic field strength is gauss, where 1 G = 10~* T. Earth’s magnetic field is
roughly 0.5 G, or 5 x 1075 T.
16See the Section, “The Complex Spectra of Atoms?”, concerning selection rules.
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blended Zeeman components of the absorption lines that are produced by these interstellar
clouds of hydrogen gas. The change in frequency, Av, produced by a magnetic field of this
magnitude can be calculated from Eq. ( 22) by using the mass of the electron, m,, for the
reduced mass p:

eB
4rm,

Av = = 2.8 Hz,

a minute change. The total difference in frequency from one side of this blended line to
the other is twice this amount, or 6 Hz. For comparison, the frequency of the radio wave
emitted by hydrogen with A = 21 cmis v = ¢/A = 1.4 x 10° Hz, 250 million times larger!

Spin and the Pauli Exclusion Principle

Attempts to understand more complicated patterns of magnetic field splitting (the anomalous
Zeeman effect), usually involving an even number of unequally spaced spectral lines, led
physicists in 1925 to discover a fourth quantum number. In addition to its orbital motion,
the electron possesses a spin. This is not a classical top-like rotation but purely a quantum
effect that endows the electron with a spin angular momentum S. S is a vector of constant
magnitude

5 = 1(1+1>h=£h,
2\2 2
with a z-component S, = mh. The only values of the fourth quantum number, m;, are :I:%.

With each orbital, or quantum state, labeled by four quantum numbers, physicists won-
dered how many electrons in a multielectron atom could occupy the same quantum state.
The answer was supplied in 1925 by an Austrian theoretical physicist, Wolfgang Pauli
(1900-1958): No two electrons can occupy the same quantum state. The Pauli exclusion
principle, that no two electrons can share the same set of four quantum numbers, explained
the electronic structure of atoms, thereby providing an explanation of the properties of the
periodic table of the elements, the well-known chart from any introductory chemistry text.
Despite this success, Pauli was unhappy about the lack of a firm theoretical understanding
of electron spin. Spin was stitched onto quantum theory in an ad hoc manner, and the seams
showed. Pauli lamented this patchwork theory and asked, “How can one avoid despondency
if one thinks of the anomalous Zeeman effect?”

The final synthesis arrived in 1928 from an unexpected source. A brilliant English the-
oretical physicist, Paul Adrien Maurice Dirac (1902-1984), was working at Cambridge to
combine Schrodinger’s wave equation with Einstein’s theory of special relativity. When he
finally succeeded in writing a relativistic wave equation for the electron, he was delighted
to see that the mathematical solution automatically included the spin of the electron. It also
explained and extended the Pauli exclusion principle by dividing the world of particles into
two fundamental groups: fermions and bosons. Fermions!” are particles such as electrons,

1"The fermion is named after the Italian physicist Enrico Fermi (1901-1954).
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protons, and neutrons'® that have a spin of %h (or an odd integer times %h, such as %h,
%h, ...). Fermions obey the Pauli exclusion principle, so no two fermions of the same type
can have the same set of quantum numbers. The exclusion principle for fermions, along
with Heisenberg’s uncertainty relation, explains the structure of white dwarfs and neutron
stars. Bosons!® are particles such as photons that have an integral spin of 0, &, 27, 34, . ...
Bosons do not obey the Pauli exclusion principle, so any number of bosons can occupy
the same quantum state.

As afinal bonus, the Dirac equation predicted the existence of antiparticles. A particle and
its antiparticle are identical except for their opposite electric charges and magnetic moments.
Pairs of particles and antiparticles may be created from the energy of gamma-ray photons
(according to E = mc?). Conversely, particle-antiparticle pairs may annihilate each other,
with their mass converted back into the energy of two gamma-ray photons.

Pair creation and annihilation play a major role in the evaporation of black
holes.

The Complex Spectra of Atoms

With the full list of four quantum numbers (n, £, m,, and m;) that describe the detailed
state an each electron in an atom, the number of possible energy levels increases rapidly
with the number of electrons. When we take into account the additional complications of
external magnetic fields, and the electromagnetic interactions between the electrons them-
selves and between the electrons and the nucleus, the spectra can become very complicated
indeed. Figure 14 shows some of the available energy levels for the two electrons in the
neutral helium atom.?® Imagine the complexity of the relatively abundant iron atom with
its 26 electrons!

Although energy levels exist for electrons with various combinations of quantum num-
bers, it is not always easy for an electron to make a transition from one quantum state with
a specific set of quantum numbers to another quantum state. In particular, Nature imposes
a set of selection rules that restrict certain transitions. For example, a careful investigation
of Fig. 14 will show that only transitions involving A¢ = 1 are shown (from ' P to ' S,
or from ' F to ! D, for instance). These transitions are referred to as allowed transitions and
can happen spontaneously on timescales of 10~ s. On the other hand, transitions that do
not satisfy the requirement that A¢ = %1 are known as forbidden transitions.

In the case of the Zeeman effect first discussed on page 134, it was pointed out that only
three transitions could occur between the 1s and 2p energy levels (recall Fig. 13). This
is because of another set of selection rules requiring that Am, = 0 or £1 and forbidding
transitions between orbitals if both orbitals have m, = 0.

Although forbidden transitions may occur, they require much longer times if they are to
occur with any significant probability. Since collisions between atoms trigger transitions
and can compete with spontaneous transitions, very low gas densities are required for
measurable intensities to be observed from forbidden transitions. Such environments do
exist in astronomy, such as in the diffuse interstellar medium or in the outer atmospheres

8The neutron was not discovered until 1932 by James Chadwick (1891-1974), the same year that the positron
(antimatter electron) was discovered by Carl Anderson (1905-1991).

19The boson is named in honor of the Indian physicist S. N. Bose (1894—1974).

2OFigure 14 is known as a Grotrian diagram.



The Interaction of Light and Matter

ul
»nlk
20["=
18}
161
14k
12f

Energy (eV)

SO N R~ O
T

Ln=1

FIGURE 14  Some of the electronic energy levels of the helium atom. A small number of possible
allowed transitions are also indicated. (Data courtesy of the National Institute of Standards and
Technology.)

of stars. (It is beyond the scope of this text to discuss the detailed physics that underlies the
existence of selection rules.)

The revolution in physics started by Max Planck culminated in the quantum atom and
gave astronomers their most powerful tool: a theory that would enable them to analyze the
spectral lines observed for stars, galaxies, and nebulae.?! Different atoms, and combina-
tions of atoms in molecules, have orbitals of distinctly different energies; thus they can be
identified by their spectral line “fingerprints.” The specific spectral lines produced by an
atom or molecule depend on which orbitals are occupied by electrons. This, in turn, depends
on its surroundings: the temperature, density, and pressure of its environment. These and
other factors, such as the strength of a surrounding magnetic field, may be determined by
a careful examination of spectral lines.

SUGGESTED READING

General

Feynman, Richard, The Character of Physical Law, The M.LT. Press, Cambridge, MA,
1965.

French, A. P, and Kennedy, P.J. (eds.), Niels Bohr: A Centenary Volume, Harvard University
Press, Cambridge, MA, 1985.

Hey, Tony, and Walters, Patrick, The New Quantum Universe, Cambridge University Press,
Cambridge, 2003.

21Nearly all of the physicists mentioned in this chapter won the Nobel Prize for physics or chemistry in recognition
of their work.

155



156

The Interaction of Light and Matter

Pagels, Heinz R., The Cosmic Code, Simon and Schuster, New York, 1982.
Segre, Emilio, From X-Rays to Quarks, W. H. Freeman and Company, San Francisco, 1980.

Technical

Cox, Arthur N. (ed.), Allen’s Astrophysical Quantities, Fourth Edition, Springer, New York,
2000.

Harwit, Martin, Astrophysical Concepts, Third Edition, Springer, New York, 1998.

Lang, Kenneth R., Astrophysical Formulae, Third Edition, Springer, New York, 1999.

Marcy, Geoffrey W., et al, “Two Substellar Companions Orbiting HD 168443, Astrophys-
ical Journal, 555, 418, 2001.

Resnick, Robert, and Halliday, David, Basic Concepts in Relativity and Early Quantum
Theory, Second Edition, John Wiley and Sons, New York, 1985.

Shu, Frank H., The Physics of Astrophysics, University Science Books, Mill Valley, CA,
1991.



The Interaction of Light
and Matter

PROBLEM SET

1 Barnard’s star, named after the American astronomer Edward E. Barnard (1857-1923), is
an orange star in the constellation Ophiuchus. It has the largest known proper motion (u =
10.3577” yr~') and the fourth-largest parallax angle (p = 0.54901”). Only the stars in the
triple system o Centauri have larger parallax angles. In the spectrum of Barnard’s star, the
Ho absorption line is observed to have a wavelength of 656.034 nm when measured from
the ground.

(a) Determine the radial velocity of Barnard’s star.
(b) Determine the transverse velocity of Barnard’s star.
(c) Calculate the speed of Barnard’s star through space.

2 When salt is sprinkled on a flame, yellow light consisting of two closely spaced wavelengths,
588.997 nm and 589.594 nm, is produced. They are called the sodium D lines and were observed
by Fraunhofer in the Sun’s spectrum.

(a) If this light falls on a diffraction grating with 300 lines per millimeter, what is the angle
between the second-order spectra of these two wavelengths?

(b) How many lines of this grating must be illuminated for the sodium D lines to just be
resolved?

3 Show that hic >~ 1240 eV nm.

4 The photoelectric effect can be an important heating mechanism for the grains of dust found
in interstellar clouds (see Section 12.1). The ejection of an electron leaves the grain with a
positive charge, which affects the rates at which other electrons and ions collide with and stick
to the grain to produce the heating. This process is particularly effective for ultraviolet photons
(A & 100 nm) striking the smaller dust grains. If the average energy of the ejected electron is
about 5 eV, estimate the work function of a typical dust grain.

5 Use Eq. (5) for the momentum of a photon, plus the conservation of relativistic momentum and
energy, to derive Eq. (6) for the change in wavelength of the scattered photon in the Compton

effect.
he
Epholon =hv = 7 = pc. (5
h
Al =Ly — A = (1 —cosb), (6)
mec

6 Consider the case of a “collision” between a photon and a free proton, initially at rest. What
is the characteristic change in the wavelength of the scattered photon in units of nanometers?
How does this compare with the Compton wavelength, A ?

7 Verity that the units of Planck’s constant are the units of angular momentum.

From Chapter 5 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 by
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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A one-electron atom is an atom with Z protons in the nucleus and with all but one of its electrons

lost to ionization.

(a) Starting with Coulomb’s law, determine expressions for the orbital radii and energies for a
Bohr model of the one-electron atom with Z protons.

(b) Find the radius of the ground-state orbit, the ground-state energy, and the ionization energy
of singly ionized helium (He II).

(c) Repeat part (b) for doubly ionized lithium (Li III).

To demonstrate the relative strengths of the electrical and gravitational forces of attraction
between the electron and the proton in the Bohr atom, suppose the hydrogen atom were held
together solely by the force of gravity. Determine the radius of the ground-state orbit (in units
of nm and AU) and the energy of the ground state (in eV).

Calculate the energies and vacuum wavelengths of all possible photons that are emitted when
the electron cascades from the n = 3 to the n = 1 orbit of the hydrogen atom.

Find the shortest vacuum-wavelength photon emitted by a downward electron transition in the
Lyman, Balmer, and Paschen series. These wavelengths are known as the series limits. In which
regions of the electromagnetic spectrum are these wavelengths found?

An electron in a television set reaches a speed of about 5 x 107 m s~! before it hits the screen.
What is the wavelength of this electron?

Consider the de Broglie wave of the electron in the Bohr atom. The circumference of the
electron’s orbit must be an integral number of wavelengths, ni; see Fig. 15. Otherwise, the
electron wave will find itself out of phase and suffer destructive interference. Show that this
requirement leads to Bohr’s condition for the quantization of angular momentum, Eq. ( 12).

L = pvr = nh, (12)

FIGURE 15  Three de Broglie wavelengths spanning an electron’s orbit in the Bohr atom.

14 A white dwarf is a very dense star, with its ions and electrons packed extremely close together.

Each electron may be considered to be located within a region of size Ax ~ 1.5 x 107> m. Use
Heisenberg’s uncertainty principle, Eq. ( 19), to estimate the minimum speed of the electron.
Do you think that the effects of relativity will be important for these stars?

Ax Ap ~ h. (19)

15 An electron spends roughly 10~% s in the first excited state of the hydrogen atom before making

a spontaneous downward transition to the ground state.

(a) Use Heisenberg’s uncertainty principle (Eq. 20) to determine the uncertainty AE in the
energy of the first excited state.

AE At ~ L. (20)
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(b) Calculate the uncertainty AA in the wavelength of the photon involved in a transition (either
upward or downward) between the ground and first excited states of the hydrogen atom.
Why can you assume that AE = 0 for the ground state?

This increase in the width of a spectral line is called natural broadening.

Each quantum state of the hydrogen atom is labeled by a set of four quantum numbers:
{n, £, my, mg}.

(a) List the sets of quantum numbers for the hydrogen atom havingn = 1,n = 2, and n = 3.
(b) Show that the degeneracy of energy level n is 2n>.

The members of a class of stars known as Ap stars are distinguished by their strong global
magnetic fields (usually a few tenths of one tesla). The star HD215441 has an unusually
strong magnetic field of 3.4 T. Find the frequencies and wavelengths of the three components
of the Ha spectral line produced by the normal Zeeman effect for this magnetic field.

COMPUTER PROBLEM

18

2
v = (sinx —sin3x 4+ sin5x —sin7x + --- £ sin Nx) =

One of the most important ideas of the physics of waves is that any complex waveform can
be expressed as the sum of the harmonics of simple cosine and sine waves. That is, any wave
function f(x) can be written as

f(x) =ap+a;cosx 4+ a;cos2x + az cos3x + a4 cos4dx + - - -
+ by sinx 4+ by sin2x + by sin3x + bysindx 4 - - - .

The coefficients a,, and b, tell how much of each harmonic goes into the recipe for f(x). This
series of cosine and sine terms is called the Fourier series for f(x). In general, both cosine and
sine terms are needed, but in this problem you will use only the sine terms; all of the a,, = 0.

In section 4 of “The Interaction of Light and Matter,” the process of constructing
awave pulse by adding a series of sine waves was described. The Fourier sine series that you
will use to construct your wave employs only the odd harmonics and is given by

N
Z (=)™ Y2 §innx,
n=1

n odd

N +1 N +1

where N is an odd integer. The leading factor of 2/(N + 1) does not change the shape of W but

scales the wave for convenience so that its maximum value is equal to 1 for any choice of N.

(a) Graph W for N = 5, using values of x (in radians) between 0 and . What is the width, Ax,
of the wave pulse?

(b) Repeat part (a) for N = 11.

(c) Repeat part (a) for N = 21.

(d) Repeat part (a) for N = 41.

(e) If W represents the probability wave of a particle, for which value of N is the position of
the particle known with the least uncertainty? For which value of N is the momentum of
the particle known with the least uncertainty?

“The letter A is the star’s spectral type, and the letter p stands for “peculiar.”
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Basic Optics

Optical Telescopes

Radio Telescopes

Infrared, Ultraviolet, X-ray, and Gamma-Ray Astronomy
All-Sky Surveys and Virtual Observatories

G h W =

1 EBASIC OPTICS

From the beginning, astronomy has been an observational science. In comparison with what
was previously possible with the naked eye, Galileo’s use of the new optical device known
as the telescope greatly improved our ability to observe the universe. Today we continue to
enhance our ability to “see” faint objects and to resolve them in greater detail. As a result,
modern observational astronomy continues to supply scientists with more clues to the
physical nature of our universe.

Although observational astronomy now covers the entire range of the electromagnetic
spectrum, along with many areas of particle physics, the most familiar part of the field
remains in the optical regime of the human eye (approximately 400 nm to 700 nm). Conse-
quently, telescopes and detectors designed to investigate optical-wavelength radiation will
be discussed in some detail. Furthermore, much of what we learn in studying telescopes
and detectors in the optical regime will apply to other wavelength regions as well.

Refraction and Reflection

Galileo’s telescope was a refracting telescope that made use of lenses through which light
would pass, ultimately forming an image. Later, Newton designed and built a reflecting
telescope that made use of mirrors as the principal optical component. Both refractors and
reflectors remain in use today.

To understand the effects of an optical system on the light coming from an astronomical
object, we will focus first on refracting telescopes. The path of a light ray through a lens
can be understood using Snell’s law of refraction. Recall that as a light ray travels from
one transparent medium to another, its path is bent at the interface. The amount that the ray
is bent depends on the ratio of the wavelength-dependent indices of refraction n; = c/v,
of each material, where v, represents the speed of light within the specific medium.! If 6;

't is only in a vacuum that v = c, independent of wavelength. The speed of light is wavelength-dependent in
other environments.

From Chapter 6 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007

by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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FIGURE 1 Snell’s law of refraction.

(@) (b)
FIGURE 2 (a) A converging lens, f5 > 0. (b) A diverging lens, f; < 0.

is the angle of incidence, measured with respect to the normal to the interface between the
two media, and 0, is the angle of refraction, also measured relative to the normal to the
interface (see Fig. 1), then Snell’s law is given by

nix sin91 = Ny, sin@z. (1)

If the surfaces of the lens are shaped properly, a beam of light rays of a given wavelength,
originally traveling parallel to the axis of symmetry of the lens (called the optical axis
of the system) can be brought to a focus at a point along that axis by a converging lens
[Fig. 2(a)]. Alternatively, the light can be made to diverge by a diverging lens and the light
rays will appear to originate from a single point along the axis [Fig. 2(b)]. The unique
point in either case is referred to as the focal point of the lens, and the distance to that point
from the center of the lens is known as the focal length, f. For a converging lens the focal
length is taken to be positive, and for a diverging lens the focal length is negative.

The focal length of a given thin lens can be calculated directly from its index of refraction
and geometry. If we assume that both surfaces of the lens are spheroidal, then it can be shown
that the focal length f; is given by the lensmaker’s formula,

! ( D ( ! + ! ) 2
= (n, — —+—),
b g Ry R

where n; is the index of refraction of the lens and R; and R, are the radii of curvature

of each surface, taken to be positive if the specific surface is convex and negative if it is
concave (see Fig. 3).2

2Tt is worth noting that many authors choose to define the sign convention for the radii of curvature in terms of
the direction of the incident light. This choice means that Eq. ( 2) must be expressed in terms of the difference in
the reciprocals of the radii of curvature.
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FIGURE 3  The sign convention for the radii of curvature of a lens in the lensmaker’s formula.
@R >0,R,>0.(b)R; <0, R, <0O.

0,10,

FIGURE 4 The law of reflection, 8; = 6,.

(a) (b)
FIGURE S  (a) A converging mirror, f > 0. (b) A diverging mirror, f < 0.

For mirrors f is wavelength-independent, since reflection depends only on the fact
that the angle of incidence always equals the angle of reflection (6, = 6,; see Fig. 4).
Furthermore, in the case of a spheroidal mirror (Fig. 5), the focal length becomes f = R/2,
where R is the radius of curvature of the mirror, either positive (converging) or negative
(diverging), a fact that can be demonstrated by simple geometry. Converging mirrors are
generally used as the main mirrors in reflecting telescopes, although either diverging or flat
mirrors may be used in other parts of the optical system.

The Focal Plane

For an extended object, the image will also necessarily be extended. If a photographic plate
or some other detector is to record this image, the detector must be placed in the focal
plane of the telescope. The focal plane is defined as the plane passing through the focal
point and oriented perpendicular to the optical axis of the system. Since, for all practical
purposes, any astronomical object can reasonably be assumed to be located infinitely far
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FIGURE 6  The plate scale, determined by the focal length of the optical system.

from the telescope,’ all of the rays coming from that object are essentially parallel to one
another, although not necessarily parallel to the optical axis. If the rays are not parallel to the
optical axis, distortion of the image can result; this is just one of many forms of aberration
discussed later.

The image separation of two point sources on the focal plane is related to the focal length
of the lens being used. Figure 6 shows the rays of two point sources, the direction of one
source being along the optical axis of a converging lens and the other being at an angle 6
with respect to the optical axis. At the position of the focal plane, the rays from the on-axis
source will converge at the focal point while the rays from the other will approximately
meet at a distance y from the focal point. Now, from simple geometry, y is given by

y = ftan#6

(the wavelength dependence of f is implicitly assumed). If it is assumed that the field of view
of the telescope is small, then & must also be small. Using the small-angle approximation,
tan 6 ~ 0, for 6 expressed in radians, we find

y=fo. 3)

This immediately leads to the differential relation known as the plate scale, d6/dy,

dg 1

==, 4
P “)

which connects the angular separation of the objects with the linear separation of their
images at the focal plane. As the focal length of the lens is increased, the linear separation
of the images of two point sources separated by an angle 6 also increases.

Resolution and the Rayleigh Criterion

Unfortunately, the ability to “see” two objects in space that have a small angular separation
6 is not simply a matter of choosing a focal length sufficiently long to produce the necessary
plate scale. A fundamental limit exists in our ability to resolve those objects. This limitation is
due to diffraction produced by the advancing wavefronts of light coming from those objects.

3Technically, this implies that the distance to the astronomical object is much greater than the focal length of the
telescope.
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Path difference = (D/2) sin 6

| L

FIGURE 7  For a minimum to occur, the path difference between paired rays must be a half-
wavelength.

This phenomenon is closely related to the well-known single-slit diffraction pattern, which
is similar to the Young double-slit interference pattern.

To understand single-slit diffraction, consider a slit of width D (see Fig. 7). Assuming
that the advancing wavefronts are coherent, any ray passing through the opening (or aper-
ture) and arriving at a specific point in the focal plane can be thought of as being associated
with another ray passing through the aperture exactly one-half of a slit width away and
arriving at the same point. If the two rays are one-half wavelength (A /2) out of phase, then
destructive interference will occur. This leads to the relation

1
—sinf = -2,
2 2
or
sinf = —.
D

We can next consider dividing the aperture into four equal segments and pairing up a ray
from the edge of the opening with one passing through a point one-quarter of a slit width
away. For destructive interference to occur in this case, it is necessary that
D . 1
—sinf = A,
4 2
which gives
) A
sinf =2—.
D

This analysis may be continued by considering the aperture as being divided into six seg-
ments, then eight segments, then ten segments, and so on. We see, therefore, that the con-
dition for minima to occur as a result of destructive interference from light passing through
a single slit is given in general by

in6 = m2 5)
Sin = —
m D .
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FIGURE 8  The diffraction pattern produced by a single slit. (Photograph from Cagnet, Francon,
and Thrierr, Atlas of Optical Phenomena, Springer-Verlag, Berlin, 1962.)

FIGURE 9  The circular aperture diffraction pattern of a point source. (Photograph from Cagnet,
Francon, and Thrierr, Atlas of Optical Phenomena, Springer-Verlag, Berlin, 1962.)

where m = 1, 2, 3, ... for dark fringes. The intensity pattern produced by the light
passing through a single slit is shown in Fig. 8.

The analysis for light passing through a circular aperture such as a telescope is similar,
although somewhat more sophisticated. Due to the symmetry of the problem, the diffraction
pattern appears as concentric rings (see Fig.  9). To evaluate this two-dimensional problem,
itis necessary to perform a double integral over the aperture, considering the path differences
of all possible pairs of rays passing through the aperture. The solution was first obtained in
1835 by Sir George Airy (1801-1892), Astronomer Royal of England; the central bright spot
of the diffraction pattern is known as the Airy disk. Equation ( 5) remains appropriate for
describing the locations of both the maxima and the minima, but m is no longer an integer.
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TABLE 1 The locations and intensity maxima of the diffraction rings produced by a circular
aperture.

Ring m 1/1
Central maximum | 0.000 | 1.00000
First minimum 1.220

Second maximum | 1.635 | 0.01750
Second minimum | 2.233
Third maximum 2.679 | 0.00416
Third minimum 3.238

(@ (b)

FIGURE 10  The superimposed diffraction patterns from two point sources. (a) The sources are
easily resolved. (b) The two sources are barely resolvable. (Photographs from Cagnet, Francon, and
Thrierr, Atlas of Optical Phenomena, Springer-Verlag, Berlin, 1962.)

Table 1 lists the values of m, along with the relative intensities of the maxima, for the first
three orders.

As can be seen in Fig. 10, when the diffraction patterns of two sources are sufficiently
close together (e.g., there is a very small angular separation, 6y,;,), the diffraction rings
are no longer clearly distinguished and it becomes impossible to resolve the two sources.
The two images are said to be unresolved when the central maximum of one pattern falls
inside the location of the first minimum of the other. This arbitrary resolution condition is
referred to as the Rayleigh criterion.* Assuming that 6, is quite small, and invoking the
small-angle approximation, Sin Oy >~ Gnin, Where Oy, is expressed in radians, the Rayleigh

4By undertaking a careful analysis of the diffraction patterns of the sources, it is possible to resolve objects that
are somewhat more closely spaced than allowed by the Rayleigh criterion.
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criterion is given by

A
Opmin = 1.22 - (6)

for a circular aperture. Therefore, the resolution of a telescope improves with increasing
aperture size and when shorter wavelengths are observed, just as expected for diffraction
phenomena.

Seeing

Unfortunately, despite the implications of Eq. (  6), the resolution of ground-based optical
telescopes does not improve without limit as the size of the primary lens or mirror is
increased, unless certain complex, real-time adjustments are made to the optical system.
This consequence is due to the turbulent nature of Earth’s atmosphere. Local

changes in atmospheric temperature and density over distances ranging from centimeters
to meters create regions where the light is refracted in nearly random directions, causing
the image of a point source to become blurred. Since virtually all stars effectively appear
as point sources, even when viewed through the largest telescopes, atmospheric turbulence
produces the well-known “twinkling” of stellar images. The quality of the image of a stellar
point source at a given observing location at a specific time is referred to as seeing. Some of
the best seeing conditions found anywhere in the world are at Mauna Kea Observatories in
Hawaii, located 4200 m (13,800 feet) above sea level, where the resolution is between 0.5”
and 0.6” approximately 50% of the time, improving to 0.25” on the best nights (Fig. 11).
Other locations known for their excellent seeing are Kitt Peak National Observatory near
Tucson, Arizona, Tenerife and La Palma of the Canary Islands, and several sites in the
Chilean Andes Mountains [Cerro Tololo Inter-American Observatory, the Cerro La Silla
and Cerro Paranal sites of the European Southern Observatory, and Cerro Pachén,
location of Gemini South (Gemini North is on Mauna Kea)]. As a result, these sites have
become locations where significant collections of optical telescopes and/or large-aperture
optical telescopes have been built.

It is interesting to note that since the angular size of most planets is actually larger than
the scale of atmospheric turbulence, distortions tend to be averaged out over the size of the
image, and the “twinkling” effect is removed.

Example 1.1.  After many years of delays, the Hubble Space Telescope (HST) was
finally placed in an orbit 610 km (380 miles) high by the Space Shuttle Discovery in April
1990 [see Fig. 12(a)]. At this altitude, HST is above the obscuring atmosphere of Earth
yet still accessible for needed repairs, instrument upgrades or replacement, or a boost in
its constantly decaying orbit.> HST is the most ambitious and, at a cost of approximately
$2 billion, the most expensive scientific project ever completed.

continued

SDecaying orbits are caused by the drag produced by Earth’s extended, residual atmosphere. The extent of the
atmosphere is determined in part by the heating associated with the solar cycle.
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(b)

FIGURE 11 (a) The Mauna Kea Observatories in Hawaii. Among the telescopes visible in this
view are Gemini North (open silver dome left of center, 8.1 m, optical/IR, operated by a seven-
country consortium), the Canada-France-Hawaii Telescope (front center, 3.6 m optical), twin W. M.
Keck Telescopes (back right, two 10 m, optical, Caltech and University of California, United States),
and Japan’s Subaru Telescope (left of Keck I and Keck 11, 8.2 m, optical/IR). (Copyright 1998, Richard
Wainscoat.) (b) Keck I and Keck II. These telescopes can be operated as an optical interferometer.
(Copyright 1998, Richard Wainscoat.)
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HST has a 2.4-m (94-inch) primary mirror. When we observe at the ultraviolet wave-
length of the hydrogen Lyman alpha (Ly«) line, 121.6 nm, the Rayleigh criterion implies a
resolution limit of

121.6 nm _8 "
0 =122 ——— ) = 6.18 x 10"° rad = 0.0127".
24m

This is roughly the equivalent of the angle subtended by a quarter from 400 km away! It
was projected that HST would not quite be “diffraction-limited” in the ultraviolet region
due to extremely small imperfections in the surfaces of the mirrors. Since resolution is
proportional to wavelength and mirror defects become less significant as the wavelength
increases, HST should have been nearly diffraction-limited at the red end of the visible
spectrum. Unfortunately, because of an error in the grinding of the primary mirror, an
optimal shape was not obtained. Consequently, those initial expectations were not realized
until corrective optics packages were installed during a repair mission in December 1993
[Fig. 12(b)].

Aberrations

Both lens and mirror systems suffer from inherent image distortions known as aberrations.
Often these aberrations are common to both types of systems, but chromatic aberration
is unique to refracting telescopes. The problem stems from the fact that the focal length
of a lens is wavelength-dependent. Equation (1) shows that since the index of refraction
varies with wavelength, the angle of refraction at the interface between two different media
must also depend on wavelength. This translates into a wavelength-dependent focal length
(Eq. 2)and, as aresult, a focal point for blue light that differs from that for red light. The
problem of chromatic aberration can be diminished somewhat by the addition of correcting
lenses. The demonstration of this procedure is left as an exercise.

Several aberrations result from the shape of the reflecting or refracting surface(s). Al-
though it is easier, and therefore cheaper, to grind lenses and mirrors into spheroids, not all
areas of these surfaces will focus a parallel set of light rays to a single point. This effect,
known as spherical aberration, can be overcome by producing carefully designed optical
surfaces (paraboloids).

The cause of HST’s initial imaging problems is a classic case of spherical aberration. A
mistake that was made while grinding the primary left the center of the mirror too shallow
by approximately two microns. The result of this minute error was that light reflected from
near the edge of the mirror came to a focus almost 4 cm behind light reflected from the
central portion. When the best possible compromise focal plane was used, the image of a
point source (such as a distant star) had a definable central core and an extended, diffuse
halo. Although the central core was quite small (0.1” radius), unfortunately it contained only
15% of the energy. The halo included more than half of the total energy and had a diameter
of about 1.5” (typical of traditionally designed ground-based telescopes). The remainder
of the energy (approximately 30%) was spread out over an even larger area. Some of
HST’s original spherical aberration was compensated for by the use of computer programs
designed to analyze the images produced by the flawed optical system and mathematically
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(a)

FIGURE 12  (a) The 1990 launch of the Hubble Space Telescope aboard the Space Shuttle Dis-
covery. (b) HST and the Space Shuttle Endeavour during the December 1993 repair mission to install
optical systems to compensate for a misshapen primary mirror. (Courtesy of NASA.)

create corrected versions. In addition, during the repair mission in 1993, special corrective
optics packages were installed in the telescope. Today the spherical aberration problem of
HST is only a bad memory of what can go wrong.

Even when paraboloids are used, mirrors are not necessarily free from aberrations. Coma
produces elongated images of point sources that lie off the optical axis, because the focal
lengths of paraboloids are a function of 9, the angle between the direction of an incoming
light ray and the optical axis. Astigmatism is a defect that derives from having different
parts of a lens or mirror converge an image at slightly different locations on the focal plane.
When a lens or mirror is designed to correct for astigmatism, curvature of field can then
be a problem. Curvature of field is due to the focusing of images on a curve rather than on
a plane. Yet another potential difficulty occurs when the plate scale (Eq. 4) depends on
the distance from the optical axis; this effect is referred to as distortion of field.

The Brightness of an Image

In addition to resolution and aberration issues, telescope design must also consider the
desired brightness of an image. It might be assumed that the brightness of an extended
(resolved) image would increase with the area of the telescope lens, since more photons
are collected as the aperture size increases; however, this assumption is not necessarily
correct. To understand the brightness of an image, we begin by considering the intensity
of the radiation. Some of the energy radiated from an infinitesimal portion of the surface
of the source of area do [shown in Fig. 13(a)] will enter a cone of differential solid
angle dQ = dA, /r?, where dA | is an infinitesimal amount of surface area that is located
a distance r from do and oriented perpendicular to the position vector r [Fig. 13(b)].° The

The unit of solid angle is the steradian, sr. It is left as an exercise to show that Qo = 95 d2 = 47 sr; the total
solid angle about a point P, resulting from an integration over a closed surface containing that point, is 47 sr.
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(@) (b)
FIGURE 13  (a) The geometry of intensity. (b) The definition of solid angle.

intensity is given by the amount of energy per unit time interval d¢, and per unit wavelength
interval dA, radiated from do into a differential solid angle d<2; the units of intensity are
Wm~2nm~!sr!,

Consider an object located at a distance r far from a telescope of focal length f. Assuming
that the object is effectively infinitely far away (i.e., r > f), the image intensity /; may be
determined from geometry. If an infinitesimal amount of surface area, d Ay, of the object has
a surface intensity given by Iy, then the amount of energy per second per unit wavelength
interval radiated into the solid angle defined by the telescope’s aperture, d 27, is given by

Ar
IodQrodAo =1y — dAy,
r

where A7 is the area of the telescope’s aperture [see Fig. 14(a)]. Since an image will form
from the photons emitted by the object, all of the photons coming from d A within the solid
angle d 27 o must strike an area d A; on the focal plane.7 Therefore,

Iy dQT!O dA() =1 dQT’[ dA,',

where d2r; is the solid angle defined by the telescope’s aperture as seen from the image,

or
Ar Ar
Solving for the image intensity gives
dAy/r?
=1y (YA
dA;/f?

However, as can be seen in Fig.  14(b), the solid angle d€2y r containing the entire object
as seen from the center of the telescope’s aperture must equal the solid angle d<2; 1 of the

7Assuming, of course, that no photons are absorbed or scattered out of the beam in transit.
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FIGURE 14 The effect of telescopes on image intensity (» >> f). (a) The solid angles subtended
by the telescope, as measured from the object and the image. (b) The solid angle subtended by the
object and the image, as measured from the center of the telescope.

entire image, also seen from the telescope center, or d2o 7 = d<2; r. This implies that

dAy dA;

2 12 :
Substituting into the expression for the image intensity gives the result that
i = Io;

the image intensity is identical to the object intensity, independent of the area of the aperture.
This result is completely analogous to the simple observation that a wall does not appear to
get brighter when the observer walks toward it.

The concept that describes the effect of the light-gathering power of telescopes is the
illumination J, the amount of light energy per second focused onto a unit area of the
resolved image. Since the amount of light collected from the source is proportional to
the area of the aperture, the illumination J oc w(D/2)? = 7 D? /4, where D is the diameter
of the aperture. We have also shown that the linear size of the image is proportional to
the focal length of the lens (Eq. 3); therefore, the image area must be proportional to
£2, and correspondingly, the illumination must be inversely proportional to £2. Combining
these results, the illumination must be proportional to the square of the ratio of the aperture
diameter to the focal length. The inverse of this ratio is often referred to as the focal ratio,

f
F==. 7
D (7
Thus the illumination is related to the focal ratio by

Since the number of photons per second striking a unit area of photographic plate or some
other detector is described by the illumination, the illumination indicates the amount of
time required to collect the photons needed to form a sufficiently bright image for analysis.
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Example 1.2.  The twin multimirror telescopes of the Keck Observatory at Mauna Kea
have primary mirrors 10 m in diameter with focal lengths of 17.5 m. The focal ratios of
these mirrors are

F=£=1.75.
D

It is standard to express focal ratios in the form f/F, where f/ signifies that the focal ratio
is being referenced. Using this notation, the Keck telescopes have 10-m, f/1.75 primary
mirrors.

We now see that the size of the aperture of a telescope is critical for two reasons: A
larger aperture both improves resolution and increases the illumination. On the other hand,
a longer focal length increases the linear size of the image but decreases the illumination.
For a fixed focal ratio, increasing the diameter of the telescope results in greater spatial
resolution, but the illumination remains constant. The proper design of a telescope must
take into account the principal applications that are intended for the instrument.

2 HEOPTICAL TELESCOPES

In the last section we studied some of the fundamental aspects of optics in the context
of astronomical observing. We now build on those concepts to consider design features
of optical telescopes.

Refracting Telescopes

The major optical component of a refracting telescope is the primary or objective lens of
focal length fop;. The purpose of the objective lens is to collect as much light as possible
and with the greatest possible resolution, bringing the light to a focus at the focal plane. A
photographic plate or other detector may be placed at the focal plane to record the image,
or the image may be viewed with an eyepiece, which serves as a magnifying glass. The
eyepiece would be placed at a distance from the focal plane equal to its focal length, feye,
causing the light rays to be refocused at infinity. Figure 15 shows the path of rays coming
from a point source lying off the optical axis at an angle 6. The rays ultimately emerge from
the eyepiece at an angle ¢ from the optical axis. The angular magnification produced by
this arrangement of lenses can be shown to be (Problem 5)

fobj
m =

— . 9
Fore ®

Clearly, eyepieces of different focal lengths can produce different angular magnifications.
Viewing a large image requires a long objective focal length, in combination with a short
focal length for the eyepiece.

Recall, however, that the illumination decreases with the square of the objective’s focal
length (Eq. 8). To compensate for the diminished illumination, a larger-diameter objective
is needed. Unfortunately, significant practical limitations exist for the size of the objective
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FIGURE 15 A refracting telescope is composed of an objective lens and an eyepiece.

lens of a refracting telescope. Because light must pass through the objective lens, it is
possible to support the lens only from its edges. As a result, when the size and weight of the
lens are increased, deformation in its shape occurs because of gravity. The specific form of
the deformation depends on the position of the objective, which changes as the orientation
of the telescope changes.

Another problem related to size is the difficulty in constructing a lens that is sufficiently
free of defects. Since light must pass through the lens, its entire volume must be nearly
optically perfect. Furthermore, both surfaces of the lens must be ground with great precision.
Specifically, any defects in the material from which the lens is made and any deviations
from the desired shape of the surface must be kept to less than some small fraction of the
wavelength, typically A/20. When observing at 500 nm, this implies that any defects must
be smaller than approximately 25 nm. (Recall that the diameter of an atom is on the order
of 0.1 nm.)

Yet another difficulty with a large objective lens occurs because of its slow thermal
response. When the dome is opened, the temperature of the telescope must adjust to its new
surroundings. This produces thermally driven air currents around the telescope, significantly
affecting seeing. The shape of the telescope will also change as a consequence of thermal
expansion, making it advantageous to minimize the “thermal mass” of the telescope as
much as possible.

A mechanical problem also arises with long focal-length refractors. Due to the long
lever arm involved, placing a massive detector on the end of the telescope will create a
large amount of torque that requires compensation.

We have already discussed the unique problem of chromatic aberration in lenses, a
complication not shared by mirrors. Considering all of the challenges inherent in the design
and construction of refracting telescopes, the vast majority of all large modern telescopes
are reflectors. The largest refracting telescope in use today is at the Yerkes Observatory in
Williams Bay, Wisconsin (Fig. 16 on the following page). It was built in 1897 and has a
40-in (1.02-m) objective with a focal length of 19.36 m.

Reflecting Telescopes

With the exception of chromatic aberration, most of the basic optical principles already
discussed apply equally well to reflectors and refractors. A reflecting telescope is designed by
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FIGURE 16  The 40-in (1.02-m) telescope at Yerkes Observatory was built in 1897 and is the
largest refractor in the world. (Courtesy of Yerkes Observatory.)

replacing the objective lens with a mirror, significantly reducing or completely eliminating
many of the problems already discussed. Because the light does not pass through a mirror,
only the one reflecting surface needs to be ground with precision. Also, the weight of the
mirror can be minimized by creating a honeycomb structure behind the reflecting surface,
removing a large amount of unnecessary mass. In fact, because the mirror is supported from
behind rather than along its edges, it is possible to design an active system of pressure pads
that can help to eliminate distortions in the mirror’s shape produced by thermal effects and
the changes in the gravitational force on the mirror as the telescope moves (a process known
as active optics).

Reflecting telescopes are not completely free of drawbacks, however. Since the objective
mirror reflects light back along the direction from which it came, the focal point of the mirror,
known as the prime focus, is in the path of the incoming light [see Fig. 17(a)]. An observer
or a detector can be placed at this position, but then some of the incident light is cut off (see
Fig. 18). If the detector is too large, a substantial amount of light will be lost.

Isaac Newton first found a solution to the problem by placing a small, flat mirror in the
reflected light’s path, changing the location of the focal point; this arrangement is depicted
in Fig.  17(b). Of course, the presence of this secondary mirror does block some of the
incoming light from the primary, but if the ratio of the areas of the primary and secondary is
sufficiently large, the effect of the lost light can be minimized. A Newtonian telescope design
suffers from the drawback that the eyepiece (or detector) must be placed at a significant
distance from the center of mass of the telescope. If a massive detector were used, it would
exert a significant torque on the telescope.
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FIGURE 17 Schematic drawings of various telescope optical systems: (a) Prime focus, (b) New-
tonian, (c) Cassegrain, (d) coudé.

FIGURE 18  Edwin Hubble (1889-1953) working at the prime focus of the Hale reflecting tele-
scope on Mount Palomar. (Courtesy of Palomar/Caltech.)

Since the region of the primary mirror located behind the secondary is effectively useless
anyway, it is possible to bore a hole in the primary and use the secondary to reflect the light
back through the hole. This Cassegrain design [Fig. 17(c)] makes it possible to place
heavy instrument packages near the center of mass of the telescope and permits an observer
to stay near the bottom of the telescope, rather than near the top, as is the case for Newtonians.
In this type of design the secondary mirror is usually convex, effectively increasing the focal
length of the system.
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The classical Cassegrain design uses a parabolic primary mirror. However, an impor-
tant modification to the Cassegrain design, known as a Ritchey—Chrétien design, uses a
hyperbolic primary mirror rather than a parabolic one.

If the instrument package is too massive, it is often more effective to bring the light
directly to a special laboratory in which the detector is located. A coudé telescope
[Fig. 17(d)] uses a series of mirrors to reflect the light down the telescope’s mount
to a coudé room located below the telescope. Because of the extended optical path, it is
possible to create a very long focal length with a coud€ telescope. This can be particularly
useful in high-resolution work or in high-dispersion spectral line studies.

A unique instrument is the Schmidt telescope, specifically designed to provide a wide-
angle field of view with low distortion. Schmidt telescopes are generally used as cameras,
with the photographic plate located at the prime focus. To minimize coma, a spheroidal
primary mirror is used, combined with a “correcting” lens to help remove spherical aber-
ration. Whereas a large Cassegrain telescope may have a field of view of a few arc minutes
across, a Schmidt camera has a field of view of several degrees. These instruments pro-
vide important survey studies of large regions of the sky. For example, sky survey plates
from the Palomar and UK Schmidt telescopes have been scanned to produce the Guide Star
Catalogue II containing 998,402,801 objects as faint as 19.5 magnitudes.® The stellar data
in this catalog are being used to supply the reference (or guide) stars needed to orient the
Hubble Space Telescope.

Telescope Mounts

Producing high-resolution, deep-sky images of faint objects requires that the telescope
be pointed at a fixed region of the sky for an extended period of time. This is necessary
so that enough photons will be collected to ensure that the desired object can be seen.
Such time integration requires careful guiding (or positional control) of the telescope while
compensating for the rotation of Earth.

In order to account for Earth’s rotation, perhaps the most common type of telescope mount
(especially for smaller telescopes) is the equatorial mount. It incorporates a polar axis
that is aligned to the north celestial pole, and the telescope simply rotates about that axis to
compensate for the changing altitude and azimuth of the object of interest. With an equatorial
mount, it is a simple matter to adjust the position of the telescope in both right ascension and
declination. Unfortunately, for a massive telescope an equatorial mount can be extremely
expensive and difficult to build. An alternative, more easily constructed mount for large
telescopes, the altitude—azimuth mount, permits motion both parallel and perpendicular
to the horizon. In this case, however, the tracking of a celestial object requires the continuous
calculation of its altitude and azimuth from knowledge of the object’s right ascension and
declination, combined with knowledge of the local sidereal time and latitude of the telescope.
A second difficulty with altitude—azimuth mounts is the effect of the continuous rotation of
image fields. Without proper adjustment, this can create complications when guiding the
telescope during an extended exposure or when a spectrum is obtained by passing the light
through a long slit. Fortunately, rapid computer calculations can compensate for all of these
effects.

8The count of objects in GSC II quoted here was effective in May of 2006.
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TABLE 2 Optical and/or near-infrared telescopes with apertures of 8 meters or more.

Name Size (m) Site First Light
Gemini North 8.1 Mauna Kea, Hawaii 1999
Gemini South 8.1 Cerro Pachon, Chile 2002
Subaru 8.2 Mauna Kea, Hawaii 1999
Very Large Telescope (VLT-Antu® 8.2 Cerro Paranal, Chile 1998
Very Large Telescope (VLT)-Kueyen” 8.2 Cerro Paranal, Chile 1999
Very Large Telescope (VLT)-Melipal® 8.2 Cerro Paranal, Chile 2000
Very Large Telescope (VLT)-Yepun“ 8.2 Cerro Paranal, Chile 2000
Large Binocular Telescope (LBT)” 8.4 x 2 | Mt. Graham, Arizona 2005
Hobby-Eberly Telescope (HET)® 9.2 McDonald Observatory, Texas 1999
Keck I4 10 Mauna Kea, Hawaii 1993
Keck 114 10 Mauna Kea, Hawaii 1996
Gran Telescopio Canarias (GTC) 10.4 La Palma, Canary Islands 2005
Southern African Large Telescope (SALT)® | 11 Sutherland, South Africa 2005

¢ The four 8.2-m VLT telescopes, together with three 1.8-m auxiliary telescopes, can serve as an
optical/IR interferometer.

b The two 8.4-m mirrors will sit on a single mount, with an effective collecting area of an 11.8-m
aperture.

¢ Mounted with a fixed altitude angle of 55°. The mirror measures 11.1 m by 9.8 m with an effective
aperture of 9.2 m.

4 The two 10-m Keck telescopes, together with four 1.8-m outrigger telescopes, can serve as an optical/IR
interferometer.

¢ Mounted with a fixed altitude angle of 37°.

Large-Aperture Telescopes

In addition to long integration times, large aperture sizes play an important role in obtaining
a sufficient number of photons to study a faint source (recall that the illumination is pro-
portional to the diameter of the primary mirror of the telescope, Eq.  8). With tremendous
improvements in telescope design, and aided by the development of high-speed computers,
it has become possible to build very large-aperture telescopes. Table 2 contains a list of
optical and/or near-infrared telescopes with apertures of greater than 8 m that are currently
in operation. A number of much larger-aperture ground-based telescopes are also currently
being considered, with effective mirror diameters ranging from 20 m to 100 m.

Adaptive Optics

While large-aperture ground-based telescopes are able to gather many more photons
than smaller telescopes over the same time interval, they are generally unable to resolve
the object any more effectively without significant effort. In fact, even a ground-based 10-
m telescope located at a site with exceptional seeing (e.g. the Keck telescopes at Mauna
Kea) cannot resolve a source any better than an amateur’s 20-cm backyard telescope can
without the aide of active optics to correct distortions in the telescope’s mirrors

and adaptive optics to compensate for atmospheric turbulence. In the later case, a small,
deformable (“rubber”) mirror is employed that has tens or perhaps hundreds of piezoelectric
crystals attached to the back that act like tiny actuators. In order to counteract changes in
the shape of the wavefronts coming from the source due to Earth’s atmosphere, these
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crystals make micrometer-size adjustments to the shape of the mirror several hundred of
times per second. In order to determine the changes that need to be applied, the telescope
automatically monitors a guide star that is very near the target object.’ Fluctuations in
the guide star determine the adjustments that must be made to the deformable mirror.
This process is somewhat easier in the near-infrared simply because of the longer wave-
lengths involved. As a result, adaptive optics systems have been successful in providing
near-diffraction-limited images at near-infrared wavelengths.

Space-Based Observatories

In another effort to overcome the inherent imaging problems imposed by Earth’s atmo-
sphere, observational astronomy is also carried out in space. The Hubble Space Telescope
(Fig. 12; named for Edwin Hubble) has a 2.4-m, f/24, primary that is the smoothest
mirror ever constructed, with no surface imperfection larger than 1/50 of the 632.8-nm test
wavelength. Long exposures of 150 hours or more allow the telescope to “see” objects at
least as faint as 30th magnitude. The optical system used by HST operates from 120 nm to
1 pm (ultraviolet to infrared, respectively) and is of the Ritchey—Chrétien type.

As HST approaches the end of its operational lifetime, plans are under way to replace
it with the James Webb Space Telescope (JWST). The design specifications call for a
telescope that will operate in the wavelength range between 600 nm and 28 pum, and it
will have a primary mirror with a 6-m-diameter aperture. Unlike HST’s low-Earth orbit,
JWST will orbit about a gravitationally stable point that is located along the line connecting
Earth and the Sun, but in the direction away from the Sun. This point, known as the second
Lagrange point (L2), represents a balance between the gravitational forces of the Sun and
Earth, and the centrifugal force due to its motion around the Sun as seen in a noninertial
reference frame. This location was chosen for the spacecraft in order to minimize thermal
emissions that could otherwise affect its infrared detectors.

Electronic Detectors

Although the human eye and photographic plates have traditionally been the tools of as-
tronomers to record images and spectra, other, more efficient devices are typically used in
modern astronomy today. In particular, the semiconductor detector known as the charge-
coupled device (CCD) has revolutionized the way in which photons are counted. Whereas
the human eye has a very low quantum efficiency of approximately 1% (one photon in
one hundred is detected), and photographic plates do only slightly better, CCDs are able to
detect nearly 100% of the incident photons. Moreover, CCDs are able to detect a very wide
range of wavelengths. From soft (low-energy) X-rays to the infrared, they have a linear
response: Ten times as many photons produce a signal ten times stronger. CCDs also have

In most cases, a sufficiently bright guide star does not exist close enough to the target. At a small number of
observatories, an artificial laser guide star may be used in these circumstances. This is accomplished by firing a
very powerful and carefully tuned laser into the sky in order to excite sodium atoms at an altitude of approximately
90 km.
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a wide dynamic range and so can differentiate between very bright and very dim objects
that are viewed simultaneously.

A CCD works by collecting electrons that are excited into higher energy states (conduc-
tion bands) when the detector is struck by a photon (a process similar to the photoelectric
effect). The number of electrons collected in each pixel is then proportional to the bright-
ness of the image at that location. The 2% million pixels of HST’s second-generation Wide
Field and Planetary Camera (WF/PC 2) are the individual elements of four 800 x 800 pixel
CCD cameras, with each pixel capable of holding up to 70,000 electrons. HST’s Advanced
Camera for Surveys (ACS) contains an array of 4144 x 4136 (or 17,139,584) pixels for
high-resolution survey work.

Given the rapid improvement in both ground-based and orbital telescopes, along with
the tremendous advancements in detector technologies, it is clear that the future of optical
astronomy is indeed a bright one.

3 HERADIO TELESCOPES

In 1931 Karl Jansky (1905-1950) was conducting experiments for Bell Laboratories re-
lated to the production of radio-wavelength static from thunderstorms. During the course
of his investigations Jansky discovered that some of the static in his receiver was of “ex-
traterrestrial origin.” By 1935 he had correctly concluded that much of the signal he was
measuring originated in the plane of the Milky Way, with the strongest emission coming
from the constellation Sagittarius, which lies in the direction of the center of our Galaxy.
Jansky’s pioneering work represented the birth of radio astronomy, a whole new field of
observational study.

Today radio astronomy plays an important role in our investigation of the electromagnetic
spectrum. Radio waves are produced by a variety of mechanisms related to a range of
physical processes, such as the interactions of charged particles with magnetic fields. This
window on the universe provides astronomers and physicists with valuable clues to the
inner workings of some of nature’s most spectacular phenomena.

Spectral Flux Density

Since radio waves interact with matter differently than visible light does, the devices used to
detect and measure it are necessarily very different from optical telescopes. The parabolic
dish of a typical radio telescope reflects the radio energy of the source to an antenna. The
signal is then amplified and processed to produce a radio map of the sky at a particular
wavelength, like the one shown in Fig. 19.

The strength of a radio source is measured in terms of the spectral flux density, S(v),
the amount of energy per second, per unit frequency interval striking a unit area of the
telescope. To determine the total amount of energy per second (the power) collected by the
receiver, the spectral flux must be integrated over the telescope’s collecting area and over
the frequency interval for which the detector is sensitive, referred to as the bandwidth. If f,
is a function describing the efficiency of the detector at the frequency v, then the amount

181



182

Telescopes

Central source

- —40°

- _42°

— _44°

- —46°

| 1 | 1 } |
14P10™  14hoo™  13hsom  13h40™  13h30m  13h20™

FIGURE 19  Aradio map of Centaurus A, together with an optical image of the same region. The
contours show lines of constant radio power. (Figure from Matthews, Morgan, and Schmidt, Ap. J.,
140, 35, 1964.)

of energy detected per second becomes'?

P://S(v)fvdvdA. (10)
AJv

If the detector is 100% efficient over a frequency interval Av (i.e., f, = 1), and if S(v) can
be considered to be constant over that interval, then the integral simplifies to give

P =SAAv,

where A is the effective area of the aperture.

A typical radio source has a spectral flux density S(v) on the order of one jansky (Jy),
where 1 Jy = 1072 W m~2 Hz~!. Spectral flux density measurements of several mJy are
not uncommon. With such weak sources, a large aperture is needed to collect enough photons
to be measurable.

Example 3.1.  The third strongest radio source in the sky, after the Sun and Cassiopeia A
(a nearby supernova remnant), is the galaxy Cygnus A (see Fig. 20). At 400 MHz (a
wavelength of 75 cm), its spectral flux density is 4500 Jy. Assuming that a 25-m-diameter

10A similar expression applies to optical telescopes since filters and detectors (including the human eye) are
frequency dependent.
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FIGURE 20 A Very Large Array (VLA ) radio-wavelength image of the relativistic jets coming
from the core of the galaxy Cygnus A. (Courtesy of the National Radio Astronomy Observatory,
©NRAO/AUL)

radio telescope is 100% efficient and is used to collect the radio energy of this source over
a frequency bandwidth of 5 MHz, the total power detected by the receiver would be

D 2
P=SWr <3> Av=11x10"8w.

Improving Resolution: Large Apertures and Interferometry

One problem that radio telescopes share with optical telescopes is the need for greater
resolution. Rayleigh’s criterion (Eq. 6) applies to radio telescopes just as it does in the
visible regime, except that radio wavelengths are much longer than those involved in optical
work. Therefore, to obtain a level of resolution comparable to what is reached in the visible,
much larger diameters are needed.

Example 3.2.  To obtain a resolution of 1” at a wavelength of 21 cm using a single
aperture, the dish diameter must be

21 cm

A
D=12—-=122| —————
6 4.85 x 10-° rad

) = 52.8 km.

For comparison, the largest single-dish radio telescope in the world is the fixed dish 300 m
(1000 ft) in diameter at Arecibo Observatory, Puerto Rico (see Fig. 21).

One advantage of working at such long wavelengths is that small deviations from an
ideal parabolic shape are not nearly as crucial. Since the relevant criterion is to be within
some small fraction of a wavelength (say A/20) of what is considered a perfect shape,
variations of 1 cm are tolerable when observing at 21 cm.

Although it is impractical to build individual dishes of sufficient size to produce the
resolution at radio wavelengths that is anything like what is obtainable from the ground
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FIGURE 21  The 300-m radio telescope at Arecibo Observatory, Puerto Rico. (Courtesy of the
NAIC-Arecibo Observatory, which is operated by Cornell University for the National Science Foun-
dation.)

FIGURE 22  The technique of radio interferometry.

in the visible regime, astronomers have nevertheless been able to resolve radio images to
better than 0.001”. This remarkable resolution is accomplished through a process not unlike
the interference technique used in the Young double-slit experiment.

Figure 22 shows two radio telescopes separated by a baseline of distance d. Since the
distance from telescope B to the source is greater than the distance from telescope A to
the source by an amount L, a specific wavefront will arrive at B after it has reached A.
The two signals will be in phase and their superposition will result in a maximum if L is
equal to an integral number of wavelengths (L = nX,wheren =0, 1, 2, ... for constructive
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interference). Similarly, if L is an odd integral number of half-wavelengths, then the signals
will be exactly out of phase and a superposition of signals will result in a minimum in the
signal strength [L = (n — %)A, where n = 1, 2, ... for destructive interference]. Since the
pointing angle 6 is related to d and L by

ing = L (11)
sinf = —,
d

it is possible to accurately determine the position of the source by using the interference pat-
tern produced by combining the signals of the two antennas.

Clearly the ability to resolve an image improves with a longer baseline d. Very long
baseline interferometry (VLBI) is possible over the size of a continent or even between
continents. In such cases the data can be recorded on site and delivered to a central location
for processing at a later time. It is only necessary that the observations be simultaneous and
that the exact time of data acquisition be recorded.

Although a single antenna has its greatest level of sensitivity in the direction in which
it is pointing, the antenna can also be sensitive to radio sources at angles far from the
direction desired. Figure 23 shows a typical antenna pattern for a single radio telescope.
It is a polar coordinate plot describing the direction of the antenna pattern along with the
relative sensitivity in each direction; the longer the lobe, the more sensitive the telescope is
in that direction. Two characteristics are immediately noticeable: First, the main lobe is not
infinitesimally thin (the directionality of the beam is not perfect), and second, side lobes exist
that can result in the accidental detection of unwanted sources that are indistinguishable
from the desired source.

The narrowness of the main lobe is described by specifying its angular width at half its
length, referred to as the half-power beam width (HPBW). This width can be decreased, and
the effect of the side lobes can be significantly reduced, by the addition of other telescopes
to produce the desired diffraction pattern. This property is analogous to the increase in
sharpness of a grating diffraction pattern as the number of grating lines is increased.

N\

N>

FIGURE 23 A typical antenna pattern for a single radio telescope. The width of the main lobe is
describable by the half-power beam width (HPBW).
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FIGURE 24  The Very Large Array (VLA) near Socorro, New Mexico. (Courtesy of the National
Radio Astronomy Observatory, ONRAO/AUL)

The Very Large Array (VLA) located near Socorro, New Mexico, consists of 27 radio
telescopes in a movable Y configuration with a maximum configuration diameter of 27 km.
Each individual dish has a diameter of 25 m and uses receivers sensitive at a variety of
frequencies (see Fig. 24). The signal from each of the separate telescopes is combined
with all of the others and analyzed by computer to produce a high-resolution map of the
sky; Fig. 20 is an example of an image produced by the VLA. Of course, along with the
resolution gain, the 27 telescopes combine to produce an effective collecting area that is 27
times greater than that of an individual telescope.

The National Radio Astronomy Observatory (NRAO) plans to modernize and signif-
icantly expand the capabilities of the VLA. During Phase I, the Expanded Very Large
Array (EVLA) will receive new, more sensitive receivers, extensive fiber-optic connec-
tions between the telescopes and the control facility, and greatly enhanced software and
computational capabilities. Phase II of the expansion plan calls for the addition of approx-
imately 8 new telescopes located throughout New Mexico that will augment the currently
existing 27 telescopes. With baselines of up to 350 km, these new telescopes will greatly
increase the resolution capability of the EVLA. The present VLA has a point source sen-
sitivity of 10 ulJy, a highest-frequency resolution of 381 Hz, and a spatial resolution (at
5 GHz) of 0.4”. After completion of Phase II, the EVLA will have a point source sensitivity
of 0.6 ulJy, a highest-frequency resolution of 0.12 Hz, and a spatial resolution (at 5 GHz) of
0.04”, which are improvements over the existing facility by one to two orders of magnitude.

NRAO also operates the Very Long Baseline Array (VLBA), composed of a series of 10
radio telescopes scattered throughout the continental United States, Hawaii, and St. Croix
in the U.S. Virgin Islands. With a maximum baseline of 8600 km (5000 miles), the VLBA
can achieve resolutions of better than 0.001”.
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In addition to these and other radio observatories around the world, a major international
effort is under way to construct the Atacama Large Millimeter Array (ALMA). ALMA
will be composed of 50 12-m diameter antennas with baselines up to 12 km in length.
Situated at an altitude of 5000 m (16,400 ft) in the Atacama desert region of Llano de
Chajnantor in northern Chile, ALMA will be ideally located to work in the wavelength
region from 10 mm to 350 um (900 GHz to 70 GHz). At those wavelengths ALMA will be
able to probe deeply into dusty regions of space where stars and planets are believed to be
forming, as well as to study the earliest stages of galaxy formation—all critical problems
in modern astrophysics. It is anticipated that ALMA will begin early scientific operations
with a partial array in 2007. The full array is expected to be in operation by 2012.

4 HINFRARED, ULTRAVIOLET, X-RAY, AND GAMMA-RAY ASTRONOMY

Given the enormous amount of data supplied by optical and radio observations, it is natural
to consider studies in other wavelength regions as well. Unfortunately, such observations
are either difficult or impossible to perform from the ground because Earth’s atmosphere is
opaque to most wavelength regions outside of the visible and radio bands.

Atmospheric Windows in the Electromagnetic Spectrum

Figure 25 shows the transparency of the atmosphere as a function of wavelength. Long-
wavelength ultraviolet radiation and some regions in the infrared are able to traverse the
atmosphere with limited success, but other wavelength regions are completely blocked. For
this reason, special measures must be taken to gather information at many photon energies.

The primary contributor to infrared absorption is water vapor. As a result, if an observa-
tory can be placed above most of the atmospheric water vapor, some observations can be
made from the ground. To this end, both NASA and the United Kingdom operate infrared
telescopes (3 m and 3.8 m, respectively) on Mauna Kea where the humidity is quite low.
However, even at an altitude of 4200 m, the problem is not completely solved. To get above
more of the atmosphere, balloon and aircraft observations have also been used.
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FIGURE 25  The transparency of Earth’s atmosphere as a function of wavelength.
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Besides atmospheric absorption, the situation in the infrared is complicated still further
because steps must be taken to cool the detector, if not the entire telescope. Using Wien’s
displacement law, the peak wavelength of a blackbody of temperature 300 K is
found to be nearly 10 um. Thus the telescope and its detectors can produce radiation in just
the wavelength region the observer might be interested in. Of course, the atmosphere itself
can radiate in the infrared as well, including the production of molecular IR emission lines.

Observing Above the Atmosphere

In 1983 the Infrared Astronomy Satellite (IRAS) was placed in an orbit 900 km (560
miles) high, well above Earth’s obscuring atmosphere. The 0.6-m imaging telescope was
cooled to liquid helium temperatures, and its detectors were designed to observe at a variety
of wavelengths from 12 um to 100 wm. Before its coolant was exhausted, IRAS proved
to be very successful. Among its many accomplishments was the detection of dust in orbit
around young stars, possibly indicating the formation of planetary systems. IRAS was also
responsible for many important observations concerning the nature of galaxies.

Based upon the success of IRAS, the European Space Agency (in collaboration with
Japan and the United States) launched the 0.6-m Infrared Space Observatory (ISO) in
1995. The observatory was cooled, just as IRAS was, but to obtain nearly 1000 times the
resolution of IRAS, ISO was able to point toward a target for a much longer period of time,
which enabled it to collect a greater number of photons. ISO ceased operations in 1998,
after depletion of its liquid helium coolant.

The most recent and largest infrared observatory ever launched is the Spitzer Space
Telescope [Fig. 26; named for Lyman Spitzer, Jr. (1914-1997)]. After many years of
delay, this telescope was successfully placed into orbit on August 25, 2003. Trailing Earth
in a heliocentric orbit, Spitzer is able to observe the heavens in the wavelength range from
3 wm to 180 um. With a 0.85-m, /12 mirror constructed of light-weight beryllium and
cooled to less than 5.5 K, the telescope is able to provide diffraction-limited performance
at wavelengths of 6.5 m and longer. It is anticipated that Spitzer will have an operational
lifetime of at least 2.5 years.!!

Designed to investigate the electromagnetic spectrum at the longer wavelengths of the
microwave regime, the Cosmic Background Explorer (COBE) was launched in 1989 and
finally switched off in 1993. COBE made a number of important observations, including
very precise measurements of the 2.7 K blackbody spectrum believed to be the remnant
fireball of the Big Bang.

As in other wavelength regions, a number of challenges exist when observing in the
ultraviolet portion of the electromagnetic spectrum. In this case, because of the short wave-
lengths involved (as compared to optical observations), great care must be taken to provide
a very precise reflecting surface. As has already been mentioned, even the HST primary
mirror has imperfections that prohibit shorter UV wavelengths from being observed at the
theoretical resolution limit.

A second UV observing problem stems from the fact that glass is opaque to these short-
wavelength photons (as it is for much of the infrared). Consequently, glass lenses cannot

"I"The Spitzer Space Telescope was the last of NASA’s four great orbiting observatories to be placed in orbit. The
others were the Hubble Space Telescope (Fig. 12), the Compton Gamma Ray Observatory [Fig. 27(a)], and
the Chandra X-ray Observatory [Fig. 27(b)].
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(b)

FIGURE 26  (a) The Spitzer Infrared Telescope during construction. The 0.85-m beryllium pri-
mary mirror is visible. (Courtesy of NASA/JPL.) (b) The almost fully assembled Spitzer Space
Telescope in the laboratory. (Courtesy of NASA/JPL.)

(a) (b)

FIGURE 27 (a) An artist’s conception of the Chandra X-ray Observatory. (Illustration:
NASA/MSEFEC.) (b) The Compton Gamma Ray Observatory being deployed by the Space Shuttle
Atlantis in 1991.

be used in the optical system of a telescope designed to observe in the ultraviolet. Lenses
made of crystal provide an appropriate substitute, however.

A real workhorse of ultraviolet astronomy was the International Ultraviolet Explorer.
Launched in 1978 and operational until 1996, the IUE proved to be a remarkably produc-
tive and durable instrument. Today, HST, with its sensitivity down to 120 nm, provides
another important window on the ultraviolet universe. At even shorter wavelengths, the
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Extreme Ultraviolet Explorer, launched in 1992 and switched off more than eight years
later, made observations between 7 nm and 76 nm. The data from these telescopes have
given astronomers important information concerning a vast array of astrophysical processes,
including mass loss from hot stars, cataclysmic variable stars, and compact objects such as
white dwarfs and pulsars.

At even shorter wavelengths, X-ray and gamma-ray astronomy yields information about
very energetic phenomena, such as nuclear reaction processes and the environments around
black holes. As a result of the very high photon energies involved, X-ray and gamma-ray
observations require techniques that differ markedly from those at longer wavelengths. For
instance, traditional glass mirrors are useless for forming images in this regime because of
the great penetrating power of these photons. However, it is still possible to image sources by
using grazing-incidence reflections (incident angle close to 90°). X-ray spectra can also be
obtained using techniques such as Bragg scattering, an interference phenomenon produced
by photon reflections from atoms in a regular crystal lattice. The distance between the atoms
corresponds to the separation between slits in an optical diffraction grating.

In 1970 UHURU (also known as the Small Astronomy Satellite—1, SAS 1) made the
first comprehensive survey of the X-ray sky. In the late 1970s the three High Energy
Astrophysical Observatories, including the Einstein Observatory, discovered thousands
of X-ray and gamma-ray sources. Between 1990 and 1999, the X-ray observatory ROSAT
(the Roentgen Satellite), a German—American—British satellite consisting of two detectors
and an imaging telescope operating in the range of 0.51 nm to 12.4 nm, investigated the
hot coronas of stars, supernova remnants, and quasars. Japan’s Advanced Satellite for
Cosmology and Astrophysics, which began its mission in 1993, also made valuable X-ray
observations of the heavens before attitude control was lost as a result of a geomagnetic
storm July 14, 2000.

Launched in 1999 and named for the Nobel Prize—winning astrophysicist Subrahmanyan
Chandrasekhar (1910-1995), the Chandra X-ray Observatory [Fig. 27(a)] operates in
the energy range from 0.2 keV to 10 keV (6.2 nm to 0.1 nm, respectively) with an angular
resolution of approximately 0.5”. Because X-rays cannot be focused in the same way that
longer wavelengths can, grazing incidence mirrors are used to achieve the outstanding
resolving power of Chandra.

The European Space Agency operates another X-ray telescope also launched in 1999, the
X-ray Multi-Mirror Newton Observatory (XMM-Newton). Complementing Chandra’s
sensitivity range, XMM-Newton operates between 0.01 nm and 1.2 nm.

The Compton Gamma Ray Observatory [CGRO; Fig. 27(b)] observed the heavens
at wavelengths shorter than those measured by the X-ray telescopes. Placed into orbit by
the Space Shuttle Atlantis in 1991, the observatory was deorbited into the Pacific Ocean in
June 2000.

5 MALL-SKY SURVEYS AND VIRTUAL OBSERVATORIES

Our ability to probe the heavens at wavelengths spanning the electromagnetic spectrum has
provided an enormous amount of information not previously available from ground-based
observations made exclusively in the visible wavelength regime. For example, Fig. 28
illustrates the change in the appearance of the sky when different wavelength regions are
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(@ (b)

(d)

FIGURE 28  Observations of the entire sky as seen in various wavelengths. The plane of the
Milky Way Galaxy is clearly evident running horizontally across each image. Also evident in several
of the images is the plane of our Solar System, running diagonally from lower left to upper right.
(a) Radio (courtesy of the Max—Planck Institut fiir Radioastronomie), (b) infrared (courtesy of the
COBE Science Working Group and NASA’s Goddard Space Flight Center), (c) visible (courtesy of
Lund Observatory), (d) ultraviolet (courtesy of NASA’s Goddard Space Flight Center), and (¢) gamma-
ray wavelengths (courtesy of NASA).

explored (radio, infrared, visible, ultraviolet, and gamma-rays). Notice that the plane of our
Milky Way galaxy is clearly evident in each of the wavelength bands but that other features
are not necessarily present in each image.

The ground-based and space-based observatories described in this chapter by no means
constitute a complete list. For instance, along with the orbital telescopes discussed in Sec-
tion 4 are many others designed for general observing, or to carry out specialized studies,
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such as solar observations [e.g., the Solar and Heliospheric Observatory (SOHO) and
the Transition Region and Coronal Explorer (TRACE)] or the determination of highly
accurate positions of, and distances to, celestial objects'? [the Hipparcos Space Astrom-
etry Mission (completed, ESA), the SIM PlanetQuest Mission (SIM, anticipated launch
2011, NASA), and Gaia (anticipated launch 2011, ESA)].

Moreover, from the ground, large-scale, automated surveys have been, or are being,
conducted in various wavelength regimes. For instance, the visible Sloan Digital Sky
Survey (SDSS) and the near infrared Two-Micron All Sky Survey (2MASS) will produce
tremendous volumes of data that need to be analyzed. SDSS alone will result in 15 terabytes
of data (comparable to all of the information contained in the Library of Congress). Petabyte-
sized data sets are also being envisioned in the not-too-distant future.

Given the enormous volumes of data that have already been and will be produced by
ground-based and space-based astronomical observatories, together with the tremendous
amount of information that already exists in on-line journals and databases, great attention
is being given to developing web-based virtual observatories. The goal of these projects
is to create user interfaces that give astronomers access to already-existing observational
data. For instance, an astronomer could query a virtual observatory database for all of the
observations that have ever been made in a specified region of the sky over any wave-
length band. That data would then be downloaded to the astronomer’s desktop computer or
mainframe for study. In order to accomplish this task, common data formats must be cre-
ated, and data analysis and visualization tools must be developed to aide in this challenging
project in information technology. At the time this text was written, several prototype virtual
observatories had been developed, such as Skyview'® hosted by NASA’s Goddard Space
Flight Center, or the Guide Star Catalogs and the Digitized Sky Survey'* maintained by the
Space Telescope Science Institute. On-line access to a large number of currently existing
databases are also available at the National Space Science Data Center (NSSDC). 15 In addi-
tion, several initiatives are under way to integrate and standardize the efforts. In the United
States, the National Science Foundation (NSF) has funded the National Virtual Observa-
tory project;'® in Europe, the Astrophysical Virtual Observatory project is under way;
the United Kingdom is pursuing Astrogrid; and Australia is working on the Australian
Virtual Observatory. It is hoped that all of these efforts will ultimately be combined to
create an International Virtual Observatory.

With the past successes of ground-based and orbital observatories, astronomers have
been able to make great strides in our understanding of the universe. Given the current
advances in detectors, observational techniques, new observational facilities, and virtual
observatories, the future holds tremendous promise for providing significantly improved
studies of known objects in the heavens. However, perhaps the most exciting implications
of these observational advances are to be found in as yet undiscovered and unanticipated
phenomena.

12Astrometry is the subdiscipline in astronomy that determines positional information of celestial objects.
13Skyview is available at http://skyview.gsfc.nasa.gov.

14“The Guide Star Catalogs and the Digitized Sky Survey can both be consulted at
http://www-gsss.stsci.edu.

15The NSSDC website is located at http: //nssdc.gsfc.nasa.gov/.

16The National Virtual Observatory website is located at http: //www.us-vo. org.
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PROBLEM SET

1 For some point P in space, show that for any arbitrary closed surface surrounding P, the integral
over a solid angle about P gives

Qiot = 7§d§2 =4m.

2 The light rays coming from an object do not, in general, travel parallel to the optical axis of
a lens or mirror system. Consider an arrow to be the object, located a distance p from the
center of a simple converging lens of focal length f, such that p > f. Assume that the arrow is
perpendicular to the optical axis of the system with the tail of the arrow located on the axis. To
locate the image, draw two light rays coming from the tip of the arrow:

(i) One ray should follow a path parallel to the optical axis until it strikes the lens. It then bends
toward the focal point of the side of the lens opposite the object.

(ii) A second ray should pass directly through the center of the lens undeflected. (This assumes
that the lens is sufficiently thin.)

The intersection of the two rays is the location of the tip of the image arrow. All other rays
coming from the tip of the object that pass through the lens will also pass through the image tip.
The tail of the image is located on the optical axis, a distance g from the center of the lens. The
image should also be oriented perpendicular to the optical axis.

(a) Using similar triangles, prove the relation

1 1 1

r q f

(b) Show that if the distance of the object is much larger than the focal length of the lens
(p > f), then the image is effectively located on the focal plane. This is essentially always
the situation for astronomical observations.

The analysis of a diverging lens or a mirror (either converging or diverging) is similar and leads
to the same relation between object distance, image distance, and focal length.

3 Show that if two lenses of focal lengths f; and f, can be considered to have zero physical
separation, then the effective focal length of the combination of lenses is

L_1
feff_fl f2.

Note: Assuming that the actual physical separation of the lenses is x, this approximation is strictly
valid only when fi > x and f> > x.

4 (a) Using the result of Problem 3, show that a compound lens system can be constructed from
two lenses of different indices of refraction, n,; and n;, having the property that the resultant
focal lengths of the compound lens at two specific wavelengths A; and A,, respectively, can
be made equal, or

Jett g = Jett p,-
(b) Argue qualitatively that this condition does not guarantee that the focal length will be constant

for all wavelengths.

From Chapter 6 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 by
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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5 Prove that the angular magnification of a telescope having an objective focal length of fi,; and
an eyepiece focal length of f.,. is given by Eq. ( 9) when the objective and the eyepiece are
separated by the sum of their focal lengths, fop; + feye-

m = o ©)
feye
6 The diffraction pattern for a single slit (Figs. 7 and 8) is given by
. 2 2
B/2

where § = 2x D sin6/A.

Path difference = (D/2) sin 6

| L

FIGURE 7  For a minimum to occur, the path difference between paired rays must be a half-
wavelength.

FIGURE 8  The diffraction pattern produced by a single slit. (Photograph from Cagnet, Francon,
and Thrierr, Atlas of Optical Phenomena, Springer-Verlag, Berlin, 1962.)

(a) Using I’Hopital’s rule, prove that the intensity at 8 = 0 is given by 1 (0) = I,.
(b) If the slit has an aperture of 1.0 um, what angle 6 corresponds to the first minimum if the
wavelength of the light is 500 nm? Express your answer in degrees.

7 (a) Using the Rayleigh criterion, estimate the angular resolution limit of the human eye at
550 nm. Assume that the diameter of the pupil is 5 mm.
(b) Compare your answer in part (a) to the angular diameters of the Moon and Jupiter. You may
find the data in Appendix helpful.
(¢) What can you conclude about the ability to resolve the Moon’s disk and Jupiter’s disk with
the unaided eye?
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8 (a) Using the Rayleigh criterion, estimate the theoretical diffraction limit for the angular res-
olution of a typical 20-cm (8-in) amateur telescope at 550 nm. Express your answer in
arcseconds.

(b) Using the information in Appendix: Solar System Data, estimate the minimum size of a
crater on the Moon that can be resolved by a 20-cm (8-in) telescope.
(c) Is this resolution limit likely to be achieved? Why or why not?

9 The New Technology Telescope (NTT) is operated by the European Southern Observatory at
Cerro La Silla. This telescope was used as a testbed for evaluating the adaptive optics technology
used in the VLT. The NTT has a 3.58-m primary mirror with a focal ratio of f/2.2.

(a) Calculate the focal length of the primary mirror of the New Technology Telescope.

(b) What is the value of the plate scale of the NTT?

(c) € Bootes is a double star system whose components are separated by 2.9”. Calculate the
linear separation of the images on the primary mirror focal plane of the NTT.

10 When operated in “planetary” mode, HST’s WF/PC 2 has a focal ratio of f/28.3 with a plate scale
of 0.0455” pixel™'. Estimate the angular size of the field of view of one CCD in the planetary
mode.

11 Suppose that a radio telescope receiver has a bandwidth of 50 MHz centered at 1.430 GHz
(1 GHz = 1000 MHz). Assume that, rather than being a perfect detector over the entire band-
width, the receiver’s frequency dependence is triangular, meaning that the sensitivity of the
detector is 0% at the edges of the band and 100% at its center. This filter function can be
expressed as

Vv Vy

ifv, <v<vy,
Vi — Ve Vi — Ve

— v Vu .
fv— - + lfVmSVSVu
Vu — Vnm Vy — Un

0 elsewhere.

(a) Find the values of v,, v,,, and v,,.

(b) Assume that the radio dish is a 100% efficient reflector over the receiver’s bandwidth and
has a diameter of 100 m. Assume also that the source NGC 2558 (a spiral galaxy with an
apparent visual magnitude of 13.8) has a constant spectral flux density of S = 2.5 mJy over

the detector bandwidth. Calculate the total power measured at the receiver.

(¢) Estimate the power emitted at the source in this frequency range if d = 100 Mpc. Assume

that the source emits the signal isotropically.

12
to that of the 27 telescopes of the VLA?

13

your answer in arcseconds.

14
baselines will exist within the array?

15

(a) Assuming that grass grows at the rate of 2 cm per week, and assuming that SIM could
observe a blade of grass from a distance of 10 km, how long would it take for SIM to detect

a measurable change in the length of the blade of grass?

What would the diameter of a single radio dish need to be to have a collecting area equivalent

How much must the pointing angle of a two-element radio interferometer be changed in order to
move from one interference maximum to the next? Assume that the two telescopes are separated
by the diameter of Earth and that the observation is being made at a wavelength of 21 cm. Express

Assuming that ALMA is completed with the currently envisioned 50 antennas, how many unique

The technical specifications for the planned SIM PlanetQuest mission call for the ability to
resolve two point sources with an accuracy of better than 0.000004” for objects as faint as 20th
magnitude in visible light. This will be accomplished through the use of optical interferometry.
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(b) Using abaseline of the diameter of Earth’s orbit, how far away will SIM be able to determine
distances using trigonometric parallax, assuming the source is bright enough? (For reference,
the distance from the Sun to the center of the Milky Way Galaxy is approximately 8 kpc.)

(¢) From your answer to part (b), what would the apparent magnitude of the Sun be from that
distance?

(d) The star Betelgeuse (in Orion) has an absolute magnitude of —5.14. How far could Betelgeuse

be from SIM and still be detected? (Neglect any effects of dust and gas between the star and
the spacecraft.)

16 (a) Using data available in the text or on observatory websites, list the wavelength ranges (in

cm) and photon energy ranges (in eV) covered by the following telescopes: VLA, ALMA,
SIRTF, JWST, VLT/VLTI, Keck/Keck Interferometer, HST, IUE, EUVE, Chandra, CGRO.

(b) Graphically illustrate the wavelength coverage of each of the telescopes listed in part (a) by
drawing a horizontal bar over a horizontal axis like the one shown in Fig. 25.
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FIGURE 25  The transparency of Earth’s atmosphere as a function of wavelength.

(¢) Using photon energies rather than wavelengths, create a graphic similar to the one in part (b).

COMPUTER PROBLEM

17 Suppose that two identical slits are situated next to each other in such a way that the axes of the

slits are parallel and oriented vertically. Assume also that the two slits are the same distance from
a flat screen. Different light sources of identical intensity are placed behind each slit so that the
two sources are incoherent, which means that double-slit interference effects can be neglected.

(a) If the two slits are separated by a distance such that the central maximum of the diffraction
pattern corresponding to the first slit is located at the second minimum of the second slit’s
diffraction pattern, plot the resulting superposition of intensities (i.e., the total intensity at
each location). Include at least two minima to the left of the central maximum of the leftmost
slit and at least two minima to the right of the central maximum of the rightmost slit. Hint:
Refer to the equation given in Problem 6 and plot your results as a function of 8.

(b) Repeat your calculations for the case when the two slits are separated by a distance such
that the central maximum of one slit falls at the location of the first minimum of the second
(the Rayleigh criterion for single slits).

(c) What can you conclude about the ability to resolve two individual sources (the slits) as the
sources are brought progressively closer together?
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From Chapter 7 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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B THE CLASSIFICATION OF BINARY STARS

Adetailed understanding of the structure and evolution of stars requires knowledge
of their physical characteristics. We have seen that knowledge of blackbody radiation
curves, spectra, and parallax enables us to determine a star’s effective temperature,
luminosity, radius, composition, and other parameters. However, the only direct way
to determine the mass of a star is by studying its gravitational interaction with other
objects. Kepler’s laws can be used to calculate the masses of members of our Solar
System. However, the universality of the gravitational force allows Kepler’s laws to be
generalized to include the orbits of stars about one another and even the orbital interac-
tions of galaxies, as long as proper care is taken to refer all orbits to the center of mass
of the system.

Fortunately, nature has provided ample opportunity for astronomers to observe binary
star systems. At least half of all “stars” in the sky are actually multiple systems, two or more
stars in orbit about a common center of mass. Analysis of the orbital parameters of these
systems provides vital information about a variety of stellar characteristics, including mass.

The methods used to analyze the orbital data vary somewhat depending on the geometry
of the system, its distance from the observer, and the relative masses and luminosities of
the components. Consequently, binary star systems are classified according to their specific
observational characteristics.

¢ Optical double. These systems are not actually binaries at all but simply two stars
that lie along the same line of sight (i.e., they have similar right ascensions and
declinations). As a consequence of their large physical separations, the stars are
not gravitationally bound, and hence the system is not useful in determining stellar
masses.

* Visual binary. Both stars in the binary can be resolved independently, and if the
orbital period is not prohibitively long, it is possible to monitor the motion of each
member of the system. These systems provide important information about the an-
gular separation of the stars from their mutual center of mass. If the distance to the
binary is also known, the linear separations of the stars can then be calculated.
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FIGURE 1  An astrometric binary, which contains one visible member. The unseen component
is implied by the oscillatory motion of the observable star in the system. The proper motion of the
entire system is reflected in the straight-line motion of the center of mass.

* Astrometric binary. If one member of a binary is significantly brighter than the
other, it may not be possible to observe both members directly. In such a case the
existence of the unseen member may be deduced by observing the oscillatory motion
of the visible component. Since Newton’s first law requires that a constant velocity
be maintained by a mass unless a force is acting upon it, such an oscillatory behavior
requires that another mass be present (see Fig. 1).

* Eclipsing binary. For binaries that have orbital planes oriented approximately along
the line of sight of the observer, one star may periodically pass in front of the other,
blocking the light of the eclipsed component (see Fig. 2). Such a system is recog-
nizable by regular variations in the amount of light received at the telescope. Not only
do observations of these light curves reveal the presence of two stars, but the data can
also provide information about relative effective temperatures and radii of each star
based on the depths of the light curve minima and the lengths of the eclipses. Details
of such an analysis will be discussed in Section 3.

* Spectrum binary. A spectrum binary is a system with two superimposed, indepen-
dent, discernible spectra. The Doppler effect causes the spectral lines of
a star to be shifted from their rest frame wavelengths if that star has a nonzero ra-
dial velocity. Since the stars in a binary system are constantly in motion about their
mutual center of mass, there must necessarily be periodic shifts in the wavelength
of every spectral line of each star (unless the orbital plane is exactly perpendicular
to the line of sight, of course). It is also apparent that when the lines of one star are
blueshifted, the lines of the other must be redshifted relative to the wavelengths that
would be produced if the stars were moving with the constant velocity of the center of
mass. However, it may be that the orbital period is so long that the time dependence
of the spectral wavelengths is not readily apparent. In any case, if one star is not
overwhelmingly more luminous than its companion and if it is not possible to resolve
each star separately, it may still be possible to recognize the object as a binary system
by observing the superimposed and oppositely Doppler-shifted spectra.
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FIGURE 2  The V magnitude light curve of YY Sagittarii, an eclipsing binary star. The data from
many orbital periods have been plotted on this light curve as a function of phase, where the phase is
defined to be 0.0 at the primary minimum. This system has an orbital period P = 2.6284734 d, an
eccentricity e = 0.1573, and orbital inclination i = 88.89° (see Section 2). (Figure adopted from
Lacy, C. H. S., Astron. J., 105, 637, 1993.)

Even if the Doppler shifts are not significant (if the orbital plane is perpendicular
to the line of sight, for instance), it may still be possible to detect two sets of super-
imposed spectra if they originate from stars that have significantly different spectral
features.

* Spectroscopic binary. If the period of a binary system is not prohibitively long and
if the orbital motion has a component along the line of sight, a periodic shift in spectral
lines will be observable. Assuming that the luminosities of the stars are comparable,
both spectra will be observable. However, if one star is much more luminous than the
other, then the spectrum of the less luminous companion will be overwhelmed and
only a single set of periodically varying spectral lines will be seen. In either situation,
the existence of a binary star system is revealed. Figure 3 shows the relationship
between spectra and orbital phase for a spectroscopic binary star system.

These specific classifications are not mutually exclusive. For instance, an unresolved
system could be both an eclipsing and a spectroscopic binary. It is also true that some
systems can be significantly more useful than others in providing information about stellar
characteristics. Three types of systems can provide us with mass determinations: visual
binaries combined with parallax information; visual binaries for which radial velocities are
available over a complete orbit; and eclipsing, double-line, spectroscopic binaries.
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FIGURE 3 The periodic shift in spectral features of a double-line spectroscopic binary. The
relative wavelengths of the spectra of Stars 1 and 2 are shown at four different phases during the orbit:
(a) Star 1 is moving toward the observer while Star 2 is moving away. (b) Both stars have velocities
perpendicular to the line of sight. (c) Star 1 is receding from the observer while Star 2 is approaching.
(d) Again both stars have velocities perpendicular to the line of sight. A, represents the wavelength
of the observed line Doppler-shifted by the velocity of the center of mass of the system.

2 HE MASS DETERMINATION USING VISUAL BINARIES

When the angular separation between components of a binary system is greater than the
resolution limit imposed by local seeing conditions and the fundamental diffraction limi-
tation of the Rayleigh criterion, it becomes possible to analyze the orbital characteristics
of the individual stars. From the orbital data, the orientation of the orbits and the system’s
center of mass can be determined, providing knowledge of the ratio of the stars’ masses. If
the distance to the system is also known, from trigonometric parallax for instance, the linear
separation of the stars can be determined, leading to the individual masses of the stars in
the system.

To see how a visual binary can yield mass information, consider two stars in orbit
about their mutual center of mass. Assuming that the orbital plane is perpendicular to the
observer’s line of sight, we see that the ratio of masses may be found from the ratio of
the angular separations of the stars from the center of mass. Considering only the lengths
of the vectors r; and r,, we find that

mj r a

2o (1)

my r ay

where a; and a, are the semimajor axes of the ellipses. If the distance from the observer to
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the binary star system is d, then the angles subtended by the semimajor axes are

ai d az
o] = — an 0y = —,
d d
where o) and o, are measured in radians. Substituting, we find that the mass ratio simply
becomes

n_*® )

ny o

Even if the distance to the star system is not known, the mass ratio may still be determined.
Note that since only the ratio of the subtended angles is needed, «; and o, may be expressed
in arcseconds, the unit typically used for angular measure in astronomy.

The general form of Kepler’s third law,

2 _ A 23
G (my+my)

gives the sum of the masses of the stars, provided that the semimajor axis (a) of the orbit
of the reduced mass is known. Since a = a; + a, (the proof of this is left as an exercise),
the semimajor axis can be determined directly only if the distance to the system has been
determined. Assuming that d is known, m| 4+ m; may be combined with m;/m, to give
each mass separately.

This process is complicated somewhat by the proper motion of the center of mass' (see
Fig. 1) and by the fact that most orbits are not conveniently oriented with their planes
perpendicular to the line of sight of the observer. Removing the proper motion of the center
of mass from the observations is a relatively simple process since the center of mass must
move at a constant velocity. Fortunately, estimating the orientation of the orbits is also
possible and can be taken into consideration.

Let i be the angle of inclination between the plane of an orbit and the plane of the
sky, as shown in Fig. 4; note that the orbits of both stars are necessarily in the same
plane. As a special case, assume that the orbital plane and the plane of the sky (defined as
being perpendicular to the line of sight) intersect along a line parallel to the minor axis,
forming a line of nodes. The observer will not measure the actual angles subtended by the
semimajor axes o and «; but their projections onto the plane of the sky, @; = «; cosi and
ay = oy cosi. This geometrical effect plays no role in calculating the mass ratios since the
cos i term will simply cancel in Eq. ( 2):

mi o2

nmy o 03] cosi &1.

o COoSi  Qn

However, this projection effect can make a significant difference when we are using Kepler’s
third law. Since « = a/d (« in radians), Kepler’s third law may be solved for the sum of

I'The annual wobble of stellar positions due to trigonometric parallax must also be considered, when significant.
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FIGURE4  Anelliptical orbit projected onto the plane of the sky produces an observable elliptical
orbit. The foci of the original ellipse do not project onto the foci of the observed ellipse, however.

the masses to give

G P2 G
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472 (ad)? 47r2< d )3
m+my; = —— =

where @ = a; + a5.

To evaluate the sum of the masses properly, we must deduce the angle of inclination.
This can be accomplished by carefully noting the apparent position of the center of mass
of the system. As illustrated in Fig. 4, the projection of an ellipse tilted at an angle i with
respect to the plane of the sky will result in an observed ellipse with a different eccentricity.
However, the center of mass will not be located at one of the foci of the projection—a result
that is inconsistent with Kepler’s first law. Thus the geometry of the true ellipse may be
determined by comparing the observed stellar positions with mathematical projections of
various ellipses onto the plane of the sky.

Of course, the problem of projection has been simplified here. Not only can the angle
of inclination i be nonzero, but the ellipse may be tilted about its major axis and rotated
about the line of sight to produce any possible orientation. However, the general principles
already mentioned still apply, making it possible to deduce the true shapes of the stars’
elliptical orbits, as well as their masses.

It is also possible to determine the individual masses of members of visual binaries,
even if the distance is not known. In this situation, detailed radial velocity data are needed.
The projection of velocity vectors onto the line of sight, combined with information about
the stars’ positions and the orientation of their orbits, provides a means for determining the
semimajor axes of the ellipses, as required by Kepler’s third law.
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3 B ECLIPSING, SPECTROSCOPIC BINARIES

A wealth of information is available from a binary system even if it is not possible to
resolve each of its stars individually. This is particularly true for a double-line, eclipsing,
spectroscopic binary star system. In such a system, not only is it possible to determine the
individual masses of the stars, but astronomers may be able to deduce other parameters as
well, such as the stars’ radii and the ratio of their fluxes, and hence the ratio of their effective
temperatures. (Of course, eclipsing systems are not restricted to spectroscopic binaries but
may occur in other types of binaries as well, such as visual binaries.)

The Effect of Eccentricity on Radial Velocity Measurements

Consider a spectroscopic binary star system for which the spectra of both stars may be seen
(a double-line, spectroscopic binary). Since the individual members of the system cannot
be resolved, the techniques used to determine the orientation and eccentricity of the orbits
of visual binaries are not applicable. Also, the inclination angle i clearly plays a role in the
solution obtained for the stars’ masses because it directly influences the measured radial
velocities. If v is the velocity of the star of mass m; and v, is the velocity of the star of
mass m, at some instant, then, referring to Fig. 4, the observed radial velocities cannot
exceed v = vy sini and v)™ = v, sini, respectively. Therefore, the actual measured
radial velocities depend upon the positions of the stars at that instant. As a special case, if
the directions of motion of the stars happen to be perpendicular to the line of sight, then the
observed radial velocities will be zero.

For a star system having circular orbits, the speed of each star will be constant. If the
plane of their orbits lies in the line of sight of the observer (i = 90°), then the measured
radial velocities will produce sinusoidal velocity curves, as in Fig. 5. Changing the orbital
inclination does not alter the shape of the velocity curves; it merely changes their amplitudes
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FIGURE 5 The orbital paths and radial velocities of two stars in circular orbits (¢ = 0). In this
example, M, =1 Mg, M, = 2 Mg, the orbital period is P = 30 d, and the radial velocity of the
center of mass is v., = 42 km s vy, Vs, and v, are the velocities of Star 1, Star 2, and the center
of mass, respectively. (a) The plane of the circular orbits lies along the line of sight of the observer.
(b) The observed radial velocity curves.
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FIGURE 6  The orbital paths and radial velocities of two stars in elliptical orbits (e = 0.4). As
in Fig. 5, M, =1 Mg, M, = 2 M, the orbital period is P = 30 d, and the radial velocity of the
center of mass is v, = 42 km s~!. In addition, the orientation of periastron is 45°. vy, vy, and vy
are the velocities of Star 1, Star 2, and the center of mass, respectively. (a) The plane of the orbits lies
along the line of sight of the observer. (b) The observed radial velocity curves.

by the factor sin i. To estimate i and the actual orbital velocities, therefore, other information
about the system is necessary.

When the eccentricity, e, of the orbits is not zero, the observed velocity curves become
skewed, as shown in Fig. 6. The exact shapes of the curves also depend strongly on the
orientation of the orbits with respect to the observer, even for a given inclination angle.

In reality, many spectroscopic binaries possess nearly circular orbits, simplifying the
analysis of the system somewhat. This occurs because close binaries tend to circularize
their orbits due to tidal interactions over timescales that are short compared to the lifetimes
of the stars involved.

The Mass Function and the Mass—Luminosity Relation

If we assume that the orbital eccentricity is very small (e < 1), then the speeds of the stars
are essentially constant and given by v; = 27 a;/P and v, = 2ma,/ P for stars of mass m
and m,, respectively, where a; and a, are the radii (semimajor axes) and P is the period of
the orbits. Solving for a; and a, and substituting into Eq. ( 1), we find that the ratio of the
masses of the two stars becomes

nmj %)

oz 4)

nmyp U1
Because vy, = v; sini and v, = vy sini, Eq. ( 4) can be written in terms of the observed
radial velocities rather than actual orbital velocities:

mp vy / sini _ Uy 5)

my,  vi/sini vy

As is the situation with visual binaries, we can determine the ratio of the stellar masses
without knowing the angle of inclination.
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However, as is also the case with visual binaries, finding the sum of the masses does
require knowledge of the angle of inclination. Replacing a with

P
a=a +a =— (v +v)
2

in Kepler’s third law and solving for the sum of the masses, we have

my +my = (v 4+ 12)°.

P
2nG
Writing the actual radial velocities in terms of the observed values, we can express the sum
of the masses as

R (vir 4 )’
PRI ORG sindi

. (6)

Itis clear from Eq. (  6) that the sum of the masses can be obtained only if both v}, and v,,
are measurable. Unfortunately, this is not always the case. If one star is much brighter than
its companion, the spectrum of the dimmer member will be overwhelmed. Such a system is
referred to as a single-line spectroscopic binary. If the spectrum of Star 1 is observable but
the spectrum of Star 2 is not, Eq. ( 5) allows vy, to be replaced by the ratio of the stellar
masses, giving a quantity that is dependent on both of the system masses and the angle of
inclination. If we substitute, Eq. ( 6) becomes

P U%r ny 3
m;+my = 14— .

270G sin’ i

Rearranging terms gives

3
P
— ™ _indi= v} )
(my +m>) 2nG

The right-hand side of this expression, known as the mass function, depends only on the
readily observable quantities, period and radial velocity. Since the spectrum of only one
star is available, Eq. ( 5) cannot provide any information about mass ratios. As a result,
the mass function is useful only for statistical studies or if an estimate of the mass of at least
one component of the system already exists by some indirect means. If either m; or sini
is unknown, the mass function sets a lower limit for m,, since the left-hand side is always
less than m.

Even if both radial velocities are measurable, it is not possible to get exact values for m
and m, without knowing i. However, since stars can be grouped according to their effective
temperatures and luminosities, and assuming that there is a relationship between these
quantities and mass, then a statistical mass estimate for each class may be found by
choosing an appropriately averaged value for sin’ i. An integral average of sin® i ((sin’ 7))
evaluated between 0° and 90° has a value 37/16 =~ 0.589.2 However, since no

2The proof is left as an exercise.
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FIGURE 7 The mass—luminosity relation. (Data from Popper, Annu. Rev. Astron. Astrophys., 18,
115, 1980.)

Doppler shift will be noticeable if the inclination angle is very small, it is more likely that
a spectroscopic binary star system will be discovered if i differs significantly from 0°. This
selection effect associated with detecting binary systems suggests that a larger value of
(sin’ i) ~ 2 /3 is more representative.

Evaluating masses of binaries has shown the existence of a well-defined mass—
luminosity relation for the large majority of stars in the sky (see Fig. 7). One of
the goals of the next several chapters is to investigate the origin of this relation in terms of
fundamental physical principles.

Using Eclipses to Determine Radii and Ratios of Temperatures

A good estimate of i is possible in the special situation that a spectroscopic binary star
system is observed to be an eclipsing system as well. Unless the distance of separation
between the components of the binary is not much larger than the sum of the radii of the
stars involved, an eclipsing system implies that i must be close to 90°, as suggested in
Fig. 8. Even if it were assumed that i = 90° while the actual value was closer to 75°,
an error of only 10% would result in the calculation of sin® i and in the determination of
miy + mo.

From the light curves produced by eclipsing binaries, it is possible to improve the estimate
of i still further. Figure 9 indicates that if the smaller star is completely eclipsed by the
larger one, a nearly constant minimum will occur in the measured brightness of the system
during the period of occultation. Similarly, even though the larger star will not be fully
hidden from view when the smaller companion passes in front of it, a constant amount
of area will still be obscured for a time, and again a nearly constant, though diminished
amount of light will be observed. When one star is not completely eclipsed by its companion
(Fig. 10), the minima are no longer constant, implying that i must be less than 90°.
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FIGURE 8  The geometry of an eclipsing, spectroscopic binary requires that the angle of inclina-
tion i be close to 90°.
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FIGURE 9  The light curve of an eclipsing binary for which i = 90°. The times indicated on the
light curve correspond to the positions of the smaller star relative to its larger companion. It is assumed
in this example that the smaller star is hotter than the larger one.
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FIGURE 10  The light curve of a partially eclipsing binary. It is assumed in this example that the
smaller star is hotter than its companion.
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Using measurements of the duration of eclipses, it is also possible to find the radii of each
member of an eclipsing, spectroscopic binary. Referring again to Fig. 9, if we assume that
i >~ 90°, the amount of time between first contact (t,) and minimum light (#,), combined
with the velocities of the stars, leads directly to the calculation of the radius of the smaller
component. For example, if the semimajor axis of the smaller star’s orbit is sufficiently
large compared to either star’s radius, and if the orbit is nearly circular, we can assume that
the smaller object is moving approximately perpendicular to the line of sight of the observer
during the duration of the eclipse. In this case the radius of the smaller star is simply

rszg(tb_ta)v (8)

where v = v; + vy is the relative velocity of the two stars (v, and v, are the velocities of the
small and large stars, respectively). Similarly, if we consider the amount of time between ¢,
and 7., the size of the larger member can also be determined. It can be quickly shown that
the radius of the larger star is just

St —ta) =y = (e — 1) )
re =~ e —1lg) =75 = Ue — .
Y4 2 2 b

Example 3.1.  An analysis of the spectrum of an eclipsing, double-line, spectroscopic
binary having a period of P = 8.6 yr shows that the maximum Doppler shift of the hydrogen
Balmer Ho (656.281 nm) line is AA; = 0.072 nm for the smaller member and only AX, =
0.0068 nm for its companion. From the sinusoidal shapes of the velocity curves, it is also
apparent that the orbits are nearly circular. Using Eq.( 5), we find that the mass ratio
of the two stars must be

me _ Vs _ B o6
myg Upy A)»[

Assuming that the orbital inclination is i = 90°, the Doppler shift of the smaller star
implies that the maximum measured radial velocity is

Ak .
. c=33kms

Vps =

and the radius of its orbit must be

Ups P
2

=1.42x 102 m =09.5AU.

a, =

In the same manner, the orbital velocity and radius of the other star are v, = 3.1 km s~ !and
a; = 0.90 AU, respectively. Therefore, the semimajor axis of the reduced mass becomes
a=a;+a, =104 AU.

continued
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The sum of the masses can now be determined from Kepler’s third law. If this
equation is written in units of solar masses, astronomical units, and years, we have

ms +my =a’/P? =152 M.

Solving for the masses independently yields my; = 1.3 Mg and m, = 13.9 Mg,
Furthermore, from the light curve for this system, it is found that #;, — 7, = 11.7 hours
and 7. — t, = 164 days. Using Eq. (  8) reveals that the radius of the smaller star is

_ (Urs + Ur()

ry 5 (th — 1) =7.6 x 103 m = 1.1 R,

where one solar radius is 1 R = 6.96 x 10 m. Equation (  9) now gives the radius of the
larger star, which is found to be 7, = 369 Rg,.
In this particular system, the masses and radii of the stars are found to differ significantly.

The ratio of the effective temperatures of the two stars can also be obtained from the light
curve of an eclipsing binary. This is accomplished by considering the objects as blackbody
radiators and comparing the amount of light received during an eclipse with the amount
received when both members are fully visible.

Referring once more to the sample binary system depicted in Fig. 9, it can be seen
that the dip in the light curve is deeper when the smaller, hotter star is passing behind
its companion. To understand this effect, recall that the radiative surface flux is given by

F, = Fug =0T,

Regardless of whether the smaller star passes behind or in front of the larger one, the
same total cross-sectional area is eclipsed. Assuming for simplicity that the observed flux
is constant across the disks,? the amount of light detected from the binary when both stars
are fully visible is given by

By Zk(JTFZzFrg"—anzFrs)v

where k is a constant that depends on the distance to the system, the amount of intervening
material between the system and the detector, and the nature of the detector. The deeper,
or primary, minimum occurs when the hotter star passes behind the cooler one. If, as in
the last example, the smaller star is hotter and therefore has the larger surface flux, and the
smaller star is entirely eclipsed, the amount of light detected during the primary minimum
may be expressed as

B, = krrlFy
while the brightness of the secondary minimum is
B, =k (7'[r[2 — y'rrsz) Fo+ krrrstrs.

3Stars often appear darker near the edges of their disks, a phenomenon referred to as limb darkening.
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Since it is generally not possible to determine k exactly, ratios are employed. Consider
the ratio of the depth of the primary to the depth of the secondary. Using the expressions
for By, B, and By, we find immediately that

By — B, _ Fg (10)
BO - Bs Fr[
or, from Eq. (18),
BBy (LY an
By — B; T,)

Example 3.2.  Further examination of the light curve of the binary system discussed in
Example 3.1 provides information on the relative temperatures of the two stars. Photo-
metric observations show that at maximum light the bolometric magnitude is myo 0 = 6.3,
at the primary minimum mp1,, = 9.6, and at the secondary minimum mpe; s = 6.6.

The ratio of brightnesses between the primary minimum and maximum light is

ﬂ — loo(mbol.o—mboLp)/S = 0.048.
By

Similarly, the ratio of brightnesses between the secondary minimum and maximum light is
E — ]Oo(mbol,o_mbol,A)/s = 0.76.
0
Now, by rewriting Eq. ( 10), we find that the ratio of the radiative fluxes is
Frs _ 1_Bp/BO
F,, 1—B,/By

T, (Fs\"*
== = 1.41.
T, Fr

A Computer Modeling Approach

=3.97.

Finally,

The modern approach to analyzing the data from binary star systems involves computing
detailed models that can yield important information about a variety of physical parame-
ters. Not only can masses, radii, and effective temperatures be determined, but for many
systems other details can be described as well. For instance, gravitational forces, combined
with the effects of rotation and orbital motion, alter the stars’ shapes; they are no longer
simply spherical objects but may become elongated.

The models may also incorporate information about the nonuniform
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FIGURE 11 A synthetic light curve of RR Centauri, an eclipsing binary star system for which
the two components are in close contact. The open circle represents the size of the Sun. The orbital
and physical characteristics of the RR Cen system are P = 0.6057 d, e = 0.0, M, = 1.8 Mg, M, =
0.37 Mg,. The spectral classification of the primary is FOV.

(Figure adapted from R.E. Wilson, Publ. Astron. Soc. Pac., 106,921, 1994;
©Astronomical Society of the Pacific.)

distribution of flux across the observed disks of the stars, variations in surface temperatures,
and so on. Once the shapes of the gravitational equipotential surfaces and other parameters
are determined, synthetic (theoretical) light curves can be computed for various wavelength
bands (U, B, V, etc.), which are then compared to the observational data. Adjustments in
the model parameters are made until the light curves agree with the observations. One such
model for the binary system RR Centauri is shown in Fig.  11. In this system the two stars
are actually in contact with each other, producing interesting and subtle effects in the light
curve.

In order to introduce you to the process of modeling binary systems, the
simple code TwoStars is described on the companion website. TwoStars
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makes the simplifying assumption that the stars are perfectly spherically symmetric. Thus
TwoStars is capable of generating light curves, radial velocity curves, and astrometric data
for systems in which the two stars are well separated. The simplifying assumptions imply
that TwoStars is incapable of modeling the details of more complicated systems such as
RR Cen, however.*

The study of binary star systems provides valuable information about the observable
characteristics of stars. These results are then employed in developing a theory of stellar
structure and evolution.

4 HETHE SEARCH FOR EXTRASOLAR PLANETS

For hundreds of years, people have looked up at the night sky and wondered if planets
might exist around other stars.> However, it wasn’t until October 1995 that Michel Mayor
and Didier Queloz of the Geneva Observatory announced the discovery of a planet around
the solar-type star 51 Pegasi. This discovery represented the first detection of an extrasolar
planet around a typical star.® Within one month of the announced discovery of 51 Peg,
Geoffery W. Marcy and R. Paul Butler of the University of California, Berkeley, and the
Carnegie Institution of Washington, respectively, announced that they had detected planets
around two other Sun-like stars, 70 Vir and 47 UMa. By May 2006, just over ten years after
the original announcements, 189 extrasolar planets had been discovered orbiting 163 stars
that are similar to our own Sun.

This modern discovery of extrasolar planets at such a prodigious rate was made possible
by dramatic advances in detector technology, the availability of large-aperture telescopes,
and diligent, long-term observing campaigns. Given the huge disparity between the lumi-
nosity of the parent star and any orbiting planets, direct observation of a planet has proved
very difficult; the planet’s reflected light is simply overwhelmed by the luminosity of the
star.” As a result, more indirect methods are usually required to detect extrasolar planets.
Three techniques that have all been used successfully are based on ideas discussed in this
chapter: radial velocity measurements, astrometric wobbles, and eclipses.® The first method,
the detection of radial velocity variations in parent stars induced by the gravitational tug
of the orbiting planets has been by far the most prolific method at the time this text was
written.

4More sophisticated binary star modeling codes are available for download on the Internet or may be purchased.
Examples include WD95, originally written by Wilson and Devinney and later modified by Kallrath, et al., and
Binary Maker by Bradstreet and Steelman.

5In fact, it is thought that Giordano Bruno (1548-1600), a one-time Dominican monk, was executed for his belief
in a Copernican universe filled with an infinite number of inhabited worlds around other stars.

6In 1992, Alexander Wolszczan, of the Arecibo Radio Observatory in Puerto Rico, and Dale Frail, of the National
Radio Astronomy Observatory, detected three Earth- and Moon-sized planets around a pulsar (PSR 1257+12),
an extremely compact collapsed star that was produced following a supernova explosion. This
discovery was made by noting variations in the extremely regular radio emission coming from the collapsed star.
7In April 2004, G. Chauvin and colleagues used the VLT/NACO of the European Southern Observatory to obtain
an infrared image of a giant extrasolar planet of spectral type between L5 and L9.5 orbiting the brown dwarf
2MASSWIJ1207334-393254. HST/NICMOS was also able to observe the brown dwarf’s planetary companion.
8 Another technique has also been employed in the search for extrasolar planets; it is based on the gravitational
lensing of light.
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Example 4.1.  The so-called reflex motion of the parent star is extremely small. For
example, consider the motion of Jupiter around the Sun. Jupiter’s orbital period is 11.86 yr,
the semimajor axis of its orbit is 5.2 AU, and its mass is only 0.000955 Mg. Assuming
that the orbit of Jupiter is essentially circular (its actual eccentricity is just e = 0.0489), the
planet’s orbital velocity is approximately

vy =2ma/P =13.1kms™",
According to Eq. ( 5), the Sun’s orbital velocity about their mutual center of mass is only

nj 1
v@=M—vJ=12.5ms .

©

This is similar to the top speed of a world-class sprinter from Earth.

Incredibly, today it is possible to measure radial velocity variations as smallas3m s~!, a

slow jog in the park. Marcy, Butler, and their research-team colleagues accomplish this level
of detection by passing starlight through an iodine vapor. The imprinted absorption lines
from the iodine are used as zero-velocity reference lines in the high-resolution spectrum
of the star. By comparing the absorption and emission-line wavelengths of the star to the
iodine reference wavelengths, it is possible to determine very precise radial velocities. The
high-resolution spectrographs used by the team were designed and built by another team
member, Steve Vogt of the University of California, Santa Cruz.

The analysis of the radial velocities requires much more work before the true reflex
motion radial velocity variations of the star can be deduced, however. In order to determine
the source of the variations, it is first necessary to eliminate all other sources of radial
velocities superimposed on the observed spectra. These include the rotation and wobble of
Earth, the orbital velocity of Earth around the Sun, and the gravitational effects of the other
planets in our Solar System on Earth and our Sun. After all of these corrections have been
made, the radial velocity of the target star can be referenced to the true center of mass of
our Solar System.

In addition to the motions in our Solar System, motions of the target star itself must
be taken into account. For instance, if the target star is rotating, radial velocities due to
the approaching and receding edges of its apparent disk will blur the absorption lines used
to measure radial velocity. Pulsations of the surface of the star, surface con-
vection, and the movement of surface features such as star spots, can also con-
fuse the measurements and degrade the velocity resolution limit. All of the
planets discovered by the radial velocity technique are quite close to their parent star and
very massive. For instance, the lower limit for the mass of the planet orbiting 51 Peg is
0.45 M, (where M, is the mass of Jupiter), it has an orbital period of just 4.23077 d, and
the semimajor axis of its orbit is only 0.051 AU. The lower limit on the mass of the planet
orbiting HD 168443c¢ is 16.96 M, its orbital period is 1770 d, and the semimajor axis of
its orbit is 2.87 AU. As the length of time that stars are observed increases, longer orbital-
period planets will continue to be discovered, as will lower-mass planets.

Careful analysis of the radial velocity curves of one star, HD 209458, led researchers
to predict and then detect transits of an extrasolar planet across the star’s disk in 1999.
The dimming of the light due to the transits is completely analogous to the eclipsing,
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FIGURE 12  The photometric detection of two transits of an extrasolar planet across the disk of
HD 2094589 in September 1999. The September 16 transit was artificially offset by —0.05 relative
to the transit of September 9 in order to avoid overlap of the data. T, designates the midpoint of the
transit, and JD represents the Julian Date (time) of the particular measurement. (Figure adapted from
Charbonneau, Brown, Latham, and Mayor, Ap. J., 529, L45, 2000.)

spectroscopic binary star systems discussed in Section 3. Given the very small size of
the planet relative to HD 209458, the dimming of the light was only about 4 mmag (milli-
magnitudes); see Fig. 12. Based on the additional information provided by the light curves
during the transits, Charbonneau, Brown, Latham, and Mayor were able to determine that
the transiting planet has a radius of approximately 1.27 Ry (Jupiter radii) and that the orbital
inclination i = 87.1° £ 0.2°. Having restricted the value of the inclination angle, it then
became possible to largely remove the uncertainty of the sini term, resulting in a mass
determination for the planet of 0.63 M;. From the radial velocity data, the mass and radius
of HD 209458 are 1.1 Mg and 1.1 Rp, respectively. The orbital period of the planet is
P =3.5250 £ 0.003 d, and the semimajor axis of its orbit is a = 0.0467 AU.

To date a number of planets have been detected by the dimming of starlight resulting
from their transits of the disks of their parent stars. However, OGLE-TR-56b was the first
system for which a planet was detected before it was found by the radial velocity technique.
The orbital period of the planet is only 29 h and it orbits just 4.5 stellar radii (0.023 AU)
from its parent star. The measurement was made by detecting a drop of slightly more than
0.01 magnitudes in the brightness of the star. An advantage of this technique is the ability
to detect relatively distant systems; OGLE-TR-56b is approximately 1500 pc from Earth.
In addition, from the transit time, the radius of the planet can also be determined, enabling
an estimate of the density of the planet. The mass of the planet orbiting OGLE-TR-56b is
estimated to be 0.9 Mj, as confirmed by follow-up radial velocity measurements, and its
radius is just slightly larger than Jupiter’s.

The reflex motion of a star due to the pull of a planet was detected for the first time
in 2002. The Hubble Space Telescope’s Fine Guidance Sensors were used to measure 0.5-
milliarcsecond wobbles in Gliese 876, a tenth-magnitude star located 4.7 pc from Earth. By
adding the third dimension of projection onto the plane of the sky, the mass of the planet
previously obtained by the radial velocity technique was refined to give a value between
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1.9 My and 2.4 M;. When future astrometric missions are launched, it is likely that this
technique will result in detection of many more planets.

Although Earth-sized planets have yet to be discovered around solar-type stars, with
missions such as NASA’s Terrestrial Planet Finder being planned, and exquisitely sensitive
astrometric missions such as SIM PlanetQuest and Gaia, it seems likely that such discoveries
will occur soon.
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PROBLEM SET

1 Consider two stars in orbit about a mutual center of mass. If @, is the semimajor axis of the
orbit of star of mass m; and a, is the semimajor axis of the orbit of star of mass m,, prove that
the semimajor axis of the orbit of the reduced mass is given by a = a; + a,. Hint: Recall that
r=r, r. -

2 Integral averages implicitly assume a probability distribution (or weighting function) that
was constant throughout the interval over which the integral was applied. When a normalized
weighting function w(r) is considered, such that

/t w(t)dt =1,
0

then the integral average of f(t) becomes

(f(D) = /) F(0) w(z) dr.
0

Comparison reveals that the weighting function implicitly used in that case was w(r) =1/t
over the interval 0 to 7.

In evaluating (sin®i) between O rad and 7/ 2 rad (0° and 90°, respectively), it is more
likely that the radial velocity variations will be detected if the plane of the orbit is oriented along
the line of sight. The weighting function should therefore take into consideration the projection
of the plane of the orbital velocity onto the line of sight.

(a) Select an appropriate weighting function and show that your weighting function is normal-
ized over the interval i = 0 to 7 /2.

(b) Prove that (sin’ i) = 37/16.

3 Assume that two stars are in circular orbits about a mutual center of mass and are separated by
a distance a. Assume also that the angle of inclination is i and their stellar radii are r; and r,.

(a) Find an expression for the smallest angle of inclination that will just barely produce an
eclipse. Hint: Refer to Fig. 8.

Plane of the sky\

Orbital plane
L

To Earth
-~

FIGURE 8  The geometry of an eclipsing, spectroscopic binary requires that the angle of inclina-
tion i be close to 90°.

(b) Ifa =2 AU, r, = 10Rg, and r, = 1 R, what minimum value of i will result in an eclipse?

From Chapter 7 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 by
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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4 Sirius is a visual binary with a period of 49.94 yr. Its measured trigonometric parallax is
0.37921” £ 0.00158” and, assuming that the plane of the orbit is in the plane of the sky, the
true angular extent of the semimajor axis of the reduced mass is 7.61”. The ratio of the distances
of Sirius A and Sirius B from the center of mass is a4 /ap = 0.466.

(a) Find the mass of each member of the system.

(b) The absolute bolometric magnitude of Sirius A is 1.36, and Sirius B has an absolute bolo-
metric magnitude of 8.79. Determine their luminosities. Express your answers in terms of
the luminosity of the Sun.

(¢) The effective temperature of Sirius B is approximately 24,790 K +100 K. Estimate its radius,
and compare your answer to the radii of the Sun and Earth.

5 ¢ Phe is a 1.67-day spectroscopic binary with nearly circular orbits. The maximum measured
Doppler shifts of the brighter and fainter components of the system are 121.4 kms™' and
247 km s™', respectively.

(a) Determine the quantity m sin’ i for each star.
(b) Using a statistically chosen value for sin’ i that takes into consideration the Doppler-shift
selection effect, estimate the individual masses of the components of ¢ Phe.

6 From the light and velocity curves of an eclipsing, spectroscopic binary star system, it is deter-
mined that the orbital period is 6.31 yr, and the maximum radial velocities of Stars A and B are
5.4km s ! and 22.4 km s~', respectively. Furthermore, the time period between first contact and
minimum light (#, — #,) is 0.58 d, the length of the primary minimum (¢, — #,) is 0.64 d, and the
apparent bolometric magnitudes of maximum, primary minimum, and secondary minimum are
5.40 magnitudes, 9.20 magnitudes, and 5.44 magnitudes, respectively. From this information,
and assuming circular orbits, find the
(a) Ratio of stellar masses.

(b) Sum of the masses (assume i 2~ 90°).

(¢) Individual masses.

(d) Individual radii (assume that the orbits are circular).
(e) Ratio of the effective temperatures of the two stars.
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7 The V-band light curve of YY Sgr is shown in Fig. 2. Neglecting bolometric corrections,
estimate the ratio of the temperatures of the two stars in the system.
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FIGURE 2 The V magnitude light curve of Y'Y Sagittarii, an eclipsing binary star. The data from
many orbital periods have been plotted on this light curve as a function of phase, where the phase is
defined to be 0.0 at the primary minimum. This system has an orbital period P = 2.6284734 d, an
eccentricity e = 0.1573, and orbital inclination i = 88.89° (see Section 2). (Figure adopted from
Lacy, C. H. S., Astron. J., 105, 637, 1993.)
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8 Refer to the synthetic light curve and model of RR Centauri shown in Fig. 11.

1.0 | *"e, '...o-c...... .....-l
= . . . .
> 08 . K . .
0.6 1 1 1 1 1
-0.2 0.0 0.2 0.4 0.6 0.8
Phase

FIGURE 11 A synthetic light curve of RR Centauri, an eclipsing binary star system for which
the two components are in close contact. The open circle represents the size of the Sun. The orbital
and physical characteristics of the RR Cen system are P = 0.6057 d, e = 0.0, M| = 1.8 M, M, =
0.37 Mg,. The spectral classification of the primary is FOV.

(Figure adapted from R. E. Wilson, Publ. Astron. Soc. Pac. 106,921, 1994; ©Astronomical
Society of the Pacific.)

(a) Indicate the approximate points on the light curve (as a function of phase) that correspond
to the orientations depicted.

(b) Explain qualitatively the shape of the light curve.

9 Data from binary star systems were used to illustrate the mass—luminosity relation in Fig. 7. A
strong correlation also exists between mass and the effective temperatures of stars. Use the data
provided in Popper, Annu. Rev. Astron. Astrophys., 18, 115, 1980 to create a graph of log,, 7, as
a function of log,,(M/My). Use the data from Popper’s Table 2, Table 4, Table 7 (excluding the
o Aur system), and Table 8 (include only those stars with spectral types in the Sp column that
end with the Roman numeral V). The stars that are excluded in Tables 7 and 8 are evolved stars
with structures significantly different from the main sequence stars. The article by Popper may
be available in your library or it can be downloaded from the NASA Astrophysics Data System
(NASA ADS) at http://adswww.harvard. edu.
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Give two reasons why the radial velocity technique for detecting planets around other stars favors
massive planets (Jupiters) with relatively short orbital periods.

Explain why radial velocity detections of extrasolar planets yield only lower limits on the masses
of the orbiting planets. What value is actually measured, and what unknown orbital parameter
is involved?

From the data given in the text, determine the masses of the following stars (in solar masses):
(a) 51 Peg
(b) HD 168443c¢

Suppose that you are an astronomer on a planet orbiting another star. While you are observing
our Sun, Jupiter passes in front of it. Estimate the fractional decrease in the brightness of the star,
assuming that you are observing a flat disk of constant flux, with a temperature of 7, = 5777 K.
Hint: Neglect Jupiter’s contribution to the total brightness of the system.

From the data given in the text, combined with the information in Fig. 12, make a rough
estimate of the radius of the orbiting planet, and compare your result with the quoted value. Be
sure to explain each step used in computing your estimate.
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FIGURE 12 The photometric detection of two transits of an extrasolar planet across the disk of
HD 2094589 in September 1999. The September 16 transit was artificially offset by —0.05 relative
to the transit of September 9 in order to avoid overlap of the data. 7, designates the midpoint of the
transit, and JD represents the Julian Date (time) of the particular measurement. (Figure adapted from
Charbonneau, Brown, Latham, and Mayor, Ap. J., 529, L45, 2000.)

COMPUTER PROBLEMS

15

(a) Use the computer program TwoStars, described in Appendix: TwoStars, A Binary Star
Code and available on the companion website, to generate orbital radial velocity data
similar to Fig. 6 for any choice of eccentricity. Assume that M} = 0.5 Mg, M, = 2.0 Mg,
P = 1.8yr,andi = 30°. Plot your results fore =0, 0.2, 0.4, and 0.5. (You may assume
that the center-of-mass velocity is zero and that the orientation of the major axis is
perpendicular to the line of sight.)
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FIGURE 6 The orbital paths and radial velocities of two stars in elliptical orbits (e = 0.4). As
in Fig. 5, M; =1 Mg, M, =2 Mg, the orbital period is P = 30 d, and the radial velocity of the
center of mass is v, = 42 km s~!. In addition, the orientation of periastron is 45°. vy, v,, and vy,
are the velocities of Star 1, Star 2, and the center of mass, respectively. (a) The plane of the orbits lies
along the line of sight of the observer. (b) The observed radial velocity curves.

(b) Verify your results for e = 0 by using the equations developed in Section 3. of “Binary
Systems and Stellar parameters”

(¢) Explain how you might determine the eccentricity of an orbital system.

16 The code TwoStars can be used to analyze the apparent motions of binary stars across
the plane of the sky. If fact, TwoStars was used to generate the data for Fig. 1.
Assume that the binary system used in Problem 15 is located 3.2 pc from Earth and
that its center of mass is moving through space with the vector components (v;, v}, v}) =
(30 km s™, 42 km s™', —15.3 km s™'). From the position data generated by TwoStars, plot
the apparent positions of the stars in milliarcseconds for the case where e = 0.4.

Declination

Center of mass

Right ascension

FIGURE 1  An astrometric binary, which contains one visible member. The unseen component
is implied by the oscillatory motion of the observable star in the system. The proper motion of the
entire system is reflected in the straight-line motion of the center of mass.
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17 Figure 2 shows the light curve of the eclipsing binary Y'Y Sgr. The code TwoStars, described
in Appendix: TwoStars, A Binary Star Code and available on the companion website, can be
used to roughly model this system. Use the data provided in the caption, and assume that
the masses, radii, and effective temperatures of the two stars are M; = 5.9 Mg, R; = 3.2 R,
T.; =15,200 K, and M, = 5.6 Mg, R, =2.9R, T, = 13,700 K. Also assume that the
periastron angle is 214.6° and that the center of mass is at rest relative to the observer.

(a) Using TwoStars, create a synthetic light curve for the system.
(b) Using TwoStars, plot the radial velocities of the two stars.
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FIGURE 2  The V magnitude light curve of YY Sagittarii, an eclipsing binary star. The data from
many orbital periods have been plotted on this light curve as a function of phase, where the phase is
defined to be 0.0 at the primary minimum. This system has an orbital period P = 2.6284734 d, an
eccentricity e = 0.1573, and orbital inclination i = 88.89° (see Section 2). (Figure adopted from
Lacy, C. H. S., Astron. J., 105, 637, 1993.)

18 Using the data given in the text, and assuming that the orbital inclination is 90°, use TwoStars
to generate data that model the light curve of OGLE-TR-56b. You may assume
that the radius of the planet is approximately the radius of Jupiter (7 x 107 m) and its temperature
is roughly 1000 K. Take the temperature of the star to be 3000 K. You may also assume that the
planet’s orbit is perfectly circular.
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From Chapter 8 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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The Classification of Stellar Spectra

1 The Formation of Spectral Lines
2 The Hertzsprung—Russell Diagram

B THE FORMATION OF SPECTRAL LINES

With the invention of photometry and spectroscopy, the new science of astrophysics pro-
gressed rapidly. As early as 1817, Joseph Fraunhofer had determined that different stars
have different spectra. Stellar spectra were classified according to several schemes, the ear-
liest of which recognized just three types of spectra. As instruments improved, increasingly
subtle distinctions became possible.

The Spectral Types of Stars

A spectral taxonomy developed at Harvard by Edward C. Pickering (1846—1919) and his
assistant Williamina P. Fleming (1857-1911) in the 1890s labeled spectra with capital let-
ters according to the strength of their hydrogen absorption lines, beginning with the letter
A for the broadest lines. At about the same time, Antonia Maury (1866—1952), another of
Pickering’s assistants and a colleague of Fleming’s, was developing a somewhat differ-
ent classification scheme that she was using to study the widths of spectral lines. In her
work Maury rearranged her classes in a way that would have been equivalent to placing
Pickering’s and Fleming’s B class before the A stars. Then, in 1901, Annie Jump Cannon'
(1863-1941; see Fig. 1), also employed by Pickering, and using the scheme of Pickering
and Fleming while following the suggestion of Maury, rearranged the sequence of spectra
by placing O and B before A, added decimal subdivisions (e.g., AO—A9), and consolidated
many of the classes. With these changes, the Harvard classification scheme of “OBAFGK
M?” became a temperature sequence, running from the hottest blue O stars to the coolest red
M stars. Generations of astronomy students have remembered this string of spectral types
by memorizing the phrase “Oh Be A Fine Girl/Guy, Kiss Me.” Stars nearer the beginning
of this sequence are referred to as early-type stars, and those closer to the end are called
late-type stars. These labels also distinguish the stars within the spectral subdivisions, so
astronomers may speak of a KO star as an “early K star” or refer to a B9 star as a “late B
star.” Cannon classified some 200,000 spectra between 1911 and 1914, and the results were

'The Annie J. Cannon Award is bestowed annually by the American Association of University Women and the
American Astronomical Society for distinguished contributions to astronomy by a woman.
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FIGURE1  Annie Jump Cannon (1863—-1941). (Courtesy of Harvard College Observatory.)

collected into the Henry Draper Catalogue.” Today, many stars are referred to by their
HD numbers; Betelgeuse is HD 39801.

The physical basis of the Harvard spectral classification scheme remained obscure, how-
ever. Vega (spectral type AO) displays very strong hydrogen absorption lines, much stronger
than the faint lines observed for the Sun (spectral type G2). On the other hand, the Sun’s
calcium absorption lines are much more intense than those of Vega. Is this a result of a
variation in the composition of the two stars? Or are the different surface temperatures of
Vega (T, = 9500 K) and the Sun (7, = 5777 K) responsible for the relative strengths of the
absorption lines?

The theoretical understanding of the quantum atom achieved early in the twentieth cen-

tury gave astronomers the key to the secrets of stellar spectra.
Absorption lines are created when anatom absorbs a photon with exactly the energyrequired
for an electron to make an upward transition from a lower to a higher orbital. Emission lines
are formed in the inverse process, when an electron makes a downward transition from a
higher to a lower orbital and a single photon carries away the energy lost by the elec-
tron. The wavelength of the photon thus depends on the energies of the atomic orbitals
involved in these transitions. For example, the Balmer absorption lines of hydrogen are
caused by electrons making upward transitions from the n = 2 orbital to higher-energy or-
bitals, and Balmer emission lines are produced when electrons make downward transitions
from higher-energy orbitals to the n = 2 orbital.

The distinctions between the spectra of stars with different temperatures are due to
electrons occupying different atomic orbitals in the atmospheres of these stars. The details
of spectral line formation can be quite complicated because electrons can be found in any of
an atom’s orbitals. Furthermore, the atom can be in any one of various stages of ionization
and has a unique set of orbitals at each stage. An atom’s stage of ionization is denoted by a

2In 1872 Henry Draper took the first photograph of a stellar spectrum. The catalog bearing his name was financed
from his estate.
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Roman numeral following the symbol for the atom. For example, H I and He I are neutral
(not ionized) hydrogen and helium, respectively; He II is singly ionized helium, and Si III
and Si IV refer to a silicon atom that has lost two and three electrons, respectively.

In the Harvard system devised by Cannon, the Balmer lines reach their maximum inten-
sity in the spectra of stars of type A0, which have an effective temperature of 7, =9520 K.

The visible spectral lines of neutral helium (He I) are strongest for B2
stars (T, = 22,000 K), and the visible spectral lines of singly ionized calcium (Ca II) are
most intense for KO stars (7, = 5250 K).2

Table 1 lists some of the defining criteria for various spectral types. In the table the
term metal is used to indicate any element heavier than helium, a convention commonly
adopted by astronomers because by far the most abundant elements in the universe are
hydrogen and helium.

In addition to the traditional spectral types of the Harvard classification scheme
(OBAFGKM), Table 1 also includes recently defined spectral types of very cool stars
and brown dwarfs. Brown dwarfs are objects with too little mass to allow nuclear reac-
tions to occur in their interiors in any substantial way, so they are not considered stars
in the usual sense. The necessity of introducing these new spectral types came from all-
sky surveys that detected a large number of objects with very low effective temperatures
(1300 K to 2500 K for L spectral types and less than 1300 K for T spectral types).* In
order to remember the new, cooler spectral types, one might consider extending the popular
mnemonic by: “Oh Be A Fine Girl/Guy, Kiss Me—Less Talk!”

Figures 2and 3 display some sample photographic spectra for various spectral types.
You will note that hydrogen lines [e.g., Hy (434.4 nm) and H6 (410.1 nm)] increase in width
(strength) from O9 to A0, then decrease in width from A0 through F5, and nearly vanish
by late K. Helium (He) lines are discernible in the spectra of early-type stars (O and early
B) but begin to disappear in cooler stars.

Figures 4 and 5 also depict stellar spectra in a graphical format typical of modern
digital detectors. Readily apparent is the shifting to longer wavelengths of the peak of the
superimposed blackbody spectrum as the temperature of the star decreases (later spectral
types). Also apparent are the Ho, HB, Hy, and Hé Balmer lines at 656.2 nm, 486.1 nm,
434.0 nm, and 410.2 nm, respectively. Note how these hydrogen absorption lines grow
in strength from O to A and then decrease in strength for spectral types later than A. For
later spectral types, the messy spectra are indicative of metal lines, with molecular lines
appearing in the spectra of the coolest stars.

The Maxwell-Boltzmann Velocity Distribution

To uncover the physical foundation of this classification system, two basic questions must
be answered: In what orbitals are electrons most likely to be found? What are the relative
numbers of atoms in various stages of ionization?

3The two prominent spectral lines of Ca II are usually referred to as the H (A = 396.8 nm) and K (A = 393.3 nm)
lines of calcium. The nomenclature for the H line was devised by Fraunhofer; the K line was named by E. Mascart
(1837-1908) in the 1860s.

4The surveys that discovered large numbers of these objects are the Sloan Digital Sky Survey (SDSS) and the
2-Micron All-Sky Survey (2MASS).
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TABLE1  Harvard Spectral Classification.

Spectral Type  Characteristics

o Hottest blue-white stars with few lines
Strong He II absorption (sometimes emission) lines.
He I absorption lines becoming stronger.

B Hot blue-white
He I absorption lines strongest at B2.
H I (Balmer) absorption lines becoming stronger.

A White
Balmer absorption lines strongest at AQ, becoming weaker later.
Ca II absorption lines becoming stronger.

F Yellow-white
Ca Il lines continue to strengthen as Balmer lines continue to weaken.
Neutral metal absorption lines (Fe I, Cr I).

G Yellow
Solar-type spectra.
Ca II lines continue becoming stronger.
Fe I, other neutral metal lines becoming stronger.

K Cool orange
Call H and K lines strongest at KO, becoming weaker later.
Spectra dominated by metal absorption lines.

M Cool red
Spectra dominated by molecular absorption bands,
especially titanium oxide (TiO) and vanadium oxide (VO).
Neutral metal absorption lines remain strong.

L Very cool, dark red
Stronger in infrared than visible.
Strong molecular absorption bands of metal hydrides (CrH, FeH), water
(H,0), carbon monoxide (CO), and alkali metals (Na, K, Rb, Cs).
TiO and VO are weakening.

T Coolest, Infrared
Strong methane (CHy4) bands but weakening CO bands.

The answers to both questions are found in an area of physics known as statistical
mechanics. This branch of physics studies the statistical properties of a system composed
of many members. For example, a gas can contain a huge number of particles with a large
range of speeds and energies. Although in practice it would be impossible to calculate
the detailed behavior of any single particle, the gas as a whole does have certain well-
defined properties, such as its temperature, pressure, and density. For such a gas in thermal
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FIGURE2  Stellar spectra for main-sequence classes O9—F5. Note that these spectra are displayed
as negatives; absorption lines appear bright. Wavelengths are given in angstroms. (Figure from Abt,
et al., An Atlas of Low-Dispersion Grating Stellar Spectra, Kitt Peak National Observatory, Tucson,
AZ, 1968.)

equilibrium (the gas is not rapidly increasing or decreasing in temperature, for instance), the
Maxwell-Boltzmann velocity distribution function’ describes the fraction of particles
having a given range of speeds. The number of gas particles per unit volume having speeds
between v and v 4 dv is given by

m

2nkT

3/2
nydv =n ( ) e IRT 4702 gy, 1)

5This name honors James Clerk Maxwell and Ludwig Boltzmann (1844—1906), the latter of whom is considered
the founder of statistical mechanics.
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FIGURE3  Stellar spectra for main-sequence classes F5—-MS5. Note that these spectra are displayed
as negatives; absorption lines appear bright. Wavelengths are given in angstroms. (Figure from Abt,
et al., An Atlas of Low-Dispersion Grating Stellar Spectra, Kitt Peak National Observatory, Tucson,
AZ, 1968.)

where n is the total number density (number of particles per unit volume), n, = dn/dv,
m is a particle’s mass, k is Boltzmann’s constant, and 7T is the temperature of the gas in
kelvins. Figure 6 shows the Maxwell-Boltzmann distribution of molecular speeds in terms
of the fraction of molecules having a speed between v and v + dv. The exponent of the
distribution function is the ratio of a gas particle’s kinetic energy, %mvz, to the characteristic
thermal energy, kT . It is difficult for a significant number of particles to have an energy
much greater or less than the thermal energy; the distribution peaks when these energies
are equal, at a most probable speed of

2kT
Ump = 7 . (2)
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FIGURE 4  Digitized spectra of main sequence classes O5-F0 displayed in terms of relative flux
as a function of wavelength. Modern spectra obtained by digital detectors (as opposed to photographic
plates) are generally displayed graphically. (Data from Silva and Cornell, Ap. J. Suppl., 81,865, 1992.)

The high-speed exponential “tail” of the distribution function results in a somewhat higher
(average) root-mean-square speed® of

S L 3)
m

Example 1.1.  The area under the curve between two speeds is equal to the fraction of gas
particles in that range of speeds. In order to determine the fraction of hydrogen atoms in a gas
of T = 10,000 K having speeds between v; =2 x 10* ms~! and v, = 2.5 x 10* m s~!,
it is necessary to integrate the Maxwell-Boltzmann distribution between these two limits,

The root-mean-square speed is the square root of the average (mean) value of v?: vymg = V V2.
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or

1 [
N/Niotal = _/ ny dv
vy

n

32 02
= (2 nch> / e AT 40 gy, 4
T o

Although Eq. ( 4) has a closed-form solution when v; = 0 and v, — 00, it must be eval-
uated numerically in other cases. This can be accomplished crudely by evaluating the
integrand using an average value of the velocity over the interval, multiplied by the width
of the interval, or

1 [» |
N/Ntotal - ; / nv(v) dv =~ ;nv(v) (U2 - U]),

where v = (v + v2)/2. Substituting, we find

mo\32 .
N/Notal = (m> eV T A9 (vy — vy)

~0.125.
Approximately 12.5% of the hydrogen atoms in a gas at 10,000 K have speeds between

2 x 10* ms~! and 2.5 x 10* m s~'. A more careful numerical integration over the range
gives 12.76%.

The Boltzmann Equation

The atoms of a gas gain and lose energy as they collide. As a result, the distribution in
the speeds of the impacting atoms, given by Eq. ( 1), produces a definite distribution of
the electrons among the atomic orbitals. This distribution of electrons is governed by a
fundamental result of statistical mechanics: Orbitals of higher energy are less likely to be
occupied by electrons.

Let s, stand for the specific set of quantum numbers that identifies a state of energy E,
for a system of particles. Similarly, let s;, stand for the set of quantum numbers that identifies
a state of energy E,. For example, E, = —13.6 eV for the lowest orbit of the hydrogen
atom, with s, ={n =1, £ =0, m; =0, m; = +1/2} identifying a specific state with
that energy (recall Section 5.4 for a discussion of quantum numbers). Then the ratio of the
probability P (s;) that the system is in state s;, to the probability P (s,) that the system is in
state s, is given by

P(sp) e Bo/AT
P(s,) e Ea/kT

— ¢ Ev=E)/KT (3)

where T is the common temperature of the two systems. The term e £/#7 is called the
Boltzmann factor.”

"The energies encountered in this context are usually given in units of electron volts (eV), so it is useful to
remember that at a room temperature of 300 K, the product k7 is approximately 1/40 eV.

237



238

The Classification of Stellar Spectra

—~ . _F6FIV

i

. __F8-FOV

{

f
2
3{%

Q
v
=
=)
<

Relative flux (arbitrary units)
i

il

2
1.3

]
s
3

400 500 600 700 800 900
Wavelength (nm)

FIGURE 5  Digitized spectra of main sequence classes F6—K5 displayed in terms of relative flux
as a function of wavelength. (Data from Silva and Cornell, Ap. J. Suppl., 81, 865, 1992.)

The Boltzmann factor plays such a fundamental role in the study of statistical mechanics
that Eq. ( 5) merits further consideration. Suppose, for example, that E;, > E,; the energy
of state s;, is greater than the energy of state s, . Notice that as the thermal energy kT decreases
toward zero (i.e., T — 0),the quantity —(E, — E;)/ kT — —oo,andso P(sp)/P(s,) — O.
This is just what is to be expected if there isn’t any thermal energy available to raise the
energy of an atom to a higher level. On the other hand, if there is a great deal of thermal
energy available (i.e., T — o0),then —(E, — E,)/kT — Oand P(sp)/P(s,) — 1.Again
this is what would be expected since with an unlimited reservoir of thermal energy, all
available energy levels of the atom should be accessible with equal probability. You can
quickly verify that if we had assumed instead that E, < E,, the expected results would
again be obtained in the limits of 7 — O and T — o0.

It is often the case that the energy levels of the system may be degenerate, with more
than one quantum state having the same energy. That is, if states s, and s;, are degenerate,
then E, = E, but s, # s,. When taking averages, we must count each of the degenerate
states separately. To account properly for the number of states that have a given energy,
define g, to be the number of states with energy E,. Similarly, define g, to be the number
of states with energy E;. These are called the statistical weights of the energy levels.
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FIGURE 6 Maxwell-Boltzmann distribution function, n, / n, for hydrogen atoms at a temperature

of 10,000 K. The fraction of hydrogen atoms in the gas having velocities between 2 x 10* m s~! and
2.5 x 10* m s~! is the shaded area under the curve between those two velocities; see Example 1.1.

Example 1.2.  The ground state of the hydrogen atom is twofold degenerate. In fact,
although “ground state” is the standard terminology, the plural “ground states” would be
more precise because these are rwo quantum states that have the same energy of —13.6 eV
(for my; = +1/2).8 In the same manner, the “first excited state” actually consists of eight
degenerate quantum states with the same energy of —3.40 eV.

Table 2 shows the set of quantum numbers {#n, €, my, m,} that identifies each state; it
also shows each state’s energy. Notice that there are g; = 2 ground states with the energy
E, = —13.6eV, and g, = 8 first excited states with the energy £, = —3.40 eV.

The ratio of the probability P (E}) that the system will be found in any of the g;, degenerate
states with energy E}, to the probability P (E,) that the system is in any of the g, degenerate
states with energy E, is given by

P(Ey) _ & e B/kT _ 8b —~(E—E/kT
P(Ea) 8a e_EA/kT 8a

Stellar atmospheres contain a vast number of atoms, so the ratio of probabilities is indis-
tinguishable from the ratio of the number of atoms. Thus, for the atoms of a given element
in a specified state of ionization, the ratio of the number of atoms N, with energy E; to

81n reality, the two “ground states” of the hydrogen atom are not precisely degenerate.
The two states actually have slightly different energies, enabling the hydrogen atom to emit 21-cm radio waves,
an important signature of hydrogen gas in interstellar space.
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TABLE 2 Quantum Numbers and Energies for the Hydrogen Atom.

Ground States s Energy E,

n £ my myg (eV)
1 0 0 +1/2 —13.6
1 0 0o -1/2 —13.6
First Excited States s, | Energy E»
n £ my myg eV)
2 0 0 +1/2 —3.40
2 0 0 -172 —3.40
2 1 1 +1/2 —-3.40
2 1 1 —1/2 —3.40
2 1 0 +1/2 —3.40
2 1 0 -1/72 —3.40
21 -1 +1)2 —3.40
2 1 -1 =12 —3.40

the number of atoms N, with energy E, in different states of excitation is given by the
Boltzmann equation,

N, —Ep/ kT
_h _ 8b € _ &ef(E;,fEa)/kT. (6)

N,  goe E/¥T g,

Example 1.3. For a gas of neutral hydrogen atoms, at what temperature will equal
numbers of atoms have electrons in the ground state (» = 1) and in the first excited state
(n = 2)?° Recall from Example 1.2 that the degeneracy of the nth energy level of the
hydrogen atom is g, = 2n>. Associating state a with the ground state and state b with the
first excited state, setting N, = N on the left-hand side of Eq. (6), and using the equation
for the energy levels lead to

L 2(2)2 o—[(—13:6 €v/22)~(<136 ev/12) | /kT
21)? ’

or

10.2 eV
kT

=1n(4).

9We have reverted to the standard practice of referring to the two degenerate states of lowest energy as the “ground
state” and to the eight degenerate states of next-lowest energy as the “first excited state.”
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Solving for the temperature yields'”

_102eV

=—"" =854x10*K.
kln (4) %

High temperatures are required for a significant number of hydrogen atoms to have elec-
trons in the first excited state. Figure 7 shows the relative occupancy of the ground and
first excited states, N»/(N| + N,), as a function of temperature.“ This result is somewhat
puzzling, however. Recall that the Balmer absorption lines are produced by electrons in
hydrogen atoms making an upward transition from the n = 2 orbital. If, as shown in Exam-
ple 1.3, temperatures on the order of 85,000 K are needed to provide electrons in the first
excited state, then why do the Balmer lines reach their maximum intensity at a much lower
temperature of 9520 K? Clearly, according to Eq. (  6), at temperatures higher than 9520 K
an even greater proportion of the electrons will be in the first excited state rather than in the
ground state. If this is the case, then what is responsible for the diminishing strength of the
Balmer lines at higher temperatures?

The Saha Equation

The answer lies in also considering the relative number of atoms in different stages of
ionization. Let y; be the ionization energy needed to remove an electron from an atom (or

0.04 ; , . , . , .

0.03 -

0.02 -

Ny/(Ny + N,)

0.01 -

0.00 . ! I . I .
5000 10,000 15,000 20,000 25,000

Temperature (K)

FIGURE 7 N, /(Ny + N,) for the hydrogen atom obtained via the Boltzmann equation.

10When we are working with electron volts, the Boltzmann constant can be expressed in the convenient form
k =8.6173423 x 107 eV K.

For the remainder of this section, we will use @ = 1 for the ground state energy and b = 2 for the energy of the
first excited state.
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ion) in the ground state, thus taking it from ionization stage i to stage (i + 1). For example,
the ionization energy of hydrogen, the energy needed to convert it from H I to H II, is
x1 = 13.6 eV. However, it may be that the initial and final ions are not in the ground state.
An average must be taken over the orbital energies to allow for the possible partitioning of
the atom’s electrons among its orbitals. This procedure involves calculating the partition
functions, Z, for the initial and final atoms. The partition function is simply the weighted
sum of the number of ways the atom can arrange its electrons with the same energy, with
more energetic (and therefore less likely) configurations receiving less weight from the
Boltzmann factor when the sum is taken. If E; is the energy of the jth energy level and g;
is the degeneracy of that level, then the partition function Z is defined as

oo
Z = ng e~ EimED/KT, @)
j=1

If we use the partition functions Z; and Z;; for the atom in its initial and final stages of
ionization, the ratio of the number of atoms in stage (i + 1) to the number of atoms in stage
iis

N, 271 (2mm kT \>?
+ _ 2Zisi < Tm ) s ®

N,' I’LgZ,' h2

This equation is known as the Saha equation, after the Indian astrophysicist Meghnad
Saha (1894-1956), who first derived it in 1920. Because a free electron is produced in the
ionization process, it is not surprising to find the number density of free electrons (number
of free electrons per unit volume), n,, on the right-hand side of the Saha equation. Note that
as the number density of free electrons increases, the number of atoms in the higher stage
of ionization decreases, since there are more electrons with which the ion may recombine.
The factor of 2 in front of the partition function Z;; reflects the two possible spins of the
free electron, with m; = £1/2. The term in parentheses is also related to the free electron,
with m, being the electron mass.!? Sometimes the pressure of the free electrons, P,, is used
in place of the electron number density; the two are related by the ideal gas law written in
the form

P, =nkT.

Then the Saha equation takes the alternative form

N;  P,Z h? ©)

Nipi _ 2KTZig <2nmekT>3/2 —

12The term in parentheses is the number density of electrons for which the quantum energy is roughly equal to the
characteristic thermal energy kT '. For the classical conditions encountered in stellar atmospheres, this term is much
greater than n,.
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The electron pressure ranges from 0.1 N m 2 in the atmospheres of cooler stars to I00N m 2

for hotter stars.

Combining the Boltzmann and Saha Equations

We are now finally ready to consider the combined effects of the Boltzmann and Saha
equations and how they influence the stellar spectra that we observe.

Example 1.4.  Consider the degree of ionization in a stellar atmosphere that is assumed
to be composed of pure hydrogen. Assume for simplicity that the electron pressure is a
constant P, = 20 N m~2.

The Saha equation ( 9) will be used to calculate the fraction of atoms that are ionized,
N1/ Niotat = Nu/ (N1 + Nn), as the temperature T varies between 5000 K and 25,000 K.
However, the partition functions Z; and Zj; must be determined first. A hydrogen ion is
just a proton and so has no degeneracy; thus Z;; = 1. The energy of the first excited state
of hydrogenis E, — E; = 10.2 eV above the ground state energy. Because 10.2 eV > kT
for the temperature regime under consideration, the Boltzmann factor e~ (F2=ED/KT
Nearly all of the H I atoms are therefore in the ground state (recall the previous example),
so Eq. (' 7) for the partition function simplifies to Z; ~ g; = 2(1)? = 2.

Inserting these values into the Saha equation with x; = 13.6 eV gives the ratio of ionized
to neutral hydrogen, Ny;/Ny. This ratio is then used to find the fraction of ionized hydrogen,
NH/Nlotal’ by writing

No  No Nu/Ni
Now  Ni+ Ny 1+ Ny/Ny

the results are displayed in Fig. 8. This figure shows that when 7' = 5000 K, essentially
none of the hydrogen atoms are ionized. At about 8300 K, 5% of the atoms have become
ionized. Half of the hydrogen is ionized at a temperature of 9600 K, and when T has risen to
11,300 K, all but 5% of the hydrogen is in the form of H II. Thus the ionization of hydrogen
takes place within a temperature interval of approximately 3000 K. This range of tempera-
tures is quite limited compared to the temperatures of tens of millions of degrees routinely
encountered inside stars. The narrow region inside a star where hydrogen is partially ion-
ized is called a hydrogen partial ionization zone and has a characteristic temperature of
approximately 10,000 K for a wide range of stellar parameters.

Now we can see why the Balmer lines are observed to attain their maximum intensity at
a temperature of 9520 K, instead of at the much higher characteristic temperatures (on the
order of 85,000 K) required to excite electrons to the n = 2 energy level of hydrogen. The
strength of the Balmer lines depends on N,/ N, the fraction of all hydrogen atoms that
are in the first excited state. This is found by combining the results of the Boltzmann and
Saha equations. Because virtually all of the neutral hydrogen atoms are in either the ground
state or the first excited state, we can employ the approximation Ny + N, =~ Np and write

=) ) = (5w ()
Niotal N1+ Ny ) \ Nl 1+ Ny/Ny 1+ Nu/Ni )~

continued
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FIGURE 8 Ni/ Ny for hydrogen from the Saha equation when P, = 20 N m~2. Fifty percent
ionization occurs at 7 =~ 9600 K.
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FIGURE 9 N3 /N for hydrogen from the Boltzmann and Saha equations, assuming P, =
20 N m~2. The peak occurs at approximately 9900 K.

Figure 9 shows that in this example, the hydrogen gas would produce the most intense
Balmer lines at a temperature of 9900 K, in good agreement with the observations. The
diminishing strength of the Balmer lines at higher temperatures is due to the rapid ionization
of hydrogen above 10,000 K. Figure 10 summarizes this situation.
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FIGURE 10  The electron’s position in the hydrogen atom at different temperatures. In (a), the
electron is in the ground state. Balmer absorption lines are produced only when the electron is initially
in the first excited state, as shown in (b). In (c¢), the atom has been ionized.

Of course, stellar atmospheres are not composed of pure hydrogen, and the results ob-
tained in Example 1.4 depended on an appropriate value for the electron pressure. In
stellar atmospheres, there is typically one helium atom for every ten hydrogen atoms. The
presence of ionized helium provides more electrons with which the hydrogen ions can re-
combine. Thus, when helium is added, it takes a higher temperature to achieve the same
degree of hydrogen ionization.

It should also be emphasized that the Saha equation can be applied only to a gas in ther-

modynamic equilibrium, so that the Maxwell-Boltzmann velocity distribution is obeyed.

Furthermore, the density of the gas must not be too great (less than roughly 1 kg m~ for
stellar material), or the presence of neighboring ions will distort an atom’s orbitals and
lower its ionization energy.

Example 1.5.  The Sun’s “surface” is a thin layer of the solar atmosphere called the pho-
tosphere. The characteristic temperature of the photosphere is 7= T, = 5777 K, and it has
about 500,000 hydrogen atoms for each calcium atom with an electron pressure of about
1.5 Nm™." From this information and knowledge of the appropriate statistical weights and
partition functions, the Saha and Boltzmann equations can be used to estimate the rela-
tive strengths of the absorption lines due to hydrogen (the Balmer lines) and those due to
calcium (the Ca II H and K lines).

We must compare the number of neutral hydrogen atoms with electrons in the first
excited state (which produce the Balmer lines) to the number of singly ionized calcium
atoms with electrons in the ground state (which produce the Ca II H and K lines). As in
Example 1.4, we will use the Saha equation to determine the degree of ionization and will
use the Boltzmann equation to reveal the distribution of electrons between the ground and
first excited states.

continued

13See Cox (2000), page 348 for a model solar photosphere.
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Let’s consider hydrogen first. If we substitute the partition functions found in Exam-
ple 1.4 into the Saha equation ( 9), the ratio of ionized to neutral hydrogen is

N 2T Z; 2em kT \? 1
i), -2 (o3) vl
I J1H el

~13,000°

Thus there is only one hydrogen ion (H II) for every 13,000 neutral hydrogen atoms (H I)
at the Sun’s surface. Almost none of the hydrogen is ionized.

The Boltzmann equation (  6) reveals how many of these neutral hydrogen atoms are in
the first excited state. Using g, = 2n? for hydrogen (implying g; = 2 and g, = 8), we have

Mol 82 o roiT _ 506 % 100~ — -
Ny s 198,000,000

The result is that only one of every 200 million hydrogen atoms is in the first excited state
and capable of producing Balmer absorption lines:

Y% N N;
2 =< 2 )( I):5.06><109.
Ntotal Nl + N2 Ntotal

We now turn to the calcium atoms. The ionization energy x; of Ca I is 6.11 eV, about
half of the 13.6 eV ionization energy of hydrogen. We will soon see, however, that this
small difference has a great effect on the ionization state of the atoms. Note that the Saha
equation is very sensitive to the ionization energy because x /kT appears as an exponent
and kT =~ 0.5 eV « x. Thus a difference of several electron volts in the ionization energy
produces a change of many powers of e in the Saha equation.

Evaluating the partition functions Z; and Zy; for calcium is a bit more complicated than
for hydrogen, and the results have been tabulated elsewhere:'* Z; = 1.32 and Zj; = 2.30.
Thus the ratio of ionized to un-ionized calcium is

3/2
Nul| _ 2kTZu (27mkT /e—XI/szgls,
N e PZi 2

Practically all of the calcium atoms are in the form of Ca II; only one atom out of 900
remains neutral. Now we can use the Boltzmann equation to estimate how many of these
calcium ions are in the ground state, capable of forming the Ca II H and K absorption
lines. The next calculation will consider the K (A = 393.3 nm) line; the results for the H
(A = 396.8 nm) line are similar. The first excited state of Call is £, — E; = 3.12 eV above
the ground state. The degeneracies for these states are g; = 2 and g, = 4. Thus the ratio of
the number of Ca II ions in the first excited state to those in the ground state is

[&} _ 82 BT 399 107 = .
Nilcan & 264

Out of every 265 Ca II ions, all but one are in the ground state and are capable of produc-
ing the Ca Il K line. This implies that nearly all of the calcium atoms in the Sun’s photosphere

14The values of the partition functions used here are from Aller (1963); see also Cox (2000), page 32.
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are singly ionized and in the ground state,' so that almost all of the calcium atoms are
available for forming the H and K lines of calcium:

o W el W o)
Ntotal Ca II_ N1+N2 Call Ntotal Ca
=< 1 )( [Nu/Nilca )
1+ [N2/Nilcan 1 + [Nu/Nilc,

B 1 918
" \1+43.79 x 103 14918

= 0.995.

Now it becomes clear why the Ca II H and K lines are so much stronger in the Sun’s
spectrum than are the Balmer lines. There are 500,000 hydrogen atoms for every calcium
atom in the solar photosphere, but only an extremely small fraction, 5.06 x 1072, of these
hydrogen atoms are un-ionized and in the first excited state, capable of producing a Balmer
line. Multiplying these two factors,

1
(500,000) x (5.06 x 107%) ~ 0.00253 = 55"

reveals that there are approximately 400 times more Ca Il ions with electrons in the ground
state (to produce the Ca II H and K lines) than there are neutral hydrogen atoms with
electrons in the first excited state (to produce the Balmer lines). The strength of the H and
K lines is not due to a greater abundance of calcium in the Sun. Rather, the strength of these
Ca II lines reflects the sensitive temperature dependence of the atomic states of excitation
and ionization.

Figure 11 shows how the strength of various spectral lines varies with spectral type
and temperature. As the temperature changes, a smooth variation from one spectral type to
the next occurs, indicating that there are only minor differences in the composition of stars,
as inferred from their spectra. The first person to determine the composition of the stars and
discover the dominant role of hydrogen in the universe was Cecilia Payne (1900-1979).
Her 1925 Ph.D. thesis, in which she calculated the relative abundances of 18 elements in
stellar atmospheres, is among the most brilliant ever done in astronomy.

2 B THE HERTZSPRUNG-RUSSELL DIAGRAM
Early in the twentieth century, as astronomers accumulated data for an increasingly large

sample of stars, they became aware of the wide range of stellar luminosities and absolute
magnitudes. The O stars at one end of the Harvard sequence tended to be both brighter and

131t is left as an exercise to show that only a very small fraction of calcium atoms are doubly ionized (Ca III).
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FIGURE 11  The dependence of spectral line strengths on temperature.

hotter than the M stars at the other end. In addition, the empirical mass—luminosity rela-
tion, deduced from the study of binary stars, showed that O stars are more massive than
M stars. These regularities led to a theory of stellar evolution'¢ that described how stars
might cool off as they age. This theory (no longer accepted) held that stars begin their
lives as young, hot, bright blue O stars. It was suggested that as they age, stars become
less massive as they exhaust more and more of their “fuel” and that they then gradually
become cooler and fainter until they fade away as old, dim red M stars. Although incorrect,
a vestige of this idea remains in the terms early and late spectral types.

An Enormous Range in Stellar Radii

If this idea of stellar cooling were correct, then there should be a relation between a star’s
absolute magnitude and its spectral type. A Danish engineer and amateur astronomer, Ejnar
Hertzsprung (1873-1967), analyzed stars whose absolute magnitudes and spectral types
had been accurately determined. In 1905 he published a paper confirming the expected
correlation between these quantities. However, he was puzzled by his discovery that stars
of type G or later had a range of magnitudes, despite having the same spectral classification.
Hertzsprung termed the brighter stars giants. This nomenclature was natural, since the

Stefan—-Boltzmann law shows that
R = ! A/ L (10)
- T2V d4mo’

If two stars have the same temperature (as inferred for stars having the same spectral type),
then the more luminous star must be larger.

16Stellar evolution describes the change in the structure and composition of an individual star as it ages. This
usage of the term evolution differs from that in biology, where it describes the changes that occur over generations,
rather than during the lifetime of a single individual.
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Hertzsprung presented his results in tabular form only. Meanwhile, at Princeton Uni-
versity, Henry Norris Russell (1877-1957) independently came to the same conclusions as
Hertzsprung. Russell used the same term, giant, to describe the luminous stars of late spec-
tral type and the term dwarf stars for their dim counterparts. In 1913 Russell published the
diagram shown in Fig. 12. It records a star’s observed properties: absolute magnitude on
the vertical axis (with brightness increasing upward) and spectral type running horizontally
(so temperature increases to the leff). This first “Russell diagram” shows most of the features
of its modern successor, the Hertzsprung—Russell (H-R) diagram.'” More than 200 stars
were plotted, most within a band reaching from the upper left-hand corner, home of the hot,
bright O stars, to the lower right-hand corner, where the cool, dim M stars reside. This band,
called the main sequence, contains between 80% and 90% of all stars in the H-R diagram.
In the upper right-hand corner are the giant stars. A single white dwarf, 40 Eridani B, sits at
the lower left.!® The vertical bands of stars in Russell’s diagram are a result of the discrete
classification of spectral types. A more recent version of an observational H-R diagram is
shown in Fig. 13 with the absolute visual magnitude of each star plotted versus its color
index and spectral type.'”

Figure 14 shows another version of the H-R diagram. Based on the average properties
of main-sequence stars, this diagram has a theorist’s orientation: The luminosity and
effective temperature are plotted for each star, rather than the observationally determined
quantities of absolute magnitude and color index or spectral type.

The Sun (G2) is found on the main sequence, as is
Vega (A0). Both axes are scaled logarithmically to accommodate the huge span of
stellar luminosities, ranging from about 5 x 10~# L, to nearly 10° L.?° Actually, the main
sequence is not a line but, rather, has a finite width, as shown in Figs. 12 and 13, owing
to the changes in a star’s temperature and luminosity that occur while it is on the main
sequence and to slight differences in the compositions of stars. The giant stars occupy the
region above the lower main sequence, with the supergiants, such as Betelgeuse, in the
extreme upper right-hand corner. The white dwarfs (which, despite their name, are often
not white at all) lie well below the main sequence.
The radius of a star can be easily determined from its position on the H-R diagram.
The Stefan—Boltzmann law in the form of Eq. ( 10) shows that if two stars have the
same surface temperature, but one star is 100 times more luminous than the other, then the

"The names of Hertzsprung and Russell were forever joined by another Danish astronomer, Bengt Strémgren
(1908-1987), who suggested that the diagram be named after its two inventors. Stromgren’s suggestion that star
clusters be studied led to a clarification of the ideas of stellar evolution.

18Russell merely considered this star to be an extremely underluminous binary companion of the star 40 Eridani
A; the extraordinary nature of white dwarfs was yet to be discovered. Note that the term dwarf refers to the stars
on the main sequence and should not be confused with the white dwarf designation for stars lying well below the
main sequence.

9Note that Fig. 13 suggests that a correlation exists between color index and spectral type, both of which are
reflections of the effective temperature of the star. Recall that color index is closely related to the blackbody
spectrum of a star.

20Extremely late and early spectral types are not included in Fig. 14. The dimmest main-sequence stars are
difficult to find, and the brightest have very short lifetimes, making their detection unlikely. As a result, only a
handful of stars belonging to these classifications are known—too few to establish their average properties.
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FIGURE 12 Henry Norris Russell’s first diagram, with spectral types listed along the top and
absolute magnitudes on the left-hand side. (Figure from Russell, Nature, 93, 252, 1914.)

radius of the more luminous star is +/100 = 10 times larger. On a logarithmically plotted
H-R diagram, the locations of stars having the same radii fall along diagonal lines that run
roughly parallel to the main sequence (lines of constant radius are also shown in Fig.  14).
The main-sequence stars show some variation in their sizes, ranging from roughly 20 Ry
at the extreme upper left end of the main sequence down to 0.1 Ry at the lower right end.
The giant stars fall between roughly 10 R and 100 Rg. For example, Aldebaran (o Tauri),
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An observer’s H-R diagram. The data are from the Hipparcos catalog. More than
3700 stars are included here with parallax measurements determined to better than 20%. (Data courtesy
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The theorist’s Hertzsprung—Russell diagram. The dashed lines indicate lines of con-
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the gleaming “eye” of the constellation Taurus (the Bull), is an orange giant star that is 45
times larger than the Sun.

The supergiant stars are even larger. Betelgeuse, a pulsating variable star, contracts
and expands roughly between 700 and 1000 times the radius of the Sun with a period of
approximately 2070 days. If Betelgeuse were located at the Sun’s position, its surface would
at times extend past the orbit of Jupiter. The star i Cephei in the constellation of Cepheus
(a king of Ethiopia) is even larger and would swallow Saturn.?!

The existence of such a simple relation between luminosity and temperature for main-
sequence stars is a valuable clue that the position of a star on the main sequence is governed
by a single factor. This factor is the star’s mass.

The most massive O stars listed in that table are observed
to have masses of 60 M,?? and the lower end of the main sequence is bounded by M stars
having at least 0.08 M .?* Combining the radii and masses known for main-sequence stars,
we can calculate the average density of the stars. The result, perhaps surprising, is that main-
sequence stars have roughly the same density as water. Moving up the main sequence, we
find that the larger, more massive, early-type stars have a lower average density.

Example 2.1. The Sun, a G2 main-sequence star, has a mass of My = 1.9891 x 10% kg
and a radius of Ry = 6.95508 x 10® m. Its average density is thus

— M@ -3
Po=7_or = 1410kgm™>.

3T RG

Sirius, the brightest-appearing star in the sky, is classified as an A1 main sequence star with
a mass of 2.2 My and a radius of 1.6 Rg. The average density of Sirius is

2.2 Mg

== 9  —760kgm > =0.545,,
Tr(16Ry) £ Po

D=
which is about 76 percent of the density of water. However, this is enormously dense
compared to a giant or supergiant star. The mass of Betelgeuse is estimated to lie between
10 and 15 Mg; we will adopt 10 Mg, here. For illustration, if we take the maximum radius of
this pulsating star to be about 1000 R, then the average density of Betelgeuse (at maximum
size) is roughly

10 Mg g
p=——""—7=10"py!
P = 21000 R,)? Po
Thus Betelgeuse is a tenuous, ghostly object—a hundred thousand times less dense than
the air we breathe. It is difficult even to define what is meant by the “surface” of such a
wraith-like star.

21, Cephei is a pulsating variable like Betelgeuse and has a period of 730 days. One of the reddest stars visible
in the night sky, u Cephei, is known as the Garnet Star.

22Theoretical calculations indicate that main-sequence stars as massive as 90 M may exist, and recent observations
have been made of a few stars with masses estimated near 100 Mg.

23Stars less massive than 0.08 Mg have insufficient temperatures in their cores to support significant nuclear
burning.
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Morgan-Keenan Luminosity Classes

Hertzsprung wondered whether there might be some difference in the spectra of giant
and main-sequence stars of the same spectral type (or same effective temperature). He
found just such a variation in spectra among the stars cataloged by Antonia Maury. In
her classification scheme she had noted line width variations that she referred to as a
c-characteristic. The subtle differences in the relative strengths of spectral lines for stars of
similar effective temperatures and different luminosities are depicted in Fig.  15. The work
begun by Hertzsprung and Maury, and further developed by other astronomers, culminated
in the 1943 publication of the Atlas of Stellar Spectra by William W. Morgan (1906-1994)
and Phillip C. Keenan (1908-2000) of Yerkes Observatory. Their atlas consists of 55 prints
of spectra that clearly display the effect of temperature and luminosity on stellar spectra and
includes the criteria for the classification of each spectrum. The MKK Atlas established the
two-dimensional Morgan—Keenan (M—K) system of spectral classification.”* A luminosity
class, designated by a Roman numeral, is appended to a star’s Harvard spectral type. The
numeral “I” (subdivided into classes Ia and Ib) is reserved for the supergiant stars, and “V”
denotes a main-sequence star. The ratio of the strengths of two closely spaced lines is often
employed to place a star in the appropriate luminosity class. In general, for stars of the same
spectral type, narrower lines are usually produced by more luminous stars.?> The Sun is a
G2 V star, and Betelgeuse is classified as M2 Ia.?® The series of Roman numerals extends
below the main sequence; the subdwarfs (class VI or “sd”) reside slightly to the left of the
main sequence because they are deficient in metals. The M—K system does not extend to
the white dwarfs, which are classified by the letter D. Figure 16 shows the corresponding
divisions on the H-R diagram and the locations of a selection of specific stars, and Table 3
lists the luminosity classes.

The two-dimensional MK classification scheme enables astronomers to locate a star’s
position on the Hertzsprung—Russell diagram based entirely on the appearance of its spec-
trum. Once the star’s absolute magnitude, M, has been read from the vertical axis of the
H-R diagram, the distance to the star can be calculated from its apparent magnitude, m,

d= 10(171—M+5)/5

where d is in units of parsecs. This method of distance determination, called spectroscopic
parallax, is responsible for many of the distances measured for stars,?’ but its accuracy is
limited because there is not a perfect correlation between stellar absolute magnitudes and
luminosity classes. The intrinsic scatter of roughly ££1 magnitude for a specific luminosity
class renders d uncertain by a factor of about 10/ = 1.6.

24Edith Kellman of Yerkes printed the 55 spectra and was a co-author of the atlas; hence the additional “K” in
MKK Atlas.

25Because the atmospheres of more luminous stars are less dense, there are fewer
collisions between atoms. Collisions can distort the energies of atomic orbitals, leading to broadening of the
spectral lines.
26Betelgeuse, a pulsating variable star, is sometimes given the intermediate classification M2 Iab.
27Since the technique of parallax is not involved, the term spectroscopic parallax is a misnomer, although the
name does at least imply a distance determination.
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FIGURE 15 A comparison of the strengths of the hydrogen Balmer lines in types A0 Ia, AO Ib,
A0 III, AO IV, AO V, and a white dwarf, showing the narrower lines found in supergiants. These
spectra are displayed as negatives, so absorption lines appear bright. (Figure from Yamashita, Nariai,
and Norimoto, An Atlas of Representative Stellar Spectra, University of Tokyo Press, Tokyo, 1978.)
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FIGURE 16  Luminosity classes on the H-R diagram. (Figure from Kaler, Stars and Stellar
Spectra, © Cambridge University Press 1989. Reprinted with the permission of Cambridge University
Press.)
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TABLE 3  Morgan—Keenan Luminosity Classes.

Class  Type of Star
[a-O  Extreme, luminous supergiants
Ia Luminous supergiants
Ib Less luminous supergiants
II Bright giants
I Normal giants
v Subgiants
\" Main-sequence (dwarf) stars
VI, sd Subdwarfs
D White dwarfs
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PROBLEM SET

1 Show that at room temperature, the thermal energy k7 = 1/40 eV. At what temperature is kT
equalto 1 eV?to 13.6 eV?

2 Verify that Boltzmann’s constant can be expressed in terms of electron volts rather than joules
ask =8.6173423 x 1075 eV K™\,

3 Use Fig. 6, the graph of the Maxwell-Boltzmann distribution for hydrogen gas at 10,000 K,
to estimate the fraction of hydrogen atoms with a speed within 1 km s™' of the most probable
speed, Vpp.

7 T T T T T T T

Hydrogen atoms with 7 = 10,000 K
Vp=129%10* m s~
Vs = 1.57 X 104 m 57!

rms

n,/n 1073 sm™

(95}
T

Ll l
Ump rms 2 3 4

Speed (104 m s™!)

FIGURE 6 Maxwell-Boltzmann distribution function, n, / n, for hydrogen atoms at a temperature
of 10,000 K. The fraction of hydrogen atoms in the gas having velocities between 2 x 10* m s~' and
2.5 x 10* m s~! is the shaded area under the curve between those two velocities; see Example 1.1.

4 Show that the most probable speed of the Maxwell-Boltzmann distribution of molecular speeds
(Eq. 1) is given by Eq. (2).

32
nydv=n (h”;CT) eV IRT 402 (1)
WT
tny = | 2T @)

5 For a gas of neutral hydrogen atoms, at what temperature is the number of atoms in the first
excited state only 1% of the number of atoms in the ground state? At what temperature is the
number of atoms in the first excited state 10% of the number of atoms in the ground state?

From Chapter 8 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007 by
Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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6 Consider a gas of neutral hydrogen atoms, as in Example 1.3 from “The Classification of Stellar

Spectra”.

(a) At what temperature will equal numbers of atoms have electrons in the ground state and in
the second excited state (n = 3)?

(b) Atatemperature of 85,400 K, when equal numbers (V) of atoms are in the ground state and
in the first excited state, how many atoms are in the second excited state (n = 3)? Express
your answer in terms of N.

(c) As the temperature 7T — oo, how will the electrons in the hydrogen atoms be distributed,
according to the Boltzmann equation? That is, what will be the relative numbers of electrons
inthen =1, 2,3, ... orbitals? Will this in fact be the distribution that actually occurs? Why
or why not?

7 In Example 1.4, from “The Classification of stellar,” the statement was made that “nearly all
of the H I atoms are in the ground state, so Eq. ( 7) for the partition function simplifies to
Z; >~ g, = 2(1)2 = 2.” Verify that this statement is correct for a temperature of 10,000 K by
evaluating the first three terms in Eq. (7) for the partition function.

[e ]
7 = ng e~ (Ei—ED/KT 7
j=1

8 Equation ( 7) for the partition function actually diverges as n — co. Why can we ignore these
large-n terms?

oo
Z=" gje BB, 7
j=1

9 Consider a box of electrically neutral hydrogen gas that is maintained at a constant volume
V. In this simple situation, the number of free electrons must equal the number of H II ions:
n,V = Ny. Also, the total number of hydrogen atoms (both neutral and ionized), V,, is related to
the density of the gas by N, = pV /(m, +m,) > pV /m,, where m , is the mass of the proton.
(The tiny mass of the electron may be safely ignored in this expression for N,.) Let the density
of the gas be 107 kg m™>, typical of the photosphere of an A0 star.

(a) Make these substitutions into Eq. ( 8) to derive a quadratic equation for the fraction of
ionized atoms:

Nn 2 Nu\ (m)p 2nm kT 3/2 /AT m, 2nm kT 3/2 /AT

Nipy 274 <27ZmekT)3/2 o~ X/KT

N,‘ - neZ,‘ h2

®)

(b) Solve the quadratic equation in part (a) for the fraction of ionized hydrogen, Ny/N,, for a
range of temperatures between 5000 K and 25,000 K. Make a graph of your results, and
compare it with Fig. 8.
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FIGURE 8 Ny /Ny for hydrogen from the Saha equation when P, = 20 N m~2. Fifty percent
ionization occurs at 7' >~ 9600 K.

10 In this problem, you will follow a procedure similar to that of Example 1.4 from “The Classification
of Stellar Spectra” for the case of a stellar atmosphere composed of pure helium to find the temp-
erature at the middle of the He I partial ionization zone, where half of the He I atoms have been
ionized. (Such an atmosphere would be found on a white dwarf of spectral type DB.) The
ionization energies of neutral helium and singly ionized helium are x; = 24.6 eV and xj =
54.4 eV, respectively. The partition functions are Z; = 1, Z;; = 2,and Zy; = 1 (as expected for
any completely ionized atom). Use P, = 20 N m~? for the electron pressure.

(a) UseEq.( 9)tofind Ny/N;and Ny;/ Ny for temperatures of 5000 K, 15,000 K, and 25,000 K.
How do they compare?

3/2
Ni-H _ ZkTZi_H <2nmekT) e—Xi/kT‘ (9)

N;  P,Z h?

(b) Show that Nyj/ Ny = Nu/(N1 4+ Ni + Nyp) can be expressed in terms of the ratios Ny /Ny
and N[[]/N][.

(c) Make a graph of Nyj/N similar to Fig. 8 for a range of temperatures from 5000 K
to 25,000 K. What is the temperature at the middle of the He I partial ionization zone?
Because the temperatures of the middle of the hydrogen and He I partial ionization zones
are so similar, they are sometimes considered to be a single partial ionization zone with a
characteristic temperature of 1-1.5 x10* K.
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FIGURE 8 Nii/ Niorar for hydrogen from the Saha equation when P, = 20 N m~2. Fifty percent
ionization occurs at 7' >~ 9600 K.

11 Follow the procedure of Problem 10 to find the temperature at the middle of the He II partial
ionization zone, where half of the He Il atoms have been ionized. This ionization zone is found at
a greater depth in the star, and so the electron pressure is larger—use a value of P, = 1000N m 2.
Let your temperatures range from 10,000 K to 60,000 K. This particular ionization zone plays
a crucial role in pulsating stars.

12 Use the Saha equation to determine the fraction of hydrogen atoms that are ionized, Ny /Nota1,
at the center of the Sun. Here the temperature is 15.7 million K and the number density of
electrons is about n, = 6.1 x 10’ m~3. (Use Z; = 2.) Does your result agree with the fact that
practically all of the Sun’s hydrogen is ionized at the Sun’s center? What is the reason for any
discrepancy?

13 Use the information in Example 1.5 from “The Classification of Stellar Spectra” to calculate
the ratio of doubly to singly ionized calcium atoms (Ca III/Ca II) in the Sun’s photosphere. The
ionization energy of Ca Il is x; = 11.9 eV. Use Zj; = 1 for the partition function of Ca III. Is
your result consistent with the statement in Example 1.5 that in the solar photosphere, “nearly
all of the calcium atoms are available for forming the H and K lines of calcium”?

14 Consider a giant star and a main-sequence star of the same spectral type. The giant star, which
has a lower atmospheric density, has a slightly lower temperature than the main-sequence star.
Use the Saha equation to explain why this is so. Note that this means that there is not a perfect
correspondence between temperature and spectral type!
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15 Figure 14 shows that a white dwarf star typically has a radius that is only 1% of the Sun’s.

Determine the average density of a 1-M white dwarf.
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FIGURE 14
stant radius.

16 The blue-white star Fomalhaut (“the fish’s mouth” in Arabic) is in the southern constella-
tion of Pisces Austrinus. Fomalhaut has an apparent visual magnitude of V = 1.19. Use the

H-R diagram in Fig. 16 to determine the distance to this star.

The theorist’s Hertzsprung—Russell diagram. The dashed lines indicate lines of con-
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FIGURE 16  Luminosity classes on the H-R diagram. (Figure from Kaler, Stars and Stellar
Spectra, © Cambridge University Press 1989. Reprinted with the permission of Cambridge University
Press.)
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The Description of the Radiation Field
Stellar Opacity

Radiative Transfer

The Transfer Equation

The Profiles of Spectral Lines

Gh W =

1 MTHE DESCRIPTION OF THE RADIATION FIELD

The light that astronomers receive from a star comes from the star’s atmosphere, the layers
of gas overlying the opaque interior. A flood of photons pours from these layers, releasing
the energy produced by the thermonuclear reactions, gravitational contraction, and cooling
in the star’s center. The temperature, density, and composition of the atmospheric layers
from which these photons escape determine the features of the star’s spectrum. To interpret
the observed spectral lines properly, we must describe how light travels through the gas that
makes up a star.

The Specific and Mean Intensities

Figure 1 shows a ray of light with a wavelength between A and A 4 dA passing through
a surface of area d A at an angle 6 into a cone of solid angle d2.! The angle 6 is measured
from the direction perpendicular to the surface, so dA cos 6 is the area d A projected onto
a plane perpendicular to the direction in which the radiation is traveling. Defining

_9E

E; dA is assumed to be the amount of energy that these rays carry into the cone in a time
interval d¢. Then the specific intensity of the rays is defined as

al E;, di
I)L = — =

0 drdtdA cos0dQQ

(D

I'The surface is a mathematical location in space and is not necessarily a real physical surface.

From Chapter 9 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007

by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved. 263
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(D)

0/ dQ = sin 0 dO deb

dA ¢ Q’Q‘>

FIGURE 1 Intensity /.

Although the energy E; dA in the numerator is vanishingly small, the differentials in the
denominator are also vanishingly small, so the ratio approaches a limiting value of ;. The
specific intensity is usually referred to simply as the intensity. Thus, in spherical coordinates,

E,d\=1,d\dtdA cos0dQ2 =1, d\rdtdA cos6 sin6 db d¢ 2)

is the amount of electromagnetic radiation energy having a wavelength between A and

A + dA that passes in time d¢ through the area d A into a solid angle d<2 = sin 6 d6 d¢. The
specific intensity therefore has units of W m~sr~'.> The Planck function B, is an example

of the specific intensity for the special case of blackbody radiation. In general, however,
the energy of the light need not vary with wavelength in the same way as it does for black-

body radiation. Later we will see under what circumstances we may set I, = B,.

Imagine a light ray of intensity I, as it propagates through a vacuum. Because I, is
defined in the limit d2 — 0, the energy of the ray does not spread out (or diverge). The
intensity is therefore constant along any ray traveling through empty space.

In general, the specific intensity 7, does vary with direction, however. The mean intensity
of the radiation is found by integrating the specific intensity over all directions and dividing
the result by 47 sr, the solid angle enclosed by a sphere, to obtain an average value of 7.
In spherical coordinates, this average value is®

1

1 2 T
(L) = — f LdQ=— / I, sin0 do dé. 3)
47 4 $=0 J6=0

For an isotropic radiation field (one with the same intensity in all directions), (/) = I,.
Blackbody radiation is isotropic and has (I,) = B;.

2W m~? indicates an energy per second per unit area per unit wavelength interval,
W m~2m~"!, not an energy per second per unit volume.
3Many texts refer to the average intensity as J; instead of (I, ). However, in this text the notation (;) has been
selected to explicitly illustrate the average nature of the quantity.
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The Specific Energy Density

To determine how much energy is contained within the radiation field, we can use a “trap”
consisting of a small cylinder of length dL, open at both ends, with perfectly reflecting
walls inside; see Fig. 2. Light entering the trap at one end travels and (possibly) bounces
back and forth until it exits the other end of the trap. The energy inside the trap is the same
as what would be present at that location if the trap were removed. The radiation that enters
the trap at an angle 6 travels through the trap in a time dt = dL/(c cos 6). Thus the amount
of energy inside the trap with a wavelength between A and A 4 dA that is due to the radiation
that enters at angle 6 is

dL
E,dr=1,drdtdA cos0dQ=1,drdAdQ2 —.
c

The quantity d A d L is just the volume of the trap, so the specific energy density (energy
per unit volume having a wavelength between A and A 4 dA) is found by dividing E; dX
by dL d A, integrating over all solid angles, and using Eq. (3):

1
u, dr = —/IAdAdQ

c
1 2 T

=—/ / I, d\ sinf df d¢
¢ Jop=0Jo=0
4

- T”de. 4)

Light leaving trap

dA

|
|
|
|
|
|
AN dL
|
|
|
|
|
|
|

Light entering trap

FIGURE 2 Cylindrical “trap” for measuring energy density u;.
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For an isotropic radiation field, u; dA = (47 /c) I, d, and for blackbody radiation,

8whe/)\?
whe/ a

4
updh = LBy dy = — 2 g (5)
c ohe/"kT _ |

At times it may be more useful to express the blackbody energy density in terms of the
frequency, v, of the light by employing:

8mhv3/c?

4
uvdUZTBvdl)Zm V. (6)

Thus u, dv is the energy per unit volume with a frequency between v and v + dv.
The total energy density, u, is found by integrating over all wavelengths or over all

frequencies:
oo oo
u:/ uﬂi)»:/ u, dv.
0 0

For blackbody radiation (/, = B,), the equation shows that

4

4o [ 40T 4
Uu=— B, (T)d:\ = =aT", @)
¢ Jo

where a = 40/c is known as the radiation constant and has the value

a=17.565767 x 10710 T m—3K 4.

The Specific Radiative Flux

Another quantity of interest is F), the specific radiative flux. F, d) is the net energy
having a wavelength between A and A + dA that passes each second through a unit area in
the direction of the z-axis:

2 T
de)»:/lxd)» cosOdQ:/ / I, d) cosO sinfdbde. ®)
$=0 J6=0

The factor of cos 6 determines the z-component of a light ray and allows the cancelation of
oppositely directed rays. For an isotropic radiation field there is no net transport of energy,
and so Fy, = 0.

Both the radiative flux and the specific intensity describe the light received from a
celestial source, and you may wonder which of these quantities is actually measured by a
telescope’s photometer, pointed at the source of light. The answer depends on whether the
source is resolved by the telescope. Figure 3(a) shows a source of light, uniform over
its entire surface,* that is resolved by the telescope; the angle @ subtended by the source
as a whole is much larger than 6,,,, the smallest angle resolvable according to Rayleigh’s

4The assumption of a uniform light source precludes dimming effects such as limb darkening.
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Aperture

Resolved source

(a)

‘ Airy disk

Unresolved source
Aperture

(b)

FIGURE3 The measurement of (a) the specific intensity for aresolved source and (b) the radiative
flux for an unresolved source. Note that any object with an angular resolution smaller than 6, on
the surface of the resolved source (such as a surface feature on a planet) remains unresolved.

criterion. In this case, what is being measured is the specific intensity, the amount of energy
per second passing through the aperture area into the solid angle €2, defined by 6,,. For
example, at a wavelength of 501 nm, the measured value of the specific intensity at the
center of the Sun’s disk is

Isor = 4.03 x 1083 W m3sr!.

Now imagine that the source is moved twice as far away. According to the inverse
square law for light, there will be only (1/2)?> = 1/4 as much energy received from each
square meter of the source. If the source is still resolved, however, then the amount of
source area that contributes energy to the solid angle Q2.,;, has increased by a factor of
4, resulting in the same amount of energy reaching each square meter of the detector. The
specific intensity of light rays from the source is thus measured to be constant.’

However, it is the radiative flux that is measured for an unresolved source. As the source
recedes farther and farther, it will eventually subtend an angle 6 smaller than 6,, and
it can no longer be resolved by the telescope. When 6 < 6y, the energy received from
the entire source will disperse throughout the diffraction pattern (the Airy disk and
rings) determined by the telescope’s aperture. Because the light arriving at the detec-
tor leaves the surface of the source at all angles [see Fig. 3(b)], the detector is effec-
tively integrating the specific intensity over all directions. This is just the definition of
the radiative flux, Eq. ( 8). As the distance r to the source increases further, the amount
of energy falling within the Airy disk (and consequently the value of the radiative flux)
decreases as 1/ r2, as expected.

> The image and object intensities of a resolved
object are the same.
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Radiation Pressure

Because a photon possesses an energy E, Einstein’s relativistic energy equation tells us
that even though it is massless, a photon also carries a momentum of p = E/c and thus
can exert a radiation pressure. This radiation pressure can be derived in the same way
that gas pressure is found for molecules bouncing off a wall. Figure 4 shows photons
reflected at an angle 6 from a perfectly reflecting surface of area dA into a solid angle
dS2. Because the angle of incidence equals the angle of reflection, the solid angles shown
for the incident and reflected photons are the same size and inclined by the same angle
0 on opposing sides of the z-axis. The change in the z-component of the momentum of
photons with wavelengths between A and A + dA that are reflected from the area d A in a
time interval df is

dp;, dir = [(px)ﬁnal,z - (pk)initial,z] da

E % E 0
_ |: » cosf <_ 5 COS )] ™
c c

_ 2 E, cos@
B c

dxr

2
= " L,drdtdA cos®6dS,
C

where the last expression was obtained from Eq. ( 2). Dividing dp, by dt and dA gives
(dp;./dt)/d A. But from Newton’s second and third laws, —dp, /dt is the force exerted by
the photons on the area d A, although we will ignore the minus sign, which merely says
that the force is in the —z-direction. Thus the radiation pressure is the force per unit area,
(dp,/dt)/d A, produced by the photons within the solid angle d<2. Integrating over the
hemisphere of all incident directions results in Piaq , d X, the radiation pressure exerted by

dA

FIGURE 4  Radiation pressure produced by incident photons from the solid angle d€2.
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those photons having a wavelength between A and A + dA:

2
Prag s dA = —/ L,d) cos>0d2  (reflection)
€ Jhemisphere

9 2 pn/2
= _f / L, d) cos® 6 sin6 d6 d¢.
C Jp=0Jo=0

Just as the pressure of a gas exists throughout the volume of the gas and not just at the
container walls, the radiation pressure of a “photon gas” exists everywhere in the radia-
tion field. Imagine removing the reflecting surface dA in Fig. 4 and replacing it with a
mathematical surface. The incident photons will now keep on going through d A; instead of
reflected photons, photons will be streaming through d A from the other side. Thus, for an
isotropic radiation field, there will be no change in the expression for the radiation pressure
if the leading factor of 2 (which originated in the change in momentum upon reflection of
the photons) is removed and the angular integration is extended over all solid angles:

1
Podgpdrh = — / I, d)\ cos*0dQ2  (transmission) 9
sphere

C
1 2w T 5 )

= - I, dA\ cos” 0 sin6dO d¢
¢ Jo=0 Jo=0

4
= 3—”1A dr  (isotropic radiation field). (10)
C

However, it may be that the radiation field is not isotropic. In that case, Eq. ( 9) for the ra-
diation pressure is still valid but the pressure depends on the orientation of the mathematical
surface d A.

The total radiation pressure produced by photons of all wavelengths is found by inte-
grating Eq. (10):

00
Prad = / Prad,)L dh.
0

For blackbody radiation, it is left as a problem to show that

40T* 1 _, 1
= —al” = -u. (11)
3 3

4 [
Prag = _/ B, (T)d\ =
3c 0

Thus the blackbody radiation pressure is one-third of the energy density. (For comparison,
the pressure of an ideal monatomic gas is two-thirds of its energy density.)
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2 HESTELLAR OPACITY

The classification of stellar spectra is an ongoing process. Even the most basic task,
such as finding the “surface™® temperature of a particular star, is complicated by the fact
that stars are not actually blackbodies. The Stefan—Boltzmann relation defines a star’s
effective temperature, but some effort is required to obtain a more accurate value of the
“surface” temperature.” Figure 5 shows that the Sun’s spectrum deviates substantially
from the shape of the blackbody Planck function, B;, because solar absorption lines remove
light from the Sun’s continuous spectrum at certain wavelengths. The decrease in intensity
produced by the dense series of metallic absorption lines in the solar spectrum is especially
effective; this effect is called line blanketing. In other wavelength regimes (e.g., X-ray and
UV), emission lines may augment the intensity of the continuous spectrum.

Temperature and Local Thermodynamic Equilibrium

Although we often think in terms of the temperature at a particular location, there are
actually many different measures of temperature within a star, defined according to the
physical process being described:

* The effective temperature, which is obtained from the Stefan-Boltzmann law
is uniquely defined for a specific level within a star and is an important global
descriptor of that star.

¢ The excitation temperature is defined by the Boltzmann equation.

* The ionization temperature is defined by the Saha equation.

Energy (10* W m~2sr!)

™
g
2
g
<
¢}

0 1 1 1 1 1 1 1 1 1 1 1 1
350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Wavelength (nm)

FIGURES  The spectrum of the Sun in 2 nm wavelength intervals. The dashed line is the curve of
an ideal blackbody having the Sun’s effective temperature. (Figure adapted from Aller, Atoms, Stars,
and Nebulae, Third Edition, Cambridge University Press, New York, 1991.)

The “surface” of a star is defined as the region where the emergent visual continuum forms, namely the photosphere.

7See Bshm-Vitense (1981) for more details concerning the determination of temperatures.
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e The Kinetic temperature is contained in the Maxwell-Boltzmann distribution.

* The color temperature is obtained by fitting the shape of a star’s continuous spectrum
to the Planck function.

With the exception of the effective temperature, the remaining temperatures apply to any
location within the star and vary according to the conditions of the gas. Although defined
differently, the excitation temperature, the ionization temperature, the kinetic temperature,
and the color temperature are the same for the simple case of a gas confined within an
“ideal box.” The confined gas particles and blackbody radiation will come into equilibrium,
individually and with each other, and can be described by a single well-defined temperature.
In such a steady-state condition, no net flow of energy through the box or between the
matter and the radiation occurs. Every process (e.g., the absorption of a photon) occurs at
the same rate as its inverse process (e.g., the emission of a photon). This condition is called
thermodynamic equilibrium.

However, a star cannot be in perfect thermodynamic equilibrium. A net outward flow
of energy occurs through the star, and the temperature, however it is defined, varies with
location. Gas particles and photons at one position in the star may have arrived there
from other regions, either hotter or cooler (in other words, there is no “ideal box”). The
distribution in particle speeds and photon energies thus reflects a range of temperatures. As
the gas particles collide with one another and interact with the radiation field by absorbing
and emitting photons, the description of the processes of excitation and ionization becomes
quite complex. However, the idealized case of a single temperature can still be employed
if the distance over which the temperature changes significantly is large compared with the
distances traveled by the particles and photons between collisions (their mean free paths).
In this case, referred to as local thermodynamic equilibrium (LTE), the particles and
photons cannot escape the local environment and so are effectively confined to a limited
volume (an approximated “box”) of nearly constant temperature.

Example 2.1.  The photosphere is the surface layer of the Sun’s atmosphere where the
photons can escape into space. According to a model solar atmosphere, the temperature in
one region of the photosphere varies from 5580 K to 5790 K over a distance of 25.0 km.
The characteristic distance over which the temperature varies, called the temperature scale
height, H,, is given by

T 5685 K

= = = 677 km,
|[dT/dr| (5790 K — 5580 K)/(25.0 km)

Hr

where the average temperature has been used for the value of T'.

How does the temperature scale height of 677 km compare with the average dis-
tance traveled by an atom before hitting another atom? The density of the photosphere at
that level is about p = 2.1 x 10~* kg m >, consisting primarily of neutral hydrogen atoms
in the ground state. Assuming a pure hydrogen gas for convenience, the number of hydrogen

continued
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Collision cross section o

FIGURE 6  Mean free path, ¢, of a hydrogen atom.

atoms per cubic meter is roughly

n=-"L"—125%x10®m>,

mp

where m g is the mass of a hydrogen atom. In an approximate sense, two of these atoms will
“collide” if their centers pass within two Bohr radii, 2a, of each other.® As shownin Fig. 6,
we may consider the equivalent problem of a single atom of radius 2ay moving with speed v
through a collection of stationary points that represent the centers of the other atoms. In an
amount of time ¢, this atom has moved a distance vt and has swept out a cylindrical volume
V = n(2ap)?vt = ovt, where o = 7 (2ap)? is the collision cross section of the atom in this
classical approximation.® Within this volume V are nV = novt point atoms with which
the moving atom has collided. Thus the average distance traveled between collisions is

vt 1
= = —. (12)

novt no

The distance £ is the mean free path between collisions.'” For a hydrogen atom,
o =m(2ap)* =3.52 x 107" m”.

Thus the mean free path in this situation is

1 —4
£=—=227%x10"m.
no
The mean free path is several billion times smaller than the temperature scale height. As a
result, the atoms in the gas see an essentially constant kinetic temperature between collisions.
They are effectively confined within a limited volume of space in the photosphere. Of course
this cannot be true for the photons as well, since the Sun’s photosphere is the visible layer

8This treats the atoms as solid spheres, a classical approximation to the quantum atom.

9The concept of cross section actually represents a probability of particle interactions but has units of cross-
sectional area.

10A more careful calculation, using a Maxwellian velocity distribution for all of the atoms, results in a mean free
path that is smaller by a factor of /2.
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of the solar surface that we observe from Earth. Thus, by the very definition of photosphere,
the photons must be able to escape freely into space. To say more about the photon mean
free path and the concept of LTE, and to better understand the solar spectrum shown in
Fig. 5, we must examine the interaction of particles and photons in some detail.

The Definition of Opacity

We now turn to a consideration of a beam of parallel light rays traveling through a gas. Any
process that removes photons from a beam of light will be collectively termed absorption. In
this sense then, absorption includes the scattering of photons (such as Compton scattering)
as well as the true absorption of photons by atomic electrons making upward transitions.
In sufficiently cool gases, molecular energy-level transitions may also occur and must be

included.
The change in the intensity, d1,, of a ray of wavelength X as it travels through a gas is

proportional to its intensity, /,, the distance traveled, ds, and the density of the gas, p. That
is,

d])L =—K,\plkds. (13)

The distance s is measured along the path traveled by the beam and increases in the direction
that the beam travels; the minus sign in Eq. (  13) shows that the intensity decreases with
distance due to the absorption of photons. The quantity «; is called the absorption coeffi-
cient, or opacity, with the A subscript implicitly indicating that the opacity is wavelength-
dependent (x; is sometimes referred to as a monochromatic opacity). The opacity is the
cross section for absorbing photons of wavelength A per unit mass of stellar material and
has units of m? kg ! In general, the opacity of a gas is a function of its composition, density,
and temperature.'!

Example 2.2. Consider a beam of light traveling through a gas with initial intensity 7, o
at s = 0. The final intensity I,  after the light has traveled a distance s may be found by

integrating Eq. (13):
/Ik,f d[)\ /s
—_— = Kapds.
Lo D 0

I = Lge” lords, (14)

This leads to

where the f subscript has been dropped. For the specific case of a uniform gas of constant
opacity and density,

I)\ = I)hoe_“ps.

continued

Note that there is some inconsistency in the terminology; some authors refer to opacity as the inverse of the
mean free path of the photons.
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For pure absorption (with emission processes neglected), there is no way of replenishing
the photons lost from the beam. The intensity declines exponentially, falling by a factor
of e~! over a characteristic distance of £ = 1/k; p. In the solar photosphere where the
density is approximately p = 2.1 x 10~* kg m ™, the opacity (at a wavelength of 500 nm)
is k500 = 0.03 m? kg~'. Thus the characteristic distance traveled by a photon before being
removed from the beam at this level in the photosphere is

1

K5000

L= = 160 km.

Recalling Example 2.1, this distance is comparable to the temperature scale height Hy =
677 km. This implies that the photospheric photons do not see a constant temperature,
and so local thermodynamic equilibrium (LTE) is not strictly valid in the photosphere.
The temperature of the regions from which the photons have traveled will be somewhat
different from the local kinetic temperature of the gas. Although LTE is a commonly invoked
assumption in stellar atmospheres, it must be used with caution.

Optical Depth

For scattered photons, the characteristic distance £ is in fact the mean free path of the
photons. From Eq. ( 12),

1 1

=—=—

K).0 no,

Both k; p and no; can be thought of as the fraction of photons scattered per meter of distance
travelled. Note that the mean free path is different for photons of different wavelengths.
It is convenient to define an optical depth, 7,, back along a light ray by

dv, = —kypds, (15)

where s is the distance measured along the photon’s path in its direction of motion (when
observing the light from a star, we are looking back along the path traveled by the photon;
see Fig. 7). The difference in optical depth between a light ray’s initial position (s = 0)
and its final position after traveling a distance s is

A‘L’A =T,fr —Tho = —/ K) P ds. (16)
0

Note that AT, < 0; as the light approaches an observer, it is traveling through material
with diminishing optical depth. The outermost layers of a star may be taken to be at 7, = 0
for all wavelengths, after which the light travels unimpeded to observers on Earth. With
this definition of 7, = 0, Eq. (  16) gives the initial optical depth, 7, o, of a ray of light that
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z Light ray

FIGURE 7  Optical depth 7, measured back along a ray’s path.

traveled a distance s to reach the top of the atmosphere:

O—‘L’)LYOZ—‘/- K;\,ods
0

T, = / Ko ds. (17)
0

The “0” subscript has been dropped with the understanding that 7, is the optical depth of
the ray’s initial position, a distance s (s > 0) from the top of the atmosphere.

Combining Eq. (  17) with Eq. ( 14) of Example 2.2 for the case of pure absorption,
we find that the decline in the intensity of a ray that travels through a gas from an optical
depth 7, to reach the observer is given by

1)L = I)h()eif)‘. (18)

Thus, if the optical depth of the ray’s starting point is 7, = 1, the intensity of the ray will
decline by a factor of e~! before escaping from the star. The optical depth may be thought
of as the number of mean free paths from the original position to the surface, as measured
along the ray’s path. As a result, we typically see no deeper into an atmosphere at a given
wavelength than 7, & 1. Of course, for pure absorption the intensity of the ray declines
exponentially regardless of its direction of travel through the gas. But we can observe only
those rays traveling toward us, and this is reflected in our choice of t, = 0 at the top of the
atmosphere. Other choices of where t; = 0 may be more useful in some situations.

If 7, > 1 for a light ray passing through a volume of gas, the gas is said to be optically
thick; if T, < 1, the gas is optically thin. Because the optical depth varies with wavelength,
a gas may be optically thick at one wavelength and optically thin at another. For exam-
ple, Earth’s atmosphere is optically thin at visible wavelengths (we can see the stars), but
optically thick at X-ray wavelengths.
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FIGURE 8 (a) A light ray entering Earth’s atmosphere at an angle 6. (b) In I; vs. sec6.

Example 2.3. Measurements of a star’s radiative flux and
apparent magnitude are routinely corrected for the absorption of light by Earth’s atmosphere.
Figure 8(a) shows a ray of intensity 7, ¢ entering Earth’s atmosphere at an angle 6 and
traveling to a telescope on the ground. The intensity of the light detected at the telescope
is I ; the problem is to determine the value of I, o. If we take 7, = O at the telescope and &
to be the height of the atmosphere, then the optical depth of the light ray’s path through the
atmosphere may be found from Eq. ( 17). Using ds = —dz/cos0 = — sec Odz yields

K 0 dZ h
T, = / Kpds = —/ K0 = sec@/ Kypdz =1, 08ecH,
0 h cos 6 0

where 1,  is the optical depth for a vertically traveling photon (6 = 0). Substituting into
Eq. ( 18), the intensity of the light received at the telescope is therefore given by

I, = I ge™0%?, (19)

There are two unknowns in this equation, I, ¢ and 7, o; neither can be determined by
a single observation. However, as time passes and as Earth rotates on its axis, the angle 6
will change, and a semilog graph of several measurements of the received intensity [, as a
function of sec 8 can be made. As shown in Fig.  8(b), the slope of the best-fitting straight
line is —t, . Extrapolating the best-fitting line to sec & = 0 provides the value of I, ( at
the point where the line intercepts the [, 4 -axis.!2 In this way, measurements of the specific
intensity or radiative flux can be corrected for absorption by Earth’s atmosphere.

General Sources of Opacity

The opacity of the stellar material is determined by the details of how photons interact with
particles (atoms, ions, and free electrons). If the photon passes within o; of the particle,

12Note that since sec§ > 1, the best-fitting straight line must be extrapolated to the mathematically unavailable
value of 0.
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where o, is the particle’s cross-sectional area (or effective target area), the photon may
be either absorbed or scattered. In an absorption process, the photon ceases to exist and
its energy is given up to the thermal energy of the gas. In a scattering process the photon
continues on in a different direction. Both absorption and scattering can remove photons
from a beam of light, and so contribute to the opacity, «;, of the stellar material. If the
opacity varies slowly with wavelength, it determines the star’s continuous spectrum (or
continuum). The dark absorption lines superimposed on the continuum are the result of a
rapid variation in the opacity with wavelength.

In general, there are four primary sources of opacity available for removing stellar
photons from a beam. Each involves a change in the quantum state of an electron, and the
terms bound and free are used to describe whether the electron is bound to an atom or ion
in its initial and final states.

1. Bound-bound transitions (excitations and de-excitations) occur when an electron
in an atom or ion makes a transition from one orbital to another. An electron can make
an upward transition from a lower- to a higher-energy orbital when a photon of the
appropriate energy is absorbed. Thus «; pp, the bound—bound opacity, is small except
at those discrete wavelengths capable of producing an upward atomic transition. It
is Kk pb that is responsible for forming the absorption lines in stellar spectra. The
reverse process, emission, occurs when the electron makes a downward transition
from a higher- to a lower-energy orbital.

If an electron absorbs a photon and then returns directly to its initial orbital
(where it was before absorbing the photon), then a single photon is emitted in a
random direction. The net result of this absorption—emission sequence is essentially
a scattered photon. Otherwise, if the electron makes a transition to an orbital other
than its initial one, the original photon is not recovered and the process is one of true
absorption. If, while in its excited state, the atom or ion collides with a neighboring
particle, collisional de-excitation may result. When this occurs, the energy lost by the
atom or ion becomes a part of the thermal energy of the gas.

An important by-product of this absorption process is degrading of the average
energy of the photons in the radiation field. For example, if one photon is absorbed
but two photons are emitted as the electron cascades down to its initial orbital, then
the average photon energy has been reduced by half. There is no simple equation
for bound—bound transitions that describes all of the contributions to the opacity by
individual spectral lines.

2. Bound-free absorption, also known as photoionization, occurs when an incident
photon has enough energy to ionize an atom. The resulting free electron can have
any energy, so any photon with a wavelength A < hc/x,, where x, is the ionization
energy of the nth orbital, can remove an electron from an atom. Thus «; v, the
bound—free opacity, is one source of the continuum opacity. The cross section for the
photoionization of a hydrogen atom in quantum state n by a photon of wavelength A
is

3
opr = 1.31 x 107 (i r m?,
n5 \ 500 nm
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FIGURE 9 Free—free absorption of a photon.

which is comparable to the collision cross section for hydrogen found in Exam-
ple 2.1. The inverse process of free—bound emission occurs when a free electron
recombines with an ion, emitting one or more photons in random directions. As with
bound-bound emission, this also contributes to reducing the average energy of the
photons in the radiation field.

. Free—free absorption is a scattering process, shown in Fig. 9, that takes place when

a free electron in the vicinity of an ion absorbs a photon, causing the speed of the
electron to increase. In this process the nearby ion is necessary in order to conserve
both energy and momentum. (It is left as an exercise to show that an isolated free
electron cannot absorb a photon.) Since this mechanism can occur for a continuous
range of wavelengths, free—free opacity, k, ¢, is another contributor to the continuum
opacity. It may also happen that as it passes near an ion, the electron loses energy
by emitting a photon, which causes the electron to slow down. This process of free—
free emission is also known as bremsstrahlung, which means “braking radiation” in
German.

. Electron scattering is as advertised: A photon is scattered (not absorbed) by a free

electron through the process of Thomson scattering. In this process, the electron can
be thought of as being made to oscillate in the electromagnetic field of the photon.
However, because the electron is tiny, it makes a poor target for an incident photon,
resulting in a small cross section. The cross section for Thomson scattering has the
same value for photons of all wavelengths:

1 2\’
or = —5 < 2) =6.65x 107 m’. (20)
6mey \mec

This is typically two billion times smaller than the hydrogen cross section for pho-
toionization, op. The small size of the Thomson cross section means that electron
scattering is most effective as a source of opacity when the electron density is very
high, which requires high temperature. In the atmospheres of the hottest stars (and in
the interiors of all stars), where most of the gas is completely ionized, other sources of
opacity that involve bound electrons are eliminated. In this high-temperature regime,
the opacity due to electron scattering, ks, dominates the continuum opacity.
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A photon may also be scattered by an electron that is loosely bound to
an atomic nucleus. This result is called Compton scattering if the photon’s
wavelength is much smaller than the atom or Rayleigh scattering if the pho-
ton’s wavelength is much larger. In Compton scattering, the change in the
wavelength and energy of the scattered photon is very small, so Compton
scattering is usually lumped together with Thomson scattering. The cross sec-
tion for Rayleigh scattering from a loosely bound electron is smaller than the
Thomson cross section; it is proportional to 1/A* and so decreases with increas-
ing photon wavelength. Rayleigh scattering can be neglected in most atmospheres,
but it is important in the UV for the extended envelopes of supergiant stars, and in
cool main-sequence stars.'> The scattering of photons from small particles is also
responsible for the reddening of starlight as it passes through interstellar dust.

Example 2.4.  The energy of an electron in the n = 2 orbit of a hydrogen atom is given
by

13.6
Ey=———¢eV=-340¢eV.
22

A photon must have an energy of at least x, = 3.40 eV to eject this electron from the atom.
Thus any photon with a wavelength

he
A < — =364.7 nm
X2

is capable of ionizing a hydrogen atom in the first excited state (n = 2). The opacity of
the stellar material suddenly increases at wavelengths A < 364.7 nm, and the radiative flux
measured for the star accordingly decreases. The abrupt drop in the continuous spectrum
of a star at this wavelength, called the Balmer jump, is evident in the Sun’s spectrum
(Fig. 5). The size of the Balmer jump in hot stars depends on the fraction of hydrogen
atoms that are in the first excited state. This fraction is determined by the temperature via
the Boltzmann equation, so a measurement of the size of the Balmer jump can be used
to determine the temperature of the atmosphere. For cooler or very hot stars with other
significant sources of opacity, the analysis is more complicated, but the size of the Balmer
jump can still be used as a probe of atmospheric temperatures.

The wavelength 364.7 nm is right in the middle of the bandwidth of the ultravi-
olet (U) filter in the UBV system. As a result, the Balmer jump will tend to decrease
the amount of light received in the bandwidth of the U filter and so increase both the
ultraviolet magnitude U and the color index (U — B) observed for a star. This effect
will be strongest when N,/N__, the fraction of all hydrogen atoms that are in the first

total®
continued

3Rayleigh scattering is also important in planetary atmospheres and is responsible for Earth’s blue sky, for
instance.
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excited state, is a maximum. This occurs at a temperature of 9600 K. about the tempe-
rature of an AQ star on the main sequence. A careful examination of the color—color
diagram in the below figure reveals that this is indeed the spectral type at which the
value of U — B differs most from its blackbody value. The effect of line blanketing affects
the measured color indices, making the star appear more red than a model blackbody star of
the same effective temperature, and thus increasing the values of both U — B and B — V.

-0.5 0.0 0.5 1.0 1.5 2.0
B-V
FIGURE Color—color diagram for main-sequence stars. The dashed line is for a blackbody.

Continuum Opacity and the H™ lon

The primary source of the continuum opacity in the atmospheres of stars later than FO is the
photoionization of H™ ions. An H™ ion is a hydrogen atom that possesses an extra electron.
Because of the partial shielding that the nucleus provides, a second electron can be loosely
bound to the atom on the side of the ion opposite that of the first electron. In this position
the second electron is closer to the positively charged nucleus than it is to the negatively
charged electron. Therefore, according to Coulomb’s law, the net force on the extra
electron is attractive.

The binding energy of the H™ ion is only 0.754 eV, compared with the 13.6 eV required
to ionize the ground state hydrogen atom. As a result, any photon with energy in excess
of the ionization energy can be absorbed by an H™ ion, liberating the extra electron; the
remaining energy becomes kinetic energy. Conversely, an electron captured by a hydrogen
atom to form H™ will release a photon corresponding to the kinetic energy lost by the
electron together with the ion’s binding energy,

H+e =H +y.
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Since 0.754 eV corresponds to a photon with a wavelength of 1640 nm, any photon with a
wavelength less than that value can remove an electron from the ion (bound—free opacity).
At longer wavelengths, H™ can also contribute to the opacity through free—free absorption.
Consequently, H™ ions are an important source of continuum opacity for stars cooler than
FO. However, the H™ ions become increasingly ionized at higher temperatures and therefore
make less of a contribution to the continuum opacity. For stars of spectral types B and A,
the photoionization of hydrogen atoms and free—free absorption are the main sources of the
continuum opacity. At the even higher temperatures encountered for O stars, the ionization
of atomic hydrogen means that electron scattering becomes more and more important, with
the photoionization of helium also contributing to the opacity.

Molecules can survive in cooler stellar atmospheres and contribute to the bound—bound
and bound—free opacities; the large number of discrete molecular absorption lines is an
efficient impediment to the flow of photons. Molecules can also be broken apart into their
constituent atoms by the absorption of photons in the process of photodissociation, which
plays an important role in planetary atmospheres.

The total opacity is the sum of the opacities due to all of the preceding sources:

Kx = Kxbb + Kabf + Ki ff + Kes + KH-

(the H™ opacity is explicitly included because of its unique and critical contribution to the
opacity in many stellar atmospheres, including our Sun). The total opacity depends not only
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on the wavelength of the light being absorbed but also on the composition, density, and
temperature of the stellar material.'*

The Rosseland Mean Opacity

It is often useful to employ an opacity that has been averaged over all wavelengths (or
frequencies) to produce a function that depends only on the composition, density, and
temperature. Although a variety of different schemes have been developed to compute a
wavelength-independent opacity, by far the most commonly used is the Rosseland mean
opacity, often simply referred to as the Rosseland mean.'> This harmonic mean gives
the greatest contribution to the lowest values of opacity. In addition, the Rosseland mean
incorporates a weighting function that depends on the rate at which the blackbody spectrum
varies with temperature. Formally, the Rosseland mean opacity is defined as

% 1 9B,(T)
1 o o
— =40 v ) 21
z /“’ 3B, (T) b
LSRN
. oT

Unfortunately, there is no simple equation that is capable of describing all of the complex
contributions to the opacity by individual spectral lines in bound—bound transitions, and
so an analytic expression for the Rosseland mean cannot be given for these processes.
However, approximation formulae have been developed for both the average bound—free
and free—free opacities:

Tor = 4.34 x 10%! %za +X) % m? kg™ 22)
Rir = 3.68 x 1018 g (1 — L kg
K = 3.68 x g (1—2)(A+ X) 735 0 kg™, 23)

where p is the density (in kg m_3) and T is the temperature (in kelvins). X and Z are the
mass fractions, or fractional abundances (by mass), of hydrogen and metals, respectively.'®

14The additional dependencies of the opacity on the electron number density, states of excitation and ionization
of the atoms and ions, and other factors can all be calculated from the composition, density, and temperature.
I5This wavelength-averaged opacity was introduced in 1924 by the Norwegian astronomer Svein Rosseland
(1894-1985).

16Because the primary components of most stellar gases are hydrogen and helium, all
other constituents are frequently lumped together and referred to as metals. In certain applications, however, it is
necessary to specify the composition in greater detail. In these cases, each species is represented by its own mass
fraction.
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Together with the mass fraction of helium, Y, their formal definitions are

total mass of hydrogen
X = 24
total mass of gas
total mass of helium
Y= 25)
total mass of gas
total mass of metals
Z= (26)
total mass of gas

Clearly, X+ Y +Z =1.

The Gaunt factors, g, and g, are quantum-mechanical correction terms first calcu-
lated by J. A. Gaunt. These Gaunt factors are both & 1 for the visible and ultraviolet
wavelengths of interest in stellar atmospheres. The additional correction factor, ¢, in the
equation for the bound—free opacity is called the guillotine factor and describes the cutoff
of an atom’s contribution to the opacity after it has been ionized. Typical values of ¢ lie
between 1 and 100.

Both of these formulae have the functional form ¥ = k0 /T3>, where Ky is approxi-
mately constant for a given composition. The first forms of these expressions were derived
by H. A. Kramers (1894-1952) in 1923 using classical physics and the Rosseland mean.
Any opacity having this density and temperature dependence is referred to as a Kramers
opacity law.

Because the cross section for electron scattering is independent of wavelength, the Rosse-
land mean for this case has the particularly simple form

Kes = 0.02(1 + X) m? kg™ 27)

An estimate of the contribution to the mean opacity provided by the H™ ion may also
be included over the temperature range 3000 K < 7" < 6000 K and for densities between
1077 kg m™> <p< 1072 kg m~> when X ~ 0.7 and 0.001 < Z < 0.03 (the values of X
and Z are typical of main-sequence stars). Specifically,

K- ~ 7.9 x 1073*4(Z/0.02)p">T° m? kg~ (28)

The total Rosseland mean opacity, «, is the average of the sum of the individual contrib-
utors to the opacity:

K = Kpb + Kpr + Kr + Kes + KH--

Figure 10 shows the results of an extensive computer calculation of the Rosseland mean
opacity from first principles using detailed quantum physics. The calculation was carried
out by Carlos Iglesias and Forrest Rogers for a composition with X = 0.70 and Z = 0.02."7
The values of k are plotted as a function of the temperature for several densities.

17 A specific mixture of elements known as the Anders—Grevesse abundances were used to calculate the opacities
shown.

283



Stellar Atmospheres

1T "1 71T 7T 17
2+
1_ —
~ f 1
2 ot g
g | 1
b4
S -1+ -
=0
Q
- - i
2+ _
3k _
| I IR SR I SR SN

4 5 6 7 8 9
Logo T (K)

FIGURE 10  Rosseland mean opacity for a composition that is 70% hydrogen, 28% helium, and
2% metals by mass. The curves are labeled by the logarithmic value of the density (log,, o in kg m~3).
(Data from Iglesias and Rogers, Ap. J., 464, 943, 1996.)

Considering the details of Fig. 10, first notice that the opacity increases with increasing
density for a given temperature. Next, starting at the left-hand side of the figure, follow
a constant-density plot as it rises steeply with increasing temperature. This reflects the
increase in the number of free electrons produced by the ionization of hydrogen and helium.

The hydrogen partial ionization zone has a characteristic
temperature of 10,000 K, and neutral helium is ionized at about the same temperature. The
decline of the plot after the peak in the opacity roughly follows a Kramers law, k oc T3,
and is due primarily to the bound—free and free—free absorption of photons. The He II ion
loses its remaining electron at a characteristic temperature of 40,000 K for a wide range
of stellar parameters; the slight increase in the number of free electrons produces a small
“bump” seen near that temperature. Another bump, evident above 10° K, is the result of
the ionization of certain metals, most notably iron. Finally, the plot reaches a flat floor at
the right-hand side of the figure. Electron scattering dominates at the highest temperatures,
when nearly all of the stellar material is ionized and there are few bound electrons available
for bound—bound and bound—free processes. The form of Eq. ( 27) for electron scattering,
with no density or temperature dependence, requires that all of the curves in Fig. 10
converge to the same constant value in the high-temperature limit.

3 HERADIATIVE TRANSFER

In an equilibrium, steady-state star, there can be no change in the total energy contained
within any layer of the stellar atmosphere or interior.'® In other words, the mechanisms

18This is not the case for a star that is not in equilibrium. For instance, pulsating stars, periodically absorb or “dam up”
the outward flow of energy, driving the oscillations.
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involved in absorbing and emitting energy must be precisely in balance throughout the
star. In this section, the competition between the absorption and emission processes will be
described, first in qualitative terms and later in more quantitative detail.

Photon Emission Processes

Any process that adds photons to a beam of light will be called emission. Thus emission
includes the scattering of photons into the beam, as well as the true emission of photons
by electrons making downward atomic transitions. Each of the four primary sources of
opacity listed in Section 2 has an inverse emission process: bound-bound and free—bound
emission, free—free emission (bremsstrahlung), and electron scattering. The simultaneous
and complementary processes of absorption and emission hinder the flow of photons through
the star by redirecting the paths of the photons and redistributing their energy. Thus in a star
there is not a direct flow of photons streaming toward the surface, carrying energy outward
at the speed of light. Instead, the individual photons travel only temporarily with the beam
as they are repeatedly scattered in random directions following their encounters with gas
particles.

The Random Walk

As the photons diffuse upward through the stellar material, they follow a haphazard path
called arandom walk. Figure 11 shows a photon that undergoes a net vector displacement
d as the result of making a large number N of randomly directed steps, each of length £
(the mean free path):

d=4+6+ 6+ +4Ly.
Taking the vector dot product of d with itself gives
dd=4 -4 +4 -6+ + 4 - Ly
+ O+l b+l Ly
+oo Uyl ey iy Ly

N N
S HARE
i=1 j=I
or
d*> = N& + £*[cos 01y + cos O3 + - - - + cos Oy
+ cosbr; +cosby3 + --- 4+ cosbry
+ -+ cosOyi +cosOys + -+ -+ cosOnv—n]

N N
= N¢? +£2220059ij,

i=1 Jj=!
J#
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FIGURE 11 Displacement d of a random-walking photon.

where 6;; is the angle between the vectors £; and £ ;. For a large number of randomly directed
steps, the sum of all the cosine terms approaches zero. As a result, for a random walk, the
displacement d is related to the size of each step, ¢, by

d=tJ/N. (29)

Thus the transport of energy through a star by radiation may be extremely inefficient.
As a photon follows its tortuous path to the surface of a star,' it takes 100 steps to travel
a distance of 10¢; 10,000 steps to travel 100¢; and one million steps to travel 1000£.%°
Because the optical depth at a point is roughly the number of photon mean free paths from
that point to the surface (as measured along a light ray’s straight path), Eq. ( 29) implies
that the distance to the surface is d = 7,£ = £~+/N. The average number of steps needed for
a photon to travel the distance d before leaving the surface is then

N =1}, (30)

for 7, > 1. As might be expected, when 7, ~ 1, a photon may escape from that level of the
star. A more careful analysis (performed in Section 4) shows that the average level in the
atmosphere from which photons of wavelength A escape is at a characteristic optical depth
of about 1, = 2/3. Looking into a star at any angle, we always look back to an optical
depth of about T, = 2/3, as measured straight back along the line of sight. In fact, a star’s
photosphere is defined as the layer from which its visible light originates—that is, where
7, & 2/3 for wavelengths in the star’s continuum.

The realization that an observer looking vertically down on the surface of a star sees
photons from 1, & 2/3 offers an important insight into the formation of spectral lines.

19Strictly speaking, an individual photon does not make the entire journey, but rather, along with being scattered,
photons may be absorbed and re-emitted during the “collisions.”

20 The process of transporting energy by radiation is sometimes so inefficient
that another transport process, convection, must take over.
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Recalling the definition of optical depth, Eq. (17),

5
2 =f K.pds,
0

we see thatif the opacity k;, increases at some wavelength, then the actual distance back along
the ray to the level where 1, = 2/3 decreases for that wavelength. One cannot see as far into
murky material, so an observer will not see as deeply into the star at wavelengths where the
opacity is greater than average (i.e., greater than the continuum opacity). This implies that if
the temperature of the stellar atmosphere decreases outward, then these higher regions of the
atmosphere will be cooler. As a result, the intensity of the radiation at 7, =~ 2/3 will decline
the most for those wavelengths at which the opacity is greatest, resulting in absorption
lines in the continuous spectrum. Therefore, the temperature must decrease outward for the
formation of absorption lines. This is the analog for stellar atmospheres of Kirchhoff’s law
that a cool, diffuse gas in front of a source of a continuous spectrum produces dark spectral
lines in the continuous spectrum.

Limb Darkening

Another implication of receiving radiation from an optical depth of about two-thirds is
shown in Fig. 12. The line of sight of an observer on Earth viewing the Sun is vertically
downward at the center of the Sun’s disk but makes an increasingly larger angle 6 with the
vertical near the edge, or limb, of the Sun. Looking near the limb, the observer will not see
as deeply into the solar atmosphere and will therefore see a lower temperature at an optical
depth of two-thirds (compared to looking at the center of the disk). As a result, the limb of

=23

Line of sight

7, =2/3

Line of sight

toward the star's center

FIGURE 12  Limb darkening. The distance traversed within the atmosphere of the star to reach
a specified radial distance r from the star’s center increases along the line of sight of the observer
as 0 increases. This implies that to reach a specified optical depth (e.g., T, = 2/3), the line of sight
terminates at greater distances (and cooler temperatures) from the star’s center as 6 increases. Note
that the physical scale of the photosphere has been greatly exaggerated for illustration purposes. The
thickness of a typical photosphere is on the order of 0.1% of the stellar radius.
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the Sun appears darker than its center. This limb darkening has been observed in the
light curves of some eclipsing binaries. More detailed information on limb darkening
may be found later in this section.

The Radiation Pressure Gradient

Considering the meandering nature of a photon’s journey to the surface, it may seem sur-
prising that the energy from the deep interior of the star ever manages to escape into space.
At great depth in the interior of the star, the photon’s mean free path is only a fraction of
a centimeter. After a few scattering encounters, the photon is traveling in a nearly random
direction, hundreds of millions of meters from the surface. This situation is analogous to
the motions of air molecules in a closed room. An individual molecule moves about with
a speed of nearly 500 m s~!, and it collides with other air molecules several billion times
per second. As a result, the molecules are moving in random directions. Because there is no
overall migration of the molecules in a closed room, a person standing in the room feels no
wind. However, opening a window may cause a breeze if a pressure difference is established
between one side of the room and the other. The air in the room responds to this pressure
gradient, producing a net flux of molecules toward the area of lower pressure.

In a star the same mechanism causes a “breeze” of photons to move toward the surface of
the star. Because the temperature in a star decreases outward, the radiation pressure is smaller
at greater distances from the center (cf., Eq. 11 for the blackbody radiation pressure). This
gradient in the radiation pressure produces the slight net movement of photons toward the
surface that carries the radiative flux. As we will discover later in this section, this process
is described by

dP. K
W EP Frg 31)
dr c

Thus the transfer of energy by radiation is a subtle process involving the slow upward
diffusion of randomly walking photons, drifting toward the surface in response to minute
differences in the radiation pressure. The description of a “beam” or a “ray” of light is
only a convenient fiction, used to define the direction of motion momentarily shared by the
photons that are continually absorbed and scattered into and out of the beam. Nevertheless,
we will continue to use the language of photons traveling in a beam or ray of light, realizing
that a specific photon is in the beam for only an instant.

4 HETHETRANSFER EQUATION

In this section, we will focus on a more thorough examination of the flow of radiation
through a stellar atmosphere.”! We will develop and solve the basic equation of radiative
transfer using several standard assumptions. In addition, we will derive the variation of
temperature with optical depth in a simple model atmosphere before applying it to obtain a
quantitative description of limb darkening.

21 Although the focus of this discussion is on stellar atmospheres, much of the discussion is applicable to other
environments as well, such as light traversing an interstellar gas cloud.
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The Emission Coefficient

In the following discussions of beams and light rays, the primary consideration is the net
flow of energy in a given direction, not the specific path taken by individual photons. First,
we will examine the emission process that increases the intensity of a ray of wavelength
A as it travels through a gas. The increase in intensity d [, is proportional to both ds, the
distance traveled in the direction of the ray, and p, the density of the gas. For pure emission
(no absorption of the radiation),

d])L :j;‘,OdS, (32)

where jj is the emission coefficient of the gas. The emission coefficient, which has units
of m s~ sr!, varies with the wavelength of the light.

As a beam of light moves through the gas in a star, its specific intensity, 7, , changes as
photons traveling with the beam are removed by absorption or scattering out of the beam,
and are replaced by photons emitted from the surrounding stellar material, or scattered
into the beam. Combining Eq. ( 13) for the decrease in intensity due to the absorption of

radiation with Eq. ( 32) for the increase produced by emission gives the general result
d])L =—IC)\,01)LdS+j)L,0dS. (33)

The ratio of the rates at which the competing processes of emission and absorption occur
determines how rapidly the intensity of the beam changes. This is similar to describing the
flow of traffic on an interstate highway. Imagine following a group of cars as they leave Los
Angeles, traveling north on I-15. Initially, nearly all of the cars on the road have California
license plates. Driving north, the number of cars on the road declines as more individuals
exit than enter the highway. Eventually approaching Las Vegas, the number of cars on the
road increases again, but now the surrounding cars bear Nevada license plates. Continuing
onward, the traffic fluctuates as the license plates eventually change to those of Utah, Idaho,
and Montana. Most of the cars have the plates of the state they are in, with a few cars from
neighboring states and even fewer from more distant locales. At any point along the way,
the number of cars on the road reflects the local population density. Of course, this is to be
expected; the surrounding area is the source of the traffic entering the highway, and the rate
at which the traffic changes is determined by the ratio of the number of entering to exiting
automobiles. This ratio determines how rapidly the cars on the road from elsewhere are
replaced by the cars belonging to the local population. Thus the traffic constantly changes,
always tending to resemble the number and types of automobiles driven by the people living
nearby.

The Source Function and the Transfer Equation

In a stellar atmosphere or interior, the same considerations describe the competition between
the rates at which photons are plucked out of a beam of light by absorption, and introduced
into the beam by emission processes. The ratio of the rates of emission and absorption
determines how rapidly the intensity of the beam of light changes and describes the tendency
of the population of photons in the beam to resemble the local source of photons in the
surrounding stellar material. To introduce the ratio of emission to absorption, we divide
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Eq. (33) by —k p ds:

1 dI j
_Ldh g

Ko ds Ky,

The ratio of the emission coefficient to the absorption coefficient is called the source func-
tion, S; = j, /«;. It describes how photons originally traveling with the beam are removed
and replaced by photons from the surrounding gas.??> The source function, S, has the same
units as the intensity, W m~3 sr—!. Therefore, in terms of the source function,

1 dI,
———— =1 -38,. (34)
Kp ds

This is one form of the equation of radiative transfer (usually referred to as the transfer
equation).”? According to the transfer equation, if the intensity of the light does not vary
(so that the left-hand side of the equation is zero), then the intensity is equal to the source
function, I, = ;. If the intensity of the light is greater than the source function (the right-
hand side of the transfer equation is greater than 0), then d I, /ds is less than 0, and the
intensity decreases with distance. On the other hand, if the intensity is less than the source
function, the intensity increases with distance. This is merely a mathematical restatement
of the tendency of the photons found in the beam to resemble the local source of photons
in the surrounding gas. Thus the intensity of the light tends to become equal to the local
value of the source function, although the source function itself may vary too rapidly with
distance for an equality to be attained.

The Special Case of Blackbody Radiation

The source function for the special case of blackbody radiation can be found by considering
a box of optically thick gas maintained at a constant temperature 7'. The confined particles
and blackbody radiation are in thermodynamic equilibrium, with no net flow of energy
through the box or between the gas particles and the radiation. With the particles and
photons in equilibrium, individually and with each other, every process of absorption is
balanced by an inverse process of emission. The intensity of the radiation is described by
the Planck function, 7, = B;. Furthermore, because the intensity is constant throughout the
box, d1I, /ds = 0, and so I, = S,. For the case of thermodynamic equilibrium, the source
function is equal to the Planck function, S, = B,;..

Asmentionedin Section 2, a star cannot be in perfect thermodynamic equilibrium; there
is anet flow of energy from the center to the surface. Deep in the atmosphere, where 7, > 1
as measured along a vertical ray, a random-walking photon will take at least 7 steps to
reach the surface (recall Eq. 30) and so will suffer many scattering events before escaping
from the star. Thus, at a depth at which the photon mean free path is small compared to the

22As a ratio involving the inverse processes of absorption and emission, the source function is less sensitive to the
detailed properties of the stellar material than are j, and «; individually.

21t is assumed that the atmosphere is in a steady state, not changing with time. Otherwise, a time-derivative term
would have to be included in the transfer equation.
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FIGURE 13  Transformation of the intensity of a light ray traveling through a volume of gas. (a) A
light ray entering a volume of gas. (b) Intensity of the light ray. The horizontal axis has units of «; ps,
the number of optical depths traveled into the gas.

temperature scale height, the photons are effectively confined to a limited volume, a region
of nearly constant temperature. The conditions for local thermodynamic equilibrium (LTE)
are satisfied, and so, as already seen, the source function is equal to the Planck function,
S;. = B;. Making the assumption of LTE in a problem means setting S, = B,. However,
even in LTE, the intensity of the radiation, [, will not necessarily be equal to B, unless
7, > 1. In summary, saying that /, = Bj is a statement that the radiation field is described
by the Planck function, while S, = B; describes the physical source of the radiation, j, /«;,
as one that produces blackbody radiation.

Example 4.1.  To see how the intensity of a light ray tends to become equal to the local
value of the source function, imagine a beam of light of initial intensity 7, o ats = 0O entering
a volume of gas of constant density, p, that has a constant opacity, k;,, and a constant source
function, S,. Then it is left as an exercise to show that the transfer equation (Eq. 34) may
be easily solved for the intensity of the light as a function of the distance s traveled into the
gas:

I;\(S) = I;\’() €7K’1ps =+ S)L(l — eikk’m). (35)

As shown in Fig. 13 for the case of S, = 21, o, this solution describes the transformation
of the intensity of the light ray from its initial value of [, o to S, the value of the source
function. The characteristic distance for this change to occur is s = 1/k; p, which is one
photon mean free path (recall Example 2.2), or one optical depth into the gas.

The Assumption of a Plane-Parallel Atmosphere

Although the transfer equation is the basic tool that describes the passage of light through a
star’s atmosphere, a reader seeing it for the first time may be prone to despair. In this trou-
blesome equation, the intensity of the light must depend on the direction of travel to account

291



292

Stellar Atmospheres

for the net outward flow of energy. And although absorption and emission coefficients are
the same for light traveling in all directions (implying that the source function is indepen-
dent of direction), the absorption and emission coefficients depend on the temperature and
density in a rather complicated way.

However, if astronomers are to learn anything about the physical conditions in stellar
atmospheres, such as temperature or density, they must know where (at what depth) a
spectral line is formed. A vast amount of effort has therefore been devoted to solving and
understanding the implications of the transfer equation, and several powerful techniques
have been developed that simplify the analysis considerably.

We will begin by rewriting Eq. ( 34) in terms of the optical depth 1, defined by
Eq. ( 15), resulting in

a5 =1, —S,. (36)
Unfortunately, because the optical depth is measured along the path of the light ray, neither
the optical depth nor the distance s in Eq. (  34) corresponds to a unique geometric depth in
the atmosphere. Consequently, the optical depth must be replaced by a meaningful measure
of position.

To find a suitable replacement, we introduce the first of several standard approximations.
The atmospheres of stars near the main sequence are physically thin compared with the size
of the star, analogous to the skin of an onion. The atmosphere’s radius of curvature is thus
much larger than its thickness, and we may consider the atmosphere as a plane-parallel
slab. As shown in Fig. 14, the z-axis is assumed to be in the vertical direction, with z = 0
at the top of this plane-parallel atmosphere.

Next, a vertical optical depth, 7, ,(z), is defined as

0
IA,U(Z)E/ K0 dz. (37)

Comparison with Eq. (  17) reveals that this is just the initial optical depth of a ray traveling

z Light ray

T/\,u

FIGURE 14  Plane-parallel stellar atmosphere.
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vertically upward from an initial position (z < 0) to the surface (z = 0) where 7, , = 0.2
However, a ray that travels upward at an angle 6 from the same initial position z has farther
to go through the same layers of the atmosphere in order to reach the surface. Therefore, the
optical depth measured along this ray’s path to the surface, t,, is greater than the vertical
optical depth, 1, ,(z). Since dz = ds cos 0, the two optical depths are related by

Tav

T, = =T, ,secH. (38)
cosf

The vertical optical depth is a true vertical coordinate, analogous to z, that increases in
the —z-direction. Its value does not depend on the direction of travel of a light ray, and so
it can be used as a meaningful position coordinate in the transfer equation. Replacing 7, by
T, in Eq. ( 36) results in

dl,

T)»,v

cosf

=1 —S. 39)

This form of the transfer equation is usually employed when dealing with the approximation
of a plane-parallel atmosphere.

Of course, the value of the vertical optical depth at a level z is wavelength-dependent
because of the wavelength-dependent opacity in Eq. ( 37). In order to simplify the follow-
ing analysis, and to permit the identification of an atmospheric level with a unique value of
Ty, the opacity is assumed to be independent of wavelength (we usually take it to be equal
to the Rosseland mean opacity, ). A model stellar atmosphere, for which the simplifying
assumption is made that the opacity is independent of wavelength, is called a gray atmo-
sphere, reflecting its indifference to the spectrum of wavelengths. If we write k instead of
k5 in Eq. ( 37), the vertical optical depth no longer depends on wavelength; we can there-
fore write 1, instead of 1, , in the transfer equation (Eq. 39). The remaining wavelength
dependencies may be removed by integrating the transfer equation over all wavelengths,

using
[e.¢] oo
sz I, dA and S:f Sy dA.
0 0

With the preceding changes, the transfer equation appropriate for a plane-parallel gray
atmosphere is

dI
=71-S. (40)

cos b =
dr,

This equation leads to two particularly useful relations between the various quantities
describing the radiation field. First, integrating over all solid angles, and recalling that S
depends only on the local conditions of the gas, independent of direction, we get

d
y /lcos@dQ:/IdQ—S/dQ. (41)
Ty

24Recall that as the light approaches the surface (and the observer on Earth), it is traveling through smaller and
smaller values of the optical depth.
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Using [ d2 = 47 together with the definitions of the radiative flux Fi,q (Eq. 8) and the
mean intensity (/) (Eq. 3), both integrated over all wavelengths, we find
dFrad
dt,

The second relation is found by first multiplying the transfer equation ( 40) by cos 6
and again integrating over all solid angles:

—4x((I) - S).

/IcoszedQ=/Ic059d§2—S/c039dQ.

Ty

The term on the left is the radiation pressure multiplied by the speed of light (recall Eq.  9).
The first term on the right-hand side is the radiative flux. In spherical coordinates, the second
integral on the right-hand side evaluates to

2 b4
/cos@dQ:/ / cosfsinddodep = 0.
¢=0J6=0

dP 1
2 = 2 Fra. (42)
dr, c

In a spherical coordinate system with its origin at the center of the star, this equation is

Thus

dP, K
Glrd _ _KP Frads
dr c

which is just Eq. ( 31). As mentioned previously, this result can be interpreted as saying
that the net radiative flux is driven by differences in the radiation pressure, with a “photon
wind” blowing from high to low Prg.

In an equilibrium stellar atmosphere, every process of absorption is balanced by an
inverse process of emission; no net energy is subtracted from or added to the radiation field.
In a plane-parallel atmosphere, this means that the radiative flux must have the same value
at every level of the atmosphere, including its surface.

Fi,q = constant = Fgyy = 0T84. (43)

Because the flux is a constant, d Fi,q/dt, = 0, so Eq. ( 4) implies that the mean intensity
must be equal to the source function,

(I) =S. (44)

Equation ( 42) may now be integrated to find the radiation pressure as a function of the
vertical optical depth:

1
Prad = - Fradrv + C, (45)
C

where C is the constant of integration.
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The Eddington Approximation

If we knew how the radiation pressure varied with temperature for the general case (and
not just for blackbody radiation), we could use Eq. ( 45) to determine the temperature
structure of our plane-parallel gray atmosphere. We would have to assume a description of
the angular distribution of the intensity. In an approximation that we owe to the brilliant
English physicist Sir Arthur Stanley Eddington (1882—1944), the intensity of the radiation
field is assigned one value, Iy, in the +z-direction (outward) and another value, [;,, in the
—z-direction (inward); see Fig. 15. Both I,y and [j;, vary with depth in the atmosphere,
and in particular, /;, = 0O at the top of the atmosphere, where 7, = 0. It is left as an exercise
to show that with this Eddington approximation,26 the mean intensity, radiative flux, and
radiation pressure are given by

1

<I> = E Lo + Iin) (46)

Frad =T (Iout - Iin) (47)
2w 4

Prag = — (low + [in) = 5 <I) (48)
3¢ 3¢

[Note that because the flux is a constant, Eq. ( 47) shows that there is a constant difference
between I, and I, at any level of the atmosphere.]
Inserting the last relation for the radiation pressure into Eq. ( 45), we find that

4 1
<I> = - Fradfv +C. (49)
3c c

The constant C can be determined by evaluating Eqs. ( 46) and ( 47) at the top of the
atmosphere, where 7, = 0 and ;;, = 0. The result is that (I (t, = 0)) = Fi,q/27. Inserting

FIGURE 15  The Eddington approximation.

26 Actually, there are several more mathematical ways of implementing the Eddington approximation, but they are
all equivalent.
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this into Eq. ( 49) with t, = 0 shows that

2
C = §Frad.
With this value of C, Eq. ( 49) becomes
4 2
T(1>:Frad (Tv+§)- (50

Of course, we already know that the radiative flux is a constant, given by Eq. ( 43). Using
this results in an expression for the mean intensity as a function of the vertical optical depth:

_30 4 2
U)_E . (rv+§). (51)

We may now derive the final approximation to determine the temperature structure of our
model atmosphere. If the atmosphere is assumed to be in local thermodynamic equilibrium,
another expression for the mean intensity can be found and combined with Eq. ( 51). By the
definition of LTE, the source function is equal to the Planck function, S, = B, . Integrating
B; over all wavelengths shows that for LTE,

oT*

S=B=—-o,
b4

and so, from Eq. ( 44),

4
(I) = of” (52)
T

Equating expressions (  51) and ( 52) finally results in the variation of the temperature with
vertical optical depth in a plane-parallel gray atmosphere in LTE, assuming the Eddington

approximation:?’

3 2
T =>T1" 2. 53
1l (rv+3> (53)

This relation is well worth the effort of its derivation, because it reveals some important
aspects of real stellar atmospheres. First, notice that T = T, at t, = 2/3, not at t, = 0.
Thus the “surface” of a star, which by definition has temperature T [recall the Stefan—
Boltzmann equation], is not at the top of the atmosphere, where 7,= 0, but deeper
down, where t,=2/3. This result may be thought of as the average point of origin of the
observed photons. Although this result came at the end of a string of assumptions, it can
be generalized to the statement that when looking at a star, we see down to a vertical
optical depth of T, = 2/3, averaged over the disk of the star.

27You are encouraged to refer to Mihalas, Chapter 3, for a more detailed discussion of the gray atmosphere, includ-
ing a more sophisticated development of the relation T4 = % Tf [ty + g ()], where the Eddington approximation
[q(ty) = %] is a special case.
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Limb Darkening Revisited

We now move on to take a closer look at limb darkening (recall Fig. 12). A comparison
of theory and observations of limb darkening can provide valuable information about how
the source function varies with depth in a star’s atmosphere. To see how this is done, we
first solve the general form of the transfer equation (Eq. 36),

dh, I _§

d‘[}L — 1) A
at least formally, rather than by making assumptions. (The inevitable assumptions will be
required soon enough.) Multiplying both sides by e™™, we have

dl, _
——Le

dTA

T T

— 1)\67 — _S}\ 6*1’/1

d
) = =S e
A

d(einl)t) = —S)\ e d‘[}w

If we integrate from the initial position of the ray, at optical depth t) ¢ where I, = I, o,
to the top of the atmosphere, at optical depth 7, = 0 where I, = I, (0), the result for the
emergent intensity at the top of the atmosphere, I, (0), is

0
L(0) = I, pe™™° — / Sye ™ dT;. (54)

.0

This equation has a very straightforward interpretation. The emergent intensity on the left
is the sum of two positive contributions. The first term on the right is the initial intensity
of the ray, reduced by the effects of absorption along the path to the surface. The second
term, also positive,?® represents the emission at every point along the path, attenuated by
the absorption between the point of emission and the surface.

We now return to the geometry of a plane-parallel atmosphere and the vertical optical
depth, 7,. However, we do not assume a gray atmosphere, LTE, or make the Eddington
approximation. As shown in Fig. 16, the problem of limb darkening amounts to determin-
ing the emergent intensity [, (0) as a function of the angle 6. Equation ( 54), the formal
solution to the transfer equation, is easily converted to this situation by using Eq. ( 38) to
replace T, with T, , sec 6 (the vertical optical depth) to get

0
1(0) = Ipe ™oscf — / Ssecfe ™ dr,.

Ty.0 S€C 6

Although both I and 7, depend on wavelength, the A subscript has been dropped to simplify
the notation; the approximation of a gray atmosphere has not been made. To include the
contributions to the emergent intensity from all layers of the atmosphere, we take the value

28Remember that the optical depth, measured along the ray’s path, decreases in the direction of travel, so d; is
negative.
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z Light ray

dr =dr,sec 0

FIGURE 16 Finding 7 (0) as a function of 6 for limb darkening in plane-parallel geometry.

of the initial position of the rays to be at t, o = co. Then the first term on the right-hand
side vanishes, leaving

1(0) = / Sseche % dr,. (55)
0

If we knew how the source function depends on the vertical optical depth, this equation
could be integrated to find the emergent intensity as a function of the direction of travel,
0, of the ray. Although the form of the source function is not known, a good guess will be
enough to estimate 7 (0). Suppose that the source function has the form

S =a+ b, (56)

where a and b are wavelength-dependent numbers to be determined. Inserting this into
Eq.( 55)andintegrating (the details are left as an exercise) show that the emergent intensity
for this source function is

I)L(O) =a; + b)\ COos 9, (57)

where the A subscripts have been restored to the appropriate quantities to emphasize their
wavelength dependence. By making careful measurements of the variation in the specific
intensity across the disk of the Sun, the values of a; and b, for the solar source function
can be determined for a range of wavelengths. For example, for a wavelength of 501 nm,
Bohm-Vitense (1989) supplies values of asg; = 1.04 x 108 W m=3 s and bsg; = 3.52 x
108 Wm™ sr!.

Example 4.2.  Solar limb darkening provides an opportunity to test the accuracy of
our “plane-parallel gray atmosphere in LTE using the Eddington approximation.” In the
preceding discussion of an equilibrium gray atmosphere, it was found that the mean intensity
is equal to the source function,

(=S

continued
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(Eq. 44). Then, with the additional assumptions of the Eddington approximation and
LTE, Egs. ( 52)and ( 53) can be used to determine the mean intensity and thus the source

function:
oT* 30 2
S=()=—="2>T7% - .
() T 47 ¢ <TU+3)

Taking the source function to have the form of Eq. ( 56), S = a + bt,, as used earlier for
limb darkening (after integrating over all wavelengths), the values of the coefficients are
o 4

a = T and b

_o _3ch4
2r ¢

=T
The emergent intensity then will have the form of Eq. ( 57), I1(0) = a + bcos 6 (again

after integrating over all wavelengths). The ratio of the emergent intensity at angle 9, 1 (6),
to that at the center of the star, /(6 = 0), is thus

1(0) a+bcosfd 2 n 3 p (58)
= = — 4+ —cos6.
1(0=0) a+b 5 5

We can compare the results of this calculation with observations of solar limb darken-
ing in integrated light (made by summing over all wavelengths). Figure 17 shows both
the observed values of 71(0)/1(6 = 0) and the values from Eq. ( 58). The agreement is
remarkably good, despite our numerous approximations. However, be forewarned that the
agreement is much worse for observations made at a given wavelength (see Bohm-Vitense,
1989) as a consequence of wavelength-dependent opacity effects such as line blanketing.

1.0 ¢
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Angle 6 (deg)

FIGURE 17 A theoretical Eddington approximation of solar limb darkening for light integrated
over all wavelengths. The dots are observational data for the Sun. Although a good fit, the Eddington
approximation is not perfect, which implies that a more detailed model must be developed.
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5 B THE PROFILES OF SPECTRAL LINES

We now have a formidable theoretical arsenal to bring to bear on the analysis of spectral
lines. The shape of an individual spectral line contains a wealth of information about the
environment in which it was formed.

Equivalent Widths

Figure 18 shows a graph of the radiant flux, Fj, as a function of wavelength for a typical
absorption line. In the figure, F; is expressed as a fraction of F,, the value of the flux
from the continuous spectrum outside the spectral line. Near the central wavelength, Ag, is
the core of the line, and the sides sweeping upward to the continuum are the line’s wings.
Individual lines may be narrow or broad, shallow or deep. The quantity (F, — F;)/F, is
referred to as the depth of the line. The strength of a spectral line is measured in terms of
its equivalent width. The equivalent width W of a spectral line is defined as the width of a
box (shaded in Fig.  18) reaching up to the continuum that has the same area as the spectral
line. That is,

Fc - FA
w =/ dx, (59)
F.

where the integral is taken from one side of the line to the other. The equivalent width of a
line in the visible spectrum, shaded in Fig. 18, is usually on the order of 0.01 nm. Another
measure of the width of a spectral line is the change in wavelength from one side of the
line to the other, where its depth (F. — F))/(F. — F,,) = 1/2; this is called the full width
at half-maximum and will be denoted by (AL) 2.

The spectral line shown in Fig. 18 is termed optically thin because there is no wave-
length at which the radiant flux has been completely blocked. The opacity «; of the stellar

\i4
e
E’\)
i 05+ .
0.0 L | L | L |
AO
Wavelength

FIGURE 18  The profile of a typical spectral line.



Stellar Atmospheres

material is greatest at the wavelength A at the line’s center and decreases moving into the
wings. This means that the center of the line is formed at higher (and cooler) regions of the
stellar atmosphere. Moving into the wings from A, the line formation occurs at progres-
sively deeper (and hotter) layers of the atmosphere, until it merges with the continuum-
producing region at an optical depth of 2/3.

Processes That Broaden Spectral Lines

Three main processes are responsible for the broadening of spectral lines. Each of these
mechanisms produces its own distinctive line shape or line profile.

1. Natural broadening. Spectral lines cannot be infinitely sharp, even for motionless,
isolated atoms. According to Heisenberg’s uncertainty principle, as the time
available for an energy measurement decreases, the inherent uncertainty of the
result increases. Because an electron in an excited state occupies its orbital for
only a brief instant, At, the orbital’s energy, E, cannot have a precise value. Thus the
uncertainty in the energy, A E, of the orbital is approximately

h
AE ~ —.

At
(The electron’s lifetime in the ground state may be taken as infinite, so in that case
AE = 0.) Electrons can make transitions from and to anywhere within these “fuzzy”
energy levels, producing an uncertainty in the wavelength of the photon absorbed or
emitted in a transition. Using the following equation for the energy of a photon,
Ephoton = hc/A, we find that the uncertainty in the photon’s wavelength has a

magnitude of roughly
AL~ » ! + ! (60)
T ome \Ay A )

where Af; is the lifetime of the electron in its initial state and Aty is the lifetime in
the final state. (The proof is left as a problem.)

Example 5.1.  The lifetime of an electron in the first and second excited states of
hydrogen is about At = 1078 s. The natural broadening of the Ha line of hydrogen,
A = 656.3 nm, is then

AN~ 457 x 107" m = 4.57 x 10~° nm.

A more involved calculation shows that the full width at half-maximum of the
line profile for natural broadening is

A2 1

Al = — — 61
(AX) 12 xc Mo (61)
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where Aty is the average waiting time for a specific transition to occur. This results
in a typical value of

(A)\,)]/z ~2.4 x 10_5 nm,

in good agreement with the preceding estimate.

. Doppler broadening. In thermal equilibrium, the atoms in a gas, each of mass m,

are moving randomly about with a distribution of speeds that is described by the
Maxwell-Boltzmann distribution function, with the most probable speed given by,
Ump = +/2kT /m. The wavelengths of the light absorbed or emitted by the atoms in the
gas are Doppler-shifted according to (nonrelativistic), AA/A = =£|v,|/c. Thusthe
width of a spectral line due to Doppler broadening should be approximately

2 [%T
c m

Example 5.2.  For hydrogen atoms in the Sun’s photosphere (T = 5777 K), the
Doppler broadening of the He line should be about

AL~ 0.0427 nm,

roughly 1000 times greater than for natural broadening.

A more in-depth analysis, taking into account the different directions of the atoms’
motions with respect to one another and to the line of sight of the observer, shows
that the full width at half-maximum of the line profile for Doppler broadening is

2\ [2kT1In2
(AN = — . (62)
C m

Although the line profile for Doppler broadening is much wider at half-maximum
than for natural broadening, the line depth for Doppler broadening decreases expo-
nentially as the wavelength moves away from the central wavelength (. This rapid
decline is due to the high-speed exponential “tail” of the Maxwell-Boltzmann veloc-
ity distribution and is a much faster falloff in strength than for natural broadening.

Doppler shifts caused by the large-scale turbulent motion of large masses of gas (as
opposed to the random motion of the individual atoms) can also be accommodated by
Eq. ( 62) if the distribution of turbulent velocities follows the Maxwell-Boltzmann
distribution. In that case,

2% |(2kT
(A)\)]/z = ? 7 + vturb In 2, (63)

where vy is the most probable turbulent speed. The effect of turbulence on line
profiles is particularly important in the atmospheres of giant and supergiant stars. In
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fact, the existence of turbulence in the atmospheres of these stars was first deduced
from the inordinately large effect of Doppler broadening on their spectra.

Other sources of Doppler broadening involve orderly, coherent mass motions,
such as stellar rotation, pulsation, and mass loss. These phenomena can have a sub-
stantial effect on the shape and width of the line profiles but cannot be combined
with the results of Doppler broadening produced by random thermal motions obey-
ing the Maxwell-Boltzmann distribution.

. Pressure (and collisional) broadening. The orbitals of an atom can be perturbed
in a collision with a neutral atom or by a close encounter involving the electric field
of an ion. The results of individual collisions are called collisional broadening, and
the statistical effects of the electric fields of large numbers of closely passing ions
is termed pressure broadening; however, in the following discussion, both of these
effects will be collectively referred to as pressure broadening. In either case, the out-
come depends on the average time between collisions or encounters with other atoms
and ions.

Calculating the precise width and shape of a pressure-broadened line is quite com-
plicated. Atoms and ions of the same or different elements, as well as free electrons,
are involved in these collisions and close encounters. The general shape of the line,
however, is like that found for natural broadening, Eq. ( 61), and the line profile
shared by natural and pressure broadening is sometimes referred to as a damping
profile (also known as a Lorentz profile), so named because the shape is characteristic
of the spectrum of radiation emitted by an electric charge undergoing damped simple
harmonic motion. The values of the full width at half-maximum for natural and pres-
sure broadening usually prove to be comparable, although the pressure profile can at
times be more than an order of magnitude wider.

An estimate of pressure broadening due to collisions with atoms of a single ele-
ment can be obtained by taking the value of Az in Eq. ( 61) to be the average time
between collisions. This time is approximately equal to the mean free path between
collisions divided by the average speed of the atoms. Using Eq. ( 12) for the mean
free path and for the speed, we find that

£ 1
Al()%—:

v no2kT/m’
where m is the mass of an atom, o is its collision cross section, and » is the number
density of the atoms. Thus the width of the spectral line due to pressure broadening
is on the order of

A2 1 N A2 no [2kT

~ — —

AX

(64)
c wAL c T m
Note that the width of the line is proportional to the number density n of the atoms.
The physical reason for the Morgan—Keenan luminosity classes is now clear. The
narrower lines observed for the more luminous giant and supergiant stars are due to
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the lower number densities in their extended atmospheres. Pressure broadening (with
the width of the line profile proportional to n) broadens the lines formed in the denser
atmospheres of main-sequence stars, where collisions occur more frequently.

Example 5.3.  Again, consider the hydrogen atoms in the Sun’s photosphere,
where the temperature is 5777 K and the number density of hydrogen atoms is about
1.5 x 10%* m~3. Then the pressure broadening of the He line should be roughly

AX = 2.36 x 107 nm,

which is comparable to the result for natural broadening found earlier. However, if
the number density of the atoms in the atmosphere of a star is larger, the line width
will be larger as well—more than an order of magnitude larger in some cases.

The Voigt Profile

The total line profile, called a Voigt profile, is due to the contributions of both the Doppler
and damping profiles. The wider line profile for Doppler broadening dominates near the
central wavelength Ay. Farther from A, however, the exponential decrease in the line depth
for Doppler broadening means that there is a transition to a damping profile in the wings at
a distance of about 1.8 times the Doppler value of (A1), from the center of the line. Thus
line profiles tend to have Doppler cores and damping wings. Figure 19 schematically
shows the Doppler and damping line profiles.

F,/F.

\\ // Damping
s/ — — — Doppler
0.0 . 1 . 1 . 1 .
Ao
Wavelength

FIGURE 19 Schematic damping and Doppler line profiles, scaled so they have the same equiv-
alent width.
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Example 5.4.

Consider the subdwarfs of luminosity class VI or “sd,” which reside to
the left of the main sequence. The spectra of these subdwarfs show that they are defi-
cient in the atoms of metals (elements heavier than helium). Because ionized met-
als are an important source of electrons in stellar atmospheres, the electron number
density is reduced. Fewer electrons with which ions may recombine means that a
higher degree of ionization for all atoms can be achieved at the same temperature.
Specifically, this reduces the number of H™ ions in the atmosphere by ionizing them,
thereby diluting this dominant source of continuum opacity. As a consequence of a low-
er opacity, we can see longer distances into these stars before reaching an optical depth
of t;,, = 2/3. The forest of metallic lines (which are already weakened by the low metal
abundance of the subdwarfs) appears even weaker against the brighter continuum. Thus,
as a result of an under-abundance of metals, the spectrum of a subdwarf appears to be that
of a hotter and brighter star of earlier spectral type with less prominent metal lines.

This is why it is more accurate to say that these stars are displaced to the left of
the main sequence, toward higher temperatures, rather than one magnitude below the main
sequence.

The simplest model used for calculating a line profile assumes that the star’s photosphere
acts as a source of blackbody radiation and that the atoms above the photosphere remove
photons from this continuous spectrum to form absorption lines. Although this Schuster—
Schwarzschild model is inconsistent with the idea that photons of wavelength A originate
at an optical depth of 7, = 2/3, it is still a useful approximation. In order to carry out
the calculation, values for the temperature, density, and composition must be adopted for
the region above the photosphere where the line is formed. The temperature and density
determine the importance of Doppler and pressure broadening and are also used in the
Boltzmann and Saha equations.

The calculation of a spectral line depends not only on the abundance of the element
forming the line but also on the quantum-mechanical details of how atoms absorb photons.
Let N be the number of atoms of a certain element lying above a unit area of the photosphere.
N is a column density and has units of m~2. (In other words, suppose a hollow tube with
a cross section of 1 m? was stretched from the observer to the photosphere; the tube would
then contain N atoms of the specified type.) To find the number of absorbing atoms per unit
area, N,, that have electrons in the proper orbital for absorbing a photon at the wavelength of
the spectral line, the temperature and density are used in the Boltzmann and Saha equations
to calculate the atomic states of excitation and ionization. Our goal is to determine the value
of N, by comparing the calculated and observed line profiles.

This task is complicated by the fact that not all transitions between atomic orbitals are
equally likely. For example, an electron initially in the n = 2 orbital of hydrogen is about
five times more likely to absorb an Ha photon and make a transition to the n = 3 orbital
than it is to absorb an HB photon and jump to the n = 4 orbital. The relative probabilities
of an electron making a transition from the same initial orbital are given by the f-values
or oscillator strengths for that orbital. For hydrogen, f = 0.637 for the He transition and
f = 0.119 for HB. The oscillator strengths may be calculated numerically or measured in
the laboratory, and they are defined so that the f-values for transitions from the same initial
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FIGURE 20  Voigt profiles of the K line of Ca II. The shallowest line is produced by N, =
3.4 x 10'% ions m™2, and the ions are ten times more abundant for each successively broader line.
(Adapted from Novotny, Introduction to Stellar Atmospheres and Interiors, Oxford University Press,
New York, 1973.)

orbital add up to the number of electrons in the atom or ion. Thus the oscillator strength is
the effective number of electrons per atom participating in a transition, and so multiplying
the number of absorbing atoms per unit area by the f-value gives the number of atoms
lying above each square meter of the photosphere that are actively involved in producing
a given spectral line, fN,. Figure 20 shows the Voigt profiles of the K line of Ca II
(A = 393.3 nm) for various values of the number of absorbing calcium ions.

The Curve of Growth

The curve of growth is an important tool that astronomers use to determine the value of
N, and thus the abundances of elements in stellar atmospheres. As seen in Fig. 20, the
equivalent width, W, of the line varies with N,. A curve of growth, shown in Fig. 21,
is a logarithmic graph of the equivalent width, W, as a function of the number of absorb-
ing atoms, N,. To begin with, imagine that a specific element is not present in a stellar
atmosphere. As some of that element is introduced, a weak absorption line appears that
is initially optically thin. If the number of the absorbing atoms is doubled, twice as much
light is removed, and the equivalent width of the line is twice as great. So W o N,,, and the
curve of growth is initially linear with In N,. As the number of absorbing atoms continues
to increase, the center of the line becomes optically thick as the maximum amount of flux
at the line’s center is absorbed.?’ With the addition of still more atoms, the line bottoms
out and becomes saturated. The wings of the line, which are still optically thin, continue to
deepen. This occurs with relatively little change in the line’s equivalent width and produces
aflattening on the curve of growth where W o 4/ In N,,. Increasing the number of absorbing
atoms still further increases the width of the pressure-broadening profile [recall Eq. ( 64)],

2The zero flux at the center of the line shown in Fig. 20 is a peculiarity of the Schuster—Schwarzschild model.
Actually, there is always some flux received at the central wavelength, 1o, even for very strong, optically thick
lines. As arule, the flux at any wavelength cannot fall below F; = 7 S, (7, = 2/3), the value of the source function
at an optical depth of 2/3.
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FIGURE 21  The curve of growth for the K line of Ca II. As N, increases, the functional depen-
dence of the equivalent width (W) changes. At various positions along the curve of growth, W is
proportional to the functional forms indicated. (Figure adapted from Aller, The Atmospheres of the
Sun and Stars, Ronald Press, New York, 1963.)

enabling it to contribute to the wings of the line. The equivalent width grows more rapidly,
although not as steeply as at first, with approximately W o /N, for the total line profile.
Using the curve of growth and a measured equivalent width, we can obtain the number of
absorbing atoms. The Boltzmann and Saha equations are then used to convert this value
into the total number of atoms of that element lying above the photosphere.

To reduce the errors involved in using a single spectral line, it is advantageous to locate,
on a single curve of growth, the positions of the equivalent widths of several lines formed by
transitions from the same initial orbital.** This can be accomplished by plotting log,(W /1)
on the vertical axis and log ([ f N, (A/500 nm)] on the horizontal axis. This scaling results
in a general curve of growth that can be used for several lines. Figure 22 shows a general
curve of growth for the Sun. The use of such a curve of growth is best illustrated by an
example.

Example 5.5.  We will use Fig. 22 to find the number of sodium atoms above each
square meter of the Sun’s photosphere from measurements of the 330.238-nm and 588.997-
nm absorption lines of sodium (Table 1). Values of 7 = 5800 K and P, = 1 N m~2 were
used for the temperature and electron pressure, respectively, to construct this curve of growth
and will be adopted in the calculations that follow.

Both of these lines are produced when an electron makes an upward transition from the
ground state orbital of the neutral Na I atom, and so these lines have the same value of N,

30This is just one of several possible ways of scaling the curve of growth. The assumptions used to obtain such a
scaling are not valid for all broad lines (such as hydrogen) and may lead to inaccurate results.
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FIGURE 22 A general curve of growth for the Sun. The arrows refer to the data used in Exam-
ple 5.5.(Figure adapted from Aller, Atoms, Stars, and Nebulae, Revised Edition, Harvard University
Press, Cambridge, MA, 1971.)

TABLE 1 Data for Solar Sodium Lines. (From Aller, Atoms, Stars, and Nebulae, Revised
Edition, Harvard University Press, Cambridge, MA, 1971.)

A (nm) W (nm) f log,o(W/X) logolf(2/500 nm)]
330.238 0.0088 0.0214 —4.58 —1.85
588.997 0.0730 0.645 -3.90 —-0.12

the number of absorbing sodium atoms per unit area above the continuum-forming layer of
the photosphere. This number can be found using the values of log,,(W/A) with the general
curve of growth, Fig. 22, to obtain a value of log,,[ f N,(1/500 nm)] for each line. The
results are

N .
logq <5{)0 ) =17.20 for the 330.238 nm line
nm

= 18.83 for the 588.997 nm line.

To obtain the value of the number of absorbing atoms per unit area, N,,, we use the measured
values of log,,[ f (/500 nm)] together with

log,n N, = lo J Na lo S
€10 Na =19810 | 500 nm €10\ 500 m /)’

to find

log,y N, = 17.15 — (—1.85) = 19.00 for the 330.238 nm line

continued



Stellar Atmospheres

and
log;qg N, = 18.80 — (—0.12) = 18.92 for the 588.997 nm line.

The average value of log,, N, is 18.96; thus there are about 10! Na I atoms in the ground
state per square meter of the photosphere.

To find the total number of sodium atoms, the Boltzmann and Saha equations must
be used. The difference in energy between the final and initial states [E, — E ] is just the
energy of the emitted photon. The exponential term in the Boltzmann equation is

e—(Eb—En)/kT — e—hc/AkT

=5.45x 107* for the 330.238 nm line
= 1.48 x 107> for the 588.997 nm line,

so nearly all of the neutral Na I atoms are in the ground state.

All that remains is to determine the total number of sodium atoms per unit area in all
stages of ionization. If there are Ny = 10'° neutral sodium atoms per square meter, then the
number of singly ionized atoms, Ny, comes from the Saha equation:

— -

Nu _ 2KTZn (2mm kTN
M PeZ;

Using Z1 = 2.4 and Zy; = 1.0 for the partition functions and x; = 5.14 eV for the ionization
energy of neutral sodium leads to Ni;/ Ny = 2.43 x 103. There are about 2430 singly ionized
sodium atoms for every neutral sodium atom in the Sun’s photosphere,*! so the total number
of sodium atoms per unit area above the photosphere is about

N = 2430N; = 2.43 x 102 m™2.

The mass of a sodium atom is 3.82 x 10726 kg, so the mass of sodium atoms above each
square meter of the photosphere is roughly 9.3 x 10~* kg m 2. (A more detailed analysis
leads to a slightly lower value of 5.4 x 10~* kg m~2.) For comparison, the mass of hydrogen
atoms per unit area is about 11 kg m 2.

Thus the number of absorbing atoms can be determined by comparing the equivalent
widths measured for different absorption lines produced by atoms or ions initially in the same
state (and so having the same column density in the stellar atmosphere) with a theoretical
curve of growth. A curve-of-growth analysis can also be applied to lines originating from
atoms or ions in different initial states; then applying the Boltzmann equation to the relative
numbers of atoms and ions in these different states of excitation allows the excitation
temperature to be calculated. Similarly, it is possible to use the Saha equation to find either
the electron pressure or the ionization temperature (if the other is known) in the atmosphere
from the relative numbers of atoms at various stages of ionization.

31The ionization energy for Na Il is 47.3 eV. This is sufficiently large to guarantee that Nyij << Nii, so higher states
of ionization can be neglected.
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Computer Modeling of Stellar Atmospheres

The ultimate refinement in the analysis of stellar atmospheres is the construction of a model
atmosphere on a computer. Each atmospheric layer is involved in the formation of line
profiles and contributes to the spectrum observed for the star. All of the ingredients of
the preceding discussion, plus the equations of hydrostatic equilibrium, thermodynamics,
statistical and quantum mechanics, and the transport of energy by radiation and convection,
are combined with extensive libraries of opacities to calculate how the temperature, pressure,
and density vary with depth below the surface. These models not only provide details
regarding line profiles; they also provide information about such fundamental properties
as the effective temperature and surface gravity of the star. Only when the variables of
the model have been “fine-tuned” to obtain good agreement with the observations can
astronomers finally claim to have decoded the vast amount of information carried in the
light from a star.

This basic procedure has led astronomers to an understanding of the abundances of the
elements in the Sun (see Table 2) and other stars. Hydrogen and helium are by far the
most common elements, followed by oxygen, carbon, and nitrogen; for every 10'? atoms
of hydrogen, there are 10" atoms of helium and about 10° atoms of oxygen. These figures
are in very good agreement with abundances obtained from meteorites, giving astronomers

TABLE 2 The Most Abundant Elements in the Solar Photosphere. The relative abundance of an
element is given by log,,(Ne1/Nn) + 12. (Data from Grevesse and Sauval, Space Science Reviews,
85,161, 1998.)

Atomic  Log Relative

Element Number Abundance
Hydrogen 1 12.00
Helium 2 10.93 £ 0.004
Oxygen 8 8.83 £0.06
Carbon 6 8.52 £0.06
Neon 10 8.08 £ 0.06
Nitrogen 7 7.92 £0.06
Magnesium 12 7.58 £0.05
Silicon 14 7.55+0.05
Iron 26 7.50 +0.05
Sulfur 16 7.33+0.11
Aluminum 13 6.47 +0.07
Argon 18 6.40 £ 0.06
Calcium 20 6.36 +0.02
Sodium 11 6.33 £ 0.03
Nickel 28 6.25 +0.04
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confidence in their results.? This knowledge of the basic ingredients of the universe provides
invaluable observational tests and constraints for some of the most fundamental theories
in astronomy: the nucleosynthesis of light elements as a result of stellar evolution, the pro-
duction of heavier elements by supernovae, and the Big Bang that produced the primordial
hydrogen and helium that started it all.

SUGGESTED READING

General

Hearnshaw, J. B., The Analysis of Starlight, Cambridge University Press, Cambridge, 1986.
Kaler, James B., Stars and Their Spectra, Cambridge University Press, Cambridge, 1997.

Technical

Aller, Lawrence H., The Atmospheres of the Sun and Stars, Ronald Press, New York, 1963.

Aller, Lawrence H., Atoms, Stars, and Nebulae, Third Edition, Cambridge University Press,
New York, 1991.

Bohm-Vitense, Erika, “The Effective Temperature Scale,” Annual Review of Astronomy
and Astrophysics, 19, 295, 1981.

Bohm-Vitense, Erika, Stellar Astrophysics, Volume 2: Stellar Atmospheres, Cambridge Uni-
versity Press, Cambridge, 1989.

Cox, Arthur N. (editor), Allen’s Astrophysical Quantities, Fourth Edition, AIP Press, New
York, 2000.

Gray, David F., The Observation and Analysis of Stellar Photospheres, Third Edition, Cam-
bridge University Press, Cambridge, 2005.

Grevesse, N., and Sauval, A. J., “Standard Solar Composition,” Space Science Reviews, 85,
161, 1998.

Iglesias, Carlos J., and Rogers, Forrest J., “Updated OPAL Opacities,” The Astrophysical
Journal, 464, 943, 1996.

Mihalas, Dimitri, Stellar Atmospheres, Second Edition, W.H. Freeman, San Francisco, 1978.

Mihalas, Dimitri, and Weibel-Mihalas, Barbara, Foundations of Radiation Hydrodynamics,
Dover Publications, Inc., Mineola, NY, 1999.

Novotny, Eva, Introduction to Stellar Atmospheres and Interiors, Oxford University Press,
New York, 1973.

Rogers, Forrest, and Iglesias, Carlos, “The OPAL Opacity Code,”
http://www-phys.1lnl.gov/Research/0OPAL/opal.html.

Rybicki, George B., and Lightman, Alan P., Radiative Processes in Astrophysics, John Wiley
and Sons, New York, 1979.

32A notable exception is lithium, whose solar relative abundance of 10116 is significantly less than the value of
10331 obtained from meteorites. The efficient depletion of the Sun’s lithium, sparing only one of every 140 lithium
atoms, is probably due to its destruction by nuclear reaction processes when the lithium is transported into the hot
interior of the star by convection.

311



312



Stellar Atmospheres

PROBLEM SET

1 Evaluate the energy of the blackbody photons inside your eye. Compare this with the visible
energy inside your eye while looking at a 100-W light bulb that is 1 m away. You can assume that
the light bulb is 100% efficient, although in reality it converts only a few percent of its 100 watts
into visible photons. Take your eye to be a hollow sphere of radius 1.5 cm at a temperature of
37°C. The area of the eye’s pupil is about 0.1 cm?. Why is it dark when you close your eyes?

2 (a) Find an expression for n; dA, the number density of blackbody photons (the number of
blackbody photons per m*) with a wavelength between A and A + dA.

(b) Find the total number of photons inside a kitchen oven set at 400°F (477 K), assuming a
volume of 0.5 m.

3 (a) Use the results of Problem 2 above to find the total number density, n,of blackbody photons of
all wavelengths. Also show that the average energy per photon, u/n, is

u kT

= = 270kT. (65)
n o 15(2.404)

(b) Find the average energy per blackbody photon at the center of the Sun, where 7 = 1.57 x
107 K, and in the solar photosphere, where T = 5777 K. Express your answers in units of
electron volts (eV).

4 Derive Eq. (11) for the blackbody radiation pressure.

doT* 1 _, 1
=—aT* = —u. (11)
3c 3 3

4o [
Prad = 5 B)»(T) dir =
3¢ 0

5 Consider a spherical blackbody of radius R and temperature 7'. By integrating Eq. ( 8) for the
radiative flux with I, = B, over all outward directions, derive the Stefan—Boltzmann equation
in the form of L = 4m R%o Te4. (You will also have to integrate over all wavelengths and
surface area of the sphere.)

2

T
F, dA =/I,\dk cos 0 d2 :f / I, d)\ cos6 sinfdb de. ®)
$=0 Jo=0

=0

6 Using the root-mean-square speed, vy, estimate the mean free path of the nitrogen molecules
in your classroom at room temperature (300 K). What is the average time between collisions?
Take the radius of a nitrogen molecule to be 0.1 nm and the density of air to be 1.2 kg m™.
A nitrogen molecule contains 28 nucleons (protons and neutrons).

7 Calculate how far you could see through Earth’s atmosphere if it had the opacity of the solar
photosphere. Use the value for the Sun’s opacity from Example 2.2 from “Stellar Atmospheres”
and 1.2 kg m™? for the density of Earth’s atmosphere.

8 In Example 2.3, from “Stellar Atmospheres” suppose that only two measurements of the
specific intensity, I; and I,, are available, made at angles 6, and 6,. Determine expressions

From Chapter 9 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
313



Stellar Atmospheres: Problem Set

for the intensity I, ¢ of the light above Earth’s atmosphere and for the vertical optical depth of
the atmosphere, T, g, in terms of these two measurements.

9 Use the laws of conservation of relativistic energy and momentum to prove that an isolated
electron cannot absorb a photon.

10 By measuring the slope of the curves in Fig. 10, verify that the decline of the curves after the
peak in the opacity follows a Kramers law, ¥ o« T~", where n = 3.5.

11 According to one model of the Sun, the central density is 1.53 x 10° kg m ™~ and the Rosseland
mean opacity at the center is 0.217 m?® kg™,

(a) Calculate the mean free path of a photon at the center of the Sun.

oL 2 X=07

~ t
2 o .
E 1 1
X

2 -1F .
en

Q

— - i
2+ -
3+ -

Logo T (K)

FIGURE 10  Rosseland mean opacity for a composition that is 70% hydrogen, 28% helium, and
2% metals by mass. The curves are labeled by the logarithmic value of the density (log,, o in kg m~3).
(Data from Iglesias and Rogers, Ap. J., 464, 943, 1996.)

(b) Calculate the average time it would take for the photon to escape from the Sun if this mean
free path remained constant for the photon’s journey to the surface. (Ignore the fact that
identifiable photons are constantly destroyed and created through absorption, scattering,
and emission.)

12 If the temperature of a star’s atmosphere is increasing outward, what type of spectral lines would
you expect to find in the star’s spectrum at those wavelengths where the opacity is greatest?

13 Consider a large hollow spherical shell of hot gas surrounding a star. Under what circumstances
would you see the shell as a glowing ring around the star? What can you say about the optical
thickness of the shell?

14 Verify that the emission coefficient, j, has units of m s~ sr~!.

15 Derive Eq. (35) in Example 4.1, which shows how the intensity of from its initial intensity I,
to the value S, of the source function.

L(s) = Loge " 4+ S (1 — e797%), (35)
16 The transfer equation, Eq. ( 34), is written in terms of the distance, s, measured along the path

of a light ray. In different coordinate systems, the transfer equation will look slightly different,
and care must be taken to include all of the necessary terms.
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- =S, (34)

(a) Show that in a spherical coordinate system, with the center of the star at the origin, the
transfer equation has the form
cos6’ dI,

— =5 -35,
Kyp dr * *

where 6’ is the angle between the ray and the outward radial direction. Note that you cannot
simply replace s with r!
(b) Use this form of the transfer equation to derive Eq. (31).

dP, K
@lad __KP Frad. (31)
dr c

For a plane-parallel atmosphere, show that the Eddington approximation leads to expressions
for the mean intensity, radiative flux, and radiation pressure given by Eqgs. (46—48).

1

(I) = 3 (Lout + fin) (46)

Frag = 7 (Iow — in) (47)
2 4

Prad = 5 (Ioul + Iin) = 5 (I) (48)
3c 3c

Using the Eddington approximation for a plane-parallel atmosphere, determine the values of
Iiy and I, as functions of the vertical optical depth. At what depth is the radiation isotropic to
within 1%?

Using the results for the plane-parallel gray atmosphere in LTE, determine the ratio of the
effective temperature of a star to its temperature at the top of the atmosphere. If 7, = 5777 K,
what is the temperature at the top of the atmosphere?

Show that for a plane-parallel gray atmosphere in LTE, the (constant) value of the radiative flux
is equal to 7 times the source function evaluated at an optical depth of 2/3:

Faa =78(7, = 2/3)

This function, called the Eddington—Barbier relation, says that the radiative flux received from
the surface of the star is determined by the value of the source function at 7, = 2/3.

Consider a horizontal plane-parallel slab of gas of thickness L that is maintained at a constant
temperature 7. Assume that the gas has optical depth 7, o, with 7, = 0 at the top surface of
the slab. Assume further that no radiation enters the gas from outside. Use the general solution
of the transfer equation ( 54) to show that when looking at the slab from above, you see
blackbody radiation if 7; o 3> 1 and emission lines (where j, is large) if 7, 0 < 1. You may
assume that the source function, S;, does not vary with position inside the gas. You may also
assume thermodynamic equilibrium when 7, o > 1.

0
I}L(O) = I)\,oe_f‘*-" — / S)\e_f* d'L')\. (54)

7.0

Consider a horizontal plane-parallel slab of gas of thickness L that is maintained at a constant
temperature 7. Assume that the gas has optical depth 7, o, with 7, = O at the top surface of
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the slab. Assume further that incident radiation of intensity /, o enters the bottom of the slab
from outside. Use the general solution of the transfer equation ( 54) to show that when looking
at the slab from above, you see blackbody radiation if 7, o > 1. If 7, ¢ < 1, show that you
see absorption lines superimposed on the spectrum of the incident radiation if I, o > S; and
emission lines superimposed on the spectrum of the incident radiation if 7, o < Sj. (These latter
two cases correspond to the spectral lines formed in the Sun’s photosphere and chromosphere,
respectively.) You may assume that the source function, S;, does not vary with position inside
the gas. You may also assume thermodynamic equilibrium when 7, o > 1.

0
I)b(O) = I)\,oe_h'o — / SAE_IJ“ dT}V (54)

75,0

23 Verify that if the source function is S = a, + b, T, ., then the emergent intensity is given by
Eq. ( 57), ,(0) = a; + b, cos 6.

I)L(O) =a; + b)L Ccos 9, (57)

24 Suppose that the shape of a spectral line is fit with one-half of an ellipse, such that the semimajor
axis a is equal to the maximum depth of the line (let F; = 0) and the minor axis 2b is equal to
the maximum width of the line (where it joins the continuum). What is the equivalent width of
this line? Hint: You may find the following useful:

A = mab. 4

25 Derive Eq. ( 60) for the uncertainty in the wavelength of a spectral line due to Heisenberg’s
uncertainty principle.

22 1 1
A [ ), (60)
2mc \ At Al‘f

26 The two solar absorption lines given in the Table below are produced when an electron makes an
upward transition from the ground state orbital of the neutral Na I atom.

TABLE 3 Data for Solar Sodium Lines for Problem 26. (Data from Aller, Atoms, Stars, and
Nebulae, Revised Edition, Harvard University Press, Cambridge, MA, 1971.)

A (nm) W (nm) f
330.298  0.0067  0.0049
589.594  0.0560  0.325

(a) Using the general curve of growth for the Sun, Fig. 22, repeat the procedure of Exam-
ple 5.5 of “Stellar Atmospheres” to find N,, the number of absorbing sodium atoms per unit
area of the photosphere.

(b) Combine your results with those of Example 5.5 of “Stellar Atmospheres” to find an aver-
age value of N, . Use this value to plot the positions of the four sodium absorption lines on
Fig. 22, and confirm that they do all lie on the curve of growth.
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FIGURE 22 A general curve of growth for the Sun. The arrows refer to the data used in Exam-
ple 5.5. (Figure adapted from Aller, Atoms, Stars, and Nebulae, Revised Edition, Harvard University
Press, Cambridge, MA, 1971.)

27 Pressure broadening (due to the presence of the electric fields of nearby ions) is unusually
effective for the spectral lines of hydrogen. Using the general curve of growth for the Sun with
these broad hydrogen absorption lines will result in an overestimate of the amount of hydrogen
present. The following calculation nevertheless demonstrates just how abundant hydrogen is in
the Sun.

The two solar absorption lines given in Table 4 belong to the Paschen series, produced
when an electron makes an upward transition from the n = 3 orbital of the hydrogen atom.
(a) Using the general curve of growth for the Sun, Fig. 22, repeat the procedure of Exam-
ple 5.5 of “Stellar Atmospheres” to find N,,, the number of absorbing hydrogen atoms per
unit area of the photosphere. (those with electrons initially in the n = 3 orbital).

(b) Use the Boltzmann and Saha equations to calculate the total number of hydrogen atoms
above each square meter of the Sun’s photosphere.

TABLE 4  Data for Solar Hydrogen Lines for Problem 9.27. (Data from Aller, Atoms, Stars, and
Nebulae, Revised Edition, Harvard University Press, Cambridge, MA, 1971.)

A (nm) W (nm) f
1093.8 (Pay) 0.22 0.0554
1004.9 (Pad) 0.16 0.0269
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FIGURE 22 A general curve of growth for the Sun. The arrows refer to the data used in Exam-
ple 5.5. (Figure adapted from Aller, Atoms, Stars, and Nebulae, Revised Edition, Harvard University
Press, Cambridge, MA, 1971.)

COMPUTER PROBLEMS

28 In this problem, you will use the values of the density and opacity at various points near the

surface of the star to calculate the optical depth of these points. The data in Table 5 were
obtained from the stellar model building program StatStar, described in

Appendix: StatStar, A Stellar Structure Code. The first point listed is at the surface of the
stellar model.

(a) Find the optical depth at each point by numerically integrating Eq. ( 15). Use a simple
trapezoidal rule such that

dt = —kpds
dt, = —kpds, (15)
becomes
Kipi + Kit10i+1
Ty — T = — f (ri+l -,

where i and i 4 1 designate adjacent zones in the model. Note that because s is measured
along the path traveled by the photons, ds = dr.

(b) Make a graph of the temperature (vertical axis) vs. the optical depth (horizontal axis).

(c) For each value of the optical depth, use Eq. (  53) to calculate the temperature for a plane-
parallel gray atmosphere in LTE. Plot these values of 7' on the same graph.

3

3 2
T4 = 1 T} (rv + —) : (53)
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TABLES5 A1 M, StatStar Model for Problem 28. 7, = 5504 K.
i r (m) T (K) 0 (kg m_3) K (m2 kg_')
0  7.100764E4+08  0.000000E4-00  0.000000E4-00  0.000000E+00
1 7.093244E+08 3.379636E+03 2.163524E—08 2.480119E+01
2 7.092541E408 3.573309E+03 3.028525E—08 2.672381E+01
3 7.091783E+4+08 3.826212E4+03 4.206871E—08 2.737703E+01
4  7.090959E+08 4.133144E+403 5.814973E—08 2.708765E+01
5 7.090062E+4-08 4.488020E+03 8.015188E—08 2.625565E+01
6 7.089085E+408 4.887027E+03 1.103146E—07 2.517004E4-01
7 7.088019E+08 5.329075E+4+03  1.517126E—07  2.399474E+01
8 7.086856E+08 5.815187E+03 2.085648E—07 2.281158E+01
9 7.085588E+08 6.347784E+03 2.866621E—07 2.165611E+01
10 7.084205E+08  6.930293E+403 3.939580E—07 2.054686E+01
11 7.082697E+408  7.566856E+403 5.413734E—07 1.948823E+01
12 7.081052E4+08 8.262201E+403  7.439096E—07 1.848131E+01
13 7.079259E+08 9.021603E+403 1.022171E—06 1.752513E+01
14 7.077303E+08 9.850881E+03  1.404459E—06 1.661785E+01
15 7.075169E+08 1.075642E+04  1.929644E—06 1.575731E+01
16 7.072843E+08 1.174520E+04 2.651111E—06  1.494128E+01
17 7.070306E+08  1.282486E+04 3.642174E—06 1.416754E+01
18  7.067540E+08 1.400375E+04 5.003513E—06  1.343396E-+01
19  7.064524E+08 1.529096E+04 6.873380E—06 1.273849E+01
20  7.061235E+08 1.669643E+04 9.441600E—06 1.207917E+01
21 7.057649E+08 1.823102E+04 1.296880E—05 1.145414E+01
22 7.053741E+08 1.990656E+04 1.781279E—05 1.086165E+01
23 7.049480E+08  2.173599E+04 2.446473E—05 1.030001E4-01
24 7.044836E+08 2.373341E+04 3.359882E—05 9.767631E4-00
25  7.039774E+08 2.591421E+04 4.614038E—05 9.263005E+-00
26 7.034259E+08  2.829519E+04  6.335925E—05  8.784696E+-00
27  7.028250E+08 3.089468E+04 8.699788E—05  8.331344E+-00
28  7.021704E+08 3.373266E+04  1.194469E—04  7.901659E+-00
29  7.014574E+08  3.683096E+04 1.639859E—04  7.494416E4-00
30 7.006810E+08  4.021337E+04 2.251132E—04  7.108452E+-00
31  6.998356E+08 4.390583E+04 3.089976E—04  6.742665E+-00
32 6.989155E+08 4.793666E+04 4.240980E—04  6.396010E+-00
33 6.979141E+08 5.233670E+04 5.820105E—04  6.067495E+-00
34  6.968247E+08 5.713961E+04 7.986295E—04  5.756179E+00
35  6.956399E+08 6.238205E+04 1.095736E—03  5.461170E+00
36 6.943518E+08 6.810401E+04 1.503169E—03  5.181621E+00
37  6.929517E+4+08  7.434904E+404 2.061803E—03 4.916730E+00
38  6.914307E+08 8.116461E4+04 2.827602E—03  4.665735E+4-00
39  6.897790E+08  8.860239E+04 3.877181E—03  4.427914E+4-00
40 6.879861E+08 9.671869E+04 5.315384E—03  4.202584E+-00
41  6.860411E+08  1.055748E+05 7.285639E—03  3.989094E+-00

(d) The StatStar program utilizes a simplifying assumption that the surface temperature is
zero (see Appendix: StatStar, A Stellar Structure Code). Comment on the validity of the

surface value of T that you found.
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Stellar Atmospheres: Problem Set

29 The binary star code TwoStars, discussed in Appendix: TwoStars, A Binary Star Code

makes use of an empirical limb darkening formula developed by W. Van Hamme (Astrono-
mical Journal, 106, 1096, 1993):

% =1—-x(1 —cosf) — ycosf log,,(cos @),

where x = 0.648 and y = 0.207 for solar-type stars (other coefficients are provided for other

types of stars).

(a) Plot Van Hamme’s formula for limb darkening over the range 0 < 6 < 90°. (Be sure to
correctly treat the singularity in the function at 6 = 90°.)

(b) Plot Eq. (58), which is based on the Eddington approximation, on the same graph.

1(0) a+ bcosb 2 3
- — Z 4+ 2 coso. 58
16 =0) atb 5 t5es (58)

(¢) Where is the difference between the two formulae the greatest?
(d) Compare the two curves to the observational data shown in Fig. 17. Which curve best
represents the solar data?
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FIGURE 17 A theoretical Eddington approximation of solar limb darkening for light integrated
over all wavelengths. The dots are observational data for the Sun. Although a good fit, the Eddington
approximation is not perfect, which implies that a more detailed model must be developed; see, for
example, Problem 29.



The Sun

1 The Solar Interior
2 The Solar Atmosphere
3 The Solar Cycle

1  ETHE SOLAR INTERIOR

In investigating theoretical foundations of stellar structure, we must treat
the star as being composed of an atmosphere and an interior. The distinction
between the two regions is fairly nebulous. Loosely, the atmosphere is considered to be that
region where the optical depth is less than unity and the simple approximation of photons
diffusing through optically thick material is not justified. Instead, atomic line absorption
and emission must be considered in detail in the stellar atmosphere. On the other hand, nu-
clear reaction processes deep in the stellar interior plays a crucial role in the star’s energy
output and its inevitable evolution.

Due to its proximity to us, the star for which we have the greatest amount of observational
data is our Sun. From ground-based and space-based observatories, we are able to measure
with high precision the composition of our Sun’s surface; its luminosity, effective temper-
ature, radius, magnetic fields, and rotation rates; the oscillation frequencies (vibrations)
throughout its interior; and the rate at which neutrinos are produced via nuclear reactions
in its core. This tremendous wealth of information provides us with rigorous tests of our
understanding of the physical processes operating within stellar atmospheres and interiors.

The Evolutionary History of the Sun

Based on its observed luminosity and effective temperature, our Sun is classified as a
typical main-sequence star of spectral class G2 with a surface composition of X = 0.74,
Y = 0.24,and Z = 0.02 (the mass fractions of hydrogen, helium, and metals, respectively).
To understand how it has evolved to this point, recall that according to the Vogt—Russell
theorem the mass and composition of a star dictate its internal structure. Our Sun has
been converting hydrogen to helium via the pp chain during most of its lifetime, thereby
changing its composition and its structure. By comparing the results of radioactive dating
tests of Moon rocks and meteorites with stellar evolution calculations and the present-day

From Chapter 11 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007

by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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FIGURE 1 The evolution of the Sun on the main sequence. As a result of changes in its internal
composition, the Sun has become larger and brighter. The solid line indicates its luminosity, the dashed
line its radius, and the dash-dot line its effective temperature. The luminosity and radius curves are
relative to present-day values. (Data from Bahcall, Pinsonneault, and Basu, Ap. J., 555, 990, 2001.)

observable Sun, the current age of the Sun is determined to be approximately 4.57 x 10° yr.!
Furthermore, as depicted in Fig. 1, since becoming a main-sequence star, the Sun’s
luminosity has increased nearly 48% (from 0.677 L) while its radius has increased 15%
from an initial value of 0.869 Ry,.2 The Sun’s effective temperature has also increased from
5620 K to its present-day value of 5777 K.

You may be wondering what impact this evolution has had on Earth. Interestingly, from
a theoretical standpoint it is not at all clear how this change in solar energy output altered
our planet during its history, primarily because of uncertainties in the behavior of the
terrestrial environment. Understanding the complex interaction between the Sun and Earth
involves the detailed calculation of convection in Earth’s atmosphere, as well as the effects
of the atmosphere’s time-varying composition and the nature of the continually changing
reflectivity, or albedo,’ of Earth’s surface.

The Present-Day Interior Structure of the Sun

Consistent with the current age of the Sun, a solar model may be constructed for the
present-day Sun using the physical principles discussed in preceding chapters. Table 1
gives the values of the central temperature, pressure, density, and composition for one such

Radioactive dating of the oldest known objects in the Solar System, calcium-aluminum-rich inclusions (CAIs)
in meteorites, leads to a determination of the age of the Solar System of 4.5672 4 0.0006 Gyr.

2The data quoted here and in the following discussion are from the solar model of Bahcall, Pinsonneault, and
Basu, Ap. J., 555, 990, 2001.

3Earth’s albedo, the ratio of reflected to incident sunlight, is affected by the amount of surface water and ice.
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TABLE 1 Central Conditions in the Sun. (Data from Bahcall, Pinsonneault, and Basu, Ap. J.,
555,990, 2001.)

Temperature  1.570 x 107 K

Pressure 2.342 x 10' N m~2
Density 1.527 x 10° kg m >
X 0.3397
Y 0.6405

FIGURE 2 A schematic diagram of the Sun’s interior.

solar model, and a schematic diagram of the model is shown in Fig. 2. According to
the evolutionary sequence leading to this model, during its lifetime the mass fraction of
hydrogen (X) in the Sun’s center has decreased from its initial value of 0.71 to 0.34, while
the central mass fraction of helium (Y) has increased from 0.27 to 0.64. In addition, due
to diffusive settling of elements heavier than hydrogen, the mass fraction of hydrogen near
the surface has increased by approximately 0.03, while the mass fraction of helium has
decreased by 0.03.

Because of the Sun’s past evolution, its composition is no longer homogeneous but
instead shows the influence of ongoing nucleosynthesis, surface convection, and elemental
diffusion (settling of heavier elements). The composition structure of the Sun is shown in
Fig. 3 for %H, %He, and ‘Z‘He. Since the Sun’s primary energy production mechanism is
the pp chain, 3He is an intermediate species in the reaction sequence. During the conversion
of hydrogen to helium, 3He is produced and then destroyed again. At the
top of the hydrogen-burning region where the temperature is lower, 3He is relatively more
abundant because it is produced more easily than it is destroyed.* At greater depths, the
higher temperatures allow the 3He—3He interaction to proceed more rapidly, and the 3He

“4Recall that much higher temperatures are required for helium—helium interactions than proton—proton interactions.
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FIGURE 3 The abundances of |H, 3He, and 3He as a function of radius for the Sun. Note that
the abundance of gHe is multiplied by a factor of 100. (Data from Bahcall, Pinsonneault, and Basu,
Ap. J., 555,990, 2001.)

abundance again decreases (the temperature profile of the Sun is shown in Fig.  4). The
slight ramp in the iH and ‘2‘He curves near 0.7 Rg reflects evolutionary changes in the
position of the base of the surface convection zone, combined with the effects of elemental
diffusion. Within the convection zone, turbulence results in essentially complete mixing and
a homogeneous composition. The base of the present-day convection zone is at 0.714 R

The largest contribution to the energy production in the Sun occurs at approximately
one-tenth of the solar radius, as can be seen in the Sun’s interior luminosity profile and the
curve of its derivative with respect to radius (Fig. ~ 5). If this result seems unexpected,
consider that the mass conservation equation,

dM,
dr

= dar’p,

gives
dM, =4nr’pdr = pdV, (D

indicating that the amount of mass within a certain radius interval increases with radius
simply because the volume of a spherical shell, dV = 4mr? dr, increases with r for a fixed
choice of dr. Of course, the mass contained in the shell also depends on the density of
the gas. Consequently, even if the amount of energy liberated per kilogram of material (¢)
decreases steadily from the center outward, the largest contribution to the total luminosity
will occur, not at the center, but in a shell that contains a significant amount of mass. In
the case of the middle-aged Sun, the decrease in the amount of available hydrogen fuel at
its center will also influence the location of the peak in the energy production region.
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FIGURE 4 The temperature and pressure profiles in the solar interior. (Data from Bahcall,
Pinsonneault, and Basu, Ap. J., 555, 990, 2001.)
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FIGURE 5 The interior luminosity profile of the Sun and the derivative of the interior luminosity
as a function of radius. (Data from Bahcall, Pinsonneault, and Basu, Ap. J., 555, 990, 2001.)

Figures 4and 6 show just how rapidly the pressure and density change with radius
in the Sun. These variations are forced on the solar structure by the condition of hydrostatic
equilibrium, the ideal gas law, and the composition structure of the star. Of course,
boundary conditions applied to the stellar structure equations require that both p and P
become negligible at the surface.
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FIGURE 6 The density profile and the interior mass of the Sun as a function of radius. (Data
from Bahcall, Pinsonneault, and Basu, Ap. J., 555, 990, 2001.)

Figure 6 also shows the interior mass (M, ) as a function of radius. Notice that 90%
of the mass of the star is located within roughly one-half of its radius. This should not come
as a complete surprise since the density increases significantly as the center of the Sun is
approached. Integration of the density function over the volume of the star from the center
outward (i.e., the integration of Eq. 1) yields the interior mass function.

The question remains as to how the energy generated in the interior is transported out-
ward. A criterion for the onset of convection in stellar interiors, namely that the
temperature gradient become superadiabatic,

dT
dr

daT

> —
dr

b
act ad

where the “act” and “ad” subscripts designate the actual and adiabatic temperature gradients,
respectively. Under the simplifying assumption of an ideal monatomic gas, this condition
becomes,

dln P

< 2.5.
dinT

dIn P/dInT is plotted versus /Ry in Fig. 7. As can be seen, the Sun is purely
radiative below r/Rg = 0.714 and becomes convective above that point. Physically this
occurs because the opacity in the outer portion of the Sun becomes large enough to inhibit the
transport of energy by radiation; recall that the radiative temperature gradient is proportional
to the opacity. When the temperature gradient becomes too large, convection
becomes the more efficient means of energy transport. Throughout most of the region
of convective energy transport, dIn P/dIn T ~ 2.5, which is characteristic of the nearly
adiabatic temperature gradient of most convection zones. The rapid rise in dIn P/dIn T
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FIGURE 7 The convection condition d In P /d In T plotted versus r/ R . The dashed horizontal
line represents the boundary between adiabatic convection and radiation for an ideal monatomic gas.
The onset of convection does not exactly agree with the ideal adiabatic case because of the incorpora-
tion of a sophisticated equation of state and a more detailed treatment of convection physics. The rapid
riseind In P/d In T near the surface is associated with the highly superadiabatic nature of convection
in that region (i.e., the adiabatic approximation that convection occurs when dIn P/dInT < 2.5 is
invalid near the surface of the Sun). [dIn P/d In T was computed using data from Bahcall, Pinson-
neault, and Basu, Ap. J., 555, 990, 2001. The data for the zones above 0.95 R, are from Cox, Arthur
N. (editor), Allen’s Astrophysical Quantities, Fourth Edition, AIP Press, New York, 2000.]

above 0.95 R is due to the significant departure of the actual temperature gradient from
an adiabatic one. In this case convection must be described by a more detailed treatment,
such as the mixing-length theory.

Notice thatd In P/d In T also decreases to almost 2.5 at the center of the Sun. Although
the Sun remains purely radiative in the center, the large amount of energy that must be trans-
ported outward pushes the temperature gradient in the direction of becoming superadiabatic.

Stars only slightly more massive than the Sun are convec-
tive in their centers because of the stronger temperature dependence of the CNO cycle as
compared to the pp chain.

Clearly, an enormous amount of information is available regarding the solar interior,
as derived from the direct and careful application of the stellar structure equations and
the fundamental physical principles. A very complete and reasonable model of the Sun
can be produced that is consistent with evolutionary timescales and fits the global
characteristics of the star, specifically its mass, luminosity, radius, effective temperature,
and surface composition; precise measurements of oscillation frequencies; and, as we
will see in the next section, its observed surface convection zone.

One aspect of the observed Sun that is not yet fully consistent with the current solar
model is the abundance of lithium. The observed lithium abundance at the Sun’s surface
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is actually somewhat less than expected and may imply some need for adjustments in the
model through refined treatments of convection, rotation, and/or mass loss.

The Solar Neutrino Problem: A Detective Story Solved

Another significant discrepancy had existed between observations and the solar model
for several decades, the resolution of which led to an important new understanding of
fundamental physics. The solar neutrino problem was first noticed when Raymond Davis
began measuring the neutrino flux from the Sun in 1970 using a detector located almost
one mile below ground in the Homestake Gold Mine in Lead, South Dakota (Fig.  8).
Because of the very low cross section of neutrino interactions with other matter, neutrinos
can easily travel completely through Earth while other particles originating from space
cannot. As aresult, the underground detector was assured of measuring what it was designed
to measure—neutrinos created eight minutes earlier in the solar core.

The Davis neutrino detector contained 615,000 kg of cleaning fluid, C,Cly (tetra-
chlorethylene) in a volume of 377,000 liters (100,000 gallons). One isotope of chlorine
(?ZCI) is capable of interacting with neutrinos of sufficient energy to produce a radioactive
isotope of argon that has a half-life of 35 days,

17Cl+ v, = JiAr + e

The threshold energy for this reaction, 0.814 MeV, is less than the energies of the neutrinos
produced in every step of the pp chain except the crucial firstone, 1H + 1H — 2H + et + v,.

FIGURE 8 Raymond Davis’s solar neutrino detector. The tank was located 1478 m (4850 ft)
below ground in the Homestake Gold Mine in Lead, South Dakota, and was filled with 615,000 kg of
C,Cly in a volume of 377,000 liters (100,000 gallons). (Courtesy of Brookhaven National Laboratory.)
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However, the reaction that accounted for 77% of the neutrinos detected in the Davis
experiment is the decay of $B in the PP III chain,

8B — ¥Be 4+ ¢ + v,.

Unfortunately, this reaction is very rare, producing only for one pp chain termination in
5000.

John Bahcall (1935-2005), a colleague of Davis, was able to compute the anticipated
rate at which solar neutrinos should have been detected by the chlorine experiment (the
capture rate). The complex calculation was based on the rate of neutrino production by B
decay in the PP III chain as computed from the solar model, combined with the probability
that a solar neutrino will interact with a chlorine atom in the Homestake experiment.

Once every few months Davis and his collaborators carefully purged the accumulated
argon from the tank and determined the number of argon atoms produced. The capture
rate was measured in terms of the solar neutrino unit, or SNU (1 SNU = 103 reactions
per target atom per second). With approximately 2.2 x 10°° atoms of ;/Cl atoms in the
tank, if only one argon atom was produced each day, this rate would have corresponded to
5.35 SNU.

Results of 108 extractions from the Davis experiment between 1970 and 1994 are shown
in Fig. 9. Bahcall predicted that the experiment should have yielded a capture rate of
7.9 SNU while the actual data gave an average of 2.56 £ 0.16 SNU; only one argon atom
was produced every two days in that 100,000 gallon tank!

Other neutrino experiments, fundamentally different from the ?;Cl experiment, have
confirmed the discrepancy between the prediction of the solar model and observed neu-
trino counts. Japan’s underground Super-Kamiokande observatory (Fig.  10) detects the
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FIGURE 9 Results of the Davis solar neutrino experiment from 1970 to 1994. The uncertainties
in the experimental data are shown by vertical error bars associated with each run. The predicted
solar neutrino capture rate for the 37Cl detector was 7.9 SNU based on solar models without neutrino
oscillations. (Figure adapted from Cleveland, et al., Ap. J., 496, 505, 1998.)
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FIGURE 10 Super-Kamiokande neutrino observatory in Japan contains 4.5 x 107 kg (50,000
tons) of pure water. As neutrinos pass through the water, they scatter electrons at speeds greater
than the speed of light through water. The pale blue Cerenkov light that is produced is detected by
the 11,200 inwardly-directed photomultiplier tubes, signaling the presence of the passing neutrino.
[Photo courtesy of Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University
of Tokyo.]

Cerenkov light that is produced when neutrinos scatter electrons, causing the electrons
to move at speeds greater than the speed of light in water.> The number of neutrinos de-
tected by Super-Kamiokande (and Kamiokande II before it) are less than half the number
expected from solar models. The Soviet—-American Gallium Experiment (SAGE), located
at the Baksan Neutrino Laboratory (inside a mountain in the Caucasus), and GALLEX (at
the Gran Sasso underground laboratory in Italy) measure the low-energy pp chain neutrinos
that dominate the Sun’s neutrino flux. SAGE and GALLEX make their detections via a
reaction that converts gallium into germanium,

v, +11Ga — 1NGe + e

After considering the expected number of background counts from sources other than the
Sun, both experiments also confirm the deficit of neutrinos first established by the Davis
detector.

The search for a theoretical resolution to the solar neutrino problem considered two
general approaches: Either some fundamental physical process operating in the solar model
is incorrect, or something happens to the neutrinos on their way from the Sun’s core to Earth.
The first of these possibilities inspired an intense reexamination of a host of features of the

SNote that this does not violate Einstein’s special theory of relativity since the special theory applies to the speed
of light in a vacuum. The speed of light in any other medium is always less than the speed of light in a vacuum.
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solar model, including nuclear reaction rates, the opacity of stellar material, the evolution
of the Sun up to its present state, variations in the composition of the solar interior, and
several exotic suggestions (including dark matter in the Sun’s core). However, none of these
suggested solutions was able to satisfy all of the observational constraints simultaneously,
particularly neutrino counts and solar oscillation frequencies.

An elegant solution to the solar neutrino problem proposed that the solar model is essen-
tially correct but that the neutrinos produced in the Sun’s core actually change before they
reach Earth. The Mikheyev—Smirnov—Wolfenstein (or MSW) effect involves the trans-
formation of neutrinos from one type to another. This idea is an extension of the electroweak
theory of particle physics that combines the electromagnetic theory with the theory of weak
interactions governing some types of radioactive decay. The neutrinos produced in the var-
ious branches of the pp chain are all electron neutrinos (v,); however, two other flavors of
neutrinos also exist—the muon neutrino (v, ) and the tau neutrino (v;). The MSW effect
suggests that neutrinos oscillate among flavors, being electron neutrinos, muon neutrinos,
and/or tau neutrinos during their passage through the Sun. The neutrino oscillations are
caused by interactions with electrons as the neutrinos travel toward the surface. Because
the chlorine (Davis), water (Kamiokande and Super-Kamiokande), and gallium detectors
(SAGE and GALLEX) have different threshold energies and they are sensitive only to the
electron neutrino, their results were determined to be consistent with the MSW theory.

One testable consequence of the MSW effect is that if neutrinos oscillate between flavors,
they must necessarily have mass. This is because a change of neutrino flavor can occur only
between neutrinos having different masses. The required mass difference needed for the
MSW solution to the solar neutrino problem is much less than the current experimentally
established upper limit on the mass of the electron neutrino of approximately 2.2 eV. Even
though the standard electroweak theory does not predict masses for the neutrinos, many
reasonable extensions of this theory do allow for masses in the right range. These extended
theories, known as grand unified theories (GUTs), are currently the focus of intense
research by high-energy (particle) physicists.

Confirmation of neutrino oscillations came in 1998 when Super-Kamiokande was used
to detect atmospheric neutrinos that are produced when high-energy cosmic rays (charged
particles from space) collide with Earth’s upper atmosphere. Cosmic rays are capable of
creating both electron and muon neutrinos, but not tau neutrinos. The Super-Kamiokande
group was able to determine that the number of muon neutrinos traveling upward after
having traversed the diameter of Earth was significantly reduced relative to the number
traveling downward. The difference in numbers is in excellent agreement with the theory
of neutrino mixing (neutrinos oscillating among the three flavors), demonstrating for the
first time that neutrinos are not massless particles.

Thus, after several decades of study, the solar neutrino problem was resolved by a
profound advance in our understanding of particle physics and the nature of the fundamental
forces. As aresult of their contributions to this important scientific detective story, Raymond
Davis and Masatoshi Koshiba, director of the Kamiokande research group that confirmed
the neutrino detections, were two of the recipients of the 2002 Nobel Prize in physics.®

The third recipient of the 2002 Nobel Prize, Riccardo Giacconi, used a rocket experiment to detect X-rays in
space. Giacconi later designed the Uhuru and Einstein X-ray observatories and also served as the first director of
the Space Telescope Science Institute.
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In 2004, John Bahcall wrote of the efforts to solve the solar neutrino problem:

I am astonished when I look back on what has been accomplished in the field
of solar neutrino research over the past four decades. Working together, an
international community of thousands of physicists, chemists, astronomers,
and engineers has shown that counting radioactive atoms in a swimming pool
full of cleaning fluid in a deep mine on Earth can tell us important things about
the center of the Sun and about the properties of exotic fundamental particles
called neutrinos. If I had not lived through the solar neutrino saga, I would not
have believed it was possible.’

B THE SOLAR ATMOSPHERE

When we observe the Sun visually, it appears as though there is a very abrupt and clear
edge to this hot, gaseous ball (Fig. 11). Of course, an actual “surface” does not exist;
rather, what we are seeing is a region where the solar atmosphere is optically thin and
photons originating from that level travel unimpeded through space. Even this region is not
clearly defined, however, since some photons can always escape when the optical depth is
somewhat greater than unity while others may be absorbed when the optical depth is less
than unity, but the odds of a photon leaving the solar atmosphere diminish rapidly as the
optical depth increases. Consequently, the Sun’s atmosphere changes from being optically
thin to optically thick in only about 600 km. This relatively small distance (about 0.09% of
the Sun’s radius) is what gives the “edge” of the Sun its sharp appearance.

The Photosphere

The region where the observed optical photons originate is known as the solar photosphere.
Defining the base of the photosphere is somewhat arbitrary since some photons can originate
from an optical depth significantly greater than unity. For instance, if 1% of the photons
originating from a layer reach us, the optical depth would be approximately 4.5 at that level
(e=*3 ~ 0.01); if 0.1% reach us, the optical depth would be about 6.9. Of course, since the
opacity and optical depth are wavelength dependent, the base of the photosphere is also
wavelength dependent if it is defined in terms of the optical depth. Given the arbitrariness
of the definition, the base of the photosphere for the Sun is sometimes simply defined to be
100 km below the level where the optical depth at a wavelength of 500 nm is unity. At this
depth, 7500 =~ 23.6 and the temperature is approximately 9400 K.

Moving upward through the solar photosphere, the temperature of the gas decreases
from its base value to a minimum of 4400 K about 525 km above the 75090 = 1 level. It is
this temperature minimum that defines the top of the photosphere. Above this point, the
temperature begins to rise again. The approximate thicknesses of the various components
of the Sun’s atmosphere to be discussed in this section are depicted in Fig. ~ 12.

On average the solar flux is emitted from an optical depth
of t = 2/3 (the Eddington approximation). This leads to the identification of the effective
temperature with the temperature of the gas at this depth, or 7, = T;—/3 = 5777 K.

7«Solving the Mystery of the Missing Neutrinos,” John N. Bahcall (2004), Nobel e-Museum,
http://nobelprize.org/physics/articles/bahcall/.
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FIGURE 11 The solar disk appears sharp because of the rapid increase in optical depth with
distance through the photosphere. Sunspots are visible on the surface of the disk in this image taken
by SOHO/MDI on March 29, 2001. [SOHO (ESA & NASA)]
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FIGURE 12 The thicknesses of the components of the Sun’s atmosphere.

The Sun radiates predominantly as a blackbody in the visible and infrared
portions of the spectrum.

This observation suggests that there exists a source of opacity that is basically
continuous across wavelength. The continuum opacity is due in part to the presence of the
H™ ions in the photosphere.

Using the Saha equation, we can determine the ratio of the number of H™ ions
to neutral hydrogen atoms. It is left as an exercise to show that in the Sun’s photosphere,
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only about one in 107 hydrogen atoms actually forms an H™ ion. The importance of H™ in
the Sun is due to the fact that even though the abundance of the ion is quite low, neutral
hydrogen is not capable of contributing significantly to the continuum.
Of course, optical depth is a function not only of the distance that a photon must travel
to the surface of the Sun, but also of the wavelength-dependent opacity of the solar material.
Consequently, photons can originate from or be absorbed at different physical
depths in the atmosphere, depending upon their wavelengths. Since a spectral line is not
infinitesimally thin, but actually covers a range of wavelengths, even different parts of the
same line are formed at different levels of the atmosphere. Thus solar observations with
high-wavelength resolution can be used to probe the atmosphere at various depths, provid-
ing a wealth of information about its structure.
Absorption lines, including Fraunhofer lines, are produced in the photosphere.
According to Kirchhoff’s laws, the absorption lines must be produced where the
gas is cooler than the bulk of the continuum-forming region. Line formation must also
occur between the observer and the region where much of the continuum is produced. In
reality, the Fraunhofer lines are formed in the same layers where H™ produces the contin-
uum. However, the darkest part of the line (its center) originates from regions higher in the
photosphere, where the gas is cooler. This is because the opacity is greatest in the center
of the line, making it more difficult to see deeper into the photosphere. Moving away from
the central wavelength toward the wing of the line implies that absorption is occurring at
progressively deeper levels. At wavelengths sufficiently far from the central peak, the edge
of the line merges with the continuum being produced at the base of the photosphere. This
effect is illustrated in Fig. 13.
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FIGURE 13 The relationship between absorption line strength and depth in the photosphere for
a typical spectral line. The wings of the line are formed deeper in the photosphere than is the center
of the line.
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Solar Granulation

When the base of the photosphere is observed (see Fig.  14), it appears as a patchwork of
bright and dark regions that are constantly changing, with individual regions appearing and
then disappearing. With a spatial extent of roughly 700 km, the characteristic lifetime for
one of these regions is five to ten minutes. This patchwork structure is known as granulation
and is the top of the convection zone protruding into the base of the photosphere.

Figure 15 shows a high-resolution spectrum of solar granulation spanning a number
of convection cells. The appearance of wiggles in the absorption lines occurs because some
parts of the region are Doppler blueshifted while others are redshifted. We find

FIGURE 14 Granulation at the base of the photosphere is due to the rising and falling gas
bubbles produced by the underlying convection zone. (This three-dimensional image is from the
Swedish 1-m Solar Telescope, operated on the island of La Palma by the Institute for Solar Physics of
the Royal Swedish Academy of Sciences in the Spanish Observatorio del Roque de los Muchachos
of the Instituto de Astrofisica de Canarias.)
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FIGURE 15 A spectrum of a portion of the photospheric granulation showing absorption lines
that indicate the presence of radial motions. Wiggles to the left are toward shorter wavelengths and are
blueshifted while wiggles to the right are redshifted. The wavelengths shown at the top of the image are
given in angstroms. (Courtesy of W. Livingston and the National Optical Astronomy Observatories.)
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FIGURE 16 The rotation period of the Sun varies with latitude and depth. €2, the angular fre-
quency, has units of radians per second. (Adapted from a figure courtesy of NSF’s National Solar
Observatory.)

that radial velocities of 0.4km s~! are common; brighter regions produce the blueshifted
sections of the lines while darker regions produce the redshifted sections. Thus the bright
cells are the vertically rising hot convective bubbles carrying energy from the solar interior.
When those bubbles reach the optically thin photosphere, the energy is released via photons
and the resulting cooler, darker gas sinks back into the interior. The lifetime of a typical
granule is the amount of time needed for a convective eddy to rise and fall the distance of
one mixing length. Solar granulation provides us with a visual verification of the results of
the stellar structure equations applied to our Sun.

Differential Rotation

Photospheric absorption lines may also be used to measure the rotation rate of the Sun.
By measuring Doppler shifts at the solar limb, we find that the Sun rotates differentially
(i.e., the rate of rotation depends on the latitude being observed). At the equator the rotation
period is approximately 25 days, increasing to 36 days at the poles.

Observations of solar oscillations have revealed that the Sun’s rotation also varies with
radius; see Fig. 16. Near the base of the convection zone, the differing rotation rates
with latitude converge in a region known as the tachocline. The strong shear that is set
up in this region is believed to result in electric currents in the highly conducting plasma,
which in turn generate the Sun’s magnetic field. Thus the tachocline is probably the source
of the Sun’s magnetic field. (The complex manifestations of the Sun’s dynamic magnetic
field will be discussed extensively in Section 3.)

The Chromosphere

The chromosphere, with an intensity that is only about 10~ of the value for the pho-
tosphere, is that portion of the solar atmosphere that lies just above the photosphere and
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extends upward for approximately 1600 km (2100 km above 75090 = 1). Analysis of the light
produced in the chromosphere indicates that the gas density drops by more than a factor of
10* and that the temperature begins to increase with increasing altitude, from 4400 K to
about 10,000 K.

Reference to the Boltzmann and Saha equations shows that lines that are not produced
at the lower temperatures and higher densities of the photosphere can form in the
environment of the chromosphere. For instance, along with the hydrogen Balmer lines,
the lines of He II, Fe II, Si I, Cr I, and Call (in particular, the Call H and K lines,
396.8 nm and 393.3 nm, respectively) can appear in the spectrum.

Although certain Fraunhofer lines appear as absorption lines in the visible and near
ultraviolet portions of the spectrum, others begin to appear as emission lines at shorter (and
much longer) wavelengths. Again Kirchhoff’s laws offer an explanation, suggesting that
a hot, low-density gas must be responsible. Because the interior of the Sun is optically
thick below the base of the photosphere, the area of emission line production must occur
elsewhere. With the peak of the blackbody spectrum near 500 nm, the strength of the
continuum decreases rapidly at shorter and longer wavelengths. As a result, emission
lines produced outside of the visible portion of the spectrum are not overwhelmed by the
blackbody radiation.

Visible wavelength emission lines are not normally seen against the bright solar disk, but
they can be observed near the limb of the Sun for a few seconds at the beginning and end
of a total eclipse of the Sun; this phenomenon is referred to as a flash spectrum. During
this period, the portion of the Sun that is still visible takes on a reddish hue because of the
dominance of the Balmer Ho emission line, a line that is normally observed only as an
absorption line in the Sun’s atmosphere.

Using filters that restrict observations to the wavelengths of the emission lines produced
in the chromosphere (particularly He), it is possible to see a great deal of structure in this
portion of the atmosphere. Supergranulation becomes evident on scales of 30,000 km,
showing the continued effects of the underlying convection zone. Doppler studies again
reveal convective velocities on the order of 0.4 km s™!, with gas rising in the centers of
the supergranules and sinking at their edges. Also present are vertical filaments of gas,
known as spicules, extending upward from the chromosphere for 10,000 km (Fig.  17).
An individual spicule may have a lifetime of only 15 minutes, but at any given moment
spicules cover several percent of the surface of the Sun. Doppler studies show that mass
motions are present in spicules, with material moving outward at approximately 15 km s ™.

The Transition Region

Above the chromosphere, the temperature rises very rapidly within approximately 100 km
(see Fig.  18), reaching more than 10° K before the temperature gradient flattens some-
what. The temperature then continues to rise more slowly, eventually exceeding 10° K.
This transition region may be selectively observed at various altitudes in the ultraviolet
and extreme ultraviolet parts of the electromagnetic spectrum. For instance, the 121.6-nm
Lyman-alpha (Ly«) emission line of hydrogen (n = 2 — n = 1) is produced at the top of
the chromosphere at 20,000 K, the C III 97.7-nm line originates at a level where the tem-
perature is 90,000 K, the 103.2-nm line of O VI occurs at 300,000 K, and Mg X creates a
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FIGURE 17 Spicules in the chromosphere of the Sun. In addition, small sunspots are visible in
the upper left quadrant of the image, and brighter areas known as plage regions are also visible. The
observations were made using the Ho emission line. Features as small as 130 km are evident in this
image. (Courtesy of the Royal Swedish Academy of Sciences.)

62.5-nm line at 1.4 x 10% K. Figure 19 shows images of the Sun at various wavelengths
and heights above the base of the photosphere.

The Corona

‘When the Moon fully occults the photosphere during a total solar eclipse, the radiation from
the faint corona becomes visible (Fig.  20). The corona, located above the transition re-
gion, extends out into space without a well-defined outer boundary and has an energy output
that is nearly 10° times less intense than that of the photosphere. The number density of
particles at the base of the corona is typically 10'® particles m —*, whereas in the vicinity of
Earth, the number density of particles originating from the Sun (solar wind particles) have
a characteristic value of 107 particles m— (this can be compared with 10%° particles m
at sea level in Earth’s atmosphere). Because the density of the corona is so low, it is essen-
tially transparent to most electromagnetic radiation (except long radio wavelengths) and
is not in local thermodynamic equilibrium (LTE). For gases that are not in LTE, a unique
temperature is not strictly definable. However, the temperatures obtained by considering
thermal motions, ionization levels, and radio emissions do give reasonably consistent
results. For instance, the presence of Fe XIV lines indicates temperatures in excess of
2 x 10° K, as do line widths produced by thermal Doppler broadening.

Based on the radiation coming from the corona, three distinct structural components can
be identified:

* The K corona (from Kontinuierlich, the German word for “continuous”) produces
the continuous white light emission that results from photospheric radiation scattered
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FIGURE 18 Logarithmic plots of the temperature structure (solid line) and mass density structure

(dashed line) of the upper atmosphere of the Sun. The altitudes observed at various wavelengths are
also depicted. [Figure adapted from Avrett, in Encyclopedia of Astronomy and Astrophysics, Paul
Murdin (ed.), Institute of Physics Publishing, Bristol, 2001, page 2480.]

by free electrons. Contributions to the coronal light due to the K corona primarily
occur between 1 and 2.3 R from the center of the Sun. The spectral lines evident
in the photosphere are essentially blended by the large Doppler shifts that are caused
by the high thermal velocities of the electrons.

* The F corona (for Fraunhofer) comes from the scattering of photospheric light by dust
grains that are located beyond 2.3 Rg. Because dust grains are much more massive
and slower than electrons, Doppler broadening is minimal and the Fraunhofer lines
are still detectable. The F corona actually merges with the zodiacal light, the faint
glow found along the ecliptic that is a reflection of the Sun’s light from interplanetary
dust.

* The E corona is the source of the emission lines that are produced by the highly
ionized atoms located throughout the corona; the E corona overlaps the K and F
coronas. Since the temperatures are extremely high in the corona, the exponential term
in the Saha equation encourages ionization because thermal energies are comparable
to ionization potentials. The very low number densities also encourage ionization
since the chance of recombination is greatly reduced.
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FIGURE 19 Visible features of the Sun at various wavelengths. The central image is a three-
color composite of the corona obtained by TRACE at 17.1 nm, 19.5 nm, and 28.4 nm. Clockwise
starting from the top are a SOHO/MDI magnetic map, white light, TRACE 170 nm continuum, TRACE
Lya, TRACE 17.1 nm, TRACE 19.5 nm, TRACE 28.4 nm, and a Yohkoh/SXT X-ray image. [The
Transition Region and Coronal Explorer, TRACE, is a mission of the Stanford-Lockheed Institute
for Space Research (a joint program of the Lockheed-Martin Advanced Technology Center’s Solar
and Astrophysics Laboratory and Stanford’s Solar Observatories Group) and part of the NASA Small
Explorer program.]

The low number densities allow forbidden transitions to occur, producing spectral lines
that are generally seen only in astrophysical environments where gases are extremely thin.
Forbidden transitions occur from atomic energy levels that are metastable; electrons do
not readily make transitions from metastable states to lower energy states without assist-
ance. Whereas allowed transitions occur on timescales on the order of 1073 s, spontane-
ous forbidden transitions may require one second or longer. In gases at higher densities,
electrons are able to escape from metastable states through collisions with other atoms or
ions, but in the corona these collisions are rare. Consequently, given enough time, some
electrons will be able to make spontaneous transitions from metastable states to lower
energy states, accompanied by the emission of photons.
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FIGURE 20 (a) The quiet solar corona seen during a total solar eclipse in 1954. The shape of
the corona is elongated along the Sun’s equator. (Courtesy of J. D. R. Bahng and K. L. Hallam.)
(b) The active corona tends to have a very complex structure. This image of the July 11, 1991, eclipse
is a composite of five photographs that was processed electronically. (Courtesy of S. Albers.)

Since the blackbody continuum emission from the Sun decreases like A =2 for sufficiently
long wavelengths, the amount of photospheric radio emission is negligible. The solar co-
rona, however, is a source of radio-wavelength radiation that is not associated with the
blackbody continuum. Some radio emission arises from free—free transitions of electrons
that pass near atoms and ions. During these close encounters, photons may be emitted as
the electrons’ energies are decreased slightly. From the conservation of energy, the greater
the change in the energy of an electron, the more energetic the resulting photon and the
shorter its wavelength. Clearly, the closer an electron comes to an ion, the more likely it
is that the electron’s energy will change appreciably. Since more frequent and closer en-
counters are expected if the number density is larger, shorter-wavelength radio emissions
should be observed nearer the Sun. Radio wavelengths of 1 to 20 cm are observed from
the chromosphere through the lower corona, while longer wavelength radiation originates
from the outer corona. It is important to note that synchrotron radiation by relativistic elec-
trons also contributes to the observed radio emission from the solar corona.

Photospheric emissions are negligible in the X-ray wavelength range as well. In this
case the blackbody continuum decreases very rapidly, dropping off like A ~>¢~"¢/**T Con-
sequently, any emission in X-ray wavelengths from the corona will completely overwhelm
the output from the photosphere. In fact, because of the high temperatures of the corona, its
X-ray spectrum is very rich in emission lines. This is due to the high degree of ionization
that exists for all of the elements present, together with the ability of the corona to excite
a large number of atomic transitions. Given the many electrons that are present in heavy
elements such as iron and the vast number of available energy levels, each such element
is capable of producing an extensive emission spectrum. Figure 21 shows a section of
the X-ray emission spectrum of the solor corona. It displays a sample of the lines that are
observed in one portion of the X-ray wavelength band, along with the ions responsible for
their production.
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FIGURE 21 A section of the X-ray emission spectrum of the solar corona. (Figure adapted from
Parkinson, Astron. Astrophys., 24, 215, 1973.)

Coronal Holes and the Solar Wind

An image of the X-ray Sun is shown in Fig. ~ 22. This fascinating picture indicates that X-
ray emission is not uniform. Active (bright and hot) regions exist, along with darker, cooler
regions known as coronal holes. Moreover, even in the coronal holes, localized bright spots
of enhanced X-ray emission appear and disappear on a timescale of several hours. Smaller
features are also apparent within the regions of generally bright X-ray emission.

The weaker X-ray emission coming from coronal holes is characteristic of the lower
densities and temperatures that exist in those regions, as compared to the rest of the corona.
The explanation for the existence of coronal holes is tied to the Sun’s magnetic field and the
generation of the fast solar wind, a continuous stream of ions and electrons escaping from
the Sun and moving through interplanetary space at speeds of approximately 750 km s~ .
A gusty, slow solar wind, with speeds of roughly one-half those of the fast wind appears to
be produced by streamers in the corona associated with closed magnetic fields.

Just like the magnetic field that is produced by a current loop, the magnetic field of the
Sun is generally that of a dipole, at least on a global scale (Fig.  23). Although its value
can differ significantly in localized regions (as we will see in the next section), the strength
of the field is typically a few times 10~* T near the surface.® Coronal holes correspond
to those parts of the magnetic field where the field lines are open, while the X-ray bright
regions are associated with closed field lines; open field lines extend out to great distances
from the Sun, while closed lines form loops that return to the Sun.

8The magnetic field near the surface of Earth is approximately 6 x 1075 T.
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FIGURE 22 An X-ray image of the Sun obtained by the Soft X-Ray Telescope on the Yohkoh
Solar Observatory, May 8, 1992. Bright regions are hotter X-ray regions and darker regions are cooler.
A dark coronal hole is evident at the top of the image. (From the Yohkoh mission of ISAS, Japan.
The X-ray telescope was prepared by the Lockheed Palo Alto Research Laboratory, the National
Astronomical Observatory of Japan, and the University of Tokyo with the support of NASA and
ISAS.)

The Lorentz force equation,

F=qgE+vxB), 2)

describing the force exerted on a charged particle of velocity v in an electric field E and a
magnetic field B states that the force due to the magnetic field is always mutually perpendic-
ular to both the direction of the velocity vector and the field (the cross product). Providing
that electric fields are negligible, charged particles are forced to spiral around magnetic
field lines and cannot actually cross them except by collisions (Fig. ~ 24). This implies
that closed magnetic field lines tend to trap charged particles, not allowing them to escape.
In regions of open field lines, however, particles can actually follow the lines out away
from the Sun. Consequently, the solar wind originates from the regions of open magnetic
field lines, namely the coronal holes. The details observed in the X-ray-bright regions, as
well as the localized bright spots in the coronal holes, are due to the higher densities of the
electrons and ions that are trapped in large and small magnetic field loops.

The existence of ongoing mass loss from the Sun was deduced long before it was ever
detected directly, as evidenced by the tails of comets. The tails are generally composed of
two parts, a curved dust tail and a straight ion tail, both of which are always pointed away
from the Sun (Fig.  25). The force exerted on dust grains by photons (radiation pressure)
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FIGURE 23 (a) The characteristic dipole magnetic field of a current loop. (b) A generalized
depiction of the global magnetic field of the Sun. The dashed lines show the field of a perfect magnetic
dipole.
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FIGURE 24 A charged particle is forced to spiral around a magnetic field line because the
Lorentz force is mutually perpendicular to both the velocity of the particle and the direction of the
magnetic field.

is sufficient to push the dust tail back; the curvature of the tail is due to the different orbital
speeds of the individual dust grains, which, according to Kepler’s third law, are a function of
their varying distances from the Sun. However, the ion tail cannot be explained by radiation
pressure; the interaction between photons and the ions is not efficient enough. Rather, it is
the electric force between the ions of the solar wind and the ions in the comet that counts
for the direction of the ion tail. This interaction allows momentum to be transferred to the
cometary ions, driving them straight away from the Sun.
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FIGURE 25 Comet Mrkos in 1957. The dust tail of a comet is curved and its ion tail is straight.

(Courtesy of Palomar/Caltech.)

FIGURE 26 Aurora australis seen over the South Pole. (NASA)

The aurora borealis and the aurora australis (the northern and southern lights, respec-
tively) are also products of the solar wind (see Fig. ~ 26). As the ions from the Sun interact
with Earth’s magnetic field, they become trapped in it. Bouncing back and forth between
the north magnetic pole and the south magnetic pole, these ions form the Van Allen radi-
ation belts. Ions that are sufficiently energetic will collide with the atoms in Earth’s upper
atmosphere near the magnetic poles, causing the atmospheric atoms to become excited or
ionized. The resulting de-excitations or recombinations emit the photons that produce the
spectacular light displays observed from high northern and southern latitudes.
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Using rockets and satellites, characteristics of the two solar winds can be measured as they
pass near Earth. In addition, the Ulysses spacecraft, placed in a polar orbit around the Sun,
was able to detect the wind well out of the plane of Earth’s orbit. At a distance of 1 AU from
the Sun, the solar wind velocity ranges from approximately 200 km s ™' to 750 km s~', with
a typical density of 7 x 10° jons m > and characteristic kinetic temperatures of 4 x 10* K
for protons and 10° K for electrons. Although the winds are composed primarily of protons
and electrons, heavier ions are present as well.

Example 2.1. The mass loss rate of the Sun may be estimated from the data given
above. We know that all of the mass leaving the Sun must also pass through a sphere of
radius 1 AU centered on the Sun; otherwise it would collect at some location in space. If
we further assume (for simplicity) that the mass loss rate is spherically symmetric, then the
amount of mass crossing a spherical surface of radius » in an amount of time ¢ is just the
mass density of the gas multiplied by the volume of the shell of gas that can travel across
the sphere during that time interval, or

dM = pdV = (nmpy)@nr’vdt),

where n is the number density of ions (mostly hydrogen), m g is approximately the mass
of a hydrogen ion, v is the ion velocity, and dV = Adr ~ 4wr? vdt is the volume of a
shell that crosses a spherical surface in an amount of time d¢. Dividing both sides by dft,
we obtain the mass loss rate,

amM

—— =dnr’nmyv = 47r? po. 3)

dt
By convention, stellar mass loss rates are generally given in solar masses per year and sym-
bolizedby M = dM/dt. Using v = 500 km s'r=1AU,andn =7 x 10° protons m73,
we find that

Mo ~3x 1074 Mg yr!.

At this rate it would require more than 10'3 yr before the entire mass of the Sun is
dissipated. However, the interior structure of the Sun is changing much more rapidly than
this, so the effect of the present-day solar wind on the evolution of the Sun is minimal.

As an interesting aside, in 1992 both Voyagers I and I detected radio noise at frequencies
of 1.8 to 3.5 kHz originating from the outer reaches of the Solar System. It is believed
that the noise is produced where particles from the solar wind collide with the interstellar
medium, producing a termination shock.

The 1992 observations represented the first detection
of the heliopause, the outer limit of the Sun’s electromagnetic influence. In 2005, when
Voyager I was about 95 AU from Earth and traveling at 3.6 AU per year, it passed through
the termination shock into the region known as the heliosheath. The strongest evidence that
Voyager I did in fact cross the termination shock comes from the measurement of a sudden
significant increase in the strength of the magnetic field that is carried by the solar wind.
This increased magnetic field strength is due to the slowing of the solar wind particles and
the resulting increase in particle density.
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The Parker Wind Model

We now consider how the expansion of the solar corona produces the solar wind. This is a
result of the corona’s high temperature, together with the high thermal conductivity of the
ionized gas, referred to as a plasma. The ability of the plasma to conduct heat implies that
the corona is almost isothermal (recall Fig. 18).

In 1958 Eugene Parker developed an approximately isothermal model of the solar wind
that has been successful in describing many of its basic features. To see why the solar wind
is inevitable, begin by considering the condition of hydrostatic equilibrium. If the mass
of the corona is insignificant compared to the total mass of the Sun,then M, >~ Mg
in that region and the hydrostatic equilibrium equation becomes

@ __ . 4
dr r2 “)

Next, assuming for simplicity that the gas is completely ionized and composed entirely of
hydrogen, the number density of protons is given by

P

n>~-—

mp

since m, >~ my. From the ideal gas law, the pressure of the gas may be written as

P =2nkT,

where u = 1/2 for ionized hydrogen and my > m ,. Substituting expressions for the pres-
sure and density into Eq. (4), the hydrostatic equilibrium equation becomes

d GM,
- (@nkT) = s (5)
r r

Making the assumption that the gas is isothermal, Eq. (  5) can be integrated directly
to give an expression for the number density (and therefore the pressure) as a function of
radius. It is left as an exercise to show that

n(r) = nge M0, Q)
where
)\' — GM@mp
2kTV()

and n = n( at some radius r = ry. Note that XA is approximately the ratio of a proton’s
gravitational potential energy and its thermal kinetic energy at a distance r, from the center
of the Sun. We now see that the pressure structure is just

P(r) = Pye *=r0/0),

where Py = 2nokT.
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An immediate consequence of Eq. ( 2) is that in our isothermal approximation the
pressure does not approach zero as r goes to infinity. To estimate the limiting values of n(r)
and P(r),let T = 1.5 x 10°K andng = 3 x 103 m~3 at about ry = 1.4 R, values typical
of the inner corona. Then A ~ 5.5, 1(00) ~ 1.2 x 10! m~3,and P(c0) ~ 5 x 107°N m~2.
However, with the exception of localized clouds of material, the actual densities and
pressures of interstellar dust and gas are much lower than those just derived.

Given the inconsistency that exists between the isothermal, hydrostatic solution to the
structure of the corona and the conditions in interstellar space, at least one of the assump-
tions made in the derivation must be incorrect. Although the assumption that the corona is
approximately isothermal is not completely valid, it is roughly consistent with observations.
Recall that near Earth (r ~ 215 Rp), the solar wind is characterized by temperatures on
the order of 10° K, indicating that the temperature of the gas is not decreasing rapidly with
distance. It can be shown that solutions that allow for a realistically varying temperature
structure still do not eliminate the problem of a predicted gas pressure significantly in excess
of the interstellar value. Apparently, it is the assumption that the corona is in hydrostatic
equilibrium that is wrong. Since P (0c0) greatly exceeds the pressures in interstellar space,
material must be expanding outward from the Sun, implying the existence of the solar wind.

The Hydrodynamic Nature of the Upper Solar Atmosphere

If we are to develop an understanding of the structure of the solar atmosphere, the simple
approximation of hydrostatic equilibrium must be replaced by a set of hydrodynamic
equations that describe the flow. In particular, when we write

d*r dv _ dv dr dv

—_— = = =V —
dt?  dt dr dt dr

’

dv dP G M, p 7
V—=————-G——,
PVar dr r2
where v is the velocity of the flow. With the introduction of a new variable (velocity),
another expression that describes the conservation of mass flow across boundaries must
also be included, specifically

471r2,0v = constant,

which is just the relationship that was used in Example 2.1 to estimate the Sun’s mass
loss rate. This expression immediately implies that

d 2
dlovr]) _,
dr
At the top of the convection zone, the motion of the hot, rising gas and the return flow of
the cool gas sets up longitudinal waves (pressure waves) that propagate outward through the
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photosphere and into the chromosphere. The outward flux of wave energy, Fp, is governed
by the expression

L5
Frg = 5PV s (8)
where vy is the local sound speed and v,, is the velocity amplitude of the oscillatory wave
motion for individual particles being driven about their equilibrium positions by the “piston”
of the convection zone.
The sound speed is given by

vs =+ Yy P/p.

Since, according to the ideal gas law, P = pkT /uumpy, the sound speed may also be written
as

kT
vy = 4 x~T
ummpg

for fixed y and u.

When the wave is first generated at the top of the convection zone, v,, < vy,. However,
the density of the gas that these waves travel through decreases significantly with altitude,
dropping by four orders of magnitude in approximately 1000 km. If we assume that very little
mechanical energy is lost in moving through the photosphere (i.e., 4> Fg is approximately
constant) and that v; remains essentially unchanged since the temperature varies by only
about a factor of two across the photosphere and chromosphere, the rapid decrease in density
means that v,, must increase significantly (approximately two orders of magnitude). As a
result, the wave motion quickly becomes supersonic (v,, > v;) as particles in the wave try
to travel through the medium faster than the local speed of sound. The result is that the
wave develops into a shock wave, much like the shock waves that produce sonic booms
behind supersonic aircraft.

A shock wave is characterized by a very steep density change over a short distance,
called the shock front. As a shock moves through a gas, it produces a great deal of
heating via collisions, leaving the gas behind the shock highly ionized. This heating comes
at the expense of the mechanical energy of the shock, and the shock quickly dissipates. Thus
the gas in the chromosphere and above is effectively heated by the mass motions created in
the convection zone.

Magnetohydrodynamics and Alfvén Waves

It should be noted that our discussion of the hydrodynamic equations has failed to account
for the influence of the Sun’s magnetic field. It is believed that the temperature structure
throughout the outer solar atmosphere, including the very steep positive temperature gra-
dient in the transition region, is due at least in part to the presence of the magnetic field,
coupled with mass motions produced by the convection zone. Magnetohydrodynamics
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(usually mercifully shortened to MHD) is the study of the interactions between magnetic
fields and plasmas. Owing to the great complexity of the problem, a complete solution to
the set of MHD equations applied to the outer atmosphere of the Sun does not yet exist.
However, some aspects of the solution can be described.

The presence of the magnetic field allows for the generation of a second kind of wave
motion. These waves may be thought of as transverse waves that propagate along the
magnetic field lines as a consequence of the restoring force of tension associated with the
magnetic field lines. To understand the origin of this restoring force, recall that establishing a
magnetic field (which is always generated by moving electric charges, or currents) requires
that energy be expended. The energy used to establish the field can be thought of as being
stored within the magnetic field itself; thus the space containing the magnetic field also
contains a magnetic energy density. The value of the magnetic energy density is given by

BZ

= —. 9
o €))

Um

If a volume V of plasma containing a number of magnetic field lines is compressed in
a direction perpendicular to the lines, the density of field lines necessarily increases.” But
the density of field lines is just a description of the strength of the magnetic field itself,
so the energy density of the magnetic field also increases during compression. An amount
of mechanical work must therefore have been done in compressing the field lines in the
gas. Since work is given by W = [ P dV, the compression of the plasma must imply the
existence of a magnetic pressure. It can be shown that the magnetic pressure is numerically
equal to the magnetic energy density, or

BZ

Pp=——.
" 2p0

(10)

When a magnetic field line gets displaced by some amount perpendicular to the direction
of the line, a magnetic pressure gradient becomes established; the pressure in the direction
of the displacement increases as indicated by an increase in the number density of field
lines, while at the same time the pressure in the opposite direction decreases. This pressure
change then tends to push the line back again, restoring the original density of field lines.
This process may be thought of as analogous to the oscillations that occur in a string when
a portion of the string is displaced; it is the tension in the string that pulls it back when
it is plucked. The “tension” that restores the position of the magnetic field line is just the
magnetic pressure gradient.

As with the traveling motion of a wave on a string, a disturbance in the magnetic field line
can also propagate down the line. This transverse MHD wave is called an Alfvén wave.'’

91f the electric field is negligible, charged particles must spiral around field lines. This implies that if
the charged particles are pushed, they drag the field lines with them; the field lines are said to be “frozen in” the
plasma.
10Alfvén waves are named for Hannes Olof Gosta Alfvén, (1908-1995), who was awarded the Nobel Prize in
1970 for his fundamental studies in magnetohydrodynamics.
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The speed of propagation of the Alfvén wave may be estimated by making a comparison
with the sound speed in a gas. Since the adiabatic sound speed is given by

VPg

Us = —>

0

where y is of order unity, by analogy the Alfvén speed should be approximately

PITL B
U ~ | — =

P N2uop

A more careful treatment gives the result

B
n = . 11
v Top (11)

Example 2.2. Using Eq. (11), the sound speed and Alfvén speed may be compared
for the photosphere. The gas pressure at the top of the photosphere is roughly 140 N m~2,

with a density of 4.9 x 107° kg m™>. Assuming an ideal monatomic gas for which
y =5/3,

v, >~ 7000 m s~

Apparently, the sound speed is much larger in the Sun’s interior.
Taking a typical surface magnetic field strengthto be 2 x 10~ T, the magnetic pressure
is (from Eq. 10)

P, ~0.02Nm2,

and the Alfvén speed is

Uy >~ 10 m s~
The magnetic pressure may generally be neglected in photospheric hydrostatic consid-
erations since it is smaller than the gas pressure by roughly four orders of magnitude.
However, we will see in the next section that much larger magnetic field strengths can exist
in localized regions on the Sun’s surface.

Since Alfvén waves can propagate along magnetic field lines, they may also transport
energy outward. According to Maxwell’s equations, a time-varying magnetic field produces
an electric field, which in turn creates electrical currents in the highly conductive plasma.
This implies that some resistive Joule heating will occur in the ionized gas, causing the
temperature to rise. Thus MHD waves can also contribute to the temperature structure of
the upper solar atmosphere.
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FIGURE 27 The Sun’s rotation creates a spiral pattern in the solar magnetic field in interplanetary
space, known as the Parker spiral. The drag produced by the spiraling magnetic field causes angular
momentum to be transferred away from the Sun. This diagram shows the heliospheric current sheet
that separates regions of space where the magnetic field points toward or away from the Sun. The
orbits of the planets out to Jupiter are depicted. (Courtesy of Prof. John M. Wilcox and NASA artist
Werner Heil.)

Because of the Sun’s rotation, its open magnetic field lines are dragged along through
interplanetary space (Fig. ~ 27). Since the solar wind is forced to move with the field lines,
a torque is produced that actually slows the Sun’s rotation. Said another way, the solar wind
is transferring angular momentum away from the Sun. As a result, the Sun’s rotation rate
will decrease significantly over its lifetime. Interestingly, the differential rotation present in
the photosphere is not manifested in the corona. Apparently, the magnetic field, which so
strongly influences the structure of the corona, does not exhibit differential rotation at this
height.

The Outer Atmospheres of Other Stars

Although this chapter is devoted to our Sun, the most thoroughly studied of all stars, the outer
atmospheres of other stars can be investigated as well. For instance, observations indicate
that the rotation rates of solar-type stars seem to decrease with age. Furthermore, late main-
sequence stars, with their convective envelopes, generally have much slower rotation rates
than stars on the upper end of the main sequence. Perhaps winds are transferring angular
momentum away from these lower-mass stars as well.

Ahost of satellites such as EUVE, FUSE, ROSAT, ASCA, XMM-Newton, and the Chan-
dra X-Ray Observatory have also provided us with valuable UV and X-ray observations of
other stars. It appears that stars along the main sequence that are cooler than spectral class
F have emission lines in the ultraviolet that are similar to those observed coming from the
Sun’s chromosphere and transition region. In addition, X-ray observations indicate corona-
like emissions. These stars are also those for which stellar structure calculations indicate that
surface convection zones should exist. Apparently, the same mechanisms that are heating
the outer atmosphere of our Sun are also in operation in other stars.
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B THE SOLAR CYCLE

Some of the most fascinating and complex features of the solar atmosphere are transient in
nature. However, as we will learn in this section, many observational features of the solar
atmosphere are also cyclic.

Sunspots

It was Galileo who made the first telescopic observations of sunspots (recall Fig.  11).
Sunspots are even visible occasionally with the unaided eye, but making such observations
is strongly discouraged because of the potential for eye damage.

Reliable observations made over the past two centuries indicate that the number of
sunspots is approximately periodic, going from minimum to maximum and back to mini-
mum again nearly every 11 years (Fig.  28). The average latitude of sunspot formation is
also periodic, again over an 11-year cycle. A plot of sunspot location as a function of time
is shown in Fig. 29, along with a plot of the percentage of the solar surface covered by
sunspots. Because of its wing-like appearance, the top portion of Fig. 29 has come to
be known as the butterfly diagram. Individual sunspots are short-lived features, typically
surviving no more than a month or so. During its lifetime, a sunspot will remain at a constant
latitude, although succeeding sunspots tend to form at progressively lower latitudes. As the
last sunspots of one cycle vanish near the Sun’s equator, a new cycle begins near £40°
(north and south) of the equator. The largest number of spots (sunspot maximum) typically
occurs at intermediate latitudes.

The key to understanding sunspots lies in their strong magnetic fields. A typical sunspot
is shown in Fig.  30. The darkest portion of the sunspot is known as the umbra and
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FIGURE 28 The number of sunspots between 1700 and 2005 indicates an 11-year periodicity.
(Data from the World Data Center for the Sunspot Index at the Royal Observatory of Belgium.)
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FIGURE 29 The upper figure depicts the butterfly diagram, showing sunspot latitudes with time.
The lower figure shows the percentage of the Sun’s surface covered by sunspots as a function of time.
(Courtesy of Dr. David H. Hathaway, NASA/Marshall Space Flight Center.)

may measure as much as 30,000 km in diameter. (For reference, the diameter of Earth
is 12,756 km.) The umbra is usually surrounded by a filament-like structure, called the
penumbra, whose mere appearance suggests the presence of magnetic lines of force. The
existence of a strong magnetic field can be verified by observing individual spectral lines
produced within the spot. The strength and polarity of magnetic fields can be measured
by observing the Zeeman effect, the splitting of spectral lines that results from removing
the degeneracy inherent in atomic energy levels.The amount of splitting is proportional
to the strength of the magnetic field, whereas the polarization of the light corresponds to
the direction of the field. Figure 31 shows an example of the splitting of a spectral line
measured across a sunspot. Magnetic field strengths of several tenths of a tesla and greater
have been measured in the centers of umbral regions, with field strengths decreasing across
penumbral regions. Furthermore, polarization measurements indicate that the direction of
a typical umbral magnetic field is vertical, becoming horizontal across the penumbra.

Sunspots are generally located in groups. Typically, a dominant sunspot leads in the
direction of rotation, and one or more sunspots follow. During an 11-year cycle, the lead
sunspot will always have the same polarity in one hemisphere—say, a north pole in the
geographic northern hemisphere—while the lead sunspot in the other hemisphere will have
the opposite polarity (e.g., a south pole in the geographic southern hemisphere); trailing
sunspots have the opposite polarity. Even when a large collection of trailing spots exist,
resulting from a tangled magnetic field pattern, a basically bipolar field is present. During the
next 1 1-year cycle, polarities will be reversed; the sunspot with a magnetic south polarity will
lead in the northern hemisphere, and vice versa in the southern hemisphere. Accompanying
this local polarity reversal is a global polarity reversal: the overall dipole field of the Sun
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FIGURE 30 A typical sunspot group. The dark umbra of the central sunspot is clearly evident, as
is the filamentary structure of its penumbra. (Courtesy of the Royal Swedish Academy of Sciences.)

will change so that the magnetic north pole of the Sun will switch from the geographic north
pole to the geographic south pole. Polarity reversal always occurs during sunspot minimum,
when the first sunspots are beginning to form at the highest latitudes. When the polarity
reversal is considered, the Sun is said to have a 22-year cycle. This important magnetic
behavior is illustrated in Fig. 32.

The dark appearance of sunspots is due to their significantly lower temperatures. In the
central portion of the umbra the temperature may be as low as 3900 K, compared with
the Sun’s effective temperature of 5777 K. This implies a surface bolometric
flux that is a factor of (5777/3900)* = 4.8 lower than that of the surrounding photosphere.!!
Observations obtained from the Solar Maximum Mission satellite (SMM) have shown that
this decrease in surface flux affects the overall energy output of the Sun. When a number of
large sunspots exist, the solar luminosity is depressed by roughly 0.1%. Since convection
is the principal energy transport mechanism just below the photosphere, and since strong

1A 3900-K blackbody is very bright, of course. However, when seen through a filter dark enough to make viewing
the rest of the 5777-K photosphere comfortable, the sunspot appears dark.
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FIGURE 31 The Zeeman splitting of the Fe 525.02-nm spectral line due to the presence of
a strong magnetic field in a sunspot. The spectrograph slit was aligned vertically across a sunspot,
resulting in a wavelength dependence that runs from left to right in the image. The slit extended beyond
the image of the sunspot. (Courtesy of the National Optical Astronomy Observatories/National Solar
Observatory.)

FIGURE 32 The global magnetic field orientation of the Sun, along with the magnetic polarity
of sunspots during successive 11-year periods.

magnetic fields inhibit motion through the “freezing in” of field lines in a plasma, it is likely
that the mass motion of convective bubbles is inhibited in sunspots, thereby decreasing the
flow of energy through the sunspots.

Along with luminosity variations on a timescale of months (the typical lifetime of an
individual sunspot), the Sun’s luminosity seems to experience variability on a much longer
timescale, as does the number of sunspots. For instance, very few sunspots were observed
between 1645 and 1715; this time interval has come to be called the Maunder minimum
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FIGURE 33 An unusually small number of sunspots were observed between 1645 and 1715
(the Maunder minimum). (Adapted from a figure courtesy of J. A. Eddy, High Altitude Observatory.)

(see Fig.  33).'? Surprisingly, during this period the average temperature in Europe was
significantly lower, consistent with the solar luminosity being a few tenths of a percent less
than it is today. John Eddy has proposed that there is a very long-term periodicity on which
the solar cycle is superimposed. This long-period variation goes through grand sunspot
maxima and minima that may last for centuries. Evidence in support of this suggestion
is found on Earth in the relative numbers of atmospheric carbon dioxide molecules that
contain radioactive carbon atoms (1‘6‘C), as preserved in the 7000-year-long record of tree
rings. The importance of '¢C in long-term sunspot studies lies in an inverse correlation
between sunspots and the amount of '¢C present in Earth’s atmosphere. '¢C is a radioactive
isotope of carbon that is produced when extremely energetic charged particles from space,
called cosmic rays, collide with atmospheric nitrogen. Cosmic rays are affected by the
magnetic field of the Sun, which in turn is affected by solar activity. During the Maunder
minimum, the amount of atmospheric 1‘6‘C increased significantly and was incorporated into
the rings of living trees. The amount of '¢C also seems to correlate well with the advance
and retreat of glaciers over the past 5000 years.

With lower temperatures in sunspots, the gas pressure is necessarily lower than in the
surrounding material. However, the gravitational force is essentially the same. From these
considerations alone, it seems as though the gas within a sunspot ought to sink into the
interior of the star, an effect that is not observed. Without the benefit of a sufficiently large
gas pressure gradient to support a sunspot, another component to the pressure must exist.
As we have already seen in the last section, a magnetic field is accompanied by a pressure
term. It is this extra magnetic pressure that provides the support necessary to keep a sun-
spot from sinking or being compressed by the surrounding gas pressure.

Plages

A variety of other phenomena are also associated with sunspot activity. Plages (from the
French word for beach) are chromospheric regions of bright He emission located near

12With the development and continual improvement of the telescope beginning during the early phase of the
Maunder minimum (recall that Galileo died in 1642 and Newton was born in the same year), the Maunder
minimum was not a manifestation of poor observations.
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active sunspots (recall Fig.  17). They usually form before the sunspots appear and usually
disappear after the sunspots vanish from a particular area. Plages have higher densities than
the surrounding gas and are products of the magnetic fields. Apparently the cause of the
decreased brightness of sunspots does not play an important role in plages.

Solar Flares

Solar flares are eruptive events that are known to release from 10! J of energy at the
lower detection limit to as much as 10% J of energy over time intervals ranging from
milliseconds to more than an hour.!3 The physical dimensions of a flare are enormous,
with a large flare reaching 100,000 km in length (see Fig.  34a). During an eruption,
the hydrogen Balmer line, Ho, appears locally in emission rather than in absorption, as
is usually the case, implying that photon production occurs above much of the absorbing
material. When observed in He, a flare is often seen on the disk as two ribbons of light
(Fig.  34b). Along with Ha, other types of electromagnetic radiation are produced that
can range from kilometer-wavelength nonthermal radio waves due to synchrotron radiation
to very short-wavelength hard X-ray and gamma-ray emission lines.

Charged particles are also ejected outward at high speeds, many escaping into interplan-
etary space as solar cosmic rays. In the largest flares the ejected charged particles, mostly
protons and helium nuclei, may reach Earth in 30 minutes, disrupting some communica-
tions and posing a very serious threat to any unprotected astronauts. Shock waves are also
generated and can occasionally propagate several astronomical units before dissipating.

(@ (b)

FIGURE 34 (a) A solar flare seen at the limb of the Sun, observed by the Yohkoh Soft X-ray
Telescope, March 18, 1999, 16:40 UT. (From the Yohkoh mission of ISAS, Japan. The X-ray telescope
was prepared by the Lockheed Palo Alto Research Laboratory, the National Astronomical Observatory
of Japan, and the University of Tokyo with the support of NASA and ISAS.) (b) A two-ribbon flare
seen in Ha on October 19, 1989. (Courtesy of the National Optical Astronomy Observatories.)

13For comparison, a one-megaton bomb releases approximately 10'¢ J.
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FIGURE 35 A model of the January 13, 1992, Masuda solar flare. Note the two hard X-ray
(HXR) footpoint sources associated with He flare ribbons [see Fig.  34(b)]. Electrons are accelerated
downward along the magnetic field lines until they collide with the chromosphere. The soft X-ray
(SXR) loop may be compared to Fig.  34(a). (Figure adapted from Aschwanden, et al., Ap. J., 464,
985, 1996.)

The answer to the question of what powers solar flares lies in the location of the flare
eruption. Flares develop in regions where the magnetic field intensity is great, namely
in sunspot groups. From the discussion of the previous section, the creation of magnetic
fields results in energy being stored in those magnetic fields (Eq.  9). If a magnetic field
disturbance could quickly release the stored energy, a flare might develop. It is left as an
exercise to show that both the amount of energy stored in the magnetic field and the timescale
involved in perturbing it via Alfvén waves are consistent with the creation of a solar flare.
However, details of the energy conversion, such as particle acceleration, are still a matter
of active research.

Amodel of a solar flare is illustrated in Fig.  35. The general mechanism of a solar flare
involves the reconnection of magnetic field lines. A disturbance in magnetic field loops
(perhaps due to the Sun’s convection zone) causes the creation of a sheet of current in the
highly conducting plasma (recall Lenz’s law). The finite resistance in the plasma results
in Joule heating of the gas, causing temperatures to reach 107 K. Particles accelerated
away from the reconnection point and away from the Sun may escape entirely, producing
solar cosmic rays. Radio-wavelength radiation is generated by the synchrotron process of
charged particles spiraling around the magnetic field lines. Soft X-ray emission results from
the high temperatures in the loop below the acceleration (reconnection) point. Ho emission
at the base of the magnetic field lines (the two He ribbons) is produced by recombining
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electrons and protons that are accelerated away from the reconnection point, toward the
chromosphere.

In addition, high-energy particles accelerated toward the chromosphere produce hard
X-rays and gamma rays due to surface nuclear reactions. Examples of important nuclear
reactions associated with solar flares are spallation reactions that break heavier nuclei into
lighter nuclei, such as

{H+'50 — 2C* + jHe + {H,

where C* represents a carbon nucleus in an excited state, followed by the de-excitation
reaction

léc* — léc + y’
with £, = 4.438 MeV, or
IH + 3Ne — '80* +3He + {H,
followed by the de-excitation reaction
lgo$ — lgo 4 v,

with E,, = 6.129 MeV. Other examples of reactions produced by flares on the Sun’s surface
include electron—positron annihilation,

e +et >y +y
where E, = 0.511 MeV, and the production of deuterium by
H+n— 3H* - H+y,
where £, =2.223 MeV.

Solar Prominences

Solar prominences are also related to the Sun’s magnetic field. Quiescent prominences
are curtains of ionized gas that reach well into the corona and can remain stable for weeks
or months. The material in the prominence has collected along the magnetic field lines of
an active region, with the result that the gas is cooler (with a typical temperature of 8000 K)
and more dense than the surrounding coronal gas. This causes the gas to “rain” back down
into the chromosphere. When viewed in Ho at the limb of the Sun, quiescent prominences
appear as bright structures against the thin corona. However, when viewed in the continuum
against the solar disk, a quiescent prominence appears as a dark filament, absorbing the
light emitted from below. An example of a quiescent prominence is shown in Fig.  36(a).

An eruptive (or active) prominence (Fig.  36b) may exist for only a few hours and
may abruptly develop from a quiescent prominence. It appears as though a relatively stable
magnetic field configuration can suddenly become unstable, causing the prominence to lift
away from the Sun. Although the mechanism is related to that of a solar flare, the outcome
is somewhat different; rather than most of the energy going into electromagnetic radiation,
the energy of an eruptive prominence is converted into mass motions as gas is ejected
from the Sun.
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FIGURE 36 (a) A quiescent hedgerow prominence. (Courtesy of Big Bear Solar Observatory,
California Institute of Technology.) (b) An eruptive prominence observed by the SOHO Extreme
Ultraviolet Imaging Telescope (EIT) on July 24, 1999. [SOHO (ESA & NASA)]

Coronal Mass Ejections

Even more spectacular is a coronal mass ejection (CME). CMEs have been observed
since the early 1970s using spacecraft such as NASA’s seventh Orbiting Solar Observatory
(OSO 7) and Skylab. Most recently, CMEs have been observed routinely by SOHO’s Large
Angle Spectrometric COronograph (LASCO); see Fig.  37. LASCO uses an occulting
disk to create an artificial solar eclipse, allowing it to observe the white-light corona from
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FIGURE 37 A coronal mass ejection observed by the SOHO LASCO instrument on June 2,
1998. Note the intricacy of the magnetic field lines within the CME. The white circle on the occulting
disk represents the size of the Sun out to the photosphere. [SOHO (ESA & NASA)]

a few solar radii out to 30 Rg. With the detection of thousands of CMEs it appears that
there is about one CME per day when averaged over the 11-year sunspot cycle. When the
Sun is more active (i.e., near sunspot maximum) the frequency may be about 3.5 events per
day, and during sunspot minimum the number of events may decrease to roughly one every
five days. During a CME event, between 5 x 10! kg and 5 x 10'3 kg of material may be
ejected from the Sun at speeds ranging from 400 km s~! to over 1000 km s~'. CMEs appear
to be associated with eruptive prominences approximately 70% of the time, and with flares
only about 40% of the time. One can think of a CME as a magnetic bubble lifting off of
the Sun’s surface after a magnetic reconnection event, carrying a significant fraction of the
mass of the solar corona with it.

The Time-Dependent Shape of the Corona

Yet another feature of the solar cycle involves the shape of the corona itself. During a period
of little solar activity, when there are few sunspots and few, if any, flares or prominences,
the quiet corona is generally more extended at the equator than at the poles, consistent
with a nearly dipole magnetic field. Near sunspot maximum, the active corona is more
complex in shape, as is the structure of the magnetic field. Examples of the shape of the
corona during sunspot minimum and maximum are seen in Figs.  20(a) and  20(b),
respectively. Evidently, the changing shape of the corona, like other solar activity, is due to
the dynamic structure of the Sun’s magnetic field.
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The Magnetic Dynamo Theory

A magnetic dynamo model describing many of the components of the solar cycle was first
proposed by Horace Babcock in 1961. Despite its general success in describing the major
features of the solar cycle, the model is not yet able to provide adequate explanations of
many of the important details of solar activity. Any complete picture of the solar cycle will
require a full treatment of the MHD equations in the solar environment, including differing
rotation rates with latitude and depth in the Sun, convection, solar oscillations, heating of
the upper atmosphere, and mass loss. Of course, not all of these processes are likely to play
equally important roles in the study of the solar cycle, but it is important to understand the
degree to which each of them contributes to the particular phenomenon under investigation.

As depicted in Fig. 38, because the magnetic field lines are “frozen into” the gas, the
differential rotation of the Sun drags the lines along, converting a poloidal field (essentially

FIGURE 38 The magnetic dynamo model of the solar cycle. (a) The solar magnetic field is
initially a poloidal field. (b) Differential rotation drags the “frozen-in” magnetic field lines around
the Sun, converting the poloidal field into a toroidal field. (c) Turbulent convection twists the field
lines into magnetic ropes, causing them to rise to the surface as sunspots, the polarity of the lead
spots corresponding to the original polarity of the poloidal field. (d) As the cycle progresses, succes-
sive sunspot groups migrate toward the equator where magnetic field reconnection reestablishes the
poloidal field, but with the original polarity reversed.

363



364

The Sun

a simple magnetic dipole) to one that has a significant toroidal component (field lines that
are wrapped around the Sun). The turbulent convection zone then has the effect of twisting
the lines, creating regions of intense magnetic fields, called magnetic ropes. The buoyancy
produced by magnetic pressure (Eq.  10) causes the ropes to rise to the surface, appearing
as sunspot groups. The polarity of the sunspots is due to the direction of the magnetic field
along the ropes; consequently, every lead spot in one hemisphere will have the same polarity
while the lead spots in the other hemisphere will have the opposite polarity.

Initially, the little twisting that does develop occurs at higher latitudes; during sunspot
minimum. As the differential rotation continues to drag the field lines along and convective
turbulence ties them in knots, more sunspots develop at intermediate latitudes, producing
a sunspot maximum. It would seem that ultimately the greatest amount of twisting and the
largest number of sunspots should develop near the equator. However, sunspots from the
two hemispheres tend to cancel out near the equator since the polarities of their leading
spots are opposed. As a result, the number of sunspots appearing near the equator is small.
Finally, the cancelation of magnetic fields near the equator causes the poloidal field to
be reestablished, but with its original polarity reversed. This process takes approximately
11 years. The entire procedure repeats continuously, with the polarity of the magnetic field
returning to its original orientation every other cycle. Hence, the entire solar cycle is actually
22 years long when magnetic field polarities are considered.

As we have already seen, details related to specific phenomena, such as the cause of
the decreased flux coming from sunspots or the exact process of flare generation, are not
yet well understood. The same situation also holds for the more fundamental magnetic
dynamo itself. Although the preceding discussion describes the behavior of the solar cycle
in an approximate way, even such basic results as the timescales involved have not yet
been accurately modeled. A successful magnetic dynamo model must not only produce the
general location and numbers of sunspots and flares, but it must also do so with the observed
22-year periodicity. Moreover, the dynamo model must replicate the much slower variation
that appears to be responsible for the Maunder minimum.

Evidence of Magnetic Activity in Other Stars

Fortunately, some evidence does exist that the basic ideas behind the solar cycle are correct.
Observations of other cool main-sequence stars indicate that they possess activity cycles
much like the solar cycle. It was pointed out in the last section that late main-sequence stars
exhibit observational characteristics consistent with the existence of hot coronae. It was also
mentioned that angular momentum is apparently lost via stellar winds. Both phenomena
agree with the theoretical onset of surface convection in low-mass stars, a major component
of the dynamo theory.

Other forms of magnetic activity have also been seen in some stars. Observations indicate
the existence of flare stars, main-sequence stars of class M that demonstrate occasional,
rapid fluctuations in brightness. If flares the size of those on the Sun were to occur on the
much dimmer M stars, the flares would contribute significantly to the total luminosity of
those stars, producing the short-term changes that are observed. Much larger flares may
also be generated by other stars as well: On April 24, 2004, the star GJ 3685A released a
flare that was roughly one million times more energetic than a large solar flare. The event
was detected serendipitously by NASA’s Galaxy Evolution Explorer.
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FIGURE 39 The light curve of BD + 26°730, a BY Dra star. SAO 76659 is a nearby reference

star. (Figure from Hartmann et al., Ap. J., 249, 662, 1981.)

Starspots are also observed to exist on stars other than the Sun. Starspots are revealed by
their effect on the luminosity of a star, which can be measured at a level of 1%. Two classes
of stars, RS Canum Venaticorum and BY Draconis stars,'* show significant long-term
variations that are attributed to starspots covering appreciable fractions of their surfaces.
For example, Fig. 39 shows a variation of over 0.6 magnitude in the B band for the BY
Draconis star, BD + 26°730. Starspots can even be used to measure stellar rotation.

Magnetic fields have also been detected directly on several cool main-sequence stars by
measuring Zeeman-broadened spectral lines. Analysis of the data indicates field strengths
of several tenths of a tesla over significant fractions of the stellar surfaces. The existence of
the strong fields correlates with their observed luminosity variations.

From our discussion in this chapter, it should be clear that astrophysics has had a great
deal of success in explaining many of the features of our Sun. The stellar structure equations
describe the major aspects of the solar interior, and much of the Sun’s complex atmosphere
is also understood. But many other important issues remain to be resolved, such as the
surface abundance of lithium, the intricate details of the solar cycle, and the interaction
between the Sun and Earth’s climate. Much exciting and challenging work remains to be
done before we can feel confident that we fully understand the star that is closest to us.

14Classes of stars that show light variations, variable stars, are usually named after the first star discovered that
exhibits the specific characteristics. RS CVn and BY Dra are main-sequence stars of spectral classes F-G and
K-M, respectively. The letters RS and BY indicate that these are variable stars; Canum Venaticorum and Draconis
are the constellations in which the stars are located.
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The Sun

PROBLEM SET

1 Using Fig. 1, verify that the change in the Sun’s effective temperature over the past 4.57 bil-
lion years is consistent with the variations in its radius and luminosity.
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FIGURE 1 The evolution of the Sun on the main sequence. As a result of changes in its internal

composition, the Sun has become larger and brighter. The solid line indicates its luminosity, the dashed
line its radius, and the dash-dot line its effective temperature. The luminosity and radius curves are
relative to present-day values. (Data from Bahcall, Pinsonneault, and Basu, Ap. J., 555, 990, 2001.)

2 (a) At what rate is the Sun’s mass decreasing due to nuclear reactions? Express your answer
in solar masses per year.

(b) Compare your answer to part (a) with the mass loss rate due to the solar wind.

(c) Assuming that the solar wind mass loss rate remains constant, would either mass loss process
significantly affect the total mass of the Sun over its entire main-sequence lifetime?

3 Using the Saha equation, calculate the ratio of the number of H™ ions to neutral hydrogen atoms
in the Sun’s photosphere. Take the temperature of the gas to be the effective temperature, and
assume that the electron pressure is 1.5 N m~2. Note that the Pauli exclusion principle requires
that only one state can exist for the ion because its two electrons must have opposite spins.

4 The Paschen series of hydrogen (n = 3) can contribute to the visible continuum for the Sun
since the series limit occurs at 820.8 nm. However, it is the contribution from the H™ ion that
dominates the formation of the continuum. Using the results of Problem 3 above, along with the
Boltzmann equation, estimate the ratio of the number of H™ ions to hydrogen atoms in the
n = 3 state.

From Chapter 11 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007

by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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5 (a) Using the below equation and neglecting turbulence, estimate the full width at half-maximum
of the hydrogen Ho absorption line due to random thermal motions in the Sun’s photosphere.
Assume that the temperature is the Sun’s effective temperature.

w [fokr
(Ad)ip = — | ==+ Vi | In2,

(b) Using Ho redshift data for solar granulation, estimate the full width at half-maximum when
convective turbulent motions are included with thermal motions.

(c) What is the ratio of v2 , to 2kT /m?

turb
(d) Determine the relative change in the full width at half-maximum due to Doppler broadening
when turbulence is included. Does turbulence make a significant contribution to (AL);,,
in the solar photosphere?

6 Estimate the thermally Doppler-broadened line widths for the hydrogen Ly, C III, O VI, and
Mg X lines given below; use the temperatures provided. Take the masses of H, C, O, and
Mgtobe 1u, 12 u, 16 u, and 24 u, respectively.

The 121.6-nm Lyman-alpha (Ly«) emission line of hydrogen (n=2 — n =1) is produced
at the top of the chromosphere at 20,000 K, the CIII 97.7-nm line originates at a level where the
temperature is 90,000 K, the 103.2-nm line of O VI occurs at 300,000 K, and Mg X creates a
62.5-nm line at 1.4 x 10° K.

7 (a) Using the below equation, show that in the Sun’s photosphere,

In(Bu/By) ~ 115+ 1< (L _ 1
n (B, ~115+—(—-—
b kT \hy s

where B, /B, is the ratio of the amount of blackbody radiation emitted at A, = 10 nm to
the amount emitted at A, = 100 nm, centered in a wavelength band 0.1 nm wide.

2hc? /A

Bu(T) = ohe/ikT _ 1°

(b) What is the value of this expression for the case where the temperature is taken to be the
effective temperature of the Sun?

(¢) Writing the ratio in the form B,/B, = 10", determine the value of x.

8 The gas pressure at the base of the photosphere is approximately 2 x 10* N m~2 and the mass
density is 3.2 x 10™* kg m~>. Estimate the sound speed at the base of the photosphere, and
compare your answer with the values at the top of the photosphere and averaged throughout
the Sun.

9 Suppose that you are attempting to make observations through an optically thick gas that
has a constant density and temperature. Assume that the density and temperature of the gas
are 2.2 x 107* kg m ™ and 5777 K, respectively, typical of the values found in the Sun’s
photosphere. If the opacity of the gas at one wavelength (1) is x;; = 0.026 m? kg™' and the
opacity at another wavelength (1,) is k3, = 0.030 m? kg™", calculate the distance into the gas
where the optical depth equals 2/3 for each wavelength. At which wavelength can you see
farther into the gas? How much farther? This effect allows astronomers to probe the Sun’s
atmosphere at different depths (see Fig. 13).
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of the line.

10 (a) Using the data given in Example 2.2 of “The Sun. estimate the pressure scale height at
the base of the photosphere.
(b) Assuming that the ratio of the mixing length to the pressure scale height is 2.2, use the
measured Doppler velocity of solar granulation to estimate the amount of time required for
a convective bubble to travel one mixing length. Compare this value to the characteristic
lifetime of a granule.

11 Show that Eq. (6) follows directly from Eq. (5).

d GM p
r r
n(r) = nge *="0/1), (6)

12 Calculate the magnetic pressure in the center of the umbra of a large sunspot. Assume that the
magnetic field strength is 0.2 T. Compare your answer with a typical value of 2 x 10* N m~>
for the gas pressure at the base of the photosphere.

13 Assume that a large solar flare erupts in a region where the magnetic field strength is 0.03 T
and that it releases 10% J in one hour.

(a) What was the magnetic energy density in that region before the eruption began?

(b) What minimum volume would be required to supply the magnetic energy necessary to fuel
the flare?

(¢) Assuming for simplicity that the volume involved in supplying the energy for the flare
eruption was a cube, compare the length of one side of the cube with the typical size of a
large flare.

(d) How long would it take an Alfvén wave to travel the length of the flare?

(e) What can you conclude about the assumption that magnetic energy is the source of solar
flares, given the physical dimensions and timescales involved?

The relationship between absorption line strength and depth in the photosphere for
a typical spectral line. The wings of the line are formed deeper in the photosphere than is the center
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14 Assuming that an average of one coronal mass ejection occurs per day and that a typical CME
ejects 103 kg of material, estimate the annual mass loss from CMEs and compare your answer
with the annual mass loss from the solar wind. Express your answer as a percentage of CME
mass loss to solar wind mass loss.

! and that the mass of

15 Assume that the velocity of a CME directed toward Earth is 400 km s~
the CME is 103 kg.
(a) Estimate the kinetic energy contained in the CME, and compare your answer to the energy
released in a large flare. Express your answer as a percentage of the energy of the flare.
(b) Estimate the transit time for the CME to reach Earth.
(¢) Briefly explain how astronomers are able to “predict” the occurrence of aurorae in advance

of magnetic storms on Earth.

16 (a) Calculate the frequency shift produced by the normal Zeeman effect in the center of a
sunspot that has a magnetic field strength of 0.3 T.
(b) By what fraction would the wavelength of one component of the 630.25-nm Fe I spectral
line change as a consequence of a magnetic field of 0.3 T?

17 From the data given in Fig. 16, estimate the rotation period of the solar interior at the base
of the tachocline.
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FIGURE 16 The rotation period of the Sun varies with latitude and depth. €2, the angular fre-
quency, has units of radians per second. (Adapted from a figure courtesy of NSF’s National Solar

Observatory.)

18 Argue from Eq. (9) and the work integral that magnetic pressure is given by Eq. (10).

BZ

Upy = —.
210 )
BZ

P, = ——. (10)
210
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From Chapter 10 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007
by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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B HYDROSTATIC EQUILIBRIUM

Analysis of stellar spectra, collected by ground-based and space-based telescopes, ena-
bles astronomers to determine a variety of quantities related to the outer layers of stars,
such as effective temperature, luminosity, and composition. However, with the exceptions
of the ongoing detection of neutrinos from the Sun (which will be discussed later in this
chapter and the one-time detection from Supernova 1987A, no direct way exists to observe
the central regions of stars.

Determining the Internal Structures of Stars

To deduce the detailed internal structure of stars requires the generation of computer models
that are consistent with all known physical laws and that ultimately agree with observable
surface features. Although much of the theoretical foundation of stellar structure was un-
derstood by the first half of the twentieth century, it wasn’t until the 1960s that sufficiently
fast computing machines became available to carry out all of the necessary calculations.
Arguably one of the greatest successes of theoretical astrophysics has been the detailed
computer modeling of stellar structure and evolution. However, despite all of the successes
of such calculations, numerous questions remain unanswered. The solution to many of these
problems requires a more detailed theoretical understanding of the physical processes in
operation in the interiors of stars, combined with even greater computational power.

The theoretical study of stellar structure, coupled with observational data, clearly shows
that stars are dynamic objects, usually changing at an imperceptibly slow rate by human
standards, although they can sometimes change in very rapid and dramatic ways, such
as during a supernova explosion. That such changes must occur can be seen by simply
considering the observed energy output of a star. In the Sun, 3.839 x 10?° J of energy is
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emitted every second. This rate of energy output would be sufficient to melt a 0°C block of
ice measuring 1 AU x 1 mile x 1 mile in only 0.3 s, assuming that the absorption of the
energy was 100% efficient. Because stars do not have infinite supplies of energy, they must
eventually use up their reserves and die. Stellar evolution is the result of a constant fight
against the relentless pull of gravity.

The Derivation of the Hydrostatic Equilibrium Equation

The gravitational force is always attractive, implying that an opposing force must exist if a
star is to avoid collapse. This force is provided by pressure. To calculate how the pressure
must vary with depth, consider a cylinder of mass dm whose base is located a distance
r from the center of a spherical star (see Fig.  1). The areas of the top and bottom of
the cylinder are each A and the cylinder’s height is dr. Furthermore, assume that the only
forces acting on the cylinder are gravity and the pressure force, which is always normal to
the surface and may vary with distance from the center of the star. Using Newton’s second
law F = ma, we have the net force on the cylinder:

d*r
" —
dt?

where F, < 0 is the gravitational force directed inward and Fp; and Fp  are the pressure
forces on the top and bottom of the cylinder, respectively. Note that since the pressure
forces on the side of the cylinder will cancel, they have been explicitly excluded from the
expression. Because the pressure force is always normal to the surface, the force exerted on
the top of the cylinder must necessarily be directed toward the center of the star (Fp, < 0),

d =F,+ Fp;+ Fp,

Toward
Fp, surface

dm dr

Fp)

FIGURE 1 In a static star the gravitational force on a mass element is exactly canceled by the
outward force due to a pressure gradient in the star. A cylinder of mass dm is located at a distance r
from the center of the star. The height of the cylinder is dr, and the areas of the top and bottom are
both A. The density of the gas is assumed to be p at that position.
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whereas the force on the bottom is directed outward (Fpj, > 0). Writing Fp; in terms of
Fp and a correction term d Fp that accounts for the change in force due to a change in r
results in

Fp,=—(Fpp+dFp).
Substitution into the previous expression gives

d*r

The gravitational force on a small mass dm located at a distance r from the center of a
spherically symmetric mass is

M, dm

Fo= -G @)

-
where M, is the mass inside the sphere of radius r, often referred to as the interior mass.
The contribution to the gravitational force by spherically symmetric mass shells located
outside r is zero.

Pressure is defined as the amount of force per unit area exerted on a surface, or

F

P .
A

Allowing for a difference in pressures d P between the top of the cylinder and the bottom
due to the different forces exerted on each surface, the differential force may be expressed
as

dFp = AdP. 3
Substituting Eqs. (2) and (3) into Eq. (1) gives

J dzr_ GM,dm
mdﬂ - r?

— AdP. “)

If the density of the gas in the cylinder is p, its mass is just
dm = pAdpr,
where A dr is the cylinder’s volume. Using this expression in Eq. (4) yields

d*r M,.pAdr

,oAdrﬁ:—G 2 — AdP.

Finally, dividing through by the volume of the cylinder, we have

d*r M,p dP

drr r2 dr

&)

This is the equation for the radial motion of the cylinder, assuming spherical symmetry.
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If we assume further that the star is static, then the acceleration must be zero. In this case
Eq. (5) reduces to

dpP GM,,o_ ©)
dr iz - P8

where g = GM, /r? is the local acceleration of gravity at radius . Equation ( 6), the
condition of hydrostatic equilibrium, represents one of the fundamental equations of
stellar structure for spherically symmetric objects under the assumption that accelerations
are negligible. Equation (  6) clearly indicates that in order for a star to be static, a pressure
gradient d P /dr must exist to counteract the force of gravity. It is not the pressure that
supports a star, but the change in pressure with radius. Furthermore, the pressure must
decrease with increasing radius; the pressure is necessarily larger in the interior than it is
near the surface.

Example 1.1. To obtain a very crude estimate of the pressure at the center of the
Sun, assume that M, = 1 Mg, r = 1Ry, and p = p, = 1410 kg m > is the average solar
density. Assume also that the surface pressure is exactly zero. Then, converting the
differential equation to a difference equation, the left hand side of Eq. (  6) becomes

P P,—P, P,
dr RS -0 RO ’

where P, is the central pressure, and Py and R; are the surface pressure and radius, respec-
tively. Substituting into the equation of hydrostatic equilibrium and solving for the central
pressure, we find

s
P~ G2 575 10" Nm™2.
Ro

To obtain a more accurate value, we need to infegrate the hydrostatic equilibrium equa-
tion from the surface to the center, taking into consideration the change in the interior mass
M, at each point, together with the variation of density with radius p, = p(r), giving

P, R,

L c GM,
/ dP:Pcz—/ L ar.
P R r

s s

Actually carrying out the integration requires functional forms of M, and p. Unfortunately,
such explicit expressions are not available, implying that further relationships between such
quantities must be developed.

From a more rigorous calculation, a standard solar model gives a central pressure of
nearly 2.34 x 10'© N m~2. This value is much larger than the one obtained from our crude
estimate because of the increased density near the center of the Sun. As a reference, one
atmosphere of pressure is 1 atm = 1.013 x 10° N m~2; therefore, the more realistic model
predicts a central pressure of 2.3 x 10" atm!
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dam,

r

"

FIGURE 2 A spherically symmetric shell of mass d M, having a thickness dr and located a
distance r from the center of the star. The local density of the shell is p.

The Equation of Mass Conservation

A second relationship involving mass, radius, and density also exists. Again, for a spherically
symmetric star, consider a shell of mass d M, and thickness dr, located a distance r from
the center, as in Fig. 2. Assuming that the shell is sufficiently thin (i.e., dr < r), the
volume of the shell is approximately dV = 4 r? dr. If the local density of the gas is p, the
shell’s mass is given by

dM, = p(4rridr).

Rewriting, we arrive at the mass conservation equation,

dM,

=4nrp, 7
dr e M

which dictates how the interior mass of a star must change with distance from the center.
Equation (7) is the second of the fundamental equations of stellar structure.

B PRESSURE EQUATION OF STATE

Up to this point no information has been provided about the origin of the pressure term
required by Eq. ( 6). To describe this macroscopic manifestation of particle interactions, it
is necessary to derive a pressure equation of state of the material. Such an equation of state
relates the dependence of pressure on other fundamental parameters of the material. One
well-known example of a pressure equation of state is the ideal gas law, often expressed as

PV = NkT,
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where V is the volume of the gas, N is the number of particles, T is the temperature, and
k is Boltzmann’s constant.

Although this expression was first determined experimentally, it is informative to derive
it from fundamental physical principles. The approach used here will also provide a general
method for considering environments where the assumptions of the ideal gas law do not
apply, a situation frequently encountered in astrophysical problems.

The Derivation of the Pressure Integral

Consider a cylinder of gas of length Ax and cross-sectional area A, as in Fig. 3. The
gas contained in the cylinder is assumed to be composed of point particles, each of mass
m, that interact through perfectly elastic collisions only—in other words, as an ideal gas.
To determine the pressure exerted on one of the ends of the container, examine the result of
an impact on the right wall by an individual particle. Since, for a perfectly elastic collision,
the angle of reflection from the wall must be equal to the angle of incidence, the change in
momentum of the particle is necessarily entirely in the x-direction, normal to the surface.
From Newton’s second law' (f = ma = dp/dt) and third law, the impulse f At delivered
to the wall is just the negative of the change in momentum of the particle, or

fAf = —Ap = 2p.i,

where p, is the component of the particle’s initial momentum in the x-direction. Now the
average force exerted by the particle over a period of time can be determined by evaluating
the time interval between collisions with the right wall. Since the particle must traverse
the length of the container twice before returning for a second reflection, the time interval
between collisions with the same wall by the same particle is given by

Ax

At =2 ,
Uy

~<

=

/
3
I

\
|

Ax S
(a) (b)
FIGURE 3 (a) A cylinder of gas of length Ax and cross-sectional area A. Assume that the gas
contained in the cylinder is an ideal gas. (b) The collision of an individual point mass with one of the

ends of the cylinder. For a perfectly elastic collision, the angle of reflection must equal the angle of
incidence.

Note that a lowercase f is used here to indicate that the force is due to a single particle.
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so that the average force exerted on the wall by a single particle over that time period is
given by

2py  pxvx
f= At Ax’

where it is assumed that the direction of the force vector is normal to the surface.

Now, because p, o v,, the numerator is proportional to v2. To evaluate this, recall that
the magnitude of the velocity vector is given by v* = v} + v} + vZ. For a sufficiently large
collection of particles in random motion, the likelihood of motion in each of the three
directions is the same, or vi = v; = v = v?/3. Substituting % pv for p,v,, the average
force per particle having momentum p is

_1pv
f(P)—gA—x-

It is usually the case that the particles have a range of momenta. If the number of
particles with momenta between p and p + dp is given by the expression N, dp, then the
total number of particles in the container is

oo
N=/ N,dp.
0

The contribution to the total force, d F'(p), by all particles in that momentum range is given
by

1IN,
dF(p) = f(p)N,dp = L dp.

Integrating over all possible values of the momentum, the total force exerted by particle

collisions is
1 [N
F=- —L pvdp.

Dividing both sides of the expression by the surface area of the wall A gives the pressure
on the surface as P = F/A. Noting that AV = A Ax is just the volume of the cylinder and
defining 7, dp to be the number of particles per unit volume having momenta between p
and p +dp, or

N,
n,dp = A—Cdp,

we find that the pressure exerted on the wall is

l o0
P:§/0 n,pvdp. 8)

This expression, which is sometimes called the pressure integral, makes it possible to
compute the pressure, given some distribution function, n, dp.
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The Ideal Gas Law in Terms of the Mean Molecular Weight
8) is valid for both massive and massless particles (such as photons) traveling

Equation (
at any speed. For the special case of massive, nonrelativistic particles, we may use p = mv
€))

to write the pressure integral as

l o0
P = —/ mnvvzdv,
3 Jo

where n, dv = n, dp is the number of particles per unit volume having speeds between v

and v + dv.

The function n, dv is dependent on the physical nature of the system being described
In the case of an ideal gas, n, dv is the Maxwell-Boltzmann velocity distribution,

3/2
n,dv=n ( n ) oMV /KT 40,2 dv,
2nkT
where n = fooo n, dv is the particle number density. Substituting into the pressure integral
finally gives
P, =nkT (10)

Sincen = N/V,Eq. ( 10) is just the familiar ideal gas law.
In astrophysical applications it is often convenient to express the ideal gas law in an
alternative form. Since 7 is the particle number density, it is clear that it must be related to
the mass density of the gas. Allowing for a variety of particles of different masses, it is then

possible to express n as
0

n=—,

m
where 1 is the average mass of a gas particle. Substituting, the ideal gas law becomes

pkT
Pg= 7.

We now define a new quantity, the mean molecular weight, as
m

’

"
mpy

where my = 1.673532499 x 10~2" kg is the mass of the hydrogen atom. The mean molec-
ular weight is just the average mass of a free particle in the gas, in units of the mass of
hydrogen. The ideal gas law can now be written in terms of the mean molecular weight as

(1D

kT
P, = p .
mmpy
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The mean molecular weight depends on the composition of the gas as well as on the
state of ionization of each species. The level of ionization enters because free electrons
must be included in the average mass per particle 72. This implies that a detailed analysis of
the Saha equation is necessary to calculate the relative numbers of ionization states.
When the gas is either completely neutral or completely ionized, the calculation simplifies
significantly, however.

For a completely neutral gas,

Y Njm;
o
D

J

12)

where m; and N; are, respectively, the mass and the total number of atoms of type j that
are present in the gas, and the sums are assumed to be carried out over all types of atoms.
Dividing by m g yields

Y ONjA,
o
2N
J

Hn

where A; = m;/mpy. Similarly, for a completely ionized gas,
DN,

i :—J )
Y ON;A+z))
J

where 1 4 z; accounts for the nucleus plus the number of free electrons that result from
completely ionizing an atom of type j. (Do not confuse z; with Z, the mass fraction of
metals.)

By inverting the expression for i, it is possible to write alternative equations for
w in terms of mass fractions. Recalling that m = umyg, Eq. (12) for a neutral gas gives

R

_ J
MnM g Zijj
J

total number of particles

total mass of gas
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_ Z number of particles from j mass of particles from j
N mass of particles from j total mass of gas

where X ; is the mass fraction of atoms of type j. Solving for 1/u,, we have

! => L x (13)
:u'n_ . Ai a
7 L
Thus, for a neutral gas,
oxs by (d) 2 (14)
P 4 Al,

(1/A), is a weighted average of all elements in the gas heavier than helium. For solar
abundances, (1/A), ~ 1/15.5.

The mean molecular weight of a completely ionized gas may be determined in a similar
way. It is necessary only to include the fotal number of particles contained in the sample,
both nuclei and electrons. For instance, each hydrogen atom contributes one free electron,
together with its nucleus, to the total number of particles. Similarly, one helium atom
contributes two free electrons plus its nucleus. Therefore, for a completely ionized gas,
Eq. ( 13) becomes

1 14z
—=y iy, (15)
mi = A

Including hydrogen and helium explicitly, we have

i:2X+EY+<1+Z> zZ. (16)
Mi 4 A i

For elements much heavier than helium, 1 + z; >~ z;, where z; > 1 represents the number
of protons (or electrons) in an atom of type j. It also holds that A; ~ 2z, the relation being
based on the facts that sufficiently massive atoms have approximately the same number of
protons and neutrons in their nuclei and that protons and neutrons have very similar masses.

Thus
14z Nl
A i_2'

If we assume that X = 0.70, Y = 0.28, and Z = 0.02, a composition typical of younger
stars, then with these expressions for the mean molecular weight, u, = 1.30 and u; = 0.62.
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The Average Kinetic Energy Per Particle

Further investigation of the ideal gas law shows that it is also possible to combine Eq. (  10)
with the pressure integral (Eq.  9) to find the average kinetic energy per particle. Equating,
we see that

1 [ )
nkT = — mn,v-dv.
3Jo

This expression can be rewritten to give

1 [ 3kT
—/ nyv?dv = —.
0 m

n

However, the left-hand side of this expression is just the integral average of v> weighted
by the Maxwell-Boltzmann distribution function. Thus

T
m
or
1 —- 3

It is worth noting that the factor of 3 arose from averaging particle velocities over the three
coordinate directions (or degrees of freedom). Thus the average kinetic energy of a particle
is %kT per degree of freedom.

Fermi-Dirac and Bose-Einstein Statistics

As has already been mentioned, there are stellar environments where the assumptions of
the ideal gas law do not hold even approximately. For instance, in the pressure integral it
was assumed that the upper limit of integration for velocity was infinity. Of course, this
cannot be the case since, from Einstein’s theory of special relativity, the maximum possible
value of velocity is ¢, the speed of light. Furthermore, the effects of quantum mechanics
were also neglected in the derivation of the ideal gas law. When the Heisenberg uncertainty
principle and the Pauli exclusion principle are considered, a distribution function different
from the Maxwell-Boltzmann distribution results. The Fermi-Dirac distribution function
considers these important principles and leads to a very different pressure equation of
state when applied to extremely dense matter such as that found in white dwarf stars and
neutron stars.

Particles such as electrons, protons, and neutrons that obey Fermi-Dirac
statistics are called fermions.

Another statistical distribution function is obtained if it is assumed that the presence
of some particles in a particular state enhances the likelihood of others being in the same
state, an effect somewhat opposite to that of the Pauli exclusion principle. Bose-Einstein
statistics has a variety of applications, including understanding the behavior of photons.
Particles that obey Bose—Einstein statistics are known as bosons.

Just as special relativity and quantum mechanics must give classical results in the appro-
priate limits, Fermi—Dirac and Bose—Einstein statistics also approach the classical regime at
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sufficiently low densities and velocities. In these limits both distribution functions become
indistinguishable from the classical Maxwell-Boltzmann distribution function.

The Contribution Due to Radiation Pressure

Because photons possess momentum p, = hv/c, they are capable of delivering an
impulse to other particles during absorption or reflection. Consequently, electro-
magnetic radiation results in another form of pressure. It is instructive to rederive the
expression for radiation pressure by making use of the pressure integral. Substituting
the speed of light for the velocity v, using the expression for photon momentum, and
using an identity for the distribution function, n, dp = n, dv, the general pressure integral,
Eq. (  8), now describes the effect of radiation, giving

1 o0
Pog = —/ hvn, dv.
3Jo

At this point, the problem again reduces to finding an appropriate expression for n, dv.
Since photons are bosons, the Bose—FEinstein distribution function would apply. However,
the problem may also be solved by realizing that n, dv represents the number density of
photons having frequencies lying in the range between v and v + dv. Multiplying by the
energy of each photon in that range would then give the energy density over the frequency
interval, or

1 o0
Paa=3 [ wa. (1)
3Jo
where u, dv = hvn, dv. But the energy density distribution function is found from the

Planck function for blackbody radiation. Substituting into Eq. ( 18) and performing the
integration lead to

1
Prag = gaT“, (19)

where a is the radiation constant.

In many astrophysical situations the pressure due to photons can actually exceed by a
significant amount the pressure produced by the gas. In fact it is possible that the magnitude
of the force due to radiation pressure can become sufficiently great that it surpasses the
gravitational force, resulting in an overall expansion of the system.

Combining both the ideal gas and radiation pressure terms, the total pressure becomes

pkT 1

P, = + —aT*. (20)
umyg 3

Example 2.1. Using the results of Example 1.1, we can estimate the central tem-
perature of the Sun. Neglecting the radiation pressure term, the central temperature is found

continued
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from the ideal gas law equation of state to be

Pepumpy

T, =
pk

Using pg, a value of u; = 0.62 appropriate for complete ionization,? and the estimated
value for the central pressure, we find that
T, ~ 144 x 10’ K

which is in reasonable agreement with more detailed calculations. One standard solar model
gives a central temperature of 1.57 x 107 K. At this temperature, the pressure due to
radiation is only 1.53 x 10'3 N - m~2, 0.065% of the gas pressure.

B STELLAR ENERGY SOURCES

As we have already seen, the rate of energy output of stars (their luminosities) is very large.
However, the question of the source of that energy has not yet been addressed. Clearly, one
measure of the lifetime of a star must be related to how long it can sustain its power output.

Gravitation and the Kelvin—Helmholtz Timescale

One likely source of stellar energy is gravitational potential energy. The gravitational potential
energy of a system of two particles is given by,
Mm
U=-G—.
r

As the distance between M and m diminishes, the gravitational potential energy becomes
more negative, implying that energy must have been converted to other forms, such as
kinetic energy. If a star can manage to convert its gravitational potential energy into heat
and then radiate that heat into space, the star may be able to shine for a significant period
of time. However, we must also remember that by the virial theorem the total energy of a
system of particles in equilibrium is one-half of the system’s potential energy. Therefore,
only one-half of the change in gravitational potential energy of a star is actually available
to be radiated away; the remaining potential energy supplies the thermal energy that heats
the star.

Calculating the gravitational potential energy of a star requires consideration of the
interaction between every possible pair of particles. This is not as difficult as it might first
seem. The gravitational force on a point mass dm; located outside of a spherically symmetric
mass M, is

M r dm i
dF,; = Gr—2
2Since, as we will see in the next chapter, the Sun has already converted a significant amount of its core hydrogen
into helium via nuclear reactions, the actual value of u; is closer to 0.84.
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and is directed toward the center of the sphere. This is just the same force that would exist
if all of the mass of the sphere were located at its center, a distance r from the point mass.
This immediately implies that the gravitational potential energy of the point mass is

M, r dm i

r

dU,; = -G

If, rather than considering an individual point mass, we assume that point masses are dis-
tributed uniformly within a shell of thickness dr and mass dm (where dm is the sum of all
the point masses dm;), then

dm = 4mr? pdr,
where p is the mass density of the shell and 4772 dr is its volume. Thus

M, 471
AU, = -G P 4y,
r

Integrating over all mass shells from the center of the star to the surface, its total gravitational
potential energy becomes

R
U, = —47'[G/ M, prdr, 21
0

where R is the radius of the star.

An exact calculation of U, requires knowledge of how p, and consequently M,, depend
on r. Nevertheless, an approximate value can be obtained by assuming that p is constant
and equal to its average value, or

M

PP =
%nR3

M being the total mass of the star. Now we may also approximate M, as
3—

M 4
.~ =Tr’p.
3 P

If we substitute into Eq. (21), the total gravitational potential energy becomes

1672 3GM?
U, ~———Gp*R> ~ —= . 22
g 15 o 5 R (22)
Lastly, applying the virial theorem, the total mechanical energy of the star is
3 GM?
~—— . (23)
10 R
Example 3.1. If the Sun were originally much larger than it is today, how much en-

ergy would have been liberated in its gravitational collapse? Assuming that its original radius

continued
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was R;, where R; > 1 R, then the energy radiated away during collapse would be

3 GM2
AE,=—(Ef — E)) ~—E; ~ T ROO

~ 1.1 x 10*7J.

Assuming also that the luminosity of the Sun has been roughly constant throughout its
lifetime, it could emit energy at that rate for approximately

(24)

txy is known as the Kelvin—-Helmholtz timescale. Based on radioactive dating techniques,
however, the estimated age of rocks on the Moon’s surface is over 4 x 10° yr. It seems
unlikely that the age of the Sun is less than the age of the Moon! Therefore, gravitational
potential energy alone cannot account for the Sun’s luminosity throughout its entire lifetime.
As we shall see in later chapters, however, gravitational energy can play an important role
during some phases of the evolution of stars.

Another possible energy source involves chemical processes. However, since chemical
reactions are based on the interactions of orbital electrons in atoms, the amount of energy
available to be released per atom is not likely to be more than 1-10 electron volts, typical
of the atomic energy levels in hydrogen and helium. Given the number of atoms present in
a star, the amount of chemical energy available is also far too low to account for the Sun’s
luminosity over a reasonable period of time.

The Nuclear Timescale

The nuclei of atoms may also be considered as sources of energy. Whereas electron orbits
involve energies in the electron volt (eV) range, nuclear processes generally involve energies
millions of times larger (MeV). Just as chemical reactions can result in the transformation
of atoms into molecules or one kind of molecule into another, nuclear reactions change one
type of nucleus into another.

The nucleus of a particular element is specified by the number of protons, Z, it contains
(not to be confused with the mass fraction of metals), with each proton carrying a charge of
+e. Obviously, in a neutral atom the number of protons must exactly equal the number of
orbital electrons. An isotope of a given element is identified by the number of neutrons, N,
in the nucleus, with neutrons being electrically neutral, as the name implies. (All isotopes
of a given element have the same number of protons.) Collectively, protons and neutrons
are referred to as nucleons, the number of nucleons in a particular isotope being A =
Z + N. Since protons and neutrons have very similar masses and greatly exceed the mass
of electrons, A is a good indication of the mass of the isotope and is often referred to as the
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mass number. > The masses of the proton, neutron, and electron are, respectively,

m, = 1.67262158 x 107" kg = 1.00727646688 u
m, = 1.67492716 x 107%" kg = 1.00866491578 u
m, = 9.10938188 x 1073! kg = 0.0005485799110 u.

It is often convenient to express the masses of nuclei in terms of atomic mass units;
1u = 1.66053873 x 10?7 kg, exactly one-twelfth the mass of the isotope carbon-12. The
masses of nuclear particles are also frequently expressed in terms of their rest mass energies,
in units of MeV. Using Einstein’s E = mc?, we find 1 u = 931.494013 MeV/c>. When
masses are expressed simply in terms of rest mass energies, as is often the case, the factor
c? is implicitly assumed.

The simplest isotope of hydrogen is composed of one proton and one electron and has a
mass of my = 1.00782503214 u. This mass is actually very slightly less than the combined
masses of the proton and electron taken separately. In fact, if the atom is in its ground state,
the exact mass difference is 13.6 eV, which is just its ionization potential. Since mass is
equivalent to a corresponding amount of energy, and the total mass—energy of the system
must be conserved, any loss in energy when the electron and proton combine to form an
atom must come at the expense of a loss in total mass.

Similarly, energy is also released with an accompanying loss in mass when nucleons
are combined to form atomic nuclei. A helium nucleus, composed of two protons and
two neutrons, can be formed by a series of nuclear reactions originally involving four
hydrogen nuclei (i.e.,4H — He + low mass remnants). Such reactions are known as fusion
reactions, since lighter particles are “fused” together to form a heavier particle. (Conversely,
a fission reaction occurs when a massive nucleus is split into smaller fragments.) The
total mass of the four hydrogen atoms is 4.03130013 u, whereas the mass of one helium
atom is mye = 4.002603 u. Neglecting the contribution of low-mass remnants such as
neutrinos, the combined mass of the hydrogen atoms exceeds the mass of the helium atom
by Am = 0.028697 u, or 0.7%. Therefore, the total amount of energy released in forming
the helium nucleus is E, = Amc? = 26.731 MeV. This is known as the binding energy of
the helium nucleus. If the nucleus were to be broken apart into its constituent protons and
neutrons, the amount of energy required to accomplish the task would be 26.731 MeV.

Example 3.2. Is this source of nuclear energy sufficient to power the Sun during its
lifetime? For simplicity, assume also that the Sun was originally 100% hydrogen and that
only the inner 10% of the Sun’s mass becomes hot enough to convert hydrogen into helium.

Since 0.7% of the mass of hydrogen would be converted to energy in forming a helium
nucleus, the amount of nuclear energy available in the Sun would be

Enuciear = 0.1 x 0.007 x Moc? = 1.3 x 104 7.

continued

3The quantity A j is approximately equal to the mass number.
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This gives a nuclear timescale of approximately

E nuclear

Lo

(25)

Thuclear =

~ 10'° yr,

more than enough time to account for the age of Moon rocks.

Quantum Mechanical Tunneling

Apparently, sufficient energy is available in the nuclei of atoms to provide a source for stellar
luminosities, but can nuclear reactions actually occur in the interiors of stars? For a reaction
to occur, the nuclei of atoms must collide, forming new nuclei in the process. However,
all nuclei are positively charged, meaning that a Coulomb potential energy barrier must
be overcome before contact can occur. Figure 4 shows the characteristic shape of the
potential energy curve that an atomic nucleus would experience when approaching another
nucleus. The curve is composed of two parts: The portion outside of the nucleus is the
potential energy that exists between two positively charged nuclei, and the portion inside
the nucleus forms a potential well governed by the strong nuclear force that binds the
nucleus together. The strong nuclear force is a very short-range force that acts between all
nucleons within the atom. It is an attractive force that dominates the Coulomb repulsion
between protons. Clearly, if such a force did not exist, a nucleus would immediately fly
apart.

2 —r—
p-p interaction
1 Coulomb repulsion (1/r) —
/
S 0
(5}
= L J
g
S - -
2k i
----- — Deuterium binding energy —2.22 MeV
I - Strong nuclear potential well (approx —30 MeV) 1
-3 F I , I , I , I , I ,
0 2 4 6 8 10 12
r (fm)
FIGURE 4 The potential energy curve characteristic of nuclear reactions. The Coulomb repul-

sion between positive nuclei results in a barrier that is inversely proportional to the separation between
nuclei and is proportional to the product of their charges. The nuclear potential well inside the nucleus
is due to the attractive strong nuclear force.
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If we assume that the energy required to overcome the Coulomb barrier is provided by
the thermal energy of the gas, and that all nuclei are moving nonrelativistically, then the
temperature Tijussical T€QUired to overcome the barrier can be estimated. Since all of the
particles in the gas are in random motion, it is appropriate to refer to the relative velocity
v between two nuclei and their reduced mass, {1, (note that we are not referring here to
the mean molecular weight, ). Equating the initial kinetic energy of the reduced mass to
the potential energy of the barrier gives the position of the classical “turn-around point.”
Now, using Eq. ( 17) yields

- 3 1 Z12262
m 2 = —kT ssi =,
MmV ) classical 47[60 ;

N =

where Tiusical denotes the temperature required for an average particle to overcome the
barrier, Z; and Z, are the numbers of protons in each nucleus, and r is their distance of
separation. Assuming that the radius of a typical nucleus is on the order of 1 fm = 10~> m,
the temperature needed to overcome the Coulomb potential energy barrier is approximately

Z1Z,¢e*
Totassical = 2 26
classical 6 6()kl’ ( )

~ 109K

for a collision between two protons (Z; = Z, = 1). However, the central temperature of the
Sun is only 1.57 x 107 K, much lower than required here. Even taking into consideration
the fact that the Maxwell-Boltzmann distribution indicates that a significant number of
particles have speeds well in excess of the average speed of particles in the gas, classical
physics is unable to explain how a sufficient number of particles can overcome the Coulomb
barrier to produce the Sun’s observed luminosity.

Quantum mechanics tells us that it is never possible
to know both the position and the momentum of a particle to unlimited accuracy. The
Heisenberg uncertainty principle states that the uncertainties in position and momentum
are related by

(SN

AxAp, >

The uncertainty in the position of one proton colliding with another may be so large that even
though the kinetic energy of the collision is insufficient to overcome the classical Coulomb
barrier, one proton might nevertheless find itself within the central potential well defined by
the strong force of the other. This quantum mechanical tunneling has noclassical counterpart.
Of course, the greater the ratio of the potential energy barrier height to the particle’s kinetic
energy or the wider the barrier, the less likely tunneling becomes.

As a crude estimate of the effect of tunneling on the temperature necessary to sus-
tain nuclear reactions, assume that a proton must be within approximately one de Broglie
wavelength of its target in order to tunnel through the Coulomb barrier. Recalling that the
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wavelength of a massive particle is given by A = h/p, rewriting the kinetic energy in
terms of momentum,

LS
) m 2va

and setting the distance of closest approach equal to one wavelength (where the potential
energy barrier height is equal to the original kinetic energy) give

1 7,2, p*  (h/A)
4mey A N 2 - 2k .

Solving for A and substituting » = A into Eq. ( 26), we find the quantum mechanical
estimate of the temperature required for a reaction to occur:

Z%Z%e“,um

. 27
127126§h2k @7

quantum —

Again assuming the collision of two protons, w,, = m,/2 and Z|, = Z, = 1. Substituting,
we find that Tyuanum ~ 107 K. In this case, if we assume the effects of quantum mechan-
ics, the temperature required for nuclear reactions is consistent with the estimated central
temperature of the Sun.

Nuclear Reaction Rates and the Gamow Peak

Now that the possibility of a nuclear energy source has been established, we need a more
detailed description of nuclear reaction rates in order to apply them to the development of
stellar models. For instance, not all particles in a gas of temperature 7' will have sufficient
kinetic energy and the necessary wavelength to tunnel through the Coulomb barrier suc-
cessfully. Consequently, the reaction rate per energy interval must be described in terms
of the number density of particles having energies within a specific range, combined with
the probability that those particles can actually tunnel through the Coulomb barrier of the
target nucleus. The total nuclear reaction rate is then integrated over all possible energies.

First consider the number density of nuclei within a specified energy interval.
As we have seen, the Maxwell-Boltzmann distribution relates the number density of
particles with velocities between v and v + dv to the temperature of the gas. Assuming
that particles are initially sufficiently far apart that the potential energy may be neglected,
the nonrelativistic* kinetic energy relation describes the total energy of the particles, or
K = E = ,,v%/2. Solving for the velocity and substituting, we can write the Maxwell—
Boltzmann distribution in terms of the number of particles with kinetic energies between
E and E 4 dE as

2n 1

—_EV2e BT g (28)

ngdE = —7[1/2 "T)32

“4In astrophysical processes, nuclei are usually nonrelativistic, except in the extreme environment of neutron stars.
Because of the much smaller masses of electrons, it cannot be assumed that they are also nonrelativistic, however.
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FIGURE 5 The number of reactions per unit time between particles of type i and a target x of
cross section o (£') may be thought of in terms of the number of particles in a cylinder of cross-sectional
area o (E) and length ds = v(E) dt that will reach the target in a time interval dz.

Equation ( 28) gives the number of particles per unit volume that have energies in the
range d E, but it does not describe the probability that particles will actually interact. To
account for this factor, the idea of a cross section is re-introduced. Define the cross section
o (E) to be the number of reactions per target nucleus per unit time, divided by the flux of
incident particles, or

number of reactions/nucleus/time
o(E) =

number of incident particles/area/time

Although o (E) is strictly a measure of probability, it can be thought of as roughly the
cross-sectional area of the target particle; any incoming particle that strikes within that
area, centered on the target, will result in a nuclear reaction.

To find the reaction rate in units of reactions volume ! timefl, consider the number of
particles that will hit a target of cross-sectional area o (E), assuming that all of the incident
particles are moving in one direction. Let x denote a target particle and i denote an incident
particle. If the number of incident particles per unit volume having energies between E and
E + dE is n;g d E, then the number of reactions, d Ng, is the number of particles that can
strike x in a time interval dt with a velocity v(E) = /2E/iip.

The number of incident particles is just the number contained within a cylinder of volume
o(E)v(E)dt (see Fig. 5), or

dNg = o (E)v(E)n;g dE dt.

Now, the number of incident particles per unit volume with the appropriate velocity (or
kinetic energy) is some fraction of the total number of particles in the sample,

n[EdE = %nEdE,

where n; = fooo nigdE,n = fooo ngdE,andng dE is givenby Eq. ( 28). Therefore, the
number of reactions per target nucleus per time interval d¢ having energies between E and
E +dEis

reactions per nucleus  dNg

n;
= =0 (E)v(E) —ngdE.
time interval dt o (E)v(E) n nE
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Finally, if there are n, targets per unit volume, the total number of reactions per unit volume
per unit time, integrated over all possible energies, is

o) ng
Fix = f nyn;o(E)Yv(E) —dE. 29)
0 n

Toevaluate Eq. ( 29) we must know the functional form of ¢ (E). Unfortunately, o (E)
changes rapidly with energy, and its functional form is complicated. It is also important to
compare o (E) with experimental data. However, stellar thermal energies are quite low
compared to energies found in laboratory experimentation, and significant extrapolation is
usually required to obtain comparison data for stellar nuclear reaction rates.

The process of determining o (E) can be improved somewhat if the terms most strongly
dependent on energy are factored out first. We have already suggested that the cross section
can be roughly thought of as being a physical area. Moreover, the size of a nucleus, measured
in terms of its ability to “touch” target nuclei, is approximately one de Broglie wavelength
in radius (r ~ A). Combining these ideas, the cross section of the nucleus o (E) should be
proportional to

o (5)
c(E)xaA xm|—) x—.
p E
To obtain the last expression, we have again used the nonrelativistic relation, K = E =
//Lmvz/2 = p2/zﬂm~
We have also mentioned previously that the ability to tunnel through the Coulomb barrier
is related to the ratio of the barrier height to the initial kinetic energy of the incoming
nucleus, a factor that must be considered in the cross section. If the barrier height U, is
zero, the probability of successfully penetrating it necessarily equals one (100%). As the
barrier height increases relative to the initial kinetic energy of the incoming nucleus, the
probability of penetration must decrease, asymptotically approaching zero as the potential
energy barrier height goes to infinity. In fact, the tunneling probability is exponential in
nature. Since o (E) must be related to the tunneling probability, we have

0 (E) o e T U/E, (30)

The factor of 2772 arises from the strict quantum mechanical treatment of the problem. Again
assuming that r ~ A = h/p, taking the ratio of the barrier potential height U, to particle
kinetic energy E gives

UC _ 212262/47'[607‘ _ Z1Z262
E  pav?/2  2mephv’

After some manipulation, we find that
o(E) e P 31)
where

nu,l,,/zZl Z262

b
212¢ph
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FIGURE 6 The likelihood that a nuclear reaction will occur is a function of the kinetic energy of
the collision. The Gamow peak arises from the contribution of the e ~£/¥T Maxwell-Boltzmann high-
energy tail and the e "% ' Coulomb barrier penetration term. This particular example represents the
collision of two protons at the central temperature of the Sun. (Note that e ?£~""* and e~#£~" = E/KT
have been multiplied by 10 and 10°, respectively, to more readily illustrate the functional dependence
on energy.)

Clearly, b depends on the masses and electric charges of the two nuclei involved in the
interaction.
Combining the previous results and defining S(E) to be some (we hope) slowly varying

function of energy, we may now express the cross section as’
S(E _
o(E) = %e_bE " (32)

Substituting Eqs. ( 28) and ( 32) into Eq. (  29) and simplifying, the reaction rate
integral becomes

2\ min, = —bE-V? __E/KT
re=(-—=) [ sE)e e EINT . (33)
kT (Umm)Y? Jo

In Eq. ( 33), the term e £/¥T represents the high-energy wing of the Maxwell-
Boltzmann distribution, and the term e ?£ " comes from the penetration probability. As
can be seen in Fig. 6, the product of these two factors produces a strongly peaked curve,
known as the Gamow peak after George Gamow (1904-1968), the physicist who first

>The angular momentum of the interacting particles also plays a role in nuclear reaction rates, but it is generally
a minor component for reactions of astrophysical significance.
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S(E)

FIGURE 7 A hypothetical example of the effect of resonance on S(E).

investigated Coulomb barrier penetration. The top of the curve occurs at the energy

bkT\*?

As a consequence of the Gamow peak, the greatest contribution to the reaction rate integral
comes in a fairly narrow energy band that depends on the temperature of the gas, together
with the charges and masses of the constituents of the reaction.

Assuming that S(E) is indeed slowly varying across the Gamow peak, it may be ap-
proximated by its value at Eg [S(E) =~ S(E() = constant] and removed from inside of
the integral. Also, it is generally much easier to extrapolate laboratory results if they are
expressed in terms of S(E).

Resonance

In some cases, however, S(E) can vary quite rapidly, peaking at specific energies, as il-
lustrated schematically in Fig. 7. These energies correspond to energy levels within the
nucleus, analogous to the orbital energy levels of electrons. It is a resonance between the
energy of the incoming particle and differences in energy levels within the nucleus that
accounts for these strong peaks. A detailed discussion of these resonance peaks is beyond
the scope of this book.®

Electron Screening

Yet another factor influencing reaction rates is electron screening. On average, the elec-
trons liberated when atoms are ionized at the high temperatures of stellar interiors produce a

6See Clayton (1983) or Arnett (1996) for excellent and detailed discussions of resonance peaks.
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“sea” of negative charge that partially hides the target nucleus, reducing its effective positive
charge. The result of this reduced positive charge is a lower Coulomb barrier to the incom-
ing nucleus and an enhanced reaction rate. By including electron screening, the effective
Coulomb potential becomes

where U, (r) < 0 is the electron screening contribution. Electron screening can be signifi-
cant, sometimes enhancing the helium-producing reactions by 10% to 50%.

Representing Nuclear Reaction Rates Using Power Laws

It is often illuminating to write the complicated reaction rate equations in the form of a
power law centered at a particular temperature. Neglecting the screening factor, in the case
of a two-particle interaction, the reaction rate would become

Tix = rOXiXxpa Tﬂv

where ry is a constant, X; and X, are the mass fractions of the two particles, and &’ and 8
are determined from the power law expansion of the reaction rate equations. Usually o’ = 2
for a two-body collision, and 8 can range from near unity to 40 or more.

By combining the reaction rate equation with the amount of energy released per reaction,
we can calculate the amount of energy released per second in each kilogram of stellar
material. If & is the amount of energy released per reaction, the amount of energy liberated
per kilogram of material per second becomes

€ix = | — ) Tix»
o

€ir = €Xi X, p" TP, (35)

or, in the form of a power law,

where @ = a’ — 1. €;, has units of W kg_1 and the sum of ¢;, for all reactions is the total
nuclear energy generation rate. This form of the nuclear energy generation rate will be used
later to show the dependence of energy production on temperature and density for several
reaction sequences typically operating in stellar interiors.

The Luminosity Gradient Equation

To determine the luminosity of a star, we must now consider all of the energy generated by
stellar material. The contribution to the total luminosity due to an infinitesimal mass dm is
simply

dL = edm,

where € is the fotal energy released per kilogram per second by all nuclear reactions and
by gravity, or € = €pyclear + €gravity- It 1S worth noting that €g..iry could be negative if the
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star is expanding, a point to be discussed later. For a spherically symmetric star, the mass
of a thin shell of thickness dr is just dm = dM, = pdV = 4nr’pdr (recall Fig.  2).
Substituting and dividing by the shell thickness, we have

dL,
— =472 pe, (36)
dr

where L, is the interior luminosity due to all of the energy generated within the star’s
interior out to the radius r. Equation (  36) is another of the fundamental stellar structure
equations.

Stellar Nucleosynthesis and Conservation Laws

The remaining problem in understanding nuclear reactions is the exact sequence of steps
by which one element is converted into another, a process known as nucleosynthesis. Our
estimate of the nuclear timescale for the Sun was based on the assumption that four hydrogen
nuclei are converted into helium. However, it is highly unlikely that this could occur via
a four-body collision (i.e., all nuclei hitting simultaneously). For the process to occur, the
final product must be created by a chain of reactions, each involving much more probable
two-body interactions. In fact, we derived the reaction rate equation under the assumption
that only two nuclei would collide at any one time.

The process by which a chain of nuclear reactions leads to the final product cannot
happen in a completely arbitrary way, however; a series of particle conservation laws must
be obeyed. In particular, during every reaction it is necessary to conserve electric charge,
the number of nucleons, and the number of leptons. The term lepton means a “light thing”
and includes electrons, positrons, neutrinos, and antineutrinos.

Although antimatter is extremely rare in comparison with matter, it plays an important
role in subatomic physics, including nuclear reactions. Antimatter particles are identical to
their matter counterparts but have opposite attributes, such as electric charge. Antimatter
also has the characteristic (often used in science fiction) that a collision with its matter coun-
terpart results in complete annihilation of both particles, accompanied by the production of
energetic photons. For instance,

e +et = 2y,

where e™, e*, and y denote an electron, positron, and photon, respectively. Note that two
photons are required to conserve both momentum and energy simultaneously.

Neutrinos and antineutrinos (symbolized by v and Vv, respectively) are
an interesting class of particles in their own right.” Neutrinos are electrical-
ly neutral and have a very small but non-zero mass (mv < 2.2 eV/c?). One of
the interesting characteristics of a neutrino is its extremely small cross sec-
tion for interactions with other matter, making it very difficult to detect. Typically

"These particles were originally proposed by Wolfgang Pauli in 1930, in order that energy and momentum might
be conserved in certain reaction processes. In 1934, they were given the name neutrinos (“little neutral ones”) by
Italian physicist Enrico Fermi (1901-1954).
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o, ~ 107 m?, implying that at densities common to stellar interiors, a neutrino’s mean
free path is on the order of 10'® m ~ 10 pc, or nearly 10° R ! After being produced in the
deep interior, neutrinos almost always successfully escape from the star. One exception to
this transparency of stellar material to neutrinos occurs with important consequences during
a supernova explosion.

Since electrons and positrons have charges equal in magnitude to that of a proton, these
leptons will contribute to the charge conservation requirement while their total lepton
numbers must also be conserved. Note that in counting the number of leptons involved in
a nuclear reaction, we treat matter and antimatter differently. Specifically, the total number
of matter leptons minus the total number of antimatter leptons must remain constant.

To assist in counting the number of nucleons and the total electric charge, nuclei will be
represented in this text by the symbol

A
ZX’

where X is the chemical symbol of the element (H for hydrogen, He for helium, etc.), Z is
the number of protons (the total positive charge, in units of ¢), and A is the mass number
(the total number of nucleons, protons plus neutrons).®

The Proton—-Proton Chains

Applying the conservation laws, one chain of reactions that can convert hydrogen into
helium is the first proton—proton chain (PPI). Itinvolves areaction sequence that ultimately
results in

4 1H — jHe + 2e* +2v, + 2y

through the intermediate production of deuterium (%H) and helium-3 (%He). The entire PP 1
reaction chain is’

H+ H—3H+e" +v, (37)
H+4{H — 3He + y (38)
3He + 3He — 3He + 2 'H. (39)

Each step of the PP I chain has its own reaction rate, since different Coulomb barriers and
cross sections are involved. The slowest step in the sequence is the initial one, because it
involves the decay of a proton into a neutron via p* — n + e* + v,. Such a decay involves
the weak force, another of the four known forces.'°

8 Since an element is uniquely determined by the number of protons (Z) in the nucleus, specifying both X and Z
is redundant. As a result, some texts use the less cumbersome notation 4 X. However, this notation makes it more
difficult to keep track of the electric charge in a nuclear reaction.

9 Approximately 0.4% of the time, the first reaction step is accomplished by the so-called pep reaction: }H +
67+%H~> %H+ Ve.

19Each of the four forces has now been mentioned: the gravitational force, which involves all particles with mass—
energy; the electromagnetic force, associated with photons and electric charge; the strong force that binds nuclei
together; and the weak force of radioactive beta (electron/positron) decay.
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The production of helium-3 nuclei in the PP I chain also provides for the possibility of
their interaction directly with helium-4 nuclei, resulting in a second branch of the proton—
proton chain. In an environment characteristic of the center of the Sun, 69% of the time a
helium-3 interacts with another helium-3 in the PP I chain, whereas 31% of the time the
PP II chain occurs:

3He + 3He — [Be + y (40)
iBe+e — ILi+v, 41)
JLi+H — 2 jHe. (42)

Yet another branch, the PP III chain, is possible because the capture of an electron by
the beryllium-7 nucleus in the PP II chain competes with the capture of a proton (a proton
is captured only 0.3% of the time in the center of the Sun):

Be+H—5B+y (43)
5B — iBe + e + v, (44)
8Be — 2 jHe. (45)

The three branches of the proton—proton (pp) chain, along with their branching ratios, are
summarized in Fig. 8.

H+H—>H+et+,

2y, 1 3
H+ H— 5He+vy

69% 31%
3He + 3He — %He +2 'H 3He +4He — [Be+y
(PPI)
99.7% 0.3%
Bet+e —>ILi+y, Be+ H—>5B+y
JLi+H — 2%He 5B —>%Be+et+y,

(PP ID)
®Be — 2 3He

(PP III)

FIGURE 8 The three branches of the pp chain, along with the branching ratios appropriate for
conditions in the core of the Sun.
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Beginning with Eq. ( 33), the nuclear energy generation rate for the combined pp chain
is calculated to be

1/3

€pp = 0241pX2 £, 0,y CppTe e 380%  W kg ™!, (46)
where Ty is a dimensionless expression of temperature in units of 10° K (or Ts = T/10° K).
Sfop = fop(X, Y, p, T) = 1is the pp chain screening factor, ¥, = ¥,,(X, Y, T) ~ lisa
correction factor that accounts for the simultaneous occurrence of PP I, PP II, and PP III,
and C,, ~ 1 involves higher-order correction terms.'!

When written as a power law (e.g., Eq.  35) near T = 1.5 x 107 K, the energy
generation rate has the form

€pp = eé,ppr2fppwppC1ﬂp Ty, (47)

where €, op = 1.08 % 10~'2W m? kg 2. The power law form of the energy generation rate
demonstrates a relatively modest temperature dependence of 74 near Tg = 15.

The CNO Cycle

A second, independent cycle also exists for the production of helium-4 from hydrogen. This
cycle was proposed by Hans Bethe (1906-2005) in 1938, just six years after the discovery
of the neutron. In the CNO cycle, carbon, nitrogen, and oxygen are used as catalysts, being
consumed and then regenerated during the process. Just as with the pp chain, the CNO cycle
has competing branches. The first branch culminates with the production of carbon-12 and
helium-4:

C+1H— UN+y (48)
BN - BC+et +v, (49)
'5C+1H— N +y (50)
UN+IH— 30+y (51)
B0 — BN +em 4, (52)
PN+ {H — '2C + He. (53)

The second branch occurs only about 0.04% of the time and arises when the last reaction
(Eq. 53) produces oxygen-16 and a photon, rather than carbon-12 and helium-4:

UN+H— 'f0+y (54)
O+ |{H— TF+y (55)

HF = o +e" +v, (56)
0 + |H — "IN + JHe. (57)

"Expressions for the various correction terms are given in the stellar structure code StatStar, described in
Appendix: StatStar, A Binary Star Code.
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The energy generation rate for the CNO cycle is given by
ecno = 8.67 x 1020,0XXCN()CCNO7—‘6_2/36‘_152‘28Tﬁ'_1/3 W kg_l, (58)

where X cno is the total mass fraction of carbon, nitrogen, and oxygen, and Ccnpo is a higher-
order correction term. When written as a power law centered about 7 = 1.5 x 107 K (see
Eq. 35), this energy equation becomes

€cno = €0 cnoP X Xeno T2, (59)

where € cyo = 8.24 x 107! W m? kg™>. As shown by the power law dependence, the
CNO cycle is much more strongly temperature-dependent than is the pp chain. This property
implies that low-mass stars, which have smaller central temperatures, are dominated by the
pp chains during their “hydrogen burning” evolution, whereas more massive stars, with
their higher central temperatures, convert hydrogen to helium by the CNO cycle. The
transition in stellar mass between stars dominated by the pp chain and those dominated
by the CNO cycle occurs for stars slightly more massive than our Sun. This difference in
nuclear reaction processes plays an important role in the structure of stellar interiors, as will
be seen in the next section.

When hydrogen is converted into helium by either the pp chain or the CNO cycle, the
mean molecular weight p of the gas increases. If neither the temperature nor the density
of the gas changes, the ideal gas law predicts that the central pressure will necessarily
decrease. As a result, the star would no longer be in hydrostatic equilibrium and would
begin to collapse. This collapse has the effect of actually raising both the temperature and
the density to compensate for the increase in ;t. When the temperature and density become
sufficiently high, helium nuclei can overcome their Coulomb repulsion and begin to “burn.”

The Triple Alpha Process of Helium Burning

The reaction sequence by which helium is converted into carbon is known as the triple
alpha process. The process takes its name from the historical result that the mysterious
alpha particles detected in some types of radioactive decay were shown by Rutherford to
be helium-4 (3He) nuclei. The triple alpha process is

SHe + 3He = $Be (60)
8Be + 3He — '2C +y. (61)

In the triple alpha process, the first step produces an unstable beryllium nucleus that will
rapidly decay back into two separate helium nuclei if not immediately struck by another
alpha particle. As a result, this reaction may be thought of as a three-body interaction, and
therefore, the reaction rate depends on (pY)3. The nuclear energy generation rate is given
by

€30 = 50.902 VT3 frge ¥V W kg ™!, (62)
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where Ty = T/10% K and f3, is the screening factor for the triple alpha process. Written
as a power law centered on T = 10% K (see Eq.  35), it demonstrates a very dramatic
temperature dependence:

€30 2 €0 3,07 Y fra Ty 0. (63)

With such a strong dependence, even a small increase in temperature will produce a large
increase in the amount of energy generated per second. For instance, an increase of only
10% in temperature raises the energy output rate by more than 50 times!

Carbon and Oxygen Burning

In the high-temperature environment of helium burning, other competing processes are also
at work. After sufficient carbon has been generated by the triple alpha process, it becomes
possible for carbon nuclei to capture alpha particles, producing oxygen. Some of the oxygen
in turn can capture alpha particles to produce neon.

2C 4 4He — S0+ y (64)
%0 + 3He — ¥Ne + y (65)

At helium-burning temperatures, the continued capture of alpha particles leading to progres-
sively more massive nuclei quickly becomes prohibitive due to the ever higher Coulomb
barrier.

If a star is sufficiently massive, still higher central temperatures can be obtained and
many other nuclear products become possible. Examples of available reactions include
carbon burning reactions near 6 x 108 K,

10 +2 4He *#*

%8Ne + ‘Z‘He

5C+5C— | fiNa+p* (66)
BMg 4 n

Mg +y

and oxygen burning reactions near 10° K,

MMg + 2 jHe #***

14Si + JHe

80+ 150 > 1 P+ pt (67)

31
165 +n

1S+
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Reactions marked by *** are ones for which energy is absorbed rather than released and
are referred to as being endothermic; energy-releasing reactions are exothermic. In en-
dothermic reactions the product nucleus actually possesses more energy per nucleon than
did the nuclei from which it formed. Such reactions occur at the expense of the energy
released by exothermic reactions or by gravitational collapse (the virial theorem). In gen-
eral, endothermic reactions are much less likely to occur than exothermic reactions under
conditions that normally prevail in stellar interiors.

The Binding Energy Per Nucleon

A useful quantity in understanding the energy release in nuclear reactions is the binding
energy per nucleon, E;/A, where

E, = Amcz = [Zmp +(A—-2)m, — mnucleus] C2~

Figure 9 shows E,/A versus the mass number. It is apparent that for relatively small
values of A (less than 56), several nuclei have abnormally high values of E;,/A relative to
others of similar mass. Among these unusually stable nuclei are ‘2‘He and lgO, which, along
with {H are the most abundant nuclei in the universe. This unusual stability arises from
an inherent shell structure of the nucleus, analogous to the shell structure of atomic energy
levels that accounts for the chemical nature of elements. These unusually stable nuclei are
called magic nuclei.

It is believed that shortly after the Big Bang the early universe was composed primarily
of hydrogen and helium, with no heavy elements. Today, Earth and its inhabitants contain
an abundance of heavier metals. The study of stellar nucleosynthesis strongly suggests that

10 S —
16 86
| g0 400, 36Kr 127 _
- 531 T4y 208
\ ggFe : 107 70 82Pb 235U
8 Q’\%Mg 1Ag - 92V
~
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FIGURE 9 The binding energy per nucleon, E;, /A, as a function of mass number, A. Notice that
several nuclei, most notably 3He (see also '2C and '§O), lie well above the general trend of the other
nuclei, indicating unusual stability. At the peak of the curve is 3¢Fe, the most stable of all nuclei.
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these heavier nuclei were generated in the interiors of stars. It can be said that we are all
“star dust,” the product of heavy element generation within previous generations of stars.

Another important feature of Fig. 9 is the broad peak around A = 56. At the top of
the peak is an isotope of iron, ggFe, the most stable of all nuclei. As successively more
massive nuclei are created in stellar interiors, the iron peak is approached from the left.
These fusion reactions result in the liberation of energy.'> Consequently, the ultimate result
of successive chains of nuclear reactions within stars is the production of iron, assuming
sufficient energy is available to overcome the Coulomb barrier. If a star is massive enough
to create the central temperatures and densities necessary to produce iron, the results are
spectacular.

Considering what we have learned in this section about stellar nucleosynthesis, it should
come as no surprise that the most abundant nuclear species in the cosmos are, in order, {H,
1He, 'S0, '2C, Ne, 3N, #Mg, 8Si, and 3°Fe. The abundances are the result of the
dominant nuclear reaction processes that occur in stars, together with the nuclear
configurations that result in the most stable nuclei.

4  EENERGY TRANSPORT AND THERMODYNAMICS

One stellar structure equation remains to be developed. We have already related the funda-
mental quantities P, M, and L to the independent variable r through differential equations
that describe hydrostatic equilibrium, mass conservation, and energy generation, respec-
tively; see Eqs. ( 6),( 7),and (  36). However, we have not yet found a differential
equation relating the basic parameter of temperature, T, to r. Moreover, we have not explic-
itly developed equations that describe the processes by which heat generated via nuclear
reactions or gravitational contraction is carried from the deep interior to the surface of the
star.

Three Energy Transport Mechanisms

Three different energy transport mechanisms operate in stellar interiors. Radiation allows
the energy produced by nuclear reactions and gravitation to be carried to the surface via
photons, the photons being absorbed and re-emitted in nearly random directions as they
encounter matter. This suggests that the opacity of the material must play an important
role, as one would expect. Convection can be a very efficient transport mechanism in
many regions of a star, with hot, buoyant mass elements carrying excess energy out-
ward while cool elements fall inward. Finally, conduction transports heat via colli-
sions between particles. Although conduction can play an important role in some stellar
environments, it is generally insignificant in most stars throughout the majority of their
lifetimes and will not be discussed further here.

2Energy is also released when the peak is approached from the right via fission reactions that produce nuclei
of smaller mass, again resulting in more stable nuclei. This type of reaction process is important in the fission
reactors of nuclear power plants.
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The Radiative Temperature Gradient

First consider radiation transport. The radiation pressure gradient is given by,

dPrad _E_P
dr

= Frada
&

where F,q4 is the outward radiative flux. However, from Eq. ( 19), the radiation pressure
gradient may also be expressed as

dPag _ 4 5dT

ar 3 @
Equating the two expressions, we have
dT 3 kp
— =——"LF.
dr 4ac T3 ™

Finally, if we use the expression for the radiative flux, written in terms of the local radia-
tive luminosity of the star at radius 7,
L,
Frg = ——,
T g2

the temperature gradient for radiative transport becomes

ar 3 &p L,

dr — dac T? 4nr?’

(68)

As either the flux or the opacity increases, the temperature gradient must become steeper
(more negative) if radiation is to transport all of the required luminosity outward. The same
situation holds as the density increases or the temperature decreases.

The Pressure Scale Height

If the temperature gradient becomes too steep, convection can begin to play an important role
in the transport of energy. Physically, convection involves mass motions: hot parcels of mat-
ter move upward as cooler, denser parcels sink. Unfortunately, convection is a much more
complex phenomenon than radiation at the macroscopic level. In fact, no truly satisfactory
prescription yet exists to describe it adequately in stellar environments. Fluid mechanics,
the field of physics describing the motion of gases and liquids, relies on a complicated set of
three-dimensional equations known as the Navier—Stokes equations. However, at present,
due in large part to the current limitations in computing power,'> most stellar structure
codes are one-dimensional (i.e., depend on r only). It becomes necessary, therefore, to ap-
proximate an explicitly three-dimensional process by a one-dimensional phenomenological

B3This limitation is being overcome to some extent with the development of ever faster computers with more
memory, and through the implementation of more sophisticated numerical techniques.
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theory. To complicate the situation even more, when convection is present in a star, it is gen-
erally quite turbulent, requiring a detailed understanding of the amount of viscosity (fluid
friction) and heat dissipation involved. Also, a characteristic length scale for convection,
typically referred to in terms of the pressure scale height, is often comparable to the size
of the star. Lastly, the timescale for convection, taken to be the amount of time required
for a convective element to travel a characteristic distance, is in some cases approximately
equal to the timescale for changes in the structure of the star, implying that convection is
strongly coupled to the star’s dynamic behavior. The impact of these complications on the
behavior of the star is not yet fundamentally understood.

The situation is not completely hopeless, however. Despite the difficulties encountered
in attempting to treat stellar convection exactly, approximate (and even reasonable) results
can usually be obtained. To estimate the size of a convective region in a star, consider the
pressure scale height, Hp, defined as

— = (69)

If we assume for the moment that Hp is a constant, we can solve for the variation of pressure
with radius, giving

P = Pye /P,

Obviously, if »r = Hp, then P = Pye™!, so that Hp is the distance over which the gas
pressure decreases by a factor of e. To find a convenient general expression for Hp, recall
that from the equation for hydrostatic equilibrium (Eq.  6), dP/dr = —pg, where g =
G M, /r? is the local acceleration of gravity. Substituting into Eq. ( 69), the pressure scale
height is simply

P
Hp = —. (70)
g
Example 4.1. To estimate a typical value for the pressure scale height in the Sun,

assume that P = P./2, where P, is the central pressure, P 1is the average solar density,
and

G(My/2
7= CMo/2) @/2) =550ms 2.
(Ro/2)
Then we have
Hp ~ 1.8 x 108 m ~ Ry /4.

Detailed calculations show that Hp ~ R /10 is more typical.

Internal Energy and the First Law of Thermodynamics

Understanding convective heat transport in stars, even in an approximate way, begins with
some knowledge of thermodynamics. In the study of heat transport, conservation of energy
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is expressed by the first law of thermodynamics,

dU =dQ —dw, (71)

where the change in the internal energy of a mass element dU is given by the amount of
heat added to that element, d Q, minus the work done by that element on its surroundings,
dW . Throughout our discussion we will assume that these energy changes are measured
per unit mass.

The internal energy of a system U is a state function, meaning that its value depends
only on the present conditions of the gas, not on the history of any changes leading to
its current state. Consequently, dU is independent of the actual process involved in the
change. On the other hand, neither heat nor work is a state function. The amount of heat
added to a system or the amount of work done by a system depends on the ways in which
the processes are carried out. dQ and dW are referred to as inexact differentials, reflecting
their path dependence.

Consider an ideal monatomic gas, a gas composed of single particles with no ionization.
The total internal energy per unit mass is given by

U = (average energy /particle) x (number of particles/mass)

— 1
=K x =

m

where m = umpy is the average mass of a single particle in the gas. For an ideal gas,
K = 3kT /2 and the internal energy is given by

3 k 3
U== T = ~nRT, (72)
2 \ umy 2

where n is the number of moles' perunitmass, R = 8.314472] mole ™! K~!is the universal
gas constant,'® and

k

nR = .
mmpy

Clearly U = U(u, T) is a function of the composition of the gas and its temperature. In
this case of an ideal monatomic gas, the internal energy is just the kinetic energy per unit
mass.

Specific Heats

The change in heat of the mass element dQ is generally expressed in terms of the specific
heat C of the gas. The specific heat is defined as the amount of heat required to raise the

141 mole = Ny particles, where Ny = 6.02214199 x 1023 is Avogadro’s number, defined as the number of 1§C
atoms required to produce exactly 12 grams of a pure sample.
SR = Nak.
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temperature of a unit mass of a material by a unit temperature interval, or

Cp= 99 and Cy = 20 ,
aT |p aT |,
where Cp and Cy are the specific heats at constant pressure and volume, respectively.
Consider next the amount of work per unit mass, W, done by the gas on its surroundings.
Suppose that a cylinder of cross-sectional area A is filled with a gas of mass m and pressure
P. The gas then exerts a force F = P A on an end of the cylinder. If the end of the cylinder
is a piston that moves through a distance dr, the work per unit mass performed by the gas

may be expressed as
F PA
aw = (—) dr = <—> dr = PdV,
m m

V being defined as the specific volume, the volume per unit mass, or V.= 1/p. The first
law of thermodynamics may now be expressed in the useful form

dU =dQ — PdV. (73)
At constant volume, dV = 0, which gives dU = dU|y, = dQ|y, or

]
av =2\ ar—cyar. (74)
oT |y
[It is important to note that because dU is independent of any specific process, the second
equality of Eq. ( 74) is always valid, regardless of the type of thermodynamic process
involved.] But from Eq. (72), dU = (3nR/2) dT for a monatomic gas. Thus

3

Cy = —nR. (75)
2
To find Cp for a monatomic gas, note that
| A%
av =2 ar- P ur (76)
oT |p T |p

In addition, from Eq. (11), the ideal gas law can be written as
PV =nRT. X))
Considering all possible differential changes in quantities in Eq. (77), we find that
PdV +VdP =RTdn+nRdT (78)

(recall that R is a constant). For constant P andn, Eq. ( 78) implies that P dV /dT = nR.
Substituting this result into Eq. ( 76) along with dU = Cy dT and the definition of Cp,
we arrive at

Cp=Cy+nR. (79)

Equation (79) is valid for all situations for which the ideal gas law applies.
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Define the parameter y to be the ratio of specific heats, or

Cp
Cy’

y (80)

For a monatomic gas, we see that y = 5/3. If ionization occurs, some of the heat that would
normally go into increasing the average kinetic energy of the particles must go into ionizing
the atoms instead. Therefore the temperature of the gas, which is a measure of its internal
energy, will not rise as rapidly, implying larger values for the specific heats in a partial
ionization zone. As both Cp and Cy increase, y approaches unity.'

The Adiabatic Gas Law

Since the change in internal energy is independent of the process involved, consider the
special case of an adiabatic process (dQ = 0) for which no heat flows into or out of the
mass element. Then the first law of thermodynamics (Eq. 73) becomes

dU =—PdV.
However, from Eq. (78) with constant 7,
PdV +VdP =nRdT.

Also, since dU = Cy dT, we have

dUu Pdv
dT = — = — .
Cy Cy
Combining these results yields
nR
PdV +VdP =— (—) PdvV,
Cy

which may be rewritten by using Eqgs. (79) and (80), to give

Solving this differential equation leads to the adiabatic gas law,
PVY =K, (82)
where K is a constant. Using the ideal gas law, a second adiabatic relation may be obtained:
P=K'TV"D, (83)

where K’ is another constant. Because of its special role in Eqs. ( 82) and (  83), y
is often referred to as the “adiabatic gamma,” specifying a particularly simple equation of
state.

16The variation of y also plays an important role in the dynamic stability of stars.
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The Adiabatic Sound Speed

Using the results obtained thus far, we can now calculate a sound speed through the material.
The sound speed is related to the compressibility of the gas and to its inertia (represented
by density) and is given by

Uy = VB/p7

where B = —V (0P /dV),q is the bulk modulus of the gas.!” The bulk modulus describes
how much the volume of the gas will change with changing pressure. From Eq. (  81),
the adiabatic sound speed becomes

vs =+ Y P/p. (84)

Example 4.2. Assuming a monatomic gas, a typical adiabatic sound speed for the Sun

is
—\ 12
- 5P / 5 -1
vy > | —— ~4x10°ms ,
305

where P ~ P,./2 was assumed. The amount of time needed for a sound wave to traverse
the radius of the Sun would then be

t >~ Ro /vy =~ 29 minutes.

The Adiabatic Temperature Gradient

Returning now to the specific problem of describing convection, we first consider the
situation where a hot convective bubble of gas rises and expands adiabatically, meaning
that the bubble does not exchange heat with its surroundings. After it has traveled some
distance, it finally thermalizes, giving up any excess heat as it loses its identity and dissolves
into the surrounding gas. Differentiating the ideal gas law (Eq.  11) yields an expression
involving the bubble’s temperature gradient (how the bubble’s temperature changes with
position):

dP  Pdw Pdp PdT

— = —t —=—. 85
dr ;Ldr+,odr+Tdr (85)

Using the adiabatic relationship between pressure and density (Eq.  82), and recalling
that V = 1/p is the specific volume, we have

P=Kp. (86)

17Formally, the bulk modulus, and therefore the sound speed, must be defined in terms of a process by which
pressure varies with volume. Since sound waves typically propagate through a medium too quickly for a significant
amount of heat to enter or leave a mass element in the gas, we usually assume that the process is adiabatic.
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Differentiating and rewriting, we obtain
— =y ——. (87)

If we assume for simplicity that u is a constant, Eqs. ( 85)and ( 87) may be combined
to give the adiabatic temperature gradient (designated by the subscript ad)

_(; 1\ TdP 88)
W y) Pdr’

dT
dr

Using Eq. (6) and the ideal gas law, we finally obtain

1 GM,
:_<1——>’“Z” s (89)
ad v r

dr

It is sometimes helpful to express Eq. ( 89) in another, equivalent form. Recalling that
g = GM,/rz, k/umyg =nR,y =Cp/Cy,and Cp — Cy = nR, and that n, Cp, and Cy
are per unit mass, we have

dT
dr

-_5 (90)

ad Cp

This result describes how the temperature of the gas inside the bubble changes as the bubble
rises and expands adiabatically.

If the star’s actual temperature gradient (designated by the subscript act) is steeper than
the adiabatic temperature gradient given in Eq. (89), or

dT
dr

dT
> —
dr

act ad ’

the temperature gradient is said to be superadiabatic (recall that d7/dr < 0). It will be
shown that in the deep interior of a star, if |[d7 /dr|, is just slightly larger than |dT /dr|q,
this may be sufficient to carry nearly all of the luminosity by convection. Consequently,
it is often the case that either radiation or convection dominates the energy transport in
the deep interiors of stars, while the other energy transport mechanism contributes very
little to the total energy outflow. The particular mechanism in operation is determined
by the temperature gradient. However, near the surface of the star the situation is much
more complicated: Both radiation and convection can carry significant amounts of energy
simultaneously.

A Criterion for Stellar Convection

Just what condition must be met if convection is to dominate over radiation in the deep
interior? When will a hot bubble of gas continue to rise rather than sink back down after
being displaced upward? Figure 10 shows a convective bubble traveling a distance dr
through the surrounding medium. According to Archimedes’s principle, if the initial density
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(5) (b)
Pf Pf
(s) (b)
T b A T );
A
dr
P® p®
1 1
T @ 7®)
1 1
pl_(S) p[_(h)
Surrounding Bubble
gas

FIGURE 10 A convective bubble traveling outward a distance dr. The initial conditions of
the bubble are given by Pi(b), Tl.(b), and pl.(h), for the pressure, temperature, and density, respectively,
while the initial conditions for the surrounding gas at the same level are designated by P,.(s), Ti(‘), and
,oi('v), respectively. Final conditions for either the bubble or the surrounding gas are indicated by an f
subscript.

of the bubble is less than that of its surroundings (pi(b) < ,oi(s) ), it will begin to rise. Now,

the buoyant force per unit volume exerted on a bubble that is totally submersed in a fluid
of density p* is given by

fz=0"sg.

If we subtract the downward gravitational force per unit volume on the bubble, given by

b
fg :pl( )ga

the net force per unit volume on the bubble becomes

Jnet = —g8p, (2]

where dp = pl.(b) — ,oi(” < 0 initially. If, after traveling an infinitesimal distance dr, the

bubble now has a greater density than the surrounding material (p}b) > ,o(fs)), it will sink

again and convection will be prohibited. On the other hand, if p}b) < p‘(]f), the bubble will
continue to rise and convection will result.

To express this condition in terms of temperature gradients, assume that the gas is initially
very nearly in thermal equilibrium, with T”) ~ T and p” ~ p®. Also assume that the
bubble expands adiabatically and that the bubble and surrounding gas pressures are equal at
all times, P}b) = P}S). Now, since it is assumed that the bubble has moved an infinitesimal

distance, it is possible to express the final quantities in terms of the initial quantities and
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their gradients by using a Taylor expansion. To first order,

(b) do|®
p
dr  and W~ p® L,
Pr =P dr

dp
b b)
Pro=pe gy

If the densities inside and outside the bubble remain nearly equal (as is usually the case ex-

cept near the surfaces of some stars), substituting these results into the convection condition,
,o}b) < pjf), gives
)

d,O (s)

dr

dp
<_

dr ©2)

We now want to express this solely in terms of quantities for the surroundings. Using
Eq. ( 87) for the adiabatically rising bubble to rewrite the left-hand side of (  92) and
using Eq. ( 85) to rewrite the right-hand side (again assuming du/dr = 0), we find

®) pf)[dP m}

1 p® apr
P; - ar
Pi(s) dr

(s) P-(S) dT
P _ 1
y P dr

7Y dr

Recalling that P> = P at all times, it is necessary that

dpP
dr

@ qp
T dr

© qp
o

where the superscripts on the pressure gradient have been shown to be redundant. Substi-
tuting, and canceling equivalent initial conditions,

1dp dP P® 4T |®

— — < —_—— —
y dr dr Ti(” dr

Dropping subscripts for initial conditions and superscripts designating the surrounding
material, we arrive at the requirement

1 dpP P dT
1% dr T dr
where the temperature gradient is the actual temperature gradient of the surrounding gas.
Multiplying by the negative quantity —7/ P requires that the direction of the inequality be

reversed, giving
1\TdpP dT
l——)——— > —
y ) P dr dr

But from Eq. ( 88), we see that the left-hand side of the inequality is just the adiabatic
temperature gradient. Thus

, 93)

act

act

dT
dr

daT
> —
ad dr

act
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is the condition for the gas bubble to keep rising. Finally, since d T /dr < 0 (the temperature
decreases as the stellar radius increases), taking the absolute value of the equation again
requires that the direction of the inequality be reversed, or

dT
dr

dT

> —
dr

act

: (94)

ad

If the actual temperature gradient is superadiabatic, convection will result, assuming that p
does not vary.

Equation ( 93) may be used to find another useful, and equivalent, condition for con-
vection. Since dT/dr < 0and 1/y — 1 < O (recall that y > 1),

T (dT\ 'dpP 1
— — —_— < J— R
P \ dr dr y=l—1

which may be simplified to give

TdpP y

[ < [ — s

PdT y —1
or, for convection to occur,

dIn P y

—_— 95
dlnT<y—l ©3)

For an ideal monatomic gas, y = 5/3 and convection will occur in some region of a star
whendIn P/dInT < 2.5. In that case the temperature gradient (d7'/dr) is given approx-
imately by Eq. ( 89). WhendIn P/dInT > 2.5, the region is stable against convection
and dT /dr is given by Eq. (68).

By comparing Eq. ( 68) for the radiative temperature gradient with either Eq. (  89)
or Eq. ( 90), together with the condition for convection written in terms of the tempera-
ture gradient, Eq. ( 94), it is possible to develop some understanding of which conditions
are likely to lead to convection over radiation. In general, convection will occur when
(1) the stellar opacity is large, implying that an unachievably steep temperature gradient
(|dT /dr|at) would be necessary for radiative transport, (2) a region exists where ioniza-
tion is occurring, causing a large specific heat and a low adiabatic temperature gradient
(|dT /dr|.a), and (3) the temperature dependence of the nuclear energy generation rate is
large, causing a steep radiative flux gradient and a large temperature gradient. In the at-
mospheres of many stars, the first two conditions can occur simultaneously, whereas the
third condition would occur only deep in stellar interiors. In particular, the third condition
can occur when the highly temperature-dependent CNO cycle or triple alpha processes are
occurring.

The Mixing-Length Theory of Superadiabatic Convection

It has already been suggested that the temperature gradient must be only slightly superadi-
abatic in the deep interior in order for convection to carry most of the energy. We will now
justify that assertion.
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We begin by returning to the fundamental criterion for convection, ,o(;’) < pgf). Since

the pressure of the bubble and that of its surroundings are always equal, the ideal gas law

implies that T;b) > T;S), assuming thermal equilibrium initially. Therefore, the temperature
of the surrounding gas must decrease more rapidly with radius, so

(s) dT )

ar

dT

—_ >0
dr

is required for convection. Since the temperature gradients are negative, we have

(b) dT |©®

Cdr

dT

— > 0.
dr

Assuming that the bubble moves essentially adiabatically, and designating the temperature
gradient of the surroundings as the actual average temperature gradient of the star, let

dT

® _dT
dr a

d]
d}’

© g
ad dr

dr

act

After the bubble travels a distance dr, its temperature will exceed the temperature of the

surrounding gas by'®
dT
) dr =6 (—) dr. (96)
act dr

We use § here to indicate the difference between the value of a quantity associated with
the bubble and the same quantity associated with the surroundings, both determined at a
specified radius r, just as was done for Eq. (91).

Now assume that a hot, rising bubble travels some distance

dT

<dT
8T = - —
ad dr

dr

EZOlHP

before dissipating, at which point it thermalizes with its surroundings, giving up its excess
heat at constant pressure (since P”) = P at all times). The distance ¢ is called the mixing
length, Hp is the pressure scale height (see Eq. 70), and

o EK/HP,

the ratio of mixing length to pressure scale height is an adjustable parameter, or free pa-
rameter, generally assumed to be of order unity. (From comparisons of numerical stellar
models with observations, values of 0.5 < o < 3 are typical.)

After the bubble travels one mixing length, the excess heat flow per unit volume from
the bubble into its surroundings is just

84 = (Cp8T)p,

181n some texts, 8 (“%) = AVT.
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where 87 is calculated from Eq. ( 96) by substituting £ for dr. Multiplying by the average
velocity v, of the convective bubble, we obtain the convective flux (the amount of energy
per unit area per unit time carried by a bubble):

F, =8q v, = (Cp 8T)pu.. (97)

Note that pv is a mass flux, or the amount of mass per second that crosses a unit area oriented
perpendicular to the direction of the flow. Mass flux is a quantity that is often encountered
in fluid mechanics.

The average velocity v may be found from the net force per unit volume, f,, acting on
the bubble. Using the ideal gas law and assuming constant ., we can write

P P
0P =—68p+ = T.
P T

Since the pressure is always equal between the bubble and its surroundings, § P = P® —
P® = 0. Thus

0

6p = ——=6T.
PETT
From Eq. (91),
124
fnel = ? oT.

However, we assumed that the initial temperature difference between the bubble and its
surroundings is essentially zero, or §7; & 0. Consequently the buoyant force must also be
quite close to zero initially. Since f; increases linearly with 7', we may take an average
over the distance ¢ between the initial and final positions, or

1 pg
et) = = — 8T .
(fet> 2T f

Neglecting viscous forces, the work done per unit volume by the buoyant force over the
distance £ goes into the kinetic energy of the bubble, or

1

7PV = {fret) €

Choosing an average kinetic energy over one mixing length leads to some average value of
v?, namely Bv?, where B has a value in the range 0 < B < 1. Now the average convective

bubble velocity becomes

0

Ve =

_ (Zﬁ <fnel>zz)”2

Substituting the net force per unit volume, using Eq. ( 96) with dr = ¢, and rearranging,
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12 2
NONR
T dr
1/2 172
- (5) o) ()] = )
g umpg dr

where we obtained the last equation by replacing the mixing length with o Hp and using
Eq. (70) together with the ideal gas law.
After some manipulation, Eqs. (  97) and ( 98) finally yield an expression for the

convective flux:
K N2 /T\? AT\ 12
s () () LG
wmp g dr

Fortunately, F, is not very sensitive to §, but it does depend strongly on o« and 6(d 7T /dr).

The derivation leading to the prescription for the convective flux given by Eq. ( 99)
is known as the mixing-length theory. Although basically a phenomenological theory
containing arbitrary constants, the mixing-length theory is generally quite successful in
predicting the results of observations.

To evaluate F,, we still need to know the difference between the temperature gradients
of the bubble and its surroundings. Suppose, for simplicity, that all of the flux is carried by
convection, so that

we have

F, L,
T dmr?’
where L, is the interior luminosity. This will allow us to estimate the difference in tempera-

ture gradients needed for this special case. Solving Eq. ( 99) for the temperature gradient
difference gives

dT L, 1 wmp\2 18N\32 i, 2/3
§— )= = 2. 100
<dr> [47(;’2 ,OCp(x2< k ) (T) p (100)

DividingEq.(  100)byEq.(  90) for the adiabatic temperature gradient gives an estimate
of how superadiabatic the actual temperature gradient must be to carry all of the flux by
convection alone:

8@T/dr) _ ( L, 3 CU3 p=2/3 =413 (MmH>4/3 iﬂ,m
|dT /dr)|,y 4mr2 P k T ’

Example 4.3. Using values typical of the base of the Sun’s convection zone, assum-
ing a monatomic gas throughout, and assuming ¢ = 1 and B = 1/2, we can estimate a
characteristic adiabatic temperature gradient, the degree to which the actual gradient is
superadiabatic, and the convective bubble velocity.
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Assume that M, =0.976 Mg, L, =1 Lg, r =0.714 Rp, g = GM, /r> =525 m s2,
Cp=5nR/2, P =559 x 102 Nm™2, p =187 kgm™>, = 0.606, and T = 2.18 x
10° K. Then, from Eq. (90),

aTr

~0.015Km™,
dr m

ad
and from Eq. (100),
dT
8 (d—) ~6.7x107°Km™.

-
The relative amount by which the actual temperature gradient is superadiabatic is then

8(dT/dr)

4.4 x 1077,
|dT/dr|ad

For parameters appropriate for the deep interior, convection is certainly adequately approx-
imated by the adiabatic temperature gradient.

The convective velocity needed to carry all of the convective flux is found from
Eq. (98),

T, ~50ms !~ 107 v,

where vy is the local solar sound speed (see Eq. 84).

Near the surface of a star, where the presence of ionization results in a larger value for Cp
and where p and 7' get much smaller, the ratio of the superadiabatic excess to the adiabatic
gradient can become significantly larger, with the convective velocity possibly approaching
the sound speed. In this situation, a detailed study of the relative amounts of convective and
radiative flux must be considered. This will not be discussed further here.

Although the mixing length theory is adequate for many problems, it is incomplete. For
instance, o and B are free parameters that must be chosen for a particular problem; they
may even vary throughout the star. There are also stellar conditions for which the time-
independent mixing length theory is inherently unsatisfactory. As one example, consider
stellar pulsations; during a star’s pulsation cycle the outer layers of the star are oscillating
with periods comparable to the timescale for convection, given by ¢. = £/v.. In such cases,
rapid changes in the physical conditions in the star directly couple to the driving of the
convective bubbles, which in turn alters the structure of the star. Although much effort (and
some progress) has been made in developing a full, time-dependent convection theory for
stellar interiors, at present no theory exists that completely describes this complex behavior.
Much work remains to be done in understanding the important details of stellar convection.

5 HESTELLAR MODEL BUILDING
We have now derived all of the fundamental differential equations of stellar structure. These

equations, together with a set of relations describing the physical properties of the stellar
material, may be solved to obtain a theoretical stellar model.
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A Summary of the Equations of Stellar Structure

For convenience, the basic time-independent (static) stellar structure equations are summa-
rized:

dp M, p

P ©)
dM, 2
o= drrp @)
dL,
= 4mr?pe (36)
ar 3 kp L, ..
o= _E%Mﬂ (radiation) (68)
1 GM, . . .
=— (1 — —) MmTH 5 (adiabatic convection) (89)
y r

The last equation assumes that the convective temperature gradient is purely adiabatic and
is applied when

dIn P y

—_— 95
dlnT<)/—l ©3)

If the star is static, as assumed above, then € = €,,¢car. However, if the structure of the
stellar model is changing over time, we must include the energy contribution due to gravity,
€ = €nyclear T €gravity- The introduction of the gravitational energy term adds an explicit time
dependence to the equations that is not present in the purely static case. This can be seen by
realizing that the virial theorem requires that one-half of the gravitational potential energy
that is lost must be converted into heat. The rate of energy production (per unit mass) by
gravity is then dQ /dt. Therefore €grayity = —d Q/dt, the minus sign indicating that heat is
liberated from the material.

Entropy

As a note of interest, it is often useful to express the gravitational energy generation rate in
terms of the change in the entropy per unit mass (the specific entropy), defined by'°

_ao
ds = —=. (101)

Then the energy generation rate is seen to be due to the change in entropy of the material,
or

as
€gravity = =T E (102)

19Although dQ is an inexact differential, it can be shown that the entropy is a state function.
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If the star is collapsing, €grayity Will be positive; if it is expanding, €graviy Will be negative.
Thus, as the star contracts, its entropy decreases. This is not a violation of the second law
of thermodynamics, which states that the entropy of a closed system must always remain
the same (reversible process) or increase (irreversible process). Since a star is not a closed
system, its entropy may decrease locally while the entropy of the remainder of the universe
increases by a greater amount. The entropy is carried out of the star by photons and neutrinos.

When changes in the structure of the star are sufficiently rapid that accelerations can no
longer be neglected, Eq. ( 6) must be replaced by the exact expression, Eq. (  5). Such
a situation can occur during a supernova explosion or during stellar pulsations.

The Constitutive Relations

The basic stellar structure equations [( 6), (  7),( 36), ( 68),and (  89)] require
information concerning the physical properties of the matter from which the star is made.
The required conditions are the equations of state of the material and are collectively referred
to as constitutive relations. Specifically, we need relationships for the pressure, the opacity,
and the energy generation rate, in terms of fundamental characteristics of the material: the
density, temperature, and composition. In general,

P = P(p, T, composition) (103)
Kk =k(p, T, composition) (104)
€ = €(p, T, composition) (105)

The pressure equation of state can be quite complex in the deep interiors of certain classes
of stars, where the density and temperature can become extremely high. However, in most
situations, the ideal gas law, combined with the expression for radiation pressure, is a good
first approximation, particularly when the variation in the mean molecular weight with
composition and ionization is properly calculated. The pressure equation of state developed
earlier (Eq. 20) includes both the ideal gas law and radiation pressure.

The opacity of the stellar material cannot be expressed exactly by a single formula.
Instead, it is calculated explicitly for various compositions at specific densities and temper-
atures and presented in tabular form. Stellar structure codes either interpolate in a density—
temperature grid to obtain the opacity for the specified conditions, or, alternatively, use a
“fitting function”, based on the tabulated values. A similar situation also occurs for accurate
calculations of the pressure equation of state. No accurate fitting function can be con-
structed to account for bound-bound opacities

To calculate the nuclear energy generation rate, we can use formulas such as those
presented in Section 3 for the pp chain (Eq.  46) and the CNO cycle (Eq.  58).
In more sophisticated calculations, reaction networks are employed that yield individual
reaction rates for each step of a process and equilibrium abundances for each isotope in the
mixture.
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Boundary Conditions

The actual solution of the stellar structure equations, including the constitutive relations,
requires appropriate boundary conditions that specify physical constraints to the math-
ematical equations. Boundary conditions play the essential role of defining the limits of
integration. The central boundary conditions are fairly obvious—namely that the interior
mass and luminosity must approach zero at the center of the star, or

Az j 8 } asr — 0. (106)
This simply means that the star is physically realistic and does not contain a hole, a core of
negative luminosity, or central points of infinite p or €!

A second set of boundary conditions is required at the surface of the star. The simplest
set of assumptions is that the temperature, pressure, and density all approach zero at some
surface value for the star’s radius, R,, or

> v
N

0
0 asr — R,. (107)
0

Strictly, the conditions of Eqs. ( 107) will never be obtained in a real star (as is obviously
the case for the temperature). Therefore, it is often necessary to use more sophisticated sur-
face boundary conditions, such as when the star being modeled has an extended atmosphere
or is losing mass, as most stars do.

The Vogt-Russell Theorem

Given the basic stellar structure equations, constitutive relations, and boundary conditions,
we can now specify the type of star to be modeled. As can be seen by examination of
Eq. (  6), the pressure gradient at a given radius is dependent on the interior mass and the
density. Similarly, the radiative temperature gradient (Eq.  36) depends on the local tem-
perature, density, opacity, and interior luminosity, while the luminosity gradient is a function
of the density and energy generation rate. The pressure, opacity, and energy generation rate
in turn depend explicitly on the density, temperature, and composition at that location. If
the interior mass at the surface of the star (i.e., the entire stellar mass) is specified, along
with the composition, surface radius, and luminosity, application of the surface boundary
conditions allows for a determination of the pressure, interior mass, temperature, and inte-
rior luminosity at an infinitesimal distance dr below the surface of the star.2° Continuing
this numerical integration of the stellar structure equations to the center of the star must
result in agreement with the central boundary conditions (Eq. 106). Since the values

201t is also necessary to specify the average density over that distance. Since p is assumed to be zero at the surface,
and since it depends explicitly on the pressure and temperature, which are also assumed to be zero at the surface
and are initially unknown below the surface, an immediate difficulty arises; the right-hand sides of Eqs. (  6) and
(' 68) are zero, so P and T never increase from their surface values! More sophisticated solutions require an itera-
tive procedure, continually correcting previous estimates until a self-consistent answer is obtained to within some
specified level of accuracy.
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of the various gradients are directly related to the composition of the star, it is not possi-
ble to specify any arbitrary combination of surface radius and luminosity after the mass
and composition have been selected. This set of constraints is known as the Vogt—Russell
theorem:

The mass and the composition structure throughout a star uniquely determine
its radius, luminosity, and internal structure, as well as its subsequent evolution.

The dependence of a star’s evolution on mass and composition is a consequence of the
change in composition due to nuclear burning.*' The statement of the Vogt—Russell “theo-
rem” given here is somewhat misleading since there are other parameters that can influence
stellar interiors, such as magnetic fields and rotation. However, these parameters are as-
sumed to have little effect in most stars and will not be discussed further.?

Numerical Modeling of the Stellar Structure Equations

With the exception of a special family of approximate solutions to the stellar struc-
ture equations known as polytropes, the system of differential equations, along
with their constitutive relations, cannot be solved analytically. Instead, as already
mentioned, it is necessary to integrate the system of equations numerically. This
is accomplished by approximating the differential equations by difference equations—by
replacing d P /dr by AP /Ar, for instance. The star is then imagined to be constructed of
spherically symmetric shells, as in Fig. 11, and the “integration” is carried out from
some initial radius in finite steps by specifying some increment §r.23 It is then possible
to increment each of the fundamental physical parameters through successive applications
of the difference equations. For instance, if the pressure in zone i is given by P;, then the
pressure in the next deepest zone, P;, is found from

AP
Pit =Pi+E5V,

where 67 is negative.

The numerical integration of the stellar structure equations may be carried out from the
surface toward the center, from the center toward the surface, or, as is often done, in both
directions simultaneously. If the integration is carried out in both directions, the solutions
will meet at some fitting point where the variables must vary smoothly from one solution
to the other. This last approach is frequently taken because the most important physical
processes in the outer layers of stars generally differ from those in the deep interiors. The
transfer of radiation through optically thin zones and the ionization of hydrogen and helium

21In this sense, Eq. (  36) does contain an implicit time dependence due to stellar nucleosynthesis.

22Even without the complications of magnetic fields and rotation, the Vogt—Russell “theorem” can be violated in
certain special circumstances. However, an actual star (as opposed to a theoretical model) would probably adopt
one unique structure as a consequence of its evolutionary history. In this sense, the Vogt—Russell “theorem” should
be considered a general rule rather than a rigorous law.

2 Codes that treat the radius as an independent variable are called Eulerian codes. Lagrangian codes treat the
mass as an independent variable. In the Lagrangian formulation, the differential equations are rewritten using
Eq. ( 7); the hydrostatic equilibrium equation can be written in the form d P /d M, for instance.
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FIGURE 11 Zoning in a numerical stellar model. The star is assumed to be constructed of

spherically symmetric mass shells, with the physical parameters associated with each zone being
specified by the stellar structure equations, the constitutive relations, the boundary conditions, and
the star’s mass and composition. In research-quality codes some quantities are specified in the middle
of mass shells (e.g., P and T'), whereas others are associated with the interfaces between shells (e.g.,
r,M,,and L,).

occur close to the surface, while nuclear reactions occur near the center. By integrating
in both directions, it is possible to decouple these processes somewhat, simplifying the
problem.

Simultaneously matching the surface and central boundary conditions for a desired stellar
model usually requires several iterations before a satisfactory solution is obtained. If the
surface-to-center and center-to-surface integrations do not agree at the fitting point, the
starting conditions must be changed. This is accomplished in a series of attempts, called
iterations, where the initial conditions of the next integration are estimated from the outcome
of the previous integration. A process of successive iterations is also necessary if the star
is integrated from the surface to the center or from the center to the surface; in these cases
the fitting points are simply the center and surface, respectively.

A very simple stellar structure code (called StatStar) integrates the stellar structure
equations developed in this chapter in their timeindependent form from the outside of
the star to the center using the appropriate constitutive relations; it also assumes a con-
stant (or homogeneous) composition throughout. Many of the sophisticated numerical
techniques present in research codes have been neglected so that the basic elements of
stellar model building can be more easily understood, as have the detailed calculations
of the pressure equation of state and the opacity. The complex formalism of the mixing-
length theory has also been left out in favor of the simplifying assumption of adiabatic
convection. Despite these approximations, very reasonable models may be obtained for
stars lying on the main sequence of the H-R diagram.

Polytropic Models and the Lane-Emden Equation

As we mentioned previously, it is not generally possible to solve the system of stellar
structure equations and their associated constitutive relations analytically; we must employ
numerical solutions to “build” stellar models. However, under very special and restrictive
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situations, it is possible to find analytic solutions to a subset of the equations. The first
work in this area was carried out by J. Homer Lane (1819-1880), who wrote a paper on
the equilibrium of stellar configurations in the American Journal of Science in 1869. That
work was later extended significantly by Robert Emden (1862-1940). Today, the famous
equation that helps us describe analytical stellar models is referred to as the Lane—Emden
equation.

To understand the motivation of developing the Lane—Emden equation, note that careful
inspection of the stellar structure equations shows that the mechanical equations of stellar
structure (Eqs. 6 and  7) could be solved simultaneously without reference to the
energy equations (36, and either 68 or  89) if only a simple relationship existed
between pressure and density. Of course, as we have seen, such a simple relationship does
not generally exist; normally, temperature and composition must also enter into the pressure
equation of state, often in a complicated way. However, under certain circumstances, such
as for an adiabatic gas (see Eq.  86), the pressure can be written explicitly in terms of the
density alone. Hypothetical stellar models in which the pressure depends on density in the
form P = Kp? are known as polytropes. The development of polytropic models is well
worth the effort since their relative simplicity allows us to gain some insight into stellar
structure without all of the complications inherent in full-blown numerical models.

To derive the Lane-Emden equation, we begin with the equation for hydrostatic equi-
librium, Eq. ( 6). Rewriting the equation and taking the radial derivative of both sides
gives

d (rzdP) dM,
— - _G—-

dar \p dr dr -’
We immediately see that Eq. ( 7) can be used to eliminate the mass gradient. Substituting,
we get
d (r*dP Glnrp)
— | ———)=—-GW@nr
dr \ p dr p
or

1 d 24P
R AN —47Gp. (108)
r2dr \ p dr

As an aside, it is worth pointing out here that Eq. (  108) is actually a slightly camou-
flaged form of a very well-studied differential equation known as Poisson’s equation. It is
left as an exercise to show that Eq. ( 108) can be rewritten in the form

Ld (4% =47G (109)
r2 dr d dr | e,

which is the spherically symmetric form of Poisson’s equation for the gravitational potential
energy per unit mass, &, = Ug/m.24

24Poisson’s equation shows up frequently in physics. For example, Gauss’ Law, one of Maxwell’s equations of
electromagnetic theory, can be reformulated into Poisson’s equation by replacing the electric field vector with the
negative of the gradient of the electrostatic potential.
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To solve Eq. ( 108), we now employ the relationship P(p) = Kp”, where K and
y > 0 are constants. This functional form of the pressure equation is known generally as a
polytropic equation of state. Substituting, taking the appropriate derivative, and simplifying,
we have

yK d |, y—2 dp
r2 dr [r P dr

} = —4nGp.

It is customary to rewrite the expression slightly by letting y = (n + 1)/n, where n is
historically referred to as the polytropic index. Then

n+1\ K d 2 (-n)/ dp
-2 min EPN — 47 Gp.
< n )rzdr|:r'0 dr e

In order to simplify the last expression somewhat, it is now useful to rewrite the equa-
tion in a dimensionless form. Expressing the density in terms of a scaling factor and a
dimensionless function D(r), let

p(r) = p[D,(r)]", where0 <D, <1.

(As you might suspect, p, will turn out to be the central density of the polytropic stellar
model.) Again substituting and simplifying, we arrive at

T G | R YL P
" axG )| rar|” ar [T

Careful study of our last equation reveals that the collective constant in square brackets
has the units of distance squared. Defining

pr—n)/n 1/2
b= D=

and introducing the dimensionless independent variable & via

r=né,
we finally arrive at
1 d[ _,dD,
5|8 | =D, (110)
£2 dk dé§

which is the famous Lane-Emden equation.
Solving Eq. ( 110) for the dimensionless function D, (§) in terms of & for a specific
polytropic index n leads directly to the profile of density with radius p, (r). The polytropic
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equation of state P,(r) = K ,o,(,"+l)/ " provides the pressure profile. In addition, if the ideal
gas law and radiation pressure are assumed for constant composition (Eq.  20), then the
temperature profile, T (r), is also obtained.

In order to actually solve this second-order differential equation, it is necessary to im-
pose two boundary conditions (which effectively specify the two constants of integration).
Assuming that the “surface” of the star is that location where the pressure goes to zero (and
correspondingly the density of the gas also goes to zero), then

D, (&) = 0 specifies the surface at & = &,

where & is the location of the first zero of the solution.
Next consider the center of the star. If r = § represents a distance infinitesimally close
to the center of the star, then the mass contained within a volume of radius § is given by

M, =—7p8
3P

where p is the average density of the gas within the radius §. Substituting into the equation
for hydrostatic equilibrium, Eq. (6), we have

dP M, p 4T _,
—=-G =——Gp°8—>0ass— 0.
dr r? 3

Since P = Kp™+V/" this implies that

d
—’O—>0asr—>0,

dr

which immediately leads to the central boundary condition

dD,
d§

—0até =0.

In addition, in order for p, to represent the central density of the star, it is also necessary
that D,,(0) = 1 (this condition isn’t strictly a boundary condition, it simply normalizes the
density scaling function, D,,).

With the boundary conditions specified, it is now possible to compute the total mass of
a star of a specific polytropic index. From Eq. (7),

R
M=4n/ rz,odr,
0

where R = A,&; represents the radius of the star. Rewriting in terms of the dimensionless
quantities yields

&
M :47Tf )\'iézpcDZ d()‘-né)v
0
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or
&
M= 4nx3pcf E°D" d&.
0

Although this expression could be integrated directly with knowledge of D, (§), it can also
be rewritten directly by noting, from the Lane—-Emden equation and the central boundary

condition, that
d dD,
§ ZDZ = - |:§ : i|

de |° de
gives
dD,
M = —473; p 67 :
d%- &

where (d D, /d§)|¢, means that the derivative of D, is evaluated at the surface.

Although the Lane-Emden equation is compact and elegant, it is important to bear in
mind its many limitations. Recall that Eq. ( 110) contains no information about either
energy transport or energy generation within a star; the equation only describes hydrostatic
equilibrium and mass conservation, and then only within the highly idealized class of
polytropic equations of state. Nevertheless, the Lane—-Emden equation is capable of giving
us some important insights into the structures of stars.

There are only three analytic solutions to the Lane—-Emden equation, namely n = 0, 1,
and 5. The n = 0 solution is given by

2

Do) =1 — %, with £ = /6.

It is left as an exercise for you to derive the n = 0 solution. The solution for n = 1 is the
well-known “sinc” function

sin & .
D) = W with §; = 7,

and the n = 5 solution is given by
Ds(&) = [1+£2/317"2, with & — oo.

In the latter case you are asked to verify that although the radius of the star is infinite, the
total mass of the star is actually finite. This is not the case for values of n > 5. Thus, the
physical limits of n are constrained to the range 0 < n < 5. Graphical representations of
Dy, Dy, and Ds are shown in Fig. 12.

This discussion of polytropes was originally motivated by the equation of
state of an adiabatic gas. For the case of an ideal, monatomic gas, y = 5/3,
which implies that » = 1.5. In addition, certain extremely compressed stars
in their final stage of evolution known as white dwarfs can also be described
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FIGURE 12 The analytic solutions to the Lane—Emden equation: Dy (&), D; (), and Ds(§).

by polytropes of index 1.5 (technically these are non-relativistic, completely degenerate
stars). Although the important n = 1.5 case cannot be solved analytically, it can be solved
numerically.

Another important polytropic index is the n = 3 “Eddington standard model” associated
with a star in radiative equilibrium. To see how this model corresponds to radiative equi-
librium, consider a polytrope that is supported by both an ideal gas and radiation pressure
(see Eq.  20). If the total pressure at a certain location in the star is represented by P, and
the contribution to that pressure due to an ideal gas is given by

_ pkT

P, =
mmpyg

¢ =pP, (111)

where 0 < 8 < 1, then the contribution due to radiation pressure is
1 4
P = gaT ={1-pB)P. (112)
Since we are looking for a polytropic equation of state that can be expressed independent
of temperature, we can combine the last two expressions to eliminate 7'. Solving for T in

Eq. (111) and substituting into Eq. (112), we obtain

1 (ﬂPumH

4
3 (o )=(1—ﬁ)P-

This leads immediately to an expression for the total pressure in terms of the density, namely

P = Kp*? (113)
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1/3 4/3
<=2 )
a Bumpy

Since y = 4/3, this implies that n = 3.%

Certainly the two most physically significant polytropic models correspond to n = 1.5
and n = 3. Although neither model can be solved analytically, the use of computers and
numerical integration algorithms allow us to explore their structure and behavior relatively
easily. Careful study of these polytropes can yield important insights into the structures of
more realistic, although significantly more complex stellar models.

where

B THE MAIN SEQUENCE

The analysis of stellar spectra tells us that the atmospheres of the vast majority of all stars are
composed primarily of hydrogen, usually about 70% by mass (X ~ 0.7), whereas the mass
fraction of metals varies from near zero to approximately 3% (0 < Z < 0.03). Assuming
that the initial composition of a star is homogeneous (meaning that the composition is the
same throughout), the first set of nuclear fusion reactions ought to be those that convert
hydrogen into helium (the pp chains and/or the CNO cycle). Recall that these reactions
occur at the lowest temperatures because the associated Coulomb barrier is lower than
that for the burning of more massive nuclei. Consequently, the structure of a homogeneous,
hydrogen-rich star ought to be strongly influenced by hydrogen nuclear burning deep within
its interior.

Because of the predominance of hydrogen that initially exists in the core, and since
hydrogen burning is a relatively slow process, the interior composition and structure of the
star will change slowly. As we saw in Example 3.2, a rough estimate of the hydrogen-
burning lifetime of the Sun is 10 billion years. Of course, the surface conditions will not be
completely static. By the Vogt—Russell theorem, any change in composition or mass requires
areadjustment of the effective temperature and luminosity; the observational characteristic
of the star must change as a consequence of the central nuclear reactions. As long as changes
in the core are slow, so are the evolutionary changes in the observed surface features.?®

Since most stars have similar compositions, the structures of stars ought to vary smoothly
with mass. Recall from Examples 1.1 and 2.1 that as the mass increases, the central
pressure and the central temperature should increase. Therefore, for stars of low mass,
the pp chain will dominate since less energy is required to initiate these reactions than
the reactions of the CNO cycle. For high-mass stars, the CNO cycle will likely dominate
because of its very strong temperature dependence.

25 Stars supported solely by a fully relativistic, completely degenerate gas can also
be described by a polytropic index of 3.
26Some short-period surface changes can occur that are essentially decoupled from the long-term variations in the
core. Stellar pulsations require specific conditions to exist, but their timescales are usually much shorter than the
nuclear timescale.
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At some point, as progressively less massive stars are considered, the central temperature
will diminish to the point where nuclear reactions are no longer able to stabilize a star
against gravitational contraction. This has been shown to occur at approximately 0.072 Mg
for solar composition (the lower limit is slightly higher, 0.09 Mg, for stars with virtually no
metal content, Z >~ 0). At the other extreme, stars with masses greater than approximately
90 Mg become subject to thermal oscillations in their centers that may produce significant
variations in the nuclear energy generation rates over timescales as short as 8 hours.

The Eddington Luminosity Limit

Along with thermal oscillations, the stability of very massive stars is directly affected by
their extremely high luminosities. As can be seen by Eq. ( 20), if the temperature is
sufficiently high and the gas density is low enough, it is possible for radiation pressure to
dominate over the gas pressure in certain regions of the star, a situation that can occur in
the outer layers of very massive stars.

Combined with the relationship between radiant flux and luminosity,
the pressure gradient near the surface may be written as

dP _ kp L
dr — ¢ 4mr?

But hydrostatic equilibrium (Eq. ~ 6) demands that the pressure gradient near the star’s
surface must also be given by

dP M

dr r2

)

where M is the star’s mass. Combining, and solving for the luminosity, we have

4 Ge
Lgg = M

(114)

L4 is the maximum radiative luminosity that a star can have and still remain in hydrostatic
equilibrium. If the luminosity exceeds Lgg, mass loss must occur, driven by radiation
pressure. This luminosity maximum, known as the Eddington limit, appears in a number
of areas of astrophysics, including late stages of stellar evolution, novae, and the structure
of accretion disks.

For our purposes, it is possible to make an estimate of the Eddington luminosity for stars
on the upper end of the main sequence. The effective temperatures of these massive stars
are in the range of 50,000 K, high enough that most of the hydrogen is ionized in their
photospheres. Therefore, the major contribution to the opacity is from electron scattering.
For X = 0.7, Eq. (1T4) becomes

M L M
Lgg ~ 1.5 x 10%! W o ZE 38 % 104 —.

© Lo Mo
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For a 90 Mg, star, Lgg =~ 3.5 x 10 L, roughly three times the expected main-sequence
value.

The fairly close correspondence between the theoretical and Eddington luminosities
implies that the envelopes of massive main-sequence stars are loosely bound at best. In fact,
observations of the few stars with masses estimated to be near 100 M, indicate that they
are suffering from large amounts of mass loss and exhibit variability in their luminosities.

Variations of Main-Sequence Stellar Parameters with Mass

From theoretical models that are computed in the mass range of hydrogen burning, it is
possible to obtain a numerical relationship between M and L that agrees well with the
observational mass—luminosity relation. It is also possible to locate each of the models
on a theoretical H-Rdiagram (see Fig. 13). It can be seen that stars undergoing hydro-
gen burning in their cores lie along the observational main sequence!

The range in main-sequence luminosities is from near 5 x 10~ L, to approximately
1 x 10° Ly, a variation of over nine orders of magnitude, while the masses change by
only three orders of magnitude. Because of the enormous rate of energy output from upper
main-sequence stars, they consume their core hydrogen in a much shorter period of time
than do stars on the lower end of the main sequence. As a result, main-sequence lifetimes
decrease with increasing luminosity. Estimates of the range of main-sequence lifetimes are
left as an exercise.

Log;o (L/Ly)

4.8 4.6 44 42 4.0 3.8 3.6
Logo T, (K)

FIGURE 13 The locations of stellar models on a theoretical H-R diagram. The models were
computed using the stellar structure equations and constitutive relations. (Data from Schaller, et al.,
Astron. Astrophys. Suppl., 96,269, 1992, and Charbonnel, et al., Astron. Astrophys. Suppl., 135, 405,
1999.
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Effective temperatures are much less dependent on stellar mass. From approximately
1700 K for 0.072 M, stars to near 53,000 K for 90 M, stars, the increase in effective
temperature amounts to a factor of only about 20. However, this variation is still large enough
to dramatically change the stellar spectrum, since the dissociation energies of molecules
and the ionization potentials of most elements lie within this range.

Consequently, by comparison with theoretical models, it is possible to correlate
main-sequence masses with observed spectra.

The interior structure of stars along the main sequence also varies with mass, primarily
in the location of convection zones. In the upper portion of the main sequence, where
energy generation is due to the strongly temperature-dependent CNO cycle, convection is
dominant in the core. This occurs because the rate of energy generation changes quickly
with radius, and radiation is not efficient enough to transport all of the energy being released
in nuclear reactions. Outside of the hydrogen-burning core, radiation is again capable of
handling the flux, and convection ceases. As the stellar mass decreases, so does the central
temperature and the energy output of the CNO cycle until, near 1.2 M, the pp chain begins
to dominate and the core becomes radiative. Meanwhile, near the surface of the star, as
the effective temperature decreases with decreasing mass, the opacity increases, in part
because of the location of the zone of hydrogen ionization. The increase in opacity
makes convection more efficient than radiation near the surfaces of stars with masses
less than approximately 1.3 Mo. This has the effect of creating convection zones near
the surfaces of these stars. As we continue to move down the main sequence, the bottom
of the surface convection zone lowers until the entire star becomes convective near 0.3 M.

Through the use of the fundamental physical principles developed thus far in this text,
we have been able to build realistic models of main-sequence stars and develop an under-
standing of their interiors. However, other stars remain on the observational H-R diagram
that do not lie along the main sequence. By considering the changes in stellar structure
that occur because of changes in composition due to nuclear burning (the Vogt—Russell
theorem), it will become possible to explain their existence as well.
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PROBLEM SET

1 Show that the equation for hydrostatic equilibrium, Eq. (  6), can also be written in terms of
the optical depth 7, as

dP g
dt ~ ©

This form of the equation is often useful in building model stellar atmospheres.

dr r2

dP M,
— =L = —pg, ©)

2 Prove that the gravitational force on a point mass located anywhere inside a hollow, spherically
symmetric shell is zero. Assume that the mass of the shell is M and has a constant density p.
Assume also that the radius of the inside surface of the shell is »; and that the radius of the
outside surface is r,. The mass of the point is m.

3 Assuming that 10 eV could be released by every atom in the Sun through chemical reactions,
estimate how long the Sun could shine at its current rate through chemical processes alone.
For simplicity, assume that the Sun is composed entirely of hydrogen. Is it possible that the
Sun’s energy is entirely chemical? Why or why not?

4 (a) Takinginto consideration the Maxwell-Boltzmann velocity distribution, what temperature
would be required for two protons to collide if quantum mechanical tunneling is neglected?
Assume that nuclei having velocities ten times the root-mean-square (rms) value for the
Maxwell-Boltzmann distribution can overcome the Coulomb barrier. Compare your an-
swer with the estimated central temperature of the Sun.

(b) Using the below equation, calculate the ratio of the number of protons having velocities
ten times the rms value to those moving at the rms velocity.

mo \3/2
n,dv = n( ) oMV /2T 442 dv,
2nkT

(¢) Assuming (incorrectly) that the Sun is pure hydrogen, estimate the number of hydrogen
nuclei in the Sun. Could there be enough protons moving with a speed ten times the rms
value to account for the Sun’s luminosity?

5 Derive the ideal gas law, Eq. ( 10). Begin with the pressure integral (Eq.  9) and the
Maxwell-Boltzmann velocity distribution functio,

m 3/2 2
dv = ( ) MU 2KT g ? do,
V=0 omkr) ¢

P, = nkT (10)

l o0
P = —/ mnvvzdv,
0

3

From Chapter 10 of An Introduction to Modern Astrophysics, Second Edition, Bradley W. Carroll, Dale A. Ostlie. Copyright © 2007

by Pearson Education, Inc. Published by Pearson Addison-Wesley. All rights reserved.
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6 Derive Eq. (28) from the following equation:

mo\3/2
n,dv=n ( ) oMV /2kT 4 v? dv,
2nkT

2n 1

1/2 —E/kT
T Ty E'2e dE (28)

7 By invoking the virial theorem (see below), make a crude estimate of an “average” temperature
for the Sun. Is your result consistent with other estimates obtained in “The Interiors of Stars”?
Why or why not?

—2(K) = (U).

8 Show that the form of the Coulomb potential barrier penetration probability given by
Eq. (31) follows directly from Eq. (30).

o (E) oc e WUl E, (30)
o(E) x e‘bEil/z, (3D

9 Prove that the energy corresponding to the Gamow peak is given by Eq. (34).

bkT \*?
E():(T) . (34)

10 Calculate the ratio of the energy generation rate for the pp chain to the energy generation rate for
the CNO cycle given conditions characteristic of the center of the present-day (evolved) Sun,
namely T = 1.5696 x 10" K, p = 1.527 x 10 kg m~>, X = 0.3397, and Xcno = 0.0141.°
Assume that the pp chain screening factor is unity (f,, = 1) and that the pp chain branching
factor is unity (¥, = 1).

11 Beginning with Eq. (62) and writing the energy generation rate in the form
e(T) =€"Ty,

show that the temperature dependence for the triple alpha process, given by Eq. ( 63), is
correct. €” is a function that is independent of temperature.

Hinz: First take the natural logarithm of both sides of Eq. (  62) and then differentiate with
respect to In Tg. Follow the same procedure with your power law form of the equation and
compare the results. You may want to make use of the relation

dlne _ dlne _ dlne

d]nTg - Tings - dTg '
€30 = 50.902 VT3 frge ¥V W kg ™!, (62)
€30 2 €0 3,0 Y fra Ty, (63)

* The interior values assumed here are taken from the standard solar model of Bahcall, Pinsonneault, and Basu,
Ap. J., 555,990, 2001.
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The Q value of a reaction is the amount of energy released (or absorbed) during the reaction.
Calculate the Q value for each step of the PP I reaction chain (Eqs. 37—  39). Express
your answers in MeV. The masses of 7H and 3He are 2.0141 u and 3.0160 u, respectively.

H+H— H+e +v, (37)
H41H — 3He + y (38)
3He + 3He — 3He + 2 !H. (39)

Calculate the amount of energy released or absorbed in the following reactions (express your
answers in MeV):

@ SC+15C—HMe+y

(b) 2C +'2C — 190 + 2 {He

(¢) 'JF+|H — 'S0 + %He

The mass of '2Cis 12.0000 u, by definition, and the masses of 'S0, '3F, and Mg are 15.99491 u,
18.99840 u, and 23.98504 u, respectively. Are these reactions exothermic or endothermic?

Complete the following reaction sequences. Be sure to include any necessary leptons.
(@) 2Si — DAl +et 42
(b) AL+ [H — ¥Mg +42
(© BCI+IH — Ar+2?
Prove that Eq. (83) follows from Eq. (82).
PVY =K, (82)
P=K'TV"V, (83)

Show that Eq. (109) can be obtained from Eq. (108).

1 d [(r2dP
— =) = —-4nGo. 108
rzdr(,o dr) wop (108)
1 d [ ,d®,
14 — 47 Gp. 109
rzdr<r dr) P (109)

Starting with the Lane-Emden equation and imposing the necessary boundary conditions,
prove that the n = 0 polytrope has a solution given by

2

Dy(§) =1 — %, with & = V6.

Describe the density structure associated with an n = 0 polytrope.

Derive an expression for the total mass of ann = 5 polytrope, and show that although &, — oo,
the mass is finite.

(a) On the same graph, plot the density structure of stars of polytropic indicesn = 0,n =1,
and n = 5. Hint: You will want to plot p,/p. vs. r/\,.

(b) What can you conclude about the concentration of density with radius for increasing
polytropic index?

(c) From the trend that you observe for the analytic solutions to the Lane—Emden equation,
what would you expect regarding the density concentration of an adiabatically convective
stellar model compared to a model in radiative equilibrium?

(d) Explain your conclusion in part (c) in terms of the physical processes of convection and
radiation.
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21 Estimate the hydrogen-burning lifetimes of stars near the lower and upper ends of the main
sequence. The lower end of the main sequence” occurs near 0.072 M, with log,, T, = 3.23
and log,,(L/Lg) = —4.3. On the other hand, an 85 M, star”" near the upper end of the main
sequence has an effective temperature and luminosity of log,, 7, = 4.705 and log,,(L/Lg) =
6.006, respectively. Assume that the 0.072 Mg, star is entirely convective so that, through
convective mixing, all of its hydrogen, rather than just the inner 10%, becomes available for
burning.

22 Using the information given in Problem 21 above, calculate the radii of a 0.072 M, star and
a 85 M, star. What is the ratio of their radii?

23 (a) Estimate the Eddington luminosity of a 0.072 M, star and compare your answer to the
main-sequence luminosity given in Problem  21. Assume ¥ = 0.001 m?> kg~". Is radia-
tion pressure likely to be significant in the stability of a low-mass main-sequence star?

(b) If a 120 Mg, star forms with log,, 7, = 4.727 and log,,(L/Ly) = 6.252, estimate its
Eddington luminosity. Compare your answer with the actual luminosity of the star.

COMPUTER PROBLEMS

24 (a) Use a numerical integration algorithm such as a Runge—Kutta method to compute the
density profile for the n = 1.5 and n = 3 polytropes. Be sure to correctly incorporate the
boundary conditions in your integrations.

(b) Plot your results and compare them with the n = 0, n = 1, and n = 5 analytic models
determined in Problem 20.

25 Verify that the basic equations of stellar structure [Eqs. ( 6), ( 7), (  36), ( 68)] are
satisfied by the 1 Mg StatStar model available for download from the companion website;
see Appendix: StatStar, A Stellar Structure Code. This may be done by selecting two adjacent

zones and numerically computing the derivatives on the left-hand sides of the equations, for example

dP _ Py — P
dr — Figr — Ti '

and comparing your results with results obtained from the right-hand sides using average values
of quantities for the two zones [e.g., M, = (M; + M;1)/2].

Perform your calculations for two adjacent shells at temperatures near 5 x 10° K, and then
compare your results for the left- and right-hand sides of each equation by determining relative
errors. Note that the model assumes complete ionization everywhere and has the uniform
composition X = 0.7, Y = 0.292, Z = 0.008. Your results on the left- and right-hand sides of
the stellar structure equations will not agree exactly because StatStar uses a Runge—Kutta
numerical algorithm that carries out intermediate steps not shown in the output file.

dP _ GM,p _
=G5 = —ps. ©)
M,
=dnr’p, (7)
dr

* Data from Chabrier, et al., Ap. J., 542, 464, 2000.
“*Data from Schaller, et al., Astron. Astrophys. Suppl. Ser., 96, 269, 1992.
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dL,
=471’ pe, (36)
dr
dT 3 kp L,
—_— = . 68
dr 4ac T3 4mr? (68)

26 The companion website contains an example of a theoretical 1.0 M, main-sequence star pro-

27

duced by the stellar structure code StatStar, described in Appendix: StatStar, A Stellar Structure
Code. Using StatStar, build a second main-sequence star with a mass of 0.75 M, that has

a homogeneous composition of X = 0.7, Y = 0.292, and Z = 0.008. For these values, the
model’s luminosity and effective temperature are 0.189 L, and 3788.5 K, respectively. Compare
the central temperatures, pressures, densities, and energy generation rates between the 1.0 Mg

and 0.75 Mg models. Explain the differences in the central conditions of the two models.

Use the stellar structure code StatStar described in Appendix: StatStar, A Stellar Structure
Code, together with the theoretical StatStar H-R diagram and mass—effective temperature
data provided on the companion website, to calculate a homogeneous, main-sequence model
having the composition X = 0.7, ¥ = 0.292,and Z = 0.008. (Note:It may be more illustrative
to assign each student in the class a different mass for this problem so that the results can be
compared.)
(a) After obtaining a satisfactory model, plot P versus r, M, versus r, L, versus r, and T
Versus r.

(b) At what temperature has L, reached approximately 99% of its surface value? 50% of its
surface value? Is the temperature associated with 50% of the total luminosity consistent
with the rough estimate found in Eq. (27)? Why or why not?

Zf Z%e“um

—_— 27
12nze§h2k @7

Tquantum =

(¢) What are the values of M, /M, for the two temperatures found in part (b)? M, is the total
mass of the stellar model.

(d) Ifeach studentin the class calculated a different mass, compare the changes in the following
quantities with mass:

(i) The central temperature.

(i) The central density.

(iii) The central energy generation rate.

(iv) The extent of the central convection zone with mass fraction and radius.
(v) The effective temperature.

(vi) The radius of the star.

(e) If each student in the class calculated a different mass:

(i) Plot each model on a graph of luminosity versus mass (i.e., plot L,/Lg versus
M./ Mg).

(ii) Plotlog,,(L./Le) versus log,,(M,/Mg) for each stellar model.

(iii) Using an approximate power law relation of the form
L./Lo = (M./Mo)",

find an appropriate value for «. « may differ for different compositions or vary some-
what with mass. This is known as the mass—luminosity relation (see below figure).
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FIGURE The mass—luminosity relation. (Data from Popper, Annu. Rev. Astron. Astrophys., 18,
115, 1980.)

28 Repeat Problem 27 above using the same mass but a different composition; assume X = 0.7,
Y =0.290, Z = 0.010.

(a) For a given mass, which model (Z = 0.008 or Z = 0.010) has the higher central temper-
ature? the greater central density?

(b) Referring to the appropriate stellar structure equations and constitutive relations, explain
your results in part (a).

(¢) Which model has the largest energy generation rate at the center? Why?

(d) How do you account for the differences in effective temperature and luminosity between
your two models?
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1 Interstellar Dust and Gas
2 The Formation of Protostars
3 Pre-Main-Sequence Evolution

H INTERSTELLAR DUST AND GAS

When we look into the heavens, it appears as though the stars are unchanging, point-like
sources of light that shine steadily. On casual inspection, even our own Sun appears constant.
But this is not the case; sunspots come and go, flares erupt, significant amounts of matter
are launched into space via coronal mass ejections, the corona itself changes shape, and
even the Sun’s luminosity appears to be fluctuating over human timescales, as evidenced
by the Maunder minimum. Of course, over the 4.57-Gyr lifetime of our Sun, the luminos-
ity, effective temperature, and radius have all changed substantially.

In fact all stars change. Usually the changes are so gradual and over such long time
intervals when measured in human terms that we do not notice them without very careful
telescopic observation. Occasionally, however, the changes are extremely rapid and dra-
matic, as in the case of a supernova explosion. By invoking the understanding we developed
thus far of the physics of stellar interiors and atmospheres, we can now begin to examine
the processes governing how stars evolve during their lives.

The Interstellar Medium

In some sense the evolution of stars is a cyclic process. A star is born out of gas and dust
that exists between the stars, known as the interstellar medium (ISM). During its lifetime,
depending on the star’s total mass, much of that material may be returned to the ISM through
stellar winds and explosive events. Subsequent generations of stars can then form from this
processed material. As a result, to understand the evolution of a star, it is important to study
the nature of the ISM.

Understanding the interstellar medium is critical for more than its role in stellar evolution,
however. The ISM is of profound importance in describing the structure, dynamics, and
evolution of our Milky Way Galaxy, as well as galaxies throughout the universe. In addition,
it impacts our observations of everything from relatively nearby stars to the most remote
galaxies and quasars.
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More fundamentally, the ISM is an enormous and complex environment that provides
an important laboratory for testing our understanding of astrophysics at many levels. The
dynamics of the ISM involve turbulent gas motions, shocks, and galactic magnetic fields
that lace through interstellar space. Thus, modeling the ISM ultimately requires detailed
solutions to the equations of magnetohydrodynamics. The dust, molecules, atoms, ions,
and free electrons that permeate the ISM challenge our understanding of radiative transfer,
thermodynamics, and quantum mechanics. Moreover, the production and destruction of
dust grains and complex molecules requires a detailed understanding of chemistry in an
environment not reproducible in a terrestrial laboratory.

As an introduction to astrophysical processes, this text is unable to explore all of the
fascinating aspects of the interstellar medium. Consequently, the present section serves
only as a brief introduction to general aspects of the ISM.

Interstellar Extinction

On a dark night some of the dust clouds that populate our Milky Way Galaxy can be
seen in the band of stars that is the disk of the Galaxy (see Fig.  1). It is not that these
dark regions are devoid of stars, but rather that the stars located behind intervening dust
clouds are obscured. This obscuration, referred to as interstellar extinction, is due to the
summative effects of scattering and absorption of starlight (as depicted in Fig. 2).

Given the effect that extinction can have on the apparent magnitude of a star, the distance
modulus equation must be modified appropriately. In a given wavelength band centered
on A, we now have

m;, = M + 5log,gd — 5+ A;., (1)

where d is the distance in pc and A; > 0 represents the number of magnitudes of interstellar
extinction present along the line of sight. If A; is large enough, a star that would otherwise
be visible to the naked eye or through a telescope could no longer be detected. This is the
reason for the dark bands running through the Milky Way.

FIGURE 1 Dust clouds obscure the stars located behind them in the disk of the Milky Way.
(Courtesy of Palomar/Caltech.)
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Light from star

-

Dust cloud Blue . B
reflection

—_—

Red transmission
A

FIGURE 2 An interstellar cloud containing significant amounts of dust along with the gas (a dust
cloud) can both scatter and absorb light that passes through it. The amount of scattering and absorption
depends on the number density of dust grains, the wavelength of the light, and the thickness of the
cloud. Since shorter wavelengths are affected more significantly than longer ones, a star lying behind
the cloud appears reddened to observer A. Observer B sees the scattered shorter wavelengths as a
blue reflection nebula.

Clearly A, must be related to the optical depth of the material, measured back along the
line of sight. The fractional change in the intensity of the light is given by

L/Lo=¢e",

where I, o is the intensity in the absence of interstellar extinction.
We can now relate the optical depth to the change in apparent magnitude due to
extinction, giving

my —m; 0= —2.5log, (e7™) = 2.57, log,y e = 1.0867;.
But the change in apparent magnitude is just A;, so
AA = 1086‘[}L (2)

The change in magnitude due to extinction is approximately equal to the optical depth along
the line of sight.

The optical depth through the cloud is given by

5, = f na(s') o, ds', 3)
0

where n,(s’) is the number density of scattering dust grains and o, is the scattering cross
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section. If o, is constant along the line of sight, then

T = UA/ nq(s’) ds' = o3 Ny, )
0

where Ny, the dust grain column density, is the number of scattering dust particles in a thin
cylinder with a cross section of 1 m? stretching from the observer to the star. Thus we see
that the amount of extinction depends on the amount of interstellar dust that the light passes
through, as one would expect.

The Mie Theory

If we assume for simplicity, as was first done by Gustav Mie (1868—1957) in 1908, that
dust particles are spherical and each has a radius a, then the geometrical cross section that a
particle presents to a passing photon is justo, = mwa’. We may now define the dimensionless
extinction coefficient Q; to be

O

0, =—,

Og

where O, depends on the composition of the dust grains.
Mie was able to show that when the wavelength of the light is on the order of the size of
the dust grains, then O, ~ a/A, implying that

3

o3 O —= (* Z a). &)
In the limit that A becomes very large relative to a, O, goes to zero. On the other hand,
if A becomes very small relative to a, it can be shown that Q, approaches a constant,
independent of A so that

o) X a? A K a). (6)

These limiting behaviors can be understood by analogy to waves on the surface of a lake.
If the wavelength of the waves is much larger than an object in their way, such as a grain
of sand, the waves pass by almost completely unaffected (o5 ~ 0). On the other hand, if
the waves are much smaller than the obstructing object—for instance, an island—they are
simply blocked; the only waves that continue on are those that miss the island altogether.
Similarly, at sufficiently short wavelengths, the only light we detect passing through the
dust cloud is the light that travels between the particles.

Combining the ideas already discussed, it is clear that the amount of extinction, as
measured by A;, must be wavelength-dependent. Since the longer wavelengths of red light
are not scattered as strongly as blue light, the starlight passing through intervening dust
clouds becomes reddened as the blue light is removed. This interstellar reddening causes
stars to appear redder than their effective temperatures would otherwise imply. Fortunately,
it is possible to detect this change by carefully analyzing the absorption and emission lines
in the star’s spectrum.
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Much of the incident blue light is scattered out of its original path and can leave the cloud
in virtually any direction. As a result, looking at the cloud in a direction other than along the
line of sight to a bright star behind the cloud, an observer will see a blue reflection nebula
(recall Fig. 2) such as the Pleiades. This process is analogous to Rayleigh
scattering, which produces a blue sky on Earth. The difference between Mie scattering and
Rayleigh scattering is that the sizes of the scattering molecules associated with Rayleigh
scattering are much smaller than the wavelength of visible light, leading to o oc A™%.

Example 1.1. A certain star, located 0.8 kpc from Earth, is found to be dimmer than
expected at 550 nm by Ay = 1.1 magnitudes, where Ay is the amount of extinction as
measured through the visual wavelength filter. If (Qsso = 1.5 and the dust grains are
assumed to be spherical with radii of 0.2 um, estimate the average density (77) of material
between the star and Earth.

From Eq. ( 2), the optical depth along the line of sight is nearly equal to the amount
of extinction in magnitudes, or ts59 =~ 1. Also,

o550 = wa’ Qssp =~ 2 x 10713 m?.

Now the column density of the dust along the line of sight is given by Eq. (4),

7550 _
Ny= 2 ~5%x102?m™2.
0550

Finally, since Ny = fos n(s’)ds’ =n x 0.8 kpc, we have

Ny
0.8 kpc

=2x 107" m=.

n=

Number densities of this magnitude are typical of the plane of the Milky Way Galaxy.

Molecular Contributions to Interstellar Extinction Curves

Predictions of the Mie theory work well for longer wavelengths, typically from the infrared
into the visible wavelength region. However, at ultraviolet wavelengths significant devia-
tions become apparent, as can be seen by considering the ratio of A;, the extinction in a
wavelength band centered at A, to the extinction in some reference wavelength band, such
as Ay. This ratio is often plotted versus reciprocal wavelength !, as in Fig. 3. Alter-
natively, color excesses are sometimes plotted instead, such as (A, — Ay) / (Ap — Ay) or
E(B — V) = (B — V)inuinsic — (B — V)observed-

At longer wavelengths (the left side of the graph) the data agree well with the Mie theory.
For wavelengths shorter than the blue wavelength band (B), however, the curves begin to
diverge significantly, deviating from the expected relation, A; /Ay o A~!. Particularly evi-
dent is the “bump” in the ultraviolet at 217.5 nm or 4.6 um~". At even shorter wavelengths,
the extinction curve tends to rise sharply as the wavelength decreases.

The existence of the “bump” in Fig. 3 gives us some hint of the composition of the
dust. Graphite, a well-ordered form of carbon, interacts strongly with light near 217.5 nm.
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FIGURE 3 Interstellar extinction curves along the lines of sight to three stars. The dashed lines

represent the observational data, and the solid lines are theoretical fits. The U, B, and V wavelength
bands are indicated for reference. (Figure adapted from Mathis, Annu. Rev. Astron. Astrophys., 28, 37,
1990. Reproduced with permission from the Annual Review of Astronomy and Astrophysics, Volume
28, ©1990 by Annual Reviews Inc.)

Although it is uncertain how carbon can organize into large graphite particles in the inter-
stellar medium, the strength of the “bump,” the abundance of carbon, and the existence of
the 217.5-nm resonance have led most researchers to suggest that graphite may be a major
component of interstellar dust.

Another possible source of the 217.5-nm feature may be polycyclic aromatic hydro-
carbons (PAHs; see Fig.  4). These are complex organic planar molecules with multiple
benzene ring-like structures that are probably responsible for a series of molecular bands
that have been observed in emission in the light from diffuse dust clouds.! The so-called
unidentified infrared emission bands exist in the wavelength range between 3.3 um and
12 um; they appear to be due to vibrations in the C-C and C-H bonds common in PAHs. Just
as transitions between atomic energy levels are quantized, so are the energies associated
with molecular bonds. In the case of molecular bonds, however, the energy levels tend to be
grouped in closely spaced bands, producing characteristic broad features in the spectrum of
the light. The vibration, rotation, and bending of molecular bonds are all quantized, yielding
complex spectra that may be difficult to identify in large molecules.

Interstellar dust is composed of other particles as well, as evidenced by the existence
of dark absorption bands at wavelengths of 9.7 um and 18 pm in the near-infrared. These
features are believed to be the result of the stretching of the Si-O molecular bond and the

I'The fact that molecules as complex as PAHs can exist in space has also been confirmed by their presence in
certain types of meteorites found on Earth, known as carbonaceous meteorites.

447



448

The Interstellar Medium and Star Formation

H H
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FIGURE 4 The structures of several polycyclic aromatic hydrocarbons: C4H;¢ (anthracene),
Cy4Hj, (coronene), CyH;s (hexabenzocoronene). The hexagonal structures are shorthand for indi-
cating the presence of a carbon atom at each corner of the hexagon.

bending of Si-O-Si bonds in silicates, respectively. The existence of these absorption bands
involving silicon indicates that silicate grains are also present in the dust clouds and the
diffuse dust of the ISM.

An important characteristic of the light scattered from interstellar dust is that it tends to
be slightly polarized. The amount of polarization is typically a few percent and depends
on wavelength. This necessarily implies that the dust grains cannot be perfectly spherical.
Furthermore, they must be at least somewhat aligned along a unique direction since the
electric field vectors of the radiation are preferentially oriented in a particular direction.
The most likely way to establish such an alignment is for the grains to interact with a weak
magnetic field. Because less energy is required, the particles tend to rotate with their long
axes perpendicular to the direction of the magnetic field.

All of these observations give us some clues to the nature of the dust in the ISM. Ap-
parently the dust in the ISM is composed of both graphite and silicate grains ranging in
size from several microns down to fractions of a nanometer, the characteristic size of the
smaller PAHs. It appears that many of the features of the interstellar extinction curve can
be reproduced by combining the contributions from all of these components.

Hydrogen as the Dominant Component of the ISM

Although dust produces most of the obscuration that is readily noticeable, the dominant
component of the ISM is hydrogen gas in its various forms: neutral hydrogen (H I), ionized
hydrogen (H II), and molecular hydrogen (H;). Hydrogen comprises approximately 70%
of the mass of matter in the ISM, and helium makes up most of the remaining mass; metals,
such as carbon and silicon, account for only a few percent of the total.

Most hydrogen in diffuse interstellar hydrogen clouds is in the form of H I in the ground
state. As a result, the H I is generally incapable of producing emission lines by down-
ward transitions of electrons from one orbit to another. It is also difficult to observe H I in
absorption, since UV-wavelength photons are required to lift the electrons out of the ground
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state. However, in certain unique circumstances, orbiting observatories have detected ab-
sorption lines produced by cold clouds of H I when there are strong UV sources lying behind
them.

21-cm Radiation of Hydrogen

Fortunately, it is still generally possible to identify neutral hydrogen in the diffuse ISM. This
is done by detecting the unique radio-wavelength 21-cm line. The 21-cm line is produced
by the reversal of the spin of the electron relative to the proton in the atom’s nucleus.

Both electrons and protons possess an inherent spin angular momentum,
with the z-component of the spin angular momentum vector having one of two possible
orientations, corresponding to the two allowed values of the spin quantum number, m; =
:I:%. Because these particles are also electrically charged, their intrinsic spins endow them
with dipole magnetic fields, much like those of bar magnets. If the spins of the electron
and proton are aligned (e.g., both spin axes are in the same direction), the atom has slightly
more energy than if they are anti-aligned (see Fig.  5). As a result, if the electron’s spin
“flips” from being aligned with the proton to being anti-aligned, energy must be lost from
the atom. If the spin flip is not due to a collision with another atom, then a photon is emitted.
Of course, a photon can also be absorbed, exciting a hydrogen atom into aligning its electron
and proton spins. The wavelength of the photon associated with the spin flip is 21.1 cm,
corresponding to a frequency of 1420 MHz.

The emission of a 21-cm photon from an individual hydrogen atom is extremely rare.
Once in the excited state, several million years can pass on average before that atom will
emit a photon. Competing with this spontaneous emission are collisions between hydrogen
atoms that may result in either excitation or de-excitation. In the low-density environment
of the diffuse ISM, collisions occur on timescales of hundreds of years. Although this is
far shorter than the spontaneous emission timescale, statistically some atoms are still able
to make the necessary spontaneous transition. In contrast, the best vacuums produced in

Crb -
Electron Aligned
Transition
—_—
Photon
Anti-aligned

FIGURE 5 When the spins of the electron and proton in a hydrogen atom go from being aligned
to being anti-aligned, a 21-cm-wavelength photon is emitted.
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Earth-based laboratories have densities much greater than those found in the ISM, meaning
that collision rates are significantly higher in laboratory environments and virtually all of the
atoms in the laboratory are de-excited before they can emit 21-cm radiation. The existence
of 21-cm radiation was predicted in the early 1940s and first detected in 1951. Since then
it has become an important tool in mapping the location and density of H I, measuring
radial velocities using the Doppler effect, and estimating magnetic fields using the Zeeman
effect. 21-cm radiation is particularly valuable in determining the structure and kinematic
properties of galaxies, including our own.

Although H1is quite abundant, the rarity of 21-cm emission (or absorption) from individ-
ual atoms means that the center of this line can remain optically thin over large interstellar
distances. Assuming that the line profile is a Gaussian, like the shape of the Doppler line
profile, the optical depth of the line center is given by

~15 Nu
Ty =52x10 T A’ @)
where Ny is the column density of H I (in units of m~2), T is the temperature of the gas (in
kelvins), and Av is the full width of the line at half maximum (in km s~'). [Note that since
the line width is due primarily to the Doppler effect, Av is expressed in units of velocity,
rather than in wavelength units; typically Av ~ 10 km s™'.]

As long as the 21-cm hydrogen line is optically thin (i.e., on the linear part of the curve of
growth), the optical depth is proportional to the neutral hydrogen column density.
Studies of diffuse H I clouds indicate temperatures of 30 to 80 K, number densities in the
range of 1 x 103 m™3 to 8 x 108 m~3, and masses on the order of 1-100 M.

Comparing Ty with Ay along the same line of sight shows that Ny is generally pro-
portional to N, (the column density of dust) when Ay < 1. This observation suggests that
dust and gas are distributed together throughout the ISM. However, when Ay > 1, this
correlation breaks down; the column density of H I no longer increases as rapidly as the
column density of dust. Apparently, other physical processes are involved when the dust
becomes optically thick.

Optically thick dust clouds shield hydrogen from sources of ultraviolet radiation. One
consequence of this shielding is that molecular hydrogen can exist without the threat of
undergoing dissociation by UV photon absorption. Dust can also enhance the H, formation
rate beyond what would be expected by random collisions of hydrogen atoms. This en-
hancement occurs for two reasons: (1) A dust grain can provide a site on the surface of the
grain where the hydrogen atoms can meet, rather than requiring chance encounters in the
ISM, and (2) the dust provides a sink for the binding energy that must be liberated if a stable
molecule is to form. The liberated energy goes into heating the grain and ejecting the H,
molecule from the formation site. If the column density of atomic hydrogen is sufficiently
large (Ny on the order of 10 m™2), it can also shield H, from UV photodissociation.
Consequently, molecular clouds are surrounded by shells of H L.

Molecular Tracers of H,

Since the structure of H, differs greatly from that of atomic hydrogen, the H, molecule does
not emit 21-cm radiation. This explains why Ny and Ay are poorly correlated in molecular
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clouds when Ay > 1; the number density of atomic hydrogen decreases significantly as the
hydrogen becomes locked up in its molecular form.

Unfortunately, H, is very difficult to observe directly because the molecule does not
have any emission or absorption lines in the visible or radio portions of the electromagnetic
spectrum at the cool temperatures typical of the ISM. In special circumstances when 7' >
2000 K, it is possible to detect rotational and vibrational bands (known collectively as
rovibrational bands) associated with the molecular bond. However, in most instances it
becomes necessary to use other molecules as tracers of H, by making the assumption
that their abundances are proportional to the abundance of H,. Because of its relatively
high abundance (approximately 10~* that of H,), the most commonly investigated tracer is
carbon monoxide, CO, although other molecules have also been used, including CH, OH,
CS, C3H,, HCO™, and N,H*. It is also possible to use isotopomers of the molecules, such
as 13CO or C180, to further refine studies of molecular clouds. Given that molecules have
moments of inertia that affect their spectra, different isotopes in molecules result in different
spectral wavelengths. (Note that when the specific isotope is not indicated, it is assumed
that the most abundant isotope is implied; thus CO implies '2C'°0.)

During collisions the tracer molecules become excited (or de-excited) and spontaneous
transitions from excited states result in the emission of photons in wavelength regions that
are more easily observed than those associated with H;, such as the 2.6-mm transition of
CO. Since collision rates depend on both the gas temperature (or thermal kinetic energy)
and the number densities of the species, molecular tracers can provide information about
the environment within a molecular cloud. In fact, an estimate of atomic and molecular
collision rates can be made in a way completely analogous to the approach used to obtain
the nuclear reaction rate equation.

The Classification of Interstellar Clouds

The results of these studies show that conditions within molecular clouds can vary widely.
Consequently, any effort to specify a discrete classification scheme is destined to fail because
the delineation between types is blurred at best. However, even with that caveat, a broad
classification scheme is still useful for distinguishing the general characteristics of specific
environments.

In clouds where the hydrogen gas is primarily atomic and the interstellar extinction
is roughly 1 < Ay < 5, molecular hydrogen may be found in regions of higher column
density. Such clouds are sometimes referred to as diffuse molecular clouds, or alternatively
as translucent molecular clouds. Conditions in diffuse molecular clouds are typical of
diffuse H I clouds but with somewhat higher masses; they have temperatures of 15 to 50 K,
n~5x108to5 x 10°m=3, M ~ 3 to 100 Mg, and they measure several parsecs across.
Both H I clouds and diffuse molecular clouds tend to be irregularly shaped.

Giant molecular clouds (GMCs) are enormous complexes of dust and gas where
temperatures are typically 7 ~ 15 K, number densities are in the range n ~ 1 x 108 to
3 x 108 m~3, masses are typically 103 Mg but may reach 10° M, and typical sizes are on
the order of 50 pc across. The famous Horsehead Nebula, also known as Barnard 33 (B33),
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FIGURE 6 The Horsehead Nebula is part of the Orion giant molecular cloud complex. The
“horsehead” appearance is due to dust protruding into an H II (ionized hydrogen) environment.
(European Southern Observatory)

isshowninFig. 6. The Horsehead Nebula is a portion of the Orion giant molecular cloud
complex. Thousands of GMCs are known to exist in our Galaxy, mostly in its spiral arms.

Overall, the structure of GMCs tend to be clumpy with local regions of significantly
greater density. Dark cloud complexes of roughly 10* Mg have Ay ~ 5,n ~ 5 x 108m~3,
diameters on the order of 10 pc, and characteristic temperatures of 10 K. Smaller, individual
clumps may be even more dense, with Ay ~ 10, n ~ 10° m—3, diameters of a couple of
parsecs, temperatures of 10 K or so, and masses of 30 M. At even smaller scales are
dense cores with masses on the order of 10 Mg, Ay > 10, n ~ 10'® m~3, characteristic
diameters of 0.1 pc, and temperatures of 10 K. Finally, in some localized regions of GMCs,
observations reveal hot cores with characteristic sizes of 0.05 to 0.1 pc, where Ay ~ 50
to 1000, T ~ 100 to 300 K, n ~ 10" to 10'> m~3, and M ~ 10 to 3000 M. Based on
observations from infrared telescopes such as NASA’s Spitzer Space Telescope and the
European Space Agency’s Infrared Space Observatory, hot cores appear to have massive,
young O and B stars embedded within them, suggesting strongly that these are regions of
recent star formation.

Located outside of larger molecular complexes are the almost spherical clouds known as
Bok globules (see, forexample, Fig. ~ 7).2 These globules are characterized by large visual
extinctions (Ay ~ 10), low temperatures (T ~ 10 K), relatively large number densities
(n > 10" m™3), low masses (M ~ 1 to 1000 M), and small sizes of typically less than
1 pc. Infrared surveys of Bok globules have revealed that many, perhaps most, of these
objects harbor young low-luminosity stars in their centers, implying that Bok globules are
also sites of active star formation. In fact, Bok globules appear to be dense cores that have

2Bok globules are named after Bart Bok (1906-1983), who first studied these objects in the 1940s.



The Interstellar Medium and Star Formation

(a) (b)

FIGURE 7 The Bok globule, Barnard 68 (B68), observed in visible light [(a) composite of BVI
bands] and in infrared light [(b) composite of BIK bands]. The visible image was obtained by one
of the 8-m telescopes of the European Southern Observatory’s Very Large Telescope at Paranal. The
infrared image was obtained by ESO’s 3.58-m New Technology Telescope at La Silla. Notice that
significantly reddened stars can be seen through the globule in the infrared. (Interstellar reddening is
the result of scattering photons off of dust grains). (European Southern Observatory)

been stripped of their surrounding molecular gas by nearby hot, massive stars. The process
by which stars form out of the ISM will be considered in the next section.

Interstellar Chemistry

Along with the molecules and dust grains already discussed, the ISM is rich in other
molecules as well. As of June 2005, radio observations have resulted in the positive identifi-
cation of 125 molecules (not including isotopomers), ranging in complexity from diatomic
molecules such as H, and CO, and triatomic molecules such as H,O and Hi , to fairly long
organic strings, including HC;;N.

Given the complex nature of the molecules present in the interstellar medium, it is evident
that the chemistry of the ISM is also quite complex. The specific processes in operation in
a given molecular cloud depend on the density and temperature of the gas, as well as its
composition and the presence of dust grains. We noted earlier that dust grains must be
present for the formation of molecular hydrogen, H,, the dominant constituent in molecular
clouds. It is also likely that dust grains can help facilitate the formation of numerous other
molecules as well, including CH, NH, OH, CH,, CO, CO,, and H,O. In fact, in sufficiently
dense clouds, the formation of molecules on the surfaces of grains can actually lead to the
development of icy mantles on the grains. Absorption signatures of solid CO, CO,, H,O,
CHy4, CH50H, NH3, and other ices have been measured in combination with the infrared
spectra of silicate dust grains.

In addition to the chemistry that can occur on grain surfaces, it is also possible for
molecules to form in the gas phase. For example, the hydroxyl molecule (OH) can form
through a series of reactions involving atomic and molecular ions, including the ionic water

453



454

The Interstellar Medium and Star Formation

molecule, H,O™:
H"+0— O"+H
Ot +H, > OH" + H
OH' +H, — H,O0" +H
H,O" + e — OH +H. ®)
Eq. (8) competes with another reaction involving molecular hydrogen,
H,0" + H, — H;0" +H,

leading to the production of either a hydroxyl molecule (75% of the time) or a water molecule
via

OH + H,
H;0" + ¢ — 9)
H,O + H.

The Heating and Cooling of the ISM

Not only are molecules and dust grains critical in understanding the chemistry of the ISM,
but they also play important roles in the heating and cooling of the material between the
stars. You may have noticed that diffuse molecular clouds have higher gas temperatures
than giant molecular clouds, and the dense cores of GMCs are even cooler yet. On the other
hand, the hot cores of GMCs have significantly greater temperatures. What are the physical
causes of these observational trends?

Much of the heating of the interstellar medium comes from cosmic rays, charged particles
that travel through space with sometimes astonishing amounts of energy. A single proton
may possess an energy ranging anywhere from 10 to 10'* MeV .3 The highest energy cosmic
rays are extremely rare, but energies in the range 10* to 108 MeV are common. The sources
of cosmic rays include stellar flares and supernova explosions.

Heating by cosmic rays comes primarily through the ionization of hydrogen atoms and
molecules as a result of collisions with cosmic ray protons;

pT+H—>H +e +pt
p++H2—>H;~|—ef+p+.

When an atom or molecule is ionized, an electron is ejected that carries some of the original
kinetic energy of the proton with it. It is this ejected electron that interacts with the ISM to
increase the average kinetic energy of the ISM’s constituents via collisions with molecules
(see, for example, Eqs. 8 and  9). Those molecules then collide with other molecules

310" MeV is roughly the kinetic energy of a tennis ball of mass 0.057 kg traveling at 100 km h~! (approximately
60 mph).
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in the gas, distributing thermal kinetic energy throughout the cloud, thereby raising the
temperature of the cloud.

Other sources of heating in molecular clouds include the ionization of carbon atoms
by ultraviolet starlight resulting in ejected electrons, the photoelectric ejection of electrons
from dust grains by ultraviolet starlight, the absorption of light energy into the lattice of
dust grains, and the ionization of hydrogen by stellar X-rays. Shocks from supernovae or
strong stellar winds can also produce some heating of molecular clouds in special cases.

To balance the heating processes, cooling mechanisms must also be in operation. The
primary mechanism for cooling is based on the emission of infrared photons. Recalling
Mie scattering (Eq.  5), when photon wavelengths are on the order of, or longer than,
the size of dust grains, they are less likely to be scattered. IR photons can pass more easily
through the molecular cloud than can shorter-wavelength photons, allowing the IR photons
to transport energy out of the cloud.

IR photons are produced in molecular clouds through collisions between ions, atoms,
molecules, and dust grains. Typically a collision between ions, atoms, or molecules results
in one of the species being left in an excited state; the energy of the excited state comes
from the kinetic energy of the collision. The species in the excited state then decays back
to the ground state through the emission of an IR photon. For example,

O+H— O*+H (10)

0" > O+y. (11)

Here O* represents an excited state of the oxygen atom. The collisional kinetic energy
(thermal energy) is thus transformed into an IR photon that escapes the cloud. Collisional
excitations of C* and CO by H and H,, respectively, are also significant contributors to
cooling of molecular clouds.

Collisions involving dust grains can also result in cooling of molecular clouds. This
process is similar to ionic, atomic, and molecular collisions in that the lattice of a dust grain
can be left with excess thermal energy after the collision. The grain then emits infrared
energy that is able to escape from the cloud.

The Sources of Dust Grains

It is apparent that even though dust grains make up only about one percent of the mass of a
molecular cloud, they are important constituents in determining its chemistry and physics.
The question of the source of these grains then naturally arises. Although observations
indicate that dust grains can be formed in the envelopes of very cool stars, aided by the
enhanced density in those environments relative to molecular clouds, grains can also be
easily destroyed by UV and X-ray photons. Dust grains are also formed as a product of
supernova explosions and stellar winds. However, none of these sources appear to be able to
provide the abundance of massive grains found in molecular clouds. Rather, it appears that
grains probably grow by a process of coagulation within the molecular clouds themselves.
Dust grain formation represents just one of many areas of active research into the nature of
the ISM.

455



The Interstellar Medium and Star Formation
2 B THE FORMATION OF PROTOSTARS

Our understanding of stellar evolution has developed significantly since the 1960s, reaching
the point where much of the life history of a star is well determined. This success has been
due to advances in observational techniques, improvements in our knowledge of the physical
processes important in stars, and increases in computational power. In the remainder of this
chapter, we will present an overview of the lives of stars, leaving detailed discussions
of some special phases of evolution until later, specifically stellar pulsation, supernovae,
and compact objects (stellar corpses).

The Jeans Criterion

Despite many successes, important questions remain concerning how stars change during
their lifetimes. One area where the picture is far from complete is in the earliest stage of evo-
lution, the formation of pre-nuclear-burning objects known as protostars from interstellar
molecular clouds.

If globules and cores in molecular clouds are the sites of star formation, what conditions
must exist for collapse to occur? Sir James Jeans (1877-1946) first investigated this prob-
lem in 1902 by considering the effects of small deviations from hydrostatic equilibrium.
Although several simplifying assumptions are made in the analysis, such as neglecting ef-
fects due to rotation, turbulence, and galactic magnetic fields, it provides important insights
into the development of protostars.

The virial theorem,

2K +U =0,

describes the condition of equilibrium for a stable, gravitationally bound system.* We have
already seen that the virial theorem arises naturally in the discussion of orbital motion, and
we have also invoked it in estimating the amount of gravitational energy contained within
astar. The virial theorem may also be used to estimate the conditions necessary for
protostellar collapse.

If twice the total internal kinetic energy of a molecular cloud (2K exceeds the absolute
value of the gravitational potential energy (|U]), the force due to the gas pressure will
dominate the force of gravity and the cloud will expand. On the other hand, if the internal
kinetic energy is too low, the cloud will collapse. The boundary between these two cases
describes the critical condition for stability when rotation, turbulence, and magnetic fields
are neglected.

Assuming a spherical cloud of constant density, the gravitational potential energy is
approximately

where M, and R, are the mass and radius of the cloud, respectively. We may also estimate

4We have implicitly assumed that the kinetic and potential energy terms are averaged over time.
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the cloud’s internal kinetic energy, given by

K = ENkT,
2

where N is the total number of particles. But N is just

M.

N = ,
mmpy

where 1 is the mean molecular weight. Now, by the virial theorem, the condition for collapse
(2K < |U|) becomes

3MAT 3 GM?
< —

. 12
umpg 5 R, (12)

The radius may be replaced by using the initial mass density of the cloud, py, assumed here
to be constant throughout the cloud,

3M\ 3
R, = . (13)
47 po

After substitution into Eq. ( 12), we may solve for the minimum mass necessary to initiate
the spontaneous collapse of the cloud. This condition is known as the Jeans criterion:

MC>MJ,

where

o skT N2/ 3 \12 "
"=\ Gumpy 4709

is called the Jeans mass. Using Eq. ( 13), the Jeans criterion may also be expressed in
terms of the minimum radius necessary to collapse a cloud of density py:

R. > Ry, (15)
where
15kT 12
Ry~ (—) (16)
4 G pumy po

is the Jeans length.

The Jeans mass derivation given above neglected the important fact that there must exist
an external pressure on the cloud due to the surrounding interstellar medium (such as the
encompassing GMC in the case of an embedded dense core). Although we will not derive
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the expression here, the critical mass required for gravitational collapse in the presence of
an external gas pressure of Py is given by the Bonnor-Ebert mass,

S 4
CBEVT

Mgg = ———1—,
BE P01/2G3/2

a7

where

vr = AT mn (18)

is the isothermal sound speed (y = 1), and the dimensionless constant cgg is
given by

CBg = 1.18.

The Jeans mass (Eq. 14) can be written in the form
of Eq. ( 17) with c¢; >~ 5.46 replacing cgg. The smaller constant for the Bonnor-Ebert
mass is to be expected since an external compression force due to Py is being exerted on
the cloud.’

Example 2.1. For a typical diffuse hydrogen cloud, 7 = 50 Kandn = 5 x 103m=3.1f
we assume that the cloud is entirely composed of HI, pg = myny = 8.4 x 10~ kg m™>.
Taking u = 1 and using Eq. (  14), the minimum mass necessary to cause the cloud to
collapse spontaneously is approximately M; ~ 1500 M. However, this value significantly
exceeds the estimated 1 to 100 My, believed to be contained in H I clouds. Hence diffuse
hydrogen clouds are stable against gravitational collapse.

On the other hand, for a dense core of a giant molecular cloud, typical temperatures and
number densities are 7 = 10 K and ny, = 10'° m~3. Since dense clouds are predominantly
molecular hydrogen, pg = 2mpyny, =3 x 10717 kg m~ and p ~ 2. In this case the Jeans
massis M; ~ 8 Mg, characteristic of the masses of dense cores being on the order of 10 M.
Apparently the dense cores of GMCs are unstable to gravitational collapse, consistent with
being sites of star formation.

If the Bonnor-Ebert mass (Eq.  17) is used as the critical collapse condition, then the
required mass reduces to approximately 2 M.

Homologous Collapse

In the case that the criterion for gravitational collapse has been satisfied in the absence of
rotation, turbulence, or magnetic fields, the molecular cloud will collapse. If we make the
simplifying (and possibly unrealistic) assumption that any existing pressure gradients are
too small to influence the motion appreciably, then the cloud is essentially in free-fall during
the first part of its evolution. Furthermore, throughout the free-fall phase, the temperature

5You may be interested to know that the derivation of Eq. (  17) involves the isothermal Lane—Emden equation.
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of the gas remains nearly constant (i.e., the collapse is said to be isothermal). This is true
as long as the cloud remains optically thin and the gravitational potential energy released
during the collapse can be efficiently radiated away. In this case the spherically symmetric
hydrodynamic equation can be used to describe the contraction if we assume
that |[d P/dr| < GM, p/r>. After canceling the density on both sides of the expression, we
have

d*r M,

i G a2 19)
Of course, the right-hand side of Eq. ( 19) is just the local acceleration of gravity at a
distance r from the center of a spherical cloud. As usual, the mass of the sphere interior to
the radius r is denoted by M, ..

To describe the behavior of the surface of a sphere of radius r within the collapsing cloud
as a function of time, Eq. ( 19) must be integrated over time. Since we are interested only
in the surface that encloses M,, the mass interior to » will remain a constant during that
collapse. As a result, we may replace M, by the product of the initial density py and the
initial spherical volume, 47r3 /3. Then, if we multiply both sides of Eq. ( 19) by the
velocity of the surface of the sphere, we arrive at the expression

dr d°r 471G 5\ 1 dr
_— — — — ra —_ —,
di dr? 3 0 )2y

which can be integrated once with respect to time to give

1 (dr\> [4n 1
=) =(=Gpori)-+Ci.
2<m> (3 m“)r+'
The integration constant, C1, can be evaluated by requiring that the velocity of the sphere’s

surface be zero at the beginning of the collapse, or dr/dt = 0 when r = r. This gives

4

C[ = _TG'OO rg.
Substituting and solving for the velocity at the surface, we have
dr 87 ro 12
- |Z6 %——Q . 20
dr |: 3 Po Ty , (20)

Note that the negative root was chosen because the cloud is collapsing.
To integrate Eq. ( 20) so that we can obtain an expression for the position as a function
of time, we make the substitutions

and
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which leads to the differential equation

do 1 12
Making yet another substitution,
0 = cos? &, (22)

and after some manipulation, Eq. ( 21) becomes

2 dé_ﬁ
cos 55_2. (23)

Equation ( 23) may now be integrated directly with respect to ¢ to yield

S e =Xt (24)
273 2

Lastly, the integration constant, C,, must be evaluated. Doing so requires that r = rg
when ¢ = 0, which implies that § = 1, or § = 0 at the beginning of the collapse. Therefore,
C, =0.

We have finally arrived at the equation of motion for the gravitational collapse of the
cloud, given in parameterized form by

&+ % sin2& = xt. (25)

Our task now is to extract the behavior of the collapsing cloud from this equation. From
Eq. ( 25), it is possible to calculate the free-fall timescale for a cloud that has satisfied
the Jeans criterion. Let t = f when the radius of the collapsing sphere reaches zero (6 = 0,
&€ = 7/2).° Then

b4
tg = 2—
Substituting the value for x, we have
3 1\
te = | —— . (26)
32 Gp()

You should notice that the free-fall time is actually independent of the initial radius of
the sphere. Consequently, as long as the original density of the spherical molecular cloud
was uniform, all parts of the cloud will take the same amount of time to collapse, and the
density will increase at the same rate everywhere. This behavior is known as a homologous
collapse.

OThis is obviously an unphysical final condition, since it implies infinite density. If 7o > rfina, however, then
rfinal 2 0 is a reasonable approximation for our purposes here.
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However, if the cloud is somewhat centrally condensed when the collapse begins, the
free-fall time will be shorter for material near the center than for material farther out. Thus,
as the collapse progresses, the density will increase more rapidly near the center than in
other regions. In this case the collapse is referred to as an inside-out collapse.

Example 2.2. Using data givenin Example 2.1 for a dense core of a giant molecular
cloud, we may estimate the amount of time required for the collapse. Assuming a density
of po = 3 x 10717 kg m~ that is constant throughout the core, Eq. (  26) gives

tiy = 3.8 x 10° yr.

To investigate the actual behavior of the collapse in our simplified model, we must
first solve Eq. ( 25) for &, given a value for ¢, and then use Eq. (  22) to find 6 =
r/ro. However, Eq. ( 25) cannot be solved explicitly, so numerical techniques must be
employed. The numerical solution of the homologous collapse of the molecular cloud is
shown in Fig. 8. Notice that the collapse is quite slow initially and accelerates quickly
as tg is approached. At the same time, the density increases very rapidly during the final
stages of collapse.

The Fragmentation of Collapsing Clouds

Since the masses of fairly large molecular clouds could exceed the Jeans limit, from
Eq. (  14) our simple analysis seems to imply that stars can form with very large masses,
possibly up to the initial mass of the cloud. However, observations show that this does
not happen. Furthermore, it appears that stars frequently (perhaps even preferentially) tend
to form in groups, ranging from binary star systems to clusters that contain hundreds of
thousands of members.

The process of fragmentation that segments a collapsing cloud is an aspect of star
formation that is under significant investigation. To see that fragmentation must occur by

FIGURE 8
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The homologous collapse of a molecular cloud, as discussed in Example
r/ro is shown as the solid line and log,,(p/0o) is shown as the dashed line. The initial density of the

Time (10° yr)

cloud was py = 3 x 1077 kg m™> and the free-fall time is 3.8 x 107 yr.

2.2.
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some mechanism(s), refer again to the equation for the Jeans mass (Eq. ~ 14). An important
consequence of the collapse of a molecular cloud is that the density of the cloud increases by
many orders of magnitude during free-fall (Fig.  8). Consequently, since T remains nearly
constant throughout much of the collapse, it appears that the Jeans mass must decrease. After
collapse has begun, any initial inhomogeneities in density will cause individual sections
of the cloud to satisfy the Jeans mass limit independently and begin to collapse locally,
producing smaller features within the original cloud. This cascading collapse could lead to
the formation of large numbers of smaller objects.

Itis important to point out that one challenge with the overly simplified scenario described
here is that the process implies that far too many stars would be produced. It is likely that
only about 1% of the cloud actually forms stars.

What is it that stops the fragmentation process? Since we observe a galaxy filled with
stars that have masses on the order of the mass of the Sun, the cascading fragmentation
of the cloud cannot proceed without interruption. The answer to the question lies in our
implicit assumption that the collapse is isothermal, which in turn implies that the only
term that changes in Eq. ( 14) is the density. Clearly this cannot be the case since stars
have temperatures much higher than 10 to 100 K. If the energy that is released during
a gravitational collapse is radiated away efficiently, the temperature can remain nearly
constant. At the other extreme, if the energy cannot be transported out of the cloud at all
(an adiabatic collapse), then the temperature must rise. Of course, the real situation must
be somewhere between these two limits, but by considering each of these special cases
carefully, we can begin to understand some of the important features of the problem.

If the collapse changes from being essentially isothermal to adiabatic, the associated
temperature rise would begin to affect the value of the Jeans mass.

For an adiabatic process the pressure of the gas is related to its density by y, the ratio of
specific heats. Using the ideal gas law, an adiabatic relation between density and
temperature can be obtained,

T=K'p'", 27)

where K” is a constant. Substituting this expression into Eq. ( 14), we find that for an
adiabatic collapse, the dependence of the Jeans mass on density becomes

M, o« pBr =972,

For atomic hydrogen y = 5/3, giving M; o p'/?; the Jeans mass increases with increasing

density for a perfectly adiabatic collapse of a cloud. This behavior means that the collapse
results in a minimum value for the mass of the fragments produced. The minimum mass
depends on the point when the collapse goes from being predominantly isothermal to adi-
abatic.

Of course, this transition is not instantaneous or even complete. However, it is possible to
make a crude order-of-magnitude estimate of the lower mass limit of the fragments. As we
have already mentioned, according to the virial theorem, energy must be liberated during
the collapse of the cloud.

The energy released is roughly

_3GM;
£710 Ry
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for a spherical cloud just satisfying the Jeans criterion at some point during the collapse.
Averaged over the free-fall time, the luminosity due to gravity is given by

5/2
L~ AE, G3/? (ﬂ) ,
L R,

where we have made use of Eq. ( 26) and have neglected terms of order unity.

If the cloud were optically thick and in thermodynamic equilibrium, the energy would
be emitted as blackbody radiation. However, during collapse the process of releasing the
energy is less efficient than for an ideal blackbody. We may express the radiated
luminosity as

Ly = 47 R*ec T?,

where an efficiency factor, 0 < e < 1, has been introduced to indicate the deviation from

thermodynamic equilibrium. If the collapse is perfectly isothermal and escaping radiation

does not interact at all with overlying infalling material, e ~ 0. If, on the other hand, energy

emitted by some parts of the cloud is absorbed and then re-emitted by other parts of the

cloud, thermodynamic equilibrium would more nearly apply and e would be closer to unity.
Equating the two expressions for the cloud’s luminosity,

L = Ly,
and rearranging, we have
4
52 9/2 4
M) = _GS/ZRJ eaT”.

Making use of Eq. ( 13) to eliminate the radius, and then using Eq. ( 14) to write the
density in terms of the Jeans mass, we arrive at an estimate of when adiabatic effects become
important, expressed in terms of the minimum obtainable Jeans mass:

Tl/4
Mjmin — 003 <W> M@, (28)

where T is expressed in kelvins. If we take u ~ 1, ¢ ~ 0.1, and T ~ 1000 K at the time
when adiabatic effects may start to become significant, M; ~ 0.5 Mg; fragmentation ceases
when the segments of the original cloud begin to reach the range of solar mass objects. The
estimate is relatively insensitive to other reasonable choices for T', e, and w. For instance,
ife ~ 1then M; ~ 0.2 M.

Additional Physical Processes in Protostellar Star Formation

We have, of course, left out a number of important features in our calculations. For in-
stance, we have freely used the Jeans criterion during each point in the collapse of the
cloud to discuss the process of fragmentation. This cannot be correct, since our estimate
of the Jeans criterion was based on a perturbation of a static cloud; no consideration was
made of the initial velocity of the cloud’s outer layers. We have also neglected the details
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of radiation transport through the cloud, as well as vaporization of the dust grains, disso-
ciation of molecules, and ionization of the atoms. Nevertheless, it is worth noting that as
unsophisticated as the preceding analysis was, it did illustrate important aspects of the fun-
damental problem and left us with a result that is reasonable. Such preliminary approaches
to understanding complex physical systems are powerful tools in our study of nature.” More
sophisticated estimates of the complex process of cessation of fragmentation place the limit
an order of magnitude lower than determined above, at about 0.01 Mg

Perhaps just as important to the problem of the collapse process are the possible effects of
rotation (angular momentum), the deviation from spherical symmetry, turbulent motions in
the gas, and the presence of magnetic fields. For example, an appreciable amount of angular
momentum present in the original cloud is likely to result in a disk-like structure for at least
a part of the original material, since collapse will proceed at a more rapid rate along the
axis of rotation relative to collapse along the equator.

It is also apparent from careful investigations of molecular clouds that magnetic fields
must also play a crucial role and, in fact, are likely to control the onset of collapse. That
mechanisms other than gravity must be involved becomes clear in simply considering the
free-fall time of the dense core discussed in Example  2.2. From that calculation, the
collapse of the dense core should occur on a timescale on the order of 10° yr. While this
may seem long by human standards, it is quite short on stellar evolution timescales. This
would imply that almost as soon as a dense core forms, it begins producing stars. This would
also imply that dense cores should be very rare; however, many dense cores are observable
throughout our Galaxy.

Zeeman measurements of various molecular clouds indicate the presence of magnetic
fields with strengths typically on the order of magnitude of 1 to 100 nT. If the magnetic
field of a cloud is “frozen in,” and the cloud is compressed, the magnetic field strength will
increase, leading to an increase in the magnetic pressure and resistance to the compression.
In fact, if the cloud is stable to collapse because of magnetic pressure, it will remain so as
long as the magnetic field does not decay.

During the derivation of the Jeans criterion, the virial theorem was invoked using a
balance between gravitational potential energy and the cloud’s internal (thermal) kinetic
energy. Absent from that calculation was the inclusion of energy due to the presence of
magnetic fields. When magnetic fields are included, the critical mass can be expressed as

7R%B

i (29)

MB=CB

where cz = 380 N'/2 m~! T~ for a magnetic field permeating a spherical, uniform cloud.
If B is expressed in nT and R in units of pc, then Eq. (  29) can be written in the more

illustrative form
My ~T0M, (-2 RY (30)
B ©\1nT)\1pc) -

"This type of approach is sometimes called a “back-of-the-envelope” calculation because of the relatively small
space required to carry out the estimate. Extensive use of “back-of-the-envelope” calculations is made throughout
this text to illustrate the effects of key physical processes.
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