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PREFACE

This is a textbook for a first course in differential equations. The book is intended for
science and engineering majors who have completed the calculus sequence, but not nec-
essarily a first course in linear algebra. It emphasizes a systems approach to the subject
and integrates the use of modern computing technology in the context of contemporary
applications from engineering and science.

Our goal in writing this text is to provide these students with both an introduction to,
and a survey of, modern methods, applications, and theory of differential equations that is
likely to serve them well in their chosen field of study. The subject matter is presented in a
manner consistent with the way practitioners use differential equations in their work; tech-
nology is used freely, with more emphasis on methods, modeling, graphical representation,
qualitative concepts, and geometric intuition than on theory.

Notable Changes in the Third Edition

This edition is a substantial revision of the second edition. The most significant changes
are:

P Enhanced Page Layout We have placed important results, theorems, definitions, and
tables in highlighted boxes and have put subheadings just before the most important
topics in each section. This should enhance readability for both students and instructors
and help students to review material for exams.

P Increased Emphasis on Qualitative Methods Qualitative methods are introduced early.
Throughout the text, new examples and problems have been added that require the stu-
dent to use qualitative methods to analyze solution behavior and dependence of solutions
on parameters.

P> New Chapter on Numerical Methods Discussions on numerical methods, dispersed
over three chapters in the second edition, have been revised and reassembled as a unit
in Chapter 8. However, the first three sections of Chapter 8 can be studied by students
after they have studied Chapter 1 and the first two sections of Chapter 2.

P Chapter 1: Introduction This chapter has been reduced to three sections. In Section
1.1 we follow up on introductory models and concepts with a discussion of the art and
craft of mathematical modeling. Section 1.2 has been replaced by an early introduction
to qualitative methods, in particular, phase lines and direction fields. Linearization and
stability properties of equilibrium solutions are also discussed. In Section 1.3 we cover
definitions, classification, and terminology to help give the student an organizational
overview of the subject of differential equations.

P> Chapter 2: First Order Differential Equations New mathematical modeling problems
have been added to Section 2.3, and a new Section 2.7 on subsitution methods has been
added. Sections on numerical methods have been moved to Chapter 8.

P> Chapter 3: Systems of Two First Order Equations The discussion of Wronskians and
fundamental sets of solutions has been supplemented with the definition of, and rela-
tionship to, linearly independent solutions of two-dimensional linear systems.

P> Chapter4: Second Order Linear Equations Section 4.6 on forced vibrations, frequency
response, and resonance has been rewritten to improve its readability for students and
instructors.
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P Chapter 10: Orthogonal Functions, Fourier Series and Boundary-Value Problems
This chapter gives a unified treatment of classical and generalized Fourier series in the
framework of orthogonal families in the space PC[a, b].

P> Chapter 11: Elementary Partial Differential Equations Material and projects on the
heat equation, wave equation, and Laplace’s equation that appeared in Chapters 9 and
10 of the second edition, have been moved to Chapter 11 in the third edition.

P Miscellaneous Changes and Additions Changes have been made in current problems,
and new problems have been added to many of the section problem sets. For ease in
assigning homework, boldface headings have been added to partition the problems into
groups corresponding to major topics discussed in the section.

Major Features

P Flexible Organization. Chapters are arranged, and sections and projects are structured,
to facilitate choosing from a variety of possible course configurations depending on
desired course goals, topics, and depth of coverage.

P> Numerous and Varied Problems. Throughout the text, section exercises of varying lev-
els of difficulty give students hands-on experience in modeling, analysis, and computer
experimentation.

P Emphasis on Systems. Systems of first order equations, a central and unifying theme
of the text, are introduced early, in Chapter 3, and are used frequently thereafter.

P LinearAlgebra and Matrix Methods. Two-dimensional linear algebra sufficient for the
study of two first order equations, taken up in Chapter 3, is presented in Section 3.1.
Linear algebra and matrix methods required for the study of linear systems of dimension
n (Chapter 6) are treated in Appendix A.

P Optional Computing Exercises. In most cases, problems requesting computer-
generated solutions and graphics are optional.

P Visual Elements. The text contains a large number of illustrations and graphs. In addi-
tion, many of the problems ask the student to compute and plot solutions of differential
equations.

P> Contemporary Project Applications. Optional projects at the end of all but one of
Chapters 2 through 11 integrate subject matter in the context of exciting, often contem-
porary, applications in science and engineering.

P Laplace Transforms. A detailed chapter on Laplace transforms discusses systems, dis-
continuous and impulsive input functions, transfer functions, feedback control systems,
poles, and stability.

P> Control Theory. Ideas and methods from the important application area of control the-
ory are introduced in some examples, some projects, and in the last section on Laplace
transforms. All this material is optional.

P> Recurring Themes and Applications. Important themes, methods, and applications,
such as dynamical system formulation, phase portraits, linearization, stability of equilib-
rium solutions, vibrating systems, and frequency response, are revisited and reexamined
in a variety of mathematical models under different mathematical settings.

P> Chapter Summaries. A summary at the end of each chapter provides students and
instructors with a bird’s-eye view of the most important ideas in the chapter.

P Answers to Problems. Answers to selected odd-numbered problems are provided at
the end of the book; many of them are accompanied by a figure.

Problems that require the use of a computer are marked with . While we feel that students
will benefit from using the computer on those problems where numerical approximations
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or computer-generated graphics are requested, in most problems it is clear that use of a
computer, or even a graphing calculator, is optional. Furthermore there are a large number
of problems that do not require the use of a computer. Thus the book can easily be used in
a course without using any technology.

Relation of This Text to Boyce and DiPrima

Brannan and Boyce is an offshoot of the well-known textbook by Boyce and DiPrima. Read-
ers familiar with Boyce and DiPrima will doubtless recognize in the present book some of
the hallmark features that distinguish that textbook.

To help avoid confusion among potential users of either text, the primary differences are
described below:

P Brannan and Boyce is more sharply focused on the needs of students of engineering
and science, whereas Boyce and DiPrima targets a somewhat more general audience,
including engineers and scientists.

P Brannan and Boyce is intended to be more consistent with the way contemporary scien-
tists and engineers actually use differential equations in the workplace.

P Brannan and Boyce emphasizes systems of first order equations, introducing them ear-
lier, and also examining them in more detail than Boyce and DiPrima. Brannan and
Boyce has an extensive appendix on matrix algebra to support the treatment of systems
in n dimensions.

P> Brannan and Boyce integrates the use of computers more thoroughly than Boyce and
DiPrima, and assumes that most students will use computers to generate approximate
solutions and graphs throughout the book.

P Brannan and Boyce emphasizes contemporary applications to a greater extent than
Boyce and DiPrima, primarily through end-of-chapter projects.

P Brannan and Boyce makes somewhat more use of graphs, with more emphasis on phase
plane displays, and uses engineering language (e.g., state variables, transfer functions,
gain functions, and poles) to a greater extent than Boyce and DiPrima.

Options for Course Structure

Chapter dependencies are shown in the following block diagram:

T 1 Chapter 6
| Appendix A | Systems of Ch?rzt:r 5
| Matrix > First Order
| | . Laplace
Algebra Linear
! ! . Transform
! ! Equations
Chapter 2 Chapter 3 Chapter 4 Chaplter 9
! Systems of Second Series
Chapter 1 First Order h
Introduction Differential U Sl ]
’ First Order Linear Second Order
Equations ; : )
Equations Equations Equations
T
. l_l
Y
Chapter 7 Chapter 10 Chapter 11
Chapter 8 Nonlinear Orthogonal Elementary
Numerical Differential Functions, PDEs
Methods Equations Fourier Series,
and Stability and BVPs
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The book has much built-in flexibility and allows instructors to choose from many op-
tions. Depending on the course goals of the instructor and background of the students,
selected sections may be covered lightly or even omitted.

P> Chapters 5, 6, and 7 are independent of each other, and Chapters 6 and 7 are also inde-
pendent of Chapter 4. It is possible to spend much class time on one of these chapters,
or class time can be spread over two or more of them.

P> The amount of time devoted to projects is entirely up to the instructor.

P> For an honors class, a class consisting of students who have already had a course in
linear algebra, or a course in which linear algebra is to be emphasized, Chapter 6 may
be taken up immediately following Chapter 2. In this case, material from Appendix A,
as well as sections, examples, and problems from Chapters 3 and 4, may be selected as
needed or desired. This offers the possibility of spending more class time on Chapters 5,
7, and/or selected projects.
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Supplemental Resources for Instructors and Students

An Instructor’s Solutions Manual, includes solutions for all problems in the text.

A Student Solutions Manual, ISBN 9781118981252, includes solutions for selected
problems in the text.

A Companion website, www.wiley.com/college/brannan, provides a wealth of resources
for students and instructors, including:

P> PowerPoint slides of important ideas and graphics for study and note taking.

P Online Only Projects—these projects are like the end-of-chapter projects in the text.
They present contemporary problems that are not usually included among traditional
differential equations topics. Many of the projects involve applications derived from a
variety of disciplines and integrate or extend theories and methods presented in core
material.

P> Mathematica, Maple, and MATLAB data files are provided for selected end-of-section or
end-of-chapter problems in the text allowing for further exploration of important ideas
in the course utilizing these computer algebra and numerical analysis packages. Students
will benefit from using the computer on problems where numerical approximations or
computer generated graphics are requested.

P> Review of Integration—An online review of integration techniques is provided for stu-
dents who need a refresher.

WileyPLUS: Expect More from Your Classroom Technology

This text is supported by WileyPLUS—a powerful and highly integrated suite of teaching
and learning resources designed to bridge the gap between what happens in the classroom
and what happens at home. WileyPLUS includes a complete online version of the text,
algorithmically generated exercises, all of the text supplements, plus course and homework
management tools, in one easy-to-use website.

Organized around the everyday activities you perform in class, WileyPLUS helps you:

P Prepare and Present: WileyPLUS lets you create class presentations quickly and easily
using a wealth of Wiley-provided resources, including an online version of the textbook,
PowerPoint slides, and more. You can adapt this content to meet the needs of your course.

P Create Assignments: WileyPLUS enables you to automate the process of assigning and
grading homework or quizzes.

P Track Student Progress: An instructor’s gradebook allows you to analyze individual
and overall class results to determine students’ progress and level of understanding.

P Promote Strong Problem-Solving Skills:  WileyPLUS can link homework problems to
the relevant section of the online text, providing students with context-sensitive help.
WileyPLUS also features mastery problems that promote conceptual understanding of
key topics and video walkthroughs of example problems.

P Provide Numerous Practice Opportunities: Algorithmically generated problems pro-
vide unlimited self-practice opportunities for students, as well as problems for homework
and testing.

P> Support Varied Learning Styles:  WileyPLUS includes the entire text in digital format,
enhanced with varied problem types to support the array of different student learning
styles in today’s classrooms.

P Administer Your Course: You can easily integrate WileyPLUS with another course
management system, gradebooks, or other resources you are using in your class, en-
abling you to build your course, your way.
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Introduction

n thisintroductory chapter we formulate several problems that illustrate
basic ideas that reoccur frequently in this book.

In Section 1.1 we discuss two mathematical models, one from physics
and one from population biology. Each mathematical model is a differ-
ential equation—an equation involving the rate of change of a variable
with respect to time. Using these models as examples, we introduce

some basic terminology, explore the notion of a solution of a differential equation, and end
with an overview of the art and craft of mathematical modeling.

Itis not always possible to find analytic, closed-form solutions of a differential equation.
In Section 1.2 we look at two graphical methods for studying the qualitative behavior of
solutions: phase lines and direction fields. Although we will learn how to sketch direction
fields by hand, we will use the computer to draw them.

Sections 1.1 and 1.2 give us a glimpse of two of the three major methods of studying
differential equations, the analytical method and the geometric method, respectively.
We defer study of the third major method—numerical—to Chapter 8. However, you may
study the first three sections of Chapter 8 immediately after Chapter 1.

In Section 1.3 we present some important definitions and commonly used terminol-
ogy in conjunction with different ways of classifying differential equations. Classification
schemes provide organizational structure for the book and help give you perspective on
the subject of differential equations.
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Chapter 1 Introduction

1.1 Mathematical Models and Solutions

Many of the principles, or laws, underlying the behavior of the natural world are statements,
or relations, involving rates in which one variable, say, y, changes with respect to another
variable, t, for example. Most often, these relations take the form of equations containing y
and certain of the derivatives y',y”, ..., y"™ of y with respect to . The resulting equations
are then referred to as differential equations. Some examples of differential equations that
will be studied in detail later on in the text, are:

y =r (1 - %) v, an equation for population dynamics,
my" +yy +ky=0, the equation for a damped spring-mass system, and
0" + % sin() = 0, the pendulum equation.

The subject of differential equations was motivated by problems in mechanics, elasticity,
astronomy, and geometry during the latter part of the 17th century. Inventions (or discov-
eries) in theory, methods, and notation evolved concurrently with innovations in calculus.
Since their early historical origins, the number and variety of problems to which differential
equations are applied have grown substantially. Today, scientists and engineers use differ-
ential equations to study problems in all fields of science and engineering, as well as in
several of the business and social sciences. Some representative problems from these fields
are shown below.

Applications of Differential Equations

airplane and ship design  heat transfer

earthquake detection and prediction e Wwave propagation

controlling the flight of ships and rockets » weather forecasting

modeling the dynamic behavior of nerve cells o designing medical imaging technologies
describing the behavior of economic systems o determining the price of financial derivatives

forecasting and managing the harvesting of fish populations

designing optimal vaccination policies to prevent the spread of disease

The common thread that links these applications is that they all deal with systems that
evolve in time. Differential equations is the mathematical apparatus that we use to study
such systems.

We often refer to a differential equation that describes some physical process as a math-
ematical model of the process; many such models are discussed throughout this book. In
this section we construct a model from physics and a model from population biology. Each
model results in an equation that can be solved by using an integration technique from cal-
culus. These examples suggest that even simple differential equations can provide useful
models of important physical systems.
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Heat Transfer: Newton’s Law of Cooling

EEEN
EXAMPLE
1

If a material object is hotter or colder than the surrounding environment, its temperature will
approach the temperature of the environment. If the object is warmer than the environment,
its temperature will decrease. If the object is cooler than the environment, its temperature
will increase. Sir Isaac Newton postulated that the rate of change of the temperature of
the object is negatively proportional to the difference between its temperature and the tem-
perature of the surroundings (the ambient temperature). This principle is referred to as
Newton’s law of cooling.

Suppose we let u(#) denote the temperature of the object at time ¢, and let 7 be the ambient
temperature (see Figure 1.1.1). Then du/dt is the rate at which the temperature of the object
changes. From Newton, we know that du/dt is proportional to —(u — 7T'). Introducing a
positive constant of proportionality k called the transmission coefficient, we then get the
differential equation

du

= kw=T).  or W = —k(u—T). (1)

Temperature u

Natural or convective flow
at temperature T

BV BB Newton’s Law of Cooling: The time rate of change of u, du/dt, is
negatively proportional to u — T du/dt &« —(u — T).

Note that the minus sign on the right side of Eq. (1) causes du/dt to be negative if
u(t) > T, while du/dt is positive if u(f) < T. The transmission coefficient measures the rate
of heat exchange between the object and its surroundings. If k is large, the rate of heat
exchange is rapid. If k is small, the rate of heat exchange is slow. This would be the case,
for example, if the object was surrounded by thick insulating material.

The temperatures # and 7 are measured in either degrees Fahrenheit (°F) or degrees
Celsius (°C). Time is usually measured in units that are convenient for expressing time
intervals over which significant changes in u occur, such as minutes, hours, or days. Since
the left side of Eq. (1) has units of temperature per unit time, kK must have the units of
(time)~!.

Newton’s law of cooling is applicable to situations in which the temperature of the object
is approximately uniform at all times. This is the case for small objects that conduct heat
easily, or containers filled with a fluid that is well mixed. Thus, we expect the model to be
reasonably accurate in predicting the temperature of a small copper sphere, a well-stirred
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cup of coffee, or a house in which the air is continuously circulated, but the model would
not be very accurate for predicting the temperature of a roast in an oven.

Terminology

Let us assume that the ambient temperature 7 in Eq. (1) is a constant, say, T = T, so that
Eq. (1) becomes

W = —k(u - Tp). 2)

In Section 1.2 we consider an example in which 7" depends on . Common mathematical
terminology for the quantities that appear in this equation are:

time t is an independent variable,
temperature u is a dependent variable because it depends on ¢,
kand T, are parameters in the model.

The equation is an ordinary differential equation because it has one, and only one, in-
dependent variable. Consequently, the derivative in Eq. (2) is an ordinary derivative. It is
a first order equation because the highest order derivative that appears in the equation is
the first derivative. The dependency of u on ¢ implies that u is, in fact, a function of ¢, say,
u = ¢(¢). Thus when we write Eq. (2), three questions may, after a bit of reflection, come
to mind:

1. “Is there actually a function u = ¢(¢), with derivative u’ = d¢/dt, that makes Eq. (2) a
true statement for each time 7?” If such a function exists, it is called a solution of the
differential equation.

2. “If the differential equation does have a solution, how can we find it?”

3. “What can we do with this solution, once we have found it?”

In addition to methods used to derive mathematical models, answers to these types of ques-
tions are the main subjects of inquiry in this book.

Solutions and Integral Curves

By a solution of Eq. (2), we mean a differentiable function u = ¢(r) that satisfies the equa-
tion. One solution of Eq. (2) is u = Ty, since Eq. (2) reduces to the identity O = O when T, is
substituted for « in the equation. In other words, “It works when we put it into the equation.”
The constant solution u = Ty, is referred to as an equilibrium solution of Eq. (2). Although
simple, equilibrium solutions usually play an important role in understanding the behavior
of other solutions. In Section 1.2 we will consider them in a more general setting.

If we assume that u # T;), we can discover other solutions of Eq. (2) by first rewriting it

in the form
du/dt
dufdt _ —k. 3)
u— TO

By the chain rule the left side of Eq. (3) is the derivative of In |u — T,| with respect to ¢, so
we have

d
Elnlu—Tolz—k. @)
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Then, by integrating both sides of Eq. (4), we obtain
In|u—Ty| = —kt + C, ®)

where C is an arbitrary constant of integration. Therefore, by taking the exponential of both
sides of Eq. (5), we find that

lu—Tpy| = e™¥+C = eCe ™, 6)
or
u—Ty=+eCe ™, @)
Thus
u="T,+ ce ¢))

is a solution of Eq. (2), where ¢ = +¢€ is also an arbitrary (nonzero) constant. Note that if
we allow c to take the value zero, then the constant solution u = T, is also contained in the
expression (8). The expression (8) contains all possible solutions of Eq. (2) and is called
the general solution of the equation.

Given a differential equation, the usual problem is to find solutions of the equation.
However, it is also important to be able to determine whether a particular function is a
solution of the equation. Thus, if we were simply asked to verify that « in Eq. (8) is a
solution of Eq. (2), then we would need to substitute 7, + ce* for u in Eq. (2) and show
that the equation reduces to an identity, as we now demonstrate.

EEEN
EXAMPLE
2

Verify by substitution that u = T, + ce™, where c is an arbitrary real number, is a solution
of Eq. (2),

u = —k(u— Ty), ©)

on the interval —oo < t < 0.

Substituting ¢(t) = Ty, + ce™ for u in the left side of the equation gives ¢/ () = —kce™
while substituting ¢(¢) for u into the right side yields —k(7, + ce ™kt — Ty) = —kce™ . Thus,
upon substitution, Eq. (2) reduces to the identity

—kce™™ = —kce ¥, —00 <t < 00,
—_—— ——
40 —k(p()—=Tp)

for each real number ¢ and each value of the parameter k.

Integral Curves. The geometrical representation of the general solution (8) is an infinite family of

curves in the ru-plane called integral curves. Each integral curve is associated with
a particular value of c; it is the graph of the solution corresponding to that value
of c.

Although we can sketch, by hand, qualitatively correct integral curves described by Eq.
(8), we will assign numerical values to k and 7),, and then use a computer to plot the graph
of Eq. (8) for some different values of c. Setting k = 1.5 day~! and T, = 60°F in Eq. (2)
and Eq. (8) gives us

du

= = 1.5~ 60). (10)
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with the corresponding general solution
u=60+ce . (11)

In Figure 1.1.2 we show several integral curves of Eq. (10) obtained by plotting the graph
of the function in Eq. (11) for different values of c. Note that all solutions approach the
equilibrium solution # = 60 as t — oo.

u
708
65 =5

60

555

50

45 | | | | |
0 0.5 1 15 2 2.5 t

Integral curves of ' = —1.5(u — 60). The curve corresponding to ¢ = 10
in Eq. (11) is the graph of u = 60 4+ 10, the solution satisfying the
initial condition u(0) = 70. The curve corresponding to ¢ = 0 in Eq. (11)
is the graph of the equilibrium solution u = 60, which satisfies the initial
condition u(0) = 60.

Initial Value Problems

Frequently, we want to focus our attention on a single member of the infinite family of solu-
tions by specifying the value of the arbitrary constant. Most often, we do this by specifying
a point that must lie on the graph of the solution. For example, to determine the constant ¢
in Eq. (11), we could require that the temperature have a given value at a certain time, such
as the value 70 at time ¢ = 0. In other words, the graph of the solution must pass through
the point (0, 70). Symbolically, we can express this condition as

u(0) = 70. (12)
Then, substituting ¢ = 0 and u = 70 into Eq. (11), we obtain
70 =60 +c.
Hence ¢ = 10, and by inserting this value in Eq. (11), we obtain the desired solution, namely,
u=60+10e”1, (13)

The graph of the solution (13) is the thick curve, labeled by ¢ = 10, in Figure 1.1.2. The
additional condition (12) that we used to determine c is an example of an initial condition.
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The differential equation (10) together with the initial condition (12) form an initial value
problem.

Note that the solution of Eq. (10) subject to the initial condition u(0) = 60 is the equi-
librium solution u = 60, the thick curve labeled by ¢ = 0 in Figure 1.1.2.

Population Biology

Next we consider a problem in population biology. To help control the field mouse popu-
lation in his orchards, in an economical and ecofriendly way, a fruit farmer installs nesting
boxes for barn owls, predators for whom mice are a natural food supply. In the absence of
predators we assume that the rate of change of the mouse population is proportional to the
current population; for example, if the population doubles, then the number of births per
unit time also doubles. This assumption is not a well-established physical law (such as the
laws of thermodynamics, which underlie Newton’s law of cooling in Example 1), butitis a
common initial hypothesis! in a study of population growth. If we denote time by ¢ and the
mouse population by p(¢), then the assumption about population growth can be expressed
by the equation

dp

L=, (14)
where the proportionality factor r is called the rate constant or growth rate.

As a simple model for the effect of the owl population on the mouse population, let
us assume that the owls consume the mice at a constant predation rate a. By modifying
Eq. (14) to take this into account, we obtain the equation

dp

TP (15)

where both r and a are positive. Thus the rate of change of the mouse population, dp/dt, is
the net effect of the growth term rp and the predation term —a. Depending on the values of
p, r, and a, the value of dp/dt may be of either sign.

EFEEEN
EXAMPLE
3

Suppose that the growth rate for the field mice is 0.5/month and that the owls kill 15 mice per
day. Determine appropriate values for the parameters in Eq. (15), find the general solution
of the resulting equation, and graph several solutions, including any equilibrium solutions.

We naturally assume that p is the number of individuals in the mouse population at
time . We can choose our units for time to be whatever seems most convenient; the two
obvious possibilities are days or months. If we choose to measure time in months, then the
growth term is 0.5p and the predation term is —(15 mice/day) - (30 days/month) = —450
mice/month, assuming an average month of 30 days. Thus Eq. (15) becomes

dp

= =0.5p — 450, 16
7 D (16)

where each term has the units of mice/month.
By following the same steps that led to the general solution of Eq. (2), we find that the
general solution of Eq. (16) is

p =900 + ce'/?, 17)

where c is again a constant of integration.

' A somewhat better model of population growth is discussed in Section 2.5.
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Integral curves for Eq. (16) are shown in Figure 1.1.3. For sufficiently large values of
p it can be seen from the figure, or directly from Eq. (16) itself, that dp/dt is positive, so
that solutions increase. On the other hand, for small values of p the opposite is the case.
Again, the critical value of p that separates solutions that increase from those that decrease
is the value of p for which dp/dt is zero. By setting dp/dt equal to zero in Eq. (16) and then
solving for p, we find the equilibrium solution p = 900 for which the growth term and the
predation term in Eq. (16) are exactly balanced. This corresponds to the choice ¢ = 0 in the
general solution (17).

1000 —

950

900

850

800

\
0O 05 1 15 2 25 3 35 4 45 5 ¢

SR Ean B el Integral curves, including the equilibrium solution p = 900, for
p' = 0.5p —450.

Solutions of the more general equation (15), in which the growth rate and the predation
rate are unspecified, behave very much like those of Eq. (16). The equilibrium solution of
Eq. (15) is p = a/r. Solutions above the equilibrium solution increase, while those below
it decrease.

Constructing Mathematical Models

Mathematical modeling is the craft, and art, of using mathematics to describe and under-
stand real-world phenomena. A viable mathematical model can be used to test ideas, make
predictions, and aid in design and control problems that are associated with the phenomena.
For instance, in Example 1, we constructed the differential equation

du

i k(u—T) (18)
to model heat exchange between an object and its surroundings. Recall that u(z) is the time-
dependent variable representing the temperature of the object and 7 is the temperature of
the surroundings. If the value of u is known at time 7 = 0, and the values of the parameters
T and k are known, solutions of this differential equation tell us what the temperature of the
object will be for times ¢ > 0.
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Apply prin

FILCAPN IR A diagram of the modeling process.

The steps used to arrive at Eq. (18) are typical of the steps used to construct any mathe-
matical model. It is, therefore, worthwhile to illustrate the general process by a system flow
diagram, as in Figure 1.1.4.

In the Problems for this section, and for many other sections of this textbook, we ask you
to construct differential equation models of various real-world phenomena. In constructing
mathematical models, you will find that each problem is different. Although the modeling
process, in broad outline, is well represented by the above diagram, it is not a skill that
can be reduced to the observance of a set of prescribed rules. Successful modeling usu-
ally requires that the modeler be intimate with the field in which the problem originates.
However experience has shown that the very act of attempting to construct a mathematical
model forces the modeler to ask the most cogent questions about the phenomenon being
investigated:

1. What is the purpose of the model?

2. What aspects of the phenomenon are most important for the intended uses of the
model?

3. What can we measure or observe?
4. What are the relevant variables; what is their relationship to the measurements?

5. Are there well-established principles (such as physical laws, or economic laws) to
guide us in formulating the model?

6. In terms of the variables, how do we mathematically represent the interaction of
various components of the phenomenon?

7. What simplifying assumptions can we make?
8. Do conclusions and predictions of the model agree with experiment and observa-
tions?
9. What additional experiments are suggested by the model?
10. What are limitations of the model?
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Chapter 1

Introduction

For many applied mathematicians, engineers, and scientists, mathematical modeling is
akin to poetry—an art form and creative act employing language that adheres to form and
conventions. Likewise, there are rules (e.g., physical laws) that the mathematical modeler
must follow, yet he or she has access to a myriad of mathematical tools (the language) for de-
scribing the phenomenon under investigation. History abounds with the names of scientists,
mathematicians, and engineers, driven by the desire to understand nature and advance tech-
nology, who have engaged in the practice of mathematical modeling: Newton, Euler, von
Karman, Verhulst, Maxwell, Rayleigh, Navier, Stokes, Heaviside, Einstein, Schrodinger,
and so on. Their contributions have literally changed the world. Nowadays, mathematical
modeling is carried out in universities, government agencies and laboratories, business and
industrial concerns, policy think tanks, and institutes dedicated to research and education.

For many practitioners of mathematical modeling, it is, in a sense, their raison d’étre.

PROBLEMS
E NN NN NN EEEEEEEEEN

1. Newton’s Law of Cooling. A cup of hot coffee has a
temperature of 200°F when freshly poured, and is left in
a room at 70°F. One minute later the coffee has cooled to
190°F.

(a) Assume that Newton’s law of cooling applies. Write
down an initial value problem that models the temperature
of the coffee.

(b) Determine when the coffee reaches a temperature of
170°F.

2. Blood plasma is stored at 40°F. Before it can be used, it
must be at 90°F. When the plasma is placed in an oven at
120°F, it takes 45 minutes (min) for the plasma to warm to
90°F. Assume Newton’s law of cooling applies. How long
will it take the plasma to warm to 90°F if the oven tempera-
ture is set at 100°F?

3. At 11:09 p.m. a forensics expert arrives at a crime scene
where a dead body has just been found. Immediately, she
takes the temperature of the body and finds it to be 80°F.
She also notes that the programmable thermostat shows that
the room has been kept at a constant 68°F for the past 3 days.
After evidence from the crime scene is collected, the temper-
ature of the body is taken once more and found to be 78.5°F.
This last temperature reading was taken exactly one hour af-
ter the first one. The next day the investigating detective asks
the forensic expert, “What time did our victim die?”” Assum-
ing that the victim’s body temperature was normal (98.6°F)
prior to death, what does she tell the detective?

4. Population Problems. Consider a population p of field
mice that grows at a rate proportional to the current popula-
tion, so that dp/dt = rp.

(a) Find the rate constant r if the population doubles in 30
days.

(b) Find r if the population doubles in N days.

5. The field mouse population in Example 3 satisfies the dif-
ferential equation

dp/dt = 0.5p — 450.

(a) Find the time at which the population becomes extinct if
p(0) = 850.

(b) Find the time of extinction if p(0) =p,, where
0 < py <900.

(¢) Find the initial population p,, if the population is to be-
come extinct in 1 year.

6. Radioactive Decay. Experiments show that a radioiso-
tope decays at a rate negatively proportional to the amount
of the isotope present.

(a) Use the following variables and parameters to write
down and solve an initial value problem for the process of
radioactive decay: ¢ = time; a(f) = amount of the radioiso-
tope present at time #; a, = initial amount of radioisotope;
r = decay rate, where r > 0.

(b) The half-life, T, ,, of a radioisotope is the amount of
time it takes for a quantity of the radioactive material to de-
cay to one-half of its original amount. Find an expression for
T\, in terms of the decay rate r.

7. A radioactive material, such as the isotope thorium-
234, disintegrates at a rate proportional to the amount cur-
rently present. If Q(¢) is the amount present at time ¢, then
dQ/dt = —rQ, where r > 0 is the decay rate.

(a) If 100 milligrams (mg) of thorium-234 decays to §2.04
mg in 1 week, determine the decay rate r.

(b) Find an expression for the amount of thorium-234
present at any time .

(¢) Find the time required for the thorium-234 to decay to
one-half its original amount.

8. Classical Mechanics. The differential equation for the
velocity v of an object of mass m, restricted to vertical
motion and subject only to the forces of gravity and air
resistance, is

md—lt} = —mg—yv. 1)
In Eq. (i) we assume that the drag force, —yv where
y > 0 is a drag coefficient, is proportional to the velocity.



Acceleration due to gravity is denoted by g. Assume that the
upward direction is positive.

(a) Show that the solution of Eq. (i) subject to the initial con-
dition v(0) = v, is

m m
v= <U0+ _g) erim _ 18
Y Y

(b) Sketch some integral curves, including the equilibrium
solution, for Eq. (i). Explain the physical significance of the
equilibrium solution.

(¢) Ifaballis initially thrown in the upward direction so that
v, > 0, show that it reaches its maximum height when

¥
t=tmaX=mln(l+u>.
14 mg

(d) The terminal velocity of a baseball dropped from a high
tower is measured to be 33 m/s. If the mass of the baseball is
145 grams (g) and g = 9.8 m/s?, what is the value of y?

(e) Using the values for m, g, and y in part (d), what would
be the maximum height attained for a baseball thrown up-
ward with an initial velocity v, = 30 m/s from a height of
2 m above the ground?

9. For small, slowly falling objects, the assumption made in
Eq. (i) of Problem 8 that the drag force is proportional to
the velocity is a good one. For larger, more rapidly falling
objects, it is more accurate to assume that the drag force is
proportional to the square of the velocity.?

(a) Write a differential equation for the velocity of a falling
object of mass m if the drag force is proportional to the square
of the velocity. Assume that the upward direction is positive.
(b) Determine the limiting velocity after a long time.

(¢) If m = 0.025 kilograms (kg), find the drag coefficient so
that the limiting velocity is —35 m/s.

Mixing Problems. Many physical systems can be cast in the
form of a mixing tank problem. Consider a tank containing
a solution—a mixture of solute and solvent—such as salt dis-
solved in water. Assume that the solution at concentration
c;(t) flows into the tank at a volume flow rate r,(¢) and is si-
multaneously pumped out at the volume flow rate r,(¢). If the
solution in the tank is well mixed, then the concentration of
the outflow is Q(¢)/V (), where Q(¢) is the amount of solute
at time 7 and V(¢) is the volume of solution in the tank. The
differential equation that models the changing amount of so-
lute in the tank is based on the principle of conservation of
mass,

d
7Q =qOr,(n—-{eO/VO}r,®, @
4 —_—— ——— —
rate in rate out
rate of change of Q(7)
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where V(¢) also satisfies a mass conservation equation,

‘;—‘t/ =r,(0) = r, (D). (ii)

If the tank initially contains an amount of solute Q, in a vol-
ume of solution, V, then initial conditions for Eqs. (i) and
(ii) are Q(0) = Q, and V(0) = V), respectively.

10. A tank initially contains 200 liters (L) of pure water.
A solution containing 1 g/L enters the tank at a rate of 4
L/min, and the well-stirred solution leaves the tank at a rate of
5 L/min. Write initial value problems for the amount of salt
in the tank and the amount of brine in the tank, at any time .

11. A tank contains 100 gallons (gal) of water and 50
ounces (0z) of salt. Water containing a salt concentration of
i(l + % sin t) oz/gal flows into the tank at a rate of 2 gal/min,
and the mixture flows out at the same rate. Write an ini-
tial value problem for the amount of salt in the tank at any
time ¢.

12. A pond initially contains 1,000,000 gal of water and an
unknown amount of an undesirable chemical. Water contain-
ing 0.01 g of this chemical per gallon flows into the pond at
a rate of 300 gal/h. The mixture flows out at the same rate,
so the amount of water in the pond remains constant. As-
sume that the chemical is uniformly distributed throughout
the pond.

(a) Write a differential equation for the amount of chemical
in the pond at any time.

(b) How much of the chemical will be in the pond after a
very long time? Does this limiting amount depend on the
amount that was present initially?

13. Pharmacokinetics. A simple model for the concentra-
tion C(¢) of a drug administered to a patient is based on the
assumption that the rate of decrease of C(t) is negatively pro-
portional to the amount present in the system,

dc _

dr
where £ is a rate constant that depends on the drug and its
value can be found experimentally.

—kC,

(a) Suppose that a dose administered at time ¢ = O is rapidly
distributed throughout the body, resulting in an initial con-
centration C, of the drug in the patient. Find C(¢), assuming
the initial condition C(0) = C,,.

(b) Consider the case where doses of C, of the drug are given
at equal time intervals 7', that is, doses of C;, are administered
attimest = 0,7,2T, ... . Denote by C, the concentration im-
mediately after the nth dose. Find an expression for the con-
centration C, immediately after the second dose.

(¢) Find an expression for the concentration C, immediately
after the nth dose. What is lim,_, , C,?

2See Lyle N. Long and Howard Weiss, “The Velocity Dependence of Aerodynamic Drag: A Primer for
Mathematicians,” American Mathematical Monthly 106, no. 2 (1999), pp. 127-135.
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14. A certain drug is being administered intravenously to a
hospital patient. Fluid containing 5 mg/cm?® of the drug en-
ters the patient’s bloodstream at a rate of 100 cm’/h. The drug
is absorbed by body tissues or otherwise leaves the blood-
stream at a rate proportional to the amount present, with a
rate constant of 0.4 (h)~!.

(a) Assuming that the drug is always uniformly distributed
throughout the bloodstream, write a differential equation for
the amount of the drug that is present in the bloodstream at
any time.

(b) How much of the drug is present in the bloodstream after
a long time?

Continuously Compounded Interest. The amount of
money P(f) in an interest bearing account in which the prin-
cipal is compounded continuously at a rate r per annum
and in which money is continuously added, or subtracted,
at a rate of k dollars per annum satisfies the differential
equation

% =rP+k. ()

The case k < 0 corresponds to paying off a loan, while k > 0
corresponds to accumulating wealth by the process of regular
contributions to an interest bearing savings account.

15. Show that the solution to Eq. (i), subject to the initial
condition P(0) = P, is
P=<Po+lf)e”—]i. (ii)
r r
Use Egq. (ii) in Problem 15 to solve Problems 16 and 17.
16. According to the International Institute of Social History

(Amsterdam), the amount of money used to purchase Man-
hattan Island in 1626 is valued at $1,050 in terms of today’s

dollars. If that amount were instead invested in an account
that pays 4% per annum with continuous compounding, what
would be the value of the investment in 2020? Compare with
the case that interest is paid at 6% per annum.

17. How long will it take to pay off a student loan of $20,000
if the interest paid on the principal is 5% and the student pays
$200 per month. What is the total amount of money repaid
by the student?

18. Derive Eq. (ii) in Problem 15 from the discrete approx-
imation to the change in the principal that occurs during the
time interval [z, t + Af],

P(t + Ar) = P(t) + (rAnP(t) + kAt,

assuming that P(z) is continuously differentiable on 7 > 0.
[Hint: Substitute P(1 + Ar) = P(t) + P'())At + (1/2)P" (1)
(Ar)?), where t < < t + At, simplify, divide by At, and let
At — 0.]

Miscellaneous Modeling Problems
19. A spherical raindrop evaporates at a rate proportional to

its surface area. Write a differential equation for the volume
of the raindrop as a function of time.

20. Archimedes’s principle of buoyancy states that an ob-
ject submerged in a fluid is buoyed up by a force equal to
the weight of the fluid displaced. An experimental, spheri-
cally shaped sonobuoy of radius 1/2 m with a mass m kg is
dropped into the ocean with a velocity of 10 m/s when it hits
the water. The sonobuoy experiences a drag force due to the
water equal to one-half its velocity. Write down a differential
equation describing the motion of the sonobuoy. Find val-
ues of m for which the sonobuoy will sink and calculate the
corresponding terminal sink velocity of the sonobuoy. The
density of seawater is p, = 1.025 kg/L.

1.2 Qualitative Methods: Phase Lines and

Direction Fields

In Section 1.1 we were able to find solutions of the differential equations

du

dt

=—k(u—"Ty) and

—=mp—k 1
7P (D

by using a simple integration technique. Do not assume that this is always possible. Finding
closed-form analytic solutions of differential equations can be difficult or impossible. For-
tunately, it is possible to obtain information about the qualitative behavior of solutions by
using elementary ideas from calculus and graphical methods; we consider two such meth-
ods in this section—phase line diagrams and direction fields.

Qualitative behavior refers to general properties of the differential equation and its
solutions such as existence of equilibrium points, behavior of solutions near equilibrium
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points, and long-time behavior of solutions.! Qualitative analysis is important to the math-
ematical modeler because it can provide insight into even a very complicated model without
having to find an exact solution or an approximation to an exact solution. It can show, of-
ten with only a small amount of effort, whether the equations are a plausible model of the
phenomenon being studied. If not, what changes need to be made in the equations?

Autonomous Equations: Equilibrium Solutions
and the Phase Line

A first order autonomous differential equation is an equation of the form

dy
7 =f. (2)

The distinguishing feature of an autonomous equation is that the independent variable, in
this case ¢, does not appear on the right side of the equation. For instance, the two equations
appearing in (1) are autonomous. Other examples of autonomous equations are

P, =rp(1 -p/K), X =sinx, and y’ = 4 /kz/y— 1,

where r, K, and k are constants. However, the equations

u' + ku = kT, + kA sin wt, x' = sin(tx), and Yy =—y+¢
are not autonomous because the independent variable ¢ does appear on the right side of each
equation.

Equilibrium Solutions. The first step in a qualitative analysis of Eq. (2) is to find constant
solutions of the equation. If y = ¢(t) = ¢ is a constant solution of Eq. (2), then dy/dt = 0.
Therefore any constant solution must satisfy the algebraic equation

fo=0. 3)

These solutions are called equilibrium solutions of Eq. (2) because they correspond to no
change or variation in the value of y as ¢ increases or decreases. Equilibrium solutions are
also referred to as critical points, fixed points, or stationary points of Eq. (2).

Equilibrium solutions, although simple, are usually important for understanding the be-
havior of other solutions of the differential equation. To obtain information about other
solutions, we draw the graph of f(y) versus y. Figure 1.2.1 shows a generic plot of f(y),
where the equilibrium points are y = a, b, and c. It is convenient to think of the variable y
as the position of a particle whose motion along the horizontal axis is governed by Eq. (2).
The corresponding velocity of the particle, dy/dt, is prescribed by Eq. (2).

At points where the velocity of the particle dy/dr = f(y) > 0, so that y is an increasing
function of ¢, the particle moves to the right. This is indicated in Figure 1.2.1 by plac-
ing on the y-axis arrows that point to the right in the intervals y < a and b <y < ¢ where
f() > 0. At points where the velocity of the particle dy/dt = f(y) < 0, so that y is a decreas-
ing function of 7, the particle moves to the left. This is indicated in Figure 1.2.1 by placing on
the y-axis arrows that point to the left in the intervals a < y < b and y > ¢, where f(y) < 0.

'In addition, the qualitative properties of differential equations include results about existence and unique-
ness of solutions, intervals of existence, and dependence of solutions on parameters and initial conditions.
These issues will be addressed in Sections 2.4 and 2.5.
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y' >0 W y>0 ¢\ <0 vy

A generic graph of the right side of Eq. (2). The arrows on the y-axis
indicate the direction in which y is changing [given by the sign of
y' = f(y)] for each possible value of y. At the equilibrium points y = a,
b, and ¢, dy/dt = 0.

The particle is stationary at the equilibrium points y = a, b, and ¢ since dy/dt = 0 at each
of those points.

The horizontal line in Figure 1.2.1 is referred to as the phase line, or the one-
dimensional phase portrait of Eq. (2). The information contained in the phase line can
be used to sketch the qualitatively correct integral curves of Eq. (2) by drawing it verti-
cally just to the left of the #y-plane, as shown in Figure 1.2.2. We first draw the equilibrium
solutions y = a, b and c; then we draw a representative sampling of other curves that are in-
creasing when y < a and b < y < ¢ and decreasing when a <y < b and y > ¢, as shown in
Figure 1.2.2b.

e
\

(a) (b)

SN ESn BV (a) The phase line. (b) Plots of y versus .
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Stability of Equilibrium Points. In the drawings of the phase line notice that arrows drawn
on either side of the equilibrium point y = a point toward y = a. Consequently, solution
curves in Figure 1.2.2b that start sufficiently close to y = a approach y = a as t — o0. Sim-
ilarly, arrows drawn on either side of y = ¢ in Figures 1.2.1 and 1.2.2a point toward y = c.
It follows that solution curves that start sufficiently close to y = ¢ approachy = cast — oo,
as shown in Figure 1.2.2b. The equilibrium points y = @ and y = ¢ are said to be asymp-
totically stable. On the other hand, arrows in the phase line that lie on either side of the
equilibrium point y = b point away from y = b. Correspondingly, solution curves that start
near y = b move away from y = b as ¢ increases. The equilibrium point y = b is said to be
unstable.

To facilitate our understanding of asymptotically stable and unstable equilibrium points,
it is again useful to think of y as the position of a particle whose dynamics are governed by
Eq. (2). A particle, perturbed slightly via some disturbance, from an asymptotically stable
equilibrium point, will move back toward that point. However, a particle situated at an
unstable equilibrium point, subjected to any disturbance, will move away from that point.
All real-world systems are subject to disturbances, most of which are unaccounted for in
a mathematical model. Therefore, systems residing at unstable equilibrium points are not
likely to be observed in the real world.

EFEEEN
EXAMPLE
1

Draw phase line diagrams for Eq. (2) of Section 1.1,

% =—k(u—Ty),  wherek >0, “

and use it to discuss the behavior of all solutions as ¢t — co. Compare behaviors for two
different values of k, 0 < k; < k,.

As shown in Figure 1.2.3a, the graph of f(u) = —k;(u — T})) versus u is a straight line
with slope —k; < O that intersects the phase line at u = T, the only equilibrium solution of
Eq. 4). Since v/ > 0ifu < Tyandu’ < Qifu > T, all arrows on the phase line point toward
u = Ty, which is therefore asymptotically stable. Consequently, any solution u = ¢() of
Eq. (4) satisfies

lim ¢(1) = T

Equation (4) and Figure 1.2.3a also show that the absolute value of the instantaneous rate
of heat exchange (as measured by |u/|) is an increasing function of the difference between
the temperature of the object and the temperature of the surroundings,

|l/l/| = k1|u - Tol

Thus the slope of any solution curve will be steeper at points far away from 7}, compared
to points that are close to 7. Furthermore the slope will approach zero as |u — 7| — 0.
Solution curves consistent with these observations are shown in Figure 1.2.3b.
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f@ u

W

() (b)

f@ u

(c) (d)
SV S Bl () and (c) Phase lines for du/dt = —k(u — Ty), k = k; and k,, where

k, < k,. The heavy blue arrows on the u-axis indicate the direction in
which u is changing [given by the sign of u’()] for each possible value
of u. For a given temperature difference u — T, the instantaneous rate of
heat exchange depends on the slope —k of the line. The parameter k is
called the transmission coefficient. (b) and (d) Corresponding solutions
of du/dt = —k(u — T,)), where the phase line information in (@) and (c)
is overlaid on the vertical axes. The rate of approach to equilibrium is
governed by k. If k is small, the rate of heat exchange is slow. If & is
large, the rate of heat exchange is rapid.

HFEEN
EXAMPLE
2

Draw a phase line diagram for the mouse population growth model, Eq. (15) of Section 1.1,

d
7]: =rmp-a, where r,a > 0, (5)

and use it to describe the behavior of all solutions as t — oo. Discuss implications of the
model for the fruit farmer.

The only equilibrium solution of Eq. (5) is p = a/r. A plot of f(p) = rp — a versus p
in Figure 1.2.4q illustrates that p’ < 0 when p < a/r, and p’ > 0 when p > a/r. Thus the
arrows on the p-axis point away from the equilibrium solution, which is unstable. Corre-
sponding solution curves are shown in Figure 1.2.4b; note that the phase line diagram is
overlaid on the p-axis.
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fp) p

flp)=rp-a

Rlls}

p’'<0 ‘71 p'>0 p

(a) (b)

ALV EP IR (a) The phase line for Eq. (5), dp/dt = rp — a, where r,a > 0. The slope
r of the line corresponds to the growth rate of the mouse population.

The direction of the arrows on the p-axis shows that the equilibrium
solution p = a/r is unstable. (b) Integral curves for Eq. (5).

Since the equilibrium solution is unstable, as time passes, an observer may see a mouse
population either much larger or much smaller than the equilibrium population, but the
equilibrium solution itself will not, in practice, be observed. Without the possible benefits
of a more accurate and complex population model,? one inference that the fruit farmer
might draw is that if he wants to control the mouse population, then he must install enough
nesting boxes for the owls, thereby increasing the harvest rate a, to ensure that the mouse
population p(t) is always less than a/r. Thus a/r is a threshold value that should never be
exceeded by p(7) if the control strategy is to succeed.

This model also suggests a number of questions that the fruit farmer may wish to pursue,
perhaps with assistance from a biologist who is knowledgeable about life cycles and habitats
of field mice and owls:

P> What is the growth rate of a field mouse population when there is an abundant food
supply?

P How many mice per day does a barn owl consume?

P> How do we estimate the size of the mouse population?

P> Should we model the owl population?

P> What will be a sustainable owl population if the mouse population drops to an econom-
ically acceptable level.

In each of the above examples, equilibrium solutions are important for understanding
how other solutions of the given differential equation behave. An equilibrium solution may
be thought of as a solution that serves as a reference to other, often nearby, solutions. An

2More elaborate population models appear in Sections 2.5 and 7.4.
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asymptotically stable equilibrium solution is often referred to as an attractor or sink, since
nearby solutions approach it as # — co. On the other hand, an unstable equilibrium solution
is referred to as a repeller or source.

The main steps for creating the phase line and a rough sketch of solution curves for a
first-order autonomous differential equation are summarized in Table 1.2.1.

--- -- Procedure for drawing phase lines and sketching solution curves for an autonomous
TABLE 1.2.1 | equation.
lustration
Step Phase Line Solution Curves
1. Find the equilibrium Solve f(y) = 0.
solutions of dy/dt = f(y).
2. Sketch the equilibrium Plot equilibrium solutions  Plot equilibrium solutions
solutions. as points along a vertical ~ as dashed horizontal lines
line in increasing order as  in the fy-plane.
These partitiqn the' p.hE'lSC line you move upward along For instance, if 0 < y; <y,
anq ty-plane into disjoint the l}ne. ‘ are equilibrium solutions,
regions. For instance, if y) <y, are  the ry-plane looks like
equilibrium solutions, the
phase line looks like y
) =
, yobo—_ 924222
2 0,t) =y,
Y1 4| —
| t
3. In each region, assess the
sign of f(y).
(a) If f(y) > 0, then the Affix arrowheads Sketch a representative
solution curves passing appropriately in each solution curve in each
through points in that region ~ region. region.

are increasing for all 7, and

. y
either: ¥ 4 _____
(i) lim y(r) = oo if there is 2
— 00
no larger equilibrium oo
solution. I
t
(ii) lim y(¢) =y, if y, is the y
l ™ .y . y2
next %arger equilibrium Yol
solution. ¥ /
NfpF-————""""""--
t

(continued)
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m Procedure for drawing phase lines and sketching solution curves for an autonomous

equation. (continued)

Step

(b) If f(y) < 0, then the
solution curves passing
through points in that region
are decreasing for all 7, and
either:

6) tlingo y(t) = —oo if there is
no smaller equilibrium
solution.

(i) tlim ¥(t) = y; if y; is the
— 0

next smaller equilibrium

solution.

lustration
Phase Line Solution Curves
Affix arrowheads Sketch a representative
appropriately in each solution curve in each
region. region.
Yo Y
g p=mmmmme===
Y1
Y1 =777~
~
¢
y
Y2
p==========
N \_»
) ittt LS
G

Classification of Equilibrium Solutions

There are four possible arrow patterns that can encase a given equilibrium point of
Eq. (2). The behavior of the solution curves “nearby” is different for each arrow pattern,
resulting in different classifications of the corresponding equilibrium points. Suppose y; is
an equilibrium point of Eq. (2). We illustrate the four possibilities in Table 1.2.2.

Remark. We use the same classification for the equilibrium solution curve y = ¢(t) =y, as we
do for the equilibrium point y,, with the only change being that the word “point” is replaced by
“solution” in each case in Table 1.2.2.

Classification

Classification of equilibrium points of (2).
Phase Sample Solution
Line Curves

Y1
o) =y,

Verbal Interpretation yyisa(n) ...

Solution curves passing asymptotically stable
through points whose equilibrium point
y-values close to y; on

either side tend toward

y; asymptotically as

t — 0.

(continued)



Sample Solution
Curves

Classification of equilibrium points of (2). (continued)

Verbal Interpretation

Solution curves passing
through points whose
y-values close to y; on
either side tend away
from y, as t — oo.

Classification
yyisa(n)...

unstable equilibrium
point
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EEEENR
TABLE 1.2.2
Phase
Line
Y1
o) =y,
Y1
o) =y,
N
o(t) =y,

Solution curves tend
away from y, if they
pass through points
whose y-values are
close to y, on one side,
but they tend toward y,
asymptotically as

t — oo if they pass
through points whose
y-values are close to y;
on the opposite side.

Linearization About an Equilibrium Point

semistable
equilibrium point

Since the classification of an equilibrium point y; depends only on the behavior near y,,
we can extract its classification from certain features of the graph of f near y;. Assume that
f is differentiable in a vicinity of y, and suppose that f’(y;) < 0. Then the graph of f in
this vicinity resembles its tangent line, which has a negative slope. So, the graph of f is
decreasing in this vicinity and hence the continuity of f implies that

P f(y) is positive when y < y, and y is close by y;.

P f(y) is negative when y > y, and y is close by y;.

Thus, the phase line must look like the one for an asymptotically stable equilibrium point.
Similar reasoning shows that if f/(y;) > 0, then y; must be an unstable equilibrium point.
If f'(y;) = 0, classifying y, from this information alone is impossible because the graph
of f can exhibit one of several different situations near y;, including the following:

)

)

()

()

\

N

J

We summarize this discussion as the following theorem.

\y
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THEOREM Linearization About an Equilibrium Point. Let y; be an equilibrium point of Eq. (2)
1.2.1 and assume that f has a continuous derivative in a vicinity of y;.

i. If f’(y;) <0, then y, is an asymptotically stable equilibrium point.
ii. If f’(y;) > 0, then y, is an unstable equilibrium point.

iii. If f’(y;) = 0, then more information is needed to classify y,.

Solutions and Direction Fields for y' = f(t, y)

Phase line diagrams allow us to infer qualitative properties of solutions of autonomous
equations, that is, equations of the form y’ = f(y). More generally, the right side of a first
order equation can depend on both the dependent and independent variables. The standard,
or normal form, for a first order differential equation is

dy _
o =f{y). (6)

Here f is a given function of the two variables ¢ and y, sometimes referred to as the rate
function. If the independent variable 7 appears explicitly in the rate function, then the equa-
tion is said to be nonautonomous.

A solution of Eq. (6) is a differentiable function y = ¢(¢) that satisfies the equation. This
means that if we substitute ¢(¢) into the equation in place of the dependent variable y, the
resulting equation

¢ (1) = f(1, (1) (N

must be true for all 7 in the interval where ¢ () is defined. Equation (7) may be read as “at
each point (¢, ¢()) the slope ¢/ (¢) of the line tangent? to the integral curve must be equal
to f(t, ¢(1))” (see Figure 1.2.5).

Itis not necessary to have a solution of Eq. (6) to draw direction field vectors. If a solution
passes through the point (¢, y), then the slope of the direction vector at that point is given by
f(t,y). Thus a direction field for equations of the form (6) can be constructed by evaluating f
at each point of a rectangular grid consisting of at least a few hundred points. Then, at each
point of the grid, a short line segment is drawn whose slope is the value of f at that point.
Thus each line segment is tangent to the graph of the solution passing through that point.
A direction field drawn on a fairly fine grid gives a good picture of the overall behavior of
solutions of a differential equation.

Direction Fields for Autonomous Equations. Since the right side of an autonomous equa-
tion y = f(y) does not depend on ¢, slopes of direction field vectors for autonomous equa-
tions can vary only in the vertical direction of the zy-plane. Thus the slope of each direc-
tion field vector on a horizontal line y = a, where « is a constant, will be f(a), as we now
illustrate.

3Recall from calculus that the direction vector for the tangent line at r(¢) = ti+ ¢(0) jisr'(t) = i+ ¢’ (1) ],
which has slope ¢’(7). Here i and j are unit vectors in the horizontal and vertical directions, respectively, of
the xy-plane.
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Solution curve
y = o(t)
Slope vectors

|

708

65—

60 —

55—

50 | | | | |
0 0.5 1 15 2 2.5 t

AR SR EPEET]  The path taken by an integral curve of a differential equation y’ = f(z,y)
is determined by the slope vectors generated by f(z, y) at each point on

the path.

EEEN
EXAMPLE
3

Draw a direction field for Eq. (4):

du

— = —k(u—T,).

dr (u 0)

Our task is simplified slightly if we assign numerical values to k and 7|,, but the proce-
dure is the same regardless of which values we choose. If we let k = 1.5 and 7, = 60, then

Eq. (4) becomes
du/dt = —1.5(u — 60) (4a)

Suppose that we choose a value for u. Then, by evaluating the right side of Eq. (4a), we
can find the corresponding value of du/dt. For instance, if u = 70, then du/dt = —15. This
means that the slope of a solution u = ¢(¢) has the value —15 at any point where u = 70.
We can display this information graphically in the fu-plane by drawing short line segments
with slope —15 at several points on the line u = 70. Similarly, if u = 50, then du/dt = 15,
so we draw line segments with slope 15 at several points on the line u = 50. We obtain
Figure 1.2.6 by proceeding in the same way with other values of u. Figure 1.2.6 is an ex-
ample of what is called a direction field or sometimes a slope field.

The importance of Figure 1.2.6 is that each line segment is a tangent line to the graph
of a solution of Eq. (4a). Consequently, by looking at the direction field, we can visualize
how solutions of Eq. (4a) vary with time. On a printed copy of a direction field we can
even sketch (approximately) graphs of solutions by drawing curves that are always tangent
to line segments in the direction field. Thus the general geometric behavior of the integral
curves can be inferred from the direction field in Figure 1.2.6.

This approach can be applied equally well to the more general Eq. (4), where the param-
eters k and T, are unspecified positive numbers. The conclusions are essentially the same.
The equilibrium solution of Eq. (4) is u = T,. Solutions below the equilibrium solution in-
crease with time, those above it decrease with time, and all other solutions approach the
equilibrium solution as ¢ becomes large.

The connection between integral curves and direction fields is an important concept
for understanding how the right side of a differential equation, such as u’ = —k(u — T}),
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AU EPIET  Direction field and equilibrium solution u = 60 for «’ = —1.5(u — 60).

determines the behavior of solutions and gives rise to the integral curves. However, using
modern software packages, it is just as easy to plot the graphs of numerical approximations
to solutions as it is to draw direction fields. We will frequently do this because the behavior
of solutions of a first order equation is usually made most clear by overlaying the direction
field with a representative set of integral curves, as shown in Figure 1.2.7. Such a sampling
of integral curves facilitates visualization of the many other integral curves determined by
the direction field generated by the right side of the differential equation.

u
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USSR BV  Direction field for u’ = —1.5(u — 60) overlaid with the integral curves

shown in Figure 1.1.2.
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If in Eq. (6) both the dependent variable y and the independent variable ¢ appear explicitly
on the right side of the equation, then the slopes of the direction field vectors will vary with
both 7 and y. To illustrate, we consider the following extension of Example 1 in Section 1.1,
an application of Newton’s law of cooling to the heating and cooling of a building subject
to periodic diurnal variation in the external air temperature.

HFEEN
EXAMPLE
4

Heating and
Cooling of a
Building

Consider a building, thought of as a partly insulated box, that is subject to external temper-
ature fluctuations. Construct a model that describes the temperature fluctuations inside the
building.

Let u(f) and T(¢) be the internal and external temperatures, respectively, at time #. As-
suming that the air inside and outside the enclosure is well mixed, we use Newton’s law of
cooling, just as we did in Example 1, Section 1.1, to get the differential equation

du

— =—klu—T(®)|. 8

- = ~K[u-T@)] ®)
However we now allow for the external temperature to vary with time. If we assume that
the temperature of the external air is described by

T(t) =Ty + Asinwt, O]
then Eq. (8) can be written as

% + ku = kTy + kA sin wt. (10)

In Problem 30 we ask you to verify that

u="Ty+ > (k sin wt — w cos wt) + ce X (11)

K+
is a solution of Eq. (10), where c is an arbitrary real constant. In Chapter 2 we present a
systematic general method for solving a class of first order equations of which Eq. (10) is a
member.

To construct a direction field and integral curves for Eq. (10), we suppose that

k=1.5(day)™!, T,=60°F, A=15°F, and o =2x.
Thus ¢ is measured in days and
T(t) = 60 + 15 sin(2xt) (12)

corresponds to a daily variation of 15°F above and below a mean temperature of 60°F.
Inserting these values for the parameters into Egs. (10) and (11) gives

% + 1.5u4 =90 + 22.5 sin 2zt (13)

with a corresponding general solution
=604 —22 (1.5sin 27t — 27 cos 2xt) + ce~ . (14)

2.25+ 72

Figure 1.2.8 shows a direction field and several integral curves for Eq. (13) along with
a graph of the exterior temperature 7(¢). The behavior of solutions is a bit more compli-
cated than those shown in Figure 1.2.7 because the right side of Eq. (13) depends on the
independent variable ¢ as well as the dependent variable u. Figure 1.2.8 shows that after
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approximately two days, all solutions begin to exhibit similar behavior. From the general
solution (14), it is evident that for large ¢,

22.5
2.25 + 4x2
since ce — 0ast — oo. The function U(f) in expression (15) is referred to as the steady-

state solution of Eq. (13). Using trigonometric identities, we can write U(f) in the form
(see Problem 31)

u(t) =~ U(t) = 60 + (1.5sin2xt — 27 cos 2nt), (15)

—1.5¢

22.5
V225 + 472

where 6 = cos™!(1.5 /V2.25 + 47%). Comparing U(t) with T(r), we see that for large ¢ the
air temperature within the building varies sinusoidally at the same frequency as the exter-
nal air temperature, but with a time lag of 7,, = 1.33645/(2z) = 0.2127 days and an am-
plitude of only 3.4831°F about a mean temperature of 60°F. Does the qualitative behavior
of the steady state solution agree with what you expect based on physical reasoning and
experience?

U(t) =60+ sin(2xt — 6) = 60 + 3.4831 sin(2zt — 1.33645), (16)

¢ PN N External temperature .
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VSR EIRE  Direction field and integral curves for ' + 1.5u = T(¢). The variation in
external temperature is described by 7(¢) = 60 + 15 sin 2x+.

PROBLEMS
B R B R BB R R E R E R E R B R B B

Phase Line Diagrams. Problems 1 through 7 involve equa-
tions of the form dy/dt = f(y). In each problem, sketch the
graph of f(y) versus y, determine the critical (equilibrium)
points, and classify each one as asymptotically stable or un-
stable. Draw the phase line, and sketch several graphs of so-
lutions in the zy-plane.

e A .

dy/dt=y(y-1(y-2), =20
dy/dt =¢ — 1, —00 <y, < 0
dyfdt=e7 -1, —00 <y, < 0

dy/dt = —=2(arctany) /(1 + y?), —00 <Yy <
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5. dy/dt =y (y + )(y = 3), —00 <y < 0 ®) ¥y =1+2y
!

6. dy/di=ay+by*, a>0, b>0, y,>0 (@ )y =-2-y

(h) y =y3-y)

- 2
7. dy/dt = ay + by?, a>0, b>0, —0<y, <o Q) ¥ =1-2y
Problems 8 through 13 involve equations of the form G) y=2-y

dy/dt = f(y). In each problem sketch the graph of f(y) ver-

sus y, determine the critical (equilibrium) points, and classify 24. The direction field of Figure 1.2.9.
each one as asymptotically stable, unstable, or semistable.
Draw the phase line, and sketch several graphs of solutions y
in the 7y-plane. 3 N A AR
NRNRNRRNNNRRNRNRNRNRNRRNRR
8. dy/dt = —k(y — 1)?, k>0, —o0<y, <o AAAANNNNNNNNNNNNNNY
NNNNNNNNNNNNNNNNANYNY
2,2 3:\—\\\\\\\\\\\\\\\\\\\
9. dy/dt =y*(y" = 1), 00 < Yy < 0 FIIIIIJI_JIJIIJIJIJ_JIXXT
2 B e e i i i i S S Y
10. dy/dt = y(1 —y?), —00 <y, < 0 S —
11. dy/dt = ay — b\/_, a>0, b>0, y,>0 B
L R R R R
2 > V¥2222222222220222222
12. dy/dt = y*(4 = y*), —00 <y, < o0 A R R A A A A
7007207007007 7727277
13. dy/dt =y*(1 — y)? <y, < 1970000002272 907277
. il o0
1 2 3 4

Direction Fields. In each of Problems 14 through 19 draw

a direction field for the given differential equation. Based on SIS Direction field for Problem 24.
the direction field, determine the behavior of y as t — oo. If

this behavior depends on the initial value of y at r = 0, de- 25. The direction field of Figure 1.2.10.

scribe the dependency.

14. y =3-2y y
15. yy =2y-3 -
Y =2 A
’ 447 7777777777777 7 77
16,y=3+2y Y A A A A A A A A A A A A A A A A
(/A /72777, s/ 7
E;‘—///////////////////
17. y’=_1_2y P R
B P g
, 1 2 T T T T T T o o T o T T o o o o o o
18. ¥ =1+2y 5
<
! ‘:\\\\\\\\\\\\\\\\\\\
19. y =y+2 R e e e e e e e e e e e e e
FEIIIIIIIOIININNNNNYY
irecti AN NN NN NN NNNINNNNNNYY
In eagh of ?roblergs 20 thrc?ugh 23 draw a dlI‘C(}thI’{ field for TITTLITALIINIINIINIYY
the given differential equation. Based on the direction field, SONNANNINYNNNNNNNNNY
determine the behavior of y as t — oco. If this behavior de- 1 2 3 4
pends on the initial value of y at r = 0, describe this depen-
dency. Note that in these problems the equations are not of the SIS Direction field for Problem 25.
formy’ = ay + b, and the behavior of their solutions is some-
what more complicated than the solutions shown in Figures 26. The direction field of Figure 1.2.11.
1.2.6 and 1.2.7.
] —
20. y =y -y y
/) —
21 Y ==y(5-) 1 2 3 & U
, NRNRNNNNRNRNRNNARNNRNR RN
2.y =y saaadaaaNNNINININNNNNY
SaaaaaNNNNNNNNNNNNY
2.y =y - 27 R IIIITIITIIIIIININY
° y _y(y T RSN NSNNSNNNNNSNNNNNNNSNNSN
i . i . i . e R
Consider the following list of differential equations, some of ]
. . . . . _f\
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27. The direction field of Figure 1.2.12.
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28. The direction field of Figure 1.2.13.
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29. The direction field of Figure 1.2.14.
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30. Verify that the function in Eq. (11) is a solution of Eq.
(10).
31. Show that A sinwt + Bcoswt = Rsin(wt — §), where

R = /A% + B? and 6 is the angle defined by R cos 6 = A and
Rsiné = —B.

Applications.

32. If in the exponential model for population growth,
dy/dt = ry, the constant growth rate r is replaced by a growth
rate (1 — y/K) that decreases linearly as the size of the pop-
ulation increases, we obtain the logistic model for population

growth,
dy y .
—_ = 1-— —) s 1
ar ( K ®
in which K is referred to as the carrying capacity of the pop-
ulation. Sketch the graph of f(y), find the critical points, and
determine whether each is asymptotically stable or unstable.

33. An equation that is frequently used to model the pop-
ulation growth of cancer cells in a tumor is the Gompertz
equation

% =ryln(K/y),
where r and K are positive constants.
(a) Sketch the graph of f(y) versus y, find the critical points,
and determine whether each is asymptotically stable or un-
stable.
(b) Foreachyin0 <y < K, show that dy/dt, as given by the
Gompertz equation, is never less than dy/dt, as given by the
logistic equation, Eq. (i) in Problem 32.
34. In addition to the Gompertz equation (see Problem 33),
another equation used to model the growth of cancerous tu-
mors is the Bertalanffy equation

Y v _py,

dt
where a and b are positive constants. This model assumes
that the tumor grows at a rate proportional to surface area,
while the loss of tumor mass due to cell death is proportional
to the volume of the tumor. Sketch the graph of f(V) ver-
sus V, find the critical points, and determine whether each is
asymptotically stable or unstable.

35. A chemical of fixed concentration c; flows into a con-
tinuously stirred tank reactor at a constant volume flow rate
r; and flows out at the same rate. While in the reactor, the
chemical undergoes a simple reaction in which it disappears
at a rate proportional to the concentration:

de _ 1

dad V'
where V is the volume of the reactor and £ is the rate of re-
action.

- ri% — ke, @)

(a) Use the dimensionless variables

c t
C = —, = —
¢ ’ V/r,
to express Eq. (i) in dimensionless form
d—C=1—C—aC, (ii)
dr
where
kV
a=—.
T
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(b) Determine the equilibrium solution of Eq. (ii), draw a
phase line diagram, and determine whether the equilibrium
solution is asymptotically stable or unstable. Then sketch a
phase portrait with a representative set of solution curves.

36. A pond forms as water collects in a conical depression of
radius a and depth /. Suppose that water flows in at a constant
rate k and is lost through evaporation at a rate proportional
to the surface area.

(a) Show that the volume V(¢) of water in the pond at time ¢
satisfies the differential equation

dv/dt = k — ax(3a/xh)**V*3,

where « is the coefficient of evaporation.

(b) Find the equilibrium depth of water in the pond. Is the
equilibrium asymptotically stable?

(¢) Find a condition that must be satisfied if the pond is not
to overflow.

37. The Solow model of economic growth (ignoring the ef-
fects of capital stock depreciation) is

K =cof (k) - (n+ )k, ®
where k is capital stock per unit of effective labor, f(k) is

GDP per unit of effective labor, and 0,0 < ¢ < 1, is the frac-
tion of gross domestic product (GDP) devoted to investment.

The parameters n and g, growth rates of labor L and technol-
ogy A, respectively, appear in the equations

d—L = d—A = gA

dt dt
The product A(7)L(z) is referred to as effective labor and the
output Y of the economy is given by Y = ALf(k). Assume
that the production function f(k) satisfies the following con-
ditions:
@) f©0)=0, f(k)>O0fork>0,
(i) f'(k) >0, f"(k)<O0fork >0,
(iii) lim,_,f'(k) = o0, lim,_ f'(k) =0.
For example, the function f(k) = ck* where 0 < a < 1 satis-
fies conditions (i), (ii), and (iii).

nlL,

(a) Draw a phase line diagram of Eq. (i) by sketching the
graphs of actual investment cf (k) and break-even invest-
ment (n + g)k on the same set of coordinate axes. Show that
Eq. (i) has an asymptotically stable equilibrium solution k*.

(b) When k =k*, we say the Solow economy is on its
balanced growth path. Show that when k = k*, the output of
the economy grows at the combined growth rates of labor and
technology,

dy

= = Y.
7 n+g

1.3 Definitions, Classification, and

Terminology

DEFINITION
1.3.1

In Sections 1.1 and 1.2 we gave examples to introduce you to a number of important topics in
the context of first order differential equations: mathematical modeling, solutions, integral
curves, initial value problems, phase line diagrams, direction fields, equilibrium points,
and concepts of stability. Prior to embarking on an in-depth study of first order equations,
we briefly step back and give you a broader view of differential equations by presenting a
few important definitions, introducing some commonly used terminology, and discussing
different ways that differential equations are classified. This background information will
enhance your understanding of the subject in the following ways:

P 1t will provide you with an organizational framework for the subject;

P> it will acquaint you with some of the language used to discuss the subject in a sensible
manner;

P> it will give you perspective on the subject as a whole.

We begin with a definition of a differential equation.

Differential Equation. An equation that contains derivatives of one or more unknown
functions with respect to one or more independent variables is said to be a differential
equation.
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The a priori unknown functions referred to in Definition 1.3.1 are dependent variables.
When we write down a differential equation, such as Eq. (2) in Section 1.1,

du
i k(u — Tp),
the unknown function u is considered to be a function of ¢, and is therefore a dependent
variable. Thus Definition 1.3.1 may be alternatively expressed as “an equation that contains
derivatives of one or more dependent variables with respect to one or more independent
variables is said to be a differential equation.”

Definition 1.3.1 underlies the following classifications based on (i) the number of inde-
pendent variables, (ii) the number of unknown functions, and (iii) the highest order deriva-
tives that appear in the equations.

Ordinary and Partial Differential Equations

We make a distinction between differential equations in which there is only one independent
variable and differential equations in which there are two or more independent variables.

If the unknown function (or functions) depend on a single independent variable, then
the only derivatives that appear in the equation are ordinary derivatives. In this case the
differential equation is said to be an ordinary differential equation (ODE). For example,
all of the differential equations that appear in Section 1.1 are ODEs.

If the unknown function (or functions) depend on more than one independent variable,
and partial derivatives appear in the equation, then the differential equation is said to be a
partial differential equation (PDE). Examples of PDEs are the three archetypal equations
of mathematical physics shown in Table 1.3.1.

Three archetypal PDEs of mathematical physics.

. ou 0%u . .
heat equation, —=D—r0, independent variables 7 and x. (1)
ot 0x?
92 9%
wave equation, 2y 2 —y, independent variables 7 and x. 2)
or? 0x?
, . 2V 9%V . .
Laplace’s equation, —+ — =0, independent variables x and y. 3)
oxz  0y?

In Eq. (1) u(x, 1) is the temperature of a metal rod at position x at time #; in Eq. (2) y(x, f)
is the vertical displacement from equilibrium of a horizontal vibrating string at position x
at time #; in Eq. (3) V(x,y) is the electric potential at the point (x, y) in a metal plate with a
prescribed distribution of electric charge around the boundary. All of these equations have
counterparts with n > 3 independent variables.

Systems of Differential Equations

Another classification of differential equations depends on the number of unknown func-
tions that are involved. If there is a single function to be determined, then one equation is
sufficient and is referred to as a scalar equation. All of the differential equations that ap-
pear in Section 1.1 are scalar ODEs. However, if there are two or more unknown functions,
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then a system of equations is required. Systems arise whenever there are two or more com-
ponents that interact in some manner.! For example, the Lotka—Volterra, or predator—prey
equations are important in ecological modeling. They have the form

dx/dt = ax— axy @
dy/dt = —cy + yxy.

where x(¢) and y(7) are the respective populations of the prey and predator species. These
equations provide an example of what is often one of the main problems confronting the
mathematical modeler: “In terms of the variables, how do we mathematically represent
the interaction of various components of the phenomenon?” The system (4) arises from
the following assumptions. The prey are assumed to have an unlimited food supply, and to
reproduce exponentially unless subject to predation; this exponential growth is represented
in the first equation of the system (4) by the term ax. The rate of predation upon the prey
is assumed to be proportional to the product of the predator and prey populations; this is
represented above by —axy. If either x or y is zero, then there is no predation. In the second
equation yxy represents the growth of the predator population. A different constant is used
since the rate at which the predator population grows is not necessarily equal to the rate
at which it consumes the prey. The term —cy represents the loss rate of the predators due
to either natural death or emigration; it leads to an exponential decay in the absence of
prey. The constants a, «, ¢, and y are based on empirical observations and depend on the
particular species being studied. Systems of equations are discussed in Chapters 3, 6, and
7; in particular, the Lotka—Volterra equations are examined in Section 7.4. In some areas
of applications, it is not unusual to encounter very large systems containing hundreds, or
even thousands of equations.

The order of a differential equation is the order of the highest derivative, ordinary or partial,
that appears in the equation. The equations in Section 1.1 are all first order ODEs, while
each of Egs. (1), (2), and (3) is a second order PDE. The equation

ay” + by +cy =f(), o)

where a, b, and ¢ are given constants, and f is a given function, is a second order ODE.
Equation (5) is a useful model of physical systems, for example, the motion of a mass
attached to a spring, or the current in an electric circuit; we will consider it in detail in
Chapter 4. More generally, the equation

Flt,u(?),d @), ..., u"™@)] =0 (6)

is an ODE of the nth order. Equation (6) expresses a relation between the independent
variable ¢ and the values of the function u and its first n derivatives «’(¢), u”’ (¢), ..., u"™(¢).
It is convenient and customary to write y for u(f) with y/,... ,y(”) standing for
W' (1), 1" (1), ..., u" (). Thus Eq. (6) is written as

Flty,y,....y"] =o0. 7

'We will frequently use the word system to refer to (i) a real-world group or combination of interrelated,
interdependent, or interacting elements forming a collective entity, and (ii) a system of equations that model
that entity. Although closely related and often identified with one another, they are not the same.
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For example,
ym + Zety" +yy/ — t4 (8)

is a third order equation for y = u(r). Occasionally, other letters will be used instead of ¢
and y for the independent and dependent variables; the meaning should be clear from the
context.

We assume that it is always possible to solve a given ordinary differential equation for
the highest derivative. Thus we assume Eq. (7) can be written as

Y =f(t,y,y", ...,y ©)

We study only equations of the form (9), although in the process of solving them, we often
find it convenient to rewrite them in other forms.

Linear and Nonlinear Equations

DEFINITION
1.3.2

Linear Differential Equation. An nth order ordinary differential equation

Ft,y,y,..., y(”)) = 0 is said to be linear if it can be written in the form
apg@Oy"” +a @y + -+ a, )y = g(0).? (10)
The functions a, ay, ..., a,, called the coefficients of the equation, can depend at most

on the independent variable ¢. Equation (10) is said to be homogeneous if the term g()
is zero for all 7. Otherwise, the equation is nonhomogeneous.

Important special cases of Eq. (10) are first order linear equations, ay(f)y’ + a;(t)y = g(?),
the subject of Section 2.2, and second order linear equations,

ag@y" + a (Y + ay(t)y = g(v),

which we take up in Chapter 4.

An ODE that is not of the form (10) is a nonlinear equation. The distinction between
a linear ODE and a nonlinear ODE hinges only on how the dependent variable y and its
derivatives y',y”, ..., y"™ appear in the equation: for an equation to be linear, they can ap-
pear in no other way except as designated by the form (10).

Common reasons that an ODE is nonlinear are that there are terms in the equation in
which the dependent variable y or any of its derivatives

(i) are arguments of a nonlinear function, for example, terms such as siny, ™, or \/1 + y2,

(ii) appear as products, or are raised to a power other than 1, such as y> and yy’.

These statements also apply to equations in which there are two or more dependent vari-
ables, that is, to systems of differential equations. The presence of such terms often makes
it easy to determine that an equation is nonlinear by observation. For example, Eq. (8) is
nonlinear because of the term yy’. Each equation in system (4) is nonlinear because of the
terms that involve the product xy of the dependent variables.

2Comparing Eq. (10) with Eq. (7), we see that an nth order ODE is linear only if
F [t,y,y’, ,y(”)] = ag(y™ + a; (YD + - +a,(t)y — g(0). an

If this is the case, F is said to be a linear function of the variables y,y’,y"”, ..., y®.
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To show that a given equation is linear, you need only match its coefficients with Eq.
(10) of appropriate order, as we show in the following example.

EEEN
EXAMPLE Show that
1
£y +3x%y" + 4y = sin(Inx) (12)
is a linear differential equation and state whether the equation is homogeneous or nonho-
mogeneous.

If, in Eq. (10), the independent variable is chosen to be x instead of ¢, and we set
n=73, ayglx) = X, a;(x) = 3x2, ar(x) =0, az(x) =4, and g(x) = sin(Inx), we see that
Eq. (10) reduces to x*y"”’ 4 3x2y" + 4y = sin(In x). Since g(x) is not the zero function, the
equation is nonhomogeneous.

Solutions
In Example 2, Section 1.1, we showed that directly substituting
u="T,+ ce_k’, c an arbitrary constant, (13)
into the differential equation
du
— = —k(u—T, 14
7 ( 0) (14)
results in the identity
—kce — kt = —kce — kt, —oc0 <t < o0,
and therefore the function in Eq. (13) is a solution of Eq. (14). The following definition
generalizes this notion of a solution to nth order differential equations.
DEFINITION Solution of a Differential Equation. A solution of the ordinary differential equation
1.3.3 (9) on the interval a < r < f is a function ¢ such that ¢’, ¢", ..., ¢ exist and satisfy
¢ =f 1,60, ¢' @), ..., ¢" V()] (15)
foreverytina <t < f.

Thus, to determine if a given function is a solution of a differential equation, we substitute
the function into the equation. If, upon substitution, the differential equation reduces to an
identity, then the function is a solution. Otherwise, the function is not a solution.

EEEN
EXAMPLE Show that y,(f) = cost and y,(#) = sin¢ are solutions of
2

Y'+y=0 (16)

on the interval —co < ¢ < 0.
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Since y| (1) = —sint and y/'(r) = — cos #, substituting y; (¢) into Eq. (16) yields
—cost+ cost =0
Vo n®

for all ¢. Therefore y;(¢) is a solution of Eq. (16) on —oo < ¢ < co. Similarly, substituting
Y,(t) into Eq. (16) gives

—sint + sint =0
¥y (0 y2(0)

for all ¢, so y,(¢) is also a solution of Eq. (16) on —co < < 0.

EEEN
EXAMPLE Show that y(x) = ¢;x> + c,x” Inx + % Inx + 3—‘, where ¢ and ¢, are arbitrary constants, is a
3 solution of

xzy” —3xy +4y =Inx 17)

on the interval 0 < x < oo.
Subsituting y(x) into the left side of Eq. (17) yields

4x 4

- o J/

x2<2c1 +c,2Inx+3) - 4% > —3x<2c1x+cz(2xlnx+3)+ 41 ) +4<c1x2+02x21nx+ ilnx+ l)
X

. /

y’7(rX) y’\(;) ygc)
= cl(2x2 —6x% + 4x%) + 6‘2(2)(2 Inx + 3x% — 6x% Inx — 3x> + 4x° Inx) — % - % +Inx+1

=c;-0+cy-0+1Inx.

Thus y(x) satisfies Eq. (17) for all 0 < x < o0).

Initial Value Problems

Recall that in Section 1.1 we found solutions of certain equations by a process of direct
integration. For instance, we found that the equation

du

o = —k(u—T,) (18)
has the solution

u=Ty+ce™, (19)

where ¢ is an arbitrary constant. Each value of ¢ corresponds to an integral curve in the
tu-plane. If we want the solution that satisfies the condition

l/l(to) = l/lo, (20)

that is, the integral curve in the 7u-plane that passes through the point (¢, i), we substitute
Eq. (19) into Eq. (20) to get

Ty + ce™ 0 = u,,. (1)
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Solving Eq. (21) for ¢ gives
¢ = o (uy — Ty), (22)
and then replacing c in Eq. (19) by the right side of Eq. (22), we get
u=Ty+ (uy— To)e_k(t_lo), (23)

the solution of the initial value problem consisting of Eq. (18) and Eq. (20).
Let us now consider the simple second order equation

d2y
dr?

Integrating Eq. (24) twice results in two undetermined constants:

=0. (24)

y(@t) =cit+cy. (25)
Values for ¢; and ¢, may be determined, for example, by requiring two initial conditions
¥(tg) =yy and y'(t) = y;. (26)
Substituting the solution (25) into Eqgs. (26) gives
citg+cy=y9 and c; =y;.

Since ¢ = yy, it follows that ¢, =y, — tyy;. The solution of the initial value problem con-
sisting of Eqs. (24) and (26) is therefore the straight line in the zy-plane with slope y; that
passes through the point(ty, y),

y=y1t = 19) + yp.

In general, solving an nth order ordinary differential equation results in # constants of inte-
gration ¢y, ¢,, ..., ¢,,. In applications, these constants of integration are determined by a set
of auxiliary constraints, called initial conditions, on the solutions.

Initial Value Problem. An initial value problem for an nth order differential equation

Y =y, YY) @7
on an interval / consists of Eq. (27) together with 7 initial conditions
Yig)=yo, Y@=y, s ¥ =y, (28)
prescribed at a point #, € I, where yy, vy, ...,Y,_; are given constants.

Thus y = ¢(¢) is a solution of the initial value problem (27), (28) on [/ if, in addition to
satisfying Eq. (27) on I,

) =vo. ) =1, oo V) =y,

EEEN
EXAMPLE
4

Show that ¢(f) = 2cost — 3 sint is a solution of the initial value problem
Y +y=0, y0) =2, y(0)=-3, (29)

on the interval —co < ¢ < 0.
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Just as in Example 2, we substitute ¢() into y'" + y = 0 to find that

—2cost+3sint+2cost—3sint=0
. / . S

(@) ()

~~

for all . Therefore ¢(¢) is a solution of y"/ +y =0 on —co < t < co0. Next we must check to
see if the initial conditions specified in the initial value problem (29) are satisfied. Since

@$(0) =2cos0—3sin0 =2

and

¢'(0) = —2sin0 —3cos0 = -3,

we conclude that ¢(7) is a solution of the initial value problem (29).

PROBLEMS
EE BN E NSNS N E NN EEEEEENERN

In each of Problems 1 through 6, determine the order of the
given differential equation; also state whether the equation is
linear or nonlinear.

d’y  dy
2 o
I.IW+IE+2))—SII1I
d’y dy
2. (I+yY)—=+t—=+y=¢
( y)d[2 o TYy=e

dly &y &y  dy

oSSyl
4. %+1y2=0

5. Z—Z+sin(t+y)=sint

6. %+t%+(cos%)y=t3

Show that Eq. (10) can be matched to each equation in Prob-
lems 7 through 12 by a suitable choice of n, coefficients
ay,ay, ... ,a,, and function g. In each case, state whether the
equation is homogeneous or nonhomogeneous.
dQ ( 1 ) .
—=—— +2sint

dt 141 0
d*y
8. — =
ac P

&’ d
xzaz —3xd—i +4y=Inx, x>0
i [(1 —xz)iP ] +n(n+ 1P, =0, nconstant
dx dx " o

7.

10.

a* d
11. d_tf + (COSt)d_zi) +y=-e¢"sint
d
12. % [p(x)ay] —q(x)y +Ar(x)y =0, A constant

In each of Problems 13 through 20, verify that each given
function is a solution of the differential equation.

13. ¥/ —y=0; v () =€, y,(t) =cosht

14. y" +2y =3y =0; i =e y=e
15. 0 —y=1% y=3t+1

16. Yy + 4" +3y =1, yi() =1/3,

Y =e"+1/3

17. 282y 43ty —y=0, t>0; y,@) =172,
V() =17"

18. 2y +51y +4y=0, t>0; vy, (=12,
y,() =t21Int

19. y" +y=sect, 0<t<n/2;

y=(cost)Incost+tsint

20. Y =2ty=1; y=e" fo’ e ds + e

In each of Problems 21 through 24, determine the values of r
for which the given differential equation has solutions of the
formy = e".

21. y+2y=0

22. ¥y —=y=0

23. y'+y —6y=0

24,y =3y" +2y' =0

In each of Problems 25 and 26, determine the values of r

for which the given differential equation has solutions of the
formy =" fort > 0.

25. 2y +41y +2y=0
26. 2y — 4ty +4y=0
In Problems 27 through 31, verify that y(¢) satisfies the given

differential equation. Then determine a value of the constant
C so that y(¢) satisfies the given initial condition.

27. y +2y=0; (@) = Ce™, y0)=1
28. y' + (sint)y = 0; y(t) = Ce', y(m)=1
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29. v +(2/t)y = (cos)/t*;  y(t) = (sinp) /> + C /1,
=3

30. ' +(t+ Dy=1;
y(n2)=1

3. 2y +1y=2; y= e/t fot el ds + Ce 14,

y0) =1

32. Verify that the function ¢(t) = ¢,;e™ + c,e™? is a solu-
tion of the linear equation

YO =1-1/0+Ce™' /1,

Y +3y +2y=0
for any choice of the constants ¢, and c,. Determine c,
and ¢, so that each of the following initial conditions is
satisfied:
(@) y(0) =-1,
(b) ¥(0) =2,

Yy (0)=4
y(©0)=0

33. Verify that the function ¢(7) = ¢ e’ + c,te' is a solution
of the linear equation

V' =2y +y=0
for any choice of the constants ¢, and ¢,. Determine ¢, and c,
so that each of the following initial conditions is satisfied:
@ y0=3  YyO=1
® yO) =1, YO =-4
34. Verify that the function ¢(¢) = ¢,;e™" cos 2t + c,e™" sin 2¢
is a solution of the linear equation

Y +2y +5y=0
for any choice of the constants ¢, and ¢,. Determine ¢, and c,
so that each of the following initial conditions is satisfied:
@y0=1 YyO=1
(b) y©0) =2, Y0 =5
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First Order Differential
Equations

his chapter deals with differential equations of first order,

dy

where f is a given function of two variables. Any differentiable function

v = ¢(t) that satisfies this equation for all t in some interval is called a
solution. Our object is to develop methods for finding solutions or, if that is not possible,
approximating them. Unfortunately, for an arbitrary function f, there is no general method
forsolving Eq. (1) in terms of elementary functions. Instead, we will describe several meth-
ods, each of which is applicable to a certain subclass of first order equations. The most
important of these are separable equations (Section 2.1), linear equations (Section 2.2),
and exact equations (Section 2.6). In Section 2.5 we discuss another subclass of first order
equations, autonomous equations, for which geometrical methods yield valuable informa-
tion about solutions. Finally, in Section 2.7 we describe other types of first order differen-
tial equations that can be transformed into separable or linear equations, and then solved.
Methods for constructing numerical approximations to solutions are introduced and dis-
cussed in Chapter 8. Along the way, especially in Sections 2.3 and 2.5, we point out some
of the many areas of application in which first order differential equations provide useful
mathematical models.

37
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DEFINITION
2.1.1

2.1 Separable Equations

In Section 1.1 we used a process of direct integration to solve first order linear equations of
the form

dy
— b, 2
lt—ay+ )

where a and b are constants. We will now show that this process is actually applicable to a
much larger class of equations.

We will use x, rather than ¢, to denote the independent variable in this section for two rea-
sons. In the first place, different letters are frequently used for the variables in a differential
equation, and you should not become too accustomed to using a single pair. In particular, x
often occurs as the independent variable. Further, we want to reserve ¢ for another purpose
later in this section.

The general first order equation is

dy

o &Y 3

The equations we want to consider first are called separable, because the right side f(x,y)
has a special form.

Separable Differential Equation. If the right side f(x, y) of Eq. (3) can be written as the
product of a function that depends only on x times another function that depends only
ony,

d
d—y = f(x.y) = p)g(y), @)
X

then the equation is called separable.

If a differential equation is separable, Definition 2.1.1 means we can find two such functions
p and g. For example, Eq. (2) written in the variables (x, y) becomes
dy

ym =f(x,y) = ay+b. (%)
X

One choice for the functions p and g for Eq. (5) is p(x) = 1 and g(y) = ay + b, and therefore
Eq. (5) is separable.

Once we know a differential equation is separable, we can find an expression for the
solution by integration. A convenient shortcut uses the differentials dx and dy = y’(x) dx,
and multiplying Eq. (4) by dx gives

dy = p(x)q(y) dx. (6)

We assume ¢(y) is nonzero for y values of interest, divide Eq. (6) by ¢, and integrate both

sides to produce
/ g 'dy = / p(x) dx. @)

Substituting our choices for p and g, we can integrate both sides of Eq. (7). For example, to
solve Eq. (5), the same calculation steps can be used as in Section 1.1 [where the solution
Eq. (8) is found from Eq. (2) in that section],

) = —g Fee™ (c#0). @®)
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In addition to Eq. (4) for any separable equation, we will use another equivalent form:
d
M) + N(y)d—y = 0. ©)
X

The equivalence follows by choosing, for example, M(x) = —p(x) and N(y) = 1/g(y). This
means that a separable equation can be written in the differential form

M(x)dx+ N(y)dy = 0. (10)

Then, if you wish, terms involving each variable may be separated by the equals sign. The
differential form (10) is also more symmetric and tends to diminish the distinction between
independent and dependent variables.

A separable equation can be solved by integrating the functions M and N. We illustrate
the process by an example and then discuss it in general for Eq. (9).

EEEN
EXAMPLE
1

Show that the equation

dy  x*

= 11
dx 1-—y? (an
is separable, and then find an equation for its integral curves.
If we write Eq. (11) as
d
2+ (1-»2 =0, (12)
dx

then it has the form (9) and is therefore separable. Next, observe that the first term in Eq. (12)
is the derivative of —x3/3 with respect to x. Further, if we think of y as a function of x, then

by the chain rule
4 y_y_3 _d y_i ﬂz(l_)ﬁ)@
dx 3 dy 3 ) dx dx’

Thus Eq. (12) can be written as
or

Therefore by integrating, we obtain
_x3+3y_y3 =c, (13)

where ¢ is an arbitrary constant. Equation (13) is an equation for the integral curves of
Eq. (11). A direction field and several integral curves are shown in Figure 2.1.1. Any dif-
ferentiable function y = ¢(x) that satisfies Eq. (13) is a solution of Eq. (11). An equation of
the integral curve passing through a particular point (x,, y,) can be found by substituting x;,
and y, for x and y, respectively, in Eq. (13) and determining the corresponding value of c.
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FIE0 3V ASENE  Direction field and integral curves of y = x2 /(1 — y?).

&

General Method for Separable Equations

Essentially the same procedure can be followed for any separable equation. Returning to

Eq. (9), let H| and H, be any antiderivatives of M and N, respectively. Thus
H®=Mx, H) =N,
and Eq. (9) becomes
d
H|(0) + Hy0) 2 = 0.
According to the chain rule, if y is a function of x, then

dH,(Y)dy _ d
dy dx dx

d
Hy0)Z = Hy().

Consequently, we can write Eq. (15) as
d
E[Hl(x) + Hy(»)] = 0.

By integrating Eq. (17), we obtain
H (%) + Hy(y) = ¢,

(14)

15)

(16)

A7)

(18)

where c is an arbitrary constant. Any differentiable function y = ¢p(x) that satisfies Eq. (18)
is a solution of Eq. (9); in other words, Eq. (18) defines the solution implicitly rather than
explicitly. In practice, Eq. (18) is usually obtained from Eq. (10) by integrating the first term
with respect to x and the second term with respect to y, or equivalently, from Eq. (7). This

more direct procedure is illustrated in Examples 2 and 3 below.
If, in addition to the differential equation, an initial condition

Y(xo) = Yo

19)
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is prescribed, then the solution of Eq. (9) satisfying this condition is obtained by setting
X =xy and y =y, in Eq. (18). This gives

¢ = H(xg) + Hy(yp)- (20)

Substituting this value of ¢ in Eq. (18) and noting that

X y
Hi(x) — H{(xy) = / M(s) ds, Hy(y) — Hy(yo) = / N(s) ds,
X0

Yo

we obtain
x y
/ M(s) ds+/ N(s)ds = 0. 201
X0 Yo

Equation (21) is an implicit representation of the solution of the differential equation (9)
that also satisfies the initial condition (19). You should bear in mind that the determination
of an explicit formula for the solution requires that Eq. (21) be solved for y as a function of
x. Unfortunately, it is often impossible to do this analytically; in such cases, you can resort
to numerical methods to find approximate values of y for given values of x. Alternatively,
if it is possible to solve for x in terms of y, then this can often be very helpful.

EEEN
EXAMPLE
2

Solve the initial value problem

d 2
ay _3x"+4x+2 i y(0) = —1, (22)
- 20-1)

and determine the interval in which the solution exists.
The differential equation can be written as

20y = 1) dy = 3x* + 4x + 2) dx
Integrating the left side with respect to y and the right side with respect to x gives
=2y =x+2% +2x +c, (23)

where c is an arbitrary constant. To determine the solution satisfying the prescribed initial
condition, we substitute x = 0 and y = —1 in Eq. (23), obtaining ¢ = 3. Hence the solution
of the initial value problem is given implicitly by

Vv =2y =x> + 247 + 2x + 3. (24)

To obtain the solution explicitly, we must solve Eq. (24) for y in terms of x. That is a simple
matter in this case, since Eq. (24) is quadratic in y, and we obtain

y=1+Vx3+2x2+2x+4. (25)

Equation (25) gives two solutions of the differential equation, only one of which, however,
satisfies the given initial condition. This is the solution corresponding to the minus sign in
Eq. (25), so we finally obtain

y=¢px)=1-—Vx3+2x2+2x+4 (26)

as the solution of the initial value problem (22). Note that if the plus sign is chosen by mis-
take in Eq. (25), then we obtain the solution of the same differential equation that satisfies
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the initial condition y(0) = 3. Finally, to determine the interval in which the solution (26)
is valid, we must find the interval (containing the initial point x = 0) in which the quantity
under the radical is positive. The only real zero of this expression is x = —2, so the desired
interval is x > —2. The solution of the initial value problem and some other integral curves
of the differential equation are shown in Figure 2.1.2. Observe that the boundary of the in-
terval of validity of the solution (26) is determined by the point (—2, 1) at which the tangent

(ﬁ//
SR

SISV Integral curves of y = (3x% + 4x +2)/2(y — 1).

EEEN
EXAMPLE
3

Solve the equation

ﬂ Ax =3
dx  4+y3

27)

and draw graphs of several integral curves. Also find the solution passing through the point
(0, 1) and determine its interval of validity.
Rewriting Eq. (27) as
4 +y>) dy = (4x - x%) dx,
integrating each side, multiplying by 4, and rearranging the terms, we obtain
Y16y +xt —8x% =, (28)
where ¢ is an arbitrary constant. Any differentiable function y = ¢p(x) that satisfies Eq. (28)

is a solution of the differential equation (27). Graphs of Eq. (28) for several values of ¢ are
shown in Figure 2.1.3.
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LIS VISR Integral curves of y = (4x — x3)/(4 +y?). The solution passing through
(0, 1) is shown by the heavy curve.

To find the particular solution passing through (0, 1), we set x =0 and y = 1 in Eq. (28)
with the result that ¢ = 17. Thus the solution in question is given implicitly by

o+ 16y +x* = 8xF = 17. (29)

It is shown by the heavy curve in Figure 2.1.3. The interval of validity of this solution
extends on either side of the initial point as long as the function remains differentiable.
From the figure, we see that the interval ends when we reach points where the tangent
line is vertical. It follows, from the differential equation (27), that these are points where
4433 =0, ory=(-4)/3 = —1.5874. From Eq. (29), the corresponding values of x are
x = +3.3488. These points are marked on the graph in Figure 2.1.3.

Sometimes an equation of the form (3),

d
s =f(x,y),

dx
has a constant solution y = y,. Such a solution is usually easy to find because if
J(x, y9) = 0 for some value y, and for all x, then the constant function y = y, is a solu-
tion of the differential equation (3). For example, the equation

dy (y—3)cosx

= 30
dx 1+2y? G

has the constant solution y = 3. Other solutions of this equation can be found by separating
the variables and integrating.
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First Order Differential Equations

The investigation of a first order nonlinear equation can sometimes be facilitated by
regarding both x and y as functions of a third variable 7. Then

dy dy/dt
dy _ dyfdi (1)
dx  dx/dt

If the differential equation is
dy _F(x.y)
== , 32
dx  G(x,y) 2

then, by comparing numerators and denominators in Egs. (31) and (32), we obtain the
system

dx/dt = G(x,y), dy/dt = F(x,y). (33)

At first sight it may seem unlikely that a problem will be simplified by replacing a single
equation by a pair of equations, but, in fact, the system (33) may well be more amenable
to investigation than the single equation (32). Nonlinear systems of the form (33) are intro-
duced in Section 3.6 and discussed more extensively in Chapter 7.

Note on Explicit and Implicit Solutions

In Example 2, it was not difficult to solve explicitly for y as a function of x. However this
situation is exceptional, and often it will be better to leave the solution in implicit form, as
in Examples 1 and 3. Thus, in the problems below and in other sections where nonlinear
equations appear, the words “solve the following differential equation” mean to find the
solution explicitly if it is convenient to do so, but otherwise, to find an equation defining
the solution implicitly.

PROBLEMS
EE B BN EEEEEEEEEEEEEEENERn

In each of Problems 1 through 12, solve the given differential

In each of Problems 13 through 28:

equation. (a) Find the solution of the given initial value problem in
1.y =x*)y explicit form. .
Y (b) Plot the graph of the solution.
2.y =y +x0) (c) Determine (at least approximately) the interval in which
3.y +y3sinx=0 the solution is defined.
4.y =T = 1D/(T+5y) 1By =(1-120y,  y0)=—3
5.y = (sin® 2x)(cos? y) 4.y =3-20/y, y1)=-6
6. xy =(1-yH'72 15. xdx + ye™*dy =0, y(0) =1
2
7.y = (x+ xp7)e” 16. dr/d0 =r*]0,  r(1)=2
g e 17y =3x/G+2y),  yO)=-7
dx Y -e
p 5 18. ' =2x/(1 +2y), v2)=0
y X
9., — = r— 2 3,2 - _
o 1+y? 19. ); 2xy” +4x°y7, y(1) 2
o, D _ sechx 20, Z=xed @)=0
o T4y -
dy
dy 21, 2 =(1+y)tan2x,  y0)=-3
11. - = 4\/x_y dx
dy 2.y =2+ D/6, 30 =-1/V2
— (v — 12
12. = =x0 =) 23y =B —en)/Qy—11),  y0) =11
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4. ¥y =y-xy,  y1)=2

25. Yy =(e* = e")/(3 +4y), y0) =1
dy x
26. 2y— = , 3)=-1
Y Wy y3)
27. sin2xdx + cos3ydy =0, y(x/2)=x/3

28. y2(1 — x2)'/2dy = arcsin xdx, y0)=1

In Problems 29 through 36, obtain the requested results

by solving the given equations analytically or, if necessary,

by graphing numerically generated approximations to the

solutions.

29. Solve the initial value problem
Y =(1+3x)/(12y° - 12y),

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where
the integral curve has a vertical tangent.

y(0)=2

30. Solve the initial value problem
Y =22/2y-6),  y1)=0
and determine the interval in which the solution is valid.

Hint: To find the interval of definition, look for points where
the integral curve has a vertical tangent.

31. Solve the initial value problem
Y=20"+x7  y0)=1
and determine where the solution attains its minimum value.
32. Solve the initial value problem
V=(06-¢9/C+2y), y0)=0

and determine where the solution attains its maximum value.

33. Solve the initial value problem

Yy =2cos2x/(10 + 2y), y(0) =-1

and determine where the solution attains its maximum value.

34. Solve the initial value problem

y=21+01+y),  y0)=0

and determine where the solution attains its minimum value.

35. Consider the initial value problem

Y =14 —-y)/3, ¥(0) = y,.

(a) Determine how the behavior of the solution as ¢ increases
depends on the initial value y,.

(b) Suppose that y, = 0.5. Find the time T at which the so-
lution first reaches the value 3.98.

36. Consider the initial value problem

YV=n@-n/0+0,  y0)=y,>0.

(a) Determine how the solution behaves as t — co.

(b) If y, = 2, find the time 7 at which the solution first
reaches the value 3.99.

(c¢) Find the range of initial values for which the solution lies
in the interval 3.99 <y < 4.01 by the time 7 = 2.

37. Solve the equation

dy ay+b
dx  cy+d’

where a, b, ¢, and d are constants.

2.2 Linear Equations: Method
of Integrating Factors

In Section 1.1, we were able to find an explicit analytic solution of the differential equation

d
?’: = —k(u — T,) 1

modeling heat exchange between an object and its constant temperature surroundings. The
same method can also be used to solve the differential equation

d
§=rp—a ®)

for the population of field mice preyed on by owls (see Example 3 in Section 1.1), and the

differential equation

m% =mg—yv 3)
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DEFINITION
2.2.1

for the velocity of a falling object (see Problem 8 in Section 1.1). But the method cannot be
used to solve Example 4 in Section 1.2

du _ —k[u — Ty — A sin(wt)] “)
dt
for the temperature in a building subject to a varying external temperature.

There is no general method for finding analytic solutions to all first order differential
equations. What we can do is this. Given a first order differential equation, determine if it
belongs to a class of equations for which we know a corresponding solution method that
works for all members of that class. Then the method can be applied to solve the given equa-
tion. For this approach to be useful, we need a collection of important classes of equations
and their corresponding solution methods. We have seen one such class already, the sepa-
rable equations in Section 2.1; we will see another in this section; and others will be taken
up in Sections 2.5 through 2.7. The class of equations that we consider here is specified by
the following definition.

A differential equation that can be written in the form

dy _
o +p@)y = g(0) ©)

is said to be a first order linear equation in the dependent variable y.

We can always find a solution to a first order linear equation, provided that a solution exists.
Note that each of Eqs. (1)—(4) is a first order linear equation because each can be obtained
by an appropriate choice of p(¢) and g(¢) in Eq. (5). For example, if we write Eq. (4) as

% + ku = kT, + kA sin(wr), (6)

we see that it is a special case of Eq. (5) in which the dependent variable is u, p(¢) = k and
g(t) = kTy + kA sin(wt).

Equation (5) is referred to as the standard form for a first order linear equation. The
more general first order linear equation,

d
aomd—f +a,(t)y = h(z), %)

can be put in the form of Eq. (5) by dividing by a(#), provided that a,() is not zero. The
function p(#) in Eq. (5)is a coefficient in the equation. If g(7) = 0, Eq. (5) takes the form

dy
— +p()y =0, 8
i p@)y (®)
and is said to be a homogeneous linear equation; otherwise, the equation is nonhomoge-
nous.

The equations

y =sin()y and t/ +2y=0
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are linear and homogeneous, while

Y + %y = &;t and (1472 =dty+(1+1H)72
t
are linear and nonhomogeneous.
The equations

Y +y*=0 and y +sin(ry)=1+1

are not linear (we then say they are nonlinear), because the dependent variable y is squared
in the first equation, and appears as an argument of the sine function in the second equation.
Thus these equations cannot be written in the form of Eq. (5).

The method that we use to solve Eq. (5) is due to Leibniz, who was a co-inventor of
calculus. It involves multiplying the equation by a certain function u(t), chosen so that the
resulting equation is readily integrable. The function u(#) is called an integrating factor,
and the first challenge is to determine how to find it. We will introduce this method in a
simple example, and then show that the method extends to the general equation (5).

EEEN
EXAMPLE
1

Solve the differential equation

dy
— —2y=4-1. 9
P ()]
Plot the graphs of several solutions and draw a direction field. Find the particular solution
whose graph contains the point (0, —2). Discuss the behavior of solutions as t — oo.

The first step is to multiply Eq. (9) by a function pu(?), as yet undetermined, so that

d
ll(f)d—); —2u(0)y = u()(4 - 1). (10)

The idea now is to try to find a u(t), so that we recognize the left side of Eq. (10) as the
derivative of some particular expression. If we can, then we can integrate Eq. (10), even
though we do not know the function y. To guide our choice of the integrating factor u(?),
observe that the left side of Eq. (10) contains two terms and that the first term is part of the
result of differentiating the product u(f)y. Thus let us try to find pu(z), so that the left side
of Eq. (10) becomes the derivative of the expression u(f)y. If we compare the left side of
Eq. (10) with the differentiation formula

du(t)
dr

we note that the first terms are identical for any u(f), and that the second terms also agree,
provided that we choose u(?) to satisfy

du(r)

— = 2u(?). 12

0 u(0) (12)

Therefore our search for an integrating factor will be successful if we can find a solution
of Eq. (12). Perhaps you can already identify a function that satisfies Eq. (12): What well-
known function from calculus has a derivative that is equal to —2 times the original func-
tion? More systematically, rewrite Eq. (12) as

du(n/dt
u(t

4 it o ®
E[M(t)y] = u() I + (11)

-2, (13)
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which is equivalent to

L inlu| = -2, (14)
Then it follows that
In|u@®)| =-2t+C, (15)
or
u(t) = ce™ . (16)

Thus the function u(¢) given by Eq. (16) is an integrating factor for Eq. (9). Since we need
just one integrating factor, we choose ¢ to be one in Eq. (16) and use u(f) = e 2.

Now we return to Eq. (9), multiply it by the integrating factor =%, and obtain
d
e_Z’d—); —2e7y =4 — 172, (17)

By the choice we have made of the integrating factor, the left side of Eq. (17) is the derivative
of e~%'y, so that Eq. (17) becomes

=2t

%(e y) =4de 2 — 17, (18)

By integrating both sides of Eq. (18), we obtain

Uy =4 / s — / e 2dr + c, (19)

and, using integration by parts on the second integral,
ey =27 — [—% te™? — ie_%] +c, (20)
where c is an arbitrary constant. Finally, by solving Eq. (20) for y, we obtain
y=—%+%t+ce2t. 2D

Equation (21) is referred to as the general solution of Eq. (9) because it contains all solutions

of that equation. To find the solution passing through the point (0, —2), we set ¢t = 0 and

y=—-21in Eq. (21), obtaining —2 = —% + c¢. Thus ¢ = —i, and the desired solution is
y=—T4ii- 1o (22)

Figure 2.2.1 includes the graphs of Eq. (21) for several values of ¢ with a direction field
in the background. The solution passing through (0, —2) is shown by the heavy curve. The
behavior of the family of solutions (21) for large values of 7 is determined by the term ce*.
If ¢ # 0, then the solution grows exponentially large in magnitude, with the same sign as ¢
itself. Thus the solutions diverge as ¢ becomes large. The boundary between solutions that
ultimately grow positively from those that ultimately grow negatively occurs when ¢ = 0.
If we substitute ¢ = 0 into Eq. (21) and then set # = 0, we find that y = —% is the separation
point on the y-axis. Note that, for this initial value, the solution is y = -1 + %t; it grows
positively, but linearly rather than exponentially.
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AUV Direction field and integral curves of y’ — 2y =4 — 1.

The Method of Integrating Factors for Solving y' + p(t)y = g(t)
Proceeding as in Example 1, we can apply the method of integrating factors to Eq. (5),

dy

dt
where p and g are given functions. To determine an appropriate integrating factor, we mul-
tiply Eq. (5) by an as yet undetermined function p(¢), obtaining

+ p()y = g(1),

d
#(t);); +p(Ou()y = u(g(@). (23)

Following the same approach used in Example 1, we see that the left side of Eq. (23) is the
derivative of the product pu(¢)y, provided that u(f) satisfies the equation

du(t)
dt
If we assume temporarily that u(f) is positive, then we have
du()/dt
uo

= p(Ou(@). (24)

p(),
and consequently,
In u(?) = /p(t) dt+ k.

By choosing the arbitrary constant k to be zero, we obtain the simplest possible function
for u, namely,

u(t) = exp / o) d. (25)
Note that u(?) is positive for all 7, as we assumed. Returning to Eq. (23), we have

%[ﬂ(t)y] = u(Dg(0). 26)
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Hence
u(0)y = / ug@ dt +c, (27)

where ¢ is an arbitrary constant. Sometimes the integral in Eq. (27) can be evaluated in
terms of elementary functions. However, this is not always possible, so the general solution
of Eq. (5) is

t
y=—L / u()g(s)ds +c| | (28)
u(t) 1o

where 1, is some convenient lower limit of integration. Observe that Eq. (28) involves two
integrations, one to obtain u(f) from Eq. (25) and the other to determine y from Eq. (28).
In summary:

Use the following steps to solve any first order linear equation.
1. Put the equation in standard form y’ + p(f)y = g(?).

2. Calculate the integrating factor u(f) = e/ PO,

3. Multiply the equation by () and write it in the form [u(£)y]’ = u(®)g(®).
4. Integrate this equation to obtain u(f)y = f u(®g() dt + c.

5. Solve for y.

These steps constitute a systematic method, or algorithm, for solving any first order linear
equation. The primary results of this algorithm are Eq. (25) for the integrating factor and
Eq. (28) for the solution.

Note: 1t is helpful to memorize Eq. (25) for the integrating factor, but avoid memorizing
Eq. (28). To solve a particular problem, you should understand and apply the steps of the
procedure above, rather than risk errors in memorizing Eq. (28).

HEEN
EXAMPLE
2

Solve the initial value problem
' +2y =4, (29)
w1 =2 (30)

In order to determine p(¢) and g(#) correctly, we must first rewrite Eq. (29) in the standard
form (5). Thus we have

y + %y = 4, (31)
so p(t) = 2/t and g(¢t) = 4t. To solve Eq. (31), we first compute the integrating factor u(t):
_ 2 o o _ 2
u(t) = exp ?dt—e =r.

On multiplying Eq. (31) by u(f) = 2, we obtain

2y + 2ty = (Py) =47,
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and therefore
Py=r+c,
where c is an arbitrary constant. It follows that

y=~+5 (32)
t
is the general solution of Eq. (29). Integral curves of Eq. (29) for several values of ¢ are
shown in Figure 2.2.2. To satisfy the initial condition (30), it is necessary to choose ¢ = 1;
thus
1
y=1t+ t_2’ t>0 (33)

is the solution of the initial value problem (29), (30). This solution is shown by the heavy
curve in Figure 2.2.2. Note that it becomes unbounded and is asymptotic to the positive
y-axis as t — 0 from the right. This is the effect of the infinite discontinuity in the coefficient
p(#) at the origin. The function y = 2 + (1/¢2) for t < 0 is not part of the solution of this
initial value problem.

This is the first example in which the solution fails to exist for some values of . Again,
this is due to the infinite discontinuity in p(¢) at r = 0, which restricts the solution to the

interval 0 < ¢ < oo.

(1,2)

|
—
I

FLE0 I3V AVAVIE  Integral curves of 1y + 2y = 472

Looking again at Figure 2.2.2, we see that some solutions (those for which ¢ > 0)
are asymptotic to the positive y-axis as t — 0 from the right, while other solutions (for
which ¢ < 0) are asymptotic to the negative y-axis. The solution for which ¢ = 0, namely,
y= 2, remains bounded and differentiable even at ¢ = 0. If we generalize the initial condi-
tion (30) to

(1) =y, (34)
then ¢ =y, — 1 and the solution (33) becomes
-1

y=t2+y°t2 . >0 35)

As in Example 1, this is another instance where there is a critical initial value, namely,
yo = 1, that separates solutions that behave in two very different ways.
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EEEN
EXAMPLE
3

Solve the initial value problem

2y +1y=2, (36)
y0) = 1. (37

First divide the differential equation (36) by two, obtaining
Yo+ %y = 1. (38)

Thus p(t) = #/2, and the integrating factor is u(f) = exp(t*/4). Then multiply Eq. (38) by
u(1), so that

1Yy + %et2/4y =/ (39)

The left side of Eq. (39) is the derivative of e’/ 4y, so by integrating both sides of Eq. (39),
we obtain

e’z/4y=/e’2/4dt+c. (40)

The integral on the right side of Eq. (40) cannot be evaluated in terms of the usual elemen-
tary functions, so we leave the integral unevaluated. However, by choosing the lower limit
of integration as the initial point ¢ = 0, we can replace Eq. (40) by

t
e’2/4y = / s + ¢, 41)
0

where c is an arbitrary constant. It then follows that the general solution y of Eq. (36) is
given by

t
y= e‘lz/4/ e Ads + ce 14, 42)
0

The initial condition (37) requires that ¢ = 1.

The main purpose of this example is to illustrate that sometimes the solution must be
left in terms of an integral. This is usually at most a slight inconvenience, rather than a
serious obstacle. For a given value of 7 the integral in Eq. (42) is a definite integral and can
be approximated to any desired degree of accuracy by using readily available numerical
integrators. By repeating this process for many values of ¢ and plotting the results, you
can obtain a graph of a solution. Alternatively, you can use a numerical approximation
method, such as Euler’s method, discussed in Section 8.1, or others discussed in Chapter 8,
that proceed directly from the differential equation and need no expression for the solution.
Modern software packages such as Maple, Mathematica, and Matlab, among others, readily
execute such procedures and produce graphs of solutions of differential equations.

Both of these procedures for finding solutions have advantages. For example, the ana-
lytical formula Eq. (42) contains a constant ¢ that you can easily identify as the value y(0)
of the solution at # = 0. The solution y(#) obviously depends on y(0), which may be con-
sidered a parameter of the solution. In many applications it is important to understand the
dependence of a solution on its parameters. In this example, Eq. (42) shows concisely that
the solution y(7) depends on the parameter y(0) as a multiple of one exponential function;
in other words, the parameter specifies how much of that exponential is included in the
solution. Figure 2.2.3 displays graphs of Eq. (42) for several values of c¢. From the figure
it is reasonable to conjecture that all the solutions approach a common limit as ¢ — oo.
It is interesting that the analytical formula Eq. (42) allows determination of the exact
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limiting value and of the rate of approach to the limiting value (see Problem 32). Alter-
natively, the graphs in the figure can also be found directly by numerical approximation
methods. However, with that precedure, the dependence of the solution on the parameter
¥(0) and the limiting value for large positive ¢ are not so apparent.

PRSI SV  Integral curves of 2y’ + ry = 2. The heavy curve satisfies y(0) = 1.

For our last example, we solve Eq. (10) of Section 1.2, the differential equation from
Example 4 of that section describing the heating and cooling of a building subject to external
temperature variations.

EEEN
EXAMPLE
4

Solution

Find the general solution of

du :
i —k[u — Ty — A sin(w?)].

The standard form of this equation is
du .
T + ku = kT + kA sin(wt).
Using the integrating factor, u(r) = e, we obtain
(¢u)" = kTye" + kA" sin(wr). 43)
Integrating and solving for u give
u=Ty+kAe ™ / M sin(wr) dt + ce™™. (44)

Setting [ = f ! sin(wt) dt and integrating by parts twice, we find that

2
I= —lek’ cos(wt) + Lek’ sin(wt) — k—I.
w w? w?
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Solving for /, we get

1= / &M sin(er) di = —— &M [k sin(er) —  cos(@)]. (45)
k2 + w?
Of course, the integral in Eq. (44) can also be easily done using a computer algebra system.
Substituting the result (45) into Eq. (44) then gives

kA [k sin(wt) — w cos(wr)] + ce™X,

k% + w?

in agreement with Eq. (11) of Section 1.2. Some graphs of the solution are shown in Figure
1.2.8.

M=T0+

PROBLEMS
E NN NN NN EEEEEEEEEN

In each of Problems 1 through 12:

(a) Draw a direction field for the given differential equation.
(b) Based on an inspection of the direction field, describe
how solutions behave for large ¢.

(c) Find the general solution of the given differential equa-
tion, and use it to determine how solutions behave as t — co.

Ly +dy=t+e™

2.y =2y =1

3.y +y=te'+1

4. ¥y + (1 /1)y = Scos 2t, t>0
5.y =2y=3¢

6. 1y +2y =sint, t>0
7.y + 2ty = 161"

8. 1+ +4ty=>14+)7

9. 2y +y=3t

10. oy’ —y =1e™, t>0

11. y +y=5sin2¢

12. 2y +y =3¢

In each of Problems 13 through 20, find the solution of the
given initial value problem.

13. y —y =2te¥, y0) =1

14, y +2y =te™™, y1)=0

15 o +dy=£—1+1,  y)=3, >0
16. y' + (2/0)y = (cos 1) /12, y(z)=0, t>0
17. y =2y =%, y(0) =2

Wr/2)=3, t>0

19. £y +4ry=e™, y(=1)=0, r<0

20. ' +(t+ Dy =1, yIn2)=1, >0

In each of Problems 21 through 23:

(a) Draw a direction field for the given differential equation.
How do solutions appear to behave as t becomes large? Does
the behavior depend on the choice of the initial value a? Let

18. 1y’ + 2y = sint,

a, be the value of a for which the transition from one type of
behavior to another occurs. Estimate the value of a,,.

(b) Solve the initial value problem and find the critical value
a, exactly.

(c) Describe the behavior of the solution corresponding to
the initial value q,).

21. y' — §y=3cost, y0)=a

22. 2y —y=el3, y0)=a

23. 3y =2y =e"/?, y0)=a

In each of Problems 24 through 26:

(a) Draw a direction field for the given differential equation.
How do solutions appear to behave as t — 0? Does the behav-
ior depend on the choice of the initial value a? Let a be the
value of a for which the transition from one type of behavior
to another occurs. Estimate the value of a;.

(b) Solve the initial value problem and find the critical value
a, exactly.

(c) Describe the behavior of the solution corresponding to
the initial value ).

24. ty + (t+ 1)y = 2te™, yl)=a, t>0
25. ty' + 2y = (sinp)/1, y(-=z/2)=a, t<0
26. (sinf)y’ + (cost)y = ¢, yl)=a, 0<t<nm

27. Consider the initial value problem

y0)=-1

Find the coordinates of the first local maximum point of the
solution for # > 0.

Y+ %y:Zcost,

28. Consider the initial value problem
Y+iy=1-5t  y0) =y,

Find the value of y, for which the solution touches, but does
not cross, the z-axis.

29. Consider the initial value problem

y’+iy=3+2cos2l, y(0)=0.
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(a) Find the solution of this initial value problem and de-
scribe its behavior for large ¢.

(b) Determine the value of 7 for which the solution first in-
tersects the line y = 12.

30. Find the value of y, for which the solution of the initial
value problem

y —y=1+3sin¢, ¥(0) =y,

remains finite as r — oo.

31. Consider the initial value problem

Y = §y=31+2e’, ¥(0) = yp.

Find the value of y, that separates solutions that grow posi-
tively as + — oo from those that grow negatively. How does
the solution that corresponds to this critical value of y, be-
have as t — c0?

32. Show that all solutions of 2y’ + ty = 2 [Eq. (36) of the
text] approach a limit as # — oo, and find the limiting value.
Hint: Consider the general solution, Eq. (42), and use
L’Hopital’s rule on the first term.

33. Show that if @ and A are positive constants, and b is any
real number, then every solution of the equation

Y +ay = be™
has the property that y — 0 as t — oo.
Hint: Consider the cases a = A and a # A separately.

In each of Problems 34 through 37, construct a first order lin-
ear differential equation whose solutions have the required
behavior as t — o0. Then solve your equation and confirm
that the solutions do indeed have the specified property.

34. All solutions have the limit 3 as r — oo.

35. All solutions are asymptotic to the line y = 4 — ¢ as
t — 00.

36. All solutions are asymptotic to the line y = 2 — 5 as
t — co.

37. All solutions approach the curve y =2 — > as t — co.

38. Consider the initial value problem

Y+ay=g®, ¥t =
Assume that a is a positive constant and that g(t) — g, as
t — oo. Show that y(r) — g,/a as t - oo. Construct an exam-
ple with a nonconstant g(¢) that illustrates this result.

39. Variation of Parameters. Consider the following
method of solving the general linear equation of first order:

Y +p®)y = g(). o
(a) If g(r) = O for all ¢, show that the solution is

y =Aexp [— /p(t) dt] R (i)

where A is a constant.
(b) If g(7) is not everywhere zero, assume that the solution
of Eq. (i) is of the form

y = A(?) exp [— /p(t) dt] s (iii)

where A is now a function of ¢. By substituting for y in the
given differential equation, show that A(f) must satisfy the
condition

A'(1) = g(t) exp [/ p() a't] . (iv)

(¢) Find A(¢) from Eq. (iv). Then substitute for A(z) in
Eq. (iii) and determine y. Verify that the solution obtained
in this manner agrees with that of Eq. (28) in the text. This
technique is known as the method of variation of parame-
ters; it is discussed in detail in Section 4.7 in connection with
second order linear equations.

In each of Problems 40 through 43 use the method of Prob-
lem 39 to solve the given differential equation.

40. y' — 6y = %

41. ¥y 4+ (1 /1)y = 3cos 2t, t>0
42. 1ty + 2y =sint, t>0

43. 2y +y =3¢

2.3 Modeling with First Order Equations

Differential equations are of interest to nonmathematicians primarily because of the pos-
sibility of using them to investigate a wide variety of problems in engineering and in the
physical, biological, and social sciences. One reason for this is that mathematical models
and their solutions lead to equations relating the variables and parameters in the problem.
These equations often enable you to make predictions about how the natural process will
behave in various circumstances. For example, all the figures in Section 2.2 show solution
features that can be found by examining the parameter dependence of solution formulas.
These features can be interpreted in terms of the physical behavior of the systems that the
differential equations model. Furthermore, it is often easy to vary parameters in the mathe-
matical model over wide ranges, whereas this may be very time-consuming or expensive, if
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not impossible, in an experimental setting. Nevertheless mathematical modeling and exper-
iment or observation are both critically important and have somewhat complementary roles
in scientific investigations. Mathematical models are validated by comparison of their pre-
dictions with experimental results. On the other hand, mathematical analyses may suggest
the most promising directions for experimental exploration, and they may indicate fairly
precisely what experimental data will be most helpful.

In Section 1.1 we formulated and investigated a few simple mathematical models. We
begin by recapitulating and expanding on some of the conclusions reached in that section.
Regardless of the specific field of application, there are three identifiable stages that are
always present in the process of mathematical modeling.

Construction of the Model. Inthisstage, you translate the physical situation into mathematical terms,

often using the steps listed at the end of Section 1.1. Perhaps most critical at this stage is
to state clearly the physical principle(s) that are believed to govern the process. For ex-
ample, it has been observed that in some circumstances heat passes from a warmer to a
cooler body at a rate proportional to the temperature difference, that objects move about
in accordance with Newton’s laws of motion, and that isolated insect populations grow at
a rate proportional to the current population. Each of these statements involves a rate of
change (derivative) and consequently, when expressed mathematically, leads to a differen-
tial equation. The differential equation is a mathematical model of the process.

It is important to realize that the mathematical equations are almost always only an ap-
proximate description of the actual process. For example, bodies moving at speeds compa-
rable to the speed of light are not governed by Newton’s laws, insect populations do not grow
indefinitely as stated because of eventual limitations on their food supply, and heat transfer
is affected by factors other than the temperature difference. Alternatively, one can adopt the
point of view that the mathematical equations exactly describe the operation of a simpli-
fied or ideal physical model, which has been constructed (or imagined) so as to embody
the most important features of the actual process. Sometimes, the process of mathematical
modeling involves the conceptual replacement of a discrete process by a continuous one.
For instance, the number of members in an insect population is an integer; however, if the
population is large, it may seem reasonable to consider it to be a continuous variable and
even to speak of its derivative.

Analysis of the Model. Once the problem has been formulated mathematically, you are often faced

with the problem of solving one or more differential equations or, failing that, of finding
out as much as possible about the properties of the solution. It may happen that this mathe-
matical problem is quite difficult, and if so, further approximations may be required at this
stage to make the problem more susceptible to mathematical investigation. For example,
a nonlinear equation may be approximated by a linear one, or a slowly varying coefficient
may be replaced by a constant. Naturally, any such approximations must also be examined
from the physical point of view to make sure that the simplified mathematical problem still
reflects the essential features of the physical process under investigation. At the same time,
an intimate knowledge of the physics of the problem may suggest reasonable mathematical
approximations that will make the mathematical problem more amenable to analysis. This
interplay of understanding of physical phenomena and knowledge of mathematical tech-
niques and their limitations is characteristic of applied mathematics at its best, and it is
indispensable in successfully constructing useful mathematical models of intricate physi-
cal processes.

Comparison with Experiment or Observation. Finally, having obtained the solution (or at

least some information about it), you must interpret this information in the context in which
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the problem arose. In particular, you should always check that the mathematical solution
appears physically reasonable. If possible, calculate the values of the solution at selected
points and compare them with experimentally observed values. Or ask whether the behavior
of the solution after a long time is consistent with observations. Or examine the solutions
corresponding to certain special values of parameters in the problem. Of course, the fact
that the mathematical solution appears to be reasonable does not guarantee that it is cor-
rect. However, if the predictions of the mathematical model are seriously inconsistent with
observations of the physical system it purports to describe, this suggests that errors have
been made in solving the mathematical problem, that the mathematical model itself needs
refinement, or that observations must be made with greater care.

The examples in this section are typical of applications in which first order differential
equations arise. Subsequently, models for the evolution of the population of a particular
species in a given region are treated extensively in Section 2.5.

EEEN
EXAMPLE
1

Mixing

At time ¢ = 0 a tank contains Q, pounds (Ib) of salt dissolved in 100 gallons (gal) of water;
see Figure 2.3.1. Assume that water containing T1b of salt/gal is entering the tank at a rate
of r gal/minutes (min) and that the well-stirred mixture is draining from the tank at the same
rate. Set up the initial value problem that describes this flow process. Find (a) the quantity
of salt Q(¢) in the tank at any time and (b) the limiting quantity Q; that is present after a very
long time. (¢) If r =3 and Q) = 20, find the time 7 after which the salt level is within 2%
of Q. Also find (d) the flow rate that is required if the value of 7 is not to exceed 45 min.

rgal/min,% Ib/gal

rgal/min

ALV ve il The water tank in Example 1.

We assume that salt is neither created nor destroyed in the tank, by chemical reactions
for example. Therefore variations in the amount of salt are due solely to the flows in and
out of the tank. More precisely, the rate of change of salt in the tank, dQ/dt, is equal to the
rate at which salt is flowing in minus the rate at which it is flowing out. In symbols,

% = rate in — rate out. (D
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It is critically important that all terms have the same physical units so that the equation is
internally consistent. The rate at which salt enters the tank is the concentration IS, gal times
the flow rate r gal/min, or (r/4) Ib/min. To find the rate at which salt leaves the tank, we
need to multiply the concentration of salt in the tank by the rate of outflow, » gal/min. Since
the rates of flow in and out are equal, the volume of water in the tank remains constant
at 100 gal, and since the mixture is “well stirred,” the concentration throughout the tank
is the same, namely, [Q(¢)/100] Ib/gal. Therefore the rate at which salt leaves the tank is
[rQ(¢)/100] 1b/min. Thus the differential equation governing this process is

doQ r rQ
=_l_x 2
d 4 100 2
The initial condition is
0(0) = Q. 3)

Upon thinking about the problem physically, we might anticipate that eventually the
mixture originally in the tank will be essentially replaced by the mixture flowing in, whose
concentration is + Ib/gal. Consequently, we might expect that ultimately the amount of salt
in the tank would be very close to 25 1b. We can also find the limiting amount Q; = 25 by
setting dQ/dt equal to zero in Eq. (2) and solving the resulting algebraic equation for Q.

(a) To find Q(?) at any time ¢, note that Eq. (2) is both linear and separable. Rewriting it
in the standard form for a linear equation, we have

ag rQ _r
o 10" 1 )

Thus the integrating factor is ¢"/1%0, Mutiplying by this factor and integrating, we obtain

11007 = i@en/loo +e
r

so the general solution is
O(t) = 25 + ce"1/100, (5)

where ¢ is an arbitrary constant. To satisfy the initial condition (3), we must choose
¢ = Qg — 25. Therefore the solution of the initial value problem (2), (3) is

O(1) = 25 + (Qy — 25)e™"1/1%0, ©
or
O(1) = 25(1 — ¢7"1/100) 4 Qe=""/1%0, o

(b) From Eq. (6) or (7), you can see that Q(r) — 25 b as t — oo, so the limiting value Q; is
25, confirming our physical intuition. Further Q(#) approaches the limit more rapidly as r
increases. In interpreting the solution (7), note that the second term on the right side is the
portion of the original salt that remains at time ¢, while the first term gives the amount of
salt in the tank due to the action of the flow processes. Plots of the solution for » = 3 and
for several values of Q| are shown in Figure 2.3.2.
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FILCRONES VeIV Solutions of the initial value problem (2), (3) for » = 3 and several

values of Q.

(c) Now suppose that r = 3 and Q, = 2Q; = 50; then Eq. (6) becomes
O(f) = 25 + 25¢7003, (8)

Since 2% of 25 is 0.5, we wish to find the time 7 at which Q(¢) has the value 25.5. Substi-
tuting t = 7 and Q = 25.5 in Eq. (8) and solving for 7', we obtain

T = (In50)/0.03 = 130.4 min. C))

(d) To determine r so that 7' = 45, return to Eq. (6); set t = 45, Q, = 50, Q(¢) = 25.5;
and solve for r. The result is

r = (100/45)In 50 = 8.69 gal/min. (10)

In other words, the parameter r is specified by a requirement in the problem. We can see
from Eq. (6) that generally the larger the value of r, the more rapid is the change from Q,
to Q;. If there were experimental data for comparison with the solution, the validity of
predictions from the model could be appraised. In principle, flow rates can be measured
with considerable accuracy. However the assumption of a uniform concentration of salt in
the tank may be more questionable, since this may depend on how the liquid in the tank
is stirred, whether the incoming flow is distributed or concentrated in one location, and
perhaps the shape of the tank.

Example 1 illustrates what is called a “compartment model,” for which a substance (in
this case, water of different salt concentrations) flows into and out of a compartment (in
this case, a tank). The fundamental balance principle expressed by Eq. (1) can be applied
in many different circumstances. Compartment models are often used in problems involving
a pollutant in a lake, or a drug in an organ of the body, among others. In such cases, the
flow rates may be more challenging to determine or may vary with time. Similarly, the
concentration in the compartment may be far from uniform in some cases. Finally, the rates
of inflow and outflow may be different, which means that the variation of the amount of
liquid in the compartment must also be taken into account. The next example illustrates the
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use of the balance principle (1) in a financial setting, where the “compartment” is a loan
account and the “flow” is money.

EEEN
EXAMPLE
2

A Car Loan

Suppose that a recent college graduate wishes to borrow $20,000 in order to purchase a new
car, for example. A lender is willing to provide the loan with an annual interest rate of 8%.
The borrower wishes to pay off the loan in 4 years. What monthly payment is required to
do this?

This is an instance where a continuous approximation to a discrete process may be easier
to analyze than the actual process. Let S(¢) be the balance due on the loan at any time .
Suppose that S is measured in dollars and 7 in years. Then dS/dr has the units of dollars per
year. The balance on the loan is affected by two factors: the accumulation of interest tends
to increase S(f) and the payments by the borrower tend to reduce it. Based on the balance
principle (1), we can express dS/dt as the net effect of these two factors. Thus we obtain

ds

— =rS— 12k, 11

ar " an
where r is the annual interest rate and k& is the monthly payment rate. Note that kK must be
multiplied by 12 in Eq. (11), so that all terms will have the same units of dollars per year.

The initial condition is
S(0) = S, (12)

where S, is the amount of the loan.
For the situation stated in this example, r = 0.08 and S = 20,000, so we have the initial
value problem

% =0.085 — 12k, S(0) = 20,000. (13)

If we rewrite the differential equation as

S’ —0.08S = —12k,

—0.08¢

then the integrating factor is e , and after an integration we obtain

~0.08¢ 12 . 008
S=—1k
e 0.08 e +c

or
S = 150k + e, (14)

From the initial condition it follows that ¢ = 20,000 — 150k, so the solution of the initial
value problem (13) is

S = 20,000e"%8 — 150k(%% — 1). (15)

To find the monthly payment needed to pay off the loan in 4 years, we set t =4, S =0, and
solve Eq. (15) for k. The result is

20,000 032
150 0321

The total amount paid over the life of the loan is 48 times $486.88, or $23,370.24; thus the
total interest payment is $3,370.24.

The solution (15) can also be used to answer other possible questions. For example,
suppose that the borrower wants to limit the monthly payment to $450. One way to do this
is to extend the period of the loan beyond 4 years to T years, thereby increasing the number

= $486.88. (16)
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of payments. To find the required time period, set k = 450, S = 0, t = T and solve for T,
with the result that

In(27/19)
T=———-">4, 17
0.08 39 years, (17)

or about 53 months. Equation (15) is another example of using the dependence on a param-
eter (in this case, k) in a solution formula to satisfy a specified requirement.

To assess the accuracy of this continuous model, we can solve the problem more pre-
cisely with a discrete-time model (see Problem 14). The comparison shows that the contin-
uous model understates the monthly payment by only $1.38, or about 0.28%.

The approach used in Example 2 can also be applied to the more general initial value
problem (11), (12), whose solution is

NEYAE 12]—6(8” - 1. (18)
r

Note that (18) contains a total of three parameters—S, k, and r—as well as the variable
t, and each can be useful in answering specified questions. The result (18) can be used in
a large number of financial circumstances, including various kinds of investment plans, as
well as loans and mortgages. For an investment situation, S(¢) is the balance in the investor’s
account, r is the estimated rate of return (interest, dividends, capital gains), and k is the
monthly rate of deposits or withdrawals. The first term in expression (18) is the part of S(f)
that is due to the return accumulated on the initial amount S, and the second term is the
part that is due to the deposit or withdrawal rate .

The advantage of stating the problem in this general way without specific values for S, 7,
or k lies in the generality of the resulting formula (18) for S(¢). Using the parameter depen-
dence in this formula, we can readily compare the results of different investment programs
or different rates of return. The Problems offer other illustrations.

EEEN
EXAMPLE
3

Chemicals in
a Pond

Consider a pond that initially contains 10 million gal of fresh water. Stream water containing
an undesirable chemical flows into the pond at the rate of 5 million gal/year, and the mixture
in the pond flows out through an overflow culvert at the same rate. The concentration y(¢) of
chemical in the incoming water varies periodically with time ¢, measured in years, according
to the expression y(f) =2 + sin 2¢ g/gal. Construct a mathematical model of this flow process
and determine the amount of chemical in the pond at any time. Plot the solution and describe
in words the effect of the variation in the incoming concentration.

Since the incoming and outgoing flows of water are the same, the amount of water in the
pond remains constant at 107 gal. Let us denote the mass of the chemical by Q(#), measured
in grams. This example is another compartment model that is similar to Example 1, and the
same inflow/outflow principle applies. Thus

do .
— = rate 1n — rate out,
dt

where “rate in” and “rate out” refer to the rates at which the chemical flows into and out of
the pond, respectively. The rate at which the chemical flows in is given by

Rate in = (5 x 10%) gal/year (2 + sin 2¢) g/gal. (19)
The concentration of chemical in the pond is Q(f)/107 g/gal, so the rate of flow out is

Rate out = (5 x 10°) gal/year [Q(r)/107] g/gal = Q(t)/2 glyear. (20)
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Thus we obtain the differential equation

do _ 6 in2p — 20
2= (53X 10°)(2+sin2) - £, @1)

where each term has the units of grams per year.

To make the coefficients more manageable, it is convenient to introduce a new dependent
variable defined by g(f) = Q(t)/10° or Q(r) = 10° ¢(¢). This means that ¢(¢) is measured in
millions of grams, or megagrams. If we make this substitution in Eq. (21), then each term
contains the factor 10°, which can be canceled. If we also transpose the term involving ¢(r)
to the left side of the equation, we finally have

d
76: +%q= 10 + 5sin 2. 22)
Originally, there is no chemical in the pond, so the initial condition is
q(0) = 0. (23)

Equation (22) is linear, and although the right side is a function of time, the coefficient
of ¢ is a constant. Thus the integrating factor is ¢'/2. Multiplying Eq. (22) by this factor and
integrating the resulting equation, we obtain the general solution

q(t) =20 — % cos 2t + % sin 2t + ce /2. 24

The initial condition (23) requires that ¢ = —300/17, so the solution of the initial value
problem (22), (23) is
10 5y = 30 12,

q(t) =20 — %0052t+ ﬁsin2t— 7

A plot of the solution (25) is shown in Figure 2.3.3, along with the line ¢ = 20. The expo-
nential term in the solution is important for small #, but it diminishes rapidly as ¢ increases.
Later, the solution consists of an oscillation, due to the sin 2¢ and cos 2¢ terms, about the
constant level g = 20. Note that if the sin 2¢ term were not present in Eq. (22), then ¢ = 20
would be the equilibrium solution of that equation.

(25)
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FILERPA ISV AETES  Solution of the initial value problem (22), (23).

Let us now consider the adequacy of the mathematical model itself for this problem. The
model rests on several assumptions that have not yet been stated explicitly. In the first place,
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the amount of water in the pond is controlled entirely by the rates of flow in and out—none
is lost by evaporation or by seepage into the ground, and none is gained by rainfall. The
same is true of the chemical; it flows into and out of the pond, but none is absorbed by
fish or other organisms living in the pond. In addition, we assume that the concentration of
chemical in the pond is uniform throughout the pond. Whether the results obtained from
the model are accurate depends strongly on the validity of these simplifying assumptions.

EEEN
EXAMPLE
4

Escape
Velocity

A body of constant mass m is projected away from the earth in a direction perpendicular
to the earth’s surface with an initial velocity v. Assuming that there is no air resistance,
but taking into account the variation of the earth’s gravitational field with distance, find an
expression for the velocity during the ensuing motion. Also find the initial velocity that is
required to lift the body to a given maximum altitude & above the surface of the earth, and
find the least initial velocity for which the body will not return to the earth; the latter is the
escape velocity.

Let the positive x-axis point away from the center of the earth along the line of motion,
with x = 0 lying on the earth’s surface; see Figure 2.3.4. The figure is drawn horizontally to
remind you that gravity is directed toward the center of the earth, which is not necessarily
downward from a perspective away from the earth’s surface. The gravitational force acting
on the body (i.e., its weight) is inversely proportional to the square of the distance from the
center of the earth and is given by w(x) = —k/(x 4+ R)?, where k is a constant, R is the radius
of the earth, and the minus sign signifies that w(x) is directed in the negative x direction.
We know that on the earth’s surface w(0) is given by —mg, where g is the acceleration due
to gravity at sea level. Therefore k = mgR?* and

ng2
w(x) = — . 26
@ ==y (26)
Since there are no other forces acting on the body, the equation of motion is
dv mgR?
m—=—-— 27
dt (R+ x)? @7)
and the initial condition is
v(0) = v,. (28)

mgR?
(R +x)?
________ - - —
m

LU Sl A body in the earth’s gravitational field.

Unfortunately, Eq. (27) involves too many variables because it depends on ¢, x, and v.
To remedy this situation, we can eliminate 7 from Eq. (27) by thinking of x, rather than ¢, as
the independent variable. Thus we must express dv/dt in terms of dv/dx by the chain rule;
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hence
dv _dvd _ dv
dt — dedt  dx’
and Eq. (27) is replaced by
dv gR?
v— = — .
dx (R + x)?

Equation (29) is separable but not linear, so by separating the variables and integrating, we
obtain

(29)

v gR?

2 R+x
Since x = 0 when ¢ = 0, the initial condition (28) at # = 0 can be replaced by the condition
that v = vy when x = 0. Hence ¢ = (0(2)/2) —gRand

+c. (30)

2gR?

= +1/0v? — 2R } 31
v _\/UO & +R+x Gh

Note that Eq. (31) gives the velocity as a function of altitude rather than as a function of
time. The plus sign must be chosen if the body is rising, and the minus sign if it is falling
back to earth.

To determine the maximum altitude & that the body reaches, we set v = 0 and x = £ in
Eq. (31) and then solve for &, obtaining

2
UOR

=—. (32)
2gR — U%

Solving Eq. (32) for vy, we find the initial velocity required to lift the body to the altitude
&, namely,

¢

vy =1/28R——. 33

0 Rz (33)

The escape velocity v, is then found by letting & — oo.

v, = V/2gR. (34)

The numerical value of v, is approximately 6.9 miles (mi)/s, or 11.2 km/s.

The preceding calculation of the escape velocity neglects the effect of air resistance,
so the actual escape velocity (including the effect of air resistance) is somewhat higher.
On the other hand, the effective escape velocity can be significantly reduced if the body
is transported a considerable distance above sea level before being launched. Both gravi-
tational and frictional forces are thereby reduced; air resistance, in particular, diminishes
quite rapidly with increasing altitude. You should keep in mind also that it may well be im-
practical to impart too large an initial velocity instantaneously; space vehicles, for instance,
receive their initial acceleration during a period of a few minutes. Our result for the escape
velocity, in terms of its dependence on the parameters of the problem, provides more insight
than a result that uses specific numerical values for the parameters. For instance, (34) shows
clearly that the escape velocity does not depend on the mass m of the body. Furthermore, on
the moon, with a radius of about 0.27 R and with a gravitational constant of about 0.17 g,
Eq. (34) reveals that the escape velocity from the moon is 0.214 times that on Earth, or
about 2.4 km/s.

Consequently,
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PROBLEMS
EE N BN EEEEEEEEEEEEEEENERn

1. Consider a tank used in certain hydrodynamic experi-
ments. After one experiment the tank contains 150 liter (L)
of a dye solution with a concentration of 3 g/L. To prepare for
the next experiment, the tank is to be rinsed with fresh wa-
ter flowing in at a rate of 3 L/min, the well-stirred solution
flowing out at the same rate. Find the time that will elapse
before the concentration of dye in the tank reaches 2% of its
original value.

2. A tank initially contains 200 L of pure water. A mixture
containing a concentration of y g/L of salt enters the tank
at a rate of 4 L/min, and the well-stirred mixture leaves the
tank at the same rate. Find an expression in terms of y for the
amount of salt in the tank at any time 7. Also find the limiting
amount of salt in the tank as t — oo.

3. A tank originally contains 160 gal of fresh water. Then
water containing i Ib of salt per gallon is poured into the
tank at a rate of 4 gal/min, and the mixture is allowed to
leave at the same rate. After 8 min the process is stopped,
and fresh water is poured into the tank at a rate of 6 gal/min,
with the mixture again leaving at the same rate. Find the
amount of salt in the tank at the end of an additional
8 min.

4. A tank with a capacity of 500 gal originally contains 200
gal of water with 100 Ib of salt in solution. Water contain-
ing 1 1b of salt per gallon is entering at a rate of 3 gal/min,
and the mixture is allowed to flow out of the tank at a rate of
2 gal/min. Find the amount of salt in the tank at any time prior
to the instant when the solution begins to overflow. Find the
concentration (in pounds per gallon) of salt in the tank when
it is on the point of overflowing. Compare this concentration
with the theoretical limiting concentration if the tank had in-
finite capacity.

5. A tank contains 100 gal of water and 50 oz of salt. Water
containing a salt concentration of l(1 + Lsin 1) oz/gal flows
into the tank at a rate of 2 gal/min, and the mixture in the
tank flows out at the same rate.

(a) Find the amount of salt in the tank at any time.

(b) Plot the solution for a time period long enough so that
you see the ultimate behavior of the graph.

(c) The long-time behavior of the solution is an oscillation
about a certain constant level. What is this level? What is the
amplitude of the oscillation?

6. Suppose that a tank containing a certain liquid has an out-
let near the bottom. Let A(f) be the height of the liquid sur-
face above the outlet at time ¢. Torricelli’s principle states
that the outflow velocity v at the outlet is equal to the ve-
locity of a particle falling freely (with no drag) from the
height h.

(a) Show that v = 4/2gh, where g is the acceleration due to
gravity.

(b) By equating the rate of outflow to the rate of change of
liquid in the tank, show that A(z) satisfies the equation

A(h)% = —aqar/2gh, @)

where A(h) is the area of the cross section of the tank at height
h and «a is the area of the outlet. The constant « is a contrac-
tion coefficient that accounts for the observed fact that the
cross section of the (smooth) outflow stream is smaller than
a. The value of a for water is about 0.6.

(c) Consider a water tank in the form of a right circular cylin-
der that is 3 m high above the outlet. The radius of the tank is
1 m and the radius of the circular outlet is 0.1 m. If the tank
is initially full of water, determine how long it takes to drain
the tank down to the level of the outlet.

7. An outdoor swimming pool loses 0.05% of its water vol-
ume every day it is in use, due to losses from evaporation
and from excited swimmers who splash water. A system is
available to continually replace water at a rate of G gallons
per day of use.

(a) Find an expression, in terms of G, for the equilibrium
volume of the pool. Sketch a few graphs for the volume V(7),
including all possible types of solutions.

(b) If the pool volume is initially 1% above its equilibrium
value, find an expression for V(z).

(c) What is the replacement rate G required to maintain
12,000 gal of water in the pool?

8. Cholesterol is produced by the body for the construction
of cell walls, and is also absorbed from certain foods. The
blood cholesterol level is measured in units of milligrams per
deciliter, or mg/dl. The net cholesterol production or destruc-
tion by the body is modeled by a rate r per day, times the
difference between the body’s “natural” cholesterol level (a
constant) and the actual cholesterol level at any time r. The
rate of absorption from food is estimated as a constant k in
milligrams per deciliter per day.

(a) A person’s cholesterol level at the start of a testing period
is 150 mg/dl. Find an expression for the cholesterol level at
any subsequent time ¢. If the rate r is 0.10 per day and the
natural level is 100 mg/dl, find the cholesterol level of the
person 10 days after the start of the testing period, in terms
of k.

(b) If k =25, what is the cholesterol level of this person after
a long time?

(c) Suppose this person starts a low-cholesterol diet. What
must the value of k be so that the long-time cholesterol level
is 180 mg/dl1?

9. Imagine a medieval world. In this world a Queen wants to
poison a King, who has a wine keg with 500 L of his favorite
wine. The Queen gives a conspirator a liquid containing 5 g/L.
of poison, which must be poured slowly into the keg at a rate
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of 0.5 L/min. The poisoner must also remove the well-stirred
mixture at the same rate, so that the keg is not suspiciously
full.

(a) Find a formula for the amount of poison in the keg at any
time, measured from the start of the pouring by the poisoner.
(b) A plotis hatched for the King to drink wine from the keg
while he is on a hunt, where he will become so addled that
his prey will surely kill him. The poisoner must pour for a
time 7', when the poison in the keg reaches a dangerous con-
centration of 0.005 g/L. Find T

(¢) The Lord High Inquisitor of the Realm never learned
about differential equations. Nonetheless, knowing the ba-
sic numbers (keg size, poison concentrations, etc.), he can
produce an estimate for the time 7' that the poisoner was at
the keg. In fact, his estimate is within 2% of the exact value
found in part (b). What is the Lord’s estimate? In the context
of differential equations, why is it so close to the exact value
obtained from the solution?

10. Suppose an amount S, is invested at an annual rate of
return r percent, compounded continuously.

(a) Find the number of years 7 that are required for the orig-
inal amount to double in value, as a function of r.

(b) Determine T if r = 8%.

(¢) Find the annual percentage rate that is needed for the
original investment to double in 8 years.

(d) A rough guideline, known as early as the 15th century,
is the “Rule of 72”: an investment doubles when T is about
72. How accurate is it for the examples in (b) and (c)? Ex-
plain the basis for the “Rule of 72.” Why do you suppose the
number 72 was chosen long ago?

11. A young person with no initial capital invests k dollars
per year at an annual rate of return r. Assume that investments
are made continuously and that the return is compounded
continuously.

(a) Determine the sum S(¢) accumulated at any time ?.

(b) If r = 5.5%, determine k so that $1 million will be avail-
able for retirement in 42 years.

(¢) If k = $4,000/year, determine the return rate r that must
be obtained to have $1 million available in 42 years.

12. A homebuyer can afford to spend no more than
$800/month on mortgage payments. Suppose that the inter-
est rate is 9% and that the term of the mortgage is 20 years.
Assume that interest is compounded continuously and that
payments are also made continuously.

(a) Determine the maximum amount that this buyer can af-
ford to borrow.

(b) Determine the total interest paid during the term of the
mortgage.

13. A recent college graduate borrows $100,000 at an in-
terest rate of 9% to purchase a condominium. Anticipating

steady salary increases, the buyer expects to make payments
at a monthly rate of 800(1 + 7/120), where ¢ is the number
of months since the loan was made.

(a) Assuming that this payment schedule can be maintained,
when will the loan be fully paid?

(b) Assuming the same payment schedule, how large a loan
could be paid off in exactly 20 years?

14. A Difference Equation. In this problem, we approach
the loan problem in Example 2 from a discrete viewpoint.
This leads to a difference equation rather than a differential
equation.

(a) Let S, be the initial balance of the loan, and let S, be the
balance after n months. Show that

S,=(1+nS, -k n=123,..., 6)

where r is the monthly interest rate and & is the monthly pay-
ment. In Example 2, the annual interest rate is 8%, so here
we take r = 0.08/12.

(b) Let R =1 + r, so that Eq. (i) becomes

S,=RS, , —k n=123, ... (i)

Find S|, S,, and S5.
(¢) Use an induction argument to show that

S, =R"S, - % k (iii)
for each positive integer 7.
(d) Let S, = 20,000 and suppose that (as in Example 2) the
loan is to be paid off in 48 months. Find the value of k and

compare it with the result of Example 2.

15. An important tool in archeological research is radiocar-
bon dating, developed by the American chemist Willard F.
Libby. This is a means of determining the age of certain wood
and plant remains, hence of animal or human bones or ar-
tifacts found buried at the same levels. Radiocarbon dating
is based on the fact that some wood or plant remains con-
tain residual amounts of carbon-14, a radioactive isotope of
carbon. This isotope is accumulated during the lifetime of
the plant and begins to decay at its death. Since the half-life
of carbon-14 is long (approximately 5,730 years'), measur-
able amounts of carbon-14 remain after many thousands of
years. If even a tiny fraction of the original amount of carbon-
14 is still present, then by appropriate laboratory measure-
ments the proportion of the original amount of carbon-14
that remains can be accurately determined. In other words,
if Q(#) is the amount of carbon-14 at time ¢ and Q, is the
original amount, then the ratio Q(#)/Q, can be determined,
at least if this quantity is not too small. Present measurement
techniques permit the use of this method for time periods of
50,000 years or more.

(a) Assuming that Q satisfies the differential equation
Q' = —rQ, determine the decay constant r for carbon-14.

'McGraw-Hill Encyclopedia of Science and Technology, 8th ed. (New York: McGraw-Hill, 1997), Vol. 5,

p. 48.
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(b) Find an expression for Q(¢) at any time ¢, if Q(0) = Q.
(¢) Suppose that certain remains are discovered in which the
current residual amount of carbon-14 is 50% of the original
amount. Determine the age of these remains.

16. The population of mosquitoes in a certain area increases
at a rate proportional to the current population, and in the
absence of other factors, the population doubles each week.
There are 800,000 mosquitoes in the area initially, and preda-
tors (birds, bats, etc.) eat 30,000 mosquitoes/day. Determine
the population of mosquitoes in the area at any time.

17. Suppose that a certain population has a growth rate that
varies with time and that this population satisfies the differ-
ential equation

dy (0.5 +sint)y
dr 5 ’

(a) If y(0) = 1, find (or estimate) the time 7 at which the
population has doubled. Choose other initial conditions and
determine whether the doubling time = depends on the initial
population.

(b) Suppose that the growth rate is replaced by its average
value —. Determine the doubling time 7 in this case.

(¢) Suppose that the term sin ¢ in the differential equation is
replaced by sin2xt; that is, the variation in the growth rate
has a substantially higher frequency. What effect does this
have on the doubling time 7?

(d) Plot the solutions obtained in parts (a), (b), and (c) on a
single set of axes.

18. Suppose that a certain population satisfies the initial
value problem

dy
— =r(y—k,
o =y
where the growth rate r(¢) is given by
r(f) = (1 +sin 1)/5, and k represents the rate of predation.

y(O) = Yo

(a) Suppose that k = % Plot y versus 7 for several values of

¥, between % and 1.

(b) Estimate the critical initial population y. below which
the population will become extinct.

(c) Choose other values of k and find the corresponding y,
for each one.

(d) Use the data you have found in parts (b) and (c) to plot
v, versus k.

19. Newton’s law of cooling states that the temperature of
an object changes at a rate proportional to the difference be-
tween its temperature and that of its surroundings. Suppose
that the temperature of a cup of coffee obeys Newton’s law
of cooling. If the coffee has a temperature of 200°F when
freshly poured, and 1 min later has cooled to 190°F in a room
at 70°F, determine when the coffee reaches a temperature of
150°F.

20. Heat transfer from a body to its surroundings by radia-
tion, based on the Stefan—Boltzmann law, is described by the
differential equation

du

dt
where u(z) is the absolute temperature of the body at time
t, T is the absolute temperature of the surroundings, and «
is a constant depending on the physical parameters of the
body. However, if u is much larger than 7', then solutions
of Eq. (i) are well approximated by solutions of the simpler
equation

=—a(u*=T%, )

du 4 ..
2L — ot ii
- o (i)
Suppose that a body with initial temperature 2000 K is sur-
rounded by a medium with temperature 300 K and that a =

2.0 x 10712K=3/s.

(a) Determine the temperature of the body at any time by
solving Eq. (ii).

(b) Plot the graph of u versus ¢.

(¢) Find the time 7 at which u(7) = 600, that is, twice the am-
bient temperature. Up to this time, the error in using Eq. (ii)
to approximate the solutions of Eq. (i) is no more than 1%.

21. Consider a lake of constant volume V containing at time
t an amount Q(¢) of pollutant, evenly distributed throughout
the lake with a concentration c(¢), where c(t) = Q(r)/V. As-
sume that water containing a concentration k of pollutant
enters the lake at a rate r, and that water leaves the lake
at the same rate. Suppose that pollutants are also added di-
rectly to the lake at a constant rate P. Note that the given
assumptions neglect a number of factors that may, in some
cases, be important—for example, the water added or lost by
precipitation, absorption, and evaporation; the stratifying ef-
fect of temperature differences in a deep lake; the tendency
of irregularities in the coastline to produce sheltered bays;
and the fact that pollutants are not deposited evenly through-
out the lake but (usually) at isolated points around its periph-
ery. The results below must be interpreted in the light of the
neglect of such factors as these.

(a) If at time # = O the concentration of pollutant is ¢, find
an expression for the concentration c(¢) at any time. What is
the limiting concentration as t — co?

(b) If the addition of pollutants to the lake is terminated
(k=0 and P = 0 for r > 0), determine the time interval
T that must elapse before the concentration of pollutants is
reduced to 50% of its original value; to 10% of its original
value.

(c) Table 2.3.1 contains data® for several of the Great Lakes.
Using these data, determine from part (b) the time 7 neces-
sary to reduce the contamination of each of these lakes to
10% of the original value.

2This problem is based on R. H. Rainey, “Natural Displacement of Pollution from the Great Lakes,” Science
155 (1967), pp. 1242-1243; the information in the table was taken from that source.
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TABLE 2.3.1 Volume and flow data for the
Great Lakes.

Lake V (km? x 10%) r (km?/year)
Superior 12.2 65.2
Michigan 4.9 158

Erie 0.46 175
Ontario 1.6 209

22. A ball with mass 0.25 kg is thrown upward with initial
velocity 24 m/s from the roof of a building 26 m high. Ne-
glect air resistance.

(a) Find the maximum height above the ground that the ball
reaches.

(b) Assuming that the ball misses the building on the way
down, find the time that it hits the ground.

(c) Plot the graphs of velocity and position versus time.

23. Assume that conditions are as in Problem 22 except that
there is a force due to air resistance of |v|/30, where the ve-
locity v is measured in meters per second.

(a) Find the maximum height above the ground that the ball
reaches.

(b) Find the time that the ball hits the ground.

(c) Plot the graphs of velocity and position versus time.
Compare these graphs with the corresponding ones in Prob-
lem 22.

24. Assume that conditions are as in Problem 22 except that
there is a force due to air resistance of v, /1325, where the
velocity v, is measured in meters per second.

(a) Find the maximum height above the ground that the ball
reaches.

(b) Find the time that the ball hits the ground.

(c) Plot the graphs of velocity and position versus time.
Compare these graphs with the corresponding ones in Prob-
lems 22 and 23.

25. A skydiver weighing 180 1b (including equipment) falls
vertically downward from an altitude of 5,000 ft and opens
the parachute after 10 s of free fall. Assume that the force
of air resistance is 0.75|v| when the parachute is closed and
12|v| when the parachute is open, where the velocity v is
measured in feet per second.

(a) Find the speed of the skydiver when the parachute opens.
(b) Find the distance fallen before the parachute opens.

(c) What is the limiting velocity v, after the parachute
opens?

(d) Determine how long the skydiver is in the air after the
parachute opens.

(e) Plot the graph of velocity versus time from the beginning
of the fall until the skydiver reaches the ground.

26. A rocket sled having an initial speed of 160 mi/h is
slowed by a channel of water. Assume that, during the brak-
ing process, the acceleration a is given by a(v) = —uv?,

where v is the velocity and y is a constant.

(a) As in Example 4 in the text, use the relation dv/dt =
v(dv/dx) to write the equation of motion in terms of v and x.
(b) If it requires a distance of 2200 ft to slow the sled to
16 mi/h, determine the value of x.

(¢) Find the time 7 required to slow the sled to 16 mi/h.

27. A body of constant mass m is projected vertically up-
ward with an initial velocity v, in a medium offering a re-
sistance k|v|, where k is a constant. Neglect changes in the
gravitational force.

(a) Find the maximum height x,, attained by the body and
the time ¢, at which this maximum height is reached.

(b) Show that if kv,/mg < 1, then #,, and x,, can be ex-
pressed as

v k kug\’
[mz_o l_lﬂ+l ﬂ — el
g 2 mg 3\ mg

2 k Koo\ 2
ML PO LU LA
2g 3 mg 2\ mg

(c) Show that the quantity kv,/mg is dimensionless.

28. A body of mass m is projected vertically upward with
an initial velocity v, in a medium offering a resistance k|v|,
where k is a constant. Assume that the gravitational attraction
of the earth is constant.

(a) Find the velocity v () of the body at any time.

(b) Use the result of part (a) to calculate the limit of v (¢) as
k — 0, that is, as the resistance approaches zero. Does this
result agree with the velocity of a mass m projected upward
with an initial velocity v, in a vacuum?

(c) Use the result of part (a) to calculate the limit of v (7) as
m — 0, that is, as the mass approaches zero.

29. A body falling in a relatively dense fluid, oil for exam-
ple, is acted on by three forces (see Figure 2.3.5): a resistive
force R, a buoyant force B, and its weight w due to gravity.
The buoyant force is equal to the weight of the fluid displaced
by the object. For a slowly moving spherical body of radius
a, the resistive force is given by Stokes’s law, R = 67 ualv|,
where v is the velocity of the body, and u is the coefficient
of viscosity of the surrounding fluid.

R4} 4B

e

.

m A body falling in a dense fluid.
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(a) Find the limiting velocity of a solid sphere of radius a
and density p falling freely in a medium of density p’ and
coefficient of viscosity u.

(b) In 1910 R. A. Millikan studied the motion of tiny
droplets of oil falling in an electric field. A field of strength
E exerts a force Ee on a droplet with charge e. Assume that
E has been adjusted, so the droplet is held stationary (v = 0),
and that w and B are as given above. Find an expression for
e. Millikan repeated this experiment many times, and from
the data that he gathered he was able to deduce the charge on
an electron.

30. A mass of 0.40 kg is dropped from rest in a medium of-
fering a resistance of 0.2|v|, where v is measured in meters
per second.

(a) If the mass is dropped from a height of 25 m, find its
velocity when it hits the ground.

(b) If the mass is to attain a velocity of no more than 8 m/s,
find the maximum height from which it can be dropped.

(¢) Suppose that the resistive force is k|v|, where v is mea-
sured in meters per second and k is a constant. If the mass is
dropped from a height of 25 m and must hit the ground with
a velocity of no more than 8 m/s, determine the coefficient of
resistance k that is required.

31. Suppose that a rocket is launched straight up from the
surface of the earth with initial velocity v, = y/2gR, where
R is the radius of the earth. Neglect air resistance.

(a) Find an expression for the velocity v in terms of the dis-
tance x from the surface of the earth.

(b) Find the time required for the rocket to go 240,000 mi
(the approximate distance from the earth to the moon). As-
sume that R = 4,000 mi.

32. Let v(t) and w(z), respectively, be the horizontal and
vertical components of the velocity of a batted (or thrown)
baseball. In the absence of air resistance, v and w satisfy the
equations

dv/dt =0, dw/dt = —g.

(a) Show that

U =UCOSA, w=—gt+usinA,

where u is the initial speed of the ball and A is its initial angle
of elevation.

(b) Let x(#) and y(¢), respectively, be the horizontal and ver-
tical coordinates of the ball at time ¢. If x(0) = 0 and y(0) =
h, find x(7) and y(¢) at any time 7.

(c) Let g =32 ft/s>, u = 125 ft/s, and h = 3 ft. Plot the tra-
jectory of the ball for several values of the angle A; that is,
plot x(7) and y(#) parametrically.

(d) Suppose the outfield wall is at a distance L and has height
H. Find a relation between u and A that must be satisfied if
the ball is to clear the wall.

(e) Suppose that L =350 ft and H = 10 ft. Using the relation
in part (d), find (or estimate from a plot) the range of values
of A that corresponds to an initial velocity of u = 110 ft/s.
(f) For L =350 ft and H = 10 ft, find the minimum initial
velocity u and the corresponding optimal angle A for which
the ball will clear the wall.

33. A more realistic model (than that in Problem 32) of a
baseball in flight includes the effect of air resistance. In this
case, the equations of motion are

dv/dt = —rv,

where r is the coefficient of resistance.

dw/dt = —g —rw,

(a) Determine v(f) and w(z) in terms of initial speed u and
initial angle of elevation A.

(b) Find x(¢) and y(#) if x(0) = 0 and y(0) = h.

(c) Plot the trajectory of the ball for r = l, u=125h=3,
and for several values of A. How do the trajectories differ
from those in Problem 32 with r = 0?

(d) Assuming that r = L and h = 3, find the minimum ini-
tial velocity u and the optimal angle A for which the ball will
clear a wall that is 350 ft distant and 10 ft high. Compare this
result with that in Problem 32(f).

34. Brachistochrone Problem. One of the famous prob-
lems in the history of mathematics is the brachistochrone?
problem: to find the curve along which a particle will slide
without friction in the minimum time from one given point
P to another Q, the second point being lower than the first
but not directly beneath it (see Figure 2.3.6). This problem
was posed by Johann Bernoulli in 1696 as a challenge prob-
lem to the mathematicians of his day. Correct solutions were
found by Johann Bernoulli and his brother Jakob Bernoulli
and by Isaac Newton, Gottfried Leibniz, and the Marquis de
L’Hopital. The brachistochrone problem is important in the
development of mathematics as one of the forerunners of the
calculus of variations.

In solving this problem, it is convenient to take the origin
as the upper point P and to orient the axes as shown in Figure
2.3.6. The lower point Q has coordinates (x,, y,). It is then

P x

Qlxy, ¥o)

y

SR SRR The brachistochrone.

3The word “brachistochrone” comes from the Greek words brachistos, meaning shortest, and chronos,

meaning time.
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possible to show that the curve of minimum time is given by
a function y = ¢(x) that satisfies the differential equation

2 .
A+y )y =k, @
where k? is a certain positive constant to be determined later.

(a) Solve Eq. (i) for y'. Why is it necessary to choose the
positive square root?
(b) Introduce the new variable 7 by the relation

y = k*sin’* 7. (ii)
Show that the equation found in part (a) then takes the form
2k* sin’ tdt = dx. (iii)

(c) Letting 6 = 2¢, show that the solution of Eq. (iii) for
which x = 0 when y = 0 is given by
x = k*(0 —sin6)/2,
y = k*(1 — cos 6) /2.
Equations (iv) are parametric equations of the solution of
Eq. (i) that passes through (0, 0). The graph of Egs. (iv) is
called a cycloid.
(d) If we make a proper choice of the constant &, then the
cycloid also passes through the point (x,, y,) and is the so-
lution of the brachistochrone problem. Find k if x, = 1 and
Yo =2.

(iv)

2.4 Differences Between Linear
and Nonlinear Equations

Up to now, we have been primarily concerned with showing that first order differential equa-
tions can be used to investigate many different kinds of problems in the natural sciences,
and with presenting methods of solving such equations if they are either linear or separa-
ble. Now it is time to turn our attention to some more general questions about differential
equations and to explore, in more detail, some important ways in which nonlinear equations
differ from linear ones.

Existence and Uniqueness of Solutions. So far, we have discussed a number of initial value

problems, each of which had a solution and apparently only one solution. This raises the
question of whether this is true of all initial value problems for first order equations. In
other words, does every initial value problem have exactly one solution? This may be an
important question even for nonmathematicians. If you encounter an initial value problem
in the course of investigating some physical problem, you might want to know that it has
a solution before spending very much time and effort in trying to find it. Further, if you
are successful in finding one solution, you might be interested in knowing whether you
should continue a search for other possible solutions or whether you can be sure that there
are no other solutions. For linear equations, the answers to these questions are given by the
following fundamental theorem.

THEOREM If the functions p and g are continuous on an open interval / = (a, f) containing the point
2.4.1 t = t, then there exists a unique function y = ¢(¢) that satisfies the differential equation
Y +p@)y = g(0) €]
for each 7 in I, and that also satisfies the initial condition
¥(t9) = Yo, (2)

where Yy, is an arbitrary prescribed initial value.

Observe that Theorem 2.4.1 states that the given initial value problem has a solution and
also that the problem has only one solution. In other words, the theorem asserts both the
existence and uniqueness of the solution of the initial value problem (1), (2).
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Remarks.

1. Theorem 2.4.1 states that the solution exists throughout any interval / containing the initial
point ¢, in which the coefficients p and g are continuous. That is, the solution can be
discontinuous or fail to exist only at points where at least one of p and g is discontinuous.
Such points can often be identified at a glance.

2. The interval 7 need not have finite length. Specifically, a could be —co and f could be 0.

Outline of Proof: The proof of this theorem is partly contained in the discussion in Section 2.2
leading to the formula [Eq. (27) in Section 2.2]

u@)y = / u@0gn) dr +c, 3

where [Eq. (25) in Section 2.2]

u(0) = eXp/P(t)a’l- “

The derivation in Section 2.2 shows that if Eq. (1) has a solution, then it must be given by Eq. (3).
By looking a little more closely at that derivation, we can also conclude that the differential
equation (1) must indeed have a solution. Since p is continuous for a < ¢ < f, it follows that u
is defined in this interval and is a nonzero differentiable function. Upon multiplying Eq. (1) by
u(t), we obtain

u@)yl" = u()g(). (5)

Since both y and g are continuous, the function pg is integrable, and Eq. (3) follows from Eq. (5).
Further the integral of ug is differentiable, so y as given by Eq. (3) exists and is differentiable
throughout the interval a < ¢ < . By substituting the expression for y from Eq. (3) into either
Eq. (1) or Eq. (5), you can easily verify that this expression satisfies the differential equation
throughout the interval a < ¢t < f. Finally, the initial condition (2) determines the constant ¢
uniquely, so there is only one solution of the initial value problem, thus completing the proof.

Equation (4) determines the integrating factor p(¢) only up to a multiplicative factor that
depends on the lower limit of integration. If we choose this lower limit to be #;, then

1
(1) = exp / p(s) ds, (6)

)

and it follows that u(#;) = 1. Using the integrating factor given by Eq. (6), and choosing
the lower limit of integration in Eq. (3) also to be #,, we obtain the general solution of
Eq. (1) in the form

y= 20 l /ro u(s)g(s)ds + c] . @)

To satisfy the initial condition (2), we must choose ¢ = y,. Thus the solution of the initial
value problem (1), (2) is

y=os l / H(s)g(s) ds +)’0] , ®

where u(t) is given by Eq. (6).
Turning now to nonlinear differential equations, we must replace Theorem 2.4.1 by a
more general theorem, such as the following.
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THEOREM Let the functions f and df /dy be continuous in some rectangle «a <t < f, y <y <6
2.4.2 containing the point (¢y, y,). Then, in some interval fy —h < t < f, + h contained in

a <t < f, there is a unique solution y = ¢(¢) of the initial value problem
y, =f(t,}’), Y(to) =YO (9)

LU SV  Tllustration of rectangular region in Theorem 2.4.2.

Observe that the hypotheses in Theorem 2.4.2 reduce to those in Theorem 2.4.1 if the
differential equation is linear. For then f (¢, y) = —p(¢)y + g(¢) and 9f (t,y) /dy = —p(t), so the
continuity of f and df /dy is equivalent to the continuity of p and g in this case. The proof of
Theorem 2.4.1 was comparatively simple because it could be based on the expression (3)
that gives the solution of an arbitrary linear equation. There is no corresponding expression
for the solution of the differential equation (9), so the proof of Theorem 2.4.2 is much more
difficult. It is discussed in more advanced books on differential equations.

Remarks.

1. The conditions stated in Theorem 2.4.2 are sufficient to guarantee the existence of a unique
solution of the initial value problem (9) in some interval 7, — h < t < t, + h, as illustrated
in Figure 2.4.1 but they are not necessary. That is, the conclusion remains true under
slightly weaker hypotheses about the function f. In fact, the existence of a solution (but
not its uniqueness) can be established on the basis of the continuity of f alone.

2. An important geometrical consequence of the uniqueness parts of Theorems 2.4.1 and
2.4.2 is that the graphs of two solutions cannot intersect each other. Otherwise, there
would be two solutions that satisfy the initial condition corresponding to the point of
intersection, in violation of Theorem 2.4.1 or 2.4.2.

We now consider some examples.

EEEN
EXAMPLE Use Theorem 2.4.1 to find an interval in which the initial value problem
' ' +2y = 4r, (10)
y(1)=2 (11)

has a unique solution.
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Rewriting Eq. (10) in the standard form (1), we have, assuming ¢ # 0,
Yy + %y =41,

so p(t) =2/t and g(r) = 4¢. Thus, for this equation, g is continuous for all ¢, while p is continuous
only for # < 0 or for # > 0. The interval ¢ > 0 contains the initial point; consequently, Theorem
2.4.1 guarantees that the problem (10), (11) has a unique solution on the interval 0 < 7 < 0. In
Example 2 of Section 2.2, we found the solution of this initial value problem to be

1

_ P

y—t+[—2, t>0. (12)
Now suppose that the initial condition (11) is changed to y(—1) = 2. Then Theorem 2.4.1

asserts the existence of a unique solution for # < 0. As you can readily verify, the solution is

again given by Eq. (12), but now on the interval —co < ¢ < 0.

EEEN
EXAMPLE
2

Apply Theorem 2.4.2 to the initial value problem

dy 32 +4t+2
— =, 0)=-1. 13
= 301 »(0) (13)

Note that Theorem 2.4.1 is not applicable to this problem since the differential equation is
nonlinear. To apply Theorem 2.4.2, observe that

f(t,y)= %’ %(,’y)=_w.

o-D dy 20— 1)?
Thus each of these functions is continuous everywhere except on the line y = 1. Consequently, a
rectangle can be drawn about the initial point (0, —1) in which both f and df /dy are continuous.
Therefore Theorem 2.4.2 guarantees that the initial value problem has a unique solution in some
interval about # = 0. However, even though the rectangle can be stretched infinitely far in both the
positive and negative ¢ directions, this does not necessarily mean that the solution exists for all
t. Indeed, the initial value problem (13) was solved in Example 2 of Section 2.1 and the solution
exists only for r > —2.

Now suppose we change the initial condition to y(0) = 1. The initial point now lies on the
line y = 1, so no rectangle can be drawn about it within which f and df /dy are continuous.
Consequently, Theorem 2.4.2 says nothing about possible solutions of this modified problem.
However, if we separate the variables and integrate, as in Section 2.1, we find that

vV =2y=r 4242 +c.

Further if t = 0 and y = 1, then ¢ = —1. Finally, by solving for y, we obtain

y=1+ V8 +2+21. (14)

Equation (14) provides two functions that satisfy the given differential equation for z > 0 and
also satisfy the initial condition y(0) = 1. Thus the initial value problem consisting of the differ-
ential equation (13) with the initial condition y(0) = 1 does not have a unique solution. The two
solutions are shown in Figure 2.4.2.
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| y=1+V3+2¢2 +2¢

L y=1-V3+22+2¢

SR aSv IV Nonunique solutions of the differential equation (13) with the initial
condition y(0) = 1.

HFEEN
EXAMPLE
3

Consider the initial value problem

yl :yl/3’ y(O):O (15)

for t > 0. Apply Theorem 2.4.2 to this initial value problem and then solve the problem.

The function f(¢,y) = y'/? is continuous everywhere, but df /dy is not defined when y = 0,
and hence is not continuous there. Thus Theorem 2.4.2 does not apply to this problem and no
conclusion can be drawn from it. However, by the remark following Theorem 2.4.2, the conti-
nuity of f does guarantee the existence of solutions, but not their uniqueness.

To understand the situation more clearly, we must actually solve the problem, which is easy
to do since the differential equation is separable. Thus we have

y_1/3dy =dt,
SO
3.2/3 _
W =t+c
and
5 3/2
y= [g(f + C)]
The initial condition is satisfied if ¢ = 0, so
5 \3/2
y=¢1(t)=(;t) . 120 (16)

satisfies both of Egs. (15). On the other hand, the function

5 \3/2
y=¢0=-(3)". 120 a7
is also a solution of the initial value problem. Moreover the function

y=w() =0, >0 (18)
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is yet another solution. Indeed, it is not hard to show that, for any arbitrary positive #,, the function

0, if0<t<t,
y=x0= 5 32 19)
+ [g(t—to)] , ifr>1

is continuous, differentiable (in particular at # = #;), and is a solution of the initial value problem
(15). Hence this problem has an infinite family of solutions; see Figure 2.4.3, where a few of
these solutions are shown.

AL ISV IR Several solutions of the initial value problem y’ = y'/3, y(0) = 0.

As already noted, the nonuniqueness of the solutions of the problem (15) does not contradict
the existence and uniqueness theorem, since the theorem is not applicable if the initial point lies
on the r-axis. If (¢, y,) is any point not on the #-axis, however, then the theorem guarantees that
there is a unique solution of the differential equation y’ = y'/3 passing through (o Yo)-

Interval of Definition. According to Theorem 2.4.1, the solution of a linear equation (1),

Y +p)y = g,

subject to the initial condition y(f,) = y,, exists throughout any interval about ¢ = f in
which the functions p and g are continuous. Thus vertical asymptotes or other discontinu-
ities in the solution can occur only at points of discontinuity of p or g. For instance, the
solutions in Example 1 (with one exception) are asymptotic to the y-axis, corresponding
to the discontinuity at # = O in the coefficient p(f) = 2/t, but none of the solutions has
any other point where it fails to exist and to be differentiable. The one exceptional solution
shows that solutions may sometimes remain continuous even at points of discontinuity of
the coefficients.

On the other hand, for a nonlinear initial value problem satisfying the hypotheses of
Theorem 2.4.2, the interval in which a solution exists may be difficult to determine. The
solution y = ¢(¢) is certain to exist as long as the point (z, ¢(#)) remains within a region in
which the hypotheses of Theorem 2.4.2 are satisfied. This is what determines the value of /&
in that theorem. However, since ¢(¢) is usually not known, it may be impossible to locate the
point (¢, ¢(¢)) with respect to this region. In any case, the interval in which a solution exists
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may have no simple relationship to the function f in the differential equation y" = f(z, y).
This is illustrated by the following example.

EEEN
EXAMPLE
4

Solve the initial value problem
Y=y y0=1 (20)

and determine the interval in which the solution exists.

Theorem 2.4.2 guarantees that this problem has a unique solution since f(z, y) = y? and
of /dy = 2y are continuous everywhere. However Theorem 2.4.2 does not give an interval
in which the solution exists, and it would be a mistake to conclude that the solution exists
for all 7.

To find the solution, we separate the variables and integrate, with the result that

vy 2dy = dt (21)
and
—y_1 =t+c.
Then, solving for y, we have
y=—— (22)
t+c

To satisty the initial condition, we must choose ¢ = —1, so

1
= 2
y 1—; (23)

is the solution of the given initial value problem. Clearly, the solution becomes unbounded
as t — 1; therefore the solution exists only in the interval —co < # < 1. There is no indication
from the differential equation itself, however, that the point 7 = 1 is in any way remarkable.
Moreover, if the initial condition is replaced by

¥(0) = o, (24)
then the constant c in Eq. (22) must be chosen to be ¢ = —1/y,), and it follows that

%
1_y0t

y (25)

is the solution of the initial value problem with the initial condition (24). Observe that the
solution (25) becomes unbounded as t — 1/y,, so the interval of existence of the solution
is—oo <t < 1/yyifyy>0,andis 1/y, <t < o0 if yg < 0. Figure 2.4.4 shows the solution
for yo > 0. This example illustrates another feature of initial value problems for nonlinear
equations; namely, the singularities of the solution may depend in an essential way on the
initial conditions as well as the differential equation.
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¥lyo
5 |

____/ J =y0/(1 _yOt)

-1 -0.5 0.5 1] yot

LS PRV I The solution (25) of the initial value problem y’ = y2,y(0) = y, > 0.
Note that we plot y/y, versus y,t; thus the vertical asymptote is at

Yot = 1.

General Solution. Another way in which linear and nonlinear equations differ concerns the concept of a
general solution. For a first order linear equation it is possible to obtain a solution containing
one arbitrary constant, from which all possible solutions follow by specifying values for
this constant. For nonlinear equations this may not be the case; even though a solution
containing an arbitrary constant may be found, there may be other solutions that cannot be
obtained by giving values to this constant. For instance, for the differential equation y’ = y?
in Example 4, the expression in Eq. (22) contains an arbitrary constant, but does not include
all solutions of the differential equation. To show this, observe that the function y = 0
for all 7 is certainly a solution of the differential equation, but it cannot be obtained from
Eq. (22) by assigning a value to c. In this example, we might anticipate that something of
this sort might happen because, to rewrite the original differential equation in the form (21),
we must require that y is not zero. However the existence of “additional” solutions is not
uncommon for nonlinear equations; a less obvious example is given in Problem 14. Thus
we will use the term “general solution” only when discussing linear equations.

Implicit Solutions. Recall again that, for an initial value problem for a first order linear equation, Eq. (8)
provides an explicit formula for the solution y = ¢(¢). As long as the necessary antideriva-
tives can be found, the value of the solution at any point can be determined merely by sub-
stituting the appropriate value of ¢ into the equation. The situation for nonlinear equations
is much less satisfactory. Usually, the best that we can hope for is to find an equation

F(t,y)=0 (26)

involving ¢ and y that is satisfied by the solution y = ¢(¢). Even this can be done only
for differential equations of certain particular types, of which separable equations are the
most important. The equation (26) is called an integral, or first integral, of the differential
equation, and (as we have already noted) its graph is an integral curve, or perhaps a family
of integral curves. Equation (26), assuming it can be found, defines the solution implicitly;
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that is, for each value of r we must solve Eq. (26) to find the corresponding value of y. If
Eq. (26) is simple enough, it may be possible to solve it for y by analytical means and thereby
obtain an explicit formula for the solution. However more often this will not be possible,
and you will have to resort to a numerical calculation to determine an approximate value
of y for a given value of ¢. Once several pairs of values of ¢ and y have been calculated, it
is often helpful to use a computer to plot them and then to sketch the integral curve that
passes through them.

Examples 2, 3, and 4 are nonlinear problems in which it is easy to solve for an explicit
formula for the solution y = ¢(¢). On the other hand, Examples 1 and 3 in Section 2.1 are
cases in which it is better to leave the solution in implicit form, and to use numerical means
to evaluate it for particular values of the independent variable. The latter situation is more
typical; unless the implicit relation is quadratic in y, or has some other particularly simple
form, it is unlikely that it can be solved exactly by analytical methods. Indeed, more often
than not, it is impossible even to find an implicit expression for the solution of a first order
nonlinear equation.

Graphical or Numerical Construction of Integral Curves. Because of the difficulty in

Summary.

obtaining exact analytical solutions of nonlinear differential equations, methods that yield
approximate solutions or other qualitative information about solutions are of correspond-
ingly greater importance. We have already described, in Section 1.2, how the direction field
of a differential equation can be constructed. The direction field can often show the quali-
tative form of solutions and can also be helpful in identifying regions of the #y-plane where
solutions exhibit interesting features that merit more detailed analytical or numerical inves-
tigation. Graphical methods for first order equations are discussed further in Section 2.5. A
systematic discussion of numerical methods appears in Chapter 8. However, it is not nec-
essary to study the numerical algorithms themselves in order to use effectively one of the
many software packages that generate and plot numerical approximations to solutions of
initial value problems.

The linear equation y’ + p(¢)y = g(¢) has several nice properties that can be summarized in
the following statements:

1. Assuming that the coefficients are continuous, there is a general solution, containing
an arbitrary constant, that includes all solutions of the differential equation. A partic-
ular solution that satisfies a given initial condition can be picked out by choosing the
proper value for the arbitrary constant.

2. There is an expression for the solution, namely, Eq. (7) or Eq. (8). Moreover, although
it involves two integrations, the expression is an explicit one for the solution y = ¢(¢)
rather than an equation that defines ¢ implicitly.

3. The possible points of discontinuity, or singularities, of the solution can be identified
(without solving the problem) merely by finding the points of discontinuity of the
coefficients. If the coefficients are continuous for all ¢, then the solution not only
exists and is continuous for all #, but it is also continuously differentiable for all .

None of these statements is true, in general, of nonlinear equations. Although a nonlinear
equation may well have a solution involving an arbitrary constant, there may also be other
solutions. There is no general formula for solutions of nonlinear equations. If you are able
to integrate a nonlinear equation, you are likely to obtain an equation defining solutions
implicitly rather than explicitly. Finally, the singularities of solutions of nonlinear equa-
tions can usually be found only by solving the equation and examining the solution. It is
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likely that the singularities will depend on the initial condition as well as the differential

equation.

PROBLEMS
EE N BN EEEEEEEEEEEEEEENERn

Existence and Uniqueness of Solutions. In each of Prob-
lems 1 through 6, use Theorem 2.4.1 to determine (without
solving the problem) an interval in which the solution of the
given initial value problem is certain to exist.

1. (t=3)Y + (np)y =21, y(1)=2
2. ((t—4)y +y=0, y2)=1
3.y + (tant)y = sint, y(@)=0

4. (4 =12y + 2ty =37, y(=3)=1
5. 4 =1y +2ty =38, y(1) =-3
6. (Inr)y’ +y =cott, y2)=3

In each of Problems 7 through 12, state where in the #y-plane
the hypotheses of Theorem 2.4.2 are satisfied.

g
2t + Sy

8. yl — (1 _ l2 _y2)1/2
In |7y]

9. yV = —————
Y 1—2+)?
10. y = (2 +y?)*?
d 2
1. @ - 141

dr  3y—»?
12 @ _ (cot 1)y
dt I+y

13. Consider the initial value problem y’ = y'/3, y(0) = 0
from Example 3 in the text.

(a) Is there a solution that passes through the point (1, 1)? If
so, find it.

(b) Is there a solution that passes through the point (2, 1)? If
so, find it.

(c) Consider all possible solutions of the given initial value
problem. Determine the set of values that these solutions at-
tain atr = 2.

14. (a) Verify that both y,(t) = 1 — ¢ and y,(¢) = —1* /4 are
solutions of the initial value problem
, —t+ (42

=—— " 2)=-1.
y 2 ¥(2)

Where are these solutions valid?

(b) Explain why the existence of two solutions of the given
problem does not contradict the uniqueness part of Theorem
24.2.

(¢) Show that y = ¢t + ¢?, where c is an arbitrary constant,
satisfies the differential equation in part (a) for > —2c¢. If
¢ = —1, the initial condition is also satisfied, and the solution
y = y,(¢) is obtained. Show that there is no choice of ¢ that
gives the second solution y = y,(1).

Dependence of Solutions on Initial Conditions. In each of
Problems 15 through 18, solve the given initial value problem
and determine how the interval in which the solution exists
depends on the initial value y,.

15. y = —4t/y, ¥(0) =y,
16. y =21y, y(0) =y,
17. Y +y*=0,  y0) =y,

18y =2/yA+7),  y0) =y,

In each of Problems 19 through 22, draw a direction field
and plot (or sketch) several solutions of the given differen-
tial equation. Describe how solutions appear to behave as ¢
increases and how their behavior depends on the initial value
Yo when t = 0.

19. Y =1y(3-)
20. y =y -1ty
21,y =-y@ -ty
22. Y =t—1-y?
Linearity Properties

23. (a) Show that ¢(r) = €* is a solution of y' — 2y = 0 and
that y = c¢(¢) is also a solution of this equation for any value
of the constant c.

(b) Show that ¢(¢) = 1/tis a solution of y’ +y?> = O fort >0
but that y = c¢(?) is not a solution of this equation unless
¢ =0orc = 1. Note that the equation of part (b) is nonlinear,
whereas that of part (a) is linear.

24. Show that if y = ¢(¢) is a solution of y' + p(r)y = 0, then
y = c¢(t) is also a solution for any value of the constant c.

25. Lety =y,(¢) be a solution of
Y +p@y =0, )
and let y = y,(¢) be a solution of
Y +p@)y = g(0). (i)
Show that y = y, () + y,(¢) is also a solution of Eq. (ii).

26. (a) Show that the solution (7) of the general linear equa-
tion (1) can be written in the form

y=cy (1) + y,(0), ()

where ¢ is an arbitrary constant. Identify the functions y,
and y,.
(b) Show that y, is a solution of the differential equation

Y +p@)y =0, (i)

corresponding to g(¢) = 0.
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(c) Show that y, is a solution of the full linear equation (1).
We see later (e.g., in Section 4.5) that solutions of higher or-
der linear equations have a pattern similar to Eq. (i).

Discontinuous Coefficients. Linear differential equations
sometimes occur in which one or both of the functions p and
g have jump discontinuities. If ¢, is such a point of disconti-
nuity, then it is necessary to solve the equation separately for
t <ty and > t,. Afterward, the two solutions are matched so
that y is continuous at f,. This is accomplished by a proper
choice of the arbitrary constants. Problems 27 and 28 illus-
trate this situation. Note in each case that it is impossible to
make y’" continuous at #,: explain why, just from examining
the differential equations.

27. Solve the initial value problem

28. Solve the initial value problem

Y+p@y=0, y0)=1,
where
, 0511,
p(t) =
1, > 1.

29. Consider the initial value problem

Y +pty =g, ¥ty =y, (O]
(a) Show that the solution of the initial value problem (i) can
be written in the form

¥ =ypexp ( - /tp(s) ds)
+/texp ( - /tp(r) dr)g(s) ds.

(b) Assume that p(t) > p, > 0 for all > #, and that g(¢)
is bounded for > ¢, (i.e., there is a constant M such that
|g(*)] < M for all t > t,). Show that the solution of the initial
value problem (i) is bounded for ¢ > #,,.

(¢) Construct an example with nonconstant p(7) and g(¢) that
illustrates this result.

2.5 Autonomous Equations
and Population Dynamics

In Section 1.2 we first encountered the following important class of first order equations in
which the independent variable does not appear explicitly.

Y 4+2y=g0,  y0)=0,
where
1, 0<r<1,
g =
0, t>1
DEFINITION
2.5.1

is said to be autonomous.

Autonomous Equation. A differential equation that can be written as

dy

5 ~fO ey

We will now discuss these equations in the context of the growth or decline of the population
of a given species, an important issue in fields ranging from medicine to ecology to global
economics. A number of other applications are mentioned in some of the problems. Recall
that in Section 2.1 we considered the special case of Eq. (1) in which the form of the right

side is f(y) = ay + b.

Equation (1) is separable, and it can be solved using the approach discussed in Section
2.1. However, the main purpose of this section is to show how geometrical methods can be
used to obtain important qualitative information about solutions directly from the differen-
tial equation, without solving the equation. Of fundamental importance in this effort are the
concepts of stability and instability of solutions of differential equations. These ideas were
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introduced informally in Chapter 1. They are discussed further here and will be examined
in greater depth and in a more general setting in Chapters 3 and 7.

Exponential Growth. Lety= ¢(¢) be the population of the given species at time z. The simplest hypoth-
esis concerning the variation of population is that the rate of change of y is proportional to
the current value of y. For example, if the population doubles, then the number of births in
a given time period should also double. Thus we have

dy/dt = ry, 2

where the constant of proportionality r is called the rate of growth or decline, depend-
ing on whether it is positive or negative. Here we assume that > 0, so the population is

growing.
Solving Eq. (2) subject to the initial condition
¥(0) = yo, 3)
we obtain
y = yoe". O]

Thus the mathematical model consisting of the initial value problem (2), (3) with » > 0 pre-
dicts that the population will grow exponentially for all time, as shown in Figure 2.5.1 for
several values of y,. Under ideal conditions, Eq. (4) has been observed to be reasonably ac-
curate for many populations, at least for limited periods of time. However it is clear that such
ideal conditions cannot continue indefinitely; eventually, limitations on space, food supply,
or other resources will reduce the growth rate and bring an end to uninhibited exponential
growth.

—
o
I

(9]
I

(o}
I

| | |
1/r 2/r 3/r Afr t

LS B Exponential growth: y versus ¢ for dy/dt = ry.

Logistic Growth. To account for the fact that the growth rate actually depends on the population,
we replace the constant r in Eq. (2) by a function A(y) and thereby obtain the modified
equation

dy/dt = h(y)y. 5

We now want to choose A(y), so that A(y) = r > 0 when y is small, A(y) decreases as
y grows larger, and A(y) < O when y is sufficiently large. The simplest function that has
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these properties is h(y) = r — ay, where a is also a positive constant. Using this function in
Eqg. (5), we obtain

dy/dt = (r — ay)y. (6)

Equation (6) is known as the Verhulst equation or the logistic equation. It is often conve-
nient to write the logistic equation in the equivalent form

where K = r/a. In this equation, the constant r is referred to as the intrinsic growth rate,
that is, the growth rate in the absence of any limiting factors. The interpretation of K will
become clear shortly.

Before proceeding to investigate the solutions of Eq. (7), let us look at a specific example.

EEEN
EXAMPLE
1

Consider the differential equation

dy y
Z=(1-2)» 8
dt ( 3)7 ©
Without solving the equation, determine the qualitative behavior of its solutions and sketch
the graphs of a representative sample of them.

As in Section 1.2, the constant solutions are of particular importance. They satisfy the

algebraic equation
Y
1——) =0.
( 3)7

Thus the constant solutions are y = ¢ (f) = 0 and y = ¢, (1) = 3.

To visualize other solutions of Eq. (8) and to sketch their graphs quickly, we can proceed
in the following way. Let f(y) = (1 — y/3)y and draw the graph of f(y) versus y. The graph
is shown in Figure 2.5.2. Remember that f(y,) represents the slope of a line tangent to the
graph of the solution of (8) passing through a point (#, y,) in the ty-plane.

)
08

0.6
0.4

0.2

0.4

-06H

FILCRPAESVARTVAS  Graph of f(y) = (1 — y/3)y versus y.
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To sketch solutions of Eq. (8), the first step is to draw the equilibrium solutions
y=¢ () =0andy = ¢,(¢) = 3; see the thick dashed lines in Figure 2.5.3. Then from Fig-
ure 2.5.2 note that f(y) > 0 for 0 < y < 3. Thus in the #y-plane solutions are increasing
(have a positive slope) for 0 < y < 3. A few of these solutions are shown in Figure 2.5.3.
These solution curves flatten out near y = 0 and y = 3 because, from Figure 2 5.2, their
slopes, given by f(v), are near zero there. The slopes reach a maximum at y= 2 the ver-
tex of the parabola. Observe also that f(y) or dy/dt is increasing for y < = and decreasing
for y > = ThlS means that the graphs of y versus ¢ are concave up for y < = and concave

down for y> E' In other words, solution curves have an inflection point as they cross the line
y=3

For y > 3 you can see from Figure 2.5.2 that f(y), or dy/dt, is negative and decreasing.
Therefore the graphs of y versus 7 for this range of y are decreasing and concave up. They
also become flatter as they approach the equilibrium solution y = 3. Some of these graphs
are also shown in Figure 2.5.3.

None of the other solutions can intersect the equilibrium solutions y = 0 and y = 3 at
a finite time. If they did, they would violate the uniqueness part of Theorem 2.4.2, which
states that only one solution can pass through any given point in the ty-plane. As such,
the equilibrium solutions partition the fy-plane into disjoint regions, and the shape of the
solution curves in each region is determined by the sign and slope of f(y).

Finally, although we have drawn Figures 2.5.2 and 2.5.3 using a computer, very similar
qualitatively correct sketches can be drawn by hand, without any computer assistance, by
following the steps described in this example.

AUVl Graphs of solutions of Eq. (8): y' = (1 — y/3)y.

We now return to a consideration of the more general Eq. (7),
b_, (1-2)y
dt K/

where r and K are positive constants. We can proceed, just as in Example 1, to draw a
qualitatively correct sketch of solutions of this equation.
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(K72, rK/4)

=

X

N
I
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K/2 K\ y

SRRV f(v) versus y for dy/dt = r(1 — y/K)y.

To find the equilibrium solutions, we set dy/dt equal to zero and solve the resulting
algebraic equation

r(l—%>y=0.

Thus, for Eq. (7), the equilibrium solutions are y = ¢;(f) = 0 and y = ¢, (1) = K.

Next we draw the graph of f(y) versus y. In the case of Eq. (7), f(y) = r(1 — y/K)y,
so the graph is the parabola shown in Figure 2.5.4. The intercepts are (0, 0) and (K, 0),
corresponding to the critical points of Eq. (7), and the vertex of the parabola is (K /2, rK /4).
Observe that dy/dt > 0 for 0 <y < K [since dy/dt = f(y)]; therefore y is an increasing
function of r when y is in this interval. This is indicated by the rightward-pointing arrows
near the y-axis in Figure 2.5.4. Similarly, if y > K, then dy/dr < 0; hence y is decreasing,
as indicated by the leftward-pointing arrow in Figure 2.5.4.

The y-axis, or phase line, is shown in Figure 2.5.5a. The dots at y = 0 and y = K are
the critical points, or equilibrium solutions. The arrows again indicate that y is increasing
whenever 0 < y < K and that y is decreasing whenever y > K. We see from the phase line
that y = 0 is unstable and y = 3 is asymptotically stable.

Ke K
A
K2
0e

(a) (b)

SRSV Logistic growth: dy/dt = r(1 — y/K)y. (a) The phase line. (b) Plots of y
versus ¢, with equilibrium solutions shown by thick dashed lines.
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Further, from Figure 2.5.4, note that if y is near zero or K, then the slope f(y) is near
zero, so the solution curves are relatively flat. They become steeper as the value of y leaves
the neighborhood of zero or K.

To sketch the graphs of solutions of Eq. (7) in the ty-plane, we start with the equilibrium
solutions y = 0 and y = K; then we draw other curves that are increasing when 0 <y < K,
decreasing when y > K, and flatten out as y approaches either of the values O or K. Thus
the graphs of solutions of Eq. (7) must have the general shape shown in Figure 2.5.5b,
regardless of the values of r and K.

As in Example 1, the concavity of a solution curve changes as it passes through the
value y = K/2 corresponding to the vertex of the parabola in Figure 2.5.4. Thus each
solution curve has an inflection point when y = K/2. Further, Figure 2.5.5b6 may seem
to show that other solutions intersect the equilibrium solution y = K, but this is impos-
sible by the uniqueness part of Theorem 2.4.2. Thus, although other solutions may be
asymptotic to the equilibrium solution as r — oo, they cannot intersect it at any finite
time.

Finally, observe that K is the upper bound that is approached, but not exceeded, by grow-
ing populations starting below this value. Thus it is natural to refer to K as the saturation
level, or the environmental carrying capacity, for the given species.

A comparison of Figures 2.5.1 and 2.5.5b reveals that solutions of the nonlinear equa-
tion (7) are strikingly different from those of the linear equation (1), at least for large val-
ues of 7. Regardless of the value of K, that is, no matter how small the nonlinear term in
Eq. (7), solutions of that equation approach a finite value as t — oo, whereas solutions of
Eq. (1) grow (exponentially) without bound as t — oo. Thus even a tiny nonlinear term in
the differential equation has a decisive effect on the solution for large 7.

Phase Line for General Autonomous Differential Equations

The same methods can be applied to the general autonomous equation (1),

dy/dt = f(y).

The equilibrium solutions of this equation can be found by locating the roots of f(y) = 0.
The zeros of f(y) are also called critical points.

We showed in Section 1.2 (see Theorem 1.2.1) that if y; is a critical point and if
f'(y)) <0, then all nearby solutions are approaching y = y;, so that y, is asymptotically
stable. On the other hand, if y, is a critical point and if /’(y;) > 0, then nearby solutions are
departing from y =y, so y; is unstable.

To carry the investigation one step further, we can determine the concavity of the solu-
tion curves and the location of inflection points by finding d>y/dr>. From the differential
equation (1), we obtain (using the chain rule)

dy _ddy _d D

= G = dO =05 = Oro). ©
The graph of y versus ¢ is concave up when y” > 0, that is, when f and f’ have the same
sign. Similarly, it is concave down when y”" < 0, which occurs when f and f” have opposite
signs. The signs of f and f” can be easily identified from the graph of f(y) versus y. Inflection
points may occur when f7(y) = 0.

In many situations, it is sufficient to have the qualitative information about a solution
y = ¢(t) of Eq. (7) that is shown in Figure 2.5.5b. This information was obtained entirely
from the graph of f(y) versus y, and without solving the differential equation (7). However,
if we wish to have a more detailed description of logistic growth—for example, if we wish
to know the value of the population at some particular time—then we must solve Eq. (7)
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subject to the initial condition (3). Provided that y # 0 and y # K, we can write Eq. (7) in
the form

dy

— L —rar
(1-y/K)y ra

Using a partial fraction expansion on the left side, we have

<1+ 1/K )d dt
-+ ———)dy=rdt.
y 1-y/K

Then, by integrating both sides, we obtain

In|y|] —In

Yy
1-=|=n > 1
' +c (10)

where c¢ is an arbitrary constant of integration to be determined from the initial condition
¥(0) = y,. We have already noted that if 0 < y; < K, then y remains in this interval for all
time. Thus in this case we can remove the absolute value bars in Eq. (10), and by taking the
exponential of both sides, we find that

y
= Ce", 11
T=y/K e (11)

where C =e¢¢. In order to satisfy the initial condition y(0) =y,, we must choose
C = yy/[1 — (yy/K)]. Using this value for C in Eq. (11) and solving for y, we obtain

YoK

[ — 12
Yo + (K —yple™"" (12

y

We have derived the solution (12) under the assumption that 0 < y, < K. If y, > K, then
the details of dealing with Eq. (10) are only slightly different, and we leave it to you to show
that Eq. (12) is also valid in this case. Finally, note that Eq. (12) also contains the equilibrium
solutions y = ¢;(#) = Oandy = ¢,(r) = K corresponding to the initial conditions y, =0 and
yo = K, respectively.

All the qualitative conclusions that we reached earlier by geometrical reasoning can be
confirmed by examining the solution (12). In particular, if y, = 0, then Eq. (12) requires
that y(r) = 0 for all z. If y, > 0, and if we let  — oo in Eq. (12), then we obtain

lim y(1) = yoK/yy = K.
11— 00

Thus, for each y; > 0, the solution approaches the equilibrium solution y = ¢,(¢) = K
asymptotically as t — co. Therefore the constant solution ¢,(f) = K is an asymptotically
stable solution of Eq. (7). After a long time, the population is close to the saturation level K
regardless of the initial population size, as long as it is positive. Other solutions approach
the equilibrium solution more rapidly as r increases.

On the other hand, the situation for the equilibrium solution y = ¢(¢) = 0 is quite dif-
ferent. Even solutions that start very near zero grow as ¢ increases and, as we have seen,
approach K as t — co. So, the solution ¢;(¢) = 0 is an unstable equilibrium solution. This
means that the only way to guarantee that the solution remains near zero is to make sure its
initial value is exactly equal to zero.
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EEEN
EXAMPLE
2

The logistic model has been applied to the natural growth of the halibut population in certain
areas of the Pacific Ocean.* Let y, measured in kilograms, be the total mass, or biomass,
of the halibut population at time ¢. The parameters in the logistic equation are estimated to
have the values r = 0.71/year and K = 80.5 X 10° kg. If the initial biomass is y, = 0.25K,
find the biomass two years later. Also find the time 7 for which y(z) = 0.75K.

It is convenient to scale the solution (12) to the carrying capacity K; thus we write
Eq. (12) in the form

P Yo/ K (13)
K (o/K)+[1=(yo/K)le™
Using the data given in the problem, we find that
2
YO 0B L5797,
K 0.25 +0.75¢~142
Consequently, y(2) = 46.7 x 10° kg.
To find 7, we can first solve Eq. (13) for r. We obtain
o _ Qo/K)L = O/K)]
O/KM = o/K)1
Hence
K[l -@y/K
1 Go/B) = O/K)] "

n .
ro /K[ = (/K]
Using the given values of » and y,/K and setting y/K = 0.75, we find that

=L 029029 1 53095 years.
071 " (0.75)(0.75) _ 071

The graphs of y/K versus ¢ for the given parameter values and for several initial condi-
tions are shown in Figure 2.5.6.

y=K
1.75
1.50
1.25
1.00
0.75
0.50
0.25

LV SV v/ K versus ¢ for population model of halibut in the Pacific Ocean.

4A good source of information on the population dynamics and economics involved in making efficient use
of a renewable resource, with particular emphasis on fisheries, is the book by Clark listed in the references
at the end of the book. The parameter values used here are given on page 53 of this book and were obtained
from a study by H. S. Mohring.
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A Critical Threshold. We now turn to a consideration of the equation

dy y
a=1=7)” as)
where r and T are given positive constants. Observe that (except for replacing the parameter
K by T) this equation differs from the logistic equation (7) only in the presence of the
minus sign on the right side. However, as we will see, the solutions of Eq. (15) behave very
differently from those of Eq. (7).

For Eq. (15), the graph of f(y) versus y is the parabola shown in Figure 2.5.7. The inter-
cepts on the y-axis are the critical points y = 0 and y = T, corresponding to the equilibrium
solutions ¢ () =0 and ¢,(t) =T.1If 0 < y < T, then dy/dt < 0, and y decreases as ¢ in-
creases. On the other hand, if y > T, then dy/dt > 0, and y grows as t increases. Thus
¢, (¢) = 0 is an asymptotically stable equilibrium solution and ¢, (#) = T is an unstable one.
Further f/(y) is negative for 0 <y < T/2 and positive for T/2 <y < T, so the graph of
y versus ¢ is concave up and concave down, respectively, in these intervals. Also, f/(y) is
positive for y > T, so the graph of y versus ¢ is also concave up there.

Figure 2.5.8a shows the phase line (the y-axis) for Eq. (15).

()

D —— ‘ -—

T/2

T Y

—rT/4 —
(T/2, —rT/4)

SRSV ET . f(y) versus y for dy/dt = —r(1 —y/T)y.

T/2

(@) (b)

SRSV Growth with a threshold: dy/df = —r(1 — y/T)y. (a) The phase line.
(b) Plots of y versus t.
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Solution curves of Eq. (15) can now be sketched quickly using the procedure outlined in
Table 1.2.1. The result is Figure 2.5.8b, which is a qualitatively accurate sketch of solutions
of Eq. (15) for any r and T. From this figure, it appears that as time increases, y either
approaches zero or grows without bound, depending on whether the initial value y is less
than or greater than 7. Thus 7 is a threshold level, below which growth does not occur.

We can confirm the conclusions that we have reached through geometrical reasoning
by solving the differential equation (15). This can be done by separating the variables and
integrating, just as we did for Eq. (7). However, if we note that Eq. (15) can be obtained
from Eq. (7) by replacing K by T and r by —r, then we can make the same substitutions in
the solution (12) and thereby obtain

_ yoT
vE o + (T =yp)e’
which is the solution of Eq. (15) subject to the initial condition y(0) = y,.
If 0 < yy < T, then it follows from Eq. (16) that y — 0 as t — oo. This agrees with our

qualitative geometric analysis. If y, > 7, then the denominator on the right side of Eq. (16)
is zero for a certain finite value of 7. We denote this value by #* and calculate it from

Yo — g =D =0,

(16)

which gives

= 1 In —20
ro yo—T

Thus, if the initial population y; is above the threshold 7', the threshold model predicts that
the graph of y versus ¢ has a vertical asymptote at r = t*. In other words, the population
becomes unbounded in a finite time, whose value depends on y, T, and r. The existence
and location of this asymptote were not apparent from the geometric analysis, so, in this
case, the explicit solution yields additional important qualitative, as well as quantitative,
information.

The populations of some species exhibit the threshold phenomenon. If too few are
present, then the species cannot propagate itself successfully and the population becomes
extinct. However, if a population larger than the threshold level can be brought together,
then further growth occurs. Of course, the population cannot become unbounded, so even-
tually Eq. (15) must be modified to take this into account.

Critical thresholds also occur in other circumstances. For example, in fluid mechanics,
equations of the form (7) or (15) often govern the evolution of a small disturbance y in a
laminar (or smooth) fluid flow. For instance, if Eq. (15) holds and y < T, then the disturbance
is damped out and the laminar flow persists. However, if y > T, then the disturbance grows
larger and the laminar flow breaks up into a turbulent one. In this case, T is referred to as the
critical amplitude. Experimenters speak of keeping the disturbance level in a wind tunnel
sufficiently low so they can study laminar flow over an airfoil, for example.

a7

Logistic Growth with a Threshold. As we mentioned in the last subsection, the threshold model
(15) may need to be modified so that unbounded growth does not occur when y is above
the threshold 7'. The simplest way to do this is to introduce another factor that will have the
effect of making dy/dt negative when y is large. Thus we consider

dy y y
aer(1-3) () :
dr r( T k)’ (18)
where r >0and0< 7 < K.

The graph of f(y) versus y is shown in Figure 2.5.9. There are now three critical points,
y=0,y=T,and y = K, corresponding to the equilibrium solutions ¢,(¢) =0, ¢,(t) =T,
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SISV RTRNE  Logistic growth with a threshold: dy/dt = —r(1 —y/T)(1 — y/K)y.
(a) The phase line. (b) Plots of y versus f.

and ¢5(7) = K, respectively. From Figure 2.5.9, it is clear that dy/dt > O for T <y < K, and
consequently, y is increasing there. The reverse is true for y < T and for y > K. Consequently,
the equilibrium solutions ¢;(¢) and ¢(¢) are asymptotically stable, and the solution ¢, ()
is unstable.

The phase line for Eq. (18) is shown in Figure 2.5.10a, and the graphs of some solutions
are sketched in Figure 2.5.10b. Make sure that you understand the relation between these
two figures, as well as the relation between Figures 2.5.9 and 2.5.10a. From Figure 2.5.10b
we see that if y starts below the threshold 7, then y declines to ultimate extinction. On the
other hand, if y starts above 7, then y eventually approaches the carrying capacity K. The
inflection points on the graphs of y versus ¢ in Figure 2.5.10b correspond to the maximum
and minimum points, w; and w,, respectively, on the graph of f(y) versus y in Figure 2.5.9.
These values can be obtained by differentiating the right side of Eq. (18) with respect to y,
setting the result equal to zero, and solving for y. We obtain

wia=K+T+VK>—KT +T?)/3, 19)

where the plus sign yields w; and the minus sign w,.

A model of this general sort apparently describes the population of the passenger pi-
geon,” which was present in the United States in vast numbers until late in the 19th century.
It was heavily hunted for food and for sport, and consequently its numbers were drastically
reduced by the 1880s. Unfortunately, the passenger pigeon could apparently breed success-
fully only when present in a large concentration, corresponding to a relatively high threshold

5See, for example, Oliver L. Austin, Jr., Birds of the World (New York: Golden Press, 1983), pp. 143-145.
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T. Although a reasonably large number of individual birds remained alive in the late 1880s,
there were not enough in any one place to permit successful breeding, and the population
rapidly declined to extinction. The last survivor died in 1914. The precipitous decline in the
passenger pigeon population from huge numbers to extinction in a few decades was one of
the early factors contributing to a concern for conservation in this country.

PROBLEMS
B R B R BB R R E R E R E R B R B B

1. Suppose that a certain population obeys the logistic equa-
tion dy/dt = ry[1 — (y/K)].

(a) If y, = K/3, find the time 7z at which the initial pop-
ulation has doubled. Find the value of 7 corresponding to
r = 0.025 per year.

(b) If y,/K = a, find the time T at which y(T)/K = f, where
O<a,f<1.0Observethat7T — coasa — Ooras f — 1. Find
the value of T for r = 0.025 per year, @ = 0.1, and f = 0.9.

2. Another equation that has been used to model population
growth is the Gompertz equation

dy/dt = ryIn(K/y),
where r and K are positive constants.

(a) Sketch the graph of f(y) versus y, find the critical points,
and determine whether each is asymptotically stable or
unstable.
(b) For 0 <y < K, determine where the graph of y versus ¢
is concave up and where it is concave down.
(¢) ForeachyinO < y < K, show that dy/dt, as given by the
Gompertz equation, is never less than dy/dt, as given by the
logistic equation.
3. (a) Solve the Gompertz equation

dy/dt = ryIn(K/y),
subject to the initial condition y(0) = .
Hint: You may wish to let u = In(y/K).
(b) For the data given in Example 2 in the text (r = 0.71 per
year, K = 80.5 x 10° kg, y,/K = 0.25), use the Gompertz
model to find the predicted value of y(2).
(c¢) For the same data as in part (b), use the Gompertz model
to find the time 7 at which y(z) = 0.75K.

4. A pond forms as water collects in a conical depression of
radius a and depth /. Suppose that water flows in at a constant
rate k and is lost through evaporation at a rate proportional
to the surface area.

(a) Show that the volume V(¢) of water in the pond at time ¢
satisfies the differential equation

dv/dt = k — ax(3a/xh)**V*3,
where « is the coefficient of evaporation.

(b) Find the equilibrium depth of water in the pond. Is the
equilibrium asymptotically stable?

(c¢) Find a condition that must be satisfied if the pond is not
to overflow.

5. Consider a cylindrical water tank of constant cross section
A. Water is pumped into the tank at a constant rate k and leaks
out through a small hole of area a in the bottom of the tank.
From Torricelli’s principle in hydrodynamics (see Problem 6
in Section 2.3), it follows that the rate at which water flows
through the hole is aam, where £ is the current depth of
water in the tank, g is the acceleration due to gravity, and «
is a contraction coefficient that satisfies 0.5 < @ < 1.0.

(a) Show that the depth of water in the tank at any time sat-
isfies the equation

dh/dt = (k —aa\/2gh)/A.
(b) Determine the equilibrium depth /s, of water, and show
that it is asymptotically stable. Observe that i, does not de-
pend on A.

Epidemics. The use of mathematical methods to study the
spread of contagious diseases goes back at least to some
work by Daniel Bernoulli in 1760 on smallpox. In more re-
cent years, many mathematical models have been proposed
and studied for many different diseases.® Problems 6 through
8 deal with a few of the simpler models and the conclu-
sions that can be drawn from them. Similar models have also
been used to describe the spread of rumors and of consumer
products.

6. Suppose that a given population can be divided into two
parts: those who have a given disease and can infect others,
and those who do not have it but are susceptible. Let x be
the proportion of susceptible individuals and y the propor-
tion of infectious individuals; then x + y = 1. Assume that
the disease spreads by contact between sick and well mem-
bers of the population and that the rate of spread dy/dt is
proportional to the number of such contacts. Further, assume
that members of both groups move about freely among each
other, so the number of contacts is proportional to the prod-
uct of x and y. Since x = 1 —y, we obtain the initial value
problem

dy/dt = ay(1 —y), ¥(0) = y,, (i)

where « is a positive proportionality factor, and y, is the ini-
tial proportion of infectious individuals.

©A standard source is the book by Bailey listed in the references. The models in Problems 6 through 8 are
discussed by Bailey in Chapters 5, 10, and 20, respectively.
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(a) Find the equilibrium points for the differential equa-
tion (i) and determine whether each is asymptotically stable,
semistable, or unstable.

(b) Solve the initial value problem (i) and verify that the
conclusions you reached in part (a) are correct. Show that
y(#) = 1 as t - oo, which means that ultimately the disease
spreads through the entire population.

7. Some diseases (such as typhoid fever) are spread largely
by carriers, individuals who can transmit the disease but who
exhibit no overt symptoms. Let x and y, respectively, denote
the proportion of susceptibles and carriers in the population.
Suppose that carriers are identified and removed from the
population at a rate f, so

dy/dt = —py. @)
Suppose also that the disease spreads at a rate proportional
to the product of x and y; thus

dx/dt = —axy. (ii)
(a) Determine y at any time ¢ by solving Eq. (i) subject to the
initial condition y(0) = y,.
(b) Use the result of part (a) to find x at any time # by solving
Eq. (ii) subject to the initial condition x(0) = x,.
(¢) Find the proportion of the population that escapes the
epidemic by finding the limiting value of x as t — oo.

8. Daniel Bernoulli’s work in 1760 had the goal of apprais-
ing the effectiveness of a controversial inoculation program
against smallpox, which at that time was a major threat to
public health. His model applies equally well to any other
disease that, once contracted and survived, confers a lifetime
immunity.

Consider the cohort of individuals born in a given year
(t = 0), and let n(r) be the number of these individuals sur-
viving ¢ years later. Let x(7) be the number of members of
this cohort who have not had smallpox by year ¢ and who are
therefore still susceptible. Let § be the rate at which suscep-
tibles contract smallpox, and let v be the rate at which people
who contract smallpox die from the disease. Finally, let y(r)
be the death rate from all causes other than smallpox. Then
dx/dt, the rate at which the number of susceptibles changes,
is given by

dx/dt = —[ + u(®)]x. @M
The first term on the right side of Eq. (i) is the rate at which
susceptibles contract smallpox, and the second term is the
rate at which they die from all other causes. Also

dn/dt = —vpx — u(tHn, (ii)
where dn/dt is the death rate of the entire cohort, and the two
terms on the right side are the death rates due to smallpox and
to all other causes, respectively.
(a) Let z = x/n and show that z satisfies the initial value
problem

dz/dt = —pz(1 — vz), z(0) = 1. (iii)

Observe that the initial value problem (iii) does not depend
on u(1).

(b) Find z(¢) by solving Eq. (iii).

(¢) Bernoulli estimated that v = g = 1 Using these values,
determine the proportion of 20-year-olds who have not had
smallpox.

Note: On the basis of the model just described and the best
mortality data available at the time, Bernoulli calculated that
if deaths due to smallpox could be eliminated (v = 0), then
approximately 3 years could be added to the average life ex-
pectancy (in 1760) of 26 years 7 months. He therefore sup-
ported the inoculation program.

9. Chemical Reactions. A second order chemical reaction
involves the interaction (collision) of one molecule of a
substance P with one molecule of a substance Q to pro-
duce one molecule of a new substance X; this is denoted by
P + Q — X. Suppose that p and g, where p # g, are the ini-
tial concentrations of P and Q, respectively, and let x(¢) be
the concentration of X at time ¢. Then p — x(¢) and g — x(7)
are the concentrations of P and Q at time ¢, and the rate at
which the reaction occurs is given by the equation

dx/dt = a(p — x)(q — x), 1)
where « is a positive constant.

(a) If x(0) = 0, determine the limiting value of x(7) as
t — oo without solving the differential equation. Then solve
the initial value problem and find x(¢) for any ¢.

(b) If the substances P and Q are the same, then p = g and
Eq. (i) is replaced by

dx/dt = a(p — x)°. (ii)

If x(0) = 0, determine the limiting value of x(f) as t = oo
without solving the differential equation. Then solve the ini-
tial value problem and determine x(¢) for any ¢.

Bifurcation Points. For an equation of the form

dy/dt = f(a,y), 0]

where a is a real parameter, the critical points (equilibrium
solutions) usually depend on the value of a. As a steadily in-
creases or decreases, it often happens that at a certain value of
a, called a bifurcation point, critical points come together,
or separate, and equilibrium solutions may either be lost or
gained. Bifurcation points are of great interest in many ap-
plications, because near them the nature of the solution of
the underlying differential equation is undergoing an abrupt
change. For example, in fluid mechanics a smooth (lami-
nar) flow may break up and become turbulent. Or an axially
loaded column may suddenly buckle and exhibit a large lat-
eral displacement. Or, as the amount of one of the chemi-
cals in a certain mixture is increased, spiral wave patterns of
varying color may suddenly emerge in an originally quies-
cent fluid. Problems 10 through 12 describe three types of bi-
furcations that can occur in simple equations of the form (i).

10. Consider the equation
dy/dt = a —y*. (ii)
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(a) Find all of the critical points for Eq. (ii). Observe that
there are no critical points if a < 0, one critical point if a =
0, and two critical points if a > 0.

(b) Draw the phase line in each case and determine whether
each critical point is asymptotically stable, semistable, or un-
stable.

(¢) In each case, sketch several solutions of Eq. (ii) in the
ty-plane.

(d) If we plot the location of the critical points as a func-
tion of a in the ay-plane, we obtain Figure 2.5.11. This is
called the bifurcation diagram for Eq. (ii). The bifurcation
at a = 0 is called a saddle-node bifurcation. This name is
more natural in the context of second order systems, which
are discussed in Chapter 7.

Asymptotically stable

1 = Unstable

~
~
~ <
~ <
~

~
~

2 =~

AU SRS R Bifurcation diagram for y' = a — y2.

11. Consider the equation

dy/dt = ay =y’ = y(a - y*). (iif)
(a) Again consider the cases a < 0, @ = 0, and a > 0. In
each case, find the critical points, draw the phase line, and
determine whether each critical point is asymptotically sta-
ble, semistable, or unstable.
(b) In each case, sketch several solutions of Eq. (iii) in the
ty-plane.
(c) Draw the bifurcation diagram for Eq. (iii), that is, plot
the location of the critical points versus a. For Eq. (iii), the
bifurcation point at a = 0 is called a pitchfork bifurcation;
your diagram may suggest why this name is appropriate.

12. Consider the equation

dy/dt = ay - y* = y(a —y). @iv)
(a) Again consider the cases a < 0, @ = 0, and a > 0. In
each case, find the critical points, draw the phase line, and
determine whether each critical point is asymptotically sta-
ble, semistable, or unstable.
(b) In each case, sketch several solutions of Eq. (iv) in the
ty-plane.
(¢) Draw the bifurcation diagram for Eq. (iv). Observe that
for Eq. (iv) there are the same number of critical points for
a < 0and a > 0 but that their stability has changed. For a <0,
the equilibrium solution y = 0 is asymptotically stable and
y = a is unstable, while for a > 0 the situation is reversed.
Thus there has been an exchange of stability as a passes
through the bifurcation point a = 0. This type of bifurcation
is called a transcritical bifurcation.

2.6 Exact Equations and
Integrating Factors

For first order equations, there are a number of integration methods that are applicable
to various classes of problems. We have already discussed linear equations and separable
equations. Here we consider a class of equations known as exact equations for which there
is also a well-defined method of solution.

EEEN
EXAMPLE
1

Solve the differential equation

2x+y2+2xyy' =0. (D

The equation is neither linear nor separable, so the methods suitable for those types of
equations are not applicable here. However observe that the function w(x,y) = x> + xy* has

the property that

oy oy

243> = —, 2xy = —. 2)

ox
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Therefore the differential equation can be written as

0 oy d
2x+y2+2xyy'=—y/+ lI/—y—O

i A 3
ox  dy dx 3

Assuming that y is a function of x and using the multivariable chain rule, it follows that

0 owdy d d
a—‘)’; a—"y’d—zzd—‘)’zza(xhxﬁ):o. 4)
Therefore, by integrating with respect to x, we obtain

wxy) =x +x7° =c, )

where c is an arbitrary constant. Equation (5) defines solutions of Eq. (1) implicitly.

The integral curves of Eq. (1) are the level curves, or contour lines, of the function y(x, y)
given by Eq. (5). Contour plotting routines in modern software packages are a convenient
way to plot a representative sample of integral curves for a differential equation, once y (x, y)
has been determined. This is an alternative to using a numerical approximation method,
such as Euler’s method, to approximate solutions of the differential equation (see Chapter 8).
Some integral curves for Eq. (1) are shown in Figure 2.6.1.

N
0

FILCRPAESVAGNE  Integral curves of Eq. (1).

y

Q

N

)

In solving Eq. (1), the key step was the recognition that there is a function y that satisfies
Egs. (2). More generally, let the differential equation

M(x,y) + N(x,y)y' =0 (6)

be given. Suppose that we can identify a function y such that

0 0
—aw @y) =My, Ly =Ny), %
X dy
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and such that y(x, y) = c defines y = ¢(x) implicitly as a differentiable function of x. Then

oy oy dy d
M N =L 4 = = ==
(x,y) + N(x, y)y P dy dx dxl//[x, P()]

and the differential equation (6) becomes

diw[x, $)] = 0. @®)
X

In this case, Eq. (6) is said to be an exact differential equation. Solutions of Eq. (6), or the
equivalent Eq. (8), are given implicitly by
v(x,y) =c, )

where c is an arbitrary constant.

In Example 1, it was relatively easy to see that the differential equation was exact and, in
fact, easy to find its solution, by recognizing the required function y. For more complicated
equations, it may not be possible to do this so easily. A systematic way of determining
whether a given differential equation is exact is provided by the following theorem.

Let the functions M, N, My, and N, where subscripts denote partial derivatives, be
continuous in the rectangular’ region R: @ < x < f,y <y < 6. Then Eq. (6),

M(x,y) + Nx,y)y' =0,
is an exact differential equation in R if and only if
M(x,y) = N (x,y) (10)
at each point of R. That is, there exists a function y satisfying Eqgs. (7),
wny) =M, y),  w(xy) =N, y),
if and only if M and N satisfy Eq. (10).

The proof of this theorem has two parts. First, we show that if there is a function y such
that Eqgs. (7) are true, then it follows that Eq. (10) is satisfied. Computing My and N, from
Egs. (7), we obtain

My, y) =y, (), No(x,y) =y, (x,y). an

Since M, and N, are continuous, it follows that y/,,, and y,,, are also continuous. This guar-
antees their equality by Clairaut’s theorem, and Eq. (10) follows.

We now show that if M and N satisfy Eq. (10), then Eq. (6) is exact. The proof involves
the construction of a function y satisfying Egs. (7),

w(xy) =M, y),  w,(xy) = Nxy).

We begin by integrating the first of Eqs. (7) with respect to x, holding y constant. We obtain

w(x,y) = 0, y) + h(y), (12)

7It is not essential that the region be rectangular, only that it be simply connected. In two dimensions,
this means that the region has no holes in its interior. Thus, for example, rectangular or circular regions
are simply connected, but an annular region is not. More details can be found in most books on advanced
calculus.
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where Q(x, y) is any differentiable function such that 0Q(x, y)/dx = M(x,y). For example,
we might choose

Ox,y) = / M(s,y) ds, (13)
X0

where x, is some specified constantin @ < x; < f. The function 4 in Eq. (12) is an arbitrary
differentiable function of y, playing the role of the arbitrary constant. Now we must show
that it is always possible to choose h(y) so that the second of Eqgs. (7) is satisfied, that is,
v, = N. By differentiating Eq. (12) with respect to y and setting the result equal to N(x, y),
we obtain

d
vy (1)) = a—f(x, 3+ G) = NGy,
Then, solving for /’(y), we have
0
W) =N - Ry, (14)
y

In order for us to determine A(y) from Eq. (14), the right side of Eq. (14), despite its
appearance, must be a function of y only. To establish that this is true, we can differentiate
the quantity in question with respect to x, obtaining

0 00
aa—y(x,y)- 15)

By interchanging the order of differentiation in the second term of expression (15), we have

oN
a(x, y) —

ON 0 00
P (x,y) 3y o (x,y),

or, since 0Q/ox = M,
ON oM
a(x,)’) - d_y(x’y)’

which is zero because of Eq. (10). Hence, despite its apparent form, the right side of
Eq. (14) does not, in fact, depend on x. Then we find h(y) by integrating Eq. (14), and
upon substituting this function in Eq. (12), we obtain the required function y(x, y). This
completes the proof of Theorem 2.6.1.

It is possible to obtain an explicit expression for y(x, y) in terms of integrals (see Prob-
lem 17), but in solving specific exact equations, it is usually simpler and easier just to repeat
the procedure used in the preceding proof. That is, integrate y, = M with respect to x, in-
cluding an arbitrary function of 4(y) instead of an arbitrary constant, and then differentiate
the result with respect to y and set it equal to N. Finally, use this last equation to solve for
h(y). The next example illustrates this procedure.

HEEN
EXAMPLE
2

Solve the differential equation
(ycosx + 2xe¥) + (sinx + x%¢” — 1)y’ = 0. (16)
It is easy to see that

M, (x,y) = cosx + 2xe” = N, (x,y),
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so the given equation is exact. Thus there is a y(x, y) such that

v, (x,y) = ycosx + 2xe’ = M(x,y),
wy(x, y) = sinx +x% =1 = N(x,y).

Integrating the first of these equations with respect to x, we obtain
w(x,y) = ysinx + x2¢ + h(y). 17)
Next, finding y, from Eq. (17) and then setting the result equal to N give
w,(x,y) = sinx + x7¢’ + h'(y) = sinx + x’¢" — 1.

Thus 4'(y) = —1 and h(y) = —y. The constant of integration can be omitted since any ad-
ditive constant tacked onto /(y) will just be absorbed into the ¢ in y(x, y) = c. Substituting
for A(y) in Eq. (17) gives

w(x,y) = ysinx + x%¢’ —y.
Hence solutions of Eq. (16) are given implicitly by
ysinx +x%e’ —y =c. (18)

If an initial condition is prescribed, then it determines the value of ¢ corresponding to the
integral curve passing through the given initial point. For example, if the initial condition
is y(3) =0, then ¢ = 9. Some integral curves of Eq. (16) are shown in Figure 2.6.2; the one
passing through (3, 0) is heavier than the others.

(3,0

-4 2
/|

X

as

FILCRON ISV Integral curves of Eq. (16); the heavy curve is the integral curve through
the initial point (3, 0).




98 | Chapter 2 First Order Differential Equations

EEEN
EXAMPLE
3

Solve the differential equation
Gry +y2) + (P +xy)y =0. (19)
Here
M(x,y) = 3x + 2y, N.(x,y) =2x+Yy;

since M, # N,, the given equation is not exact. To see that it cannot be solved by the pro-
cedure described above, let us seek a function y such that

w () =30y +y =M@,y),  wxy) =2 +xy = Nx.). (20)
Integrating the first of Egs. (20) gives
Wi, y) = 3% +x° + h(y), @

where 4 is an arbitrary function of y only. To try to satisfy the second of Egs. (20), we
compute v, from Eq. (21) and set it equal to N, obtaining

%xz +2xy + W (y) = x> +xy
or
H(y) = —%xz — xy. (22)

Since the right side of Eq. (22) depends on x as well as y, it is impossible to solve Eq. (22)
for A(y). Thus there is no y(x, y) satisfying both of Egs. (20).

Integrating Factors. Itis sometimes possible to convert a differential equation that is not exact into an

exact equation by multiplying the equation by a suitable integrating factor. Recall that this
is the procedure that we used in solving linear equations in Section 2.2. To investigate the
possibility of implementing this idea more generally, let us multiply the equation

M(x,y) + N(x,y)y =0 (23)
by a function u and then try to choose u so that the resulting equation
pe IM(x, ) + p(x, N, )y =0 24)
is exact. By Theorem 2.6.1, Eq. (24) is exact if and only if
(M), = (uN). (25)

Since M and N are given functions, Eq. (25) states that the integrating factor y must satisfy
the first order partial differential equation

My — Ny, + (M, — Ny = 0. (26)

If a function u satisfying Eq. (26) can be found, then Eq. (24) will be exact. The solution
of Eq. (24) can then be obtained by the method described in the first part of this section.
The solution found in this way also satisfies Eq. (23), since the integrating factor u can be
canceled out of Eq. (24).

A partial differential equation of the form (26) may have more than one solution. If this
is the case, any such solution may be used as an integrating factor of Eq. (23). This possible
nonuniqueness of the integrating factor is illustrated in Example 4.

Unfortunately, Eq. (26), which determines the integrating factor y, is ordinarily at least
as hard to solve as the original equation (23). Therefore, although in principle, integrating
factors are powerful tools for solving differential equations, in practice, they can be found
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only in special cases. The most important situations in which simple integrating factors can
be found occur when u is a function of only one of the variables x or y, instead of both.
Let us determine a condition on M and N so that Eq. (23) has an integrating factor y that
depends only on x. Assuming that 4 is a function only of x, we have

du
(uM), = uM,, (uN), = uN, + N I
Thus, if (uM), is to equal (uN),, it is necessary that
du _ M, —N,
i A 27
o N H 27

If (M, — N,)/N is a function only of x, then there is an integrating factor y that also depends
only on x. Further p(x) can be found by solving Eq. (27), which is both linear and separable.

A similar procedure can be used to determine a condition under which Eq. (23) has an
integrating factor depending only on y; see Problem 23.

EEEN
EXAMPLE
4

Find an integrating factor for the equation
Gy +y)+ (@ +xy)y =0 (19)

and then solve the equation.

In Example 3, we showed that this equation is not exact. Let us determine whether it has
an integrating factor that depends only on x. By computing the quantity (M, — N,)/N, we
find that

My(xsy)_Nx(x9y) _ 3)C+2y—(2x+y) _ .x+y _ 1 (28)
N(x,y) B X2+ xy S x4y x

Thus there is an integrating factor y that is a function only of x, and it satisfies the differential
equation

d
== (29)
Hence
u(x) = x. 30)
Multiplying Eq. (19) by this integrating factor, we obtain
B2y + 097 + (3 +x%y)y = 0. 31

The latter equation is exact, and it is easy to show that its solutions are given implicitly by
Xy + %xzy2 =c. (32)

Solutions may also be readily found in explicit form since Eq. (32) is quadratic in y. Some
integral curves of Eq. (19) are shown in Figure 2.6.3.
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_

SR ES Vel Integral curves of Eq. (19).

You may also verify that a second integrating factor of Eq. (19) is
_1
xy2x+y)’

and that the same solution is obtained, though with much greater difficulty, if this integrating
factor is used (see Problem 32).

PROBLEMS
EE IS E NN NN E NN EEEENERN

ulx,y) =

Exact Equations. In each of Problems 1 through 12: 10. (y/x+6x)+ (Inx —2)y' =0, x>0

(a) Determine whether the equation is exact. If it is exact, 11. (xlny+x)+ Olnx+x)y =0; x>0, y>0
then: X y ,

(b) Solve the equation. 12. 02 + 22 + o+ y2)3/2y =0

() Use a computer to draw several integral curves. In each of Problems 13 and 14, solve the given initial value

L. 2x+3)+2y-2)y' =0 problem and determine, at least approximately, where the so-
2. 2x+4y)+ 2x—-2y)y =0 lution is valid.
3038 =20y +2)+(6y° —x* +3)y' =0 13, Qx=»+@Qy—-xy =0, y1=3
4. 20 +2y) + 22y +2x)y =0 4. O +y-1D—-@y-xy =0, y1)=0
5, dy _ _4x+2y In each of Problems 15 and 16, find the value of b for which
dx 2x + 3y the given equation is exact, and then solve it using that value
6 dy  4x-12y of b.
dx 2x — 3y 15. (0 +bx*) + (x +yx%' =0

7. (esiny —2ysinx) + (e* cosy + 2 cosx)y’ =0
8. (efsiny+3y) — (3x —esiny)y =0

16. (ye* + x) + bxe™y' =0

17. Assume that Eq. (6) meets the requirements of Theo-
9. (ye¥ cos2x — 2¢Y sin 2x + 2x) + (xe® cos 2x — 3)y' =0 rem 2.6.1 in a rectangle R and is therefore exact. Show that a



possible function y(x, y) is
wy) = / M(s. yy) ds + / N(x. o,
X0 Yo

where (x,, y,) is a point in R.
18. Show that any separable equation
M)+ N(@y)y =0
is also exact.
Integrating Factors. Ineach of Problems 19 through 22:

(a) Show that the given equation is not exact but becomes
exact when multiplied by the given integrating factor.

(b) Solve the equation.

(c) Use a computer to draw several integral curves.

19. 2y +x(1+y2)y =0, uxy) =1/x)°

20. <m —2e™ sinx)
y

cosy+ 2e~*cosx .
+<f>y’=0, u(x,y) = ye

21. y+ 2x —ye’)y' =0, ulx,y) =y
22. (x+2)siny +xcosyy =0, ux,y) = xe*

23. Show that if (N, — M),)/M = Q, where Q is a function
of y only, then the differential equation

M+NY =0

has an integrating factor of the form

u() = exp / 0®) dy.
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24. Show that if (N, —M,)/(xM — yN) = R, where R de-
pends on the quantity xy only, then the differential equation

M+Ny =0
has an integrating factor of the form p(xy). Find a general
formula for this integrating factor.

In each of Problems 25 through 31:
(a) Find an integrating factor and solve the given equation.
(b) Use a computer to draw several integral curves.

25. Bty +2xy+y) + (2 +y2)y =0
26. Yy =¥ +y—1

27. 1+ (x/y—siny)y =0

28. y+ Qxy—e®)y =0

29. e+ (e*coty +2ycscy)y =0

3
30. 4<x—2+§>+3(12+4y>y'=0
oy y

2
31 <3x+ 9) + (x— +3X) D _p
y y x ) dx
Hint: See Problem 24.

32. Use the integrating factor u(x, y)=[xy(2x+y)]~' to solve
the differential equation

Bxy +y?) + (® +xy)y’ =0.

Verify that the solution is the same as that obtained in Exam-
ple 4 with a different integrating factor.

2.7 Substitution Methods

In the preceding sections we developed techniques for solving three important classes of
differential equations, namely, separable, linear, and exact. But the differential equations
arising in many, if not most, applications do not fall into these three categories. In some
cases, though, an appropriate substitution or a change of variable can be used to transform
the equation into a member of one of these classes. This section focuses on two such types

of equations.

Homogeneous Differential Equations

A function f(x, y) is homogeneous of degree k if

for all (x, y) in its domain. For example, f(x,y) =

because

M2 = (M) +22y*

FOx ) = Mf(x,y), (6]

2 2
—xy+y? .
% is homogeneous of degree 0

A2 [x2 —xy+ y2]

JOx, hy) =

(Mx)(Ay)

I 2fx,y)
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and f(x,y) = xInx — xIny is homogeneous of degree 1 because

J(x, hy) = hx (In(Ax) — In(Ay)) = Ax In <§> = Mf(x ).

Accordingly, we define the following class of differential equations.

Homogeneous Differential Equation. A differential equation of the form M(x,y) +
N(x, y)Z—)yC = 0 is homogeneous if M(x,y) and N(x, y) are homogeneous functions of the
same degree k.

Generally, if f(x, y) is homogeneous of degree k, then f(x, y) can be expressed equivalently
as xk - f <1, i) and as y* - f (“yf, 1>. Table 2.7.1 illustrates these forms for the above two

functions.

Equivalent forms of homogeneous functions.

f(x,y) Written in the form x* - f (1, f)

X2 —xy+y? xo,l_(§>+<§>2
o ()
(o)

Consider a homogeneous equation

Written in the form y* - f (;—C, 1)

OO

xInx—xIny

@

where M(x,y) and N(x,y) are homogeneous functions of degree k. Using the above obser-
vation,

d
M(x,y) + N(x,y) = =0,
dx

M(x,y):xk-M<1,)y-C>, N(x,y):x"-N(l,%). 3)

Substituting (3) into (2) and simplifying, we obtain

k Y
dy MGy _ (1. 1)

dx  N(xy) __ka<1, f) o N @

Let us define a new variable u by u = )y—c Note that u is a function of x because y is a function
of x. This is equivalent to y = ux, so

dy du
— =u+x—.
dx . xdx
Substituting these into (4) produces the following differential equation in terms of # and x:
du M (1, u)
+x—= - : 5
YT TN w ©)
——

A function of u
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Observe that Eq. (5) is separable. Indeed, simplifying further yields

1 1
- Ml,u—)_,’_u du = ;dx
N1, u)

This equation can be solved as in Section 2.1 to obtain a function, typically implicitly de-
fined, in terms of u and x. The solution of the original equation is then obtained by resub-
stituting in u = 2.

Similarly, if *
MGy =y M (51), Neew =4 N (201) ©

is used instead of Eq. (3), then define a new variable v by v = ;—‘ Viewing y as the indepen-
dent variable, note that v is a function of y because x is a function of y, so

@ _U+ @
dy ydy'

In the same manner, substituting these into Eq. (2) would produce a separable equation in
terms of v and y.

When faced with solving a homogeneous differential equation, either of these substitu-
tions will work, but often using one form over the other will significantly reduce the algebra
involved.

Remark. When solving a homogeneous differential equation, it is not necessary to first rewrite
the functions involved in terms of the quantities i or ;—“ Rather than introducing the variable

u or v in its original form of f or )—V(, respectively, it is more practical to make the substitution
y = ux or x = vy directly. ’

EEEN
EXAMPLE
1

Solve the differential equation
dy x> —xy+y?
dx Xy '

This equation is not separable, linear, or exact. But it can be written in the form Eq. (2),
where

(N

2 2
XT=Xxy+y
Mx,y) = ————, N(x,y) = 1.
Xy
Both M(x, y) and N(x, y) are homogeneous of degree 0, so Eq. (7) is homogeneous. Follow-
ing the above discussion, and using the substitution
ﬂ _ du

u+x—

yE dx dx

in Eq. (7) yields

du _ x? — x(ux) + (ux)? l—u+u?
dx x(ux) B u '

®)

u+x

Separating the variables in Eq. (8) leads to

u

du = Lax. ©)

1—u X
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We solve Eq. (9) by integrating both sides to arrive at the implicitly defined solution
—u—In|l—-u| =In|x| +c. (10)

The solution of Eq. (7) is then obtained by resubstituting u« = )y—c into Eq. (10):
§+ln|x—y|=c, x # 0. (11)

Some integral curves for Eq. (7) are shown in Figure 2.7.1.

20

-10 =5 5 10 =x

20—

SN ESvAN AN Integral curves for Eq. (7).

HEEN
EXAMPLE Solve the differential equation
2 d
(202 + 4y*x + 4y°) d—y = xy%. (12)
X

This equation can be written in the form Eq. (2), where
Mx.y) = —xy%,  N@.y) =27 + 4%+ 4%,

Both M(x,y) and N(x,y) are homogeneous of degree 3, so Eq. (12) is homogeneous.
For illustrative purposes we shall use the substitution

X=0 @ =v+ @
Vs dy y dy
in Eq. (12). Before doing so, we must rewrite Eq. (12) as

»d

2 > 3\ _
(2x*y +4y°x + 4y’ ) = xy e

13)
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so that the substitution can be readily made. Doing so yields

dv
(2y?y + 47" (wy) + 4y ) = (y)y? v + &l (14)
Simplifying Eq. (14) yields
VP +4v+4= uy@. (15)
dy
Separating the variables in Eq. (15) leads to
dv = loly. (16)
(v+2)? y
We solve Eq. (16) by integrating both sides to arrive at the implicitly defined solution
2
1 2|+ —— =1 . 17
nlv+ |+U+2 nly|+c a7
The solution of Eq. (12) is then obtained by resubstituting v = ;—C into Eq. (17):
2 2
In | 2F y’+ Y llyl+e,  y#0. (18)
y x4+ 2y

Remark. Looking back, had we used the substitution

the algebra in Eq. (14) would have been slightly worse in that simplifying the left side would
have entailed multiplying two binomials, whereas we only had to multiply a monomial times a
binomial in Eq. (14) when using x = vy.

Bernoulli Differential Equations

DEFINITION
2.7.2

A first order differential equation related to linear differential equations is the so-called
Bernoulli equation, named after Jacob Bernoulli (1654-1705) and solved first by Leibnitz
in 1696. Such an equation has the following form.

Bernoulli Differential Equation. A differential equation of the form

dy _ .
o +q()y = r(1)y", (19)

where 7 is any real number, is called a Bernoulli equation.

If n = 0, then Eq. (19) is linear, and if n = 1, then Eq. (19) is separable, linear, and homo-
geneous. For all other real values of n, Eq. (19) is not one of the forms studied thus far in
the chapter.

To solve a Bernoulli equation when 7 is neither 0 nor 1, we shall make a substitu-
tion that reduces it to a linear equation that can subsequently be solved using the method
of integrating factors. Specifically, we perform the following initial steps to transform
Eq. (19) into a linear equation.
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First divide Eq. (19) by y" to obtain

—nd_ 1-n _
Yoo Ha@y T =), (20)

Define u = yl_", which is a function of 7. Observe that

du —al
&= nZ
dt ( ) d
or equivalently,
n 4y S @ (21)
dt (1—n)dt
Substituting Eq. (21) into Eq. (20) yields
1 du
Tt q(u(t) = (1),
and subsequently,
du
7 (I =mg@® u@®) = (1 —n)r), (22)
N—— ~——
Call this p(t) Call this g(¢)

which is a linear differential equation (in u).

Now solve Eq. (22) as you would any other linear differential equation. Once you ob-
tain the solution u(f), resubstitute u(r) = y'=" to determine the solution y(f) of the original
differential equation (19).

HFEEN
EXAMPLE
3

Solve the initial value problem

d
gf +y=y 30 =y, (23)

where —1 <y, < 1. Determine the long-term behavior of the solution of Eq. (23) for such
initial conditions.
To begin, divide both sides of the equation by y> to obtain

dy
-3 -2
-+ =1
y dr y
Let u = y~2 and observe that
du = —2y_3@,
dt dt
or equivalently,
1 du -3 dy
——— =y = 24
2ar Y dr 9

Using the new variable u with Eq. (24) transforms the original equation into the linear

equation
du
— = 2u(t) = -2. 25
o u(t) (25)

Solving Eq. (25) using the method of integrating factors leads to
u(®t) =1+ Ce*. (26)
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Resubstituting # = y~2 into Eq. (26), we conclude that the general solution of Eq. (23) is

1 1/2
¥(0) = <1+ Cezt) . @7)

Applying the initial condition, we find that

l—y2
c=—22,
Yo

so that the solution of Eq. (23) is
Yo

Yo+ (1-y5) e

) = (28)

Solution curves of Eq. (23) for various values of y, are shown in Figure 2.7.2.

“1k

RPN ISV AP Solution curves for Eq. (23).

It appears from Figure 2.7.2 that the solution curves approach zero as t — oo, at least
for the initial data used. To make this observation precise, observe that Eq. (23) is an au-
tonomous equation that can be written as

d
DB =y =1+ 1. (29)

dt
The equilibrium points are —1, 0, and 1 and the phase line is given by Figure 2.7.3.
As such, y, is an asymptotically stable equilibrium point, so we conclude that indeed all
solutions of Eq. (23) for which —1 <y, < 1 will tend to zero as t — oo.
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Sl S Eel  Phase line for Eq. (29).

Relationships Among Classes of Equations

We have developed techniques for solving separable, linear, and exact equations, as well as
transformation methods used to convert other equations (e.g., homogeneous and Bernoulli
equations) into one of these types. The initial struggle you face when solving a first order
differential equation is determining which of these techniques, if any, is applicable. In fact,
sometimes more than one approach can be used to solve an equation.

The interrelationships among the main equation types are displayed in Figure 2.7.4. We
use arrows to indicate that the type of equation listed near its tail can be transformed into
the type of equation to which the arrowhead points.

Equations that can be made exact

Autonomous

LINEAR

|Homogeneous | | Bernoulli |

SR ESv VAT S Interrelationships among equation types.

There is a collection of exercises at the end of the section that will challenge you to
classify equations and to solve those that have multiple classifications using more than one
method.

PROBLEMS
EE B BN EEEEEEEEEEEEEEENERn

Homogeneous Differential Equations. In each of Prob-
lems 1 through 10:

(a) Determine if the equation is homogeneous. If it is homo-
geneous, then:

(b) Solve the equation.

(¢) Use a computer to draw several integral curves.

dy
1oy= =x+1
ydx *

d
2. 0+ DL =t 41
dx

3.

7.

. xy

M.@:l
32y +y3 dx

. ox(x — 1)@ =y(y+1)
dx

dy
L=y 4y =x—
X y y=x

dy_ N
dx—(x+y)

dy 4y-Tx

dx Sx-y



dy

8. x= —4\/yT -2 =y, >0
X Y=xr=y, oy

dy _ y'+2xy’ =3¢ -2
Tdx T 222 =208y — 24t

10. (y+xe"/y) % =ye/”

In Problems 11 and 12, solve the given initial value problem
and determine, at least approximately, where the solution is
valid.

d
11. xyd—i=x2+y2, y2)=1
d
2. XY S5y =3
dx x-y

Bernoulli Differential Equations. In each of Problems 13
through 22:

(a) Write the Bernoulli equation in the proper form (19).
(b) Solve the equation.
(¢) Use a computer to draw several integral curves.

dy

13. t = +y = %?
dr y y
dy

14. — = 31
=YW =1)
dy 3

15. = + Zy=1y?
dt ty Y

16. 2y +2ty—y* =0, >0
d
17. 51 + 12)% =4ty (3 1)

dy
18. 3r— +9y =21y"/3
dt 4 Y

dy
19. = =y+
5= VY

20. y' =ry—ky?, r> 0 and k > 0. This equation is impor-
tant in population dynamics and is discussed in detail in
Section 2.5.

21. ¥ = ey — 6%, ¢ > 0 and ¢ > 0. This equation occurs in
the study of the stability of fluid flow.

22. dy/dt = (Tcost+T)y —y, where T and T are con-
stants. This equation also occurs in the study of the stability
of fluid flow.
23. A differential equation of the form

dy

—_ = 2 1
7 = AO+ By + Cly ®
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is called a Riccati equation. Such equations arise in optimal
control theory.

(a) If y, is a known solution of (i), prove that the substitu-
tion y = y, + v transforms (i) into a Bernoulli equation with
n=2.

(b) Solve the equation % + 3ty = 4 — 4% +y?, after show-
ing that it has y = 4r as a particular solution.

Mixed Practice. In each of Problems 24 through 36:

(a) Listeach of the following classes into which the equation
falls: autonomous, separable, linear, exact, Bernoulli, homo-
geneous.

(b) Solve the equation. If it has more than one classification,
solve it two different ways.

24. (3x—y)@ +0Oy—-2x)=0
dy
d
25. 1=(e —20) 2
dx

d
2. 2 - 4yt =y
dx

d
27. x—y +x+Dy=x
dx

dy xy?

de  (1-x)y

Vedy

y dx

1 .
— -sin2x
28. 2

29. 1

d
30. (5xy2 +5y) + (5x%y + 5%) d—y =0
X
d
31. 2xyay +Inx=—y* -1

32. (2—x)@ =y+22-x)
dx

33. xg = —L
dx Inx
2
3, B 2oHY
dy  3y*+2xy

d
3s. 4xyd—y = 8x +5y°
X

dy
36. = 4+y—4{/y=0
l y \/§

CHAPTER SUMMARY

In this chapter we discuss a number of special solution methods for first order equations
dy/dt = f(t,y). The most important types of equations that can be solved analytically are
linear, separable, and exact equations. Others, like Bernoulli and homogeneous equations,
can be transformed into one of these. For equations that cannot be solved by symbolic
analytic methods, it is necessary to resort to geometrical and numerical methods.
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Some aspects of the qualitative theory of differential equations are also introduced in this
chapter: existence and uniqueness of solutions; stability properties of equilibrium solutions
of autonomous equations.

Section 2.1 Separable Equations M(x) + N(y)dy/dx = 0 can be solved by di-
rect integration.

Section 2.2 Linear Equations % + p(t)y = g(t) can be solved using the method
of integrating factors.

Section 2.3 Modeling We discuss mathematical models for several types of prob-
lems that lead to either linear or separable equations: mixing tanks, compound interest, and
projectile motion.

Section 2.4 Qualitative Theory We study the existence and uniqueness of solu-
tions to initial value problems.

P> Conditions guaranteeing existence and uniqueness of solutions are given in Theorems
2.4.1 and 2.4.2 for linear and nonlinear equations, respectively.

P> We show examples of initial value problems where solutions are not unique or become
unbounded in finite time.

Section 2.5 Qualitative Theory We investigate autonomous equations, equilib-
rium solutions, and their stability characteristics.

P> Autonomous equations are of the form dy/dt = f().
P> Critical points (equilibrium solutions) are solutions of f(y) = 0.

P> Whether an equilibrium solution is asymptotically stable, semistable, or unstable
determines to a great extent the long-time (asymptotic) behavior of solutions.

Section 2.6 Exact Equations M(x,y)dx + N(x,y)dy = 0 is exact if and only if
0M /oy = dN /ox.

P> Direct integration of an exact equation leads to implicitly defined solutions F(x,y) = c,
where 0F /ox = M and 0F /0y = N.

P> Some differential equations can be made exact if a special integrating factor can be
found.

Section 2.7 Substitution Methods Bernoulli equations can be transformed into
linear equations, and homogeneous equations can be transformed into separable equations.

E SN E S E SN NN EENEEEEEEEEEN
PROJECTS Project 1 Harvesting a Renewable Resource

Suppose that the population y of a certain species of fish (e.g., tuna or halibut) in a given
area of the ocean is described by the logistic equation

- | dy/dt = r(1 = y/K)y.

If the population is subjected to harvesting at a rate H(y, ) members per unit time, then the
harvested population is modeled by the differential equation

dy/dt =r(1-y/K)y — H(y,1). ()

(© OSTILL / iStockphoto
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Although it is desirable to utilize the fish as a food source, it is intuitively clear that if too
many fish are caught, then the fish population may be reduced below a useful level and
possibly even driven to extinction. The following problems explore some of the questions
involved in formulating a rational strategy for managing the fishery.

Project 1 PROBLEMS

1. Constant Effort Harvesting. Ata given level of effort, it
is reasonable to assume that the rate at which fish are caught
depends on the population y: the more fish there are, the eas-
ier it is to catch them. Thus we assume that the rate at which
fish are caught is given by H(y, ) = Ey, where E is a positive
constant, with units of 1/time, that measures the total effort
made to harvest the given species of fish. With this choice
for H(y, 1), Eq. (1) becomes

dy/dt = r(1-y/K)y — Ey. ()

This equation is known as the Schaefer model after the bi-
ologist M. B. Schaefer, who applied it to fish populations.

(a) Show that if E < r, then there are two equilibrium points,
y;=0and y,=K(1-E/r)> 0.

(b) Show that y =y, is unstable and y =y, is asymptotically
stable.

(c) A sustainable yield Y of the fishery is a rate at which fish
can be caught indefinitely. It is the product of the effort £ and
the asymptotically stable population y,. Find Y as a function
of the effort E. The graph of this function is known as the
yield—effort curve.

(d) Determine E so as to maximize Y and thereby find the
maximum sustainable yield Y,

2. Constant Yield Harvesting. In this problem, we assume
that fish are caught at a constant rate 4 independent of the size
of the fish population, that is, the harvesting rate H(y, t) = h.
Then y satisfies

dy/dt=r(1-y/K)y —h=f(). (ii)
The assumption of a constant catch rate 4 may be reasonable
when y is large but becomes less so when y is small.

(a) If h < rK/4, show that Eq. (ii) has two equilibrium
points y, and y, with y, < y,; determine these points.

(b) Show that y, is unstable and y, is asymptotically stable.
(¢) From a plot of f(y) versus y, show that if the initial pop-
ulation y, > y,, then y — y, as t = oo, but if y, <y, then y
decreases as ¢ increases. Note that y = 0 is not an equilibrium
point, so if y, <y, then extinction will be reached in a finite
time.

(d) If h > rK /4, show that y decreases to zero as ¢ increases
regardless of the value of y,.

(e) If h=rK/4, show that there is a single equilibrium point
y = K /2 and that this point is semistable. Thus the maximum
sustainable yield is &,, = rK /4, corresponding to the equilib-
rium value y = K /2. Observe that &, has the same value as
Y,, in Problem 1(d). The fishery is considered to be overex-
ploited if y is reduced to a level below K /2.

Project 2 A Mathematical Model of a Groundwater Contaminant Source

Chlorinated solvents such as trichloroethylene (TCE) are a common cause of environmental
contamination® at thousands of government and private industry facilities. TCE and other
chlorinated organics, collectively referred to as dense nonaqueous phase liquids (DNAPLs),
are denser than water and only slightly soluble in water. DNAPLs tend to accumulate as
a separate phase below the water table and provide a long-term source of groundwater
contamination. A downstream contaminant plume is formed by the process of dissolution
of DNAPL into water flowing through the source region, as shown in Figure 2.P.1.

In this project, we study a first order differential equation that describes the time-
dependent rate of dissolved contaminant discharge leaving the source zone and entering
the plume.’

8R. W. Falta, Rao, P. S., and N. Basu, “Assessing the Impacts of Partial Mass Depletion in DNAPL Source
Zones: 1. Analytical Modeling of Source Strength Functions and Plume Response,” Journal of Contaminant
Hydrology 78, 4 (2005), pp. 259-280.

The output of this model can then be used as input into another mathematical model that, in turn, describes
the processes of advection, adsorption, dispersion, and degradation of contaminant within the plume.
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gr\\ S Contaminant plume

Groundwater flow
velocity vy
——————

r———————————

Cout = c(t)

—_—
—

_—

.

—_—— LA
\ Source mass
—r\ e m(t)
_—

Cross-sectional area A

LUV S Conceptual model of DNAPL source.

Parameters and variables relevant to formulating a mathematical model of contaminant
discharge from the source region are defined as follows:

A, = cross-sectional area of the source region
v, = Darcy groundwater flow velocity!?

m(t) = total DNAPL mass in source region
¢,(t) = concentration (flow averaged) of dissolved contaminant leaving
the source zone
my = initial DNAPL mass in source region

co = source zone concentration (flow averaged) corresponding to an
initial source zone mass of my

The equation describing the rate of DNAPL mass discharge from the source region is

d
7”; = —A,v4c,(0), (1

whereas an algebraic relationship between ¢ () and m() is postulated in the form of a
power law,

4
CS_(t) = [@] s (2)

€o My
in which y > 0 is empirically determined. Combining Egs. (1) and (2) (Problem 1) yields a
first order differential equation

& _am? 3
o am 3
that models the dissolution of DNAPL into the groundwater flowing through the source
region.

19In porous media flow, the Darcy flow velocity v, is defined by v, = Q/A, where A is a cross-sectional
area available for flow and Q is the volumetric flow rate (volume/time) through A.
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1. Derive Eq. (3) from Egs. (1) and (2) and show that
a=vA.co/my.

2. Additional processes due to biotic and abiotic degradation
contributing to source decay can be accounted for by adding
a decay term to (3) that is proportional to m(f),

m'(t) = —am’ — A, ()

where A is the associated decay rate constant. Find solutions
of Eq. (i) using the initial condition m(0) = m,, for the follow-
ing cases: i)y =1, (i) y # land A =0, (iii) y # 1 and A #
0. Then find expressions for c(¢) using Eq. (2).

Hint: Eq. (i) is a type of nonlinear equation known as a
Bernoulli equation. A method for solving Bernoulli equa-
tions is discussed in Section 2.7.

3. Show that when y > 1, the source has an infinite lifetime,
but if 0 < y < 1, the source has a finite lifetime. In the latter
case, find the time that the DNAPL source mass attains the
value zero.

4. Assume the following values for the parameters:
my = 1,620 kg, ¢, = 100 mg/L, A, = 30 m?, v, = 20
m/year, A = 0. Use the solutions obtained in Problem 2
to plot graphs of ¢,(f) for each of the following cases: (i)
y = 0.5 for 0 <7 <1, where ¢,(t;) =0, and (ii) y = 2 for
0 <1 <100 years.
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5. Effects of Partial Source Remediation.

(a) Assume that a source remediation process results in a
90% reduction in the initial amount of DNAPL mass in the
source region. Repeat Problem 4 with m,, and ¢, in Eq. (2) re-
placed by m; = 0.1 m, and ¢, = (0.1)’ ¢,, respectively. Com-
pare the graphs of ¢(¢) in this case with the graphs obtained
in Problem 4.
(b) Assume that the 90% efficient source remediation pro-
cess is not applied until #, = 10 years have elapsed following
the initial deposition of the contaminant. Under this sce-
nario, plot the graphs of ¢, () using the parameters and initial
conditions of Problem 4. In this case, use Eq. (2) to compute
concentration for 0 < ¢ < ¢,. Following remediation, use the
initial condition m(t,) = m; = 0.1m(t;, — 0) = 0.1 limml m(t)
for Eq. (i) and use the following modification of
Eq. (2):

v
Lm: [@ s t>t, (ii)

€y m;

where ¢, = (0.1)"c(¢;, — 0) = (0.1)" 1irnm1 c(t) to compute
concentrations for times ¢ > ¢,. Compare the graphs of c(f)
in this case with the graphs obtained in Problems 4 and 5(a).
Can you draw any conclusions about the possible effective-
ness of source remediation? If so, what are they?

Project 3 Monte Carlo Option Pricing: Pricing Financial
Options by Flipping a Coin

A discrete model for change in the price of a stock over a time interval [0, T] is

Sn+1 = Sn + MSnAt+ USnng-l V At,

Sp =, (1

where S, = S(t,) is the stock price at time ¢, = nAt, n=0,...,N —1, At=T/N, p is the
annual growth rate of the stock, and ¢ is a measure of the stock’s annual price volatility
or tendency to fluctuate. Highly volatile stocks have large values for o, for example, values

ranging from 0.2 to 0.4. Each term in the sequence €, €5, ..

. takes on the value 1 or —1 de-

pending on whether the outcome of a coin tossing experiment is heads or tails, respectively.

Thus, foreachn=1,2, ...,

E, =

—1 with probability =

1 with probability = @

P02 —

A sequence of such numbers can easily be created by using one of the random number
generators available in most mathematical computer software applications. Given such a
sequence, the difference equation (1) can then be used to simulate a sample path or tra-

Jjectory of stock prices, { 8,87,89, .00y SN}. The “random” terms ¢S,,€,.,1 \/ At on the right-
hand side of (1) can be thought of as “shocks” or “disturbances” that model fluctuations in
the stock price. By repeatedly simulating stock price trajectories and computing appropriate
averages, it is possible to obtain estimates of the price of a European call option, a type of
financial derivative. A statistical simulation algorithm of this type is called a Monte Carlo

method.
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A European call option is a contract between two parties, a holder and a writer, whereby,
for a premium paid to the writer, the holder acquires the right (but not the obligation) to
purchase the stock at a future date T (the expiration date) at a price K (the strike price)
agreed upon in the contract. If the buyer elects to exercise the option on the expiration date,
the writer is obligated to sell the underlying stock to the buyer at the price K. Thus the
option has, associated with it, a payoff function

f(S) = max(S - K, 0), 3)

where S = S(T) is the price of the underlying stock at the time 7 when the option expires
(see Figure 2.P.2).

K S

m The value of a call option at expiration is C = max(S — K, 0), where K is the
strike price of the option and S = S(7) is the stock price at expiration.

Equation (3) is the value of the option at time T since, if S(T') > K, the holder can purchase,
at price K, stock with market value S(7') and thereby make a profit equal to S(7) — K not
counting the option premium. If S(T') < K, the holder will simply let the option expire since
it would be irrational to purchase stock at a price that exceeds the market value. The option
valuation problem is to determine the correct and fair price of the option at the time that
the holder and writer enter into the contract.!!

To estimate the price of a call option using a Monte Carlo method, an ensemble

{89 =50, k=1,...m}

of M stock prices at expiration is generated using the difference equation

k) _ ok k k) (k) (k) _
S =8O+ rsPAt+0SPVe) VAL ST =5 4)
For each k = 1, ..., M, the difference equation (4) is identical to Eq. (1) except that

the growth rate u is replaced by the annual rate of interest r that it costs the writer
to borrow money. Option pricing theory requires that the average value of the payoffs

{ f (S%‘)), k=1,....M } be equal to the compounded total return obtained by investing the

option premium, C(s), at rate r over the life of the option,

M
% DY) = 1+ ranVes). (5)
k=1

"'"The 1997 Nobel Prize in Economics was awarded to Robert C. Merton and Myron S. Scholes for their
work, along with Fischer Black, in developing the Black—Scholes options pricing model.
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Solving (5) for C(s) yields the Monte Carlo estimate

Cls) =1 +ran™

M
1 (k)
m k;f(SN ) ©6)

for the option price. Thus the Monte Carlo estimate C(s) is the present value of the average
of the payoffs computed using the rules of compound interest.

Project 3 PROBLEMS

1. Simulate five sample trajectories of Eq. (1) for the follow-
ing parameter values and plot the trajectories on the same
set of coordinate axes: u = 0.12, 6 = 0.1, T = 1, s = $40,
N =254. Then repeat the experiment using the value o = 0.25
for the volatility. Do the sample trajectories generated in the
latter case appear to exhibit a greater degree of variability in
their behavior?

Hint: For the €,’s it is permissible to use a random number
generator that creates normally distributed random numbers
with mean O and variance 1.

2. Use the difference equation (4) to generate an ensem-
ble of stock prices S%‘) =SOWAN,k=1,...,M (where
T = NA t) and then use formula (6) to compute a Monte
Carlo estimate of the value of a five-month call option
(T = 13 years) for the following parameter values: r = 0.06,
o = 0.2, and K = $50. Find estimates corresponding to cur-
rent stock prices of S(0) = s = $45, $50, and $55. Use N =200
time steps for each trajectory and M = 10,000 sample trajec-
tories for each Monte Carlo estimate.'? Check the accuracy
of your results by comparing the Monte Carlo approxima-
tion with the value computed from the exact Black—Scholes
formula

d] K —T d2 .s
C(s) == erfc —— |- = erfc| —= |, (ii)
()5 (%)

where

and erfc(x) is the complementary error function,

erfc(x) = %/ e dt.
T Jx

3. Variance Reduction by Antithetic Variates. A simple
and widely used technique for increasing the efficiency and
accuracy of Monte Carlo simulations in certain situations
with little additional increase in computational complexity

is the method of antithetic variates. For each k=1, ... ,M,

k) £®

use the sequence { R 1} in Eq. (4) to simulate a

payoff f1 (SX,”)) and also use the sequence { (k), ey 5\’,‘)_ }

in Eq. (4) to simulate an associated payoff f(S](\',‘_)). Thus
the payoffs are simulated in pairs { f(S%‘H), f(Sf\’;_))}. A
modified Monte Carlo estimate is then computed by re-
placing each payoft f(SI(\],‘)) in Eq. (6) by the average
P8+ /2,

Cuyls) = (1 A . (iif)

F) +f(S(k )

Use the parameters specified in Problem 2 to compute sev-
eral (say, 20 or so) option price estimates using Eq. (6)
and an equivalent number of option price estimates using
(iii). For each of the two methods, plot a histogram of the
estimates and compute the mean and standard deviation
of the estimates. Comment on the accuracies of the two
methods.

12 As arule of thumb, you may assume that the sampling error in these Monte Carlo estimates is proportional

to 1/4/M. Using software packages such as MATLAB that allow vector operations where all M trajectories
can be simulated simultaneously greatly speeds up the calculations.
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Systems of Two First
Order Equations

he first two chapters of this book contain the material most essential for

dealing with single first order differential equations. To proceed further,

there are two natural paths that we might follow. Thefirstisto take up the

study of second order equations and the other is to consider systems of

two first order equations. There are many important problems in various

areas of application that lead to each of these types of problems, so both
are important and we will eventually discuss both. They are also closely related to each
other, as we will show. Our approach is to introduce systems of two first order equationsin
this chapter and to take up second order equations in Chapter 4.

There are many problem areas thatinvolve several components linked togetherin some
way. Forexample, electrical networks have this character, as do some problemsin mechan-
ics and in other fields. In these and similar cases, there are two (or more) dependent vari-
ables and the corresponding mathematical problem consists of a system of two (or more)
differential equations, which can always be written as a system of first order equations. In
this chapter, we consider only systems of two first order equations and we focus most of
our attention on systems of the simplest kind: two first order linear equations with constant
coefficients. Our goals are to show what kinds of solutions such a system may have and
how the solutions can be determined and displayed graphically, so that they can be easily
visualized.

116
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3.1 Systems of Two Linear
Algebraic Equations

The solution of a system of two linear differential equations with constant coefficients is

directly related to the solution of an associated system of two linear algebraic equations.

Consequently, we start by reviewing the properties of such linear algebraic systems.!
Consider the system

apxy +apx; = by, (H
Ay X + Ay, = by,

where a,y, ..., ay, by, and b, are given and x| and x, are to be determined. In matrix nota-
tion, we can write the system (1) as

Ax =b, 2)

a a X b
G S 0 M 1 S
dy; dp B9 b,

Here A is a given 2 X 2 matrix, b is a given 2 X 1 column vector, and x is a 2 X 1 column
vector to be determined.

To see what kinds of solutions the system (1) or (2) may have, it is helpful to visualize the
situation geometrically. If @, and a;, are not both zero, then the first equation in the system
(1) corresponds to a straight line in the x;x,-plane, and similarly for the second equation.
There are three distinct possibilities for two straight lines in a plane: they may intersect at
a single point, they may be parallel and nonintersecting, or they may be coincident. In the
first case, the system (1) or (2) is satisfied by a single pair of values of x; and x,. In the
second case, the system has no solutions; that is, there is no point that lies on both lines. In
the third case, the system has infinitely many solutions, since every point on one line also
lies on the other. The following three examples illustrate these possibilities.

where

EEEN
EXAMPLE
1

Solve the system
3X1 _XZ = 8, (4)
X1 + 2XZ =5.

We can solve this system in a number of ways. For instance, from the first equation we
have

Xy = 3x1 - 8. (5)
Then, substituting this expression for x, in the second equation, we obtain
X1 +203x; —8) =5,

or 7x; = 21, from which x; = 3. From Eq. (5), x, = 1. Thus the solution of the system (4)
is x; = 3, x, = 1. In other words, the point (3, 1) is the unique point of intersection of the
two straight lines corresponding to the equations in the system (4). See Figure 3.1.1.

'We believe that much of the material in this section will be familiar to you. A more extensive discussion
of linear algebra and matrices appears in Appendix A.
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FILCRPAE IR IR Geometrical interpretation of the system (4).

HEEN
EXAMPLE Solve the system
2 X 420 = 1, (©6)
X+ 2x, = 3.

We can see at a glance that this system has no solution, since x; 4+ 2x, cannot simultane-
ously take on the values 1 and 5. Proceeding more formally, as in Example 1, we can solve
the first equation for x|, with the result that x; = 1 — 2x,. On substituting this expression for
x; in the second equation, we obtain the false statement that 1 = 5. Of course, you should
not regard this as a demonstration that the numbers 1 and 5 are equal. Rather, you should
conclude that the two equations in the system (6) are incompatible or inconsistent, and so
the system has no solution. The geometrical interpretation of the system (6) is shown in
Figure 3.1.2. The two lines are parallel and therefore have no points in common.

2

3 |

|
6 X1

-1

X1+ 2x2 =1
-2+
SRV BV Geometrical interpretation of the system (6).
EEEN
EXAMPLE Solve the system
3

2x; +4x, = 10, @)

X1 +2)C2 =5.
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Solving the second equation for x;, we find that x; = 5 — 2x,. Then, substituting this
expression for x; in the first equation, we obtain 2(5 — 2x,) + 4x, = 10, or 10 = 10. This
result is true, but does not impose any restriction on x; or x,. On looking at the system (7)
again, we note that the two equations are multiples of each other; the first is just 2 times
the second. Thus every point that satisfies one of the equations also satisfies the other.
Geometrically, as shown in Figure 3.1.3, the two lines described by the equations in the
system (7) are actually the same line. The system (7) has an infinite set of solutions—all of
the points on this line. In other words, all values of x; and x, such that x; 4+ 2x, = 5 satisfy
the system (7).

—_

I 2x1 ar 4x2 =10

\
1 2 E 4 5 6 X1

FILCRON IR Geometrical interpretation of the system (7).

Let us now return to the system (1) and find its solution. To eliminate x, from the system
(1), we can multiply the first equation by a,,, the second equation by a,,, and then subtract
the second equation from the first. The result is

(ar1ay; — ajpay))x; = anby —appb,, (3)

SO

by ap

= apby —apby — |by ay ©)
1= - .
aj1dyy — apdy ay, ap

ay; dxp

In Eq. (9), we have written the numerator and denominator of the expression for x; in the
usual notation for 2 X 2 determinants.

To find a corresponding expression for x,, we can eliminate x; from Eqgs. (1). To do this,
we multiply the first equation by a5, the second by a,, and then subtract the first equation
from the second. We obtain

(ay1ay; — ajpay))x, = ay by — ay by, (10)

SO

ay b

ayby —ay b, a by
X = = . (1n
ay1dyy — appdyy ay, ap

ay; dxp
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THEOREM
3.1.1

The denominator in Eqgs. (9) and (11) is the determinant of coefficients of the sys-
tem (1), or the determinant of the matrix A. We will denote it by det(A), or sometimes
by A. Thus

app dp

A= det(A) = = daj1dyy — dypdyg. (12)

dyp dxp

As long as det(A) # 0, the expressions in Eqgs. (9) and (11) give the unique values of x; and
X, that satisfy the system (1). The solution of the system (1) in terms of determinants, given
by Egs. (9) and (11), is known as Cramer’s rule.

The condition that det(A) # O has a simple geometric interpretation. Observe that the
slope of the line given by the first equation in the system (1) is —a;;/a;,, as long as
ap, # 0. Similarly, the slope of the line given by the second equation is —a,; /dy,, pro-
vided that a,, # 0. If the slopes are different, then

arpy ayy

2
app as

which is equivalent to
dj1dyy — apdy = det(A) 56 0.

Of course, if the slopes are different, then the lines intersect at a single point, whose coor-
dinates are given by Eqgs. (9) and (11). We leave it to you to consider what happens if either
aj, Or ay, or both are zero. Thus we have the following important result.

The system (1),
ay Xy +apx, = by,
ay Xy + axnXy = by,
has a unique solution if and only if the determinant
A =ayjay = apay #0.

The solution is given by Egs. (9) and (11). If A = 0, then the system (1) has either no
solution or infinitely many.

We now introduce two matrices of special importance, as well as some associated ter-
minology. The 2 X 2 identity matrix is denoted by I and is defined to be

1=<1 O). (13)
0 1

Note that the product of I with any 2 X 2 matrix or with any 2 X 1 vector is just the matrix
or vector itself.

For a given 2 X 2 matrix A, there may be another 2 X 2 matrix B such that AB = BA =
I. There may be no such matrix B, but if there is, then it can be shown that only one exists.
The matrix B is called the inverse of A and is denoted by B = AL If A1 exists, then A is
called nonsingular or invertible. On the other hand, if A~! does not exist, then A is said
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to be singular or noninvertible. In Problem 37, we ask you to show that if A is given by
Eq. (3), then A~!, when it exists, is given by

1 a —ad
A—l — 22 12 . 14
det(A) <—321 ap > (o

It is easy to verify that Eq. (14) is correct simply by multiplying A and A~! together. Equa-
tion (14) strongly suggests that A is nonsingular if and only if det(A) # 0, and this is, in
fact, true. If det(A) = 0, then A is singular, and conversely.

We now return to the system (2). If A is nonsingular, multiply each side of Eq. (2) on
the left by A~!. This gives

A"Ax=A"1h,
or
Ix=A"'b,
or
x=A"lbh. (15)

It is straightforward to show that the result (15) agrees with Eqgs. (9) and (11).

Homogeneous Systems. Ifb; = b, =0 in the system (1), then the system is said to be homogeneous;

THEOREM
Sodlo2)

otherwise, it is called nonhomogeneous. Thus the general system of two linear homoge-
neous algebraic equations has the form

ay Xy +apx, =0, (16)
a1 Xy + annXy = 0,

or, in matrix notation,
Ax = 0. (17)

For the homogeneous system (16), the corresponding straight lines must pass through
the origin. Thus the lines always have at least one point in common, namely, the origin. If
the two lines coincide, then every point on each line also lies on the other and the system
(16) has infinitely many solutions. The two lines cannot be parallel and nonintersecting. In
most applications, the solution x; = 0, x, = 0 is of little interest and it is often called the
trivial solution. According to Egs. (9) and (11), or Eq. (15), this is the only solution when
det(A) # 0, that is, when A is nonsingular. Nonzero solutions occur if and only if det(A) =0,
that is, when A is singular. We summarize these results in the following theorem.

The homogeneous system (16) always has the trivial solution x; = 0, x, = 0, and this is
the only solution when det(A) # 0. Nontrivial solutions exist if and only if det(A) = 0. In
this case, unless A = 0, all solutions are proportional to any nontrivial solution; in other
words, they lie on a line through the origin. If A = 0, then every point in the x;x,-plane
is a solution of Eqs. (16).

The following examples illustrate the two possible cases.

EEEN
EXAMPLE
4

Solve the system
3.)(1 — Xy = 0, (18)

X1 +2)C2 =0.
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From the first equation, we have x, = 3x;. Then, substituting into the second equation,
we obtain 7x; = 0, or x; = 0. Then x, = 0 also. Note that the determinant of coefficients
has the value 7 (which is not zero), so this confirms the first part of Theorem 3.1.2 in this
case. Figure 3.1.4 shows the two lines corresponding to the equations in the system (18).

X2

3x1—x2 =0

SR ESe B Geometrical interpretation of the system (18).

EEEN
EXAMPLE
5

Solve the system
2.7C1 + 4.X2 = 0, (19)
X1 +2xy, =0.

From the second equation, we have x; = —2x,. Then, from the first equation, we obtain
—4x, 4 4x, =0, or 0 = 0. Thus x, is not determined, but remains arbitrary. If x, = ¢, where
¢ is an arbitrary constant, then x; = —2c. Thus solutions of the system (19) are of the form
(—2c¢, ¢), or c¢(—2, 1), where c is any number. The system (19) has an infinite set of solutions,
all of which are proportional to (=2, 1), or to any other nontrivial solution. In the system
(19) the two equations are multiples of each other and the determinant of coefficients has
the value zero. See Figure 3.1.5.

Eigenvalues and Eigenvectors

The equation y = Ax, where A is a given 2 X 2 matrix, can be viewed as a transformation, or
mapping, of a two-dimensional vector x to a new two-dimensional vector y. For example,

suppose that
A=(1 1), (1> 0
4 1 1
4 1 1 5

Then
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x2
1 —
2% + 42y = 0 051
| | | |
-2 -1 1 2 X1
05
X1+ 2x2 =0
1

RPN Geometrical interpretation of the system (19).

thus the original vector x has been transformed into the new vector y. Similarly, if A is

given by Eq. (20) and x = ( T), then

4 1 -1 7
and so on.

In many applications it is of particular importance to find those vectors that a given
matrix transforms into vectors that are multiples of the original vectors. In other words, we
want y to be a multiple of x; that is, y = Ax, where A is some (scalar) constant. In this case,
the equation y = Ax becomes

Ax = Ax. 23)
If x =0, then Eq. (23) is true for any A and for any A, so we require X to be a nonzero vector.
Then, since Ix = x, we can rewrite Eq. (23) in the form
Ax = MXx, (24)
or
(A-ADx = 0. (25)

To see the elements of A — AI, we write

A—M:(a“ au)_(}\ O>=<a“—7\ an ) (26)
dp; dp 0 A ar ayp — M

Recall that we are looking for nonzero vectors x that satisfy the homogeneous
system (25). By Theorem 3.1.2, nonzero solutions of this system occur if and only if the
determinant of coefficients is zero. Thus we require that

ap — M app

det(A — AI) = =0. 27

a1 ayp =M
Writing Eq. (27) in expanded form, we obtain

(a1 = M(ay — W) — apay; =2 = (@) + ap)h+ay,ay — ajpay =0. (28)
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Equation (28) is a quadratic equation in A, so it has two roots A; and A,. The values A;
and A, are called eigenvalues of the given matrix A. By replacing A by A, in Eq. (25) and
solving the resulting equation for X, we obtain the eigenvector x; corresponding to the
eigenvalue ;. In a similar way, we find the eigenvector x, that corresponds to the second
eigenvalue A,. The eigenvectors are not determined uniquely, but only up to an arbitrary
constant multiplier.

Equation (28), which determines the eigenvalues, is called the characteristic equation
of the matrix A. The constant term in this equation is just the determinant of A. The coef-
ficient of A in Eq. (28) involves the quantity a;; + a,,, the sum of the diagonal elements
of A. This expression is called the trace of A, or tr(A). Thus the characteristic equation is
sometimes written as

A2 — tr(A)A + det(A) = 0. (29)

We are assuming that the elements of A are real numbers. Consequently, the coefficients
in the characteristic equation (28) are also real. As a result, the eigenvalues A and A, may be
real and different, real and equal, or complex conjugates. The following examples illustrate
the calculation of eigenvalues and eigenvectors in each of these cases.

EEEN
EXAMPLE
6

Find the eigenvalues and eigenvectors of the matrix

a=(! ). (30)
4 1
In this case, Eq. (25) becomes

(7 2)()-C)

The characteristic equation is
1=2)2=4=22-2A-3=A-3)A+1)=0, (32)

so the eigenvalues are A} =3 and A, = —1.
To find the eigenvector x; associated with the eigenvalue A, we substitute A = 3 in Eq.

(31). Thus we obtain
<_2 1><XI>:<O). o
4 =2 x2 O

Observe that the rows in Eq. (33) are proportional to each other (as required by the vanishing
of the determinant of coefficients), so we need only consider one row of this equation.
Consequently, —=2x; + x, =0, or x, = 2x;, while x| remains arbitrary. Thus

()
2c 2

where c is an arbitrary constant. From Eq. (34), we see that there is an infinite set of eigen-
vectors associated with the eigenvalue A,. It is usually convenient to choose one member
of this set to represent the entire set. For example, in this case, we might choose

x]=<1>, (35)
2
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and even refer to it as the eigenvector corresponding to A;. However you should never forget
that there are actually infinitely many other eigenvectors, each of which is proportional to
the chosen representative.

In the same way, we can find the eigenvector x, corresponding to the eigenvalue A,. By
substituting A = —1 in Eq. (31), we obtain

(i ;)@):(8) 36)

Thus x, = —2x,, so the eigenvector X, is
2 1 2

X, = (_;) @37

or any vector proportional to this one.

AEEEN
EXAMPLE
7

Find the eigenvalues and eigenvectors of the matrix

-1 1
A=| ? e (38)
-1 -3

In this case, we obtain, from Eq. (25),

1
- = 1
—1 _5 —A Xy 0
The characteristic equation is
2
Q&-x>+1=ﬂ+x+§=a (40)
so the eigenvalues are
M=-34i M=-1-i (41)
For A = A; Eq. (39) reduces to

(5 2)()-()

Thus x, = ix; and the eigenvector x; corresponding to the eigenvalue A, is

x1=(1,>, 43)
l

or any vector proportional to this one. In a similar way, we find the eigenvector x, corre-

sponding to A,, namely,
X, = < 1_> . (44)
—i

Observe that x; and x, are also complex conjugates. This will always be the case when the
matrix A has real elements and a pair of complex conjugate eigenvalues.
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HFEEN

EXAMPLE Find the eigenvalues and eigenvectors of the matrix
8
a=(1 7). (45)
1 3
From Eq. (25), we obtain
I-x -1 xY_ (0 . 46)
1 3-A Xy 0

Consequently, the characteristic equation is

A=MDB-N+1=2—-4r+4=L-22=0, (47)

and the eigenvalues are A; = A, = 2.
Returning to Eq. (46) and setting A = 2, we find that

(D))

Hence x, = —x, so there is an eigenvector

x1=< 1). (49)
-1

As usual, any other (nonzero) vector proportional to X, is also an eigenvector.

However, in contrast to the two preceding examples, in this case there is only one dis-
tinct family of eigenvectors, which is typified by the vector x; in Eq. (49). This situation is
common when a matrix A has a repeated eigenvalue.

The following example shows that it is also possible for a repeated eigenvalue to be
accompanied by two distinct eigenvectors.

EXAMPLE Find the eigenvalues and eigenvectors of the matrix

9
A=<2 0). (50)
0 2

In this case, Eq. (25) becomes

2-A 0 X\ _ 0 . (51
0 2-A Xy 0
Thus the characteristic equation is

2-02=0, (52)

and the eigenvalues are A; = A, = 2. Returning to Eq. (51) and setting A = 2, we obtain

CIC-0
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Thus no restriction is placed on x; and x,; in other words, every nonzero vector in the plane
is an eigenvector of this matrix A. For example, we can choose as eigenvectors

() () e

or any other pair of nonzero vectors that are not proportional to each other.

Sometimes a matrix depends on a parameter and, in this case, its eigenvalues also depend
on the parameter.

EEEN
EXAMPLE Consider the matrix
10 5
A= “, (55)
-1 0
where «a is a parameter. Find the eigenvalues of A and describe their dependence on a.
The characteristic equation is
Q=M= +a=2=-2"+a=0, (56)
so the eigenvalues are
2+V4—-4a
== i Vi—a 7
2
Observe that, from Eq. (57), the eigenvalues are real and different when @ < 1, real and
equal when a = 1, and complex conjugates when a > 1. As « varies, the case of equal
eigenvalues occurs as a transition between the other two cases.
We will need the following result in Sections 3.3 and 3.4.
THEOREM Let A have real or complex eigenvalues A; and A, such that A; # A,, and let the corre-
3.1.3 sponding eigenvectors be

x x
x, =1 and x,=["12 ).
X21 X22

If X is the matrix with first and second columns taken to be x; and x,, respectively,
3 3
X = < 11 12 ) , (5 8)
X211 X2

X111 *12

then

det(X) = # 0. (59)

X21 A2
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Proof

To prove this theorem, we will assume that det(X) = 0 and then show that this leads to
a contradiction. If det(X) = 0, then the linear combination

X12X11 — X11%12 0
X1pX) = Xp1Xp = = . (60)
X12X21 — X11%22 0

The first component is obviously zero, while the second component is —det(X) = 0.
Equation (60) implies that

X, = kx;, (61)

where k is a nonzero scalar. To show this, we consider the four cases (i) x;; # 0 and
X150 #0, (i) x1; =0, (iii) x1, = 0, and (iv) x;; = x7, = 0.

In case (i), we write Eq. (60) in the form x;;X, = x|,X; and divide through by x;; to
get X, = kx, where k = x|, /x;; is nonzero.

In case (ii), if x;; = 0, then the second component of Eq. (60) reduces to x;,x,; = 0.
Since x; is an eigenvector, it cannot be 0; consequently, its second component, x,;, must
be nonzero. It follows that x;, = 0. Then x; and x, must have the forms

x1:<0> and x2:<0>, (62)
X1 X22

where both x,; and x,, are nonzero, because the eigenvectors x; and X, are nonzero by
definition. It follows that Eq. (61) holds with k = x5, /x5;.
Interchanging the roles of x;; and x,, case (iii) is identical to case (ii).
Case (iv) results in Eq. (62) directly. Thus Eq. (61) also holds with k& = x,, /x,;.
Thus we have established that the assumption det(X) = 0 implies Eq. (61) in which
k # 0. Multiplying Eq. (61) by A gives
AX2 = A(kxl) = kAXl = k}\lxl,
whereas on the other hand, we have
AX2 = }\2X2 = }\«z(kxl) = k}\,le.
Taking the difference of these two equations gives us the equation
k(A —2)x; =0 (63)

in which k # 0, A; — A, # 0 since A| # A,, and x; # 0 because it is an eigenvector. Since
the assumption det(X) = 0 leads to the contradictory statement (63), we conclude that
det(X) # 0.

Remark. If you are familiar with the concepts of linear dependence and linear independence,
then you will recognize that Theorem 3.1.3 states that if the eigenvalues of A are distinct, then

the eigenvectors are linearly independent.

PROBLEMS
EE IS E NN NN E NN EEEENERN

Solving Linear Systems. In each of Problems 1 through 12:
(a) Find all solutions of the given system of equations.

(b) Sketch the graph of each equation in the system. Are the
lines intersecting, parallel, or coincident?

1. 2x, 4+ 3x, =7,
2. x; —2x, =10,

=3x;+x, =-5
2%, +3x, =6

X +3x,=0, 2x,-x,=0
=X +2x, =4, 2x; —4x,=-6

. 3%, —2x,=0, —6x;+4x,=0

3

4

5. 2%, =3x, =4, x+2x,=-5

6

7. 2%, =3x, =6, —4x;,+06x,=-12
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8. 4x, +x, =0,
9. x; +4x, =10,
10. x; +x, = -1,
11. 4x, —3x, =0,
12. 2x; +5x, =0,

4x, = 3x, = —12
4x, +x, =10
X +2x, =4
—2x,+5x,=0
4x, 4+ 10x, =0
Eigenvalues and Eigenvectors. In each of Problems 13

through 32, find the eigenvalues and eigenvectors of the given
matrix.

5
2 2% A=( 1 !
2 5 -3

SNV IS

3 =2 3 -2
= 14. A=
15 A <2 —2) (4 —1> 503 ) 1
|4 4 _ =
3 -4 o A 1 -2 3. A= s s 32.A_<_l i)
15.A=(1 _1> A=l L i ’
-1 -4 5 3 In each of Problems 33 through 36:
17. A= ( 1 -1 > 18. A= < ‘3‘ ‘1‘ > (a) Find the eigenvalues of the given matrix.
i T3 (b) Describe how the nature of the eigenvalues depends on
the parameter a in the matrix A.
ac( ! a=(? 7! 2
Poa=ti L 20- _<3 —2) 3. A= “ A=
4 2 1 =3 -a 2
— 6 3
. Aa=(2 7 2. A= |2 | —a
1 -2 2 1 35. A= 36. A=
3 a 2a 3
23 A 1 1 2. A< 2 —% 37. If det(A) # 0, der.ive thé result in Eq. (14) f01.r A‘l:
4 -2 2 38. Show that A = 0 is an eigenvalue of the matrix A if and
> only if det(A) = 0.
3.2 Systems of Two First Order Linear
Differential Equations
We begin our discussion of systems of differential equations with a model of heat ex-
change between the air inside a greenhouse and an underground rockbed in which heat,
derived from solar radiation, is accumulated and stored during the daytime. The mathemat-
ical model requires two dependent variables: (1) the air temperature in the greenhouse, and
(2) the temperature of the rockbed. At night, when the air temperature outside the green-
house is low, heat from the rockbed is used to help keep the air in the greenhouse warm,
thereby reducing the cost of operating an electrical or petroleum-based heating system.
EEEN
EXAMPLE Consider the schematic diagram of the greenhouse/rockbed system in Figure 3.2.1. The
1 rockbed, consisting of rocks ranging in size from 2 to 15 cm, is loosely packed so that air
A Rockbed can easily pass through the void space between the rocks. The rockbed, and the underground

Heat Storage

System

portion of the air ducts used to circulate air through the system, are thermally insulated
from the surrounding soil. Rocks are a good material for storing heat since they have a high
energy-storage capacity, are inexpensive, and have a long life.

During the day, air in the greenhouse is heated primarily by solar radiation. Whenever
the air temperature in the greenhouse exceeds an upper threshold value, a thermostatically
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Airin

Air out

Rockbed Insulation

FILCRPA AR Schematic side view of greenhouse and rock storage bed.

controlled fan circulates the air through the system, thereby transferring heat to the rockbed.
At night, when the air temperature in the greenhouse drops below a lower threshold value,
the fan again turns on, and heat stored in the rockbed warms the circulating air.

We wish to study temperature variation in the greenhouse during the nighttime phase of
the cycle. A simplified model for the system is provided by lumped system thermal anal-
ysis, in which we treat the physical system as if it consists of two interacting components.
Assume that the air in the system is well mixed so that both the temperature of the air in the
greenhouse and the temperature of the rockbed are functions of time, but not location. Let
us denote the air temperature in the greenhouse by u (f) and the temperature of the rockbed
by u,(#). We will measure ¢ in hours and temperature in degrees Celsius.

The following table lists the relevant parameters that appear in the mathematical model
below. We use the subscripts 1 and 2 to indicate thermal and physical properties of the air
and the rock medium, respectively.

my, m, total masses of air and rock

C,C, specific heats of air and rock

ALA, area of above-ground greenhouse enclosure and area of the air-rock interface
hy, h, heat transfer coefficients across interface areas A, and A,

T, temperature of air external to the greenhouse

The units of C,, and C, are J/kg - °C, while the units of h; and h, are J/h - m? - °C. The
area of the air—rock interface is approximately equal to the sum of the surface areas of the
rocks in the rock storage bed.

Using the law of conservation of energy, we get the differential equations

mICIW = —hAj(uy — T,) — Ay (uy — uy), (D

du
m2C27t2 = —hyAy(uy — uy). 2
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Equation (1) states that the rate of change of energy in the air internal to the system equals
the rate at which heat flows across the above-ground enclosure (made of glass or polyethy-
lene) plus the rate at which heat flows across the underground air-rock interface. In each
case, the rates are proportional to the difference in temperatures of the materials on each
side of the interface. The algebraic signs that multiply each term on the right are chosen
so that heat flows in the direction from hot to cool. Equation (2) arises from the following
reasoning. Since the rockbed is insulated around its boundary, heat can enter or leave the
rockbed only across the air-rock interface. Energy conservation requires that the rate at
which heat is gained or lost by the rockbed through this interface must equal the heat lost
or gained by the greenhouse air through the same interface. Thus the right side of Eq. (2)
is equal to the negative of the second term on the right-hand side of Eq. (1).
Dividing Eq. (1) by m;C, and Eq. (2) by m,C, gives

dul
d_ = _kl (l/ll - T(l) - kz(l/tl - I/lz), (3)
t
i S o)
a €xplly — Uy),
or, rearranging terms, we get
dul
= = —(ky + kpuy + kyuy + ki T, 5
i _ e k 6)
di = €EKUy €K Uy,
where
hA h,A C
k= -2l =222 and e= L )
m;C, m;Cy myCy

Note that Egs. (5) and (6) are an extension to two materials of Newton’s law of cooling,
introduced in Example 1 in Section 1.1. In the current application, the dimensionless pa-
rameter e, the ratio of the energy storage capacity of the greenhouse air to the energy storage
capacity of the rockbed, is small relative to unity® because m, C; is much smaller than m, C,.

Let us suppose that r = 0 corresponds to the beginning of the nighttime phase of the
cycle, and that starting values of u; and u, are specified at this time by

I/tl(o) = Mlo, l/l2(0) = uzo. (8)

The pair of differential equations (5) and (6), together with the initial conditions (8), con-
stitute a mathematical model for the variation of air temperature in the greenhouse and the
temperature of the rockbed during the nighttime phase of the cycle. Solutions of these equa-
tions for u; (f) and u,(¢) can assist us in designing a solar-powered rockbed heating system
for the greenhouse. In particular, the solutions can help us determine the size of the rockbed
relative to the volume of the greenhouse, to determine optimal fan speeds, and to determine
required rockbed temperatures satisfactory for keeping the greenhouse warm during the
night.

In order to plot graphs of solutions of the initial value problem (5), (6), and (8) on a com-
puter, it is necessary to assign numerical values to the parameters ky, k,, €, and 7, as well as
to the initial conditions u; and u,. Values for k;, k,, and e may be estimated by consulting

2In mathematics, the notation 0 < e < 1 is frequently used to represent the statement, “The positive number
€ is small compared to unity.”



132 Chapter 3 Systems of Two First Order Equations

tables of heat transfer coefficients and thermal properties of gases and building materials,
whereas values for T, u;(, and u,; may be chosen to represent different experimental sce-
narios of interest. In general, T, can vary with ¢, but we will assume the simplest case, in
which T, is assumed to be constant. In preliminary stages of model development, an inves-
tigator may use a number of educated guesses for the parameter values to get a feeling for
how solutions behave and to see how sensitive solutions are to changes in the values of the
parameters. For the time being, we choose the following values as a compromise between
realism and analytical convenience:

ky =

. k=3 e=i  and T,=16°C. )

eI BN

Substituting these values into Egs. (5) and (6) then gives

du, 13 3

E——<§)M1+<Z)u2+14, (10)
du, 1 1

7 = (3)m-(3)m b

Equations (10) and (11) constitute an example of a first order system of differential
equations. Each equation contains the unknown temperature functions, u; and u,, of the
two interacting components that make up the system. The equations cannot be solved sep-
arately, but must be investigated together. In dealing with systems of equations, it is most
advantageous to use vector and matrix notation. This saves space, facilitates calculations,
and emphasizes the similarity between systems of equations and single (scalar) equations,
which we discussed in Chapters 1 and 2.

Matrix Notation, Vector Solutions, and Component Plots
We begin by rewriting Eqgs. (10) and (11) in the form

_ 81 ‘1‘ (“1)+<14>. (12)
dus /dt 1 ")\ 0

Next we define the vectors u and b and the matrix K to be

14 -3 2
u=("), b= , Kk=| &% ¢ (13)

M2 0 l _l

4 4

Then Eq. (12) takes the form
du

— =Ku+b. 14
7 u+ (14)

Using vector notation, the initial conditions in Eq. (8) are expressed as

u(0) = uy = (”10>. (15)
U0

Using methods discussed later in this chapter, we will be able to find all solutions of
Eq. (14). But first, we want to discuss what we mean by a solution of this equation. Consider
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the vector function

() () ()2
u,(1) 2 -1 16

—t/8 _ —7t/4
_ 8e 24e + 16 . (16)
16e~1/8 4 4¢771/* 4 16

There are two ways that we can show u in Eq. (16) is a solution of Eq. (14). One
way is to substitute the two components of u, u;(f) = 8¢™/3 — 24¢77"/* 4+ 16 and
uy(t) = 16e7"/8 + 4¢77"/* 4 16, into each of Egs. (10) and (11). If, upon substitution, each
equation reduces to an identity, then u is a solution. Equivalently, we can use matrix for-
malism to show that substituting u into Eq. (14) results in a vector identity, as we now
demonstrate. Substituting the right side of Eq. (16) for u on the left side of Eq. (14) gives

du [ —e7/8 4 42¢771/%
dr — \ —pe—t/8 _7e-T1/4 ] a7

On the other hand, substituting for u on the right side of Eq. (14), and using the rules of
matrix algebra, yield

_B 3 =t/8 _ 040~ Tt/
Ku+b= 81 411 8e 24e + 16 + 14
1 3/ \16e7/8 1 4e7T/4 1 16 0
| —13e7/8 £39¢771/4 — 26 + 12718 + 37T/ 112 et

B 2718 — 6e7T/* 44 —4e7!/8 — T4 4

_,—1/8 =Tt/4
_ e +42e . (18)
_26—1/8 _ 76—71/4
Since the right side of Eq. (17) and the last term in Eq. (18) agree, u in Eq. (16) is indeed

a solution of u’ = Ku + b.
Note also that if we evaluate Eq. (16) at 7 = 0, we get

u(0) = ( 0 ) (19)
36

Thus u in Eq. (16) is a solution of the initial value problem (14) and (19).

The components of u are scalar valued functions of ¢, so we can plot their graphs. Plots
of u; and u, versus t are called component plots. In Figure 3.2.2 we show the component
plots of u#; and u,. Component plots are useful because they display the detailed dependence
of u; and u, on t for a particular solution of Eq. (14). From Figure 3.2.2 we see that the
temperature u, of the air, ostensibly heated by the rockpile, rises rapidly, in 2.3 h, from 0°C
to approximately 21.6°C. During that same period, the rockpile cools from 36°C to roughly
28°C, a change of only 8°C. Thereafter, both u; and u, slowly approach the same constant
limiting value as t — oo. From Eq. (16) we see that

lim u(r) = < 16) , (20)
=00 16

3In this context, an identity is an equation that is true for all values of the variables, for example, 0 = 0 or
tsin(wt) = tsin(wt). A vector identity is an equation in which corresponding components of the equation
are identities, for example, cos(w?) i + 7 sin(wt) j = cos(wt)i + ¢ sin(wr) j.
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Al iy iy EE  Component plots of the solutions to the initial value problems (14), (19) and
(14), (21).

t/8 —T7t/4

since all other terms in the solution contain one of the exponential factors, e~/ or e
which tend to 0 as r — co. Note that the constant vector u = 16i + 16j is also a solution,
since substituting it into Eq. (14) results in the identity 0 = 0. This solution satisfies the

initial condition
u(0) = 16} (21)
16

Included in Figure 3.2.2 are plots of these constant values of u; and u,. Physically, this
solution corresponds to thermal equilibrium: the temperature of the greenhouse air and the
temperature of the rockbed, if set initially to the outside air temperature 7, in this case
16°C, do not change in time.

A disadvantage of this graphical approach is that we must construct another set of com-
ponent plots each time we change the initial conditions for Eq. (14). Changing the values of
ky, ko, and € may require additional component plots. Fortunately, other methods of graph-
ing solutions of Eq. (14) are available, so that we need not be overwhelmed by a dizzying
array of component plots.

Geometry of Solutions: Direction Fields and Phase Portraits

We introduce here some common, and conceptually useful, terminology for systems such
as Eq. (14). The variables u; and u, are often called state variables, since their values
at any time describe the state of the system. For our greenhouse/rockbed system, the state
variables are the temperature of the air in the greenhouse and the temperature of the rockbed.
Similarly, the vector u = u;i + u,j is called the state vector of the system. The u;u,-plane
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itself is called the state space. If there are only two state variables, the u;u,-plane may be
called the state plane or, more commonly, the phase plane.
If u; (1) and u,(¢) are the components of a solution u to Eq. (14), the parametric equations

uy = Ml(t), Uy = uz(t) (22)

give the coordinates u; and u, of a point in the phase plane as functions of time. Each value
of the parameter ¢ determines a point (u(¢), u,()), and the set of all such points is a curve
in the phase plane. The solution u = u ()i + u,(¢)j may be thought of as a position vector
of a particle moving in the phase plane. As ¢ advances, the tip of the vector u traces a curve
in the phase plane, called a trajectory or orbit, that graphically displays the path of the
state of the system in the state space. The direction of motion along a solution trajectory is
obtained by noting that for each ¢, a solution must satisfy the equation

u'(r) = Ku(®) + b. (23)

Equation (23) shows that the velocity u’(¢) of the particle at the point with position vector
u(r) is given by the vector Ku(?) + b. Thus, if we draw the vector Ku + b with its tail at
the point with position vector u, it indicates the instantaneous direction of motion of the
particle along a solution curve at that point, and its length tells us the speed of the solution
as it passes through that point. We have done this for several values of # € [1, 3] on part of
the trajectory associated with u in Eq. (16), as shown in Figure 3.2.3. Since these veloc-
ity vectors vary greatly in length, from the very long to the very short, we have scaled the
lengths of the vectors so that they fit nicely into the graph window. Note that it is not nec-
essary to know a solution of Eq. (23) in order to plot these velocity vectors. If a trajectory
passes through the point with position vector u, then the velocity vector that we attach to
that point is obtained by simply evaluating the right side of the system (23) at u. In other

Usg

” %\\\ >~ N \ |
sof 5w . NV Y
\\\\ ~ N /7
_\\\ N \\:\\ \
B~ T~ > 3 /) s
T~~~ N /) s
_\‘ ~ \ /4/ e
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B~ > 1\ | S & o
19 20 21 22 23u,

FHClUEef el The vector field for the system (23) in the rectangle 19 < u; < 23,
25.75 < u, < 31 that contains the solution (16) for 1 <7 < 3.
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words, the right side of Eq. (23) defines a vector field F(u, u,) for the system through the
relation

F(u;, 1)) = Ku+b L '+{”l ”2}' (24)
,u)=Ku+b=14 — — i+{——-—="1j.
ot g8 ' 2 P L

In the rectangular region shown in Figure 3.2.3, we have plotted several (uniformly scaled)
velocity vectors using Eq. (23).

Direction Fields

In general, the right side of a system of first order equations defines a vector field that
governs the direction and speed of motion of the solution at each point in the phase plane.
Because the vectors generated by a vector field for a specific system often vary significantly
in length, it is customary to scale each nonzero vector so that they all have the same length.
These vectors are then referred to as direction field vectors for the system (14) and the
resulting picture is called the direction field. Direction fields are easily constructed using
a computer algebra system. Since direction field vectors all have the same length, we lose
information about the speed of motion of solutions, but retain information about the direc-
tion of motion. Just as for the direction fields that we saw in Chapters 1 and 2 for single first
order equations, we are able to infer the general behavior of trajectories, or solutions, of a
system such as Eq. (14) by looking at the direction field.

Phase Portraits

Using a computer, it is just as easy to generate solution trajectories as it is to generate
direction fields. A plot of a representative sample of the trajectories, including any constant
solutions, is called a phase portrait of the system of equations. Each trajectory in the
phase portrait is generated by plotting, in the u;u,-plane, the set of points with coordinates
(uy (1), uy(2)) for several values of ¢, and then drawing a curve through the resulting points.
The values of u(¢) and u,(¢) can be obtained from analytical solutions of Eq. (14), or, if
such solutions are not available, by using a computer to approximate solutions of Eq. (14)
numerically. The qualitative behavior of solutions of a system is generally made most clear
by overlaying the phase portrait for a system with its direction field. The trajectories indicate
the paths taken by the state variables, whereas the direction field indicates the direction of
motion along the trajectori